
CERIAS Tech Report 2019-4
Adversarial Anomaly Detectio

 by Radhika Bhargava
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

ADVERSARIAL ANOMALY DETECTION

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Radhika Bhargava

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2019

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Chris Clifton, Co-Chair

School of Computer Science

Dr. Shimon Y. Nof, Co-Chair

School of Industrial Engineering

Dr. Jean Honorio

School of Computer Science

Dr. Ninghui Li

School of Computer Science

Approved by:

Dr. Voicu Popescu

Head of the School Graduate Program

iii

Dedicated to my parents.

iv

ACKNOWLEDGMENTS

As I look back at the time spent at Purdue University, I am reminded of the

many people who helped me in making this journey a success. First and foremost,

I would like to thank my advisor Prof. Cris Clifton for the Invaluable guidance,

encouragement, and support throughout my graduate studies at Purdue University.

He has given me the freedom to pursue various projects without objection and helped

me build analytical skills and critical thinking that are essential in research.

I would also like to express gratitude to my advisor Prof. Nof for his mentorship,

encouragement and advice at many different times. His endless guidance is hard to

forget throughout my life.

I sincerely thank my thesis committee members Prof. Jean Honorio and Prof.

Ninghu Li for their insightful feedback. Their valuable comments and suggestions

helped in making this dissertation much stronger. I would like to thank Prof. Elias

Barenboim and Prof. Pedro Fonseca for their time, interest, and helpful comments.

I gratefully acknowledge the funding received towards my PhD from the Northrop

Grumman Corporation. I am also pleased to thank Jason Kobes for his constructive

feedback.

I would like to express my gratitude to all past and present PRISMers. It has

been, and will continue to be, a pleasure to be part of such a diverse team of highly

talented individuals at PRISM. A special mention to Dr. Rodrigo E. Reyes Levalle

and Dr. Hao Zhong for their support at the beginning of my career as a researcher.

Thanks to all my friends at Purdue who have made my time here more enjoyable.

A special thanks to Parag for your friendship and for being a constant source of

encouragement.

My deepest gratitude to my parents for their unwavering support, love and en­

couragement throughout the years. Many thanks to my aunt, sister, brother-in-law

v

and nephews for their love and support. This thesis would not have been possible

without the strength and love I received from my husband Mridul. Thank you for

being with me through the tough times during this journey.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Thesis Statement & Research Questions 4

1.3 Contributions . 5

1.3.1 Security of DBSCAN . 5

1.3.2 Security of LOF . 6

1.3.3 Security of One-Class SVM . 7

1.4 Organization of the Thesis . 8

2 RELATED WORK . 9

2.1 Anomaly Detection . 9

2.1.1 Clustering Based Anomaly Detection 10

2.1.2 Nearest Neighbor Based Anomaly Detection 11

2.1.3 Classification Based Anomaly Detection 13

2.2 Adversarial Machine Learning . 15

2.2.1 Poisoning Attacks . 16

2.2.2 Evasion Attacks . 18

2.2.3 Defenses against Adversarial Samples 19

3 ATTACK MODEL . 22

4 POISONING ATTACKS AGAINST CLUSTERING BASED ANOMALY

DETECTION (DBSCAN) AND DEFENSE 27

4.1 Introduction . 27

4.1.1 Background . 27

4.1.2 Framework . 28

4.2 Attack Strategy & Assessing Risk . 31

4.2.1 Adversary’s Attack Strategy in Limited Knowledge Scenario . . 31

4.2.2 Attacker’s Attack Strategy in Perfect Knowledge Scenario . . . 33

4.2.3 Vulnerability to the attack . 36

4.3 Experiments & Discussions . 38

4.3.1 Estimation of Adversary’s Effort 39

vii

Page

4.3.2 Analyzing the Evasion Rate . 41

4.3.3 Analyzing the Vulnerability to the Attack 41

4.4 Detection of the Attack . 45

4.5 Conclusions . 46

5	 POISONING ATTACKS AGAINST NEAREST NEIGHBOR BASED TECH­
NIQUES (LOF) & DETECTION . 48

5.1 Introduction . 48

5.1.1 Background . 49

5.1.2 Framework . 50

5.2 Attack Strategy & Assessing Risk . 51

5.2.1 Adversary’s Attack Strategy in Perfect Knowledge Scenario . . . 51

5.2.2 Adversary’s Attack Strategy in Limited Knowledge Scenario . . 54

5.2.3 Vulnerability to the Attack . 56

5.3 Experiments . 58

5.3.1 Estimation of Adversary’s Effort 59

5.3.2 Analyzing the Evasion Rate . 59

5.3.3 Analyzing the Vulnerability to the Attack 61

5.4 Detection of the Attack . 63

5.5 Conclusions . 66

6	 POISONING ATTACKS AGAINST CLASSIFICATION BASED ANOMALY

DETECTION (ONE-CLASS SVM) & DETECTION 68

6.1 Introduction . 68

6.1.1 Background . 68

6.1.2 Framework . 70

6.2 Attack Strategy & Assessing Risk . 71

6.2.1 Adversary’s Attack Strategy 71

6.2.2 Estimation Of Adversary’s Effort 77

6.2.3 Vulnerability to the attack . 78

6.3 Experiments & Discussions . 79

6.3.1 Estimation of Adversary’s Effort 80

6.3.2 Analyzing the Evasion Rate . 82

6.3.3 Analyzing the Vulnerability to the Attack 87

6.3.4 Estimation of the effect of the parameter ν 87

6.3.5 Comparison to Previous Work 87

6.4 Detection Techniques & Discussions . 90

6.4.1 Related Work in Detection Techniques 90

6.4.2 Detection Technique based on Ensemble Methods 92

6.5 Conclusions . 96

7 TRANSFERABILITY OF ADVERSARIAL SAMPLES 97

7.1 Introduction . 97

7.2 Related Work . 97

viii

Page

7.3 Results & Discussions . 98

7.3.1 Experimental Setup . 98

7.3.2 Results & Discussions . 99

7.4 Conclusions . 103

8 CONCLUSIONS & FUTURE WORK . 104

8.1 Summary of Main Results . 104

8.1.1 Estimated Adversary’s Effort 104

8.1.2 Estimation of Vulnerability to an Attack 104

8.1.3 Detection of Attacks . 105

8.1.4 Transferability of Attacks . 105

8.2 Future Work . 105

REFERENCES . 107

VITA . 116

ix

LIST OF TABLES

Table Page

4.1 Adversary’s vulnerability to Attack for the Anomaly Detection Datasets . 44

4.2 Change in FPR when detecting the attack 46

5.1 Adversary’s Vulnerability to Attacks . 63

5.2 Probability of Detection . 66

6.1 The value of ν parameter for different kernels and datasets 81

6.2 Adversary’s Vulnerability To Attack . 88

6.3 Comparison of our Attack Strategy to the one proposed in [10] 91

6.4 Pr. Of Detection for the Ensemble Approach 93

6.5 Pr. Of Detection for our Approach . 95

7.1 Pr. of Transferring DBSCAN adversarial samples to LOF & SVM . . . 100

7.2 Pr. of Transferring LOF adversarial samples to SVM & DBSCAN . . . 101

7.3 Pr. of Transferring SVM adversarial samples to LOF & DBSCAN . . . 102

x

LIST OF FIGURES

Figure	 Page

3.1	 Poisoning Attack resulting in Concept Drift 25

4.1	 Expansion of the cluster as attack points are added 30

4.2	 Adversary’s Effort - KDD’99 Dataset . 40

4.3	 Adversary’s Effort - Thyroid, Credit card, Yahoo & CIDSC’17 datasets . . 40

4.4	 Probability of Evasion vs. Size of the Attack Set: KDD Cup’99 Dataset

& dos attacks . 42

4.5	 Probability of Evasion vs. Size of the Attack Set: KDD Cup ’99 Dataset

& u2r attacks . 42

4.6	 Probability of Evasion vs. Size of the Attack Set: Yahoo S5, Thyroid, IDS

& Credit Card Anomaly Detection Dataset 43

5.1	 Illustration of the attack strategy . 53

5.2	 Adversary’s Effort - KDD’99 Dataset . 60

5.3	 Adversary’s Effort - Thyroid, Credit card, Yahoo & CICIDS2017 datasets 60

5.4	 Probability of Evasion vs. Size of the Attack Set: KDD Cup ’99 Dataset

& dos attacks . 61

5.5	 Probability of Evasion vs. Size of the Attack Set: KDD Cup ’99 Dataset

& u2r attacks . 62

5.6	 Probability of Evasion vs. Size of the Attack Set: Thyroid, Credit card,

Yahoo & CICIDS2017 datasets . 62

6.1	 Illustration of the Adversary’s Attack Strategy (Moving the hyperplane) . 72

6.2	 Adversary’s Effort for Linear Kernel . 83

6.3	 Adversary’s Effort for Polynomial Kernel 83

6.4	 Adversary’s Effort for Gaussian Kernel: KDD Cup Dataset 84

6.5	 Adversary’s Effort for Gaussian Kernel: Thyroid, Credit Card & CI­
CIDS2017 Anomaly Detection Datasets . 84

xi

Figure	 Page

6.6	 Probability of Evasion vs. Size of the Attack Set: KDD Cup’99 Dataset

dos attacks . 85

6.7	 Probability of Evasion vs. Size of the Attack Set 85

6.8	 Probability of Evasion vs. Size of the Attack Set: Yahoo S5, Thyroid,

Credit Card & CICIDS2017 Anomaly Detection Datasets 86

6.9	 Average No. Of Attack Points needed vs. Size of ν 89

xii

ABSTRACT

Bhargava, Radhika PhD, Purdue University, August 2019. Adversarial Anomaly
Detection. Major Professor: Chris Clifton.

Considerable attention has been given to the vulnerability of machine learning

to adversarial samples. This is particularly critical in anomaly detection; uses such

as detecting fraud, intrusion, and malware must assume a malicious adversary. We

specifically address poisoning attacks, where the adversary injects carefully crafted be­

nign samples into the data, leading to concept drift that causes the anomaly detection

to misclassify the actual attack as benign. Our goal is to estimate the vulnerability

of an anomaly detection method to an unknown attack, in particular the expected

minimum number of poison samples the adversary would need to succeed. Such an

estimate is a necessary step in risk analysis: do we expect the anomaly detection to

be sufficiently robust to be useful in the face of attacks? We analyze DBSCAN, LOF,

one-class SVM as an anomaly detection method, and derive estimates for robustness

to poisoning attacks. The analytical estimates are validated against the number of

poison samples needed for the actual anomalies in standard anomaly detection test

datasets. We then develop defense mechanism, based on the concept drift caused by

the poisonous points, to identify that an attack is underway. We show that while it

is possible to detect the attacks, it leads to a degradation in the performance of the

anomaly detection method. Finally, we investigate whether the generated adversarial

samples for one anomaly detection method transfer to another anomaly detection

method.

1

1 INTRODUCTION

Anomalies are data patterns that deviate from the normal behavior. Anomaly de­

tection is important because the anomalous items translate into significant and ac­

tionable information in a wide variety of application domains [1]. E.g., in credit

card data, anomalies signify that there has been a fraudulent transaction or identity

theft has taken place. Anomalies in medical sensor data can be monitored to provide

preemptive health warnings [2], or vibrations in a machine could be evidence that

the machine is faulting [3]. Anomaly detection techniques are also used to monitor

network traffic and identify intrusions [4]. Anomalies in diagnostic medical images

or health monitoring sensors could indicate the presence of diseases [5]. In indus­

trial anomaly detection, sensor data can be used for early identification of faults in

manufacturing systems thereby preventing disruption of the systems [6].

A number of anomaly detection systems have been developed based on unsuper­

vised and supervised machine learning techniques such as support vector machines,

clustering, neural networks etc. The difference between unsupervised and supervised

techniques is that unsupervised do not require labelled data but supervised does.

Unsupervised techniques are especially beneficial in the anomaly detection domain;

as there is a class imbalance between normal instances and anomalies in the training

data. Anomalies are significantly less as compared to the normal training data in­

stances. These techniques are often based on traditional machine learning techniques,

such as classifiers that classify the event as an anomaly or normal data [7], or cluster­

ing methods where an item not falling in a cluster is considered an anomaly. A broad

classification of anomaly detection approaches includes nearest-neighbor, clustering,

classification, statistical, information-theoretic and spectral [1].

Classification techniques learn a discriminating boundary between the normal class

and anomalous class, in the given feature space. Nearest neighbor techniques assume

2

that normal data lies in dense neighborhood whereas anomalous data occurs far away

from their closest neighbor. Clustering techniques assume that normal belongs to a

cluster whereas anomalies are not part of any cluster. In statistical techniques, nor­

mal data belongs to a high probability region of a statistical model whereas anomalies

belong to a low probability region. Information theoretic approaches assume that the

data irregularities are anomalies. The approach adopted by spectral anomaly detec­

tion technique is to embed data in a lower dimension space (e.g., using eigenvalues

and eigenvectors) where anomalies and normal data points are different.

While anomalies can occur for many benign or malicious reasons, in security

applications of anomaly detection; the “interesting” anomalies are the consequence of

malicious actions (fraudulent credit transactions, intrusion attempts, malware, etc.).

As a result, we should be concerned that an adversary may actively try to defeat the

anomaly detection system. Security applications (e.g., credit card fraud detection,

intrusion detection, etc.), of machine learning assume the presence of an adversary

who is actively trying to circumvent the machine learning algorithms. This has led to

the growth of studying the security of machine learning algorithms, i.e., adversarial

machine learning - the study of the efficacy of machine learning algorithms in the

presence of an adversary. Adversaries are no stranger to the fact that machine learning

tools are being applied to security domains and are actively looking for opportunities

to subvert these tools by exploiting the assumptions that the practitioners make (e.g.,

data points in the dataset are independent, dynamic training of machine learning

algorithms). Whenever anomalous behavior is a result of malicious adversaries; the

malicious adversary adapts himself so as to look more benign.

1.1 Motivation

Machine learning algorithms have been shown to be vulnerable to adversarial ex­

amples, i.e., carefully crafted malicious samples that are imperceptible to humans,

but can alter the classifications of the machine learning algorithm. For classification,

3

the goal of the crafted adversarial samples is bypass the target model; for instance,

spam emails that are classified as legitimate by a spam filter, anomalies that are

detected as normal. These input modifications or perturbations are introduced by

an adversary to yield specific - targeted misclassification. Adversarial samples have

been shown to circumvent intrusion detection [8], fraud detection, or to mislead au­

tonomous navigation systems [9].

Anomaly detection systems are used for security purposes like intrusion detection,

fraud detection, virus detection. We can assume that whenever machine learning

approaches are used to provide security against illicit activities, an adversary will

try to circumvent these measures. These systems are used to adapting the security

tools to the dynamic properties of the data by being trained and retrained on new

data. This adaptability property of the anomaly detection approaches makes them

vulnerable to the manipulation of the learning environment by an adversary. E.g.,

an adversary may inject fake data to modify the decision boundary of the algorithm

[10–14]. The main challenge addressed in this paper is that an adversary tries to

actively manipulate the data to escape detection 1 .

Security (encompassing the security of machine learning techniques) is an arms

race [14, 17]. Spam filtering is an example of an “arms race” that is characterized

by increasing sophistication at the end of both the spammer and the defender. The

defender and the attacker aim to accomplish their objectives by modifying their be­

havior in response to the strategy of their adversary . Anomaly detection is no dif­

ferent - attackers evade anomaly detection systems (intrusion detection, credit card

fraud detection) [18] by developing new attack vectors to circumvent known defense

mechanisms.

To stay ahead in this arms race we need to follow these three principles [19]­

1. Know your adversary - “If you know the enemy and know yourself, you need

not fear the result of a hundred battles” - Sun Tzu. If you know your adversary

1Note that we are using adversarial machine learning in the sense of [15]. There has been recent
use of the term adversarial in the sense of using two machine learning models to train each other,
e.g., [16]; this is significantly different from the issue addressed in this paper

4

which encompasses his knowledge, capabilities and goals you will be able to

formulate a better defense mechanism. This involves building a threat model

which characterizes the adversary.

2. Be proactive - This entails testing your defense mechanism against all possible

attacks that you can develop given the threat model

3. Defense mechanism - Robust techniques can be built if you know your adversary

and his capabilities. Designing a threat model and being proactive is a precursor

to building more robust mechanisms.

In this thesis, we assume that the adversary can poison the input training data

and analyze the vulnerability of anomaly detection approaches to this attack. The

goal of these samples is that given a malicious sample ‘a’, the adversary wants to add

poison samples so that the classification of the malicious sample ‘a’ changes to benign

by altering the decision boundary of the machine learning algorithm. This kind of

attack is relevant in anomaly detection where the adversary is actively trying to escape

detection but wants his sample to be unaltered. Consider a scenario - a person has

stolen a credit card and wants to make a large purchase. Input perturbations would

require the adversary to alter his spending amount so as to be misclassified which

defeats the purpose of the adversary. The adversary would rather induce fake data

sets so that he can disguise himself among benign-looking data points.

1.2 Thesis Statement & Research Questions

We hypothesize, that given an anomaly detection approach, and an adversary who

poisons the training data to try to cause a target attack point to be misclassified as

benign, we can:

1. estimate the expected minimum effort (number of poison samples) the adversary

would need to inject, and

5

2. adapt anomaly detection techniques to increase resistance to such a poisoning

attack. These can be done by the defender knowing only the general distribution

of adversarial attacks, with no prior knowledge of a specific attack.

Based on this hypothesis our thesis answers the following questions:

1. Given that an adversary knows that the underlying algorithm is, what is the

optimal attack strategy for a targeted attack and can we bound the adversary’s

effort?

2. Can we predict the vulnerability of the anomaly detection methods under this

attack?

3. Can we detect these attacks?

1.3 Contributions

We first present a model to analyze the security of different anomaly detection

approaches. We look at classification, clustering and nearest-neighborhood techniques

to derive bounds on the attacker’s effort required to subvert the anomaly detection

approach. We derive defense mechanism to improve the robustness of the techniques.

We then investigate the transferability of adersarial samples.

1.3.1 Security of DBSCAN

DBSCAN [20] is a popular density based clustering algorithm for anomaly detec­

tion and has been effectively applied in a variety of domains [21–23]. The method

assumes that the normal data lies in high density regions whereas anomalies or out­

liers are the points that lie in low density regions. One of the advantage of the density

based method is that it is good at discovering clusters of arbitrary shapes making it

one of the dominant and ubiquitous technique in anomaly detection.

DBSCAN starts with an arbitrary object in the dataset and checks the number

of objects within a given radius. If the number of objects with in that radius are

6

more than the threshold required for a cluster, it is marked as a normal point and

if the number of objects in within the given radius are less than the minimum num­

ber of objects required, then the data point is marked as anomaly. DBSCAN is a

global density based algorithm, i.e., the results depend on the global density threshold

settings.

Our contributions include proposing a framework to address situations where the

adversary is unable to change their own data, but can create fake entities to attempt

to make their actual data look less like an anomaly. We then evaluate how vulner­

able DBSCAN-based anomaly detection is to such an attack and have answered the

following questions:

1. Given, that we know our anomaly detection approach is DBSCAN what is the

adversary’s lowest-cost attack strategy?

2. Can we bound the adversary’s effort w.r.t to the attack strategy?

3. In the face of an unknown attack, can we build a model which can estimate the

adversary’s effort and quantify the degradation in the vulnerability?

4. Can we develop a detection technique which can be used as a counter measure

for this attack?

1.3.2 Security of LOF

The nearest-neighborhood techniques like Local Outlier Factor [24](LOF), is a

technique developed specifically for anomaly detection, rather than an application

of a different machine learning approach. It classifies anomalies based on its local

neighborhood and uses either the distance to its βth nearest neighbor or the relative

density of each data point to compute the anomaly score. The assumption of a near­

est neighborhood technique is that normal data lies in dense neighborhoods whereas

anomalous data occurs far from their neighbors (they have a lower density as com­

pared to their neighbors). LOF has been applied to anomaly detection in a variety

7

of domains [25, 26]. The main advantage of LOF is that it is capable of detecting

outliers in a dataset even if it contains clusters of different densities.

DBSCAN is a global density algorithm whereas LOF is a nearest neighbor algo­

rithm. The difference between LOF and DBSCAN is that DBSCAN decides anomalies

based on global parameters whereas LOF decides based on the relative density of its

neighborhood.

Our contributions in analyzing the security of LOF includes developing an opti­

mal attack strategy by exploiting the assumptions that a practitioners make (e.g.,

independence, weak stochastic properties of the data) and modeling vulnerability to

this attack. We have answered the following questions ­

1. What is the optimal attack strategy for a targeted attack on LOF and can we

bound the adversary’s effort?

