
CERIAS Tech Report 2023-4
Proactive Vulnerability Identification and Defense Construction -- the Case for CA

 by Khaled Serag Alsharif
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

PROACTIVE VULNERABILITY IDENTIFICATION AND DEFENSE
CONSTRUCTION – THE CASE FOR CAN

by

Khaled Serag Alsharif

A Dissertation

Submitted to the Faculty of Purdue University

In Partial Fulfillment of the Requirements for the degree of

Doctor of Philosophy

Department of Computer Science

West Lafayette, Indiana

August 2023

THE PURDUE UNIVERSITY GRADUATE SCHOOL
STATEMENT OF COMMITTEE APPROVAL

Dr. Dongyan Xu, Co-Chair

Department of Computer Science

Dr. Z. Berkay Celik, Co-Chair

Department of Computer Science

Dr. Antonio Bianchi

Department of Computer Science

Dr. Jing (Dave) Tian

Department of Computer Science

Approved by:

Dr. Kihong Park

2

To that summer night by the bonfire in Alabama.

3

ACKNOWLEDGMENTS

In embarking on this challenging and rewarding journey of completing my dissertation, I have

been fortunate to have the support and guidance of many incredible individuals who have shaped

my path and contributed to my growth. Their unwavering belief in my abilities, words of wisdom,

and presence in both professional and personal capacities have been instrumental in my success.

First and foremost, I am eternally grateful to my family, who has been the bedrock of my

achievements and a constant source of love, encouragement, and guidance. My Dad, the first male

role model of my life, taught me moderation, self-reliance, and self-respect. I can still hear him

saying in Arabic: "Toughen up, for luxury never lasts." My Mom, with her unshakable faith and

steadfast support, instilled in me the virtue of unyielding determination. Her words, "Always sharpen

your axe" and "Be slow but sure," have guided me through thick and thin. Hazem’s dedication to

guitar practice has taught me the power of consistency and discipline. It was an embodiment of

the idea of atomic habits, way before James Clear made his best seller. Leena, Mazen, and Mama

Fatima’s constant belief in me has been an inexhaustible source of inspiration. Finally, my cousin

Ayman’s continuous presence in my life despite the distance and time difference, was evidence that

contrary to what people believe, being out of sight does not inevitably mean out of mind.

On the academic front, I am immensely grateful to my advisors, Professor Dongyan Xu, and

Professor Z. Berkay Celik, for their invaluable guidance and mentorship. Professor Xu, your concise

yet deep feedback on writing papers and constructing narratives has honed my skills and pushed

me to excel. I will forever remember your words, "Always be self-critical. If you were reviewing

your own paper, would you accept it?". Professor Celik, your unwavering support and belief in

my abilities, even when I was down, have been transformative. I am grateful for the times when

you went beyond the role of an advisor, lending an ear to my fears and providing guidance when I

needed it the most. The short "Z." in your name, standing for Zeynel-Abedeen, carries a special

significance to me as it is the same name as my beloved grandfather, who was always an inspiration

in my life. I am thankful to Professor Dave Tian and Professor Antonio Bianchi for agreeing to serve

on my final exam committee and for having served on my preliminary exam committee despite their

busy schedules. Their valuable inputs have helped shape this dissertation.

4

I owe a debt of gratitude to my colleagues who have played a pivotal role in my academic

journey. Rohit, thanks for giving me the seed for all my paper ideas. Vireshwar, thanks for being my

first mentor and providing guidance during my formative years. I am grateful to all my lab mates,

especially Sungwoo, Ozgur, Prashast, and Arslan for their constant support and willingness to lend

a helping hand, even amid their busy schedules. Thanks for your selflessness and camaraderie.

Beyond the academic realm, I am thankful to my roommate, Ahmad Elkashif, for providing a

sense of family away from my own family. I am also grateful to my Ph.D. friends, Ihem, Marwa,

Nico, Armen, Brooke, Safa, Luisa, Yeni, Ata, and many others. Thank you all for being there in

good times and bad, providing support, laughter, and a sense of belonging during this demanding

journey. I would also like to express my appreciation to my lifelong friends. Amr, you have been the

brother that my mother never gave birth to, and I am grateful for your enduring friendship. Makram,

Tohamy, and Hesham, your presence in my life has brought joy and camaraderie. From my time in

Saudi Arabia, I am grateful for having met Muath and Musaab in my life. Muath, you have been

the most loyal friend I have ever had. Musaab, thank you for remaining my friend throughout the

years, despite the ups and downs. Your friendship is truly cherished. To my best friends in Alabama,

Danny, John, and Patrick, I am forever indebted for your generous support and for helping me make

the decision to embark on this Ph.D. journey; had it not been for you, I would have never made it.

Lastly, I would like to express my indebtedness to my colleagues from my time at Boeing, Zach,

Josh, Adam, and Wayne. You were instrumental in helping me realign my thoughts after a period

of protracted wandering. I can trace back many of my current principles to our conversations on

different topics. Jeff., thanks for being the best manager I have ever had. Your constant support

throughout my employment and even after I left the company has been invaluable.

Funding Acknowledgement. I would like to thank the Office of Naval Research (ONR) for their

financial support. This work was supported in part under Grants: N00014-22-1-2671 and N00014-

18-1-2674. Any opinions, findings, and conclusions in this dissertation are those of the authors and

do not necessarily reflect the views of the ONR.

5

TABLE OF CONTENTS

LIST OF TABLES . 9

LIST OF FIGURES . 10

ABSTRACT . 12

1 INTRODUCTION . 14

1.1 Contributions and Dissertation Outline . 17

1.2 Publications . 19

2 BACKGROUND . 20

2.1 Normal CAN Operation . 20

2.2 Error Handling and Fault Confinement . 22

2.3 Threat Model . 23

2.4 Common CAN Attacks . 24

3 EXPOSING NEW VULNERABILITIES OF ERROR HANDLING MECHANISM IN

CAN . 28

3.1 Motivation . 28

3.2 CANOX . 30

3.2.1 Architecture and Operation . 31

3.2.2 Test Parameters . 35

3.3 Discovered Vulnerabilities . 37

3.3.1 Passive Error Regeneration . 37

Exploit 1: Single Frame Bus Off Attack (SFBO) 38

Exploit 2: Setting Victim’s TEC . 40

3.3.2 Deterministic Recovery Behavior . 41

Exploit: Persistent Bus Off . 42

3.3.3 Error State Outspokenness . 43

Exploit: Message Source Identification 44

6

3.4 STS: Scan-Then-Strike Attack . 45

3.4.1 Stage 1: Network Mapping . 46

3.4.2 Stage 2: Victim Identification . 47

3.4.3 Stage 3: Learning Victim’s Recovery 48

3.4.4 Stage 4: Recovery Prevention . 50

3.5 STS Evaluation . 53

3.5.1 Evaluation Platforms . 53

3.5.2 Summary of Results . 54

3.5.3 Comparing SFBO to OBA . 57

3.6 Responsible Disclosure . 59

3.7 Defense Recommendations . 59

3.8 Discussion . 60

3.9 Related Work . 62

3.10 Conclusion . 63

4 ZBCAN: A ZERO-BYTE CAN DEFENSE SYSTEM 64

4.1 Motivation . 64

4.2 Related Work . 66

4.3 ZBCAN . 68

4.3.1 Architecture and Operation Overview 68

4.3.2 IBN Implementation Details . 70

4.3.3 Operation Implementation Details . 73

4.3.4 Disabling Transmitter (Instant Bus-Off) 76

4.4 Performance Analysis . 77

4.4.1 Worst-Case Response Time Analysis 77

4.4.2 Priority Grouping . 78

4.4.3 Discretizing IBN Challenges . 79

4.4.4 Overhead Analysis . 80

4.5 Security Analysis . 80

4.5.1 Off Sequence Attack . 81

7

4.5.2 Injection and Detection Window . 81

4.5.3 Error Handling Attacks . 83

4.5.4 Flooding Attacks . 83

4.5.5 Choosing ‖PSpan‖ . 84

4.6 Evaluation . 84

4.6.1 False Positive Test . 85

4.6.2 ZBCAN Security Evaluation on a Testbed 86

4.6.3 Performance with Real Vehicle Data . 88

4.6.4 ZBCAN Scalability Evaluation . 91

4.6.5 ZBCAN on a Real Vehicle . 94

4.7 Benchmark Comparison . 95

4.8 Discussion . 97

4.9 Limitations . 98

4.10 Conclusions . 100

5 CONCLUSIONS AND FUTURE DIRECTIONS . 102

5.1 Future Directions . 105

REFERENCES . 109

A EVALUATION OF STS . 119

A.1 Learning Victim’s Recovery Behavior . 119

A.2 Recovery Prevention . 120

B ZBCAN EVALUATION DETAILS . 122

B.1 Evaluation Datasets . 122

B.2 Measuring dskew . 122

C ZBCAN PERFORMANCE ANALYSIS . 125

C.1 Agent’s Overhead Analysis . 125

C.2 Officer’s Overhead Analysis . 125

8

LIST OF TABLES

3.1 Network mapping results for ExpVehicle. 53

3.2 Suppression rates for different ECUs on ExpVehicle. 56

3.3 Comparison of suppression rates between OBA and SFBO in stage 3 and 4 of the STS
attack. 57

4.1 How ZBCAN compares with other CAN defense systems. 66

4.2 Observed effectiveness of ZBCAN with different ‖IBNSpans‖ against different single
injection attack types. 87

4.3 Observed effectiveness of ZBCAN with different ‖IBNSpans‖ against different error
handling attack types. 88

4.4 Effectiveness of ZBCAN against flooding attacks. 94

4.5 How ZBCAN’s evaluation results at ‖IBNSpan‖ = 64 b compare with other intrusion
detection systems. 96

4.6 Comparing the probability of a single injection going undetected with different bench-
marks. 96

4.7 CANARY and ZBCAN are effective defenses against error handling and flooding attacks. 97

A.1 Network map of ExpVehicle . 120

B.1 WCRTs and groups for ExpVehicle. 123

B.2 Scalability evaluation dataset. 124

9

LIST OF FIGURES

2.1 Architecture of an ECU. 20

2.2 Different CAN frames. 21

2.3 CAN frame fields of two back-to-back frames. 21

2.4 Error states in CAN. 22

2.5 Illustration of a targeted injection (impersonation) attack in which the attacker observes
how a legitimate ECU transmits its messages and then imitates it. 24

2.6 Illustration of a flooding attack. 25

2.7 Enabling time synchronization between the attacker’s and the victim’s messages by
using a preceded ID message to facilitate packet collisions on the CAN bus. 26

3.1 Architecture of CANOX. 31

3.2 TEC change and standby delay values for the scenarios identified by CANOX as having
an unexpected behavior. 36

3.3 Illustration of the single frame bus off attack exploiting the passive error regeneration
vulnerability. 39

3.4 Behavior in the error active state. 42

3.5 Behavior in the error passive state. 43

3.6 Illustration of the victim’s recovery behavior. 48

3.7 Determining victim’s time recovery model . 51

3.8 Demonstration of STS persistently preventing the victim’s recovery from the bus off state. 51

3.9 Ramping up suppression rate by learning more recovery sequences every iteration . . 52

3.10 Suppressing victims with random recovery times by attacking trailing recovery messages. 53

3.11 Swiftness of SFBO compared to the best case scenario of OBA. 57

3.12 Illustrating the impossibility of OBA when ECU diversity exceeds 8. 57

4.1 IBN basic concept. 68

4.2 Architecture of a system implementing ZBCAN. Symbol (M) refers to messages.
Symbol (b) refers to bits. 69

4.3 A running IBN sequence as a message ID signature. 69

4.4 Agent components (dashed) within an ECU. 71

4.5 Dividing the timeline into distances =‖IBNSpan‖ allows for using Modulo IBN instead
of Absolute IBN. 72

10

4.6 Dividing IBNSpan into exclusive priority spans. 72

4.7 Extending a 128b sequence. 74

4.8 Priority FIFO. 76

4.9 Successively interrupting error frame delimiters 32 times instantly pushes transmitters
to the bus-off state. 77

4.10 Message spacing vs. IBN accuracy. 86

4.11 Average observed detection rates and windows for targeted injections and replay attacks. 87

4.12 Observed prevention rates of the collision injection attack with Modulo IBN turned on
and off. 88

4.13 WCRTs (absolute and as ratios of message deadlines) for ExpVehicle traffic with and
without ZBCAN. 89

4.14 Testbed with 20 ECUs (agents) and the officer. 91

4.15 Observed WCRTs vs. message length . 92

4.16 Observed WCRTs vs. ‖PSpan‖. 92

4.17 Observed WCRTs vs. numbers of ECUs. 94

4.18 Observed WCRTS on ExpVehicle. 95

11

ABSTRACT

The progressive integration of microcontrollers into various domains has transformed traditional

mechanical systems into modern cyber-physical systems. However, the beginning of this transfor-

mation predated the era of hyper-interconnectedness that characterizes our contemporary world. As

such, the principles and visions guiding the design choices of this transformation had not accounted

for many of today’s security challenges. Many designers had envisioned their systems to operate in

an air-gapped-like fashion where few security threats loom. However, with the hyper-connectivity

of today’s world, many CPS find themselves in uncharted territory for which they are unprepared.

An example of this evolution is the Controller Area Network (CAN). CAN emerged during the

transformation of many mechanical systems into cyber-physical systems as a pivotal communication

standard, reducing vehicle wiring and enabling efficient data exchange. CAN’s features, including

noise resistance, decentralization, error handling, and fault confinement mechanisms, made it a

widely adopted communication medium not only in transportation but also in diverse applications

such as factories, elevators, medical equipment, avionic systems, and naval applications.

The increasing connectivity of modern vehicles through CD players, USB sticks, Bluetooth, and

WiFi access has exposed CAN systems to unprecedented security challenges and highlighted the

need to bolster their security posture. This dissertation addresses the urgent need to enhance the

security of modern cyber-physical systems in the face of emerging threats by proposing a proactive

vulnerability identification and defense construction approach and applying it to CAN as a lucid

case study. By adopting this proactive approach, vulnerabilities can be systematically identified,

and robust defense mechanisms can be constructed to safeguard the resilience of CAN systems.

We focus on developing vulnerability scanning techniques and innovative defense system designs

tailored for CAN systems. By systematically identifying vulnerabilities before they are discovered

and exploited by external actors, we minimize the risks associated with cyber-attacks, ensuring the

longevity and reliability of CAN systems. Furthermore, the defense mechanisms proposed in this

research overcome the limitations of existing solutions, providing holistic protection against CAN

threats while considering its performance requirements and operational conditions.

It is important to emphasize that while this dissertation focuses on CAN, the techniques and

rationale used here could be replicated to secure other cyber-physical systems. Specifically, due

12

to CAN’s presence in many cyber-physical systems, it shares many performance and security

challenges with those systems, which makes most of the techniques and approaches used here

easily transferrable to them. By accentuating the importance of proactive security, this research

endeavors to establish a foundational approach to cyber-physical systems security and resiliency. It

recognizes the evolving nature of cyber-physical systems and the specific security challenges facing

each system in today’s hyper-connected world and hence focuses on a single case study.

13

1. INTRODUCTION

Over the course of the past few decades, an increasing number of once purely mechanical systems

have come to be exceedingly computerized to the point where they cannot be conceptualized

as mechanical systems anymore. These systems are currently known as cyber-physical systems.

Cyber-Physical Systems (CPS) have information processing, sensing, control, and actuation com-

ponents. They also have wired or wireless communication systems to exchange information and

commands. The process these mechanical systems underwent to become cyber-physical systems

was incremental, spontaneous, and often unpremeditated. Concretely, when the computerization

process first started, designers did not foresee these systems as future "cyber-physical systems."

Rather, they viewed them as the same mechanical systems they have always had but could improve

by adding a digital sensor here, a processor there, or a digital connection in-between. Consequently,

many of these gradually-added components lacked any security attributes since designers did not

anticipate those systems to operate in the hyper-connected environment of today.

A perfect example of this progression is how the Controller Area Network (CAN) revolutionized

the operation of many cyber-physical systems, especially for vehicles. In the 1970s, the evolution of

integrated circuits eventually led to the development of microprocessors and microcontrollers. To

have an edge on their competitors [1], certain vehicle manufacturers started making the first attempts

at using microcontrollers on vehicular platforms in the form of electronic control units (ECUs).

Initially, the number of ECUs in a vehicle was insignificant. Accordingly, vehicle manufacturers

used point-to-point connections for inter-ECU communication. As time went by, more and more

vehicle functions started becoming computerized. Gradually, wiring started posing a significant

challenge stunting the increase in the number of ECUs and, by that very fact, the computerization

of vehicle operation. Several attempts were made at devising a communication protocol for vehicle

ECUs to reduce the amount of wiring. Between 1983 and 1986, Bosch developed the Controller Area

network, or the CAN bus as an answer to the growing wiring question [2]. CAN further offered low-

cost and efficient solutions to the most challenging questions of many cyber-physical systems, such

as interference, priority management, decentralization, error handling, and fault confinement [3].

Inevitably, CAN started witnessing wide-scale acceptance and in 1991, Mercedes-Benz W140 was

the first to introduce CAN into a production vehicle. Since its introduction, CAN has established

14

itself as the main internal communication medium for vehicles. Additionally, due to its success, it

found its way into several other cyber-physical systems, from avionics and maritime applications to

factories, elevators, and medical equipment. Thanks to CAN, many previously mechanical systems

have now become cyber-physical systems.

Similar to many systems designed to improve mechanical systems, early CAN designers did not

anticipate their network to operate in today’s hyper-connected environment with all the security risks

that it entails but rather in an almost air-gapped environment where security should not be a concern.

Hence, although reliable and robust, CAN lacks any security measures. A compromised ECU

has all that it needs to launch an array of attacks, including sending fake data and impersonating

other ECUs. While this security deficiency may not have posed a grave threat in an age where

the only way to access the CAN bus was via constant physical access, usually granted only to

authorized users, it represents a severe menace to today’s increasingly connected and computerized

cyber-physical systems. A perfect example of how these factors could come into play and jeopardize

modern cyber-physical systems is the famous Charlie Miller and Chris Valasek’s 2015 Jeep hack.

The two security researchers used the cellular network to remotely access the vehicle’s CAN bus

via a compromised ECU, demonstrating almost complete remote control abilities over the car below

certain speed limits, including popping the locks, controlling the steering wheel, and disabling the

brakes. While the incident was very costly for Jeep, which had to recall 1.4 million cars, it shed

light on the importance of security for today’s vehicles and cyber-physical systems in general.

Unfortunately, the security of cyber-physical systems today is still in a state of precarity. On

the one hand, vulnerabilities are still found accidentally, usually by external actors. Those actors

could be malicious and intend to cause actual harm, unlike security researchers such as Miller and

Valasek whose goal was to bring the importance of automotive security to attention by shedding

light on its vulnerabilities. Similarly, unlike security researchers, most attackers will not reveal that

they have successfully breached a system since they want their breach to go undetected for as long

as possible to maximize the benefits they could reap from it. On the other hand, security is still

not prioritized except in response to manifest breaches in the sense that on several occasions, the

process of determining the system’s most suitable security measures does not begin until the exploit

has already taken place or, sometimes, is even ongoing. Such a flawed approach to security has

many faults. First, a security measure is not always found promptly. Thus, more similar breaches

15

could come about until it is found since many people now know the vulnerabilities of the system

and how to exploit them. Second, even if a defense approach is promptly found, and in the case of

widely deployed systems, recall costs are usually punitive, as we saw with the Jeep hack. Lastly,

most of the defense approaches found under such tight timing requirements often come in the form

of patches whose performance impact on the system’s performance is often inadequately assessed

and which fail to treat the root cause of the problem but instead its symptoms. Frequently, this leads

to the same vulnerability later manifesting somewhere else, only to be patched again. This endless

process of patching, which could continue indefinitely, may eventually render the entire system

unusable due to the sheer number of patches.

In this dissertation, we propose a proactive vulnerability identification and defense construction

approach to security. By proactive vulnerability identification, we mean that we should not wait

for the vulnerabilities of the system to reveal themselves, but proactively and intentionally scan

for them. Further, the process in which we look for vulnerabilities should be systematic. Even if,

one day, a vulnerability accidentally reveals itself, we should systematically and pre-emptively

investigate its root cause to look for other vulnerabilities that may stem from the same root cause

later in the future. For the defense construction side, the aim should be to find defense approaches

that consider the nature of the system, especially its performance, and that defend against several

vulnerabilities at once, not a set of patches that tackle each vulnerability separately.

We take CAN as a case study for this approach. However, the same approach could be applied

to other systems as well. We first show how we can identify new vulnerabilities in a seemingly

old standard by building a vulnerability scanning tool that systematically looks for loopholes in

unexplored areas of CAN. After identifying new vulnerabilities, we show how malicious actors

could exploit these vulnerabilities by constructing a multi-stage attack that employs all the uncovered

vulnerabilities. We evaluate it on a testbed and a real CAN bus of a test vehicle. Next, we show how

to build a defense system that considers the nature of CAN and its performance challenges, such as

the length of messages and their worst-case delays, while simultaneously protecting against the most

prevalent CAN attacks, including the attacks that we discovered in the vulnerability identification

phase, by capitalizing on a simple idea that utilizes an existing and unused channel for our security

purposes. Finally, we evaluate our defense on a testbed and a real CAN bus and show that it achieves

exceptional success rates in defending against a wide array of attacks.

16

We argue that CAN is a good case study for this approach for several reasons. First, CAN’s

presence in many cyber-physical systems, ranging from drones and vehicles to airplanes and navy

ships and from medical equipment and elevators to factories and power stations makes it a good

entry point to the vulnerabilities of many cyber-physical systems. It also makes the ideas and

techniques used here easily transferable to other cyber-physical systems since they share similar

performance and security challenges. Second, CAN’s long-serving and wide-scale deployment gives

people the illusion that there are no more vulnerabilities to discover in it. This dissertation shows

that this is a wrong assumption. As such, every system that has not yet undergone a vulnerability

assessment process should take heed and bring its security posture into question, no matter how long

they have been operating. Lastly, CAN’s wide-ranging use cases and performance requirements,

thanks to its widespread adoption, complicate the process of designing a defense system for it. In

other words, CAN is a non-trivial use case as there are many aspects that designers should consider

before concocting security measures for it. In sum, designing a good defense system for CAN does

not involve thinking about security only but many other performance requirements as well.

1.1 Contributions and Dissertation Outline

The outline of this dissertation is as follows. In Chapter 2 , we provide the necessary background

on CAN. In Chapter 3 , we embark on our vulnerability identification mission: we explain the

rationale and motivation behind our vulnerability scanning approach, we show how we used it to

uncover new vulnerabilities, and finally, we explain how we used the discovered vulnerabilities

to construct exploits and validate their feasibility by evaluating them on two platforms. Chapter 4

details our defense construction process: it begins by identifying the current problems of the existing

defense approaches and explains why all of them have so far failed to achieve wide-scale adoption,

it then proceeds to lay out its approach to securing CAN traffic, it follows that by an analysis of

its impact on message delays, overhead, memory, as well as its expected security impact against

several attacks, and finally, it evaluates several security and performance aspects on two platforms.

In total, this Dissertation makes the following main contributions:

• We show how to systematically scan for new vulnerabilities in the CAN standard by following

the upcoming steps. First, we identify a possibly vulnerable area of the CAN standard, namely

17

its error handling and fault confinement mechanism. Next, we build a dynamic vulnerability

identification tool named CAN Operation Explorer (CANOX) for CAN’s error handling and fault

confinement mechanism, which studies the behavior of a test node in a controlled test environment.

To the best of our knowledge, this is the first attempt at designing such a tool for CAN.

• We identify three major vulnerabilities in the CAN standard. Each of which could be used

separately by the attacker to launch various attacks against various ECUs on the CAN bus. To

show the feasibility of exploiting these vulnerabilities, we construct an end-to-end multistaged

attack that utilizes all the uncovered vulnerabilities.

• We evaluate the multistage attack on a testbed and a real CAN bus of a test vehicle. We achieve

very high attack success rates on both platforms.

• We identify the problems and gaps in the existing CAN defense systems and approaches which

render the vast majority of these defenses ineffective at securing CAN systems.

• We build a defense system named Zero-Byte CAN (ZBCAN) that endeavors to address all the

identified problems and gaps. Concretely, the defense system attempts to defend against the most

common CAN attacks, including the attacks that we proposed in the vulnerability identification

phase, and to offer attack detection as well as prevention abilities using a simple idea that

leverages an existing CAN channel that has never been previously used for defense purposes.

Simultaneously, the defense system tries to consider CAN’s nature by avoiding using any fields

of its already-short messages, abandoning the use of computationally heavy operations such as

message authentication codes, analyzing its impact on the delays and schedulability of messages

on the bus, and ensuring that its impact on those aspects remains within the acceptable bounds.

• We evaluate several performance and security aspects of our defense system on a testbed and a

real vehicle’s CAN bus. We achieve outstanding attack detection and prevention rates against a

variety of attacks. We also validate the accuracy of our performance analysis and show that our

system’s impact on memory, overhead, message delays, and schedulability is acceptable even for

devices with restricted memory and computational resources.

18

1.2 Publications

The chapters of this dissertation are drawn from, partially or fully, the following publications:

• ZBCAN: A Zero-Byte CAN Defense System. Khaled Serag, Rohit Bhatia, Akram Faqih, Mus-

lum Ozgur Ozmen, Vireshwar Kumar, Z. Berkay Celik, Dongyan Xu. In Proceedings of the the

32nd USENIX Security Symposium, 2023.

• Attacks on CAN Error Handling Mechanism. Khaled Serag, Vireshwar Kumar, Z. Berkay Ce-

lik, Rohit Bhatia, Mathias Payer, Dongyan Xu. In Proceedings of the NDSS’ Fourth International

Workshop on Automotive and Autonomous Vehicle Security (AutoSec), 2022

• Exposing New Vulnerabilities of Error Handling Mechanism in CAN. Khaled Serag, Rohit

Bhatia, Vireshwar Kumar, Z. Berkay Celik, Dongyan Xu. In Proceedings of the 30th USENIX

Security Symposium, 2021

19

2. BACKGROUND

2.1 Normal CAN Operation

Architecture of a CAN ECU. As shown in Fig. 2.1 , a CAN node or an Electronic Control Unit

(ECU) consists of three major components: an application program, a CAN controller, and a

CAN transceiver. The application program writes/reads message data and its identifier (ID) to

(from) the controller. The controller is responsible for framing, bus arbitration, sending/receiving

acknowledgments, and error handling. Lastly, the transceiver translates the bitstream coming out of

the CAN controller into the differential voltage signal that is transmitted on the bus.

CAN Controller

CAN Transceiver

Transmit Buffer Receive Buffer

Application Code

CAN Library

CAN Bus

Figure 2.1. Architecture of an ECU.

CAN Basics. CAN is a broadcast-based bus that uses a publish-subscribe communication model. It

uses differential voltage signaling to represent zeros (dominant) and ones (recessive). The transceiver

communicates a bit (0/1) on the bus using a two-level (high/low) voltage value. As such, the bits

0 and 1 are called dominant and recessive bits, respectively. During concurrent transmission of

different bits by two or more nodes, the bus acts as a wired-AND gate, e.g., when a dominant bit

and a recessive bit are concurrently transmitted, the resulting bit on the bus is dominant.

Framing. Two data frame formats could be used, the standard and the extended formats. As

shown in Fig. 2.2 , in the standard format, the ID is 11 bits long. The ID does not indicate the

source/destination of the message, but it describes the meaning of the data contained in the message.

Hence, a receiver ECU cannot determine the source. Although not intended to have any security

impacts, this fact works as a double-edged sword, it facilitates impersonation attacks, but at the

same time provides anonymity to the transmitter.

20

Error Flag
6 b (dominant)

Error Delimiter
8 b (recessive)

Active Error Frame

Passive Error Frame

S
O
F

ID
11 b

R
T
R

I
D
E

R
0

DLC
4 b

Data
0-8 B

CRC
2 B

ACK
2 b

EOF
7 b

Error Flag
6 b (recessive)

Error Delimiter
8 b (recessive)

Arbitration

Standard Data Frame

Figure 2.2. Different CAN frames.

Arbitration and Priority. At the beginning of every CAN message, there is an ID field. Often,

an ECU has multiple message IDs, but an ID has only one transmitter. CAN uses lossless bitwise

arbitration to resolve collisions and provide transmission priorities. If two nodes start transmitting

at the same time, they first go through an arbitration phase, starting at the ID field and ending at

the RTR bit, as shown in Fig. 2.2 . CAN controllers sense the bus as they transmit every bit. During

the arbitration phase, if a controller sending a recessive bit senses that the bus is dominant, it stops

the transmission. Consequently, this mechanism gives messages with a smaller ID value a higher

priority and guarantees that beyond arbitration, there is, at most, one transmitter. After arbitration, if

a controller sending a recessive bit senses that the bus is dominant, it stops the transmission and

raises an error. Errors and their impact are further explained later in this section.

