
CERIAS Tech Report 2019-01
PrivIdEx: Privacy Preserving and Secure Exchange of Digital Identity Assets
 by H. Gunasinghe, A. Kundu, E. Bertino, H. Krawczyk, K. Singh, S. Chari, D. Su

Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

PrivIdEx: Privacy Preserving and Secure Exchange of Digital
Identity Assets.

H. Gunasinghe
Purdue University

A. Kundu
IBM Research

E. Bertino
Purdue University

H. Krawczyk
IBM Research

huralali@purdue.edu akundu@us.ibm.com bertino@purdue.edu hugokraw@us.ibm.com

K. Singh S. Chari∗ D. Su∗
IBM Research IBM Research IBM Research

kapil@us.ibm.com snchari@gmail.com sudong.tom@gmail.com

ABSTRACT
User’s digital identity information has privacy and security require-
ments. Privacy requirements include confdentiality of the identity
information itself, anonymity of those who verify and consume
a user’s identity information and unlinkability of online transac-
tions which involve a user’s identity. Security requirements include
correctness, ownership assurance and prevention of counterfeits of
a user’s identity information. Such privacy and security require-
ments, although conficting, are critical for identity management
systems enabling the exchange of users’ identity information be-
tween diferent parties during the execution of online transactions.
Addressing all such requirements, without a centralized party man-

aging the identity exchange transactions, raises several challenges.
This paper presents a decentralized protocol for privacy preserving
exchange of users’ identity information addressing such challenges.
The proposed protocol leverages advances in blockchain and zero
knowledge proof technologies, as the main building blocks. We
provide prototype implementations of the main building blocks of
the protocol and assess its performance and security.

KEYWORDS
Decentralized identity asset exchange; Privacy preserving; Unlink-
ability; Counterfeit elimination; Blockchain; ZK-SNARK

1 INTRODUCTION
Access to services ofered by online service providers (SPs) is con-
trolled by identity verifcation processes. Such a process requires
users to verify diferent types of identity information, depending
on the sensitivity of the service. Some services require to verify
individual pieces of identity information, such as email address,
phone number and Social Security Number (SSN), and some other
services require to verify composite identity information such as
driver’s license and passport. Certain other services require to per-
form rigorous due diligence processes to satisfy certain compliance
requirements such as Know Your Customer (KYC) compliance in

∗
this work was done when the author was at IBM Research.

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’19, May 13–17, 2019, San Francisco, CA, USA
© 2019 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-6674-8/19/05.
https://doi.org/10.1145/3308558.3313574

banking/fnancial services [5]. Similar example scenarios which
involve lengthy identity verifcation processes include, but not lim-

ited to, joining a new employer, applying for temporary visa in a
foreign country, etc.

The amount of resources and efort that users and SPs have
to devote to these identity verifcation processes vary depending
on the type of identity information being verifed. For examples,
verifying an email address only requires the SP to send an email to
the given email address, asking the user to click a link in it, verifying
an SSN may require the SP to consume a paid service ofered by
the SSN authority, and verifying KYC compliance requires the SP
to perform background checks on the user to verify the user’s
status of credit score, Anti-Money Laundering (AML), Counter
Terrorist Financing (CTF), Politically Exposed Person (PEP) [5],
etc. Once an SP has verifed the identity of a user, the package of
information associated with such verifed identity becomes an asset
of the SP, which we refer to as identity asset (the National Strategy
for Trusted Identities in Cyberspace (NSTIC) labels such verifed
identity information as belonging to LOA (Level Of Assurance) 2+
category [20]). On the other hand, since an identity asset contains
personal information about a user, the user also becomes an owner
of the identity asset, leading to having two legitimate owners per
identity asset.

Currently, when a user needs to consume similar services from
diferent SPs, the user is treated as an “alien” by each SP and is
required to go through a similar identity verifcation performed
by each SP. These repeated processes not only are costly, but also
are inherently error-prone, causing inconvenience to both parties.
These issues magnify especially in scenarios involving lengthy
identity verifcation such as consuming fnancial services from
multiple banks, joining multiple employers, applying for temporary
visa in multiple countries, etc. If there were a standard protocol
through which diferent SPs could share the same identity assets
of a user, that would result in substantial cost savings and notable
convenience to both parties [5]. The SP who originally performed
the identity verifcation for the user, and hence is one of the owners
of the identity asset, can be incentivized for sharing the identity
asset, in exchange of a monetary compensation by the subsequent
SP(s) that the user interacts with.

Let us consider the following use case: The user Ursula frst
consumes fnancial services from bank A where bank A performs
identity verifcation and due diligence steps for KYC compliance on
Ursula. Later Ursula needs to consume fnancial services from bank B
as well. Bank B wants to know if Ursula has already performed KYC

https://doi.org/10.1145/3308558.3313574
mailto:sudong.tom@gmail.com
mailto:snchari@gmail.com
mailto:kapil@us.ibm.com

compliance verifcation and if so, both Ursula and bank B would like
to re-use the corresponding identity asset. However, in this use case,
Ursula would not like to reveal to bank B which bank(s) she has
interacted before, and would not like to reveal to bank A, which
other bank(s) she is planning to be a customer of. Bank A and bank B
themselves would also not like to reveal their identity to each other
during potential identity asset exchange, due to competition in
business. On the other hand, Ursula would not like the transactions
she carries out with diferent banks based on the same identity asset
to be linkable. Prominent privacy protection regulations, such as
General Data Protection Regulation (GDPR) [27], also treats a user’s
transactional patterns as personal data and prohibits tracking such
personal data. Therefore, anonymity of the parties who exchange the
identity asset and unlinkability of the transactions are key privacy
requirements to be addressed when designing a protocol to facilitate
identity asset exchange during online transactions, in addition to
protecting confdentiality of identity assets from external parties.

The existing identity management protocols, which facilitate
sharing users’ identity information, do not address all the key pri-
vacy requirements. For examples, OpenIDConnect [22], an industry
standard widely used by SPs to obtain a user’s identity informa-

tion from an identity provider (IDP), does not preserve anonymity
and unlinkability. Two nation-scale brokered identifcation sys-
tems built by the USA and UK governments, namely, Federal Cloud
Credential Exchange (FCCX) [21] and GOV.UK Verify [16], respec-
tively, focus on the aforementioned use case and the frst privacy
requirement, i.e. protecting from each other the anonymity of the
parties who exchange users’ identity information, in order to pre-
serve users’ privacy. Those systems, however, use a government
managed broker to mediate the identity exchange transactions, in
which case, the identity of the two exchanging parties is revealed
to the broker, although the two parties stay anonymous to each
other. Brandao et. al [7] have raised certain other privacy concerns
on the introduction of such a centralized broker.

One of our goals is to avoid introducing such a centralized bro-
ker. Therefore, the proposed protocol is executed in a decentral-
ized identity management ecosystem backed by a permissioned
blockchain network (see Section 2.1). Distributed trust implemented
on the basis of the consensus protocol through which blockchain
peers validate protocol executions eliminates the requirement of a
centralized broker. Participants of the decentralized identity man-

agement ecosystem invoke the identity exchange transactions with
pseudonyms, in order to preserve anonymity and unlinkability.
However, when anonymity and unlinkability are enforced in conf-
dential identity asset exchanges, without a mediating centralized
party, it is challenging to achieve the required security properties,
such as correctness, ownership assurance and counterfeits elimination
of the identity assets, and optionally, fnancial fairness of the identity
asset exchange transactions, because the participants, appearing
with a new pseudonym in each round of the protocol execution,
can violate such security properties, as discussed in Section 3. This
problem can be related to the challenge of preventing double spend-
ing in bitcoin [19] and ZeroCash [4], without a centralized fnancial
institute managing the payment transactions. However, unlike in
bitcoin and ZeroCash, whose goal is to prevent double spending
of cryptocurrency, which has a single owner at a time, our goal
is to enable multiple exchanges of the same identity asset which

has two owners, which poses a diferent set of challenges. We have
designed the dedicated phases of the protocol to address such chal-
lenges leveraging the power of ZK-SNARKS (see Section 2.2).

Our main contribution is PrivIdEx - a protocol realizing privacy
preserving and secure exchanges of identity assets in a decentral-
ized identity management ecosystem, including its: i) design, ii)
implementation and iii) analysis and evaluation.

2 PRELIMINARIES

2.1 Permissioned Blockchain
We identify two main parties in a BC [25] network as follows:
i) peers - they maintain the transaction ledger (i.e. BC) and host
the smart contract(s); ii) participants - they perform transactions.
The consensus algorithm defnes rules to be followed by peers
when ordering and validating the transactions to be added to the
ledger. A smart contract defnes the business logic for transaction
execution and validation, which is invoked by participants and run
independently by each peer for executing the transactions.

There are two types of BCs: i) Permissionless BCs - where any
one can join the network and write to/read from the BC. Partici-
pants’ identity is hidden by the random pseudonyms they choose,
which results in lack of accountability. Cheating by the peers is
avoided and the correctness of the ledger is preserved by employ-

ing an expensive consensus algorithm and the assumption that the
majority of the computation power of the network is with hon-
est parties. ii) Permissioned BCs - where a trusted certifcation
authority (CA) issues signed X.509 certifcates to actors (i.e. peers
and participants), which include the public key of a RSA key pair
and other identity attributes that determine their permissions (i.e.
read/write access to BC). This preserves accountability and enables
employing a less costly consensus algorithm. Permissioned BCs are
categorized as public and private based on whether read access is
controlled or not, respectively. We assume a decentralized identity
management ecosystem backed by a permissioned BC when design-
ing the proposed protocol, in particular, Hyperledger Fabric [13], a
private permissioned BC.

2.2 ZK-SNARKs
ZK-SNARKs is an efcient construction to prove in zero-knowledge,
a satisfying assignment to the class of problems called Quadratic
Span Program (QSP) [15]. QSP is an NP-complete problem. Accord-
ing to the principles in complexity theory, for any NP problem L and
an NP-complete problem M , there is a reduction function f , which
is computable in polynomial time, s.t. L(x) = M(f (x)). Accordingly,
ZK-SNARKs can be used to prove in zero-knowledge, a satisfying
assignment to any NP problem following these high level steps:
i) formulate the decision problem D as an NP statement, which is
expressed in the following form: Given a set of public inputs X , I
know a set of secret inputs W , s.t. condition D holds on X and W
(i.e. the satisfying assignment is constituted by X and W); ii) write
an algorithmic program P to solve D; iii) convert P to an arithmetic
circuit C; iv) convert C to a QAP (Quadratic Arithmetic Program -
a variant of QSP); v) prove/verify satisfability for the QAP in zero
knowledge.

