
CERIAS Tech Report 2023-5
Closing the Gap: Leveraging AES-NI to Balance Adversarial Advantage and Honest User Performance in Argon2i

 by Nicholas Harrell and Nathaniel Krakauer
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086



1 

Closing the Gap: Leveraging AES-NI to Balance 
Adversarial Advantage and Honest User 

Performance in Argon2i 
Nicholas Harrell, Purdue University, Nathaniel Krakauer, Purdue University, 

Abstract—The challenge of providing data privacy and in-
tegrity while maintaining efficient performance for honest users is 
a persistent concern in cryptography. Attackers exploit advances 
in parallel hardware and custom circuit hardware to gain an 
advantage over regular users. One such method is the use 
of Application-Specific Integrated Circuits (ASICs) to optimize 
key derivation function (KDF) algorithms, giving adversaries a 
significant advantage in password guessing and recovery attacks. 
Other examples include using graphical processing units (GPUs) 
and field programmable gate arrays (FPGAs). 

We propose a focused approach to close the gap between adver-
sarial advantage and honest user performance by leveraging the 
hardware optimization AES-NI (Advanced Encryption Standard 
New Instructions). AES-NI is widely available in modern x86 
architecture microprocessors. Honest users can negate the adver-
sary advantage by diminishing the utility of their computational 
power. We explore the impact of AES-NI on the Argon2i KDF 
algorithm, a widely-used and recommended password hashing 
function. 

Through our analysis, we demonstrate the effectiveness of in-
corporating AES-NI in reducing the advantage gained by attack-
ers using ASICs. We also discuss the security and performance 
trade-offs to provide guidelines for practical implementation in 
deployed cryptosystems. 

Index Terms—cryptography, hardware optimization, argon2i, 
key derivative function, kdf 

I. INTRODUCTION 

Despite numerous efforts to transition away from password-
based authentication, it remains the most prevalent form of 
authentication [1]. The persistence of password-based systems, 
even in the presence of multi-factor authentication and var-
ious security protocols has contributed to security breaches 
that have exposed billions of passwords to offline password 
cracking over the past decade [2]. Techniques such as balloon 
attacks, multi-instance security, auxiliary input and bit-fixing 
attacks, password guessing, and password unrecoverability 
have been employed to demonstrate the limits of password 
cracking. 

The research goal of this paper is to demonstrate the impact 
of enabling honest users to compute hashes more efficiently, 
thereby reducing an attacker’s advantage. As honest users 
can compute hashes more quickly, they can execute more 
iterations of a hash function without incurring additional costs, 
significantly increasing the attacker’s workload. Furthermore, 
using unique random salts for each password in a database 
would decrease the attacker’s likelihood of successfully crack-
ing passwords. This heightened level of assurance constitutes a 
highly sought-after security guarantee. The primary motivation 

for this research question in [2] illustrates that even when 
using ASICs, which are the most effective manufacturing 
process to implement algorithms in hardware, Memory Hard 
Functions (MHFs) still consume significant amounts of RAM 
when deployed on an ASIC architecture. This mathemati-
cal property of MHFs is a desirable security characteristic. 
However, many Key Derivative Functions (KDFs), such as 
Argon2i, bcrypt, scrypt, DRSample, and the currently NIST-
approved algorithms, KDF and PBKDF2, do not allow average 
users to take advantage of modern hardware designs. Although 
modern software optimizations have improved the speed of 
hash calculations, the attacker is assumed to possess a memory 
advantage. Consequently, users expend more resources due to 
less efficient hash calculations. 

II. PREVIOUS WORK 

Because passwords are still the most used form of authen-
tication, there is a wide array of prior works dedicated to ad-
vancing the theoretical understanding of generating intractable 
hashes no matter the computational efficiency of the adversary. 
This includes specialized ASIC and GPU hardware, that an 
adversary has available. The problem formulation is where 
an attacker wants to solve multiple hashed passwords using 
preprocessed methods, such as rainbow tables, to solve the 
hashes faster. Even though, theoretically, the hash functions 
are hard problems, everyday users of computers frequently 
choose predictable low-entropy passwords, which diminish the 
usefulness of these hard functions [3]. 

