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ABSTRACT

Protecting personal information is growing increasingly important to the general public,

to the point that major tech companies now advertise the privacy features of their products.

Despite this, it remains challenging to implement applications that do not leak private

information either directly or indirectly, through timing behavior, memory access patterns,

or control flow side channels. Existing security and cryptographic techniques such as secure

multiparty computation (MPC) provide solutions to privacy-preserving computation, but

they can be difficult to use for non-experts and even experts.

This dissertation develops the design, theory and implementation of various language-

based techniques that help programmers write privacy-critical applications under a strong

threat model. The proposed languages support private structured data, such as trees,

that may hide their structural information and complex policies that go beyond whether

a particular field of a record is private. More crucially, the approaches described in this

dissertation decouple privacy and programmatic concerns, allowing programmers to implement

privacy-preserving applications modularly, i.e., to independently develop application logic

and independently update and audit privacy policies. Secure-by-construction applications are

derived automatically by combining a standard program with a separately specified security

policy.
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1. INTRODUCTION

It is often the case that the owners of some private data want to compute some joint function

of their data: a group of hospitals, for example, may want to calculate some statistics about

their patients. In the case that this data is sensitive, the parties may not want (or be legally

allowed) to simply pool their data and compute the result. Secure computation provides a

solution in such scenarios, allowing multiple parties to perform a joint computation while

keeping their sensitive data secure. Secure computation was formally introduced in the

early 1980s by Yao [  1 ], along with one of the first examples, Yao’s Millionaires’ Problem. In

this problem, Alice and Bob are millionaires, and they wish to know who is richer without

disclosing their wealth. In other words, this is a two-party secure computation that calculates

a boolean result x ≤ y from private integer inputs x and y provided by the two parties,

without revealing these two integers. Starting from this simple problem, secure computation

has since found many privacy-focused applications, including secure auctions, voting, and

privacy-preserving machine learning [ 2 – 4 ].

There are two major paradigms for secure computation: secure multiparty computation

(MPC), wherein the computation is performed jointly by all parties involved; and outsourced

computation, where a computationally powerful entity such as an untrusted cloud provider

carries out the computation [  2 ]. MPC is typically implemented using cryptography-based

protocols, such as Yao’s Garbled Circuits [ 1 ] or secret-sharing [  5 ,  6 ], while outsourced

computation can be implemented using a variety of mechanisms, including cryptography-

based fully homomorphic encryption [ 7 ,  8 ], virtualization [ 9 ,  10 ] and secure processors [ 11 ].

Writing secure applications that directly use these techniques can be quite challenging

and error-prone, however, even if the author has the requisite cryptographic expertise.

Thus, several high-level programming languages and compilers have been created to help

programmers write secure applications, starting with Fairplay, the first publicly available

MPC compiler [  12 ]. For example, Obliv-C [  13 ] is a C-like language for MPC applications

which compiles down to Yao’s Garbled Circuits. Other notable languages include PICCO [  14 ],

ObliVM [  15 ], Wysteria/Wys* [  16 ,  17 ], λobliv [ 18 ], Viaduct [ 19 ], and Symphony [  20 ].  Chapter 7  

discusses these languages in greater detail.
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1.1 Problem Description

While these languages raise the level of abstraction, it remains challenging to develop

complex secure applications in them, due to their lack of or limited support for rich data

structures, complex policies on data, and the separation of programmatic and privacy concerns.

Consider a private decision tree classification problem. Suppose Alice owns a medical

record, represented as a record data type with several fields, such as her ID, age, height and

weight. On the other hand, Bob provides a decision tree, each of whose nodes compares a

feature (i.e., field) from Alice’s record against a threshold, and whose leaves are decisions.

The computation is a standard decision tree classification algorithm that traverses Bob’s

decision tree according to the comparison result of each node, until it reaches a decision.

While it is straightforward to write this simple application in a conventional programming

language, it is challenging to implement a secure version in the aforementioned languages.

To begin with, many of these languages have limited support for rich recursive data

structures, like trees. When such data structures are supported, they typically require leaking

information about the structure of the data: in Obliv-C, for example, users can define trees

with secure nodes using pointers, but the “shape” of the underlying tree will always be visible

to adversaries, as Obliv-C pointers are public data. What if Bob wants to hide also the

structure of his decision tree, so that observing this data structure itself or how it is used

does not disclose whether the tree is left-heavy or right-heavy? Unfortunately, in general

it is impossible to hide everything about a recursive data: some public information has to

be disclosed to bound the data’s in-memory representation and the computation over this

data, e.g., recursion depth; the secure computation may simply not terminate otherwise.

If Bob wishes to hide his tree’s structure, he at a minimum needs to reveal its maximum

depth, for example. An important question for supporting secure data structures is thus what

information about a private data may be publicly shared. Each choice of publicly disclosed

information, or public view, defines a privacy policy on the data.

One major obstacle to securely implementing applications that respect their policies is the

possibility of timing channels: as one example, the run time of any terminating computation

reveals some approximate information about the “size” of the data structures it uses. Authors
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of secure computations must be careful to not inadvertently reveal more information through

such timing side-channels. As an example, consider the following Obliv-C program, which

traverses an oblivious array a:

for (i = 0; i < MAX_BOUND; i++) {

// some secure computation on a[i]

}

Here, the author has chosen to avoid timing channels by using a upper bound, MAX_BOUND,

on the length of a. In effect, MAX_BOUND provides a public view on the structure of a, which

is then used to ensure a consistent running time for the for loop. Of course, the author

also must ensure a has been padded out to this maximum bound and that there are no

break statements that depend on the contents of a in the body of the loop. In order to be

secure, a computation over structured data types must be carried out without revealing any

information outside this public view, including the structure of the private data.

While this trick to make programs constant-time [ 9 ] is easy to implement for computations

over simple data types like arrays, it becomes more complicated for richer data structures,

like the decision tree in our motivating example. First, users have to decide how to manually

“pad” data structures, so that they are consistent with a particular public view. Second,

programmers also have to track the public view throughout the program, making sure it

remains consistent throughout. These manual efforts essentially force the programmers to

explicitly enforce the privacy policies within the logic of the application itself; as a consequence,

the entire application must be examined in order to audit its privacy policy. Lastly, richer

data structures can have multiple public views, i.e., privacy policies, representing different

trade-offs between privacy and performance. An application must be rewritten for each of

these policies, due to the intermixing of policy enforcement and application logic.

This is particularly true for applications with the sorts of complex requirements that can

occur in practice. Within the United States, for example, the Health Insurance Portability

and Accountability Act (HIPAA) governs how patient data may be used. HIPAA allows

either the personally identifiable information (PII) or medical data to be shared, but not

both. Notably, this policy does not simply specify whether some particular field of a patient’s
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medical record is private or public; rather it is a relation that dictates how a program can

access and manipulate different parts of every individual record. To conform to this policy, a

secure application must either pay the (considerable) cryptographic overhead of conservatively

securing all accesses to the fields of a record, or adopt a more sophisticated strategy for

monitoring how data is accessed. These challenges become more acute when dealing with

recursive data, e.g., lists or trees, whose policies are necessarily more complex. In the private

decision tree classification problem, if Bob, the owner of the tree, stipulates that only its

depth may be disclosed, the classification function must use secure operations to ensure that

no other information about the tree is leaked, e.g., its spine or the attributes it uses. If Bob is

willing to share the latter bits of information, however, this function must either be rewritten

to take advantage of the new, more permissive policy, or continue to pay the cost of providing

stricter privacy guarantees. Thus, the intermixing of privacy and programmatic concerns in

current languages require users to write different implementations of essentially the same

program for each distinct privacy policy, and makes it difficult to read, write, and reason

about secure applications. Ideally, these concerns should be separated, allowing programmers

to write the functionality of their program once and for all, and then select the right public

view for their security and performance requirements.

This dissertation considers the following research questions.

• Can we design a secure language that supports rich data structures that may hide their

own structures? Can this language support complex policies on data, e.g., the either-or

policy for medical records?

• How can we guarantee that no sensitive information is leaked when executing programs

in this language, even if an attacker can observe the structured data itself and how

it is manipulated? To faithfully model the domain of secure multiparty computation,

we need to consider a strong threat model where a powerful attacker can observe

every intermediate state of program executions, which also naturally covers timing

side-channels.

• How do we decouple privacy policies from application logic? This form of modularity

allows users to implement applications and specify policies independently.
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1.2 Contributions and Outline

This dissertation develops the design, theory and implementation of various novel pro-

gramming language techniques for oblivious computation. For generality, this dissertation

uses the term oblivious computation to mean computation that does not leak private in-

formation directly or indirectly, e.g., through side-channels, under a strong threat model.

The solutions described in this dissertation can be applied to any oblivious computation,

including secure multiparty computation, fully homomorphic encryption, and other secure

computation techniques that are not based on cryptography.

These solutions provide a foundation to a functional programming language that is rich,

safe, and accessible.

• Rich. Using our language, programmers can implement oblivious applications that

involve rich data structures with complex policies, and use other high-level functional

programming features such as higher-order functions.

• Safe. No attacker can infer any private information beyond their own private input

and the publicly shared information, even when they are able to observe the data

representation and every single program state in an execution of a program written in

this language.

• Accessible. Programmers can write the application logic in the standard way, without

knowing the underlying secure computation model and the particular privacy policies

used for the applications. In other words, the language is policy-agnostic. Privacy

policies are separately defined, specified and audited. The functionality and privacy

policies can then be composed to derive the secure implementation. This modular

design allows functionality and policies to be reusable and makes it easy to switch

policies for, e.g., making tradeoffs between privacy and performance.

The remainder of this dissertation is structured as follows:  Chapter 2 introduces the

important concepts and ideas that underline or inspire the work in this dissertation, e.g.,

noninterference [ 21 ]. This chapter develops a simple security-typed language and a simple

dependently typed language, to illustrate the formalization and proof techniques for these

19



systems, which are the key inspiration for the dissertation. The example core calculi in

 Chapter 2 are designed to be simple while similar in style to the novel systems described in

subsequent chapters.

The next four chapters discuss the main technical contributions of this dissertation.

•  Chapter 3  describes oblivious algebraic data types (OADTs), a form of dependent types

that can encode complex privacy policies for structured data. This chapter also develops

λOADT, a core calculus for writing oblivious programs using OADTs, and describes the

strong security guarantees provided by its type system.

•  Chapter 4  tackles the problem of decoupling privacy and programmatic concerns. This

chapter presents a dynamic approach for enforcing privacy policies automatically, using

a novel operational semantics called tape semantics. This semantics allows programs to

include unsafe computations, and then repairs these unsafe computations at runtime,

which is the key to modularizing these concerns. A core calculus extending λOADT,

dubbed λOADT:, is presented, and various theoretic guarantees are established.

•  Chapter 5  discusses the implementation of a policy-agnostic programming language

based on λOADT:, called Taype. This chapter presents a bidirectional type checker and

a compilation pipeline that addresses various challenges in implementing OADTs and

tape semantics. The chapter concludes with an evaluation of this language.

•  Chapter 6  proposes a static approach for automatic policy enforcement. This approach

transforms source programs into secure target programs that respect the given privacy

policies, enabling significant performance improvements over previous dynamic approach,

i.e., tape semantics, and better policy specifications. The Taypsi language described

in this chapter, and its underlying core calculus λOADTΨ, still provide the same security

guarantee and separation of privacy concerns and application logic.

Finally, related work is discussed in  Chapter 7  , and  Chapter 8  summarizes the dissertation

and proposes future directions.

The material in this dissertation is mainly based on Ye and Delaware [ 22 – 24 ]. The

formalization of all the core calculi presented in this dissertation and the proofs of their
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metatheory have been mechanized in the Coq proof assistant.  Chapter 3  ,  Chapter 4  ,  Chapter 5  

and  Chapter 6  include references to the publicly available artifacts of each of these formal

developments, as well as an implementation of the languages.
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2. BACKGROUND

Before describing the technical contributions of this dissertation, we begin with an introduction

to several important concepts and established techniques.

2.1 Threat Models

This dissertation adopts a semi-honest setting [ 25 ]. In other words, the attackers are

passive, in that they follow the computation or protocols faithfully, but may try to infer

secrets from the information they can gather while doing so. Although they do not act

maliciously, e.g., executing the programs in a deliberately wrong way, private information

can still be leaked inadvertently. An attacker may be able to observe some extra information

besides the input and output that they are permitted to see, e.g., how long a program runs,

and infer sensitive information from such side-channels indirectly. One major challenge for

oblivious computation is to protect against leakage through these side-channels.

The strength of a threat model in the semi-honest setting is determined by the capability

of an attacker, i.e., what information they can observe. Consider a standard imperative

programming model, where computations can be thought of as state transformations. Each

state is a store, or memory, containing data, indexed by variable names. Some portion of this

memory may be protected, and can only be accessed by trusted entities. A variable pointing

to values in this secret section of memory is tagged with a security label > (high-security),

indicating that the contents of this variable are not visible to any attackers, the low-security

observers. On the other hand, variables labeled with ⊥ (low-security) have values that

are visible to everyone, including attackers. A secure program in this programming model

should ensure no high-security data values can be inferred from low-security data or other

information available via side-channels. For example, assigning a high-security variable h to a

low-security variable l, l := h, breaks the security guarantee, as an attacker can obtain the

secret h by observing the value of l after the assignment. A secure programming language

should reject this program as insecure.
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Undesirable information flow from high-security to low-security can happen implicitly as

well. The following example modifies the low-security variable l according to whether the

secret h is greater than 0.

if h > 0 then l := 1 else l := 0

By observing l, an attacker can infer some information about the secret h, which should be

prohibited by the system.

An attacker may be able to observe more than just the low-security portion of the memory.

For example, they may observe the running time of a program. This sort of timing behavior

can also reveal secrets, as illustrated by the following example.

if h > 0 then h := 1 else (delay 10; h := 0)

Even though this program does not modify any low-security variables, an attacker can still

infer some information about the initial value of h and thus obtain the final assignment to h,

by measuring how much time this program takes to finish. A secure system needs to make

sure high-security information does not influence the timing behavior of a program, if an

attacker can gather information from such timing channels.

Perhaps surprisingly, the following innocent-looking program is also insecure if executed

under a standard semantics.

if h > 0 then h := 1 else h := 0

While this program indeed reveals no private information through output and timing channels,

a powerful attacker is still able to peek into h by observing which branch this program takes

via control flow channels.

Our final strong threat model reflects both those of standard MPC protocols based

on simultaneous execution of the programs, e.g., secret-sharing [  6 ,  26 ], and those based

on outsourced computation where untrusted evaluators perform the execution, e.g., fully

homomorphic encryption [ 7 ]. In these protocols, any party involved in the computation could

be an attacker, including the ones executing the programs, forcing us to protect against a

powerful attacker that can observe the whole execution, including every intermediate program

state. As a result, we have to obscure which branches the program takes, for example. This

threat model also naturally covers weaker adversaries, including those who can only observe
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the timing behavior. The language solutions developed in this thesis are designed to be secure

under this strong threat model.

2.2 Security Specifications

One standard notion for specifying information security is noninterference [ 21 ], which

roughly states that protected data can not influence observable information, e.g., low-

security data. Hence, an observer cannot infer any protected information by observing

low-security information. There are many variants of noninterference [  27 ], reflecting different

semantics and threat models. This property is usually defined relationally: for example, given

indistinguishable inputs that differ only in their protected components, a program always

produces outputs that are also indistinguishable. Intuitively, this means if the high-security

values in the input change, the observable information in the execution remains unaffected,

even when the high-security portion of the output can vary.

Indistinguishability specifies what information an observer can see, and is usually defined

using security labels. For example, a high-security label (>) may correspond to confidentiality,

which describes private information, while a low-security label (⊥) describes public information.

In the multiparty setting, principal identifiers such as Alice and Bob may be used as security

labels. Alice may only have access to her own data, i.e., information labeled with Alice,

for instance. Indistinguishability is then an equivalence relation (≈) indexed by observers,

stating that the observable information, according to its security labels, in the data is the

same. In a system with high and low labels, for example, data are indistinguishable to an

attacker if their low-security information is the same.

Another main component in a definition of noninterference are the outputs of a com-

putation, i.e., what information is available to an observer in an execution. If we are only

concerned about the computed result, then its output is simply the result. However, a

program’s output can include information in side-channels as well. For example, we may

define the output of a program as the result it computes to and its running time, if we wish

to account for timing behavior.
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The general recipe for defining noninterference is thus to specify an indistinguishability

relation on a program’s data and the output of a program, according to its semantics and

threat model. Noninterference can then be formalized as when indistinguishable program

states (configurations) produce indistinguishable outputs.

Example 2.2.1 (Termination-insensitive noninterference). Under a standard imperative

semantics, a program configuration is a pair (P, σ), where P is a program and σ is a map from

variable names to their values, i.e., machine state, tagged by a > or ⊥ label. A program’s

behavior can be described by a big-step operational semantics P, σ ⇓ σ′, meaning that the

program P , when run in initial state σ, evaluates to final state σ′.

Consider a threat model where attackers can only see the values of variables labeled with

⊥. In this threat model, we can define indistinguishability on a pair of states as those in

which all the variables labelled with ⊥ have the same values:

σ ≈ σ′ , σ⊥ = σ′
⊥

where σ⊥ means the ⊥ projection of σ, consisting of all the variables that have the ⊥

label. The output is simply the final state. We can then define termination-insensitive

noninterference as follows: given any initial states σ1 and σ2 such that σ1 ≈ σ2, if a program

P with these states evaluates to final states σ′
1 and σ′

2, i.e., P, σ1 ⇓ σ′
1 and P, σ2 ⇓ σ′

2, then

σ′
1 ≈ σ′

2. Note that this definition is termination-insensitive because we assume P terminates

with σ and σ′, otherwise this property is vacuously satisfied.

Alternatively, we can fit this definition into the previous framing more directly by lifting

the indistinguishability notion to program configurations: P, σ ≈ P ′, σ′ if and only if P = P ′

and σ ≈ σ′. We can also extend the notion of output to include a divergence symbol which

indicates (P, σ) does not terminate (assuming this language does not have other diverging

behaviors such as exceptions). We can then say two outputs are indistinguishable if one of

them is the divergence symbol or they are indistinguishable states. With these generalized

definitions, noninterference is simply that indistinguishable program configurations generate
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indistinguishable outputs. Choosing to instead only relate the divergence symbol to itself

leads to termination-sensitive noninterference:

Example 2.2.2 (Termination-sensitive noninterference). Consider an attacker who can also

observe termination behavior. Noninterference is defined as follows: given any initial states σ1

and σ2 such that σ1 ≈ σ2, a program P either diverges under both initial states, or evaluates

to a pair of final states σ′
1 and σ′

2, i.e., P, σ1 ⇓ σ′
1 and P, σ2 ⇓ σ′

2, such that σ′
1 ≈ σ′

2.

Example 2.2.3 (Probabilistic noninterference). Under a nondeterministic and probabilistic

computation model, program semantics may be defined as P, σ ⇓ D, where D is a probability

distribution on states. To protect against attackers who can sample multiple runs, we

may consider two outputs indistinguishable if the generated distributions are statistically

indistinguishable.

Example 2.2.4 (Timing channels). As illustrated in  Section 2.1  , timing behavior can be

used to infer private information. The big-step semantics we used previously is too coarse

for this threat model. While it is possible to define a big-step semantics that also calculates

the running time compositionally, it is more straightforward to define a small-step semantics

(P, σ) −→ (P ′, σ′), which means a program P with state σ takes one computation step to

the configuration (P ′, σ′). The program P in a configuration can be thought of as a program

counter. For example, the program (x := x + 1; y := 2) with state {x 7→ 0} steps to

(y := 2) with state {x 7→ 1}.

With this small-step semantics, noninterference can be defined as follows: given initial

states σ1 and σ2, if (P, σ1) −→n1 (ε, σ′
1) and (P, σ2) −→n2 (ε, σ′

2), then σ′
1 ≈ σ′

2 and n1 = n2,

where ε is the empty program. The judgment (P, σ) −→n (P ′, σ′) generalizes the previous

single-step version, meaning that (P, σ) takes n steps to (P ′, σ′). This noninterference

definition counts how many steps it takes for a program to finish in order to ensure the

number of steps taken is independent of the secrets. In this formulation, we assume each step

costs the same amount of time for simplicity, but this can be easily adapted to capture more

precise timing behavior, e.g., by annotating the small-step semantics with a more precise cost

for each command. This version of the definition also does not consider termination channels,

but it is easy to state a variant similar to termination-sensitive noninterference.
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Example 2.2.5 (Access patterns). Attackers in some threat models can observe memory

access patterns. To capture this capability, we may extend the previous small-step seman-

tics to also record memory access events (P, σ) ev−−→ (P ′, σ′). For example, the program

(x := read l; . . .) may step to (. . .) with the new state {x 7→ 0} and the generated event

READ(l, >, 0). This read event records the memory location l, its security label and the

read result 0.

The output of an execution is a list of the generated events under this small-step semantics.

Indistinguishability of events and the noninterference definition can be straightforwardly

formulated similarly to the previous attempts. One variant of this kind of noninterference is

memory trace obliviousness [ 28 ].

Example 2.2.6 (Control flow channels). In a strong threat model, an attacker may be able

to inspect the program counter in the CPU and the executing instructions. This is the case

in many oblivious computations, including MPC, as discussed in  Section 2.1  ; as any party

executing the programs can be thought of as an attacker who has full control over their

own computing device. To model a powerful attacker who can observe every program state,

we consider output to be the (possibly infinite) traces of configurations under a small-step

semantics. In other words, the output is the (possibly infinite) list (P1, σ1); (P2, σ2); . . . if

the execution is (P1, σ1) −→ (P2, σ2) −→ . . .. Indistinguishability of traces is then simply

pair-wise indistinguishability of program configurations.

Going back to the last example in  Section 2.1  , the following two traces are distinguishable,

despite the indistinguishable initial program configurations.

(if h > 0 then h := 1 else h := 0, {h 7→ 1}) −→ (h := 1, {h 7→ 1}) −→ (ε, {h 7→ 1})

(if h > 0 then h := 1 else h := 0, {h 7→ 0}) −→ (h := 0, {h 7→ 0}) −→ (ε, {h 7→ 0})

Observe that an attacker can infer the value of h by observing the second configuration in

these traces, i.e., the branch it takes, and this program does not satisfy noninterference.
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e ::= bl | x | λx:τ⇒e | e e | if e then e else e Expressions
τ ::= Bl | τ→τ Types
l ::= > | ⊥ Labels
v ::= bl | x | λx:τ⇒e Values

Figure 2.1. Syntax of a simple security-typed calculus

e ⇓ v

E-Val

v ⇓ v

E-App
e1 ⇓ λx:τ⇒e′

1 e2 ⇓ v2 [v2/x]e′
1 ⇓ v

e1 e2 ⇓ v

E-IfTrue
e0 ⇓ truel e1 ⇓ v

if e0 then e1 else e2 ⇓ v

E-IfFalse
e0 ⇓ falsel e2 ⇓ v

if e0 then e1 else e2 ⇓ v

Figure 2.2. Semantics of a simple security-typed calculus

2.3 Security-Type Systems

Various language properties can be ensured statically by a well-designed type system.

Security-typed languages [  27 ,  29 ] have been extensively studied to enforce information-flow

properties such as noninterference. This section presents a functional language as a small

extension to simply typed lambda calculus (STLC) with high- and low-clearance booleans.

This core calculus is designed to be minimal in order to exhibit the key idea of using a type

system to restrict how certain resources can be used, while remaining similar in style to the

proposed calculi in this dissertation.

 Figure 2.1  shows the syntax of this core calculus. Terms and types in this language are

mostly standard. Boolean literals and boolean types are annotated with a security label,

indicating a boolean value is only visible by observers with enough permission according to

its label.

This language has a standard (big-step) operational semantics, as shown in  Figure 2.2 .

Note that the labels are ignored at runtime (and hence can be erased), and the language

relies solely on its type system for the security guarantees. This is different from variants
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Γ ` e : τ

T-Lit

Γ ` bl : Bl

T-Var
x : τ ∈ Γ
Γ ` x : τ

T-Abs
x : τ1, Γ ` e : τ2

Γ ` λx:τ1⇒e : τ1→τ2

T-App
Γ ` e2 : τ1→τ2 Γ ` e1 : τ1

Γ ` e2 e1 : τ2

T-If
Γ ` e0 : Bl Γ ` e1 : τ Γ ` e2 : τ l v label(τ)

Γ ` if e0 then e1 else e2 : τ

Figure 2.3. Typing rules of a simple security-typed calculus

of security-typed languages that may implicitly promote labels to ones of higher security,

effectively “moving” low-security values to a more protected memory region.

The key idea of a security-type system is to rule out the programs with undesirable

information flow by analyzing the security level of each component and imposing restrictions

accordingly. A type system that enforces these restrictions for our simple security-typed

language is presented in  Figure 2.3 . Most of the typing rules are standard. Boolean literals

are ascribed a boolean type with the same label in T-Lit. T-If is the most interesting rule.

This rule uses the expected label comparison operator v (e.g., ⊥ v >), and the meta-function

label which obtains a type’s security label: label(Bl) = l and label(τ1→τ2) = ⊥. Note

that for simplicity we assume functions are always visible to attackers (hence the ⊥ label).

While it is possible to assign a high-security label to functions [ 29 ], functions are generally

public information in secure multiparty computation and many other oblivious computations.

The side condition in T-If enforces a crucial policy that an if-conditional’s branches can only

be “more secure” than its condition, otherwise we risk revealing the value of the condition from

the result of a conditional. For example, the expression if true> then true⊥ else false⊥

is ill-typed, since a low-observer can see the computed result true⊥ and infer that the condition

is also true.

The goal of this type system is to guarantee noninterference. Unlike imperative languages,

this pure functional language is stateless, and its program configurations are simply expressions.

However, establishing noninterference is not necessarily easier, due to the existence of higher-
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e ≈ e′

b⊥ ≈ b⊥ b> ≈ b′
> x ≈ x

e ≈ e′

λx:τ⇒e ≈ λx:τ⇒e′
e1 ≈ e′

1 e2 ≈ e′
2

e1 e2 ≈ e′
1 e′

2

e0 ≈ e′
0 e1 ≈ e′

1 e2 ≈ e′
2

if e0 then e1 else e2 ≈ if e′
0 then e′

1 else e′
2

Figure 2.4. Indistinguishability of expressions in a simple security-typed language

order functions, i.e., lambda abstractions, even if they are low-security. Formally, we want to

prove the following noninterference theorem.

Theorem 2.3.1 (Noninterference). If x : B> ` e : B⊥ and · ` v1,v2 : B>, then [v1/x]e ⇓ v

⇐⇒ [v2/x]e ⇓ v.

This definition is similar to Zdancewic [ 29 , Theorem 3.1.1]. It says the (low-clearance)

result can not be affected by a high-clearance value (i.e., secure boolean) in an expression.

This theorem is simply a special case of  Lemma 2.3.5  below. It can also be straightforwardly

generalized to indistinguishable expressions and indistinguishable substitutions, but these

stronger noninterference theorems are also corollaries of  Lemma 2.3.5 , or can be achieved

using the same proof techniques. A direct proof of these noninterference theorems (including

 Theorem 2.3.1  ) will not succeed, however, similar to the challenge in proving normalization

of STLC: reduction of a lambda application may result in bigger terms that “escape” the

induction hypotheses.

To formally establish noninterference, we first define indistinguishability of expressions as

inference rules in  Figure 2.4 . The first two rules establish that two high-security booleans are

indistinguishable, and all other rules are simply congruence rules. Intuitively, two expressions

are indistinguishable if they only differ in their unobservable, secure boolean values. Note that

attackers are allowed to peek under the binder of a lambda abstraction, as it is the case under

the strong threat model used later in this dissertation. This definition of indistinguishability

for lambda abstractions is not strong enough to prove noninterference directly, because

substituting indistinguishable arguments in indistinguishable function bodies may result in
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bigger terms that are not obviously indistinguishable after evaluation. To strengthen this

equivalence relation, we extend indistinguishability to the stronger logical relation [ 30 ,  31 ]

below.

Definition 2.3.1. This relation is mutually defined via a pair of set-valued type denotations:

a value interpretation VJτK and an expression interpretation EJτK. We say closed and well-

typed terms e and e′ are equivalent at type τ if (e, e′) ∈ EJτK. In other words, they evaluate

to equivalent values, per VJτK. Importantly, the desirable property of substitution is directly

encoded in the value interpretation of function type. In addition, the logical relation is

naturally extended to typing contexts GJΓK, in order to relate equivalent substitutions. We use

the notation σ ` Γ to mean that · ` σ(x) : τ for every x : τ ∈ Γ, similar to the well-typedness

side conditions in other interpretations.

VJB⊥K = { (b⊥, b⊥) } VJB>K = { (b>, b′
>) }

VJτ1→τ2K =


(λx:τ1⇒e, λx:τ1⇒e′)

∣∣∣∣∣∣∣∣∣∣∣
· ` λx:τ1⇒e : τ1→τ2 ∧ · ` λx:τ1⇒e′ : τ1→τ2∧

e ≈ e′∧

∀(v,v′) ∈ VJτ1K.([v/x]e, [v′/x]e′) ∈ EJτ2K


EJτK = { (e, e′) | · ` e : τ ∧ · ` e′ : τ ∧ e ⇓ v ∧ e′ ⇓ v′ ∧ (v,v′) ∈ VJτK }

GJΓK = { (σ, σ′) | σ ` Γ ∧ σ′ ` Γ ∧ ∀x : τ ∈ Γ.(σ(x), σ′(x)) ∈ VJτK }

The base cases of the denotation of values can also be defined directly using our indistin-

guishability relation. For example:

VJB⊥K = { (v,v′) | · ` v : B⊥ ∧ · ` v′ : B⊥ ∧ v ≈ v′ }

This style is equivalent because a well-typed value has a canonical form that is determined

by its type.

Lemma 2.3.2 (Canonical forms).

• If · ` v : Bl, then v = truel or v = falsel.
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• If · ` v : τ1→τ2, then v = λx:τ1⇒e for some e.

Proof. Straightforward case analysis on the type derivation.

A standard substitution lemma is needed to discharge the well-typedness side conditions

in the logical relations.

Lemma 2.3.3 (Substitution preserves typing relation). If Γ ` e : τ and σ ` Γ, then

· ` σ(e) : τ.

Proof. Routine induction on the typing derivation.

We also need another substitution lemma about indistinguishability. Indistinguishability

is naturally extended to substitutions pointwise: σ ≈ σ′ if σ(x) ≈ σ′(x) for each x in their

domain.

Lemma 2.3.4 (Substitution preserves indistinguishability). If σ ≈ σ′, then σ(e) ≈ σ′(e).

Proof. Routine induction on the structure of e.

Now we can state and prove a general lemma that substitution preserves the logical

relations.

Lemma 2.3.5 (Substitution preserves logical relation). If Γ ` e : τ and (σ, σ′) ∈ GJΓK, then

(σ(e), σ′(e)) ∈ EJτK.

Proof. By induction on the derivation of the typing judgment. The cases T-Lit and T-Var

are trivial. In the rest of the proof, we do not explicitly prove the well-typedness side

conditions, since they are simply consequences of  Lemma 2.3.3 .

Case T-Abs: We need to show (λx:τ1⇒σ(e), λx:τ1⇒σ′(e)) ∈ VJτ1→τ2K. First, σ(e) ≈

σ′(e) follows from  Lemma 2.3.4  and the fact that σ ≈ σ′ when (σ, σ′) ∈ GJΓK. Next,

suppose (v,v′) ∈ VJτ1K, we have (σ[x 7→ v], σ′[x 7→ v′]) ∈ GJx : τ1, ΓK. It then fol-

lows from the induction hypothesis that (σ[x 7→ v](e), σ′[x 7→ v′](e)) ∈ EJτ2K. That is

([v/x]σ(e), [v′/x]σ′(e)) ∈ EJτ2K, as required.

Case T-App: We have by the induction hypotheses:
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• (σ(e2), σ′(e2)) ∈ EJτ1→τ2K

• (σ(e1), σ′(e1)) ∈ EJτ1K

Therefore:

• σ(e2) ⇓ λx:τ1⇒u2 for some u2

• σ′(e2) ⇓ λx:τ1⇒u′
2 for some u′

2

• (λx:τ1⇒u2, λx:τ1⇒u′
2) ∈ VJτ1→τ2K

• σ(e1) ⇓ v1 for some v1

• σ′(e1) ⇓ v′
1 for some v′

1

• (v1,v′
1) ∈ VJτ1K

The value interpretation of τ1→τ2 allows us to derive that ([v1/x]u2, [v′
1/x]u′

2) ∈ EJτ2K,

which again gives us:

• [v1/x]u2 ⇓ v for some v

• [v′
1/x]u′

2 ⇓ v′ for some v′

• (v,v′) ∈ VJτ2K

We then have σ(e2) σ(e1) ⇓ v and σ′(e2) σ′(e1) ⇓ v′ from E-App with the desired property

(v,v′) ∈ VJτ2K. That is (σ(e2) σ(e1), σ′(e2) σ′(e1)) ∈ EJτ2K.

Case T-If: We want to show:

(if σ(e0) then σ(e1) else σ(e2), if σ′(e0) then σ′(e1) else σ′(e2)) ∈ EJτK

By the induction hypothesis, we know σ(e0) ⇓ bl and σ′(e0) ⇓ b′
l for some b and b′, such that

(bl, b′
l) ∈ VJBlK. We consider two cases.

If l = ⊥, then b = b′. Without loss of generality, assume they equal true (the case of

false is the similar). It suffices to show σ(e1) ⇓ v and σ′(e1) ⇓ v′ for some v and v′ such

that (v,v′) ∈ VJτK. But it follows immediately from the induction hypothesis.
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If l = >, then label(τ) = >, which means τ is B>. By the induction hypotheses,

we know all 4 branches evaluate to some values, and they are (secure) boolean literals by

 Lemma 2.3.2 . Since (b>, b′
>) ∈ EJB>K for any b and b′, the proof is concluded trivially.

Finally,  Theorem 2.3.1 , i.e., noninterference, is a direct consequence of  Lemma 2.3.5 .

2.4 Dependent Type Systems

Dependently typed languages [  32 ] allow types to depend on terms, providing strong static

guarantees about behavior of programs. For example, the type of lists may depend on a

natural number which specifies the length of a list. Full-spectrum dependent type systems

form the foundation of many theorem provers, such as Coq [ 33 ], Lean [  34 ], and Agda [ 35 ].

These languages support large elimination, or computing types from data. Another form of

dependent types is refinement types [ 36 – 39 ]. These systems usually do not support large

elimination, but rather augment the types with predicates that restrict the values to a

“subset” of the type. Refinement types are designed to be lighter-weight, and many program

specifications can be expressed through these refinement types. Unlike Coq or Agda, where

proofs are constructed inside the language based on the Curry-Howard Correspondence,

refinement type systems rely heavily on automated theorem provers, e.g., Z3 [  40 ], to discharge

proof obligations, trading expressiveness for more automation. There are also works that aim

to bring dependent types to general purpose languages [ 41 – 43 ].

Dependently typed languages, especially those with large elimination, directly inspired the

novel type systems introduced in this dissertation. This section presents a simple dependently

typed language that extends the simply typed lambda calculus with dependent functions and

dependent conditionals. While this core calculus is similar in spirit to pure type systems

(PTS) [  32 ] in the lambda cube [  44 ,  45 ], it is closer in style to λLF [ 46 , Chapter 2.2] and the

type systems in this dissertation.

 Figure 2.5  shows the syntax of this simple dependently typed language. Similar to

most dependently typed languages, types and terms belong to the same syntactic class. By

convention, we try to use the metavariable τ for types and e to refer to terms. The key

extension to simply typed lambda calculus is the inclusion of dependent function types
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Expressions
e, τ ::= b | x | λx:τ⇒e | e e | if e then e else e | B | Πx:τ,τ

Figure 2.5. Syntax of a simple dependently typed calculus

eV e′

R-Refl

eV e

R-App
e1 V e′

1 e2 V e′
2

(λx:τ⇒e2) e1 V [e′
1/x]e

′
2

R-IfTrue
e1 V e′

1

if true then e1 else e2 V e′
1

R-IfFalse
e2 V e′

2

if false then e1 else e2 V e′
2

R-AbsCgr
τV τ′ eV e′

λx:τ⇒eV λx:τ′⇒e′

R-AppCgr
e1 V e′

1 e2 V e′
2

e1 e2 V e′
1 e′

2

R-IfCgr
e0 V e′

0 e1 V e′
1 e2 V e′

2

if e0 then e1 else e2 V if e′
0 then e′

1 else e′
2

R-PiCgr
τ1 V τ′

1 τ2 V τ′
2

Πx:τ1,τ2 V Πτ′
1,τ

′
2

Figure 2.6. Parallel reduction of a simple dependently typed calculus

(Π) and dependent conditionals (if) which allow for type-level computation. For example,

Πx:B,if x then B else B→B is a valid type: the return type of this function is dictated

by its argument x. We write τ1→τ2 for Πx:τ1,τ2 when x does not appear in τ2, indicating

that there is no dependency in this type.

While we can give this language a standard call-by-value or call-by-name small-step

operational semantics, we need a set of more permissive reduction rules to establish the

desired metatheoretic properties. A standard technique is to define an alternative semantics

called parallel reduction, shown in  Figure 2.6  . These semantics rules allow reductions under the

binder of a lambda abstraction (R-AbsCgr) and reductions in if branches (R-IfCgr). All

the subcomponents of an expression are reduced simultaneously in the congruence rules and

even in the β-reduction rules (R-App). As type-level computation is supported, reductions

can also happen in types (e.g., R-PiCgr). Note that the standard call-by-value or call-by-

name reduction relations are included in this “bigger” parallel reduction relation, so properties

such as preservation (i.e., subject reduction) also hold for these more restricted semantics.
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Γ ` e : τ

T-Lit

Γ ` b : B

T-Var
x : τ ∈ Γ Γ ` τ :: ∗

Γ ` x : τ

T-Abs
x : τ1, Γ ` e : τ2 Γ ` τ1 :: ∗

Γ ` λx:τ1⇒e : Πx:τ1,τ2

T-App
Γ ` e2 : Πx:τ1,τ2 Γ ` e1 : τ1

Γ ` e2 e1 : [e1/x]τ2

T-If
Γ ` e0 : B Γ ` e1 : [true/z]τ Γ ` e2 : [false/z]τ Γ ` [e0/z]τ :: ∗

Γ ` if e0 then e1 else e2 : [e0/z]τ

T-Conv
Γ ` e : τ τ ≡ τ′ Γ ` τ′ :: ∗

Γ ` e : τ′

Figure 2.7. Typing rules of a simple dependently typed calculus

Γ ` τ :: ∗

K-Bool

Γ ` B :: ∗

K-Pi
Γ ` τ1 :: ∗ x : τ1, Γ ` τ2 :: ∗

Γ ` Πx:τ1,τ2 :: ∗

K-If
Γ ` e0 : B Γ ` τ1 :: ∗ Γ ` τ2 :: ∗

Γ ` if e0 then τ1 else τ2 :: ∗

Figure 2.8. Kinding rules of a simple dependently typed calculus

Programs in this language are typed using a pair of typing and kinding judgments,

Γ ` e : τ and Γ ` τ :: ∗ respectively. Hence this is a 2-layer type system: terms have

types, and types have kinds, although there is only one kind ∗ to keep this language simple.

 Figure 2.7 and  Figure 2.8 show the (mutually defined) typing and kinding rules.

The kinding rules are mostly straightforward, with the most interesting rule K-If allowing

for large elimination on booleans. Some typing rules (T-Var, T-Abs and T-If) have side

conditions about kinding to ensure the types used in these rules are well-formed. T-Abs is

similar to the standard typing rule for lambda abstraction, although τ2 is allowed to refer

to the variable being bound. T-App is also similar to its standard counterpart, but the

return type of the function is specialized with its argument after the application. Typing a
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dependent conditional (T-If) relies on an implicit motive that is specialized when typing its

branches, because the overall type of the expression may depend on its condition. This motive

(τ) contains a special free variable (z) which stands in for the result of the condition. This

variable is concretized with true ([true/z]τ) when typing the then branch, for example.

Finally, T-Conv allows any well-typed term to be typed with an equivalent type, using a

type equivalence relation τ ≡ τ′. This equivalence is defined directly in terms of the parallel

reduction relation. Two terms are said to be equivalent if they can parallelly reduce to the

same term in zero or more steps:

τ1 ≡ τ2 , ∃τ. τ1 V
∗ τ ∧ τ2 V

∗ τ

It is also possible to define this equivalence inductively using parallel reduction, or define it

as the transitive and symmetric closure of parallel reduction. These definitions are equivalent

to each other, although we may need the confluence property ( Lemma 2.4.5 ) established

below to prove that.
As an example, we can type the function λx:B⇒if x then false else λy:B⇒y with

Πx:B,if x then B else B→B using the following derivation:

T-Abs

T-If

T-Conv

T-Lit

x : B ` false : B B ≡ if true then B else B→B · · ·

x : B ` false : if true then B else B→B · · ·

x : B ` if x then false else λy:B⇒y : if x then B else B→B

K-Bool

· ` B :: ∗

· ` λx:B⇒if x then false else λy:B⇒y : Πx:B,if x then B else B→B

Only the derivation of the then branch in the T-If application is shown; the else branch

is similar, and the condition is easy to type. We choose the motive if z then B else B→B

when applying T-If. After instantiating z with true in the type of the then branch, this

type is converted to B by applying T-Conv.

The expressiveness and strong guarantees provided by dependently typed languages come

at a price, one of which being a much more intricate metatheory. In the rest of this section,

we will prove the standard preservation property as an example of these complexities. As a
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side note, all typing contexts (Γ) in this dissertation (as well as in the Coq mechanization)

are modeled as maps with extensional equality. As a result, in contrast to modeling typing

contexts as ordered lists, as is done in some works, our statements and proofs have a simpler

treatment to typing contexts.

First, we must establish that parallel reduction is confluent, also known as the Church-

Rosser property. To this end, we show substitution preserves parallel reduction.

Lemma 2.4.1. If sV s′, then [s/x]eV [s′/x]e.

Proof. By routine induction on the structure of e.

Lemma 2.4.2 (Substitution preserves parallel reduction). If e V e′ and s V s′, then

[s/x]eV [s′/x]e′.

Proof. By routine induction on the derivation of eV e′.

 Lemma 2.4.2 can be extended to a lemma about type equivalence.

Lemma 2.4.3 (Substitution preserves type equivalence). If e ≡ e′ and s ≡ s′, then

[s/x]e ≡ [s′/x]e′.

Proof. Easily obtained from  Lemma 2.4.2 .

We then prove an important diamond property [  47 ] that says the reductions of a term

can converge in one reduction step. The proof is fairly straightforward (albeit tedious).

Lemma 2.4.4 (Diamond). If eV e1 and eV e2, then e1 V e′ and e2 V e′ for some e′.

Proof. We proceed by induction on the first derivation and then inverting the second one.

Case R-AppCgr: Suppose e1 e2 V e′
1 e′

2 because e1 V e′
1 and e2 V e′

2. Inverting the

second derivation gives us three possibilities.

First, e1 e2 V e1 e2 because of R-Refl. This case is trivial.

Second, e1 e2 V u1 u2 for some u1 and u2 because of R-AppCgr and e1 V u1 and

e2 V u2. In this case, by the induction hypotheses, u1 V t1 and e′
1 V t1 for some t1.

Similarly, u2 V t2 and e′
2 V t2 for some t2. Therefore, e′

1 e′
2 and u1 u2 reduce to the same

expression t1 t2 by applying R-AppCgr.
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Finally, e1 = λx:τ⇒u1 and (λx:τ⇒u1) e2 V [u′
1/x]u′

2 for some u1, u′
1 and u′

2 because

of R-App and u1 V u′
1 and e2 V u′

2. By assumption, λx:τ⇒u1 V e′
1, so e′

1 = λx:τ1⇒s

for some τ1 and s such that τ V τ1 and u1 V s because of R-AbsCgr or R-Refl.

Since λx:τ⇒u1 V λx:τ⇒u′
1 from R-AbsCgr, by the induction hypothesis, λx:τ⇒u′

1 V

λx:τ′⇒t1 and λx:τ1⇒sV λx:τ′⇒t1 for some τ′ and t1. We also have u′
1 V t1 and sV t1

by inverting these reductions. On the other hand, e′
2 V t2 and u′

2 V t2 for some t2 by the

induction hypothesis. It then follows that e′
1 e′

2, i.e., (λx:τ1⇒s) e′
2 reduces to [t1/x]t2

by R-App, and [u′
1/x]u′

2 also reduces to [t1/x]t2 by  Lemma 2.4.2 , completing the proof of

R-AppCgr case.

The proofs of other cases are similar and left as an exercise for the reader.

From the diamond property, we can easily obtain confluence of parallel reduction.

Lemma 2.4.5 (Confluence). If eV∗ e1 and eV∗ e2, then e1 V∗ e′ and e2 V∗ e′ for some

e′.

Proof. Proceed by induction on the reflexive and transitive closure of parallel reduction and

 Lemma 2.4.4 .

We can finally show that the type equivalence defined previously is indeed an equivalence

relation.

Lemma 2.4.6 (Type equivalence). The definition of type equivalence ≡ is an equivalence

relation.

Proof. The confluence property, i.e.,  Lemma 2.4.5 , is necessary for proving transitivity of ≡.

Reflexivity and symmetry are trivial.

Some standard lemmas are needed to prove preservation.

Lemma 2.4.7 (Weakening). If Γ ` e : τ and Γ ⊆ Γ′, then Γ′ ` e : τ.

If Γ ` τ :: ∗ and Γ ⊆ Γ′, then Γ′ ` τ :: ∗.

Proof. We prove these two statements simultaneously by induction on the typing and kinding

derivations.
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Lemma 2.4.8 (Substitution). If x : τ′, Γ ` e : τ and Γ ` s : τ′, then Γ ` [s/x]e : [s/x]τ.

If x : τ′, Γ ` τ :: ∗ and Γ ` s : τ′, then Γ ` [s/x]τ :: ∗.

Proof. By routine (mutual) induction on the typing and kinding derivations. The proof

requires the weakening lemma, i.e.,  Lemma 2.4.7 .

Lemma 2.4.9 (Regularity). If Γ ` e : τ, then Γ ` τ :: ∗.

Proof. By induction on the typing derivation. Most cases are trivial, but the case of T-App

depends on the kinding part of  Lemma 2.4.8 .

Lemma 2.4.10 (Type conversion in context). If x : τ1, Γ ` e : τ and τ1 ≡ τ2 with Γ ` τ2 :: ∗,

then x : τ2, Γ ` e : τ.