The ZK-SNARKs construction is expressed in following three
algorithms: i) Generator (G): takes as inputs: C and secret param-

eters λ, and outputs a proving key (pk) and a verifcation key (vk).
This is a one time setup step run by a trusted party, after which
λ should be destroyed in order to preserve the soundness of the
proofs. (pk, vk) := G(C , λ). ii) Prover (P): takes as inputs: C , pk and
the satisfying assignment - which may have both private inputs w
and public inputs x , and outputs the proof Φ. Φ := P (C , pk, w , x).
iii) Verifer (V): takes as inputs: vk, Φ and public inputs x provided
by the prover, and outputs the decision d as true, if (w , x) is a
satisfying assignment to P , and false, otherwise. d := V(vk, Φ, x).

In ZK-SNARK (Zero-Knowledge Succinct Non-interactive Argu-
ment of Knowledge), the Zero-Knowledge property enables partici-
pants to keep transaction information confdential, and still prove
to peers that transactions are valid according to the smart con-
tract. Succinctness makes the size of such proofs small (≈2KB) and
verifcation time in the orders of milliseconds, irrespective of the
complexity of the business logic defned in the smart contract. The
Non-interactive property enables multiple peers to verify the proofs
independently without interacting with the prover. There are other
zero-knowledge proof constructions developed to achieve similar
goals without a trusted setup, such as ZK-STARK [3] and Bullet
Proof [8]. We use ZK-SNARK since it is more efcient and practical
compared to the other constructions.

3 SYSTEM MODEL AND THREATS

3.1 System model

Bank B

Ba
nk

 A

Ursula

1. Identity verification for KYC
compliance 2. Notifies identity

asset creation and
declares ownership

3.
 R

eq
ue

st
s

fin
an

ci
al

 s
er

vi
ce

s

4. Requests
identity asset

5. Notifies of 4

7. Transfers
identity asset

8. Notifies of 7

9.
 Q

ue
rie

s
id

en
tit

y
as

se
t

10. Submits any
monetary compensation

Peer1

Peer3

Peer2

Peer4

6.a. Requests consent for
identity asset transfer

6.b. Provides consent Ba
nk

 A

Figure 1: High level steps of a decentralized identity asset
exchange protocol

The following steps describe the basic fow of identity asset ex-
change for the use case mentioned in Section 1, which is illustrated
in Figure 1: 1) When Ursula consumes fnancial services for the
frst time from bank A, identity verifcation and due diligence are
performed by bank A to verify KYC compliance of Ursula, and the
resulting identity asset is stored at bank A. Note that the details
of how the identity verifcation is performed is out of scope of the
identity exchange protocol. 2) Bank A notifes the identity ecosys-
tem about the identity asset creation and claims its ownership. 3) At
a later point in time, Ursula requests fnancial services from bank

B and they discover by some means (either by querying the BC or
Ursula’s private records) if the required identity asset is already
created for Ursula. 4) If this is the case, Bank B requests from the
identity ecosystem the relevant identity asset of Ursula. 5) Bank
A receives the request submitted by bank B, via the transaction
notifcation system of the BC. 6.a) If bank A decides to share the
identity asset, bank A requests the consent from Ursula to transfer
the identity asset to bank B. 6.b) Ursula provides her consent. 7)
Bank A transfers the identity asset, along with Ursula’s consent, via
the identity ecosystem. 8) Bank B receives the notifcation about
the valid identity asset transfer. 9) Bank B queries the identity asset
from the ledger. 10) Optionally, if the transferred identity asset is
correct, bank B submits a monetary compensation (if it is required,
by the policies of the identity ecosystem, in order to ensure fnancial
fairness) to bank A. This could be a bitcoin payment sent to bank
A, if the underlying BC supports bitcoin transactions, which bank
A can redeem later.

We make the following three basic assumptions in the context
of decentralized identity asset exchange: 1) There is a criteria to
defne and verify uniqueness of an identity asset so that if multiple
copies of a particular type of identity asset are created by multiple
parties using identity information of a given user, they all become
digitally identical (e.g. defning a standard format for an identity
asset used for a particular identity verifcation scenario and consid-
ering the cryptographic hash (CRH) of the identity asset to be the
criteria for verifying uniqueness). 2) If a particular type of identity
asset is created for a given user in the identity ecosystem, all the
SPs requiring a similar identity asset from the user should re-use it,
without re-creating it. 3) The trusted CA, which issues the identity
certifcates to the actors of the BC network, does not collude with
any actor in the BC.

Note that we incorporate the required privacy features into the
protocol in an incremental manner. Therefore, we frst consider Ver-
sion 0 of the protocol, which does not include any privacy features,
i.e. all the participants appear in their real identities and identity
assets are transferred in plain text. Although such a model is not
used in a real world deployment, we use it as the baseline to identify
what properties should be achieved in order to guarantee that an
identity asset exchange protocol is secure, and to analyze various
challenges in achieving the those security properties when privacy
features are incorporated into the protocol incrementally.

3.2 Threat model for protocol security
In what follows, we frst identify the diferent ways in which an ad-
versary can compromise the security of the plain protocol model. 1)
Compromising correctness: A malicious identity asset provider
(e.g. bank A) transfers an identity asset in step 6, which is diferent
than the one it created in step 2. 2) Compromising ownership
assurance: A malicious collusion of two of the three parties en-
gaged in an identity asset exchange can compromise the ownership
assurance of one of the two legitimate owners as follows: i) a dif-
ferent user can collude with bank A to impersonate Ursula at bank
B; ii) bank A and bank B can collude to transfer the identity asset
without Ursula’s consent; iii) after bank B obtains the identity asset
from bank A, Ursula and bank B can collude to act as the original
owners and transfer the identity asset to a diferent bank. Attacks i)

and ii) are possible by sending a fake consent in step 6.b and attack
iii) is motivated by any benefts obtained from the identity asset ex-
change, such as monetary compensation paid by the identity asset
consumer to the identity asset provider. 3) Creating counterfeits
of an identity asset: Due to the same motivation for attack 2.iii,
bank B may execute step 2 using the identity asset received from
bank A, hence creating a counterfeit. 4) Compromising fnan-
cial fairness: After receiving the identity asset, bank B can abort
skipping step 10. Or if bank B makes the payment frst, bank A can
abort skipping step 7.

Accordingly, correctness, ownership assurance, counterfeits elimi-
nation and fnancial fairness are key requirements to be addressed,
in order to guarantee the security of an identity asset exchange
protocol. In what follows, we describe the simple mechanisms that
should be incorporated into protocol V0, in order to address those
requirements. 1) Correctness : The smart contract that defnes the
protocol requires from bank A to submit the cryptographic hash
(CRH) of the identity asset in step 2. In step 7, bank A submits a
pointer (e.g. transaction ID) to step 2 associated with the identity
asset being transferred. Then the peers running the smart con-
tract validate correctness by computing the CRH of the transferred
identity asset and comparing it with the CRH submitted in step 2
associated with the same identity asset. 2) Ownership assurance:
The protocol requires: i) from bank A to submit the CRH of the
public keys of the two owners in step 2; ii) from Ursula and bank A
to sign, using their private keys, the messages sent in step 6.b (con-
sent by the user) and step 7 (identity asset transfer), respectively.
Then the peers verify the signatures and confrm that the original
owners of the identity asset indeed performed the transfer. Note
that an adversary can replay the message sent in step 7. Therefore,
the protocol should also require bank B to send a random nonce
in the identity asset request message (step 4), which Ursula and
bank A should include in the messages they sign in steps 6.b and
7. 3) Counterfeits elimination: To ensure that duplicates of an
identity asset do not exist, the peers maintain a hash table which
is indexed by the CRH of the identity asset and which stores the
information submitted in step 2 of the protocol (i.e. CRH of the
public keys of the two owners). Each time step 2 is executed for a
newly created identity asset, the peers check if the newly submitted
CRH already exists in the hash table, in which case the peers reject
it as an attempt to create a counterfeit of an identity asset. 4)Finan-
cial fairness : It is unlikely that bank B skips step 10 in protocol
V0 where it appears with its real identity, as it would damage its
reputation. Even if bank B does so, it is easy to take actions against
bank B for the dishonest behavior.

3.3 Threat model for users’ privacy
In what follows we discuss an adversary’s goals in compromising
users’ privacy (i.e. learning and tracking information that users do
not intentionally share) in protocol V0. 1) Compromising conf-
dentiality of users’ identity information: The adversary learns
the users’ identity information from the identity assets transferred
in plain text via the BC in executions of step 7. 2) Compromising
users’ transactional privacy: i) the adversary learns the iden-
tity of the parties a user interacts with, because in protocol V0, all
participants interact with the identity ecosystem using their real

identities; ii) the adversary tracks a user’s transaction patterns by
linking the transactions that the user carries out with diferent SPs.

The following modifcations to protocol V0 address those pri-
vacy concerns. 1) Confdentiality: Bank A encrypts the identity
asset in step 7, using a key known to bank B. 2) Anonymity of
the parties whom a user interacts with: All the participants use a
pseudonymous certifcate issued by the CA, when interacting with
the identity ecosystem. 3) Unlinkability of the user’s transactions:
i) the participants use diferent pseudonymous certifcates in exe-
cuting step 2 and each round of identity asset transfer (i.e. steps 4 -
10); ii) bank A does not expose the CRH of the identity asset in plain
text in step 2; instead it submits a commitment to the CRH of the
identity asset. Otherwise, the identity asset consumers (e.g. bank B),
can decrypt the identity asset received in step 9, compute its CRH
and track the corresponding identity asset creation transaction (e.g.
execution of step 2), in order to infer information such as when
is the frst time the user has consumed a similar service, etc. Note
that the aforementioned mechanisms for enforcing unlinkability,
specifcally the one mentioned under 3.i, also imply anonymity. The
pseudonymous identity certifcates obtained by the participants
from the CA, do not include any identifable attributes, but the
public key of a new RSA key pair. A pseudonym is considered to
be the CRH of the public key of such key pair.