S
O
F

I
D
Control Data

C
R
C

A
c
k

E
O
F

I
F
S

S
O
F

I
D
Control Data

C
R
C

A
c
k

E
O
F

Figure 2.3. CAN frame fields of two back-to-back frames.

Inter-Frame Spacing (IFS). Messages conclude by sending 7 ones called the End Of Frame (EOF)

sequence (Fig. 2.3). Following EOF, any ECU that wishes to transmit a new frame will have to wait

for 3 additional bits called the Inter-Frame Spacing (IFS).

21

Bus Off

Error
Active

Error
Passive

TEC or REC > 127

TEC and REC < 127

Hard Reset

Figure 2.4. Error states in CAN.

2.2 Error Handling and Fault Confinement

CAN Errors. CAN defines five error types: Bit Errors, Stuff Errors, Form Errors, Acknowledgement

Errors, and CRC Errors. These errors may happen either during transmission or reception. Each

node maintains two counters: Transmit Error Counter (TEC) and Receive Error Counter (REC).

When a transmitter encounters an error, it sends an error frame and increases TEC by 8. Similarly,

when a receiver encounters an error, it sends an error frame and increases REC by 1. A successful

transmission decreases TEC by 1, and a successful reception decreases REC by 1. The format of

error frames differ based on the error state of the node.

Error States. To provide fault confinement, CAN defines three error states. Each error state is

associated with a set of behavioral rules regarding message transmission, reception, and the way

they handle errors. The transition between error states is based mainly on the internal error counters

of the CAN controller as illustrated in Fig. 2.4 .

(1) The Error Active State: A node is in this state by default. Here, a node’s minimum idle time

between two consecutive frames is 3 bit-periods. Additionally, in this state, when the node witnesses

an error, it sends an active error frame, consisting of 6 dominant bits, followed by 8 recessive

bits (Fig. 2.2). Active error frames override and terminate any ongoing transmission.

22

(2) The Error Passive State: A node enters this state when its REC or TEC exceeds 127. Here, an

additional 8-bit suspend transmission period is added between successive transmissions. This period

technically lowers the priority of successive and retransmitted messages to prevent a faulty node

from consuming the busload in scenarios such as the babbling idiot. Further, on witnessing an error,

the node transmits a passive error frame, consisting of 14 recessive bits (Fig. 2.2). Unlike the active

error frame, a passive error frame is not observable on the bus and does not interrupt any ongoing

transmission. This prevents faulty nodes from interrupting the transmission of healthy ones.

(3) The Bus-Off State: A node enters this state when its TEC exceeds 255. In this state, the node

disconnects itself from the network. It stops transmitting or receiving messages. The node is

permitted to go back to the active error state after observing at least 128 instances of 11 recessive

bits on the bus. On re-entering the error active state, all error counters reset to 0.

2.3 Threat Model

Before delving into the main body of this dissertation, we first need to state the attacker abilities

considered throughout the dissertation. We assume that the attacker can control all of the OSI layers

of an ECU on the bus, except the physical and data-link layers of the CAN standard. This means

that the attacker could execute arbitrary code on the ECU but does not control its CAN protocol

controller or transceiver. The attacker here can inject or read full messages into or from the CAN

bus only through an uncorrupted CAN controller. As such, they would still abide by all the CAN

physical and data-link rules. They cannot inject malformed messages or error frames. Neither can

they read message bits directly from the CAN bus. Instead, they could only read the assembled

message that is forwarded to them by the CAN controller after it has received it.

This has been the most widely used threat model in the CAN security literature [4 – 10] due to

its practicality as it does not require specialized hardware or physical access. Both requirements

have traditionally been considered too strong. The attacker could achieve such abilities by remotely

gaining access to an existing ECU on the bus using channels such as Wi-Fi, Cellular, Bluetooth, and

radio [4 – 7 , 11] or by exploiting diagnostic software or hardware infrastructures [10 , 12 – 14].

23

ECU 2ECU 1Attacker

CAN Bus
Brake

Position ID
Brake Position

Value = X

ECU 2ECU 1Attacker

CAN Bus
Brake

Position ID
Brake Position

Value = Y

Figure 2.5. Illustration of a targeted injection (impersonation) attack in which the
attacker observes how a legitimate ECU transmits its messages and then imitates it.

Although recently, the prevalence of OBDII ports and the design of many modern vehicles have

made physical access relatively easier [13 , 15 , 16], and although some of the latest research works

have shown [17 , 18] that several ECU types could be manipulated by an attacker to achieve partial

or full control over the datalink layer, this remains an implementation problem pertinent to the

automotive or ECU manufacturer and not a problem with the specification of the CAN standard

itself whose analysis is the focus of this dissertation.

2.4 Common CAN Attacks

Injection Attacks. Attacks where a malicious ECU injects messages into the bus. We broadly

consider the following as injection attacks:

(1) Targeted Injection: The attacker here forges and injects messages that abide by the formatting

rules of existing messages that are in charge of certain functions in order to alter those specific

functions. Impersonation attacks, where the attacker tries to mimic the identity of the legitimate

ECU are a sub-type of targeted injection (Fig 2.5).

24

ECU 1 Low Priority
Message

ECU 2 Low Priority
Message

High Priority
Message

Attacker

High Priority
Message

High Priority
Message

CAN Bus
High Priority

Message

Figure 2.6. Illustration of a flooding attack.

(2) Replay Attacks: The attacker Replays one or more messages transmitted by a different ECU.

(3) Random Injection: The attacker here forges IDs randomly or semi-randomly to cause damage or

to discover hidden message semantics (e.g. fuzzing attacks).

Flooding Attacks. As shown in Fig. 2.6 , the attacker’s goal here is to cause an availability problem.

One way to do that is to inject an endless stream of back-to-back high-priority messages. The

impact of that is that other ECUs with lower priority messages will be unable to access the bus and

eventually drop their messages. Flooding could be targeted or absolute. Targeted flooding is when

the attacker floods the bus with messages of a specific priority that is higher than that of certain

messages on the bus, but not others. For instance, an attacker may flood the bus with messages

with an ID = 0x20, thus depriving all messages with ID > 0x20 access to the bus but allowing

messages with smaller IDs. On the other hand, absolute flooding is when the attacker denies all

messages access to the bus. This could be done by sending messages with a higher priority (smaller

ID) than any other message on the bus. The simplest way to do that is by sending messages with an

ID = 0x0. This causes all other ECUs to be unable to send, and eventually drop, their messages.

Error Handling Attacks. An ever-widening attack surface, these attacks cause a victim ECU

to encounter errors and increase their error counters in order for the attacker to achieve various

purposes. For example, by accumulating these errors, attackers could push ECUs to the error

passive or bus-off states. These error states could then be exploited to launch further attacks such as

25

Victim

Attacker

CAN Bus

ID A

ID A

ID A ID A

ID A

ID A
Preceded

ID

ID A
Preceded

ID

Victim’s Message
Arrives Slightly After
Attacker’s Message

0 0 0 0 0 0 0 0 01 1 1 1 1 1 1

0 0 0 0 0 0 0 0 01 1 1 1 1 1 1

0 0 0 0 0 0 0 0 11 1 1 1 1 1 1

DLC
ID

Bit-Error

Victim’s Message
Arrives Slightly After
Attacker’s Message

Figure 2.7. Enabling time synchronization between the attacker’s and the victim’s
messages by using a preceded ID message to facilitate packet collisions on the CAN
bus.

persistent DoS attacks or to map the network, as will be shown in this dissertation. They could also

be used to evade voltage intrusion detection systems [19] as proposed in other works.

Simultaneous Transmission. A technique used by attackers to inject collisions and increase the

error counter of a victim. Since the CAN standard uses ID arbitration to prevent two nodes from

transmitting simultaneously, the attacker here needs to transmit a message with the same ID as a

target message exactly at the same time but with a different payload. This causes both the attacker

and the victim to think that they won the arbitration, only to experience an error later in the message

and increase their TEC by 8. For an attacker to target and induce a collision with a victim’s

message, the attacker needs to simultaneously transmit a message with the same ID as the victim’s

message, but with a different payload. Hence, the attacker first needs to estimate the arrival time of

the victim’s message, and then attempt to transmit precisely at the expected arrival time.

For a periodic message, attackers could expect the arrival time of a message by monitoring it

and calculating its period. However, messages on the bus encounter small jitter in transmission time,

which may cause the attacker’s message to arrive slightly earlier or later than the victim’s message.

To address this challenge, in [20], the authors propose employing a preceded ID message, that has

a higher-priority ID than the victim’s message and is transmitted (by the attacker) immediately

before the transmission of the victim’s messages. As shown in Fig. 2.7 , this enforces both the

26

victim and the attacker to start transmitting exactly at the conclusion of the preceded ID message,

synchronizing the victim’s and the attacker’s messages.

27

3. EXPOSING NEW VULNERABILITIES OF ERROR HANDLING

MECHANISM IN CAN

3.1 Motivation

A vehicle today contains over a hundred ECUs sensing and actuating most vehicles’ maneuvers.

However, prior research has shown that an attacker can gain access to a vehicle’s CAN by compro-

mising an in-vehicle ECU (e.g., telematics control unit) through a wired/wireless medium, including

USB, cellular, Bluetooth and WiFi [4 – 7 , 13]. Since CAN was not designed with security in mind, a

compromised ECU can be exploited to launch various attacks on other safety-critical ECUs (e.g.,

brakes), which cannot be directly compromised [8]. In this project, we study an alarming type of

attacks that directly exploits the error handling and fault confinement mechanism of CAN, turning

CAN’s reliability function into its security weakness [20 – 23].

On a vehicular CAN, collisions, interference, and wire faults occur often. To operate for extended

periods with no external supervision, CAN defines a set of rules for error detection, handling, and

fault confinement to be enforced by every node on the bus throughout its operation [3]. For fault

confinement, a CAN node monitors its health by counting the number of encountered errors.

Additionally, CAN introduces the concept of error states, which are different sets of rules governing

transmission, reception, and error signaling. CAN defines three error states: error active, error

passive, and bus off. By default, nodes operate in the error active state. Once a node’s error counter

exceeds a certain threshold, it enters the error passive state, where stricter rules are enforced. If

errors persist, the node transitions itself into the bus off state, where it disconnects itself from the

network. Exploiting this specific feature, prior work presented a denial-of-service (DoS) attack

called bus off attack [20] in which an attacker node deliberately collides its packets with those of a

victim node, causing bit errors. These errors gradually increase the victim’s error counter until it

drops into the bus off state, disconnecting it from the bus.

This dissertation claims that the attacker’s ability to induce packet collisions in CAN is extremely

dangerous as it opens the doors for attackers to dictate the victim’s error state. We argue that, since

CAN nodes were not expected to leave the error active state except under certain error conditions,

the security impacts of operating outside of the error active state are vastly understudied, and the

vulnerabilities inherent to their design remain undiscovered.

28

In this project, we introduce CANOX (CAN Operation eXplorer), an automated testing tool

that explores the impacts of operating outside of the default error active state to identify possible

vulnerabilities in the Controller Area Network (CAN) standard. CANOX places a CAN node in a

controlled environment, sets its operation and error state, systematically changes the operational

conditions of the node and the environment, and monitors certain behavioral metrics to identify

conditions that result in unexpected node behaviors.

Using CANOX, we have discovered three fundamental vulnerabilities in CAN’s error-handling

mechanism. (1) Passive Error Regeneration: The error signaling procedure in the error passive

state could make the node’s error counter rapidly and silently increase under normal bus conditions.

An attacker could exploit this vulnerability to launch an advanced DoS attack that we call the Single

Frame Bus Off (SFBO), in which the attacker pushes a node to the bus off state by attacking a single

message, making it more than 36x faster than previous bus off attacks. (2) Deterministic Recovery:

When a node recovers from the bus off state, it exhibits a deterministic behavior. An attacker could

exploit this vulnerability to prevent a node’s recovery from the bus off state, perpetuating the node’s

stay in a state of disconnection. (3) Error State Outspokenness: A node operating in the error passive

state exhibits a distinct, easily identifiable behavior. An attacker could exploit this vulnerability to

identify message sources or identify an ECU’s function.

Even though an attacker may exploit each of these vulnerabilities individually, we demonstrate

the significant threat of these vulnerabilities by combining them to construct a single, powerful,

multi-staged attack called the Scan-Then-Strike attack (STS). In STS, a remote attacker, with no

knowledge of the car’s internals, exploits the discovered vulnerabilities to gain knowledge before

striking their victim. First, the attacker starts by mapping the internal network. Next, the attacker

identifies a safety-critical ECU. The attacker then learns the ECU’s recovery behavior. Finally, the

attacker strikes the ECU and prevents it from recovering, achieving a persistent DoS. In contrast to

the Original Bus Off Attack (OBA) [20], STS utilizes SFBO to push a victim to the bus off state by

attacking a single message, enabling it to be persistent, as it can immediately re-attack the victim’s

recovery attempts. Moreover, OBA assumes that the attacker already knows the network map, ECU

functions, and the IDs they transmit. In comparison, STS exploits the discovered vulnerabilities to

gain this knowledge, significantly reducing the attacker’s assumptions.

29

Prior efforts have proposed different network mapping solutions [24 – 29]. Nevertheless, these

works approached network mapping from a defense standpoint. Thus, they either required physical

access and special equipment [26 – 29], or used time-consuming learning techniques that worked

only with periodic messages [24 , 25], and proved to be evadable [19 , 30]. Conversely, to the best of

our knowledge, STS employs the first network mapping solution that identifies sources of periodic

and aperiodic messages with 100% accuracy without using special equipment but using the existing

ECU capabilities. We summarize our contributions as follows:

• Developing CANOX, an automated testing tool to examine CAN’s error handling and fault

confinement mechanism to find vulnerabilities in the CAN standard.

• Discovering three major vulnerabilities in CAN’s error handling and fault confinement mechanism

that could be exploited separately or in combination. We combine them and construct a powerful

and persistent attack (STS) that showcases how all these vulnerabilities could unfold together.

• Demonstrating the practical impact and the platform-agnostic nature of the vulnerabilities by

evaluating STS first on a testbed and then later on a real vehicle.

3.2 CANOX

CAN Operation eXplorer (CANOX) is an automated testing tool, which explores the impacts

of operating outside of the default error active state to detect possible vulnerabilities in the CAN

standard. The purpose of building CANOX is to assess what an attacker can achieve by pushing a

node outside of the default error active state. Therefore, CANOX’s main goal is to detect unexpected

behavioral deviations from the error active state. To do so, CANOX places a fully controllable

and programmable CAN node, called the Node Under Test (NUT), in different error states, sets

up specific test scenarios, and defines its expected behavior in each scenario. It then monitors the

node’s behavior and flags any deviations from its expected behavior.

While changing the error state of a node affects certain behavioral aspects specified in the CAN

standard [3], the implications of such changes and the enforcement level of error state-specific rules

have not been thoroughly analyzed. Therefore, we use CANOX to investigate unexpected behaviors

that result from conflicting and unenforced rules, or hidden implications of poorly studied rules,

as these may pose significant threats to the security and performance of a CAN system. Here we

30

: CAN Lines : Control Lines : Input/Output Lines

Final Output

CAN BUS

Test Environment

Node
Under Test

(NUT)

Log
Analyzer

Traffic
Generator

(TG2)

Traffic
Generator

(TG1)

Error State
Transceiver

(EST)

Collision
Generator

(CG)

Test
Controller

(TC)

Figure 3.1. Architecture of CANOX.

define “unexpected” as a behavioral deviation from the error active behavior that exceeds a specific

threshold. We quantify the behavioral metrics in Sec. 3.2.1 and explain the thresholds required to

find the deviations in Sec. 3.2.2 . Using CANOX, we uncover three new fundamental vulnerabilities

in CAN’s error handling and fault confinement mechanism discussed in Sec. 3.3 .

3.2.1 Architecture and Operation

CANOX consists of a Test Controller (TC) connected to a controlled test environment con-

taining a Node Under Test (NUT), as shown in Fig. 3.1 . The test environment includes a CAN bus

connected to three different components. The first component is the Collision Generator (CG), which

generates packet collisions per the request of TC by injecting a message with the same ID as the

NUT’s message, as explained in Sec. 2 . The second component is the Error State Transceiver (EST),

used by TC to directly read bits from the bus and to set the NUT’s error state by directly injecting

error frames. The last two components include two Traffic Generators (TG), used to generate the

CAN traffic given the message priority and the bus load. TC is connected to the CAN bus and to

all components of the test environment to control their operations. NUT is placed inside the test

environment and controlled by TC. NUT logs its measured performance metrics into a file and sends

it to the Log Analyzer. The log analyzer analyzes the NUT’s logs and flags the conditions leading to

anomalous changes in NUT’s behavior compared to its behavior at default error active state.

31

Behavioral Metrics. CAN error states directly impact two behavioral aspects: error signaling, and

transmission delay penalties in certain scenarios. Hence, we expect a change in the error state would

result in a change in these two aspects: (1) error frames and (2) transmission delays. We need two

metrics to quantify these behavioral changes. One challenge is to monitor passive error frames

since they are composed solely of recessive bits indistinguishable from the idle bus; hence they are

unobservable. To overcome this challenge, we monitor the Transmit Error Counter (TEC) because

it reliably indicates the presence of errors, even if they are unobservable on the bus. Hence, we

define two evaluation metrics: (1) Standby Delay (SD), to monitor transmission delays, defined as

the delay between the moment the message is buffered and marked as ready for transmission, and

the moment it is successfully transmitted. (2) TEC Value Change (TECC), to monitor error frames,

defined as the change in the TEC value before and after the message is transmitted.

Test Scenarios. CAN specifies different sets of rules governing message transmission and error

signaling in different error states. While most of these rules are similar, they differ in specific cases.

Specifically, CAN imposes certain delay penalties on passive nodes sending successive messages

or retransmitting failed messages. Moreover, CAN dictates that passive nodes signal errors using

passive error frames as opposed to active error frames when they witness errors. Therefore, we

set up three test scenarios covering these cases to exhaustively assess the behavioral differences

between an error passive node and an error active node under different bus conditions:

(1) Single Transmission: We set NUT to send a single message periodically, and record the SD

and TECC for every transmission. This enables us to assess the impact of additional penalties on

message transmissions in passive nodes.

(2) Single Collision: We set the NUT to experience errors during its message transmissions, causing

its transmissions to fail and forcing it to retransmit the failed messages. NUT periodically sends

a single message. However, the collision generator induces a single collision every time NUT

sends a new message. Single means that the collision generator causes a collision to NUT’s initial

transmission attempt, but does not cause any further collisions to its retransmissions. Finally, for

every message transmission (including all of its retransmission attempts), NUT logs the SD and

32

Algorithm 1 Test Controller Algorithm
1: L← {0%, . . . , 100%}
2: P← {lower, higher, mixed}
3: S← {active, passive}
4: points = L× P× S
5: rounds← {1, . . . , nrounds}
6: scenarios← {single, collision, successive}
7: SDA← Empty SD Array of Arrays
8: TA← Empty TECC Array of Arrays
9: for s in scenarios do

10: for p in points do
11: for r in rounds do
12: Turn off CG, TG, and NUT
13: Set state of NUT
14: Adjust TG to load and priority
15: if (scen = collision) then
16: Turn CG on
17: Start NUT operation
18: for ntrans in transmissions do
19: Record SD and TECC
20: Compute Average SD for the round
21: Compute Average TECC for the round
22: SDAs,p ← Average SD across rounds
23: TAs,p ← Average TECC across rounds

24: Pass SDAs to Analyzer
25: Pass TAs to Analyzer

TECC. This scenario enables us to monitor the impact of the altered error signaling mechanism and

assess the impact of the delay penalties imposed against failed message retransmissions.

(3) Successive Transmission: We set the NUT to periodically send two back-to-back messages to

assess the impact of the additional delay penalties imposed against back-to-back transmissions in

passive nodes. We mark the second message as ready for transmission immediately after the first

message is transmitted successfully. Here, NUT records the SD and TECC for the second message

in every transmission cycle.

CANOX Operation. For each scenario, the test controller sets NUT’s error state using the error

state transceiver. It also sets the traffic load and its priority using the traffic generators. It then

enables NUT to start transmitting. We describe this process in Algorithm 1 . We repeat each scenario

33

Algorithm 2 Analyzer(SDArray, TECCArray, ThSD, ThTECC)
1: loads← {0%, . . . , 100%}
2: priorities← {lower, higher, mixed}
3: SDA← SDArray
4: TA← TECCArray
5: for p in priorities do
6: for l in loads do
7: if (SDAp,l,passive > (SDAp,l,active + ThSD)) then
8: Flag SDAp,l for both states

9: if (TAp,l,passive > (TAp,l,active + ThTECC)) then
10: Flag TAp,l for both states

11: if (SDArray has any flagged elements) then
12: Plot all average SD readings for the scenario
13: if (TECCArray has any flagged elements) then
14: Plot all average TECC readings for the scenario

for a number of rounds (nrounds) for every error state (S), and every traffic load (L) and priority (P).

Each round, NUT sends ntrans pairs of messages and logs the SD and TECC for each transmission.

After each scenario is terminated, the log analyzer reads the logs and compares SD and TECC for

each priority and bus load pair in the passive case to the active case as described in Algorithm 2 .

The log analyzer flags the scenario and plots the result if any passive metrics differ from the active

metrics more than the specified thresholds. Threshold selection is detailed in Sec. 3.2.2 .

Equipment. Our Node Under Test (NUT) comprises an Arduino Uno board connected to a CAN

bus shield. The CAN bus shield contains an MCP2515 CAN controller and an MCP2551 CAN

transceiver. We use one test controller (TC), one collision generator (CG), two traffic generators

(TG), and one error state transceiver (EST). TC, CG, and each of the two TGs comprise an Arduino

Uno board connected to a CAN bus shield. We use an MCP2551 as the error state transceiver.

To generate deliberate packet collisions, we use the method described in Sec. 2.2 . We achieve

“mixed priority” by having one traffic generator send high-priority traffic while having the other

generator send low-priority traffic. For communication between the test controller and different test

components, we use the CAN bus and boards’ digital pins.

34

3.2.2 Test Parameters

Test Input Generation. The input space for testing scenarios becomes intractable with two states,

three scenarios, more than 229 traffic priority levels, and an unlimited number of bus loads. To

reduce complexity, we restrict the priority levels and bus loads.

First, we select only three points for priority levels: High, Low, and Mixed. These priority levels

are justified by the fact that relative to NUT, any external message on the bus could be categorized

as having either a higher or lower priority than NUT’s messages. Note that higher priority means

traffic with a lower ID value than NUT’s messages, and lower priority means traffic with a higher

ID value. However, we add an intermediate point of mixed traffic since the traffic usually is not

strictly higher or lower in normal bus operations.

Second, to reduce the input space of bus loads, we select five loads: 0%, 25%, 50%, 75%, and

100%. These busloads are justified because, from NUT’s perspective as it attempts to transmit, it

views the bus as either idle or busy. Nonetheless, the bus is never always full (100%) or empty (0%)

in normal bus operations. Thus, we add three additional intermediate points between bus empty and

full to comprehensively observe behavioral trends. Overall, we reduce the input space into five bus

loads, three priority levels, and two states to be tested in scenarios without losing generality.

Behavioral Metric Threshold Selection. The expected node behavior is different from a scenario to

another. Therefore, we configure TECC and SD thresholds to different values for different scenarios.

We use the CAN standard’s specifications [3] to specify the metric thresholds for each scenario.

In the single transmission scenario, the active node starts with an initial TEC = 0, while the

passive node starts with an initial TEC = 159. The standard does not define a time penalty on

single message transmissions against active or passive nodes. Therefore, we expect the standby

delay difference threshold between states ThSD to be 0µs. For TEC, the standard states that each

successful transmission reduces the TEC counter by 1 if TEC is 0 < TEC < 256. Since only the

passive node’s TEC lies within that range, we expect this rule to apply only to the passive node.

Hence we set the TECC difference threshold between states ThT ECC to 1.

In the single collision scenario, the standard defines a penalty of 8 bit-periods (16µs at 500kbps)

against passive nodes’ retransmissions. Active nodes, on the other hand, do not have this penalty

35

20

25

Active Node, High Priority Traffic
Passive Node, High Priority Traffic

Active Node, Mixed Priority Traffic
Passive Node, Mixed Priority Traffic

Active Node, Low Priority Traffic
Passive Node, Low Priority Traffic

25 50 75
Bus Load (%)

0
10

00
0

20
00

0
30

00
0

S
D

 (
us

)

(b) Single collision scenario-SD

0 25 50 75
Bus Load (%)

0
50

10
0

T
E

C
C

(a) Single collision scenario-TECC

25 50 75
Bus Load (%)

40
0

60
0

80
0

S
D

 (
us

)

(c) Succssive transmission scenario-SD

Figure 3.2. TEC change and standby delay values for the scenarios identified by
CANOX as having an unexpected behavior.

imposed against them. Hence, we expect the standby delay threshold between the two states ThSD

to be 16µs. For TEC, the standard states that each collision increases TEC in both states by 8, and

that each successful transmission reduces it by 1. Since these two rules hold true for both states, we

expect the TECC threshold between the two states ThT ECC to be 0.

In the successive transmission scenario, the active node starts at TEC = 0. The passive node

starts at TEC = 159. The standard defines a penalty of 8 bit-periods (16µs at 500kbps) against

passive nodes’ back-to-back transmissions, while no penalties are imposed against active nodes.

Hence we set the standby delay threshold between states ThSD to 16µs. For TEC, the standard

states that each successful transmission reduces TEC by 1, for 0 < TEC < 256. Since only the

passive node’s TEC lies within that range, we set the TECC threshold between states ThT ECC to 1.

Calibration. Depending on the equipment and the time measurement method used, delay calculation

may be slightly inaccurate. To account for such inaccuracy, the maximum possible deviation from

the actual value should be calculated and added to the standby delay threshold ThSD. Initially, in

our experiments, the maximum observed deviation was 7.5µs. However, later in our experiments,

we optimized the code corresponding to time measurement. This reduced this error margin to < 3µs.

Similarly, when specific CAN controllers experience a collision while 248 < TEC < 256, they set

TEC to 0 instead of increasing it by 8, as they do not allow the TEC value to go above 256. This

may result in the passive node having a slight deviation in its average TECC from the expected

value. Depending on the sample size, the maximum deviation resulting from this case should be

36

calculated and added to the TECC threshold (ThT ECC). Initially, in our experiments, the maximum

observed deviation was ≈ 0.03. However, later in our experiments, we filtered out samples with an

initial TEC ≥ 248. This reduced the error margin to 0.

3.3 Discovered Vulnerabilities

CANOX detected that both the single collision and successive transmission scenarios yield

unexpected behaviors. In the single collision scenario, CANOX detected that the average SD and

TECC difference between error active and error passive states violated the specified thresholds

under multiple testing conditions, which we analyze in this section. For the successive transmission

scenario, CANOX also detected multiple violations of the SD threshold. However, it did not detect

any violations of the TECC threshold. For the single transmission scenario, CANOX did not detect

any unexpected behavior as the TECC and SD values remained below the specified thresholds for

all bus load and priority pairs. Fig. 3.2 illustrates the discrepancies for the single collision scenario’s

TECC and SD, and the successive transmission scenario’s SD. Below, we further analyze the plots

and provide details of each discovered vulnerability.

3.3.1 Passive Error Regeneration

Detection. In the single collision scenario, CANOX detected that the passive node violated the

given TEC change threshold ThT ECC for all priorities and bus loads ≥ 25%. As shown in Fig. 3.2 a,

we observe that the active node had a fixed TECC value (i.e., 7) regardless of the bus load or priority.

Whereas the TECC value for the passive node was dependant on the bus load but not the priority.

Further, we observe that the passive node had a TECC of 128 at a 100% bus load. This means that

at 100% bus load, the node went from the error passive to the bus off state after encountering a

single collision. We explain the reason behind this peculiar behavior below.

Test Results Explanation. Among the above observations, we highlight two findings. (1) Certain

silent (passive) errors were present on the bus, visible only to the passive node. (2) These errors

pushed the node from the error passive to the bus off state. After consulting the standard, the

dynamics of these findings can be explained as follows.