If x : τ1, Γ ` τ :: ∗ and τ1 ≡ τ2 with Γ ` τ2 :: ∗, then x : τ2, Γ ` τ :: ∗.

Proof. By routine (mutual) induction on the typing and kinding derivations.  Lemma 2.4.7  ,

 Lemma 2.4.8 and  Lemma 2.4.9 are needed.

Lemma 2.4.11 (Inversion). If Γ ` λx:τ1⇒e : Πx:τ′
1,τ2, then τ1 ≡ τ′

1 and x : τ1, Γ ` e : τ2

and Γ ` τ1 :: ∗.

Proof. By assumption, Γ ` λx:τ1⇒e : τ for some τ such that τ ≡ Πx:τ′
1,τ2. We proceed by

induction on this new typing derivation. Most cases are vacuous except for T-Abs and T-

Conv. The case of T-Conv is trivial by the induction hypothesis, and it relies on transitivity

of type equivalence (  Lemma 2.4.6  ). In the case of T-Abs, Γ ` λx:τ1⇒e : Πx:τ1,τ′
2, so

τ1 ≡ τ′
1 and τ2 ≡ τ′

2. It suffices to prove x : τ1, Γ ` e : τ2, which follows from T-Conv and

the induction hypothesis.

Finally, we prove that parallel reduction preserves types.

Theorem 2.4.12 (Preservation). If Γ ` e : τ and eV e′, then Γ ` e′ : τ.

If Γ ` τ :: ∗ and τV τ′, then Γ ` τ′ :: ∗.

Proof. We prove these two statements simultaneously by (mutual) induction on the typing

and kinding derivations. The cases of T-Lit, T-Conv and K-Bool are trivial. We omit
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proofs of the side conditions about well-kindedness (e.g., when applying T-Conv), which are

easily discharged by the kinding rules or by  Lemma 2.4.9 .

Case T-Abs: By assumption, λx:τ1⇒eV λx:τ′
1⇒e′ for some τ′

1 and e′ due to R-Refl

or R-AbsCgr, as well as τ1 V τ2 and eV e′. By the induction hypothesis, x : τ1, Γ ` e′ : τ2,

from which  Lemma 2.4.10  gives x : τ′
1, Γ ` e′ : τ2 because τ1 ≡ τ′

1 and Γ ` τ′
1 :: ∗ again by the

induction hypothesis. We then have Γ ` λx:τ′
1⇒e′ : Πx:τ′

1,τ2 by T-Abs. Finally, T-Conv

gives us Γ ` λx:τ′
1⇒e′ : Πx:τ1,τ2 as required, because Πx:τ′

1,τ2 ≡ Πx:τ1,τ2.

Case T-App: We consider two possible derivations of parallel reduction.

First, e2 e1 V e′
2 e′

1 with e2 V e′
2 and e1 V e′

1 for some e′
2 and e′

1, due to R-Refl

or R-AppCgr. In this case, Γ ` e′
2 e′

1 : [e′
1/x]τ2 by T-App and induction hypotheses.

Since [e′
1/x]τ2 ≡ [e1/x]τ2 by  Lemma 2.4.3 , we have Γ ` e′

2 e′
1 : [e1/x]τ2 from T-Conv as

desired.

Second, e2 = λx:τ⇒s, and (λx:τ⇒s) e1 V [e′
1/x]s′ for some τ, e′

1, s and s′, with

s V s′ and e1 V e′
1, due to R-App. It follows that λx:τ⇒s V λx:τ⇒s′, from which

Γ ` λx:τ⇒s′ : Πx:τ1,τ2 by the induction hypothesis. We then have x : τ, Γ ` s′ : τ2

with τ ≡ τ1 and Γ ` τ :: ∗ by  Lemma 2.4.11  (inversion lemma). It then follows that

Γ ` [e′/x]s′ : [e′/x]τ2 by  Lemma 2.4.8 , because Γ ` e′
1 : τ by T-Conv and the induction

hypothesis. Finally, T-Conv gives us Γ ` [e′
1/x]s′ : [e1/x]τ2 since [e′

1/x]τ2 ≡ [e1/x]τ2

by  Lemma 2.4.3 .

Case T-If: Again, we consider two possible derivations of parallel reduction.

First, if e0 then e1 else e2 V if e′
0 then e′

1 else e′
2 for some e′

0, e′
1 and e′

2, with

e0 V e′
0, e1 V e′

1 and e2 V e′
2, because of R-Refl or R-IfCgr. By the induction hypotheses

and T-If, we obtain Γ ` if e′
0 then e′

1 else e′
2 : [e′

0/z]τ. The kinding side condition of

T-If can be discharged by  Lemma 2.4.1  and the induction hypothesis. T-Conv then gives

us Γ ` if e′
0 then e′

1 else e′
2 : [e0/z]τ because [e1/z]τ ≡ [e0/z]τ by  Lemma 2.4.3 .

Second, e0 = true and if true then e0 else e1 V e′
1 for some e′

1 with e1 V e′
1, due

to R-IfTrue (the case of e0 = false due to R-IfFalse is similar). In this case, we want to

show Γ ` e′
1 : [true/z]τ, but that is immediate from the induction hypothesis.
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The remaining cases about kinding derivations are similar: the proof for K-Pi is similar

to the case of T-Abs, and the proof for K-If is similar to T-If (but easier as substitutions

do not occur in kinds).

Since parallel reduction is a more liberal relation than the call-by-value or call-by-name

semantics, these standard semantics also inherit the preservation property.
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3. OBLIVIOUS ALGEBRAIC DATA TYPES

As discussed in  Chapter 1 , to support private data structures, we have to ensure no private

information, including data’s structural information if policy makers choose to hide it, can

be inferred by observing the representation or manipulation of private data. In this chapter,

we propose a novel representation of structured data types, which we call oblivious algebraic

data types (OADTs). Our solution combines dependent types with language constructs for

oblivious computation, and a security-type system which ensures that adversaries learn

nothing more than the output of the function and the input they provide.

In summary, this chapter presents the following contributions:

• We observe that public views of private ADTs can be naturally expressed using dependent

types with large elimination, allowing for a clean specification of what information is

released at runtime.

• Exploiting this observation, we develop λOADT, a core calculus for writing oblivious

programs using OADTs, whose strong type system ensures computations are secure.

The core calculus λOADT and its metatheory have been mechanically formalized in the Coq

proof assistant. An artifact containing both these developments is publicly available [  48 ].

3.1 Overview

data tree = Leaf | Node Z tree tree

fn lookup (x : Z) (t : tree) : B =
match t with
| Leaf ⇒ false
| Node y tl tr ⇒
if x ≤ y then if y ≤ x then true

else lookup x tl
else lookup x tr

Figure 3.1. Lookup element in a search tree

To illustrate our approach, consider the

simple function in  Figure 3.1  , which looks

for an element in a search tree by recursing

over the tree. Suppose that Alice, the owner

of a search tree, and Bob, the owner of some

integer, want to check whether Bob’s integer

is a member of Alice’s tree, without revealing

any information to each other beyond what

each can learn from their private data and

the output. We adopt a variation of the
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Input [t] =

12

4

3

13

lookup [4] [t]

→∗
match [t] with
| Leaf ⇒ false
| Node y tl tr ⇒ . . .

→
if [4] ≤ [12]
then if [12] ≤ [4] . . .

else lookup . . . ? ?

→
if [12] ≤ [4]
then true
else lookup . . .

4≤

? ?

→ lookup [4] . . .
4<

? ?

→∗
true

t4<

4

?

?

Figure 3.2. Execution trace of lookup [4] [t]. The columns show the
current state of the program, and information learned by the owner of the
lookup key, respectively.

standard semi-honest threat model from multiparty computation, where an untrusted party

can observe every intermediate execution step of the program under a small-step operational

semantics ( Section 2.1 ). Protecting against such a powerful attacker inevitably impacts the

performance of secure applications, a point we will discuss in more detail at the end of this

overview. For now, let us consider the implications of this attack model on our current

example.

Under this threat model, Bob can glean information about Alice’s tree just by examining

how it affects the control flow of the program, even if the tree is perfectly obfuscated. To
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see how, consider the execution trace of lookup [4] [t] shown in  Figure 3.2  , where [t] is

the tree shown in the first row. The first column of each subsequent row shows the current

execution step, while the second column shows what Bob can infer at that step. We use

square brackets to denote that [t] is an oblivious value, i.e., it cannot be directly observed by

a party. At each recursive call to lookup, there are two points that depend on the structure

of the tree: the match statement that checks whether to recurse, and the if statement that

decides which subtree to recurse on. As the fourth row illustrates, the branch match takes

reveals some information about the structure of the current tree (it is non-empty) to Bob.

The fifth and sixth row of the figure similarly show how the if statement reveals information

about the relationship of the key to the value in the current node. By examining the program

immediately following each such test, Bob adds to his knowledge of Alice’s tree. At the end,

Bob learns not only output of the function, but also a partial view of the tree’s structure

(including the exact node 4 is stored in); this view could be further refined by subsequent

lookup operations.

Note that the participants of any terminating multiparty computation have to agree to

share some public information: intuitively, simply knowing the number of intermediate steps

in an execution of lookup leaks some upper bound on the number of nodes in the tree. Once

that concession is made, the choice becomes what information to share: maybe the owner

of the tree is okay with sharing its spine, but not the values stored in its internal nodes, or

perhaps with revealing some upper bound on its depth  

1
 . The goal then is to enable parties

to compute functions over private data in a way that only depends on some mutually agreed

upon public view of that data.

3.1.1 Encoding Private Data and Policies

The first component to our solution is our representation of both private data and the

public information about the data that can be freely shared. We call this publicly shared

information a public view, reflecting that it is some projection of the full data. Each public

view corresponds to a privacy policy governing the data. Formally, policies are encoded
1

 ↑ In the case the owner is okay with sharing the entire tree, the computation becomes quite efficient indeed!
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obliv t̂ree (k : N) =
if k = 0
then 1

else 1 +̂ Ẑ × t̂ree (k−1) × t̂ree (k−1)

(a) Maximum depth as public view

obliv t̂ree′ (s : spine) =
match s with
| SLeaf ⇒ 1

| SNode sl sr ⇒
1 +̂ Ẑ × t̂ree′ sl × t̂ree′ sr

(b) Upper bound of spine as public view

Figure 3.3. Oblivious trees

as oblivious algebraic data types (OADTs), dependent types that take a public view as a

parameter. The body of an OADT is the type of the private components of a data type, which

are built using oblivious (i.e., secure) type formers, e.g., oblivious fixed-width integer (Ẑ)

and oblivious sum (+̂). By convention, we use ˆ̇to denote the oblivious version of something.

Essentially, an OADT is a type-level function that maps the public view of a value to its

private representation, i.e., the shape of its private component.  Section 3.2.4 formalizes

oblivious data values, but the high-level intuition is that an observer of an execution trace

cannot distinguish between the values of an oblivious type. When examining the trace in

 Figure 3.2 , the oblivious integer [4] is indistinguishable from [12], for example.

1 +̂ Ẑ

1 +̂ Ẑ

1 1

1 +̂ Ẑ

1 1

Figure 3.4. Oblivious
tree with a maximum
depth of two

 Figure 3.3a gives an example of an oblivious tree

whose public view is its maximum depth. In general,

a public view can be any public data type. We say

tree is the public type or public counterpart of the

OADT t̂ree. The key idea behind oblivious ADTs

is to construct a representation of private data from

the public view. As a consequence, private values

with the same public view are indistinguishable to an

attacker, as their private representation is completely

determined by the public view. For example, all oblivious trees with a maximum depth of

two have the same private representation, regardless of the actual depth of the tree:

t̂ree 2 ≡ 1 +̂ Ẑ × (1 +̂ Ẑ × 1 × 1) × (1 +̂ Ẑ × 1 × 1)
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Using data to compute a type is an example of large elimination from dependent type

theory, where it is commonly used to recursively define propositions from terms. In this

example, the type of an oblivious tree is computed from the public view 2, resulting in the

type value on the right hand side, which stipulates the “shape” of the private data. This type

roughly corresponds to the tree shown in  Figure 3.4  . Every tree of this type is padded to

depth 2, even a single “leaf”, to avoid leaking structural information. This padding is implied

by the use of oblivious coproduct +̂, as the left injection (e.g., a Leaf) and the right injection

(e.g., a Node) of an oblivious sum will be indistinguishable. The adversaries can not tell them

apart by inspecting the payload, even if the two components have different types. The “tag”

of a sum value is of course obfuscated as well. Constructing oblivious data types in this way

ensures that all private values corresponding to a particular view are indistinguishable to an

attacker: an empty tree, singleton tree, a tree with two elements, or a complete tree of depth

2 all appear the same to an attacker.

 Figure 3.3b shows the type of oblivious trees using an upper bound on its spine as the

public view, where the spine is another user-defined ADT. This definition releases more public

information than the one in  Figure 3.3a , but it also enjoys a more efficient representation, as

it requires less padding than a complete tree.

// Id, age, height and weight
data patient = Patient Z Z Z Z
data patient_view = Known_id Z

| Known_data Z Z
obliv ̂patient (v : patient_view) =
match v with
| Known_id _ ⇒ Ẑ ×̂ Ẑ ×̂ Ẑ
| Known_data _ _ ⇒ Ẑ ×̂ Ẑ

Figure 3.5. Either-or policy as an OADT

 Figure 3.5 presents an oblivious type for a

simplified version of the medical record with

the “either-or” policy from the introduction

( Chapter 1  ). A patient record consists of

their ID, age, height and weight. The pub-

lic view in this example consists of either

a patient’s ID (Known_id), or their height

and weight (Known_data); their age is always

private. The corresponding oblivious type
̂patient is straightforward: it is the oblivious

data that has been omitted from the public view. If the ID is disclosed, for example, then the

oblivious type is essentially an encrypted version of the remaining 3 fields. Oblivious ADTs

are expressive enough to directly support this kind of “either-or” policy.
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Z

Ẑ

Ẑ#sẐ#r

{ t : tree | depth t ≤ k }

t̂ree k

t̂ree#st̂ree#r

Figure 3.6. Public and oblivious types

Conceptually, OADTs generalize the notion of

secure fixed-width integers to secure structured

data, as illustrated in  Figure 3.6  . Every fixed-

width integer (of type Z) can be sent to its secure

value in Ẑ by “encryption”, and a secure integer

can be converted back to Z by “decryption”. We

call these conversion functions section (e.g., Ẑ#s)

and retraction (e.g., Ẑ#r). The names reflect their

expected semantics: applying retraction to the

section of a value should produce the same value.

Importantly, while the oblivious integer type Ẑ does not appear to have much structure,

it nonetheless has an implicit policy: the public view of an integer is its bit width. If we

use 32-bit integers, for example, Z is the set of all integers whose bit width is 32, and Ẑ

is the set of their “encrypted” values, related by a pair of conversion functions. Similarly,

t̂ree k consists of the secure encodings of trees that have at most k layers. Like Ẑ, t̂ree is

equipped with a section function, t̂ree#s, and a retraction function, t̂ree#r, which convert

public values of tree to their oblivious counterparts and back. Crucially, just as the oblivious

integers in Ẑ are indistinguishable, the elements of t̂ree k are also indistinguishable.

3.1.2 Enforcing Policies

Oblivious ADTs are only half the solution to secure computation; it still remains to

ensure computations over private values are also oblivious. Even if an attacker cannot tell

which values are being compared in if [4] ≤ [12] then . . . else . . ., they can still learn

something about their relationship just by knowing the expression it steps to, as we saw in

our previous example. To prevent these sorts of information leaks, we have designed λOADT,

a pure functional language for writing secure computations over OADTs. λOADT is equipped

with dependent types with large elimination to express OADTs, and type-based information

flow control to guarantee oblivious computations.
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Key to this calculus are its operations for securely constructing and destructing oblivious

data values. As an example of these operations, consider the following λOADT expression, which

compares two secure integers to determine what value to return:

mux ([0] ≤̂ [1]) ([2] +̂ [3]) ([4] +̂ [5])

We use notations +̂ and ≤̂ for the oblivious versions of + and≤, such that [4] +̂ [3] −→ [7]

and [4] ≤̂ [3] −→ [false]. 

2
 Here, mux (short for multiplexer) is a special conditional

which returns an oblivious value according to the value of an oblivious boolean. In order to

avoid leaking information, mux generates the same evaluation trace regardless of the value of

the private condition. To do so, it fully evaluates both branches before stepping to the final

(oblivious) result:

mux ([0] ≤̂ [1]) ([2] +̂ [3]) ([4] +̂ [5])

−→ mux [true] ([2] +̂ [3]) ([4] +̂ [5])

−→ mux [true] [5] ([4] +̂ [5]) −→ mux [true] [5] [9] −→ [5]

Replacing [0] with [6] in the initial expression yields the same execution trace, modulo the

private values at each step. Thus, nothing about the private information can be inferred by

observing the execution:

mux ([6] ≤̂ [1]) ([2] +̂ [3]) ([4] +̂ [5])

−→ mux [false] ([2] +̂ [3]) ([4] +̂ [5])

−→ mux [false] [5] ([4] +̂ [5]) −→ mux [false] [5] [9] −→ [9]

The oblivious sum pattern matching statement (m̂atch) behaves similarly, with the additional

wrinkle that the pattern variables of the “wrong” branch are bound to some arbitrary oblivious

values, which  Section 3.2 explains in full detail.

λOADT is equipped with a security-type system [  27 ], to ensure the correct use of its secure

operations. The full details of this type system can be found in  Section 3.2.3  , but at a

high-level it enforces three key polices. First, oblivious types can only be built from oblivious

types. For example, an oblivious coproduct cannot be built from public types, such as B +̂ Z.
2

 ↑ We abuse the notation +̂ to mean both oblivious sum and oblivious integer addition.
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fn lookupO (x : Ẑ) (k : N) : t̂ree k → B̂ =
if k = 0
then λ_ ⇒ B̂#s false
else λt ⇒ m̂atch t with

| înl _ ⇒ B̂#s false
| înr (y, tl, tr) ⇒

mux (x ≤̂ y)
(mux (y ≤̂ x) (B̂#s true) (lookupO x (k−1) tl))
(lookupO x (k−1) tr)

Figure 3.7. Oblivious lookup function in λOADT

If this were allowed, an adversary could infer whether a value of this type is a left or a right

injection by observing the payload. Second, secure operations like mux can only be applied to

oblivious terms. mux [true] 1 2 is prohibited, for example, as knowing the public result of

this mux reveals the oblivious discriminee. Third, types are treated as public information,

otherwise the parties could not even agree on the data representation. Thus, oblivious types

can only depend on public terms: mux [true] B̂ Ẑ is not a valid type in λOADT.

 Figure 3.7  presents an oblivious implementation of the lookup function for the oblivious

tree from  Figure 3.3a  . While the high-level program logic is the same, extra care is needed to

ensure correct use of the oblivious tree. First, the function takes an extra argument for the

public view; the argument needs to be correctly passed to every recursive call. Second, the

function eliminates the public view, following the definition of t̂ree, before accessing any

secure data. Third, public constants and operations are replaced by their secure counterparts:

e.g., if is replaced by mux. Similarly, the constants true and false are wrapped by the

B̂#s operation (i.e., boolean section), which acts like a coercion from public booleans to

oblivious booleans. This implementation is guaranteed to be secure, although it is not quite

pleasing to write due to the intermixing of privacy policies and program logic.  Chapter 4  will

introduce a more ergonomic language that allows programmers to write functionality just

like the “standard” implementation of lookup in  Figure 3.1 .
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3.1.3 Performance Implication of the Threat Model

Before presenting a detailed accounting of our calculi for oblivious computation, we pause

to discuss the consequences of our chosen threat model, where attackers can observe every

program state in executions.

Protecting against such a strong attacker necessarily comes with a cost: many of the

asymptotic efficiency benefits normally enjoyed by ADTs are lost in the MPC setting. While

the lookup function from our running example provides a simple and familiar illustration of

OADTs, it is also not as performant as its insecure counterpart. In order to avoid leaking

private information via control flow channels, lookup must touch all the elements in the

tree; there is no way to implement a logarithmic oblivious lookup function for this particular

OADT in λOADT. For fold-like computations that touch the entire data structure (e.g., map),

however, the right choice of a public view (e.g., a tree whose spine is its public view) allows

OADTs to feature similar asymptotic behavior to standard ADTs.

While sacrificing some performance gains for security, OADTs provide other advantages

over unstructured data, much like their non-oblivious counterparts. OADTs enable users to

more easily write computations over data that is naturally represented using ADTs, such

as file systems, organizational hierarchies, probability tree diagram, query languages, and

decision trees. Complex policies, such as the either-or policy, can be encoded as OADTs

as well. Using the language introduced in  Chapter 4  , users can quickly prototype secure

computation over structured data, and explore the impact of different public views on a

computation.

3.2 λOADT, Formally

This section formalizes λOADT, a core calculus for programming with OADTs. The calculus

described in this section has been mechanized in the Coq proof assistant and can be found in

the publicly available artifact [ 48 ].
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e,τ ::= Expressions:
| 1 | B | B̂ | τ×τ | τ+τ | τ+̂τ simple types
| Πx:τ,τ dependent function type
| x variable
| () | true | false unit and boolean values
| λx:τ⇒e function abstraction
| let x = e in e let binding
| e e | T̂ e expression and type application
| if e then e else e conditional
| mux e e e atomic conditional
| (e,e) | πb e pair and projection
| ιb<τ> e | ι̂b<τ> e (oblivious) sum injection
| match e with x⇒e|x⇒e sum elimination
| m̂atch e with x⇒e|x⇒e oblivious sum elimination
| fold<T> e | unfold<T> e iso-recursive type intro. and elim.
| B̂#s e boolean section
| [b] | [ιb<ω̂> v̂] runtime boxed values

D ::= Global Definitions:
| data T = τ algebraic data type definition
| fn x:τ = e (recursive) function definition
| obliv T̂ (x:τ) = τ (recursive) oblivious type definition

ω̂ ::= 1 | B̂ | ω̂×ω̂ | ω̂+̂ω̂ Oblivious Type Values

v̂ ::= () | [b] | (v̂,v̂) | [ιb<ω̂> v̂] Oblivious Values

v ::= v̂ | b | (v,v) | λx:τ⇒e Values
| ιb<τ> v | fold<T> v

Figure 3.8. λOADT syntax

3.2.1 Syntax

The core syntax of λOADT is shown in  Figure 3.8 . For simplicity, the core calculus of

λOADT does not include primitive fixed-width integers. We discuss how the language may be

extended with primitive integers in  Section 4.3 . As λOADT is dependently typed, types and

terms belong to the same syntactic class, although by convention, we use the metavariable

τ to refer to types, and e to terms. λOADT programs consist of an expression and a global

context of public ADTs, oblivious ADTs, and functions. These are defined using data, obliv,
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and fn, respectively. Using a global set of function definitions naturally supports general

recursion and mutual recursion. When possible, we use x for function names, T for public

ADT names, and T̂ for the names of oblivious ADTs.

Types in λOADT include dependent function types (Π), sums (+), products (×), and

booleans (B); as well as oblivious sums (+̂) and booleans (B̂). We do not include a type for

oblivious products, as they can be encoded via normal products with oblivious components.

In λOADT, the typing rules and semantics for oblivious types are quite different from their

public counterparts, which is why we choose to assign them distinct syntax, as opposed

to using security labels [  29 ]. λOADT supports type-level computation via large elimination,

allowing users to compute types from terms using application, let, if, and match. Sum and

product types are also allowed to have both oblivious and public components, allowing types

to contain a mixture of public and private data.

Terms in λOADT are largely standard. A subscript distinguishes between left or right

injection (ιb) and projection (πb), where the metavariable b is either true or false. We

also use the more conventional synonyms inl (inr) and π1 (π2) for ιtrue (ιfalse) and πtrue

(πfalse). Injections are annotated with their full type, in order to completely determine its

data representation. λOADT has a nominal type system, so fold and unfold take the name of

a public ADT, instead of a recursive type definition (i.e., µ type). The atomic conditional

mux is the core oblivious construct in λOADT; as  Section 3.1  discussed, mux fully evaluates both

of its branches before taking a single atomic step to the correct branch. Other oblivious

constructs include boolean section B̂#s, which builds an oblivious boolean from its argument,

and constructors (̂ιb) and an eliminator (m̂atch) for oblivious sums.

In addition to the expected sorts of public values, λOADT also includes oblivious values for

booleans ([b]) and sums ([ιb<ω̂> v̂]). In general, these oblivious values do not appear in the

definitions in the global context: they are either provided by the data owner as the arguments

to a global function at runtime, or created by evaluating B̂#s or ι̂b. As  Section 3.1  discussed,

these “boxed” values represent secure data which cannot be observed by an adversary. Since

λOADT has type-level computation, we also define a class of oblivious type values (ω̂). Such

values are built from a combination of oblivious base types and the other oblivious polynomial

type formers.
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3.2.2 Semantics

 Figure 3.9 defines a relation for the small-step operational semantics of λOADT. The

judgment of this relation has the form Σ ` e −→ e′, and is read as “e steps to e′ under the

global context Σ”. Since a λOADT program is evaluated under a fixed global context, we often

abbreviate this judgment as e −→ e′, referring to Σ only when needed. The S-Ctx rule uses

the evaluation contexts (E) defined at the bottom of  Figure 3.9  to evaluate subexpressions.

While these evaluation contexts are not inductively defined, it is possible to recursively apply

S-Ctx when evaluating subterms.

Most of the non-oblivious reduction rules are standard. For brevity, several of the rules

use the ite meta-function, which returns e1 when its first argument is true, and e2 otherwise.

S-If is essentially the following two rules, for example:

S-IfTrue

if true then e1 else e2 −→ e1

S-IfFalse

if false then e1 else e2 −→ e2

To ensure that oblivious rules avoid leaking information, they require that any subexpres-

sions have been fully evaluated before an oblivious expression is reduced. As an example,

S-Ctx must be used to reduce the type and payload of an oblivious injection ι̂ to values

before the S-OInj rule can be applied to obtain the oblivious value. The other oblivious

rules (e.g., S-Sec and S-Mux) are similar.

The most interesting evaluation rule is S-OMatch, which also ensures that an adversary

can not infer anything about the oblivious value being eliminated. In contrast to other

oblivious elimination rules like S-Mux, each branch binds the value stored in the sum to its

pattern variables. This begs the question of how to instantiate this variable when evaluating

the “wrong” branch. Since this branch is eventually discarded when the resulting mux is

evaluated, we opt to simply instantiate this variable with an arbitrary payload of the right

type. This value is synthesized using the auxiliary relation, v̂⇐ ω̂, which is also shown in
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e −→ e′

S-Ctx
e −→ e′

E[e] −→ E[e′]

S-Fun
fn x:τ = e ∈ Σ

x −→ e

S-OADT
obliv T̂ (x:τ) = τ′ ∈ Σ

T̂ v −→ [v/x]τ′

S-App

(λx:τ⇒e) v −→ [v/x]e

S-Let

let x = v in e −→ [v/x]e

S-If

if b then e1 else e2 −→ ite(b,e1,e2)

S-Match

match ιb<τ> v with x⇒e1|x⇒e2 −→ ite(b,[v/x]e1,[v/x]e2)

S-Proj

πb (v1,v2) −→ ite(b,v1,v2)

S-Unfold

unfold<T> (fold<T′> v) −→ v

S-Sec

B̂#s b −→ [b]

S-OInj

ι̂b<ω̂> v̂ −→ [ιb<ω̂> v̂]

S-Mux

mux [b] v1 v2 −→ ite(b,v1,v2)

S-OMatch
v̂1 ⇐ ω̂1 v̂2 ⇐ ω̂2

m̂atch [ιb<ω̂1+̂ω̂2> v̂] with x⇒e1|x⇒e2 −→
mux [b] ite(b,[v̂/x]e1,[v̂1/x]e1)

ite(b,[v̂2/x]e2,[v̂/x]e2)

Evaluation Contexts
E ::=

| �×τ | ω̂×� | �+̂τ | ω̂+̂�
| let x = � in e | e � | � v | T̂ �
| (�,e) | (v,�) | πb �
| ιb<τ> � | ι̂b<�> e | ι̂b<ω̂> �
| fold<T> � | unfold<T> �
| if � then e else e
| match � with x⇒e|x⇒e
| m̂atch � with x⇒e|x⇒e
| mux � e e | mux v � e | mux v v �
| B̂#s �

v̂⇐ ω̂

OT-Unit

() ⇐ 1

OT-OBool

[b]⇐ B̂

OT-Prod
v̂1 ⇐ ω̂1 v̂2 ⇐ ω̂2

(v̂1,v̂2) ⇐ ω̂1×ω̂2

OT-OSum
v̂⇐ ite(b,ω̂1,ω̂2)

[ιb<ω̂1+̂ω̂2> v̂]⇐ ω̂1+̂ω̂2

Figure 3.9. λOADT semantics
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 Figure 3.9 . Equipped with this relation, S-OMatch can be straightforwardly reduced to a

mux expression. To see how, consider the rule corresponding to the case where b is false:

v̂1 ⇐ ω̂1 v̂2 ⇐ ω̂2

m̂atch [inr<ω̂1+̂ω̂2> v̂] with x1⇒e1|x2⇒e2 −→ mux [false] [v̂1/x1]e1 [v̂/x2]e2

In the true branch of the resulting mux expression, the pattern variable x1 is instantiated

with an arbitrary oblivious value, v̂1, while the corresponding pattern variable in the false

branch is instantiated with the actual payload v̂. Using this rule, the expression on the top

below can step to either of the (indistinguishable) expressions on the bottom:

m̂atch [inr<(B̂×B̂)+̂B̂> [false]] with x1⇒π2 x1|x2⇒x2

mux [false]
(π2 ([false],[true]))
[false]

mux [false]
(π2 ([true],[false]))
[false]

The pattern variables in the first branch can be substituted by any pair of oblivious booleans,

e.g., ([false],[true]) or ([true],[false]).

3.2.3 Type System

The type system of λOADT ensures that well-typed programs are secure, in that adversaries

cannot glean information about private data by observing public information. To guarantee

this, kinds in λOADT are augmented with a security label which constrains how information

flows through a program:

κ ::=

| ∗A Any

| ∗P Public

| ∗O Oblivious

| ∗M Mixed
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M
P O

A

Figure 3.10. Semi-
lattice on λOADT kinds

Types that can be treated as either public or obliv-

ious are labeled with A. In practice, this is almost

always the unit type, but it includes other singleton

types, e.g., 1×1. Types which are entirely public or

entirely private have the labels P and O, respectively.

Finally, types with a mixture of public and private

data, e.g., B×B̂, are labeled with M. This label is also used to classify function types, which

we will discuss in more detail shortly. Kinds form a secure join semi-lattice, as shown in

 Figure 3.10  , with M being the most restrictive label. Unlike most secure type systems where

types with a public label can be promoted to their secure counterparts, in λOADT public and

oblivious labels are not compatible. We elide the security label of a kind when it is not

relevant, e.g., Γ ` τ :: ∗.

Programs in λOADT are typed using a pair of typing and kinding judgments; we denote

these as Σ; Γ ` e : τ and Σ; Γ ` τ :: κ, respectively.  Figure 3.11  and  Figure 3.12  give the

kinding and typing rules for λOADT. We elide Σ from these definitions, as they both assume

a fixed global context. For brevity, we omit some side conditions about kinding from the

typing rules; these can be found in the Coq development.

The kinding rules for λOADT are shown in  Figure 3.11  . The rules for base types are

straightforward. As previously mentioned, function types are assigned a mixed label. The

reasons for this are two-fold: firstly, λOADT does not support oblivious function values. Secondly,

this prevents function values from being used as the public view of oblivious types, making it

easier for users to be sure oblivious types terminate. The subsumption rule K-Sub allows

kinds to be converted to a more restricted label. This rule can be used with K-Prod to

label a product type with the join of the labels of its components. K-Sum is similar, but it

also includes the public label in the join, as the tag of a public sum is practically public. For

example, 1+1, which is equivalent to B, should be kinded ∗P instead of ∗A. Similarly, B̂+B̂

has to be kinded ∗M, the join of ∗P and ∗O, as using it in an oblivious context risks leaking

the tag. For similar reasons, K-OSum requires the components of oblivious sums to also be

oblivious. K-OADT requires the argument of an oblivious type to be well-typed according

to its definition in the global context. It does not need to check the index is public, as it is
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Γ ` τ :: κ

K-Unit

Γ ` 1 :: ∗A
K-Bool

Γ ` B :: ∗P
K-OBool

Γ ` B̂ :: ∗O

K-ADT
data T = τ ∈ Σ

Γ ` T :: ∗P

K-Pi
Γ ` τ1 :: ∗ x : τ1, Γ ` τ2 :: ∗

Γ ` Πx:τ1,τ2 :: ∗M

K-Prod
Γ ` τ1 :: κ Γ ` τ2 :: κ

Γ ` τ1×τ2 :: κ

K-Sum
Γ ` τ1 :: κ Γ ` τ2 :: κ

Γ ` τ1+τ2 :: κ t ∗P

K-OSum
Γ ` τ1 :: ∗O Γ ` τ2 :: ∗O

Γ ` τ1+̂τ2 :: ∗O

K-OADT
obliv T̂ (x:τ) = τ′ ∈ Σ Γ ` e : τ

Γ ` T̂ e :: ∗O

K-Let
Γ ` e : τ x : τ, Γ ` τ′ :: ∗O

Γ ` let x = e in τ′ :: ∗O

K-If
Γ ` e0 : B Γ ` τ1 :: ∗O Γ ` τ2 :: ∗O

Γ ` if e0 then τ1 else τ2 :: ∗O

K-Match
Γ ` e0 : τ′

1+τ′
2 x : τ′

1, Γ ` τ1 :: ∗O x : τ′
2, Γ ` τ2 :: ∗O

Γ ` match e0 with x⇒τ1|x⇒τ2 :: ∗O

K-Sub
Γ ` τ :: κ κ v κ′

Γ ` τ :: κ′

Figure 3.11. λOADT kinding rules

done when typing the global context. K-Let, K-If and K-Match are the key components

for large elimination. They both require the discriminee to be well-typed and the returned

types to be obliviously kinded. The K-Match rule is rather permissive in that it does not

require the type of discriminee e0 to be completely publicly typed. While it is unclear when

a programmer would ever actually use a type-level discriminee with oblivious components, it

does not leak any information either.

The typing rules for public constructs are largely standard. Since λOADT is dependently

typed, T-If and T-Match rely on an implicit motive that is specialized when typing

branches 

3
 . This motive, (τ), has a special free variable (z) which stands in for the term

being eliminated. The type used for the then branch in T-If ([true/z]τ) concretizes

the occurrences of this variable with true, for example. The typing rules for oblivious
3

 ↑ This strategy is in line with other dependently typed languages (e.g., Coq), which try to infer a motive
when none is supplied by the programmer.
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Γ ` e : τ

T-Var
x : τ ∈ Γ
Γ ` x : τ

T-Unit

Γ ` () : 1

T-Lit

Γ ` b : B

T-Fun
fn x:τ = e ∈ Σ

Γ ` x : τ

T-Abs
x : τ1, Γ ` e : τ2 Γ ` τ1 :: ∗

Γ ` λx:τ1⇒e : Πx:τ1,τ2

T-App
Γ ` e2 : Πx:τ1,τ2 Γ ` e1 : τ1

Γ ` e2 e1 : [e1/x]τ2

T-Let
Γ ` e1 : τ1 x : τ1, Γ ` e2 : τ2

Γ ` let x = e1 in e2 : [e1/x]τ2

T-Pair
Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` (e1,e2) : τ1×τ2

T-Proj
Γ ` e : τ1×τ2

Γ ` πb e : ite(b,τ1,τ2)

T-Inj
Γ ` e : ite(b,τ1,τ2) Γ ` τ1+τ2 : ∗

Γ ` ιb<τ1+τ2> e : τ1+τ2

T-If
Γ ` e0 : B

Γ ` e1 : [true/z]τ Γ ` e2 : [false/z]τ
Γ ` if e0 then e1 else e2 : [e0/z]τ

T-Match
Γ ` e0 : τ1+τ2

x : τ1, Γ ` e1 : [inl<τ1+τ2> x/z]τ x : τ2, Γ ` e2 : [inr<τ1+τ2> x/z]τ
Γ ` match e0 with x⇒e1|x⇒e2 : [e0/z]τ

T-Fold
data T = τ ∈ Σ

Γ ` e : τ
Γ ` fold<T> e : T

T-Unfold
data T = τ ∈ Σ

Γ ` e : T
Γ ` unfold<T> e : τ

T-Sec
Γ ` e : B

Γ ` B̂#s e : B̂

T-Mux
Γ ` e0 : B̂ Γ ` τ :: ∗O
Γ ` e1 : τ Γ ` e2 : τ
Γ ` mux e0 e1 e2 : τ

T-OInj
Γ ` e : ite(b,τ1,τ2)

Γ ` τ1+̂τ2 :: ∗O

Γ ` ι̂b<τ1+̂τ2> e : τ1+̂τ2

T-OMatch
Γ ` e0 : τ1+̂τ2 Γ ` τ :: ∗O

x : τ1, Γ ` e1 : τ x : τ2, Γ ` e2 : τ
Γ ` m̂atch e0 with x⇒e1|x⇒e2 : τ

T-BoxedLit

Γ ` [b] : B̂

T-BoxedInj
[ιb<ω̂> v̂]⇐ ω̂

Γ ` [ιb<ω̂> v̂] : ω̂

T-Conv
Γ ` e : τ τ ≡ τ′ Γ ` τ′ :: ∗

Γ ` e : τ′

Figure 3.12. λOADT typing rules

59



constructs are largely similar to their public counterparts, with the caveat that they place

more constraints on their subterms: T-OInj requires the type of its payload to have an

oblivious kind, for example. In addition to requiring that their branches have oblivious kind,

the typing rules for oblivious eliminators (T-Mux and T-OMatch) are required to return

types that do not depend on the discriminees, in order to avoid leaking information about

the discriminees via their types. T-BoxedLit and T-BoxedInj type oblivious values, with

the latter simply outsourcing it to the relation used in S-OMatch.

The final typing rule, T-Conv, allows any well-typed term to be typed using an equivalent

type, denoted Σ ` τ ≡ τ′. This equivalence is defined directly in terms of a parallel reduction

relation, Σ ` e V e′, or simply e V e′. Parallel reduction is a more liberal version of our

call-by-value semantics which allows, for example, reduction under binders and congruence

rules. Two terms are then said to be equivalent when they can parallel reduce to the same

term in zero or more steps:

Σ ` τ1 ≡ τ2 , ∃τ. Σ ` τ1 V
∗ τ ∧ Σ ` τ2 V

∗ τ

Parallel reduction also plays an important role in the metatheory of λOADT, particularly in the

proof of obliviousness ( Theorem 3.2.6 ).

A subset of the parallel reduction rules are shown in  Figure 3.13 ; the remaining rules are

similar to the rules in  Figure 2.6  ( Chapter 2  ) and can be found in our Coq development; despite

their importance in the metatheory of λOADT, the parallel reduction rules are straightforward.

As the figure shows, the rules are essentially more permissive versions of their counterparts in

the step relation from  Figure 3.9 . As an example, the parallel reduction rule for mux, R-Mux,

does not reduce its branches to values, but immediately takes the corresponding branch, just

like S-If. While this rule would leak information if the condition of the mux could be reduced

to an oblivious value, this does not occur in practice. The reason for this is that parallel

reduction is only used for statically type checking programs, and this rule will therefore never

be used at runtime, when private data is made available.

To type a λOADT program, we also check the definitions in the global context using the

rules in  Figure 3.14  . DT-Fun is straightforward: the type ascription needs to be well-kinded
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eV e′

R-Refl

eV e

R-App
e1 V e′

1 e2 V e′
2

(λx:τ⇒e2) e1 V [e′
1/x]e

′
2

R-Fun
fn x:τ = e ∈ Σ

x V e

R-OADT
obliv T̂ (x:τ′) = τ ∈ Σ eV e′

T̂ eV [e′/x]τ

R-Mux
e1 V e′

1 e2 V e′
2

mux [b] e1 e2 V ite(b,e′
1,e

′
2)

R-Sec

B̂#s bV [b]

R-OInj

ι̂b<ω̂> v̂V [ιb<ω̂> v̂]

R-OMatch
v̂1 ⇐ ω̂1 v̂2 ⇐ ω̂2 e1 V e′

1 e2 V e′
2

m̂atch [ιb<ω̂1+̂ω̂2> v̂] with x⇒e1|x⇒e2 V
mux [b] ite(b,[v̂/x]e′

1,[v̂1/x]e′
1)

ite(b,[v̂2/x]e′
2,[v̂/x]e

′
2)

Figure 3.13. Subset of λOADT parallel reduction rules

Σ ` D

DT-Fun
· ` τ :: ∗ · ` e : τ

Σ ` fn x:τ = e

DT-ADT
· ` τ :: ∗P

Σ ` data T = τ

DT-OADT
· ` τ :: ∗P x : τ ` τ′ :: ∗O

Σ ` obliv T̂ (x:τ) = τ′

Figure 3.14. λOADT global definition typing rules

and the definition needs to be well-typed using an empty typing context. A definition may

recursively refer to the name being defined, which is included in Σ. DT-ADT, the typing

rule for public ADTs, simply requires the type to be completely public. The typing rule for

oblivious ADTs, DT-OADT, requires that its index be completely public, as it is used as

the public view. In contrast, the rest of the definition has to have an oblivious kind, under a

context that includes the index x.
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3.2.4 Type Safety and Obliviousness

This section presents sketches of the key metatheory proofs for λOADT’s type system. All

the theorems in this section assume a well-typed global context. Firstly, λOADT enjoys the

standard progress and preservation theorems:

Theorem 3.2.1 (Progress). If · ` e : τ, then either e −→ e′ for some e′, or e is a value.

If · ` τ : ∗O, then either τ −→ τ′ for some τ′, or τ is an oblivious type value.

The proof of progress proceeds by mutual induction on typing and kinding derivation. The

S-OMatch case relies on the fact that every oblivious type value is inhabited, in order to

find the oblivious value needed to reduce the “wrong” branch.

The preservation theorem also consists of two parts.

Theorem 3.2.2 (Preservation). If Γ ` e : τ, and e −→ e′, then Γ ` e′ : τ.

If Γ ` τ :: κ and τ −→ τ′, then Γ ` τ′ :: κ.

The induction hypothesis for a direct proof of preservation is too weak to prove the T-If and

T-Match cases. Instead, we show that the step relation refines parallel reduction and then

prove preservation for the more general relation.

Lemma 3.2.3 (Preservation for parallel reduction). If Γ ` e : τ, and eV e′, then Γ ` e′ : τ.

If Γ ` τ :: κ and τV τ′, then Γ ` τ′ :: κ.

The proof of  Lemma 3.2.3  depends on two additional lemmas. The first is a regularity lemma

needed for the kinding constraints used by several typing rules.

Lemma 3.2.4 (Regularity). If Γ ` e : τ, then Γ ` τ :: κ for some κ.

The second is that parallel reduction is confluent.

Lemma 3.2.5 (Confluence of parallel reduction). If eV∗ e1 and eV∗ e2, then there exists

e′ such that e1 V∗ e′ and e2 V∗ e′.

Interestingly, the regular call-by-value semantics of λOADT are not confluent, thanks to a

combination of the (limited) nondeterminism in S-OMatch and nontermination. Observe
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that S-OMatch can be applied with different choices of the arbitrary oblivious values. This

is not a problem if the oblivious case expression terminates because the “wrong” branch will

eventually be discarded. However, it is possible that the mux expression it steps to loops

forever, such that the “wrong” branch is never discarded. Thankfully, the R-Mux rule is

more liberal than S-Mux, ensuring that parallel reduction is confluent. Whenever m̂atch

parallel reduces to a mux expression, however, R-Mux will immediately discard the “wrong”

branch, forcing both choices to converge within one step.

Obliviousness

Adversaries should not be able to infer any information about the private information

(i.e., oblivious values) of well-typed λOADT programs by observing the whole execution of a

λOADT program. To prove this, we first formalize a notion of indistinguishability for λOADT

expressions:

Definition 3.2.1 (Indistinguishability). We say two expressions are indistinguishable, denoted

by e ≈ e′, if

1. they are both oblivious boolean values: [b] ≈ [b′], or

2. they are both oblivious injections with the same type: [ιb<ω̂> v] ≈ [ιb′<ω̂> v′], or

3. they are the same expression with indistinguishable sub-expressions.

Intuitively, two expressions are indistinguishable if they only differ in their oblivious values.

Note that indistinguishability is a completely syntactic notion: two lambda abstractions are

indistinguishable only if their bodies are indistinguishable. This is a direct consequence of

our strong threat model: dishonest parties are capable of peeking “under the binders”, i.e.,

lambda abstractions are not black boxes to them. As an example, the functions λx y⇒x+y

and λx y⇒y+x are not indistinguishable, even though their “big-step” behaviors are the

same: if mux [true] (λx y⇒x+y) (λx y⇒y+x) were to step to λx y⇒x+y, an attacker

could learn about the private condition by inspecting the resulting function. More pleasantly,

this syntactic definition enjoys a congruence property: plugging indistinguishable partial
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programs into indistinguishable contexts is guaranteed to result in indistinguishable whole

programs.

Equipped with this relation, we can now formally state the obliviousness theorem for

λOADT:

Theorem 3.2.6 (Obliviousness). If e1 ≈ e2 and · ` e1 : τ1 and · ` e2 : τ2, then

1. e1 −→n e′
1 if and only if e2 −→n e′

2 for some e′
2.

2. if e1 −→n e′
1 and e2 −→n e′

2, then e′
1 ≈ e′

2.

We write e −→n e′ to mean e reduces to e′ in exactly n steps. The first piece of this

theorem is a generalization of progress, and ensures that information is not leaked via a

termination channel. The second piece says that for any two indistinguishable programs, an

observer cannot learn anything about their oblivious values by examining the states they can

step to. Taken together, these two properties ensure that an observer cannot learn anything

about the private values in a well-typed λOADT program, even given the entire execution trace of

that program. If we treat the observable parts of the intermediate execution states as a public

channel, obliviousness provides a sort of noninterference property [ 21 ,  27 ], in that different

private (i.e., high-security) inputs do not leak any information via this public channel.

The proof of  Theorem 3.2.6  is by induction on the derivation of e1 −→n e′
1. The first part

of the proof of obliviousness is a direct consequence of progress and the fact that well-typed

values are only indistinguishable from other values. The second part is more involved, and

requires the following two key lemmas to prove the S-Mux case:

Lemma 3.2.7. If Γ ` v : τ and Γ ` v′ : τ, and Γ ` τ :: ∗O, then v ≈ v′.

