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ABSTRACT

As machine learning continues to grow and surprise us, its complexity grows as well. In-

deed, many machine learning models have become black boxes. Yet, there is a prevailing need

for practicality. This dissertation offers some practicality on generative modeling and syn-

thetic data, a recently popular application of generative models. First, Lightweight Chained

Universal Approximators (LiCUS) is proposed. Motivated by statistical sampling principles,

LiCUS tackles a simplified generative task with its universal approximation property while

having a minimal computational bottleneck. When compared to a generative adversarial

network (GAN) and variational auto-encoder (VAE), LiCUS empirically yields synthetic

data with greater utility for a classifier on the Modified National Institute of Standards and

Technology (MNIST) dataset. Second, following on its potential for informative synthetic

data, LiCUS undergoes an extensive synthetic data supplementation experiment. The ex-

periment largely serves as an informative starting point for practical use of synthetic data via

LiCUS. In addition, by proposing a gold standard of reserved data, the experimental results

suggest that additional data collection may generally outperform models supplemented with

synthetic data, at least when using LiCUS. Given that the experiment was conducted on

two datasets, future research could involve further experimentation on a greater number and

variety of datasets, such as images. Lastly, generative machine learning generally demands

large datasets, which is not guaranteed in practice. To alleviate this demand, one could

offer expert knowledge. This is demonstrated by applying an expert-informed Wasserstein

GAN with gradient penalty (WGAN-GP) on network flow traffic from NASA’s Operational

Simulation for Small Satellites (NOS3). If one were to directly apply a WGAN-GP, it would

fail to respect the physical limitations between satellite components and permissible commu-

nications amongst them. By arming a WGAN-GP with cyber-security software Argus, the

informed WGAN-GP could produce permissible satellite network flows when given as little

as 10,000 flows. In all, this dissertation illustrates how machine learning processes could be

modified under a more practical lens and incorporate pre-existing statistical principles and

expert knowledge.
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1. LIGHTWEIGHT CHAINED UNIVERSAL SYNTHESIZERS

(LiCUS)

1.1 Introduction

Machine learning (ML) algorithms automate modeling and prediction tasks through com-

plex models at the cost of large data requirements. Accordingly, ML has greatly facilitated

the use of modeling and understandably grown in popularity. For instance, generative ML

methods have garnered plenty of attention in part due to the realism of generated data.

Common generative approaches target generating all features all at once [  1 ]–[ 3 ]. Other ap-

proaches incrementally generate individual features, such as in [  4 ].

Despite all the advantages that ML algorithms possess, they also have disadvantages

that limit their application in practice. The major disadvantage in ML lies in the source

of its power: scalability of vast quantities of parameters. While platoons of parameters are

readily trained in ML algorithms, the training of these parameters collectively demand large

datasets. In short, ML procedures are data-hungry and data collection may be laborious or

expensive - or both!

Recently, a natural remedy to this data burden has surfaced: supplying ML classifiers

with generated data through generative ML models, as in [ 5 ], [  6 ]. Nevertheless, barring

attempts at leveraging similar datasets, one would expect ML generative methods to be

data-hungry due to the complexity of their model structures. In other words, this approach

may simply redirect the data burden from the classifier to the generative model.

Furthermore, perhaps due in part to this data burden, black box environments are com-

monly riddled with obstacles and rely primarily on ad hoc tuning of features, at times akin to

knob-turning. For instance, a common example is mode collapse [  2 ], in which the generative

model is myopic and only generates a subset of targeted classes. Additionally, optimiza-

tion of neural networks is troubled with unstable gradients, such as exploding or vanishing

gradients. Thus, the training process further compounds the data requirement.

While we do not directly focus on solving the data burden, we seek a lightweight genera-

tive model to enhance data usage and avoid the perils of stochastic optimization algorithms

altogether. We pursue this goal through lean universal approximators, such as extreme learn-
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ing machine (ELM) [  7 ]. We propose an efficient generative process, Lightweight Chained

Universal Synthesizers (LiCUS).

As in Gibbs sampling, a popular Markov Chain Monte Carlo (MCMC) sampling method

[ 8 ], [  9 ], we consider data synthesis with the objective of approximately retaining observed

conditional distributions in synthetic datasets. If synthetic data sufficiently maintain their

conditional distributions, we hypothesize that synthetic data would inform classifiers of these

conditional distributions and hence offer greater training fuel when compared to methods

that pursue fidelity or variational inference. Indeed, experimental results suggest LiCUS

offers synthetic data with greater training utility than a comparable generative adversarial

network (GAN) or variational auto-encoder (VAE).

1.2 Background

1.2.1 Monte Carlo Sampling for Synthetic Data

To provide a statistical framework for data synthesis, it is imperative to review pop-

ular classical methodology; notably, Monte Carlo (MC) and Markov Chain Monte Carlo

(MCMC). MC sampling refers to a set of simulation methods to approximate probability

distributions through random number generators. These methods typically enable simple

and convenient estimation of quantities involving probability distributions, such as means,

standard deviations, and quantiles. However, MC sampling can become difficult to imple-

ment for complex random variables. To address these tasks, MCMC methods have been

developed; for a greater review of MCMC, please refer to [ 9 ]. These MCMC methods drive

Markov chains to asymptotically obtain simulations that ultimately follow the specified tar-

get distribution. One popular MCMC algorithm is the Gibbs sampler [  10 ].

Instead of simulating from the entire joint distribution of a set of random variables, the

Gibbs sampler simulates from a sequence of conditional distributions. Traditionally, Gibbs

sampling is the iterative simulation of each random variable component via its conditional

distribution when all remaining variables are held fixed at their previously drawn values. Fur-

thermore, as these conditional distributions target fewer variables, Gibbs sampling exhibits

dimension reduction and can greatly simplify many Monte Carlo problems in practice.
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It is possible for Gibbs sampling to experience slow convergence. For instance, if two

random variables are highly correlated, it would take relatively more Gibbs MCMC draws

to fully explore the support of the underlying target joint distribution and thus induce poor

mixing. A popular remedy is Hamiltonian Monte Carlo (HMC) [ 11 ] in which log-likelihood

gradient information is employed to reduce the impact of correlations between samples.

Specifically, by iteratively drawing random momentum, the support is better explored by

numerically simulating a particle’s path via Hamiltonian dynamics.

1.2.2 Extreme Learning Machines

Consider the task of modeling a univariate response y. A single-layer neural network f is

then characterized by the number of nodes p, weight matrices W1, W2, and an element-wise

activation function g:

f(z) = W2g(W1z) (1.1)

where z ∈ Rm, W1 ∈ Rp×m, and W2 ∈ R1×p. For brevity, bias or intercept terms were not

explicitly included. Typically, a single-layer neural network would then iteratively optimize

its weight matrices through stochastic gradient descent.

As an economical representation of a single-layer neural network, an ELM [  12 ] only

optimizes a single weight matrix:

h(z) = g(zT γ)β (1.2)

where z ∈ Rm, γ ∈ Rm×p, and β ∈ Rp. Again, for brevity, bias or intercept terms were

not explicitly included. Similarly, for greater ease of communication, denote γ as the inner

weights and β as the outer weights. An ELM would draw γ from some pre-defined weight

distribution G. Consequently, only β is optimized through a single least-squares optimization

that has a closed-form analytical expression. By construction, ELMs are greatly differen-

tiated by its brief fitting procedure. Indeed, with a bottleneck of a single matrix inversion

operation, ELMs require polynomial-time computation. In addition to the drastic simplicity

in the training process, ELMs boast an universal approximation property [  7 ]. Therefore,
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an ELM retains the modeling capability of a single-layer neural network while reducing the

learning process to least squares estimation.

1.2.3 Related Work

Most synthetic work involves two goals: fidelity and machine learning efficacy. Fidelity

of generated data often relies on a large array including adversarial discriminators [  2 ], diver-

gences [  13 ], likelihood valuations [  1 ], [ 5 ], [ 6 ] , and several statistical scores [  14 ], [  15 ]. On the

other hand, machine learning efficacy, such as [ 16 ], instead seeks to maximize performance

of a task when given only synthetic data. The most common metrics involved accuracy mea-

sures (e.g., F1 scores) for classification tasks and coefficent of determination R2 for regression

tasks [  5 ], [  6 ].

