
CERIAS Tech Report 2018-2
Assumption-Driven Design

 by Peter Loscocco, Machon Gregory, Robert Meushaw
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Assumption-Driven Design

A Strategy for Critical Thinking in Trusted Systems Design

Peter Loscocco, Machon Gregory, Robert Meushaw

National Security Agency

Fort G. Meade, Maryland

Abstract—More than ever, information system
designers must provide security protection against a wide
variety of threats. While numerous sources of guidance
are available to inform the design process, system
architects often improvise their own design methods. This
paper aims to distil the experience gained by NSA trusted
system analysts over decades so that it that can be
practically applied by others. The general approach is to
identify and reduce the number of assumptions on which
the security of the system depends. Simply making these
assumptions explicit and showing their interdependence
has significant, albeit difficult to quantify, benefits for
system security. Our hope is that this design methodology
will serve as the starting point for the development of a
more formal and robust engineering methodology for
trusted system design.

Keywords—Secure System Design, Assumption Analysis,
Refinement Goal, Trust, Trusted System, Privacy, Design
Methodology

I. INTRODUCTION

No experienced system designer expects to
develop a system whose security depends only on
elements entirely under the designer’s control. The
designer of a cryptographic algorithm, for example,
may assume there is a reliable source of random
numbers available for keying. The designer of an
operating system with security requirements may
assume that the hardware on which the system runs
correctly executes its specified instruction set.

Conversely, a system attacker looks for the
security-related assumptions made, perhaps
implicitly, by the system designers, developers, and
implementers and seeks ways to invalidate one or
more of those assumptions. This approach has
historically been applied to break operational
cryptographic systems, where the users of the
system violate assumptions made by the designer,
by, for example, re-using a one-time-pad and
thereby enabling a careful eavesdropper to derive
the key stream [BENS00].

In the realm of cybersecurity, systematic
methods for breaking into systems began with the
Flaw Hypothesis Methodology, developed in the
1970s to organize penetration testing [WEIS73,
WEIS94]. The essence of this method is to
hypothesize security flaws – places where the
designers, developers, or implementers might have
made unwarranted assumptions about system
security properties – and then to test whether the
hypothesized vulnerability is real.

In the course of reviewing the security designs of
many commercial and government systems over a
period of decades, we have used our method of
searching for implicit (and unsupported)
assumptions to expose and remediate security flaws
in systems before they are fielded. An early result
of this approach exposed how the assumption that
an application could enforce its own security
constraints depended on (typically unsatisfied)
assumptions about security properties of the
underlying operating system. [LOSC98].

Designing systems to meet security requirements
remains more art than science, but we believe that
the lessons we have learned over the years offer a
means to systematize and improve conventional
system design processes. This paper describes an
assumption-driven design methodology that has
resulted in successful secure system design and
analysis.. No process alone can replace knowledge
and experience, but using one that helps designs
converge to better security solutions can be the
deciding factor in producing better systems.

In our experience, information assurance
curricula have generally stressed many critically
important concepts that prepare future security
professionals with necessary security knowledge but
have not provided adequate training in applying that
knowledge toward secure system design. We offer
our Assumption-Driven Design methodology as a

1

potential starting point for the development of a
design process that can augment existing
information assurance education programs.

II.	 AN APPROACH TO SECURE SYSTEM
DESIGN

There are of course many approaches to system
design and implementation: top-down, bottom-up,
functional decomposition, stepwise-refinement,
waterfall, spiral systems development and more. We
do not propose to replace any of these. We describe
an approach that can be used in conjunction with
any of these approaches to reveal and track security
assumptions. Nevertheless, to simplify the
presentation, we describe our approach in the
context of functional decomposition and stepwise
refinement.