A. Preprocessing Attack 

The main avenue for an adversary is to trade space for time. 
Hellman introduced the concept of time memory trade-off to 
cryptoanalyze any N key cryptosystem in N2/3 operations 
with N2/3 words of memory on average. The adversary 
precomputes a table of plaintext encrypted by N keys and 
stored in the table. The attack introduced by Hellman suc-
cessfully compromises DES encryption but not block chaining 
encryption schemes that use a random initialization vector (IV) 
to prevent guessing the first block of text correctly [4]. 

B. Mitigations 

One way to compensate for low entropy passwords is to add 
iterations to the hashing process. [5] outlines in specification 
PKCS#5, that using iteration can make it more time inefficient 



2 

for an adversary to evaluate the hash function in the forward 
direction. In this standard, the authors recommend using 1000 
iterations to increase the cost to an adversary but limit the 
impact from an honest broker deriving the individual keys [6]. 

[7] introduces a novel system implementation that allows 
for password security to keep pace with increased hardware 
performance using iteration to make a forward pass of the 
hashing process intractable. The paper’s motivation is that 
password length and entropy do not scale with computing 
power. The fact that most passwords are low entropy does 
not help this fact. Their algorithm, bcrypt, creates 128-bit 
salt to encrypt 192-bit values. Bcrypt uses their eksblowfish 
algorithm, a cost-parameterizable and salted block cipher used 
to create resistant ciphertext against the provided keys [8]. 
The changing intermediate arrays in the eksblowfish algo-
rithm prevent the possibility of new optimizations making 
the ciphertext of the key crackable and limits the utility of 
encoding the Feistel network used in the block cipher being 
encoded and run in hardware. Eksblowfish is used to store 
the key of the passwords on disk securely. Bcrypt’s 128-bit 
salt makes precomputing dictionary attacks intractable. This 
also includes if the attacker already knows the salt. Bit slicing 
attacks are also intractable since bcrypt S-boxes change while 
the algorithm runs [9]. 

Another avenue in the literature is to make computing 
memory-hard. The prior works discussed so far have a major 
flaw. Each is susceptible to attackers implementing custom 
hardware to crack the key derivation functions. In response, 
scrypt was developed to mitigate parallel attacks [10]. The 
goal is to make the attacker use up an intractable amount of 
memory for the duration of the password cracking. The key 
security assumption of scrypt is that BlockMix with Salsa20 on 
an eight-count iteration has no optimizations to allow iterations 
to be hacked more easily than using a random oracle [11]. 

The authors of [12] contribute new theoretical tools to 
prove the lower bounds for functions that run in parallel that 
provide the hard guarantees for scrypt. The key advancement 
is applying the pebbling reduction to memory hard functions 
that underpin the security of key derivative functions. Pebbling 
on graphs is a two-player game. The game starts when player 
1 picks any vertex as the root vertex and sets pebbles on 
any vertex besides the root. Player two can decide to make 
a move by picking two pebbles at a vertex and can win if 
player two places a pebble at the root. The pebbling number 
is the least number of pebbles where player two can win 
no matter how the pebbles are placed and any vertex is root 
[13]. This reduction supports the lower bound complexity of 
memory-hard functions (MHF) on parallel computation tasks 
such as GPUs. The pebble path is a directed acyclic graph 
(DAG), the longest path of pebbles throughout the graph. This 
path represents the space needed to store enough information 
to crack the MHF and is used to represent the lower bound 
of a parallel attack. The authors expand the use of pebbling 
reductions from only sequential computation models to similar 
computation models by modifying the pebbling game for 
player 2 to move multiple pebbles during their turn. Using 
this new game, the paper proves a pebbling reduction from the 
game to MHFs to prove security from a parallel random oracle 

model adversary [14]. This new theoretical paradigm provides 
stronger security guarantees than the previous works discussed 
above since this is the first theory tool to reason about attackers 
use parallel hardware. The theoretical assumption in prior 
works used a sequential computer processing model. The rest 
of the paper will motivate the extension of efficiently using 
Argon2, whose theoretical security assumption is based on 
the parallel lower bounds proof using pebbling reductions. 

III. OUR CONTRIBUTION: HARDWARE AND SOFTWARE 

OPTIMIZATION 

This paper addresses the threat posed by an adversary 
possessing considerable computational resources for password 
cracking, with a focus on the Argon2i Key Derivation Function 
(KDF). The ultimate aim is to propose a method for mitigat-
ing the adversarial advantage to improve user security. We 
demonstrate that, given comparable memory and processing 
capabilities, the performance of an AES-NI implementation is 
similar to an FPGA or ASIC implementation of the Advanced 
Encryption Standard (AES) algorithm. Since little prior work 
in the literature supports this hypothesis, this paper seeks 
to examine known implementations of AES on FPGAs and 
ASICs to establish baseline measurements. 