Lemma 3.2.8. If v ≈ v′, Γ ` v : τ, Γ ` v′ : τ′, and Γ ` τ :: ∗O, then τ ≡ τ′.

 Lemma 3.2.7  states that all values of the same oblivious type are indistinguishable, and

 Lemma 3.2.8 ensures that two indistinguishable, obliviously-typed values have the same type

up to type equivalence. The proofs of both lemmas proceed by induction on the typing

derivation. Most of the proofs are straightforward, except for the case of T-Conv in both

lemmas. Since applying the induction hypothesis requires that τ′ also be oblivious, we need
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to show that two equivalent, well-kinded types simultaneously have oblivious kinds, which

follows from  Lemma 3.2.3 :

Lemma 3.2.9. If τ ≡ τ′, Γ ` τ :: ∗O, and Γ ` τ′ :: ∗, then Γ ` τ′ :: ∗O.

In practice, well-typed λOADT programs are functions that take arguments of oblivious

types, such as lookupO from  Figure 3.7 . The program built by supplying such a function with

private inputs of the right types is indistinguishable from one built using different private

inputs, thanks to the congruence property of indistinguishability and  Lemma 3.2.7 . As a

direct consequence of the obliviousness theorem, an attacker can not glean any information

about the private inputs of such programs. This fact is captured in the following corollary

about open λOADT programs:

Corollary 3.2.10. If x : τ′ ` e : τ with · ` τ′ :: ∗O, then for any two values v1 and v2 of

oblivious type τ′:

1. [v1/x]e −→n e1 if and only if [v2/x]e −→n e2 for some e2.

2. [v1/x]e −→n e1 and [v2/x]e −→n e2 implies that e1 and e2 are indistinguishable,

i.e., e1 ≈ e2.

3.3 Conclusion

To our best knowledge, this work is the first programming language that supports hiding

the structure of rich recursive data types in secure computations. We have presented λOADT,

a core calculus for encoding oblivious programs over oblivious algebraic data types. λOADT

combines dependent types with large elimination to represent oblivious algebraic data types,

and provides a security-type system to ensure that computations reveal no private information

over what is provided by the public view of the data. We have proved, mechanically, that

our solution provides a strong and formal security guarantee: an adversary can not infer any

private information, even given the entire execution trace of a program.
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4. TAPE SEMANTICS: DYNAMIC ENFORCEMENT OF

POLICIES

While λOADT provides a foundation for implementing secure computation that involves struc-

tured data and complex policies, writing secure programs directly in λOADT is challenging,

especially for programmers who are not well-versed in dependent types or information flow

control. This chapter introduces a semantics-based approach to enforce privacy policies

dynamically. This novel execution model, called tape semantics, allows programs to include

unsafe computations and repairs these unsafe computations at runtime. Tape semantics

decouples privacy and programmatic concerns, enabling a sort of modular design that allows

programmers to implement the functionality of their secure applications in a standard way.

Using our language, clients can write a single function over private data, and then build

an equivalent oblivious computation over some public view (i.e., policy) of that data. By

switching views, users can explicitly trade off between how much information is leaked via

public channels and the performance of the underlying computation.

In summary, this chapter presents the following contributions:

• To enable both a more pleasant programming experience and more modular programs,

we develop an extension of λOADT, dubbed λOADT:, which is equipped with a novel

semantics which enables creating, from one single public program, oblivious programs

with different public views.

• We present a reference semantics and connect it to tape semantics. The correspondence

between tape semantics and a more standard semantics allows us to reason about

programs in λOADT: using traditional mindset and methods.

• To further reduce the user burden, we develop an algorithm to derive secure implemen-

tations in λOADT: from public programs and their privacy policies as type signatures.

Similar to λOADT, λOADT: and its metatheory have been mechanized in the Coq proof assis-

tant [ 48 ].

66



4.1 Overview

(x,t) o

(x̂,t̂) ô

lookup

B̂#s(Ẑ#r,t̂ree#r)
̂lookup

Figure 4.1. Sketch of a
secure lookup function

Recall the secure implementation of lookupO from

 Figure 3.7  in  Chapter 3 . While this implementation

is guaranteed to be secure, it is quite far from the

“standard” implementation of lookup in  Figure 3.1 , as

its control flow has been restructured to only depend

on public inputs and to meet the demands of a secure

type system. As a consequence, a programmer must

write distinct versions of lookup for each public view,

despite the fact that the high-level program logic is

exactly the same. Note that lookup is, in fact, a valid λOADT program, as long as it is applied to

public data. This observation suggests the implementation of l̂ookup sketched in  Figure 4.1  ,

which simply converts its private inputs to public versions, applies lookup to those arguments,

and converts the result back to an oblivious value. Recall that these conversions are called

section and retraction ( Section 3.1.1  ). From a cryptographic perspective, we “decrypt” the

secure inputs using retraction functions (e.g., Ẑ#r and t̂ree#r), and “encrypt” the computed

result using section functions (e.g., B̂#s). There is a fundamental flaw with this approach,

however: applying a retraction in this manner completely leaks the private inputs of l̂ookup!

Thus, this program must be rejected by λOADT’s type system as insecure.

The ideal language for oblivious computation would permit implementations that combine

the clarity of lookup with the security guarantees of lookupO. In pursuit of this goal, we have

developed an extension of λOADT, called λOADT:, that allows implementations that follow the

recipe sketched in  Figure 4.1  without compromising obliviousness. Our key idea is to have the

semantics of λOADT: repair or “tape up” potentially leaky expressions during execution. This

allows users to write section and leaky retraction functions that convert between oblivious

and public values, relying on the semantics to ensure oblivious execution of any program that

uses those functions.

To understand how this works, consider the execution trace of the simple λOADT: program

shown in  Figure 4.2a  . The new conditional îf is similar to mux in λOADT, but it allows
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tape (if (îf [true]
then true
else false)

then [5]
else [4])

−→

tape (îf [true]
then if true then [5]

else [4]
else if false then [5]

else [4])

−→∗ tape (îf [true] then [5]
else [4])

−→ mux [true] [5] [4] −→ [5]

(a) îf inside if

tape ((îf [true]
then (λx ⇒ x +̂ [1])
else (λx ⇒ x)) [4])

−→
tape (îf [true]

then (λx ⇒ x +̂ [1]) [4]
else (λx ⇒ x) [4])

−→∗ tape (îf [true] then [5]
else [4])

−→ mux [true] [5] [4] −→ [5]

(b) îf inside application

tape (Ẑ#s (Ẑ#r [2] + Ẑ#r [3])) −→ tape (Ẑ#s (Ẑ#r ([2] +̂ [3])))

−→ tape (Ẑ#s (Ẑ#r [5])) −→ tape [5] −→ [5]

(c) retraction of integer

Figure 4.2. Example λOADT: execution traces

non-oblivious branches. Note that this îf would leak the value of its private condition

if it was evaluated using the semantics of mux. Similar leaks occur for any îf expression

whose branches can evaluate to a public value. The idea behind the semantics of λOADT: is

straightforward: since îf only leaks information when it is evaluated, we will simply not

do that! Rather, the surrounding tape annotation ensures the expression will be eventually

oblivious, and tells λOADT: to defer reducing îf until it is safe to do so. This example makes

progress by distributing the surrounding if statement into its branches and then evaluating

both branches to oblivious values instead. Once both branches of an îf are evaluated to

oblivious values, it can be securely reduced to a mux to produce the final result. Note that
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fn t̂ree#s {⊥} (k : N)⊥ (t : tree)> : t̂ree k =
if k = 0
then ()
else tape (match t with

| Leaf ⇒ înl ()
| Node x tl tr ⇒

înr (tape (Ẑ#s x, t̂ree#s tl (k−1), t̂ree#s tr (k−1))))

fn t̂ree#r {>} (k : N)⊥ : (t̂ree k)⊥ → tree =
if k = 0
then λ_ ⇒ Leaf
else λt ⇒ m̂atch t of

| înl _ ⇒ Leaf
| înr (x, tl, tr) ⇒

Node (Ẑ#r x) (t̂ree#r (k−1) tl) (t̂ree#r (k−1) tr)

fn l̂ookup {⊥} (k : N)⊥ (x : Ẑ)⊥ (t : t̂ree k)⊥ : B̂ =
tape (B̂#s (lookup (Ẑ#r x) (t̂ree#r k t)))

Figure 4.3. Oblivious lookup function in λOADT:

swapping [true] with [false] in this example produces the exact same trace, modulo

oblivious values.

This example demonstrates the two key ideas behind the semantics of λOADT:: avoid leaks

by delaying evaluation of potentially insecure expressions, while still making progress by

distributing the surrounding context into such expressions. This strategy works for contexts

like function application as well, as the example in  Figure 4.2b  shows.  Figure 4.2c  includes

an example of a potential leak of oblivious integers via the Ẑ#r operation, a leak that is

ultimately patched using Ẑ#s. The program first progresses by distributing the insecure

addition operation into retraction, then obliviously adding the result. After evaluating the

oblivious addition, we have [5], and Ẑ#s and Ẑ#r can “cancel” each other, as the functions

are effectively inverses. As [5] is already an oblivious value, tape becomes a no-op in this

example.
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 Figure 4.3  shows the section and retraction functions for t̂ree, along with a version of

l̂ookup implemented using the recipe from  Figure 4.1  . While the section function is not

used in l̂ookup, it is needed for functions that return an oblivious tree. Function definitions

in λOADT: require an additional annotation which signals if the function body includes any

potentially leaky operations (e.g., îf) that needs to be patched by the context surrounding

the function call.  Section 4.2  discusses how the type system of λOADT: uses these annotations

in more detail. At a high level, its type system enforces two polices. First, as types are

always public, they should not contain any potential leaks: any type which depends on

îf [true] 1 B̂ is disallowed, for example. Next, because only terms that evaluate to

oblivious values can be patched up, our type system ensures that terms with potential leaks,

e.g., a call to a retraction function or an îf, are obliviously typed.

This strategy of decoupling program logic and privacy policies enjoys multiple benefits.

First, the core program logic is easier to read, write and reason about, because it is simply a

normal functional program, just like lookup. Second, these core functions are agnostic to a

particular security policy. To share the spine of the tree, we only need to choose a different

t̂ree#r and t̂ree#s; lookup itself remains unchanged. This frees users from writing different

versions of the same function for different security policies. Third, this approach allows users

to experiment and trade off between performance and security guarantee. Sharing the exact

spine of the tree will result in better performance, for example, if both parties agree to this

policy.

4.2 λOADT:, Formally

This section formalizes λOADT:, an extension to λOADT that permits implementations in the

vein of  Figure 4.1 .

4.2.1 Syntax

The extended syntax of λOADT: is shown in  Figure 4.4 . These extensions permit λOADT:

expressions that potentially leak information locally, as long as they can eventually be repaired

by the surrounding context. The new îf operation is similar to mux, but its branches are
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e,τ ::= Extended Expressions:
| . . .
| îf e then e else e oblivious leaky conditional
| tape e tape operation
| let x:lτ = e in e let binding with leakage label
| λx:lτ⇒e | Πx:lτ,τ function and function types with leakage label

D ::= Extended Global Definitions:
| . . .
| fn x:lτ = e (recursive) function definition with leakage label

l ::= > | ⊥ Leakage Label

Figure 4.4. λOADT: syntax

permitted to be non-oblivious, causing a potential leak if îf is evaluated naively. The new

tape annotation acts as a boundary for potential leaks, and is used to ensure that they never

occur during execution, as  Section 4.2.2  will discuss in more detail. Finally, λOADT: updates

the syntax for let bindings, anonymous functions, function types and function definitions

with a leakage label. A leakage label is either > or ⊥, and signals either the presence or the

absence of a potential leak, respectively.

4.2.2 Semantics

The semantics of λOADT: are an extension of the semantics of λOADT.  Figure 4.5  shows the

new and updated rules; the rest are identical to the rules in  Figure 3.9  . This semantics

introduces a new syntactic class of weak values, which are used to ensure that îf does not

leak information when evaluated. Weak values simply extend the values in λOADT with îf:

a îf is a weak value if all its subexpressions are weak values. All references to v in the

reduction rules (including those not shown in  Figure 4.5  ) now refer to weak values unless

explicitly identified as a value. The semantics also extend evaluation contexts to handle îf

and tape expressions.

The S-OIf rule captures the key idea of distributing surrounding context into the branches

of îf. Like S-Mux, this rule requires its branches to first be evaluated to weak values using

S-Ctx. Note that not all contexts need to be distributed into these branches in order to
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e −→ e′

S-OMatch
v̂1 ⇐ ω̂1 v̂2 ⇐ ω̂2

m̂atch [ιb<ω̂1+̂ω̂2> v̂] with x⇒e1|x⇒e2 −→
îf [b] then ite(b,[v̂/x]e1,[v̂1/x]e1)
else ite(b,[v̂2/x]e2,[v̂/x]e2)

S-OIf

Ê[îf [b] then v1 else v2] −→ îf [b] then Ê[v1] else Ê[v2]

S-TapeOIf

tape (îf [b] then v1 else v2) −→ mux [b] (tape v1) (tape v2)

S-TapeOVal
v̂ is oblivious value but not pair

tape v̂ −→ v̂

S-TapePair

tape (v1,v2) −→ (tape v1,tape v2)

Weak Values
v ::= . . .
| îf [b] then v else v

Evaluation Contexts
E ::= . . .

| îf � then e else e
| îf v then � else e
| îf v then v else �
| tape �

Leaky Contexts
Ê ::=

| � v
| πb �
| if � then e else e
| match � with x⇒e|x⇒e
| B̂#s �
| unfold<T> �

Figure 4.5. λOADT: semantics

make progress; pushing fold into îf in the expression fold<tree> (îf [true] . . .) does

not gain us anything, for example, since the expression is already a weak value.  Figure 4.5 

defines the leaky contexts (Ê) that can be distributed through îf. For simplicity, we adopt

a minimal set of leaky contexts, though allowing more contexts is a potential avenue for

optimizing executions. This does not limit the expressivity of λOADT:, for similar reasons to

the fold example from above. The semantics of m̂atch are also updated to allow potential

leaks, with S-OMatch now evaluating to îf instead of mux.

The last three rules in  Figure 4.5 show how to evaluate tape annotations. The key idea

is to use tape as a signal that the context surrounding an îf expression has been sufficiently

distributed to prevent leaks. Mechanically, whenever a tape annotation is applied to îf
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expression whose branches are weak values, it is safe to reduce expression to a secure mux

using S-TapeOIf. As an example, consider the following expression:

tape (B̂#s (îf [true]
then false
else true))

−→
tape (îf [true]

then (B̂#s false)
else (B̂#s true))

−→∗
tape (îf [true]

then [false]
else [true])

−→
mux [true]

(tape [false])
(tape [true])

−→∗ mux [true] [false] [true] −→ [false]

After applying S-OIf to distribute the surrounding boolean section B̂#s, the îf expression

is now annotated with tape, and S-TapeOIf can be applied. The tape annotations are

pushed inside the branches of mux to ensure any îf expressions they may contain are also

repaired. The final two rules ensure tape annotations are eventually dropped from oblivious

values. An oblivious (non-pair) value annotated with tape cannot leak any information, and

S-TapeOVal can be applied to remove the extraneous tape. S-TapePair allows tape

annotations to be distributed into the components of an oblivious pair, in order to eventually

repair any îf expressions they may contain.

4.2.3 Type System

The typing judgment of λOADT: now includes a leakage label for the typed expression:

Γ ` e :l τ, as do entries in typing contexts Γ.  Figure 4.6  shows a subset of the typing rules of

λOADT:; the omitted rules are copies of those from λOADT with straightforward leakage labels

annotations. As mentioned in  Section 4.2.1 , leakage labels signal whether an expression

might contain a potential leak. The reason for these labels is similar to the security labels

found in other security-type systems [  27 ,  29 ], where type-based information flow control

is used to enforce noninterference between high- and low- security information. In λOADT:,

expressions with > labels should not influence expressions with ⊥ labels. In order to minimize

the extension to λOADT, we do not annotate every type with a leakage label, opting to only

annotate top-level definitions and function parameters with leakage labels. While it is
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Γ ` e :l τ

T-Var
x :l τ ∈ Γ
Γ ` x :l τ

T-Unit

Γ ` () :⊥ 1

T-Pair
Γ ` e1 :l1 τ1 Γ ` e2 :l2 τ2

l = l1 t l2

Γ ` (e1,e2) :l τ1×τ2

T-Proj
Γ ` e :l τ1×τ2

Γ ` πb e :l ite(b,τ1,τ2)

T-Abs
x :l1 τ1, Γ ` e :l2 τ2 Γ ` τ1 :: ∗

Γ ` λx:l1τ1⇒e :l2 Πx:l1τ1,τ2

T-App
Γ ` e2 :l2 Πx:l1τ1,τ2 Γ ` e1 :l1 τ1

Γ ` e2 e1 :l2 [e1/x]τ2

T-If
Γ ` e0 :⊥ B l = l1 t l2

Γ ` e1 :l1 [true/z]τ Γ ` e2 :l2 [false/z]τ
Γ ` if e0 then e1 else e2 :l [e0/z]τ

T-IfNoDep
Γ ` e0 :l0 B l = l0 t l1 t l2

Γ ` e1 :l1 τ Γ ` e2 :l2 τ

Γ ` if e0 then e1 else e2 :l τ

T-Match
Γ ` e0 :⊥ τ1+τ2 l = l1 t l2

x :⊥ τ1, Γ ` e1 :l1 [inl<τ1+τ2> x/z]τ x :⊥ τ2, Γ ` e2 :l2 [inr<τ1+τ2> x/z]τ
Γ ` match e0 with x⇒e1|x⇒e2 :l [e0/z]τ

T-MatchNoDep
Γ ` e0 :l0 τ1+τ2 l = l0 t l1 t l2

x :l0 τ1, Γ ` e1 :l1 τ x :l0 τ2, Γ ` e2 :l2 τ

Γ ` match e0 with x⇒e1|x⇒e2 :l τ

T-Conv
Γ ` e :l τ τ ≡ τ′ Γ ` τ′ :: ∗

l v l′

Γ ` e :l′ τ′

T-Mux
Γ ` e0 :⊥ B̂ Γ ` τ :: ∗O
Γ ` e1 :⊥ τ Γ ` e2 :⊥ τ

Γ ` mux e0 e1 e2 :⊥ τ

T-OInj
Γ ` e :⊥ ite(b,τ1,τ2)

Γ ` τ1+̂τ2 :: ∗O

Γ ` ι̂b<τ1+̂τ2> e :⊥ τ1+̂τ2

T-OIf
Γ ` e0 :⊥ B̂

Γ ` e1 :l1 τ Γ ` e2 :l2 τ

Γ ` îf e0 then e1 else e2 :> τ

T-OMatch
Γ ` e0 :⊥ τ1+̂τ2

x :⊥ τ1, Γ ` e1 :l1 τ x :⊥ τ2, Γ ` e2 :l2 τ

Γ ` m̂atch e0 with x⇒e1|x⇒e2 :> τ

T-Tape
Γ ` e :l τ Γ ` τ :: ∗O

Γ ` tape e :⊥ τ

Figure 4.6. Selected λOADT: typing rules
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certainly possible to implement a more precise analysis, this coarse-grained analysis is strong

enough for our purposes.

The leakage label of base types is always ⊥, e.g., in T-Unit. Leakage labels for local or

global variables is taken directly from the context, e.g., T-Var. For most public constructs,

e.g., T-Pair and T-Proj, the label is the join (t) of the labels of all sub-expressions, where

⊥ t ⊥ ≡ ⊥ and > otherwise. T-Proj shows why leakage is an overapproximation, as we

cannot always tell which component of a pair labeled with > is the source of the potential

leak. In T-Abs, both the type and label of a parameter are added to the typing context

when typing the function body. The label assigned to the function body is then propagated

to the whole lambda abstraction. This strategy may seem a bit counterintuitive, as a lambda

abstraction is irreducible, and thus cannot leak any information during further evaluation.

Of course, while a lambda value will not leak any information on its own, it does have the

potential to leak when applied to an argument. Because our leakage analysis is quite coarse,

we simply consider an expression leaky if it may leak when it is “used”. T-App requires a

function to be applied to an argument whose label matches that of its parameter. Applying

a function with a potentially leaky parameter to a non-leaky argument can be typed by first

using the T-Conv rule, which allows the label of an expression to be downgraded. As an

example, these rules ensure both (λx:>B⇒B̂#s x) (îf [true] then true else false)

and (λx:>B⇒B̂#s x) true are well-typed expressions.

λOADT: has dependent and nondependent versions of the typing rule for if. In the dependent

version, T-If, the discriminee is not allowed to contain a potential leak, as it may appear in

the type. In the nondependent version T-IfNoDep, there is no such restriction, but the

type is not allowed to depend on the discriminee. The typing rules for match, T-Match and

T-MatchNoDep, are similar.

The remaining typing rules deal with expressions that either repair or introduce potential

leaks. An expression annotated with tape is always assigned the ⊥ label, as long as that

expression has an oblivious type. This is in line with the semantics of tape: when applied to

an oblivious expression, it eventually evaluates to an oblivious value or a weak value (îf).

The former is already safe, and the latter can be repaired by S-TapeOIf. The ⊥ label in

the rule captures the idea that tape safely repairs a local leak, such that the surrounding
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Γ ` τ :: κ

K-OADT
obliv T̂ (x:τ) = τ′ ∈ Σ Γ ` e :⊥ τ

Γ ` T̂ e :: ∗O

K-If
Γ ` e0 :⊥ B Γ ` τ1 :: ∗O Γ ` τ2 :: ∗O

Γ ` if e0 then τ1 else τ2 :: ∗O

K-Match
Γ ` e0 :⊥ τ′

1+τ′
2 x :⊥ τ′

1, Γ ` τ1 :: ∗O x :⊥ τ′
2, Γ ` τ2 :: ∗O

Γ ` match e0 with x⇒τ1|x⇒τ2 :: ∗O

Figure 4.7. Selected λOADT: kinding rules

computation can treat it as non-leaky. The rules for îf and m̂atch reflect the fact that they

are sources of potential leaks, as both expressions are labeled with >. Both rules require

their discriminees to be free of potential leaks, but this does not affect expressiveness, since

their discriminees can always be wrapped with tape. T-OInj and T-Mux feature similar

requirements.

 Figure 4.7  shows the updated kinding rules for λOADT:; the other kinding rules are identical

to those in  Figure 3.11  . The updated rules require types to only depend on terms that do not

contain potential leaks, i.e., those assigned the ⊥ label. To see why, consider the following

ill-kinded type:

if (îf [true] then true else false) then 1 else B̂

After distributing the surrounding if into îf, this reduces to îf [true] then 1 else B̂.

Similar expressions at the term level can be repaired by, e.g., distributing B̂#s through the

branches to secure the result of the îf. At the type level we have no such recourse, however:

since types are always public, there is no corresponding way to repair this type by securing

its branches.

 Figure 4.8 shows a subset of the updated and new parallel reduction rules. Again, the

rules for oblivious constructs are similar to the corresponding step rules. In R-OIfCtx, we

write Ê V Ê ′ to mean all the subexpressions in the leaky context take a parallel reduction

step. R-OIf is required for confluence, similar to R-Mux. We say a λOADT: program is

well-typed if the global context is well-typed (the updated typing rules for the global context
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eV e′

R-OIfCtx
e1 V e′

1 e2 V e′
2 Ê V Ê ′

Ê[îf [b] then e1 else e2]V îf [b] then Ê ′[e′
1] else Ê ′[e′

2]

R-TapeOIf
e1 V e′

1 e2 V e′
2

tape (îf [b] then e1 else e2)V mux [b] (tape e′
1) (tape e′

2)

R-TapePair
e1 V e′

1 e2 V e′
2

tape (e1,e2)V (tape e′
1,tape e′

2)

R-TapeOVal
v̂ is oblivious value but not pair

tape v̂V v̂

R-OIf
e1 V e′

1 e2 V e′
2

îf [b] then e1 else e2 V ite(b,e′
1,e

′
2)

Figure 4.8. Selected λOADT: parallel reduction rules

are trivial) and the expression is well-typed with ⊥ label. The latter restriction ensures that

all potential leaks in a λOADT: program are eventually repaired.

4.2.4 Type Safety and Obliviousness

The guarantees of the type system of λOADT: are quite similar to those of λOADT, although

they have been adapted slightly to account for leakage labels. The statement of progress for

λOADT:, for example, is limited to expressions without potential leaks:

Theorem 4.2.1 (Progress). If · ` e :⊥ τ, then either e −→ e′ for some e′, or e is a value.

If · ` τ : ∗O, then either τ −→ τ′ for some τ′, or τ is an oblivious type value.

This updated statement reflects the fact that leaky expressions only reduce to weak values.

The proof of this theorem is a consequence of a stronger lemma which also accounts for

potentially leaky expressions:

Lemma 4.2.2. If · ` e :l τ, then either e −→ e′ for some e′, or e is a weak value.
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The proof of this stronger lemma proceeds similarly to the proof of progress for λOADT, with

the canonical form lemmas extended to weak values. One technicality needed by this proof is

a notion of weak oblivious value, which extends oblivious values to include îf expressions.

For the T-Tape case, we have to show that a weak value with an oblivious type is also a

weak oblivious value, as tape can only be reduced when it is applied to weak oblivious values.

This extra lemma requires an updated version of  Lemma 3.2.9  , so the proof of progress for

λOADT: now depends on type preservation for parallel reduction. With this lemma in hand,

the progress theorem immediately follows from the fact that a weak value is a value if it

labeled with ⊥.

The statements of preservation and obliviousness must also be updated to deal with

leakage labels, but are otherwise identical:

Theorem 4.2.3 (Preservation). If Γ ` e :l τ, and e −→ e′, then Γ ` e′ :l τ.

If Γ ` τ :: κ and τ −→ τ′, then Γ ` τ′ :: κ.

Theorem 4.2.4 (Obliviousness). If e1 ≈ e2 and · ` e1 :l1 τ1 and · ` e2 :l2 τ2, then

1. e1 −→n e′
1 if and only if e2 −→n e′

2 for some e′
2.

2. if e1 −→n e′
1 and e2 −→n e′

2, then e′
1 ≈ e′

2.

Proofs of both theorems follow the same structure as their counterparts in λOADT, although

many of the lemmas used in the proof of obliviousness now use weak values instead of values.

4.3 Extending λOADT:

This section considers how additional base types might be added to the core calculus of

λOADT:, using fixed-width integers as an example.  Figure 4.9  shows a subset of the syntax,

semantics and typing rules needed for this new primitive type. The extended language

includes public and oblivious versions of integer types, literals, and operators. For simplicity,

we only consider a comparison operation, but additional operators could be added in a

similar manner. In order to move between the public and oblivious types, section (Ẑ#s) and

retraction (Ẑ#r) operations for integers are also added; both have similar semantics to their
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e, τ ::= Extended Expressions:
| . . .

| Z | Ẑ primitive integer types
| i | [i] (runtime) integer literals
| e ≤ e | e ≤̂ e integer operators
| Ẑ#s e | Ẑ#r e integer section and retraction

(a) Extended syntax

Γ ` e :l τ

TI-Ret
Γ ` e :⊥ Ẑ

Γ ` Ẑ#r e :> Z

TI-OLe
Γ ` e1 :⊥ Ẑ Γ ` e2 :⊥ Ẑ

Γ ` e1≤̂e2 :⊥ B̂

(b) Extended typing rules

e −→ e′

SI-Sec

Ẑ#s i −→ [i]

SI-SecRet

Ẑ#s (Ẑ#r [i]) −→ [i]

SI-RetLe1

Ẑ#r [i1]≤Ẑ#r [i2] −→ B̂#r ([i1]≤̂[i2])

SI-RetLe2

Ẑ#r [i1]≤i2 −→ B̂#r ([i1]≤̂Ẑ#s i2)

SI-RetLe3

i1≤Ẑ#r [i2] −→ B̂#r (Ẑ#s i1≤̂[i2])

(c) Extended semantics

Figure 4.9. A subset of extended language for fixed-width integers

boolean counterparts 

4
 . Ẑ#r always introduces a potential leak, and Ẑ#r v̂ is considered weak

value.

When defining the semantics of potentially leaky expressions like ≤, it is important that

the semantics does not leak information via the execution trace. When comparing oblivious

values with ≤, for example, SI-RetLe1 combines ≤̂ and B̂#r to first securely compare the

operands before retracting the resulting oblivious boolean. SI-RetLe2 and SI-RetLe3 are

similar, but they apply to cases when one of the operands is not a retraction of an oblivious

value by lifting it to oblivious values first. The semantics of other operators can be defined
4

 ↑ Although λOADT: does not include boolean retraction B̂#r as a primitive, it is easily defined in terms of îf:
B̂#r e , îf e then true else false.
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through similar uses of section and retraction functions. As an example, integer addition

returns an integer instead of boolean, so we apply Ẑ#r to the result of oblivious addition.

If a leaky integer expression is used in a well-typed context, then Ẑ#r will eventually meet

Ẑ#s and they can be canceled out via SI-SecRet. Updated versions of evaluation contexts,

leaking contexts and the other reduction rules are omitted, as they are straightforward

extensions of their counterparts in λOADT:. The extended typing and kinding rules are also

straightforward, and are similar to those for the primitive types in λOADT:.  Figure 4.9 gives

the rules for integer retraction (TI-Ret) and oblivious less-than (TI-OLe) as examples.

4.4 λOADT: in Action

To demonstrate the expressiveness of λOADT:, we have written some example oblivious

functions and oblivious types with different public views. We have directly encoded these in

our Coq development, as well as some accompanying typing and evaluation derivations. All

of the examples described in this section are included in our public artifact [ 48 ].

We have encoded the following OADTs for lists and trees. Each oblivious type consists of

its type definition, a section function and a retraction function.

• List with the upper bound of its length.

• Tree with the upper bound of its depth.

• Tree with the upper bound of its spine.

• Tree with the upper bound of the number of its vertices (including leaves and nodes).

The second and third of these examples were presented in  Section 3.1  . The oblivious tree

with the upper bound of its total vertices is the most complicated: while its type definition is

effectively an oblivious list, its section and retraction functions correspond to flattening a

tree and rebuilding a tree from a list.

In addition to the lookup function from  Section 3.1  , we have also written a tree insertion

function as a demonstration of how oblivious ADTs are constructed. A more interesting

example is a standard map function over oblivious trees, which shows that higher-order
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functions can be naturally written in λOADT:. The following code snippet for an oblivious map

function follows the recipe in  Figure 4.1  . Label annotations are omitted for brevity, and we

use a boolean payload for simplicity.

fn m̂ap (f : B → B) (k : N) (t : t̂ree k) : t̂ree k =
t̂ree#s (map f (t̂ree#r k t)) k

The function argument of m̂ap takes a public boolean to public boolean, but m̂ap could be

adapted to accept a function from oblivious boolean to oblivious boolean by composing

boolean section and retraction to appropriately “transport” the function argument. The

m̂ap function could also be adapted any oblivious tree definition by simply replacing t̂ree,

t̂ree#s, and t̂ree#r.

4.5 An Unsafe Reference Semantics

Reasoning about program behaviors directly under tape semantics is not ideal, as tape

semantics is a nonstandard semantics: we cannot directly apply our experience, theoretical

frameworks or practical tools developed for standard functional languages. This section shows

that most of the reasoning principles can be recovered by connecting tape semantics to a

more standard, reference semantics, called reveal semantics.

Reveal semantics is an unsafe, big-step operational semantics for λOADT:, whose rules are

presented in  Figure 4.10  . Its judgment Σ ` e ⇓ v evaluates an expression e to a value v,

under a global context Σ which is elided for brevity in these rules. As λOADT: is dependently

typed, this relation also evaluates a type to an oblivious type value.

Most rules are straightforward, similar to the big-step semantics of other systems. However,

unlike other languages, in E-Val a value v in reveal semantics is evaluated to the erasure

of v, bvc, instead of itself. This erasure operation reduces all “dummy” leaky conditionals,

i.e., those that are already weak values, even under the binder of a lambda abstraction. Its

definition is simple: bîf e0 then e1 else e2c = ite(b,be1c,be2c) if be0c = [b] and both

be1c and be2c are weak values, or otherwise the erasure is îf be0c then be1c else be2c.

Other expressions simply erase their subterms recursively. This erasure operation is mainly

used for establishing the equivalence to tape semantics. To see why this is necessary,
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e ⇓ v

E-Val

v ⇓ bvc

E-OTVal

ω̂ ⇓ ω̂

E-Prod
τ1 ⇓ ω̂1 τ2 ⇓ ω̂2

τ1×τ2 ⇓ ω̂1×ω̂2

E-OSum
τ1 ⇓ ω̂1 τ2 ⇓ ω̂2

τ1+̂τ2 ⇓ ω̂1+̂ω̂2

E-OADT
obliv T̂ (x:τ) = τ′ ∈ Σ
e ⇓ v [v/x]τ′ ⇓ ω̂

T̂ e ⇓ ω̂

E-Fun
fn x:τ = e ∈ Σ

e ⇓ v
x ⇓ v

S-App
e2 ⇓ λx:lτ⇒e e1 ⇓ v1

[v1/x]e ⇓ v
e2 e1 ⇓ v

E-Let
e1 ⇓ v1 [v1/x]e2 ⇓ v
let x = e1 in e2 ⇓ v

E-If
e0 ⇓ b ite(b,e1,e2) ⇓ v
if e0 then e1 else e2 ⇓ v

E-Mux
e0 ⇓ [b] ite(b,e1,e2) ⇓ v

mux e0 e1 e2 ⇓ v

E-OIf
e0 ⇓ [b] ite(b,e1,e2) ⇓ v
îf e0 then e1 else e2 ⇓ v

E-Inj
e ⇓ v

ιb<τ> e ⇓ ιb<bτc> v

E-Match
e0 ⇓ ιb<τ> v ite(b,[v/x]e1,[v/x]e2) ⇓ v

match e0 with x⇒e1|x⇒e2 ⇓ v

E-OInj
τ ⇓ ω̂ e ⇓ v̂

ι̂b<τ> e ⇓ [ιb<ω̂> v̂]

E-OMatch
e0 ⇓ [ιb<ω̂> v] ite(b,[v/x]e1,[v/x]e2) ⇓ v

m̂atch e0 with x⇒e1|x⇒e2 ⇓ v

E-Pair
e1 ⇓ v1 e2 ⇓ v2

(e1,e2) ⇓ (v1,v2)

E-Proj
e ⇓ (v1,v2)

πb e ⇓ ite(b,v1,v2)

E-Fold
e ⇓ v

fold<T> e ⇓ fold<T> v

E-Unfold
e ⇓ fold<T′> v
unfold<T> e ⇓ v

E-Sec
e ⇓ b

B̂#s e ⇓ [b]

E-Tape
e ⇓ v̂

tape e ⇓ v̂

Figure 4.10. λOADT: reveal semantics
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consider the expression îf [true] then 1 else 2. This expression evaluates to 1 under

reveal semantics, but it is a stuck term in tape semantics to avoid revealing its private

condition [true]. To connect reveal semantics to tape semantics, we have to consider a

weaker “sameness” up to erasure. We further bake erasure into reveal semantics, so that an

expression always evaluates to a sort of “canonical” value free of dummy leaky conditionals.

E-Inj also uses this operation to erase a sum injection’s type annotation, similar to E-Val.

E-OIf executes an îf similarly to the standard semantics of if, which allows us to reason

about îf easily by treating it as a normal conditional. This behavior of course reveals the

private conditions (in addition to the erasure), so reveal semantics is an unsafe semantics

which should not be used for secure computation. However, it is suitable for executing

retraction functions in order to reveal the computed secure output to the privileged parties.

Note that reveal semantics does not guarantee to have the same termination behavior as

tape semantics; it is entirely possible that a program terminates in reveal semantics but

does not terminate in tape semantics, as tape semantics executes both branches of an îf

regardless of its private condition. Readers may wonder if equi-termination can be achieved

by forcing îf to similarly evaluate both branches in E-If. Unfortunately, îf can still

indirectly do more computations under tape semantics. To see how, consider a program that

has anonymous functions as branches: (îf [true] then (λ_⇒1) else (λ_⇒loop)) ().

Under reveal semantics, the îf expression evaluates to λ_⇒1, and then the whole program

terminates at 1, even though both branches are evaluated. On the other hand, the function

application is distributed into both branches under tape semantics, and the program reduces

to îf [true] then 1 else loop which diverges due to the second branch. We made a

similar design decision for mux in E-Mux, although it is also reasonable to make this rule

closer to tape semantics.

4.5.1 Metatheory of Reveal Semantics

Reveal semantics enjoys several metatheoretic properties. First, it is deterministic.

Theorem 4.5.1 (Determinism of reveal semantics). If e ⇓ v1 and e ⇓ v2, then v1 = v2.

Reveal semantics also guarantees type preservation with respect to λOADT:’s type system.
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Theorem 4.5.2 (Preservation of reveal semantics). If Γ ` e :l τ and e ⇓ v, then Γ ` v :l τ.

Furthermore, the evaluated result v must be a value if the typing context Γ is empty.

A direct proof of  Theorem 4.5.2  is tricky. We instead reduce the proof of preservation

of reveal semantics to that of parallel reduction, by first showing parallel reduction refines

reveal semantics.

Lemma 4.5.3 (Parallel reduction refines reveal semantics). If e ⇓ v, then eV∗ v.

Most importantly, we are able to relate reveal semantics to tape semantics using the

following simulation theorem.

Theorem 4.5.4 (Simulation of reveal semantics). If e −→∗ v, then e ⇓ bvc.

If τ −→∗ ω̂, then τ ⇓ ω̂.

 Theorem 4.5.4  only requires v to be a weak value. This theorem relies on a crucial lemma

that says the equivalence up to erasure preserves the reveal semantics relation, as follows.

Lemma 4.5.5. If e1 ⇓ v and be1c = be2c, then e2 ⇓ v.

Note that  Theorem 4.5.4  only considers one direction: if e evaluates to a value under

reveal semantics, e does not necessarily reduce to any equivalent values under tape semantics,

due to different termination behaviors exhibited by these two semantics. Nonetheless, if an

expression terminates under both semantics, the results are equivalent.

Corollary 4.5.6. If e −→∗ v and e ⇓ v′, then bvc = v′.

If τ −→∗ ω̂ and τ ⇓ ω̂′, then ω̂ = ω̂′.

As a bonus, the determinism of reveal semantics allows us to prove that tape semantics is

also deterministic (up to erasure) if the computation terminates (at some weak values).

Corollary 4.5.7 (Weak determinism of tape semantics). If e −→∗ v1 and e −→∗ v2, then

bv1c = bv2c.

The formalization of reveal semantics and all the proofs in this section are mechanized in

the Coq proof assistant.
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4.6 Deriving Secure Implementations

Following the recipe in  Figure 4.1  , one can easily implement a secure version of a public

program written in a standard way. This strategy of deriving secure implementations can be

automated, further levitating the user burden. This section develops an algorithm, chase, that

converts a given public program to an equivalent secure version, by chasing the commuting

diagrams as in  Figure 4.1 .

The algorithm takes as input a public program e (source program), usually a function, its

type τ (source type), and a target type τ̇ which also serves as the security specification. It

then outputs a secure program ė of type τ̇. As an example, given the source program lookup

of source type Z → tree → B (with > labels in all arguments elided) from  Figure 3.1  

and the target type Πx:N, Ẑ → t̂ree k → B̂ (with ⊥ labels in all arguments elided),

chase(e;τ;τ̇) generates the oblivious function l̂ookup in  Figure 4.3  . For simplicity, we require

that the target type be in prenex normal form: τ̇ has a prefix of public views (e.g., Πx:N, . . .),

followed by a non-dependent (i.e., quantifier-free) component (e.g., Ẑ → t̂ree k → B̂). We

also assume the source type τ is non-dependent, as the source program is supposed to be

implemented in the standard fragment of λOADT:. The labels are elided in the rest of this

section for brevity, unless they are unclear from the context: a source type always has >

labels for all of its arguments, while a targe type has ⊥ labels.

Before we present the algorithm formally, we explore a few examples to demonstrate some

design decisions of the algorithm. The first example converts a tree insertion function.

Example 4.6.1 (insert).

chase(insert; Z → tree → tree; Πx:N, Ẑ → t̂ree k → t̂ree (k+1)) ≡
λk x t ⇒ t̂ree#s (k+1) (insert (Ẑ#r x) (t̂ree#r k t))

As the result is an OADT, chase uses t̂ree#s to convert the output of insert back

to an oblivious tree. The tape keyword is not necessary in this example, because t̂ree#s

should have label ⊥, implicitly having taped the result in its definition. It is crucial that the

programmers provide the correct public views in the target type signatures: if the return

type in this example was t̂ree k instead, the resulting oblivious tree could get truncated
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due to possible increase in the tree depth. Our algorithm assumes the provided public views

are always “big” enough to hold the data.

The next example illustrates that our algorithm is able to handle polynomial types.

Example 4.6.2 (add1).

chase(add1; Z + 1 → Z + 1; Ẑ +̂ 1 → Ẑ +̂ 1) ≡
λn ⇒ let m = m̂atch n with

| înl x ⇒ inl (Ẑ#r x)
| înr x ⇒ inr x

in
tape

(match add1 m with
| inl x ⇒ înl (Ẑ#s x)
| inr x ⇒ înr x)

The function add1 adds 1 to the left injection of an option type Z + 1 (i.e., an fmap).

The generated program converts between sum type (Z + 1) and oblivious sum type (Ẑ +̂ 1),

similar to the previous examples. However, the conversions are derived from the polynomial

types (e.g., sum types), instead of provided by the users as section and retraction functions.

The last example is a standard higher-order function map.

Example 4.6.3 (map).

chase(map; (Z→Z) → tree → tree; Πk:N, (Z→Z) → t̂ree k → t̂ree k) ≡
λk f t ⇒ t̂ree#s k (map f (t̂ree#r k t))

While this secure implementation is fairly easy to derive by chasing the commuting

diagram, the higher-order argument (Z→Z) in the target type is required to remain public.

Converting higher-order arguments is possible for the primitive types in this example by

“transporting” these arguments properly. However, it becomes challenging when the higher-

order arguments use OADTs, which may force us to infer the public views of these OADTs.

Thus, our algorithm opts to not convert higher-order arguments. This limitation is nonetheless

insignificant in practice, because it is easier for a client of the generated secure map function

to supply a public higher-order argument anyway, which also avoids unnecessary conversions.
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gsec(e;τ;τ̇) = ė

GS-Unit

gsec(e;1;1) = tape e

GS-Bool

gsec(e;B;B̂) = tape (B̂#s e)

GS-OADT

gsec(e;T;T̂ k) = T̂#s k e

GS-Prod
gsec(π1 e;τ1;τ̇1) = ė1 gsec(π2 e;τ2;τ̇2) = ė2

gsec(e;τ1×τ2;τ̇1×τ̇2) = (ė1,ė2)

GS-Sum
gsec(x;τ1;τ̇1) = ė1 gsec(x;τ2;τ̇2) = ė2

gsec(e;τ1+τ2;τ̇1+̂τ̇2) = tape (match e with x⇒înl ė1|x⇒înr ė2)

gret(e;τ;τ̇) = ė

GR-Id

gret(e;τ;τ) = e

GR-Bool

gret(e;B̂;B) = îf e then true else false

GR-OADT

gret(e;T̂ k;T) = T̂#r k e

GR-Prod
gret(π1 e;τ1;τ̇1) = ė1 gret(π2 e;τ2;τ̇2) = ė2

gret(e;τ1×τ2;τ̇1×τ̇2) = (ė1,ė2)

GR-Sum
gret(x;τ1;τ̇1) = ė1 gret(x;τ2;τ̇2) = ė2

gret(e;τ1+τ2;τ̇1+τ̇2) = match e with x⇒inl ė1|x⇒inr ė2

GR-OSum
gret(x;τ1;τ̇1) = ė1 gret(x;τ2;τ̇2) = ė2

gret(e;τ1+̂τ2;τ̇1+τ̇2) = m̂atch e with x⇒inl ė1|x⇒inr ė2

Figure 4.11. Generalized section and retraction

 Chapter 6  will describe a more general static approach to convert a public program to an

equivalent secure program, which has better support for higher-order functions.

4.6.1 Derivation Algorithm

We first define the procedures that convert between public and oblivious polynomial types.

The generalized section and generalized retraction procedures, gsec(e;τ;τ̇) and gret(e;τ;τ̇)

respectively, generate a section computation or retraction computation that converts e from
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chase(e;τ;τ̇) = ė

C-Prefix
x:τ′ is the public view prefix chase(e;τ;τ̇) = ė

chase(e;τ;Πx:τ′,τ̇) = λx:τ′⇒ė

C-Ret
gret(x;τ̇1;τ1) = r chase(e r;τ2;τ̇2) = ė

chase(e;τ1→τ2;τ̇1→τ̇2) = λx:τ̇1⇒ė

C-Sec
gsec(e;τ;τ̇) = ė
chase(e;τ;τ̇) = ė

Figure 4.12. Commuting diagram chasing

type τ to type τ̇. The result of gsec is always safe (i.e., with ⊥ label), while that of gret

may be leaky (i.e., with > label). On the other hand, the input e to gret is assumed safe.

 Figure 4.11  shows the definitions of these two procedures as inference rules. Note that these

generators are partially defined; trying to convert a 1 to B will fail, for example. Most of

these rules are straightforward. GS-OADT and GR-OADT outsource the conversions

between ADTs and OADTs to the user-defined section and retraction functions, assuming T̂

is an OADT of T. Generalized retraction also permits an identity conversion per GR-ID, if

the source and target types are the same.

The main chase algorithm, presented in  Figure 4.12  as inference rules, captures the

key idea of the recipe from  Figure 4.1  . After introducing the public view arguments using

C-Prefix, chase “decrypts” every function argument using the retraction computation

generated by gret in C-Ret, and finally “encrypt” the result using the section computation

generated by gsec in C-Sec. Similar to gsec and gret, chase is also partial: the algorithm

fails if the source and target types do not match.

4.6.2 Metatheory of the Derivation Algorithm

The chase algorithm always generates well-typed and equivalent programs. The for-

malization of the algorithm and the proofs in this section are mechanized in the Coq proof

assistant.
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The well-typedness theorem, stated as follows, also guarantees that the generated programs

are secure, thanks to  Theorem 4.2.4 .

Theorem 4.6.1 (Well-typedness of the derivation algorithm). Given a well-kinded target

type τ̇, if chase(e,τ,τ̇) = ė and · ` e :l τ, then · ` ė :⊥ τ̇.

To establish the correctness of this algorithm, we consider two programs equivalent up to

revelation, defined as follows in a logical relation style [ 30 ,  31 ].