2. Can we quantify the degradation in the performance of LOF to this attack?

3. Can we make LOF robust to this attack?

4. Given that DBSCAN and LOF are both density-based techniques, can the at­

tack samples/strategy be transferred?

1.3.3 Security of One-Class SVM

Classification based anomaly detection techniques learn a classifier from the given

observations and then classifies a given data point as normal or anomalous. These

techniques operate under the assumption that they can train the classifier to distin­

guish between anomalous and normal data from the given feature space. Examples

include neural networks, support vector machines (SVM) etc. A number of variants

of support vector machines have been developed for anomaly detection in temporal

sequences [27], system call intrusion detection [28, 29]. One-class SVM [30] was de­

veloped for anomaly detection and it assumes that the training data belongs to only

8

one-class, i.e., the normal class. Outliers are any data points that do not belong to

this class.

Our contributions include developing an optimal attack strategy by exploiting

typical assumptions (e.g., independence, weak stochastic properties of the data) and

modeling vulnerability to this attack. We have answered the following questions:

1. Given that an adversary knows that the underlying algorithm is one-class SVM,

what is the optimal attack strategy for a targeted attack and can we bound the

adversary’s effort?

2. Can we quantify the degradation in performance and vulnerability of one-class

SVM under this attack?

1.4 Organization of the Thesis

The thesis is organized as follows: in Chapter 2 we give an overview of the re­

lated work on anomaly detection techniques and approaches for security evaluation of

different machine learning algorithms. Chapter 3 presents an attack model that has

been used to develop optimal attack strategies for DBSCAN, LOF and one-class SVM.

The security analysis of DBSCAN has been conducted in Chapter 4. This includes

developing an optimal attack strategy, bounding the efforts of the adversary, assess­

ing the vulnerability of DBSCAN to this attack and presenting a detection strategy

for the given attack strategy. Similar analysis has been conducted for LOF (Chapter

5) and one-class SVM (Chapter 6). We have then analyzed the transferability of

the adversarial samples generated for the poisoning attack among the three different

techniques in Chapter 7. Finally, our conclusions and future work is presented in

Chapter 8.

9

2 RELATED WORK

This chapter includes an overview of the related work on anomaly detection techniques

and approaches for security evaluation of different machine learning algorithms.

2.1 Anomaly Detection

Anomaly detection techniques consist of two phases, training and testing [31]. In

the training phase, models of normal behavior are derived from unlabelled or labelled

training data. In the testing phase, the models learned are queried to identify whether

the new data is anomalous or not. Anomaly detection is similar to noise detection [32]

- the main difference is that noise is irrelevant to an analyst but anomalies are of

interest. The main challenges faced during anomaly detection are ­

1. Identification of a normal region is difficult as one needs to encompass the entire

normal regions. Anomalies that are very close to the normal region are often

misclassified as normal data points.

2. The anomalies are very similar to noise, hence is it difficult to distinguish be­

tween anomalies and noise and generally requires a domain expert.

3. Anomalies	 are constantly evolving over time. In many applications, due to

the dynamic and evolving nature of the data the current concept of normal

behavior might not be adequately representative in the future. This is especially

relevant in security application like intrusion detection, fraud detection etc.

E.g., in intrusion detection, adversaries are constantly adapting themselves to

the changing environment so that they can circumvent the techniques [33].

The challenges in anomaly detection give the adversary an opportunity to exploit

their weaknesses to their advantage. As we explore in the following chapters, it is

10

these limitations which make it easy for an adversary to bypass the machine learn­

ing techniques. We now review clustering, nearest neighbor and classification based

anomaly detection techniques in detail.

2.1.1 Clustering Based Anomaly Detection

Clustering based anomaly detection is primarily an unsupervised technique that

groups similar patterns together. Clustering techniques can be further classified ac­

cording the following assumptions that the techniques rely on [1]

1. Normal data belongs to a cluster whereas anomalous data does not belong to

any cluster.

2. Normal data belongs to more dense clusters whereas anomalous data belongs

to sparse clusters.

3. Normal data lies closer to the cluster	 centroid whereas anomalous data lies

further away from the cluster centroid.

Domains where clustering based techniques are frequently applied include detect­

ing fraudulent credit card transaction [34, 35] and intrusion detection systems. In

credit card fraud, the data typically comprises of records which include information

about the user, credit card transaction amount, time between consecutive credit card

usage etc. The anomalous activities are generally point anomalies e.g., high pay­

ments, purchasing expensive items and items that have never been purchased before.

These anomalies can be easily identified using clustering as these point anomalies are

different compared to the rest of the training data.

Another instance where clustering is extensively used is intrusion detection [23,

36, 37] because a majority of the data is unlabelled. Even if we were able to obtain

data by simulating interactions it is difficult to get a good representative of a data set

which comprises of all the normal activities. Hence, clustering being an unsupervised

technique gives an advantage over other approaches.

11

DBSCAN [20] is a density based clustering algorithm that has been adopted for

various anomaly detection applications [21, 38, 39]. The general idea behind this

technique is to expand a cluster as long as the density of the neighborhood is above

the user defined threshold. The points that do not belong to any cluster are treated

as anomalies and are further investigated.

Several variants of DBSCAN have been proposed. Chen et al. [40] have used the

R∗ tree in DBSCAN for determining the neighborhood of an object based on the

radius. A hybrid structure using DBSCAN and KMeans [41] has been proposed to

improve the accuracy of the intrusion detection systems. DBSCAN has also been

successfully applied for clustering in evolving data streams [42].

2.1.2 Nearest Neighbor Based Anomaly Detection

Another approach for anomaly detection is nearest neighbor which is based on the

assumption that normal data is similar to its neighborhood whereas anomalies are

different as compared to its neighborhood. These techniques classify data based on a

distance or similarity measure, which can be computed in different ways. One of the

standard metric for continuous attributes is euclidean distance but other metrics have

also been applied [43]. Computing the similarity for multi variate data instances is

done by computing it for a single attribute and then aggregating it [43]. Categorical

attributes are more complex, but can be measured using chi-square statistic or more

complex measures [44].

These approaches are similar to clustering based techniques - they both compute

a function of distance to determine the similarity between data points. The key

difference is that clustering approaches take a global approach whereas these take a

local approach. Clustering techniques determine if a data instance falls in a cluster

or not; nearest neighbor determines how different a data point is in comparison to its

local neighborhood.

12

Nearest neighbor based anomaly detection techniques broadly use two different

approaches to compute the anomaly score of a data instance: [1]:

1. The first approach calculate the anomaly score as the distance between a data

point and its βth nearest neighbor; the higher the distance the more anomalous

a data point is.

2. The second approach is to compare the density of a data point to the average

density of its neighborhood.

In regions of varying densities, density based techniques perform poorly because

they consider global parameters of the data set rather than local parameters. Consider

a region where a sparse and a dense cluster exist. Let there be a data point which

is relatively at a shorter distance to the dense cluster as compared to the distance

between the data points in a sparse cluster but at a greater distance as compared

to the distance between the data points in a dense cluster. This data point will be

identified incorrectly as normal because even though it is a local outlier; it is still a

normal data point.

To address the problem of varying densities in a data set, a variety of techniques

have been proposed to compare the density of a data point to its local neighborhood.

These techniques calculate an anomaly score based on the relative density of each

data instance or the distance of its data instance to it’s βth neighbor. For a given

data point, to calculate the distance to its βth nearest neighbor we construct the

smallest hyper-sphere whose mass is at least β other instances and that is centered

at the given data point. The radius of this hyper-sphere is equivalent to the distance

to its βth nearest neighbor. Thus, the density of a data point is approximately the

inverse of the distance to the βth nearest neighbor for that data point. A data point

that is in a low density neighborhood is an outlier whereas a data point that lies in

a high density is considered to be a normal point.

Local Outlier Factor [24] is a nearest neighbor technique that assigns an anomaly

score based on the ratio of the average densities of a data instance’s β neighbors and

13

the density of the data instance itself. Researchers have proposed variants of the LOF

techniques. Multi-Granularity Deviation Factor (MDEF) [45], a variant of LOF was

proposed that calculates the anomaly score based on the standard deviation of the

local densities.

Tang et al. [46] proposed a connectivity based LOF which separates the notion

between density and isolation, thereby detecting outliers independent of the densities.

A simpler version of LOF was proposed by Hautamaki et al. [47]. They compute the

outlier factor using the in-degree Number for each data instance. Multi-Granularity

Deviation Factor (MDEF) [45], a variant of LOF was proposed that calculates the

anomaly score based on the standard deviation of the local densities. LOF has been

applied to finding anomalies in intrusion detection systems [25].

2.1.3 Classification Based Anomaly Detection

Classification techniques for anomaly detection are broadly grouped into two cat­

egories - multi class and single class. In multi-class, there are different normal-classes

to which the training data can belong [48] and an anomaly is any instance which does

not belong to any of the normal class. These techniques learn to distinguish between

different normal classes. A test instance is considered anomalous if it does not belong

to any of the normal classes. Another variant is to assign a confidence score to the

classification made by the model. If none of the classes has a confidence score above

the threshold, then the data instance is treated as anomalous.

In one-class classification the normal data belongs to a single class and anything

that does not belong to this class is considered anomalous. These techniques learn

by constructing a boundary around the majority of the probability of the data mass

by using a one class algorithm, e.g., one-class SVMs [49], one-class Kernel Fisher

Discriminants [50]. Any test instance that does not fall within the learned boundary

is classified as anomalous.

14

Support Vector Machines (SVMs) [30] have been applied to anomaly detection in

the one-class setting. Developed by Vapnik [51], SVMs view the classification problem

as a quadratic optimization problem to learn a region that contains the training

data. Complex regions are learned using kernels, such as radial basis function (RBF)

kernel. The majority of the normal data mass lies within this region and anomalies are

anything that lie outside this region. Variations of the above technique have been used

for anomaly detection in audio signals [52]; in host-based Intrusion Detection System

(IDS) for identifying anomalous access in the Microsoft Windows Registry [29]; in

hybrid models for high-dimensional and large-scale anomaly detection [53].

The SVM technique has applications for various anomaly detection systems like

system intrusion detection [54], road traffic [29, 55], audio signal data [52], wireless

sensor networks [56] and temporal sequences [27].

Another variant finds the smallest hypersphere in the kernel space that contains

all the training instances [57, 58]. A test instance is classified as anomalous if it lies

outside the hypersphere otherwise it is classified as normal. Robust Support Vector

Machines (RSVM) that are robust to anomalies have been proposed in Song et al.

[2002]. They achieve robustness in their algorithm by incorporating the distance

between the data point and the centeroid of the class to which it belongs in the

margin of the hyperplane. Their technique has been applied to system call intrusion

detection [Hu et al. 2003].

A hybrid of SVM and Linear regression has also been proposed by authors in

[59]. They use a sliding approach and the algorithm uses a Reproducing Kernel

Hilbert Space (RKHS) with Radial Basis Function (RBF) kernel. However, this

kernel requires the system to be in a steady state otherwise the accuracy of the

system decreases.

One of the advantage of the classification based methods over clustering and near­

est neighbor based methods is that they are faster because the test instance is classified

using a pre-computed model.

15

2.2 Adversarial Machine Learning

Machine learning has provided solutions for several different security applications

- filtering spam email, identifying malware, detecting attacks against servers by iden­

tifying malicious payload and intruders, identifying illegitimate credit card transac­

tions. All of these application employ models which are built using massive amounts

of data. These models are deployed in dynamic environments which necessitate s the

need for constant training and testing of these models. The existence of adversaries

in these environments, complicates the application of the machine learning technique

as it leads to an arms race between the defender building a state-of-the-art model

and an adversary trying to circumvent the technique.

Adversarial machine learning is the branch intersecting between machine learning

and security that aims to study the effectiveness of a machine learning algorithm

against an adversary and to learn the capabilities and limitations of the attacker.

Huang et al. [15] gave a taxonomy of attacks against a machine learning system.

They categorized the attacks based on influence or the capability of an attacker

(causative and exploratory), security violation (integrity, availability and privacy)

and specificity defined as attackers intention (targeted and indiscriminate). They

have presented a boiling frog attack for anomalous traffic detection in which they

inject the training data with chaff every week so that the detector gets acclimated

to chaff which eventually results in compromising the integrity of the system by

increasing the false negatives.

The attacks fall broadly in two categories ­

•	 Evasion Attacks: In evasion attacks the adversary aims to bypass the machine

learning technique at test time by crafting adversarial samples.

•	 Poisoning Attacks: In poisoning attacks the adversary aims at fooling the ma­

chine learning technique by manipulating the training data so as to cause a

concept drift.

We now review poisoning and evasions attacks and various defense techniques.

16

2.2.1 Poisoning Attacks

The aim of the poisoning attacks is to increase the misclassification rate by in­

jecting poisonous samples at training time. They are categorized into [19]:

•	 Indiscriminate attacks: In these attacks, the aim of the attacker is to cause

a denial of service by increasing the misclassification rate so as to render the

machine learning technique ineffective.

•	 Targeted attacks: These attacks aim at causing specific misclassifications.

Recently [60, 61], poisoning attacks have been studied against neural networks.

A popular example of the poisoning attack has been Microsoft Tay, which was an

artificial intelligence chat bot designed to talk to people on Twitter. However, it was

shut down after 16 hours because it started posting inflammatory and offensive tweets

learned from users who were tweeting offensive, politically incorrect and inflammatory

tweets about issues such as “redpilling” [62].

Another example of real world poisoning attack is Kaspersky Lab [63], a leading

antivirus company. They were accused of manipulating the antivirus software of

competing companies by injecting fake samples; though they said that they were

false accusations and denied any wrong doing.

Another application of poisoning attacks is the data sets which are publicly avail­

able for researchers and industry practitioners to develop state of the art technique.

E.g., if the self driving car datasets are poisoned then the damage that they can cause

in the worst case is the loss of human life.

We give an overview of poisoning attacks w.r.t anomaly detection methods in

general, and then clustering and SVM specifically.

Poisoning Attacks Against Anomaly Detection

Kloft et al. [64] have analyzed the online centroid based anomaly detection tech­

nique in the presence of an adversary. They have formalized the learning and the

17

attack process, derived an optimal attack policy and theoretical bounds on the ef­

ficacy of a poisoning attack in perfect knowledge and limited knowledge scenario.

Nelson et al. [65] have developed a model to analyze the efficacy of poisoning attacks

and demonstrate the feasibility of the attacks.

Fogla et al. [66], in order to avoid anomaly detection, have created polymorphic

instances of network packets. This ensures that the attack packet(s) are derived

from the same statistical distribution as normal traffic packets, thereby subverting

the anomaly detection approach. Rubinstein et al. [67] have applied the boiling frog

strategy to poison a PCA subspace anomaly detector and have shown that only a

moderate amount of poisoned data can substantially decrease the efficacy of the de­

tector. They have also proposed a robust anomaly detector based on robust statistics

to combat this attack.

Newsome et al. [68] have developed a red herring attack that involves poison­

ing the dataset with spurious features and can mislead the signature generation for

malware detection. They [69] have also implemented attacks against Polygraph and

have shown that an adversary even with correctly labelled samples can degrade the

performance of the learner.

Poisoning Attacks Against Clustering

Biggio et al. [70] have used single linkage hierarchical clustering to demonstrate

obfuscation and poisoning attacks thereby, evaluating the security of clustering algo­

rithms in adversarial settings.

Poisoning Attacks Against SVM

A number of attacks have been developed against support vector machines. Biggio

et al. [71,72] have proposed an attack strategy by contaminating the training data set

through label flipping. They have proposed two attack strategies - random label flips

and adversarial label flips. Two attacks models - free-range attack model that allows

18

for unrestricted data corruption by the adversary and a restrained attack model that

permits practical attacks by associating a cost for the adversary’s effort has been

developed by Zhou et al. in [73]. They have also developed optimal SVM learning

strategies against the two attack models. While this shares some similarity with our

work, our goal is different: estimate vulnerability to such attacks (including unknown

attacks). As a result, we concentrate on the minimal number of poison samples

for a successful attack, rather than developing attacks that are designed to evade

detection. Evasion attacks have also been developed using gradient based approach

in [11]. Biggio et al. have shown in [10] that an intelligent adversary has the ability

to predict the change of the SVM’s decision function and use it to construct malicious

data.

2.2.2 Evasion Attacks

Evasion attacks consists of perturbing data points to generate adversarial samples

which can be misclassified at test time. Examples include manipulating malware code

so that it bypass the detector, modifying an email to circumvent a spam filter etc.

They are classified into two categories [19].

•	 Indiscriminate Evasion Attacks: The goal of the attacker is to misclassify the

adversarial sample irrespective of which the class.

•	 Targeted Evasion Attacks: In this attack, the goal is to get an adversarial

sample misclassified to a given class.

The first evasion attacks was demonstrated on spam filtering [74–76]. The un­

derlying idea was to modify the bad words with the good words i.e., append a spam

email with a legitimate email. Further heuristic measures (like words that appear in

legitimate email but not in spam have a greater efficacy) were also developed based

on the knowledge that spam email is easier to collect than legitimate email. Barreno

et al. have illustrated different classes of attacks on SpamBayes [77]. Dalvi et al. [78]

19

have classified the classification as a game between the adversary and the learner.

The classifier produced by the game is optimal if the adversary’s strategy is optimal.

The next effort was to study the robustness of non linear classifiers. Srndic et

al. [79], demonstrated the effectiveness of an evasion attack against SVM based on

malicious and benign pdf files. They also showed that the gaussian kernel is immune to

these attacks. However, in the recent years this has been proven to not be true [11,80].

These authors have shown that non-linear kernels are as susceptible to attacks as

linear kernels. The underlying methodology was derived from finding a way to invert

complex non-linear classifiers, to identify the most relevant features and perturb them

to cause the maximum damage. The approach used was to calculate the gradient of

the loss function as it specifies the direction of the maximum change in the function

w.r.t the output.

The next attempt was to fool deep learning models. Szegedy et al. [81] showed

that it is possible to generate minimally - perturbed images called adversarial samples

which can be misclassified by neural networks at test time. Papernot et al. [82] have

shown that adversarial examples can be transferred from one model to another as

long as both were trained to perform the same task. Carlini et al. [83] have demon­

strated an attack that can be carried on audio samples in which the machine hears

intelligent voices but the human hears unintelligible voice. Evasion attacks have also

been applied to face recognition systems [84] in which images are accepted as inputs

rather than the actual face of a human being.

Having given an overview of the attacks, we now give an overview of the defenses:

2.2.3 Defenses against Adversarial Samples

1. Countering Evasion Attacks: Two approaches have been used to develop defen­

sive measures against evasion attacks [19]:

20

(a) Designing Secure Systems: This approach aims at designing secure systems

from the ground up, hence most of the approaches include adversarial sam­

ples in their training data. These defenses are mostly focussed on white

box attacks where the adversary has the knowledge fo the entire system.

The first adversary-aware classifier was proposed in [78], where they viewed

the classification problem as a game and then iteratively trained the classi­

fier. This produced a classifier, which is optimal given that the adversary’s

strategy is optimal. Various other game theoretic approaches have been

applied to develop robust classifiers. Globerson et al. [85], have developed

a min-max game for adversarial feature selection in which the adversary

has the capability to delete features with an upper bound on the number

of features that can be deleted. Robust optimization is also modeled as

a min-max game in which the inner optimization problem solves at max­

imizing the classifiers inaccuracy whereas outer aims at maximizing the

classifiers accuracy [72]. Bruckner and Scheffer [86] have shown the im­

portance of the existence of a unique Nash equilibrium for a single shot

adversarial prediction games and investigate whether it exists. Zhou and

Kantarcioglu [87] have extended the machine learning game to include dif­

ferent type of adversaries (some may modify only malicious data instance

whereas other may modify benign data instances) and different forms of

corruption (mild or aggressive). They have introduced a nested Stackel­

berg game to simultaneously deal with malicious data corruption and un­

known adversary strategy. Robust machine learning games has also been

modeled as Stackelberg games [88, 89] where the defender can control the

cost that the adversary has to pay to evade detection by being the leader

of the game. The effect of robust optimization is to smooth the decision

boundary so as to make it less sensitive to adversarial perturbation.

(b) Detecting Samples:	 Another approach for building secure systems is to

detect samples based on their distance from the training data in the fea­

21

ture space. If they are far away from the training data then the samples

are rejected [90, 91]. These techniques are employed when the adversarial

samples appear in a region which is scarcely populated by the training

data and hence are referred to as blind-spots.