A. ASIC and FPGA 

Efficient cryptographic processing relies heavily on the 
algorithm and the associated operations being executed. In the 
context of hardware optimization, features such as pipelining, 
iterative looping, and loop unrolling are important, but still 
susceptible to pipeline stalls from structural dependencies. 
While this paper does not delve into these aspects in-depth, it 
explores some associated trade-offs. Pipelining is particularly 
advantageous in the context of iterative processes. As [15] 
elucidates, the number of rounds K that can be unrolled 
without surpassing the available circuit area is desirable for 
hardware optimization. This necessitates the consideration of 
ciphers without feedback options, as their inclusion would 
constrain the circuit, thereby reducing the available area. [15] 
demonstrates the suitability of AES for FPGA implementation, 
highlighting the iterative nature of the AES round as an ideal 
cipher for hardware integration. The intrinsic functions of 
AES, such as MixColumns and SubBytes, possess mutually 
inverse properties that allow for the parallel execution of 
multiple rounds in forward and reverse directions. AES’s 
design facilitates the exploitation of techniques that leverage 
various iterations. 

The authors in [16] investigate optimization by examining 
circuit area employing the term ”Gate Equivalent [GE].” The 
study uses a baseline throughput of 50 MHz to illustrate 
that increasing the circuit area leads to a reduction in clock 
cycles and an increase in throughput. Consequently, the only 
countermeasure available involves deploying an algorithm that 
demands substantial memory to consume the entire circuit 
area. In comparing ASICs and FPGAs, ASICs have historically 
exhibited a frequency advantage on the order of four to five. 
Typically, ASICs possess a processing advantage due to the 
static nature of their integrated circuits and the utilization of 



3 

hard cores [17]. Moreover, the cost of FPGAs and ASICs 
must be considered, as the significant expense could deter the 
average attacker. 

B. AES-NI 

We analyze heterogeneous systems encompassing a cen-
tral processing unit (CPU) and a graphics processing unit 
(GPU) to execute parallel processing tasks more effectively. 
Contemporary designs often support multi-threading or hyper-
threading features, as evidenced by the prevalence of crypto-
graphic implementations. Generally, web servers employ a Key 
Derivative Function (KDF) for password-hashing processes. 

A simplified explanation of modern-day password hashing 
involves a server generating a unique salt for each hash. This 
salt is known only to the server and constitutes a crucial aspect 
of the KDF implementation. Ideally, the server stores the salt 
in a location that minimizes the likelihood of disclosure. On 
a Linux system the salt is stored in the /etc/passwd file. We 
assume an ideal server for our experiment setup. Consequently, 
even if a user’s password is exposed and an adversary knows 
the hashing algorithm, the attacker must spend time t to crack 
the salt before utilizing the password maliciously. Furthermore, 
suppose the server generates a random salt for each password. 
In that case, the time required for an adversary to crack all 
passwords in the database increases to tk , where k represents 
the total number of passwords. [5] refers to this phenomenon 
as multi-instance security. 

The significance of this relationship stems from the fact 
that not every company or user can afford application-specific 
integrated circuit (ASIC) hardware or field-programmable gate 
arrays (FPGAs) for KDF processing. The time t required for 
an honest user to process k passwords should correlate with 
the adversary’s ability to crack passwords. This relationship is 
vital to security from a performance perspective, so hardware 
optimizations provide the most cost-effective solution. Future 
research may explore additional hardware optimizations for 
cryptographic processes. 

The AES-NI extension comprises six instructions that opti-
mize AES implementations in software [18]. Modern systems 
generally enable cryptographic hardware optimizations by 
default, suggesting that incorporating encryption methods that 
leverage these optimizations could enhance the honest user’s 
performance. 