Definition 4.6.1 (Equivalence of source and target programs). The equivalence between a

source program and a target program is defined as set-valued denotations indexed by their

types: a value interpretation VJτ; τ̇K and an expression interpretation EJτ; τ̇K. We say two

values v of type τ and v̇ of type τ̇ are equivalent up to revelation if (v, v̇) ∈ VJτ; τ̇K. The

equivalence of two expressions are similarly defined using EJτ; τ̇K.

VJτ; τK = { (v,v) } VJB; B̂K = { (b, [b]) } VJT; T̂ kK =
{

(v, v̇)
∣∣∣ T̂#r k v̇ ⇓ v

}
VJτ1×τ2; τ̇1×τ̇2K = { ((v1,v2),(v̇1,v̇2)) | (v1, v̇1) ∈ VJτ1; τ̇1K ∧ (v2, v̇2) ∈ VJτ2; τ̇2K }

VJτ1+τ2; τ̇1+τ̇2K = ∪ { (inl v, inl v̇) | (v, v̇) ∈ VJτ1; τ̇1K }
{ (inr v, inr v̇) | (v, v̇) ∈ VJτ2; τ̇2K }

VJτ1+τ2; τ̇1+̂τ̇2K = ∪ { (inl v, [inl v̇]) | (v, v̇) ∈ VJτ1; τ̇1K }
{ (inr v, [inr v̇]) | (v, v̇) ∈ VJτ2; τ̇2K }

EJτ; Πx:τ′,τ̇K =

 (e, ė)

∣∣∣∣∣∣ ∀v. (∀i. · ` vi :⊥ τ′
i) =⇒

(e, ė v) ∈ EJτ; τ̇K

 if x:τ′ is the public view prefix

EJτ1→τ2; τ̇1→τ̇2K =

 (e, ė)

∣∣∣∣∣∣ ∀v v̇. · ` v :⊥ τ1 ∧ · ` v̇ :⊥ τ̇1 ∧ (v, v̇) ∈ VJτ1; τ̇1K =⇒
(e v, ė v̇) ∈ EJτ2; τ̇2K


EJτ; τ̇K = { (e, ė) | ∀v v̇. e −→∗ v ∧ ė −→∗ v̇ =⇒ (bvc, bv̇c) ∈ VJτ; τ̇K }

The value denotation of OADT shows why this equivalence is up to revelation: an OADT

value v̇ is equivalent to a public value v if v̇ can be “decrypted” to v. Note that we use reveal

semantics for this “decryption”. Unlike most logical relations in the literatures, two function
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values are equivalent only if they are equal, reflecting the design decision of not converting

higher-order arguments. The first two cases of expression denotation consume function

arguments (including the public view arguments), and the last case says two (non-functional)

expressions are equivalent if they reduce to equivalent values after erasure. The erasure is

necessary here because expressions may reduce to weak values under tape semantics, and we

consider two weak values, e.g., leaky conditionals, equivalent if their erasures (i.e., revelation)

are equivalent. The last case of expression denotation also has an elided side condition that

assumes the correctness of the public views in the target type; we refer interested readers to

the Coq development for the full details.

We are now ready to state the correctness theorem for our diagram chasing algorithm.

Theorem 4.6.2 (Correctness of the derivation algorithm). If chase(e;τ;τ̇) = ė, then

(e, ė) ∈ EJτ; τ̇K.

The direct proof of this theorem involves a lot of tedious and complex reasoning about

tape semantics. We instead reduce the expression denotation (specifically the last case in

 Definition 4.6.1 ) to the one that uses reveal semantics from the previous section, which greatly

simplifies the proofs.

4.7 Conclusion

While λOADT enables secure applications that use private data structures and complex

privacy policies, the lack of modularity forces users to implement ad-hoc secure versions of

their programs for each desired policy. To allow programmers to write a single function and

easily build secure programs with different public views, we have developed λOADT:. This

language is equipped with a novel semantics that repairs potential leaks without compromising

the security guarantees of λOADT. An obliviousness theorem analogous to the one for λOADT is

mechanically proved. Despite being non-standard, tape semantics is equivalent to a standard

semantics in a way that enables familiar reasoning. We have also developed an algorithm

that derives an equivalent secure program automatically from a given policy specification

and functionality written in a conventional way.
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5. TAYPE: A POLICY-AGNOSTIC OBLIVIOUS LANGUAGE

The calculus introduced in  Chapter 4 , λOADT:, permits security concerns to be decoupled from

the program logic of an oblivious computation. The first key component is a dependent

security type system in which oblivious algebraic data types could be encoded. These types

equip private data with a public view, and guarantee that every private value with the same

view is indistinguishable, i.e., an attacker can learn nothing about private data other than

what its public view entails. The second key component is a novel tape semantics that

uses security information provided by the type system to dynamically repair any potential

information leaks at runtime. These components allow the programmer to write a program

as normal, and then combine it with the desired public view, relying on the tape semantics to

patch any information leaks. Unfortunately, λOADT: lacked an accompanying implementation.

This chapter presents a programming language for writing oblivious computations, Taype,

that implements both the oblivious algebraic data types and tape semantics proposed in

λOADT:. Taype is equipped with a bidirectional type checker that enforces correct use of

secure operations, and automatically infers annotations that enable potential leaks to be

repaired. Our implementation is realized in a compilation pipeline, shown in  Figure 5.1  ,

that translates a Taype program and privacy policy (in the form of a public view) to an

OCaml implementation which, when linked with a cryptographic backend, can be used by

client programs to securely compute functions over private data. The main challenge that

this toolchain must overcome is how to securely implement these two language features in

a standard functional programming language. To implement oblivious types, our key idea

is to represent dependently typed oblivious data using an oblivious array, and the types

themselves as sizes indexing into an array. To implement tape semantics, we equip each type,

including function types, with a leaky structure that reifies potentially leaky operations into

a distinguished data type and inserts repairs when values of this type are used.

To summarize, the contributions of this chapter are as follows:

• We implement a bidirectional type checker for an extension of λOADT:. Given a source

program, this checker outputs a fully-annotated version in a typed core language called

core Taype.
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Figure 5.1. Compilation pipeline

• We present a translation from core Taype to Oil, an ML-style functional language

with rank-1 polymorphism, built-in oblivious arrays, and secure array operations. In

addition to translating the core functionality of the application, our translation also

produces routines for concealing and revealing private data, which clients need to build

a complete MPC application.

• We evaluate our implementation against several case studies and microbenchmarks.

Our experiments feature a diverse set of computations and a range of security policies,

including the medical record example in  Chapter 1 , and also demonstrate that tradeoffs

between privacy and performance can be made easily with our approach.

An artifact containing the Coq mechanization of core Taype, the implementation of

Taype, its source code, and the source for all the benchmarks in our experiments with

instructions is publicly available [ 49 ].

92



5.1 Overview

data list = Nil | Cons Z list

fn elem : Z → list → B =
λy xs ⇒
match xs with
| Nil ⇒ false
| Cons x xs′ ⇒
if x = y then true
else elem y xs′

Figure 5.2. List membership predicate

To demonstrate our approach, consider a sim-

ple list membership predicate written in Taype,

elem, shown in  Figure 5.2  . Suppose Alice, the

owner of a list, and Bob, the owner of an integer,

want to check if Bob’s integer occurs in Alice’s

list, without revealing any information beyond

their own input and the result. Similar to λOADT:,

Taype allows participants to choose what public

information to share as part of the security policy,

and its type system ensures that all public data

and computation only depend on this public view.

For example, Alice may be okay with sharing the size of the list, or with releasing some upper

bound on its length.

Using oblivious algebraic data types (  Chapter 3  ) and tape semantics ( Chapter 4  ), we

can implement a secure version of this membership predicate by composing the standard

implementation in  Figure 5.2 and the desired privacy policy (i.e., OADTs and their section

and retraction functions).  Figure 5.3 shows the full implementation of an oblivious list l̂ist

and its the section and retraction functions, using the maximum length of the list as its

public view.

While  Chapter 4 formalized a core calculus of oblivious algebraic data types and tape

semantics, λOADT:, it lacked both an algorithmic type checker and implementation; this chapter

presents the design and implementation of a language for oblivious computation with both.

5.1.1 Type Checking and Core Taype

The input to our compiler is a program written in surface Taype, such as elem, l̂ist#r,

and l̂ist#s from  Figure 5.2 and  Figure 5.3 . This language is equipped with a bidirectional

type checker [ 50 ] that enforces correct use of secure and leaky operations, which ensures that
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obliv l̂ist (k : Z) =
if k = 0 then 1

else 1 +̂ Ẑ ×̂ l̂ist (k−1)

#[section]
fn l̂ist#s : (k : Z) → list → l̂ist k = λk xs ⇒

if k = 0 then ()
else tape (match xs with

| Nil ⇒ înl ()
| Cons x xs′ ⇒

înr [tape (Ẑ#s x), l̂ist#s (k−1) xs′])

#[retraction]
fn l̂ist#r : (k : Z) → l̂ist k → list = λk ⇒

if k = 0 then λ_ ⇒ Nil
else λxs ⇒ m̂atch xs with

| înl _ ⇒ Nil
| înr [x, xs′] ⇒
Cons (Ẑ#r x) (l̂ist#r (k−1) xs′)

#[safe]
fn êlem : (k : Z) → Ẑ → l̂ist k → B̂ = λk x xs ⇒

tape (B̂#s (elem (Ẑ#r x) (l̂ist#r k xs)))

Figure 5.3. An oblivious implementation of êlem

all well-typed programs are oblivious. After type checking, programs in this language are

elaborated into an intermediate language called core Taype ( Section 5.2 ).

Core Taype programs are fully annotated with types and, crucially, leakage labels

( Chapter 4 ). Leakage labels track whether an expression contains potential leaks, i.e., whether

it contains any leaky operations: we say an expression is leaky (labelled >) if so, and safe

(labelled ⊥) otherwise. For example, îf x then 1 else 2 is obviously leaky, as executing it

naively leaks the private condition, while mux x [1] [2] and false are safe. In contrast

to λOADT:, an addition in core Taype is its promotion operation ↑, which explicitly casts a
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fn elemc :> Z> → list> → B =
λ(y :> Z) (xs :> list) ⇒

match xs with
| Nil ⇒ ↑false
| Cons x xs′ ⇒

if x = y then ↑true
else elemc y xs′

fn elemo : Z̃ → l̃ist → B̃ =
λy xs ⇒
m̃atchlist îfB xs
(promB false)
(λx xs′ ⇒

ĩf îfB (x =̃ y) (promB true)
(elemo y xs′))

Figure 5.4. A fully annotated implementation of elem in core Taype (elemc)
and its translation in Oil (elemo)

safe expression to a leaky one, to help with the translation: the ↑false on the fourth line of

elemc in  Figure 5.4  is treated as a leaky expression, for example. Note that none of the label

annotations or promotion are required in the surface language: they are either inferred or

automatically inserted during elaboration.

5.1.2 Translating to Oil

The next compilation phase translates programs in core Taype into Oil, the OADT

intermediate language ( Section 5.3  ). Oil is an ML-style functional language with rank-

1 polymorphism, extended with an oblivious array and its operations. These oblivious

“primitives” will eventually be implemented by a cryptographic backend in the target language

( Section 5.4 ), and Oil is agnostic to the particular implementation. Oil is designed to be a

common subset of most standard functional languages, so that translating Oil to a particular

language, e.g., OCaml, is straightforward. The main challenge in this phase is expressing

the unique features of Taype that do not appear in conventional languages, particularly

oblivious types (i.e., dependent types) and its tape semantics. Many of the core ingredients

of this translation can be seen in  Figure 5.4  , which gives the fully elaborated implementation

of elem in core Taype and its corresponding Oil version.
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data Ã = promA A | îfA A Ã Ã
data Z̃ = rZ A | promZ Z | îfZ A Z̃ Z̃

fn Z̃#s : Z̃ → Ã = λñ ⇒
match ñ with
| rZ n̂ ⇒ promA n̂
| promZ n ⇒ promA (Ẑ#s n)
| îfZ b̂ ñ1 ñ2 ⇒
îfA b̂ (Z̃#s ñ1) (Z̃#s ñ2)

fn l̂ist : Z → N = λk ⇒
if k = 0 then 0
else 1 + max 0 (1 + l̂ist (k−1))

fn t̃ape : Ã → A = λã ⇒
match ã with
| promA â ⇒ â
| îfA b̂ ã1 ã2 ⇒
mux b̂ (t̃ape ã1) (t̃ape ã2)

Figure 5.5. Selected leaky types and functions in Oil

Translating Oblivious Type Definitions

As Oil does not have type-level computation, the definition of the oblivious type l̂ist

is translated into a function from the public view to its size N, shown in  Figure 5.5  . As we

will see shortly, the size of an oblivious type can be used to access secure data residing in an

oblivious array.

Translating Oblivious Types and Operations

We represent every oblivious type as a single uniform type, the oblivious array A. This

array is essentially a secure “buffer” holding the private data. For example, l̂ist k in the type

signature of l̂ist#s, in  Figure 5.3  , is translated to this array type A, regardless of the public

view k. Even though oblivious types are all flat arrays in Oil, the rich typing information is

not lost: we can still extract the needed private information by (securely) accessing the array

using the sizes of oblivious types, such as the aforementioned l̂ist. Oblivious operations are

translated into corresponding oblivious array operations. For example, an oblivious pair of

private data is simply the concatenation of the two corresponding arrays, and destructing

an oblivious pair amounts to taking a slice of the array using the two components’ sizes.

 Section 5.3.2  describes the translation of other oblivious constructs, including injections into

oblivious sums.
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Translating Tape Semantics

Implementing the tape semantics is the main challenge in translating from Taype to

Oil. Recall the three key ideas of the tape semantics. First, leaky operations, such as îf,

are themselves irreducible. Second, the surrounding context of îf is distributed into both

branches. Third, the tape operation repairs potential leaks, by turning îf into mux.

To implement the first idea, we translate leaky types, e.g., Z>, into a leaky representation,

e.g., Z̃, a data type that explicitly represents expressions that may contain potential leaks.

By convention, we use ·̃ as a visual cue for a leaky representation, its associated functions

and variables. The leaky representations of oblivious arrays (Ã) and integers (Z̃) are shown

in  Figure 5.5  . The only way to build a leaky oblivious data type is to promote a safe one or

using a leaky conditional, so we simply encode these leaky operations as the constructors

of its leaky representation Ã. Z̃ also includes both of these constructors, as well as its

own retraction operation. This encoding trivially makes the leaky operations irreducible.

Leaky representations of ADTs are built using a similar strategy ( Section 5.3.2  ). Every leaky

representation needs to have reified versions of prom and îf, because ↑ and îf can be applied

to any Taype type. During translation, they are instantiated using a process similar to

typeclass resolution: the promotion of false in elemc, for example, is resolved to promB.

To distribute surrounding contexts into leaky constructs, we instrument the possible

surrounding contexts to handle the leaky operations, by translating them into recursive

functions following the tape semantics. For example, Ẑ#s is translated to Z̃#s, also shown

in  Figure 5.5  . Observe the last case of Z̃#s, which has recursive calls to itself in both îfZ

branches: this aligns with our intuition from the execution trace of the following example:

tape (Ẑ#s (îf [true] then 3 else 4))

−→ tape (îf [true] then Ẑ#s 3 else Ẑ#s 4)

−→∗ tape (îf [true] then [3] else [4]) −→ mux [true] [3] [4] −→ [3]
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On the other hand, Z̃#s’s handling of rZ matches the following execution trace, for example:

tape (Ẑ#s (Ẑ#r [3] + Ẑ#r [2]))

−→ tape (Ẑ#s (Ẑ#r ([3] +̂ [2])))

−→ tape (Ẑ#s (Ẑ#r [5])) −→ tape [5] −→ [5]

Our solution to patching leaky computation without tape is encapsulated in the definition

of t̃ape, shown in  Figure 5.5 . The function simply converts all reified îfs into muxs, and is

essentially a transcription of tape’s evaluation rule.

To see how all these fit together, the initial expression from the previous example,

tape (Ẑ#s (îf [true] then 3 else 4)), is translated into the following Oil program:

t̃ape (Z̃#s (îfZ [true] (promZ 3) (promZ 4)))

Readers can verify that evaluating this program using a standard semantics produces the

same behavior seen in the previous execution trace generated by tape semantics.

5.2 Taype, Formally

This section describes the fully annotated core Taype language. This language is inspired

by the core calculus λOADT:, but adds several features to aid its translation to Oil, including

oblivious products, label promotion, ML-style ADT definitions, and explicit and uniform

label checking. The user-facing version of Taype allows for many annotations to be omitted;

these annotations are automatically inferred by our bidirectional type checker (  Section 5.2.5  )

before translation to Oil ( Section 5.3 ).

5.2.1 Syntax

 Figure 5.6 shows the syntax of core Taype. Types and terms are in the same syntactic

class, similar to λOADT:. By convention, we use e for terms and τ for types whenever possible.

A core Taype program consists of a global context of ADTs, functions and oblivious types,

defined using data, fn and obliv respectively. We use lower case x for function and variable

names, C for constructors, T for ADT names and T̂ for OADT names. Each constructor of an
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e,τ ::= Expressions:
| B | Z | τ×τ standard types
| 1 | B̂ | Ẑ | τ×̂τ | τ+̂τ oblivious types
| () | b | n | x | T literals and variables
| Πx:lτ,τ | λx:lτ⇒e dependent function
| e⊕e | e⊕̂e (oblivious) integer operations
| e e | C e | T̂ e applications
| let x:lτ = e in e let binding
| ifτ e then e else e conditional
| mux e e e atomic conditional
| (e,e) | [e,e] (oblivious) pair
| ι̂b<τ> e oblivious sum injection
| matchτ e with (x,x)⇒e product elimination
| m̂atch e:τ×̂τ with [x,x]⇒e oblivious product elimination
| matchτ e with C x⇒e ADT elimination
| m̂atchτ e:τ+̂τ with x⇒e|x⇒e oblivious sum elimination
| B̂#s e | Ẑ#s e primitive sections
| Ẑ#r e primitive integer retraction
| îf e then e else e leaky conditional
| ↑e promotion
| tape e tape operation
| [b] | [n] | [ιb<ω̂> v̂] runtime boxed values

D ::= Global Definitions:
| data T = C τ algebraic data type definition
| fn x:lτ = e (recursive) function definition
| obliv T̂ (x:τ) = τ (recursive) oblivious type definition

l ::= > | ⊥ Leakage Label

ω̂ ::= 1 | B | Ẑ | ω̂×̂ω̂ | ω̂+̂ω̂ Oblivious Type Values

v̂ ::= () | [b] | [n] | [v̂,v̂] | [ιb<ω̂> v̂] Oblivious Values

v ::= îf [b] then v else v | ↑v | Ẑ#r v Weak Values
| v̂ | b | n | (v,v) | λx:lτ⇒e | C v Values

Figure 5.6. Core Taype syntax: the annotations marked in gray are either
omitted (e.g., promotion, labels) or optional (e.g., argument types to dependent
functions) in the user-facing surface language; the expressions marked in brown
are restricted to be variables in administrative normal form.

99



ADT definition takes exactly one argument for simplicity, but this argument can be 1 for

constructors that takes no argument, or a tuple of types for constructors that have multiple

arguments..

Taype features a number of oblivious types and constructs, including oblivious integers,

booleans, sums, and conditionals. The primitive section functions B̂#s and Ẑ#s “encrypt”

boolean and integer values respectively. Unlike λOADT:, Taype also includes oblivious product

types (×̂), which are built using [·,·] and require both of their components to be oblivious

and non-leaky. The atomic conditional mux, discussed in  Chapter 3  , fully evaluates both of

its branches before taking an atomic step to its final result.

In core Taype, the arguments of dependent function types and lambda abstractions are

annotated with a leakage label that indicates if they accept leaky inputs. We say that an

Taype expression is leaky (i.e., has the label >) if it contain potential leaks, e.g., uses some

leaky operations, and say that it is safe otherwise. Standard conditional, product and ADT

pattern matching expressions are annotated with the result type, while the elimination forms

for oblivious products and sums are also annotated with the type of the discriminee, to

help with their translation. All of these annotations are inferred by our type checker. For

brevity, we omit them from now if they can be inferred from the context. Note that product

elimination in Taype is defined (positively) using a pattern matching expression, instead

of (negatively) using projection as in λOADT:. Similarly, ADT introduction and elimination

forms are defined in ML-style, using constructors and pattern matching, instead of fold and

unfold.

Leaky conditionals, m̂atch expressions, and tape operations play a key role in the semantics

of Taype. The leaky conditional îf is similar to mux, but it allows its branches to be non-

oblivious; m̂atch analysis for oblivious sums is similar. The promotion operation ↑ explicitly

converts a safe expression to a leaky one. Integer retraction Ẑ#r would reveal its oblivious

argument if implemented naively (as would the other leaky operations), but this is disallowed

by the semantics of Taype.

Oblivious type values (ω̂), oblivious values (v̂) and runtime boxed values like [b] are

all identical to the definitions in λOADT:. Weak values (v) extends the one in λOADT: with

promotion, primitive integer retraction and ML-style ADT values.
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5.2.2 Semantics

 Figure 5.7 shows a selection of the small-step operational semantics rules of core Taype

(the full rules are in  Appendix A.1  ). The judgment e −→ e′ means e steps to e′ under a

fixed global context of definitions, which we elide. S-Ctx takes a step in a subexpression

according to an evaluation context E , also given in  Figure 5.7  . Oblivious types are subject to

reduction, as seen in the evaluation contexts involving ×̂, +̂ and ι̂. To prevent information

leaks, all subexpressions of a mux are fully evaluated by first applying the S-Ctx rule with

the corresponding evaluation contexts, before mux itself can be reduced by the S-Mux rule.

The semantics of îf is similar. Note that an îf expression is in normal form once all its

components are normalized, in order to avoid revealing its private condition.

The evaluation rules involving tape are one of the distinguishing features of Taype.

S-OIf captures the idea that the leaky conditional îf, while in normal form, can still make

progress by distributing its context into both branches. Leaky contexts Ê define what contexts

can be distributed in this manner: other contexts are either ruled out by the type system

or not useful. S-TapeOIf and S-TapeProm show how the tape operation repairs an

expression with potential leaks. In addition to turning îf into mux, the enclosing tape is

pushed inside the branches of mux in order to ensure any leaks they contain are also patched.

On the other hand, S-TapeProm simply extracts the safe oblivious value from a promotion.

In contrast to λOADT:, Taype also includes new rules for promoted expressions. S-SecRetInt

repairs the leaky operation Ẑ#r by canceling it with Ẑ#s, for example, but it also promotes

the resulting oblivious integer in order to preserve the leakage label. S-SecIntProm shows

how promotion interacts with Ẑ#s.
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e −→ e′

S-Ctx
e −→ e′

E[e] −→ E[e′]

S-Mux

mux [b] v1 v2 −→ ite(b,v1,v2)

S-SecRetInt

Ẑ#s (Ẑ#r [n]) −→ ↑[n]

S-SecIntProm

Ẑ#s (↑n) −→ ↑(Ẑ#s n)

S-OMatch
v̂1 ⇐ ω̂1 v̂2 ⇐ ω̂2

m̂atch [ιb<ω̂1+̂ω̂2> v̂] with x⇒e1|x⇒e2 −→
îf [b] then ite(b,[v̂/x]e1,[v̂1/x]e1)
else ite(b,[v̂2/x]e2,[v̂/x]e2)

S-OIf

Ê[îf [b] then v1 else v2] −→ îf [b] then Ê[v1] else Ê[v2]

S-TapeOIf

tape (îf [b] then v1 else v2) −→ mux [b] (tape v1) (tape v2)

S-TapeProm

tape (↑v) −→ v

Evaluation Contexts
E ::= �×̂τ | ω̂×̂� | �+̂τ | ω̂+̂�

| mux � e e | mux v � e
| mux v v �
| ι̂b<�> e | ι̂b<ω̂> �
| îf � then e else e
| îf v then � else e
| îf v then v else �
| . . .

Leaky Contexts
Ê ::= � v

| if � then e else e
| match � with C x⇒e
| match � with (x1,x2)⇒e
| B̂#s � | Ẑ#s �
| �⊕v | v⊕�

Figure 5.7. Selected small-step semantics rules of core Taype
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To see how these rules work, consider a core Taype version of the example from  Section 5.1 ,

which produces the following execution trace:

tape (Ẑ#s (îf [true] then ↑3 else ↑4))

−→ tape (îf [true] then Ẑ#s ↑3 else Ẑ#s ↑4)

−→ tape (îf [true] then ↑(Ẑ#s 3) else Ẑ#s ↑4)

−→ tape (îf [true] then ↑[3] else Ẑ#s ↑4)

−→∗ tape (îf [True] then ↑[3] else ↑[4])

−→ mux [true] (tape ↑[3]) (tape ↑[4])

−→∗ mux [true] [3] [4] −→ [3]

The S-OMatch rule reduces a leaky case analysis of an oblivious sum to an îf using

the discriminee’s private tag. Similar to λOADT:, the pattern variable x in the “correct”

branch is of course instantiated with the injection payload, while the one in the “wrong”

branch is instantiated with an arbitrary oblivious value of the right type. For example, if

the discriminee of a leaky case is [inl<Ẑ+̂Ẑ×̂Ẑ> 1], the pattern variable in the second

branch can be substituted by [[0],[0]], [[0],[1]], or any other oblivious pair of oblivious

integers.

5.2.3 Type System

 Figure 5.8 shows an illustrative subset of the typing rules of core Taype (the full set of

typing and kinding rules are in  Appendix A.2  ). The judgment Γ ` e :l τ types the expression

e with type τ and leakage label l, under the typing context Γ (and an elided global typing

context). Some typing rules refer to the kinding judgment Γ ` τ :: κ, which also classifies the

security of a type; oblivious types have the kind ∗O, for example.

Taype features a security-type system [  27 ] that ensures well-typed programs protect their

private data. To do so, this type system enforces a few key policies. First, oblivious types

can only be built from oblivious types, which is enforced by the kinding rules. Otherwise,

an attacker can infer the private tag of an oblivious sum, such as B+̂Z, by observing the

payload. Oblivious products have the same requirement, although this is mainly to aid in
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Γ ` e :l τ

T-Conv
Γ ` e :l τ τ ≡ τ′

Γ ` τ′ :: ∗
Γ ` e :l τ′

T-Abs
x :l1 τ1, Γ ` e :l2 τ2

Γ ` τ1 :: ∗
Γ ` λx:l1τ1⇒e :l2 Πx:l1τ1,τ2

T-App
Γ ` e2 :l2 Πx:l1τ1,τ2

Γ ` e1 :l1 τ1

Γ ` e2 e1 :l2 [e1/x]τ2

T-Pair
Γ ` e1 :l τ1 Γ ` e2 :l τ2

Γ ` (e1,e2) :l τ1×τ2

T-PMatchNoDep
Γ ` e0 :l0 τ1×τ2 l0 v l
x1 :l0 τ1,x2 :l0 τ2, Γ ` e :l τ

Γ ` matchτ e0 with (x1,x2)⇒e :l τ

T-IfNoDep
Γ ` e0 :l0 B l0 v l

Γ ` e1 :l τ Γ ` e2 :l τ
Γ ` ifτ e0 then e1 else e2 :l τ

T-Mux
Γ ` e0 :⊥ B̂ Γ ` τ :: ∗O
Γ ` e1 :⊥ τ Γ ` e2 :⊥ τ

Γ ` mux e0 e1 e2 :⊥ τ

T-OPair
Γ ` e1 :⊥ τ1 Γ ` e2 :⊥ τ2

Γ ` τ1 :: ∗O Γ ` τ2 :: ∗O

Γ ` [e1,e2] :⊥ τ1×̂τ2

T-SecInt
Γ ` e :l Z

Γ ` Ẑ#s e :l Ẑ

T-RetInt
Γ ` e :⊥ Ẑ

Γ ` Ẑ#r e :> Z

T-OIf
Γ ` e0 :⊥ B̂ Γ ` e1 :> τ Γ ` e2 :> τ

Γ ` îf e0 then e1 else e2 :> τ

T-Promote
Γ ` e :⊥ τ

Γ ` ↑e :> τ

T-Tape
Γ ` e :> τ Γ ` τ :: ∗O

Γ ` tape e :⊥ τ

Figure 5.8. Selected core Taype typing rules

translation. Second, oblivious control flow constructs like mux can only be applied to oblivious

terms, otherwise their public result could reveal information about their condition. As an

example, mux [b] 1 2 is ill-typed, because an attacker can learn the value of b by observing

its result. This policy is enforced by the kinding assumptions of the form Γ ` τ :: ∗O in

T-Mux and T-OPair. Third, types are not allowed to depend on leaky terms. The type

if Ẑ#r [0] = 0 then 1 else B̂ is not valid, for example, since the leaks in the condition

can not be repaired. Thus, we require that any terms appearing in types to be labeled as

non-leaky (⊥). Fourth, the argument to tape must be oblivious (T-Tape). This ensures

that leaky terms will eventually reduce to an oblivious value or a îf tree of oblivious values

that can then be repaired by, e.g., S-TapeProm or S-TapeOIf. Intuitively, the ⊥ label in

104



the conclusion of T-Tape signifies that the taped expression can be treated as non-leaky

by its surrounding computation, as all leaks have been “patched up”. Finally, all oblivious

components in the typing rules have the ⊥ label. All the labels in T-Mux and T-OPair are

⊥, and the oblivious condition of îf (T-OIf) is also safe, for example. While this requirement

is not crucial for security, it simplifies the type system and aids in our translation to Oil.

Note that we can always apply tape to leaky oblivious expressions to make them safe, so

this design does not harm the expressivity of well-typed Taype programs.

In addition to the above policies inherited from λOADT:, Taype’s type system imposes three

more requirements that help our translation. First, safe terms must be explicitly converted

to leaky ones using ↑. Thus, T-Conv requires convertible expressions to have the same

label. Second, we usually require subexpressions to have the same label: the two components

in T-Pair have the same label l in Taype, for example. T-IfNoDep similarly requires

both branches to have the same label. Its condition, however, is permitted to have a lower

label. A similar requirement is particularly important for the case analysis of products and

ADTs: each branch needs to use its pattern variables in a manner that is at least as safe as

the discriminee. Third, we require all possibly leaky subexpressions to be labelled as leaky.

The branches in T-OIf and the argument to T-Tape have label >, even though they can

technically also be typed at ⊥: applying these rules to an expression with a safe subterm

requires explicit promotion. Note that programmers do not need to do these explicit label

conversion in the surface language, as ↑ is automatically inserted by the typing algorithm

presented in  Section 5.2.5 .

5.2.4 Type Safety and Obliviousness

Given a well-typed global context, core Taype enjoys standard progress and preservation

properties. Its type system also provides a strong security guarantee similar to λOADT:: an

adversary cannot infer any private information from a well-typed core Taype program, even

when they can observe each of its execution steps.

Theorem 5.2.1 (Obliviousness). If e1 ≈ e2 and · ` e1 :l1 τ1 and · ` e2 :l2 τ2, then

1. e1 −→n e′
1 if and only if e2 −→n e′

2 for some e′
2.
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2. if e1 −→n e′
1 and e2 −→n e′

2, then e′
1 ≈ e′

2.

Here, e ≈ e′ means the two expressions are indistinguishable, i.e., they only differ in

their oblivious values, and e −→n e′ means e reduces to e′ in exactly n steps. Intuitively,

the obliviousness theorem says that a pair of well-typed core Taype programs that are

indistinguishable produce traces that are pairwise indistinguishable.

We have formalized a version of core Taype in Coq, including proofs of soundness and

obliviousness for the calculus, based on the mechanization from  Chapter 4  . In contrast to

that development, this calculus includes the new features of Taype: oblivious products, label

promotion and explicit and uniform label checking.

5.2.5 Surface Language and Bidirectional Type Checker

The source language of our compiler is a more user friendly version of core Taype. This

language allows type annotations to be omitted, and does not require label annotations

or explicit promotion operations. Its syntax is effectively that of  Figure 5.6  with the gray

annotations removed and with an additional type ascription (e:τ). Our type checker

elaborates programs in this surface language into fully annotated core Taype programs in

ANF [  51 ]. Our inference algorithm is not sophisticated: unlike other dependent type systems,

it does not support unification, for example. Nevertheless, it is capable of checking all the

case studies and benchmarks in our experiments ( Section 5.5  ) without any type or label

annotations, except for top-level definitions.

At a high level, like standard bidirectional type checkers, our type checker operates in

an inference mode and a checking mode. In inference mode, the algorithm infers the type

of an expression (bottom-up), while in checking mode, the algorithm checks the expression

against an expected type by propagating information to subexpressions as deeply as possible

(top-down). Our type checker always starts with checking mode, as all top-level definitions

are annotated with their type.  Figure 5.9  shows a representative selection of our bidirectional

type checking rules, using the inference judgment Γ ` e =⇒l τB ė and the checking judgment

Γ ` e⇐=l τB ė, both of which output a fully-elaborated expression ė in core Taype and in

ANF. As explained previously, the inference judgment generates the type τ as an output, while
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Γ ` e =⇒l τB ė Γ ` e⇐=l τB ė

TI-Unit

Γ ` () =⇒⊥ 1B ()

TI-Asc
Γ ` e⇐=l τB ė Γ ` τ :: ∗

Γ ` (e:τ) =⇒l τB ė

TC-Infer
Γ ` e =⇒l τ

′ B ė τ ≡ τ′

Γ ` e⇐=l τB ė

TC-Abs
x :l1 τ1, Γ ` e⇐=l τ2 B ė Γ ` τ1 :: ∗
Γ ` λx⇒e⇐=l Πx:l1τ1,τ2 B λx:l1τ1⇒ė

TI-App
Γ ` e2 =⇒l Πx:l1τ1,τ2 B ė2 Γ ` e1 ⇐=l′1

τ1 B ė1
ė1 l′1
Bl1 ė

′
1

Γ ` e2 e1 =⇒l [e1/x]τ2 B
let x2:lΠx:l1τ1,τ2 = ė2 in
let x1:l1τ1 = ė′

1 in
x2 x1

TI-Pair
Γ ` e1 =⇒l1 τ1 B ė1 Γ ` e2 =⇒l2 τ2 B ė2

l = l1 t l2 ė1 l1Bl ė′
1 ė2 l2Bl ė′

2

Γ ` (e1,e2) =⇒l τ1×τ2 B
let x1:lτ1 = ė′

1 in
let x2:lτ2 = ė′

2 in
(x1,x2)

TI-If
Γ ` e0 ⇐=⊥ BB ė0 Γ ` e1 =⇒l1 τ1 B ė1 Γ ` e2 =⇒l2 τ2 B ė2

l = l1 t l2 Γ ` if e0 then [·; · ` τ1] else [·; · ` τ2]B τ̇

Γ ` if e0 then e1 else e2 =⇒l τ̇B . . .

TI-Match
data T = C τ ∈ Σ Γ ` e0 =⇒⊥ T B ė0 ∀i. x :⊥ τi, Γ ` ei =⇒li τ

′
i B ėi

l = tli Γ ` match e0 with C x⇒[·;x :⊥ τ ` τ′]B τ̇

Γ ` match e0 with C x⇒e =⇒l τ̇B . . .

Figure 5.9. Selected surface Taype bidirectional typing rules
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Γ ` E [∆;P ` τ]B τ̇

DI-NoDep
∀i. τi ≡ τ̇ ∆, Γ ` τ̇ :: ∗

Γ ` E [∆;P ` τ]B τ̇

DI-Dep
∀i. ∆,P , Γ ` τi :: ∗O

Γ ` E [∆;P ` τ]B E [τ]

DI-Prod
Γ ` E [∆;P ` τ1]B τ̇1 Γ ` E [∆;P ` τ2]B τ̇2

Γ ` E [∆;P ` τ1×τ2]B τ̇1×τ̇2

DI-Pi
Γ ` E [∆;P ` τ1]B τ̇1 Γ ` E [x :l τ1, ∆;P ` τ2]B τ̇2

Γ ` E [∆;P ` Πx:lτ1,τ2]B Πx:lτ̇1,τ̇2

Figure 5.10. Selected inference rules for dependent contexts

the checking judgment takes τ as an input. For simplicity, the rules presented in  Figure 5.9 

always infer the labels, but our implementation also checks labels bidirectionally; we will

discuss how labels are handled shortly. Our implementation also includes a bidirectional kind

checker that generates fully-elaborated types in ANF.

As it is standard, we switch between inference and checking modes using TI-Asc and TC-

Infer. To automatically promote expressions, several rules (e.g., TI-Pair and TI-App) use

an auxiliary relation e l1Bl2 ė, which potentially inserts a promotion operation to e according

to its label l1 and the target label l2. The definition of this relation is straightforward:

e l1Bl2 let x = e in ↑x if l1 @ l2, e l1Bl2 e if l1 = l2, and fail otherwise.

The main challenge to algorithmic type checking are dependent conditionals and ADT case

analysis, specifically inferring their implicit motives. Since dependent types in Taype are obliv-

ious types, they are more restricted than the ones in most dependent type systems. To see how,

consider the expression: if x then (λb:B̂⇒îf b then 1 else 0) else (λn:Ẑ⇒Ẑ#r n).

Ignoring labels, the left branch of this conditional has type B̂ → Z, while the right one

has type Ẑ → Z. In many dependent type systems, this expression can simply be typed

with if x then B̂ → Z else Ẑ → Z. However, this type is not well-kinded in Taype!

The type-level computation, if in this case, is only defined over oblivious types, which

the types in the branches are clearly not. The correct type of this expression has to be
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(if x then B̂ else Ẑ) → Z. The same problem also occurs in dependent ADT pattern

matching, and when the branches have product types. Our type checker is equipped with

special inference and checking rules for handling these cases.  Figure 5.10  shows the auxil-

iary relation for inferring the well-kinded types that may depend on discriminees, which is

invoked in the bidirectional typing rules for dependent conditionals and pattern matching,

e.g., TI-If and TI-Match. The rules presented in  Figure 5.10 are used in the inference

mode, but our implementation also has similar rules for the checking mode. The judgment

Γ ` E [∆;P ` τ]B τ̇ infers a type τ̇ for the dependent context E , under the typing context Γ.

The context E has multiple holes corresponding to the branches of this dependent pattern

matching. Each of these holes also has a description consisting of its branch’s type τ, the

pattern variables with their types P , and a local typing context ∆ for collecting arguments in

a Π-type. For example, TI-If calls this judgment using the context if e0 then � else �

with two branches of types τ1 and τ2, and empty pattern variable contexts. In the previous

example, these two branch types are B̂ → Z and Ẑ → Z respectively. Starting with an

empty local context ∆, DI-Pi decomposes these branch types and infers each component

recursively. The argument types B̂ and Ẑ are obliviously kinded, so DI-Dep generates a de-

pendent type that combines them using the same dependent context: if e0 then B̂ else Ẑ.

On the other hand, the return type is simply Z by DI-NoDep, as both branches have the

same return type (according to type equivalence ≡). The side condition of DI-NoDep also

ensures the inferred type does not refer to pattern variables, which are not in the scope of this

type. The return type may refer to the arguments of a Π-type though, which are collected in

the context ∆ in the rule DI-Pi. DI-Prod is similar to Di-Pi, although it does not need to

modify any contexts.

Our bidirectional type checker also infers leakage labels. In contrast to type annotations,

label annotations are not required even for top-level function signatures: 

5
 they are instead

derived from a function attribute, which indicates the purpose of a function. A function can

be marked as either section, retraction, or safe using the #[attribute] syntax, as shown in

 Figure 5.3 . A function without an attribute, such as elem, implements the program logic in

the conventional fragment of Taype. Such functions and their arguments are always labelled
5

 ↑ In fact, our surface syntax does not allow users to provide label annotations.
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as leaky, since they have to accept retracted values to work with the recipe from  Figure 4.1 .

Any intermediate labels in the bodies of such functions can also be reliably inferred to be

leaky, as these functions do not mention oblivious types or public views directly. As a result,

a programmer can write the functionality as in a conventional functional language. On the

other hand, a function annotated with #[section], e.g., l̂ist#s, defines a section function.

Its public view argument obviously has a safe label, while its data argument (e.g., list) has

a leaky label. A section function itself is safe, signaling that all potential leaks have been

patched. Conversely, a function, annotated with #[retraction], labels its arguments as safe,

but itself has leaky label. Lastly, functions annotated with #[safe], e.g., êlem, are secure

functions. These constitute the API of a secure library, so their arguments and the functions

themselves are assigned safe labels. Note that while the labels in a function’s signature are

determined by its attribute, any intermediate labels in its body need to be inferred. Similar

to types, labels are inferred bidirectionally. When an inferred label is checked against a label,

the checker will insert a promotion if the expected label is more restrictive than the inferred

label, and reject the program when the expected label is less restrictive than the inferred

label, using the auxiliary relation e l1Bl2 ė.

5.3 Oil and Translation

This section describes the OADT intermediate language, Oil, and its translation from

Taype. The main challenge is how to encode the features of Taype that Oil lacks, including

dependent types, leaky operations (îf and tape), and, most importantly, its tape semantics.

5.3.1 Syntax, Semantics and Type System

 Figure 5.11 shows the syntax of Oil. It is mostly a standard ML-style language with

rank-1 polymorphism, extended with an oblivious array type and its operations. An oblivious

array A is essentially a “buffer” holding all the private data in a joint computation. The

elements of this array are the oblivious representation (usually encrypted values) of members

of some fixed finite field. To remain agnostic to the underlying cryptographic protocol, Oil

does not place any restrictions on the oblivious representation or the finite field, so the array
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e ::= Expressions:
| () | b | n | x literals and variables
| e⊕e | e⊕̂e (oblivious) integer operations
| λx⇒e function abstraction
| let x = e in e let binding
| e e | C e function and constructor applications
| if e then e else e conditional
| mux e e e atomic conditional
| (e,e) pair
| match e with (x,x)⇒e product elimination
| match e with C x⇒e ADT elimination
| B̂#s e | Ẑ#s e primitive sections
| A(e) | e++e | e(e,e) oblivious array operations
| ... size (N) operations omitted

τ ::= Types
| 1 | B | Z base types
| A oblivious array
| N size type
| α type variable
| T ADT variable
| τ×τ product type
| τ→τ function type

D ::= Global Definitions:
| data T[α] = C τ algebraic data type definition
| fn x[α]:τ = e (recursive) function definition

Figure 5.11. Oil source syntax

can hold the encryption of bits, or shared secrets of 64-bit integers, for example. Conceptually,

each array element is simply an oblivious integer that encodes a piece of the private data, such

as an oblivious integer, the tag of an oblivious injection, or an oblivious boolean. Programs

create an array of size n using A(n), concatenate two arrays using ++, and take a slice of n

elements starting at offset m in array a via a(m,n).

Like Taype, Oil includes oblivious operations, but these operations are restricted to

take and produce oblivious arrays, as this is the only oblivious type in Oil. The section

operations for base types, B̂#s and Ẑ#s, for example, return a singleton array containing the

“encrypted” result.
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Types and global definitions are also standard, but Oil also includes the size type, N,

for array offsets and lengths. Oil has a standard CBV semantics and type system. The

semantics of array operations that use out-of-bound indices (e.g., slicing) is undefined: this

should never happen if translated from a well-typed Taype program.

5.3.2 Translating from Taype to Oil

Our translation from Taype to Oil is syntax- and type-directed, and uses the leakage

label to identify and repair potential leaks in the program. The translation assumes the source

program is in administrative normal form (ANF), restricting the brown-colored expressions e

in  Figure 5.6  to be variables. The algorithm roughly consists of three components: translating

Taype types to Oil types ( Figure 5.12 ), translating Taype expressions to Oil expressions

( Figure 5.16 and  Figure 5.17 ), and translating Taype oblivious types to Oil expressions of

the size type ( Figure 5.18 ). The full set of these rules are included in  Appendix A.3 .

Translating Types

 Figure 5.12 shows the translation of a Taype type τ to an Oil type, guided by a leakage

label l. With the ⊥ label, public types are translated as they are or congruently, as expected.

Oblivious types, in contrast, are always converted to an oblivious array in Oil. The rich

typing information of an oblivious type is not thrown away however: as we shall see, this

information is used to implement oblivious array operations. Dependent function types are

translated to their nondependent counterpart, with the label on the parameter type dictating

its translation.

The translation of types under the > label is more involved. To understand why, recall

that an expression with this label may contain a potentially leaky subexpression which

should be repaired via tape. Thus, its Oil counterpart must be equipped with a similar

mechanism capable of patching leaks. Our solution is to explicitly capture the insecure

operations associated with a particular leaky type in its Oil representation, and to insert

repairs for each kind of leak when translating a leaky expression. We call this first component

a leaky representation. As an example, an integer expression can have three kinds of leaks:
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JτK⊥

JBK⊥ = B JZK⊥ = Z JTK⊥ = T Jτ1×τ2K⊥ = Jτ1K⊥×Jτ2K⊥

JΠx:lτ1,τ2K⊥ = Jτ1Kl→Jτ2K⊥ J1K⊥ = JB̂K⊥ = JẐK⊥ = Jτ1×̂τ2K⊥ = Jτ1+̂τ2K⊥ = A

JT̂ eK⊥ = Jif . . .K⊥ = Jlet . . .K⊥ = Jmatch . . .K⊥ = A

JτK>

JBK> = B̃ JZK> = Z̃ JTK> = T̃ Jτ1×τ2K> = Jτ1K>×̃Jτ2K>

JΠx:lτ1,τ2K> = Jτ1Kl→Jτ2K> J1K> = JB̂K> = JẐK> = Jτ1×̂τ2K> = Jτ1+̂τ2K> = Ã

JT̂ eK> = Jif . . .K> = Jlet . . .K> = Jmatch . . .K> = Ã

Figure 5.12. Rules for translating core Taype types to Oil types

it could be a retraction of a secure integer Ẑ#r, it could be a leaky conditional îf, or it

could be the promotion of a plaintext integer ↑. The corresponding leaky representation, Z̃,

is shown in  Figure 5.5  , and contains a constructor for each of these cases. As every leaky

type can leak information via ↑ and îf, all leaky representations should be equipped with

a reified form of these leaky expressions. Thus, every leaky representation (with its safe

counterpart) forms a leaky structure, with operations prom and îf for ↑ and îf respectively.

From an implementation perspective, the leaky structure operations define a typeclass, so we

call a particular prom and îf instances of this typeclass. As one example, the constructors

of Z̃ trivially provide the necessary instances. As another example,  Figure 5.5 also shows

Ã, the leaky representation of an oblivious array; its leaky instance is similarly defined by

the two constructors of this type. The leaky representation of function types, presented in

 Figure 5.13  , is slightly more complicated. Its two operations are essentially outsourced to the

leaky instances of the codomain type β (promβ and îfβ), taken as an extra argument that

will be resolved at callsites.