3.4 Challenges in preserving users’ privacy and
ensuring security of the protocol

In what follows we discuss how the aforementioned mechanisms
for ensuring security and privacy properties confict, which raise
challenges in developing a privacy preserving and secure identity
asset exchange protocol. We discuss such challenges w.r.t. three
versions of the incrementally developed protocol, each of which is
a result of incorporating privacy features one by one, into V0.
V1-Confdentiality: When the identity asset is encrypted, peers
cannot verify its correctness simply by computing its CRH as in V0.
The mechanisms for preserving ownership assurance, counterfeit
elimination and fnancial fairness used in V0 are not afected though.
V2-Confdentiality and Anonymity: When the participants ex-
ecute the protocol with pseudonyms, the correctness enforcement
mechanism is not afected compared to V1. However, the mecha-

nism to preserve ownership assurance in V0/V1 is afected, because
there is the threat of a malicious identity consumer (e.g. bank B)
sending a ‘contract’ which they want the identity asset provider
and/or the user to sign, instead of a truly random nonce in step
4. Therefore, parties can not give away a signature on a challenge
nonce, as a proof of ownership of the private key. There is no efect
on the counterfeit elimination mechanism used in V0/V1, except
that the owners of the identity asset should use the key pair related
to their pseudonymous identity in steps 2, 6.b and 7. The fnancial
fairness enforcement mechanism used in V0/V1 is afected, because
pseudonymous bank B can intentionally skip step 10. Involving the
CA to de-anonymize such identity consumers adds lot of overhead.
Instead, this should be addressed by the protocol itself.
V3-Confdentiality, Anonymity and Unlinkability: It is more
challenging to ensure correctness when unlinkability is enforced,
because now even the CRH of the identity asset is not exposed in
step 2. It is also more challenging to preserve ownership assurance

than in V2, because now the two owners of the identity asset use
diferent pseudonyms in step 2 and in each round of steps 4-10,
in contrast to using a single pseudonym across all transactions
as in V2. The hash table based counterfeit elimination mechanism
is no longer sufcient now, because the hash of the identity as-
set is not exposed in step 2 and any two parties appearing with
new pseudonyms can execute step 2, submitting a commitment
to a CRH of any identity asset. Preserving fnancial fairness also
needs improved mechanisms because we need to make sure that
the underlying monetary payment system also preserves unlinka-
bility; otherwise, parties can be de-anonymized via linkability in
the payment system.

Table 1 summarizes how introducing the properties for preserv-
ing users’ privacy into protocol V0, in an incremental manner,
afects the mechanisms for achieving the identifed security proper-
ties. As mentioned in , the mechanisms for enforcing unlinkability
implies anonymity. Therefore, only two properties are mentioned
in the heading of the third column under users’ privacy, which cor-
responds to Version 3 of the protocol. A checkmark in a given cell
indicates that the combination of privacy properties in the given
column pose challenges to the mechanism used in the previous
version of the protocol, for ensuring the security property in the
given row.

Table 1: Efect of introducing the properties for preserving
users’ privacy, in an incremental manner, on the properties
for ensuring security of the protocol.

Properties en-
suring proto-
col security:

Properties ensuring users’ privacy:
confdentiality confdentiality

+ anonymity
confdentiality
+ unlinkability

counterfeit
elimination

- - ✓

correctness ✓ - ✓
ownership as-
surance

- ✓ ✓

fnancial fair-
ness

- ✓ ✓

4 PROTOCOL DESIGN
In what follows, we present the design of the proposed proto-
col, named PrivIdEx, addressing the aforementioned challenges.
As shown in Figure 2, PrivIdEx involves four parties: Identity
Asset Provider (IAP), User, Identity Asset Consumer (IAC), and
Blockchain (BC). PrivIdEx consists of four phases, each of which
serves one or more specifc purposes and groups together a set
of relevant steps from the identity asset exchange fow shown in
Figure 1. Phase 0 is executed only once and phases 1-3 are executed
each time an identity asset is exchanged. Note that T represents the
transactions posted to the BC by participants, by invoking diferent
functions in the smart contract,W represents the validation steps ex-
ecuted by peers on the transactions and M represents the messages
exchanged between two parties ofine (i.e. without involvement of
the BC). The purpose(s) of each phase is (are) described as follows,
with examples from protocol V0.

Identity Asset
Provider (IAP)
e.g. Bank A

User (U)
Ursula

Identity Asset
Consumer (IAC)

e.g. Bank B
Blockchain

(BC)

TO: Notifies identity asset creation and declares ownership
WC: Verifies for
non-duplication

MF1: Metadata for future id asset exchanges by IAP

MF2: Metadata for future id asset exchanges by U

MD1: Requests owner details and consent to obtain id asset
MD2: Provides owner details and consent .

TH1: Handshake request
TH2: Handshake response

TH3: Handshake confirmation

ME1: Requests consent to transfer and proof of ownership

ME2: Provides consent and proof of ownership

TT: Transfers the identity asset with proof of correctness and ownership WP: Verifies correctness
and proof of ownershipTC: Confirms receipt

Ph
as

e
0 a

b

Ph
as

e
1

Ph
as

e
2

Ph
as

e
3

a
b

WH: Validates
handshake

Figure 2: Overview of PrivIdEx design. T represents a trans-
action submitted to the BC by the participants. W represents
a validation (of a transaction) performed by the peers. M
represents a message exchanged by the participants ofline
(without involving the BC).

Phase 0 consists of two sub phases. Phase 0.a, executed between
the IAP and the BC, serves for ownership declaration (TO) by IAPs
for newly created identity assets and verifcation by peers that such
identity assets are not counterfeits. E.g. in protocol V0, the IAP
sends the CRH of the public keys of the two owners and the CRH
of the identity asset in TO , which the peers verify in WC using the
hash table of ownership declarations maintained in the BC (see
Section 3.2). Phase 0.b, executed between the IAP and the user,
allows them to exchange meta data to be used in future identity
asset exchange(s). For example, in protocol V0, the IAP sends to
the user in MF 1, the IAP’s contact information and the name of
the identity asset created for the user, which the user stores in her
records to be used in phase 1.

Phase 1 is executed between the IAC and the user. In MD1, the
IAC requests contact details of the IAP that has created the required
identity asset (if any), and the user’s consent for requesting such
identity asset from the corresponding IAP. The meta data saved
by the user in phase 0.b is queried to construct the user’s response
(MD2).

Phase 2 consists of a three-way handshake between the IAC
and the IAP over the decentralized identity ecosystem. The IAC
initiates the handshake by submitting to the BC a message (TH 1)
addressed to the IAP who owns the identity asset. TH 1 includes the
user’s consent received in MD2 and is signed by the IAC. All the
participants receive a notifcation about TH 1 via the BC. The corre-
sponding IAP verifes the user’s consent and submits a response
handshake message (TH 2). The IAC acknowledges TH 2 by sending
a confrmation (TH 3). The peers validate a handshake by verifying
if TH 2 and TH 3 are associated with a corresponding TH 1 and TH 2,
respectively.

The handshake phase allows the IAP and the IAC to connect
anonymously over the BC and to negotiate certain information
pertaining to the identity asset exchange, which is carried out in
Phase 3. For examples, in protocol V0, i) the IAC sends the random

nonce in TH 3 to be signed by the two owners during the transfer
phase, for the proof of ownership, ii) if fnancial fairness is enforced
by the identity management system, the IAP specifes in TH 2, the
monetary value required for transferring the requested identity
asset and the IAC sends in TH 3, a reference to a payment made to
the IAP with that value. Note that in protocol V0 (i.e. when the
participants appear with their real identity and we do not assume
any threats to fnancial fairness), the payment can be made either
before of after the identity asset is transferred (i.e. either in TH 3
or in TC respectively). However, in protocol V1 and beyond, when
there is a threat to fnancial fairness from the parties appearing
with pseudonyms, certain precautions should be taken in order to
ensure fnancial fairness.

Phase 3 is where the actual identity transfer happens. In phase
3.a, executed between the IAP and the user, the IAP requests the
user, via ME1, to provide consent for transferring the identity asset
and the proof of user’s ownership of the identity asset. The user
responds accordingly via ME2. In phase 3.b, the IAP transfers the
identity asset along with ME2 and the proof of IAP’s ownership
of the identity asset, via TT . The peers verify in WP , that TT is
associated with a valid handshake, and verify correctness and proofs
of ownership. After receiving the notifcation about TT from the
BC, the IAC checks the transferred identity asset and posts to the
BC a confrmation or complains about the receipt of the identity
asset in TC .

In what follows, we present how those diferent phases are uti-
lized and enhanced to address the challenges for achieving the
security properties of the three versions of the incremental design
of PrivIdEx (see Section 3.4).

4.1 V1- Confdentiality Preserving Protocol
When confdentiality is enforced, the IAP and the IAC agree on a
key K for encrypting the identity asset (A), by integrating the Dife-

Hellman key exchange protocol into the three-way handshake in
phase 2. In TT , the IAP submits the encrypted identity asset: C =
EncK (A). Due to encryption of the identity asset, correctness is the
only security property that is more challenging to achieve in V1,
compared to V0 (see Section 3.4). To prove correctness, the IAP
submits in TT , the transaction id of TO associated with A and a zero-
knowledge (ZK) proof (Φ1), proving the knowledge of a satisfying
assignment to the NP statement -NS1: Given a cipher text C ′ , a hash

′ value a ′ , I know the following secrets: an identity asset A ′ and a key K
′ ′ s.t a = CRH(A ′) and C = EncK ′ (A ′). The IAP proves the satisfying

assignment to NS1 with A ′ = A and K ′ = K as secret inputs, C ′ = C ,
and a ′ = the CRH of A submitted in the corresponding TO , as the
public inputs. If Φ1 is verifed successfully, the peers accept that TT
encrypts the same identity asset whose ownership was declared in
the corresponding TO .

4.2 V2 - Confdentiality and Anonymity
Preserving Protocol

When anonymity is enforced: i) the IAP includes the two owners’
pseudonyms in TO instead of their real identities; ii) the IAP and the
user records each other’s pseudonym in phase 0.b; iii) the user sends
to the IAC, via MD2, the pseudonym of the IAP who created the
identity asset; iv) the transactions posted to the BC are signed using

the pseudonyms; v) when transaction notifcations are received
from the BC, each participant checks if the transaction messages
are addressed to their pseudonym and responds accordingly. Due to
the threats by the pseudonymous participants, ownership assurance
and fnancial fairness are more challenging to achieve in V2 (see
Section 3.4).

To prove ownership in V2, the user and the IAP create ZK
proofs (Φ2U and Φ2P respectively) on the NP statement NS2: Given
a public key PK , a message M , I know a secret signature S , s.t.
RSA_Sig_Verify(M , S , PK) = True, where S = RSA_Sig(M , private
key of PK). RSA_Sig outputs a signature, given a RSA private key,
and a message M ; RSA_Sig_Verify outputs True if S is the correct
signature for M , using the private key associated with PK . The user
and the IAP prove satisfying assignments to NS2 with PK = the
public key of the pseudonym included in the TO associated with
the identity asset being transferred, M = the random nonce sent by
the IAC via TH 1, as public inputs, and S = the signature created on
such nonce with the private key associated with the pseudonym, as
the secret input. Proving the knowledge of S on the nonce sent by
the IAC, without revealing S , avoids the risk of giving a signature
on a potential ‘contract’ (see Section 3.4).

