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Abstract – Internet users require secure means of 

communication. Virtual Private Networks (VPNs) often 

serve this purpose, for consumers and businesses. The 

research aims of this paper were an analysis and 

implementation of the new VPN protocol WireGuard. The 

authors explain the cryptographic primitives used, build 

server and client code implementations of WireGuard 

peers, and present the benefits and drawbacks of this new 

technology. The outcome was a functional WireGuard 

client and server implementation, capable of tunneling all 

Internet traffic through a cloud-based virtual private server 

(VPS), with minimal manual configuration necessary from 

the end user. The code is publicly available.  

I. INTRODUCTION 

Given the prevalence of Internet-based services and 

communication today, much of the effort to maintain individual 

autonomy of personal information focuses on Internet Protocol 

(IP) based applications. While many of the original protocols 

that became building blocks of the Internet were not designed 

with security or confidentiality in mind, newer software can 

often allow individuals to manage the amount of data being 

associated with them. Web proxies, VPNs, and encryption 

protocols can all play a part in making the Internet a more 

secure and private place to conduct ourselves. As such, a 

thorough understanding of the cryptographic primitives and 

their implementation in modern Internet routing will benefit the 

research community as well as everyday users. 

 

For the purposes of this paper, the authors sought to perform 

a detailed analysis of the WireGuard VPN implementation. The 

research includes public key encryption, stream cipher, 

message-authentication code, and hashing functions as they are 

implemented in the publicly available versions of WireGuard 

as of 2021. The authors also deployed server and client 

instances, simulating how a commercial VPN service provider 

could establish communications with customers. The code for 

both implementations is openly available at 

https://github.com/smolbytes/wireguard-deployer. This study 

intends to illuminate this state-of-the-art protocol, as well as 

how it compares to current market leaders such as OpenVPN 

and IPSec. The associated presentation also aims to inform how 

these protocols can be practically applied. 

 

II. BACKGROUND 

The WireGuard project was started by Jason Donenfeld in 

late 2016, according to the earliest commits on 

https://git.zx2c4.com. Jason describes how his idea was to 

create a replacement for OpenVPN and IPSec in his talk given 

at Black Hat 2018 at Mandalay Bay Casino, Las Vegas [1]. 

Overall, the protocol operates at layer 3 of the Open Systems 

Interconnection (OSI) model, commonly referred to as the 

network layer. This is in contrast to IPSec, which offers layer 2 

functionality. The WireGuard team began with the concept of a 

Linux network interface and built their protocol around that 

concept [2]. The protocol supports IPv4 and IPv6 traffic outside 

and inside the tunnel. WireGuard uses what Jason describes as 

"modern, conservative" cryptographic principles and 

primitives. He also describes the protocol as "opinionated," 

meaning that it provides the exact cipher suite and key exchange 

mechanisms to make WireGuard work. It does not allow for 

negotiation or administrator configuration of the underlying 

protocol without fundamentally redesigning it. The WireGuard 

team also places emphasis on the simplicity and auditability of 

the protocol. The intent is that a single researcher, or a small 

team of security professionals, can easily audit the entire code 

base. The Linux implementation of WireGuard has under 4,000 

lines of code, significantly less than other competitors in the 

VPN space. Additionally, the authentication model is similar to 

that of Secure Shell (SSH) and its authenticated_keys; any 

administrator that knows how to administrate with SSH can at 

least fundamentally understand WireGuard's authentication. 

The security design principles the WireGuard team followed 

when designing the protocol are below [2]. 

 

A. Security Design Principles 

 

1. Easily auditable. The Linux kernel implementation of 

WireGuard is under 4,000 lines of code, and can be reviewed 

by an individual person or a small team as new versions are 

released. In contrast, OpenVPN has over 110,000 lines of code, 

and IPSec (when instantiated using the XFRM and StrongSwan 

packages) amounts to over 400,000 lines of code. This makes 

performing a code review particularly daunting. The potential 

downside of this approach is that the protocol only implements 

the core functionality of allowing two peers to communicate 

with each other. Other desirable features common in VPN 

technologies, such as username and password authentication, 
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must be implemented on top of or around WireGuard.  