In general, the îf instances are usually constructors, as a leaky conditional needs to be

irreducible to avoid leaking its private condition. The promotion instances are also constructors
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fn prom→ [α β β̃] : (β → β̃) → (α → β) → (α → β̃) =
λpromβ f x ⇒ promβ (f x)

fn îf→ [α β̃] : (A → β̃ → β̃ → β̃) →
A → (α → β̃) → (α → β̃) → (α → β̃) =

λîfβ b̂ f̃1 f̃2 x ⇒ îfβ b̂ (f̃1 x) (f̃2 x)

Figure 5.13. Leaky structures for function types

data list = Nil | Cons Z list
data l̃ist = Ñil | C̃ons Z̃ l̃ist | promlist list | îflist A l̃ist l̃ist

fn m̃atchlist [γ̃] : (A → γ̃ → γ̃ → γ̃) → l̃ist →
γ̃ → (Z̃ → l̃ist → γ̃) → γ̃ =

λîfγ x̃s f1 f2 ⇒
match x̃s with
| Ñil ⇒ f1

| C̃ons x̃ x̃s′ ⇒ f2 x̃ x̃s′

| promlist xs ⇒
match xs with
| Nil ⇒ f1

| Cons x xs′ ⇒ f2 (promZ x) (promlist xs′)
| îflist b̂ x̃s1 x̃s2 ⇒
îfγ b̂ (m̃atchlist îfγ x̃s1 f1 f2) (m̃atchlist îfγ x̃s2 f1 f2)

Figure 5.14. Leaky structures for lists

in our translation, although in general they need not be.  

6
 Of course, our translation must

also explain how to use leaky values, i.e., how to interpret the corresponding elimination

forms of τ. To illustrate this, consider the leaky structure for list shown in  Figure 5.14  .

The leaky representation of lists includes constructors for Cons and Nil, i.e., the introduction

forms of list. Its leaky elimination form, m̃atchlist, is straightforward: the promlist branch

promotes the arguments of each constructor before applying the “alternative functions”, and
6

 ↑ Intuitively, these two instances are generated “for free”, though not in the algebraic sense. The only free
leaky structure is the one for oblivious arrays Ã.
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data T = C JτK⊥

data T̃ = C̃ JτK> | promT T | îfT A T̃ T̃

fn m̃atchT [γ̃] : (A → γ̃ → γ̃ → γ̃) → T̃ → (JτK> → γ̃) → γ̃ =
λîfγ x̃ f ⇒

match x̃ with
| C̃ x ⇒ f x
| promT x ⇒ match x with C x ⇒ f (prom(τ) x)
| îfT b̂ x̃1 x̃2 ⇒ îfγ b̂ (m̃atchT îfγ x̃1 f) (m̃atchT îfγ x̃2 f)

Figure 5.15. Generating leaky ADT definitions

the îflist branch essentially encodes the tape semantics rule S-OIf, specialized to the leaky

context of match expressions, match � with C x⇒e.

A similar recipe is used to derive the leaky representation and its associated functions

for other types: the introduction forms are encoded as constructors with the îf and prom

instances, and the elimination forms capture the idea of distributing the corresponding leaky

context into the îf branches and how ↑ interacts with this context. While the leaky structures

of builtin and arrow types are defined in the Oil prelude, the ones for user-defined ADTs

are generated using the algorithm in  Figure 5.15 . This is how the leaky definition of list in

 Figure 5.14  was generated, for example. An ADT’s introduction forms are its constructors, so

the leaky representation just renames them, with the constructor argument types translated

with label >. The m̃atchT function encodes the elimination form of ADTs, using a list of

functions corresponding to branches of a case expression. The promT branch relies on the

instance resolution procedure prom(·) to promote constructor arguments.

Translating Expressions

We now present our translation from Taype to Oil expressions. As with our translation

of types, the translation of expressions is given as a judgment Γ ` e l ė, that is indexed by a

leakage label l which guides the translation.  Figure 5.16 illustrates how l drives the translation

of standard constructs: if l identifies an expression as safe, it is simply translated congruently.

On the other hand, if an expression is marked as leaky, the translation relies on the leaky
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Γ ` e l ė

TR-SecInt

Γ ` Ẑ#s x l

Ẑ#s x if l = ⊥
Z̃#s x if l = >

TR-Pair

Γ ` (x1,x2)  l

(x1,x2) if l = ⊥
p̃air x1 x2 if l = >

TR-App

Γ ` x2 x1  l x2 x1

TR-Abs
x :l1 τ1, Γ ` e l ė

Γ ` λx:l1τ1⇒e l λx⇒ė

TR-If
x0 :l0 B ∈ Γ Γ ` e1  l ė1 Γ ` e2  l ė2

Γ ` ifτ x0 then e1 else e2  l

if x0 then ė1 else ė2 if l0 = ⊥
ĩf îf(τ) x0 ė1 ė2 if l0 = >

Figure 5.16. Selected rules for translating core Taype standard expressions
to Oil expressions

context of the expression to patch any leaks. This strategy can be seen in the TR-SecInt

rule: using this rule to translate a leaky Ẑ#s e expression delegates any repairs to Z̃#s.

Translating lambda abstractions (TR-Abs) and applications (TR-App) is straightforward.

TR-Pair shows why we require uniform labels in subexpressions: the components of a pair

marked as leaky must also be leaky, as p̃air takes the leaky representations as arguments,

similar to C̃ons from  Figure 5.14  . The translation of if (TR-If) differs from the other rules

in that the label of its discriminee dictates when its leaky counterpart is used, rather than the

label of the whole expression. To see why, recall the typing rule T-IfNoDep from  Figure 5.8  :

if the label of the discriminee is >, the label of the whole expression must also be >. On

the other hand, we do allow the discriminee to be non-leaky, even if the whole expression is

leaky. In this case, we simply use the standard if statement, as leaks can only occur in a

subexpression. A similar strategy applies when translating match. The TR-If rule illustrates

why we annotate conditionals and case statements with their result type τ: this type is used

to resolve the leaky if instances associated with τ via a call to the metafunction îf.

 Figure 5.17 presents some of the translation rules for leaky and oblivious constructs.

This translation is more involved, as it needs to account for the switch to Oil’s oblivious
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tp

Γ ` e l ė

TR-Unit

Γ ` ()  ⊥ A(0)

TR-OPair

Γ ` [x1,x2] ⊥ x1++x2

TR-OInj
Γ ` τ1  s1 Γ ` τ2  s2

Γ ` ι̂b<τ1+̂τ2> x ⊥ ite(b,înl,înr) s1 s2 x

TR-RetInt

Γ ` Ẑ#r x > rZ x

TR-Tape

Γ ` tape x ⊥ t̃ape x

TR-Promote
x :⊥ τ ∈ Γ

Γ ` ↑x > prom(τ) x

TR-OIf
x1 :> τ ∈ Γ

Γ ` îf x0 then x1 else x2  > îf(τ) x0 x1 x2

TR-OPMatch
x1 :⊥ τ1,x2 :⊥ τ2, Γ ` e l ė Γ ` τ1  s1 Γ ` τ2  s2

Γ ` m̂atch x0:τ1×̂τ2 with [x1,x2]⇒e l

let x1 = x0(0,s1) in
let x2 = x0(s1,s2) in
ė

TR-OMatch
x :⊥ τ1, Γ ` e1  > ė1 x :⊥ τ2, Γ ` e2  > ė2 Γ ` τ1  s1 Γ ` τ2  s2

Γ ` m̂atchτ x0:τ1+̂τ2 with x⇒e1|x⇒e2  >

let tag = x0(0,1) in
îf(τ) tag (let x = x0(1,s1) in ė1)

(let x = x0(1,s2) in ė2)

Figure 5.17. Selected rules for translating core Taype leaky and oblivious
expressions to Oil expressions
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Γ ` τ s

TR-UnitT

Γ ` 1 0

TR-OInt

Γ ` Ẑ 1

TR-OProd
Γ ` τ1  s1 Γ ` τ2  s2

Γ ` τ1×̂τ2  s1+s2

TR-OSum
Γ ` τ1  s1 Γ ` τ2  s2

Γ ` τ1+̂τ2  1+max s1 s2

TR-TApp

Γ ` T̂ x T̂ x

TR-TLet
Γ ` e ⊥ ė x :⊥ τ1, Γ ` τ s

Γ ` let x:⊥τ1 = e in τ let x = ė in s

Figure 5.18. Selected rules for translating core Taype oblivious types to sizes in Oil

arrays. This is straightforward for simple data types: unit values are simply encoded as an

empty array (TR-Unit), while the translation of an oblivious pair simply concatenates the

arrays produced by the translation of its two components (TR-OPair). Translating the

destructor for oblivious pairs is more interesting (TR-OPMatch), as it needs to extract

each component from a flat array. To see how this is possible, observe that the “size” of

an oblivious value is determined by its type, otherwise we risk leaking private information

through this side-channel: thus, we can determine the location of each component of a

pair based solely on their types. We do so via an auxiliary relation, Γ ` τ  s, given in

 Figure 5.18 , which translate Taype types to Oil size expressions.

fn înl : N → N → A → A =
λm n â ⇒
let tag = B̂#s true in
let payload =

if n ≤ m then â
else â ++ A(n−m)

in tag ++ payload

Figure 5.19. Oblivious injection

The translation of oblivious injections provide an-

other example of how this relation is used. The TR-

OInj rule relies on the auxiliary function (and a similar

right injection function) shown in  Figure 5.19  . This

function takes as input the sizes of the left and right

components and the injection payload, and produces

an oblivious array containing the tag and payload,

padding it out to the size of the larger component to

avoid leaking information through its representation.
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D  Ḋ

TR-OADT
x :⊥ τ′, Γ ` τ s

obliv T̂ (x:τ′) = τ fn T̂:Jτ′K⊥→N = λx⇒s

TR-Fun
· ` e l ė

fn x:lτ = e fn x:JτKl = ė

Figure 5.20. Selected rules for translating core Taype definitions to Oil definitions

îf(τ)

îf(A) = îfA îf(B) = îfB îf(Z) = îfZ îf(T) = îfT îf(α×β) = îf×

îf(α→β) = îf→ îf(β)

prom(τ)

prom(A) = promA prom(B) = promB prom(Z) = promZ prom(T) = promT

prom(α×β) = prom× prom(α→β) = prom→ prom(β)

Figure 5.21. Resolving leaky instances

For example, the translation of înl<Ẑ+̂Ẑ×̂Ẑ> [2] computes to oblivious array [1,2,0],

while înr<Ẑ+̂Ẑ×̂Ẑ> [[3],[4]] computes to [0,3,4].

The remaining rules in the figure adopt similar strategies; relying on a combination of

leaky structures to patch up leaky constructs and the size relation to bridge the gap between

oblivious types in Taype and oblivious arrays in Oil: the rule for tape (TR-Tape), for

example, simply delegates the repair to t̃ape, from  Figure 5.5  , which encodes the tape rules

S-TapeOIf and S-TapeProm. Similarly, the TR-OMatch uses the size to extract the tag

of a sum type, before processing both branches with a leaky îf expression which eventually

discards the unused branch. Note that the payload x extracted from the injection in the

“wrong” branch always uses the right size for that type: when matching on the previous

example, x will be [2,0] in the second branch.

The translation of top-level definitions is straightforward;  Figure 5.20  provides the rules for

oblivious ADTs and functions of this translation. The elided translation of ADTs simply relies

on the generation algorithm from  Figure 5.15  . The resolution procedures, îf and prom, are
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also straightforward, shown in  Figure 5.21  . Most instances are resolved to the corresponding

definitions in the Oil prelude, or to the generated constructors for ADTs. Resolving function

type instances also requires resolving the instances of a function’s codomain, as suggested by

 Figure 5.13  . Note that prom and îf in  Figure 5.21  take an Oil type, while Taype types are

given to the calls to these meta-functions in the translation rules; we implicitly apply J·K⊥

( Figure 5.12 ) to convert Taype types to Oil types for the leaky instance resolution.

Our translation algorithm is guaranteed to terminate, even when the source program does

not. The reason can be seen in our translation rules, as every (mutually) recursive call to the

translation judgment is applied to a structurally smaller core Taype sub-expression. The

algorithm enjoys a stronger totality property: translation of a well-typed core Taype program

never fails, i.e., a well-typed program satisfies all the side-conditions of the translation rules:

Theorem 5.3.1 (Totality of Translation). If Γ ` e :l τ and e is in ANF, then there exists

an Oil expression ė such that Γ ` e l ė.

The proof (and an analogous theorem for the type-to-size translation) is given in  Ap-

pendix A.4 .

5.3.3 Translation for Conceal and Reveal Phases

Secure multiparty computations typically consist of three phases: a conceal phase, an

oblivious computation phase, and a reveal phase. In the conceal phase, private data owners

“encrypt” and share their data before the core computation takes place, while the oblivious

output is revealed to all (or the privileged) parties in the reveal phase. In order to provide a

complete solution, we also produce secure implementations of these two phases. Thankfully,

section and retraction functions provide templates for concealing and revealing private

data. Our toolchain thus translates section and retraction functions to special versions that

implement each phase.

Translating the retraction functions needed for the reveal phase is simple: we simply

make all the leaky operations “leak” by renaming all leaky operations in a retraction function,

and link them to the revealing versions. For example, Ẑ#r is renamed to Reveal.Ẑ#r (in an
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OCaml module named Reveal). The retraction functions themselves are also renamed so

client programs can use them to reveal the results of the computation.

Translating the section functions needed for the conceal phase is more involved. The main

problem is that, unlike the core computation, only the private data owner can run the conceal

function, as other parties do not have the data. But many MPC protocols, e.g., ones based on

secret-sharing, require all parties to help create the encryption of the private information, so

this has to be done synchronously. In our setting, since private data is encoded as oblivious

arrays, all parties have to encrypt the elements of the same index at the same time. For

example, during the conceal phase, if Alice is encrypting the third element of the array, Bob

needs to do the same. However, this is not trivial to enforce: how does Bob know which

element Alice is currently dealing with, when he does not have the data? Naturally, Bob may

only construct the oblivious array from left to right, which means that Alice needs to do the

same. Our implementation conceals private data in two steps. First, the private data owners

(e.g., Alice) run the section functions locally using a plaintext backend for cryptographic

operations ( Section 5.4  ), resulting in an “oblivious” array whose elements are not encrypted,

i.e., a plaintext array. Then, all parties (jointly) encrypt the input array from left to right,

using the underlying cryptographic protocol, and obtain the actual oblivious array needed

for the oblivious computation phase.

5.4 Implementation

We have implemented the above approach as a compiler that takes as input a Taype

program containing the functions to be computed (as well as any auxiliary functions), the

public views, and section and retraction functions. After type checking these pieces, our

toolchain produces OCaml implementations of the conceal and reveal phases, as well as

an OCaml implementation of the multiparty computation, all of which are specialized to

the desired public view. The output programs are clients of a module that provides an

implementation of Oil’s oblivious arrays and oblivious operations. Linking the generated

programs with an implementation of this interface, or driver, produces a library that a

programmer can use to build a secure application: they simply gather the private data,
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“encrypt” the data using the generated conceal functions, call the multiparty functionality

from the library, and finally reveal the result using the generated reveal functions. As the

calculator case study in the next section demonstrates, programmers can also implement

multi-round computation by chaining together calls to this library.

Our current implementation features two drivers: a plaintext driver and a cryptography-

backed driver. The plaintext driver computes its results in the clear, and is intended for

testing purposes and for establishing a performance baseline without any cryptographic

overhead. This driver is also necessary for generating section functions, as explained in the

previous section. The cryptographic driver uses the popular open-source EMP toolkit [ 52 ] to

implement secure computations. This library is based on Yao’s Garbled Circuit [  1 ] for semi-

honest 2-party MPC. Integrating a new backend into our framework is conceptually simple:

the driver just needs to implement an interface consisting of oblivious integer encryption,

decryption and its arithmetic. Our EMP toolkit backend consists of boilerplate code for FFI

(foreign function interface), for example. Other aspects of the driver, such as array operations,

are independent of the cryptographic backends, and can thus be shared among all drivers.

5.4.1 Optimizations

We have implemented two optimizations to improve the performance of generated code.

First, the unoptimized programs produced naively by the strategy in  Figure 5.16 and

 Figure 5.17 can suffer from exponential blowup when leaks are “taped” too late. To see

the issue, consider a recursive function f from list to Z, whose recursive calls on the

tail of the input list appear in both branches of a conditional, either directly or indirectly

via variables: e.g., if x then f xs′ else 1 + f xs′. If x is a leaky boolean of the form

îf [b] then true else false, the conditional will be distributed into both branches,

resulting in îf [b] then f xs′ else 1 + f xs′. But f xs′ also produces a similar îf, in

both branches! For example, one more unrolling of the recursive calls may result in:

îf [b]
then (îf [b′] then f xs′′ else 1 + f xs′′)
else (îf [b′] then 1 + f xs′′ else 2 + f xs′′)
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Consequently, compiling f results in a îf tree that is exponential in the length of the list,

causing exponential blowup in both memory and running time.

To ameliorate this problem, we have implemented an optimization that tapes leaky

expressions earlier (called “early-tape” optimization), by wrapping the whole body of this

recursive function with a composition of section and retraction: Ẑ#r (tape (Ẑ#s (f xs))).

This transformation does not change the semantics of f, and the combination of tape and

Ẑ#s forces the îf of each recursive call to be securely reduced to a single oblivious integer to

avoid building up the îf tree. This simple strategy is quite effective for a class of programs

which return combinations of primitive types and tuples.

Another deficiency of a naive implementation is that the sizes of oblivious data may be

repeatedly computed. For example, the retraction function of the oblivious list with public

view k requires computing l̂ist k as a size, but its recursive calls on k−1 also requires

computing l̂ist (k−1), while this computation has already been done in the previous

iteration. This redundant computation attaches a quadratic term to the complexity of the

retraction function. As a result, linear scan of an oblivious list becomes quadratic.

To remove the redundant size computation, our compiler implements a classic technique

called tupling [ 53 ,  54 ], which merges some recursive functions into a tuple to avoid multiple

traversals over the same data. Consider the previous example: the oblivious list retraction

function l̂ist#r has type Z → A → l̃ist in Oil, while the oblivious list function l̂ist, i.e.,

the size function in Oil, has type Z → N. We create a new recursive function l̂ist#r_tupled

of type Z → N × (A → l̃ist), whose definition should be equivalent to the tuple of those

two functions:

l̂ist#r_tupled k = (l̂ist k, l̂ist#r k)

The actual recursive definition of this tupled function is obtained by a transformation based

on the unfold-simplify-fold rules [ 55 ,  56 ], which eventually replaces the calls to l̂ist and

l̂ist#r with recursive calls to this function itself. To see how this avoids repetitive size

computation, observe that each recursive call to this tupled function on k−1 returns not only

the result of l̂ist#r (k−1) but also l̂ist (k−1), meaning that we can calculate l̂ist k

from that incrementally.
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5.5 Experiments

Our experiments consist of a set of case studies that showcase the applicability of our

approach, summarized in  Figure 5.22  , and a set of microbenchmarks that examine the

empirical benefits of being able to trade off security for performance.

5.5.1 Case Study: Medical Records

Our first collection of case studies are inspired by problems in the healthcare setting, where

legal and privacy concerns keep parties from freely sharing their data. These benchmarks use

a variety of data structures: patient data is represented as a record with fields for a patient’s

ID, age, height and weight, a database is encoded as a list of patient records, and a classifier is

implemented as a decision tree over health data. The oblivious types for these data structures

admit interesting public views: a particular health record may choose to keep either its ID,

or medical data (height and weight) secret, as in  Figure 3.5  ; a database adopts the privacy

settings (i.e., revealing either ID or medical data) of its individual records, and a decision

tree obscures the threshold that a feature is compared against at a given node, but not the

overall structure. Using these representations, we have implemented a number of secure

computations: biometric matching (minimum euclidean distance) between a single record

and a database, calculating the percentage of healthy members of an age group according to

the Body Mass Index (BMI), calculating statistics such as mean and variance over multiple

private databases, and classifying a patient record using a private decision tree.  Figure 5.22  

includes each of these programs. Notably, the computation in each of these benchmarks was

written without a privacy policy in mind; instead, our compiler took care of enforcing each

policy, as encoded by an oblivious type and section and retraction functions.

5.5.2 Case Study: Dating Application

Consider a functionality of matching potential soulmates. Each party owns their private

profile with personal information, such as gender, income and education. They also have

a private preference for their partner, encoded as predicates over profiles of both parties.
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Computation Alice’s input Bob’s input Description

is-taller record record a variant of the millionaire
problem, comparing height

is-obese-by-id database ID whether the record of a given
ID is obese (according to
BMI)

healthy-rate-by-age database a range of ages the percentage of healthy
members of an age range (ac-
cording to BMI)

min-euclidean-distance database record the minimum euclidean dis-
tance between a database and
a given record

database-analytics database database calculate the mean and vari-
ance of the ages over these
databases

mean-squared-error database database of
BMIs

the mean squared error be-
tween the estimated BMIs
(from Bob) and the actual
BMIs (from Alice); the two
databases may not contain
the same records, and are
matched with IDs (similar to
joining tables)

decision-tree decision tree record classify a medical record via
a private decision tree

dating profile and
predicate

profile and
predicate

match the dating preferences
of two parties; each party pro-
vides a private profile and a
preference encoded as a pred-
icate over profiles

secure-calculator expression and
assignment

expression and
assignment

a 2-round arithmetic expres-
sion evaluation; each party
provides a private arithmetic
expression and some private
variable assignment depend-
ing on the round

voting tabulated votes tabulated votes return the candidate with the
most votes

k-means list of vectors list of vectors partition vectors using the k-
means clustering algorithm

Figure 5.22. Summary of programs used in our case studies
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These predicates are expressions with boolean connectives, integer arithmetic and numeric

comparisons. For example, one user may stipulate that the sum of both parties’ income

exceeds a particular amount. The peer matching function takes these private profiles and

predicates, and returns a boolean indicating whether they are a good match, by evaluating the

predicate expression on the profiles. The private predicates have many potential policies. As

predicates are essentially ASTs, participating parties may agree on disclosing only the depth

of the predicates, or revealing the AST nodes but not the operands, or even revealing only

the boolean connectives but keep the integer expressions secret. In Taype, the peer matching

function, its auxiliary functions, and the data types they depend on can be implemented in

the conventional way, without knowing the policies. The private matching function can be

obtained by composing with the desired policy. Updating policy or updating the matching

algorithm can be done independently.

5.5.3 Case Study: Secure Calculator

Bob’s inputs

Alice’s

expression

Alice’s

input

Bob’s expression

Figure 5.23. Workflow
of the secure calculator

To showcase our support for computations involv-

ing richly structured data, we have implemented a

secure interpreter for a simple arithmetic expression

language. In this case study, each user provides a

private expression and an assignment to some vari-

ables. The result is securely computed by evaluating

the first party’s expression using the second party’s

assignment; the result of this expression is then used

to evaluate the second party’s expression, along with

the first party’s private value, as shown in  Figure 5.23 . Not only does this case study use a

rich data structure for expression, it also shows that we can readily compose the generated

library functions to implement a more complex workflow, such as a multi-round computation.
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5.5.4 Discussion

As mentioned in  Chapter 1  , in existing frameworks, it is the program’s responsibility to

enforce the privacy policy. In contrast, our medical records, dating application and secure

calculator case studies demonstrate that, in our framework secure functionality can be written

in a conventional functional language, agnostic to a particular privacy policy. On the other

hand, implementing oblivious types, section and retraction functions is analogous to other

common programming tasks: an oblivious type is essentially a different representation of

the underlying data type, while section and retraction functions are effectively conversion

functions between oblivious and public data types. Importantly, our abstraction allows

programmers to write all these ”boilerplate” functions once and for all, regardless of a

particular target computation.

5.5.5 Microbenchmarks

To evaluate the performance of our compiler, 

7
 we have built a number of microbench-

marks that showcase the performance tradeoffs between privacy and performance. Our first

microbenchmark is a standard classification scenario, where one party wants to classify their

private data using a decision tree belonging to another party [  57 – 59 ]. The data being classified

is given as a tuple with eight private integers as features. This experiment considers 4 public

views for the decision tree: maximum height, the spine, spine including the feature index

of each node, and the whole tree. Note that this last view is not unrealistic: in outsourced

secure computation, such as FHE [  7 ], the decision tree owner may perform all computation,

independent of the other party. In this scenario, the whole tree can be revealed because the

computing party owns it, but the computation should not reveal any information about the

other party’s data. The definition of the decision tree is shown in  Figure 5.24a  , together with

an “oblivious” version that simply reveals the whole tree.  Figure 5.24  also includes views

for three other policies. The section and retraction functions for each view are analogous

to those in  Figure 5.3 . For each public view, we test on a small tree of depth 1, and other
7

 ↑ All results are averaged across 10 runs, on an M1 MacBook Pro with 16 GB memory. All parties run on
the same host with local network communication.
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// The payload of Leaf is a decision,
// and that of Node is a feature index
// and a threshold.
data tree = Leaf Z

| Node Z Z tree tree
obliv t̂reeall (_ : tree) = 1

(a) All information

obliv t̂reemax (k : Z) =
if k = 0
then Ẑ
else Ẑ +̂

Ẑ ×̂ Ẑ ×̂ t̂reemax (k−1)
×̂ t̂reemax (k−1)

(b) Maximum height

data spine = SLeaf
| SNode spine spine

obliv t̂reespine (s : spine) =
match s with
| SLeaf ⇒ Ẑ
| SNode l r ⇒

Ẑ ×̂ Ẑ ×̂ t̂reespine l ×̂ t̂reespine r

(c) Tree spine

data spineF = SFLeaf
| SFNode Z spineF spineF

obliv t̂reespineF (s : spineF) =
match s with
| SFLeaf ⇒ Ẑ
| SFNode _ l r ⇒

Ẑ ×̂ t̂reespineF l ×̂ t̂reespineF r

(d) Tree spine with feature indices

Figure 5.24. Definitions of oblivious decision trees with different public views

trees of depth 16. A full tree has exponentially many nodes, while an eighth sparse tree has

roughly 1/8 of the nodes in a full tree, and a very sparse tree has only 16 nodes.
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Figure 5.25. Decision tree

 Figure 5.25  reports the performance im-

pact of each view on the total run time. The

results are as expected: revealing the whole

tree results in the best performance, while

sharing only the maximum height is quite

slow. In the case of maximum height, the

number of nodes in the actual decision tree

does not affect the performance, as the struc-

ture of the tree is kept secret. Knowing both

the spine and the feature index of each node

improves performance, compared to knowing
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Figure 5.26. Microbenchmarks

only the spine, as the computation does not need to obscure which feature is used at each

decision point. When the underlying decision tree is relatively full, leaking more information

about its structure does not improve performance, as the program does not need to perform

wasted computation to ensure a constant time algorithm. Indeed, the fuller the private tree

is, the less is gained by a more permissive public view. Of course, the owner of the tree must

ultimately decide if they are willing to reveal how the tree is close to this worst case scenario.

Again, the decision algorithm is agnostic of the actual public views, allowing for swapping

privacy policies without any changes to the program logic.
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We also evaluate the performance of a set of standard operations on trees, using its

maximum height as the public view. These benchmarks consist of a membership test,

computing the probability of an event given a probability tree diagram, and a map function

that adds a private integer to each node in a tree.  Figure 5.26a  presents the performance

results for these benchmarks. Despite the inherently expensive cryptography required by the

conservative public view, all the benchmarks finish in under 15 seconds.

Finally, we have implemented a similar set of microbenchmarks for oblivious lists, using

the length of the list as the public view. We subdivide these benchmarks into those that

return a primitive value (i.e., an integer or boolean), and those that return an oblivious list.

Even though the returned lists often reveal too much about the private input, they could be

useful as an intermediate result of a bigger computation or as an input to the next round of

computation.  Figure 5.26b  presents the performance for the first category, which includes a

membership check, computing of the hamming and euclidean distances between two lists, and

taking the dot product of two lists. All of these examples are amenable to the optimization

mentioned in the previous section, resulting in reasonable running times. We use a dotted

line for results without our tupling optimization, and a solid line for when the optimization

is enabled. With tupling is used, their performance is linear in the size of the input list (as it

is in the insecure setting). The second category includes insertion into a sorted list, and two

higher-order examples: mapping a function that adds a private integer to all the elements of

a list, and a filter function that drops all the elements greater than a private integer. Since

these examples do not return primitive values, the early-tape optimization does not apply,

resulting in slower performance, as  Figure 5.26c  shows. The tupling optimization does not

have much impact, as its gains are overshadowed by the complexity of having to delay repairs

to the leaky result values.

5.6 Conclusion

Secure multiparty computation enables different parties to compute functions over private

data without leaking extra information, but writing these applications remains challenging.

Existing high-level MPC languages require programs to explicitly enforce privacy policies,

130



making it difficult to update policies and to explore tradeoffs between privacy guarantees and

performance. This chapter presented Taype, a language for secure multiparty applications

that decouples these concerns. Our experiments feature a diverse set of benchmarks that

were written without security policies in mind, and a wide range of security policies that went

beyond whether a particular field is “secret or not”. Our results demonstrate the performance

benefits that can result from being able to easily trade off privacy for performance.
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6. TAYPSI: STATIC ENFORCEMENT OF POLICIES

Taype ( Chapter 5  ) decouples privacy policies from programmatic concerns, allowing users to

write applications over structured data that are agnostic to any particular privacy policy. To

do so, Taype implements a novel form of the tape semantics ( Chapter 4  ). This semantics

allows insecure operations whose evaluation could violate a policy to appear in a program,

as long as the results of these operations are eventually protected. Under tape semantics,

such operations are lazily deferred until it is safe to execute them, effectively dynamically

“repairing” potential leaks at runtime. Using Taype, programmers can thus build a privacy-

preserving version of a standard functional program by composing it with a policy, specified

as a dependent type equipped with security labels, relying on tape semantics to enforce the

policy during execution. Unfortunately, while this enforcement strategy disentangles privacy

concerns from program logic, it also introduces considerable overhead for applications that

construct or manipulate structured data with complex privacy requirements. Thus, this

strategy does not scale to the sorts of complex applications that could greatly benefit from

this separation of concerns.

This chapter presents Taypsi, a policy-agnostic language for writing MPC applications

that eliminates this overhead by instead transforming a non-secure function into a version

that statically enforces a user-provided privacy policy. Taypsi extends Taype with a form of

dependent sums, which we call Ψ-types, that package together the public and private compo-

nents of an algebraic data type (ADT). Each Ψ-type is equipped with a set of Ψ-structures

which play an important role in our translation, enabling it to, e.g., efficiently combine

subcomputations that produce ADTs with different privacy policies. Our experimental

evaluation demonstrates that this strategy yields considerable performance improvements

over the enforcement strategy used by Taype, yielding exponential improvements on the

most complex benchmarks in our evaluation suite.

To summarize, the contributions of this chapter are as follows:

• We present Taypsi, a version of Taype extended with Ψ-types, a form of dependent

sums that enables modular translation of non-secure programs into efficient, secure

versions. This language is equipped with a security type system that offers the same
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guarantees as Taype: after jointly computing a well-typed function, neither party can

learn more about the other’s private data than what can be gleaned from their own

data and the output of the function.

• We develop an algorithm that combines a program written in the standard fragment of

Taypsi with a privacy policy to produce a secure version that statically enforces the

desired policy. We prove that this algorithm generates well-typed (and hence secure)

target programs that are guaranteed to preserve the semantics of the source programs.

• We evaluate our approach on a range of case studies and microbenchmarks. Our exper-

imental results demonstrate exponential performance improvements over the previous

state-of-the-art (Taype) on several complicated benchmarks, while simultaneously

showing no performance regression on the remaining benchmarks.

An artifact containing the Coq mechanization of the core calculus λOADTΨ, the implemen-

tation of Taypsi, its source code, and the source for all the benchmarks in our experiments

with instructions is publicly available [ 60 ].

6.1 Overview

data list = Nil | Cons Z list

fn filter : list → Z → list =
λxs y ⇒
match xs with
| Nil ⇒ Nil
| Cons x xs′ ⇒
if x ≤ y
then Cons x (filter xs′ y)
else filter xs′ y

Figure 6.1. Filtering a list

Before presenting the full details of our ap-

proach, we begin with an overview of Taypsi’s

strategy for building privacy-preserving applica-

tions. Consider the simple filter function in  Fig-

ure 6.1 , which drops all the elements in a list above

a certain bound.  

8
 Suppose Alice owns some inte-

gers, and wants to know which of those integers

are less than some threshold integer belonging to

Bob, but neither party wants to share their data

with the other. Using oblivious algebraic data

types (OADTs) and the oblivious language from
8

 ↑ Taypsi supports higher-order functions, but our overview will use this specialized version for presentation
purposes.
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 Chapter 3 , we can encode a secure version of this filter function, allowing Alice and Bob

to encrypt their data and then jointly compute filter, without leaking information about

the encrypted data beyond what they can infer from the final disclosed output.

The particular policy (i.e., the chosen public view) that a secure application enforces can

greatly impact the performance of that application, since the control flow of an application

cannot depend on private data. In the case of our example, this means that the number of

recursive calls to filter depends on the public information Alice is willing to share. If Alice

only wants to share the maximum length of her list, for example, its encrypted version must

be padded with dummy encrypted values, and a secure version of filter must recurse over

these dummy elements, in order to avoid leaking information to Bob through its control flow.

On the other hand, if Alice does not mind sharing the exact number of integers she owns, the

joint computation will not have to go over these values, allowing a secure version of filter

to be computed more efficiently.

obliv l̂ist≤ (k : N) =
if k = 0 then 1

else 1 +̂ Ẑ × l̂ist≤ (k−1)

obliv l̂ist= (k : N) =
if k = 0 then 1

else Ẑ × l̂ist= (k−1)

Figure 6.2. Oblivious
lists with maximum and
exact length public views

Taypsi allows Alice and Bob to encode their

private data and policies as OADTs.  Figure 6.2  

shows two OADTs for the type list: l̂ist≤, whose

public view is the maximum length of a list, and

l̂ist=, whose public view is the exact length.

Similar to Taype, in the implementation of

Taypsi, oblivious values are represented using ar-

rays of secure values. To ensure that attackers

cannot learn anything from the “memory layout” of

an OADT value, the size of this array is the same

for all values of a particular OADT. As an example,

the encoding of the list Cons 10 (Cons 20 Nil) as an oblivious list of type l̂ist≤ 2 is

înr ([10], înr ([20], ())), where înr (înl) is the oblivious counterpart of standard

sum injection inr (inl). Under the hood, this oblivious value is represented as an array

holding four secure values; in the remainder of this section, we will informally write this

value as [Cons,10,Cons,20], where [Cons] is a synonym of the tag [inr] for readability.

As another example, the empty list Nil is encoded as înl (); it is also represented using an
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array with four elements, [Nil,−,−,−], where the last three elements are dummy encrypted

values (denoted by −). Our compiler uses the type of înl to automatically pad this array

with these values, in order to ensure that it is indistinguishable from other private values of

l̂ist≤ 2.

Users can directly implement privacy-preserving applications in Taypsi using OADTs and

secure operations, but this requires manually instrumenting programs so that their control

flow only depends on public information. Under this discipline, the implementation of a secure

function intertwines program logic and privacy policies: the secure version of filter requires

a different implementation depending on whether Alice is willing to share the exact length of

her list, or an upper bound on that length. Taype ( Chapter 5  ) decouples these concerns

by allowing programs to include unsafe computations and repairing unsafe computations

at runtime, using a novel form of semantics called tape semantics. As an example of this

approach, in Taype, a secure implementation of filter that allows Alice to only share an

upper bound on the size of her list can be written as:

fn f̂ilter≤ : (k : N) → l̂ist≤ k → Ẑ → l̂ist≤ k =
λk x̂s ŷ ⇒ l̂ist≤#s k (filter (l̂ist≤#r k x̂s) (Ẑ#r ŷ))

The type signature of f̂ilter≤ specifies the policy it must follow. Intuitively, its imple-

mentation first “decrypts” the private inputs, applying the standard filter function to

those values, and then “re-encrypts” the filtered list. In this example, the retractions of

the private inputs x̂s and ŷ are unsafe computations that would violate the desired policy

if they were computed naively. Fortunately, using the tape semantics prevents this from

occurring by deferring these computations until it is safe to do so. Less fortunately, the

runtime overhead of dynamic policy enforcement makes it hard to scale private applications

manipulating structured data. As one data point, the secure version of filter produced by

Taype takes more than 5 seconds to run with an oblivious list l̂ist≤ with sixteen elements,

and its performance grows exponentially worse as the number of elements increases.

To understand the source of this slowdown, consider a computation that filters a private

list containing 10 and 20 with integer 15: f̂ilter≤ 2 [Cons,10,Cons,20] [15]. The first

step in evaluating this function is to compute l̂ist≤#r 2 [Cons,10,Cons,20]. Completely
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reducing this expression leaks information, so tape semantics instead stops evaluation after

producing the following computation:

mux [false] Nil (Cons (Ẑ#r [10]) (mux [false] Nil (Cons (Ẑ#r [20]) Nil)))

The two [false]s are the results of securely checking if the two constructors in the input

list are Nil. Observe that evaluating either mux or Ẑ#r would reveal private information, so

the evaluation of these operations is deferred. This delayed computation can be thought of

as an “if-tree” whose internal nodes are the private conditions needed to compute the final

results, and whose leaves hold the result of the computation along each corresponding control

flow path. To make progress, tape semantics distributes the context surrounding a delayed

computation, filter and then l̂ist≤#s in this example, into each of its leaves; having done

so, those leaves can be further evaluated. Importantly, in our example, the leaves of this

if-tree are eventually re-encrypted using l̂ist≤#s. The tape semantics does so in a secure

way, so that Ẑ#r [10] becomes [10] again, and each result list is converted to a secure value

of the expected OADT. Once the branches of a mux node have been reduced to oblivious

values of the same type, the node itself can be securely reduced using the secure semantics

of mux. Unfortunately, the if-tree produced by the tape semantics can grow exponentially

large before its mux nodes can be reduced. For example, after applying filter to the if-tree

produced by l̂ist≤#r, the resulting if-tree has a leaf corresponding to every possible list that

filter could produce; the number of these leaves is exponential in the maximum length

of the input list. As any surrounding computation, i.e., l̂ist≤#s in our example, can be

distributed to each of these leaves, an exponential number of computations may need to be

performed before the if-tree can be collapsed.

To remedy these limitations, this chapter proposes to instead compile an insecure program

into a secure version that statically enforces a specified policy. To do so, we extend Taype, the

secure language from  Chapter 5 with Ψ-types, a form of dependent sums (or dependent pairs)

that packs public views and the oblivious data into a uniform representation. For example,

Ψl̂ist≤ is the oblivious list l̂ist≤ with its public view: 〈2, înr ([10], înr ([20], ()))〉

and 〈2, înl ()〉 are elements of type Ψl̂ist≤, corresponding to the examples in the previous

section. The first component of this pair-like syntax is a public view and the second component
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is an OADT whose public view is exactly the first component. This allows users to again

derive a private filter function from its type signature:

fn f̂ilter≤ : Ψl̂ist≤ → Ẑ → Ψl̂ist≤ = %lift filter

Users no longer need to explicitly provide the public views for either the output or any

intermediate subroutines: both are automatically inferred. As a result, the policy specification

of f̂ilter≤ more directly corresponds to the type signature of filter. In addition, specifying

policies using Ψ-types avoids mistakes in the supplied public views: using Taype, if the

programmer mistakenly specifies the return type l̂ist≤ (k−1) for a secure version of filter,

for example, the resulting implementation may truncate the last element of the result list.

A keyword %lift is used to translate the standard non-secure function filter to a private

version that respects the policy specification.

To understand how this translation works, consider a naive approach where each algebraic

data type (ADT) is thought of as an abstract interface, whose operations correspond to the

introduction and elimination forms of the algebraic data type  

9
 . An ADT, e.g., list, as well

as any corresponding Ψ-type, e.g., Ψl̂ist≤ and Ψl̂ist=, are implementations or instances of

this interface. For example, an interface for list operations is:

ListLike t = {
Nil : 1 → t;
Cons : Ẑ × t → t;
match : t → (1 → α) → (Ẑ × t → α) → α

}

As long as Ψl̂ist≤ and Ψl̂ist= implement this interface, we could straightforwardly

translate filter to a secure version, as shown in  Figure 6.3 . This strategy does not rely on

unsafe retractions like l̂ist≤#r, as private data always remains in its secure form, eliminating

the need to defer unsafe computations, which is the source of exponential slowdowns in

Taype. Unfortunately, there are several obstacles to directly implementing this strategy.

First, an ADT and an OADT may not agree on the type signatures of the abstract interface.

ListLike fixes the argument types of operations like Cons and match, meaning that list is
9

 ↑ As Taypsi already supports general recursion, we use pattern matching instead of recursion schemes as our
elimination forms.
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fn f̂ilter≤ : Ψl̂ist≤ → Ẑ → Ψl̂ist≤ = λxs y ⇒
l̂ist≤#match xs
(λ_ ⇒ l̂ist≤#Nil ())
(λ(x, xs′) ⇒
mux (x ≤̂ y) (l̂ist≤#Cons x (f̂ilter≤ xs′ y))

(f̂ilter≤ xs′ y))

(a) Secure filter using OADT l̂ist≤

fn f̂ilter= : Ψl̂ist= → Ẑ → Ψl̂ist= = λxs y ⇒
l̂ist=#match xs
(λ_ ⇒ l̂ist=#Nil ())
(λ(x, xs′) ⇒
mux (x ≤̂ y) (l̂ist=#Cons x (f̂ilter= xs′ y))

(f̂ilter= xs′ y))

(b) Secure filter using OADT l̂ist=

Figure 6.3. Naive translation of filter to secure versions

not an instance of this abstract interface, despite list being a very reasonable (albeit very

permissive) policy! In general, different OADTs may only be able to implement operations

with specific signatures. Second, a private function may involve a mixture of oblivious types.

Thus, some functions may need to coerce from one type to a “more” secure version. For

example, if the policy of f̂ilter≤ is Ψl̂ist≤ → Z → Ψl̂ist≤, its second argument y will

need to be converted to Ẑ in order to evaluate x ≤̂ y. A secure list that discloses its exact

length may similarly need to be converted to one disclosing its maximum length. Third,

this naive translation results in ill-typed programs, because the branches of a mux may have

mismatched public views. In f̂ilter≤, for example, the branches of mux may evaluate to

〈2, [Cons,10,Cons,20]〉 and 〈1, [Cons,20]〉, respectively. Thus, Taypsi’s secure type

system will (rightly) reject f̂ilter≤ as leaky. Lastly, the signatures that should be ascribed

to any subsidiary function calls may not be obvious. Consider the following client of filter:

fn filter5 : list → list = λxs ⇒ filter xs 5
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If filter5 is given a signature Ψl̂ist≤ → Ψl̂ist≤, we would like to use a secure version of

the filter function with the type Ψl̂ist≤ → Z → Ψl̂ist≤, as the threshold argument is

publicly known. In general, a function may have many private versions, and we should infer

which version to use at each callsite: a recursive function may even recursively call a different

“version” of itself.

To solve these challenges, we generalize the abstract interface described above into a

set of more flexible structures, which we collectively refer to as Ψ-structures (  Section 6.3  ).

Intuitively, each category of Ψ-structures solves one of the challenges described above. Our

translation algorithm (  Section 6.4 ) generates a set of typing constraints for the intermediate

expressions in a program. These constraints are then solved using the set of available Ψ-

structures, resulting in multiple private versions of the necessary functions and ruling out the

infeasible ones, e.g., f̂ilter=.

 Figure 6.4  presents the methods of each category of Ψ-structures of l̂ist≤. The first two

methods, l̂ist≤#s and l̂ist≤#r, are its section and retraction functions, belonging to the

OADT-structure category. Unlike Taype, these two functions are not directly used to derive

secure implementations of functions. In fact, our type system guarantees that retraction

functions are never used in a secure computation, because Taypsi does not rely on tape

semantics to repair unsafe computation (the unsafe fn keyword tells our type checker that

l̂ist≤#r is potentially leaky). Our implementation of Taypsi exposes section and retraction

functions as part of the API of the secure library it generates, however, so that client programs

can conceal their private input and reveal the output of secure computations. This structure

also includes a view method, which our translation uses to select the public view needed to

safely convert a list into a Ψl̂ist≤.  Figure 6.4  does not show coercion methods, but the

programmers can define a coercion from Ψl̂ist= to Ψl̂ist≤, for example.

The next set of methods belong to the intro-structure and elim-structure category.

These introduction (l̂ist≤#Nil and l̂ist≤#Cons) and elimination (l̂ist≤#match) methods

construct and destruct private list, respectively. As we construct and manipulate data,

these methods build the private version, calculate its public view, and record that view in

Ψ-types. Their type signatures are specified by the programmers, as long as the signatures

are compatible with Z × list ( Section 6.3 ).
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OADT-structure

fn l̂ist≤#s : (k : N) → list → l̂ist≤ k = λk xs ⇒
if k = 0 then ()
else match xs with

| Nil ⇒ înl ()
| Cons x xs′ ⇒ înr (Ẑ#s x, l̂ist≤#s (k−1) xs′)

unsafe fn l̂ist≤#r : (k : N) → l̂ist≤ k → list = λk ⇒
if k = 0 then λ_ ⇒ Nil
else λxs ⇒ m̂atch xs with

| înl _ ⇒ Nil
| înr (x, xs′) ⇒ Cons (Ẑ#r x) (l̂ist≤#r (k−1) xs′)

fn l̂ist≤#view : list → N = length

Intro/elim-structure

fn l̂ist≤#Nil : 1 → Ψl̂ist≤ = λ_ ⇒ 〈0, ()〉

fn l̂ist≤#Cons : Ẑ × Ψl̂ist≤ → Ψl̂ist≤ = λ(x, 〈k, xs〉) ⇒ 〈k+1, înr (x, xs)〉

fn l̂ist≤#match : Ψl̂ist≤ → (1 → α) → (Ẑ × Ψl̂ist≤ → α) → α =
λ〈k, xs〉 f1 f2 ⇒
(if k = 0 then λ_ ⇒ f1 ()
else λxs ⇒ m̂atch xs with

| înl _ ⇒ f1 ()
| înr (x, xs′) ⇒ f2 (x, 〈k−1, xs′〉) : l̂ist≤ k → α) xs

Join-structure

fn l̂ist≤#join : N → N → N = max

fn l̂ist≤#reshape : (k : N) → (k′ : N) → l̂ist≤ k → l̂ist≤ k′ = λk k′ ⇒
if k′ = 0 then λ_ ⇒ ()
else if k = 0 then λ_ ⇒ înl ()

else λxs ⇒ m̂atch xs with
| înl _ ⇒ înl ()
| înr (x, xs′) ⇒ înr (x, l̂ist≤#reshape (k−1) (k′−1) xs′)

Figure 6.4. Ψ-structures of l̂ist≤
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The join and reshape methods in the join-structure category enable translated programs

to include private conditionals whose branches return OADT values with different public

views. As an example, consider the following private conditional whose branches have Ψ-types:

mux [true] 〈2, [Cons,10,Cons,20]〉 〈1, [Cons,20]〉

To build a version of this program that does not reveal [true], Taypsi uses join to calculate

a common public view that “covers” both branches. In this example, l̂ist≤#join chooses

a public view of 2, as a list with at most one element also has at most two elements. Our

translation then uses the reshape method to convert both branches to use this common public

view. In our example, [Cons,20], an oblivious list of maximum length 1, is converted into the

list [Cons,20,Nil,−], which has maximum length 2. Since both branches in the resulting

program have the same public view, it is safe to evaluate mux: the resulting list is equivalent

to 〈2, mux [true] [Cons,10,Cons,20] [Cons,20,Nil,−]〉. As we will see later, not all

OADTs admit join structures, e.g., l̂ist=, but our translation generates constraints that take

advantage of any that are available, failing when these constraints cannot be resolved in a

way that guarantees security. Note that these two methods are key to avoiding the slowdown

exhibited by Taype’s enforcement strategy: they allow functions that may return different

private representations to be eagerly evaluated, instead of being lazily deferred in a way that

requires an exponential number of subcomputations to resolve.