The core notion embodied in our approach is that
trustworthy system design should be assumption-
driven, meaning that all assumptions must be
explicitly identified and tracked throughout the
entire design process. System design typically
involves an iterative set of steps including
functional decomposition and replacement of
generalized functions with specific mechanisms.
Each step invariably leads to the creation of new
assumptions or the transformation, often subtle, of
existing assumptions. Assumption-Driven Design
focuses the designer’s attention on systematically
identifying, tracking, and validating assumptions
throughout the design process.
A.	 What is an assumption?

An assumption in the context of this
methodology is an assertion about the system being
designed; it is a statement that may be either valid
or invalid. In general, it will be motivated by a
desire that the system have some particular security
property, but it may not refer to any such property.
For example, in the context of an access-checking
module, an assumption might be:
A1. Access to a controlled resource can only be
gained by first passing through the access checking
module.

In the context of a cloud system relying on
virtualization, perhaps:
A2. An application running within a virtual machine
cannot gain access to memory allocated to a
different virtual machine.

Or more fundamentally:
A3. The memory-mapping hardware in the cloud
server functions as intended.

Though it might sometimes be possible to
provide rigorous proofs that a design enforces
specific assumptions, absolute rigor is not the goal
of this approach. Assumptions provide a way for
the designer to organize his or her thinking about
the design and to identify (and possibly reorganize)
trust dependencies within the system. The approach
is formal in the sense that it provides a specific
structure in which assumptions can be exposed,
documented, and checked, even though the
checking may require human evaluation.

Although an assumption may only be either valid
or invalid, in fact it may be difficult to determine its
validity. Consequently an assumption may also have
a level of confidence associated with it (e.g. low,
medium, or high), and the designer may also specify
a threshold for the desired confidence level using
the same scale.

In the context of functional decomposition and
stepwise refinement, each time a refinement is
introduced, an assumption analysis must be
performed, annotating the current design with an
updated understanding of identified assumptions.
Previously identified assumptions, even those
already deemed valid, will have their confidence
values reassessed. Newly identified assumptions
will be given an initial confidence value and, if
necessary, assigned a satisfaction threshold.
Maintaining an updated list of assumptions enables
the designer to track outstanding issues in the
design and helps focus refinement efforts on their
elimination.
B.	 Can a designer capture all security

assumptions?
At a given level of description, it should be

feasible to enumerate the security properties desired
of a system and the assumptions on which those
properties depend. Yet the nature of security is that
it requires humility on the part of the designer.
Adversaries are inventive and will seek out
assumptions that designers may have made
implicitly. For example, recent experiments
displayed how acoustic signals might cause a
device’s accelerometer to deliver invalid inputs that
could adversely impact security decisions [TRIP17].

2

Knowing when all the relevant assumptions have
been identified is a human, not mechanical, task,
and one that may need to be revisited.
Consequently, the effectiveness of a security design
is necessarily limited by the designers’ ability to
identify security assumptions and address them in
the final design.

C.	 Dimensions of Assumption-Driven Design
There are two significant and complementary

dimensions of our approach to system design. The
first is a general approach to design that could be
applied independently to any design domain,
including but not limited to secure systems. Priority
in this approach is placed on identifying and
tracking assumptions made throughout the design
process. This general strategy is described in the
first of the following sections.

The second dimension, described next, can be
viewed as a security-specific overlay to the general
Assumption-Driven Design process. It focuses on
security specific analysis and design techniques. It
includes a strategy for identifying hidden
assumptions, ideas about approaches to design
refinement, and how our methodology supports
traditional security activities such as threat
modeling, vulnerability analysis, and the assessment
of security design tradeoffs.
D.	 Challenges and Limitations

This assumption-driven design process is not
intended to replace existing secure system design
practices. Such things as requirements engineering,
security model specification, or any of the various
assurance activities remain valuable. Our
methodical approach can yield improved results, not
only from the rigor imposed on the design process
but also from the creation of design artifacts that
capture the rationale for decisions made during its
execution.

