
CERIAS Tech Report 2021-3
A WireGuard Exploration

 by Alexander Master, Christina Garman
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

CERIAS Technical Reports Center for Education and Research in
Information Assurance and Security (CERIAS)

7-28-2021

A WireGuard Exploration A WireGuard Exploration

Alexander Master
Purdue University, amaster@purdue.edu

Christina Garman
Purdue University, clg@purdue.edu

Follow this and additional works at: https://docs.lib.purdue.edu/ceriastr

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Master, Alexander and Garman, Christina, "A WireGuard Exploration" (2021). CERIAS Technical Reports.
Paper 1.
http://dx.doi.org/10.5703/1288284317610

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/ceriastr
https://docs.lib.purdue.edu/cerias
https://docs.lib.purdue.edu/cerias
https://docs.lib.purdue.edu/ceriastr?utm_source=docs.lib.purdue.edu%2Fceriastr%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=docs.lib.purdue.edu%2Fceriastr%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages

A WIREGUARD EXPLORATION 1

Abstract – Internet users require secure means of

communication. Virtual Private Networks (VPNs) often

serve this purpose, for consumers and businesses. The

research aims of this paper were an analysis and

implementation of the new VPN protocol WireGuard. The

authors explain the cryptographic primitives used, build

server and client code implementations of WireGuard

peers, and present the benefits and drawbacks of this new

technology. The outcome was a functional WireGuard

client and server implementation, capable of tunneling all

Internet traffic through a cloud-based virtual private server

(VPS), with minimal manual configuration necessary from

the end user. The code is publicly available.

I. INTRODUCTION

Given the prevalence of Internet-based services and

communication today, much of the effort to maintain individual

autonomy of personal information focuses on Internet Protocol

(IP) based applications. While many of the original protocols

that became building blocks of the Internet were not designed

with security or confidentiality in mind, newer software can

often allow individuals to manage the amount of data being

associated with them. Web proxies, VPNs, and encryption

protocols can all play a part in making the Internet a more

secure and private place to conduct ourselves. As such, a

thorough understanding of the cryptographic primitives and

their implementation in modern Internet routing will benefit the

research community as well as everyday users.

For the purposes of this paper, the authors sought to perform

a detailed analysis of the WireGuard VPN implementation. The

research includes public key encryption, stream cipher,

message-authentication code, and hashing functions as they are

implemented in the publicly available versions of WireGuard

as of 2021. The authors also deployed server and client

instances, simulating how a commercial VPN service provider

could establish communications with customers. The code for

both implementations is openly available at

https://github.com/smolbytes/wireguard-deployer. This study

intends to illuminate this state-of-the-art protocol, as well as

how it compares to current market leaders such as OpenVPN

and IPSec. The associated presentation also aims to inform how

these protocols can be practically applied.

II. BACKGROUND

The WireGuard project was started by Jason Donenfeld in

late 2016, according to the earliest commits on

https://git.zx2c4.com. Jason describes how his idea was to

create a replacement for OpenVPN and IPSec in his talk given

at Black Hat 2018 at Mandalay Bay Casino, Las Vegas [1].

Overall, the protocol operates at layer 3 of the Open Systems

Interconnection (OSI) model, commonly referred to as the

network layer. This is in contrast to IPSec, which offers layer 2

functionality. The WireGuard team began with the concept of a

Linux network interface and built their protocol around that

concept [2]. The protocol supports IPv4 and IPv6 traffic outside

and inside the tunnel. WireGuard uses what Jason describes as

"modern, conservative" cryptographic principles and

primitives. He also describes the protocol as "opinionated,"

meaning that it provides the exact cipher suite and key exchange

mechanisms to make WireGuard work. It does not allow for

negotiation or administrator configuration of the underlying

protocol without fundamentally redesigning it. The WireGuard

team also places emphasis on the simplicity and auditability of

the protocol. The intent is that a single researcher, or a small

team of security professionals, can easily audit the entire code

base. The Linux implementation of WireGuard has under 4,000

lines of code, significantly less than other competitors in the

VPN space. Additionally, the authentication model is similar to

that of Secure Shell (SSH) and its authenticated_keys; any

administrator that knows how to administrate with SSH can at

least fundamentally understand WireGuard's authentication.

The security design principles the WireGuard team followed

when designing the protocol are below [2].

A. Security Design Principles

1. Easily auditable. The Linux kernel implementation of

WireGuard is under 4,000 lines of code, and can be reviewed

by an individual person or a small team as new versions are

released. In contrast, OpenVPN has over 110,000 lines of code,

and IPSec (when instantiated using the XFRM and StrongSwan

packages) amounts to over 400,000 lines of code. This makes

performing a code review particularly daunting. The potential

downside of this approach is that the protocol only implements

the core functionality of allowing two peers to communicate

with each other. Other desirable features common in VPN

technologies, such as username and password authentication,

A WireGuard Exploration

Alexander Master, Christina Garman

Center for Education and Research in Information Assurance and Security (CERIAS)

Purdue University – West Lafayette, USA

Email: {amaster}{clg}@purdue.edu

A WIREGUARD EXPLORATION 2

must be implemented on top of or around WireGuard.