In summary, to develop a secure application in Taypsi, programmers first implement its

desired functionality, e.g., filter, in the public fragment of Taypsi, independently of any

particular privacy policy. Policies are separately defined as oblivious algebraic data types,

e.g., l̂ist≤, and their Ψ-structures. Users can then automatically derive a secure version of

their application by providing the desired policy in the form of a type signature involving

Ψ-types, relying on Taypsi’s compiler to produce a privacy-preserving implementation.

The type system of Taypsi, like Taype’s, provides a strong security guarantee in the

form of an obliviousness theorem (  Theorem 6.2.1  ). This obliviousness theorem is a variant

of noninterference [  21 ], and ensures that well-typed programs in Taypsi are secure by

construction: no private information can be inferred even by an attacker capable of observing

every state of a program’s execution. Our compilation algorithm is further guaranteed
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to generate a secure implementation that preserves the behavior of the original program

( Theorem 6.3.3  ). Taypsi’s formal guarantees ( Section 6.3.7  ) do not cover equi-termination of

the source and target programs: when the public view lacks sufficient information to bound

the computation of the original program, the secure version will not terminate, in order to

avoid leaking information through its termination behavior.

The following three sections formally develop the language Taypsi, the Ψ-structures, and

our translation algorithm.

6.2 Taypsi, Formally

This section presents λOADTΨ, the core calculus for secure computation that we will use to

explain our translation. This calculus extends the existing λOADT calculus ( Chapter 3 ) with Ψ-

types, and uses ML-style ADTs in lieu of explicit fold and unfold operations. For simplicity,

λOADTΨ does not include public sums and oblivious integers, which are straightforward to add.

6.2.1 Syntax

 Figure 6.5 presents the syntax of λOADTΨ. Types and expressions are in the same syntax

class, as λOADTΨ is dependently typed, but we use e for expressions and τ for types when possible.

A λOADTΨ program consists of a set of global definitions of data types, functions and oblivious

types. Definitions in each of these classes are allowed to refer to themselves, permitting

recursive types and general recursion in both function and oblivious type definitions. We use

x for variable names, C for constructor names, T for type names, and T̂ for oblivious type

names. Each constructor of an ADT definition takes exactly one argument, but this does

not harm expressivity: this argument is 1 for constructors that take no arguments, e.g., Nil,

and a tuple of types for constructors that have more than one argument, e.g., Cons takes an

argument of type Z × list.

In addition to standard types and dependent function types (Π), λOADTΨ includes oblivious

booleans (B̂) and oblivious sum types (+̂). The elimination forms of these types are oblivious

conditionals mux and oblivious case analysis m̂atch, respectively. The branches of both

expressions must be private and each branch has to be fully evaluated before the expression
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e, τ ::= Expressions:
| 1 | B | B̂ | τ×τ | τ+̂τ simple types
| Πx:τ,τ dependent function type
| ΨT̂ Ψ-type
| x | T variable and type names
| () | b unit and boolean constants
| λx:τ⇒e function abstraction
| let x = e in e let binding
| e e | C e | T̂ e applications
| if e then e else e conditional
| mux e e e oblivious conditional
| (e,e) pair
| 〈e,e〉 dependent pair (Ψ-pair)
| πb e product and Ψ-type projection
| ι̂b<τ> e oblivious sum injection
| m̂atch e with x⇒e|x⇒e oblivious sum elimination
| match e with C x⇒e ADT elimination
| B̂#s e boolean section
| [b] | [ιb<ω̂> v̂] runtime boxed values

D ::= Global Definitions
| data T = C τ algebraic data type definition
| fn x:τ = e (recursive) function definition
| obliv T̂ (x:τ) = τ (recursive) oblivious type definition

ω̂ ::= 1 | B̂ | ω̂×ω̂ | ω̂+̂ω̂ Oblivious Type Values

v̂ ::= () | [b] | (v̂,v̂) | [ιb<ω̂> v̂] Oblivious Values

v ::= v̂ | b | (v,v) | 〈v,v〉 | λx:τ⇒e | C v Values

Figure 6.5. λOADTΨ syntax with extensions to λOADT highlighted

can take an atomic step to a final result. Boolean section B̂#s is a primitive operation that

“encrypts” a boolean expression to an oblivious version. Oblivious injection ι̂b (i.e., înl

and înr) are the oblivious counterparts of the standard constructors for sums. Other terms

are mostly standard, although let bindings (let), conditionals (if) and pattern matching

(match) are allowed to return a type, as λOADTΨ supports type-level computation.

The key addition over λOADT is the Ψ-type, ΨT̂. It is constructed from a pair expression 〈·,·〉

that packs the public view and the oblivious data together, and has the same eliminators π1
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and π2 as normal products. As an example, 〈3, l̂ist≤#s 3 (Cons 1 Nil)〉 creates a Ψ-pair

of type Ψl̂ist≤ with public view 3, using the section function from  Figure 6.4  . Projecting

out the second component of a pair using π2 produces a value of type l̂ist≤ 3. A Ψ-type is

essentially a dependent sum type (Σx:τ,T̂ x), with the restriction that τ is the public view

of T̂, and that T̂ x is an oblivious type.

Since λOADTΨ has type-level computation, oblivious types have normal forms; oblivious

type values (ω̂) are essentially polynomials formed by primitive oblivious types. We also

have the oblivious values of oblivious boolean and sum type. Note that these “boxed” values

only appear at runtime, our semantics use these to model encrypted booleans and tagged

sums.

6.2.2 Semantics

 Figure 6.6  shows a selection of the small-step semantics rules of λOADTΨ (the omitted

rules are identical to λOADT), with judgment Σ ` e −→ e′. The global context Σ is a map

from names to a global definition, which is elided for brevity as it is fixed in these rules.

The semantics of λOADTΨ is similar to λOADT, with the addition of S-PsiProj to handle the

projection of dependent pairs, which is simply the same as normal projection. S-Ctx reduces

subterms according to the evaluation contexts defined in  Figure 6.6 . The first few contexts

take care of the type-level reduction of product and oblivious sum type. The type annotation

of oblivious injection ιb is reduced to a type value first, before reducing the payload. The

evaluation contexts for mux capture the intuition that all components of a private conditional

have to be normalized to values first to avoid leaking the private condition through control

flow channels.

S-OMatch evaluates a pattern matching expression for oblivious sums. Similar to mux,

oblivious pattern matching needs to ensure the reduction does not reveal private information

about the discriminee, e.g., whether it is the left injection or right injection. To do so, we reduce

a m̂atch to an oblivious conditional that uses the private tag. The pattern variable in the

“correct” branch is of course instantiated by the payload in the discriminee, while the pattern

variable in the “wrong” branch is an arbitrary value of the corresponding type, synthesized
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e −→ e′

S-Ctx
e −→ e′

E[e] −→ E[e′]

S-Fun
fn x:τ = e ∈ Σ

x −→ e

S-OADT
obliv T̂ (x:τ) = τ′ ∈ Σ

T̂ v −→ [v/x]τ′

S-App

(λx:τ⇒e) v −→ [v/x]e

S-If

if b then e1 else e2 −→ ite(b,e1,e2)

S-Mux

mux [b] v1 v2 −→ ite(b,v1,v2)

S-Match

match Ci v with C x⇒e −→ [v/x]ei

S-Proj

πb (v1,v2) −→ ite(b,v1,v2)

S-Sec

B̂#s b −→ [b]

S-OInj

ι̂b<ω̂> v̂ −→ [ιb<ω̂> v̂]

S-PsiProj

πb 〈v1,v2〉 −→ ite(b,v1,v2)

S-OMatch
v̂1 ⇐ ω̂1 v̂2 ⇐ ω̂2

m̂atch [ιb<ω̂1+̂ω̂2> v̂] with x⇒e1|x⇒e2 −→
mux [b] ite(b,[v̂/x]e1,[v̂1/x]e1)

ite(b,[v̂2/x]e2,[v̂/x]e2)

Evaluation Contexts
E ::= �×τ | ω̂×� | �+̂τ | ω̂+̂�

| let x = � in e | e � | � v | C � | T̂ �
| if � then e else e | mux � e e | mux v � e | mux v v �
| (�,e) | (v,�) | 〈�,e〉 | 〈v,�〉 | πb �
| ι̂b<�> e | ι̂b<ω̂> � | m̂atch � with x⇒e|x⇒e
| match � with C x ⇒ e | B̂#s �

Figure 6.6. Selected small-step semantics rules of λOADTΨ

from the judgment v̂ ⇐ ω̂, whose definition has been presented in  Figure 3.9  . When

evaluating a m̂atch statement whose discriminee is [inl<B̂+̂B̂×B̂> [true]], the pattern

variable in the second branch can be substituted by ([true],[true]), ([false],[true]),

or any other pair of oblivious booleans.
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Γ ` e : τ

T-Conv
Γ ` e : τ τ ≡ τ′ Γ ` τ′ :: ∗

Γ ` e : τ′

T-Abs
x : τ1, Γ ` e : τ2 Γ ` τ1 :: ∗

Γ ` λx:τ1⇒e : Πx:τ1,τ2

T-App
Γ ` e2 : Πx:τ1,τ2 Γ ` e1 : τ1

Γ ` e2 e1 : [e1/x]τ2

T-If
Γ ` e0 : B

Γ ` e1 : [true/z]τ Γ ` e2 : [false/z]τ
Γ ` if e0 then e1 else e2 : [e0/z]τ

T-Ctor
data T = C τ ∈ Σ

Γ ` e : τi

Γ ` Ci e : T

T-Match
data T = C τ ∈ Σ Γ ` e0 : T
∀i. x : τi, Γ ` ei : [Ci x/z]τ′

Γ ` match e0 with C x⇒e : [e0/z]τ′

T-Mux
Γ ` e0 : B̂ Γ ` τ :: ∗O
Γ ` e1 : τ Γ ` e2 : τ
Γ ` mux e0 e1 e2 : τ

T-PsiPair
obliv T̂ (x:τ) = τ′ ∈ Σ

Γ ` e1 : τ Γ ` e2 : T̂ e1

Γ ` 〈e1,e2〉 : ΨT̂

T-PsiProj1
obliv T̂ (x:τ) = τ′ ∈ Σ Γ ` e : ΨT̂

Γ ` π1 e : τ

T-PsiProj2
obliv T̂ (x:τ) = τ′ ∈ Σ Γ ` e : ΨT̂

Γ ` π2 e : T̂ (π1 e)

Figure 6.7. Selected typing rules of λOADTΨ

6.2.3 Type System

Similar to λOADT, types in λOADTΨ are classified by kinds which specify how protected a type

is, in addition to ensuring the types are well-formed. For example, an oblivious type, e.g.,

B̂, kinded by ∗O, can be used as branches of an oblivious conditional, but not as a public

view, which can only be kinded by ∗P. A mixed kind ∗M is used to classify function types

and types that consist of both public and oblivious components, e.g., B×B̂. A type with a

mixed kind cannot be used as a public view or in private context.

The type system of λOADTΨ is defined by a pair of typing and kinding judgments, Σ; Γ ` e : τ

and Σ; Γ ` τ :: κ, with global context Σ (which is again elided for brevity) and the standard
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Γ ` τ :: κ

K-Sub
Γ ` τ :: κ κ v κ′

Γ ` τ :: κ′

K-OADT
obliv T̂ (x:τ) = τ′ ∈ Σ Γ ` e : τ

Γ ` T̂ e :: ∗O

K-Pi
Γ ` τ1 :: ∗ x : τ1, Γ ` τ2 :: ∗

Γ ` Πx:τ1,τ2 :: ∗M

K-OSum
Γ ` τ1 :: ∗O Γ ` τ2 :: ∗O

Γ ` τ1+̂τ2 :: ∗O

K-Psi
obliv T̂ (x:τ) = τ′ ∈ Σ

Γ ` ΨT̂ :: ∗M

K-If
Γ ` e0 : B Γ ` τ1 :: ∗O Γ ` τ2 :: ∗O

Γ ` if e0 then τ1 else τ2 :: ∗O

K-Match
data T = C τ ∈ Σ Γ ` e0 : T

∀i. x : τi, Γ ` τ′
i :: ∗O

Γ ` match e0 with C x⇒τ′ :: ∗O

Figure 6.8. Selected kinding rules of λOADTΨ

Σ ` D

DT-Fun
· ` τ :: ∗ · ` e : τ

Σ ` fn x:τ = e

DT-ADT
∀i. · ` τi :: ∗P

Σ ` data T = C τ

DT-OADT
· ` τ :: ∗P x : τ ` τ′ :: ∗O

Σ ` obliv T̂ (x:τ) = τ′

Figure 6.9. λOADTΨ global definitions typing

typing context Γ.  Figure 6.7 and  Figure 6.8 presents a subset of our typing and kinding rules;

the omitted rules are identical to the ones in λOADT.

The security type system [  27 ] of λOADTΨ enforces a few key invariants. First, oblivious types

can only be constructed from oblivious types, which is enforced by the kinding rules, such as

K-OSum. Otherwise, the attacker could infer the private tag of an oblivious sum, e.g., B+̂1,

by observing its public payload. Second, oblivious operations, e.g., mux, require their subterms

to be oblivious, to avoid leaking private information via control flow channels. T-Mux, for

example, requires both branches to be typed by an oblivious type, otherwise an attacker may

infer the private condition by observing the result, as in mux [true] true false. Third,
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type-level computation is only defined for oblivious types and cannot depend on private

information. Thus, K-If and K-Match requires all branches to have oblivious kinds, and

the condition to be public. The type mux [true] 1 B̂ is ill-typed, since the “shape” of the

data reveals the private condition.

The typing rules for Ψ-types are defined similarly to the rules of standard dependent sums.

T-PsiPair introduces a dependent pair, where the type of the second component depends on

the first component. In contrast to standard dependent sum type, Ψ-type has the restriction

that the first component must be public, and the second component must be oblivious. This

condition is implicitly enforced by the side condition that T̂ is an OADT with public view

type τ.  Figure 6.9  shows the typing rules for global definitions; DT-OADT prescribes exactly

this restriction. The rules for the first and second projection of Ψ-type, T-PsiProj1 and

T-PsiProj2, are very similar to the corresponding rules for standard dependent sum types.

Observe that a Ψ-type always has mixed kind, as in K-Psi, because it consists of both public

and oblivious components.

T-Conv allows conversion between equivalent types, such as if true then B̂ else 1

and B̂. The equivalence judgment τ ≡ τ′ is defined by a set of parallel reduction rules, which

are mostly identical to the rules in λOADT. The converted type is nonetheless required to be

well-kinded.

Note that these rules cannot be used to type check retraction functions, e.g., l̂ist≤#r from

 Figure 6.4  , and for good reason: these functions reveal private information. Nevertheless, we

still want to check that these sorts of “leaky” functions have standard type safety properties,

i.e., progress and preservation. To do so, we use a version of these rules that simply omit

some security-related side-conditions about oblivious kinding: removing Γ ` τ :: ∗O from

T-Mux allows the branches of a mux to disclose the private condition, for example. The

implementation of Taypsi’s type checker uses a “mode” flag to indicate whether security-

related side-conditions should be checked. Our implementation ensures that secure functions

never use any leaky functions.
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6.2.4 Metatheory

With our addition of Ψ-types, λOADTΨ enjoys the standard type safety properties (i.e.,

progress and preservation), and, more importantly, the same security guarantees as λOADT:

Theorem 6.2.1 (Obliviousness). If e1 ≈ e2 and · ` e1 : τ1 and · ` e2 : τ2, then

1. e1 −→n e′
1 if and only if e2 −→n e′

2 for some e′
2.

2. if e1 −→n e′
1 and e2 −→n e′

2 , then e′
1 ≈ e′

2.

Here, e ≈ e′ means the two expressions are indistinguishable, i.e., they only differ in

their unobservable oblivious values, and e −→n e′ means e reduces to e′ in exactly n steps.

This obliviousness theorem provides a strong security guarantee: well-typed programs that

are indistinguishable produce traces that are pairwise indistinguishable. In other words,

an attacker cannot infer any private information even by observing the execution trace

of a program. All these results are mechanized in the Coq theorem prover, including the

formalization of the core calculus and the proofs of soundness and obliviousness theorems.

6.3 Ψ-structures and Declarative Lifting

While our secure language makes it possible to encode structured data and privacy policies,

and use them in a secure way, it does not quite achieve our main goal yet, i.e., to decouple

privacy policies and programmatic concerns. To do so, we allow the programmers to implement

the functionality of their secure application in a conventional way, that is using only the

public, nondependent fragment of Taypsi. We make this fragment explicit by requiring such

programs to have simple types, denoted by η, defined in  Figure 6.10  . For example, filter

has simple type list → Z → list. Programs of simple types are the source programs to

our lifting process that translates them to a private version against a policy, which stipulates

the public information allowed to disclose in the program input and output. This policy

on private functionality is specified by a specification type, denoted by θ, defined also in

 Figure 6.10 . For example, f̂ilter≤ has specification type Ψl̂ist≤ → Ẑ → Ψl̂ist≤. Note

that dependent types are not directly allowed in specifications, they are instead encapsulated
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Simple types
η ::= 1 | B | T | η×η | η→η

Specification types
θ ::= 1 | B | B̂ | T | ΨT̂

| θ×θ | θ→θ

bθc

b1c = 1 bBc = bB̂c = B

bTc = T where T is an ADT

bΨT̂c = T where T̂ is an OADT for T

bθ×θc = bθc×bθc bθ→θc = bθc→bθc

Figure 6.10. Simple types, specification types and erasure

in Ψ-types. Simple types and specification types are additionally required to be well-kinded

under empty local context, i.e., all ADTs and OADTs appear in them are defined.

However, not all specification types are valid with respect to a simple type. It is nonsensical

to give f̂ilter the specification type Ẑ → B̂, for example. The specification types should

still correspond to the simple types in some way: the specification type corresponding to

list should at least be “list-like”. This correspondence is formally captured in the erasure

function in  Figure 6.10  , which maps a specification type to the “underlying” simple type. For

example, Ψl̂ist≤ is erased to list. This function clearly induces an equivalence relation:

the erasure bθc is the representative of the equivalence class. We call this equivalence class a

compatibility class, and say two types are compatible if they belong to the same compatibility

class. For example, list, Ψl̂ist≤ and Ψl̂ist= are in the same compatibility class [list].

This erasure operation is straightforwardly extended to typing contexts, bΓc, by erasing every

specification type in Γ and leaving other types untouched.

Our translation transforms source programs with simple types into target programs with

the desired (compatible) specification types. As mentioned in  Section 6.1  , this lifting process

depends on a set of Ψ-structures which explain how to translate certain operations associated

with an OADT.

6.3.1 OADT Structures

Every global OADT definition T̂ must be equipped with an OADT-structure, defined

below.
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Definition 6.3.1 (OADT-structure). An OADT-structure of an OADT T̂, with public view

type τ, consists of the following (Taypsi) type and functions:

• A public type T :: ∗P, which is the public counterpart of T̂. We say T̂ is an OADT for T.

• A section function s : Πk:τ,T→T̂ k, which converts a public type to its oblivious

counterpart.

• A retraction function r : Πk:τ,T̂ k→T, which converts an oblivious type to its public

version.

• A public view function ν : T→τ, which creates a valid view of the public type.

• A binary relation 4 over values of types T and τ; v 4 k reads as v has public view k,

or k is a valid public view of v.

These operations are required to satisfy the following axioms:

• (A-O1) s and r are a valid section and retraction, i.e., r is a left-inverse for s, given a

valid public view: for any values v : T, k : τ and v̂ : T̂ k, if v 4 k and s k v −→∗ v̂,

then r k v̂ −→∗ v.

• (A-O2) the result of r always has valid public view: r k v̂ −→∗ v implies v 4 k for all

values k : τ, v̂ : T̂ k and v : T.

• (A-O3) ν produces a valid public view: ν v −→∗ k implies v 4 k, given any values

v : T and k : τ.

For example, l̂ist≤ is equipped with the OADT-structure with the public type list,

section function l̂ist≤#s, retraction function l̂ist≤#r and view function l̂ist≤#view, all of

which are shown in  Figure 6.4  . Taypsi users do not need to explicitly give the public type of

an OADT-structure, as it can be inferred from the types of the other functions. The binary

relation 4 is only used in the proof of correctness of our translation, so Taypsi users can

also elide it. In the case of l̂ist≤, 4 simply states the length of the list is no larger than the

public view.
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6.3.2 Join Structures

In order for Ψ-types to be flexibly used in the branches of secure control flow structures, our

translation must be able to find a common public view for both branches, and to convert an

OADT to use this view. To do so, an OADT can optionally be equipped with a join-structure.

Definition 6.3.2 (join-structure). A join-structure of an OADT T̂ for T, with public view

type τ, consists of the following operations:

• A binary relation v on τ, used to compare two public views.

• A join function t : τ→τ→τ, which computes an upper bound of two public views 

10
 .

• A reshape function ↪→ : Πk:τ,Πk′:τ,T̂ k→T̂ k′, which converts an OADT to one with

a different public view.

such that:

• (A-R1) v is a partial order on τ.

• (A-R2) the join function produces an upper bound: given values k1, k2 and k of type τ,

if k1tk2 −→∗ k, then k1 v k and k2 v k.

• (A-R3) the validity of public views is monotone with respect to the binary relation v:

for any values v : T, k : τ and k′ : τ, if v 4 k and k v k′, then v 4 k′.

• (A-R4) the reshape function produces equivalent value, as long as the new public view

is valid: for any values v : T, k : τ, k′ : τ, v̂ : T̂ k and v̂′ : T̂ k′, if r k v̂ −→∗ v and

v 4 k′ and ↪→ k k′ v̂ −→∗ v̂′, then r k′ v̂′ −→∗ v.

 Figure 6.4 defines the join and reshape functions l̂ist≤#join and l̂ist≤#reshape. The

partial order for this join structure is simply the total order on integers, and the join is simply

the maximum of the two numbers. Not all OADTs have a sensible join-structure: oblivious

lists using their exact length as a public view cannot be combined if they have different
10

 ↑ It is a bit misleading to call the operation t “join”, as it only computes an upper bound, not necessarily
the lowest one. However, it should compute a supremum for performance reasons: intuitively, larger public
view means more padding.

152



&θB îte

θ ∈ {1, B̂ }
&θB λb̂ x y⇒mux b̂ x y

&θ1 B îte1 &θ2 B îte2

&θ1×θ2 B λb̂ x y⇒(îte1 b̂ (π1 x) (π1 y),îte2 b̂ (π2 x) (π2 y))

&θ2 B îte2

&θ1→θ2 B λb̂ x y⇒λz⇒îte2 b̂ (x z) (y z)

(T̂,t, ↪→) ∈ St

&ΨT̂B
λb̂ x y⇒let k = π1 x t π1 y in

〈k,mux b̂ ( ↪→ (π1 x) k (π2 x))
( ↪→ (π1 y) k (π2 y))〉

Figure 6.11. Mergeability

lengths. If such lists are the branches of an oblivious conditional, lifting will either fail or

coerce both to an OADT with a join-structure.

Join structures induce a mergeability relation, defined in  Figure 6.11  , that can be used to

decide if a specification type can be used in oblivious conditionals. We say θ is mergeable

if &θB îte, with witness îte of type B̂→θ→θ→θ. We will write &θ when we do not care

about the witness. This witness can be thought of as a generalized, drop-in replacement of

mux: we simply translate mux to the derived îte if the result type is mergeable. The case

of Ψ-type captures this intuition: we first join the public views, and reshape all branches

to this common public view, before we select the correct one privately using mux. This rule

looks up the necessary methods from the context of join structures St. Other cases are

straightforward: we simply fall back to mux for primitive types, and the derivation for product

and function types are done congruently.

6.3.3 Introduction and Elimination Structures

An ADT is manipulated by its introduction and elimination forms. To successfully lift

a public program using ADTs, we need structures to explain how the primitive operations
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of its ADTs are handled in their OADT counterparts. Thus, an OADT T̂ can optionally

be equipped with an introduction-structure (intro-structure) and an elimination-structure

(elim-structure), defined below. These structures are optional because some programs only

consume ADTs, without constructing any new ADT values (and vice versa): a function that

checks membership in a list only requires an elim-structure on lists, for example. Intuitively,

the axioms of these structures require the introduction and elimination methods of an OADT

to behave like those of the corresponding ADT. This is formalized using a pair of logical

refinement relations on values (VnJ·K) and expressions (EnJ·K); these relations are formally

defined in  Section 6.3.6 .

Definition 6.3.3 (intro-structure). An intro-structure of an OADT T̂ for ADT T, with global

definition data T = C η, consists of a set of functions Ĉi, each corresponding to a constructor

Ci. The type of Ĉi is θi→ΨT̂, where bθic = ηi (note that DT-ADT guarantees that ηi is a

simple type). The particular θi an intro-structure uses is determined by the author of that

structure.

Each Ĉi is required to logically refine the corresponding constructor (A-I1): given any

values v : bθc and v′ : θ, if (v,v′) ∈ VnJθK, then (Ci v, Ĉi v′) ∈ EnJΨT̂K.

Definition 6.3.4 (elim-structure). An elim-structure of an OADT T̂ for ADT T, with global

definition data T = C η, consists of a family of functions m̂atchα, indexed by the possible

return types. The type of m̂atchα is ΨT̂→(θ→α)→α, where bθic = ηi for each θi in the

function arguments corresponding to alternatives.

Each m̂atchα is required to logically refine the pattern matching expression, specialized

with ADT T and return type α. The sole axiom of this structure (A-E1) only consid-

ers return type α being a specification type: given values vi : ηi, 〈k,v̂〉 : T̂ k, λx⇒ei :

bθic→bαc and λx⇒e′
i : θi→α, if r k v̂ −→∗ Ci vi and (λx⇒ei, λx⇒e′

i) ∈ VnJθi→αK then

([vi/x]ei, m̂atch 〈k,v̂〉 (λx⇒e′)) ∈ EnJαK.

The types of the oblivious introduction and elimination forms in these structures are

only required to be compatible with the public counterparts. The programmers can choose

which specific OADTs to use according to their desired privacy policy.  Figure 6.4  shows the

constructors and pattern matching functions for l̂ist≤.
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θ� θ′ B ↑

θ� θB λx⇒x B� B̂B λx⇒B̂#s x

(T̂,T, s, r, ν,4) ∈ Sω
T� ΨT̂B λx⇒〈ν x,s (ν x) x〉

↑ : ΨT̂→ΨT̂′ ∈ S↑

ΨT̂� ΨT̂′ B ↑
θ1 � θ′

1 B ↑1 θ2 � θ′
2 B ↑2

θ1×θ2 � θ′
1×θ′

2 B λx⇒(↑1(π1 x),↑2(π2 x))

θ′
1 � θ1 B ↑1 θ2 � θ′

2 B ↑2

θ1→θ2 � θ′
1→θ′

2 B λx⇒λy⇒↑2(x (↑1y))

Figure 6.12. Coercion

The elim-structure of an OADT consists of a family of destructors, whose return type

α does not necessarily range over all types. For example, m̂atchα of l̂ist≤, l̂ist≤#match

in  Figure 6.4  , requires α to be a mergeable type, due to the use of m̂atch, which imposes a

restriction similarly to mux. Such constraints on α are automatically inferred and enforced.

6.3.4 Coercion Structures

As discussed in  Section 6.1  , we may need to convert an oblivious type to another, either

due to a mismatch from input to output, or due to its lack of certain structures. For example,

l̂ist= does not have join structure, so if the branches of an oblivious conditional has type

Ψl̂ist=, they should be coerced to Ψl̂ist≤, when such a coercion is available.

Two compatible OADTs may form a coercion-structure, shown below.

Definition 6.3.5 (coercion-structure). A coercion-structure of a pair of compatible OADTs

T̂ and T̂′ for T, with public view type τ and τ′ respectively, consists of a coercion function ↑

of type ΨT̂→ΨT̂′.

The coercion should produce an equivalent value (A-C1): given values v : T, 〈k,v̂〉 : ΨT̂

and 〈k′,v̂′〉 : ΨT̂′, if r k v̂ −→∗ v and ↑〈k,v̂〉 −→∗ 〈k′,v̂′〉, then r k′ v̂′ −→∗ v.

This structure only defines the coercion between two Ψ-types.  Figure 6.12  generalizes

the coercion relation to any (compatible) specification types. We say θ is coercible to θ′ if

θ� θ′ B ↑, with witness ↑ of type θ→θ′. We may write θ� θ′ when we do not care about
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the witness. The rules of this relation are straightforward. The context of coercion structures

S↑ and the context of OADT structures Sω are used to look up the necessary methods in the

corresponding rules. The rule for coercing a function type is contravariant. Note that we can

always coerce a public type to an OADT by running the section function, and the public

view can be selected by the view function in the OADT structure.

6.3.5 Declarative Lifting

With these Ψ-structures, we define a declarative lifting relation, which describes what

the lifting procedure is allowed to derive at a high level. This lifting relation is given by the

judgment S;L; Σ; Γ ` e : θ B ė. It is read as the expression e of type bθc is lifted to the

expression ė of target type θ, under various contexts. The Ψ-structure context S consists of

the set of OADT-structures (Sω), join-structures (St), intro-structures (SI), elim-structures

(SE) and coercion-structures (S↑), respectively. The global definition context Σ is the same as

the one used in the typing relation. The local context Γ is also similar to the one in the typing

relation, but it keeps track of the target types of local variables instead of source types. Finally,

the lifting context L consists of entries of the form x : θ B ẋ, which associates the global

function x of type bθc with a generated function ẋ of the target type θ. A single global function

may have multiple target types, i.e., multiple private versions, either specified by the users or

by the callsites. For example, L may contain filter : Ψl̂ist≤ → Ẑ → Ψl̂ist≤ B f̂ilter1

and filter : Ψl̂ist= → Ẑ → Ψl̂ist≤ B f̂ilter2.

 Figure 6.13  shows a selection of rules of the declarative lifting relation (the full rules

are in  Appendix B.1  ). We elide most contexts as they are fixed, and simply write Γ `

e : θ B ė for brevity. Most rules are simply congruences and similar to typing rules. L-

Fun outsources the lifting of a function call to the lifting context. L-If2 handles the

case when the condition is lifted to an oblivious boolean by delegating the translation to

the mergeability relation. Similarly, L-Ctor2 and L-Match2 query the contexts of the

intro-structures and elim-structures, and use the corresponding instances as the drop-in

replacement, when we are constructing or destructing Ψ-types. Lastly, L-Coerce coerces an

expression nondeterministically using the coercion relation.
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Γ ` e : θB ė

L-Lit

Γ ` b : BB b

L-Var
x : θ ∈ Γ

Γ ` x : θB x

L-Fun
x : θB ẋ ∈ L
Γ ` x : θB ẋ

L-Abs
x : θ1, Γ ` e : θ2 B ė

Γ ` λx:bθ1c⇒e : θ1→θ2 B λx:θ1⇒ė

L-App
Γ ` e2 : θ1→θ2 B ė2 Γ ` e1 : θ1 B ė1

Γ ` e2 e1 : θ2 B ė2 ė1

L-Let
Γ ` e1 : θ1 B ė1 x : θ1, Γ ` e2 : θ2 B ė2

Γ ` let x = e1 in e2 : θ2 B let x = ė1 in ė2

L-If1
Γ ` e0 : BB ė0

Γ ` e1 : θB ė1 Γ ` e2 : θB ė2

Γ ` if e0 then e1 else e2 : θB if ė0 then ė1 else ė2

L-If2
Γ ` e0 : B̂B ė0 &θB îte

Γ ` e1 : θB ė1 Γ ` e2 : θB ė2

Γ ` if e0 then e1 else e2 : θB îte ė0 ė1 ė2

L-Ctor1
data T = C η ∈ Σ

Γ ` e : ηi B ė
Γ ` Ci e : T B Ci ė

L-Ctor2
Ĉi : θi→ΨT̂ ∈ SI

Γ ` e : θi B ė
Γ ` Ci e : ΨT̂B Ĉi ė

L-Match1
data T = C η ∈ Σ

Γ ` e0 : T B ė0 ∀i. x : ηi, Γ ` ei : θ′ B ėi

Γ ` match e0 with C x⇒e : θ′ B match ė0 with C x⇒ė

L-Match2

m̂atch : ΨT̂→(θ→θ′)→θ′ ∈ SE Γ ` e0 : ΨT̂B ė0 ∀i. x : θi, Γ ` ei : θ′ B ėi

Γ ` match e0 with C x⇒e : θ′ B m̂atch ė0 (λx:θ⇒ė)

L-Coerce
Γ ` e : θB ė θ� θ′ B ↑

Γ ` e : θ′ B ↑ė

Figure 6.13. Selected declarative lifting rules
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This lifting relation in  Figure 6.13  only considers one expression. In practice, the users

specify a set of functions and their target types to lift. The result of our lifting procedure is a

lifting context L which maps these functions and target types to the corresponding generated

functions, as well as any other functions and the inferred target types that these functions

depend on. The global context Σ is also extended with the definitions of the generated

functions. To make this more clear, we say a lifting context is derivable, denoted by ` L,

if and only if, for any x : θ B ẋ ∈ L, fn x:bθc = e ∈ Σ and fn ẋ:θ = ė ∈ Σ for some e

and ė, such that S;L; Σ; · ` e : θB ė. In other words, any definitions of the lifted functions

in L can be derived from the lifting relation in  Figure 6.13 . Note that the derivation of a

function definition is under a lifting context with possibly an entry of this function itself.

This is similar to the role of global context in type checking, as Taypsi supports mutually

recursive functions. The goal of our algorithm (  Section 6.4 ) is then to find such a derivable

lifting context that includes the user-specified liftings.

6.3.6 Logical Refinement

The correctness of the lifting procedure is framed as a logical refinement between ex-

pressions of specification types and those of simple types; this relationship is defined as a

step-indexed logical relation [ 61 ]. As is common, this relation is defined via a pair of set-valued

type denotations: a value interpretation VnJθK and an expression interpretation EnJθK. We

say an expression e′ of type θ refines e of type bθc (within n steps) if (e, e′) ∈ EnJθK. In other

words, e′ preserves the behavior of e, in that if e′ terminates at a value, e must terminate at

an equivalent value. The equivalence between values is dictated by VnJθK.

 Figure 6.14  shows the complete definition of the logical relation. All pairs in the relations

must be closed and well-typed, i.e., their interpretations have the forms:

VnJθK = { (v,v′) | · ` v : bθc ∧ · ` v′ : θ ∧ . . . }

EnJθK = { (e, e′) | · ` e : bθc ∧ · ` e′ : θ ∧ . . . }

For brevity, we leave this requirement implicit in  Figure 6.14 .
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VnJθK

VnJ1K = VnJBK = VnJTK = { (v,v′) | 0 < n =⇒ v = v′ }

VnJB̂K = { (b, [b′]) | 0 < n =⇒ b = b′ }

VnJΨT̂K = { (v, 〈k,v̂〉) | 0 < n =⇒ r k v̂ −→∗ v }

VnJθ1×θ2K = { ((v1,v2),(v′
1,v′

2)) | (v1,v′
1) ∈ VnJθ1K ∧ (v2,v′

2) ∈ VnJθ2K }

VnJθ1→θ2K =
{

(λx:bθ1c⇒e, λx:θ1⇒e′)
∣∣∣∣∣ ∀i < n. ∀(v,v′) ∈ ViJθ1K.

([v/x]e, [v′/x]e′) ∈ EiJθ2K

}

EnJθK

EnJθK =
{

(e, e′)
∣∣∣ ∀i < n. ∀v′. e′ −→i v′ =⇒ ∃v. e −→∗ v ∧ (v,v′) ∈ Vn−iJθK

}
Figure 6.14. A logical relation for refinement

The definitions are mostly standard. The most interesting case is the value interpretation

of Ψ-type: we say the pair of a public view and an oblivious value of an OADT is equivalent

to a public value of the corresponding ADT when the oblivious value can be retracted to

the public value. Intuitively, an encrypted value is equivalent to the value it decrypts to.

The base cases of the value interpretation are also guarded by the condition that we still

have steps left, i.e., greater than 0. This requirement maintains the pleasant property that

the interpretations V0JθK and E0JθK are total relations on closed values and expressions,

respectively, of type θ. The proof also uses a straightforward interpretation of typing context,

GnJΓK, whose definition is in  Appendix B.1 .

This relation also gives rise to a semantic characterization of the lifting context. We say a

lifting context is n-valid, denoted by �n L, if and only if, for any x : θB ẋ ∈ L, (x, ẋ) ∈ EnJθK.

If �n L for any n, we say L is valid, denoted by � L. The validity is essentially a semantic

correctness of L.
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6.3.7 Metatheory of Lifting

The first key property of the lifting relation is well-typedness, which guarantees the

security of translated programs, thanks to  Theorem 6.2.1 .

Theorem 6.3.1 (Regularity of declarative lifting). Suppose L is well-typed and S;L; Σ; Γ `

e : θB ė. We have Σ; bΓc ` e : bθc and Σ; Γ ` ė : θ.

Our lifting relation ensures that lifted expressions refine source expressions in fewer than

n steps, as long as every lifted program in L is also semantically correct in fewer than n steps.

As is common in logical relation proofs, this proof requires a more general theorem about

open terms.

Theorem 6.3.2 (Correctness of declarative lifting of closed terms). Suppose S;L; Σ; · ` e :

θB ė and �n L. We have (e, ė) ∈ EnJθK.

Finally,  Theorem 6.3.3  provides a strong result of the correctness of our translation. Any

lifting context that is derived using the rules of  Figure 6.13  is semantically correct. In other

words, if every pair of source program and lifted program in L are in our lifting relation, they

also satisfy our refinement criteria.

Theorem 6.3.3 (Correctness of declarative lifting). ` L implies � L.

Our notion of logical refinement only provides partial correctness guarantees, as can be seen

in the definition of EnJ·K. As a result, the lifting relation does not guarantee equi-termination:

it is possible that a lifted program will diverge when the source program terminates. This

can occur when an if is replaced by a mux: since the latter fully executes both branches,

this effectively changes the semantics of a conditional from a lazy evaluation strategy to an

eager strategy. Using a public value to bound the recursion depth in order to guarantee

termination is a common practice in data-oblivious computation, for the reasons discussed in

 Section 6.1 . While the public view of an OADT naturally serves as a measure in many cases,

including all of the case studies and benchmarks in our evaluation, in theory it is possible for

a user to provide a policy to a function that results in a nonterminating lifted version. In
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this situation, users must either specify a different policy, or rewrite the functions to recurse

on a different argument, e.g., a fuel value.

All the proofs in this section are available in  Appendix B.3 .

6.4 Algorithmic Lifting

goals from %lift

functions to lift

lifted functions with

macros & type var.

constraints over

type var.

type assignments

lifted functions

with macros

well-typed & correct

lifted functions

dependency analysis

lifting

constraint solving

instantiation

elaboration

Figure 6.15. Translation pipeline

 Figure 6.15  presents the overall workflow

of our lifting algorithm. This algorithm starts

with a set of goals, i.e., pairs of source func-

tions tagged with the %lift keywords and their

desired specification types. We then run our

lifting algorithm on all the functions in these

goals, as well as any functions they depend

on, transforming each of these functions to an

oblivious version parameterized by typed macros

and type variables, along with a set of con-

straints over these type variables. After solving

the constraints, we obtain a set of type assign-

ments for each function. Note that a single

function may have multiple type assignments,

one for each occurrence in a goal and callsite.

For example, filter may have the type assign-

ment for the goal Ψl̂ist≤ → Ẑ → Ψl̂ist≤

generated by %lift, and the assignment for

Ψl̂ist≤ → Z → Ψl̂ist≤ generated by the

call in filter5 from  Section 6.1 . Finally, we

generate the private versions of all the lifted

functions by instantiating their type variables and expanding away any macros. The lifting

context from the last section is simply these lifted functions and their generated private

versions.
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The lifting algorithm is defined using the judgment Σ; Γ ` e : η ∼ X B ė | C. It reads as

the source expression e of type η is lifted to the target expression ė whose type is a type

variable X as a placeholder for the specification type, and generates constraints C. The source

expression e is required to be in administrative normal form (ANF) [  51 ], which is guaranteed

by our type checker. In particular, type annotations are added to let-bindings, and the body

of every let is either another let or a variable. Importantly, this means the last expression

of a sequence of let must be a variable. The output of this algorithm is an expression

ė containing macros (which will be discussed shortly), and the constraints C. Unlike the

declarative rules, this algorithm keeps track of the source type η, which is used to restrict

the range of the type variables. Consequently, every entry of the typing context Γ has the

form x : η ∼ X, meaning that local variable x has type η in the source program and type X

in the target program. For example, after the lifting algorithm has processed the function

arguments of filter in  Figure 6.1  , the typing context contains entries xs : list ∼ X1 and

y : Z ∼ X2, with freshly generated type variables X1 and X2.

The typed macros, defined in  Figure 6.16  , are an essential part of the output of the lifting

algorithm, and permit a form of ad-hoc polymorphism, that allows the algorithm to cleanly

separate constraint solving from program generation. These macros take types as parameters

and elaborate to expressions, under the contexts S, L and Σ implicitly. These macros are

effectively thin “wrappers” of their corresponding language constructs and the previously

defined relations. The conditional macro %ite, for example, corresponds to the if expression,

but the condition may be oblivious. The constructor macro %C is a “smart” constructor

that may construct a Ψ-type. The pattern matching macro %match is similar to %C but for

eliminating a type compatible with an ADT. Lastly, %↑ and %x is simply a direct wrapper of

the mergeable relation and the lifting context L, respectively. Note that the derivation of

these macro are completely determined by the type parameters.

 Figure 6.17  defines the constraints used in the algorithm, where θ+ is the specification

types extended with type variables. The constraint X ∈ [η] means type variable X belongs

to the compatibility class of η. In other words, bXc = η. Each macro is accompanied by a

constraint on its type parameters. These constraints mean that the corresponding macros are

resolvable. More formally, this means they can elaborate to some expressions according to the
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%ite(θ0,θ;e0,e1,e2) B ė

%ite(B,θ;e0,e1,e2) B if e0 then e1 else e2

&θB îte

%ite(B̂,θ;e0,e1,e2) B îte e0 e1 e2

%C(θ,θ′;e) B ė

data T = C η ∈ Σ
%Ci(ηi,T;e) B Ci e

Ĉi : θi→ΨT̂ ∈ SI

%Ci(θi,ΨT̂;e) B Ĉi e

%match(θ0,θ,θ′;e0,e)B ė

data T = C η ∈ Σ
%match(T,η,θ′;e0,e)B match e0 with C x⇒e

m̂atch : ΨT̂→(θ→θ′)→θ′ ∈ SE

%match(ΨT̂,θ,θ′;e0,e)B m̂atch e0 (λx:θ⇒e)

%↑(θ,θ′;e) B ė

θ� θ′ B ↑
%↑(θ,θ′;e) B ↑e

%x(θ) B ė

x : θB ẋ ∈ L
%x(θ) B ẋ

Figure 6.16. Typed macros

Constraints
c ::= X ∈ [η] | θ+ = θ+

| %ite(θ+,θ+) | %C(θ+,θ+) | %match(θ+,θ+,θ+) | %↑(θ+,θ+) | %x(θ+)

Figure 6.17. Constraints

rules in  Figure 6.16 for any expression arguments. As a result, after solving all constraints and

concretizing the type variables, all macros in the lifted expression ė can be fully elaborated

away.

 Figure 6.18  shows a selection of lifting algorithm rules (the full rules are in  Appendix B.2 ).

Coercions only happen when we lift variables, as in A-Var. This works because the source

program is in ANF, so each expression is bound to a variable which has the opportunity

to get coerced. For example, the argument to a function or constructor, in A-App and

A-Ctor, is always a variable in ANF, and recursively lifting it allows the application of
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Γ ` e : η ∼ X B ė | C

A-Lit

Γ ` b : B ∼ X B b | X = B

A-Var
x : η ∼ X ∈ Γ

Γ ` x : η ∼ X′ B %↑(X,X′;x) | %↑(X,X′)

A-Fun
fn x:η = e ∈ Σ

Γ ` x : η ∼ X B %x(X) | %x(X)

A-Abs
X1,X2 fresh x : η1 ∼ X1, Γ ` e : η2 ∼ X2 B ė | C

Γ ` λx:η1⇒e : η1→η2 ∼ X B λx:X1⇒ė | X1 ∈ [η1],X2 ∈ [η2],X = X1→X2, C

A-App
X1 fresh x2 : η1→η2 ∼ X ∈ Γ Γ ` x1 : η1 ∼ X1 B ė1 | C

Γ ` x2 x1 : η2 ∼ X2 B x2 ė1 | X1 ∈ [η1],X = X1→X2, C

A-Let
X1 fresh Γ ` e1 : η1 ∼ X1 B ė1 | C1 x : η1 ∼ X1, Γ ` e2 : η2 ∼ X2 B ė2 | C2

Γ ` let x:η1 = e1 in e2 : η2 ∼ X2 B let x:X1 = ė1 in ė2 | X1 ∈ [η1], C1, C2

A-If
x0 : B ∼ X0 ∈ Γ Γ ` e1 : η ∼ X B ė1 | C1 Γ ` e2 : η ∼ X B ė2 | C2

Γ ` if x0 then e1 else e2 : η ∼ X B %ite(X0,X;x0,ė1,ė2) | %ite(X0,X), C1, C2

A-Ctor
data T = C η ∈ Σ Xi fresh Γ ` x : ηi ∼ Xi B ė | C

Γ ` Ci x : T ∼ X B %Ci(Xi,X;ė) | Xi ∈ [ηi],%Ci(Xi,X), C

A-Match
data T = C η ∈ Σ

X fresh x0 : T ∼ X0 ∈ Γ ∀i. x : ηi ∼ Xi, Γ ` ei : η′ ∼ X′ B ėi | Ci

Γ ` match x0 with C x⇒e : η′ ∼ X′ B %match(X0,X,X′;x0,ė)
| X ∈ [η],%match(X0,X,X′), C

Figure 6.18. Selected algorithmic lifting rules
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A-Var. On the other hand, the top-level program is always in let-binding form, whose last

expression is always a variable too, allowing coercion of the whole program. However, not all

variables are subject to coercions: the function x2 in A-App, the condition x0 in A-If and

the discriminee x0 in A-Match are kept as they are, for example. Coercing these variables

would be unnecessary and undesirable. For example, coercing the condition in a conditional

only makes the generated program more expensive: there is no reason to coerce from B to B̂,

and use mux instead of if. Another key invariant we enforce in our algorithmic rules is that

every fresh variable is “guarded” by a compatibility class constraint. For example, in A-Abs,

the freshly generated variables X1 and X2 belong to the classes η1 and η2, respectively. This

constraint ensures that every type variable can be finitely enumerated, as every compatibility

class is a finite set, bounded by the number of available OADTs. As a result, constraint

solving in our context is decidable. Finally, if an expression is translated to a macro, a

corresponding constraint is added to ensure this macro is resolvable.