Preserving information about identified
assumptions, how they were addressed in the
design, and the rationale for determining confidence
levels can prove extremely useful during system
evaluation, when determining suitability for
different operating environments, and when
revisiting designs because of new requirements. In
each of these cases, the explicit tracking of
assumptions and the means by which they have
been addressed facilitate the necessary arguments

that designs achieve their stated security goals.
However, in the absence of automated tool support,
fully tracking all assumptions can be burdensome
and the focus should be on identifying those
assumptions most relevant to security.

III. ASSUMPTION-DRIVEN DESIGN

A.	 Example: Assumption-Driven Design for a
Wireless Client
To illustrate this method, we first introduce a

simple example of how a design might proceed and
then describe it more abstractly. Suppose an
enterprise with an existing, closed wired network
infrastructure wishes to add a wireless capability for
enterprise client computers without significantly
increasing the risk that clients or their
communications will be compromised (Fig. 1)

Key assumptions for the wired system might be1:
1.	 System supports only wired connectivity to

the enterprise.
2.	 The security risks related to connectivity are

acceptable:
a.	 Illegitimate clients cannot access the

enterprise servers
b.	 Only communication between

enterprise systems is possible (no
external connectivity possible)

c.	 All intranet traffic originates from
systems within the enterprise

d.	 Intranet traffic is visible only to
enterprise clients

e.	 All client connectivity to the
enterprise is via the installed network
device.

f.	 Client systems are sufficiently
protected from external (non-
enterprise) attacks.

g.	 Client systems are sufficiently
protected from network-based attacks.

h.	 Client systems are sufficiently
protected from server-based attacks.

1 This list is to illustrate the approach and not intended
to be complete.

3

Changing to a system that supports wireless
connectivity means these assumptions must be
reconsidered. The system must now support
wireless connectivity as well as wired, so
assumption 1 is no longer valid; it can be replaced
by

1’. System supports wired and wireless
connectivity to the enterprise

Because the connectivity mode has changed,
Assumption 2, which depends on 2.a-2.h must be
re-validated as well. In the wired-only network, an
outsider could not easily monitor or inject traffic
into the intranet, yielding a non-zero but acceptable
security risk. In the wireless network, it becomes
much easier for the outsider to monitor traffic and
potentially to introduce traffic.

The need to re-establish the validity of
Assumption 2, motivates additional requirements on
the system. In particular, assumptions 2.a and 2.d
are no longer valid because the wireless intranet
traffic can be intercepted, and outside transmitters
may be able to inject traffic much more easily than
before.

One of many alternative wireless technologies
might be used, for example WiFi, cellular,
WIMAX, Bluetooth, Zigbee. Each of these
represents a design alternative that could validate
Assumption 1 and each in turn may generate
different, more detailed requirements that would be
needed to support the validation of Assumption 2.
For example, Assumption 2.d will now motivate the
use of encryption, which will generate a rich and
design-dependent set of assumptions to ensure the
cryptographic mechanisms are employed securely.

Assessing the validity of each assumption
completes the assumption analysis for this iteration.
Only when all assumptions have been satisfactorily
validated, with all confidence values exceeding their
thresholds, is the design process complete.
B. Iterative Approach to Design

To better understand how the Assumption-
Driven Design process encourages better design
outcomes, consider the general design process.
Designs are descriptions, or blueprints of a sort, of a
thing at some level of abstraction. The design
process is iterative, creating candidate designs to
meet some set of requirements, evaluating them

against some decision criteria, and then selecting
one or more candidates for refinement.
The designer’s task is to make a series of suitable

choices from the available design options, guiding
the process toward a suitable final design. The
choices that a designer makes throughout the
process are often ad hoc and once codified in a final
design, difficult to trace back to the conditions that
motivated them. Adding a degree of rigor to the
design process can help guide the designer to better
choices and capture the rationale behind decisions.

Every design is created from some set of
requirements that drives the choices a designer must
make. Before the design process begins, an initial
set of requirements must be identified. Ultimately, it
is the satisfaction of these requirements that
determines the suitability of a design solution. But
where do these requirements originate?