37

A passive error frame consists of 14 recessive bits as shown in Fig. 2.2 . However, the number of

recessive bits at the end of a frame is 8, and the minimum bus idle time is 3 bit-periods [3]. This

implies that the minimum number of recessive bits between the dominant acknowledgment bit of

one frame and the dominant start-of-frame bit of any other frame on the bus is only 11 bit-periods,

which is shorter than the time needed to transmit a passive error frame. Now, in the single collision

scenario, when the passive node encounters a collision, it tries to transmit a passive error frame after

the dominant acknowledgment bit of the frame involved in the collision. However, as the voltage

levels for the recessive bit of the passive error frame and the idle bus are the same, other nodes on

the bus fail to detect that the passive node is transmitting a passive error frame. Because the bus is

busy, other nodes start transmitting messages before the conclusion of the passive error frame. This

causes an error in the delimiter part of the passive error frame interrupting its transmission. This

interruption is interpreted by the passive node as a form error, resulting in the node raising its TEC

by 8 and attempting to signal the new error by sending a new passive error frame. However, the new

error frame is also interrupted in the same manner as the first frame. This continuous cycle repeats

until the node’s TEC reaches 256 pushing the node into the bus off state.

Vulnerability Description. The CAN standard states that for a passive node to terminate its passive

error frame correctly, the bus must be idle for at least an additional 3 bit-periods between two

consecutive frames. However, the standard fails to provide a way of enforcement or explain the

consequences of not fulfilling this rule [3 , 31]. CANOX reveals that due to the discrepancy between

an error frame length, and the minimum number of recessive bits required between two consecutive

frames, this rule cannot be enforced. The consequences of this failure lead to what we call the

passive error regeneration vulnerability. Exploiting this vulnerability, an attacker can interrupt

a victim’s passive error frame by transmitting a seemingly benign message frame. As such, this

vulnerability allows it to silently turn one error into a series of errors.

Exploit 1: Single Frame Bus Off Attack (SFBO)

Exploit. We exploit the passive error regeneration vulnerability to craft a novel DoS attack called

the Single Frame Bus Off (SFBO). Using SFBO, an attacker targets only one frame from the victim

38

Error
Passive

Bus
Off

CAN Bus

Victim

TEC:0

Attacker

TEC:0

Prec.
ID

15 Passive Errors
Regenerated

16 Errors and
Retransmissions

.

Active Error Frames

.

TEC:8 TEC:128 TEC:136

Suppressed Passive Error
Frames

TEC:144

.

TEC:256

.

Error
Passive

Error
Active

.

TEC:8 TEC:128 TEC:127 TEC:126 TEC:112

ID A
Retrans.

ID A
Retrans.

Clutter 1 Clutter 15

ID A
Retrans.

ID A
Retrans.

Clutter 15Clutter 1

ID A
Retrans.

ID A
Retrans.

ID A

ID A

ID A

Prec.
ID

Figure 3.3. Illustration of the single frame bus off attack exploiting the passive error
regeneration vulnerability.

to successfully push it to the bus off state where it cannot transmit or receive any messages. SFBO

proceeds through four steps as described in Fig. 3.3 .

Step-1: The attacker first targets a victim’s message with a known ID, and forges a message with

the same ID as the victim’s ID but with a higher priority content. Throughout the dissertation, a

higher priority content means a content of a shorter length or more leading zeros. Conversely, a

lower priority content is either longer or with fewer leading zeros.

Step-2: The attacker then transmits the forged message simultaneously with the target message

causing a deliberate collision, as explained in Sec. 2 . Since the victim’s message content has lower

priority, it encounters a bit-error. This forces the victim to stop transmission of its message, and

transmit an active error frame. Then, due to the victim’s active error frame consisting of dominant

bits, the attacker encounters a bit-error. The attacker stops message transmission and joins the victim

in transmitting an active error frame. Moreover, according to the CAN standard, the automatic

retransmission feature of a node is enabled by default. This means that the CAN controllers of both

the victim and attacker retransmit their failed messages. Unfortunately, this leads to 16 back-to-back

collisions. After each such collision, both of them increase their TEC values by 8. Hence, after the

16th collision, both fall into the error passive state with a TEC value of 128.

Step-3: The message retransmission attempts by the victim and attacker continue for one more

round. However, in this round, the victim generates a passive error frame that does not interrupt

39

the attacker’s message. This allows the attacker to transmit their message successfully. Hence, the

attacker decreases its TEC by 1 and gets back to the error active state.

Step-4: This is the point where the attacker exploits the passive error regeneration vulnerability. At

this step, the attacker causes an error in the victim’s passive error frame that was generated in the

previous step by sending a message with an arbitrary ID. We refer to such a message as a clutter

message. As such, the attacker sends 15 back-to-back clutter messages. This causes a regeneration

of passive error frames, and the victim’s TEC increases rapidly by 8 after every message until it

reaches 256. This way, the attacker succeeds in pushing the victim to the bus off state by targeting

a single message in a single attack round. We note that, if external higher-priority messages get

transmitted while the attack is taking place, the attack will not be interrupted but instead helped, as

the higher-priority traffic will play the same role as the clutter messages. In this case, the attacker

may carry out the attack with fewer clutter-messages.

Impact. In the existing DoS attack (OBA) [20], the attacker follows the first three steps described

for SFBO, to push the victim to the error passive state. Thereafter, the attacker needs to induce

collisions in rounds of attacks; each round takes an entire periodic transmission cycle, with at least

18 new victim’s messages (rounds) to push the victim from the error passive state to the bus off

state. On the contrary, the attacker in SFBO immediately exploits the passive error regeneration

vulnerability to push the victim to the bus off state in the same attack round. This reduces the

number of attack rounds from a minimum of 19 to a maximum of 1. Hence, the impacts of SFBO are

profound, not only because of its speed in pushing the victim to the bus off state, but also because

this swiftness allows the attacker to keep the victim in the bus off state persistently, as discussed in

Sec. 3.3.2 . In Sec. 3.5.3 , we provide a comprehensive comparison between SFBO and OBA.

Exploit 2: Setting Victim’s TEC

Exploit. The passive error regeneration vulnerability can be used to easily set the TEC of a victim

node to a chosen value between 135 and 256. This can be done by following the first three steps

of SFBO, but controlling the number of clutter messages (denoted by NClutter) in Step 4, as

40

discussed in Sec. 3.3.1 . When NClutter = 15, the victim falls into the bus off state. However, for any

NClutter < 15, the victim’s TEC can be calculated as TECVictim = 135 + (8 ∗ NClutter).

Impact. The ability to selectively set the victim’s TEC value provides the attacker with nearly full

and immediate control of the victim’s error states. The applications of such an exploit are versatile.

For example, in Sec. 3.3.3 , we explain how this exploit plays a critical role in identifying a message

source and extending it to map the entire network.

3.3.2 Deterministic Recovery Behavior

Detection. In the single collision scenario, CANOX detected that the passive node violated the

given standby delay threshold ThSD for all priorities with bus loads ≥ 25%. In Fig. 3.2 b, we make

three main observations. (1) The delay in the passive node is correlated with the bus load. (2) The

SD curves in Fig. 3.2 b are correlated with the TECC curves (Fig. 3.2 a). (3) Most importantly, for

low and mixed priorities, the passive node has an SD ≈ 31.7ms at 100% bus load.

Test Results Explanation. The CAN standard states that when a node goes to the bus off state, it

stays there until observing at least 128 instances of 11 recessive bits on the bus. We validate that the

SD value of 31.7ms, mentioned in the third observation, is approximately equal to the time needed

to observe 128 instances of 11 recessive bits. This points to a very interesting behavior revealed by

CANOX. After the node fails to transmit its message due to collision and enters the bus off state,

the unsent message remains stuck in its CAN controller’s transmission buffer and gets transmitted

exactly when the node gets back to the error active state.

Vulnerability Description. The CAN standard does not clearly define what to do with an unsent

message if a node enters the bus off state. CANOX reveals that the node transmits such an unsent

message at the exact moment it recovers (i.e., transitions back into the error active state). This

allows an attacker launching a bus off attack to predetermine the ID and content of the messages

sent by the victim at recovery and, as a consequence, how to attack the victim at recovery.

41

CAN Bus

Active
Error Frame

TEC=0
Active

Error Frame

TEC=8

Active
Error Frame

Active
Error Frame

Active
Error Frame

Active
Error Frame

Attacker Disables
Retransmissions

TEC=16

Attacker Prec. ID ID A
Low Priority

Content
Low Priority

Content
ID A

ID A
High Priority

Content
Prec. ID

High Priority
Content

ID A ID A
High Priority

Content

Victim ID A ID A
High Priority

Content
High Priority

Content
High Priority

Content
ID A

Figure 3.4. Behavior in the error active state.

Exploit: Persistent Bus Off

Exploit. An attacker may exploit the deterministic recovery vulnerability as follows. The attacker

targets a victim’s message ID, induces errors through collisions, and pushes the victim to the bus off

state. This prevents the victim’s message from being sent and pre-determines the ID and content of

the message sent at the moment the victim recovers. Equipped with such information, the attacker

can re-attack the message to prevent the victim’s recovery, persistently pushing it into the bus

off state. Hence, the attacker may persistently stop valid transmissions from the victim by first

launching one instance of SFBO against a message, and then continuously launching instances of

SFBO against every recovery attempt of the victim. We discuss how the attacker may estimate the

victim’s recovery time in Sec. 3.4.3 .

Impact. The existing DoS attack, OBA, requires a long time to push the victim to the bus off

state, and provides no clear way to prevent victim’s recovery, rendering the DoS attack highly

ephemeral. The deterministic recovery (coupled with the passive error regeneration) vulnerability

poses a critical threat, as an attacker may exploit this to persistently prevent the node’s recovery

attempts as illustrated further in Sec. 3.4 .

42

Active
Error Frame

ID A

Passive
Error Frame

Victim is allowed to retry
only after a Suspend
Transmission Period

ID A

Prec. ID ID A ID A

Active
Error Frame

TEC=0

ID A ID A

TEC=8 TEC=7

Prec. ID

Low Priority
Content

ID A

Low Priority
Content

Low Priority
Content

High Priority
Content

High Priority
Content

High Priority
Content

High Priority
Content

Figure 3.5. Behavior in the error passive state.

3.3.3 Error State Outspokenness

Detection. In the successive transmission scenario, CANOX detected that the error passive node

violated the given standby delay threshold ThSD for all low and mixed priority bus loads above

25%. In Fig. 3.2 c, we make three main observations. (1) The difference in the SD values between

passive and active nodes far exceeded the threshold for low and mixed priority bus loads above 25%.

(2) The passive node had an extra SD of ≈ 240µs over the SD of the active node for low priority at

100% bus load. This delay is equivalent to one 8-byte message. (3) For low priority traffic, the SD

of the active node was independent of the bus load.

Test Results Explanation. CAN imposes a suspend transmission penalty of 8 bit-periods on passive

nodes in the cases of successive transmissions and retransmissions. This causes the second message

in the passive node sending two successive messages to witness a priority reduction. This reduction

causes the second message to lose arbitration to any pending message on the bus, even if the pending

message has a lower priority ID. Hence, at high bus loads in the successive transmission scenario,

the second message has an extra delay of around one message even in the case of low-priority traffic.

In other words, lower than any message transmitted by a message in the error active state.

Vulnerability Description. CANOX reveals that a passive node will suffer from a priority reduction

affecting successive message transmissions and retransmissions. The priority reduction can be

43

easily spotted and used by an attacker to differentiate between a message sent by an active node and

a message sent by a passive node. We refer to this as the error state outspokenness vulnerability.

Exploit: Message Source Identification

The message source identification refers to the procedure for determining if two messages

originate from the same victim. This can be achieved by first pushing the victim into the error

passive state by using one message, and then determining if the source of the second message is in

the error passive state. The victim can be pushed into the error passive state by exploiting the passive

error regeneration vulnerability as discussed in Sec. 3.3.1 . Below, we propose a novel technique to

determine the error state of the victim over the bus by exploiting the error state outspokenness.

Determining Victim’s Error State. An attacker can exploit this vulnerability to determine the

victim’s error state through the following four steps.

Step-1: The attacker forges a message with the same ID as the victim’s message. However, as

opposed to other techniques, the attacker here employs a lower priority content.

Step-2: The attacker induces a deliberate collision of their message with the victim’s message. As

such, the attacker encounters a bit-error since it transmits a recessive bit while the victim is sending

a dominant bit. The attacker raises an active error frame, interrupting the victim’s transmission.

This causes both nodes to retransmit their messages.

Step-3: As illustrated in Fig. 3.5 , if the victim is in the error passive state, it will not attempt to

retransmit at the same time as the attacker due to the suspend transmission period penalty placed

on its retransmissions. Hence, no further collisions will take place, and the attacker’s message is

successfully transmitted. This is followed by the victim’s message. Conversely, as illustrated in

Fig. 3.4 , if another collision happens, it means that the victim is in the error active state. In this

case, the attacker disables retransmissions to prevent further collisions.

Step-4: As a result of the previous step, if the attacker’s TEC changes by only 7, they determine the

victim to be in the error passive state. Otherwise, if the attacker’s TEC changes by 16, the victim is

considered to be in the error active state.

44

Impact and Applications. The applications of the source identification technique are manifold. For

example, an attacker may use it to identify all the messages transmitted by a target ECU, identify an

ECU’s function, or map the entire CAN bus. All the aforementioned goals could help an attacker

that wants to launch a targeted DoS attack or reverse engineer the network traffic to perform message

injections. In Sec. 3.4.1 , we explain how this exploit could be used to map an entire network. We

note that this source identification technique is not limited to periodic messages, and could be

used to map any message as long as its ID and arrival time are deterministic. Command-response

messages and event-triggered messages are two examples of aperiodic messages that satisfy these

conditions. We take advantage of this fact in the victim identification stage of the STS as discussed

in Sec. 3.4.2 . To the best of our knowledge, this is the first network mapping technique to map

aperiodic messages without using special hardware.

3.4 STS: Scan-Then-Strike Attack

To illustrate the impact of the discovered vulnerabilities, we develop an advanced multi-staged

attack, Scan-Then-Strike Attack (STS), which exploits the combination of all discovered vulnerabil-

ities. A remote attacker with no previous knowledge of the vehicle’s internal network, number of

ECUs, ECU functions, message formats, or IDs is able to: (1) map the internal network, determining

the number of transmitting ECUs, and identify the sources of all periodic messages, (2) identify,

among the mapped ECUs, an ECU that performs a safety-critical function, (3) learn how the ECU

recovers from a DoS attack in the form of SFBO, and (4) launch a persistent DoS attack against the

ECU by constantly relaunching continuous instances of SFBO against its recovery attempts.

STS differs from previous attacks in three aspects. First, it does not assume that the attacker

is already knowledgeable of the vehicle’s network map and safety-critical ECUs but rather gains

this knowledge by exploiting the newly discovered vulnerabilities. Second, the immediate and swift

nature of SFBO allows it to be launched against any ECU as opposed to the previous attacks that

worked only against certain ECUs, as we will explain in Sec. 3.5.3 . Lastly, its impact is persistent,

as opposed to the previous volatile attacks.

45

3.4.1 Stage 1: Network Mapping

The first stage of STS is to perform the network mapping that relates the CAN bus messages

to the transmitting ECUs. To do this, STS exploits the error state outspokenness vulnerability as

explained in Sec. 3.3.3 . Essentially, it performs checks on message pairs to see if they originate

from the same ECU. This check is conducted by pushing the sender of one of the two messages to

the error passive state, then checking the other message to see if it comes from an error passive

ECU. We highlight that to successfully complete the check, it is critical to ensure that the sender

stays in the error passive state until the completion of the check. However, satisfying this condition

for a real-world ECU that sends multiple messages at different frequencies is challenging.

Consider an ECU that transmits two messages with different IDs, where one has a much longer

period than the other. In this case, if the attacker pushes the ECU to the error passive state using

the short-period message, the ECU would have transmitted many instances of this short-period

message before any instance of the long-period message is transmitted. As a result, the successful

transmission of the short-period messages brings down the TEC of the ECU, taking it back to the

error active state before the check is completed. This invalidates the checking procedure. To address

this challenge, the attacker should always pick the long-period message to push the ECU to the

error passive state and then pick the short-period message to perform the check.

As shown in Algorithm 3 , the network mapping stage of STS consists of the following steps.

(1) The attacker records the bus traffic and makes a list of all the message IDs on the bus, sorted by

their periodicity. (2) The attacker selects the message with the shortest period in the unassigned list

of messages and assumes that a new ECU transmits it. (3) They select the message with the longest

period in the unassigned list of messages and push its sender to the error passive state. (4) They

check whether the selected shortest-period message is transmitted by an error passive ECU. If true,

the selected longest-period message is assigned to the ECU sending the selected shortest-period

message. If false, it is marked as not transmitted by the ECU. If the check is inconclusive, it is

repeated. In all cases, the attacker waits for the TEC of the ECU (that they pushed to the error

passive state) to go back to 0 since they do not want to push it to the bus off state unintentionally.

The attacker repeats Steps 3-4 until the ECU is mapped to all its messages. Further, they repeat

Steps 2-4 until all ECUs are fully mapped to their messages.

46

Algorithm 3 Network Mapping Algorithm
1: list← Get list of ids and periods
2: Based on period, sort list
3: while list has unassigned ids do
4: Get shortest− period unassigned idsmall
5: Create a new ecui, assign idsmall to ecui
6: while list has unchecked ids do
7: Get longest− period unchecked idbig
8: idBigResolved← false
9: while idBigResolved = false do

10: Push idbig to Passive
11: Check idsmall state
12: if idsmall is passive then
13: Assign idbig to ecui
14: idBigResolved← true
15: else if idsmall is active then
16: Leave idbig unassigned
17: Mark idbig as checked for ecui
18: idBigResolved← true
19: else
20: idBigResolved← false
21: Wait for TEC of the source of idbig to be zero

3.4.2 Stage 2: Victim Identification

In the network mapping stage, the attacker maps every ID to a specific sender. However, the

attacker does not know the function of each sender. Here, the attacker’s goal is to identify, among

the mapped ECUs, the victim ECU that performs a specific safety-critical function (e.g., braking).

To achieve that, STS exploits the error state outspokenness vulnerability, in addition to vehicle

diagnostic protocols. Diagnostic protocols such as On-Board Diagnostics (OBD-II) define sets of

request messages that trigger a response message from an ECU that performs a specific function.

For example, a diagnostic message requesting information about the anti-lock braking system (ABS)

will trigger a response from the electronic brake control module (EBCM).

Victim identification proceeds through the following four steps. (1) The attacker identifies a

request to which the victim responds. For example, the VIN information comes from the ECM,

transmission information comes from the TCM, and ABS information comes from the EBCM.

The request message identification task could be carried out by acquiring an off-the-shelf OBD-II

scanner, selecting the vehicle’s make and model, selecting a specific vehicle function (i.e., ABS),

47

CAN
Bus

Victim
ID 1

Attack Target
Message

Victim
ID 1Victim in Bus Off State

Victim
Recovers

Victim
ID 2

Victim
ID 3

Recovery
Messages

Attacked
Message

Trailing
Messages

Recovery Time

Figure 3.6. Illustration of the victim’s recovery behavior.

and recording the request message sent by the scanner. This step could be carried out offline since

its only goal is to identify the request message to which the target ECU responds. (2) They then

send a forged request message on the CAN bus and measures the response time. (3) Next, they

send another request message and, following the technique described in Sec. 3.3.3 , they attack the

response message, pushing its sender to the error passive state. (4) Finally, they check every mapped

ECU to see which one is in the error passive state using one of its periodic IDs. This concludes the

victim identification stage. Now that the attacker knows the victim ECU, it can be targeted using

one of its periodic messages in the next stage of STS.

3.4.3 Stage 3: Learning Victim’s Recovery

In this stage, STS exploits the deterministic recovery vulnerability to learn how the victim

recovers. This enables the attacker to prevent the victim’s recovery attempts and paves the path for a

persistent DoS attack. To do that, STS needs to identify the victim’s recovery time and the recovery

message to be able to attack these attempts accordingly.

Recovery Messages. As discussed in Sec. 3.3.2 , when an attacker pushes an ECU to the bus off state

by attacking a message, the same attacked message will be transmitted at recovery. However, it does

not always get transmitted alone. In many ECUs, especially those that apply long recovery intervals,

additional messages will be buffered during the recovery interval. As a result, once the ECU recovers

and sends the attacked message, it attempts to transmit all the other buffered messages. We call such

buffered messages the trailing messages, which are shown in Fig. 3.6 . Consequently, upon recovery,

48

the ECU transmits the attacked message followed by a number of trailing messages. STS exploits

this fact to determine an optimum ID that can easily be attacked persistently in every recovery cycle.

As such, the optimum ID needs to satisfy two conditions: (1) When attacked, it is the first recovery

message. (2) When attacked, the first trailing message has the same ID. Usually, this condition will

be satisfied if the attacker picks the ID with the shortest period (highest transmission rate) since it

usually has the highest priority and probability of buffering within the interval. However, if an ECU

has multiple IDs with the same period, the attacker must find which one satisfies these conditions.

Time Recovery Model. After an ECU enters the bus off state, it spends a specific time interval

before getting back to the error active state. We call this interval the recovery interval. The CAN

standard states that a bare minimum recovery interval corresponds to the time in which the ECU

observes 128 instances of 11 recessive bits. However, many designers choose recovery intervals

that are longer than that. As such, multiple recovery models exist on different ECUs. We identify

the following four broad models, which can be specifically determined by launching multiple

continuous instances of SFBO and observing the victim’s recovery time.

1. Bare Minimum: The ECU recovers after observing 128 instances of 11 recessive bits, CAN’s

minimum requirement.

2. Fixed: The ECU recovers after a fixed recovery interval.

3. Sequenced: The recovery interval follows a sequence of different intervals. For example, the

first time it goes into the bus off state, it recovers after x ms. If recovery fails, it reattempts

recovering after y ms such that y ≥ x, and so on.

4. Random: The ECU recovers after a random interval. With no way to expect when the ECU

(following this model) recovers, the attacker cannot suppress its recovery synchronously.

Hence, we use the re-appearance of the attacked message to signal the ECU’s recovery and

attack the first trailing message. If the attacked message is the optimum ID, the first trailing

message will have the same ID as the attacked message. This facilitates the attack, as the

attacker does not need to guess and change the ID used in SFBO to match the trailing message

at every recovery prevention instance.

49

Determining Victim’s Recovery Model. The attacker can identify the victim’s time recovery

model by launching SFBO against the victim and observing the interval between the time it enters

the bus off state and the time it recovers back to the error active state. To identify whether the

recovery model is fixed, sequenced, or random, the attacker needs to launch another SFBO, wait

until the victim attempts to recover, suppress its first recovery attempt, then let it recover again. It

then measures the time spent by the victim in its second recovery attempt and uses it for comparison

to determine the time recovery model as described in Fig. 3.7 .

(1) Bare Minimum: If the time corresponds to 128 instances of 11 recessive bits, then this means

that it follows a bare minimum recovery model.

(2) Fixed Interval: If the recovery time is constant in all instances, the model is determined to be the

fixed interval. The attacker learns this interval by observing the time after attacking the victim once,

letting it recover, and taking note of the amount of time it took to recover.

(3) Sequenced Intervals: In a sequenced intervals model, the victim uses a different interval every

time the recovery is suppressed. However, the sequence of intervals is fixed. Here, the attacker can

learn the sequence as it launches the attack. The attacker first uses SFBO against a victim message,

then measures the first recovery interval in the sequence by letting the victim recover. Next, the

attacker attacks the victim again and, using the learned interval, suppresses the first recovery, then

learns the second interval in the sequence by letting the victim recover, and so on.

(4) Random: If there is no observable pattern in the victim’s recovery time, the attacker considers

the model to be random, even if the pattern is not truly random.

3.4.4 Stage 4: Recovery Prevention

Equipped with the information from the previous three stages, STS proceeds with this last, but

the most critical stage where STS exploits SFBO to persistently prevent the victim’s recovery. As

opposed to previous DoS attacks that provided no way of achieving a persistent suppression of the

50

Recovery
2B

Recovery
1B

Recovery Model:
Random

Recovery Model:
Sequenced

No

Victim
ID1

Victim
ID1

Victim
ID1

Victim
ID1

Recovery 2

Test B

Test ACAN Bus Victim
ID1

Victim
ID1

Recovery
1A

Recovery 1

Recovery Model: Bare
MinimumYes

Is Recovery 1A = 128 instances
of 11 Recessive Bits?

Is Recovery 1A =
Recovery 1B?

No

Yes

Is Recovery 1B
= Recovery 2B?

NoYesRecovery Model:
Fixed

Figure 3.7. Determining victim’s time recovery model

Recovery Time
Victim in Bus Off State

Recovery Time
Victim in Bus Off State

CAN
Bus

Victim
ID1

Victim
ID1

Attack
Victim

Victim
ID1

Prevent
Recovery

Prevent
Recovery

Estimate Recovery
Time

Estimate Recovery
Time

Victim
ID1

Victim
ID1

Figure 3.8. Demonstration of STS persistently preventing the victim’s recovery from
the bus off state.

victim, the swift nature of SFBO allows STS to realize such a goal. This stage proceeds through the

following three steps. (1) The attacker launches an instance of SFBO against the victim’s optimal

ID (determined in Stage 3 of STS) as discussed in Sec. 3.3.2 . (2) They predict the recovery time of

the victim based on the time recovery model learned in Stage 3 of STS. (3) They prevent the victim’s

recovery by re-launching another instance of SFBO against the optimal ID. (4) They continuously

loop around Steps 2 and 3 to suppress the victim persistently, as illustrated in Fig. 3.8 .

Recovery Prevention for Different Models. Since there exist multiple time recovery models, the

recovery estimation and prevention method differs between models. We now explain how to estimate

and prevent recovery for each model.

51

Rec.
Time 3

Rec.
Time 2

Rec.
Time 1

Rec.
Time 2

2

Attack
Message

Attack
Recovery 1

Rec.
Time 1

CAN Bus Victim ID1 Victim ID 1 Victim ID 1

Permit
Recovery 2

Measure Rec. 2

Continue Ramping Up

CAN Bus Victim ID1 Victim ID 1 1

3

Attack
Message

Permit
Recovery 1

Measure Rec. 1

Attack
Recovery 2

Permit
Recovery 3

Attack
Message

Attack
Recovery 1

Rec.
Time 1

CAN Bus Victim ID1 Victim ID 1 Victim ID 1 Victim ID 1

Measure Rec. 3

Figure 3.9. Ramping up suppression rate by learning more recovery sequences every iteration

(1) Bare Minimum: Recovery is estimated by observing 11 recessive bit instances since the last

SFBO, then re-launching another SFBO instance by the 128th instance.

(2) Fixed Interval: Recovery is prevented by measuring the time since the last SFBO instance and

relaunching new instances after the determined fixed interval.

(3) Sequenced Intervals: The attacker prevents the recovery using the determined sequence of

intervals, leading to a ramp-up attack that lasts longer at every recovery as shown in Fig. 3.9 .

(4) Random: There is no way to expect when the ECU with this model recovers. Hence, the attacker

cannot suppress the victim’s recovery by attacking the first recovery message. Instead, we use

the first message to signal the ECU’s recovery and attack the first trailing message for recovery

prevention as shown in Fig. 3.10 . When a node recovers, it sends recovery messages, including

the attacked message, and other trailing messages. By identifying the optimum message ID when

identifying the victim’s recovery behavior, the first trailing message will have the same ID as the

attacked message. This facilitates the attacker’s job, as it does not require guessing and changing

the ID used in SFBO to match the trailing message at every recovery prevention instance.

Attacking trailing messages entails that the victim will be successful at transmitting the first

recovery message at every recovery attempt. However, if the attacker chooses the ID with the

shortest period to attack the ECU, the recovery time for the ECU will usually be much longer

than the attacked messages period ≈ 10X . This incurs a severe delay and transmission frequency

52

Recovery
Attempt 2

Recovery
Attempt 1

Attack
Target

Message

Attacked
Message 1

Detect
Recovery
Attempt 1

Attack
Trailing

Message 1

Attacked
Message 2

CAN
Bus

Victim
Message 1

Victim
Message 1

Trailing
Message 1

Trailing
Message 1

Trailing
Message 2

. . .

Attacked
Message 3

Detect
Recovery
Attempt 2

Attack
Trailing

Message 2

Figure 3.10. Suppressing victims with random recovery times by attacking trailing
recovery messages.