It is worth noting that most data generation approaches rely on data-hungry neural

networks. In contrast to these methods, this component of the dissertation focuses on

lightweight data generation. Such lightweight approaches include data augmentation as

in [  17 ] and roughly hand-crafted synthetic data [  18 ], [  19 ]. These methods have been shown

to ease ML training processes and suggest fidelity as being too costly of a goal for general

purposes.

Our work is most similar to the Leave-One-Out (LOO) proposal [  13 ], which also tackles

conditional distributions. While LOO only relies on tree-based ML methods, it does not

account for uncertainty. Instead, LOO only outputs conditional expectations as synthetic

data. In contrast, LiCUS outputs draws from conditional distributions as synthetic data.

1.3 Experimental Studies

Similar to Gibbs sampling, LiCUS simplifies the simulation of all random variables by in-

stead drawing from an iterative sequence of approximated Normal conditional distributions.

This sequential sampling will be referred to as a cycle. One may increase the number of cycles

by recursively calling our algorithm with the previous output as initialization. Though, only

one cycle was considered as there was lack of significant improvement from additional cycles
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in all works described in Section  1.3 . To proactively compensate for iterative computation,

the bulky model space of neural networks is reduced to a leaner space of ELMs.

To formally describe the ELM generative approach, consider an arbitrary iteration of the

algorithm. For simplicity, consider the task of synthesizing a dataset of vectors xi ∈ Rm for

i = 1, . . . , n. At iteration j ∈ {1, .., m}, the algorithm targets sampling of the jth random

variable. Specifically, a new ELM is created to predict yi := xi,j given xi,¬j ∈ Rm−1 for

i = 1, . . . , n.

With least squares as the fitting procedure for ELMs, it is natural and equivalent to

assume an additive Normal error term on the output. Accordingly, we apply the ELM

algorithm to model the conditional expectations of {yi|xi,¬j}i=1,...,n and add an additive error

term ε = (ε1, . . . , εn) ∼ N (0, σ2
j I):

yi = hiβ + εi (1.3)

where hi = (1, g(xT
i γ)), γ ∈ Rm×p is drawn from some pre-defined weight distribution G, g is

the activation function, and β ∈ Rp+1. To the best of our knowledge, there is not a generally

accepted optimal weight distribution. As long as one selects a continuous weight distribution,

the specific choice of the weight distribution does not affect the universal approximation

property of the ELM algorithm [  7 ]. While [  7 ] defaulted to a uniform weight distribution

for its simulations, this distribution confines each γij in a pre-defined interval with equal

probability throughout its support, regardless of magnitude. Instead of pre-defining the

interval of support, we pre-define both the mean and variance of γij and maximize entropy

by choosing a Normal distribution [  20 ]. With γij ∼ N (µ, σ2), we defined µ = 0 and considered

σ2 ∈ {0.1, 1, 10} in the following sections. Though, there was not significant change with

the varying values of σ2 and settled with σ2 = 1. Throughout this chapter, we define each

γij entry to follow a standard Normal distribution. In all, the jth component will be modeled

as:

xi,j|xi,¬j, γ, β̂, σ̂2
j ∼ N ((1, g(xT

i,¬jγ))β̂, σ̂2
j ) (1.4)
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Therefore, each conditional distribution will be modeled as a Normal distribution with

the ELM output as the mean parameter and an estimated σ̂j
2 via maximum likelihood

estimation (MLE).

By construction, ELMs are exposed to ill-conditioned or singular HT H matrices, where

the ith row of H is hi. To improve numerical stability during matrix inversions, we added a

diagonal jitter or nugget term ηI to HT H when computing the output weights β̂:

β̂ = (HT H + ηI)−1HT Y (1.5)

where η was set to a low value of 10−9. In nearly all cases in the following experiments

in this chapter, singularities were not encountered. Indeed, in the experiments for this

chapter, between 0%-0.5% of fitted extreme learning machines encountered singularities when

performing a matrix inversion.

In the original work proposing the ELM algorithm [  12 ], it was recommended to avoid

singularities by solving least squares optimization problem via a Moore-Penrose generalized

inverse. Unfortunately, the authors in [  12 ] did not recommend a specific method to construct

the Moore-Penrose generalized inverse in singular settings. When facing a singular HT H,

we construct the generalized inverse through singular value decomposition (SVD) and define

the output weights as:

β̂ = H†Y = V D−1UT Y (1.6)

where H† = V D−1UT and H = UDV T via SVD. Note that this construction of the gener-

alized inverse requires O(n(p + 1)2) time [  21 ].

Another option includes the use of ridge regression. This accessible and low-cost approach

could resolve singularity issues while also aiding numerical stability in matrix inversions:

min
β

n∑
i=1

(yi − hiβ)2 +
p∑

j=1
β2

j (1.7)

The regularized solution yields βridge = (HT H + λI)−1HT Y where λ ≥ 0 is the ridge tuning

parameter, H and Y are defined such that the kth row is hk and yk, respectively. One may

choose the value of the tuning parameter λ via cross-validation.
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Lastly, as in many MCMC methods, LiCUS requires an initialization. For simplicity,

we draw initializations from a multivariate Normal distribution parametrized by maximum-

likelihood estimates, given the observed data.

By construction of its fitting procedure, our algorithm is dramatically more computa-

tionally efficient than popular neural network algorithms that directly generate from joint

distributions. Indeed, at each iteration, our algorithm exhibits computational complexity

similar to sequential fitting of multiple standard linear regressions.

For simplicity, we restrict theoretical runtime analysis to scenarios with full-rank hidden

matrices and p < n to ensure strictly positive degrees of freedom. Additionally, we assume

sampling of inner weights and activation can be executed with constant computational cost

O(1). In other words, the computational cost of the previous actions does not increase with

respect to the dataset size n, dimensionality of the observed vectors m, and number of nodes

p used in LiCUS.

To illustrate the computational cost, we consider simulating a dataset Z ∈ Rn×m, where

n is the number of observations and m is the number of components to simulate. The first

step of each iteration involves mapping the input by the sampled inner weights γ ∈ Rm×p, a

cost of O(mnp). As each iteration involves fitting a new full-rank p-node ELM, we examine

the computational bottlenecks: a cross-product and its inversion. The cross-product of the

hidden representation H ∈ Rn×p requires O(np2) times while its inversion (HT H)−1 ∈ Rp×p

requires O(p3). Lastly, computation of the outer weights, (HT H)−1HT Y , are overshadowed

by the aforementioned matrix operations. Additionally, if a singular HT H was encountered,

the computation of a generalized inverse would be also be overshadowed by the previous

matrix operations. As a result, computation of the outer weights requires O(np2 + p3) time.

As a result, each iteration demands O(mnp+np2+p3) time, whose summands respectively

account for the linear mapping of the input, the cross-product of HT H, and its subsequent

inversion. With each cycle comprising of m total iterations, the computational complexity

of each cycle is at most O(m × (mnp + np2 + p3)). For C total cycles, the complexity is

upper bounded by O(C × m × (mnp + np2 + p3)).
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Figure 1.1. Summary of the 3-phase generative process of an M-dimensional
random variable for C cycles: (i) initialization (blue), (ii) feature-wise gener-
ation (orange), (iii) propagated Gibbs-like synthesis (green)

To explore the practicality of the rapid generative approach, we conduct three studies:

(i) a toy dataset with a known complex generator, (ii) synthesis of MNIST images, and (iii)

inspection of its synthetic quality.

1.3.1 Neural Network Generator Simulation Study

To provide a proof of correctness, the first simulation study relies on data generated by a

unique neural network generator. With 100-dimensional standard Normal random variables

as input, our generator is configured with three layers, each armed with 100 nodes. Note

that the generator consists of 31, 310 learnable parameters. The generator will rely on the

traditional sigmoid activation function:

g(x) = ex

1 + ex
(1.8)

The generator is characterized by weights independently and identically drawn from the

Normal distribution with mean 0 and standard deviation 1/3, such that all weights are
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typically less than 1. In all, the generator constructs a toy dataset of 1,000 independent and

identically distributed 10-dimensional variables.

For this study, our approach relies on 10 ELMs, each activated by the sigmoid function

(Equation  3.10 ). To match the number of nodes in the generator, we allocate 300 nodes across

10 ELMs; in other words, each ELM was restricted to exactly 30 nodes. Note that LiCUS

will consist of 10 × 31 = 310 learnable parameters. So, LiCUS will only use approximately

1% of the number of parameters in the underlying generator.

Lastly, to demonstrate utility under a naive weight sampling distribution, each inner

weight was identically and independently sampled from a standard Normal distribution.