Φ2U and Φ2P are integrated in to the protocol design as follows.
The IAP sends to the user, via ME1, the nonce it received from the
IAC in TH 1. The user sends Φ2U via ME2. Then the IAP creates Φ1
(see Section 4.1) and Φ2P , and sends TT to the BC along with the
transaction id of TO associated with A, Φ1, Φ2U and Φ2P . The peers
validate TT , by verifying correctness and ownership assurance via
the ZK-proofs provided in TT .

To ensure fnancial fairness in V2, the handshake phase is used
as follows. The IAP informs the IAC about the required monetary
compensation for transferring the identity asset via TH 2,. If the IAC
agrees to pay, it includes in TH 3 a reference to a bitcoin payment
made with a locking condition such as: ‘the IAP can can unlock the
payment only by using either of these: i) a TC submitted by the IAC,
indicating a successful receipt of the identity asset; ii) a successful
WP by the peers, if a TC is not submitted after time ‘t’ since the time
of TT ’. Such a locked payment [2, 24] made during the handshake
phase prevents a pseudonymous IAC from skipping the required
payment. The IAP can redeem the payment only if it transfers the
correct identity asset, ensuring fnancial fairness to both parties.

4.3 V3 - Confdentiality, Anonymity and
Unlinkability Preserving Protocol

As per Section 3.4, it is more challenging to achieve all four security
properties in V3, compared to V2, due to the enforcement of un-
linkability property. In what follows we describe how each phase
of the protocol is enhanced to address those challenges. Prior to
phase 0.a, the user creates a commitment to the public key of her
real identity (Upk): CU = commit (UPK , ru) and sends CU to the IAP.
The IAP creates a commitment to the public key of its real identity
(Ppk): CP = commit (PPK , rp) and a commitment to a - the CRH of
the newly created identity asset: Ca = commit (a, ra). The IAP sends
TO to the BC, including the ownership declaration O = CU |CP |Ca ,
where | denotes concatenation, signed by a new pseudonym key.

The basic idea of counterfeit elimination in V3 is as follows. Let
B = {a1, a2,, an } be the set of CRH values of the identity assets

i

associated with all the previous valid executions of TO . This set
is represented by a unique polynomial P of degree n, that has a1,
a2,..., an as its roots. The polynomial P is represented as P(x) =

nÎ
=1(x − ai). Let Pi be the ith

coefcient of P , for i = 0, 1, ..., n. P
is initialized as P(x) = 1, and its degree increases with each new
valid TO . Hence, at any given time, if a number n of valid identity
assets have been created in the identity ecosystem, then there is
a number n + 1 of Pi s. If the evaluation of P(x) with x = a results

n i
in zero (i.e. P(a) =

Í
= 0), it implies that the identity asset, i=0 Pi .a

whose CRH value is a, is a duplicate of an existing one. In order to
preserve unlinkability, peers should only learn if P(a) = 0 or not,
and nothing else. Therefore, the set of Pi s are secretly encoded
before being stored in the BC and P(a) is computed in the encoded
domain before being revealed to peers.

To prove that the created identity asset is not a counterfeit, the
IAP submits TO to the BC, including O and the following four items:
(I1) The result of computing P(a) in the encoded domain, which is
denoted by l , i.e. l = En(P(a)).
(I2) A ZK-proof Φ3, proving that l is correctly computed and that
the same a is used to compute both Ca (in O) and l .

′(I3) The secretly encoded set of coefcients P of the updated poly-i
nomial P ′, which has a as one of its roots (i.e. P ′(x) = P(x).(x − a),

′ ′ ′
and therefore, P = -a.P0, P = Pi−1 - a.Pi , for i = 1, ..., n, and P

0 i n+1
= 1).
(I4) A ZK-proof Φ4, proving that I3 is correctly computed, using
the same a used in Ca .

Details of the mechanism for counterfeit elimination are as fol-
lows. Let E be an additive threshold homomorphic encryption
scheme, whose public key is known to everyone, but the secret
key is distributed among the peers s.t. a group of at least t + 1 of
them are required to perform decryption. E is instantiated with
the Elgamal encryption scheme over a group G of order q. The
public key h = дs , where д a generator in G and s is the private
key, which is distributed among the threshold peers. E is initialized
with a distributed key generation protocol [14]. The encryption of
an element д ′ ∈ G is defned as: E(д ′) = (дk

, hkд ′), where k ∈ Zq
is randomly chosen. An encoding scheme En to encode elements
in Zq is defned based on E as follows. En(z) = (дk

, hkдz
), where

z ∈ Zq . In fact, En(z) = E(дz). En(·) is an additively homomorphic
encoding of z which allows us to carry out computation on polyno-
mials whose coefcients are presented in encoded form. Moreover,
while the value z cannot be recovered in general from En(z), for
our purposes we only need to be able to decide for a given En(z)
whether z is zero or not. In addition, the secrecy of z is guaranteed
by the underlying Elgamal encryption scheme E(·).

Let the set of encoded Pi s stored in the BC be Sn = {En(Pi) =
E(дPi), for i = 0, 1, ..., n}. Details of how the IAP computes I1-I4 are
as follows.

(I1) Compute l = En(P(a)), given the set Sn :
- Compute a fresh encoding of zero as: e0 = En(0) = (дk , hk) for
random k ∈ Zq , in order to randomize the encoding of l .
- Then l is computed as follows:

nÖ
l = ((En(Pi)

ai)).e0 (1)
i=0

(I2) Create Φ3 on the NP statement - NS3: Given a commitment
CIA, an encoding L, and a set S of encoded coefcients of a polynomial

′ P , I know secrets: r , a ′ , and k ′ s.t. CIA = commit (a , r),
L = En(P(a ′) + 0) = En(P(a ′)).e0 and e0 = (дk ′ , hk ′).

The IAP proves a satisfying assignment to NS3 with CIA = Ca in
O , L = l in (I1), and S = Sn stored in the BC at the time of submitting

′ ′ TO , as public inputs; and r = ra and a = a used in Ca and k = k
used in e0, as secret inputs.

′ ′(I3) Let the set of P s in the encoded domain be Sn+1 = {En(Pi)i
for i = 0, 1,, n + 1}. Sn+1 is computed as follows.
- Compute a fresh encoding of zero as: e0 = En(0) = (дk0 , hk0) for

′
random k0 ∈ Zq , and En(P

0
) = En((−a).P0 + 0) = En(P0)−a .e0.

i
- For i = {1, .., n}, choose ki ∈ Zq randomly and compute: e =

0
′ iEn(0), and En(Pi) = En(Pi−1 + (−a).Pi + 0)= En(Pi−1).En(Pi)−a .e

0
.

- Choose k1 ∈ Zq randomly and compute En(Pn+1) = En(1).
(I4) Create Φ4 on the NP statement - NS4: Given a commitment

CIA, a set S of encoded coefcients of a polynomial Pn and a set S ′ of
′ ′ ′ ′ the updated polynomial Pn+1, I know secrets: r , a , k

0
, k

1 and ki for
i = 1, ..., n s.t.:

′ - CIA = commit(a , r),
- En(Pn+1) = En(−a ′ .Pn + 0) = En(P

0
n)−a ′ .e0 and e0 = (дk0

′
, hk0

′
),

0 0
i i- for i = 1, .., n, En(Pn+1) = En(Pi

n
−1
).En(Pi

n)−a ′ .e
0 and e

0 = (д
ki
′
, hki

′
),i

- En(Pn
n
+
+
1

1) = (дk1
′
, hk1

′
.д1).

The IAP proves a satisfying assignment to NS4 with CIA = Ca ,
S ′ = Sn+1 computed in I3 above, S = Sn stored in the BC, as public

′ ′ ′
inputs, and with a = a, r = ra used in Ca , k = k0 used in En(P

0
),

0

′ ′ ′ ′ k = k1 used in En(Pn+1) and k = ki used in En(Pi) for i = 1, .., n,
1 i
of I3, as secret inputs.

Once the IAP submits T0 along with O and I1-I4, the validation
WC (see Figure 2) by peers is executed as follows. If the ZK-proof
Φ3 is successfully verifed, each peer i executes the following steps
to randomize l : choose ri ∈ Zq randomly, compute li = lri and
broadcast li to all the other peers together with a ZK-proof Ωi

1
,

proving that the peer knows the value ri . Then each peer computes
l ′ as the sum of the cipher texts received from all the peers, i.e. l ′ = ÍÎm
=1(l

ri) = E(дP (a)(m
i =1 (ri)), where m is the number of peers. Then i

′
peers collectively decode l . Note that we choose to randomize l

′
and then decode l , instead of just decoding l , due to a potential
collusion attack by an IAP and a peer to check if a given value
matches the CRH of an already created identity asset.

′ ′
If l does not decode to an encoding of zero (i.e. l does not

decrypt to 1), peers verify the ZK-proof Φ4. If Φ4 is successfully
verifed, peers accept TO as a valid ownership declaration, which
is not associated with a counterfeit, and Sn+1 as the encoded set
of coefcients of the updated polynomial to be stored in the BC.
Accordingly, protocol version V3 of PrivIdEx preserves counterfeit
elimination, without revealing the CRH values of the identity assets
associated with transactions TO , thereby preserving unlinkability
across TO and TT associated with the same identity asset. To enable
proof of ownership and correctness, while preserving unlinkability,
after successful verifcation of TO , the peers add the CRH of the
ownership declaration O , i.e. f = CRH(O), as a leaf in the Merkle
hash tree (MHT) data structure stored in the BC. This marks the
end of phase 0.a for protocol V3.

The basic idea of proving ownership during identity asset trans-
fer (phase 3.b) is to prove that the user and the IAP know a path P

https://En((�a).P0
https://Pi�1-a.Pi

in the MHT from a leaf f , which contains the CRH of a valid own-
ership declaration O , to the root RT and that the user and the IAP
own the private keys associated with the public keys committed in
CU and CP of such O , respectively. To prove correctness, the IAP
proves a similar statement, that is, the IAP knows a path P from
f , which contains O with a commitment Ca to a CRH value that
matches the CRH value of the identity asset being transferred, to
RT . Note that both the owners of the identity asset should prove in
zero-knowledge, the knowledge of the same path P in the MHT.

During the identity asset transfer phase, when the IAP requests
the user’s proof of ownership to the identity asset via ME1, the
user creates a ZK-proof Φ5 proving her ownership and sends it to
the IAP via ME2. The IAP then creates a ZK-proof Φ6 proving its
ownership and correctness and transfers the encrypted identity
asset along with Φ5 and Φ6 via TT . Peers verify Φ5 and Φ6 inWP and
confrm that TT preserves correctness and ownership assurance.

In order to ensure fnancial fairness while preserving unlinkabil-
ity, protocol V3 should integrate an anonymous and an unlinkable
payment system such as Zerocash [4], which also enables making
locked payments described under protocol V2.