2. Simplicity of Interface. The WireGuard team provides

a few helper functions, and they are the only things needed to

set up a WireGuard tunnel quickly. Configurations can be

scripted and automated using these lower-level functions.

Because WireGuard is a virtual network interface at its core, the

interface and the traffic to and from it can be manipulated with

standard operating system tools.

3. Static Fixed Length Headers. This feature makes

WireGuard traffic easily observable, and eliminates the need for

parsers because the headers of the WireGuard packets will

always be formed the same way (or dropped if they are

malformed). The security advantage of this principle is it

eliminates an entire class of parser vulnerabilities from

consideration when analyzing the protocol. The downside is the

traffic is easily identifiable when traversing IP networks. If an

Internet Service Provider (ISP) or nation-state wanted to restrict

VPN traffic from its users, WireGuard traffic is easily

identifiable by deep packet inspection and would be difficult to

obfuscate.

4. Static Allocations and Guarded State. All state

required for WireGuard to operate is allocated during

configuration. Also, no memory is dynamically allocated in

response to received packets – eliminating further classes of

vulnerabilities associated with memory allocation.

5. Stealth. Interestingly, part of the inspiration for the

WireGuard project came while Jason Donenfeld was working

on a stealth rootkit project. He realized that many techniques

required for stealth are also useful for tunnel defensive

measures. For example, WireGuard is not a "chatty" protocol.

If the peers have no communication to transmit, the tunnel is

silent, unlike other VPN technologies that make liberal use of

keep-alive messages. Additionally, non-authenticated traffic –

traffic that does not match an appropriate tunnel IP or associated

public key - is simply dropped and not acknowledged. Finally,

being hosted on a UDP listening service makes the presence of

a WireGuard peer difficult to detect with port scanning, as

opposed to the ease of finding TCP-based services on the

Internet.

6. "Solid" Cryptography. The WireGuard team focused

on providing strong cryptographic key exchange, as well as

strong underlying symmetric encryption for the transmission of

data over the tunnel, which is explained in more detail below.

III. RELATED WORK

The authors are aware of two prominent academic studies

related to WireGuard in the literature. The first is [3], which

was included in conference proceedings at the International

Conference on Applied Cryptography and Network Security in

2018. The study was unable to conclusively prove the security

of the key exchange without making a small modification to the

code and making particular simplifications in their analysis.

The study received some criticism from Jason Donenfeld, who

explained that the U.K. researchers were using a more

traditional extended Canetti-Krawczyk (eCK) model, which

relies on having a further separated key exchange. The authors

express that the attacks presented require particular capability

on behalf of the attacker, and regard it as a barrier to strong

security proof as opposed to a practical attack.

The second analysis in the literature is [4], conducted in

2019, which analyzes the WireGuard protocol "as-is" using an

authenticated and confidential channel establishment (ACCE)

model [5]. The paper provides formal proofs for correctness,

message secrecy, forward secrecy, mutual authentication,

session uniqueness, and resistance against key compromise

impersonation for WireGuard.

 Regarding practical implementation, numerous resources are

available on the open Internet for guides to setting up

WireGuard peers in various scenarios. The WireGuard website

[6] itself is an excellent resource for quick-start and installation

references on various platforms. Many commercial VPN

service providers have also begun to implement WireGuard into

their platforms. The authors' implementation was aimed

primarily as an education tool in a university setting to

demonstrate the functionality of WireGuard, and to show that it

can be done with reasonable ease by a user without vast

programming experience.

IV. THE PROTOCOL

A. Cryptographic Primitives

As of 2021, WireGuard utilizes the following cryptographic

primitives:

1. Noise Protocol Framework

2. Curve25519 within the key exchange for Elliptic-Curve

Diffie-Helman (ECDH)

3. ChaCha20 for symmetric encryption session keys

4. Poly1305 for encryption authentication

5. BLAKE2 for cryptographic hashing

B. Establishing Secure Communications

The WireGuard whitepaper, published in the Distributed

System Security Symposium NDSS 2017, presents the protocol

and each aspect of the communication in granular detail [7].

The following is a summary for a layperson with a foundational

understanding of cryptography concepts.

WireGuard begins with the assumption that two computers

wish to communicate securely with one another over an

untrusted (or otherwise) IP route. Public and private key pairs,

utilizing Curve25519, are generated by each peer. By some

other mechanism, the public keys of each peer are exchanged.