With these ELMs, five 1000-variable datasets were synthesized - all without singular hidden

representations. Note that only one cycle (C = 1) was executed as marginal cycles led to

minor improvements.

In this study, synthesis quality is measured by visual similarity of empirical cumulative

distribution functions (CDFs) of synthetic datasets and the empirical CDF of the observed

data obtained from the neural network generator. Figure  1.2 displays some of the empirical

CDF plots.

For any generative process, it would be worthwhile to question whether the data are

simply memorized. In Figure  1.2 , one could observe some deviations between the observed

and simulated empirical CDFs. In addition, the simulated data seems to extrapolate past

the range of observed data. These observations suggest memorization is not at play, at least

qualitatively. The next section provides a quantitative analysis to answer whether LiCUS

would simply memorize a real-world training dataset.

1.3.2 Imaging Synthesis Study

The second study considers the application of the ELM generative approach on the

popular benchmark dataset of images of handwritten digits: Modified National Institute of

Standards and Technology (MNIST) [  22 ]. MNIST consists of 70,000 images of handwritten

digits and corresponding labels of the digit’s numerical value. There are 10 labeled classes:

0, 1, . . . , 8, 9. Additionally, images have 28×28 pixel resolution, where each pixel has integer
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Figure 1.2. Empirical CDF plots of both observed and five simulated datasets
synthesized by our algorithm. Despite minor deviation along the observed em-
pirical CDF and synthesis pushing the extremal support limits, the synthesized
data exhibit empirical CDFs that closely resemble that of the observed data.

value in {0, . . . , 255}. In this study, we apply our approach on a class-wise basis. Per labeled

class, we sample 5,000 real images as the training data to fit LiCUS.

For this experiment, synthesis is driven by 28 × 28 = 784 ELMs. Preliminary experi-

mentation suggested each ELM should consist of 512 hidden neurons with the hyperbolic

tangent function as the activation function:

g(x) = ex − e−x

ex + e−x
(1.9)
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Figure 1.3. A sample of synthetic images produced by LiCUS.

To evaluate utility despite a naive weight sampling distribution, the inner weights were

identically and independently sampled from the N (0, 1) distribution. Under this weight

distribution, full-rank synthetic data matrices were obtained.

We acknowledge pixel domains and compromise by the following transformation: add

half a pixel value and then apply log-odds to output continuous values. Since marginal

cycles led to minor improvements in fidelity, only a single cycle was employed (e.g., C = 1).

Figure  1.3 illustrates synthetic images curated by LiCUS.

Figure  1.3 offers a snapshot of randomly selected synthetic images generated by LiCUS.

LiCUS reasonably models the general shape of all digits. As evidenced by some patchy

synthetic digits, LiCUS does not exhibit pristine pixel resolution.

To examine whether LiCUS is simply memorizing the training dataset, we employ the

popular method Fréchet Inception Distance (FID) [ 23 ]. FID computes the Fréchet distance

(FD) between the feature representations of two datasets, say R and G, by assuming each

sample follows a Gaussian distribution:

FD((µR, ΣR), (µG, ΣG)) = ||µR − µG||2 + tr(ΣR + ΣG − 2(ΣRΣG)1/2) (1.10)

where µR, µG ∈ Rp are the respective mean statistics of datasets R, G and ΣR, ΣG ∈ Rp×p

are the respective covariance statistics of datasets R, G.

Specifically, FID first extracts feature representations via the Inception-v3 model [ 24 ] for

each dataset R, G and then computes the FD between the two sets of feature representations.

However, FID was designed for ImageNet or similar datasets and exclusively relies on the
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Table 1.1. Mean and standard error of the FD between the training dataset
and LiCUS after 5 replications.

Mean Standard Error
0.226 0.0095

Inception-v3 classifier, which was also trained on ImageNet. This is an obstacle as we focus

on MNIST, a relatively small grayscale image dataset, whereas ImageNet is a relatively large

image dataset with RGB color channels. In other words, MNIST images are not compatible

with the Inception-v3 input framework.

Due to Inception-v3’s incompatibility with the MNIST dataset, we perform feature ex-

traction by training a MNIST classifier. We define our classifier as a single-layer neural

network activated by hyberbolic tangent (Equation  1.9 ) and its optimization method as

stochastic gradient descent (SGD) [  25 ] with learning rate 0.01 and batch size of 5,000. After

conducting a grid search on the number of nodes {4,8,16,32,64,128}, the testing accuracy on

held-out data is highest at ∼ 93% when nodes are 64 or 128. The difference between the

testing accuracy of the 64-node and the 128-node architectures is less than 1%. Thus, we

opt for the smaller architecture and proceed with training our 64-node neural network for

400 epochs.

After training the classifier, we computed the FD between the extracted feature repre-

sentations of the training and LiCUS datasets. We repeat this procedure 5 times and present

the mean and standard errors of the computed FDs in Table  1.1 .

By definition of the FD, if LiCUS yields a FD of 0, there is perfect memorization by

LiCUS. Since the mean FD between the training datasets and LiCUS synthetic datasets is

>20 standard errors away from 0, it is reasonable to assert that LiCUS is not memorizing

the training dataset.

1.3.3 Train Synthetic, Test Real (TSTR) Study

To measure quality of generated data, we turn to the "Train on Synthetic, Test on Real"

(TSTR) method [  16 ]. In short, TSTR reports the test metrics of a model trained exclusively
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Table 1.2. The number of parameters per generative method as defined in
the TSTR experiment.

Method Number of Parameters
LiCUS 402,192

VAE 402,752

GAN 403,005

on synthetic data. TSTR offers an avenue to gauge the utility of synthetic data to prepare

classifiers for unseen data.

In this experiment, we give a multinomial classifier generated data from an individual

data generator and examine its testing accuracy on unseen real data. The multinomial

classifier is regularized by ElasticNet [ 26 ] selected from a grid of tuning parameters via 5-

fold cross-validation: 5 different α values and 100 different λ values for each α value. The

classifier is trained on 1,000 images from varying sources: the real training dataset, LiCUS,

vanilla GAN, and vanilla VAE. In addition, each generative method was trained on 5,000

real images. Lastly, the testing dataset consists of 1,000 unseen images. We repeat the

experiment 5 times and visualize the mean TSTR outcomes per data source in Figure  1.4 .

To better enable fair comparisons between models, we restrict each neural network model

to single fully-connected layers. Similarly, following the LiCUS procedure, each class of data

is given a dedicated single neural network. Lastly, we aim to provide approximately the

same number of parameters to each generative method. For the LiCUS method, we fix the

per-class nodes to 512. This forces the number of nodes for each neural network in VAE and

GAN to 224 and 238, respectively. In addition, the VAE and GAN models will have 112 and

119 latent random variables, respectively. As shown in Table  1.2 , these architectures ensure

that each generative method is armed with roughly the same number of parameters.

As LiCUS has full access to its training dataset throughout the fitting process, we mirror

this process in the optimization of the neural networks: the batch size is equal to the training

dataset size. Under the stochastic gradient descent optimization framework [ 25 ], preliminary
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Figure 1.4. TSTR results on the MNIST dataset and ElasticNet multinomial
classifier. Note that training on synthetic data from LiCUS leads to greater
testing accuracy when compared to synthetic data from a VAE or GAN.

experimentation suggested a learning rate of 1 and 10−6 for the GAN and VAE, respectively,

for 1, 000 epochs, or steps.

As seen in Figure  1.4 , LiCUS provided synthetic data with greater training utility than

the other generative methods. Though, the best performance arises when the classifier is

trained directly with real data. Indeed, training with real data resulted in a mean accuracy

of 87% compared that of 82% when training with LiCUS.

1.4 Discussion

The simulation study explored whether the proposal could emulate a hypothetical neural

network generator. Figure  1.2 suggests that the ELM-based generative procedure successfully

outputs representative synthetic data. After compiling five synthetic datasets, there are very

few instances out of 5,000 replicates that escape the observed range. Hence, our algorithm

appears to be an efficient substitute for a neural network generator, which is expensive to

obtain under a GAN framework. In all, the proposed iterative scheme is capable of simulating
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from a hypothetical neural network generator, at least in regards to marginal distributions.

We delegate non-marginal investigation to the MNIST study.