A primary source of requirements is the domain
of the object being designed. A designer sets out to
design a specific instance of a class. Membership in
that class implies certain things about the
requirements that must be met. Some of the
requirements are functional or pertain to specific
properties of the target domain. Some may specify
materials or processes that must be adhered to
during realization of the design. In general, a
designer must understand the domain to which the
design applies and identify all domain-specific
requirements. Additional requirements are specific
to the instance of the class being designed. A
particular use case, target environment, or customer
concern, such as cost or energy consumption, may
cause the domain requirements to be augmented or
in some cases relaxed.

Given a set of requirements, the designer begins
the iterative process of creating a design that can
satisfy all requirements. Starting from an initial
design, each iteration results in one or more
candidate refinements, the best of which becomes
the next in a sequence that should eventually
converge on a solution. Driving these refinements is
the selection of one or more refinement goals for the
current design. This goal-driven approach to design
allows the designer to focus all modifications to the
current design on specific improvements toward the
solution.

4

Refinement goals are generated to meet one or
more as yet unsatisfied requirements. Each
candidate refinement created in response to a
refinement goal is an alternative approach to
satisfying the corresponding requirements. Each
alternative may add function, remove deficiencies,
or increase detail, the best being selected for further
refinement.

Each design refinement is intended to advance
the design in some way. It would be nice if all
refinements resulted in satisfaction of some existing
requirement, reducing the set of remaining
requirements needing attention in subsequent
refinements. Unfortunately, this is not always the
case. Design refinements often increase the set of
remaining requirements.

Considering the case where design refinements
add new components makes this apparent. New
components may result in new requirements
specific to that component or to its use in the
current design domain. These new requirements are
only necessary as a consequence of the refinement,
but still they must be met.

Consider the space of possible designs as a tree
(Fig. 2). Each node represents a candidate design
refinement of its parent that could be explored
during the design process. The root node represents
the blank slate from which initial candidate designs
are created to satisfy the top-level requirements.
Interior nodes represent partial designs that do not
meet all requirements. The leaves of the tree
represent alternative complete designs or in some
cases, candidate designs that have been abandoned
for some reason or have yet to be fully explored.

For a given refinement goal in the context of a
given node, refinement will identify all of the
children that could be explored on the way to
discovering a solution path. When no additional
refinement goals can be generated, leaf nodes will
have been reached and a solution, if it exists along
the current path, will have been found. If not, the
path must be backtracked to another node in the tree
representing an alternate candidate refinement.
From that point, the refinement process can
continue in search of a path to a solution.

Care must be taken during backtracking to
ensure that requirements that were satisfied at some
node are noted to be unsatisfied when backtracking

beyond that node. In addition, any derived
requirements introduced with a refinement must be
removed when backtracking progresses beyond the
point where they were introduced. Introducing, a
well-defined bookkeeping discipline into the
process facilitates the proper tracking of which
requirements are active and yet to be satisfied at
each stage throughout the process.
C. Using Assumptions to Drive the Design Process

The preceding two sections illustrate how
assumption analysis motivates both functional
(adding a wireless capability) and security (avoiding
increased risk) modifications to an existing design
and describe and place it in the context of iterative
design. This approach has informed our system
design, analysis, and consultation work for many
years. We now describe in more detail how
assumptions are used to drive the design process.

Whenever a design refinement is made in
response to a refinement goal, the designer uses
experience-based judgment to modify the existing
design in some appropriate way. Modifications are
intended to better satisfy existing requirements
without negatively affecting any aspect of the
design that was previously introduced as a design
refinement. Ideally, all design refinements would
advance the design without negatively impacting
the work of prior refinements. In practice, this is
rarely the case.

In order for a refinement to strictly advance a
design against the requirements, a number of
conditions or factors relating to the specific nature
of the design and the proposed refinement need to
hold. In making the refinement, the designer in
effect asserts that they are indeed valid. In some
cases, they have been overtly included in the
designer’s reasoning about the refinement. In all too
many cases however, they have not.