2. Countering Poisoning Attacks: While most of the recent work has been concen­

trated on detecting evasion attacks, a few techniques have been developed for

poisoning attacks. Following are the techniques [19]:

(a) Adversarial samples as outliers. This is based on the assumption that ad­

versarial samples are derived from different data distributions as opposed

to the normal training data point to cause an impact on the decision bound­

ary and therefore can be treated as outliers. This is equivalent to solving

the problem of outlier detection and can be detected by using standard

anomaly detection approaches [92, 93].

(b) Security by Obscurity: These techniques follow the paradigm of protecting

the model by hiding the information from the attacker. They target black

box techniques in which the attacker queries the model to improve their

evasion attack or a substitute model built by them. Examples include

(i) randomly collecting training data points for building the model, (ii)

randomizing the output to give incorrect feedback to the attacker (iiii)

using classifier ensembles which are difficult to reverse engineer and (iv)

hiding the model or the training data.

22

3 ATTACK MODEL

The goal of this thesis is to provide a quantitative framework to do a “what-if” security

analysis of the different anomaly detection technique. To do so, we first provide a

framework to develop an attack strategy and then we determine how vulnerable the

anomaly detection technique is when subjected to such an attack. To develop an

attack strategy and to analyze the security of an anomaly detection technique we

have specified an adversary’s knowledge, capabilities and goals in accordance with

the taxonomy specified in [15].

1. Adversary’s Goal: We define the attacker’s goal in terms of security violation

and specificity as defined in [15].

(a) Security violations include the following:

•	 Integrity violations: Attack points are classified as normal.

•	 Availability: Render the system unusable by increasing false positives

and false negative.

•	 Privacy: Adversary violates the privacy of the user by using the infor­

mation observed from the learner.

(b) Specificity defines the intention of the attacker and includes:

•	 Indiscriminate: The attacker’s goal is to misclassify a general class of

points so as to increase the false positives and false negatives.

•	 Targeted: The goal of the attacker is focussed on a single point

We assume that the adversary want to perform a targeted attack which results

in an integrity violation. Specifically, the adversary has a particular (predeter­

mined, but unknown to the defender) point that they wish to have misclassified

as normal.

23

2. Adversary’s Knowledge: This is the extent to which an adversary knows about

the anomaly detection model and encompasses the following ­

(a) Anomaly Detection Algorithm:	 The machine learning technique that an

adversary wants to target. In order to build defensive systems, system

designers should assume that the algorithm is known by the adversary.

(b) Data: It is the data used to train and evaluate the model.

(c) Feature Space: This includes the features used in the training of the model

and includes relevant features learned by the model or specialized features

used by the algorithm.

We assume that while designing a secure system the “the enemy knows the

system” i.e., an adversary will have knowledge about the system. This is in

accordance with the current practices in the security community which embraces

the fact that a system should be secure even if everything about the system

except the key, is known to the adversary. We therefore consider two scenarios:

(a) Limited Knowledge: In limited knowledge, we assume that an adversary

knows only the distributions of the training data and the parameters of

the learned model.

(b) Perfect Knowledge:	 In perfect knowledge, the adversary has complete

knowledge about the system, including the training data and the parame­

ters of the learned model. For example, an attacker may have the ability

to eavesdrop on the network traffic that is being used to train the model.

We develop an attack strategy and compare the adversary’s effort for both

scenarios.

3. Adversary’s Capabilities: Adversary’s capability defines the extent to which the

adversary can control the learning of the model by manipulating the training

data set. We define it in terms of the influence (causative or exploratory) of the

attack as defined in [15].

24

(a) Causative:	 The attacker can alter the learning process by manipulating

the training data. The influence of the attacker over the learning process

can range from having control over a fraction of the data set to influencing

the data production (injecting fake data points).

(b) Exploratory: The attacker can probe the learned model to gain information

about it but cannot alter the training process.

We assume that the adversary can poison the dataset by creating fake data

points. This is applicable in various practical scenarios, e.g., in the case of

spam filtering [15], where the adversary may easily send malicious samples.

Malware code can also be manipulated in a constrained or an unconstrained

manner to poison the malware detector [94]. We assume that the capability of

an adversary is causative, i.e., generate fake data points to disguise the anomaly

point.

4. Attack Strategy:	 Once the adversary’s goals, knowledge and capabilities are

defined, we can develop an attack strategy by moving the decision boundary so

that the anomalous point lies within the boundary. Formally, the strategy can

be defined as minimizing the number of attack points that have to be added

so that the concept drift caused will result in the instance being classified as a

normal point. The attack strategy is illustrated in Figure 3.1.

A variant of the attack is when an adversary can adapt the data point once the

adversary knows the data. In this scenario, the data distribution remains the same

but given the distance between the anomaly point and the decision boundary; the

attacker can choose where to place the attack point based on the training data. Our

goal is to minimize the effort of the adversary to get the anomalous point misclassi­

fied. Therefore, this attack variant allows the adversary to adapt the data point by

modifying the features of the anomalous point so that it is closer to the cluster while

still retaining the capability to cause the same damage as before. This reduces the

effort of the adversary as it will be in a slightly more dense region.

25

Figure 3.1. Poisoning Attack resulting in Concept Drift

26

Analyzing the vulnerability of this attack fits into our attack model as we are

changing the location of the attack point; however the relative location of the attack

point w.r.t to the distance to the closest point on the decision boundary remains the

same. Therefore, this attack variant can be easily captured by the perfect knowledge

scenario of the attack point.

27

4 POISONING ATTACKS AGAINST CLUSTERING BASED ANOMALY

DETECTION (DBSCAN) AND DEFENSE

4.1 Introduction

Clustering, as an anomaly detection technique assumes that normal data belongs

to a large or dense cluster and anomalies do not belong to any cluster or belong

to a sparse cluster. DBSCAN [20] is a popular density based clustering algorithm

for anomaly detection and has been effectively applied in a variety of domains [21–

23]. The method assumes that the normal data lies in high density regions whereas

anomalies or outliers lie in low density regions. One of the advantage of density based

method is that they are good at discovering clusters of arbitrary shapes.

In this chapter, we evaluate how vulnerable DBSCAN-based anomaly detection is

to an attack where the adversary is unable to change their own data, but can create

fake entities to attempt to make their actual data look less like an anomaly. The

goal is to help the defender estimate the risk posed by such attacks by estimating the

effort required by the attacker to disguise the anomalous point under the constraint

that it cannot change the anomalous point.

4.1.1 Background

For completeness, we give a few definitions of the DBSCAN algorithm. DBSCAN

groups together points that are closely packed together marking low density region

points as outliers. For the purpose of DBSCAN the points are classified as core object,

(density-)reachable objects, and borders, as follows:

Definition 4.1.1 Core Object - A core object o w.r.t t and α is a data point such

that |NE(o)| ≥ α, where NE(o) is the t neighborhood of the object o, t is a user-defined

28

parameter specifying the radius of a neighborhood, α is the minimum no. of points

needed to form a dense region.

Definition 4.1.2 Directly Density Reachable: An object p is directly density reach-

able from o if o is a core object and p ∈ NE(o)

Definition 4.1.3 Density Reachable: An object p is density reachable from o if there

exists a path p1, p2, ..., pn, where p1 = p and pn = o such that pi+1 is directly density

reachable from pi and p2...pn are core objects.

Definition 4.1.4 Border Object: An object p is a border object if it is not a core

object but it is density reachable from another core object.

Definition 4.1.5 Density-Connected: An object p is density connected to an object

q if there exists an object o such that both objects are density reachable from o.

Definition 4.1.6 Density Based Custer: A cluster C is a non empty subset of D

such that it satisfies the following properties ­

1. ∀ (p,q) if q ∈ C and p is density reachable from C then p ∈ C.

2. ∀(p, q) ∈ C, p and q are density connected.

4.1.2 Framework

To analyze the vulnerability or the security of a system we need to identify the

adversary’s goals and its capabilities. To this end, we rely on the taxonomy specified

in [95] and adapt the framework described in Chapter 3.

Adversary’s goal

The attacker wants to perform an integrity violation by including the anomaly

(attack point) in the target cluster C.

29

Adversary’s knowledge

We assume that the adversary has knowledge of the training algorithm and in

many cases partial or complete information about the training set, such as its distri­

bution.

Adversary’s Capability

In general we assume that the attacker can generate arbitrary data points for

poisoning the training set.

Attack Strategy

Once the adversary’s goals and capabilities are defined, we can develop an optimal

strategy that specifies how to manipulate the dataset so as to meet the adversary’s

goal of obfuscating the anomaly. This can be achieved by making the neighborhood

of the anomaly point denser so that it “looks-like” a normal data point. This is jus­

tified under the assumption that a normal datapoint belongs to a larger and a denser

cluster. Formally, the strategy can be defined as minimizing the number of attack

points that have to be added so as to include the anomaly in a given existing cluster.

In formal terms, let A be the set of attack points, a be the anomaly point and C be

the target cluster. Then, the adversary strategy can be formulated as

min|A|, s.t. a ∈ C

Figure 4.1 depicts the expansion of the cluster as a consequence of an attack on the

anomaly detection technique.

30

Figure 4.1. Expansion of the cluster as attack points are added

31

4.2 Attack Strategy & Assessing Risk

4.2.1 Adversary’s Attack Strategy in Limited Knowledge Scenario

We now present the near-optimal attack strategy (or optimal if the adversary

knows only the data distributions). To do so, we exploit the property inherent in

DBSCAN that if a point is found to be in a dense part of a cluster, its t-neighborhood

is also part of that cluster. Let us assume that C containing the set of points is the

target cluster that the adversary wants to be included in and let a be the anomaly

point. The attack strategy is shown in 4.1. A reader can argue that it is easier to

add α points in the t neighborhood of the anomalous point a. However, that will be

a trivial attack and easily detectable as it will increase the number of clusters by 1.

We now present an algorithm for this attack.

Algorithm 1: Adversary’s attack strategy in Limited Knowledge Scenario

1. Find p ∈ C s.t. dist(a, p) = min(dist(a, C)).

2. Let dmin = min(dist(a, C)).

3. Let i = �dmin/t�.

1
1 = t, a
21 = 2 ∗ t
4. In a straight line between a and y place core points at a

i = i ∗ t.
a
1

We now give a proof of correctness for the above algorithm and then quantify the

bound on the adversary’s effort required to include the attack point in the cluster.

Note, that the attack can be reduced from a multi-dimensional space to a single

dimensional space because we are using the LK metric to measure the distances.

Proof of Correctness : DBSCAN in the ExpandCluster function [20], for a given

set of points in cluster C, includes all the points which are at a distance t from any

core point p ∈ C.
 At the first iteration, a
11 will be included in C as it is at t distance

from p. In the second iteration, a
21 will be included in C because it is at t distance

� �

� �

� �

� �

� �

� �

� �

32

i

1
1 and so forth. At i+1 iterations, a will be included in C because of
 from core point a

a
1.

Lemma 4.2.1 To add i core points in a straight line, the minimum number of points

that need to be added i.e., E[|A|]= α ∗ i/2 , where A is the set of attack points.

Proof If i = 1 , then the number of points needed to make a core object by definition

1 is α. If i is even, then every consecutive core point’s e-neighborhood will intersect,

hence E[|A|] = (i/2)*α. If i is odd, then the E[|A|] = (i/2 + 1)*α. Hence, E[|A|]=

α ∗ i/2

Theorem 4.2.1 For any |D| and n, let dmin = min(dist(a, C)) , where

• a is the anomaly point

• min(dist(a, C)) is the minimum distance from a to the cluster C.

Then, |A| = (α) ∗ dmin/(2 ∗ t)

Proof ∀n :dist is a function (Lk metric) that takes a and a point in C and returns

a non-negative number, thereby reducing the n-dimensional attack to 1-dimensional.

From the above argument and Lemma 4.2.1, it immediately follows that ∀ n,

|A| = (α) ∗ dmin/(2 ∗ t) .

∀|D|: We will use induction to prove that irrespective of the size of the set of data

points the size of the set of the attack points for DBSCAN is (α) ∗ dmin/(2 ∗ t) .

For |D| = 1: Let da = dist(a, p). As p is the only point in the cluster C, from

the above argument, we have to add only one core point o so as to include y in the

2nd iteration. From Definition 1, a core object o is a data point such that |NE(o)| ≥ α.

In order to make o a core object, we have to add α − 1 data points in its t neighbor­

hood. It follows that |A| = (α) ∗ dmin/(2 ∗ t) , which includes one core object and

α − 1 directly density reachable objects.

� �

� �

� �

33

For |D| = t : Let us assume it to be true for D = t and let dt = min(dist(a, C)).min

For |D| = t + 1: We assume that a point is added to the Cluster C as our target

is to include a in C i.e., a ∈ C. Let at+1 be the point that has been added and let �
dt+1
min = dist(a, C at+1).

Case 1 : If dt+1 ≥ dt min min then adding at+1 point to D does not change the attack points

or the attack set size as it is not the minimum distance from the cluster C to a.

If dt+1Case 2 : < dt then the attack set size changes to |A| = α ∗ dt+1 /(2 ∗ t)min min min

dtfrom |A| = α ∗ min/(2 ∗ t) . This argument follows immediately from Lemma 1 and

how we choose i in Algorithm 1.

Hence, ∀|D|, |A| = (α) ∗ dmin/(2 ∗ t) .

4.2.2 Attacker’s Attack Strategy in Perfect Knowledge Scenario

In the previous subsection, we presented the attackers optimal attack strategy in

a limited knowledge scenario and bounded the effort required by the attacker as a

function of the size of the attack dataset. In this section, we aim to analyze whether

an adversary can do better when the adversary has knowledge of the training data set.

The intuition behind reducing the number of attack points needed by an adversary, is

that there is a low density region between the border of the cluster C (that an anomaly

point wants to be included in) and the anomaly point. A small note - by low density

region we refer to a region of radius t that does not have enough data points to form

a cluster. A combination of these data points and the attack points added by the

adversary can transform a border object to a core object, thereby reducing the effort

required by the adversary in terms of the size of the set of the attack points i.e., |A|.

Let us define this low density region by R satisfying the following properties:

1. R ⊂ D

2. R /∈ C

34

3.	 ∀r ∈ R, (dist(r, a) ≤ dist(y, a)) ∧ (dist(r, y) ≤ dist(y, a)), where y is the border

point of C

To quantify the reduction in the effort of the adversary, we have to calculate the

expected value of the size of this region. To do so, we propose a model and make

a few assumptions about the distributions of the data. We now formally state the

assumptions and proceed to calculate the size of R.

Assumptions:

1. The Euclidean distances between the data points and the centroid of the cluster

is drawn from a Gaussian distribution Y ∼ N(µ, σ) with distances within the

range (µ ± 6σ2).

2. We assume the distance of the anomaly point from the border of the cluster is

dmin = min(dist(a, y)) as defined in Section 3.2.2. Let dmin be represented as

b ∗ t, where b is some constant.

3. Since t is a parameter which represents distance we can rewrite t as c ∗ σ where

c is some constant.

4.	 ∀r ∈ R, dist(r, y) ≥ 2σ, where y is the centroid of C. It is a reasonable assump­

tion because of the two sigma effect of Gaussian distributions.

Based on these assumptions we calculate the expected size of R as follows:

+ E−2σ−3∗EE|R|=E−2σ−2∗E(Y) (Y) + + E−2σ−b∗E (Y) ,−2σ−E −2σ−2∗E	 −2σ−(b−1)E

where a ∗ t = dmin

=E−2σ−2cσ + E−2σ−3cσ
(Y) (Y) + + E−2σ−bcσ (Y)−2σ−cσ −2σ−2cσ	 −2σ−(b−1)cσ

=Ec2 (Y) + Ec3 (Y) + + Ecb (Y) , c1 c2	 c(b−1)

where c1 = (−2 − c) ∗ σ, c2 = (−2 − 2c) ∗ σ, ..., cb = (−2 − bc) ∗ σ

= |D| * Pr((c1) ≤ Y ≤ (cb))

1 cb − µ) c1 − µ)
E|R| = |D| ∗ [erf() − erf()],	 (4.1)

2 σ (2) σ (2)

where erf is the error function.

� �

35

Theorem 4.2.2 For any |D| and n, if an adversary has perfect knowledge about the

training data, then |A| = (α) ∗ dmin/(2 ∗ t) − E|R|

Proof This immediately follows from how we have defined R and Theorem 4.2.1.

Extension to Multiple Disjoint Clusters:

We have so far assumed that there is a single cluster for the adversary to be

included in. We now extend our method to include disjoint clusters. Let there

be k disjoint clusters and we assume that each cluster is drawn from a Gaussian

Distribution Y ∼ N(µ1, σ1), ..., Y ∼ N(µk, σk). The size of each cluster is |Ck|, s.t. i=k
i=1 |Ck| = |D| and {Ci} ∩ {Cj } = ∅. To calculate the E|R|, we find the cluster

C = {Cj } which is closest to the anomalous point a. The value of the E|R| is

calculated similarly as when there is one cluster with two differences:

1. The value of the size of the cluster changes from |D| = |Dj |.

2. For any other cluster Ci, where i = j, we calculate the number of points in the

t neighborhood of the anomalous point a that is contributed by Ci. Since the

clusters are disjoint and we are adding attack points between the cluster Cj

(closest to a) and a, the addition of attack points is not in the neighborhood

of any cluster Ci, where i j.= Therefore, we only need to evaluate whether

a cluster Ci has any normal points in the t neighborhood of a. To do so, we

assume that the anomalous point a is at a distance di from the mean µi of the

Ci. The expected value of t neighborhood (NE
i(a)) of the anomalous point a

that is generated by Ci is given by:

E|N i(a)|=Edi+E(Yi)E di−E

= |Di| * Pr((di − t) ≤ Yi ≤ (di + t))

1 di − t − µi) di + t − µi)E|NE
i(a)| = |Di| ∗ [erf() − erf()], (4.2)

2 σi (2) σi (2)

36

Therefore, the expecated value of the size of the low density region R, is given by

1 δc1 − µj) δ1 − µj) �
E|R| = |Dj | ∗ [erf() − erf()] + E|NE

i(a)| (4.3)
2 σj (2) σj (2)

i�=j

4.2.3 Vulnerability to the attack

So far, we have developed an attack strategy and have bounded the efforts re­

quired by the adversary. We now assess the vulnerability to this attack under this

attack strategy by analyzing how the false positives and false negatives change with

the increase in the number of attack points. A false positive is any error when an

anomaly detector (incorrectly) rejects a benign input; we measure the change in this

rate with the increase in the number of attack points, whereas false negative is the

term used to describe a network intrusion device’s inability to detect true malicious

events. To do so, we model the distances of the data points and the attack points

from the centroid of C being derived from Gaussian distributions. The goal of this

model is to predict the likelihood that an attacker will succeed given the ability to

generate some number of fake points. We now state the assumptions formally for our

model and then calculate the expected false positives and the false negatives.

Assumptions:

1. The Euclidean distance’s between the data points and the centroid of the cluster

is drawn from a Gaussian distribution Y ∼ N(µ, σ) with distances within the

range (µ ± 6σ), where µ = 0.

2. We assume that there is only one adversary i.e., there is only one anomaly point.

3. A false positive is any point p s.t. p ∈ D and p /∈ C.

4. To model false negatives, we assume that a false negative is any point	 a s.t.

a ∈ A ∩ C.

�

37

Based on our assumptions, we can calculate the expected false positives as follows:

E(FP) = p ∗ Pr(pfp), where (4.4)
p∈D

p(pfp) = Pr(p ∈ D|p /∈ C) (4.5)

To simplify the calculation of Pr(pfp), we assume that there exists a point λ = c/σ

s.t. all the data points sampled from the range (µ − λ, µ + λ), are a part of cluster

C. Since we are assuming that the distance between the data points and the centroid

of the cluster are drawn from a Gaussian distribution, we can safely say that the

density decreases as we move away from the mean of the Gaussian distribution. I.e.,

the centroid of the cluster has a high density region whereas the border of the cluster

is in a low density region. Let us assume that the border of the cluster is at the point

λ. The expected density of this region S is E|Sλ| = |D| * Pr(−λ ≤ Y ≤ λ), as µ = 0.

A false positive will be any point which is not in this region. Therefore,

E(FP) = |D| − (|D| ∗ Pr(−λ ≤ Y ≤ λ))

1 λ − µ) −λ − µ)
E(FP) = |D| − (|D| ∗ ([erf() − erf()]) (4.6)

2 σ (2) σ (2)

For completeness, Algorithm 2 describes the process to calculate the value of γ.