5 IMPLEMENTATION AND EXPERIMENTS
In what follows, we present the details of the implementation and
experiments on the main building blocks of PrivIdEx. Our goals
are two folds: i) understanding the challenges and feasibility of the
implementation of some of the most complex building blocks, e.g.
ZK-proofs for the NP statements used in PrivIdEx; ii) evaluating
circuit size, execution times and storage requirements of ZK-proofs
for the NP statements. Experiments were run in a desktop machine
running Ubuntu 18.04.1 LTS with 16GB memory and Intel i7-4790
CPU @ 3.6GHz.

We used the ZK-SNARK construction (see Section 2.2) to prove/verify
satisfying assignments to the NP statements listed in Section 4.
ZK-proofs for the NP statements were created using ZK-SNARKs,
following the fve steps process listed in Section 2.2. First, the cryp-
tographic primitives in the NP statements were instantiated with
specifc algorithms. Then the circuits for the NP statements were
designed and implemented using the Jsnark [17] framework. The
Jsnark framework allows one to write circuits in a format compat-

ible with the ZK-SNARK compilers and provides building blocks
called ‘gadgets’ for designing circuits. In order to compile the circuit
into a QAP and to prove/verify in zero-knowledge the satisfability
of the assignment given by the prover, Jsnark interfaces with Lib-
snark [23] - the widely used library implementing the ZK-SNARK
construction. The challenges in this process include, but not limited
to: i) gadgets for certain cryptographic primitives, such as Elgamal
encryption used in NS4, are not yet available in Jsnark; ii) as difer-
ent existing Jsnark gadgets accept inputs in diferent formats, we
had to standardize the input formats of these gadgets before wiring
them together to form the required circuit.

In circuit 1 (see Figure 3) built for the NP statement NS1 used in
V1 of PrivIdEx, the cryptographic hash (CRH) algorithm is instanti-
ated with the widely used SHA-256 and the symmetric encryption
algorithm is instantiated with SPECK128 [11], due to its light weight
properties. The SPECK128 gadget is wrapped with the gadget im-

plementing symmetric encryption in CBC mode. We evaluated the

circuit size (see Table 2), running time (see Figure 4), and storage
requirements (see Figure 5) associated with the three algorithms of
ZK-SNARKs for circuit 1, by varying the size of the identity asset
(A ′). Increase in the size of A ′ increases the size of the proving key
and the circuit (i.e., number of constraints in the circuit), which in
turn afects the running times of the key generator, which takes the
circuit as inputs, and the prover, which takes both the circuit and
the proving key as inputs. However, the increase in running time of
the prover is much less than that of the key generator, which is good
because the prover is run each time an identity asset is exchanged,
whereas the key generator is run only at system setup. Proof size,
verifcation key size, and verifer running time are constant irre-
spective of the size of the secret input A ′ . Note that for the scope of
this paper, we assume a fxed size for the identity assets (those with
shorter sizes can use padding) exchanged in a given deployment
of PrivIdEx, because it is an overhead to deploy multiple circuits
for diferent sizes. In a real deployment, we can have three fxed
sizes as small, medium and large, and three diferent categories of
circuits can be created during the bootstrap. The zero-knowledge
proofs for a given identity asset can be created using the circuits
in the nearest upper size category, after (minimally) padding the
identity asset.

SHA-256
gadget

A’ a’ K’ C’

Equality
assertion

Equality
assertion

Gadget for Symmetric
Encryption in CBC mode

SPECK128
gadget

Figure 3: Circuit 1 built for NS1: Given a cipher text C ′, a CRH
value a ′, I know the following secrets: an identity asset A ′ and
a key K ′ s.t a ′ = CRH(A ′) and C ′ = EncK ′ (A ′).

Size of (A’) 64
bytes

128
bytes

256
bytes

512
bytes

1024
bytes

Number of con-
straints

74,429 126,505 230,675 451,210 855,569

Table 2: Circuit size vs the size of the identity asset (A’), for
Circuit 1.

In circuit 2 (see Figure 6) built for the NP Statement NS2 used
in V2 of PrivIdEx, the signature S is the only secret input, which is
created by the provers (i.e. the IAP and the user) locally (i.e. outside
of the circuit). Although PK theoretically consists of both RSA
modulus and public exponent, only the RSA modulus is given as
input PK , and the public exponent is set to a hard coded constant,
according to the implementation details of the RSA algorithm [6].
In order to decide the size of the nonce M with optimal trade-of
between security and performance of ZK-SNARKs for circuit 2, we
evaluated the performance by varying the size of M . However, as
shown in Table 3, there was a negligible impact on the performance

Figure 4: Running time vs the size of the identity asset (A’),
for Circuit 1.

Figure 5: Storage size vs the size of the identity asset (A’), for
Circuit 1.

M

SHA 256
gadget

PK S

RSA_Signature_Verify
gadget

Digest

Result

Figure 6: Circuit 2 for NS2: Given a public key PK , a message
M , I know a secret signature S , s.t RSA_Sig_Verify(M , S , PK) =
True, where S = RSA_Sig(M , private key of PK).

when the size of the public input M was doubled. Therefore, we
decided to use 128 bits as the size of the nonce.

64 bits 128 bits
Circuit size (number of constraints) 119,146 119,344
Key gen running time 12.8659(s) 12.8729(s)
Proving key size 32,903(KB) 32,938(KB)
Verifcation key size 3.2856(KB) 3.597(KB)
Prover running time 3.38(s) 3.3827(s)
Proof size 0.28(KB) 0.28(KB)
Verifer running time 0.0045(s) 0.0045(s)

Table 3: Performance numbers vs the size of the nonce (M),
for Circuit 2.

A summary of the insights derived from the above experiments
are as follows: 1) Increase in the size of secret inputs increases circuit
size and prover key size, thereby increasing the running times of
the key generator (which is run only once for the entire system
lifetime) and the prover (which is run only once at ownership
declaration and at each round of exchange of an identity asset).
2) Increase in the size of public inputs has negligible impact on
the performance of ZK-SNARKS associated with a given circuit.
3) Proof size, verifcation key size, and verifer running time are
negligibly afected (if at all) by the circuit complexity (e.g. circuit 1
and circuit 2 use diferent gadgets with varying complexity), size of
secret inputs (e.g. experiments on circuit 1,) and size of public inputs
(e.g. experiments on circuit 2). This makes using ZK-proofs based
on ZK-SNARKs very suitable for use in PrivIdEx to ensure privacy
and security properties of identity asset exchange in a decentralized
identity ecosystem backed by a BC network, where multiple peers
may run the verifcation algorithms associated with WC and WP
(see Figure 2). We refer the reader to the Appendix 4.3 for the details
of the remaining circuits.

6 SECURITY AND PRIVACY PROOFS
In what follows, we prove that PrivIdEx (V3 - which addresses
all three privacy requirements - see Section 4.3) protects against
the threats mentioned in the threat models for user privacy (see
Section 3.3) and protocol security (see Section 3.2).

The following lemma establishes that an adversary (referred
to as Adv1), whose goal is to compromise the user’s privacy (see
Section 3.3), does not learn any information on the identity asset
and the identity of the parties the user interacts with. Based on
the information that Adv1 learn from the protocol transcripts of
PrivIdEx, Adv1 cannot link diferent transactions of the same user.

Lemma 6.1. PrivIdEx (V3) preserves confdentiality of the user’s
identity asset and anonymity and unlinkability of the user’s transac-
tions against Adv1.

Proof (informal): Based on the security of the Dife-Hellman key
exchange used to establish a key between the IAP and the IAC,
during the handshake in phase 2 of the protocol, Adv1 cannot learn
the key used to encrypt the identity asset in TT of phase 3.b (see
Figure 2). Hence, confdentiality of the identity asset of the user is
preserved against Adv1.

Due to the computationally hiding property of the underlying
commitment scheme, the actual identities of the IAP and the user are
not revealed to Adv1 via commitments: CP and CU included in the
ownership declaration O of TO in phase 0.b. Therefore, Adv1 does
not learn the identity of the IAP who creates an identity asset for a
user as well as the identity of the user for whom the identity asset is
created, during phase 0.b. All the transactions posted to the BC in-
clude senders’ and intended recipients’ pseudonyms. A pseudonym
P of a participant, i.e. P = CRH(public key in the pseudonymous
certifcate) is indistinguishable from a random string. Therefore,
Adv1, which does not collude with the CA, does not learn the iden-
tity of the parties interacting via the BC. Due to the zero-knowledge
property of ZK-SNARKs, the identity of which the ownership is
proved in Φ5 and Φ6 is not revealed to Adv1 in TT . Anonymity of
the underlying payment scheme, which is used to pay any required

monetary compensation, ensures that Adv1 does not learn the iden-
tity of the IAP or the IAC via the associated payment transactions.
Therefore, throughout the protocol execution, anonymity of the
participants is preserved from Adv1.

The diferent pieces of information involved in the protocol
execution that Adv1 can use to link diferent transactions of the
same user, are as follows: i) identity (i.e. pseudonyms) of the parties;
ii) the CRH of the identity asset; iii) cipher text encrypting the
identity asset; iv) any payment transactions created to pay monetary
compensations for the identity assets. Since new pseudonyms are
used by the participants for the execution of each round of the
identity asset exchange, Adv1 cannot link such transactions via
pseudonyms. Due to the computationally hiding property of the
commitment scheme, the CRH of the identity asset is not revealed to
Adv1 via commitment: Ch in O of TO . Due to the encoding scheme
En not allowing one to decode the encoded values in l and Sn+1, the
CRH of the identity asset is not revealed to Adv1 via any of I1-I4
submitted to the BC via TO . Due to zero-knowledge property of
ZK-SNARKs, the CRH of the identity asset, which is used to prove
correctness in Φ6, is not revealed to Adv1 in TT . Hence Adv1 cannot
link transactions via the CRH of the identity asset. Due to semantic
security of the underlying symmetric encryption scheme, Adv1
cannot link the exchange transactions encrypting the same identity
asset. Unlinkability of the underlying payment scheme ensures that
Adv1 cannot link the identity asset exchange transactions via the
associated payment transactions. Therefore, Adv1 does not learn
any information helping to link transactions of the same user, hence,
unlinkability is preserved against Adv1. ■

The following lemma establishes that an adversary (referred to
as Adv2), whose goal is to compromise security of the identity asset
exchange protocol (see Section 3.2), cannot create a counterfeit of
an existing identity asset, transfer a fake identity asset that has not
been legitimately created in the identity ecosystem, and claim false
ownership to an identity asset.

Lemma 6.2. PrivIdEx (V3) preserves correctness, ownership assur-
ance and counterfeit elimination against Adv2.