Table 3.1. Network mapping results for ExpVehicle.
ECU # IDs ECU Function
ECU-1 0C5, 0C1, 1E5, 1C7, 1CD, 1E9, 184, 334, 2F9, 348, 34A, 17D, 17F, 773, 500 Electronic Brake Control Module (EBCM)
ECU-2 0F1, 1E1, 1F3, 1F1, 134, 12A, 3C9, 3F1, 4E1, 771, 4E9, 138, 514, 52A, 120 Body Control Module (BCM)
ECU-3 199, 0F9, 19D, 1F5, 4C9, 77F Transmission Control Module (TCM)
ECU-4 0C9, 191, 1C3, 1A1, 2C3, 3C1, 3E9, 3D1, 3FB, 3F9, 4D1, 4C1, 4F1, 772 Engine Control Module (ECM)

reduction for the message ID under attack. We note that the data content of the attacked message

will be stale because of the delay. Also, since an ECU usually transmits multiple message IDs, the

attack will successfully block all of the non-attacked message IDs transmitted by the ECU.

3.5 STS Evaluation

Below, we report our results corresponding to each attack stage of STS evaluated on a CAN bus

testbed and a real vehicle. Additionally, we compare the proposed attack, SFBO, with the Original

Bus Off Attack (OBA) [20] in terms of swiftness, feasibility, and persistence.

3.5.1 Evaluation Platforms

For in-depth analysis, the attack evaluation was carried out on a CAN bus testbed and on a test

vehicle (ExpVehicle

1
). The attack code utilized 15kB of program storage and 1.5kB of dynamic

memory. On the testbed, we used five nodes. Each node comprised an Arduino Uno board equipped

with a CAN bus shield. One node acted as the attacker, and the other four emulated benign nodes.

1
 ↑ We decided to anonymize the make and model of our experimental vehicle since our research work tackles fundamental

characteristics of CAN that are common to all CAN systems and not limited to this vehicle

53

All nodes were connected to a 500kbps CAN bus terminated with 120Ω on each end. For the vehicle,

we used an Arduino Uno board equipped with a CAN bus shield as the attacker. We used the OBD-II

port to connect directly to the CANH and CANL wires of the vehicle’s high-speed CAN bus, which

operates at a 500kbps baud rate.

3.5.2 Summary of Results

Network Mapping. To map the network, the attacker first makes a list of all the periodic message

IDs on the bus and calculates the average period for each ID by recording the arrival times of

N messages. We observed that certain low-priority messages have higher jitter components than

higher-priority IDs, making their period length slightly change from one cycle to another, with a

standard deviation of ≈ 0.6ms. To account for such messages, we tried to pick an N that makes

the error margin for the calculated period low enough to facilitate our source identification task.

However, N represented a tradeoff, a high N lowered the error margin but increased the calculation

time, and a small N decreased the calculation time but increased the error margin. To facilitate the

use of preceded ID frame [20] in the source identification step, we wanted to keep the error margin

around the length of an 8-byte message (≈ 240µs). Through a grid search, we found that N = 20

represented the optimum sample size and therefore used it.

On the testbed, the benign nodes were configured to transmit a total of 20 different benign

message IDs with different periodicity ranging between 10ms and 100ms. We identified all 20

different message IDs with correct periodicity in ≈ 9s. Next, using Algorithm 3 , we were able to

identify all 4 transmitting ECUs and map all messages to their source ECUs with an accuracy of

100%. The mapping took ≈ 3mins. On the vehicle, we identified all 50 periodic message IDs in

≈ 6mins. The longest period was 5s, while the shortest was 9ms. Next, we were able to identify 4

transmitting ECUs on the bus and map all IDs to their sources with 100% accuracy, as shown in

Table 3.1 . The mapping took ≈ 9mins.

Using Algorithm 3 , we explain this time frame by noting that the overall mapping time Tmap =∑4
ECU=1 TECU . Here, Tmap is the overall mapping time, and TECU is the time required to map a

single ECU. For a single ECU, the majority of the time is spent in either pushing an ECU to the

error passive state, checking an ECU’s error state, or letting an ECU recover from the error passive

54

state (lines 10, 11, and 21). To push a message source to the error passive state or to check the

state of a message source, we first observe an instance of the message, then intercept the next one

(i.e., a total of 2 cycles). Additionally, following every check, we allow enough time tcool for the

long-period ID source to go back to TEC = 0. Finally, because of jitter, some messages require

more than one attempt to be mapped (i.e., lines 19 and 20). Therefore, the time required to map one

ECU becomes, TECU = (2 ∗Nids ∗ (Ts + Tavg)) + (tcool ∗Nids) + (Tjitter). Here, Nids is the number

of unmapped IDs on the bus, Ts is the cycle length of the shortest-period ID, Tavg is the average

cycle length of the unmapped IDs, and Tjitter is the time lost in failed mapping attempts. On our

vehicle, ≈ 2mins were spent changing or checking error states, ≈ 3.8mins were the cool-off time,

and ≈ 3.2mins were caused by jitter.

Victim Identification. We set up each ECU on the testbed to respond to a specific ID (per ECU).

We were able to map each ECU’s response to its respective ECU with 100% accuracy. On the

vehicle and using OBD-II requests, we were able to identify the functions of the mapped ECUs

by mapping OBD-II responses as described in Sec. 3.4.2 . Specifically, using an OBD-II scanner,

we identified four CAN IDS: 0x7E0, 0x7E2, 0x243, and 0x241, to which the Engine Control

Module (ECM), Transmission Control Module (TCM), Electronic Brake Control Module (EBCM),

and Body Control Module (BCM) responded, respectively. These ECUs responded at IDs: 0x7E8,

0x7EA, 0x543, and 0x541, respectively. The response time for each request was recorded and

used to push the responder to the error passive state. Next, using the network map acquired in the

network mapping stage, each of the responses was mapped to one of the transmitting ECUs as

shown in Table 3.1 . To the best of our knowledge, this is the first solution that could map triggerable,

aperiodic messages with 100% accuracy without any special equipment.

Learning Victim’s Recovery Behavior. On the testbed, two ECUs were set up to implement a fixed

interval recovery model with a 35ms interval. Two other nodes were set up to implement the bare

minimum model. We were able to learn the recovery models for all ECUs. Further, using SFBO,

we were able to successfully suppress all nodes, one at a time, by attacking a single message, as

explained in Sec. 3.3.1 . For all ECUs, the optimum attack ID was found to be the ECU’s message

ID with the shortest period. On the vehicle, we successfully evaluated the SFBO technique on the

55

four mapped ECUs. To ensure the ECUs truly transitioned to the bus off state, we recorded the

traffic after every attack and observed the lack of any IDs that belonged to the mapped ECU. This

also validated our mapping results. The time recovery model for EBCM and BCM was identified

as the sequenced intervals. For the TCM and ECM, we could not identify any pattern and hence

treated them as following the random model. Additionally, for all ECUs, we were able to identify

the optimum attack ID satisfying the two conditions mentioned in Sec. 3.4.3 . Table 3.2 shows the

optimum attack ID for each ECU. This evaluation is further detailed in Appendix A.1 .

Table 3.2. Suppression rates for different ECUs on ExpVehicle.

ECU # Function Recovery Model Optimum ID Srate

ECU-1 EBCM Sequenced 0C1 97.5%
ECU-2 BCM Sequenced 0F1 91.4%
ECU-3 TCM Random 0F9 85%
ECU-4 ECM Random 0C9 83%

Recovery Prevention. To assess the success of the attack, we define a metric called suppression

rate (Srate) that describes the percentage of time the victim is in the bus off state. Let tnormal and

tattack be a period of time when the attack is not running and when it is running, respectively. Also,

let nnormal and nattack be the number of target message IDs appearing on the bus during tnormal and

tattack, respectively. The suppression rate is calculated as Srate = ((nnormal−nattack)/nattack)∗100.

On the testbed, using the techniques described in Sec. 3.4.4 , we were able to achieve an Srate

of 100% for at least 10s on all ECUs. After running the attack for 30 minutes, the average Srate

remained above 99.99%. On the vehicle, as shown in Table 3.2 , using the techniques described in

Sec. 3.4.4 , we were able to achieve an average Srate of 97.5%, 91.4%, 85%, and 83% for the EBCM,

BCM, ECM, and TCM, respectively. The lower suppression rate on the vehicle, compared to the

testbed, is due to the higher jitter in vehicular environments, leading the attacker to occasionally

lose synchronization. This evaluation is further detailed in Appendix A.2

56

0 20 40 60 80 100 120 140 160 180 200
Time(ms)

0

100

200

300
T

E
C

OBA
SFBO

Figure 3.11. Swiftness of SFBO
compared to the best case sce-
nario of OBA.

1 2 3 4 5 6 7 8 9 10

ECU Diversity

0

25

50

75

100

125

150

175

200

225

250

A
tt

a
c
k
 R

o
u

n
d

s
 (

ro
u

n
d

)

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

M
in

im
u

m
 T

im
e

 (
m

s
)

OBA

SFBO

Figure 3.12. Illustrating the im-
possibility of OBA when ECU di-
versity exceeds 8.

Table 3.3. Comparison of suppression rates between OBA and SFBO in stage 3 and
4 of the STS attack.

OBA
Srate

SFBO
Srate

ECU
#

Message
Periods

(ms)

Recovery
Model

OBA
Attack
Rounds

Bus
Load:

0%

Bus
Load:
100%

All
loads

ECU-1 10,20,50,90 Bare Min. 21 1.3% 13.2% 99.9%
ECU-2 10,20 Fixed 20 14.8% 14.8% 99.9%
ECU-3 10,50 Fixed 19 15.5% 15.5% 99.9%
ECU-4 10,20,50,100 Bare Min. 21 1.3% 13.2% 99.9%

3.5.3 Comparing SFBO to OBA

We compare the impact of using OBA [20] instead of SFBO in the third and fourth stages of

STS. Specifically, we assess their impact on the suppression rate of STS. Additionally, we compare

the feasibility of OBA and SFBO against ECUs transmitting multiple message IDs.

Swiftness. With SFBO, only one attack round is required to transition a node from the error active

state to the bus off attack. Conversely, OBA required a minimum of 19 rounds of attacks, 1 round

to transition the node from the error active state to the error passive state, and 18 attack rounds to

transition it from the beginning of the error passive state to the bus off state. Essentially, crossing

the error passive state into the bus off state previously represented the unresolved challenge in OBA.

As shown in Fig. 3.11 , in comparison to ≈ 5ms taken by SFBO, OBA required around 180ms,

making the fastest OBA attack 36 times slower than SFBO.

57

We note that 19 is the theoretical minimum number of rounds for OBA. In real-world cases,

the number of rounds will be bigger. We assess the swiftness of SFBO and OBA on the testbed by

measuring the time required to increase a victim’s TEC from 0 to 256 for different ECUs. While

SFBO pushed TEC to 256 in≈ 5ms regardless of the ECU, OBA was ECU-dependant, taking 21,

20, 19 and 21 rounds, and ≈ 210, 200, 190 and 210ms for ECUs 1, 2, 3 and 4, respectively.

Impact on Suppression Rate (Srate). To compare the impact of using OBA instead of SFBO on

Srate, we repeated stage 4 of the STS on the testbed under various loading conditions using OBA.

While Srate remained constant for nodes with a fixed interval model, regardless of the busload, the

suppression rates changed for the ECUs that implemented a bare minimum model. This is because

the busier the bus gets, the slower the instances of 11 recessive bits become, and the slower the node

recovers. As shown in Table 3.3 , while Srate remained above 99.99% for SFBO, it ranged between

1.3% and 15.5% when using OBA.

ECU Diversity and Attack Feasibility. To explain why OBA requires more attack rounds with

some ECUs, we note that OBA pushes the victim to the bus off state by launching rounds of attacks,

each round increases TEC by 7. However, this is only true if the ECU sends one periodic ID. For

ECUs sending multiple IDs, between one attack round and the next, other messages with different

IDs will be transmitted, decreasing TEC by 1 with every transmission. This reduces the effective

TEC change to less than 7 for each attack round, resulting in increasing the number of rounds

required for the attack. As such, we define a metric named ECU diversity, which represents the

ratio between the overall transmission rate of the entire ECU and the transmission rate of its fastest

transmitting ID. The lowest diversity ratio is 1, which implies that the ECU only transmits one ID.

We compare the impact of the diversity ratio on the feasibility and swiftness of both SFBO and

OBA. We set up an ECU to send multiple messages with different IDs. One ID was chosen as the

target ID. The ECU increased its diversity ratio in steps from 1 (ECU only sends the target ID) to 10

(ECU sends the target ID along with 9 other IDs with the same period), and recorded the minimum

time taken to push the ECU to the bus off state at each step, as well as the minimum number of

attack rounds. As shown in Fig. 3.12 , while the diversity ratio had no impact on SFBO, the time,

and the number of rounds taken by OBA, increased exponentially. Most importantly, at a diversity

58

ratio of 8, the minimum attack time and the minimum number of attack rounds for OBA tended to

infinity. This means that OBA is impossible to launch against an ECU with a diversity ratio of ≥ 8.

3.6 Responsible Disclosure

We reported the three discovered vulnerabilities to the Robert Bosch Product Security Incident

Response Team (PSIRT). PSIRT acknowledged our work and offered to share details of the vulner-

abilities with other automotive industry stakeholders. We also reported the vulnerabilities to the

International Organization for Standardization (ISO). ISO referred us to the American National

Standards Institute (ANSI), which directed us to the Society of Automotive Engineers (SAE). SAE

acknowledged our contributions and submitted the vulnerabilities to a committee for review and

consideration in the next revision. Finally, we reported the vulnerabilities to the Cybersecurity and

Infrastructure Security Agency (CISA) through the CISA Coordinated Vulnerability Disclosure

(CVD) process. CISA created a case for our report and asked us to report the vulnerabilities to

Bosch and ISO, which we have done.

3.7 Defense Recommendations

With the vulnerabilities uncovered by CANOX being inherent to the CAN protocol, the fun-

damental defense causing no side effects is to revise the standard. However, noting that this may

not be feasible, certain countermeasures may still be used in accordance with the current standard.

Below, we present some possible mitigations and their potential downsides.

Passive Error Regeneration. Unfortunately, the only solution to stop an attack exploiting this

vulnerability once it starts is to reset the ECU’s CAN controller. Previous works have suggested this

solution [32 – 34] to prevent DoS attacks. However, if the increase was happening due to legitimate

errors, bringing a faulty CAN controller back to the error active state defeats the purpose of the

fault confinement mechanism [35 , 36], and may result in many performance issues. A possible

solution is to reset only when an attack is suspected. This could be achieved by counting the number

of errors in the passive error frames within a window. If the number exceeds a specific threshold, it

could signify that the errors are due to an enforced passive error regeneration.

59

Deterministic Recovery Behavior. This vulnerability could be mitigated by clearing all transmis-

sion buffers upon entering the bus off state, or before re-entering the error active state.

Error State Outspokenness. CAN designers placed a suspend transmission period on successive

transmissions and retransmissions in passive nodes to lower their priority. However, such a change

could easily be spotted by an attacker. One countermeasure is to reset the CAN controller once

it enters the error passive state. However, this may lead to performance issues. A better solution

is for all ECUs to randomize the period between successive transmissions/retransmissions. For

successive transmissions, this could be achieved by buffering the second message without marking

it as ready for transmission until the random period elapses. For retransmissions, this could be

achieved by disabling automatic retransmissions on the CAN controller and delegating this task

to the application software. This helps conceal the suspend transmission period for passive nodes.

However, it may also cause an increased overhead or priority inversions on the bus in some cases.

3.8 Discussion

Static Analysis of CAN Standard. CAN is not described in a formal language. As a result, attempts

to analyze it for vulnerabilities using formal approaches, such as static analysis or model checking,

require a tedious modeling process that often entails imprecision. Such imprecision could be caused

by a number of reasons. For instance, abstract and vague parts of the standard could force the

modeler to make assumptions that may not always reflect real implementation. Similarly, modeling

a single component of the standard (e.g., error handling) ignores interactions between this and other

components. An example of these two points is the deterministic recovery behavior vulnerability.

Neither does the standard mention what to do with buffered messages when the node goes into the

bus off state (vagueness) nor does it consider this issue as part of the error handling component. In

contrast, CANOX speeds up this process and makes it more accurate by dynamically checking a

real-world embodiment of the standard for vulnerabilities. Once a vulnerability is found, it is easy

to check whether a standard or an implementation problem causes it.

60

Impact of Operating in Error Passive State. The error passive state was intended to offer a

degree of protection against faulty nodes. Changing the error signaling method to transmit the

passive error frame and reducing message priorities in certain scenarios, allowed CAN to operate in

the presence of a faulty node. This also protected other nodes from engaging in a self-destructive

behavior in the case of successive collisions. A good example of that is OBA, whereby by reducing

the priority of the message retransmissions in the error passive state, the victim is able to break

the time synchronization with the attacker. Hence, this protection slows down OBA, making it an

ineffective DoS attack. However, CANOX reveals that these protections have an undiscovered,

self-defeating side. Not being able to signal errors in a way that is apparent to all other nodes allows

other nodes to step over passive error frames, generating a different kind of errors (form errors).

This leads to the passive error regeneration vulnerability that an attacker can easily exploit to launch

a swift DoS attack (SFBO) against a CAN node. Similarly, while priority reduction of an error

passive node may offer some protection to CAN, it also reveals more information than necessary

about the node. This leads to the error state outspokenness vulnerability, which can be exploited to

identify the node’s messages and by extension, map the network.

Other Uses of the Discovered Vulnerabilities. While we chose to present an advanced DoS attack

to combine all the vulnerabilities into a single multi-staged attack, the discovered vulnerabilities

could have other uses. For example, the source mapping technique described in Sec. 3.3.3 could be

used for reverse engineering purposes. Similarly, recent works [19] have shown that an attacker may

be able to impersonate a victim node on the CAN bus while evading intrusion detection systems

(IDS) by being in the error passive state. Setting the victim’s TEC as described in Sec. 3.3.1 comes

in very handy for such a threat model. Furthermore, in systems where retransmissions are disabled,

such as Time-Triggered CAN (TTCAN), the passive error regeneration vulnerability could be used

to silently keep a node in the error passive state, causing a victim to miss deadlines, in case of

successive transmissions, or allowing an attacker to inject messages in its place. Since the victim

will not retransmit any failed messages or raise any active error frames, the injection may go

undetected, especially if coupled with an IDS evasion technique such as the one just mentioned.

61

OBA vs. STS in Real World. The practical impact of the swiftness and persistence of STS is

serious. For instance, STS is able to suppress the Electronic Brake Control Module (EBCM)

continuously for ≈ 2.4s at a 100% suppression rate (97.5% over a 15-minute period). Consider

a modern vehicle employing its adaptive cruise control mode and leaving a two-second-distance

between itself and a vehicle ahead of it (2-second-rule). We can see that STS can completely

disconnect the brakes long enough to cause the most serious consequence. Conversely, OBA will

only suppress one instance of the brake message (in ≈ 0.5s), and will not be able to follow this

instance with persistent suppression. As such, OBA will result in an ineffective DoS attack allowing

almost normal functionality of the brakes.

Limitation. STS causes packet collisions on the CAN bus. Hence, an IDS that monitors the number

of collisions on the bus may suspect the presence of an attack. However, this does not affect the

progress of the attack because of two reasons. (1) The first three stages of STS (i.e., the network

mapping, victim identification, and recovery behavior determination) do not have to happen right

before the final stage (i.e., the recovery prevention). They could take place in a “low and slow”

manner over a period of time in order not to trigger the IDS. (2) Even if the attack gets detected, the

attack cannot be stopped as it exploits inherent aspects of the CAN standard.

3.9 Related Work

Vulnerabilities of CAN. Prior research has demonstrated that after infiltrating CAN through a

wired/wireless medium (e.g., USB, cellular, Bluetooth, and WiFi connections), an attacker can

compromise an in-vehicle ECU node (e.g., telematics control unit) and execute arbitrary software

codes on it [4 – 7]. Since CAN is devoid of any security features, the attacker can exploit the

compromised node to launch a variety of attacks on other safety-critical nodes, which cannot be

directly compromised [8]. Hence, it is imperative to develop frameworks that can methodically

discover the full spectrum of vulnerabilities suffered by CAN under such scenarios [37]. To the

best of our knowledge, CANOX is the first effort in systematically analyzing the error handling

mechanism and discovering its security vulnerabilities.

62

ECU DoS Attack. Cho and Shin were the first to propose a DoS attack, referred to as OBA [20].

However, as shown here, OBA is incomparably slow in suppressing the victim and ineffective in

stopping the victim’s transmission persistently. As a consequence, it is unlikely to have a practical

impact. Some other DoS attacks exploiting similar ideas as OBA required special hardware modules

to launch the attack [21 – 23]. Hence, they required physical access to CAN, which makes them

unscalable. Additionally, all the aforementioned solutions assumed the attacker already knows

the ECU functions and the messages they transmit. In contrast, STS employs the discovered

vulnerabilities to acquire this knowledge, then to rapidly and persistently suppress the victim using

the existing abilities of a compromised ECU.

Network Mapping. Some prior works proposed using clock skews of ECUs to perform sender

identification [24 , 25]. However, their learning techniques were prone to inaccuracies and proved to

be evadable [30]. Others suggested using voltage signatures of ECUs [26 , 27] and hence required

physical access. It is essential to note that all these solutions approached the issue from a defense

standpoint. On the other hand, the severity of our technique lies in its ability to be used by a remote

attacker. This is because it uses the existing ECU abilities to achieve the same task with higher

accuracy. Additionally, we are the first to map aperiodic with existing ECU abilities.

3.10 Conclusion

We systemically analyzed CAN’s error handling and fault confinement mechanism, focusing on

operating in different error states, an understudied area in the CAN protocol. We built CANOX,

a novel CAN testing tool to detect problematic behavioral changes across error states. CANOX

uncovers three new vulnerabilities, which can be exploited by a compromised ECU to launch a

multitude of attacks. We demonstrated the severity of the vulnerabilities by constructing a powerful

attack, STS, in which an attacker with no knowledge of the vehicle’s internals could map its internal

network, identify ECU functions, shut down an ECU, and prevent it from recovering. We proved

the attack’s feasibility by evaluating it on both a CAN testbed and a real vehicle.

63

4. ZBCAN: A ZERO-BYTE CAN DEFENSE SYSTEM

4.1 Motivation

Modern vehicles contain hundreds of sensors and actuators, administered by Electronic Control

Units (ECUs), including brake, engine, and steering control units. The most central communication

channel among ECUs is CAN. Although reliable and robust against electromagnetic interference,

CAN lacks any security measures. Researchers have demonstrated the feasibility of remotely

compromising an ECU on the CAN bus [4 – 7 , 13]. With the ever-increasing connectivity of today’s

vehicles, the ease of such compromises is expected to increase. Several works have shown that a

compromised ECU can launch a plethora of attacks, including message injection, impersonation, and

flooding [4 – 7 , 13]. Moreover, recent works, including the first half of this dissertation, have unveiled

vulnerabilities in CAN’s error handling mechanism [19 – 23 , 31 , 38 , 39]. These vulnerabilities allow

attackers to deliberately inject collisions, map message sources, control the error states of certain

ECUs or even persistently disable them [20 , 23 , 38].

To secure CAN traffic, two primary approaches have been proposed. One is the cryptographic

approach, which relies heavily on cryptographic primitives (e.g., encryption, MACs, and hash

functions). [40 – 51]. Unfortunately, this approach suffers from fundamental issues. The first is its

impact on performance as cryptographic operations incur an unaffordable processing overhead

for most commercial ECUs. Even worse, since the maximum payload length of a CAN message

is 64 bits, these solutions are forced to either carve out a portion of an already-short message to

attach authentication information, dropping the effective data rate, or use a completely different

message, doubling the busload. Another issue is the lack of intrusion confinement. Since most of

these solutions use group keys, if one ECU gets compromised, it can impersonate any node in the

group. The last downside is the lack of incremental deployability or the ability to incrementally

secure messages transmitted by a single ECU, without needing to update all ECUs at once.

The second approach is the intrusion detection (IDS) approach, which avoids the group-key

problems and the computationally expensive cryptographic operations by delegating all security

operations to a super-node that may have special equipment [26 – 29 , 52 – 58]. This powerful node

uses its abilities to detect traffic anomalies and flag them. However, this approach has its problems.

First, IDSs take no measure to stop or prevent attacks. Second, most CAN IDSs do not achieve

64

single-message detection. Instead, they retrospectively detect flows of injected messages. This

allows intermittent or gradual intrusions to pass unnoticed and contributes to these IDSs’ inability

to translate their attack detection into prevention, for a flow of messages is composed of a stream of

individual messages. Being unable to determine whether an individual message is malicious or not

prevents the IDS from taking action against any of the individual malicious messages that constitute

the flow. This may render the IDS futile sometimes. For example, what benefit could a system gain

by detecting the presence of a flooding attack if it cannot stop it? The mention of flooding attacks

was only for the sake of argument. Unfortunately, the entire research field suffers from a hyper-focus

phenomenon. A relatively vast amount of research has been dedicated to message injection and its

variations in comparison with other attacks. This means that many attacks, such as flooding, or error

handling attacks have very few defenses addressing them, let alone being effective. Finally, many

defenses contradict one another and thus cannot be combined to protect against a more extensive

attack-set. These problems have prevented any defense from being widely adopted.

We present Zero-Byte CAN, a versatile, low-overhead defense system that uses zero bytes

of the CAN message fields to protect against several attacks and offers intrusion confinement,

incremental deployability, full backward compatibility, and individual message guarantees. This

last feature allows ZBCAN to translate some of its detection abilities, into prevention ones, since

individual malicious messages could be identified and stopped. ZBCAN does not use message

fields, authentication messages, or computationally expensive operations such as encryption. Instead,

it uses message timing alone to protect against the most common CAN attacks, including injection,

impersonation, fuzzing, flooding, collision injection, voltage corruption, and bus-off.

ZBCAN is composed of a trusted officer node that can interrupt transmission and several

software agents, installed on ECUs. The officer and each agent agree on a secret, endless, and

dynamically generated sequence of inter-frame spaces, which the officer monitors for every message.

The officer could be set to issue warnings, interrupt messages, or completely suspend violating

nodes. Aside from attaching the officer to the bus, ZBCAN does not require any hardware changes.

Further, since ZBCAN uses no message fields, it could be combined with solutions that do use

them. For inclusivity, we evaluated ZBCAN’s performance on a testbed using a real vehicle’s

data, its security and scalability on a testbed using artificial data, and finally, several security and

performance aspects of ZBCAN on a real vehicle. Using ZBCAN, we achieved a detection rate of

65

Table 4.1. How ZBCAN compares with other CAN defense systems.

Defense Approach
Attacks Features Cost

Flood Injection Replay Collision
Injection

Error
Passive

Bus
Off

Incremental
Deployability

Single-Msg
Detection

Intrusion
Confinement

Modifies
Message

Increases
Busload

Processing
Overhead

Cryptographic 1‡ X X X X X X X X X X X
Cryptographic 2† X X X X X X X X X X X

Voltage
IDS

Detection - X X - - -
X X - X X

Prevention X X X X X X
Frequency

IDS
Detection X X X - - -

X X - X X
Prevention X X X X X X

Clk-Skew
IDS

Detection X X X - - -
X X - X X

Prevention X X X X X X

ZBCAN
Detection X X X X X X

X X X X X∗
Prevention X X X X X X

‡: Using extra messages to send authentication data.
†: Using message fields to send authentication data.

∗: Sometimes, ZBCAN may cause a minute busload-
increase (Sec. 4.4.3).

100% for injection and replay attacks, and prevention rates of 100%, 100%, 99.4%, 99.33%, and

98.5% for error-passive, bus-off, collision injection, flooding, and injection attacks, respectively.

We summarize our contributions as follows:

• We present ZBCAN, a versatile defense system that uses inter-frame spaces to defend against the

most common CAN attacks, offering both detection and prevention abilities.

• We introduce a new method to suspend any ECU as soon as it starts transmitting a frame called

Instant Bus-Off. This method could be used to suspend intruding nodes.

• We offer worst-case response time analysis to systems with ZBCAN. We apply our analysis on a

real CAN bus and show that all messages are guaranteed to be schedulable.

• We offer a probabilistic security analysis of ZBCAN against different attack types.

• To show its applicability, we evaluate different aspects of our system on a CAN testbed, on a real

vehicle’s traffic, and directly on a real vehicle’s CAN bus.