Users have alternative options for optimizing cryptographic 
schemes. One might consider implementing these on GPUs, as 
most modern heterogeneous systems possess GPUs. Although 
powerful GPUs are generally less expensive than ASICs and 
FPGAs in terms of cost, [19] compares the performance 
of both in various settings, such as multiple GPUs. While 
[19] demonstrates competitiveness with GPUs, AES-NI out-
performs the GPU in nearly all settings with multiple cores 
and threads when multiple GPUs are used. From a cost 
perspective, AES-NI emerges as the superior candidate, as 
the expense of multiple GPUs is not justified when similar or 
better performance can be achieved with pre-existing hardware 
optimizations. 

IV. EXPERIMENTAL SETUP 

The design of this experiment aims to address several 
critical aspects related to the performance of AES NI. Firstly, 
we seek to analyze the performance of AES NI in a general-
purpose register setting, which emulates systems constrained 
to AES NI optimization only. Secondly, we aim to evaluate an 
optimized platform capable of harnessing additional hardware 
instruction sets and larger registers. 

To provide a meaningful comparison, we run the Argon2i 
baseline algorithm in an optimized manner to assess the 
performance differences between the AES NI variants and Ar-
gon2i. By utilizing general registers, we determine if AES NI 
performance is comparable to optimized Argon2i to elucidate 
the potential benefits of hardware optimizations. 

A. Measures 

In evaluating the performance of an essential derivation 
function (KDF), it is crucial to consider various factors, 
particularly those relating to the parallel execution of subrou-
tines within the KDF’s structure. To conduct a comprehensive 
analysis, we examine the performance of the KDF over 1 to 
14 thread counts. This range is expected to provide sufficient 
evidence for identifying the critical performance differences. 

Another critical aspect to consider is memory usage. 
Memory-hard KDFs, such as Argon2i, rely on consuming large 
amounts of memory to increase the computational complexity 
of hash calculations. Given that recent studies on Argon2i 
have utilized 4 gigabytes of memory, we increase memory 
to 8 gigabytes to reflect the memory capacities of modern 
computing systems and offer readers additional insight into 
performance at higher memory levels. 

We will employ three primary metrics to assess the KDF’s 
performance: millicycles (Mcycles), computations per byte 
(cpb), and runtime, representing the total time required for 
the algorithm to complete its calculations. For each parameter 
change, we will calculate the average values over three iter-
ations to ensure the reliability and accuracy of our findings. 
Future studies will demonstrate the overall power consumption 
of each algorithm. 

B. Constraints 

The deliverable of this experiment had a time constraint of 
two months, which required us to scope down the experiment 
to a more manageable experiment. However, the authors are 
confident the results give researchers insights into the potential 
for pre-embedded hardware optimizations. 

C. Limitations 

This experiment only uses one personal computer under 
a specific configuration. We attempted to suppress as many 
background processes and services will allow. We make the 
assumption that only dedicating half of the available memory 
to the experiment and running several iterations will eliminate 
concerns for extraneous factors. 



4 

D. Experimental Prerequisites 

We used a Windows 11 computer to perform the exper-
iments. Given the memory-intensive nature of Windows 11, 
where background processes can utilize up to 50% of available 
memory due to scheduled operations, a minimum of 16 GB of 
memory is required. This allocation ensures that the algorithms 
can efficiently utilize up to 8 GB of memory for computational 
purposes. 

E. Hardware 

• AMD Ryzen 9 5900HS Personal Computer 
• 8 Cores, 16 Threads (14 threads utilized for the experi-

ment) 
• 8 x 32 KBytes L1 Data Cache, 8 x 32 KBytes L1 

Instruction Cache 
• 8 x 512 KBytes L2 Cache 
• 16 MBytes L3 Cache 
• 16 GBytes DDR4 DRAM (8 GBytes allocated for the 

experiment) 
• Zen 3 processors with 3 GHz to 4.6 GHz (turbo) clock 

speed 

F. Software 

• Argon2i bench routine 
• Three algorithm variants: 

1) Argon2i AVX2 with 256 registers (baseline) 
2) AES NI General Register (GR) 
3) AES NI AVX2 

V. RESULTS 

A. Runtime 

Fig. 1. runtime/Memory for 1,2,4,8 Threads 

Our investigation’s results indicate that the AES NI vari-
ants, encompassing both the AVX2 and General Purpose 
Register (GPR) derivatives, exhibited superior performance in 

Fig. 2. runtime/Memory for 10,12,14,Overall Threads 

comparison to the Argon2i AVX2 variant. Among the assessed 
derivatives, the AES NI AVX2 variant emerged as the most 
efficient, in accordance with our hypothesized outcomes de-
lineated in prior sections of this manuscript. This result can 
be ascribed to the inherent efficiencies of the AES NI AVX2 
variant, which leverages the benefits of dedicated hardware 
instructions and optimized performance. 