The MNIST dataset easily enables quick inspection of whether the correlation struc-

ture of a synthetic image is adequate; e.g., is this image visually reasonable? As such, the

MNIST study grants insight into whether LiCUS is capable of addressing complex corre-

lation structures. Ultimately, it seems there is a trade-off for the simplicity of our ELM

algorithm in terms of fuzzy or spotty resolution. Lastly, an analysis of the FD between the

extracted feature representations of the training and LiCUS datasets suggests that LiCUS

is not memorizing the training dataset.

Lastly, via the TSTR study, the approximation of conditional distributions evidently

enables LiCUS to offer utility in providing training data. Indeed, training a classifier exclu-

sively on synthetic data from LiCUS is nearly comparable to a classifier trained directly on

real data. Interestingly, LiCUS offers synthetic data similar to real data in terms of training

information. Additionally, while the GAN method solely pursues a fidelity objective, it offers

the least training information out of all sources considered. Furthermore, perhaps due to its

variational inference framework, the VAE outperforms the GAN in terms of creating useful

training material.

1.5 Summary

Instead of tackling a joint distribution altogether, LiCUS embodies a generative strategy

akin to Gibbs sampling. With a small cost in generation quality, our ELM-based approach

only requires the computational cost of least-squares optimization. In short, we offer a

lightweight synthesis approach with a foundation derived off statistical principles.

To verify the synthesis proposal, we offer two studies. First, we construct a simulation

study to validate proof of correctness for data generated by a hypothetical neural network

generator. Therefore, our efficient ELM approach is comparable to an otherwise expensive

generator. Second, the application to the MNIST dataset demonstrates capability of address-

ing complex correlation structures. While fidelity is not a goal here, it is clear that LiCUS

easily captures structure and variety in its synthetic output; alas, its constrained complexity
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does not appear to afford pristine realism. Furthermore, in a very similar approach to FID,

analysis of the FD between the extracted feature representations of the training and LiCUS

datasets suggests that LiCUS is not memorizing the training dataset.

To validate the utility of the proposal, we consider the TSTR approach. By training

on only synthetic data, we gain perspective on the quality of synthetic information for

testing performance. As a result, LiCUS seems to offer substantial training information,

nearly similar to real training data itself. Indeed, experimental results suggest LiCUS offers

synthetic data with greater training utility than a comparable GAN or VAE. That being

said, a future research direction could include studying how LiCUS would fare if the sizes of

the training and synthetic datasets were varied.
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2. FEASIBILITY OF SYNTHETIC DATA

SUPPLEMENTATION VIA LICUS

2.1 Introduction

In practice, datasets are not collected with equal and balanced class representations. Such

datasets are termed as imbalanced datasets. For instance, it is very common to encounter

imbalanced datasets in fraud detection [  27 ], [  28 ] or disease detection [  29 ], [  30 ]. The class

imbalance problem, or “curse of imbalanced datasets", increases the difficulty of classification

tasks [ 31 ], [ 32 ]. In short, it is trivial to achieve a high accuracy on the dominant class, or the

majority class, while performing poorly on the other small classes, or the minority classes.

This problem is amplified when the minority class is the primary class of interest.

In general, there are three categories of machine learning approaches for imbalanced

datasets [  33 ]: data-level methods, algorithm-level methods, and hybrid methods. Data-level

methods modify the dataset to remove the bias towards the majority class. Algorithm-level

methods adjust the cost functions to rectify the imbalance bias. Lastly, hybrid methods

merge both data-level and algorithm-level methods. With the overhead cost of synthetic

data, algorithm-level methods are computationally cheaper and thus expected to be most

popular in practice. However, if one were able to manufacture better training data via data-

level methods, data-level methods would be the preferred method. This dissertation chapter

will focus on data-level methods and label such supplemented data as synthetic data.

Specifically, consider the optimization of a binary classifier with some additive loss func-

tion C for some dataset {(xi, yi)}1≤i≤n where xi ∈ Rp and yi ∈ {0, 1}∀i = 1, . . . , n:

min
θ

C(x, y, θ) = min
θ

n∑
i=1

C(xi, yi, θ) (2.1)

where θ ∈ Rd represents the parameters of the binary classifier. Data-level methods insert

synthetic data into the training dataset and optimize for θ given the expanded dataset:

min
θ

C(x, y, x̃, ỹ, θ) = min
θ

n∑
i

C(xi, yi, θ) +
L∑

j=1
C(x̃j, ỹj, θ) (2.2)
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where {(x̃j, ỹj)}1≤j≤L is the supplemental synthetic dataset. Of course, x̃j ∈ Rp and ỹj ∈ {0, 1}

for j = 1, . . . , L. While Equation  2.2 describes a general data-level method, other variants

will be covered later in the chapter.

Practitioners of synthetic data supplementation would benefit from reviewing previous

works. It may be desirable to learn about the effects of class imbalance levels, which statistics

have been shown to be boosted by synthetic data supplementation, and how much synthetic

data one should supplement. Some of the most popular data-level methods have studied

synthetic data supplementation given a single class imbalance level [ 34 ]–[ 36 ]. It should

be noted that these works do not detail why only the observed class imbalance level was

studied. Another work [ 37 ] studied the sensitivity of its parameter with respect to artificial

class imbalance levels. In [  37 ], the authors proposed the integration of perhaps the simplest

data-level method, random over-sampling of minority instances, into the training process

of a deep neural network. It should be noted that the datasets in [  37 ] were not naturally

imbalanced and hence had to be artificially imbalanced. Lastly, out of the papers listed, two

of them focus on a single statistic while the other two consider multiple statistics. While

these four papers do not constitute an audit of literature for data-level methods, we posit

that it may be uncommon to find previous literature exploring the benefits of synthetic data

supplementation over varying imbalance levels and over multiple statistics.

In order to create a starting point for future practitioners, we study synthetic data

supplementation over varying imbalance levels for multiple target statistics. There also has

not been much guidance on how much synthetic data one should add, especially over multiple

imbalance levels and for specific target statistics. Such work could provide a valuable starting

point for practitioners working on synthetic data for imbalanced data. Lastly, we consider

why data-level methods tend to distort class representation in the training phase and hence

bias classifiers. Furthermore, to the best of our knowledge, it has not been studied whether

synthetic data would provide comparable value to simply collecting more real data. In

practice, this would be an important question to answer.

Armed with Lightweight Chained Universal Synthesizers (LiCUS), this dissertation com-

ponent primarily details our investigation into (i) how much synthetic data one should add,

(ii) the effect of class imbalance on performance after synthetic data supplementation, and
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(iii) which statistics are feasible for improvement. Additionally, we consider an unbiased

synthetic data scheme such that all classes are supplemented and thus respect the observed

class representation. Lastly, with our gold standard doubling as a surrogate for the collection

of more real data, we shed light on whether one should create synthetic data or simply collect

more real data.

2.2 Background

2.2.1 Related Work

Data synthesis could range from simple re-sampling from the observed dataset to a com-

plex generative machine learning algorithm. The underlying goal is to reduce the class

imbalance of the dataset. We begin with discussing foundational data-level methodology:

over-sampling and under-sampling. Over-sampling consists of increasing the size of the mi-

nority class with the supplementation of synthetic data. On the other hand, under-sampling

is the process of reducing the quantity of the majority class. The motivation is to reduce

the volume of the majority class in an effort to address the class imbalance of the dataset.

While over-sampling or under-sampling appear to be the most direct and widespread tool

for data-level methods, there is another popular synthetic data method: synthetic minority

over-sampling technique (SMOTE) [  34 ]. In order to create synthetic minority data, SMOTE

linearly interpolates amongst some nearest neighbors. In comparison to over-sampling and

under-sampling, SMOTE has been demonstrated to provide greater utility and undoubtedly

led to its rise in popularity. Of course, there have been many extensions to SMOTE that

typically include specific algorithms to eliminate individual members from the majority class,

minority class, and the resulting synthetic dataset [  35 ], [  36 ].

Of course, there are relevant data-level methods involving neural networks [  38 ]. For

instance, there is the two-phase method [  39 ] in which one limits the size of all classes via

random under-sampling, trains on that modified dataset, and then fine-tunes on the original

dataset. Another method is dynamic sampling [ 40 ] in which one creates a score to guide

both over-sampling and under-sampling on all classes.
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Previous work tends to compare against other synthetic data methods, focus on a single

statistic, and consider a single imbalance level. However, there is not much work comparing

synthetic data supplementation across multiple statistics or imbalance levels, let alone con-

sideration of both. In addition, LiCUS has not yet been used in a synthetic data supplemen-

tation study. Lastly, there has not been any work to compare synthetic data supplementation

with the collection of additional real data.