The appropriateness of a refinement will often
depend on implicit conditions that may or may not
be true, and it is often the case that defects in the
final design can be traced back to refinements that
were made without regard for unstated assumptions
that were never addressed in the design. They may
have resulted from explicit assumptions that were
erroneously treated as valid, but in most cases this
can be traced back to other implicit assumptions
that were never considered. Identifying all implicit

5

assumptions will not necessarily eliminate all
design defects, but it should increase the chance that
all relevant issues are at least considered.

Recognizing how important assumptions are to
refinement yields an important improvement to the
overall design process, the need for designers to
explicitly track all design assumptions. At each
refinement stage, while satisfying unmet
requirements, they should also seek the reduction of
unsupportable assumptions. They should analyze
the new design to identify newly introduced
assumptions. In addition, they should revisit
previously addressed assumptions to identify
adverse impacts. Thorough assumption analysis
throughout the process increases the likelihood that
implicit assumptions are exposed and that no
important details are overlooked.

Recognizing the relationship between
requirements and assumptions offers an opportunity
to more tightly define the design process, one driven
by design assumptions. It is important to understand
that all requirements, whether original or derived,
can be restated as assumptions, namely an
assumption that the requirement is met. By
definition, these can only hold true when the
requirement is met.

By converting all requirements to assumptions,
satisfaction of any type of requirement in the
process can be driven by activities that attempt to
substantiate assumption validity. Outstanding
assumptions can imply refinement goals. These in
turn focus the generation and selection of candidate
design refinements. If confidence values relating to
validity can be associated with outstanding
assumptions, it becomes possible to create a more
objective costing function to aid in selecting the
best candidate refinement. By seeking to eliminate
all outstanding assumptions with confidence values
below some acceptable threshold, incomplete
designs evolve, converging toward an acceptable
final design solution.

Figure 3 provides a snapshot of the design
refinement process. On the left is the current design
state, including some assumptions below the desired
confidence threshold that therefore motivate
refinement goals. Those goals lead to candidate
designs (satisfying the guiding design principles).
Each alternative design may have validated, revised,

and introduced different sets of assumptions and
may have different costs.

A good bookkeeping process, one including
confidence values that assumptions are valid, aids
tracking assumptions in the context of design
refinements and limits flaws in the final design. All
assumptions, now explicitly stated, can be treated as
derived requirements. As different parts of the
design space are searched, only those assumptions
associated with refinements in the current solution
path will be considered. Assumptions, valid or only
partially so, will not be lost when left for future
refinements. When solutions are reached, all factors
with respect to requirements, limited only by
designer knowledge, will have been considered.

Figure 4 provides a flowchart for the entire
system design process; exiting the chart at “FAIL”
means that no satisfactory design could be identified
while exiting at “SUCCESS” corresponds to the
identification of a leaf node of a design tree like the
one in Figure 2 that provides a satisfactory system
design.

IV. SECURITY OVERLAY

A. General
Designing for security has proven to be

extremely tricky. Clever attackers have repeatedly
demonstrated how the unanticipated use of designed
features/privileges, unfortunate design choices
seemingly unrelated to security, or reliance on
unstated assumptions that had little chance of being
valid have resulted in security failures. The
assumption-driven design process maximizes the
designer’s chances of anticipating problems on
which attackers thrive and proactively addresses
them during design. The structure it imposes
focuses the designer’s existing knowledge and skill
on effective refinements that address current
shortcomings while minimizing the chance that
important security-related implications of those
refinements are overlooked. Several features of the
design process help ensure that following the
process methodology will yield better designs.
B. Design Principles/Designer’s Toolbox

Security designers must adopt a core set of
design principles that guide them through any
design process. These should be explicitly stated
and revisited during design, evaluating choices

6

being made throughout the process against those
principles. Enumerating a universal set of security
design principles is beyond the scope of this paper.
However, much has been written on this topic
[SHF01, BISH12, LBBN05]. Two good examples
are the least privilege principle and the principle of
separating policy from enforcement. It is easy to see
how applying these principles during critical
process steps like candidate refinement generation
or assumption analysis would impact the final
design.