 

2. Simplicity of Interface. The WireGuard team provides 

a few helper functions, and they are the only things needed to 

set up a WireGuard tunnel quickly. Configurations can be 

scripted and automated using these lower-level functions. 

Because WireGuard is a virtual network interface at its core, the 

interface and the traffic to and from it can be manipulated with 

standard operating system tools.  

 

3. Static Fixed Length Headers. This feature makes 

WireGuard traffic easily observable, and eliminates the need for 

parsers because the headers of the WireGuard packets will 

always be formed the same way (or dropped if they are 

malformed). The security advantage of this principle is it 

eliminates an entire class of parser vulnerabilities from 

consideration when analyzing the protocol. The downside is the 

traffic is easily identifiable when traversing IP networks. If an 

Internet Service Provider (ISP) or nation-state wanted to restrict 

VPN traffic from its users, WireGuard traffic is easily 

identifiable by deep packet inspection and would be difficult to 

obfuscate.  

 

4. Static Allocations and Guarded State. All state 

required for WireGuard to operate is allocated during 

configuration. Also, no memory is dynamically allocated in 

response to received packets – eliminating further classes of 

vulnerabilities associated with memory allocation.  

 

5. Stealth. Interestingly, part of the inspiration for the 

WireGuard project came while Jason Donenfeld was working 

on a stealth rootkit project. He realized that many techniques 

required for stealth are also useful for tunnel defensive 

measures. For example, WireGuard is not a "chatty" protocol. 

If the peers have no communication to transmit, the tunnel is 

silent, unlike other VPN technologies that make liberal use of 

keep-alive messages. Additionally, non-authenticated traffic – 

traffic that does not match an appropriate tunnel IP or associated 

public key - is simply dropped and not acknowledged. Finally, 

being hosted on a UDP listening service makes the presence of 

a WireGuard peer difficult to detect with port scanning, as 

opposed to the ease of finding TCP-based services on the 

Internet.  

 

6. "Solid" Cryptography. The WireGuard team focused 

on providing strong cryptographic key exchange, as well as 

strong underlying symmetric encryption for the transmission of 

data over the tunnel, which is explained in more detail below. 

III. RELATED WORK 

The authors are aware of two prominent academic studies 

related to WireGuard in the literature. The first is [3], which 

was included in conference proceedings at the International 

Conference on Applied Cryptography and Network Security in 

2018. The study was unable to conclusively prove the security 

of the key exchange without making a small modification to the 

code and making particular simplifications in their analysis. 

The study received some criticism from Jason Donenfeld, who 

explained that the U.K. researchers were using a more 

traditional extended Canetti-Krawczyk (eCK) model, which 

relies on having a further separated key exchange. The authors 

express that the attacks presented require particular capability 

on behalf of the attacker, and regard it as a barrier to strong 

security proof as opposed to a practical attack.  

 

The second analysis in the literature is [4], conducted in 

2019, which analyzes the WireGuard protocol "as-is" using an 

authenticated and confidential channel establishment (ACCE) 

model [5]. The paper provides formal proofs for correctness, 

message secrecy, forward secrecy, mutual authentication, 

session uniqueness, and resistance against key compromise 

impersonation for WireGuard.  

 

 Regarding practical implementation, numerous resources are 

available on the open Internet for guides to setting up 

WireGuard peers in various scenarios. The WireGuard website 

[6] itself is an excellent resource for quick-start and installation 

references on various platforms. Many commercial VPN 

service providers have also begun to implement WireGuard into 

their platforms. The authors' implementation was aimed 

primarily as an education tool in a university setting to 

demonstrate the functionality of WireGuard, and to show that it 

can be done with reasonable ease by a user without vast 

programming experience.  

IV. THE PROTOCOL 

A. Cryptographic Primitives 

 

As of 2021, WireGuard utilizes the following cryptographic 

primitives: 

1. Noise Protocol Framework 

2. Curve25519 within the key exchange for Elliptic-Curve 

Diffie-Helman (ECDH) 

3. ChaCha20 for symmetric encryption session keys 

4. Poly1305 for encryption authentication 

5. BLAKE2 for cryptographic hashing 
 

B. Establishing Secure Communications 

 

The WireGuard whitepaper, published in the Distributed 

System Security Symposium NDSS 2017, presents the protocol 

and each aspect of the communication in granular detail [7]. 