An observed anomaly in the GPR AES NI variant was a 
marked increase in runtime beyond 4GB. Although rerunning 
the test could potentially mitigate this issue, we opted to retain 
it in order to demonstrate how the utilization of GPR could 
potentially compromise performance quality. This irregularity 
may be attributable to cache misses or pipeline stalls, sig-
nifying resource competition. By examining the consistent 
linear nature of the other two variants, we highlight the 
advantages of dedicated hardware, which include the delivery 
of consistent performance. While this investigation does not 
provide a direct comparison with ASICs or FPGAs, it does 
illustrate the benefits of dedicated circuits. 

It is worth noting that, unlike AES NI, Argon2i does 
not employ a lookup table. The additional cost associated 
with utilizing a lookup table does not significantly impact 
performance, as the table is stored locally within the processor. 
Furthermore, we substituted two multiplicative and additive 
operators from Argon2i’s G function with an entire round 
of AES encrypt, which consists of SubBytes, MixColumns, 
ShiftRows, and AddRoundKey. This introduces a consider-
able number of supplementary operations. Despite the added 
complexity, the AES NI variant outperforms the optimized 
Argon2i, with the AES NI AVX2 version surpassing the 
Argon2i AVX2 by a factor of two when utilizing 8GB of 
memory. 

B. CPB 

Upon examining cycles per byte (cpb), an unexpected 
observation arose when analyzing the AES NI General Pur-



5 

Fig. 3. CPB/Memory for 1,2,4,8 Threads 

Fig. 4. CPB/Memory for 10,12,14,Overall Threads 

pose Register (GPR) variant. Evidently, after reaching 4 GB 
at 8 threads, AES NI begins to consume more cpbs. We 
hypothesize that this phenomenon may be ascribed to cache 
misses resulting from contention between Argon2i’s memory 
fill function and the AES NI instructions. Our reasoning 
is that the AES NI intrinsic function necessitates access to 
the L1 cache to execute lookups in the subbytes operations, 
while Argon2i’s memory fill operation concurrently requires 
access to local resources. As memory saturation intensifies 
at the 4 GB threshold, a heightened frequency of memory 
lookup operations transpires, leading to an escalation in cpbs. 
Conversely, the AVX2 variants capitalize on larger vectorized 
registers, enabling the functions to operate more efficiently 
through unrolling techniques and an augmented pipeline for 
data processing. As these instruction sets consistently function 

locally, resource competition is attenuated. 

VI. CONCLUSION 

In summary, the integration of AES NI into Argon2i as 
a permutation within the G function serves to enhance the 
overall performance of Argon2i with both GPR and AVX2 
instruction sets. This improvement provides evidence of po-
tential for bridging the gap between adversaries and honest 
users concerning Key Derivative Functions. 

REFERENCES 

[1] P. Khatiwada and B. Yang, “An access control and authentication scheme 
for secure data sharing in the decentralized cloud storage system,” in 
2022 5th Conference on Cloud and Internet of Things (CIoT). IEEE, 
2022, pp. 137–144. 

[2] W. Bai, J. Blocki, and M. H. Ameri, “Cost-asymmetric memory hard 
password hashing,” in Security and Cryptography for Networks: 13th 
International Conference, SCN 2022, Amalfi (SA), Italy, September 12– 
14, 2022, Proceedings. Springer, 2022, pp. 21–44. 

[3] S. Pearman, S. A. Zhang, L. Bauer, N. Christin, and L. F. Cranor, 
“Why people (don’t) use password managers effectively,” in Fifteenth 
Symposium on Usable Privacy and Security (SOUPS 2019), 2019, pp. 
319–338. 