Along with design principles, an experienced
designer brings a toolbox of mechanisms, tools and
techniques that have proven effective against certain
security problems. Different designers will have
different toolboxes. When choosing refinement
goals, the designer can anticipate which tools will
have the most benefit. Likewise, when generating
candidate refinements against some refinement
goal, designers can look to the toolbox with
confidence that selected tools will indeed increase
confidence values for unmet assumptions. Repeated
use of tools facilitates analysis, as experience will
indicate what types of assumptions can be
addressed, how well, and what, if any, residual
assumptions might remain.
A designer’s principles and toolbox are the

greatest factors contributing to successful design.
They drive key aspects of the process, including
candidate design refinement generation, assumption
analysis, refinement goal generation and selection.
C. Candidate Refinement Generation

Creating candidate refinements is more art than
science, but it can be taught. The design principles
and toolbox concepts are aids that help designers
hone their craft. They help the designer recognize
classes of problems and how to employ proven
solutions. Similarly, looking to other successful
designs for ideas is useful.

Other heuristics exist that can also help.
Recognizing relationships between different kinds
of assumptions or the repetition of certain
assumptions across many different components may
signal common problems that can be addressed with
more centralized mechanisms rather than
individually addressing them throughout the design.
As an example, consider a system containing many
communicating entities. Using a common, secure

messaging system rather than attempting to address
the concerns individually with each entity might
best address assumptions identified throughout the
design about message confidentiality of
authenticity.

Another powerful concept to help designers
generate more effective candidate refinements is
termed trust relocation. Whenever security
mechanisms are employed in a system, their
trustworthiness will depend on the validity of
assumptions made about how that mechanism has
been integrated and will be used, or in other words,
how trustworthy are the mechanisms validating
those assumptions. The idea behind trust relocation
is that these trust assumptions will always exist
somewhere in the design, making the object of
design refinement to select candidates where the
validity of assumptions rests on mechanisms most
worthy of trust. Trust relocation leads to better
solutions by encouraging designers to recognize that
trust assumptions are shifted and not eliminated
during design, and to employ security mechanisms
that maximize the number of trust-related
assumptions that can be addressed in a trustworthy
way while minimizing the number being introduced.

Employing security mechanisms for data
isolation within a running system offers a good
example for the trust relocation idea. Processes
could protect access to data with a combination of
cryptography and discretionary access controls,
leading to a variety of trust-related assumptions for
each process requiring such protections.
Alternatively, a strong central mandatory access
control system could provide the requisite security
guarantees while only requiring new assumptions to
ensure the trustworthiness of the MAC mechanism.
Here, the need for trust in mechanisms has been
relocated from each process to just the one
mechanism in the system.
D. Refinement Selection

There are several points in the process where
designers must make selections impacting designs.
The first is in the selection of refinement goals.
There is no single right way to make selections, but
again heuristics play an important role in allowing
efficient convergence toward a successful design.

A straightforward approach is to simply choose
the goal that eliminates the most residual

7

assumptions. This could work but could also easily
introduce inefficiencies, as deferring just one
critical assumption in favor of many less critical
ones might impact the path down the design tree by
requiring backtracking when finally addressing the
critical assumption.

A better approach seems to be to select
refinement goals with an eye toward the likely
candidate designs that will result. Looking across
the full set of refinement goals, considering how
tools might best be applied, how candidate
generation heuristics like trust relocation might be
invoked, and the likely outcome of assumption
analysis will lead to much better selections. In any
event, the designer should attempt to make
selections that lead to the quickest convergence.