The following is a summary for a layperson with a foundational 

understanding of cryptography concepts. 

 

WireGuard begins with the assumption that two computers 

wish to communicate securely with one another over an 

untrusted (or otherwise) IP route. Public and private key pairs, 

utilizing Curve25519, are generated by each peer. By some 

other mechanism, the public keys of each peer are exchanged. 

Each peer then assigns an IP address, or IP address range, that 

their partner peer is allowed to use within a WireGuard tunnel. 

These IP addresses are generally RFC1918 addresses in the 

reserved private IP address space. They use IP addressing that 
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will not conflict with the logical networking of either end of the 

tunnel, in whatever environment a peer finds itself connected. 

Either peer may serve as an "initiator" or a "responder" at any 

time. When a peer wants to initiate communication, a "First 

Message" is sent from the initiator to the responder. It includes 

the message type, some reserved zero bytes, the sender address, 

an ephemeral ECDH key, the sender's static public key, a 

timestamp, and two MAC values (122 bytes total). Assuming 

the message is received, the responder will look up if the 

sender's public key is present. If so, it generates a "Second 

Message" with message type (0x2), some reserved zero bytes, 

sender address, responder address, an ephemeral ECDH key, 

and two MAC values (overall shorter than the original First 

Message). At this point,                                                                                                                                                                                                                                          

both peers have all of the information they need to use the Noise 

Protocol to generate a shared ChaCha20 session key. The 

NoiseIK function of Noise Protocol uses a form of "triple 

D.H.," in which a mixture of the static public keys and 

ephemeral keys generated results in a one-time-use encryption 

to encrypt the value of the session key k, and the two peers can 

begin communications immediately after the 1 round trip time 

(1-RTT) transaction takes place. This exchange enables 

forward secrecy, in that exposure of keys or future cracking of 

the encryption of the ECDH handshake only results in one 

session being compromised, enormously increasing cost to 

attackers and preventing the decryption of large sessions, even 

if captured and stored by an adversary. From here, WireGuard 

communications can begin, and each node can access resources 

from the other side of the tunnel as if it was connected to that 

broadcast network space. Plaintext messages will be encrypted 

by the WireGuard interface, routed out of the externally facing 

network interface en route to its peer, travel through the external 

interface of its peer, and be decrypted at the WireGuard 

interface on the receiving end [7].                            

V. IMPLEMENTATION 

While WireGuard documentation prefers to refer to each 

node as a peer, we refer to each node as a client or server for 

our implementation. Our scenario aims to simulate a star 

network topology consisting of a central trusted server to which 

one or many clients may connect and funnel their IP traffic. We 

simulate a commercial VPN provider by enabling access to 

shared networking resources, allowing customers to manage the 

attribution of their originating traffic while using the Internet. 

The server is designed to be run on CentOS, while the client 

currently supports Ubuntu, Debian, and Fedora desktop Linux 

environments. Both are freely available at [8] for review. 

 

The server script "wireguard-server-deployer.sh" performs 

the bulk of the work in the scenario. First, it updates system 

packages and ensures that necessary dependencies for the 

WireGuard tools are installed. The protocol is implemented in 

the Linux kernel in version 5.6 and above, but the helper 

functions from the WireGuard team are available as separate 

packages in various repositories. The script then generates each 

set of private and public key pairs, one set for the server and 

one for the client. These are represented as 44-character, base64 

encoded strings. The script then configures the WireGuard 

interface on the server using the generated keys, as well as IP 

addresses allowed for clients and particular port values for the 

UDP listening service, which can be specified. Next, the script 

enables the WireGuard config as a service so the interface will 

persist through server reboots. After that, the firewall host 

daemon is configured to allow traffic to SSH for server 

administration and the UDP port for WireGuard to listen on 

externally. IP masquerading is also enabled in the firewall. 

Next, changes to the operating system to allow for IP 

forwarding on IPv4 and IPv6 are made since this server will act 

as the redirector for client traffic. Finally, the script displays the 

information necessary for a client to connect successfully. 