Proof (informal): Due to the additive homomorphic property of
the encoding scheme based on the Elgamal encryption scheme,
and the soundness property of ZK-SNARKs (which is based on the
knowledge of coefcient assumption) used to create the ZK-proof
Φ3, Adv2 cannot submit an ownership declaration in TO for an
identity asset which is a counterfeit, without failing the validation
WC run by the peers in phase 0.b. Again, due to the soundness
of ZK-SNARKs, used to create Φ5 and Φ6, we have that: i) an IAP
controlled by Adv2 cannot transfer a fake identity asset because
the IAP cannot provide commitments to a valid Merkle hash tree
path of an ownership declaration O , which contains a commitment
to a CRH value that matches the CRH of the identity asset being
transferred, in the satisfying assignment to Φ6; ii) a user and an
IAP controlled by Adv2 cannot claim false ownership because they
cannot provide commitments to a valid Merkle hash tree path of
an O , which contains commitments to the CRH of public keys for
which they own the private keys, in the satisfying assignments to
Φ5 and Φ6. ■

Theorem 6.3. PrivIdEx preserves the identifed privacy properties
against Adv1 and the security properties against Adv2.

Theorem 6.3 follows from lemma 6.1 and Lemma 6.2.

7 RELATED WORK
Identity management research has a rich history. Here we focus on
the proposals focusing on exchanging users’ identity information
between SPs. Next we discuss approaches for privacy enhancing
techniques for BC applications and show that such approaches
alone cannot address the problem that we focus on. OpenID Ex-
change (OIX) [12] and OpenID Connect [22] are industry standards
which address some form of identity exchange. Such protocols, how-
ever, have one central IDP from whom other SPs obtain identity
information of a user, and do not address a user’s transactional pri-
vacy requirements. Identity Mixer [9] is an anonymous credential
system which enables users to authenticate to SPs in an uncon-
ditionally unlinkable manner, while selectively disclosing users’
identity information. Identity Mixer also involves a central IDP
from which the user obtains identity tokens; the IDP is known to
the SPs while the SPs are not known to the IDP. The USA and UK
governments have developed nation-scale identity management
systems which enable government identity consumers to obtain
users’ identity information from third party identity providers,
where consumers and providers are anonymous to each other, in
order to preserve users’ privacy. However, such systems introduce
a government managed broker to mediate the identity exchange
transactions, which learns the identity of the two exchanging par-
ties, and hence, can track the users’ transactions. More recently,
decentralized identity management systems have been proposed
that leverage BC technology to avoid centralized parties managing
users’ identity [26]. However, such systems do not address all the
privacy requirements that we consider.

Zerocash [4] enables a sender to transfer bitcoins to a recipient
in an anonymous and unlinkable manner. PrivIdEx difers from
Zerocash in multile respects, including: i) Zerocash prevents double
spending of bitcoins whereas PrivIdEx enables transferring the
same identity asset as many times as needed by the legitimate
owners to diferent consumers; ii) there is only one anonymous
owner for bitcoins at a given time, whereas there are two owners for
an identity asset. Hawk [18] is a framework for privacy preserving
smart contracts. Hawk alone does not address all the privacy and
security requirements of a given use case, such as the one we
focus on, which involves multiple phases and repeating interactions
among the participants, based on the same identity asset. Zero
Knowledge Asset Transfer (ZKAT) [1] by Heperledger Fabric is
based on the unspent transaction output (UTXO) model of bitcoin.
Hence, it supports exchange of monetary transactions which cannot
be double spent, which is diferent from our use case. Therefore,
ZKAT alone is not sufcient to enable privacy preserving and secure
identity asset exchange.

8 CONCLUSION
We proposed PrivIdEx - a privacy preserving and secure protocol
for identity asset exchange over a decentralized identity ecosystem
backed by a permissioned BC network. PrivIdEx enables diferent
SPs that a user interacts with to re-use the identity assets created
for the user, eliminating the cost of repeated identity verifcation
and due diligence processes, without having to worry about privacy

and security concerns in doing so. Analysis of the threat model,
protocol design and implementation and experiments are presented
in an incremental approach to help readers understand the specifc
challenges posed when achieving each of the identifed privacy
properties and the mechanisms developed to address them, which
also helps in selectively enabling those properties as required by a
given identity ecosystem.

One potential future extension of PrivIdEx is to integrate it with
the Identity Mixer based CA in Hyperledger Fabric [1] BC netowork
to achieve unlinkability against collusions between the CA and
an actor in the BC, so that we can eliminate the third assumption
mentioned in Section 3.1. Other relevant future work is to generalize
PrivIdEx to facilitate privacy preserving and secure exchange of any
confdential digital asset with multiple owners, such as song lyrics,
music, write-ups, e-books, etc., which has not yet been addressed
by the existing digital asset exchanging platforms.

Acknowledgement
We thank Ahmed Kosba for clarifcations about jsnark and Fabrice
Benhamouda for discussions regarding the project. This work is
supported by an IBM PhD fellowship award.

REFERENCES
[1] E. Androulaki, S. Cocco, and C. Ferris. 2018. Private and confdential transactions

with Hyperledger Fabric. https://developer.ibm.com/tutorials/cl-blockchain-

private-confdential-transactions-hyperledger-fabric-zero-knowledge-proof/
Accessed: 1-Nov-2018.

[2] M. Andrychowicz, S. Dziembowski, and D. Malinowski. 2014. Secure Multiparty
Computations on Bitcoin. In IEEE Symposium on Security and Privacy.

[3] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. 2018. Scalable, transparent,
and post-quantum secure computational integrity. In Cryptology ePrint Archive:
Listing for 2018.

[4] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M.
Virza. 2014. Zerocash: Decentralized Anonymous Payments from Bitcoin. In
IEEE Symposium on Security and Privacy.

[5] David Birch. 2016. Putting identity on the blockchain.
http://www.chyp.com/putting-identity-on-the-blockchain-part-1-fnd-a-

problem/.
[6] D. Boneh. 1998. Twenty Years of Attacks on the RSA Cryptosystem. https:

//crypto.stanford.edu/%7Edabo/pubs/papers/RSA-survey.pdf Accessed: 22-Sept-
2018.

[7] Luis T.A.N. Brandao, N. Christin, G. Danezis, and Anonymous. 2015. Toward
Mending Two Nation-Scale Brokered Identifcation Systems. In Proceedings on
Privacy Enhancing Technologies.

[8] B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. 2018. Zerocash:
Decentralized Anonymous Payments from Bitcoin. In IEEE Symposium on Security
and Privacy.

[9] J. Camenisch and A. Lysyanskaya. 2001. An Efcient System for Non-Transferable
Anonymous Credentials with Optional Anonymity Revocation. In Proceedings of
EUROCRYPT ’01. 93–118.

[10] A. Kosba et. al. 2015. CoC0: A Framework for Building Composable Zero-
Knowledge Proofs. https://eprint.iacr.org/2015/1093.pdf

[11] R. Beaulieu et. al. 2013. The Simon and Speck Families of Lightweight Block
Ciphers. https://eprint.iacr.org/2013/404.pdf Accessed: 22-Sept-2018.

[12] Open Identity Exchange. [n. d.]. OIX - Open Identity Exchange. https://www.
openidentityexchange.org/ Accessed: 22-Nov-2017.

[13] Hyperledger Fabric. 2018. A Blockchain Platform for the Enterprise. https:
//hyperledger-fabric.readthedocs.io/en/release-1.3/ Accessed: 16-Oct-2018.

[14] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. 2007. Secure Distributed Key
Generation Protocol.. In J Cryptology.

[15] R. Gennaro, C. Gentry B. Parno, , and M. Raykova. 2013. Quadratic Span Programs
and Succinct NIZKs without PCPs. In EUROCRYPT.

[16] GOV.UK. 2018. Introducing GOV.UK Verify. https://www.gov.uk/government/
publications/introducing-govuk-verify/introducing-govuk-verify Accessed: 22-
Sept-2018.

[17] Ahmed Kosba. 2017. jsnark. https://github.com/akosba/jsnark Accessed:
22-Nov-2017.

[18] A. Kosba, A. Miller, and E. Shi. 2014. Hawk: The Blockchain Model of Cryptog-
raphy and Privacy-Preserving Smart Contracts.. In IEEE Symposium on Security
and Privacy.

[19] S. Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System.
[20] Nat. 2010. Is Expressing Levels Enough for LOA2+? https://nat.sakimura.org/

2010/09/03/is-expressing-levels-enough-for-loa2/ Accessed: 22-Sept-2018.
[21] United States Postal Ofce. 2014. FCCX Briefng. https://csrc.nist.gov/

csrc/media/events/ispab-june-2014-meeting/documents/ispab_jun2014_fccx-

briefng_glair.pdf Accessed: 22-Sept-2018.
[22] OpenID. 2017. Welcome to OpenID Connect. http://openid.net/connect/ Ac-

cessed: 22-Nov-2017.
[23] scipr lab. 2017. C++ library for zkSNARKs. https://github.com/scipr-lab/libsnark

Accessed: 22-Nov-2017.
[24] Prabath Siriwardena. 2017. A Deeper Look Into Bitcoin Internals.

https://medium.facilelogin.com/pay-with-bitcoin-to-play-with-a-fdget-

spinner-86b7b43414c0 Accessed: 22-Sept-2018.
[25] Prabath Siriwardena. 2017. Identity on Blockchain (Part I). https://medium.

facilelogin.com/identity-on-blockchain-part-i-a59d7abe75c0 Accessed: 22-Sept-
2018.

[26] sovrin. 2017. Identity For All. https://sovrin.org/ Accessed: 22-Nov-2017.
[27] European Union. 2016. General Data Protection Regulation. https://eur-lex.

europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679 Accessed: 22-
Sept-2018.