Each peer then assigns an IP address, or IP address range, that

their partner peer is allowed to use within a WireGuard tunnel.

These IP addresses are generally RFC1918 addresses in the

reserved private IP address space. They use IP addressing that

A WIREGUARD EXPLORATION 3

will not conflict with the logical networking of either end of the

tunnel, in whatever environment a peer finds itself connected.

Either peer may serve as an "initiator" or a "responder" at any

time. When a peer wants to initiate communication, a "First

Message" is sent from the initiator to the responder. It includes

the message type, some reserved zero bytes, the sender address,

an ephemeral ECDH key, the sender's static public key, a

timestamp, and two MAC values (122 bytes total). Assuming

the message is received, the responder will look up if the

sender's public key is present. If so, it generates a "Second

Message" with message type (0x2), some reserved zero bytes,

sender address, responder address, an ephemeral ECDH key,

and two MAC values (overall shorter than the original First

Message). At this point,

both peers have all of the information they need to use the Noise

Protocol to generate a shared ChaCha20 session key. The

NoiseIK function of Noise Protocol uses a form of "triple

D.H.," in which a mixture of the static public keys and

ephemeral keys generated results in a one-time-use encryption

to encrypt the value of the session key k, and the two peers can

begin communications immediately after the 1 round trip time

(1-RTT) transaction takes place. This exchange enables

forward secrecy, in that exposure of keys or future cracking of

the encryption of the ECDH handshake only results in one

session being compromised, enormously increasing cost to

attackers and preventing the decryption of large sessions, even

if captured and stored by an adversary. From here, WireGuard

communications can begin, and each node can access resources

from the other side of the tunnel as if it was connected to that

broadcast network space. Plaintext messages will be encrypted

by the WireGuard interface, routed out of the externally facing

network interface en route to its peer, travel through the external

interface of its peer, and be decrypted at the WireGuard

interface on the receiving end [7].

V. IMPLEMENTATION

While WireGuard documentation prefers to refer to each

node as a peer, we refer to each node as a client or server for

our implementation. Our scenario aims to simulate a star

network topology consisting of a central trusted server to which

one or many clients may connect and funnel their IP traffic. We

simulate a commercial VPN provider by enabling access to

shared networking resources, allowing customers to manage the

attribution of their originating traffic while using the Internet.

The server is designed to be run on CentOS, while the client

currently supports Ubuntu, Debian, and Fedora desktop Linux

environments. Both are freely available at [8] for review.

The server script "wireguard-server-deployer.sh" performs

the bulk of the work in the scenario. First, it updates system

packages and ensures that necessary dependencies for the

WireGuard tools are installed. The protocol is implemented in

the Linux kernel in version 5.6 and above, but the helper

functions from the WireGuard team are available as separate

packages in various repositories. The script then generates each

set of private and public key pairs, one set for the server and

one for the client. These are represented as 44-character, base64

encoded strings. The script then configures the WireGuard

interface on the server using the generated keys, as well as IP

addresses allowed for clients and particular port values for the

UDP listening service, which can be specified. Next, the script

enables the WireGuard config as a service so the interface will

persist through server reboots. After that, the firewall host

daemon is configured to allow traffic to SSH for server

administration and the UDP port for WireGuard to listen on

externally. IP masquerading is also enabled in the firewall.

Next, changes to the operating system to allow for IP

forwarding on IPv4 and IPv6 are made since this server will act

as the redirector for client traffic. Finally, the script displays the

information necessary for a client to connect successfully.

Separately, a user can begin running the client script

"wireguard-client-setup.sh" on the client of their choice. The

script will initially request the required pieces of information:

the server's WireGuard public key, the external IP address of

the server, the UDP port of the service (or a default value), and

the client's private key. This information is available at the

bottom of the output of the server script. The client script will

take the client private key a user inputs and derive its own

public key from it. It will then configure a WireGuard interface,

listing the server as an available peer. Next, it will bring up the

WireGuard interface and send the "First Message," establishing

the secure tunnel. Finally, it configures iptables rules to force

all IPv4 traffic (0.0.0.0/0) through the WireGuard tunnel from

a routing perspective. The client can now freely browse the

Internet, scan bug bounty targets, or perform research without

traffic appearing to originate from their home, public wifi

hotspot, etc. - knowing the traffic is encrypted at least along the

"first mile" towards the intended destination.

VI. CONCLUSION

The WireGuard protocol is an interesting new tool in the

ever-increasing effort to promote cybersecurity and Internet

privacy in our world today. Our increasing reliance on

technology forces us to reimagine the tools we use to secure our

information, and VPN technology is one such tool that has

many use cases.