We use the judgment S;L; Σ; σ � C to mean the assignment σ satisfies a set of constraints

C, under the context of Ψ-structure, lifting context and global definition context. The

constraints generated by our lifting algorithm use type variables X as placeholders for the

target type of the function being lifted. To solve a goal with a particular target type θ, we

add a constraint to C that equates the placeholder with the stipulated type, i.e., X = θ. Our

constraint solver then attempts to find type assignments that satisfy the constraints in C;

the resulting assignment is used to generate private versions of all the functions in the set of

goals, as well as the accompanying lifting context.

6.4.1 Constraint Solving

At a high level, our solver reduces all constraints, except for function call constraints

(%x), to quantifier-free formulas in a finite domain theory, which can be efficiently solved

using an off-the-shelf solver. Function call constraints are recursively solved once their type

arguments have been concretized by discharging the other constraints. When a function

call constraint is unsatisfiable, we add a new refutation constraint and invoke the solver

again to find a new instantiation of type parameters. As an example of this process, in
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order to ascribe filter the type Ψl̂ist= → Ẑ → Ψl̂ist≤, we first add the constraint

X = Ψl̂ist= → Ẑ → Ψl̂ist≤ to the constraints generated by the lifting algorithm · `

. . . : list → Z → list ∼ X B ė | C. Solving the other constraints may concretize the

type variable of function call constraint %filter(X), i.e., the type of the recursive call to

filter, to %filter(Ψl̂ist= → Ẑ → Ψl̂ist≤). Recursively solving this subgoal assuming

the original goal is solved, i.e., extending the lifting context with the original goal, results

in immediate success, as the subgoal is simply in the lifting context. On the other hand,

if the type of the recursive call is instantiated as %filter(Ψl̂ist= → Ẑ → Ψl̂ist=),

the same constraints generated by lifting filter are solved, with an additional constraint

X = Ψl̂ist= → Ẑ → Ψl̂ist=. However, this set of constraints is unsatisfiable, as l̂ist=

has no join structure, so we add a refutation constraint to the context that forces the solver

to not generate this assignment again. In general, the type of the recursive call to filter

may be concretized to any types compatible with list → Z → list. The number of such

compatible types is bounded, as the number of arguments of this function and the number

of OADTs are themselves bounded. The function filter has 3× 2× 3 = 18 possible type

assignments. In the worst case scenario, the algorithm eventually terminates after exhausting

all 18 combinations.

More formally, the constraint solving algorithm uses two maps. F maps function names

to the generated constraints with a type variable X as the placeholder for the potential

specification type, resulting from the lifting algorithm: every entry of F has the form

f 7→ (X, C, C ′). The generated constraints are partitioned into C, which consists of all

constraints except for function call constraints, and C ′, which consists of the functional call

constraints (%x). Initially, F consists of all functions collected from the keyword %lift and

the functions they depend on. M maps a pair of function name f and its target type θ, called

a goal, to a type assignment σ: each entry has the form (f, θ) 7→ σ. InitiallyM is empty.

The constraint solving algorithm takes an initial F andM, and a goal, and returns an

updatedM that consists of the type assignments for the goal and all the subgoals this goal

depends on. The constraint solver is applied to all goals from %lift, and the finalM is the

union of all returnedM. WithM, we can generate functions from the type assignments for

each goal. The global context is subsequently extended by these generated functions, and
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Inputs: Constraint map F , type assignment mapM, function name f and target type θ

Output: Updated type assignment mapM′

function solve(F ,M, f, θ)
if (f, θ) 7→ σ ∈M then return M
(X, C, C ′)← F(f)
φ← lower(X = θ, C)
if QF-FD-solve(φ) returns unsat then fail
else if QF-FD-solve(φ) returns sat with σ then

if there is a %g(θ′) ∈ C ′ s.t. solve(F ,M[(f, θ) 7→ σ], g, σ(θ′)) fails then
solve(F [f 7→ (X, C ∪ { θ′ 6= σ(θ′) } , C ′)],M, f, θ)

else
{ (f, θ) 7→ σ } ∪ ⋃ solve(F ,M[(f, θ) 7→ σ], g, σ(θ′)) for all %g(θ′) ∈ C ′

Figure 6.19. Constraint solving algorithm

the final lifting context is constructed by pairing each goal with its corresponding generated

function.

 Figure 6.19  presents a naive algorithm for constraint solving. The subroutine Lower

is used to reduce all constraints except for function call constraints to formulas in the

quantifier-free finite domain theory (QF_FD), then an off-the-shelf solver (Z3 [  40 ]) is used to

solve them. Lower first decomposes all compatibility class constraints, i.e., X ∈ [η], into

atomic classes. For example, X ∈ [list → Z] is decomposed into X1 ∈ [list] and X2 ∈ [Z],

with X substituted by X1→X2 in all other constraints. Then the newly generated compatibility

class constraints can be reduced to a disjunction of all possible specification types in this

class. For example, X1 ∈ [list] reduces to X1 = list∨X1 = Ψl̂ist≤∨X1 = Ψl̂ist=, if l̂ist≤

and l̂ist= are the only OADTs for list. After this step, all type variables are compatible

with an atomic simple type, so we can also decompose other constraints into a set of base

cases according to the rules of their relations. Note that while mergeability is not one of

the constraints generated by the lifting algorithm, such constraints still arise from %ite

and %match. When multiple assignments are valid for a particular type variable, we prefer

the “cheaper”, i.e., more permissive, solution. For example, we prefer public type list

over OADTs if possible, and prefer l̂ist= over l̂ist≤. We encode these preferences as soft

constraints, and assign a bigger penalty to more restrictive types. The penalty is inferred by
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analyzing the coercion relations: a more permissive type can be coerced to a more restrictive

type but not the other way around, because the more restrictive type hides more information.

Once other constraints are solved, the type parameters of function call constraints are

concretized. The algorithm is then recursively applied to this subgoal, i.e., the functional call

paired with the concretized type, assuming the original goal is solved by extendingM with

the original goal and its type assignments. This handles potential (mutual) recursion. If a

subgoal fails, its target type will be added as a refutation to the corresponding constraints,

and backtrack.

It is easy to see that this algorithm terminates: every recursive call to solve either adds

a refutation that reduces the search space of the non-function-call constraints, or extends

M which is finitely bounded by the number of functions and the number of OADTs, hence

reducing the search space of function-call constraints.

Our implementation maintains a more sophisticated state of M and applies several

optimizations to reduce the number of calls to the external solver. We also exploit the

incremental solver of Z3 to help with performance.

6.4.2 Metatheory of Algorithmic Lifting

The lifting algorithm enjoys a soundness theorem with respect to the declarative lifting

relation. As a result, our algorithm inherits the well-typedness and correctness properties of

the declarative version. The statement of this theorem follows how the algorithm is used: if

the generated constraints, equating the function type variable with the specification type, are

satisfiable by the type assignment σ, instantiating the lifted expression with σ and elaborating

the macros results in a target expression that is valid under the declarative lifting relation:

Theorem 6.4.1 (Soundness of algorithmic lifting). Suppose Σ; · ` e : η ∼ XB ė | C. Given a

specification type θ, if S;L; Σ; σ � X = θ, C, then σ(ė) elaborates to an expression ė′, such

that S;L; Σ; · ` e : θB ė′.

The proof of this theorem is available in  Appendix B.3 .
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6.5 Implementation

Our compilation pipeline takes as input a source program, including any OADTs, Ψ-

structures, and macros (e.g., %lift), in the public fragment of Taypsi and privacy policies

(i.e., security-type signatures) for all target functions. After typing the source program using a

bidirectional type checker, our lifting pass generates secure versions of the specified functions

and their dependencies, using Z3 [  40 ] as its constraint solver. The resulting Taypsi functions

are translated into Oil ( Section 5.3 ), an ML-style functional language equipped with oblivious

arrays and secure array operations: OADTs are converted to serialized versions which are

stored in secure arrays, and all oblivious operations are translated into secure array operations.

After applying some optimizations, our pipeline outputs an OCaml library providing secure

implementations of all the specified functions, including section and retraction functions for

encrypting private data and decrypting the results of a joint computation. After linking

this library to a driver that provides the necessary cryptographic primitives (i.e., secure

integer arithmetic), programmers can build secure MPC applications on top of this API. The

evaluation in  Section 6.6  uses a driver implemented using the popular open-source EMP

toolkit [ 52 ].

6.5.1 Optimizations

Our implementation of Taypsi implements three optimizations which further improve

the performance of the programs it generates.

The smart array optimization supports zero-cost array slicing and concatenation, and

eliminates redundant operations over the serialized representation of oblivious data. To

reduce the overhead of constructing and destructing oblivious data, our implementation

does not create new arrays when performing array slicing and concatenation. It allows

the results to follow the original structure in Taypsi for as long as possible, until a mux

forces them to be flattened. Conceptually, the smart arrays delay these operations, per-

forming them all at once when flattening is required. On the other hand, to eliminate

the redundant cryptographic operations, one observation underlying this optimization is

that evaluating a mux whose branches are encrypted versions of publicly-known values is
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unnecessary: mux [b] (B̂#s true) (B̂#s false) is equivalent to [b], for example. This

situation frequently occurs in map-like functions, where the constructor used in each branch

of a function is publicly known. Under the hood, the serialized encoding of the result of

map uses a boolean tag to indicate which constructor was used to build it, i.e., Nil or Cons;

this boolean is determined by the tag of the input list, e.g., mux [tag] [true] [false].

Of course, the tag used in each branch is publicly known: map always returns Nil if the

input list is empty, and returns a Cons otherwise. Thus, we can safely reuse the [tag] of the

input list to label the result of map, for similar reasons as the previous example. The smart

array optimization exploits this observation by marking when section functions are applied

to public values instead of, for example, immediately evaluating B̂#s true to the encrypted

value [true]. Then, when performing a mux, the smart array first checks if both branches are

“fake” private values, safely reducing the mux to its private condition if so, without actually

performing any cryptographic operations. In addition, we keep track of whether a value

is “arbitrary”, e.g., used for padding. We can simply return a branch of a mux if the other

branch is an arbitrary value.

The reshape guard optimization instruments reshape instances to first check if the public

views of two private values are identical, omitting the reshape operation if so. Reshaping

OADTs to the same public view is a common scenario, especially when the partial order

defined on a public view type is a total order. For example, the join of the public views of

l̂ist≤ is the maximum one, which is always one of these public views. Therefore, reshaping

the private lists of this maximum length should not require any additional work.

The memoization optimization caches the sizes of the private representation of data in

order to avoid recalculating this information, which is needed to create and slice oblivious

arrays. Similar to Taype, invoking these size computations in a recursive function can

potentially introduce asymptotic slowdown. Taype eliminates these repeated computations

using a tupling optimization that merges the size functions with the section and retraction

functions. However, in Taypsi, this size calculation can happen in any arbitrary private

functions, in addition to section and retraction functions, making tupling optimization

brittle to apply. Instead, Taypsi memoizes the map from public views to the sizes of the

private representation to avoid recalculation. If an OADT uses integer public view, then the
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memoization technique is standard using a hash table for retrieving the calculated sizes. On

the other hand, it is not efficient to use ADT public views as keys of a hash table. We instead

automatically embed the sizes within a public view type itself, and rewrite its introduction

and elimination forms and all Taypsi programs that use them accordingly. For example, a

Peano number public view peano is augmented as follows.

data peano = peano_memo × N
data peano_memo = Zero | Succ peano

Whenever we need to calculate the size of a private representation using this public view

peano, we simply project out its size (of type N), without recalculating the size function.

6.6 Evaluation

Our evaluation considers the following research questions:

RQ1 How does the performance of Taypsi’s transformation-based approach compare to the

dynamic enforcement strategy of Taype?

RQ2 What is the compilation overhead of Taypsi’s translation strategy?

6.6.1 Microbenchmark Performance

To answer RQ1, we have evaluated the performance of a set of microbenchmarks compiled

with both Taypsi and Taype. Both approaches are equipped with optimizations that are

unique to their enforcement strategies: Taypsi’s reshape guard optimization is not applicable

to Taype, and Taype features an early tape optimization that does not make sense for

Taypsi. 

11
 Our evaluation also includes a version of Taype that implements Taypsi’s smart

array optimization (Taype-SA), in order to provide a comparison of the two approaches at

their full potential.

Our benchmarks are a superset of the benchmarks from  Section 5.5  .  Figure 6.20  presents

the experimental results. 

12
 These experiments fix the public views of private lists and trees

11
 ↑ Taype also implements a tupling optimization, but this is analogous to Taypsi’s memoization optimization.

12
 ↑ All results are averaged across 5 runs, on an M1 MacBook Pro with 16 GB memory. All parties run on

the same host with local network communication.
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Benchmark Taype (ms) Taype-SA (ms) Taypsi (ms)

elem_1000† 8.15 8.11 8.02 (98.47%, 98.89%)
hamming_1000† 15.09 15.21 14.46 (95.79%, 95.04%)
euclidean_1000† 67.43 67.55 67.32 (99.84%, 99.66%)
dot_prod_1000† 66.12 66.19 66.41 (100.43%, 100.33%)
nth_1000† 11.98 12.05 12.04 (100.54%, 99.93%)
map_1000 2139.55 5.07 5.14 (0.24%, 101.44%)
filter_200 failed failed 86.86 (N/A, N/A)
insert_200 5796.69 88.92 88.07 (1.52%, 99.04%)
insert_list_100 failed failed 4667.66 (N/A, N/A)
append_100 4274.7 45.09 44.18 (1.03%, 97.99%)
take_200 169.07 3.05 3.09 (1.83%, 101.15%)
flat_map_200 failed failed 7.3 (N/A, N/A)
span_200 13529.34 124.79 91.22 (0.67%, 73.09%)
partition_200 failed failed 176.49 (N/A, N/A)

elem_16† 446.81 459.1 404.9 (90.62%, 88.19%)
prob_16† 13082.52 12761.7 12735.16 (97.34%, 99.79%)
map_16 4414.69 262.14 215.67 (4.89%, 82.27%)
filter_16 8644.14 452.04 433.7 (5.02%, 95.94%)
swap_16 failed failed 4251.36 (N/A, N/A)
path_16 failed 6657.07 894.88 (N/A, 13.44%)
insert_16 83135.81 8093.81 1438.87 (1.73%, 17.78%)
bind_8 21885.65 494.98 532.86 (2.43%, 107.65%)
collect_8 failed failed 143.38 (N/A, N/A)

Figure 6.20. Running times for each benchmark in milliseconds. The Taypsi
column also reports the percentage of running time relative to Taype and
Taype-SA. A failed entry indicates the benchmark either timed out after 5
minutes or exceeded the memory bound of 8 GB. List and tree benchmarks
appear above and below the double line, respectively.

to be their maximum length and maximum depth, respectively; the suffix of each benchmark

name indicates the public view used. The benchmarks annotated with † simply traverse the

data type in order to produce a primitive value, e.g., an integer; these include membership

(elem), hamming distance (hamming), minimum euclidean distance (euclidean), dot product

(dot_prod), secure index look up (nth) and computing the probability of an event given a

probability tree diagram (prob). The programs generated by Taype, Taype-SA and Taypsi

all exhibit similar performance on these benchmarks. The remaining benchmarks all construct

structured data values, i.e., the sort of application on which Taypsi is expected to shine.
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In addition to standard list operations, the list benchmarks include insertion into a sorted

list (insert) and insertion of a list of elements into a sorted list (insert_list) (both lists

have public view 100). The tree examples include a filter function that removes all nodes

(including any subtrees) greater than a given private integer (filter), swapping subtrees if

the node matches a private integer (swap), computing a subtree reached following a list of

“going left” and “going right” directions (path), insertion into a binary search tree (insert),

replacing the leaves of a tree with a given tree (bind), and collecting all nodes smaller than a

private integer into a list (collect).

Dynamic policy enforcement either fails to finish within 5 minutes or exceeds an 8 GB

memory bound on almost half of the last set of benchmarks, due to the exponential blowup

discussed in  Section 6.1 . For those benchmarks that do finish, Taypsi’s enforcement strategy

results in a fraction of the total execution time compared to Taype. Compared to the version

of Taype using smart arrays, Taypsi still performs comparably or better, although the gap

is somewhat narrowed: functions like map do not suffer from exponential blowup, so these

benchmarks benefit mostly from the smart array optimization. In summary, these results

demonstrate that a static enforcement strategy performs considerably better than a dynamic

one on many benchmarks, and works roughly as well on the remainder.

6.6.2 Impact of Optimization

To evaluate the performance impact of Taypsi’s three optimizations, we conducted an

ablation study on their effect. The results, shown in  Figure 6.21  , indicate that our smart array

optimization is the most important, providing up to almost 800x speedup in the best case.

As suggested by  Figure 6.20 , this optimization also helps significantly with the performance

of Taype, although not enough to outweigh the exponential blowup innate in its dynamic

approach. The other optimizations also improve performance, albeit not as significantly.

As our memoization pass caches public views of arbitrary type, we have also conducted an

ablation study for these examples using ADT public views instead: the list examples use

Peano number to encode the maximum length of a list, and the tree examples use the upper
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Benchmark No SA (ms) No RG (ms) No Memo (ms)

elem_1000 18.37 (2.29x) 8.06 (1.0x) 17.76 (2.21x)
hamming_1000 51.73 (3.58x) 14.53 (1.01x) 35.5 (2.46x)
euclidean_1000 79.07 (1.17x) 67.31 (1.0x) 76.36 (1.13x)
dot_prod_1000 87.77 (1.32x) 66.15 (1.0x) 77.33 (1.16x)
nth_1000 22.69 (1.88x) 12.18 (1.01x) 20.53 (1.7x)
map_1000 2106.43 (409.89x) 139.91 (27.23x) 37.71 (7.34x)
filter_200 5757.28 (66.29x) 93.93 (1.08x) 114.7 (1.32x)
insert_200 255.43 (2.9x) 94.61 (1.07x) 89.32 (1.01x)
insert_list_100 22806.87 (4.89x) 5186.07 (1.11x) 4771.28 (1.02x)
append_100 4226.32 (95.66x) 50.79 (1.15x) 61.77 (1.4x)
take_200 169.45 (54.91x) 12.92 (4.19x) 4.68 (1.52x)
flat_map_200 5762.63 (789.08x) 16.99 (2.33x) 60.03 (8.22x)
span_200 5924.1 (64.95x) 99.83 (1.09x) 120.09 (1.32x)
partition_200 11528.0 (65.32x) 185.16 (1.05x) 231.06 (1.31x)

elem_16 433.73 (1.07x) 404.05 (1.0x) 402.15 (0.99x)
prob_16 13019.56 (1.02x) 12746.24 (1.0x) 12731.89 (1.0x)
map_16 4410.84 (20.45x) 635.18 (2.95x) 213.96 (0.99x)
filter_16 8674.71 (20.0x) 1131.02 (2.61x) 440.16 (1.01x)
swap_16 8671.52 (2.04x) 5471.4 (1.29x) 4246.39 (1.0x)
path_16 9108.54 (10.18x) 1083.21 (1.21x) 888.95 (0.99x)
insert_16 19101.36 (13.28x) 2151.83 (1.5x) 1432.92 (1.0x)
bind_8 19647.83 (36.87x) 870.93 (1.63x) 534.3 (1.0x)
collect_8 11830.6 (82.51x) 152.29 (1.06x) 186.92 (1.3x)

Figure 6.21. Impact of turning off the smart array (No SA), reshape guard
(No RG), and public view memoization (No Memo) optimizations. Each column
presents running time in milliseconds and the slowdown relative to that of the
fully optimized version reported in  Figure 6.20 .

bound of the spines. In this study (  Figure 6.22 ), we observe up to 9 times speed up in the

list examples, with minimal regression in tree examples.

6.6.3 Compilation Overhead

To measure the overhead of Taypsi’s use of an external solver to resolve constraints,

we have profiled the compilation of a set of larger programs drawn from Taype’s bench-

mark suite. The first two benchmark suites (List and Tree) in  Figure 6.23 include all the

microbenchmarks from previous section. The next benchmark, List (stress), consists of the
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Benchmark Base (ms) No Memoization (ms)

elem_1000 13.45 18.2 (1.35x)
hamming_1000 25.98 36.35 (1.4x)
euclidean_1000 73.22 77.07 (1.05x)
dot_prod_1000 77.65 77.92 (1.0x)
nth_1000 17.8 20.89 (1.17x)
map_1000 19.95 42.53 (2.13x)
filter_200 87.22 118.54 (1.36x)
insert_200 89.01 89.77 (1.01x)
insert_list_100 4719.13 4809.16 (1.02x)
append_100 45.05 63.83 (1.42x)
take_200 4.08 5.17 (1.27x)
flat_map_200 7.32 69.1 (9.45x)
span_200 92.73 124.06 (1.34x)
partition_200 176.68 238.27 (1.35x)

elem_16 425.41 416.13 (0.98x)
prob_16 12772.3 12762.84 (1.0x)
map_16 268.07 255.66 (0.95x)
filter_16 494.38 485.96 (0.98x)
swap_16 4407.25 4329.39 (0.98x)
path_16 940.83 944.69 (1.0x)
insert_16 1603.88 1770.76 (1.1x)
bind_8 553.0 585.06 (1.06x)
collect_8 143.79 187.25 (1.3x)

Figure 6.22. Impact of turning off the public view memoization (No Mem-
oization) optimization for the examples using ADT public views. The No
Memoization column also reports the slowdown relative to Base, the fully
optimized version.

same microbenchmarks as List with 5 additional list OADTs. The purpose of this synthetic

suite is to examine the impact of the number of OADTs on the search space. The remaining

benchmarks represent larger, more realistic applications which demonstrate the expressivity

and usability of Taypsi.

The last three columns of  Figure 6.23  report the results of these experiments: total

compilation time (Total), time spent on constraint solving (Solver) and the number of

solver queries (#Queries). The group of columns in the middle of the table describes

features that can impact the performance of our constraint-based approach: the number
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Suite #Functions #Types #Atoms #Queries Total (s) Solver (s)

List 20 7 70 84 0.47 0.081
Tree 14 9 44 31 0.47 0.024
List (stress) 20 12 70 295 3.45 2.8
Dating 4 13 16 10 0.58 0.019
Medical Records 20 19 58 51 0.48 0.072
Secure Calculator 2 9 6 5 1.34 0.013
Decision Tree 2 13 6 16 0.28 0.016
K-means 16 11 68 86 1.62 0.95
Miscellaneous 11 7 42 47 0.26 0.065

Figure 6.23. Impact of constraint solving on compilation speed

of functions (#Functions) being translated, the number of atomic types (#Types), and

the total number of atomic types used in function types (#Atoms). For example, the List

benchmark features 7 atomic types: public and oblivious booleans, integers and lists, as

well as an unsigned integer type (i.e., natural numbers). The number of atomic types in

the function filter : list → Z → list is 3. In the worst case scenario, our constraint

solving algorithm will explore every combination of types that are compatible with this

signature, resulting in the constraints associated with filter being solved 2 ∗ 2 ∗ 2 = 8 times.

Exactly how many compatible types the constraint solving algorithm explores depends on

many factors: the user-specified policies, the complexity of the functions, the calls to other

functions and so on. We chose these 3 metrics as a coarse approximation of the solution

space. Our results show that the solver overhead is quite minimal for most benchmarks, and

in general solving time per query is low thanks to our encoding of constraints in an efficiently

decidable logic.

6.7 Conclusion

Secure multiparty computation allows joint computation over private data from multiple

parties, while keeping that data secure. Taype has considered how to make languages for

MPC more accessible by allowing privacy requirements to be decoupled from functionality,

relying on dynamic enforcement of polices. Unfortunately, the resulting overhead of this

strategy made it difficult to scale applications manipulating structured data. This chapter
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presents Taypsi, a policy-agnostic language for oblivious computation that transforms

programs to instead statically enforce a user-provided privacy policy. The resulting programs

are guaranteed to be both well-typed, and hence secure, and equivalent to the source program.

Our experimental results show this strategy yields considerable performance improvements

over prior approaches, while maintaining a clean separation between privacy and programmatic

concerns.
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7. RELATED WORK

Secure computation was first formally introduced by Yao [ 1 ] alongside his proposed solution,

Garbled Circuits. In secure computation, an untrusted party may observe the whole execution

of the secure program, or infer some private information from other side-channels. Enabling

secure computations that use algebraic data types that also hide their structures is a key

motivation of this work. Secure computation techniques can be broadly divided into those

using multiparty computation and those relying on outsourced computation [  2 ,  62 ]. Those in

the former category typically use protocols based on either Garbled Circuits or secret-sharing

schemes [  5 ,  6 ,  63 ]. In the realm of outsourced computation, solutions are typically based on

fully homomorphic encryption [  7 ,  8 ], but can also be supported by virtualization [ 9 ,  10 ] or

secure processors [  11 ]. Our implementation uses the EMP toolkit [  52 ] for its secure backend,

but is compatible with other solutions under the mild requirement that they implement

primitives for secure integer operations.

Many high-level programming languages have been proposed that support some form

of secure computation [  4 ]. Their goals are similar to ours in that they provide high-level

language support for writing secure programs. However, most do not support (recursive)

data structures at all, or assume the structural information is always public. To the best

of our knowledge, none of these languages decouple security policies and program logic, as

Taype and Taypsi do. Obliv-C [  13 ] is a C-like oblivious language. Algebraic data types can

be encoded with the C-style struct keyword with pointers. Since their oblivious types are

restricted to base C types, however, the structure of the defined ADT is public. It would

be possible to implement oblivious ADT in Obliv-C by manually padding and using the

data types according to their public views. The language provides a ~obliv keyword that

can be used to dynamically track the maximum bound of a data type, at the cost of some

additional user effort. Moreover, if the programmers decide to use a different public view,

they have to fix every place where this data type is used. PICCO [  14 ,  64 ] is also a C-like

language for secure computation, which supports C pointers to private data (possibly at

private locations) and dynamic memory allocation [  65 ]. ObliVM [ 15 ] is a Java-like language

which also has a struct keyword to define data types, but only supports public structures,
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much like Obliv-C. Wysteria and Wys∗ [ 16 ,  17 ] are functional languages that focus on mixed-

mode computation. While they do not support recursive data types, both languages include

simple polynomial types and primitive arrays. In contrast, our languages do not consider

mixed-mode computation. Symphony [  20 ,  66 ] is a successor of Wysteria which permits more

reactive applications through a combination of first-class support for coordinating parties

and primitives for secret-sharing and -recombination. Symphony also supports recursive data

types which may contain private data, e.g., a tree whose leaves contain oblivious payloads, but

does not obfuscate the structure of those datatypes. λobliv [ 18 ] is a functional programming

language for oblivious computation that focuses on probabilistic programs, making it suitable

for implementing some oblivious cryptographic algorithms, such as ORAM, although it

does not include algebraic data types. In contrast, our work does not consider probabilistic

programs, though it could be an interesting future direction. Our approach and theirs share

similar threat models and guarantees of obliviousness. Other secure computation toolchains

include FairplayMP [ 67 ], Sharemind [ 68 ], CBMC-GC [ 69 ], SCVM [ 70 ], TinyGarble [  71 ], and

Frigate [ 72 ].

Several prior works have considered how to compile secure programs into more efficient

secure versions. Viaduct [ 19 ,  73 ] is a compiler that transforms high-level programs into

secure distributed versions by intelligently selecting an efficient combination of protocols for

subcomputations. The HyCC toolchain [  74 ] similarly transforms a C program into a version

that combines different MPC protocols to optimize performance. TASTY [  75 ], ABY [ 76 ],

EzPC [  77 ] and MOTION [  78 ] are similar frameworks for enabling mixed-protocol computation.

The HACCLE toolchain [  79 ] uses staging to generate efficient garbled circuits from a high-level

language. Compiler techniques, e.g., vectorization, have been studied for optimizing fully

homomorphic encryption (FHE) applications [ 59 ,  80 – 83 ].

Constant-time languages protect programs from inadvertently leaking private information

through timing channels by providing atomic constructs and carefully tracking information

control. This is also a goal of our system, and our solution to this problem is similar. The

first formal study of constant time algorithms was in the context of cache-based attacks [  9 ].

Barthe et al. [ 84 ] extended the formally verified CompCert compiler [ 85 ] to ensure constant

time execution. Our obliviousness theorem provides a formal guarantee of a constant-time
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property. Jasmin [ 86 ,  87 ] is a framework for implementing high-performance cryptography. It

achieves constant-time security by embedding Jasmin programs into Dafny [  88 ] which enables

automated proofs of this property (and memory safety). FaCT [ 89 ] is a high-level language

for writing constant-time computation using (non-recursive) data types. One of its unique

features is a front-end compiler to transform a well-typed (but potentially not constant-time)

FaCT program into a constant-time FaCT program. In Taype and Taypsi, the programmers

can simply encode programs in the conventional fragment and then convert them to oblivious

programs (that are constant-time) by composing privacy policies and the standard programs.

Another popular cryptographic technique for hiding private information of data structures

is oblivious RAM [  26 ,  90 ,  91 ] (ORAM). ORAM provides primitives to access an encrypted

memory buffer without revealing the access pattern, except for the number of accesses. There

have been proposals for generically constructing oblivious data structures using ORAM [  92 ].

Oblivious data structures constructed this way hide the access patterns of a sequence of

data structure operations. This line of work in general does not consider leakage through

side-channels. While our solution also naturally hides access patterns, we also assume a much

stronger adversary who can observe the whole computation. On the other hand, certain data

structures may yield asymptotically better performance if encoded using ORAM. Integrating

ORAM into our systems for performance gains while maintaining strong security guarantees

is a promising future direction.

Our approach of type-based information flow control to enforce obliviousness, a form

of noninterference, follows a body of work in security-type systems [ 27 ,  29 ]. To the best

of our knowledge, our system is the first to combine a dependent type system with large

elimination and a security-type system. While most security-type systems tag types with

labels classifying the sensitivity of data, our dependent type system tags kinds instead to

keep track of whether a term is oblivious. On the other hand, our leakage labels are similar to

these security labels, and used to track if a term is leaky. Our notion of retraction bears some

resemblance to delimited information release [ 93 ]. In a system with delimited information

release, the programmers may choose to reveal some private information, similar to retraction

functions in λOADT:. However, our semantics guarantees retraction never releases any private

information. Another difference from a standard security-type system is that we use explicit
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coercion via section functions instead of implicit subtyping to convert public types to secure

types. On the one hand, our typing rules and semantics for oblivious types and non-oblivious

types are quite different. On the other hand, implicit subtyping does not make sense in the

case of ADTs. To convert a public ADT to an oblivious one, we not only need to know how

the oblivious ADT is represented, but also to infer the public views.

Our obliviousness guarantee is a strengthened variant of memory trace obliviousness

(MTO) [  28 ], which itself provides stronger guarantees than most information flow type

systems. Under MTO, the patterns of memory access generated by a program are required to

be indistinguishable, in addition to its result. This work also proposed a language based on

Oblivious RAM [ 26 ,  90 ,  91 ] and transformation techniques to ensure this property. However,

this threat model is weaker than that of this dissertation. On the one hand, it does not

consider timing channel: while memory access traces include instruction fetches, which

ensures the branches of a secure conditional always run the same number of instructions, the

instructions themselves can still exhibit different timing behaviors. For example, the program

if s > 0 then s := p + p else s := p * p is secure in their model, as both branches

produce the same memory access pattern (including instruction fetches), but the second branch

is slower, assuming multiplication is slower than addition in the CPU. On the other hand, under

MTO, adversaries cannot observe the instructions executed by the CPU. This is not the case in

the MPC setting (especially in the secret-sharing-based schemes), as every party is a potential

adversary that can observe instructions: if s > 0 then s := p + 1 else s := p + 2 is

accepted in their model, but an adversary in our model is able to discern if the program is

computing p+1 or p+2, even if they have the same timing behavior. In contrast, the traces

we consider include every program state under a small-step semantics, which rules out these

two examples.

Jeeves [  94 ] and our work have a shared goal of decoupling security policies from program

logic. While they both employ a similar high-level strategy of relying on the language to

automatically enforce policies, their different settings result in very different solutions. In

Jeeves’ programming model, each piece of data is equipped with a pair of high- and low-level

views: a username, for example, may have a high confidentiality view of “Alice”, but a low

view of “Anonymous”. The language then uses the view stipulated by the privacy policy and
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current execution context, ensuring that information is only visible to observers with the

proper authority. In the MPC setting, however, no party is allowed to observe the private data

of other parties. Thus, no party can view all the data necessary for the computation, making

it impossible to compute a correct result by simply replacing data with some predetermined

value, like “Anonymous”.

Our oblivious types can also be viewed as a kind of refinement types [  36 – 38 ]: the oblivious

tree in  Chapter 3  can be understood as trees with a maximum depth stipulated by the type

index, for example. However, this declarative specification does not explain how to represent

such an oblivious tree. Nonetheless, this view of subset types suggests a future direction

of integrating refinement typing into our system to ensure the correct use of public indices

and to enable simpler policy specifications. Dependent type systems with large elimination

can be found in many theorem provers, such as Coq [  33 ] and Agda [ 35 ]. These languages

are designed more towards theorem proving and thus only admit total functions, while our

languages allow general recursion and hence nontermination. A notable dependently typed

language with nontermination is Zombie [ 41 – 43 ], though our goals are drastically different.

Nanevski et al. [ 95 ] show how Relational Hoare Type Theory can be used to encode

and verify a variety of security policies in a theorem prover using dependent types. While

capable of specifying security policies like noninterference, their encoding does not address

termination behavior and only characterizes the final output value, and thus does not protect

against control flow leaks. In addition, users have to manually verify these properties in

the proof assistant. In contrast, we consider a much stronger threat model, and all of our

oblivious calculi protect against a larger class of leaks. The calculi additionally provide a fixed

security guarantee in the form of our obliviousness theorem, which any well-typed program

enjoys “for free”, without any additional user effort.

In our mechanized formalization, the correctness and security guarantees provided by

the underlying cryptographic primitives are baked into our semantics and notion of indistin-

guishability. There is a body of work about formally verified cryptography [ 96 – 99 ], which

could be integrated into our work in the future to provide a stronger formal guarantee. Some

of these solutions have focused on verifying multiparty computation [ 100 ,  101 ].
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8. CONCLUSIONS AND FUTURE WORK

Writing secure applications that do not leak private information presents challenges in several

dimensions. The limited support for rich data structures in existing oblivious languages

discourages users from implementing general applications. The inability to express complex

policies makes it difficult to comply with real-world privacy requirements. The intermixing

of application logic and privacy policies forces programmers to write specialized versions of

the same program for each set of privacy requirements. This dissertation introduced various

programming language techniques that tackle these problems: private structured data and

complex policies can be encoded using oblivious algebraic data types, and a form of modularity

that decouples privacy and programmatic concerns can be achieved using tape semantics

or static program transformations. This thesis has formally developed these techniques via

a family of core calculi, which it used to establish key metatheoretic results, including a

strong security guarantee called obliviousness and the standard type safety property. These

techniques have been implemented in the languages and compilation pipelines, Taype and

Taypsi, providing an end-to-end programming environment for developing secure applications

and evaluating performance and usability.

The work presented in this dissertation is a step towards wider adoption of privacy-

preserving techniques, but there is still much room to make these policy-agnostic languages

more practical. First, to enable a wider range of applications, we should increase the

expressivity of these languages: adding support for mutable data, probabilistic computation

and reactive programs that allow for interaction between participating entities in a policy-

agnostic way are all important directions. Another limitation of the current approach is

that OADTs can only encode tree-like structures, similar to ADTs. Supporting graph data

structures will enable more secure applications. Second, while the separation of policies and

application logic reduces user burden, many potential improvements to usability remain.

As one example, Taype and Taypsi do not support type polymorphism, and as a result,

users need to define, e.g., distinct types for lists of integers and lists of booleans. Writing

OADTs and their associated methods requires programmers to be proficient in dependent

types. At the same time, many of these definitions are straightforward but tedious boilerplate.
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A better approach would be to derive OADTs from a higher-level predicate that specifies the

publicly shared information and synthesize the associated methods. The current implement of

Taypsi can generate nonterminating programs if a specified policy does not provide enough

public information to bound the recursion depth. Guaranteeing equi-termination for the

generated secure programs would free users from manually reasoning about termination.

Third, good performance is necessary for encouraging adoption of these language techniques.

The abstractions developed for the modularity described in this dissertation often come with

performance penalty. Users may sometimes need to manually optimize a program to avoid

some efficiency pitfalls caused by the secure semantics of mux, for example. Thus, additional

optimization techniques are needed to generate secure programs that are as efficient as

hand-crafted versions. One promising direction is to rewrite program control flow in a way

that exploits publicly available information to remove secure operations.
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A. OMITTED RULES AND PROOFS FOR TAYPE

This chapter documents the omitted rules from  Chapter 5  : full semantics rules (  Appendix A.1  ),

typing and kinding rules ( Appendix A.2  ), and Taype-to-Oil translation rules ( Appendix A.3  ).

A proof of the totality of the translation algorithm is also included ( Appendix A.4 ).

A.1 Semantics

 Figure A.2  and  Figure A.3 show the small-step operational semantics relation of core

Taype: Σ ` e −→ e′. The global context Σ is fixed in the rules, so we elide it for brevity.

We also elide type annotations in conditionals and pattern matching expressions as they are

not relevant in these rules. The auxiliary relation used in S-OMatch is exactly the same as

the one in λOADT ( Figure 3.9 ). S-Ctx refers to evaluation contexts E shown in  Figure A.1 .

Evaluation Contexts
E ::= �×̂τ | ω̂×̂� | �+̂τ | ω̂+̂�

| let x:lτ = � in e | e � | � v | C � | T̂ �
| if � then e else e | mux � e e | mux v � e | mux v v �
| îf � then e else e | îf v then � else e | îf v then v else �
| (�,e) | (v,�) | 〈�,e〉 | 〈v,�〉 | ι̂b<�> e | ι̂b<ω̂> �
| �⊕e | v⊕� | �⊕̂e | v⊕̂�
| match � with C x ⇒ e | match � with (x1,x2)⇒e
| m̂atch � with x⇒e|x⇒e | m̂atch � with [x1,x2]⇒e
| B̂#s � | Ẑ#s � | Ẑ#r � | tape � | ↑�

Figure A.1. Core Taype evaluation context

S-Add and S-OAdd simply evaluate the integer operations according to the denotational

domain. Most rules involving promotions (e.g., S-SecIntProm, S-AppProm and S-

AddProm) require the resulting expressions also get promoted, because the > leakage label

should be preserved in each step. However, this is not explicitly necessary for S-IfProm, as

both branches of a conditional with promoted discriminee already have > labels, which is

enforced by the typing rules (e.g., the side condition in T-IfNoDep). S-PMatchProm and

S-MatchProm are similar: the expressions these rules step to do not need to be promoted

again, although their pattern variables are substituted by promoted values.
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e −→ e′

S-Ctx
e −→ e′

E[e] −→ E[e′]

S-App

(λx:lτ⇒e) v −→ [v/x]e

S-Let

let x:lτ = v in e −→ [v/x]e

S-If

if b then e1 else e2 −→ ite(b,e1,e2)

S-PMatch

match (v1,v2) with (x1,x2)⇒e −→ [v2/x2][v1/x1]e

S-Match

match Ci v with C x⇒e −→ [v/x]ei

S-OADT
obliv T̂ (x:τ) = τ′ ∈ Σ

T̂ v −→ [v/x]τ′

S-Fun
fn x:lτ = e ∈ Σ

x −→ e

S-SecBool

B̂#s b −→ [b]

S-SecInt

Ẑ#s n −→ [n]

S-Add

n1⊕n2 −→ Jn1⊕n2K

S-OAdd

[n1]⊕̂[n2] −→ [Jn1⊕n2K]

S-OInj

ι̂b<ω̂> v̂ −→ [ιb<ω̂> v̂]

S-Mux

mux [b] v1 v2 −→ ite(b,v1,v2)

S-OPMatch

m̂atch [v1,v2] with [x1,x2]⇒e −→ [v2/x2][v1/x1]e

S-OIf

Ê[îf [b] then v1 else v2] −→ îf [b] then Ê[v1] else Ê[v2]

S-OMatch
v̂1 ⇐ ω̂1 v̂2 ⇐ ω̂2

m̂atch [ιb<ω̂1+̂ω̂2> v̂] with x⇒e1|x⇒e2 −→
îf [b] then ite(b,[v̂/x]e1,[v̂1/x]e1)
else ite(b,[v̂2/x]e2,[v̂/x]e2)

Figure A.2. Core Taype semantics rules
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e −→ e′

S-TapeOIf

tape (îf [b] then v1 else v2) −→ mux [b] (tape v1) (tape v2)

S-TapeProm

tape (↑v) −→ v

S-RetAdd1

(Ẑ#r [n1])⊕(Ẑ#r [n2]) −→ Ẑ#r ([n1]⊕̂[n2])

S-RetAdd2

(Ẑ#r [n1])⊕(↑n2) −→ Ẑ#r ([n1]⊕̂(Ẑ#s n2))

S-RetAdd3

(↑n1)⊕(Ẑ#r [n2]) −→ Ẑ#r ((Ẑ#s n1)⊕̂[n2])

S-SecRetInt

Ẑ#s (Ẑ#r [n]) −→ ↑[n]

S-SecIntProm

Ẑ#s (↑n) −→ ↑(Ẑ#s n)

S-SecBoolProm

B̂#s (↑b) −→ ↑(B̂#s b)

S-AddProm

(↑n1)⊕(↑n2) −→ ↑(n1⊕n2)

S-AppProm

(↑(λx:lτ⇒e)) v −→ ↑([v/x]e)

S-IfProm

if ↑b then e1 else e2 −→ ite(b,e1,e2)

S-PMatchProm

match ↑(v1,v2) with (x1,x2)⇒e −→ [↑v2/x2][↑v1/x1]e

S-MatchProm

match ↑Ci v with C x⇒e −→ [↑v/x]ei

Figure A.3. Core Taype semantics rules (cont.)

201



A.2 Type System

Programs in Taype are typed using a pair of typing and kinding judgments: Σ; Γ ` e :l τ

and Σ; Γ ` τ :: κ. The global context Σ is elided for brevity, as it is fixed in all typing and

kinding rules.  Figure A.4  shows the kinding rules, while  Figure A.5  and  Figure A.6  present

the typing rules.