While we consider synthetic data for classification tasks, other works study synthetic

data for generative tasks. Specifically, with the rise of large language models (LLMs), there

is concern about the increasing artificial footprint when training future LLMs. For instance,

[ 41 ] labeled the detrimental effect of iterative retraining of generative models as model col-

lapse. Another work provides two theoretical conditions to ensure stable iterative retraining

of generative models [  42 ]: sufficient generative model complexity and size on real data rel-

ative to synthetic data. While [ 42 ] recommends synthetic data to be at most the volume

of the real dataset in generative settings, our work identifies some benefits outside of that

recommended range for classification settings.

2.3 Experimental Study

To shed light on feasible synthetic data supplementation, we conduct an experiment

investigating the effects of varying supplementation schemes for different class imbalance

levels and target statistics. Furthermore, we propose the use of a gold standard supplement,

which is defined as the collection of more real data. Collection of additional real data will be

simulated by a reserved data partition. Therefore, the observed dataset will be partitioned

into 3 sets: training, reserved, and testing. In all, such a study would offer practitioners a

starting point for future applications of synthetic data supplementation. Hence, we proceed

with defining factors for the experimental study that would be considered by a practitioner:

synthetic multiples, supplementation scheme, class imbalances, and targeted statistics.
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2.3.1 Experimental Factors

Synthetic multiples are defined as the number of synthetic datasets that are supple-

mented, each with the same size as the expanded classes. For instance, a synthetic multiple

of 2 declares that two synthetic datasets were provided as supplemental data. In a founda-

tional work, only 1-5 synthetic multiples were deemed necessary [  34 ]. We continue under this

assertion throughout the experiment. Of course, higher values of synthetic multiples could

have been considered. Nevertheless, the experiment’s results reflect converging or monotonic

trends with at most 5 synthetic multiples. In other words, the experimental results suggest

that greater synthetic multiples would likely not lead to different conclusions. This was also

confirmed with additional experimentation with higher values of synthetic multiples.

For our experiment, we choose a Bayesian Logistic Regression model with a weakly

informative prior [ 43 ] to serve as our classifier. Given that each predictor is normalized to

zero mean and unit variance, the Bayesian model is defined with the following structure:

yi|xi, θ
iid∼ Bernoulli(xT

i θ)∀i ∈ {1, . . . , n} (2.3)

θ0 ∼ Cauchy(0, 10) (2.4)

θj
iid∼ Cauchy(0, 2.5)∀j ∈ {1, . . . , p} (2.5)

where n is the size of the dataset, p is the number of predictors, and the intercept is included

in each xi ∈ Rp+1. Hence, for given x, y, θ, the model has the following log-likelihood and

log-prior functions:

l(x, y|θ) = y(xT θ) − log(1 + exT θ) (2.6)

h(θ) = −log(10π) − log
1 +

(
θ0

10

)2
− plog(2.5π) −

p∑
j=1

log
1 +

(
θj

2.5

)2
 (2.7)

As it is common to only provide synthetic data to the minority class, it is natural to con-

tinue with this biased supplementation scheme, despite its distortion of class representation
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during the training phase. The following equation describes the accompanying optimization

problem:

min
θ

Lbiased(x, y, x̃m, ỹm|θ) = min
θ

n∑
i=1

l(xi, yi|θ) +
knm∑
j=1

l(x̃m
j , ỹm

j |θ) + h(θ) (2.8)

where (xi, yi) for i = 1, . . . , n denotes the observed dataset, (x̃m
j , ỹm

j ) for j = 1, . . . , nm is the

supplemented synthetic data of the minority class, nm is the number of observed minority

members, and k is the synthetic multiplier. However, we explore the utility of an unbiased

supplementation scheme. To be more specific, each class will be supplemented with synthetic

data and results in the following optimization problem:

min
θ

Lunbiased(x, y, x̃m, ỹm, x̃M , ỹM |θ) = min
θ

n∑
i=1

l(xi, yi|θ)+
knm∑
j=1

l(x̃m
j , ỹm

j |θ)+
knM∑
h=1

l(x̃M
h , ỹM

h |θ)+h(θ)

(2.9)

with similar components as in Equation  2.8 and some new notation: (x̃M
j , ỹM

j ) for j =

1, . . . , nM is the supplemented synthetic data of the majority class and nM is the number of

observed majority members.

Another experimental factor to consider is the artificially induced class imbalance level

of the observed dataset. Unfortunately, there are no benchmark levels for class imbalance.

Indeed, relevant works typically adopt the observed class imbalance and hold it as a static

variable. Instead, we consider varying class imbalances to gain more insight compared to a

singular class imbalance level. Unfortunately, there are no generally accepted representative

class imbalance levels. Nevertheless, each finite dataset has limited expressibility in terms

of artificial class imbalance levels. There is an additional constraint: by construction, this

experiment requires 3 partitions. As in [ 34 ], we study datasets that have ≥ 20 minority

class samples per partition. Hence, our modified datasets should have ≥ 60 total minority

class instances. For our datasets, it is possible to achieve this with class imbalance levels as

low as 5%. Naturally, each marginal class imbalance level is doubled and thus we have the

following class imbalance levels: 5%, 10%, and 20%.

Before moving past class imbalance levels, it should be noted that inducing a specific

artificial class imbalance level in a dataset must change the resulting modified dataset’s
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size. In other words, there are multiple modified dataset sizes across individual datasets

and class imbalance levels. Therefore, while dataset size could be considered an additional

relevant factor, dataset size was ultimately fixed at its lowest viable level in order to study

environments in which data is not abundant.

Lastly, we select popular statistics that require the use of correct minority classification.

The suite of target statistics are the true positive rate (TPR), positive predictive value

(PPV), F1 score, and area-under-the-curve (AUC). It should be noted that PPV is also

known as precision while TPR is also known as recall or sensitivity. While there are several

other statistics available, these statistics were selected such that the experiment explores the

effects of targeting coarse statistics (e.g., TPR) and combinations of multiple coarse statistics

(e.g., F1 score). To compute any of these statistics, we extract expected coefficients by

computing the mean of 10,000 draws from the posterior distribution of the Bayesian logistic

regression model and choose a classification threshold via cross-validation.

Before explaining these statistics in greater detail, we denote the minority class as the

positive class while the majority class is denoted as the negative class. It will also be

helpful to define some terminology: TP denotes the number of predicted positives for labeled

positives, FN denotes the number of predicted negatives for labeled positives, and FP denotes

the number of predicted negatives for labeled positives. Table  2.1 serves as a visual aid to

convey how these counts are combined to form several statistics.

F1 = 2 × PPV × TPR
PPV + TPR (2.10)

Next, we must discuss the F1 score and AUC. First, the F1 score (Equation  2.10 ) is

defined as the harmonic mean of the TPR and PPV. The F1 score serves as a common

transformation of both TPR and PPV into a scalar value. Lastly, to discuss AUC, we

must introduce the True Negative Rate (TNR), the counterpart of TPR, and the receiver

operating curve (ROC) [  44 ]. Given a classifier, the ROC summarizes the classifier’s TPR

given its FPR = 1−TNR, where TNR is defined in Table  2.1 . Specifically, many probability

threshold values for classification are created to compute threshold-specific TPR and FPR

values. In short, the ROC enables plotting a classifier’s TPR vs FPR across many thresholds.
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Table 2.1. A visual representation of the confusion matrix. The central cells
contain counts that form the basis of many statistics.

Actual Class
Positive

Class
Negative

Class

Predicted
Class

Predicted
Positive

True positive
(TP )

False positive
(FP )

Positive
Predictive Value

(PPV)
T P

T P +F P

Predicted
Negative

False negative
(FN)

True negative
(TN)

Negative
Predictive Value

(NPV)
T N

T N+F N

True Positive
Rate (TPR)

T P
T P +F N

True Negative
Rate (TNR)

T N
T N+F P
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ROC is a popular method to visually assess performance while AUC summarizes the ROC as

a scalar value by computing the area under the ROC. Both AUC and F1 score are contained

within [0, 1] and higher values are desired.