Algorithm 2: Calculating the value of λ

1. Let λ = t. Therefore, the range is (−t, t)

2. E(Sλ) = |D| ∗ Pr(−λ ≤ Y ≤ λ)

3. ctr = 1

4. while E(Sγ) ≥ α
D

λ = (ctr + 1) ∗ t

range r =(−λ, −λ + 2 ∗ t)

E(Sλ) = |D| ∗ Pr(Y ∈ r)

ctr++

Proof of Correctness : We are assuming that the distances are drawn from a

Gaussian distribution with mean µ = 0, therefore the density of any area is maximum

38

around µ and decreases as we move further away from the mean µ. This ensures that

the expected value of the density of a cluster will be maximum around the mean of

the Gaussian distribution with its density monotonically decreasing with the increase

in the distance from the mean. Also, for every point DBSCAN scans a region of

radius t which justifies setting the range as 2*t. Based on these two facts we can say

that the algorithm correctly computes the value of λ.

We now assess the vulnerability of the attack in terms of false negatives. According

to our model, the expected false negatives will be |A| + 1 as we are assuming only

one adversary and if the adversary adds an attack point, then according to the attack

strategy specified in Section 4.2.1 and Section 4.2.2 it will be a part of C.

4.3 Experiments & Discussions

In the previous sections, we have bounded the efforts of the adversary and assessed

the vulnerability for an obfuscation attack using poisoning and have modeled the

impact on DBSCAN. We now apply our theoretical results to the real world domain

of intrusion detection and validate our theoretical model. We use a greedy approach

to determine the adversary’s optimal strategy with perfect knowledge. While this is

worst-case exponential, we were able to calculate this in our test datasets, allowing

us to validate the defender’s estimates.

Experimental Setup

We now describe the experimental setup and the parameters for each of the

dataset.

1. KDD Cup ’99 Dataset [96]: From this dataset, we have randomly sampled 700

normal data points from the training data set i.e., |D| = 700. We also assume

that there are 5 different types of adversaries corresponding to the 5 different

attack types (back, neptune, teardrop, nmap and ipsweep). For each attack

39

type we average out our results over 10 different instances. For the dos attack

we have set α = 30 and t = 0.4. These parameters ensures that every instance

of every adversary type is detected i.e., True Negative Rate = 0. For the user

to root attacks we have set the parameters as α = 30 and t = 0.12. We also

assume a constant false positive rate of 0.02 and the evasion rate to be 0 when

the initial training data set is trained.

2. Yahoo S5 [97] : We have randomly sampled 700 normal data points from the A4

benchmark. We assume that there is one type of adversary marked as change-

points and have averaged out the results over 10 randomly sampled instances

of the adversary. For this anomaly detection dataset, we have set α = 30 and

t = 0.4 ensuring the True Negative Rate is 0. The False Positive Rate is set to

be 0.01.

3. Thyroid dataset [98]: For this dataset we have set t = 0.4, α = 30 and the False

Positive Rate as 0.02.

4. Credit Card fraud detection dataset [99] from the Kaggle repository.	 We have

set t = 0.8, α = 30 and the initial FPR is 0.016.

5. CICIDS2017 Intrusion Detection Dataset [100]	 - This dataset is published by

the Canadian Cybersecurity Institute. From this dataset, we have chosen the

DoS Hulk attack type and selected the features as proposed in [100]. We have

chosen t = 0.5, α = 30 and the False Positive Rate (FPR) to be 0.004.

4.3.1 Estimation of Adversary’s Effort

In this experiment we aim to estimate the effort required by the adversary in terms

of the attack size. Our results are presented in Figures 4.2 & 4.3 and demonstrate the

number of attack points required to carry out the obfuscation attack. The results are

also compared to the attack size predicted by the model developed in Section 4.2.2

in a Perfect Knowledge and Limited Knowledge Scenario.

40

Figure 4.2. Adversary’s Effort - KDD’99 Dataset

Figure 4.3. Adversary’s Effort - Thyroid, Credit card, Yahoo & CIDSC’17 datasets

41

The results presented in Figures 4.2 & 4.3 validate that the effort required by the

adversary is a worst case bound and he can always do better than the worst case.

However, the efforts predicted for the adversary in a perfect knowledge scenario is

comparable to the efforts required by the adversary in the real world situation. Thus,

the model in the perfect knowledge scenario can be used as a reasonable indicator

of the vulnerability of the method to the poisoning/obfuscation attack. Another

interesting observation is that the adversary on an average needs to control only 6%

of the training dataset to carry out a targeted attack.

4.3.2 Analyzing the Evasion Rate

We now assess the impact of this attack on DBSCAN by analyzing how the evasion

rate of an adversary changes with the increase in the attack size. Figure 4.4, 4.5, 4.6

illustrates the evasion rate for the various attack types and compares it to the rates

predicted by the model.

An interesting observation from the graphs is that on an average, an adversary

only needs to control 5% of the training data set to increase the chances of evasion

from 0 to 80%. We also observe here, that the minimum cluster size (α) effects the

size of the training set that the adversary needs to control. The reason is intuitive,

with a smaller α the effort required to create a core object will be less as compared to

a bigger α. We have assumed the minimum cluster size to be 30 or 4% of the training

data size. Of note is that there seems to be a fairly clear percentage of the data the

adversary needs to be able to poison, at which the attack is likely to succeed; this is

fairly well matched by the predicted rate.

4.3.3 Analyzing the Vulnerability to the Attack

We have analyzed the adversary’s efforts and the probability of the success of

the attack in the previous attack. We now assess the vulnerability of this attack by

analyzing the change in the false positive rate of the anomaly detection approach

42

Figure 4.4. Probability of Evasion vs. Size of the Attack Set: KDD
Cup’99 Dataset & dos attacks

Figure 4.5. Probability of Evasion vs. Size of the Attack Set: KDD
Cup ’99 Dataset & u2r attacks

43

Figure 4.6. Probability of Evasion vs. Size of the Attack Set: Yahoo
S5, Thyroid, IDS & Credit Card Anomaly Detection Dataset

44

Table 4.1.

Adversary’s vulnerability to Attack for the Anomaly Detection Datasets

Attack Type Original FPR FPR Post At­

tack

Expected FPR

back (a1) 0.024 0.014 0.024

neptune (a2) 0.024 0.016 0.023

teardrop (a3) 0.024 0.013 0.023

nmap(a4) 0.017 0.003 0.015

ipsweep(a5) 0.017 0.004 0.015

Yahoo S5 0.01 0.007 0.00

Thyroid 0.04 0.04 0.035

Creditcard 0.016 0.013 0.001

CICIDS2017 0.004 0.004 0.001

and comparing it with the prediction of the model developed in Section 4.2.3. The

changes in the FPR are presented in Table 4.1.

As it can be seen from Table 4.1, the actual and the expected false positive rates

decrease with the increase in the attack points. This is counterintuitive because an

attacker would want to increase the false positives so as to render the system unusable.

However, our goal here is to perform a targeted attack which results in the expansion

of the size of the cluster, ultimately leading to the false positives being included in

the cluster resulting in a decrease in the false positive rate. Unfortunately, there is

not a huge difference in the actual and the original false positive rates thereby letting

the attacker carry out the attack stealthily without an obvious and easily detected

increase in the false positive rate.

45

4.4 Detection of the Attack

In the previous section we have analyzed the efforts of the adversary required to

subvert the DBSCAN anomaly detection approach and have predicted the vulnera­

bility to the attack. Here, we present a method to detect the attack. Note: a simple

approach to detect the attack would be to decrease the value of t to make the bounds

more tighter and as a consequence increasing the adversary’s effort. However, this

approach will lead to an increase in the number of false positives rendering the system

useless.

To detect the attack points we propose to use random perturbation of data points.

The intuition behind this is that since normal data points are in a high density region;

perturbation by a small value η « t is not going to make them an outlier. To

understand why we use this heuristic, let us consider a normal data point p. It is

a normal data point because it’s distance from a core point is ≤ t; and with high

probability it is in a region of more uniform density as compared to the anomalous

point a. This is because according to the attack strategy developed in 4.2.1, with high

probability, there is a high narrow dense region between the anomalous point and the

cluster C. This follows, from the fact that the attack points are added in a straight line

between the anomalous point a and the point pi ∈ C s.t. dist(a, pi) = min(dist(a, C)).

Therefore, the attack points which are added are not randomly spread out but are

concentrated in the narrow region as shown in Figure 4.1. Hence, if we perturb the

anomalous point by a small value (η), the probability of it being misclassified will be

higher than that for a normal point. A reader, could argue that the attacker could

uniformly add points in the hypersphere centered at the anomalous point a, but then

the attacker would require more effort and it will be easier to detect because a new

cluster will be formed.

The results of applying our strategy and the effect on the change in the false

positives and the amount of perturbation required is presented in 4.2. They indicate

that we only need to perturb the data on an average 11% to classify the anomalous

46

Table 4.2.

Change in FPR when detecting the attack

Attack Type FPR after At­

tack

FPR Post De­

tection

Perturbation

Added to the

Dataset

back (a1) 0.024 0.032 0.1

neptune (a2) 0.024 0.032 0.05

teardrop (a3) 0.024 0.068 0.03

nmap(a4) 0.0017 0.027 0.1

ipsweep(a5) 0.017 0.03 0.1

Yahoo S5 0.007 0.017 0.13

Thyroid 0.04 0.04 0.1

Credit card 0.013 0.021 0.1

CICIDS2017 0.004 0.05 0.3

points as outliers, however this methods leads to an increase in the number of false

positives.

4.5 Conclusions

In this chapter, we have addressed the problem of evaluating the security of DB­

SCAN in adversarial conditions by providing an attack strategy and then a frame­

work to bound the adversary’s efforts and to assess the vulnerability to an attack.

We have provided an optimal strategy in both perfect knowledge and limited knowl­

edge scenarios and have proposed a model to estimate the effort of the adversary and

vulnerability to the attack. We have demonstrated with real world datasets that DB­

SCAN is vulnerable to an obfuscation attack with a minimal amount of effort from

47

the adversary, and that we can effectively model the vulnerability to such attacks.

Lastly, we have presented a detection strategy for identifying the poisonous points.

One of the main causes for the vulnerability of DBSCAN is because it solely relies

on the distances between two points to determine if they will be included in a cluster or

not, thus allowing for an efficient construction of an optimal policy for an obfuscation

attack. We can also reasonably assume that density based clustering are more robust

to availability attacks than to integrity attacks. Availability attacks render the system

unusable by causing a high number of misclassifications (i.e., high false positives and

high false negatives). Integrity attacks are the attacks that result in anomaly points

being classified as normal points. This is evident as both the experiments and our

model predict a decrease in the false positive rate with an increase in the true negative

rate.

48

5 POISONING ATTACKS AGAINST NEAREST NEIGHBOR BASED

TECHNIQUES (LOF) & DETECTION

5.1 Introduction

Nearest-neighbor based techniques for outlier detection broadly use two methods

to compute a data instance’s outlier score - the distance to its βth nearest neighbor,

where β is the user defined parameter and indicates the number of points to be in­

cluded in the neighborhood of an object, or the relative density of each data instance.

Local Outlier Factor (LOF) is a technique that uses relative density to compute its

neighborhood. The main difference between LOF and DBSCAN is that LOF cap­

tures a local view of the data and hence can detect anomalies that are undetected

by DBSCAN. The local density of a data instance is inversely proportional to the

average density of its β neighbors. The outlier score in LOF is the ratio of its density

to the average density of its β neighbors. For inliers, the LOF score is approximately

1 as its local density is approximately the same as of its neighbors. For outliers, the

LOF score is greater than 1.

In this chapter we will address the problem of evaluating the security of nearest

neighbor based anomaly detection in adversarial conditions and extend the model

developed previously to predict the efforts of the adversary when the technique is

Local Outlier Factor (LOF). LOF compares the local density of an object to its

neighbors to identify outliers. The attack strategy will be similar to DBSCAN for

poisoning the training dataset. Our goal will be to analyze the vulnerability of LOF

to this attack.

�

49

5.1.1 Background

LOF calculates the anomaly score by comparing the ratio of the average of the

densities of its β neighbors to its own distance, where β is a user defined parameter.

To calculate the density of a data point, it finds the hypersphere that contains β

closest neighbors of the data point and then divides the mass of that hypersphere

(β) by the volume of that hypersphere. For the sake of completeness, we now define

LOF.

Definition 5.1.1 β-distance of an object o is the distance dist(o, β) between the ob­

ject o and it’s β Nearest Neighbor.

Definition 5.1.2 β-distance neighborhood of an object o, Nβ(o): contains every ob­

ject p ∈ D (training set), whose distance from o is not greater than dist(o, β).

Definition 5.1.3 Reachability distance of an object p w.r.t. o: reachdistβ (o, p) =

max(β − distance(p), dist(o, p)).

Definition 5.1.4 Local Reachability Distance of o w.r.t. β:

1
 rdβ (o) = (5.1)

(reachdistβ(o, p))/|(Nβ(o)|)p∈Nβ (o)

Definition 5.1.5 Local Outlier Factor of o w.r.t β =

 rdβ (p)
LOFβ (o) = ()/|Nβ(o)| (5.2)

 rdβ (o)
p∈Nβ (o)

Let directmin(o) denote the minimum reachability distance between o and p s.t.

p ∈ Nβ(o). Similarly, let directmax(o) denote the corresponding maximum. Let

indirectmin(o) denote the minimum reachability distance between o and q s.t. p ∈

Nβ(o) and q ∈ Nβ(p). Let indirectmax(o) denote the corresponding maximum. The

following theorem gives a bound on the LOF value.

Theorem 5.1.1 [24]. Let o be an object from the training set D, and 1 ≤ β ≤ |D|.

Then, it is the case that

50

directmin(o)	 directmax(o)≤ LOFβ (o) ≤indirectmax(o)	 indirectmin(o)

Proof For proof, please see [24].

We now give a lemma, that proves that the value of objects deep inside a dense region

is approximately 1.

Lemma 5.1.1 [24] Let the collection of objects in the dense region be C. Intuitively,

C is a cluster. Let reach-dist-min denote the minimum reachability distance of objects

in C i.e., reach-dist-min=min {reach-dist(o,p) |o, p ∈ C}. Let reach-dist-min be the

corresponding maximum. Let θ be defined as (reach-dist-max/reach-dist-min - 1).

Then for all objects o ∈ C, such that all the β-nearest neighbors of o and p are in C,

it holds that 1/(1 - θ) ≤ LOFβ(o) ≤ (1 + θ).

Proof See [24].

5.1.2 Framework

We adapt the framework described in Chapter 3 to build the attack strategy:

•	 Adversary’s Goal: The adversary wants to perform a targeted attack (a prede­

termined point unknown to the defender) i.e., misclassify the anomalous data

instance.

•	 Adversary’s Knowledge: We consider two scenarios (i) complete knowledge ­

adversary has access to the training data & parameters of the model, (ii) limited

knowledge - adversary knows only the data distribution.

•	 Adversary’s Capabilities: The capability of an adversary is causative, i.e., he

can generate fake data points to disguise the anomaly point.

•	 Attack Strategy: Once the adversaryś goals, knowledge and capabilities are

defined, we can develop an attack strategy. This is achieved by making the

51

neighborhood of the anomaly point denser so that it “looks-like” its neighbors

thereby, ensuring that the average densities of a data instance’s β neighbors and

the density of the data instance are approximately equal. It is justified under

the assumption that normal data lies in a dense area whereas anomalous data

lies in a less dense area. Formally, the strategy can be defined as minimizing

the number of attack points that have to be added so that the anomaly score

calculated for the data instance will result in the instance being classified as a

normal point. Let f be a function which takes the anomaly score (LOF for our

purposes) as its inputs and returns a class label {−1, +1}, where -1 indicates an

outlier and +1 indicates an inlier, A the set of attack points and a the anomaly

point. The attack strategy can be formulated as ­

min|A|, s.t.f(LOF (a)) = +1 (5.3)

5.2 Attack Strategy & Assessing Risk

5.2.1 Adversary’s Attack Strategy in Perfect Knowledge Scenario

We now present the attack strategy when the adversary has knowledge about the

algorithm parameters and training data. We do so by adding attack points to increase

the density of the anomaly points while ensuring that the density of the normal points

does not increase. As a consequence, the average density of the neighbors becomes

equal to the density of the anomaly point a. Note, a reader can argue that the

simplest attack strategy is to add β points in the anomalous neighborhood. However,

our goal is to estimate if we can do better than the worst case.

Before we present the attack strategy we define a hypersphere R as follows ­

Definition 5.2.1 Let there be a hypersphere centered at the anomaly point a with

radius directmin(a) − indirectmax(a).

52

We now prove that this region will exist. To prove that the region exists we just have

to show that directmin(a) > indirectmax(a).

Lemma 5.2.1 For any point a which is classified as an anomaly by LOF directmin(a) >

indirectmax(a).

Proof For a point to be classified as anomaly, it should be in a less dense region as

compared to its neighbors. Therefore, LOFβ (a) ≥ 1, which immediately follows from

Lemma 5.1.1 and the fact that the average density of its neighborhood is higher than

its density. Hence, from Theorem 5.1.1 it follows, that directmin(a) ≥ indirectmax(a)

as LOF (a) ≥ 1.

The attack strategy is presented in Algorithm 6 and illustrated in Figure 5.1. Note,

in the figure we have represented directmin as dmin and indirectmin as imin. Similarly,

for directmax and indirectmax.

Algorithm 3: Adversary’s attack strategy in Perfect Knowledge Scenario

Let Nβ(a) = p1, p2, ..., pβ be the β neighborhood of a as defined in Definition

5.1.2 sorted in nondecreasing order

Let p be the point s.t. p ∈ Nβ (a) and has the minimum reachability distance

from i.e., reachdistβ(a, p) = min{reachdist(pj , a)|pj ∈ Nβ (a)}

i := 1

while LOFβ(a) ≥ 1 do
Add attack point ai ∈ A in R s.t. dist(ai, p) < directmin(a)

Nβ(a) = Nβ (a) − pβ + ai

Update p according to the updated Nβ (a)

i ++

end

We now give a proof of correctness for the above algorithm and then quantify the

bound on the adversary’s effort required to include the attack point in the cluster.

53

Figure 5.1. Illustration of the attack strategy

Proof of Correctness: To prove the correctness of the algorithm we first prove

that the algorithm at each iteration increases the density of the anomaly point a

by reducing the value of the local reachability density of the anomaly point. We

are adding a point s.t. dist(a, ai) < dist(a, pβ). This, follows from the fact that

dist(a, ai) < directmin(a) ≤ dist(a, pβ). Hence, at every iteration the density of the

anomaly point decreases by pβ to pβ−1.

We now prove that the density of a point pi ∈ Nβ(a) does not increase. Note,

we are adding a point ai s.t. ∀p ∈ Nβ (a), dist(ai, p) ≥ indirectmax(a). This, follows

immediately from how we have defined R. Hence, the density of a point in the high

density region of Nβ (a) does not increase.

To carry out the attack stealthily we add the constraint that dist(ai, p) < directmin(a).

The intuition behind adding this constraint is to ensure that the attack points will

not be false negatives by adding them in the region between the anomaly point and

the cluster. Note - we have chosen to update the value of LOFβ (a) = 1 because of

54

Lemma 5.1.1. �

We now quantify the effort required by the adversary. Let |ND A
(a)| be the β

neighborhood of a which contains points from the dataset D and the attack set A.

Further, let us assume that rdβ−avg(a) is the average local reachability of the β­

neighborhood of the anomaly point a after attack points are added i.e., rdβ−avg(a) = � irdβ (pj)D A
pj ∈N (a) �β

D A . Let the initial local reachability distance of a before any attack
|N (a)|β

point is added be rdβ−ini(a). Let the change in the rdβ−ini(a) due to the change
min the β neighborhood of a at iteration i be represented by δi. Let m ∗ δ = i=1 δi,

where m is the number of iterations or the number of attack points added. Therefore,

 rdβ−fin(a) = rdβ−ini(a) - m ∗ δ.