4.2 Related Work

Intrusion Detection Approach. To avoid using cryptography, researchers proposed using lightweight

Intrusion Detection Systems. Some IDSs rely on traffic features such as message frequencies, lengths,

payloads, or clock skews to detect anomalies [24 , 52 , 54 – 57]. Others use physical features such

66

as the unique electrical characteristics of each ECU, manifesting in their transmission voltage

levels [26 – 29 , 58]. Nevertheless, IDSs have their problems. Namely, many of these systems were

shown to be evadable [19 , 30]. Further, despite the high detection rates they present, most of them

do not detect single injections, but flows of N injections, leaving room for low-level attacks to pass

unnoticed and preventing them from translating their detection abilities into prevention.

Timing-Based Approach. INCANTA [59] proposed adding secret delays to the expected arrival

times of periodic messages, with receivers inspecting the delay of every message. However, the

accuracy of such delays degraded significantly for lower-priority IDs. CANTO [60] suggested

pre-scheduling bus traffic to avoid unexpected delays of lower priority messages. Unfortunately,

both methods use up to 8 message bits and incur processing overhead on the receiving side. Other

works [61 , 62] used similar techniques with variations such as using authentication messages, a

monitor node, the delays between each message and its authentication message, or using multiple

covert channels. Similar to INCANTA and CANTO they did not eliminate using frame bits or

authentication messages. Additionally, all the aforementioned solutions use a primitive form of

delay that is vulnerable to an attacker purposely injecting higher priority messages and causing

a target-message to be late, do not offer prevention, focus only on injection, and work only for

periodic messages. We propose a different kind of timing channel, based on inter-frame spacing,

which cannot be tampered with and works for periodic as well as aperiodic messages. We use it to

defend against an extensive set of attacks and offer both detection and prevention, without using any

message fields or sending extra authentication messages.

Other Approaches. Few works have addressed attacks other than injection. Namely, to prevent

bus flooding, researchers suggested modifying the network’s hardware to allow for the isolation of

attackers[63 , 64]. Such solutions are very expensive to implement due to their requiring extensive

changes to the network hardware and architecture. Other works suggested manipulating the ID to

bypass targeted flooding [65 , 66] or randomizing portions of it to prevent error handling attacks[19].

Nonetheless, these systems cannot be deployed where IDs are used to convey commands, responses,

or anything beyond their usage as mere identifiers as in most diagnostic protocols.

67

4.3 ZBCAN

4.3.1 Architecture and Operation Overview

As shown in Fig. 4.2 , ZBCAN consists of a central monitor node, able to stop messages during

transmission, called the officer, and a set of software agents, installed on every ECU. Each ECU

privately agrees on a secret, non-repeating, and unique sequence of inter-frame spaces, called the In

BetweeNs (IBNs), with the officer, and then enforces these sequences upon outgoing messages. If

the officer detects a message with the wrong IBN , or an unknown ID, it stops it right after the ID

portion of the message, thus preventing the message from being received by any ECU. Depending

on the officer’s setting, it may ignore the message, issue a warning, stop it, or disable its transmitter

(Sec. 4.9). This way, several attacks could be prevented at once. Namely, error handling attacks rely

on a technique called simultaneous transmission (Sec. 2), where attackers have to send a message

exactly at the same time their victim transmits. With ZBCAN, they need to guess the exact IBN

value for every message to transmit simultaneously. Similarly, injection and flooding attackers need

to guess the correct IBN value for every message. Otherwise, their messages will be detected by

the officer due to their wrong IBN and hence stopped.

Message ID: A Message ID: BCAN Bus

Time

IBN

IFS TSuspend TO

Zero-Point

Figure 4.1. IBN basic concept.

The In BetweeN (IBN) As shown in Fig. 4.1 , we use the term (IBN) to refer to the spacing

between any two consecutive frames, measured from a zero-point (explained in Sec. 4.3.2). Although

this definition is similar to that of the Inter-Frame Spacing (IFS), in most definitions, IFS refers

specifically to the three bits following the end of a frame. To avoid confusion, we use the term IBN .

Per the standard [67], CAN controllers initiate transmission after sensing the bus idle. This happens

by sampling voltage at time intervals equal to one-bit each. As a result, the spacing between the end

of one frame and the beginning of another is not continuous but discrete, meaning, it is a multiple of

a bit’s length, plus a small extra delay caused by clock skews and propagation delay. Therefore, if

68

CAN Bus

Controller

Transceiver

Application Code

Agent
M M

M M

Controller

Transceiver

Application Code

Agent
MM

MM

GPIO

Officer Code

Controller

Transceiver 1

M M

GPIO

Transceiver 2

b b

OfficerECU-1

ECU-2

Controller

Transceiver

Application Code

Agent
M M

M M

ECU-4

Controller

Transceiver

Application Code

Agent
M M

M M

ECU-3

Figure 4.2. Architecture of a system implementing ZBCAN. Symbol (M) refers to
messages. Symbol (b) refers to bits.

we can find ways to ignore this small delay, as explained in Sec. 4.4.3 , we can view the spacing as

discrete and measure it using bit-length units or simply bits.

IBN Sequence. To illustrate how to use IBN as a signature, assume that a generic message is

currently being transmitted on the bus. Further, assume messages of ID = X have a sequence

of endless, secret, and non-repeating IBN values to be followed. As shown in Fig. 4.3 , when

wishing to transmit a new instance of X , the agent of X waits until the ongoing generic message

transmission concludes, counts a distance equal to the scheduled IBN (IBNsc) in the sequence,

then transmit. The agent does not wait until IBN ≥ IBNsc but exactly = IBNsc.

Generic ID: X, Cycle: 1CAN Bus

IBN1

GenericCAN Bus

IBN2

ID: X, Cycle: 2

Generic ID: X, Cycle: 3CAN Bus

Time

IBN3

Ti
m

e\
C

yc
le

s

Figure 4.3. A running IBN sequence as a message ID signature.

69

Officer. As shown in Fig. 4.2 , the officer is a trusted node that has the ability to securely store keys

and has access to the bus through two channels, one through a CAN controller, and another directly

through a GPIO and a CAN transceiver. The GPIO channel serves three purposes: (1) accurately

measuring the IBN of every message, (2) reading message IDs before their data is delivered,

and (3) allowing the officer to inject error frames on demand to stop any message. The officer is

connected to the CAN bus in parallel as other nodes. It is not a gate or a bottleneck and causes

no delay to messages. Instead, it acts as an observer who can immediately intervene. Its role is to

monitor the enforcement of the IBN sequence. If it detects a message violating its IBN sequence

or a message ID that is not allowed, it stops it before being received by any ECU. To be able to do

so, the officer knows all the allowed IDs on the bus and their secret sequences.

Agent. The agent is a software installed on every ECU we wish to protect. It does not require

any hardware changes to the ECU. The agent’s role is to apply the IBN sequence upon outgoing

messages. This sequence is unique per message ID and shared between two parties only: a ZBCAN

agent, and the ZBCAN officer. One agent does not know, and hence cannot mimic, the sequences

of any other agent, even if it gets compromised. As shown in Fig. 4.4 , the agent is composed of four

blocks: a Start Of Frame (SOF) ISR, an End Of Frame (or receive/transmit/error) (EOF) ISR, a

T imer ISR, and a buffering and IBN sequence extension library.

Message Reception. Upon reception, agents do not perform any computations. If a message is

received successfully, it means that the officer has checked it, verified its IBN , and decided not to

interrupt it. This way, we eliminate any processing overhead on the receiving side.

4.3.2 IBN Implementation Details

Zero-Point Calibration. The zero-point cannot be the same as last frame’s last IFS bit for

two reasons. First, nodes operating in the error-passive state have an additional 8-bit suspend-

transmission penalty (TSuspend), enforced at the protocol controller’s level. If IBNsc is 0, and the

zero-point is the last IFS bit, an error-passive node will violate this value. Second, if IBNsc is

too low, an ECU with low computational power may not have enough time to initiate transmission

70

EOF ISR
• Start Timer T
• If transmit:

• Clear buffer
• Update index

• If there is a pending message:
• Wait until T=IBNsc
• Initiate transmission.

• Else:
• n=1
• Set timer interrupt at T= n * |IBNSpan|

Main ECU Program Body

Buffer New Messages
Extend Sequences

Normal ECU Functions

Timer ISR
• If there is a pending message:

• Wait until T=T+IBNsc
• Initiate transmission.

• Else:
• n++
• Set timer interrupt at T=n * |IBNSpan|

SOF ISR
• Clear Timer T
• Disable Timer Interrupt

Figure 4.4. Agent components (dashed) within an ECU.

in time but after an overhead period (TO). TO should be measured empirically for every system.

Accordingly, as shown in Fig. 4.1 , we set zero-point ≥ IFS + TSuspend + TO.

Measuring TO. Agents are composed of a library and three Interrupt Service Routines (ISRs)

(Fig. 4.4). TO is dependent on the end of frame (EOF) ISR, which is responsible for clearing

the transmit buffer, updating the sequence index, checking if there are pending messages to be

transmitted, then applying the IBN value at the next transmission. Ideally, the ISR should be able

to execute these tasks by the end of TSuspend in Fig. 4.1 . However, some ECUs may take longer. The

effective ISR processing time for an ECU could be measured during the system design phase by

sending a test message at the end of the EOF ISR (without any IBN), then measuring the distance

between the last message on the bus and the test message. The system’s TO, should be set to the

longest ISR processing time of any ECU.

71

GenericCAN Bus

Time

IBNSpan

IBNsc

IBNSpan IBNSpan

IBNsc IBNsc

Figure 4.5. Dividing the timeline into distances =‖IBNSpan‖ allows for using
Modulo IBN instead of Absolute IBN.

Generic MessageCAN Bus

Time

IBNSpan

PSpan0 PSpan1 PSpan2

Figure 4.6. Dividing IBNSpan into exclusive priority spans.

IBNSpan. If the bus is busy and IBNsc is too long, the agent may never find the opportunity to

transmit. To prevent this, all IBN values should be kept within a span (IBNSpan) so that any

message with IBNsc ∈IBNSpan is guaranteed to transmit within a window not exceeding its

deadline (explained in Sec. 4.4.2). We use the notation ‖IBNSpan‖ to refer to the number of

elements (IBN values) in the IBNSpan set.

Modulo IBN. Since IBN is counted from the last frame on the bus, if a message is generated

during a long idle period, it will have to wait until a message appears. Even worse, if all ECUs are

also waiting for a message to appear, no messages will transmit. To prevent such problems, starting

at the last zero-point, we divide the timeline into slots of length = ‖IBNSpan‖. Instead of having

to send the message only at a spacing = IBNsc, we send it at any spacing (d) that satisfies the

condition: d mod ‖IBNSpan‖ = IBNsc. This way, if a message is generated in an idle period, it

waits until the beginning of the next IBNSpan, counts a number of bits = IBNsc, then initiates

transmission, as shown in Fig. 4.5 . Beginning from here, the term IBN refers to Modulo IBN.

Priority and IBN. Without ZBCAN, if two messages with IDs 0 and 10 are pending transmission

at the same time, they will both go through an arbitration phase that ends in ID : 0 winning and

transmitting first. With ZBCAN, if ID : 0’s scheduled IBN is 10 b, while ID : 10’s scheduled

IBN is 0 b, ID : 10 will transmit first, inverting the priority system.

72

To guarantee that such a scenario does not cause timing deadline violations for time-sensitive

messages, we enforce our own priority system. First, we divide IBNSpan further into Npri non-

overlapping ranges called priority spans (PSpans), each representing one priority level as shown

in Fig. 4.6 . Next, we arrange all message IDs in ascending order, based on their deadlines, then

group them into Npri ≥ 1 priority groups (Pgroups). Each Pgroup contains one or more message

IDs sharing the same PSpangroup, where PSpangroup ∈ IBNSpan. P0 is dedicated PSpan0 and

contains the IDs with the shortest deadlines, while PNpri−1 is dedicated PSpanNpri−1 and contains

IDs with the longest deadlines. This way, we guarantee that messages with the shortest deadlines

have a higher priority. In Sec. 4.4.1 , we model the worst-case response time (WCRT) for messages

in a ZBCAN system, then use this model to map message IDs into priority groups and guarantee

that time-sensitive messages arrive in time.

Dummy Messages. To prevent IBN inaccuracies due to the inherent clock skew among ECUs,

dummy messages of zero-byte length may need to be inserted after long idle periods to force all

ECUs to resynchronize. We detail this in Sec. 4.4.3 .

4.3.3 Operation Implementation Details

Registration and Sequence Exchange. Each agent starts its operation by an exchange with the

officer to establish the first sequence for each ID. This exchange happens only at the beginning of

operation. Each agent has a secret key, pre-shared only with the officer. Agents do not know each

others’ keys. However, the officer knows the pre-shared keys of all agents. The details of pre-sharing

this data are outside the scope of this discussion. Using these keys, each agent starts its operation by

securely and randomly generating a seed SR and then exchanging it with the officer. Both the agent

and officer use the seed, the pre-shared key, and an agreed-upon pseudo-random function (PRF) to

generate a session key. Next, based on the number of IDs per ECU (N idsecu), both the agent and

officer generate N idsecu seeds, each separated by an agreed-upon offset Off . The first ID’s seed is

= SR + Off and the last ID’s seed is = SR + (Off ∗N idsecu). Finally, using the seed, session

key, and PRF , we generate a number of length SeqLength. This number, per ID, will act as the

ID’s first IBN sequence (Seqid), from which individual IBN values are drawn.

73

Seed

Agent
Session Key

Counter

Sequence

Counter ++

Sequence

Counter ++

128b

PRFCounter ++

OFFICER
Session Key

Counter

Counter ++

Seed
128b

PRF

Seed
128b

PRF

Seed
128b

PRF

Figure 4.7. Extending a 128b sequence.

Sequence Usage. Every agent keeps an indexid for each ID’s IBN sequence. With every trans-

mitted message, the agent consumes the bits pointed at by indexid from the sequence and then

increments indexid. Specifically, every transmission, the agent extracts log2 ‖PSpangroup‖ bits

from Seqid. The value of the bits act as the scheduled IBN value for the next message. For example,

if a message belongs to a priority group whose PSpangroup = [32, 63], then ‖PSpangroup‖ = 32,

whose log2 is 5. If we extract the 5 bits, pointed at by indexid, and find their value = 15, then

IBNsc = 32 + 15 = 47 bits. Once transmission is initiated at bit 47, we increment indexid.

Sequence Extension. After the initial sequence exchange, each sequence could be used to generate

new sequences throughout the operation without having to re-exchange sequences with the officer.

We call this operation sequence extension. To keep a running sequence, we recommend using a fast

PRF . As shown in Fig. 4.7 , the agent and officer start with a session key and a different seed per

ID. Using the PRF , they generate an initial sequence of length SeqLength for each ID and start

drawing bits from it with every transmission. A circular buffer holding two sequences (a current

one and a future one) should be kept to avoid interruptions. Once a sequence is consumed, a new

one should be extended to replace it. We also recommend using a counter of length SeqLength,

to be incremented and XORed with the session key with every extension for augmented security.

SeqLength needs to be small enough for a limited-space ECU to be able to store it. For a typical

configuration of SeqLength = 128b and ‖IBNSpan‖ = 64b, each transmitted message draws 6b,

an extension happens every 128/6 ≈ 21 messages.

74

Sequence Exchange Frequency. Without counters, sequences could be extended until the result

of one extension operation repeats or equals the initial seed. If that happens, all the following

sequences will also repeat. For a 128b sequence, the probability of an extension generating such a

number is very low (1/2128 with every extension). Further, since we use counters, both the output

and the counter values need to be the same as a previous entire combination for sequences to start

repeating. The probability of that is even lower (1/2256).

For an agent with 16 IDs, if we do not want two IDs to have the same counter values for

stricter security, we can divide the counter values into exclusive ranges for each ID and only extend

the sequence until the counter reaches the end of its range (2128/16 extensions). Assuming an

extension covers 21 messages, then for a fast transmitting ID, with a 10 ms period, we could

perform sequence extensions for 21 ∗ 10 ∗ 2128/16 = 4.46 ∗ 1039 ms, before a counter repeats.

Alternatively, agents could perform an exchange once at the beginning of operation.

Officer Policing. If the officer detects a message with a wrong IBN , it interrupts it using an

active error right after reading its ID field. This prevents its payload from appearing on the bus

or being consumed by any receiving ECU. Right after the interruption, it issues a warning and

resynchronization message with an ID = IDwarn, a system parameter. Only the officer is allowed

to send this ID. The message contains the violating ID and the indexid of the next expected IBN .

Upon reception of a warning message, ECUs read which ID violated its sequence. If an ECU is a

transmitter of the violating ID, it updates its indexid to the one in the message. If it is a receiver, it

takes note of the possibility of the data being compromised. After Nwarn successive warnings or if

the message has a prohibited or unknown ID, the officer suspends the intruding node (Sec. 4.3.4).

Errors. If an agent encounters an error while transmitting a message, it should increment its indexid.

This is due to the fact that most errors happen after the ID portion of a message, meaning, after the

officer has witnessed and approved the ID and IBN .

Queuing. Since we group every message on the bus into Npri priority groups and consider all IDs

within a group to have the same priority, we recommend that within each agent, messages in the

same priority group share a FIFO queue as shown in Fig. 4.8 .

75

Message
Message

Priority 2

H
ig

h
 P

ri
o

ri
ty

Lo
w

 P
ri

o
ri

ty

O
u

tp
u

t
O

rd
er

N
ew

O
ld

O
ld

N
ew

O
ld

N
ew

Priority 1
Message
Message

Priority 0
Message
Message

Figure 4.8. Priority FIFO.

4.3.4 Disabling Transmitter (Instant Bus-Off)

We propose a new technique to push an ECU to the bus-off state by targeting a single message.

It requires equipment that is able to accurately inject individual bits directly into the bus. Only the

officer could do that per our threat model (Sec. 2.3). The method is as follows. (1) We pick a frame

on the bus and wait until a one is being transmitted. Once that happens, we inject a zero. (2) After

a single bit, the transmitter detects this error and attempts to send an error frame composed of 6

zeros (flag) and 8 ones (delimiter). (3) After the delimiter starts, we release the bus for a single bit,

allowing the one to appear. (4) After the one, we re-inject a zero. Consequently, step (2) repeats. We

repeat steps (1− 4) 32 times, where the transmitter enters the bus-off state as illustrated in Fig. 4.9 .

This process could take as little time as (7 ∗ 32) + (1 ∗ 31) = 255 b (510 µs on a 500 kbps CAN

bus) to transition a node from the error active state to the bus off state.

Although in the first half of this dissertation [38], we proposed the single-frame bus-off (SFBO),

this technique outperforms it in two ways: (1) SFBO requires ≈ 5 ms. Our technique requires 512

µs, up to ≈ 10X faster. (2) SFBO requires automatic re-transmissions to be enabled. As such, an

ECU could protect itself by disabling automatic re-transmissions. Our technique does not rely on

re-transmissions and hence cannot be escaped once launched.

76

32 TimesTarget Message R Bus Off

Interrupt Transmission

DominantDominant R

Figure 4.9. Successively interrupting error frame delimiters 32 times instantly pushes
transmitters to the bus-off state.

4.4 Performance Analysis

4.4.1 Worst-Case Response Time Analysis

Several works [68 – 74] have analyzed the Worst-Case Response Time (WCRT) in CAN systems.

We use the findings of [69] as a starting point. In Equation 4.1 , Rm refers to the WCRT of a message,

Jm refers to the queuing jitter or the longest time between initiating queuing and actually queuing a

message, wm refers to the queuing delay or the maximum time a message could wait in the queue

before initiating transmission, and Cm refers to the longest transmission time of message m. Every

message ID m should have two metrics defined: (1) Tm to represent the period of a periodic message

or the minimum inter-arrival time between two instances of an aperiodic message, and (2) Dm

to represent the timing deadline or the maximum allowed delay for the message. A message is

schedulable only if Rm ≤ Dm, or if its worst-case response time is smaller than its timing deadline.

Rm = Jm + wm + Cm (4.1)

To calculate the worst case queuing delay wm in Equation 4.1 , we use Equation 4.2 . Bm refers

to the blocking delay or the time message m could wait for a lower priority message, currently in

transmission, to conclude. Tk refers to the minimum time-interval between successive launches of

the queuing task of message k, and τbit to the bit-time.

wn+1
m = max(Bm, Cm) +

∑
∀k∈hp(m)

dw
n
m + Jk + τbit

Tk

eCk (4.2)

With ZBCAN, messages wait IBNsc before transmission. The effective transmission time

for message m then could be viewed as IBNsc,m + Cm. Assuming m ∈ priority group (Pn) and

PSpann starts at point (Spann,beg), the maximum IBNsc,m message m could wait is Gmax,n =

77

‖PSpann‖ − 1 + Spann,beg. As a result, we define ECm = Gmax,n + Cm to represent the effective

maximum transmission time of m, or the maximum time it could wait if the bus is available plus

its actual maximum transmission time Cm. Similarly, the effective maximum blocking delay EBm

includes the lower priority message’s waiting time. Since message m shares the same priority level

with a whole group, defining which IDs have higher priorities within the group becomes difficult.

The worst case is for the longest message to be currently in transmission, for all messages of

higher-priority and same-priority groups hp(m) and sp(m), to be pending transmission at the same

time, for all higher-priority messages to receive the maximum IBN value for their PSpans, for all

messages of the same group, including message m to wait for Gmax,n, and for m to lose arbitration

to every message and transmit last. Thus, we deduce that the worst queuing delay for our system

could be represented by Equation 4.3 .

wn+1
m = max(EBm, ECm) +

∑
∀k∈hp(m)∪sp(m)

dw
n
m + Jk + τbit

Tk

eECk (4.3)

This finding is similar to that of [70] for adjacent priority FIFOs, with the term f , denoting the

buffering delay, set to zero, since we assume that ECUs are implementing priority FIFOs.

Finally, Equations 4.1 and 4.3 , give us insight on what factors influence the WCRT of a message.

We expect for factors such as the bit-time (baud-rate), message length, jitter, number of messages

and their inter-arrival times, number of priority groups, and ‖PSpan‖ to have a direct influence.

We also expect for messages in the higher priority groups to have a higher influence on the WCRTs

of the system than lower priority groups.

4.4.2 Priority Grouping

We define the ratio Ratiosafe = Rm/Dm to represent the WCRT of a message m divided by

its deadline. To guarantee that time-sensitive messages will not violate their deadlines (schedulable),

we map different message IDs to different priority groups such that the condition: Ratiosafe ≤ 1

holds for all messages and groups. Grouping should take place during the system design phase and

not during operation. To optimize our grouping, we define two objectives. The first is to minimize

Ratiosafe. Assuming the system has a fixed IBNSpan, then it is obvious that the security of the

system drops with every division of this span. Hence, the second objective is to minimize the number

78

Algorithm 4 Priority Grouping Algorithm
1: AllIDs← System ID list
2: n← 0
3: Ratiosafe ← 0
4: while Ratiosafe ≤ 1 do
5: System← Schedulable
6: while AllIDs ! = Empty && System! = Unschedulable do
7: Create new group Pn
8: while Pn ! = Full && AllIDs! = Empty do
9: Add ID to Pn

10: Remove ID from AllIDs
11: if !(All Pn IDs are safe) then
12: Remove ID from Pn
13: Add ID back to AllIDs
14: if Pn Empty then
15: System← Unschedulable
16: Return IDs from all groups to AllIDs
17: Pn ← Full
18: n + +
19: Ratiosafe = Ratiosafe + 0.05
20: if Ratiosafe > 1 && AllIDs! = Empty then
21: System← Unschedulable

of priority groups. Alg. 4 illustrates how to achieve these objectives. In the algorithm, the term

"safe" means Ratiosafe ≤ 1 or that the worst-case delay is shorter than the deadline.

4.4.3 Discretizing IBN Challenges

ZBCAN works by discretizing the spacing between consecutive frames, then controlling this

spacing (IBN) to achieve its security goals. Nonetheless, the impact of factors such as the propaga-

tion delay on this "discretization process" should be studied to prevent any IBN inaccuracies.

Propagation Delay. Controllers read the value of a bit by taking voltage samples from the bus at

bit-lengthed intervals. A bit-time is divided into four segments. The sample point is configurable,

and is taken between the third and fourth [67]. For the propagation delay to cause IBN inaccuracies,

it needs to exceed the sampling point. Assuming a typical propagation delay of 5 ns [75], a baud

rate of 500 kbps, and an officer’s sampling point of 65%, the round trip propagation delay needs to

exceed 1300 ns (cable length of > 130 m) to constitute a problem. For a typical CAN bus with a 2

to 15 m length, this problem is irrelevant.

79

Clock Skew and Dummy Messages. Due to the inherent clock skews among ECUs, they gradually

lose synch. To counter that, CAN requires all controllers to re-synchronize at the rising edge of every

new frame’s SOF . In ZBCAN, if the clock skew of one ECU causes it to start transmitting past

the sampling point of the officer, it will cause a false positive. To prevent that, we take advantage

of CAN’s re-synchronization mechanism. Specifically, we define the metric dskew that refers to

the minimum spacing between messages that causes any ECU’s clock skew to start causing IBN

inaccuracies. By inserting a dummy message of zero-byte length at an idle spacing ddummy < dskew,

all clocks re-synchronize before the clock skew causes inaccuracies.

4.4.4 Overhead Analysis

A sequence extension operation for a specific ID happens every Lseq/ log2(‖PSpan‖) messages.

On the officer’s side, the sequences are extended for every message ID in the system. However, On

the agent’s side, sequences are extended only for the message IDs that the agent transmits.

To function properly, the agents and the officer need a minimum amount of memory to hold

variables such as keys, sequences, etc. Specifically, agents require at least (2 ∗ Lsequence) + ((3 ∗

Lsequence) + Lindex) ∗ Nids−agent bits, where Lsequence refers to the length of the sequence, Lindex

to the length of the index, and Nids−agent to the number of IDs that the agent sends. Similarly, the

officer requires at least (2 ∗Lsequence ∗Nagents) +((3 ∗Lsequence) + Lindex) ∗Nids−system bits, where

Nids−sys and Nagents refer to the number of IDs and number of agents in the system, respectively. A

more detailed analysis of the memory and processing overhead is provided in Appendix C.1 .

4.5 Security Analysis

Compromised Agent Abilities. Our threat model (Sec. 2.3) assumes a remote attacker that has

all the information of an agent but is limited by the ECU’s hardware. This is equivalent to the

attacker having full control over all OSI layers except for the physical and data link layers. While

ECUs communicate on the CAN bus through a CAN controller, the officer can connect directly to

the bus and could manipulate the data link layer. Further, an agent knows only its pre-shared key

(Sec. 4.3.1), which is used to agree on an IBN sequence. The officer, on the other hand, knows the

pre-shared keys of all agents. Consequently, a compromised agent cannot read message IDs during

80

transmission, stop messages on demand, alter protocol rules, or establish IBN sequence agreement

with other agents, since it does not have the necessary hardware or keys. This limits its abilities to

receiving and transmitting full messages and controlling their IBN values, which could be used to

push another ECU’s messages off sequence, launch message injection (including impersonation,

masquerade, etc.), error handling, or flooding attacks. Here, we discuss these attacks.

4.5.1 Off Sequence Attack

In ZBCAN, each message ID follows a strict IBN sequence. If an attacker is able to guess the

scheduled IBN for a target ID once, the officer will update its indexid but the legitimate transmitter

will not. Consequently, when it sends its next instance of the message with IBN = IBNsc, it will

be off-sequence, since the officer will be expecting an IBN = IBNsc+1. However, since each ID

has its own sequence, even if one ID is pushed off sequence, the agent will be able to transmit

the rest of the IDs normally. Further, since the officer will stop the first message with unexpected

IBN then issue a warning and resynchronization message containing the expected indexid, only

the legitimate agent will be able to synchronize since it only it has the IBN sequence.

This method turns a security weakness into a strength, guaranteeing that injections will be

detected in 100% of cases since even a successful injection always results in the legitimate ECU

going off sequence and the officer issuing a warning message to all receivers. Further, it is better

than having each agent monitor whether its messages are being impersonated and then automatically

resynchronizing in terms of the performance overhead incurred, since agents have to only watch for

messages with IDwarn, instead of every ID they transmit.

4.5.2 Injection and Detection Window

Attackers could inject messages with IDs that exist in the network (e.g., masquerade and

impersonation) or random IDs that do not necessarily exist (e.g., fuzzing attacks). Assuming a smart

attacker who wants to target a specific ID and who knows the system IDs, their groups, and PSpan,

ZBCAN offers three probabilistic security guarantees for injection attacks: Individual-Message

Detection, Individual-Message Prevention, and Flow Detection.