2.3.2 Datasets

By construction, our experiment demands specific imbalanced datasets. For complete-

ness, these datasets should naturally exhibit an imbalance between 2 classes. In addition,

following common practice concerning the class imbalance problem, we ask for datasets with

at least 20 samples in the minority class for data synthesis. Thus, after a three-way partition-

ing, a suitable dataset would contain at least 60 minority instances. In all, we would like a

set of datasets that can be induced to shared artificial class imbalance levels while consisting

of at least 60 minority instances. With these constraints in mind, we select 2 appropriate

datasets from the many datasets listed in [  34 ]: the Mammography and Phoneme datasets.

Specifically, we could satisfy our conditions with artificial class imbalance levels as low as

5%. Note that artificially changing class imbalance levels changes the dataset size. Over all

the considered artificial class imbalance levels, the lowest dataset size will be 1, 300 and so

datasets are limited to this size for all class imbalance levels.

First, the Mammography dataset [ 45 ] enables cancer detection via mammogram image

features. In this dataset, the minority class consists of the 260 images with calcifications

while the majority class has 10,923 images without calcifications. In total, there are 11,183

samples, each with 6 hand-crafted continuous features selected from prior literature [  45 ]:

• Average grey level of calcification

• Gradient strength of calcifications perimeter pixels

• Root mean square (RMS) noise fluctuation in the calcification

• RMS noise fluctuation in the 3.5mm x 3.5mm local background

• Contrast, defined as average grey level of the calcification minus the average of a two

pixel wide border surrounding the calcification
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• A low order moment based shape descriptor [ 46 ]

Second, the Phoneme dataset [  47 ] offers data to classify between nasal and oral sounds.

In this dataset, the oral sounds class is the minority class, with 1,586 samples. On the

other hand, the nasal sounds class is the majority class with 3,818 samples. In total, 5,404

sounds comprise the Phoneme dataset. Each sample has 5 continuous features detailing the

normalized amplitudes of the first 5 harmonics.

Table 2.2. A summary of class counts for each dataset.
Dataset Majority Count Minority Count

Mammography 10,923 260
Phoneme 3,818 1,586

2.3.3 Experimental Results

To recap, we conduct a synthetic data experiment with the following factors: synthetic

multiples, supplementation scheme, class imbalance, and target statistics. We conduct a fac-

torial experiment with 100 replicates. For each replicate, we randomly partition the entire

observed dataset into 3 sections with the aptly named ‘extra’ reserved or validation dataset

serving as our gold standard of additional real data collection. Our LiCUS synthesis proce-

dure is a coordinated ensemble of 500-node extreme learning machines [ 7 ], each regularized

by relaxed LASSO [  48 ] with cross-validation. The accompanying initialization scheme is

simply feature-wise re-sampling.

We provide several lattice plots (Figures  2.1 , 2.2 , 2.3 , and  2.4 ) to visually summarize the

experimental results. A train-only control method, denoted by standard, was included in

which no synthetic data is added. All lattice plots detail performance with unseen testing

data. Unlike the F1 and AUC statistics, these results suggest that synthetic data tends to be

most beneficial for TPR and PPV in testing settings. In addition, the biased supplementation

scheme often outperforms the unbiased supplementation scheme. Further discussion of these

lattice plots is reserved for Section  2.4 .
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(a) (b)

(c) (d)

Figure 2.1. Lattice plots summarizing experimental results concerning mean
testing TPR vs synthetic multiples for each class imbalance level. The top row
displays results for the Mammography dataset while the bottom row displays
results for the Phoneme dataset. Red denotes the control method in which
synthetic data is not added. Green denotes the collection of extra real data.
Blue denotes synthetic data supplementation.
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(a) (b)

(c) (d)

Figure 2.2. Lattice plots summarizing experimental results concerning mean
testing PPV vs synthetic multiples for each class imbalance level. The top row
displays results for the Mammography dataset while the bottom row displays
results for the Phoneme dataset. Red denotes the control method in which
synthetic data is not added. Green denotes the collection of extra real data.
Blue denotes synthetic data supplementation.
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(a) (b)

(c) (d)

Figure 2.3. Lattice plots summarizing experimental results concerning the
mean testing F1 score vs synthetic multiples for each class imbalance level.
The top row displays results for the Mammography dataset while the bottom
row displays results for the Phoneme dataset. Red denotes the control method
in which synthetic data is not added. Green denotes the collection of extra
real data. Blue denotes synthetic data supplementation.
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(a) (b)

(c) (d)

Figure 2.4. Lattice plots summarizing experimental results concerning mean
testing AUC vs synthetic multiples for each class imbalance level. The top row
displays results for the Mammography dataset while the bottom row displays
results for the Phoneme dataset. Red denotes the control method in which
synthetic data is not added. Green denotes the collection of extra real data.
Blue denotes synthetic data supplementation.
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2.4 Discussion

The experimental results offer some insight into the feasibility of boosting target statistics

with synthetic data supplementation. First, this experimental study offers guidelines to

practitioners on synthetic data. Second, the study highlights the feasibility of boosting

specific statistics. Lastly, the study provides some evidence to answer whether one should

supplement synthetic data instead of collecting more real data.

The most feasible target statistic for synthetic data supplementation is the TPR. While

we see mixed effects under the unbiased supplementation scheme, there is dramatic improve-

ment with the biased supplementation scheme. Indeed, 1 or 2 synthetic multiples is sufficient

to at least match the benefits gained from collecting additional real data.

The other feasible target statistic, PPV, could be boosted with synthetic data supplemen-

tation. Although the biased supplementation scheme once again outperforms the unbiased

scheme, the unbiased scheme still provides some benefit. Clearly, we observe that a single

synthetic multiple is sufficient to yield some benefit, though not as much as the collection of

more real data.

The rest of the results point to how the F1 score and AUC are not feasible for synthetic

data supplementation. Evidently, it is difficult to boost these functions of multiple statistics.

Accordingly, these results suggest one should seek out more real data to improve the test

performance of more complex statistics, such as F1 or AUC.

In all, excluding the targeting of TPR and PPV, the results of the experimental study

suggest it is advisable to forgo synthetic data supplementation and instead collect more

real data - at least within the confines of the experimental environment and factors. Given

that the experiment was conducted on two datasets, future research could involve further

experimentation on a greater number and variety of datasets, such as images. Nevertheless,

the experimental study suggests 1 or 2 synthetic multiples are sufficient to boost fundamen-

tal statistics. In addition, the biased supplementation scheme generally outperforms the

unbiased scheme, perhaps explaining the popularity of the biased scheme.

Recall that the experiment defined its gold standard as collecting more real data to double

the observed dataset. In other words, the dataset size was doubled. Future research should
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consider varying data collection multiples, such as additional data collection to triple or even

quintuple the size of the resulting training dataset size. Furthermore, including these varying

ratios could then inspire another research question asking about data collection costs versus

synthetic data costs. Lastly, it would be interesting to compare an algorithm-level method,

such as class-wise weighting of the loss function, to an alternative action of additional data

collection or LiCUS or both.

2.5 Summary

This dissertation component has provided an experimental study to examine the effects of

class imbalance levels, choice of statistic, and the type of supplementation scheme. Its results

have suggested simple statistics are feasible for synthetic data supplementation. On the other

hand, functions of multiple statistics are difficult to improve upon. In addition, by proposing

a gold standard of additional data collection, the experimental study suggests when one

should opt for additional data collection rather than pursue synthetic data supplementation.

The experimental study provides some evidence that more data collection is preferable to

synthetic data supplementation. Indeed, as data collection becomes cheaper, the relative

utility of synthetic data supplementation may very well diminish.
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3. LEVERAGING EXPERT KNOWLEDGE FOR

GENERATION OF SATELLITE NETWORK TRAFFIC FLOWS

3.1 Introduction

Generation of network traffic flows is instrumental for the development of network se-

curity products and systems. In the development and testing process of network security

controls, generative methods allow practitioners to gauge credibility. The most common

generative strategy involves replaying captured network packets or flows to develop, debug,

and test the capabilities of a security control system. Indeed, there are commercial network

traffic generation products available to the network security industry that are based on two

techniques: (i) captured packet or flow replay and (ii) generation of synthetic data. The

reliability of each of these techniques are naturally dependent on the availability of large

repositories of previously captured data. Consequently, there is great demand for generation

of synthetic network flows.