 

Separately, a user can begin running the client script 

"wireguard-client-setup.sh" on the client of their choice. The 

script will initially request the required pieces of information: 

the server's WireGuard public key, the external IP address of 

the server, the UDP port of the service (or a default value), and 

the client's private key. This information is available at the 

bottom of the output of the server script. The client script will 

take the client private key a user inputs and derive its own 

public key from it. It will then configure a WireGuard interface, 

listing the server as an available peer. Next, it will bring up the 

WireGuard interface and send the "First Message," establishing 

the secure tunnel. Finally, it configures iptables rules to force 

all IPv4 traffic (0.0.0.0/0) through the WireGuard tunnel from 

a routing perspective. The client can now freely browse the 

Internet, scan bug bounty targets, or perform research without 

traffic appearing to originate from their home, public wifi 

hotspot, etc. - knowing the traffic is encrypted at least along the 

"first mile" towards the intended destination.   

VI. CONCLUSION 

The WireGuard protocol is an interesting new tool in the 

ever-increasing effort to promote cybersecurity and Internet 

privacy in our world today. Our increasing reliance on 

technology forces us to reimagine the tools we use to secure our 

information, and VPN technology is one such tool that has 

many use cases.  

 

The WireGuard protocol has many advantages, including 

forward secrecy, ease of auditing and implementation, high 

performance, and minimal attack surface. The protocol has the 

potential to be a building block for many different system 

designs. Projects such as Tailscale demonstrate how WireGuard 

can be used as a building block for larger software platforms 

[9]. WireGuard can assist in integrating encryption mechanisms 

into other systems that would otherwise potentially be 

transmitted in the clear.  

 

The protocol also has limitations. When faced with an ISP or 

a nation-state actor that wishes to block VPN-based traffic 

circumventing censorship, WireGuard is currently lacking. 

Given the nature of the WireGuard exchange format and 

encrypted traffic formatting, when subject to deep packet 

inspection (DPI), WireGuard traffic is easy to detect - and 

subsequently filter out. Active and passive local adversaries can 

easily observe the use of WireGuard. Another interesting 
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dilemma arises if a peer's private key were compromised (or 

broken in a post-quantum context). While forward secrecy 

persists, the identity of the peer(s) someone was communicating 

with will be revealed. This lack of identity-hiding may be of 

concern for some use cases. WireGuard also currently relies on 

ChaCha20Poly1305 for symmetric encryption, which has no 

hardware encryption instruction support as of this writing. This 

is a drawback for large-scale computing systems that would 

otherwise benefit from implementations that utilize AES-NI. 

On the contrary, however, low-resource computing hardware 

(such as Internet-of-Things devices) may benefit by using 

WireGuard, given its reliance on ChaCha20. Finally, the issue 

of "roaming mischief" is of concern. WireGuard allows peers 

to roam, such as leaving a network and gaining a new IP address 

in a mobile device scenario, and maintain the tunnel without 

reauthentication. This could lead to issues with malicious users 

replaying traffic from legitimate devices. However, the 

timestamp included in message initiation "resets" the 

relationship, and the freshest timestamp available wins in order 

of precedence. Along with the fact that WireGuard traffic 

renegotiates sessions every two minutes, these features should 

mitigate most adversarial issues related to roaming mischief.  

 

For future work on the authors' implementation of 

WireGuard, a more robust method of key exchange would be 

necessary to commercialize the VPN as a service. While 

copying the client private key over an SSH terminal is believed 

to be a secure method, paying clients would not have shell 

access to the VPN server. Users would need another secure 

"out-of-band" method for receiving their private key (or 

requesting a new static key for a separate device). The current 

implementation also only routes IPv4 traffic through the tunnel. 

Given the inevitability of IPv6 (and the reality that both are 

currently interoperable on the Internet as we know it today), it 

may be prudent to configure tunnels to use IPv6 by default, and 

allow user modifications as necessary for legacy circumstances.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

VII. DISCLAIMER 

The views presented here are exclusively those of the authors 

and do not represent the views of Purdue University nor imply 

or constitute endorsement by the Department of Defense.  
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