Theorem 5.2.1 Let rdβ−avg(a), rdβ(a), m , δ be defined as above, then � irdβ (pj)
pj ∈N

D A �|A| = m ≈ (rdβ−ini(a) − β (a)
)/δ.D A|N (a)|β

Proof From Lemma 5.1.1 it follows that to make an anomaly point normal, the

LOF of the point should be approximately 1. Therefore, �rdβ (pj)�
D A

pj ∈N (a) �rdβ−fin(a) �LOFβ(a)=
β

D A ≈ 1
|N (a)|β � irdβ (pj)D A

pj ∈N (a) �= β
D A ≈ 1

(irdβ−fin(a))∗(|N (a)|)β � irdβ (pj)D A
pj ∈N (a)

= β � ≈ rdβ−fin(a)D A|N (a)|β � irdβ (pj)D A
pj ∈N (a) �= β

D A ≈ rdβ−ini(a) − m ∗ δ
|N (a)|β � irdβ (pj)D A

pj ∈N (a) �m ≈ (rdβ−ini(a) − β)/δD A|N (a)|β

5.2.2 Adversary’s Attack Strategy in Limited Knowledge Scenario

We now bound the efforts of the adversary who has knowledge about the distribu­

tion of the data and its algorithm parameters but not the actual data. A brute force

approach for making an anomaly point to look like normal will be to add β points in

its neighborhood i.e., |A| = β, thereby ensuring that the average reachability distance

55

of its neighborhood is the same as the reachability distance of the anomaly point. In

this section, we aim to analyze whether an adversary can do better than the brute

force approach with only limited knowledge about the data. Intuitively, we can use

some of the existing normal data points in addition to the attack point to increase

the density of the anomaly point so that it equals to the average density of its β­

neighborhood. Note: we can reduce the attack from a multi-dimensional space to a

single dimensional space because we are using the Lk metric to measure the distances.

We assume, that there is one high dense region C which is a subset of D To do so, we

make a few assumptions as follows ­

1. The distances are drawn from a Gaussian distribution	 Y ∼ N(µ, σ) with the

distances within the range (µ ± 6σ).

2. The anomaly point is at a distance dist(a, µ) = c1 ∗ σ from the mean µ of the

distribution, where c1 is some constant.

Let us assume that the local reachability distance i.e., the area of the β-neighborhood

of the anomaly point “a” before attack points are added is dist(a, µ) ± l1. After, we

add the attack points let the new local reachability distance be dist(a, µ) ± l2, where

l2 < l1. The local reachability distance will decrease as we are increasing the density

of the anomaly point, hence l2 < l1. Since l2 is a constant, we can rewrite it as

l2 = c2 ∗ σ, where c2 is some constant. Based on the above assumptions, we calculate

the density of the region S which lies between dist(a, µ) ± l2:

Edist(a,µ)+l2 E(c1+c2)∗σE(|S|) = (Y) = (Y)dist(a,µ)−l2 (c1−c2)∗σ

= |D| * Pr(c1 − c2) ≤ Y ≤ (c1 + c2))

1 (c1 + c2) − µ) (c1 − c2) − µ)

E|S| = |D| ∗ [erf() − erf()] (5.4)

2 σ (2)	 σ (2)

Theorem 5.2.2 For any |D| and n, if an adversary has perfect knowledge about the

training data, then |A| = β − E|S|

Proof This immediately follows from how we have defined S and that in the brute

force case we require β points to be added.

�

56

Extension to Multiple Disjoint Clusters:

We have so far assumed that there is a single cluster for the adversary to be

included in. We now extend our method to include disjoint clusters. Let there be

k disjoint clusters and we assume that each cluster is drawn from a Gaussian Dis­

tribution Y ∼ N(µ1, σ1), ..., Y ∼ N(µk, σk). The size of each cluster is |Ck|, s.t.
i=k
i=1 |Ck| = |D| and {Ci} ∩ {Cj } = ∅. We calculate the density of the region S which

lies between dist(a, µ) ± l2:
i=k Edist(a,µ)+l2 i=k E(c1+c2)∗σE(|S|) = (Y) = (Y)i=1 dist(a,µ)−l2 i=1 (c1−c2)∗σ

= i=k |Di| * Pr(c1 − c2) ≤ Y ≤ (c1 + c2))i=1

i=k
1 (c1 + c2) − µi) (c1 − c2) − µi)E|S| = |Di| ∗ [erf() − erf()] (5.5)
2 (2) σi (2) i=1 σi

Since, the clusters are disjoint we can assume that there will be only one cluster for

which Pr(c1 − c2) ≤ Y ≤ (c1 + c2) will not be 0. Therefore, our analysis will be

similar to when there is one cluster with the difference being in the size of the cluster.

5.2.3 Vulnerability to the Attack

So far, we have developed an attack strategy and bounded the efforts required by

the adversary in both the perfect knowledge and limited knowledge scenarios. We

now assess the vulnerability of LOF under this attack strategy by analyzing how the

false positives and false negatives change with the increase in the number of attack

points. To estimate the change in the false positive we model the distance of the data

points and the attack points from the centroid of the high dense region of the cluster

C as being drawn from a Gaussian distribution. We state the assumptions formally

below and then calculate the change in the false positives.

Assumptions:

1. The distances are drawn from a Gaussian distribution Y ∼ N(µ, σ).

�

57

2. We assume that there is one adversary only.

3. A false positive is any point p ∈ D s.t. LOF (p) > 1.

Based on our assumptions, we can calculate the expected false positives as follows:

E(FP) = p ∗ Pr(pfp), where (5.6)
p∈D

Pr(pfp) is the probability of d being a false positive

Pr(pfp) = Pr(p ∈ D|LOF (p) > 1) (5.7)

To simplify the calculation of Pr(pfp), we assume that there exists a point c/σ s.t.

all the data points sampled from the range (µ − c/σ, µ + c/σ), are a part of the high

density region or cluster C. Since we are assuming that the distance between the

data points and the centroid of the cluster are drawn from a Gaussian distribution,

we can safely say that the density decreases as we move away from the mean of the

Gaussian distribution. Let the anomaly point a be at a distance dist(a, µ) = c ∗ σ

from the mean µ of the distribution s.t. µ − (c ∗ σ) < µ − (c/ ∗ σ). The anomaly point

a is classified as an anomaly because it is in a less dense region as compared to its

neighbors. Hence, we can assume that directmin ≥ (µ − c/ ∗ σ) − (µ − c ∗ σ). This

results in the attack points being added in the region (c ∗ σ, c/ ∗ σ), making it dense.

Therefore,

E(FP) = |D| − (|D| ∗ Pr(c ∗ σ ≤ Y ≤ c/ ∗ σ))

1 c/σ − µ) cσ − µ)
E(FP) = |D| − (|D| ∗ ([erf() − erf()]) (5.8)

2 σ (2) σ (2)

We now predict the change in the false negative rate. We have designed the

attack to ensure that the attack points will be classified as normal points, therefore

the change in the false negative rate will be |A| + 1, where the 1 is added for the

anomaly point.

58

5.3 Experiments

In the previous section we presented an attack strategy and analyzed the expected

effort of an adversary in perfect knowledge and limited knowledge scenarios. We

now evaluate the assumptions in our theoretical results by applying them to real

world datasets. In our experimental scenario, we assume that there is one adversary

whose goal is to disguise one anomaly point so as to evade detection. We study the

effort required by the adversary in terms of the attack set size and then assess the

vulnerability to the attack (note - we repeat this experiment for multiple adversary

points, but we assume a single adversary at any given instant). Section 5.3 defines

the experimental setup and Section 5.3.1, 5.3.2 & 5.3.3 discusses the results.

Experimental Setup

We have evaluated our methods on five anomaly detection datasets:

1. KDD Cup ’99 Dataset [96] - From the KDD cup dataset we have chosen user

to root (u2r) attacks (nmap and ipsweep) and denial of service (dos) attacks

(back, neptune and teardrop), as these are the attacks where past anomaly

detection efforts have shown success. For each attack type we have chosen the

minimal feature set as given in [101]. We have randomly sampled 700 normal

data points from the training data set ensuring that there were no duplicates.

For each attack type we average out our results over 10 different instances. We

have chosen β to be 20 and the False Positive Rate (FPR) to be 0.02 for every

attack type except neptune for which the FPR is 0.05. These parameters ensure

that the True Negative Rate (TNR) is 0.

2. Yahoo! S5 dataset [97] - From the Yahoo dataset we have chosen the A4 bench­

mark dataset which consists of both anomalies and outliers inserted at random

positions. We have set β = 20 and the initial FPR for the Yahoo dataset is 0.03

3. Thyroid dataset [98]: We have set β = 20 and the initial FPR is 0.05.

59

4. Credit Card fraud detection dataset [99] from the Kaggle repository.	 We have

set β = 20 and the initial FPR is 0.05.

5. CICIDS2017 Intrusion Detection Dataset [100]	 - This dataset, published by

the Canadian Cybersecurity Institute and contains both benign and malicious

traffic. From this dataset, we have chosen the DoS Hulk attack type and selected

the features as proposed in [100]. We have chosen β to be 20 and the False

Positive Rate (FPR) to be 0.03.

5.3.1 Estimation of Adversary’s Effort

In this experiment we aim to estimate the effort required by the adversary in terms

of the attack size. The results are presented in Figure 5.2 and 5.3 and demonstrate

the number of attack points required for the poisoning attack. The results are also

compared to the attack size predicted by the model developed in Section 3.2 in the

Limited Knowledge Scenario. In the brute force case an attacker needs 20 points to

disguise the anomaly point as we have set β to be 20.

The results indicate that with little effort an adversary can alter the decision

boundary of the anomaly detection approach. We observe, that on an average an

adversary only needs to control 1.4%(7.6) of the training data, which is significantly

lower than the parameter β (in our case 20) to succeed with a targeted attack. The

results also validate that the effort required by the adversary is comparable to the

effort predicted by the model when an adversary has limited knowledge about the

training data.

5.3.2 Analyzing the Evasion Rate

We now assess the impact of this attack on LOF by analyzing how the evasion

rate of an adversary changes with the increase in the attack set size. Figure 5.4, 5.5

60

Figure 5.2. Adversary’s Effort - KDD’99 Dataset

Figure 5.3. Adversary’s Effort - Thyroid, Credit card, Yahoo & CI­
CIDS2017 datasets

61

Figure 5.4. Probability of Evasion vs. Size of the Attack Set: KDD
Cup ’99 Dataset & dos attacks

& 5.6 illustrates the evasion rate for the various attack types and compares it to the

rates predicted by the model.

As can be seen from the graphs, on an average, an adversary only needs to control

2.1% of the training data set to increase the evasion rate to 72%. This is because the

size of the attack set is determined by the parameter β. A lower value of β indicates

that an adversary needs to control only a smaller size neighborhood to ensure that

the density of the anomaly point is approximately the same as the density of its

neighborhood.

5.3.3 Analyzing the Vulnerability to the Attack

In this experiment, we assess the vulnerability to this attack by analyzing the

change in the false positive rate of the anomaly detection approach and comparing it

with the predictions made by the model developed in Section 5.2.3. Table 5.1 displays

the results.

62

Figure 5.5. Probability of Evasion vs. Size of the Attack Set: KDD
Cup ’99 Dataset & u2r attacks

Figure 5.6. Probability of Evasion vs. Size of the Attack Set: Thyroid,
Credit card, Yahoo & CICIDS2017 datasets

63

Attack Type Original FPR FPR Post At­

tack

Expected FPR

back (a1) 0.02 0 0.0185

neptune (a2) 0.05 0.05 0.0185

teardrop (a3) 0.02 0.014 0.017

nmap(a4) 0.02 0.007 0.017

ipsweep(a5) 0.02 0.011 0.016

Yahoo S5 0.03 0.026 0.021

Thyroid 0.05 0.033 0.041

Creditcard 0.02 0.021 0.015

CICIDS2017 0.11 0.08 0.105

Table 5.1.

Adversary’s Vulnerability to Attacks

The actual and the expected false positive rates decrease with the increase in

the number of attack points. The FPR decreases as a consequence of increasing the

density of the anomalous point’s neighborhood. An attacker would want to increase

the false positives as compared to decreasing the false positive rate so as to render the

system unusable. However, our goal here is to carry out a targeted attack requiring

us to increase the density of the anomaly point so as to effectively disguise it.

5.4 Detection of the Attack

We have presented an attack strategy and have validated its success empirically.

We now present a mechanism for detecting the attacks. To do so, we first define any

given object o’s sensitivity to its neighborhood as:

Definition 5.4.1 Sensitivity to Neighborhood of an object o (γc(o)) - Let {Nβ (o)} =

p1, p2, ..., pβ be the beta-distance neighborhood of o. We define a new neighborhood

64

{N(β+c)(o)} which is formed by randomly replacing c < β objects in {Nβ (o)}, with

p(β+1), p(β+1), ..., p(β+c) nearest neighbors. Let LOFβ+c(o) denote the LOF value of ob­

ject o w.r.t (β + c) neighborhood. The sensitivity to its neighborhood is then calculated

as:

γc(o) = (LOFβ+c(o) − LOFβ(o))/LOFβ (o) (5.9)

We base our detection on the following hypothesis ­

Hypothesis: An anomalous point whose density has been increased will have a

higher sensitivity to its neighborhood as compared to a normal dense point.

This is based on the rationale that for a highly dense neighborhood the change in the

neighborhood by c < β objects should not have a significant impact on the LOF value

as the object being added will be coming from a similar distribution, but replacing a

(carefully placed) attack point will result in a change.

We assume that the attack points are in the region where LOFβ (o) is greater than

η which is a user defined threshold. This is reasonable, because the optimal attack

strategy for an attacker is to minimize the effort required to misclassify the anomalous

point. If an attacker wants to decrease the LOF value below a certain threshold it

would need to significantly increase its effort i.e., number of attack points that need to

be added. The algorithm to detect the attack and the anomalous points is presented

in 4.

We now empirically validate our hypothesis by demonstrating the probability of

an attack being detected. To do so, we have set up the experiments as described for

the attacks. By experimental validation we have set the value of c = 3. The value of η

is chosen such that there are around 3% of the objects in our vulnerable region. The

results are presented in Table 5.2. They validate our hypothesis that the anomalous

points are more sensitive to the changes in the neighborhood; on average, we can

detect an adversary with 80% probability. We also observe that when the predictions

made by the model in Section 5.2.2 are approximately equivalent to the actual effort

we do significantly better at detecting attacks. For an adversary to defeat this attack

65

Algorithm 5: Detection of an Attack

Input : (c, η)

Output: Attack Points

Calculate the set {V }, s.t.∀o ∈ V, LOF (o) ≥ η and o is classified as normal.

for o in V do

Calculate Vγ = {γc(o)}

end

Sort Vγ in increasing order.

Let ζ := Number of attacks points predicted by the model.

Investigate the top ζ points in Vγ as anomalous.

66

Table 5.2.

Probability of Detection

Attack Type Probability of De­

tection

back (a1) 0.7

neptune (a2) 0.5

teardrop (a3) 0.5

nmap (a4) 1

ipsweep (a5) 0.8

Yahoo 0.9

Thyroid 1

Credit card 0.9

CICIDS2017 0.2

it requires significantly increasing the attack set size. As such, our estimates are a

(loose) lower bound on the expected cost to the attacker. This is still a valuable risk

analysis tool for the defender.

5.5 Conclusions

In this chapter, we addressed the problem of evaluating the security of anomaly

detection approaches in adversarial conditions by developing an attack strategy and

providing bounds on the effort required by the adversary in perfect knowledge scenario

and limited knowledge scenario. We have then effectively modeled the vulnerability

to these attacks by analyzing the change in the false positive rate and the false

negative rates. Further, we have validated our model on real world datasets and have

demonstrated that an insignificant amount of effort is required by the adversary for

an integrity violation.

67

One of the main causes for the vulnerability of LOF is because only the density of

the β-neighbors is used to determine whether a data instance is anomalous or not. We

have exploited this property to show that increasing the density is an optimal attack

strategy. We can also reasonably assume that anomaly detection approaches that

rely on distance as a metric to classify data instances are more robust to availability

attacks than to integrity attacks. Availability attacks are indiscriminate and render

the system unusable by causing a high number of misclassifications. Integrity attacks

are targeted and involve the misclassification of anomaly points as normal points. This

is evident as both the experiments and our model do not show a substantial decrease

in the false positive rate, however, the anomaly point is classified as a normal data

instance.

68

6 POISONING ATTACKS AGAINST CLASSIFICATION BASED ANOMALY

DETECTION (ONE-CLASS SVM) & DETECTION

6.1 Introduction

Classification based anomaly detection techniques learn a classifier from the given

data instances and then classify a test instance as normal or anomalous. Examples

include neural networks, bayesian networks, support vector machines (SVM) etc.

One-class SVM [30] was developed for anomaly detection and assumes that the

training data belong to one-class, i.e., the normal class. Outliers are any data points

that do not belong to this class. It does so by constructing a smooth boundary

around a majority of the probability mass of the data. The algorithm proceeds by

mapping the input data from the original feature space into a high dimensional feature

space using kernel functions and then constructing a smooth boundary by finding a

hyperplane to separate the training distance from origin. This formulation relates to

two-class SVM, the only difference is that one-class SVM considers normal data to be

further away from the origin whereas the anomalous data is closer to origin. Another

formulation uses a hypersphere [58] to describe the data and then find the smallest

hypersphere which contains the majority of the data.

In this chapter, we focus on one-class SVM and present the optimal attack strategy

for a targeted attack and bounds on the adversary’s effort. We then quantify the

degradation in performance and vulnerability of one-class SVM under this attack.

6.1.1 Background

Here, we briefly review one-class svm as used for anomaly detection. A one-

class SVM classifier for anomaly detection, inspired by the SVM classifier [102], was

�

�

69

proposed by Scholkopf et al. in [49]. The one-class classification problem is formulated

as finding a hyperplane that separates the data instances (in feature space X) from the

origin and maximizes the distance from this hyperplane to the origin. This results in a

binary function which captures region D in the feature space X where the probability

density of the data lives. The classification problem is formulated as follows ­⎧ ⎨ +1, ifx ∈ D
f(x) = (6.1)⎩ −1, ifx /∈ D

where x is a data instance, and +1 indicates that it is a normal data point whereas -1

indicates anomalous. This hyperplane cannot be always found in the original feature

space, thus a mapping function Φ : X → F , from X to a kernel space F is used.

The problem to separate the data set from the origin is formulated as a quadratic

optimization problem:

min(
1
2
||w||2 +

1
νn

n

i=1

ξi − ρ) (6.2)

subject to

w ∗ Φ(xi) ≥ ρ − ξi, ξi ≥ 0, i = 1, 2..., n

where w is a vector orthogonal to the hyperplane, ν represents the fraction of training

data points that are allowed to be outliers or anomalies, xi is the ith training data

point, n is the total number of data instances, ξi = [ξ1, .., ξn] is a vector of slack

variables used to “penalize” the rejected data instances and ρ represents the margin,

i.e., the distance of the hyperplane from the origin.

The decision function for a new data instance x is formulated as follows:

f(x) = sign(g(x)) (6.3)

where,

g(x) = (w ∗ Φ(x) − ρ) (6.4)

The optimization problem is solved by introducing Lagrange multipliers αi which

transforms the decision function to:
i=n

f(x) = (sign)(g(x)) = αiΦ(xi, x) − ρ (6.5)
i=1

�

70

The training data instances xj for which αj > 0 are referred to as support vectors.

ρ is calculated by exploiting the fact that for any αj , s.t. 0 < αj < 1/(νn), the

corresponding data instance xj , satisfies:

i=n

ρ = w ∗ Φ(xj) = αiΦ(xi, xj) (6.6)
i=1

We state a proposition here that will be utilized to develop the attack strategy.

Proposition 6.1.1 Assume the solution of Equation 6.2 satisfies ρ = 0. The follow­

ing statements hold: [49]

i. ν	 is an upper bound on the fraction of outliers.

ii.	 ν is a lower bound on the fraction of Support Vectors (SV).

iii. Suppose	 the data were generated independently from a distribution P(x) that

does not contain discrete components. Suppose, moreover, that the kernel is

analytic and non-constant. With probability 1, asymptotically, ν equals both the

fraction of SVs and the fraction of outliers.

6.1.2 Framework

We adapt the framework described in Chapter 3 to build the attack strategy:

•	 Adversary’s Goal: The adversary wants to perform a targeted attack (a prede­

termined point unknown to the defender) i.e., misclassify the anomalous data

instance.

•	 Adversary’s Knowledge: We consider two scenarios (i) complete knowledge ­

adversary has access to the training data & parameters of the model, (ii) limited

knowledge - adversary knows only the data distribution.

•	 Adversary’s Capabilities: The capability of an adversary is causative, i.e., he

can generate fake data points to disguise the anomaly point.

71

•	 Attack Strategy: Once the adversaryś goals, knowledge and capabilities are

defined, we can develop an attack strategy. This is achieved by moving the

decision boundary so that the anomalous point lies within the hyperplane, as

illustrated in Figure 6.1. The hyperplane is moved closer to the origin to include

the anomalous data instance. Formally the attack strategy can be stated as

min|A|s.t.f(a) = −1,	 (6.7)

where a is the anomalous data instance

6.2 Attack Strategy & Assessing Risk

We have developed an attack model to develop an attack strategy and analyze the

vulnerabilities of one-class SVM to the attack. In this section we develop two attack

strategies - one in perfect knowledge scenario and one in limited knowledge scenario

- and then develop a model to assess the vulnerability of the method to this attack.