In response, generative deep learning has become a popular tool for automatic, realistic

generation of network flows [  49 ]. Generative adversarial networks (GANs) have become

a popular tool for its practicality in network traffic environments [ 50 ]–[ 52 ]. GANs have

demonstrated their versatility with applicability to multiple tasks: balancing imbalanced

datasets [  53 ]; evasion of censorship by a network [  54 ]; signal spoofing, or impersonation of

an agent or transmitter [  54 ]; evading and development of intrusion detection systems (IDSs)

[ 55 ]. Interestingly, the discriminator or critic of a GAN could be leveraged for detection,

tracking, and classification of unmanned aerial vehicles (UAVs) [  56 ].

While there are plenty of publicly available network traffic datasets, it is not guaranteed

to resemble a practitioner’s dataset at hand, let alone for the public datasets to pass certain

quality controls [  52 ]. Specific types of networks require fabricated packet data satisfying

the appropriate network protocol types and headers. Furthermore, synthetic data must ex-

hibit specific characteristics of the target network. A generative method must respect the

permissible communications between agents in the network; e.g., specific addresses can only

transmit to particular addresses according to precise ports and protocols. This may not be

easily learned by a generative model. Indeed, applying a standard GAN on NASA’s Opera-
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tional Simulation for Small Satellites (NOS3) satellite emulator [  57 ] fails to acknowledge the

rules of the satellite network system.

Furthermore, in contrast to open systems, such as internet network systems, there are

very few packet and flow generators available for industrial control systems network perfor-

mance and threat evaluation within closed systems. Indeed, complex closed systems have

unknown, if not obscured, network traffic characteristics, protocols, services and security vul-

nerabilities. As a result, network packet and flow generators are not expected to be useful for

closed systems. Instead of relying on captured replay, we propose network traffic generation

through an expert-informed Wasserstein GAN with Gradient Penalty (WGAN-GP) [  58 ].

There are many adversarial deep learning approaches to supplement an intrusion detec-

tion system [ 59 ]. However, to the best of our knowledge, generative models have not been

aided by existing intrusion detection systems. By leveraging cyber-security software, we

inject expert knowledge into the generative process. Specifically, by exporting a founda-

tional cyber-security method, one could translate expert knowledge as a probabilistic prior

or regularization. This would theoretically enable the generative model to explicitly respect

the rules of a network. We demonstrate the utility of this approach with application on

the NOS3 satellite emulator with expert knowledge extracted from Argus, an open-source

network flow data system [  60 ].

3.2 Background

3.2.1 Generative Adversarial Networks (GANs)

Before discussing related work, it may be helpful to first introduce the popular generative

method, generative adversarial networks (GANs) [ 2 ]. Based on game theory, a GAN consists

of two competing, or adversarial, neural networks: the generator and the discriminator. For

illustration, we consider some dataset {(xi, yi)}1≤i≤n where xi ∈ Rd∀i = 1, . . . , n. These

neural networks are mathematically defined below with L layers with p nodes each and
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respective element-wise activation functions gG and gD for the generator G and discriminator

D.

zG
1 (x) = W G

1 x (3.1)

zG
j (x) = W G

j gG(zG
j−1(x))∀j ∈ {2, . . . , L} (3.2)

G(x) = zG
L (x) (3.3)

where W G
1 ∈ Rp×d, W G

j ∈ Rp×p∀j ∈ {2, . . . , L − 1}, and W G
L ∈ Rd×p.

zD
1 (x) = W D

1 x (3.4)

zD
j (x) = W D

j gD(zD
j−1(x))∀j ∈ {2, . . . , L} (3.5)

D(x) = g∗(zD
L (x)) (3.6)

where x ∈ Rd, W D
1 ∈ Rp×d, W D

j ∈ Rp×p∀j ∈ {2, . . . , L − 1}, W D
L ∈ R1×p, and g∗ is chosen

such that D(x) ∈ [0, 1]∀x ∈ Rd.

The GAN structure is an excellent fit for cyber-security as practical applications involve at

least two agents defending or attacking communication networks. For instance, the generator

network could try to evade a defensive agent while the discriminator network could try to

detect anomalous or intrusive network communication. As the discriminator tends to be

a binary neural network classifier, the discriminator classifies fake data with a value of 1

and real data with a value of 0. On the other hand, the generator attempts to create data

that would be classified as real via gradient back-propagation. In practice, each network is

trained while the other network is fixed. This is summarized in the following optimization:

min
G

max
D

EX∼preal [log(D(X))] + EZ∼π[log(1 − D(G(Z)))] (3.7)

where G and D respectively denote the generator and discriminator networks, preal de-

notes the theoretical distribution of real data, π denotes the prior distribution for the gen-

erator network, and X, Z are random variables respectively following preal, π.

45



However, it is not uncommon to fail to train a GAN to convergence. Specifically, GANs

may suffer from modal collapse [ 61 ], in which the generator exclusively restricts its attention

to a subset of the dataset. For instance, if a GAN experienced modal collapse on images of

animals, the GAN could only be generating cats and dogs while ignoring all the other classes

of animals.

There have been many proposed solutions to avoid modal collapse. For instance, the bidi-

rectional GAN (BiGAN) [ 62 ] modifies the discriminator network to jointly classify a datum

along with its encoded representation. Another solution, the energy-based GAN (EBGAN)

[ 63 ], involves replacing the discriminator’s classification network with an auto-encoder. It

is argued that the discriminator’s reconstruction loss is more informative than a simple bi-

nary classification. Lastly, Wasserstein GAN (WGAN) [  64 ] replaced the discriminator with

a 1-Lipschitz critic neural network C such that:

|C(x) − C(y)| ≤ |x − y|∀x, y ∈ Rd (3.8)

Instead of a binary classification, the critic network outputs a continuous score. The authors

provide theoretical support that WGAN should avoid modal collapse altogether.

Interestingly, while many GAN variants have been applied to communication networks

[ 50 ], WGAN-GP [  58 ] seems to be the most popular tool [  51 ]. While WGAN assumes the

critic network is 1-Lipschitz, WGAN-GP regularizes the critic network, C, such that the

L2-norm of its gradient is expected to be 1. This results in the following optimizaiton:

inf
G

sup
||C||≤1

EX∼preal [C(X)] − EZ∼π[C(G(Z))] + λEX̃∼px̃
[(||∇X̃C||2 − 1)2] (3.9)

where C is the critic neural network, λ is the regularization hyper-parameter, and X̃ =

qG(Z) + (1 − q)X such that q ∼ Unif([0, 1]), Z ∼ π, and X ∼ preal.

3.2.2 Related Work

There are a handful of popular generative application categories concerning network

activity [  50 ]: mobile networks, network analysis, Internet of Things, physical layer commu-
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nications, and cyber-security. However, this dissertation chapter focuses on closed networks.

By definition, data on closed networks are not very accessible, possibly explaining why data

generation of closed networks has not been widely published. Though, there is an instance

of applying GAN on closed military network data [  65 ]. Nevertheless, the aforementioned

work translates network data into images while our work does not. In fact, to the best of

our knowledge, satellite network traffic has not been studied as a potential application for a

GAN.

There are a few works that assume a network is attacking or defending via a neural

network classifier and thus include this classifier into a generative methodology [  50 ], [ 55 ],

[ 66 ], [  67 ]. Perhaps the most relevant work to our work, a black-box IDS was probed to

train a WGAN in real-time [ 68 ]. The trained WGAN managed to evade detection across

varying types of IDSs. While these works include an external adversarial classifier, we

include an internal cooperative classifier. Indeed, our proposal grants access to many tools

by incorporating a transparent and accessible developed cyber-security software program.

We select Argus [  60 ], an open source network activity auditing tool. We will discuss our use

of Argus more extensively in Section  3.3.2 .

g(x) = ex

1 + ex
(3.10)

Lastly, a previous work [  51 ] considered many GAN variants to generate synthetic data

for network analytical tasks and found WGAN & WGAN-GP tended to be most advantaged

in terms of training and convergence. Accordingly, we employ a WGAN-GP in our work. On

a related note, it is common and natural to model categorical attributes of network traffic

with sigmoid activation functions (Equation  3.10 ). Though, an interesting approach involves

learning embeddings for categorical attributes and later employ those learned embeddings

to train a WGAN-GP [ 69 ]. Instead of relying on sigmoid activation functions or learning

embeddings to sample categorical features, we opt for seamless integration into a GAN

framework via Gumbel Softmax categorical generation [ 70 ], which will be described in the

next section.

47



Figure 3.1. An example of NOS3 [  57 ] traffic captured and organized by Argus [ 60 ].