[28] Zooko Wilcox. 2016. The Design of the Ceremony. https://electriccoin.co/blog/
the-design-of-the-ceremony/

https://developer.ibm.com/tutorials/cl-blockchain-private-confidential-transactions-hyperledger-fabric-zero-knowledge-proof/
https://developer.ibm.com/tutorials/cl-blockchain-private-confidential-transactions-hyperledger-fabric-zero-knowledge-proof/
https://crypto.stanford.edu/%7Edabo/pubs/papers/RSA-survey.pdf
https://crypto.stanford.edu/%7Edabo/pubs/papers/RSA-survey.pdf
https://eprint.iacr.org/2015/1093.pdf
https://eprint.iacr.org/2013/404.pdf
https://www.openidentityexchange.org/
https://www.openidentityexchange.org/
https://hyperledger-fabric.readthedocs.io/en/release-1.3/
https://hyperledger-fabric.readthedocs.io/en/release-1.3/
https://www.gov.uk/government/publications/introducing-govuk-verify/introducing-govuk-verify
https://www.gov.uk/government/publications/introducing-govuk-verify/introducing-govuk-verify
https://github.com/akosba/jsnark
https://nat.sakimura.org/2010/09/03/is-expressing-levels-enough-for-loa2/
https://nat.sakimura.org/2010/09/03/is-expressing-levels-enough-for-loa2/
https://csrc.nist.gov/csrc/media/events/ispab-june-2014-meeting/documents/ispab_jun2014_fccx-briefing_glair.pdf
https://csrc.nist.gov/csrc/media/events/ispab-june-2014-meeting/documents/ispab_jun2014_fccx-briefing_glair.pdf
https://csrc.nist.gov/csrc/media/events/ispab-june-2014-meeting/documents/ispab_jun2014_fccx-briefing_glair.pdf
http://openid.net/connect/
https://github.com/scipr-lab/libsnark
https://medium.facilelogin.com/pay-with-bitcoin-to-play-with-a-fidget-spinner-86b7b43414c0
https://medium.facilelogin.com/pay-with-bitcoin-to-play-with-a-fidget-spinner-86b7b43414c0
https://medium.facilelogin.com/identity-on-blockchain-part-i-a59d7abe75c0
https://medium.facilelogin.com/identity-on-blockchain-part-i-a59d7abe75c0
https://sovrin.org/
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679
https://electriccoin.co/blog/the-design-of-the-ceremony/
https://electriccoin.co/blog/the-design-of-the-ceremony/
http://www.chyp.com/putting-identity-on-the-blockchain-part-1-find-a

9 CIRCUITS FOR ZK-PROOFS INVOLVED IN The original NS3 in Section 4.3 is re-written to suite the afore-

THE VERSION 3 OF THE PROTOCOL mentioned two approaches, as follows:
NS3 for approach 1: Given a commitment CIA, an encoding L, and9.1 Circuits required for the ZK-Proofs in the a set S of encoded coefcients of a polynomial P of order c , where c =

identity asset registration phase the number of identity assets that are already registered in the system,
= commit (a, r), L = En(P(a) + 0) =
, hk).

As explained in Section 4.3, in the identity asset registration phase, I know secrets: r , a, and k s.t. CIA
c(i

Î i
the IAP needs to prove to the peers two things: i) the evaluation = (дk

=0(En(Pi)
a

Set S is initialized at the bootstrapping of the system as follows: S
)).e0 and e0

of the polynomial P(x) on the cryptographic hash value (a) of the
created identity asset is computed correctly in the encoded domain = {En(P0) = En(1)}.

NS3 for approach 2: Given a commitment CIA, an encoding L, and(i.e. En(P(a)) is computed correctly), using the set of encoded coef-
fcients of the polynomial stored in the blockchain (i.e. Sn). ii) the a set S of encoded coefcients of a polynomial P of order m − 1, where

in the system, I know secrets: r , a, and k s.t. CIA

new set of coefcients for the updated polynomial P ′ (s.t. P ′ has ‘a’ m = the maximum number of identity assets allowed to be registered
as one of its roots), is computed correctly in the encoded domain. = commit (a, r), L = Î

1−m
=0 (En(Pi)

ai)).e0 and e0 = (дk , hk).
Set S is initialized at the bootstrapping of the system as follows: S

In other words, the IAP has to prove the two NP statements: NS3
and NS4 (see Section 4.3) respectively.

En(P(a) + 0) = (i

The encoding scheme that we have used to compute P(a) and
the coefcients of the updated polynomial in the encoded domain
is based on Elgamal encryption (i.e. Elgamal encryption in the
exponent).

Designing the circuit for NS3: Public parameter generation of
ZK-SNARKs (e.g. generation of the prover key and verifer key - see
Section 2.2) for a given NP statement used in an application should
be performed at the bootstrapping of the system (e.g. see the public
parameter generation ceremony of ZCash [28]). Therefore, the
trusted party who runs the Generator() algorithm of ZK-SNARKs
has two options for creating the circuit(s) and the associated public
parameters for NS3, as follows:

Approach 1: create m − 1 number of circuits, each allowing to
prove NS3 for the ith

registering asset where i ∈ {2, 3, ...,m}.
Approach 2: create one circuit, which allows to prove NS3 for

registering of an identity asset at any index i where i ∈ {2, 3, ...,m},
and m is the maximum number of identity assets allowed to be
registered in the system.

Remark: Note that NS3 is not needed to be proved for the frst
asset registered in the system.

= {for i = {1, ...,m − 1}, En(Pi) = En(0), En(P0) = En(1)}. Note that
En(Pm) does not need to be stored in set S because no IAP needs
En(Pm) for the computations of L.

Irrespective of which approach is used for NS3, an IAP who
successfully registers an identity asset, also updates the encoded
coefcients of the polynomial at indices from 0 to c +1, such that the
cryptographic hash of the currently registering identity asset be-
comes a root of the updated polynomial, and proves the correctness
of the updated encoded coefcients using NS4.

Remark: The IAP who is registering the mth identity asset, does
not need to perform this step, as the updated coefcients of the
polynomial of degree m will not be used by any future IAP.

Designing the circuit for NS4: NS4 defned in Section 4.3 can be
broken into three sub NP statements and three separate individual
circuits can be created for ZK-SNARKs associated with each of these
three sub NP statements. These three NP statements are based on

′
the three diferent ways the updated encoded coefcients En(Pi) at
diferent indexes i are computed, as shown in equation 2:
Let the number of identity assets that are already registered in the
system be c .

The trusted party who bootstraps the system has to run Genera-

En(1) for i = c + 1;

En(P0)
−a

for i
tor() algorithm of ZK-SNARKs for m−1 number times w.r.t approach

′
(2)= 0

1 whereas the trusted party has to run Generator() algorithm only En(Pi) =

once w.r.t approach 2. The work done at the bootstrapping stage En(Pi)
−a .En(Pi−1).En(0) for i = {1, ..., c}.

Accordingly, we can create three diferent NP statements, basedis considered a one-time cost which does not impact the end user
experience. On the other hand, approach 1 makes diferent IAPs to
bear diferent costs in creating ZK-proofs for NS3 (i.e. in running
the Prover() algorithm of ZK-SNARKs), based on the index (i) at
which the identity asset is being registered in the system. In other
words, the IAP who registers the 2nd

identity asset has to bear a
lower cost than the IAP who registers the mth

identity asset, be-
cause the former IAP only has to evaluate a polynomial of degree 1
whereas the latter IAP has to evaluate a polynomial of degree m − 1,
in the encoded domain. In contrast, approach 2 makes all IAPs to
bear almost similar (high) costs in running the Prover() algorithm,
because all IAPs have to evaluate a polynomial of degree m − 1 in
the encoded domain. In this case, encodings of zero are used as the
encodings of any coefcient aj s.t. i < j < m. Although Generator()
and Prover() algorithms of ZK-SNARKs will incur diferent costs in
approach 1 and 2, Verifer() algorithm will incur similar costs in the
two approaches, according to the properties of ZK-SNARKs.

on the three diferent cases shown in the equation 2, in order to
prove the correctness of each updated encoded coefcient of the
polynomial. In equation 2, only the cases (ii) and (iii) use the cryp-
tographic hash of the identity asset (a) being registered, in the

′
computation of En(Pi).

The three sub NP statements which replace NS4 defned in Sec-
tion 4.3 are as follows.

(1) NS4.1 (corresponding to case (i) of equation 2):
′ Given the (c + 1)th encoded coefcient En(Pc+1) of the up-
′ dated polynomial P ′ , I know a secret k s.t: En(Pc+1) = En(1) =

(дk , hk .д).
(2) NS4.2 (corresponding to case (ii) of equation 2):

Given the commitment CIA, the 0th encoded coefcient En(P0)
of the existing polynomial P , from set S , and the 0th encoded

′ coefcient En(P
0
) of the updated polynomial P ′ , I know the se-

′ crets a, r , k0 s.t:CIA = commit(a,r) and En(P
0
) = En(P0)−a .En(0)

and En(0) = (дk0 , hk0).
(3) NS4.3 (corresponding to case (iii) of equation 2):

Given the commitment CIA, the ith and (i − 1)th encoded
coefcients En(Pi) and En(Pi−1) of the existing polynomial

′ P , from set S , and the ith encoded coefcient En(Pi) of the
updated polynomial P ′ , I know secrets: a, r and ki s.t: CIA =

′ commit(a,r) and En(Pi) = En(Pi)−a .En(Pi−1).En(0) and En(0)

= (дki , hki).
Note that an IAP, who is registering a new identity asset
when there are c number of identity assets registered in the
system, should create c number of zero knowledge proofs
using this circuit, each proving the correct computation of
the ith

encoded coefcient of the updated polynomial P ′, for
all i ∈ {1, ..., c}.

Combining the proofs for NS3 and NS4: Note that we need to make
sure that the prover uses the same secret input ‘a ′ across all zero
knowledge proofs created during the identity asset registration
phase (i.e. zero knowledge proofs created for NS3, NS4.2 and NS4.3).
This is achieved by involving the computation of CIA = commit(a, r)
in each NP statement that involves ‘a ′ in its computation. Because
CIA is publicly known and one can not come up with diferent (a,
r) pairs that give the same CIA value, without breaking the security
(i.e. binding property) of the commitment scheme, we can make
sure that the prover uses the same ‘a ′ in all zero knowledge proofs
by verifying whether the public input CIA submitted with the zero
knowledge proofs for all NP statements are the same and that those
zero knowledge proofs are successfully verifed.

Discussion on scalability: The maximum number m of identity
assets allowed to be registered in the system directly afects the
performance of the identity asset registration phase due to the
fact that the solution for counterfeit elimination while preserving
unlinkability, is based on evaluation of a polynomial in the encoded
domain. The number of coefcients of the updated polynomial
grow with the number of identity assets being registered which in
turn increases the costs associated with the ZK-SNARKs for NS3
and combined NS4. Particularly, the costs of both Generator() and
Prover() algorithms of ZK-SNARKs for NS3 and the cost of Prover()
algorithm of ZK-SNARKs for combined NS4 increases with m.

In oder to overcome this scalability issue, the identity manage-

ment system can defne a limit for the maximum degree of the
polynomial (let it be p) that the system can handle in ZK-SNARKs,
without causing unacceptable performance in the identity asset
registration phase. Once p number of identity assets have been
registered, the system can allow registration of the next set of p
number of identity assets using the same circuits created for ZK-
SNARKs, by treating the (p + 1)th

identity asset as the 0th
identity

asset. Note however, that counterfeit elimination is not preserved
between such two diferent sets of identity assets, as this is a trade-
of between scalability and counterfeit elimination. Unlinkability
is still preserved between registration and/or transfer of identity
assets from two diferent sets and the ownership declarations asso-
ciated with the identity assets from two diferent sets can be stored
in the same or diferent merkle hash trees.