In this section, we assume the role of an adversary so that we can build an optimal

attack strategy to help the defender understand the risk of an attack.

6.2.1 Adversary’s Attack Strategy

In this section, we develop two different methods optimized and heuristic) for the

attack strategy under the assumption that the adversary knows the training data set

X and the one-class parameters of the model.

Adversary’s Attack Strategy based on Optimization in Perfect Knowledge Scenario

For the optimized method, we first present a loss function based on the adversary’s

goal and then we use gradient descent to minimize the loss function.

For a data point xa, to be classified as an outlier, sign(f(xa)) = −1. The adversary

can achieve his goal by adding data points so that the value of the function sign(f(xa))

72

F
ig
u
re

 6
.1
.
Il
lu
st
ra
ti
on

 o
f
th
e
A
d
ve
rs
ar
y
’s

 A
tt
ac
k

 S
tr
at
eg
y

 (
M
ov
in
g
th
e
h
y
p
er
p
la
n
e)

� �

73

changes to +1. To do so, the attacker proceeds by drawing a validation data X =

{xi}n , training the one-class SVM on the data and then minimizing the loss functioni=1

:

Lx = (gold(xa)) − gnew(xa))
2 (6.8)

where gold(xa) is the value given by Equation 6.5 when the model is one-class on the

untainted dataset and gnew(xa)) is the value that the adversary wants for the anoma­

lous point xa. The adversary chooses the value of gnew(xa) as 0 because min(g(x))

for which f(x) = +1 is 0. The adversary then uses the gradient descent technique

to find ap which minimizes the value of the function Lx given in 6.8. Substituting

gnew(xa) = 0 and gold(xa) = g(x) (for ease of use) in equation 6.8, the poison data

point ap ∈ A (where A is the set of poison points added by the adversary), at each

iteration, can be calculated as:

ap+1 = ap − 2 ∗ η ∗ g/(x) ∗ g(x) (6.9)

where η is the learning rate for the gradient descent technique and g/(x) (substituting

Eq. 6.6 in Eq. 6.5 to derive the derivative) is given by the following. (We only

consider the set of support vectors as the value of g(x) depends only on the support

vectors(s), i.e., whose 0 < αi < 1/(νn).)

i=s i=s
∂αi ∂αi

g/(x) = ∗Φ(xp, xa)+αp ∗Φ/(xi, xa)− ∗Φ(xi, xj)−αp ∗Φ/(xp, xj) (6.10)
∂ap ∂api=1 i=1

i=s ∂αi
To calculate , we replace the inner level optimization problem (calculatingi=1 ∂ap

the hyperplane for one-class svm is a convex optimization problem) with the corre­

sponding Karush-Kuhn-Tucker (KKT) constraints, which must hold at the global

optimum: ⎧
i=n αi ∗ Φ(xi, xk) − ρ > 0 for αk = 0

⎪⎪⎪⎪⎪ i=1⎨
i=n 1g(xk) = αi ∗ Φ(xi, xk) − ρ = 0 for 0<αk< (6.11)
i=1 νn⎪⎪⎪⎪⎪ i=n⎩ 1
i=1 αi ∗ Φ(xi, xk) − ρ < 0 for αk =

νn

�
�

�

74

Taking the derivative (and only considering the αk values for which αk is not constant),

∂g(xk)
i=s

∂αi
= 0 = ∗ Φ(xi, xk) + αp ∗ Φ/(xp, xk)−

∂xp ∂api=1
(6.12)

i=s

−
∂αi ∗ Φ(xp, xj) − αp ∗ Φ/(xp, xj)
∂api=1

Rearranging Eq. 6.12, gives us:

i=s
∂αi ∗ (Φ(xi, xk) − Φ(xi, xj)) = αp ∗ (Φ/(xp, xk) − Φ/(xp, xj)) (6.13)
∂api=1

which can be rewritten for any i s.t. 0<αi< 1 as:
νn

∂α ITQss ∗ = αp ∗ QsXd (6.14)
∂ap

where s denotes the set of αi for which g(i) = 0. Qik = [Φ(xi, xk) − Φ(xi, xj)],

for k = 1, ..., s and a given j. Similarly, Q/ = (Φ/(xp, xk) − Φ/(xp, xj)), d is the kXd

∂α [∂α1 ∂αsdimension of the data point and = , ...,]. This gives us:
∂ap ∂ap ∂ap

∂α
= Q−1 ∗ αp ∗ Q

IT (6.15)ss sXd ∂ap

Substituting Eq. 6.15 in Eq. 6.10 gives us

g/(x) = (KsX1) ∗ (Q−1 ∗ αp ∗ Q/)−ss sd

(αp ∗ (Φ/(xp, xa) − Φ/(xp, xj))) (6.16)

where Ki = (Φ(xi, xa) − Φ(xi, xj)). The adversary’s initial starting point is chosen to

be the anomalous point, a0 = xa.

For linear, polynomial and RBF kernel, we give their derivation, as the loss func­

tion depends on their derivative.

1. Linear Kernel, given by Φ(a, a/) = aT a/:

Φ/(a, a/) = a (6.17)

75

2. RBF Kernel, given by Φ(a, a/) = exp(−||a − a/||2/2σ2), where σ is the standard

deviation; using chain rule ­

Φ/(a, a/) = Φ(a, a/) ∗ (1/σ2) ∗ (a − a/) (6.18)

3. Polynomial Kernel, given by Φ(a, a/) = (1 + aa/)y, for any y > 0, using chain

rule:

Φ/(a, a/) = y ∗ (1 + a T a/)y−1 ∗ a (6.19)

We now give an algorithm for generating the data points to poison the training

set:

Algorithm 6: Adversary’s Attack Strategy in Perfect Knowledge Scenario based

on Optimization
Input : Training Set X

Output: Attack Set A

Calculate αi using X and Equation 6.5

Initialize A := ∅ according to Equation 6.4

while (curr <0) do
Initialize p = 1, a0 := xa and curr := g(a0)

prev := curr

do
curr := prev := g(a0) according to Equation 6.4

Update αi using X and Equation 6.5

Calculate ap+1 according to Equation 6.16 depending on the kernel that

has been chosen

curr := g(a0), calculated according to Equation 6.4

while (curr - prev) >δ and curr >prev and curr <0 ;

X := X ∪ ap

A := A ∪ ap

end

76

Adversary’s Attack Strategy based on Heuristic in Limited Knowledge Scenario

In the previous section we have developed a loss function that the adversary

employs to generate adversarial points. We now develop a heuristic based strategy

based on the intuition that if we add an attack data point ai which is further away

from the hyperplane as compared to the anomalous point xa, it will be considered

more of an outlier than xa and that ν is an upper bound on the number of outliers in

the training data as given in Proposition 6.1.1. The goal of the adversary is to change

the decision boundary, which he does so by adding data points which are “more”

outliers than the anomalous point. We give an informal proof for this heuristic ­

there will be two cases i) the number of outliers is ν, ii) the number of outliers is < ν.

For case i, if we add an attack point which is “more” of an outlier than the current

outliers in X , then the boundary decision will change to ensure that the number of

outliers remain ν. As a consequence, at least one data point which was previously

classified as outlier will be now classified as normal. We can keep iterating until the

anomalous point xa is classified as normal. For case ii, the effect will be the same but

it will require more effort in terms of the attack set size. We now formally state in a

proposition the upper bound on the adversary’s effort.

Proposition 6.2.1 Let A be the set of the attack points that are added to the training

data set so that the anomalous point xa misclassified as normal, i.e., f(xa) = +1.

Let ai ∈ A, satisfy the following two conditions ­

T Φ(x)−ρ1. d(Φ(ai)) ≥ d(Φ(xa)), where d(Φ(x)) = w .||w||2

2. f(ai) = −1

Then ||A|| ≤ ν.

Proof This proposition directly follows from the fact that ν is an upper bound on

the number of outliers and the constraint that we have used to define how to generate

ai.

77

We now give a heuristic on how to generate the adversarial attack points ­

wT Φ(x) − ρ
ai = ai+1 + t , a0 = xa (6.20)

||w||2

where t is a user defined parameter which controls the amount of perturbation in the

attack point. If the model parameters are known to the adversary, then the adversary

can generate adversarial samples as given in Equation 6.20. The main advantage of

this attack strategy is that it does not require optimization and hence it is faster to

analyze than the strategy developed in the previous section.

6.2.2 Estimation Of Adversary’s Effort

In the previous sections we have developed two attack strategies and have esti­

mated an upper bound on the adversary’s effort. In this section, we estimate the

expected effort required by the adversary. In general, the expected effort required by

the adversary should be less than the upper bound as there will be some existing nor­

mal data points in the training data that an adversary can use to change the decision

boundary. To estimate the expected effort, we make the following assumptions ­

1. Let d(Φ(x)) be sampled from a normal distribution Y ∼ N(µ, σ), with mean µ

and σ estimated from the training data, within the range µ ± 6σ.

2. Let us assume that the anomaly point xa is at a distance d(Φ(xa)) = c1 ∗ σ from

the mean µ of the distribution, where c1 is some constant.

We are adding data points based on our heuristic developed in Section 6.2.1. There­

fore, we will be adding points in the region R = (c1 ∗ σ, 6 ∗ σ). The expected density

of this region is given by:

E6∗σE(|R|) = c1∗σ(Y)

= |X | * Pr(c1 ∗ σ) ≤ Y ≤ (6 ∗ σ))

1 (6 ∗ σ) − µ) (c1 ∗ σ)) − µ)
E(|R|) = |X | ∗ [erf() − erf()] (6.21)

2 σ (2) σ (2)

�

78

The upper bound on the number of outliers is ν ∗|X |. Therefore, The Expected Effort

by the adversary is ­

E(|A|) = ν ∗ |X | − E(|R|) (6.22)

6.2.3 Vulnerability to the attack

So far, we have developed an attack strategy and have bounded the effort required

by the adversary. We now assess the vulnerability of this attack under this attack

strategy by analyzing how the false positives change with the increase in the number

of attack points. A false positive is any error when an anomaly detector (incorrectly)

rejects a benign input; we measure the change in this rate with the increase in the

number of attack points.

To estimate the change in the number of false positives we model the d(Φ(x)

function as being drawn from a Gaussian distribution. We now state the assumptions

formally and calculate the change in the false positives.

Assumptions

1. The d(Φ(x)) values are drawn from a Gaussian distribution Y ∼ N(µ, σ).

2. We assume that there is one adversary only.

3. A false positive is any point x ∈ X s.t. f(x) = −1.

Based on our assumptions, we can calculate the expected number of false positives

as follows:

E(FP) = x ∗ Pr(xfp), where Pr(xfp) indicates the
x∈X (6.23)

probability of x being a false positive

Pr(xfp) = Pr(x ∈ X|f(x) < 0) (6.24)

To simplify the calculation of Pr(xfp), we assume that there exists a point c/σ s.t.

all the data points sampled from the range (µ − c/σ, µ + c/σ), are part of the region

79

S, where f(x) = +1. Let the anomaly point xa is at a distance d(Φ(xa)) = c ∗ σ from

the mean µ of the distribution, where c is some constant. The adversary expands the

region to include the anomaly in the region S which results in a reduction of the false

positives as more normal data points get included in the region S. As a consequence,

cσ > c/σ. The change (decrease) in the expected number of false positives after the

addition of attacks points is given by-

E(FPdec) = (|X | ∗ Pr(c/ ∗ σ ≤ Y ≤ c ∗ σ))

1 cσ − µ) c/σ − µ)

E(FPdec) = (|X | ∗ ([erf() − erf()]) (6.25)

2 σ (2) σ (2)

6.3 Experiments & Discussions

In the previous section we presented an attack strategy and have analyzed the

impact of an adversary in perfect knowledge and limited knowledge scenarios. We

also assessed the vulnerability to the attack by analyzing the change in the false

positive rate. We now evaluate the assumptions in our theoretical results by applying

them to real world datasets.

Experimental Setup

In our experimental scenario, we assume that there is one adversary whose goal is

to disguise some anomaly point so as to evade detection. We study the effort required

by the adversary in terms of the attack set size and then assess the vulnerability to the

attacks (note - we repeat this experiment for multiple adversary points, but we assume

a single adversary at any given instant). We have implemented our experiments on

five anomaly detection datasets ­

1. KDD Cup’99 intrusion detection dataset [96] From the KDD cup dataset we

have chosen user to root (u2r) attacks (nmap and ipsweep) and denial of service

(dos) attacks (back, neptune and teardrop) , as these are the attacks where past

80

anomaly detection efforts have shown success. For each attack type we have

chosen the minimal feature set as given in [101].

2. Yahoo!	 S5 dataset [97] - The yahoo dataset consists of real and synthetic

time-series representing the metrics of various Yahoo services. From the ya­

hoo dataset we have chosen the A4 benchmark dataset which consists of both

anomalies and outliers inserted at random positions.

3. Thyroid dataset [98] from the UCI machine learning repository.

4. Credit Card fraud detection dataset [99] from the Kaggle repository.

5. CICIDS2017 Intrusion Detection Dataset [100] - This dataset, published by the

Canadian Cybersecurity Institute, contains network traffic which was captured

over a period of 5 days in 2017. From this dataset, we have chosen the DoS

Hulk attack type and selected the features as proposed in [100], as SVM has

been shown to perform the best on it [103].

From all the data sets we have randomly sampled 700 normal data points from the

training data set ensuring that there were no duplicates. For each attack type we

average out our results over 10 different instances. The value of ν has been chosen

so as to ensure that the True Positive Rate (TPR) is 1, i.e., all the adversarial points

are initially classified as anomalous. The value for the ν parameter is given in Table

6.1 and the degree for the polynomial kernel has been set as 3.

6.3.1 Estimation of Adversary’s Effort

In this experiment we aim to estimate the effort required by the adversary in

terms of the attack size. The results are presented in Fig. 6.3.1, Fig. 6.3.1, Fig.

6.3.1 & Fig. 6.3.1. We give an average number of attack points required for the

adversary to misclassify the anomalous point. The average number of points for the

optimization attack for the Gaussian Kernel is 4, Linear Kernel is 3.4 and Polynomial

81

Dataset

νparameter
RBF Kernel Polynomial Kernel Linear Kernel

Credit card 0.01 0.03 0.03

KDD Cup - back 0.02 - -

KDD Cup - ipsweep 0.02 0.03 0.03

KDD Cup - nmap 0.02 0.03 0.03

KDD Cup - neptune 0.02 0.08 0.05

KDD Cup - teardrop 0.02 0.08 0.05

Yahoo 0.01 - -

Thyroid 0.01 - -

CICIDS2017 0.01 - -

Table 6.1.

The value of ν parameter for different kernels and datasets

82

is 8.74. The average number of attack points for the heuristic attack for the Gaussian

Kernel is 6.3, Linear Kernel is 9.94 and Polynomial is 9.4. These results indicate that

for an optimization attack an adversary only needs to control .76% of the dataset

to misclassify his point with the range being 0.48% - 1.2%. For a heuristic attack

an adversary needs to control only 1.22% with the range being 0.9% - 1.42% of the

training data. One thing to note here is that the number of points is dependent on

how far the anomalous point is from the hyperplane. If the adversary is close to

the hyperplane then in the best case he needs to add only 1 poison point to cause a

concept drift.

Another observation from the results is that the average number of points required

in the perfect knowledge scenario is lower than the number of points required in the

limited knowledge scenario. This validates the fact that optimization requires less

effort in terms of the size of the attack set. However, in terms of computational

resources the heuristic that we have developed in Section 6.2.1 is faster as it does not

need any optimization and is a reasonable approximation to the attack as validated

by the results. The results also show that the estimated no. of points for the attack

is comparable to the effort required in the limited knowledge scenario attack. (Note

- we haven’t ran the experiments for the polynomial and the linear kernel on the

thyroid and the yahoo dataset because they were already classifying the adversary

point as benign.

6.3.2 Analyzing the Evasion Rate

We assess the impact of this attack on one-class SVM by analyzing how the evasion

rate of an adversary changes with the increase in the attack set size. Fig. 6.6, 6.7,

6.8 illustrates the evasion rate for the various attack types for the RBF kernel. As

can be seen from the graphs, on an average, an adversary only needs to control

1.14% with the maximum being 4.2% and the minimum 0.42% of the training data

set to increase the evasion rate to 100%. These results validate that it is feasible to

83

Figure 6.2. Adversary’s Effort for Linear Kernel

Figure 6.3. Adversary’s Effort for Polynomial Kernel

84

Figure 6.4. Adversary’s Effort for Gaussian Kernel: KDD Cup Dataset

Figure 6.5. Adversary’s Effort for Gaussian Kernel: Thyroid, Credit
Card & CICIDS2017 Anomaly Detection Datasets

85

Figure 6.6. Probability of Evasion vs. Size of the Attack Set: KDD
Cup’99 Dataset dos attacks

Figure 6.7. Probability of Evasion vs. Size of the Attack Set

attack the machine learning algorithm to cause a concept drift and does not require

a substantial effort from the adversary to do so.

86

Figure 6.8. Probability of Evasion vs. Size of the Attack Set: Yahoo

S5, Thyroid, Credit Card & CICIDS2017 Anomaly Detection Datasets

87

6.3.3 Analyzing the Vulnerability to the Attack

In this experiment, we assess the vulnerability to this attack by analyzing the

change in the false positive rate of the anomaly detection approach for the optimiza­

tion based attack strategy and the estimated false positives predicted according to

the model. The results are presented in Table 6.2. We observe that the addition of

attack points decreases the False Positive Rate. This happens because we are moving

the hyperplane close to the origin; resulting in benign points that were originally mis­

classified as being classified correctly due to increasing the size of the capture region.

This enables the attacker to carry out the attack stealthily.

6.3.4 Estimation of the effect of the parameter ν

In this experiment we estimate the effect of the parameter ν on the attack set size.

As can be seen from the figure 6.9, there is a positive correlation between the value of

ν and the attack set size. This is reasonable, as when we increase the value of ν, more

data points will be rejected as outliers, which will result in the boundary being further

moved away from the origin. This will increase the anomaly score of the anomalous

data point, hence the adversary will have to increase its effort to misclassify the point

as benign.

6.3.5 Comparison to Previous Work

In this experiment, we compare our attack strategy to an existing method. We

specifically look at the poisoning attack strategy developed in [10] and show what

our attack strategy reduces the effort of the attacker w.r.t the number of poison

points required by the attacker. Their attack strategy aims to poison the dataset

to maximize the hinge loss. We argue that this attack strategy is not suited for our

attack model because it aims at maximizing the hinge loss i.e., increasing the number

of false positives. As a consequence, this does not guarantee that our attacker will be

88

R
B
F

 K
er
n
el

P
ol
y
n
om

ia
l
K
er
n
el

L
in
ea
r
K
er
n
el

O
ri
gi
n
al

F
P
R

F
P
R

A
ft
er

A
tt
ac
k

E
st
im

at
ed

F
P
R

O
ri
gi
n
al

F
P
R

F
P
R

A
ft
er

A
tt
ac
k

E
st
im

at
ed

F
P
R

O
ri
gi
n
al

F
P
R

F
P
R

A
ft
er

A
tt
ac
k

E
st
im

at
ed

F
P
R

C
re
d
it

 C
ar
d

0.
01
1

0.
00
8

0.
00
2

0.
02
0

0.
01
6

0.
01
1

0.
00
9

0.
01
1

0.
00
6

B
ac
k

0.
01
2

0.
01
0

0.
01

-

-
-

-
-

-

Ip
sw

ee
p

0.
01
6

0.
01
5

0.
01

0.
04
8

0.
02
1

0.
04
6

0.
00
9

0.
00
8

0.
00
9

N
m
ap

0.
02
0

0.
02
0

0.
00
5

0.
02
6

0.
02
6

0.
03
2

0.
05
8

0.
06
0

0.
00
6

N
ep
tu
n
e

0.
01
5

0.
01
2

0.
00
5

0.
00
9

0.
00
4

0.
00
8

0.
05
9

0.
05
8

0.
06

T
ea
rd
ro
p

0.
01
2

0.
00
9

0.
00
7

0.
00
9

0.
00
4

0.
00
3

0.
05
9

0.
05
8

0.
06

Y
ah

o
o

0.
00
9

0.
00
8

0.
00
3

-
-

-
-

-
-

T
h
y
ro
id

0.
01
0

0.
00
9

0.
00
6

-
-

-
-

-
-

C
IC

ID
S
20
17

0.
01
0

0.
05

0.
00
1

-
-

-
-

-
-

T
ab

le
 6
.2
.