81

Individual-Message Detection. Assume a periodic message m with a period T belonging to a

priority group with a ‖PSpan‖ = n and a scheduled IBN = IBNsc. The probability of guessing

IBNsc is 1/n. Within a time period ≤ T , the legitimate ECU will send its message with the same

IBN = IBNsc. Since the officer will be expecting an IBN = IBNsc+1, the injection will be

detected within a time window ≤ T , except if IBNsc+1 is randomly = IBNsc. Since the sequence

is generated using a PRF , the probability of IBNsc+1 being equal to IBNsc is also 1/n. To

generalize, let the detection window (w) be an integer representing the number of periods/cycles

of duration T since the injection, the probability of detecting an injection within a window w is

represented by Equation 4.4 . Note that P (w)det always tends to 1 given enough cycles.

P (w)det = 1− 1
‖PSpan‖w+1 (4.4)

Individual-Message Prevention. To prevent an injection, the officer needs to detect it as soon as it

appears on the bus, and before it is delivered to the receivers. This means that the probability of

prevention Pprevent = P (0)det, as shown below:

Pprevent = 1− 1
‖PSpan‖

(4.5)

The expected number of trials before a successful injection is E(inj) = ‖PSpan‖, not

‖PSpan‖/2, since the officer increments indexid for the sequence with every observed ID in-

stance whether its IBN is accurate or not.

Injection Flow Detection. For a flow of f messages not to be detected, every single message in the

flow should pass unnoticed. In other words, an injection flow is detected when any of its messages

are detected. Equation 4.4 could be generalized to quantify this probability to become:

P (w, f)det = 1− 1
‖PSpan‖w+f

(4.6)

82

Random Injections. ZBCAN allows a message to transmit if and only if the message ID is allowed

on the bus and the message is following its Seqid. Since random injections violate both conditions,

their rate of prevention and detection is ≈ 100%.

4.5.3 Error Handling Attacks

Collision Injection. To inject a collision using simultaneous transmission (Sec. 2), the attacker

needs to estimate the transmission time of the victim message, send a synch message slightly

before its expected arrival, followed by a message of the same ID. With ZBCAN, the attacker

cannot randomly inject this high-priority message for synchronization or it will be stopped by the

officer. Further, the attacker has to accurately guess the scheduled IBN for the victim’s message.

Finally, with Modulo IBN , the attacker has to guess which ‖IBNSpan‖ slot to inject its message.

Assuming that the attacker only has to guess IBN , Equation 4.5 could be applied to estimate a

probabilistic lower bound for the prevention rate.

Error Passive. The fastest way to push a victim to the error-passive state requires at least 16

successive collisions. The prevention rate for this scenario is: Pprevent ≥ 1− (1/‖PSpan‖16).

Bus-Off. The fastest bus-off attack requires the attacker to cause 32 successive collisions. The

prevention rate of this scenario is: Pprevent ≥ 1− (1/‖PSpan‖32).

4.5.4 Flooding Attacks

ZBCAN prevents flooding by suspending the attacker using the instant bus-off technique. Since

the attacker’s ultimate goal is to cause victims to be unable to access the bus and eventually drop

their messages, the success of flooding attacks is measured by the drop rate (ratedrop) they cause

to messages. We define our prevention rate of flooding attacks to be rateprevent = 1 − ratedrop.

rateprevent will differ from one system to another depending on factors such as the busload and the

ID allocation of the network more than the ‖IBNSpan‖.

83

4.5.5 Choosing ‖PSpan‖

Looking at Equations 4.4 through 4.6 , we notice that regardless of the value of ‖PSpan‖,

injections will always be detected, given enough cycles. Therefore, the value of ‖PSpan‖ could be

viewed as mainly affecting the detection speed, and the single injection prevention rate.

The system designer should initially define their security objectives and possible trade-offs. A

high single injection prevention rate requires a high ‖PSpan‖. However, ZBCAN provides high

detection rates, even for small ‖PSpan‖ values. For instance, a ‖PSpan‖ value as low as 16 b will

result in a single injection prevention rate ≈ 93.75%, but a single injection detection rate ≈ 99.61%

within a single cycle. This is already higher than most of the current IDSs detection rates for flows.

Meanwhile, its detection rate of a malicious flow composed of only two messages is > 99.97%

within a single cycle. Within 5 cycles, both the flow and single injection detection rates for the

aforementioned scenarios become ≈ 100%. Outside injection attacks, the same ‖PSpan‖ prevents

error passive and bus off attacks at a ≈ 100% rate. To choose a ‖PSpan‖ value, a compromise

between the security of the system and its performance has to be reached. The busier the system,

the smaller the ‖PSpan‖ values it could afford.

4.6 Evaluation

For a thorough analysis, we evaluated ZBCAN’s false positive rate, security, performance, and

scalability on a testbed using artificial data, on a testbed using ExpVehicle’s data, and finally on

ExpVehicle’s CAN bus.

Trusted Officer Platform. We use a Renesas RA6M5 MCU board as the officer. RA6M5 MCU

runs on an ARM Cortex M-33. It offers memory and peripheral access isolation, secure boot-loading

and processing with TrustZone, a CAN module, and a GPIO module.

Pseudo Random Function. We use Chaskey [76], an open source PRF that takes ≤ 0.5 ms to

generate a Seqlength = 128 b on an Arduino Uno board and ≈ 1.9 µs on the RA6M5.

84

Zero-point. As explained in Sec. 4.3.2 , we measured the value of TO on an Arduino Uno and

determined it to be 7 b. The zero-point is TO + TSuspend = 15 b after the IFS.

4.6.1 False Positive Test

Propagation Delay. This delay is proportional to the bus length. To assess its impact, we attached

the officer and a reference message generator to a breadboard, an agent to another breadboard,

connected the two with a cable, and added a 120 Ω resistance on each board. We set the agent to

transmit a message immediately after every reference message with IBN = 0 b. We set the cable

length to 5 cm and measured the average spacing between the reference and agent messages in

nanoseconds. Next, we changed the cable length from 5 cm to 30 m and repeated the measurement.

The difference between the spacing at 30 m and at 5 cm was ≈ 340 ns. This means that the round

trip propagation delay was ≈ 11.33 ns/m and that the one way delay was ≈ 5.66 ns/m. At a 500

kbps baud rate, for the round trip delay to exceed our officer’s sampling point of 75%, the cable

length has to be ≥ 132.39 m, which is too long for a typical CAN bus.

Impact of Clock Skew. In a system composed of 20 ECUs, the smallest dskew was 1189 b and the

largest dskew = 1460 b. The details of these measurements are explained in Appendix B.2 . To assess

the impact of clock skew on the false positive rate, we connected the officer and a traffic source,

sending a reference message every 6 ms, to a 500 kbps bus. Next, we connected the ECU with the

largest dskew and set it to transmit after every reference message with an ascending IBN between 0

and 3000 b. This means sending the first message with IBN = 0 b, the second with IBN = 1 b

and so on until 3000 b, then rolling over to 0 b and repeating. Meanwhile, the officer monitored the

IBN of each message. We ran this test for 30 min. Next, we connected the ECU with the smallest

dskew and repeated the test. Fig. 4.10 shows how for both ECUs, the false positive rate is 0% before

each ECU’s dskew, then increases after exceeding it until it reaches 100%.

False Positive Test With Dummy Messages. To assess whether the dummy message solution

(Sec. 4.4.3) could keep the false positive rate of a network with both propagation delay and clock

skews at 0%, we connected the officer and a traffic generator to one breadboard and the agents

85

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
Absolute Inter-Frame Spacing (bits)

0

0.2

0.4

0.6

0.8

1

F
al

se
 P

os
iti

ve
 R

at
e

ECU Min.
ECU Max.

Figure 4.10. Message spacing vs. IBN accuracy.

to another and connected the two with a 30 m cable to maximize the propagation delay. We set

each agent to register and exchange an IBN sequence of an IBNSpan = 128 b with the officer as

explained in Sec. 4.3.3 . As previously determined (and as explained in Appendix B.2), the system’s

dskew was 1189 b. Nonetheless, since the system’s IBNSpan = 128 b and 1189 mod 128 6= 0, we

chose ddummy = 1152 b, the biggest value under 1189 whose mod 128 = 0 b. Next, we set up the

traffic generator to send a dummy message of length 0 B at 1152 b idle time and set up each ECU

to send 100K messages while following its own IBN sequence. For all ECUs, the false positive

rate remained 0% after 100K messages.

4.6.2 ZBCAN Security Evaluation on a Testbed

On a 500-kbps CAN bus, We connect the officer, 5 ECUs, and a dummy message generator.

ECUs are composed of Arduino Uno boards, mcp2515 CAN controllers, and mcp2551 transceivers.

One node is used as the attacker. We assume a smart attacker who knows the IBNSpans of the

system. Therefore, we provide the attacker with an agent similar to the one on all nodes with

modifications to launch attacks. Below, we report ZBCAN’s evaluation results.

Injection. We set the busload to 34% as in our Impala and evaluated ZBCAN under ‖IBNSpan‖

values of 16, 32, 64, and 128 b and three types of injection: (1) Random Injections: Attacker uses

the same PRF with a random seed to try different IDs and IBN values within the IBNSpan. (2)

Targeted Injections: Attacker injects an ID already in use in the network but uses the same PRF to

86

0 1 2 3 4 5
Detection Window (cycles)

94
95
96
97
98
99

100

De
te

ct
io

n
Ra

te
 (%

)

|IBNSpan| = 16b
|IBNSpan| = 32b
|IBNSpan| = 64b
|IBNSpan| = 128b

Figure 4.11. Average observed detection rates and windows for targeted injections
and replay attacks.

Table 4.2. Observed effectiveness of ZBCAN with different ‖IBNSpans‖ against
different single injection attack types.

Attack
Detection

Rate
Prevention Rate Per ‖IBNSpan‖
16 b 32 b 64 b 128 b

Random Injection 100% 100% 100% 100% 100%
Targeted Injection 100% 93.6% 96.9% 98.5% 99.1%

Replay 100% 93.8% 96.8% 98.4% 99.3%

randomly select IBN values within the IBNSpan. (3) Replay: Attacker replays a message with

the same ID and IBN as the last message on the bus.

As shown in Table 4.2 , the prevention rates of the targeted injection and replay attacks were

similar to one another and within Equation 4.5 ’s estimated range. The random injection attack’s

prevention rate was 100%. All attacks were detected at a 100% rate. However, Fig. 4.11 shows that

the detection window for the targeted injection and replay attacks depended on the ‖IBNSpan‖.

This confirms our previous analysis in Sec. 4.5.5 and the findings of Equation 4.4 , which state that

the ‖IBNSpan‖ impacts the speed of detection, not whether the attack would be detected.

Error Handling. With ‖IBNSpan‖ values of 16, 32, 64, and 128 b, we set the attacker to inject

collisions to a victim ECU using simultaneous transmission, to count the number of collision

attempts, and the number of successful collisions. We set the victim to record the number of times it

is pushed to the error-passive or bus-off states. As shown in Table 4.3 , error-passive and bus-off

attacks were prevented at a rate of 100%. Collision injections were prevented at rates ranging

87

16 32 64 128
|IBNSpan| (bits)

93
94
95
96
97
98
99

100

P
re

ve
nt

io
n

R
at

e
(%

)
Modulo IBN
Absolute IBN
Theoretical

Figure 4.12. Observed prevention rates of the collision injection attack with Modulo
IBN turned on and off.

Table 4.3. Observed effectiveness of ZBCAN with different ‖IBNSpans‖ against
different error handling attack types.

Attack
Prevention Rate Per ‖IBNSpan‖

16 b 32 b 64 b 128 b
Collision Injection 98.8% 99.3% 99.4% 99.6%

Error-Passive 100% 100% 100% 100%
Bus-Off 100% 100% 100% 100%

between of 98.8% and 100%. To evaluate the analysis in Sec. 4.5.3 , we disable the Modulo IBN

feature of our system, rerun the experiment. Fig. 4.12 plots the prevention rate with Modulo IBN

on and off, as well as the theoretical lower bound.

Flooding. We operated the testbed under the following busloads: 10, 20, 30, and 40%. We set one

of the nodes as a receiver to confirm message reception. We set the attacker to send back-to-back

messages with ID = 0h, and we measured the message drop rate with the officer disconnected. For

all busloads, the drop rate was 100%. We repeated the same test with the officer connected and we

achieved the following drop rates: 0%, 0%, 0%, and 0.67% for the respective busloads.

4.6.3 Performance with Real Vehicle Data

To evaluate the performance impact of ZBCAN if installed on a real vehicle, we emulated

the traffic of a test vehicle containing 4 ECUs, 50 IDs, and a 34% busload, whose data is shown

in Appendix Table B.1 . We applied ZBCAN under three IBN settings: (A) 3 Priority groups,

88

51015202530354045

WCRT (ms)

C1
C5

1E
5

F1
19

9
F9
C9
19

1 1C
7 1C
D

1E
9

18
4 1C
3 19
D

1F
5 1A
1

33
4 1E
1

1F
3

2F
9

34
8 34
A 2C
3 17
D

17
F

1F
1

13
4 12
A 3C
9 3C
1

3E
9 3D
1

3F
1 3F
B

3F
9 4D
1 4C
1 4C
9

4E
1

77
3

50
0

77
1 4E
9

13
8

51
4 52
A

4F
1

77
2

77
F

C1
C5

1E5
F1

199
F9
C9

191
1C7
1CD
1E9
184
1C3
19D
1F5
1A1
334
1E1
1F3
2F9
348
34A
2C3
17D
17F
1F1
134
12A
3C9
3C1
3E9
3D1
3F1
3FB
3F9
4D1
4C1
4C9
4E1
773
500
771
4E9
138
514
52A
4F1
772
77F
120

P
er

io
di

c
M

es
sa

ge
 ID

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

WCRT/Deadline

N
o

Z
B

C
A

N
|IB

N
S

pa
n|

: A
sc

en
di

ng
 (

T
he

or
et

ic
al

)
|IB

N
S

pa
n|

: 3
2b

 (
T

he
or

et
ic

al
)

|IB
N

S
pa

n|
: 6

4b
 (

T
he

or
et

ic
al

)
|IB

N
S

pa
n|

: A
sc

en
di

ng
 (

O
bs

er
ve

d)
|IB

N
S

pa
n|

: 3
2b

 (
O

bs
er

ve
d)

|IB
N

S
pa

n|
: 6

4b
 (

O
bs

er
ve

d)

Fi
gu

re
4.

13
.W

C
R

T
s

(a
bs

ol
ut

e
an

d
as

ra
tio

s
of

m
es

sa
ge

de
ad

lin
es

)f
or

E
xp

V
eh

ic
le

tr
af

fic
w

ith
an

d
w

ith
ou

tZ
B

C
A

N
.

89

each ‖PSpan‖ = 32 b. (B) 3 Priority groups, each ‖PSpan‖ = 64 b. (C) 3 Priority groups with

ascending priority spans where ‖PSpan0‖ = 32 b, ‖PSpan1‖ = 64 b, and ‖PSpan2‖ = 128 b.

Grouping. We ran Alg. 4 under the three aforementioned IBN settings. We assumed that all

messages are time-sensitive and that each message’s deadline is equal to its period length. Alg. 4

determined Ratiosafe to be 0.59, 0.7 and 0.62 for settings A, B, and C, respectively. The small

value of Ratiosafe for all settings guarantees that no time-sensitive messages will violate their

deadline. Appendix Table B.1 shows the group boundaries for each setting.

Observed and Theoretical WCRTs. The top of Fig. 4.13 shows the observed and the theo-

retical WCRT of each ID for all three IBN settings and without ZBCAN. The bottom shows

WCRT/Deadline ratio for each ID. The IDs are arranged from left to right based on their period

lengths, with the shortest period being on the left. As shown, no message ID violated its timing

deadline. The difference between the theoretical WCRT with and without ZBCAN is small on the

left, but gets bigger as we move towards IDs with big periods (right). However, when looking at

the WCRT as a ratio of each ID’s deadline, this increase becomes trivial. For example, while the

theoretical WCRT for ID 120h at ‖IBNSpan‖ = 64 b approaches 50 ms, it has a period of 5 s,

making the theoretical WCRT/Deadline ≤ 1%.

Without ZBCAN, the maximum WCRT/Deadline ratio lies at ID : 1E5h around 0.7, the

same as with ZBCAN, while the observed ratio is much smaller. Note that the theoretical WCRT

is always greater than or equal to the observed WCRT, and that the difference gets bigger as we

move right. This is because our WCRT analysis in Sec. 4.4.1 is too pessimistic. However, even this

pessimistic theoretical WCRT is still below the timing deadline of all messages.

Observed Average and Minimum Response Times. For all IBN settings, the average delay for

P0 was ≈ 500 µs, and < 1 ms in 90% of the cases. For P1 and P2, the average delays were ≤ 2

ms, and ≤ 3 ms, respectively. For all groups, setting (B) had the largest minimum, average, and

maximum response times. Per Equation 4.3 , where the ‖PSpan‖ which influences WCRT the most

is ‖PSpan0‖. Since setting B has the largest ‖PSpan0‖, it also has the largest delays.

90

Figure 4.14. Testbed with 20 ECUs (agents) and the officer.

Dummy Messages. ddummy, or the maximum inter-frame space allowed before clock skews start

causing inaccuracies was determined to be > 2 ms (Appendix B.2). Since the average spacing

between messages was ≈ 1.6 ms, the dummy message did not need to be inserted most of the time,

resulting in a busload increase of < 1%.

4.6.4 ZBCAN Scalability Evaluation

To evaluate ZBCAN’s performance on a system with a large number of ECUs and safety critical

messages, we setup a testbed with 20 ECUs and 100 message IDs. All messages were assumed to

be safety critical and time sensitive, with their timing deadlines shown in Appendix Table B.2 . Note

that messages 1, 6 and F are aperiodic. Fig. 4.14 shows our scalability testbed.

Grouping. We ran Alg. 4 under a 3-priority setting, a message-length= 8 B, a ‖PSpan‖ = 64

b, and an ‖IBNSpan‖ = 192 b. The calculated theoretical WCRTs were 7.3, 37.1, 96 ms and

the Ratiosafe to be 0.73, 0.74 and 0.38 for groups 0, 1 and 2. For all settings, we evaluated the

performance aspects below. Appendix Table B.2 shows the group assignments.

91

0 1 2
Priority Group

0
2
4
6
8

10
12
14
16

De
la

y
(m

s) 4B
6B
8B

Figure 4.15. Observed WCRTs vs. message length

0 1 2
Priority Group

0
2
4
6
8

10
12
14
16

De
la

y
(m

s)

16b
32b
64b

Figure 4.16. Observed WCRTs vs. ‖PSpan‖.

Observed WCRTs. We set the transmission rates of the aperiodic messages to the highest to achieve

the worst possible delays on the bus. The observed WCRTs were ≈ 6.5, 11.5 and 17 ms for priority

groups 0, 1 and 2, respectively. No messages violated their deadlines or their theoretically calculated

WCRTs as shown in Appendix Table B.2 , which proves the accuracy of our time model and that

ZBCAN is safe to use in time-sensitive networks.

WCRT and Message Length. To evaluate the impact of message length on WCRT, we repeated

the evaluation with message lengths set to 4 and 6 B and observed the WCRTs. Fig. 4.15 shows the

average, maximum, minimum, 10th and 90th percentile observed WCRTs. As shown, increasing the

length clearly increases the delay in every priority group.

WCRT and ‖PSpan‖. To evaluate the impact of ‖PSpan‖ on WCRT, we reset the message lengths

to 8 B and, using the same group assignments, repeated the evaluation with ‖PSpan‖ of all groups

92

set to 16 b then 32 b and observed the WCRTs. As shown in Fig. 4.16 , increasing ‖PSpan‖ clearly

increases the delay of messages in every priority group.

WCRT and Number of ECUs. To assess the impact of the number of ECUs on WCRT, we reset all

lengths to 8 B, all ‖PSpan‖s to 64 b and repeated the evaluation with 10 ECUs instead of 20 (ECU

sends 10 IDs instead of 5). As shown in Fig. 4.17 , the impact of increasing the number of ECUs on

the observed delay does not show a clear up or down trend. For instance, while the observed WCRT

for group 1 slightly increased, it slightly decreased for group 2. Meanwhile, the average WCRTs for

all groups remained almost the same.

Per Sec. 4.4.1 , the number of ECUs is not expected to directly impact the WCRTs. Similarly,

per Alg. 4 , the theoretical WCRTs are the same. Nonetheless, the WCRTs are not identical. These

differences are mainly due to the queuing jitter that changed as a result of changing the number of

IDs per ECU. Specifically, while the maximum jitter in both scenarios was ≈ 750 µs, the average

jitter was slightly higher for the 10-ECU scenario, resulting in a very slightly higher average WCRT

for the 10-ECU scenario. The jitter’s standard deviation, however, was higher for the 20-ECU

scenario, resulting in a slightly higher maximum WCRT for priority group 1.

Memory Consumption. We equipped a busy ECU transmitting 20 IDs with a ZBCAN agent. The

memory consumption of all the ECU’s and agent’s variables was ≈ 1.72 kB.

Sequence Extension Overhead. With Lseq = 128 b and a ‖PSpan‖ = 64 b, a busy agent

with 20 IDs, each with a period of 25 ms, performed a sequence extension operation every ≈

26.25 ms (Pext). Each operation took ≈ 0.5 ms (dext). The agent’s Oext = dext/Pext ratio was

0.5 ∗ 100/26.25 ≈ 1.91%. On the officer’s side, each extension operation took ≤ 1.9 µs. On a busy

system with a message observed every 0.5 ms, a sequence extension operation happened every

≈ 10.5 ms, resulting in a an Oext of 0.0019 ∗ 100/10.5 ≈ 0.018%.

93

0 1 2
Priority Group

0
2
4
6
8

10
12
14
16

De
la

y
(m

s)

10 ECUs
20 ECUs

Figure 4.17. Observed WCRTs vs. numbers of ECUs.

4.6.5 ZBCAN on a Real Vehicle

Incremental Deployment. Incrementally adding a protected ECU to an unprotected bus is different

from adding it to a protected one. Specifically, only the protected ECU’s messages will have IBN

delays. Therefore, we expect such an ECU to have higher delays than one deployed on an already

protected bus (Sec. 4.6.3). To evaluate these delays, we attached the officer and an ECU equipped

with ZBCAN to the CAN bus of a real vehicle. We set the agent to transmit at a period = 50 ms and

under the following ‖IBNSpans‖: 16, 32, 64, and 128 b. Fig. 4.18 shows the average, minimum,

maximum, 10th, and 90th percentile response times.

Table 4.4. Effectiveness of ZBCAN against flooding attacks.

Setting
Testbed

ExpVehicle
10% 20% 30% 40%

Prevention Rate 100% 100% 100% 99.33% 100%

Flooding. We attached an attacker to send back-to-back messages of ID= 0h with the officer

disconnected. We connected an additional receiver node to confirm the reception of messages. The

message drop rate was 100%, which means no messages whatsoever were being received. We

repeated the experiment with the officer connected and the drop rate becomes 0%. This means

94

16 32 64 128
|IBNSpan| (bits)

0
5

10
15
20
25

De
la

y
(m

s)

Figure 4.18. Observed WCRTS on ExpVehicle.

that the attack prevention rate with the officer connected was 100%. Table 4.4 shows ZBCAN’s

prevention rates of flooding in different testing conditions.

4.7 Benchmark Comparison

Since ZBCAN is versatile, it is difficult to compare its effectiveness against its entire set of

attacks with systems that may not defend against the same set. Instead, we make three separate

comparisons between ZBCAN and other systems.

Compared to IDSs. While most defense systems focus only on injection attacks, ZBCAN protects

against a wider attack-set, encompassing injection, error handling, and flooding. Further, while

most intrusion detection systems are able to detect attacks composed of message flows with a high

degree of accuracy, ZBCAN offers security guarantees to single messages as well as flows. These

abilities guarantee that, unlike other IDSs, gradual, intermittent, and single-message attacks will not

pass unnoticed. They also allow ZBCAN to extend some of its detection abilities to prevent attacks.

Table 4.5 compares ZBCAN’s evaluation results with the evaluation results of other IDSs against

the same attack set. As shown, ZBCAN’s prevention rate compares with the best IDS’s detection

rates. Meanwhile, its detection rate is 100%.

95

Table 4.5. How ZBCAN’s evaluation results at ‖IBNSpan‖ = 64 b compare with
other intrusion detection systems.

IDS Targeted Injection Replay

Scission[27] 96.8%-98.5% 96.8%-98.5%

Clock-Skew[24] 97% 97%

Detection 100% 100%
ZBCAN

Prevention 98.5% 98.4%

In conclusion, ZBCAN protects against a bigger attack set than any other defense system, does

not require dynamic retraining, offers higher detection abilities of attack flows as well as single

attack instances than any other IDS, and finally, attack prevention as well as detection.

Table 4.6. Comparing the probability of a single injection going undetected with
different benchmarks.

Pundet
Defense

1 cycle 5 cycles 10 cycles

Message

Bytes
Busload

Leia[48] 1/264 1/264 1/264 2 +100%

LCAP[45] 1/216 1/216 1/216 2 +0%

CACAN[77] 1/28 1/28 1/28 1 +100%

IA-CAN[49] 1/232-1/28 1/232-1/28 1/232-1/28 1-4 +0%

ZBCAN 1/214-1/28 1/242-1/224 1/277-1/244 0 +0-1%

Compared to Cryptographic Solutions. We define the metric Pundet, which quantifies the proba-

bility of a single injection going undetected. As shown in Table 4.6 , while Pundet within one cycle

is lower for Leia and LCAP, it is constant with w. As explained by Equation 4.4 , this probability

is 0 with ZBCAN, given enough cycles (w). As shown, at w = 10 cycles, ZBCAN’s Pundet is the

lowest. Further, these systems use message bytes and some of them double the busload. ZBCAN

is the only one to use zero message bytes and cause no or a very small busload increase. Finally,

while Pundet for IA-CAN and CACAN are comparable to ZBCAN’s at w = 1 cycle, an attacker

96

may exhaustively try injecting all different combinations. With ZBCAN, this cannot happen since

the officer will suspend nodes that try this approach.

Table 4.7. CANARY and ZBCAN are effective defenses against error handling and
flooding attacks.

Defense

System

Response

Time

Attacker

Isolation

Hardware

Changes

CANARY[64] 5ms-100ms Partial 1 Guardian Node + 8 Relays + Wiring

ZBCAN 22-72 us Full 1 Officer Node

Compared to Other Solutions. CANARY is one of the few defense systems that addressed error

handling and flooding attacks. As shown in Table 4.7 , in addition to the expensive costs of wiring

and adding relays, relays work by isolating entire sections of the CAN bus, which may result in

the isolation of benign nodes, together with the attacker. Moreover, relays often have high relaying

times, resulting in attacks taking place for a long time before soliciting a response.

4.8 Discussion

Intrusion Confinement. ZBCAN provides intrusion confinement in two ways. First, since agents

do not share the same keys or sequences, a compromised ECU agent cannot predict the IBN

sequences of other nodes and hence cannot inject messages impersonating other nodes or reliably

inject collisions. Second, a compromised node cannot launch flooding or error handling attacks

against other nodes, since the officer will actively interrupt any such attempt.

Time Triggered CAN. TTCAN systems use matrix scheduling, in which each message is expected

to be transmitted during a specific interval. No other message is allowed to be sent during this

interval. Additionally, TTCAN systems use reference messages to provide synchronization between

nodes. These two factors make TTCAN systems a good fit for ZBCAN. Namely, reference messages

eliminate the need for additional dummy messages. Similarly, prescheduling messages eliminates

97

the need for priority groups, increases the security of the system, eliminates the interference delay

in Equation 4.3 , and significantly improves the WCRT. The only minor change these systems may

need is to increase the acceptance window for each message by a distance = ‖IBNSpan‖.

ZBCAN Controller. CAN controllers have the hardware required to monitor and change message

spacing (e.g., suspend transmission period). With slight modifications, the functionality of the

agents could be implemented in the form of controllers, eliminating the overhead on the ECU’s side.

Content Authentication. Since we are trying to make ZBCAN as lightweight as possible, we only

discussed transmitter authentication. However, ZBCAN could be easily extended to include content

authentication by calculating a hash or MAC for each message and then XORing the result with

IBNsc. On the officer’s side, the officer will have to read the entire payload as opposed to reading

only ID bits, calculate the keyed hash or MAC, then XOR it with the expected IBNsc value to see

if the result is equal to the measured IBN .

Other Possible Extensions. In addition to content authentication, the officer’s design could be

easily extended to support more sophisticated operations. For example, it could be extended to

provide protection to several buses operating at varying levels of security (e.g., confidential, secret,

top secret, etc.) similar to monitoring solutions that have been designed for other communication

buses[78]. It could also be extended to offer deep packet inspection or content authentication by

checking the DLC, RTR, or payload fields. For example, it could be provided with the used

payload fields, signal boundaries, and accepted value ranges specific to each message ID to provide

deep packet inspection as has been proposed on other buses [79 , 80].