[4] E. G. AbdAllah, Y. R. Kuang, and C. Huang, “Advanced encryption 
standard new instructions (aes-ni) analysis: Security, performance, and 
power consumption,” in Proceedings of the 2020 12th International 
Conference on Computer and Automation Engineering, ser. ICCAE 
2020. New York, NY, USA: Association for Computing Machinery, 
2020, p. 167–172. [Online]. Available: https://doi.org/10.1145/3384613. 
3384648 

[5] P. Farshim and S. Tessaro, “Password hashing and preprocessing,” in 
Advances in Cryptology–EUROCRYPT 2021: 40th Annual International 
Conference on the Theory and Applications of Cryptographic Tech-
niques, Zagreb, Croatia, October 17–21, 2021, Proceedings, Part II. 
Springer, 2021, pp. 64–91. 

[6] B. Kaliski, “Rfc2898: Pkcs 5: Password-based cryptography specifica-
tion version 2.0,” USA, 2000. 

[7] N. Provos and D. Mazieres, “A future-adaptable password scheme.” 
in USENIX Annual Technical Conference, FREENIX Track, vol. 1999, 
1999, pp. 81–91. 

[8] L. Ertaul, M. Kaur, and V. A. K. R. Gudise, “Implementation and perfor-
mance analysis of pbkdf2, bcrypt, scrypt algorithms,” in Proceedings of 
the international conference on wireless networks (ICWN). The Steering 
Committee of The World Congress in Computer Science, Computer . . . , 
2016, p. 66. 

[9] N. Provos and D. Mazières, “A Future-Adaptable 
password scheme,” in 1999 USENIX Annual Technical 
Conference (USENIX ATC 99). Monterey, CA: USENIX 
Association, June 1999. [Online]. Available: https: 
//www.usenix.org/conference/1999-usenix-annual-technical-conference/ 
future-adaptable-password-scheme 

[10] A. Srinivasan, A. Nguyen, and R. Tarlecki, “Stump-stalling offline 
password attacks using pre-hash manipulations,” in 2015 IEEE 21st 
International Conference on Parallel and Distributed Systems (ICPADS). 
IEEE, 2015, pp. 306–313. 

[11] C. Percival and S. Josefsson, “The scrypt Password-Based Key 
Derivation Function,” RFC 7914, Aug. 2016. [Online]. Available: 
https://www.rfc-editor.org/info/rfc7914 

[12] J. Alwen, B. Chen, K. Pietrzak, L. Reyzin, and S. Tessaro, “Scrypt is 
maximally memory-hard,” in Annual International Conference on the 
Theory and Applications of Cryptographic Techniques. Springer, 2017, 
pp. 33–62. 

[13] J. Asplund, G. Hurlbert, and F. Kenter, “Pebbling on graph products and 
other binary graph constructions,” 2018. 

[14] J. Alwen and V. Serbinenko, “High parallel complexity graphs and 
memory-hard functions,” in Proceedings of the Forty-Seventh Annual 
ACM Symposium on Theory of Computing, ser. STOC ’15. New York, 
NY, USA: Association for Computing Machinery, 2015, p. 595–603. 
[Online]. Available: https://doi.org/10.1145/2746539.2746622 

[15] K. Gaj and P. Chodowiec, “Fpga and asic implementations of aes,” 
Cryptographic engineering, pp. 235–294, 2009. 

https://doi.org/10.1145/2746539.2746622
https://www.rfc-editor.org/info/rfc7914
https://www.usenix.org/conference/1999-usenix-annual-technical-conference
https://doi.org/10.1145/3384613


6 

[16] N. Pramstaller, S. Mangard, S. Dominikus, and J. Wolkerstorfer, “Effi-
cient aes implementations on asics and fpgas,” in Advanced Encryp-
tion Standard–AES: 4th International Conference, AES 2004, Bonn, 
Germany, May 10-12, 2004, Revised Selected and Invited Papers 4. 
Springer, 2005, pp. 98–112. 

[17] T. G¨ uneysu, “Utilizing hard cores of modern fpga devices for high-
performance cryptography,” Journal of Cryptographic Engineering, 
vol. 1, pp. 37–55, 2011. 

[18] G. Hofemeier and R. Chesebrough, “Introduction to intel aes-ni and intel 
secure key instructions,” Intel, White Paper, vol. 62, 2012. 

[19] V. Sanz, A. Pousa, M. Naiouf, and A. De Giusti, “Performance analysis 
of aes on cpu-gpu heterogeneous systems,” in Cloud Computing, Big 
Data & Emerging Topics: 10th Conference, JCC-BD&ET 2022, La 
Plata, Argentina, June 28–30, 2022, Proceedings. Springer, 2022, pp. 
31–42. 