A
d
ve
rs
ar
y
’s

 V
u
ln
er
ab

il
it
y

 T
o
A
tt
ac
k

89

Figure 6.9. Average No. Of Attack Points needed vs. Size of ν

90

misclassified or that there will be a decrease in the false positives so that the defender

will continue using the technique. Our comparison is presented in Table 6.3. We have

compared the results for the Gaussian kernel, as for the Gaussian Kernel every attack

was identified as malicious. As can see from the results, that the attack strategy

presented in [10] is not always successful (the probability of success fo our strategy

was 1.0.), and the effort required by the adversary is also more with the exception

being nmap, yahoo and thyroid. An interesting observation is that for the nmap and

yahoo dataset the adversary requires less effort in their strategy as compared to ours

but the probability of success is significantly lower. Only 1 adversarial point was

able to successfully evade the attack. For the thyroid dataset, the average number

of attack points is higher for us because of one adversarial data instance for which

we required more effort; but that same data instance could not evade detection using

the attack strategy presented in [10].

6.4 Detection Techniques & Discussions

After presenting attack strategies and estimating the expected effort required by

the adversary to subvert the anomaly detection technique, for completeness we now

present a few detection strategies and open research directions which could help in

building robust anomaly detection techniques.

6.4.1 Related Work in Detection Techniques

We look at a few existing approaches and evaluate if they can detect our attack

or not:

1. Reject on Negative Impact (RONI) is a defense proposed by Barreno et al. [77]

that measures the empirical effect of each training instance and eliminates from

the training set those data points that have a negative impact on classification

accuracy which exceeds a user defined threshold. This technique cannot be ex­

91

Poisoning Attack Strategy of [10] Our Optimization

Attack Strategy

Dataset Pr. Of Success Average.

No. Of

Attack

Points

Average No. Of

Attack Points

Credit card 1.0 2.8 2.4

KDD Cup - back 0.5 6.4 2.7

KDD Cup - ipsweep 0.4 6.25 4.2

KDD Cup - nmap 0.1 3 4.9

KDD Cup - neptune 0.9 10.5 3.1

KDD Cup - teardrop 0.6 6.8 3.7

Yahoo 0.5 1 3.3

Thyroid 0.9 3.3 5

CICIDS2017 0.1 1 5.9

Table 6.3.

Comparison of our Attack Strategy to the one proposed in [10]

92

tended to anomaly detection because the goal of the adversary is not to decrease

the classifier’s inaccuracy but to misclassify its own anomalous points. If a clas­

sifiers inaccuracy goes below a user defined threshold then with high probability

the defender is likely to retrain the model, change the model parameters or use

a new technique. As we have seen from the experiments and the theoretical

results, adding attack points lead to a decrease in the number of false positives,

which is an improvement in the classifiers performance. Therefore, this defense

will not detect the added poison points.

2. Ensemble Methods combines several classifiers into one to obtain better pre­

dictive performance. One of the ensemble methods is the bagging technique

where each individual SVM is trained over a randomly chosen subset of the

training set X via a bootstrap technique and the independently trained SVMs

are aggregated in various ways such as majority voting. Ensemble methods have

shown to be successful in evading adversarial attacks [104,105]. We explore this

technique in Section 6.4.2 and modify it with the insights gained in Section 6.2.

6.4.2 Detection Technique based on Ensemble Methods

Limitation of Ensemble Technique

Here, we show that the naive ensemble technique is inefficient at classifying the

anomalous point. The bagging technique generate c new training sets Xi, each of

size n/, by sampling from X uniformly and with replacement. In the Table 6.4.2, we

show for different values of n/ and the optimization attack on the Gaussian Kernel,

the probability that our anomalous point is detected. We have set c to be 10 and

have combined the models by average voting. As we can see from the table, that the

probability of detection has a mode value of 0.1 with its maximum for the Thyroid

dataset when we are using 80% of the original training dataset. This is because on

an average the number of poison points added are 0.5%, which is significantly small,

93

n’ = .95n n’ = .90n n’ = .85n n’ = .80n

Credit card 0.3 0.3 0.2 0.3

KDD Cup - back 0.0 0.1 0.1 0.1

KDD Cup - ipsweep 0.2 0.2 0.1 0.1

KDD Cup - nmap 0 0.1 0.1 0.2

KDD Cup - neptune 0.1 0.1 0.1 0.2

KDD Cup - teardrop 0.4 0.3 0.2 0.3

Yahoo 0.1 0.3 0.3 0.3

Thyroid 0.2 0.2 0.3 0.7

CICIDS2017 0.1 0.1 0.1 0.1

Table 6.4.

Pr. Of Detection for the Ensemble Approach

hence they are not excluded when we are training on c new datasets. We have run

the detection method on the optimization attack strategy for the gaussian kernel.

Our Approach using Ensemble Technique

We observe from the attack strategy developed in Section 6.2, to cause an influence

the attack points added are in a region which is closer to the hyperplane. This is

because the adversary is trying to minimize effort, hence the anomalous points will

be close to the hyperplane. If it is further away, then the adversary will have increased

effort. We propose a modification in the ensemble technique to detect this attack.

Let g(x) be the value calculated according to Eq. 6.4 for x = 1, ...n. Sort the dataset

X based on the absolute value of g(x) in increasing order. We then divide X in two

subsets X1 = X1,...,τ , and X2 = Xτ,...,n, where τ is a user defined parameter; and use

a different subset size for each subset to randomly sample with replacement. This

gives a higher probability of removing the attack points while training the model, as

94

the optimization attack strategy generates points to moves the hyperplane between

the origin and the anomalous point. This will result, with a high probability, that

the attack points and the anomalous points to be relatively closer to the hyperplane

as compared to the normal data instance. We now give an algorithm to detect the

attack:

Algorithm 7: Detection Strategy

Input : Poisoned Data Set X , Parameter to split the training set: τ , No. of

training datasets: c, Weight for each subset: θ1, θ2

Output: Model based on Bagging

Calculate αi using X and Equation 6.5

Calculate g(X) according to Eq. 6.4

Let X be arranged so that it is in sorted in increasing order based on abs(g(X)

Split X in two subsets X1 = X1,...,τ , and X2 = Xτ,...,n

for iter in range(1, c) do
/ /Randomly Sample n1 = θ1 ∗ n samples from X1 and n2 = θ2 ∗ n from X2

Calculate αiter
i using X1, X2 and Equation 6.5

end

Combine the models by average voting

Experiment & Results

We now present our results for the Gaussian Kernel based on the training dataset

which has been poisoned using the optimization attack strategy. We have set c to

be 10 as earlier, τ = 15, θ1 = 0.7 so that on an average 4 (average no. of attack

points) points are removed from this subset of the dataset. We have set the value

of θ2 = 0.99, so that maximum number of normal data points are included in the

training data. The results are presented in 6.4.2.

As we can see from the results, we are successful in detecting the target anomalous

data point, but at the expense of an increase in the false positive rate.

95

Pr. Of Detection FPR

Credit card 0.9 0.020

KDD Cup - back 0.9 0.041

KDD Cup - ipsweep 0.9 0.0271

KDD Cup - nmap 0.7 0.056

KDD Cup - neptune 0.9 0.026

KDD Cup - teardrop 0.8 0.0191

Yahoo 0.6 0.0202

Thyroid 0.7 0.0224

CICIDS2017 0.6 0.0561

Table 6.5.

Pr. Of Detection for our Approach

96

6.5 Conclusions

In this work, we have analyzed the robustness of one-class SVM as an anomaly

detection technique against poisoning attack. We have first presented two attack

strategies and then have analyzed the risk of one-class SVM to those attacks by

analyzing the expected effort required by the adversary to achieve his goal and then

estimating the change in the number of False Positives. We were able to exploit

the weakness of one-class SVM - its gradients could be easily calculated easily and

that there is an upper bound on the fraction of the number of outliers to poison the

dataset. We have also presented a detection strategy for the attack and have proved

it to be more effective at detecting the attack.

97

7 TRANSFERABILITY OF ADVERSARIAL SAMPLES

7.1 Introduction

Transferability of adversarial samples is a property which allows the adversarial

samples which are generated for one classifier, to be transferred to another classifier

even if the classifiers are trained on disjoint datasets or have different architectures.

Transferability of adversarial samples, gives the adversary a powerful tool to evade

machine learning systems as the adversary does not require any knowledge of the

system. An adversary can train a local model by issuing queries to the targeted

model and then use the local model’s parameters to craft adversarial samples that

can subvert the targeted model. Transferability has been investigated mostly for

evasion attacks.

In this chapter, we analyze whether the adversarial samples crafted for poisoning

attacks on each anomaly detection technique transfer to the other anomaly detection

technique.

7.2 Related Work

In this section, we briefly review the related work on transferability of adversarial

samples. Transferability was first studied in [82] for evasion attacks, where they

used this property to build a substitute model, whose parameters were used to craft

adversarial samples, and then these samples were used as a target against the victim

model. Kurkain et al. [106], further proved that adversarial samples transfer by

various degrees. The samples which have a high resistance to adversarial training

have a lower probability of transferring. Tramèr et al. [107] have shown that for

98

different models the adversarial subspace intersects, hence it is possible to transfer

the samples.

Liu et al. [108] have empirically validated that targeted adversarial samples show

resistance in transferring but the non targeted adversarial samples can transfer for

large datasets and large models. They have used ensemble models to generate ad­

versarial samples which can be transferred for a targeted attack. However, they have

only focussed on evasion attacks and not on poisoning attacks. The concept of trans­

ferability has been successfully applied to even those neural networks that have been

training on different domains [109]. They have proposed a generative framework to

beat domain specific attack methods.

7.3 Results & Discussions

We now empirically validate for poisonous attacks, whether the adversarial sam­

ples transfer or not. We first discuss our experimental setup and then provide our

results.

7.3.1 Experimental Setup

In our experimental scenario, the adversarial samples generated for DBSCAN

(LOF and one-class SVM) are used to train LOF, one-class SVM (one-class SVM,

DBSCAN for LOF and LOF, DBSCAN for one-class SVM) respectively. The hyper­

parameters of the models are chosen to be the same as described in the Section 4.3

(5.3, 6.3) respectively. For every attack type, we assume that there are 10 different

instances of the adversary. We then estimate the probability of transferring the

adversarial samples by calculating the ratio of the number of instances which are

predicted benign by the other anomaly detection methods to the total number of

instances (10 in our case).

99

7.3.2 Results & Discussions

Our results are presented in Table 7.1, 7.2 & 7.3. The results depict the probability

of the adversarial samples being transferred to another model, for each individual

anomaly detection method (For the one-class SVM we have used the Gaussian Kernel

as it had a True Negative Rate of 1 for every attack type). We now discuss our results

for each individual anomaly detection method:

1. Transferability of Adversarial Samples generated for DBSCAN to LOF and one-

class SVM : As we can see from the Table 7.1, the adversarial samples transfer

to LOF but not to one-class SVM. The adversarial samples transfer to LOF

because of two reasons - the number of attack points needed for DBSCAN (6%)

is higher than LOF (1.4%), and the attack strategy for DBSCAN is to make the

neighborhood dense by adding data points within t radius. As the number of

attack points added in DBSCAN is higher than the β parameter of LOF, this

results in the anomalous point having a similar density as compared to its neigh­

bors (attack points). Hence, the adversarial samples transfer from DBSCAN

to LOF. However, the adversarial samples do not transfer from DBSCAN to

one-class SVM. This indicates that the subspace in which we add the samples

is different. One important observation to note here, is that even if the ad­

versary increases his effort (DBSCAN needs on an average 6% while one-class

SVM needs only 0.76%), it will not result in a misclassification of the anomalous

point. This indicates that an adversary cannot add data points randomly to

result in a misclassification but has to carefully craft the samples.

2. Transferability of Adversarial Samples generated for LOF to DBSCAN and one-

class SVM : As we can see from Table 7.2 that the LOF adversarial samples

do not transfer to DBSCAN and one-class SVM. The reason is intuitive for

DBSCAN, it needs more adversarial samples than LOF, hence the anomalous

point is classified as malicious. For one-class SVM the adversarial samples do

100

Pr. of Attack Transfer to

SVM

Pr. of Attack Transfer to

LOF

Credit card 0 0.5

KDD Cup - back 0.1 1

KDD Cup - ipsweep 0.2 1

KDD Cup - nmap 0.1 1

KDD Cup - neptune 0 1

KDD Cup - teardrop 0 1

Yahoo 0.2 0.1

Thyroid 0.1 1

CICIDS2017 0.1 1

Table 7.1.

Pr. of Transferring DBSCAN adversarial samples to LOF & SVM

101

Pr. of Attack Transfer to

SVM

Pr. of Attack Transfer to

DBSCAN

Credit card 0.9 0.1

KDD Cup - back 0 0

KDD Cup - ipsweep 0 0

KDD Cup - nmap 0.1 0

KDD Cup - neptune 0.1 0

KDD Cup - teardrop 0 0

Yahoo 0.2 0.1

Thyroid 0.5 0.1

CICIDS2017 0.1 0.1

Table 7.2.
Pr. of Transferring LOF adversarial samples to SVM & DBSCAN

not transfer, indicating that clustering techniques learn a different boundary as

compared to classification techniques.

3. Transferability of Adversarial Samples generated for one-class SVM to DB­

SCAN and LOF: As we can see from the Table 7.3, the adversarial samples

don’t transfer to LOF and DBSCAN. The reason behind the adversarial sam­

ples not transferring to DBSCAN is that the effort required by the adversary

is significantly more that the effort required for one-class SVM (6% vs 0.76%).

Similarly for LOF, which needs an average of 1.4% of the training data. How­

ever, since the no. of attack points needed for one-class SVM is closer to LOF

as compared to DBSCAN, the probability of transferring adversarial samples is

higher for LOF.

102

Pr. of Attack Transfer to

LOF

Pr. of Attack Transfer to

DBSCAN

Credit card 0 0

KDD Cup - back 0.5 0.1

KDD Cup - ipsweep 0.6 0.1

KDD Cup - nmap 0.3 0.4

KDD Cup - neptune 0.6 0.1

KDD Cup - teardrop 0.5 0

Yahoo 0.3 0

Thyroid 0.1 0

CICIDS2017 1 0

Table 7.3.

Pr. of Transferring SVM adversarial samples to LOF & DBSCAN

103

These results are also indicative of how we should be designing robust anomaly

detection techniques. Since the adversarial samples do not transfer we can build

heterogeneous systems for detection anomalies and are robust to adversarial samples.

7.4 Conclusions

In this chapter, we have investigated whether adversarial samples transfer for

poisoning attacks. We have shown that they don’t transfer with the exception being

DBSCAN to LOF. One of the reasons for this is that the effort required for every

anomaly detection technique is different. Another reason is that the attack strategy

entails adding data points in different subspaces of the feature space.

104

8 CONCLUSIONS & FUTURE WORK

In this thesis, we have focussed on poisoning attacks, i.e., carefully crafted benign

samples that an adversary injects into the training data to cause a concept drift in the

anomaly detection method. We have presented a model to estimate the vulnerability

of an anomaly detection method to an unknown attack, in particular the expected

minimum number of poison samples the adversary would need to succeed. Such an

estimate is a necessary step in risk analysis: do we expect the anomaly detection to

be sufficiently robust to be useful in the face of attacks?

8.1 Summary of Main Results

8.1.1 Estimated Adversary’s Effort

We have addressed the problem of evaluating the security of anomaly detection

approaches in adversarial conditions by developing an attack strategy and providing

bounds on the effort required by the adversary in perfect knowledge and limited

knowledge scenario for DBSCAN (Chapter 4), LOF (Chapter 5) and one-class SVM

(Chapter 6). We have demonstrated that the attack strategy is dependent on the

underlying anomaly detection approach and varies for each individual approach. The

maximum effort is required when trying to circumvent DBSCAN (6%) and minimum

for one-class SVM (.76%).

8.1.2 Estimation of Vulnerability to an Attack

We have effectively modeled the vulnerability to these attacks by analyzing the

change in the false positive rate and the false negative rates for DBSCAN (Chapter

4), LOF (Chapter 5) and one-class SVM (Chapter 6). We have demonstrated that

105

our attack strategy results in a decrease in the false positive, giving an advantage to

the attacker as the defender will be unaware of the attack.

8.1.3 Detection of Attacks

We have developed mechanisms to detect the attack for DBSCAN (Chapter 4),

LOF (Chapter 5) and one-class SVM (Chapter 6). The detection mechanism is based

on the attacker’s strategy and have shown that our detection mechanism is successful

in detecting the attacks. We have demonstrated empirically that if the adversary’s

attack strategy is optimal, our detection mechanism can detect on an average 83% of

the attacks.

8.1.4 Transferability of Attacks

In Chapter 7, we have demonstrated that targeted poisoning attacks do not trans­

fer across the anomaly detection approaches. This results indicates, that to build a

robust anomaly detection technique we should look at using heterogeneous ensemble

anomaly detection approaches.

8.2 Future Work

While, we have presented a model to estimate the vulnerability to a poisoning at­

tack our model can be expanded to include more scenarios. E.g., one of the main lim­

itations of our model is that we haven’t considered a setting where they are multiple

adversaries and how they will affect the security of the anomaly detection approach.

If multiple adversaries collude then it could lead to a decrease in the effort required

by the adversaries. It will be interesting to investigate on how to model collusions

between multiple adversaries. Another future work will be to investigate if a sim­

ilar quantitative model can be developed for other methods for anomaly detection.

Another limitation of our model is that we have assumed that the adversary knows

106

the anomaly detection technique. It would be interesting to test if uncertainty in the

anomaly detection technique makes a poisoning/obfuscation attack significantly more

difficult or easier to detect.

Another future extension of our work will be to design secure algorithms for

anomaly detection. Designing an anomaly detection approach which assumes the

presence of an adversary can be developed by applying statistically robust techniques

or by modeling it as a game between the adversary and the defender [110]. This

has been done for supervised prediction techniques like logistic regression where the

game was modeled as a static prediction game [111]; it is not clear if the ideas in [111]

would be useful for anomaly detection.

107

REFERENCES

[1] Varun Chandola, Arindam Banerjee, and Vipin Kumar.	 Anomaly detection: A
survey. ACM computing surveys (CSUR), 41(3):15, 2009.

[2] Giancarlo Fortino, Roberta Giannantonio, Raffaele Gravina, Philip Kuryloski,
and Roozbeh Jafari. Enabling effective programming and flexible management
of efficient body sensor network applications. IEEE Transactions on Human-
Machine Systems, 43(1):115–133, 2013.

[3] Ahmad Alzghoul, Magnus Löfstrand, and Björn Backe. Data stream forecasting
for system fault prediction. Computers & industrial engineering, 62(4):972–978,
2012.

[4] Chirag Modi, Dhiren Patel, Bhavesh Borisaniya, Hiren Patel, Avi Patel, and
Muttukrishnan Rajarajan. A survey of intrusion detection techniques in cloud.
Journal of Network and Computer Applications, 36(1):42–57, 2013.

[5] Maria-Luiza Antonie, Osmar R Zaiane, and Alexandru Coman. Application of
data mining techniques for medical image classification. In Proceedings of the
Second International Conference on Multimedia Data Mining, pages 94–101.
Springer-Verlag, 2001.

[6] Luis Mart́ı, Nayat Sanchez-Pi, José Manuel Molina, and Ana Cristina Bicharra
Garcia. Anomaly detection based on sensor data in petroleum industry appli­
cations. Sensors, 15(2):2774–2797, 2015.

[7] Chih-Fong Tsai, Yu-Feng Hsu, Chia-Ying Lin, and Wei-Yang Lin.	 Intrusion
detection by machine learning: A review. Expert Systems with Applications,
36(10):11994–12000, 2009.

[8] Blaine Nelson, Marco Barreno, Fuching Jack Chi, Anthony D Joseph, Ben­
jamin IP Rubinstein, Udam Saini, Charles A Sutton, J Doug Tygar, and Kai
Xia. Exploiting machine learning to subvert your spam filter. LEET, 8:1–9,
2008.

[9] Patrick McDaniel, Nicolas Papernot, and Z Berkay Celik. Machine learning in
adversarial settings. IEEE Security & Privacy, 14(3):68–72, 2016.

[10] Battista Biggio, Blaine Nelson, and Pavel Laskov.	 Poisoning attacks against
support vector machines. arXiv preprint arXiv:1206.6389, 2012.

[11] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim ˇ c,Srndi´
Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks against ma­
chine learning at test time. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 387–402. Springer, 2013.

108

[12] Pavel Laskov and Marius Kloft. A framework for quantitative security analysis
of machine learning. In Proceedings of the 2nd ACM workshop on Security and
artificial intelligence, pages 1–4. ACM, 2009.