4.9 Limitations

Officer Failure. Similar to most IDSs, the officer’s failure removes the security it provides. However,

the officer is not a filter, a bottleneck, or a gateway that messages go through before reaching the bus,

rather, it is connected in parallel as any other ECU. We designed ZBCAN this way so that even if it

fails, it fails safe. Further, applying IBN values, transmission, and reception are the agent’s, not

98

the officer’s, responsibility. Consequently, if the officer fails, agents continue following their IBN

sequences normally. This means that while the protection against injection and flooding attacks will

be removed, it remains intact against error handling attacks, since they do not rely on the officer,

but the unguessability of the IBN that the attacker needs for the collision.

Compromised Officer. The officer is assumed to be trusted. This assumption is not unique to

ZBCAN but common to all IDSs. Although existing IDSs only monitor the network, they still have

access to the bus through a CAN controller and/or special pins. Both channels could launch attacks

if the IDS is compromised. Nonetheless, to minimize the probability of such a scenario, we used a

board that provides secure boot-loading, secure processing, secure memory access isolation, and

peripheral access isolation. We could use these features in several ways to elevate the security

posture of the officer and minimize the likelihood of its compromise.

For example, we could use the secure boot-loading process for the officer node to ensure

that only authenticated and authorized software and firmware updates are loaded during the boot

sequence. This way, we protect against unauthorized modifications to the officer, such as firmware

tampering or unauthorized updates. We could also use the secure memory access isolation feature

to store critical information, such as the keys and IBN sequences in isolated memory regions, and

ensure that they remain protected and inaccessible to unauthorized parties. The secure processing

capability could handle the key management and the IBN sequence extension. By utilizing the

secure execution environment, the officer node can perform cryptographic operations, such as key

generation, key derivation, and sequence extension within a trusted space. To protect against the risk

of an unauthorized malicious application taking over the GPIO or CAN peripherals, we can use the

peripheral access isolation feature and restrict access to these peripherals to trusted applications.

Most importantly, we should stringently restrict physical access to the officer node to authorized

personnel only to prevent unauthorized tampering or access to the officer node. Finally, except for

the channels connecting the officer to the bus, we could disconnect any other connections to or from

the officer. This air-gapped-like setting greatly elevates its security posture.

In-Group Priority Inversions. Although ZBCAN guarantees that a message belonging to priority

group Pn will always have a higher priority than one belonging to group Pn+1, it does not guarantee

99

the priority hierarchy within the same group. Nonetheless, ZBCAN guarantees that even if an

in-group priority inversion takes place, every message in the group is guaranteed to be schedulable

and to arrive at its destination without violating any timing deadlines.

Unschedulable Systems. We assume all messages are time sensitive and use Alg. 4 to plan the

system’s schedulability. However, it is theoretically possible to find unschedulable systems. In such

cases, we have to find a trade-off. This could involve the decision of changing, lowering, or even

dropping, the security of certain messages, to guarantee the schedulability of all messages. For

instance, assuming a 3-priority system with each ‖Pspan‖ = 64 b, in Appendix Table B.2 , if we

lower the periods/deadlines of the first five messages to 5 ms, the system becomes unschedulable

unless we lower the span of all groups to 32 b. Further lowering the periods/deadlines of the first five

messages to 3 ms, renders the system unschedulable again. In this case, we may drop the security

of the first 5 messages by adding them to group 0, then setting ‖Pspan0‖ = 0 b, while keeping the

protection for other groups to preserve the system’s schedulability.

Corrupt Payloads. The discussed design of ZBCAN does not prevent an ECU from corrupting

the payload of its own messages. However, the officer could be easily extended to check the DLC,

RTR, and payload fields to detect or prevent this scenario, as mentioned in the discussion section.

4.10 Conclusions

We proposed ZBCAN, a novel defense system that exploits inter-frame spacing to protect

against the most common CAN attack vectors. ZBCAN offers attack detection, prevention, indi-

vidual message guarantees, intrusion confinement, incremental deployability, and full backward

compatibility without using any message fields. It also avoids making heavy use of computationally

expensive operations such as encryption. We introduced a novel and instant way to suspend nodes

called the instant bus-off technique, which we used for defense purposes against intruding nodes. We

proved the schedulability of messages on systems implementing ZBCAN by offering a theoretical

worst-case response time analysis for such systems. We offered a probabilistic security analysis

for ZBCAN against different attack types. Finally, we proved the applicability of our system by

100

evaluating different aspects of it on a testbed using artificial data, then on a testbed using a real

vehicle’s data, and finally on a real vehicle’s CAN bus.

101

5. CONCLUSIONS AND FUTURE DIRECTIONS

The transition from purely mechanical systems to computerized cyber-physical systems has been

incremental and often unpremeditated, resulting in systems with limited security measures. With

cyber-physical systems, breaches often begin in the cyber world, but their impact manifest in the

physical world. In many cases, this causes life-or-death scenarios. Correspondingly, the importance

of addressing the security vulnerabilities in today’s cyber-physical systems cannot be overstated.

Unfortunately, the existing security approaches are often reactive rather than proactive. We proposed

a proactive vulnerability identification and defense construction approach for cyber-physical systems,

with CAN serving as a relevant case study. This approach involves systematic vulnerability scanning,

root cause investigation, and the construction of defense systems that consider the nature of the

system and protect against multiple vulnerabilities simultaneously. The ultimate aim of this approach

is to enhance the security of cyber-physical systems and mitigate potential risks. We emphasize that

the findings and techniques presented here do not apply only to CAN but also to other cyber-physical

systems that share similar performance and security challenges.

We began this dissertation with a vulnerability identification phase. Specifically, following our

identification of a novel and alarming attack type against CAN, which targets its error handling

and fault confinement mechanism, we decided to formally investigate the security posture of this

fundamental and previously overlooked mechanism of the CAN standard. We built an automated

vulnerability identification tool, named the CAN Operation eXplorer (CANOX) [38], which system-

atically scans CAN’s error handling and fault confinement mechanism for vulnerabilities. It explores

the impacts of operating outside the default error active state to identify possible vulnerabilities

in the CAN standard as such impacts have never been studied in the literature. CANOX places a

CAN node in a controlled environment, sets its operation and error state, systematically changes the

operational conditions of the node and its environment, and monitors certain behavioral metrics

to identify the conditions that result in unexpected node behaviors. CANOX uses this dynamic

approach to avoid the problems associated with formal model checking such as inaccurate modeling.

Using CANOX, we identified three major undiscovered vulnerabilities in the CAN standard

[39]. These vulnerabilities allow an attacker to shut down an ECU by attacking a single message,

persistently prevent an ECU from recovering from a shutdown, or perform black-box network

102

mapping. To show the gravity of the discovered vulnerabilities, we constructed a single, end-to-end,

multi-staged attack that exploits all of the discovered vulnerabilities. In it, an attacker with no

previous knowledge of the vehicles internals maps the vehicles CAN bus, identifies a safety-critical

ECU, swiftly silences it, and persistently prevents it from recovering. we validated the applicability

of the attack by evaluating it on a testbed and a real vehicle.

Due to the impact of the discovered vulnerabilities on CAN systems, we first provided some

mitigation approaches as a temporary solution. Next, we reported the three vulnerabilities to

the Robert Bosch Product Security Incident Response Team (PSIRT), to the Cyber-security and

Infrastructure Security Agency (CISA) through the CERT-VINCE portal, and to the International

Organization for Standardization (ISO). ISO referred us to the American National Standards Institute

(ANSI), which directed us to the Society of Automotive Engineers (SAE). SAE acknowledged our

contributions and submitted the vulnerabilities to a committee for review and consideration in the

next revision. Although our USENIX paper was accepted in January [38], we requested that it be

placed under embargo until August, to give a chance to all the concerned parties to deploy their

own security measures. Finally, per their request, we gave a talk to the Automotive Information

Sharing and Analysis Center (AutoISAC) to explain the vulnerabilities and the attacks that could

exploit them in detail. This proactive engagement with industry stakeholders and standardization

bodies underscores our commitment to driving impactful change and fostering the adoption of

robust security measures within modern cyber-physical systems.

We then transitioned into the defense construction phase. We began this phase by surveying the

existing CAN defense systems and approaches. Unfortunately, we noticed that although several

CAN defense approaches have been proposed, none of them could be widely adopted for reasons

inherent in their design, such as their unaffordable overhead, increased busload, dropped data

rate, lack of single-message detection, lack of attack prevention, or inaction against non-injection-

based attacks. To address these shortcomings, we designed Zero-Byte CAN (ZBCAN) [81], a

low-overhead defense system that offers intrusion detection as well as prevention, and single-

message detection, without increasing the busload, dropping the data rate, or using computationally

expensive operations such as encryption. Instead, it leverages message interarrival times alone to

protect against the most common CAN attacks, including injection, masquerading, impersonation,

fuzzing, flooding, collision injection, voltage corruption, and bus-off attacks.

103

ZBCAN consists of a trusted monitor node, able to stop messages during transmission, called

the officer, and a set of software agents, installed on every ECU. Each ECU privately agrees on a

secret, non-repeating, and unique sequence of inter-frame spaces, called the In BetweeNs (IBNs),

with the officer, and then applies these sequences upon outgoing messages. If the officer detects

a with the wrong IBN or ID, it stops it precisely after the ID portion, thus invalidating it and

preventing it from being received by any ECU. Depending on the officer’s setting, it may ignore

the message, issue a warning, stop it, or disable its transmitter. This way, we could prevent several

attacks at once. Namely, bus-off, network mapping, or voltage corruption attacks rely on a technique

called simultaneous transmission, where attackers have to transmit a message exactly at the same

time as their victim. With ZBCAN, they need to guess every message’s IBN value to transmit

simultaneously. Similarly, injection (including masquerading, impersonation, etc.) and flooding

attackers need to guess the correct IBN value for every message, or else they will be stopped by the

officer. Aside from attaching the officer to the bus, ZBCAN does not require any hardware changes.

Further, since it uses no message fields, it could be combined with any solutions that use them.

For inclusivity, we evaluated several security, performance, and scalability aspects of ZBCAN

on a testbed and an actual vehicle. With a 0% false positive rate, ZBCAN achieved a detection rate

of 100% for injection, masquerade, and replay attacks. Relative to its prevention abilities, ZBCAN

achieved prevention rates of 100%, 100%, 99.4%, 99.33%, and 98.5% for error-passive, bus-off,

collision injection, flooding, and injection attacks, respectively.

In addition to protecting against the most common CAN attacks, detecting attacks at a 100% rate,

and offering attack prevention, ZBCAN is backward compatible and cost-effective, allowing for its

wide-scale adoption. If implemented at the controller level, a project we are currently discussing with

our industry partners, ZBCAN agents would have zero performance overhead. Most importantly,

ZBCAN uses a channel present in all serial buses, message interarrival times. Considering this

channel for security purposes could protect all serial buses, not only CAN. We plan to file a patent

that includes my design recommendations for utilizing interarrival times for security. We are also in

the process of preparing a technology transfer of ZBCAN to several technology firms.

In conclusion, our research highlights the importance of proactive security measures in cyber-

physical systems. By systematically identifying vulnerabilities and constructing defense systems,

we can enhance the security of cyber-physical systems and mitigate potential risks. As we continue

104

our research, we aim to further bolster the security posture of modern vehicles and other critical

cyber-physical systems, promoting their safe and reliable operation.

5.1 Future Directions

In this dissertation, we focused primarily on the CAN bus. However, many other networked,

cyber-physical, and autonomous systems could utilize the proposed approach. Specifically, starting

with a vulnerability identification process before proceeding to find mitigation approaches invariably

improves the security and reliability of these technologies. Below, we discuss three fast-developing

areas that could benefit from our proactive approach by developing vulnerability identification

frameworks, security protocols, policies, and procedures, as well as intrusion detection systems:

emerging vehicular networks, connected vehicles, and autonomous vehicles.

Emerging Vehicular Networks. For decades, CAN has been the dominant in-vehicle communica-

tion standard. Change, nonetheless, is the only constant. With the ever-expanding computerization

process of vehicle functions, a need for faster and more time-sensitive standards has emerged.

Consequently, Non-CAN-based technologies (e.g., FlexRay) have come out [82]. Other CAN-based

standards such as CAN-FD and TTCAN have appeared in response [83 , 84]. With the recent advent

of autonomous vehicles, data-prolific devices such as cameras and lidars have become increasingly

present. Accordingly, high-bandwidth technologies (e.g., Ethernet, SerDes, etc.) have begun finding

their way onto vehicular platforms [85 – 88].

Despite the expanding use of these technologies, CAN-based networks have remained the

backbone of most vehicles due to their robustness, non-destructive arbitration, lack of need for a

switch, and minimalistic wiring requirements. Weighing 50− 70kg, the wiring harness is already

one of the most expensive parts of the vehicle [89] and is currently the third heaviest part after

the engine and the chassis [90]. Provocatively, an emerging suite of vehicular ethernet standards,

supporting high-bandwidth communications while requiring less wiring is now challenging the

status quo. One variant (10BASE-T1S) even supports a single pair of wires and a bus topology [91],

eliminating the need for a switch. To remain competitive, the CAN community is developing CAN

XL [92], providing higher bandwidth while retaining low wiring costs.

105

Regardless of how this technological race unfolds, studying the security aspect of these emerging

standards is crucial. Our suggestion is to start by designing vulnerability scanning tools for these

technologies; whether they should take a dynamic approach, similar to CANOX [38], or a more

formal one, such as static analysis or model checking, depends on the nature of each technology.

After identifying the potential security problems associated with each technology, we should intend

to devise defense strategies that protect against a wide array of threats, similar to ZBCAN [81], and

could be used across different implementations while at the same time considering their performance

impact. Finally, our aim should be to investigate the effectiveness of these solutions by running

experiments on physical vehicles. Overall, the ultimate goal is to better understand these emerging

technologies and to create defensive approaches that elevate their security posture.

Connected Vehicles. Connected vehicle technologies (V2X) aim to provide vehicles with more

external connectivity. Their ultimate goal is to provide more safety and comfort for the passengers

and improve road conditions. V2X technologies could revolutionize the way we view and experience

transportation. Nonetheless, they also face many security issues as they have been proven vulnerable

to various threats [93 , 94]. These threats could result in the interception or manipulation of data,

leading to serious safety concerns for passengers. Such threats have raised concerns about the

security of V2X, as it is imperative that they remain protected. Pertinent to the Security Credential

Management System (SCMS) [95], various weaknesses have been identified. The most central

among which is that it is chiefly intended to guarantee the transmitter’s identity, not what they

transmit. This means that a malicious actor could easily manipulate the data and messages sent by

their vehicle to cause problems to other vehicles and transportation systems.

To secure these technologies, we suggest starting by first identifying any potential security

vulnerabilities and analyzing the capabilities of various threat actors. Ultimately, the plan is to

develop defense strategies and systems to defend against potential attacks on V2X communications.

Since most of these protocols are not yet widely deployed, the goal is for these strategies and

recommendations to be incorporated into the protocols and mitigate their security risks before

their wide-scale deployment. This could include developing a risk assessment framework for these

technologies, detailing the techniques and methods used by each threat actor, and outlining counter-

measures that could protect against any compromise attempts. Overall, the aim is to proactively

106

analyze the security vulnerabilities of existing and emerging CV technologies, identify potential

threats, and develop defense strategies for them to make sure these protocols remain safe and secure.

This way, we ensure that these technologies benefit us without compromising our safety or privacy.

Autonomous Vehicles. In order to eliminate the need for human control of vehicles, autonomous

vehicles (AVs) must be equipped with sophisticated sensors and machine-learning heavy control

components (e.g., perception, mission planning, detection, tracking, etc.). Given the increasing

complexity of autonomous vehicles, they have an expansive attack surface. In addition to the attack

surfaces present in conventional and connected vehicles (e.g., CAN bus and V2X protocols), the

sizeable number of sensors on autonomous vehicles and their control components represent an

added surface [96 – 101]; attackers may use adversarial machine learning and transduction attacks

[102 , 103] to target the control components and sensors in autonomous vehicles, respectively.

We could begin by splitting the spacious attack surface of AVs into smaller and more manageable

surfaces (e.g., sensors, detection module, etc.). This way, each attack surface is better identified. At

this point, we could start applying the proactive vulnerability identification and defense construction

approach to individual attack surfaces before applying it to the whole system. We expect this process

to be challenging for machine-learning-heavy control components, such as detection, since it is

not always straightforward to know why an input to a machine-learning algorithm has resulted in a

specific outcome. For instance, we may not know why an object was detected as a pedestrian when

it was a vehicle, making slightly altered inputs one of the attackers’ favorite attack vectors. While a

generic solution to this problem is mechanisms such as adversarial training, blindly applying such a

solution does not often achieve good results. Often, identifying the vulnerability leading to such

behavior could inspire completely different solutions whose results are much better. Even in the

case of adversarial training, guided training, using the knowledge obtained during the vulnerability

identification phase, could be more effective. In conclusion, a proactive vulnerability identification

and defense construction approach is an effective way to secure autonomous driving systems before

deployment, as the cost of dealing with breaches in retrospect is punitive.

Securing OTA Updates. The transformation of vehicles into sophisticated computers on wheels has

given rise to the concept of Software-Defined Vehicles (SDVs), where the focus shifts from viewing

digital components as separate entities cohabiting in the same physical system to treating the entire

107

vehicle as a single, centralized digital system with several interconnected sub-components. To keep

SDVs up-to-date, the industry is increasingly turning towards Over-The-Air (OTA) updates. These

updates, similar to those on smartphones and computers, provide a means to continuously enhance

SDVs’ functionality. OTA updates are typically received first by the telematics unit, which acts as

the central gateway for communication within the vehicle. The telematics unit then facilitates the

internal distribution of the update to other Electronic Control Units (ECUs).

Although this approach simplifies the update process, the complexity of SDVs and the distributed

nature of their ECUs introduce structural vulnerabilities and compatibility issues, turning SDVs into

fertile soil for various security threats. For example, a recent OTA update incident unintentionally

caused a recall of 40,000+ vehicles. The OTA firmware release, intended to update the calibration

values of the electronic power assist steering system, inadvertently resulted in a loss of power

steering ability after encountering potholes or bumps [104]. This incident highlights the necessity

for robust OTA update mechanisms that thoroughly test for compatibility issues and vulnerabilities.

Our first research goal is to identify and rectify the structural and architectural vulnerabilities

inherent in today’s SDVs. We should first comprehensively analyze the communication networks,

interfaces, and components within SDVs to uncover potential security flaws. Once we gain insights

into the vulnerabilities, the next priority is to take a secure-by-design approach and design a

robust and secure OTA update system that ensures the security and compatibility of the distributed

components within the SDVs. To achieve this, automotive manufacturers must implement their

emulation platforms, enabling them to assess the security impact and compatibility of updates before

deployment. By adopting such an approach, manufacturers can proactively identify and mitigate

potential risks and vulnerabilities before the updates reach the vehicles.

In conclusion, ensuring the security of OTA updates involves two fundamental objectives: the

systematic identification of vulnerabilities in today’s SDVs and the design of a reliable and secure

SDV architecture that avoids those vulnerabilities and includes a carefully planned update system.

This way, we can establish a secure foundation that empowers vehicles to embrace technological

advancements while prioritizing safety and security on the road.

108

REFERENCES

[1] Semiconductor History Museum of Japan, Trends in the semiconductor industry, https:
//www.shmj.or.jp/english/trends/trd70s.html , 1970s.

[2] C. in Automation, Can history, https://www.can-cia.org/can-knowledge/can/can-history/ .

[3] R. Bosch, CAN specification - Version 2.0, 1991.

[4] S. Checkoway, D. Mccoy, B. Kantor, et al., “Comprehensive experimental analyses of
automotive attack surfaces,” in USENIX Security Symposium, 2011, pp. 77–92.

[5] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger vehicle,” Black
Hat USA, vol. 2015, p. 91, 2015.

[6] S. Nie, L. Liu, and Y. Du, “Free-fall: Hacking Tesla from wireless to CAN bus,” Briefing,
Black Hat USA, 2017.

[7] S. Nie, L. Liu, Y. Du, and W. Zhang, “Over-the-air: How we remotely compromised the
gateway, BCM, and autopilot ECUs of Tesla cars,” Briefing, Black Hat USA, 2018.

[8] K. Koscher, A. Czeskis, F. Roesner, et al., “Experimental security analysis of a modern
automobile,” in IEEE Symposium on Security and Privacy (S&P), 2010, pp. 447–462.

[9] I. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast and vulnerable: A story of
telematic failures,” in 9th USENIX Workshop on Offensive Technologies (WOOT 15), 2015.

[10] S. Woo, H. J. Jo, and D. H. Lee, “A practical wireless attack on the connected car and
security protocol for in-vehicle can,” IEEE Transactions on intelligent transportation
systems, vol. 16, no. 2, pp. 993–1006, 2014.

[11] C. Miller and C. Valasek, “A survey of remote automotive attack surfaces,” black hat USA,
vol. 2014, p. 94, 2014.

[12] S. Mazloom, M. Rezaeirad, A. Hunter, and D. McCoy, “A security analysis of an in-vehicle
infotainment and app platform.,” in WOOT, 2016.

109

https://www.shmj.or.jp/english/trends/trd70s.html
https://www.shmj.or.jp/english/trends/trd70s.html
https://www.can-cia.org/can-knowledge/can/can-history/

[13] H. Wen, Q. A. Chen, and Z. Lin, “Plug-n-pwned: Comprehensive vulnerability analysis of
obd-ii dongles as a new over-the-air attack surface in automotive iot,” in 29th USENIXSecu-
rity Symposium (USENIX Security 20), 2020, pp. 949–965.

[14] Y. Lee, S. Woo, J. Lee, Y. Song, H. Moon, and D. H. Lee, “Enhanced android app-
repackaging attack on in-vehicle network,” Wireless Communications and Mobile Comput-
ing, vol. 2019, 2019.

[15] C. Miller and C. Valasek, “Adventures in automotive networks and control units,” Def Con,
vol. 21, pp. 260–264, 2013.

[16] T. Telegraph, Thieves are hacking into cars through their headlights, experts warn, https:
//www.telegraph.co.uk/business/2023/04/09/thieves-hacking-cars-through-headlights/ ,
2023.

[17] S. Kulandaivel, S. Jain, J. Guajardo, and V. Sekar, “Cannon: Reliable and stealthy remote
shutdown attacks via unaltered automotive microcontrollers,” in 2021 IEEE Symposium on
Security and Privacy (SP), IEEE, 2021, pp. 195–210.

[18] A. de Faveri Tron, S. Longari, M. Carminati, M. Polino, and S. Zanero, “Canflict: Exploiting
peripheral conflicts for data-link layer attacks on automotive networks,” in Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications Security, 2022,
pp. 711–723.

[19] R. Bhatia, V. Kumar, K. Serag, Z. B. Celik, M. Payer, and D. Xu, “Evading voltage-based
intrusion detection on automotive can,” Network and Distributed System Security Symposium
(NDSS), 2021.

[20] K.-T. Cho and K. G. Shin, “Error handling of in-vehicle networks makes them vulnerable,”
in ACM SIGSAC Conference on Computer and Communications Security (CCS), 2016,
pp. 1044–1055.

[21] A. Palanca, E. Evenchick, F. Maggi, and S. Zanero, “A stealth, selective, link-layer denial-
of-service attack against automotive networks,” in International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, 2017, pp. 185–206.

[22] K. Iehira, H. Inoue, and K. Ishida, “Spoofing attack using bus-off attacks against a specific
ECU of the CAN bus,” in IEEE Annual Consumer Communications Networking Conference
(CCNC), 2018, pp. 1–4.

110

https://www.telegraph.co.uk/business/2023/04/09/thieves-hacking-cars-through-headlights/
https://www.telegraph.co.uk/business/2023/04/09/thieves-hacking-cars-through-headlights/

[23] P.-S. Murvay and B. Groza, “Dos attacks on controller area networks by fault injections from
the software layer,” in Proceedings of the 12th International Conference on Availability,
Reliability and Security, 2017, pp. 1–10.

[24] K. T. Cho and K. G. Shin, “Fingerprinting electronic control units for vehicle intrusion
detection,” in USENIX Security Symposium, 2016, pp. 911–927.

[25] S. Kulandaivel, T. Goyal, A. K. Agrawal, and V. Sekar, “Canvas: Fast and inexpensive
automotive network mapping,” in 28th USENIX Security Symposium (USENIX Security 19),
2019, pp. 389–405.

[26] K. T. Cho and K. G. Shin, “Viden: Attacker identification on in-vehicle networks,” in ACM
SIGSAC Conference on Computer and Communications Security (CCS), 2017, pp. 1109–
1123.

[27] M. Kneib and C. Huth, “Scission: Signal characteristic-based sender identification and
intrusion detection in automotive networks,” in ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2018, pp. 787–800.

[28] M. Foruhandeh, Y. Man, R. Gerdes, et al., “SIMPLE: Single-frame based physical layer
identification for intrusion detection and prevention on in-vehicle networks,” in Annual
Computer Security Applications Conference (ACSAC), 2019, pp. 229–244.

[29] M. Kneib, O. Schell, and C. Huth, “EASI: Edge-based sender identification on resource-
constrained platforms for automotive networks,” in Network and Distributed System Security
Symposium (NDSS), 2020, pp. 1–16.

[30] S. U. Sagong, X. Ying, A. Clark, et al., “Cloaking the clock: Emulating clock skew in
controller area networks,” in Proceedings of the 9th ACM/IEEE International Conference
on Cyber-Physical Systems (ICCPS), 2018, pp. 32–42.

[31] F. Yang, “A bus off case of CAN error passive transmitter,” EDN Technical paper, 2009.

[32] T. Dagan and A. Wool, “Parrot, a software-only anti-spoofing defense system for the CAN
bus,” ESCAR EUROPE, 2016.

[33] D. Souma, A. Mori, H. Yamamoto, and Y. Hata, “Counter attacks for bus-off attacks,” in
International Conference on Computer Safety, Reliability, and Security, Springer, 2018,
pp. 319–330.

111

[34] M. Takada, Y. Osada, and M. Morii, “Counter attack against the bus-off attack on CAN,” in
Asia Joint Conference on Information Security (AsiaJCIS), 2019, pp. 96–102.

[35] B. Groza and P. Murvay, “Security solutions for the controller area network: Bringing
authentication to in-vehicle networks,” IEEE Vehicular Technology Magazine, vol. 13, no. 1,
pp. 40–47, 2018.

[36] Q. Hu and F. Luo, “Review of secure communication approaches for in-vehicle network,”
International Journal of Automotive Technology, vol. 19, no. 5, pp. 879–894, 2018.

[37] I. Pekaric, C. Sauerwein, and M. Felderer, “Applying security testing techniques to auto-
motive engineering,” in Proceedings of the 14th International Conference on Availability,
Reliability and Security, 2019, pp. 1–10.

[38] K. Serag, R. Bhatia, V. Kumar, Z. B. Celik, and D. Xu, “Exposing new vulnerabilities of
error handling mechanism in can,” 30th USENIX Security Symposium (USENIX Security
21), 2021.

[39] K. Serag, V. Kumar, Z. B. Celik, R. Bhatia, M. Payer, and D. Xu, “Attacks on can error
handling mechanism,” International Workshop on Automotive and Autonomous Vehicle
Security (AutoSec 2022), 2022.

[40] C. AUTOSAR, “Specification of secure onboard communication,” AUTOSAR CP Release,
vol. 4, no. 1, 2017.

[41] S. Nürnberger and C. Rossow, “–vatican–vetted, authenticated can bus,” in International
Conference on Cryptographic Hardware and Embedded Systems, Springer, 2016, pp. 106–
124.

[42] B. Groza, S. Murvay, A. Van Herrewege, and I. Verbauwhede, “Libra-can: A lightweight
broadcast authentication protocol for controller area networks,” in International Conference
on Cryptology and Network Security, Springer, 2012, pp. 185–200.

[43] A. Van Herrewege, D. Singelee, and I. Verbauwhede, “Canauth-a simple, backward compat-
ible broadcast authentication protocol for can bus,” in ECRYPT Workshop on Lightweight
Cryptography, vol. 2011, 2011, p. 20.

[44] O. Hartkopp and R. M. SCHILLING, “Message authenticated can,” in Escar Conference,
Berlin, Germany, 2012.