The WireGuard protocol has many advantages, including

forward secrecy, ease of auditing and implementation, high

performance, and minimal attack surface. The protocol has the

potential to be a building block for many different system

designs. Projects such as Tailscale demonstrate how WireGuard

can be used as a building block for larger software platforms

[9]. WireGuard can assist in integrating encryption mechanisms

into other systems that would otherwise potentially be

transmitted in the clear.

The protocol also has limitations. When faced with an ISP or

a nation-state actor that wishes to block VPN-based traffic

circumventing censorship, WireGuard is currently lacking.

Given the nature of the WireGuard exchange format and

encrypted traffic formatting, when subject to deep packet

inspection (DPI), WireGuard traffic is easy to detect - and

subsequently filter out. Active and passive local adversaries can

easily observe the use of WireGuard. Another interesting

A WIREGUARD EXPLORATION 4

dilemma arises if a peer's private key were compromised (or

broken in a post-quantum context). While forward secrecy

persists, the identity of the peer(s) someone was communicating

with will be revealed. This lack of identity-hiding may be of

concern for some use cases. WireGuard also currently relies on

ChaCha20Poly1305 for symmetric encryption, which has no

hardware encryption instruction support as of this writing. This

is a drawback for large-scale computing systems that would

otherwise benefit from implementations that utilize AES-NI.

On the contrary, however, low-resource computing hardware

(such as Internet-of-Things devices) may benefit by using

WireGuard, given its reliance on ChaCha20. Finally, the issue

of "roaming mischief" is of concern. WireGuard allows peers

to roam, such as leaving a network and gaining a new IP address

in a mobile device scenario, and maintain the tunnel without

reauthentication. This could lead to issues with malicious users

replaying traffic from legitimate devices. However, the

timestamp included in message initiation "resets" the

relationship, and the freshest timestamp available wins in order

of precedence. Along with the fact that WireGuard traffic

renegotiates sessions every two minutes, these features should

mitigate most adversarial issues related to roaming mischief.

For future work on the authors' implementation of

WireGuard, a more robust method of key exchange would be

necessary to commercialize the VPN as a service. While

copying the client private key over an SSH terminal is believed

to be a secure method, paying clients would not have shell

access to the VPN server. Users would need another secure

"out-of-band" method for receiving their private key (or

requesting a new static key for a separate device). The current

implementation also only routes IPv4 traffic through the tunnel.

Given the inevitability of IPv6 (and the reality that both are

currently interoperable on the Internet as we know it today), it

may be prudent to configure tunnels to use IPv6 by default, and

allow user modifications as necessary for legacy circumstances.

VII. DISCLAIMER

The views presented here are exclusively those of the authors

and do not represent the views of Purdue University nor imply

or constitute endorsement by the Department of Defense.

References

[1] J. Donenfeld. "WireGuard: Next Generation Secure

Network Tunnel." YouTube.

https://www.youtube.com/watch?v=88GyLoZbDNw

(accessed April 23, 2021).

[2] J. Donenfeld. "WireGuard – Fast, Modern, Secure VPN

Tunnel." BlackHat USA. https://i.blackhat.com/us-

18/Wed-August-8/us-18-Donenfeld-WireGuard-Next-

Generation-Secure-Network-Tunnel.pdf (accessed April

23, 2021).

[3] B. Dowling and K. Paterson. "A Cryptographic Analysis

of the WireGuard Protocol", in International Conference

on Applied Cryptography and Network Security 2018, p

3-21, Jun. 2018, https://www.doi.org/10.1007/978-3-319-

93387-0_1.

[4] B. Lipp et al. "A Mechanised Cryptographic Proof of the

WireGuard Virtual Private Network Protocol," 2019 IEEE

European Symposium on Security and Privacy

(EuroS&P), p. 231-246, Jun. 2019,

https://doi.org/10.1109/EuroSP.2019.00026.

[5] T. Jager, F. Kohlar, S Schage, J. Schwenk. "On the

Security of TLS-DHE in the Standard Model." in

Advances in Cryptology - CRYPTO 2012. Lecture Notes

in Computer Science, vol. 7417, Aug. 2012,

https://doi.org/10.1007/978-3-642-32009-5_17.

[6] J. Donenfeld. "WireGuard – Fast, Modern, Secure VPN

Tunnel." WireGuard. https://www.wireguard.com

(accessed April 23, 2021).

[7] J. Donenfeld, "WireGuard: Next Generation Kernel

Network Tunnel," NDSS 2017, Feb. 2017,

https://doi.org/10.14722/NDSS.2017.23160.

[8] A. Master. "wireguard-deployer." GitHub.

https://github.com/smolbytes/wireguard-deployer

(accessed May 06, 2021).

[9] "Tailscale makes networking easy." Tailscale.

https://tailscale.com (accessed April 24, 2021).