[13] Nicolas Papernot, Patrick McDaniel, Somesh Jha, Matt Fredrikson, Z Berkay
Celik, and Ananthram Swami. The limitations of deep learning in adversarial
settings. In Security and Privacy (EuroS&P), 2016 IEEE European Symposium
on, pages 372–387. IEEE, 2016.

[14] Battista Biggio, Giorgio Fumera, and Fabio Roli. Security evaluation of pattern
classifiers under attack. IEEE transactions on knowledge and data engineering,
26(4):984–996, 2014.

[15] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and
JD Tygar. Adversarial machine learning. In Proceedings of the 4th ACM work­
shop on Security and artificial intelligence, pages 43–58. ACM, 2011.

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative ad­
versarial nets. In Advances in neural information processing systems, pages
2672–2680, 2014.

[17] Igino Corona, Giorgio Giacinto, and Fabio Roli.	 Adversarial attacks against
intrusion detection systems: Taxonomy, solutions and open issues. Information
Sciences, 239:201–225, 2013.

[18] Xueyuan Han, Thomas Pasquier, and Margo Seltzer. Provenance-based intru­
sion detection: opportunities and challenges. In 10th {USENIX} Workshop on
the Theory and Practice of Provenance (TaPP 2018), 2018.

[19] Battista Biggio and Fabio Roli.	 Wild patterns: Ten years after the rise of
adversarial machine learning. Pattern Recognition, 84:317–331, 2018.

[20] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-
based algorithm for discovering clusters in large spatial databases with noise.
In Kdd, volume 96, pages 226–231, 1996.

[21] Mete Ç elik, Filiz Dadaşer-Ç elik, and Ahmet Şakir Dokuz. Anomaly detection in
temperature data using dbscan algorithm. In Innovations in Intelligent Systems
and Applications (INISTA), 2011 International Symposium on, pages 91–95.
IEEE, 2011.

[22] Tran Manh Thang and Juntae Kim.	 The anomaly detection by using dbscan
clustering with multiple parameters. In 2011 International Conference on In­
formation Science and Applications, pages 1–5. IEEE, 2011.

[23] Kingsly Leung and Christopher Leckie.	 Unsupervised anomaly detection in
network intrusion detection using clusters. In Proceedings of the Twenty-eighth
Australasian conference on Computer Science-Volume 38, pages 333–342. Aus­
tralian Computer Society, Inc., 2005.

[24] Markus M Breunig, Hans-Peter Kriegel, Raymond T Ng, and Jörg Sander. Lof:
identifying density-based local outliers. In ACM sigmod record, volume 29,
pages 93–104. ACM, 2000.

109

[25] Malak Alshawabkeh, Byunghyun Jang, and David Kaeli. Accelerating the local
outlier factor algorithm on a gpu for intrusion detection systems. In Proceedings
of the 3rd Workshop on General-Purpose Computation on Graphics Processing
Units, pages 104–110. ACM, 2010.

[26] Zengan Gao. Application of cluster-based local outlier factor algorithm in anti­
money laundering. In Management and Service Science, 2009. MASS’09. In­
ternational Conference on, pages 1–4. IEEE, 2009.

[27] Junshui Ma and Simon Perkins. Time-series novelty detection using one-class
support vector machines. In Proceedings of the International Joint Conference
on Neural Networks, 2003., volume 3, pages 1741–1745. IEEE, 2003.

[28] Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal Stolfo.
A geometric framework for unsupervised anomaly detection. In Applications of
data mining in computer security, pages 77–101. Springer, 2002.

[29] Katherine Heller, Krysta Svore, Angelos D Keromytis, and Salvatore Stolfo.
One class support vector machines for detecting anomalous windows registry
accesses. 2003.

[30] Vladimir Vapnik.	 The nature of statistical learning theory. Springer science &
business media, 2013.

[31] Animesh Patcha and Jung-Min Park. An overview of anomaly detection tech­
niques: Existing solutions and latest technological trends. Computer networks,
51(12):3448–3470, 2007.

[32] Leonid I Rudin, Stanley Osher, and Emad Fatemi.	 Nonlinear total variation
based noise removal algorithms. Physica D: nonlinear phenomena, 60(1-4):259–
268, 1992.

[33] Mohamed Idhammad, Karim Afdel, and Mustapha Belouch. Distributed intru­
sion detection system for cloud environments based on data mining techniques.
Procedia Computer Science, 127:35–41, 2018.

[34] Chunhua Wang and Dong Han. Credit card fraud forecasting model based on
clustering analysis and integrated support vector machine. Cluster Computing,
pages 1–6, 2018.

[35] Mohamed Hegazy,	 Ahmed Madian, and Mohamed Ragaie. Enhanced fraud
miner: credit card fraud detection using clustering data mining techniques.
Egyptian Computer Science Journal (ISSN: 1110–2586), 40(03), 2016.

[36] Klaus	 Julisch. Clustering intrusion detection alarms to support root cause
analysis. ACM transactions on information and system security (TISSEC),
6(4):443–471, 2003.

[37] Leonid Portnoy.	 Intrusion detection with unlabeled data using clustering. PhD
thesis, Columbia University, 2000.

[38] Lishuai Li, Maxime Gariel, R John Hansman, and Rafael Palacios. Anomaly de­
tection in onboard-recorded flight data using cluster analysis. In Digital Avion­
ics Systems Conference (DASC), 2011 IEEE/AIAA 30th, pages 4A4–1. IEEE,
2011.

110

[39] Shahaboddin	 Shamshirband, Amineh Amini, Nor Badrul Anuar, Miss
Laiha Mat Kiah, Ying Wah Teh, and Steven Furnell. D-ficca: A density-based
fuzzy imperialist competitive clustering algorithm for intrusion detection in
wireless sensor networks. Measurement, 55:212–226, 2014.

[40] Zhenguo Chen and Yong Fei Li. Anomaly detection based on enhanced dbscan
algorithm. Procedia Engineering, 15:178–182, 2011.

[41] Akash Saxena, Khushboo Saxena, and Jayanti Goyal. Hybrid technique based
on dbscan for selection of improved features for intrusion detection system. In
Emerging Trends in Expert Applications and Security, pages 365–377. Springer,
2019.

[42] Feng Cao, Martin Estert, Weining Qian, and Aoying Zhou.	 Density-based
clustering over an evolving data stream with noise. In Proceedings of the 2006
SIAM international conference on data mining, pages 328–339. SIAM, 2006.

[43] Daniel T Larose and Chantal D Larose.	 Discovering knowledge in data: an
introduction to data mining. John Wiley & Sons, 2014.

[44] Shyam Boriah, Varun Chandola, and Vipin Kumar.	 Similarity measures for
categorical data: A comparative evaluation. In Proceedings of the 2008 SIAM
international conference on data mining, pages 243–254. SIAM, 2008.

[45] Spiros Papadimitriou,	 Hiroyuki Kitagawa, Phillip B Gibbons, and Christos
Faloutsos. Loci: Fast outlier detection using the local correlation integral. In
Data Engineering, 2003. Proceedings. 19th International Conference on, pages
315–326. IEEE, 2003.

[46] Jian Tang, Zhixiang Chen, Ada Wai-Chee Fu, and David W Cheung. Enhanc­
ing effectiveness of outlier detections for low density patterns. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pages 535–548. Springer,
2002.

[47] Ville Hautamaki, Ismo Karkkainen, and Pasi Franti.	 Outlier detection using
k-nearest neighbour graph. In Proceedings of the 17th International Conference
on Pattern Recognition, 2004. ICPR 2004., volume 3, pages 430–433. IEEE,
2004.

[48] Claudio De Stefano, Carlo Sansone, and Mario Vento. To reject or not to reject:
that is the question-an answer in case of neural classifiers. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications and Reviews), 30(1):84–
94, 2000.

[49] Bernhard Schölkopf, John C Platt, John Shawe-Taylor, Alex J Smola, and
Robert C Williamson. Estimating the support of a high-dimensional distribu­
tion. Neural computation, 13(7):1443–1471, 2001.

[50] Sebastian Mika. Kernel fisher discriminants. 2003.

[51] Bernhard Schölkopf, Robert C Williamson, Alex J Smola, John Shawe-Taylor,
and John C Platt. Support vector method for novelty detection. In Advances
in neural information processing systems, pages 582–588, 2000.

111

[52] Manuel Davy and Simon Godsill.	 Detection of abrupt spectral changes using
support vector machines an application to audio signal segmentation. In 2002
IEEE International Conference on Acoustics, Speech, and Signal Processing,
volume 2, pages II–1313. IEEE, 2002.

[53] Sarah M Erfani, Sutharshan Rajasegarar, Shanika Karunasekera, and Christo­
pher Leckie. High-dimensional and large-scale anomaly detection using a linear
one-class svm with deep learning. Pattern Recognition, 58:121–134, 2016.

[54] Javier Alvarez	 Cid-Fuentes, Claudia Szabo, and Katrina Falkner. Adaptive
performance anomaly detection in distributed systems using online svms. IEEE
Transactions on Dependable and Secure Computing, 2018.

[55] Santhosh Kelathodi Kumaran, Debi Prosad Dogra, and Partha Pratim Roy.
Anomaly detection in road traffic using visual surveillance: A survey. arXiv
preprint arXiv:1901.08292, 2019.

[56] Salah Zidi, Tarek Moulahi, and Bechir Alaya. Fault detection in wireless sensor
networks through svm classifier. IEEE Sensors Journal, 18(1):340–347, 2018.

[57] David MJ Tax	 and Robert PW Duin. Support vector domain description.
Pattern recognition letters, 20(11-13):1191–1199, 1999.

[58] David MJ Tax and Robert PW Duin. Support vector data description. Machine
learning, 54(1):45–66, 2004.

[59] Hugo Martins, Luis Brito Palma, Alberto Cardoso, and Paulo Gil. A support
vector machine based technique for online detection of outliers in transient time
series. pages 1–6, 05 2015.

[60] Pang Wei Koh and Percy Liang. Understanding black-box predictions via influ­
ence functions. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 1885–1894. JMLR. org, 2017.

[61] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice,
Vasin Wongrassamee, Emil C Lupu, and Fabio Roli. Towards poisoning of
deep learning algorithms with back-gradient optimization. In Proceedings of
the 10th ACM Workshop on Artificial Intelligence and Security, pages 27–38.
ACM, 2017.

[62] Hope Reese. Why microsoft?s tay ai bot went wrong. Tech Republic, 2016.

[63] Ellie Zolfaghharifard and Joseph Menn.	 Did kaspersky lab try to trick rivals
into deleting harmless files? former employees say security firm created fake
malware. Daily Mail, Aug 2015.

[64] Marius Kloft and Pavel Laskov.	 Security analysis of online centroid anomaly
detection. Journal of Machine Learning Research, 13(Dec):3681–3724, 2012.

[65] Blaine Nelson and Anthony D Joseph.	 Bounding an attack’s complexity for
a simple learning model. In Proc. of the First Workshop on Tackling Com­
puter Systems Problems with Machine Learning Techniques (SysML), Saint-
Malo, France, 2006.

112

[66] Prahlad Fogla and Wenke Lee.	 Evading network anomaly detection systems:
formal reasoning and practical techniques. In Proceedings of the 13th ACM con­
ference on Computer and communications security, pages 59–68. ACM, 2006.

[67] Benjamin IP Rubinstein, Blaine Nelson, Ling Huang, Anthony D Joseph, Shing­
hon Lau, Satish Rao, Nina Taft, and JD Tygar. Antidote: understanding and
defending against poisoning of anomaly detectors. In Proceedings of the 9th
ACM SIGCOMM conference on Internet measurement, pages 1–14. ACM, 2009.

[68] James Newsome, Brad Karp, and Dawn Song. Paragraph: Thwarting signature
learning by training maliciously. In International Workshop on Recent Advances
in Intrusion Detection, pages 81–105. Springer, 2006.

[69] James Newsome, Brad Karp, and Dawn Song. Polygraph: Automatically gen­
erating signatures for polymorphic worms. In Security and privacy, 2005 IEEE
symposium on, pages 226–241. IEEE, 2005.

[70] Battista Biggio, Ignazio Pillai, Samuel Rota Bulò, Davide Ariu, Marcello Pelillo,
and Fabio Roli. Is data clustering in adversarial settings secure? In Proceedings
of the 2013 ACM workshop on Artificial intelligence and security, pages 87–98.
ACM, 2013.

[71] Battista Biggio, Blaine Nelson, and Pavel Laskov.	 Support vector machines
under adversarial label noise. In Asian Conference on Machine Learning, pages
97–112, 2011.

[72] Huang Xiao, Battista Biggio, Blaine Nelson, Han Xiao, Claudia Eckert, and
Fabio Roli. Support vector machines under adversarial label contamination.
Neurocomputing, 160:53–62, 2015.

[73] Yan Zhou, Murat Kantarcioglu, Bhavani Thuraisingham, and Bowei Xi.	 Ad­
versarial support vector machine learning. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery and data mining,
pages 1059–1067. ACM, 2012.

[74] Daniel Lowd and Christopher Meek.	 Adversarial learning. In Proceedings of
the eleventh ACM SIGKDD international conference on Knowledge discovery
in data mining, pages 641–647. ACM, 2005.

[75] Daniel Lowd and Christopher Meek.	 Good word attacks on statistical spam
filters. In CEAS, volume 2005, 2005.

[76] Gregory L Wittel and Shyhtsun Felix Wu. On attacking statistical spam filters.
In CEAS, 2004.

[77] Marco Barreno, Blaine Nelson, Anthony D Joseph, and JD Tygar. The security
of machine learning. Machine Learning, 81(2):121–148, 2010.

[78] Nilesh Dalvi, Pedro Domingos, Sumit Sanghai, Deepak Verma, et al.	 Adver­
sarial classification. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 99–108. ACM, 2004.

[79] Pavel Laskov et al. Practical evasion of a learning-based classifier: A case study.
In Security and Privacy (SP), 2014 IEEE Symposium on, pages 197–211. IEEE,
2014.

113

[80] Fei Zhang, Patrick PK Chan, Battista Biggio, Daniel S Yeung, and Fabio Roli.
Adversarial feature selection against evasion attacks. IEEE transactions on
cybernetics, 46(3):766–777, 2016.

[81] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er­
han, Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks.
arXiv preprint arXiv:1312.6199, 2013.

[82] Nicolas Papernot, Patrick McDaniel,	 and Ian Goodfellow. Transferability in
machine learning: from phenomena to black-box attacks using adversarial sam­
ples. arXiv preprint arXiv:1605.07277, 2016.

[83] Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted at­
tacks on speech-to-text. In 2018 IEEE Security and Privacy Workshops (SPW),
pages 1–7. IEEE, 2018.

[84] Mahmood Sharif, Sruti Bhagavatula, Lujo Bauer, and Michael K Reiter. Acces­
sorize to a crime: Real and stealthy attacks on state-of-the-art face recognition.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Com­
munications Security, pages 1528–1540. ACM, 2016.

[85] Amir Globerson and Sam Roweis. Nightmare at test time: robust learning by
feature deletion. In Proceedings of the 23rd international conference on Machine
learning, pages 353–360. ACM, 2006.

[86] Michael Brückner and Tobias Scheffer. Nash equilibria of static prediction
games. In Advances in neural information processing systems, pages 171–179,
2009.

[87] Yan Zhou and Murat Kantarcioglu.	 Modeling adversarial learning as nested
stackelberg games. In Pacific-Asia Conference on Knowledge Discovery and
Data Mining, pages 350–362. Springer, 2016.

[88] Murat Kantarcıoğlu, Bowei Xi, and Chris Clifton. Classifier evaluation and
attribute selection against active adversaries. Data Mining and Knowledge Dis­
covery, 22(1-2):291–335, 2011.

[89] Michael Brückner and Tobias Scheffer. Stackelberg games for adversarial pre­
diction problems. In Proceedings of the 17th ACM SIGKDD international con­
ference on Knowledge discovery and data mining, pages 547–555. ACM, 2011.

[90] Dongyu Meng and Hao Chen.	 Magnet: a two-pronged defense against ad­
versarial examples. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, pages 135–147. ACM, 2017.

[91] Xin Li and Fuxin Li. Adversarial examples detection in deep networks with con­
volutional filter statistics. In Proceedings of the IEEE International Conference
on Computer Vision, pages 5764–5772, 2017.

[92] Battista Biggio, Igino Corona, Giorgio Fumera, Giorgio Giacinto, and Fabio
Roli. Bagging classifiers for fighting poisoning attacks in adversarial classifi­
cation tasks. In International workshop on multiple classifier systems, pages
350–359. Springer, 2011.

114

[93] Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for
data poisoning attacks. In Advances in neural information processing systems,
pages 3517–3529, 2017.

[94] Battista Biggio,	 Konrad Rieck, Davide Ariu, Christian Wressnegger, Igino
Corona, Giorgio Giacinto, and Fabio Roli. Poisoning behavioral malware clus­
tering. In Proceedings of the 2014 workshop on artificial intelligent and security
workshop, pages 27–36. ACM, 2014.

[95] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug
Tygar. Can machine learning be secure? In Proceedings of the 2006 ACM
Symposium on Information, computer and communications security, pages 16–
25. ACM, 2006.

[96] KDD Cup.	 Intrusion detection data set. The UCI KDD Archive Information
and Computer Science University of California, Irvine. DOI= http://kdd. ics.
uci. edu/databases/kddcup99, 1999.

[97] Yahoo!	 Webscope. Yahoo! Webscope dataset ydata-labeled-time­
series-anomalies-v1 0 [http://labs.yahoo.com/Academic Relations]. "https:
//webscope.sandbox.yahoo.com/catalog.php?datatype=s", 2017. On­
line,Accessed: 2017-12-19.

[98] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.

[99] Andrea Dal Pozzolo, Olivier Caelen, Reid A Johnson, and Gianluca Bontempi.
Calibrating probability with undersampling for unbalanced classification. In
Computational Intelligence, 2015 IEEE Symposium Series on, pages 159–166.
IEEE, 2015.

[100] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A Ghorbani. Toward gener­
ating a new intrusion detection dataset and intrusion traffic characterization.
In ICISSP, pages 108–116, 2018.

[101] Adetunmbi A Olusola, Adeola S Oladele, and Daramola O Abosede.	 Anal­
ysis of kdd’99 intrusion detection dataset for selection of relevance features.
In Proceedings of the World Congress on Engineering and Computer Science,
volume 1, pages 20–22, 2010.

[102] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learn­
ing, 20(3):273–297, 1995.

[103] Ahmed Ahmim, Mohamed Amine Ferrag, Leandros Maglaras, Makhlouf Der­
dour, and Helge Janicke. A detailed analysis of using supervised machine learn­
ing for intrusion detection.

[104] Florian	 Tramèr, Alexey Kurakin, Nicolas Papernot, Ian Goodfellow, Dan
Boneh, and Patrick McDaniel. Ensemble adversarial training: Attacks and
defenses. arXiv preprint arXiv:1705.07204, 2017.

[105] Battista Biggio, Giorgio Fumera, and Fabio Roli.	 Multiple classifier systems
for robust classifier design in adversarial environments. International Journal
of Machine Learning and Cybernetics, 1(1-4):27–41, 2010.

http://labs.yahoo.com/Academic
http://kdd

115

[106] Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial machine learn­
ing at scale. arXiv preprint arXiv:1611.01236, 2016.

[107] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick
McDaniel. The space of transferable adversarial examples. arXiv preprint
arXiv:1704.03453, 2017.

[108] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. Delving into transferable
adversarial examples and black-box attacks. arXiv preprint arXiv:1611.02770,
2016.

[109] Muzammal Naseer, Salman H Khan, Harris Khan, Fahad Shahbaz Khan, and
Fatih Porikli. Cross-domain transferability of adversarial perturbations. arXiv
preprint arXiv:1905.11736, 2019.

[110] Murat Kantarcioglu, Bowei Xi, and Chris Clifton.	 Classifier evaluation and
attribute selection against active adversaries. Data Mining and Knowledge Dis­
covery, 22(1-2):291–335, January 2011.

[111] Michael Brückner, Christian Kanzow, and Tobias Scheffer. Static prediction
games for adversarial learning problems. Journal of Machine Learning Research,
13(Sep):2617–2654, 2012.

116

VITA

Radhika Bhargava was born and raised in India where she obtained her B. Tech

in Information Technology. She was admitted to Purdue University as a Ph.D. stu­

dent in 2011 and received a M.S. in Computer Science from Purdue University in

2013. During her time at Purdue, she worked for Amazon and Google. Her research

interests include adversarial machine learning, anomaly detection, secure multiparty

computation, as well as game theory.