112

[45] A. Hazem and H. Fahmy, “Lcap-a lightweight can authentication protocol for securing in-
vehicle networks,” in 10th escar Embedded Security in Cars Conference, Berlin, Germany,
vol. 6, 2012, p. 172.

[46] G. Bella, P. Biondi, G. Costantino, and I. Matteucci, “Toucan: A protocol to secure controller
area network,” in Proceedings of the ACM Workshop on Automotive Cybersecurity, 2019,
pp. 3–8.

[47] M. D. Pesé, J. W. Schauer, J. Li, and K. G. Shin, “S2-can: Sufficiently secure controller area
network,” 2021.

[48] A.-I. Radu and F. D. Garcia, “Leia: A lightweight authentication protocol for can,” in
European Symposium on Research in Computer Security, Springer, 2016, pp. 283–300.

[49] K. Han, A. Weimerskirch, and K. G. Shin, “A practical solution to achieve real-time perfor-
mance in the automotive network by randomizing frame identifier,” Proc. Eur. Embedded
Secur. Cars (ESCAR), pp. 13–29, 2015.

[50] S. Woo, D. Moon, T.-Y. Youn, Y. Lee, and Y. Kim, “Can id shuffling technique (cist): Moving
target defense strategy for protecting in-vehicle can,” IEEE Access, vol. 7, pp. 15 521–15 536,
2019.

[51] Q. Wang and S. Sawhney, “Vecure: A practical security framework to protect the can bus of
vehicles,” in 2014 International Conference on the Internet of Things (IOT), IEEE, 2014,
pp. 13–18.

[52] M. Müter, A. Groll, and F. C. Freiling, “A structured approach to anomaly detection for
in-vehicle networks,” in Sixth International Conference on Information Assurance and
Security (IAS), 2010, pp. 92–98.

[53] S. Kim et al., “Shadowauth: Backward-compatible automatic CAN authentication for legacy
ECUs,” in the ACM on Asia Conference on Computer and Communications Security, 2022.

[54] T. Hoppe, S. Kiltz, and J. Dittmann, “Security threats to automotive CAN networks–
practical examples and selected short-term countermeasures,” Reliability Engineering &
System Safety, vol. 96, no. 1, pp. 11–25, 2011.

[55] H. M. Song, H. R. Kim, and H. K. Kim, “Intrusion detection system based on the analysis
of time intervals of CAN messages for in-vehicle network,” in International Conference on
Information Networking (ICOIN), 2016, pp. 63–68.

113

[56] A. Taylor, N. Japkowicz, and S. Leblanc, “Frequency-based anomaly detection for the
automotive CAN bus,” in World Congress on Industrial Control Systems Security (WCICSS),
2015, pp. 45–49.

[57] C. Young, H. Olufowobi, G. Bloom, and J. Zambreno, “Automotive intrusion detection
based on constant CAN message frequencies across vehicle driving modes,” in Proceedings
of the ACM Workshop on Automotive Cybersecurity, 2019, pp. 9–14.

[58] W. Choi, K. Joo, H. J. Jo, et al., “VoltageIDS: Low-level communication characteristics for
automotive intrusion detection system,” IEEE Transactions on Information Forensics and
Security, vol. 13, no. 8, pp. 2114–2129, 2018.

[59] B. Groza, L. Popa, and P.-S. Murvay, “Incanta-intrusion detection in controller area networks
with time-covert authentication,” in Security and Safety Interplay of Intelligent Software
Systems, Springer, 2018, pp. 94–110.

[60] B. Groza, L. Popa, and P.-S. Murvay, “Canto-covert authentication with timing channels
over optimized traffic flows for can,” IEEE Transactions on Information Forensics and
Security, vol. 16, pp. 601–616, 2020.

[61] X. Ying, G. Bernieri, M. Conti, and R. Poovendran, “Tacan: Transmitter authentication
through covert channels in controller area networks,” in Proceedings of the 10th ACM/IEEE
International Conference on Cyber-Physical Systems, 2019, pp. 23–34.

[62] S. Vanderhallen, J. Van Bulck, F. Piessens, and J. T. Mühlberg, “Robust authentication
for automotive control networks through covert channels,” Computer Networks, vol. 193,
p. 108 079, 2021.

[63] A. Humayed, F. Li, J. Lin, and B. Luo, “Cansentry: Securing can-based cyber-physical
systems against denial and spoofing attacks,” in European Symposium on Research in
Computer Security, Springer, 2020, pp. 153–173.

[64] B. Groza, L. Popa, P.-S. Murvay, Y. Elovici, and A. Shabtai, “Canary - a reactive defense
mechanism for controller area networks based on active relays,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021.

[65] A. Humayed and B. Luo, “Using id-hopping to defend against targeted dos on can,” in Pro-
ceedings of the 1st International Workshop on Safe Control of Connected and Autonomous
Vehicles, 2017, pp. 19–26.

114

[66] S. Ding, T. Zhao, R. Kurachi, and G. Zeng, “Id hopping can controller design with obfus-
cated priority assignment,” in 2018 IEEE 16th Intl Conf on Dependable, Autonomic and
Secure Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf
on Big Data Intelligence and Computing and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech), IEEE, 2018, pp. 94–99.

[67] I. O. for Standardization (ISO), “Road Vehicles Controller area network (CAN),” Part 1:
Data link layer and physical signalling, vol. ISO-11898-1:2015,

[68] K. Tindell and A. Burns, “Guaranteeing message latencies on control area network (can),”
in Proceedings of the 1st International CAN Conference, Citeseer, 1994.

[69] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area network (can) schedula-
bility analysis: Refuted, revisited and revised,” Real-Time Systems, vol. 35, no. 3, pp. 239–
272, 2007.

[70] R. I. Davis, S. Kollmann, V. Pollex, and F. Slomka, “Schedulability analysis for controller
area network (can) with fifo queues priority queues and gateways,” Real-Time Systems,
vol. 49, no. 1, pp. 73–116, 2013.

[71] M. Di Natale, H. Zeng, P. Giusto, and A. Ghosal, Understanding and using the controller
area network communication protocol: theory and practice. Springer Science & Business
Media, 2012.

[72] K. Tindell, A. Burns, and A. Wellings, “Calculating controller area network (can) message
response times,” IFAC Proceedings Volumes, vol. 27, no. 15, pp. 35–40, 1994.

[73] K. Tindell, A. Burns, and A. J. Wellings, “Calculating controller area network (can) message
response times,” Control engineering practice, vol. 3, no. 8, pp. 1163–1169, 1995.

[74] W. YONG, “A scheduling algorithm for can bus,” 2004.

[75] I. O. for Standardization (ISO), “Road Vehicles Controller area network (CAN),” Part 2:
High-speed medium access unit, vol. ISO-11898-2:2016,

[76] N. Mouha, B. Mennink, A. Van Herrewege, D. Watanabe, B. Preneel, and I. Verbauwhede,
“Chaskey: An efficient mac algorithm for 32-bit microcontrollers,” in International Confer-
ence on Selected Areas in Cryptography, Springer, 2014, pp. 306–323.

115

[77] R. Kurachi, Y. Matsubara, H. Takada, N. Adachi, Y. Miyashita, and S. Horihata, “Cacan-
centralized authentication system in can (controller area network),” in 14th Int. Conf. on
Embedded Security in Cars (ESCAR 2014), 2014.

[78] J. D. Eckhardt, T. E. Donofrio, and K. Serag, Multiple security level monitor for monitoring
a plurality of mil-std-1553 buses with multiple independent levels of security, US Patent
10,685,125, Jun. 2020.

[79] J. D. Eckhardt, T. E. Donofrio, and K. Serag, System and method of monitoring data traffic
on a mil-std-1553 data bus, US Patent 10,467,174, Nov. 2019.

[80] J. D. Eckhardt, T. E. Donofrio, and K. Serag, Bus data monitor, US Patent 10,691,573, Jun.
2020.

[81] K. Serag et al., “Zbcan: A zero-byte can defense system,” 32nd USENIX Security Symposium
(USENIX Security 23), 2023.

[82] I. O. for Standardization (ISO), “Road vehicles FlexRay communications system,” Parts:1-
5, vol. ISO 17458:2013,

[83] R. Bosch, “Can with flexible data-rate specification,” Robert Bosch GmbH, Stuttgart, 2012.

[84] I. O. for Standardization (ISO), “Road vehicles controller area network (can),” ISO 11898-
4:2004, vol. Part 4: Time-triggered communication,

[85] M. Alliance, “MIPI A-PHY Long-reach SerDes,” v1.1, vol. December 2021,

[86] A. S. Alliance, “ASA Overview and a Proof-of-Concept ASA Transceiver,” Rev 1.01,
vol. 2020,

[87] I. S. for Ethernet, “Amendment 1: Physical Layer Specifications and Management Parame-
ters for 100 Mb/s Operation over a Single Balanced Twisted Pair Cable (100BASE-T1),”
IEEE Computer Society, vol. IEEE Std 802.3bw:2015,

[88] I. S. for Ethernet, “Amendment 4: Physical Layer Specifications and Management Param-
eters for 1 Gb/s Operation over a Single Twisted-Pair Copper Cable,” IEEE Computer
Society, vol. IEEE Std 802.3bp:2016,

[89] Mobility Forsights, Global electric vehicle wiring harness market, https://mobilityforesights.
com/product/electric-vehicle-wiring-harness-market/ .

[90] Markets and Markets, Automotive wiring harness market, https://www.marketsandmarkets.
com/Market-Reports/automotive-wiring-harness-market-170344950.html .

116

https://mobilityforesights.com/product/electric-vehicle-wiring-harness-market/
https://mobilityforesights.com/product/electric-vehicle-wiring-harness-market/
https://www.marketsandmarkets.com/Market-Reports/automotive-wiring-harness-market-170344950.html
https://www.marketsandmarkets.com/Market-Reports/automotive-wiring-harness-market-170344950.html

[91] I. S. for Ethernet, “Amendment 5: Physical Layer Specifications and Management Parame-
ters for 10 Mb/s Operation and Associated Power Delivery over a Single Balanced Pair of
Conductors,” IEEE Computer Society, vol. IEEE Std 802.3cg:2019,

[92] C. in Automation, “Controller Area Network Extra Long (CAN XL),” CiA 610, vol. 1-3,

[93] A. Abdo, S. M. B. Malek, Z. Qian, Q. Zhu, M. Barth, and N. Abu-Ghazaleh, “Application
level attacks on connected vehicle protocols,” in 22nd International Symposium on Research
in Attacks, Intrusions and Defenses (RAID 2019), 2019, pp. 459–471.

[94] S. Hu, Q. A. Chen, J. Sun, Y. Feng, Z. M. Mao, and H. X. Liu, “Automated discovery of
denial-of-service vulnerabilities in connected vehicle protocols,” in 30th USENIX Security
Symposium (USENIX Security 21), 2021, pp. 3219–3236.

[95] B. Brecht et al., “A security credential management system for v2x communications,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 12, pp. 3850–3871, 2018.

[96] Y. Zhu, C. Miao, T. Zheng, F. Hajiaghajani, L. Su, and C. Qiao, “Can we use arbitrary
objects to attack lidar perception in autonomous driving?” In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, 2021, pp. 1945–1960.

[97] Y. Cao et al., “Adversarial sensor attack on lidar-based perception in autonomous driving,”
in Proceedings of the 2019 ACM SIGSAC conference on computer and communications
security, 2019, pp. 2267–2281.

[98] R. S. Hallyburton, Y. Liu, Y. Cao, Z. M. Mao, and M. Pajic, “Security analysis of {camera-
lidar} fusion against {black-box} attacks on autonomous vehicles,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 1903–1920.

[99] B. Nassi, Y. Mirsky, D. Nassi, R. Ben-Netanel, O. Drokin, and Y. Elovici, “Phantom of
the adas: Securing advanced driver-assistance systems from split-second phantom attacks,”
in Proceedings of the 2020 ACM SIGSAC conference on computer and communications
security, 2020, pp. 293–308.

[100] Y. Cao, S. H. Bhupathiraju, P. Naghavi, T. Sugawara, Z. M. Mao, and S. Rampazzi, “You cant
see me: Physical removal attacks on lidar-based autonomous vehicles driving frameworks,”
arXiv eprint archive, 2022.

[101] Y. Zhu, C. Miao, F. Hajiaghajani, M. Huai, L. Su, and C. Qiao, “Adversarial attacks against
lidar semantic segmentation in autonomous driving,” in Proceedings of the 19th ACM
Conference on Embedded Networked Sensor Systems, 2021, pp. 329–342.

117

[102] R. Quinonez, J. Giraldo, L. Salazar, E. Bauman, A. Cardenas, and Z. Lin, “{Savior}:
Securing autonomous vehicles with robust physical invariants,” in 29th USENIX Security
Symposium (USENIX Security 20), 2020, pp. 895–912.

[103] K. Fu and W. Xu, “Risks of trusting the physics of sensors,” Communications of the ACM,
vol. 61, no. 2, pp. 20–23, 2018.

[104] S. Engineering, Cybersecurity risks of automotive ota, https : / / semiengineering . com /
cybersecurity-risks-of-automotive-ota/ .

118

https://semiengineering.com/cybersecurity-risks-of-automotive-ota/
https://semiengineering.com/cybersecurity-risks-of-automotive-ota/

A. EVALUATION OF STS

A.1 Learning Victim’s Recovery Behavior

On the testbed, two ECUs were set up to implement a fixed penalty interval recovery model

with a 35ms interval. Two other nodes were set up to implement the bare minimum model. Using

SFBO, we were able to suppress all nodes, one at a time, as shown in Fig. 3.3 .

At recovery, all nodes transmitted the attacked message as their first recovery message. However,

only nodes that implemented the fixed interval time recovery model sent trailing messages. ECUs

implementing the bare minimum model only sent the attacked message. This could be explained by

the fact that at the testbed’s busload of ≈ 15%, the average recovery interval of the bare minimum

nodes was ≈ 4ms, a period too short for another message to be buffered since the period for the

fastest-transmitting ID for all ECUs was 10ms.

For both of the ECUs implementing the fixed interval model, we tried attacking the IDs with the

shortest period, and the IDs with the second shortest period. In both cases, and in both ECUs, the

trailing messages had the ID with the shortest period in the ECU. However, in both cases, the first

recovery message was the same message that was attacked.

On the vehicle, we evaluated SFBO on the four mapped ECUs. To ensure the ECUs truly

transitioned to the bus off state, we recorded the traffic after every attack and observed the lack of

any IDs that belong to the mapped ECU. This also validated our mapping results. On all ECUs, the

first recovery message was the attacked message. Additionally, all ECU recoveries included trailing

messages. The time recovery model for EBCM and BCM was identified as sequenced intervals. For

the TCM and ECM, it was identified as random.

One challenge was identifying the Optimum ID. Looking at Table A.1 , we notice that EBCM

(ECU-1), has three IDs with the shortest period being 9ms, TCM (ECU-3) has two IDs with a

12.5ms period, and ECM (ECU-4) has two IDs with a 12.5ms period. To pick the optimum ID for

EBCM, we attacked it at IDs: 0x0C1, 0x0C5 and 0x1E5. In all cases, the trailing messages were

of ID 0x0C1. Hence, 0x0C1 was selected as the optimum message for BCM. Similarly, 0x0F9 and

0x0C9 were selected for TCM and ECM, respectively.

119

Table A.1. Network map of ExpVehicle

.

ECU 1

C5 9
C1 9

1E5 9
1C7 18
1CD 18
1E9 18
184 18
334 18
2F9 48
348 48
34A 48
17D 99
17F 99
773 1000
500 1000

ECU 2

F1 10
1E1 30
1F3 33
1F1 100
134 100
12A 100
3C9 100
3F1 233
4E1 1000
771 1000
4E9 1000
138 1000
514 1000
52A 1000
120 5000

ECU 3

199 12.5
F9 12.5

19D 25
1F5 25
4C9 500
77F 1000

ECU 4

C9 12.5
191 12.5
1C3 25
1A1 25
2C3 50
3C1 100
3E9 100
3D1 100
3FB 250
3F9 250
4D1 500
4C1 500
4F1 1000
772 1000

ECU 1 1.5
ECU 2 4.6
ECU 3 4.1
ECU 4 3.3

ECU ID
Period
(ms)

ECU ID
Period
(ms)

ECU Period (ms)
Overall Average

Transmission
Interval for ECU

ECU ID
Period
(ms)

A.2 Recovery Prevention

On the testbed, ECU-1 and ECU-4 had a bare minimum recovery model. Hence, their recovery

estimation and prevention was done by observing the number of 11 recessive-bit-instances and

relaunching SFBO around the 128th instance. On the other hand, ECU-2 and ECU-3 had a fixed in-

terval model, with an identified recovery interval of 50ms. Therefore, their recovery were estimated

by starting a timer, and relaunching SFBO exactly when 50ms elapsed as described in Sec. 3.4.4 .

We were able to achieve an Srate of 100% for at least 10s on all ECUs. After running the attack for

30 minutes, the average Srate remained above 99.99%.

On the vehicle, EBCM and BCM have a sequenced recovery model. We used the ramp up attack

shown in Fig. 3.9 , to identify their sequences and prevent their recovery. As shown in Table 3.2 , we

identified 21 sequences for EBCM, and 13 for BCM, achieving maximum suppression periods of

2.38s and 1.42s, and average Srate of 97.5% and 91.4%, respectively.

120

For the ECM and the TCM, we treated their recovery model as random since we could not

identify any clear recovery pattern. Hence, we attacked the trailing message as described in Fig. 3.10 ,

with IDs 0x0C9, and 0c0F9 selected as the optimum IDs for the ECM and the TCM, respectively.

By attacking the trailing message, we were able to achieve maximum suppression periods of 3.51s

and 1.38s, and average Srate of 85%, and 83% for the TCM and the ECM, respectively.

As mentioned earlier, when attacking an ECU’s optimum ID, the first trailing message will

usually have the same ID. However, ECUs that have multiple IDs with similar, short periods will

sometimes send other IDs in rare instances. This is the case with IDs: 0x0C9 and 0x191, and 0x0F9

and 0x199, in the ECM and TCM, respectively. When this happens, recovery prevention that relies

on attacking the trailing message will fail, and the attacker will have to synchronize, re-launch

SFBO, and proceed to prevent victim recovery again. This explains the slightly lower Srate for

ECM and TCM when compared to EBCM and BCM.

121

B. ZBCAN EVALUATION DETAILS

B.1 Evaluation Datasets

Table B.1 shows the messages of ExpVehicle. It also shows their theoretical WCRTs under four

different settings. The first is without ZBCAN applied. The rest are after running Alg. 4 to find the

optimum grouping and to calculate the WCRT for each group under three different ‖IBNSpan‖

settings. Table B.2 shows the messages we used for our scalability evaluation. In the table, (G)

refers to the priority group assignment, (Type) specifies whether the message is periodic or aperiodic,

and (R) refers to the theoretical WCRT. In both tables, we used a queueing jitter Jm = 750 µs. This

number is based on the empirical observation of our testbed.

B.2 Measuring dskew

dskew is related to the clock skews of every ECU, the clock skews of their CAN controllers, the

ISR of each agent, its timer settings, and age. To measure dskew of the system, several methods

could be used. In our system, we measured it empirically. We ran the Span Scan False Positive Test,

in which we connect a traffic source, sending a reference message every 6 ms. Next, we connect the

first test ECU and set it up to send a message after every reference message with an ascending IBN

between 0 b and 3000 b. This means that the test ECU sends the first message with an IBN = 0

b and the second with IBN = 1b and so on until it reaches 3000 b, then it rolls over to 0b again.

Meanwhile, the officer monitors the IBN of each message and verifies their order. Once a message

has an unexpected IBN , it is flagged as a false positive. We repeated the scan for 5 min for each

ECU. For each ECU, we marked the smallest IBN value after which inaccuracies start to occur

as dskew(ECU). For all ECUs, the smallest dskew was 1189 b, and the largest dskew was 1460 b. We

select dskew(sys) as the smallest dskew = 1189 b for all ECUs.

122

Table B.1. WCRTs and groups for ExpVehicle.

Without ZBCAN With ZBCAN

ID
Length

(B)
Period

(ţs)
WCRT

(ţs)
(32,32,32) (64,64,64) (32,64,128)
WCRT (ţs) WCRT (ţs) WCRT (ţs)

C1 8 9000 1274

P0 5290 P0 6250 P0 5546

C5 8 9000 1536
1E5 8 9000 6026
F1 4 9976 1962
199 8 12477 4348
F9 8 12486 2224
C9 7 12488 1778
191 8 12495 4086
1C7 7 17980 5356
1CD 5 17981 5560
1E9 8 17981 6288
184 6 18025 3824
1C3 8 24986 5114

P1 14538
P1 17090

P1 15398

19D 8 25005 4610
1F5 8 25014 6958
1A1 7 25016 4852
334 2 29977 7530
1E1 5 30113 5764
1F3 2 33278 6696
2F9 5 47939 7384
348 4 47954 7714
34A 4 47956 7898
2C3 6 50025 7180
17D 8 98891 3340
17F 8 98920 3602
1F1 8 99694 6550
134 4 99841 2874
12A 8 99842 2690

P2 49676

3C9 8 99848 8422

P2 43786

3C1 8 99938 8160

P2 32002

3E9 8 99988 8946
3D1 8 100052 8684
3F1 8 233192 9208
3FB 2 249738 10586
3F9 8 249805 10440
4D1 8 499492 11372
4C1 8 499713 10848
4C9 8 499872 11110
4E1 8 997963 11634
773 7 998184 14562
500 4 998189 12284
771 7 998237 14078
4E9 5 998391 11838
138 5 998424 3078
514 8 998942 12546
52A 8 999229 13836
4F1 8 999307 12100
772 7 999347 14320
77F 8 999751 14824
120 5 4992122 2428

123

Table B.2. Scalability evaluation dataset.

ID Type
T

(ms)
D

(ms)
R

(ms) G
Safety
Ratio ID Type

T
(ms)

D
(ms)

R
(ms) G

Safety
Ratio

1 A 10 10 7.3 0 0.73 33 P 250 250 96 2 0.384
2 P 10 10 7.3 0 0.73 34 P 250 250 96 2 0.384
3 P 10 10 7.3 0 0.73 35 P 250 250 96 2 0.384
4 P 10 10 7.3 0 0.73 36 P 250 250 96 2 0.384
5 P 10 10 7.3 0 0.73 37 P 500 500 96 2 0.192
6 A 25 25 7.3 0 0.292 38 P 500 500 96 2 0.192
7 P 25 25 7.3 0 0.292 39 P 500 500 96 2 0.192
8 P 25 25 7.3 0 0.292 3A P 500 500 96 2 0.192
9 P 25 25 7.3 0 0.292 3B P 500 500 96 2 0.192
A P 25 25 7.3 0 0.292 3C P 500 500 96 2 0.192
B P 25 25 7.3 0 0.292 3D P 500 500 96 2 0.192
C P 25 25 7.3 0 0.292 3E P 500 500 96 2 0.192
D P 25 25 7.3 0 0.292 3F P 500 500 96 2 0.192
E P 25 25 7.3 0 0.292 40 P 500 500 96 2 0.192
F A 50 50 37.11 1 0.7422 41 P 500 500 96 2 0.192
10 P 50 50 37.11 1 0.7422 42 P 500 500 96 2 0.192
11 P 50 50 37.11 1 0.7422 43 P 500 500 96 2 0.192
12 P 50 50 37.11 1 0.7422 44 P 500 500 96 2 0.192
13 P 50 50 37.11 1 0.7422 45 P 500 500 96 2 0.192
14 P 50 50 37.11 1 0.7422 46 P 500 500 96 2 0.192
15 P 50 50 37.11 1 0.7422 47 P 500 500 96 2 0.192
16 P 50 50 37.11 1 0.7422 48 P 500 500 96 2 0.192
17 P 50 50 37.11 1 0.7422 49 P 500 500 96 2 0.192
18 P 100 100 37.11 1 0.3711 4A P 500 500 96 2 0.192
19 P 100 100 37.11 1 0.3711 4B P 500 500 96 2 0.192
1A P 100 100 37.11 1 0.3711 4C P 500 500 96 2 0.192
1B P 100 100 37.11 1 0.3711 4D P 500 500 96 2 0.192
1C P 100 100 37.11 1 0.3711 4E P 500 500 96 2 0.192
1D P 100 100 37.11 1 0.3711 4F P 500 500 96 2 0.192
1E P 100 100 37.11 1 0.3711 50 P 500 500 96 2 0.192
1F P 100 100 37.11 1 0.3711 51 P 500 500 96 2 0.192
20 P 100 100 37.11 1 0.3711 52 P 500 500 96 2 0.192
21 P 100 100 37.11 1 0.3711 53 P 500 500 96 2 0.192
22 P 100 100 37.11 1 0.3711 54 P 500 500 96 2 0.192
23 P 100 100 37.11 1 0.3711 55 P 500 500 96 2 0.192
24 P 100 100 37.11 1 0.3711 56 P 500 500 96 2 0.192
25 P 100 100 37.11 1 0.3711 57 P 500 500 96 2 0.192
26 P 100 100 37.11 1 0.3711 58 P 500 500 96 2 0.192
27 P 100 100 37.11 1 0.3711 59 P 1000 1000 96 2 0.096
28 P 100 100 37.11 1 0.3711 5A P 1000 1000 96 2 0.096
29 P 100 100 37.11 1 0.3711 5B P 1000 1000 96 2 0.096
2A P 100 100 37.11 1 0.3711 5C P 1000 1000 96 2 0.096
2B P 100 100 37.11 1 0.3711 5D P 1000 1000 96 2 0.096
2C P 100 100 37.11 1 0.3711 5E P 1000 1000 96 2 0.096
2D P 100 100 37.11 1 0.3711 5F P 1000 1000 96 2 0.096
2E P 100 100 37.11 1 0.3711 60 P 1000 1000 96 2 0.096
2F P 100 100 37.11 1 0.3711 61 P 1000 1000 96 2 0.096
30 P 100 100 37.11 1 0.3711 62 P 1000 1000 96 2 0.096
31 P 100 100 37.11 1 0.3711 63 P 1000 1000 96 2 0.096
32 P 100 100 37.11 1 0.3711 64 P 1000 1000 96 2 0.096

124

C. ZBCAN PERFORMANCE ANALYSIS

C.1 Agent’s Overhead Analysis

Memory. To function properly, agents require a minimum amount of memory as follows: (1)

Lpreshared bits for the preshared key. (2) Lsession b for the session key. (3) Lcounter * Nids−agent b for

the counter value of every ID transmitted by the agent. (4) Lsequence * Nids−agent ∗ 2 bits to hold

the IBN sequence for each of the IDs transmitted by the agent. Note that we store two sequences

for each ID (Sec. 4.3.3). (5) Lindex * Nids−agent bits for the index of the next IBN within each

sequence for each ID. Assuming Lpreshared = Lsession = Lcounter = Lsequence, the minimum amount

of memory required is: (2 ∗ Lsequence) + ((3 ∗ Lsequence) + Lindex) ∗Nids−agent bits.

Sequence Extension Processing Overhead. An agent performs a sequence extension operation

every time a sequence for a specific message ID runs out. This means that a sequence extension

operation for a specific ID happens every Lseq/ log2(‖PSpan‖) outgoing messages. This number

should be multiplied by the average period of message transmission for all IDs in the ECU (Pav) to

calculate the average time between extensions (Pext). We use (dext) to refer to the time needed to

perform the extension operation itself. We recommend picking a fast PRF to perform the extension

and minimize the overhead ratio Oext = dext/Pext. In our evaluation (Sec. 4.6), we achieved

Oext ≈ 1.91% on the agent’s side.

C.2 Officer’s Overhead Analysis

Memory. The minimum amount of memory required by the officer is as follows: (1) Lpreshared ∗

Nagents b for the preshared keys of all agents. (2) Lsession ∗ Nagents b for the session keys of all

agents. (3) Lcounter * Nids−system b for the counter value of every ID in the system. (4) Lsequence

* Nids−system ∗ 2 b for every IBN sequence in the system. (5) Lindex * Nids−system bits for the

index of the next IBN within every sequence in the system. Assuming that we are using the same

length for Lpreshared = Lsession = Lcounter = Lsequence, the minimum amount of required memory

is: (2 ∗ Lsequence ∗Nagents) +((3 ∗ Lsequence) + Lindex) ∗Nids−system bits.

125

Sequence Extension Processing Overhead. The officer performs a sequence extension operation

whenever a sequence for a specific message ID runs out, meaning, a sequence extension operation for

a specific ID happens every Lseq/ log2(‖PSpan‖) observed messages. In our evaluation (Sec. 4.6),

we achieved Oext ≤ 0.018% on the officer’s side.

126