3.3 Insertion of Expert Knowledge in WGAN-GP

3.3.1 NASA Operational Simulation for Small Satellites (NOS3)

Satellite network data consists of the observed communication across multiple satellite

components. Each transmission represents a specific service, perhaps unique to an individual

sender or recipient. Many transmissions occur in a few seconds with meaningful content

across multiple satellite components.

Complex closed satellite systems are subject to compromise by external network-based

threats, exploitation of embedded vulnerabilities, and insiders - all of which contribute to

a difficult cyber-defense problem. As satellite systems are generally unavailable for exper-

imentation, there is limited information available to assess threats against such assets. In

practice, there is low or non-existent accessible volumes of unclassified data available for

security development for satellite systems.

Without access to observed satellite data, we elected to use the NOS3 satellite emulator

[ 57 ] as a surrogate. While the NOS3 emulator is not a perfect implementation of the network

components of an actual satellite, it has relevance as a network testbed for security control

development for a theoretical satellite platform.

To represent an idle satellite orbiting the Earth without any commands or tasks to pro-

cess, we collected a network flow data every 5 seconds over a 24-hour simulation period. This

generated a set of 353,810 network flow status records for 18 simulated network connections,
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capturing over 200 network features for each network activity; however, only 4 categori-

cal features and 10 quantitative features were retained. The categorical 4-tuple consists of

the protocol type, source address, destination address, and destination port. On the other

hand, the quantitative features include the transmission start time, duration, source packets,

destination packets, source bytes, destination bytes, source application bytes, destination ap-

plication bytes, source inter-arrival packet time, and destination inter-arrival packet time.

These factors were retained due to their importance in anomalous classification of network

flows.

3.3.2 Expert Knowledge via Argus

We emulate expert knowledge in the form of a well-known intrusion detection method

known as network activity baselining [  71 ]. Specifically, anomalous classification of a network

flow occurs when the flow does not match entries in a defined baseline. For instance, we

could construct a baseline consisting of unique categorical flow signatures, namely our 4-

tuple definition. Such a network activity baseline for the NOS3 satellite emulator is depicted

in Figure  3.2 .

In other words, the network activity baseline serves as a whitelist. We will reference

this method as baseline anomaly detection or baseline matching. Given a network flow,

baseline anomaly detection checks whether the flow signature is on the baseline whitelist, a

list of permissible agent-to-agent communications. If a network flow is observed and its flow

signature is not found on the baseline whitelist, the network flow is declared to be anomalous.

Figure 3.2. An example of a network flow baseline. Note how the rows list
unique categorical flow signatures.
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Baseline anomaly detection is provided by Argus software [ 60 ] and leveraged via L2

regularization on the critics scores in WGAN-GP. If one were to train a WGAN-GP on the

NOS3 dataset, the critic network, on average, scored real flows with a value of approximately

+2 and -2 for fake flows. This is empirical behavior of a converged WGAN-GP with the

selected architecture defined in the following section after being trained on the NOS3 dataset.

We could use this empirical evidence as a starting point to define Argus output. Additionally,

recall that WGAN-GP relies on a gradient penalty. As such, valuation of Argus output will

certainly affect gradients and thus back-propagation of both neural networks. With this

in mind, Argus was instructed to score flows with categorical signatures approved by the

baseline anomaly detection with +2 and -2 otherwise. In all, our regularized WGAN-GP is

summarized by the following optimization problem:

inf
G

sup
||C||≤1

EX∼preal [C(X)]−EZ∼π[C(G(Z))]+λEX̃∼px̃
[(||∇X̃C||2 −1)2]+γRArgus(C, G) (3.11)

where

RArgus(C, G) = EZ∼π[(C(G(Z)) − Argus(G(Z)))2] + EX∼preal [(C(X) − Argus(X))2] (3.12)

3.3.3 Model Architecture

Multiple candidate architectures were considered, ranging from single layer to four layer

deep neural networks and number of nodes per layer{64, 128, 256, 512, 1024}. In addition,

multiple values for λ, γ were considered: 0.1, 1, and 10. Lastly, to automate tuning of the

learning rate and to include second-order gradient movement, neural networks were trained

via the AdaDelta optimization framework [ 72 ] with a smoothing parameter with values 0.1,

0.5, and 0.9. All network architectures employed the hyperbolic tangent function (Equation

 3.13 ) as the activation function.

A grid search was performed over all combinations of these tuning parameters. Then,

network activity baselines were constructed on 1,000 generated network flows from each

candidate model architecture. Although these WGAN-GP architectures failed to create

physically possible network activity baselines, we identified the network architecture with the
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most realistic network activity baseline and without modal collapse. Specifically, we continue

by defining each neural network with four 256-node layers, regularization parameters λ, γ are

both set to 10, and the AdaDelta optimization framework has smoothing parameter valued

at 0.10.

tanh(x) = ex − e−x

ex + e−x
(3.13)

Each categorical variable will be represented by a single one-hot vector consisting of in-

dicator variables for each factor level. These one-hot vectors will be sampled via Gumbel

Softmax categorical generation [  70 ]. The categorical generator learns parameter µl to gen-

erate score Sl ∼ Gumbel(µl, 1) for level l. By construction, once the scores are fed into the

softmax activation function (Equation  3.14 ), we obtain a discrete probability distribution on

the factor levels (Equation  3.15 ). We generate each categorical random variable according

to this sampling scheme.

g(xl; x1, . . . , xL) = exl

L∑
k

exk

(3.14)

P (Sl = max
k

Sk) = eSl

L∑
k

eSk

(3.15)

Our framework has a critic loss (Figure  3.3a ), generator loss (Figure  3.3b ), gradient

penalty (Figure  3.3c ), and L2 loss between the critic and Argus’ baseline anomaly detection

(Figure  3.3d ). We also provide a plot detailing the critic’s scores across fake and real network

flows in Figure  3.4 . Lastly, we provide a randomly generated sample of 5 network flows in

Table  3.1 .

3.4 Discussion

Initial implementations of WGAN-GP generated poor results as its generated flows

were non-sensical in terms of its flow signatures. However, the expert-informed WGAN-

GP learned how to generate permissible network flows. Hence, baseline anomaly detection
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(a) Critic loss, namely fake
critic scores minus real critic
scores. An ideal critic mini-
mizes the score while an ideal
generator maximizes it.

(b) Generator loss, namely the
negative value of fake critic
scores. An ideal generator
would minimize this loss.

(c) Gradient norm penalty on
the critic. To remain in the
dual model space, an ideal
critic would exhibit controlled
gradients.

(d) L2 loss between Argus out-
put and critic scores. With the
intention of minimizing dis-
crepancies between anomaly
baseline detection, an ideal
critic would minimize this loss.

Figure 3.3. The training process is indexed by batches, or samples, of ∼ 1, 000
flows. Vertical lines denote transitions between epochs, a marker of having
trained on all available data (∼ 300, 000 flows).
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Figure 3.4. Illustration of critic scoring of observed and generated flows. An
ideal critic would maximize observed flow scores and minimize generated flow
scores. On the other hand, an ideal generator would maximize generated flow
scores. The training process is indexed by batches, or samples, of ∼1,000 flows.
Vertical lines denote transitions between epochs, a marker of having trained
on all available data (∼300,000 flows).
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evidently delivered much needed expert knowledge. When the critic was regularized by

the baseline anomaly detection output, the critic had to agree with the industry standard

anomaly detection system, at least to some extent. For smaller amounts of real data (10k-

100k thousand flows), this expert-informed WGAN-GP achieved successful training and did

not generate any anomalous flows, at least according to the baseline matching anomaly de-

tection system. With the generation of feasible and permissible flows, this Argus-driven

guidance proves instrumental to training a WGAN-GP. Lastly, although the critic scores

both real and fake network flows with similar scores, Figure  3.4 displays a visually notice-

able gap between the two distributions. This implies that the WGAN-GP has not generated

perfectly indistinguishable network flows. In an effort to close this gap, future research could

employ expert knowledge on quantitative flow behavior.

3.5 Summary

Armed with expert knowledge from Argus, WGAN-GP became capable of modeling

permissible network flows. Indeed, with as little exposure to about 10k observed network

flows, our method did not generate any anomalous flows. Therefore, it is reasonable to claim

our approach may be trained with minimal sets of data. As such, leveraging expert knowledge

has increased the scope of network flow generation in less accessible or active networks. In

short, this application implies that our method would provide realistic generated data for

many aspects of satellite communications and richer volumes of traffic, such as Internet

traffic.
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