Γ ` τ :: κ

K-Sub
Γ ` τ :: κ κ v κ′

Γ ` τ :: κ′

K-ADT
data T = C τ ∈ Σ

Γ ` T :: ∗P

K-OADT
obliv T̂ (x:τ) = τ′ ∈ Σ Γ ` e :⊥ τ

Γ ` T̂ e :: ∗O

K-Unit

Γ ` 1 :: ∗A
K-Bool

Γ ` B :: ∗P
K-OBool

Γ ` B̂ :: ∗O
K-Int

Γ ` Z :: ∗P
K-OInt

Γ ` Ẑ :: ∗O

K-Pi
Γ ` τ1 :: ∗ x :l τ1, Γ ` τ2 :: ∗

Γ ` Πx:lτ1,τ2 :: ∗M

K-Prod
Γ ` τ1 :: κ Γ ` τ2 :: κ

Γ ` τ1×τ2 :: κ t ∗P

K-OProd
Γ ` τ1 :: ∗O Γ ` τ2 :: ∗O

Γ ` τ1×̂τ2 :: ∗O

K-OSum
Γ ` τ1 :: ∗O Γ ` τ2 :: ∗O

Γ ` τ1+̂τ2 :: ∗O

K-Let
Γ ` e :⊥ τ x :⊥ τ, Γ ` τ′ :: ∗O

Γ ` let x:⊥τ = e in τ′ :: ∗O

K-If
Γ ` e0 :⊥ B Γ ` τ1 :: ∗O Γ ` τ2 :: ∗O

Γ ` if e0 then τ1 else τ2 :: ∗O

K-PMatch
Γ ` e0 :⊥ τ1×τ2 x1 :⊥ τ1,x2 :⊥ τ2, Γ ` τ :: ∗O

Γ ` match e0 with (x1,x2)⇒τ :: ∗O

K-Match
data T = C τ ∈ Σ Γ ` e0 :⊥ T ∀i. x :⊥ τi, Γ ` τ′

i :: ∗O

Γ ` match e0 with C x⇒τ′ :: ∗O

Figure A.4. Core Taype kinding rules
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Γ ` e :l τ

T-Conv
Γ ` e :l τ τ ≡ τ′

Γ ` τ′ :: ∗
Γ ` e :l τ′

T-Var
x :l τ ∈ Γ
Γ ` x :l τ

T-Unit

Γ ` () :⊥ 1

T-LitBool

Γ ` b :⊥ B

T-LitInt

Γ ` n :⊥ Z

T-Abs
x :l1 τ1, Γ ` e :l2 τ2

Γ ` τ1 :: ∗
Γ ` λx:l1τ1⇒e :l2 Πx:l1τ1,τ2

T-App
Γ ` e2 :l2 Πx:l1τ1,τ2

Γ ` e1 :l1 τ1

Γ ` e2 e1 :l2 [e1/x]τ2

T-Let
Γ ` e1 :l1 τ1 x :l1 τ1, Γ ` e2 :l2 τ2

Γ ` let x:l1τ1 = e1 in e2 :l2 [e1/x]τ2

T-Fun
fn x:lτ = e ∈ Σ

Γ ` x :l τ

T-If
Γ ` e0 :⊥ B

Γ ` e1 :l [true/z]τ Γ ` e2 :l [false/z]τ
Γ ` if e0 then e1 else e2 :l [e0/z]τ

T-IfNoDep
Γ ` e0 :l0 B l0 v l

Γ ` e1 :l τ Γ ` e2 :l τ
Γ ` ifτ e0 then e1 else e2 :l τ

T-Pair
Γ ` e1 :l τ1 Γ ` e2 :l τ2

Γ ` (e1,e2) :l τ1×τ2

T-PMatch
Γ ` e0 :⊥ τ1×τ2 x1 :⊥ τ1,x2 :⊥ τ2, Γ ` e :l [(x1,x2)/z]τ

Γ ` match e0 with (x1,x2)⇒e :l [e0/z]τ

T-PMatchNoDep
Γ ` e0 :l0 τ1×τ2 l0 v l
x1 :l0 τ1,x2 :l0 τ2, Γ ` e :l τ

Γ ` matchτ e0 with (x1,x2)⇒e :l τ

T-Add
Γ ` e1 :l Z Γ ` e2 :l Z

Γ ` e1⊕e2 :l Z

T-Ctor
data T = C τ ∈ Σ

Γ ` e :l τi

Γ ` Ci e :l T

T-Match
data T = C τ ∈ Σ Γ ` e0 :⊥ T
∀i. x :⊥ τi, Γ ` ei :l [Ci x/z]τ′

Γ ` match e0 with C x⇒e :l [e0/z]τ′

T-MatchNoDep
data T = C τ ∈ Σ Γ ` e0 :l0 T

l0 v l ∀i. x :l0 τi, Γ ` ei :l τ′

Γ ` matchτ′ e0 with C x⇒e :l τ′

Figure A.5. Core Taype typing rules
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Γ ` e :l τ

T-Mux
Γ ` e0 :⊥ B̂ Γ ` τ :: ∗O
Γ ` e1 :⊥ τ Γ ` e2 :⊥ τ

Γ ` mux e0 e1 e2 :⊥ τ

T-OPair
Γ ` e1 :⊥ τ1 Γ ` e2 :⊥ τ2

Γ ` τ1 :: ∗O Γ ` τ2 :: ∗O

Γ ` [e1,e2] :⊥ τ1×̂τ2

T-OPMatch
Γ ` e0 :⊥ τ1×̂τ2 x1 :⊥ τ1,x2 :⊥ τ2, Γ ` e :l τ

Γ ` m̂atch e0:τ1×̂τ2 with [x1,x2]⇒e :l τ

T-OAdd
Γ ` e1 :⊥ Ẑ Γ ` e2 :⊥ Ẑ

Γ ` e1⊕̂e2 :⊥ Ẑ

T-OInj
Γ ` e :⊥ ite(b,τ1,τ2)

Γ ` τ1+̂τ2 :: ∗O

Γ ` ι̂b<τ1+̂τ2> e :⊥ τ1+̂τ2

T-OMatch
Γ ` e0 :⊥ τ1+̂τ2

x :⊥ τ1, Γ ` e1 :> τ x :⊥ τ2, Γ ` e2 :> τ

Γ ` m̂atchτ e0:τ1+̂τ2 with x⇒e1|x⇒e2 :> τ

T-BoxedLitBool

Γ ` [b] :⊥ B̂

T-BoxedLitInt

Γ ` [n] :⊥ Ẑ

T-BoxedInj
[ιb<ω̂> v̂]⇐ ω̂

Γ ` [ιb<ω̂> v̂] :⊥ ω̂

T-SecBool
Γ ` e :l B

Γ ` B̂#s e :l B̂

T-SecInt
Γ ` e :l Z

Γ ` Ẑ#s e :l Ẑ

T-RetInt
Γ ` e :⊥ Ẑ

Γ ` Ẑ#r e :> Z

T-OIf
Γ ` e0 :⊥ B̂ Γ ` e1 :> τ Γ ` e2 :> τ

Γ ` îf e0 then e1 else e2 :> τ

T-Promote
Γ ` e :⊥ τ

Γ ` ↑e :> τ

T-Tape
Γ ` e :> τ Γ ` τ :: ∗O

Γ ` tape e :⊥ τ

Figure A.6. Core Taype typing rules (cont.)
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A.3 Translation Algorithm

 Figure A.7  translates Taype oblivious types to Oil expressions of size type.  Figure A.8  

and  Figure A.9 translate Taype expressions to Oil expressions.

Γ ` τ s

TR-UnitT

Γ ` 1 0

TR-OBool

Γ ` B̂ 1

TR-OInt

Γ ` Ẑ 1

TR-OProd
Γ ` τ1  s1 Γ ` τ2  s2

Γ ` τ1×̂τ2  s1+s2

TR-OSum
Γ ` τ1  s1 Γ ` τ2  s2

Γ ` τ1+̂τ2  1+max s1 s2

TR-TApp

Γ ` T̂ x T̂ x

TR-TLet
Γ ` e ⊥ ė x :⊥ τ1, Γ ` τ s

Γ ` let x:⊥τ1 = e in τ let x = ė in s

TR-TIf
Γ ` τ1  s1 Γ ` τ2  s2

Γ ` if x0 then τ1 else τ2  if x0 then s1 else s2

TR-TPMatch
x0 :⊥ τ1×τ2 ∈ Γ x1 :⊥ τ1,x2 :⊥ τ2, Γ ` τ s

Γ ` match x0 with (x1,x2)⇒τ match x0 with (x1,x2)⇒s

TR-TMatch
data T = C τ ∈ Σ x0 :⊥ T ∈ Γ ∀i. x :⊥ τi, Γ ` τ′

i  si

Γ ` match x0 with C x⇒τ′  match x0 with C x⇒s

Figure A.7. Translating core Taype oblivious types to Oil sizes
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Γ ` e l ė

TR-Bool

Γ ` b ⊥ b

TR-Int

Γ ` n ⊥ n

TR-Var

Γ ` x  l x

TR-Abs
x :l1 τ1, Γ ` e l ė

Γ ` λx:l1τ1⇒e l λx⇒ė

TR-App

Γ ` x2 x1  l x2 x1

TR-Pair

Γ ` (x1,x2)  l

(x1,x2) if l = ⊥
p̃air x1 x2 if l = >

TR-Ctor

Γ ` C x l

C x if l0 = ⊥
C̃ x if l0 = >

TR-Add

Γ ` x1⊕x2  l

x1⊕x2 if l0 = ⊥
x1⊕̃x2 if l0 = >

TR-SecBool

Γ ` B̂#s x l

B̂#s x if l = ⊥
B̃#s x if l = >

TR-SecInt

Γ ` Ẑ#s x l

Ẑ#s x if l = ⊥
Z̃#s x if l = >

TR-Let
Γ ` e1  l1 ė1 x :l1 τ1, Γ ` e2  l ė2

Γ ` let x:l1τ1 = e1 in e2  l let x = ė1 in ė2

TR-If
x0 :l0 B ∈ Γ Γ ` e1  l ė1 Γ ` e2  l ė2

Γ ` ifτ x0 then e1 else e2  l

if x0 then ė1 else ė2 if l0 = ⊥
ĩf îf(τ) x0 ė1 ė2 if l0 = >

TR-PMatch
x0 :l0 τ1×τ2 ∈ Γ x1 :l0 τ1,x2 :l0 τ2, Γ ` e l ė

Γ ` matchτ x0 with (x1,x2)⇒e

 l

match x0 with (x1,x2)⇒ė if l0 = ⊥
m̃atch× prom(τ1) prom(τ2) îf(τ) x0 (λx1λx2⇒ė) if l0 = >

TR-Match
data T = C τ ∈ Σ x0 :l0 T ∈ Γ ∀i. x :l0 τi, Γ ` ei  l ėi

Γ ` matchτ x0 with C x⇒e l

match x0 with C x⇒ė if l0 = ⊥
m̃atchT îf(τ) x0 (λx⇒ė) if l0 = >

Figure A.8. Translating core Taype expressions to Oil expressions
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Γ ` e l ė

TR-Unit

Γ ` ()  ⊥ A(0)

TR-OPair

Γ ` [x1,x2] ⊥ x1++x2

TR-OPMatch
x1 :⊥ τ1,x2 :⊥ τ2, Γ ` e l ė Γ ` τ1  s1 Γ ` τ2  s2

Γ ` m̂atch x0:τ1×̂τ2 with [x1,x2]⇒e l

let x1 = x0(0,s1) in
let x2 = x0(s1,s2) in
ė

TR-OInj
Γ ` τ1  s1 Γ ` τ2  s2

Γ ` ι̂b<τ1+̂τ2> x ⊥ ite(b,înl,înr) s1 s2 x

TR-Mux

Γ ` mux x0 x1 x2  ⊥ mux x0 x1 x2

TR-Tape

Γ ` tape x ⊥ t̃ape x

TR-Promote
x :⊥ τ ∈ Γ

Γ ` ↑x > prom(τ) x

TR-RetInt

Γ ` Ẑ#r x > rZ x

TR-OIf
x1 :> τ ∈ Γ

Γ ` îf x0 then x1 else x2  > îf(τ) x0 x1 x2

TR-OMatch
x :⊥ τ1, Γ ` e1  > ė1 x :⊥ τ2, Γ ` e2  > ė2 Γ ` τ1  s1 Γ ` τ2  s2

Γ ` m̂atchτ x0:τ1+̂τ2 with x⇒e1|x⇒e2  >

let tag = x0(0,1) in
îf(τ) tag (let x = x0(1,s1) in ė1)

(let x = x0(1,s2) in ė2)

Figure A.9. Translating core Taype expressions to Oil expressions (cont.)
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A.4 Totality of the Translation Algorithm

The totality theorem relies on a few lemmas that we state as follows.

Lemma A.4.1 (Regularity). If Γ ` e :l τ, then Γ ` τ :: κ for some kind κ.

Lemma A.4.2 (Conversion of typing context). If x :l′ τ1, Γ ` e :l τ and τ1 ≡ τ2 with

Γ ` τ2 :: ∗, then x :l′ τ2, Γ ` e :l τ.

If x :l′ τ1, Γ ` τ :: κ and τ1 ≡ τ2 with Γ ` τ2 :: ∗, then x :l′ τ2, Γ ` τ :: κ.

Lemma A.4.3 (Equality of equivalent public types).

1. If Γ ` τ :: ∗ and τ ≡ B, then τ = B.

2. If Γ ` τ :: ∗, Γ ` T :: ∗ and τ ≡ T, then τ = T.

3. If Γ ` τ :: ∗, Γ ` τ1×τ2 :: ∗ and τ ≡ τ1×τ2, then τ = τ′
1×τ′

2 for some τ′
1 and τ′

2 such

that τ1 ≡ τ′
1 and τ2 ≡ τ′

2

We will also use the expected typing and kinding inversion lemmas. The proofs of these

lemmas are omitted here, which are available in the Coq formalization [  49 ]. The last lemma

essentially says if a well-kinded type is equivalent to a well-kinded public type, then they are

equal. The case of product also falls into this interpretation if we consider the type former ×

itself public, even though × can be used to connect non-public components. In other words,

the “heads” of the public type formers are equal.

Now we prove the following totality theorem.

Theorem A.4.4 (Totality of translation). If Γ ` e :l τ and e is in ANF, then Γ ` e l ė

for some Oil expression ė.

If Γ ` τ :: ∗O and τ is in ANF, then Γ ` τ s for some Oil expression s.

Proof. By induction on the ANF structure of e and τ, we prove these two statements

simultaneously. Every subterm of an ANF term is also in ANF, so we can always apply the

induction hypotheses to subterms.

It is trivial to prove the cases on base oblivious types, literals, variable, constructor,

(function and type) application, public and oblivious pairs, integer operations, primitive
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sections and retractions, atomic conditional mux and the tape operation. We simply apply

their corresponding translation rules, which do not have any assumptions.

The cases on public types (booleans, integers and public products) and function type

vacuously hold, since they are not obliviously kinded.

Case on lambda abstraction λx:l1τ1⇒e: By the well-typedness assumption and the

inversion lemma, we have x :l1 τ1, Γ ` e :l τ′ for some τ′. It then follows that x :l1 τ1, Γ `

e l ė for some ė, by the induction hypothesis. Applying TR-Abs concludes this case.

Case on let binding let x:l1τ1 = e1 in e2: The proof for the first part (when this

expression is well-typed) is similar to the case on lambda abstraction using rule TR-Let.

On the other hand, if this is obliviously kinded, we have Γ ` e1 :⊥ τ1 and x :⊥ τ1, Γ ` e2 :: ∗O.

By the induction hypotheses, Γ ` e1  ⊥ ė1 and x :⊥ τ1, Γ ` e2  s for some ė1 and s. We

then discharge this case by TR-TLet.

Case on oblivious injection ι̂b<τ> x: By the well-typedness assumption and the inversion

lemma, we know l = ⊥ and τ is some τ1+̂τ2 such that Γ ` τ1+̂τ2 :: ∗O, which implies that τ1

and τ2 are also obliviously kinded by the kinding inversion lemma. The conclusion follows by

TR-OInj.

Case on promotion ↑x: We have Γ ` x :⊥ τ from the assumption. By the inversion lemma

for variables, we get x :⊥ τ′ ∈ Γ for some equivalent type τ′. This case then follows by

TR-Promote.

Cases on oblivious product and sum types, their pattern matching expressions and leaky

conditional are similar.

The remaining cases on conditional, product and ADT pattern matching are the trickiest

ones. We show the proofs for conditional and product pattern matching here; the case of of

ADT pattern matching is analogous.

In the case of well-typed conditional, ifτ x0 then e1 else e2, we know e1 and e2 are

well-typed with some label l, which discharges the two corresponding conditions in TR-If by

the induction hypotheses. By the inversion lemma for variables and the fact that Γ ` x0 :l0 B,

we have x0 :l0 τ′ ∈ Γ, for some τ′ such that τ′ ≡ B and τ′ is well-kinded. However, τ′ must

equal to B by  Lemma A.4.3  , thus x0 :l0 B ∈ Γ, required by TR-If. The case of obliviously

kinded conditional is similar using TR-TIf.
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In the case of well-typed product pattern matching, matchτ x0 with (x1,x2)⇒e, we

know Γ ` x0 :l0 τ′
1×τ′

2, and e is well-typed under the context x1 :l0 τ′
1,x2 :l0 τ′

2, Γ. By the

inversion lemma for variables, x0 :l0 τ′ ∈ Γ for some well-kinded τ′ and τ′ ≡ τ′
1×τ′

2. As τ′
1×τ′

2

is well-kinded by  Lemma A.4.1 , it follows from  Lemma A.4.3 that τ′ = τ1×τ2 for some τ1 and

τ2, such that τ′
1 ≡ τ1 and τ′

2 ≡ τ2. We then conclude this case by applying TR-PMatch,

whose translation premise is obtained by  Lemma A.4.2  and the induction hypothesis. The

case for obliviously kinded product pattern matching is similar.
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B. OMITTED RULES AND PROOFS FOR TAYPSI

This chapter documents the omitted rules from  Chapter 6  : full logical refinement definitions

and declarative lifting rules (  Appendix B.1  ), as well as full algorithmic lifting rules (  Ap-

pendix B.2 ).  Appendix B.3 proves the correctness of declarative lifting and the soundness of

algorithmic lifting.

B.1 Declarative Lifting

 Figure B.1  gives the full definitions of the logical refinement from  Section 6.3.6  . In

particular,  Figure B.1 defines an interpretation for typing contexts that range over specification

types, GnJΓK. The codomain of this interpretation is substitutions (σ) of related value pairs.

VnJθK

VnJ1K = VnJBK = VnJTK = { (v,v′) | 0 < n =⇒ v = v′ }

VnJB̂K = { (b, [b′]) | 0 < n =⇒ b = b′ }

VnJΨT̂K = { (v, 〈k,v̂〉) | 0 < n =⇒ r k v̂ −→∗ v }

VnJθ1×θ2K = { ((v1,v2),(v′
1,v′

2)) | (v1,v′
1) ∈ VnJθ1K ∧ (v2,v′

2) ∈ VnJθ2K }

VnJθ1→θ2K =
{

(λx:bθ1c⇒e, λx:θ1⇒e′)
∣∣∣∣∣ ∀i < n. ∀(v,v′) ∈ ViJθ1K.

([v/x]e, [v′/x]e′) ∈ EiJθ2K

}

EnJθK

EnJθK =
{

(e, e′)
∣∣∣ ∀i < n. ∀v′. e′ −→i v′ =⇒ ∃v. e −→∗ v ∧ (v,v′) ∈ Vn−iJθK

}
GnJΓK

GnJ·K = { ∅ } GnJx : θ, ΓK = { σ[x 7→ (v,v′)] | σ ∈ GnJΓK ∧ (v,v′) ∈ VnJθK }

Figure B.1. Refinement as logical relation

 Figure B.2  presents the full rules of the declarative lifting relation, S;L; Σ; Γ ` e : θB ė.

We elide most contexts as they are fixed in these rules for brevity.
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Γ ` e : θB ė

L-Unit

Γ ` () : 1B ()

L-Lit

Γ ` b : BB b

L-Var
x : θ ∈ Γ

Γ ` x : θB x

L-Fun
x : θB ẋ ∈ L
Γ ` x : θB ẋ

L-Abs
x : θ1, Γ ` e : θ2 B ė

Γ ` λx:bθ1c⇒e : θ1→θ2 B λx:θ1⇒ė

L-App
Γ ` e2 : θ1→θ2 B ė2 Γ ` e1 : θ1 B ė1

Γ ` e2 e1 : θ2 B ė2 ė1

L-Pair
Γ ` e1 : θ1 B ė1 Γ ` e2 : θ2 B ė2

Γ ` (e1,e2) : θ1×θ2 B (ė1,ė2)

L-Proj
Γ ` e : θ1×θ2 B ė

Γ ` πb e : ite(b,θ1,θ2)B πb ė

L-Let
Γ ` e1 : θ1 B ė1 x : θ1, Γ ` e2 : θ2 B ė2

Γ ` let x = e1 in e2 : θ2 B let x = ė1 in ė2

L-Coerce
Γ ` e : θB ė θ� θ′ B ↑

Γ ` e : θ′ B ↑ė

L-Ctor1
data T = C η ∈ Σ Γ ` e : ηi B ė

Γ ` Ci e : T B Ci ė

L-Ctor2
Ĉi : θi→ΨT̂ ∈ SI Γ ` e : θi B ė

Γ ` Ci e : ΨT̂B Ĉi ė

L-If1
Γ ` e0 : BB ė0 Γ ` e1 : θB ė1 Γ ` e2 : θB ė2

Γ ` if e0 then e1 else e2 : θB if ė0 then ė1 else ė2

L-If2
Γ ` e0 : B̂B ė0 &θB îte Γ ` e1 : θB ė1 Γ ` e2 : θB ė2

Γ ` if e0 then e1 else e2 : θB îte ė0 ė1 ė2

L-Match1
data T = C η ∈ Σ Γ ` e0 : T B ė0 ∀i. x : ηi, Γ ` ei : θ′ B ėi

Γ ` match e0 with C x⇒e : θ′ B match ė0 with C x⇒ė

L-Match2

m̂atch : ΨT̂→(θ→θ′)→θ′ ∈ SE Γ ` e0 : ΨT̂B ė0 ∀i. x : θi, Γ ` ei : θ′ B ėi

Γ ` match e0 with C x⇒e : θ′ B m̂atch ė0 (λx:θ⇒ė)

Figure B.2. Declarative lifting rules
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B.2 Algorithmic Lifting

 Figure B.3 and  Figure B.4 presents the full rules of the lifting algorithm, Σ; Γ ` e : η ∼

X B ė | C.

Γ ` e : η ∼ X B ė | C

A-Unit

Γ ` () : 1 ∼ X B () | X = 1

A-Lit

Γ ` b : B ∼ X B b | X = B

A-Var
x : η ∼ X ∈ Γ

Γ ` x : η ∼ X′ B %↑(X,X′;x) | %↑(X,X′)

A-Fun
fn x:η = e ∈ Σ

Γ ` x : η ∼ X B %x(X) | %x(X)

A-Abs
X1,X2 fresh x : η1 ∼ X1, Γ ` e : η2 ∼ X2 B ė | C

Γ ` λx:η1⇒e : η1→η2 ∼ X B λx:X1⇒ė | X1 ∈ [η1],X2 ∈ [η2],X = X1→X2, C

A-App
X1 fresh x2 : η1→η2 ∼ X ∈ Γ Γ ` x1 : η1 ∼ X1 B ė1 | C

Γ ` x2 x1 : η2 ∼ X2 B x2 ė1 | X1 ∈ [η1],X = X1→X2, C

A-Let
X1 fresh Γ ` e1 : η1 ∼ X1 B ė1 | C1 x : η1 ∼ X1, Γ ` e2 : η2 ∼ X2 B ė2 | C2

Γ ` let x:η1 = e1 in e2 : η2 ∼ X2 B let x:X1 = ė1 in ė2 | X1 ∈ [η1], C1, C2

A-Pair
x1 : η1 ∼ X1 ∈ Γ x2 : η2 ∼ X2 ∈ Γ

Γ ` (x1,x2) : η1×η2 ∼ X B (x1,x2) | X = X1×X2

A-Proj
ite(b,X2,X1) fresh x : η1×η2 ∼ X ∈ Γ

Γ ` πb x : ite(b,η1,η2) ∼ ite(b,X1,X2)B πb x
| ite(b,X2,X1) ∈ [ite(b,η2,η1)],X = X1×X2

Figure B.3. Algorithmic lifting rules
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Γ ` e : η ∼ X B ė | C

A-If
x0 : B ∼ X0 ∈ Γ Γ ` e1 : η ∼ X B ė1 | C1 Γ ` e2 : η ∼ X B ė2 | C2

Γ ` if x0 then e1 else e2 : η ∼ X B %ite(X0,X;x0,ė1,ė2) | %ite(X0,X), C1, C2

A-Ctor
data T = C η ∈ Σ Xi fresh Γ ` x : ηi ∼ Xi B ė | C

Γ ` Ci x : T ∼ X B %Ci(Xi,X;ė) | Xi ∈ [ηi],%Ci(Xi,X), C

A-Match
data T = C η ∈ Σ

X fresh x0 : T ∼ X0 ∈ Γ ∀i. x : ηi ∼ Xi, Γ ` ei : η′ ∼ X′ B ėi | Ci

Γ ` match x0 with C x⇒e : η′ ∼ X′ B %match(X0,X,X′;x0,ė)
| X ∈ [η],%match(X0,X,X′), C

Figure B.4. Algorithmic lifting rules (cont.)

B.3 Metatheory of Lifting

We say a lifting context L is well-typed (under Σ) if and only if, for any x : θB ẋ ∈ L,

Σ; · ` x : bθc and Σ; · ` ẋ : θ. A lifting context is derivable, denoted by ` L, if and only if,

for any x : θB ẋ ∈ L, fn x:bθc = e ∈ Σ and fn ẋ:θ = ė ∈ Σ for some e and ė, such that

S;L; Σ; · ` e : θ B ė. A lifting context is n-valid, denoted by �n L, if and only if, for any

x : θB ẋ ∈ L, (x, ẋ) ∈ EnJθK. If �n L for any n, we say L is valid, denoted by � L. Obviously,

derivability or validity implies well-typedness.

The lemmas and theorems in this section assume a well-typed global context Σ. We

also (explicitly or implicitly) use some standard results about λOADTΨ that are proved in the

Coq formalization [  60 ]: weakening lemmas, substitution lemmas, preservation theorem and

canonical forms of values. We do not state these lemmas formally here, as they are all

standard.

Lemma B.3.1. bηc = η.

Proof. By routine induction on η.

Lemma B.3.2 (Regularity of mergeability). &θB îte implies · ` îte : B̂→θ→θ→θ.
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Proof. By routine induction on the derivation of &θ B îte and applying typing rules as

needed.

Lemma B.3.3 (Regularity of coercibility). θ� θ′ B ↑ implies bθc = bθ′c and · ` ↑ : θ→θ′.

Proof. By routine induction on the derivation of θ� θ′ B ↑ and applying typing rules as

needed.

The following regularity theorem ensures that all lifted expressions are well-typed, which in

turn provides the security guarantees, as well-typed programs are oblivious by the obliviousness

theorem.

Theorem B.3.4 (Regularity of declarative lifting). Suppose L is well-typed and S;L; Σ; Γ `

e : θB ė. We have Σ; bΓc ` e : bθc and Σ; Γ ` ė : θ.

Proof. By induction on the derivation of the declarative lifting judgment.

The cases on L-Unit, L-Lit, L-Var and L-Fun are trivial.

The cases on L-Abs, L-App, L-Let, L-Pair, L-Proj, L-If1, L-Ctor1 and L-Match1

are straightforward to prove, as they are simply congruence cases. L-Ctor1 and L-Match1

also rely on  Lemma B.3.1 . Here we show only the proof on L-Abs. Other cases are similar.

To prove Γ ` λx:θ1⇒ė : θ1→θ2, by T-Abs, we need to show x : θ1, Γ ` ė : θ2, which

follows immediately by the induction hypothesis. The side condition of θ1 being well-kinded

under Γ is immediate from the fact that specification types are well-kinded and the weakening

lemma. The other part of this case, Γ ` λx:bθ1c⇒e : bθ1→θ2c = bθ1c→bθ2c proceeds

similarly.

Case L-If2: By  Lemma B.3.2 , we know · ` îte : B̂→θ→θ→θ. Applying T-App and

the induction hypothesis, we have Γ ` îte ė0 ė1 ė2 : θ, as desired. The other half is

straightforward.

Cases L-Ctor2 and L-Match2 rely on the properties of structures SI and SE, but

otherwise proceed similarly to other cases.

Case L-Coerce: By the induction hypothesis, we have bΓc ` e : bθc and Γ ` ė : θ. Since

bθc = bθ′c by  Lemma B.3.3 , bΓc ` e : bθ′c as required. On the other hand, · ` ↑ : θ→θ′ by

 Lemma B.3.3 . It follows immediately that Γ ` ↑ė : θ′.
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Recall that a substitution in the denotation of typing contexts maps names to pairs of

related values. In the next lemma (and the rest of this section), we use the notations σ1 and

σ2 for the substitution projections, i.e., substitutions that only use the first or the second

component of the pairs.

Lemma B.3.5 (Multi-substitution). Let σ ∈ GnJΓK. If Γ ` e : θ, then · ` σ2(e) : θ, and if

bΓc ` e : η, then · ` σ1(e) : η.

Proof. By routine induction on the structure of Γ, and applying substitution lemma when

needed. Note that θ and η do not contain any local variables, so substitution on these types

does nothing.

Lemma B.3.6. Suppose · ` η :: ∗P. We have (v,v) ∈ VnJηK for any v : η. Conversely, if

(v,v′) ∈ VnJηK for n > 0, then v = v′.

Proof. By routine induction on the structure of η.

Lemma B.3.7 (Anti-monotonicity). If m ≤ n, then VnJθK ⊆ VmJθK, and EnJθK ⊆ EmJθK,

and GnJΓK ⊆ GmJΓK, and �n L =⇒ �m L.

Proof. To prove the case of value interpretation, proceed by routine induction on θ. The

cases of other interpretations are straightforward.

Lemma B.3.8 (Correctness of mergeability). Suppose &θB îte. If (v1, v̇1) ∈ VnJθK and

(v2, v̇2) ∈ VnJθK, and îte [b] v̇1 v̇2 −→∗ v̇, then (ite(b,v1,v2), v̇) ∈ VnJθK.

Proof. By induction on the derivation of mergeability. We assume n > 0 because otherwise it

is trivial. The cases when θ is 1 or B̂ are trivial. The case of product type is routine, similar

to the case of function type.

Case on function type θ1→θ2: By assumption,

• v1 = λz⇒e1 for some e1

• v̇1 = λz⇒ė1 for some ė1

• v2 = λz⇒e2 for some e2
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• v̇2 = λz⇒ė2 for some ė2

Suppose îte [b] v̇1 v̇2 −→∗ v̇, i.e., v̇ = λz⇒îte2 [b] (v̇1 z) (v̇2 z). Suppose i < n, and

(u, u̇) ∈ ViJθ1K. We want to show (ite(b,[u/z]e1,[u/z]e2), îte2 [b] (v̇1 u̇) (v̇2 u̇)) ∈

EiJθ2K. Suppose j < i. We have the following trace:

îte2 [b] (v̇1 u̇) (v̇2 u̇) −→1 îte2 [b] (v̇1 u̇) ([u̇/z]ė2)

−→j2 îte2 [b] (v̇1 u̇) ẇ2

−→1 îte2 [b] ([u̇/z]ė1) ẇ2

−→j1 îte2 [b] ẇ1 ẇ2

−→j3 ẇ

where j = j1 + j2 + j3 + 2, with [u̇/z]ė2 −→j2 ẇ2 and [u̇/z]ė1 −→j1 ẇ1. We instantiate the

assumptions with i and u and u̇ to get:

• ([u/z]e1, [u̇/z]ė1) ∈ EiJθ2K

• ([u/z]e2, [u̇/z]ė2) ∈ EiJθ2K

It then follows that:

• [u/z]e1 −→∗ w1 for some value w1

• (w1, ẇ1) ∈ Vi−j1Jθ2K

• [u/z]e2 −→∗ w2 for some value w2

• (w2, ẇ2) ∈ Vi−j2Jθ2K

Thus ite(b,[u/z]e1,[u/z]e2) −→∗ ite(b,w1,w2). It remains to show (ite(b,w1,w2), ẇ) ∈

Vi−jJθ2K, but it follows immediately by the induction hypothesis and  Lemma B.3.7 .

Case on Ψ-type ΨT̂: By assumption,

• v̇1 = 〈k1,v̂1〉 for some values k1 and v̂1

• r k1 v̂1 −→∗ v1
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• v̇2 = 〈k2,v̂2〉 for some values k2 and v̂2

• r k2 v̂2 −→∗ v2

Suppose îte [b] v̇1 v̇2 −→∗ v̇. We get the following trace:

îte [b] v̇1 v̇2 −→∗
let k = π1 v̇1 t π1 v̇2 in
〈k,mux [b] ( ↪→ (π1 v̇1) k (π2 v̇1))

( ↪→ (π1 v̇2) k (π2 v̇2))〉

−→∗ let k = k1tk2 in . . .

−→∗ 〈k,mux [b] ( ↪→ (π1 v̇1) k (π2 v̇1)) (. . .)〉

−→∗ 〈k,mux [b] ( ↪→ k1 k v̂1) (. . .)〉

−→∗ 〈k,mux [b] v̂′
1 ( ↪→ (π1 v̇2) k (π2 v̇2))〉

−→∗ 〈k,mux [b] v̂′
1 ( ↪→ k2 k v̂2)〉

−→∗ 〈k,mux [b] v̂′
1 v̂′

2〉

−→∗ 〈k,ite(b,v̂′
1,v̂′

2)〉 = v̇

with k1tk2 −→∗ k, ↪→ k1 k v̂1 −→∗ v̂′
1 and ↪→ k2 k v̂2 −→∗ v̂′

2. Because v1 4 k1 by A-O2,

and k1 v k by A-R2, we have v1 4 k by A-R3. It follows that r k v̂′
1 −→∗ v1 by A-R4.

Similarly, we get r k v̂′
2 −→∗ v2. Hence, r k ite(b,v̂′

1,v̂′
2) −→∗ ite(b,v1,v2). That is to

say (ite(b,v1,v2), v̇) ∈ VnJΨT̂K, as desired.

Lemma B.3.9 (Correctness of coercibility). Suppose θ � θ′ B ↑. If (v, v̇) ∈ VnJθK and

↑v̇ −→∗ v̇′, then (v, v̇′) ∈ VnJθ′K.

Proof. By induction on the derivation of coercibility. We only consider n > 0 since it is

otherwise trivial. The cases on identity coercion and boolean coercion are trivial. The case

on ΨT̂� ΨT̂′ is immediate from A-C1. The case on product type is routine, similar to the

case of function type.
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Case on T� ΨT̂: Suppose (v, v̇) ∈ VnJTK, i.e., v = v̇ by definition, and ↑v̇ = ↑v −→∗ v̇′.

We have the following trace:

↑v −→ 〈ν v,s (ν v) v〉

−→∗ 〈k,s k v〉

−→∗ 〈k,v̂〉 = v̇′

with ν v −→∗ k and s k v −→∗ v̂. Knowing v 4 k by A-O3, we have r k v̂ −→∗ v by

A-O1. But that is (v, 〈k,v̂〉) ∈ VnJΨT̂K, as desired.

Case on θ1→θ2 � θ′
1→θ′

2: By assumption,

• v = λy⇒e for some e

• v̇ = λy⇒ė for some ė

Suppose ↑v̇ −→∗ v̇′, i.e., v̇′ = λy⇒↑2(v̇ (↑1y)). We want to show (v, v̇′) ∈ VnJθ′
1→θ′

2K. To-

wards this goal fix i < n and (v1, v̇′
1) ∈ ViJθ′

1K. It suffices to show ([v1/y]e, ↑2(v̇ (↑1v̇′
1))) ∈

EiJθ′
2K. Suppose j < i. We have the following trace:

↑2(v̇ (↑1v̇′
1)) −→j1 ↑2(v̇ v̇1)

−→1 ↑2([v̇1/y]ė)

−→j2 ↑2v̇2

−→j3 v̇′
2

where j = j1 + j2 + j3 + 1, with ↑1v̇′
1 −→j1 v̇1 and [v̇1/y]ė −→j2 v̇2. By the induction

hypothesis, we get (v1, v̇1) ∈ ViJθ1K. It follows, by assumption, that ([v1/y]e, [v̇1/y]ė) ∈

EiJθ2K. Hence [v1/y]e −→∗ v2 for some v2 such that (v2, v̇2) ∈ Vi−j2Jθ2K. It then follows by

the induction hypothesis that (v2, v̇′
2) ∈ Vi−j2Jθ′

2K, which concludes the proof by  Lemma B.3.7 .

Theorem B.3.10 (Correctness of declarative lifting of expressions). Suppose S;L; Σ; Γ ` e :

θB ė and �n L. Given a substitution σ ∈ GnJΓK, we have (σ1(e), σ2(ė)) ∈ EnJθK.
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Proof. By induction on the derivation of the declarative lifting judgment. Note that we do

not fix step n in the induction. That means we can instantiate it when applying the induction

hypothesis, but we also need to discharge �n L for the n we pick. We will not explicitly show

this side-condition for brevity, because it is simply a consequence of  Lemma B.3.7 as long as

we pick the same or a smaller step. The well-typedness side-conditions in logical relations are

omitted, because they are trivial from  Theorem B.3.4 and preservation theorem. In addition,

we only consider step n > 0 because the cases when n = 0 are always trivial.

The cases L-Unit, L-Lit, L-Var and L-Fun are trivial.

Case T-Abs: We need to show (λx:bθc⇒σ1(e), λx:θ⇒σ2(ė)) ∈ EnJθ1→θ2K. Suppose

i < n. Because lambda abstraction can not take step, i = 0, and it suffices to show

(λx:bθc⇒σ1(e), λx:θ⇒σ2(ė)) ∈ VnJθ1→θ2K. To this end fix i < n and suppose that (v, v̇) ∈

ViJθ1K for some v and v̇. We know σ[x 7→ (v, v̇)] ∈ GiJx : θ1, ΓK, by assumption and

 Lemma B.3.7  . Now we specialize the induction hypothesis with n = i and substitution

σ[x 7→ (v, v̇)] to get (σ1[x 7→ v](e), σ2[x 7→ v̇](ė)) = ([v/x]σ1(e), [v̇/x]σ2(ė)) ∈ EiJθ2K, as

required.

Case T-App: We need to show (σ1(e2) σ1(e1), σ2(ė2) σ2(ė1)) ∈ EnJθ2K. Suppose that

i < n, and σ2(ė2) σ2(ė1) −→i v̇. By the semantics definition, we have the following reduction

trace:

σ2(ė2) σ2(ė1) −→i1 σ2(ė2) v̇1

−→i2 v̇2 v̇1

−→1 [v̇1/x]ė′
2

−→i3 v̇

where v̇2 is λx⇒ė′
2 for some ė′

2, and i = i1+i2+i3+1, with σ2(ė1) −→i1 v̇1 and σ2(ė2) −→i2 v̇2.

Instantiating the two induction hypotheses with step n and σ, we get:

• (σ1(e2), σ2(ė2)) ∈ EnJθ1→θ2K

• (σ1(e1), σ2(ė1)) ∈ EnJθ1K

It follows that:
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• σ1(e2) −→∗ v2 for some v2

• (v2, v̇2) ∈ Vn−i2Jθ1→θ2K

• σ1(e1) −→∗ v1 for some v1

• (v1, v̇1) ∈ Vn−i1Jθ1K

where v2 is λx⇒e′
2 for some e′

2. It follows that ([v1/x]e′
2, [v̇1/x]ė′

2) ∈ En−i1−i2−1Jθ2K, by

specializing the value interpretation of function type to n− i1− i2− 1. As i3 < n− i1− i2− 1,

we know [v1/x]e′
2 −→∗ v for some v, such that (v, v̇) ∈ Vn−i1−i2−i3−1Jθ2K. Therefore,

σ1(e2) σ1(e1) −→∗ σ1(e2) v1

−→∗ v2 v1

−→ [v1/x]e′
2

−→∗ v

and (v, v̇) ∈ Vn−iJθ2K, as desired.

Case L-Let: Observe the trace of the lifted expression:

let x = σ2(ė1) in σ2(ė2) −→i1 let x = v̇1 in σ2(ė2)

−→1 [v̇1/x]σ2(ė2)

−→i2 v̇

The rest of the proof is similar to L-App and L-Abs, with the induction hypothesis of the

let-body specialized to step n− i1.

Case L-Pair: Similarly with the trace:

(σ2(ė1),σ2(ė2)) −→i1 (v̇1,σ2(ė2))

−→i2 (v̇1,v̇2)
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Case L-Proj: Similarly with the trace:

πb σ2(ė) −→i1 πb (v̇1,v̇2)

−→1 ite(b,v̇1,v̇2)

Case L-If1: Similarly with the trace:

if σ2(ė0) then σ2(ė1) else σ2(ė2) −→i0 if b then σ2(ė1) else σ2(ė2)

−→1 ite(b,σ2(ė1),σ2(ė2))

−→j v̇

Case L-Ctor1: Similarly with the trace Ci σ2(ė) −→i Ci v̇. We also need to apply

 Lemma B.3.6 to complete the proof.

Case L-Match1: Similarly with the trace:

match σ2(ė0) with C x⇒σ2(ė) −→j0 match Ci v̇0 with C x⇒σ2(ė)

−→1 [v̇0/x]σ2(ėi)

−→j1 v̇

Similar to L-Ctor1,  Lemma B.3.6 is used.

Case L-If2: Suppose i < n. We have the following trace:

îte σ2(ė0) σ2(ė1) σ2(ė2) −→i2 îte σ2(ė0) σ2(ė1) v̇2

−→i1 îte σ2(ė0) v̇1 v̇2

−→i0 îte [b] v̇1 v̇2

−→i3 v̇

where i = i0 + i1 + i2 + i3, with σ2(ė0) −→i0 [b], σ2(ė1) −→i1 v̇1 and σ2(ė2) −→i2 v̇2. By

the induction hypothesis, it follows that:

• σ1(e0) −→∗ b
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• σ1(e1) −→∗ v1 for some v1

• (v1, v̇1) ∈ Vn−i1JθK

• σ1(e2) −→∗ v2 for some v2

• (v2, v̇2) ∈ Vn−i2JθK

Hence we have:

if σ1(e0) then σ1(e1) else σ1(e2) −→∗ if b then σ1(e1) else σ1(e2)

−→ ite(b,σ1(e1),σ1(e2))

−→∗ ite(b,v1,v2)

and (ite(b,v1,v2), v̇) ∈ Vn−iJθK by  Lemma B.3.8 , as required.

Case L-Ctor2: Similarly with the trace:

Ĉi σ2(ė) −→j1 Ĉi v̇i

−→j2 〈k,v̂〉 = v̇

We complete the proof by A-I1.

Case L-Match2: Similarly with the trace:

m̂atch σ2(ė0) (λx⇒σ2(ė)) −→j0 m̂atch v̇0 (λx⇒σ2(ė))

−→j1 v̇

We complete the proof by A-E1, whose assumptions are discharged by the induction hypoth-

esis.

Case L-Coerce: The goal is (σ1(e), ↑σ2(ė)) ∈ EnJθ′K. Suppose i < n. We have the trace:

↑σ2(ė) −→i1 ↑v̇

−→i2 v̇′
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where i = i1 + i2, with σ2(ė) −→i1 v̇. It follows by the induction hypothesis that σ1(e) −→∗ v

for some v such that (v, v̇) ∈ Vn−i1JθK. Then, by  Lemma B.3.9  , (v, v̇′) ∈ Vn−iJθ′K, as

desired.

Corollary B.3.11 (Correctness of declarative lifting of closed terms). Suppose S;L; Σ; · `

e : θB ė and �n L. We have (e, ė) ∈ EnJθK.

Theorem B.3.12 (Correctness of declarative lifting). ` L implies � L.

Proof. We need to show �n L for any n, i.e., (x, ẋ) ∈ EnJθK for any x : θB ẋ. The proof is a

straightforward induction on n.

The base case is trivial, as E0JθK is a total relation as long as x and ẋ are well-typed,

which is immediate from ` L.

Suppose �n L. We need to show (x, ẋ) ∈ En+1JθK. From ` L, we know x and ẋ are defined

by e and ė in Σ, respectively. It is easy to see it suffices to prove (e, ė) ∈ EnJθK, because x

and ẋ take exactly one step to e and ė. But that is immediate by  Corollary B.3.11 .

In the following theorem, we write σ(Γ2) to obtain the second projection of the typing

context with the type variables substituted, i.e., each x : η ∼ X in Γ is mapped to x : σ(X).

It may be counterintuitive that we do not require θ to be compatible with η or each pair

in the typing context to be compatible, but these side conditions are indeed not needed; if

the generated constraints (under empty context) are satisfiable, the compatibility conditions

should hold by construction.

Theorem B.3.13 (Soundness of algorithmic lifting of open terms). Suppose Σ; Γ ` e : η ∼

X B ė | C. Given a specification type θ, if S;L; Σ; σ � X = θ, C, then σ(ė) elaborates to an

expression ė′, such that S;L; Σ; σ(Γ2) ` e : θB ė′.

Proof. By induction on the derivation of the algorithmic lifting judgment. The cases of

A-Unit, A-Lit and A-Fun are trivial. The cases of A-Let, A-Pair and A-Proj are

similar to A-Abs and A-App, so we only show the proofs of these two cases. The cases of

A-Ctor and A-Match are similar to A-If (and other cases), so we only show the proof of

A-If.

Case A-Var: Suppose σ � X′ = θ,%↑(X,X′). It follows that:
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• θ = σ(X′)

• σ(X)� σ(X′)B ↑

• %↑(σ(X),σ(X′);x) B ↑x

Therefore, σ(%↑(X,X′;x)) = %↑(σ(X),σ(X′);x) elaborates to ↑x. Since x : η ∼ X ∈ Γ

by assumption, x : σ(X) ∈ σ(Γ2). We can then apply L-Coerce and L-Var to derive

σ(Γ2) ` x : σ(X′)B ↑x.

Case A-Abs: Suppose σ � X = θ,X1 ∈ [η1],X2 ∈ [η2],X = X1→X2, C. It follows that:

• θ = σ(X) = σ(X1)→σ(X2)

• bσ(X1)c = η1

• bσ(X2)c = η2

Because σ � X2 = σ(X2), C, we have by the induction hypothesis:

• σ(ė) elaborates to some ė′

• x : σ(X1), σ(Γ2) ` e : σ(X2)B ė′

Thus σ(λx:X1⇒ė) = λx:σ(X1)⇒σ(ė) elaborates to λx:σ(X1)⇒ė′, and σ(Γ2) ` λx:η1⇒e :

σ(X1)→σ(X2)B λx:σ(X1)⇒ė′, by L-Abs.

Case A-App: Suppose σ � X2 = θ,X1 ∈ [η1],X = X1→X2, C. It follows that:

• θ = σ(X2)

• bσ(X1)c = η1

• σ(X) = σ(X1)→σ(X2)

Because σ � X1 = σ(X1), C, we have by the induction hypothesis:

• σ(ė1) elaborates to some ė′
1

• σ(Γ2) ` x1 : σ(X1)B ė′
1
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Therefore, σ(x2 ė1) = x2 σ(ė1) elaborates to x2 ė′
1, and σ(Γ2) ` x2 x1 : σ(X2) B x2 ė′

1, by

L-App and L-Var.

Case A-If: Suppose σ � X = θ,%ite(X0,X), C1, C2. We know σ(X) = θ. Because

σ � X = σ(X), C1 and σ � X = σ(X), C2, we have by the induction hypothesis:

• σ(ė1) elaborates to some ė′
1

• σ(Γ2) ` e1 : σ(X)B ė′
1

• σ(ė2) elaborates to some ė′
2

• σ(Γ2) ` e2 : σ(X)B ė′
2

Since σ � %ite(X0,X), %ite(σ(X0),σ(X);x0,ė′
1,ė′

2) B ė for some ė. By inverting this judg-

ment, we consider two cases. In the first case, the condition has type B:

• %ite(σ(X0),σ(X);x0,ė′
1,ė′

2) B if x0 then ė′
1 else ė′

2

• σ(X0) = B

In this case, %ite(σ(X0),σ(X);x0,σ(ė1),σ(ė2)) elaborates to if x0 then ė′
1 else ė′

2, and,

by L-If1 and L-Var, σ(Γ2) ` if x0 then e1 else e2 : σ(X) B if x0 then ė′
1 else ė′

2.

The second case has condition type B̂:

• &σ(X)B îte

• %ite(σ(X0),σ(X);x0,ė′
1,ė′

2) B îte x0 ė′
1 ė′

2

• σ(X0) = B̂

In this case, %ite(σ(X0),σ(X);x0,σ(ė1),σ(ė2)) elaborates to îte x0 ė′
1 ė′

2, and, by L-If2

and L-Var, σ(Γ2) ` if x0 then e1 else e2 : σ(X)B îte x0 ė′
1 ė′

2.

Corollary B.3.14 (Soundness of algorithmic lifting). Suppose Σ; · ` e : η ∼ XB ė | C. Given

a specification type θ, if S;L; Σ; σ � X = θ, C, then σ(ė) elaborates to an expression ė′, such

that S;L; Σ; · ` e : θB ė′.
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