Implementation of the circuits: Our encoding scheme, which is
Elgamal encryption in the exponent, can be efciently implemented

over elliptic curves, because the size of the cipher text can be sig-
nifcantly reduced, compared with the same implemented over a
feld. Therefore, we implement the circuits required for NS3 and
NS4 over elliptic curves. The elliptic curve supported by jSNARK

2
is: y = x3 + A.x2 + x , where A = 126932, and it achieves 125-bit
security [10]. Three basic operations required to perform computa-

tions over elliptic curves are: addition of two points, multiplication
of a point by a scalar and negation of a point. Starting from these
three basic operations, we build the complex gadgets and circuits
required for NS3 and NS4, in a bottom-up and a modular approach.

In what follows, we frst present the three circuits associated
with the three sub NP statements of NS4 and then present the
circuit for NS3, because it illustrates the gradual development of
the circuits using the aforementioned basic building blocks. Let B
is the base point and P is the public key point on the elliptic curve.

Multiply two
points by a scalar

Add Two
Points

B

P

k

y1 = k.B y2 = k.P + B

NS4.1

Figure 7: Circuit for NS4.1: Given an encoded coefcient
′ ′ En(Pc+1) = (y1,y2), I know a secret key k s.t. En(Pc+1) = En(1)

= (k .B, k .P + 1.B).

Figure 7 illustrates the circuit used to prove NS4.1; in other words,
this is the composite circuit used to prove that a fresh encoding
of 1 is computed correctly as the (c + 1)th encoded coefcient
of the updated polynomial. This is consisted of a new gadget for
multiplication of two points by a scalar, which is built on top of the
basic gadget for multiplication of a point by a scalar, in addition to
the basic gadget for addition of two points.

Figure 8 illustrates the circuit used to prove NS4.2; in other words,
this is the composite circuit used to prove that the zeroth encoded
coefcient of the updated polynomial is computed correctly. This
circuit uses the new gadget (multiplication of two points by a scalar)
introduced in the circuit for NS4.1 above, for two main purposes: i)
to multiply En(P0) by the cryptographic hash of the identity asset,
ii) to compute a fresh encoding of zero. Furthermore, this circuit
uses the third basic gadget for negation of a point, and introduces a
new gadget for addition of two encodings, which is built on top of
the basic gadget for addition of two points. Lastly, this circuit also
includes the commitment gadget (i.e. SHA256 gadget in jsnark),
in order to help verifying that all the ZK-proofs that involves the
cryptographic hash of the identity asset as a secret input, use the
same value, as discussed before.

Figure 9 illustrates the circuit used to prove NS4.3; in other words,
this is the composite circuit used to prove that the ith encoded

Multipy two
points by a scalar

Encode Zero
Multipy two points

by a scalar

Add two encodings

En(P0) a ki

R = (y1, y2)

Commitment

r

C

NS4.2

Negate
a point

Negate
a point

B P

Figure 8: Circuit for NS4.2: Given an encoding R, the existing
encoded coefcient En(P0), a commitment C, I know secrets: a,
r and k s.t. R = −a.En(P0) + En(0) and C = commit(a, r).

En(Pi) a En(Pi-1) ki

Ri = (y1, y2)

Commitment

r

Ci

NS4.3

Multipy two
points by a scalar

Negate
a point

Negate
a point

Add two encodings

B P

Encode Zero
Multipy two points

by a scalar

Add two encodings

Figure 9: Circuit for NS4.3: Given an encoding Ri , the existing
encoded coefcients En(Pi), En(Pi−1) and a commitment C, I
know secrets: a, r and ki s.t. R = −a.En(Pi) + En(Pi−1) + En(0)
and C = commit(a, r).

coefcient of the updated polynomial is computed correctly. This
circuit uses all three basic gadgets, and the new gadgets introduced
in the previous circuits for NS4.1 and NS4.2. As mentioned before,
this circuit is used to create multiple zero knowledge proofs, for
each ith coefcient of the polynomial, for all i ∈ {1, 2, .., c}).

Table 4 reports the performance numbers for the ZK-SNARKS
associated with the three individual circuits for NS4.1, NS4.2 and
NS4.3. Using these performance numbers collected for the individ-
ual circuits, we calculate the performance numbers for the cases
where these circuits are combined to prove that the updated en-
coded coefcients are computed correctly, for the polynomials of
diferent degree sizes. Since the maximum number (m) of identity
assets that can be registered in the system should be a power of 2
(due to the structure of the Merkle hash tree), and ZK-SNARKs for

NS4 are created only up to (m − 1)th identity asset being registered,
we calculate the performance numbers by varying the index c of
the currently registering identity asset, where c ∈ {1, 3, 7, 15, 31},
corresponding to each case of m ∈ {2, 4, 8, 16, 32}. Note that since
Generator() algorithm is run only once during the bootstrapping
of the system for all three individual circuits, the frst four per-
formance metrics given in table 4 do not vary with c . Therefore,
we only focus on the changes in prover running time and verifer
running time (shown in Figure 10) and the proof size (shown in
Figure 11), with varying c . Note that the only factor that contributes
to these changes, is the fact that multiple ZK-SNARKs should be
created using the circuit for NS4.3, for each ith coefcient of the
polynomial, for all i ∈ {1, 2, .., c}). As shown in Figure 10, each time
m doubles, the prover running time increases linearly, whereas the
verifer running time stays almost constant. As shown in Figure 11,
each time m doubles, the proof size increases linearly.

Figure 10: Running times vs the index of the identity as-
set currently being registered, for the combined circuits for
NS4.

Figure 11: Proof size vs the index of the identity asset cur-
rently being registered, for the combined circuits for NS4.

Figure 12 illustrates the circuit used to prove NS3; in other words,
this is the composite circuit used to prove that the evaluation of the
polynomial on the cryptographic hash of the identity asset currently
being registered, is computed correctly in the encoded domain.
Without loss of generality, Figure 12 illustrates the circuit used
to prove NS3, when registering the last identity asset in a system

NS4.1 NS4.2 NS4.3
1. Circuit size (number of con-
straints)

3273 34,674 34,682

2. Key gen running time 0.6890(s) 4.8959(s) 5.2958(s)
3. Proving key size 863.63(KB) 8211.7685(KB) 8241.3403(KB)
4. Verifcation key size 0.5987(KB) 1.0660(KB) 1.2218(KB)
5. Prover running time 0.6091(s) 2.41(s) 2.6144(s)
6. Proof size 0.28(KB) 0.28(KB) 0.28(KB)
7. Verifer running time 0.0065(s) 0.0062(s) 0.0069(s)

Table 4: performance numbers for the ZK-SNARKS associated with the three individual circuits for NS4.1, NS4.2 and NS4.3.

where m = 4. In our implementation, the circuit can be shrunk
or expanded according to the index of the currently registering
identity asset. This circuit uses all three basic gadgets, and the new
gadgets introduced in the previous circuits for NS4.1 and NS4.2.

R = (y1, y2) C

En(P0) aEn(P1) En(P2) En(P3)

a3 a2

Encode Zero
(BB3)

k

Multiply two
points by scalar

Multiply two
points by scalar

Multiply two
points by scalar

Multiply
Multiply

Add two encodings Add two encodings

Add two encodings

Add two encodings

Commitment

rB P

Figure 12: Circuit for NS3: Given the existing set of encoded
coefcients En(P3), En(P2), En(P1), En(P0) of polynomial P of
degree 3, an encoding R, and a commitment C, I know secrets:
a, r and k s.t. R = En(P(a)) + En(0) and C = commit(a, r).

Figure 13 reports the running times and Figure 14 reports the
storage sizes for the ZK-SNARKS associated with the circuit for
NS3, by varying the maximum number m of identity assets that
can be registered in a given system, where m ∈ {2, 4, 8, 16, 32, 64}.

Note that when measuring the perfomance numbers in an Amazon
EC2 instance of type t3a.large, jsnark/libsnark framework times out
before reporting the performance results, after reaching m = 22.
Therefore, for completeness, we include the performance results
for m = 22, as the last instance of measurement in the Amazon
EC2 instance of type t3a.large, although m should be a power of
two as described before. In order to decide whether this is due to
limitations in computing resources or a limitation in jsnark/libsnark
framework, we carried out the same performance measurements
in an Amazon EC2 instance of type t3a.2xlarge as well. The ZK-
SNARKS associated with the circuit for NS3 could be run without
an issue for m = 32 and m = 64 as well in the larger instance.
Therefore, given sufcient computing resources, jsnark/libsnark
framework can run ZK-SNARKS for more complex circuits.

In each instance of measurement, we measure the performance
of the ZK-SNARKS associated with the circuit for NS3, when reg-
istering the last identity asset of the system. Despite the fact that
NS3 being the most complex circuit in the identity asset registra-
tion phase of protocol V3, and that the complexity increases with
the increase of c in factors of two, verifer running time and proof
size remains constant and verifcation key size increases at a very
low rate. Proving key size, key generator running time and prover
running time increases linearly with the increase of c , although
the prover running time is always lower than the key generator
running time.

The aforementioned performance numbers for the circuits of
protocol V3 are primarily obtained in an amazon EC2 instance of
type t3a.large. The ZK-SNARKS associated with the circuit for NS3
were also run in an amazon EC2 instance of type t3a.2xlarge due
to the resource limitations in the frst instance type, as discussed
above.

Figure 13: Running times vs the index of the identity asset currently being registered, for the circuit for NS3. The dashed lines
show the performance measurements in an Amazon EC2 instance of type t3a.large and the solid lines show the performance
measurements in an Amazon EC2 instance of type t3a.2xlarge

Figure 14: Storage size vs the index of the identity asset currently being registered, for the circuit for NS3. The storage sizes
do not change depending on the instance type, although we could collect measurements only up to m = 22 in an Amazon EC2
instance of type t3a.large and the remaining measurements are collected in an Amazon EC2 instance of type t3a.2xlarge

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Permissioned Blockchain
	2.2 ZK-SNARKs

	3 System Model and Threats
	3.1 System model
	3.2 Threat model for protocol security
	3.3 Threat model for users' privacy
	3.4 Challenges in preserving users' privacy and ensuring security of the protocol

	4 Protocol Design
	4.1 V1- Confidentiality Preserving Protocol
	4.2 V2 - Confidentiality and Anonymity Preserving Protocol
	4.3 V3 - Confidentiality, Anonymity and Unlinkability Preserving Protocol

	5 Implementation and Experiments
	6 Security and Privacy Proofs
	7 Related Work
	8 Conclusion
	References
	9 Circuits for ZK-Proofs involved in the version 3 of the protocol
	9.1 Circuits required for the ZK-Proofs in the identity asset registration phase