The second selection point is the identification of
the most promising candidate refinement on which
to grow the design tree. This is always going to be a
subjective call, but designers should endeavor to
make it as objective as possible. Costing functions
can help with this. The idea is to define a number of
dimensions on which each candidate would be
evaluated and the relative importance of each. The
resulting cost vectors can then be compared to focus
the selection to the best candidates.

There is no one best set of dimensions for the
cost vectors. Many might not even be related to
security but instead relate to more practical things
such as monetary cost, performance, availability, or
constraints either externally imposed or resulting
from other design choices earlier in the process. The
assumption analysis, however, provides important
input to the cost function. The number of residual
assumptions, the confidence values of each as
compared to assigned thresholds, and ideas about
the difficulty of increasing those values above the
thresholds are perhaps the most useful dimensions
for cost and selections that will lead to quick
convergence to success.
E. Assumption Analysis

Assumption analysis for derived requirement
generation is the key innovation of this design
process. This is what gives designers confidence
that designs will fully meet requirements. Issues
concerning strength or appropriateness of
mechanism are limited because assumptions
identified for candidate designs with less optimal

choices will highlight inadequate aspects of the
design or issues problematic to address.

Assumption analysis is a skill that greatly
depends on the insight a designer has into potential
problems. The value of experience with a full
toolbox becomes evident during this phase, as
designers will already be familiar with assumptions
associated with the use of each tool. But beyond
understanding the use of tools, the designer’s
perspective when questioning a design is most
important to effective assumption analysis.

One effective technique is to reason about each
system component individually from three separate
perspectives. The first is to consider what must be
true about itself in order for the component to
correctly perform its function. Recursively
repeating this question for each sub-component will
help tease out hidden dependencies and design
fallacies. The second is to consider what must be
true about the component for all others to safely
depend on it. And the last is to consider what must
be true about each component on which it depends
in order to safely depend on them.

Another useful technique for assumption analysis
is related to vulnerability analysis. If designers take
an adversary’s perspective and theorize about
vulnerabilities, assumptions will fall out. Imagining
what is possible from each component if adversaries
have total control over it provides valuable insight.
This is best done without regard for any specific
threat model, enabling designers to understand the
total threat and clearly see all assumptions. Whether
or not those assumptions are ever to be directly
addressed is where threat models are needed. In this
way, after the design process is complete, system
implementers can make engineering decisions
consistent with the intent of the design, and eventual
users will be able to determine if the design is
appropriate to their intended threat model.

Regardless of how designers approach
assumption analysis, revisiting all assumptions
during each iteration is important. This is the only
way to ensure that a refinement has not negatively
impacted an assumption that a previous refinement
addressed. Consider the introduction of a new
function to a component where some prior
assumptions about an existing function being
isolated were present. The addition might invalidate

8

past satisfaction of that assumption. It is still fine to
consider such a refinement, but the old assumption
would need to be marked as unsatisfied and
readdressed in a future refinement.

V. RELATED WORK

The present work has developed over a period of
many years in parallel with development of fault
trees, first used in the safety domain [ECK63], and
with more recent work on assurance cases
[PMMSF02], [GLW14]. These approaches
generally aim to argue that a system is safe or
secure by identifying potential sources of failure
and then creating arguments as to why those
particular failures are impossible or unlikely. Tools
have been developed to organize the logic of these
arguments; potentially such tools could be applied
in the context of Assumption-Driven Design.

The importance of recognizing implicit
assumptions in security designs has been
highlighted along with techniques that might be
taught to designers to better prepare them for the
task [BIAR05]. Another approach to assuring the
security of designs that targets assumptions is the
Information Design Assurance Red Team
[SAND09]. It aims to identify design flaws by
positing attacks, which may target assumptions
made by designers, not dissimilar from Weissman’s
original Flaw Hypothesis Methodology [WEIS73].

Approaches to designing systems to meet both
functional and security constraints have a long
history, starting with the reference monitor
approach [ANDE72]. The design principles
developed by Saltzer and Schroeder for MULTICS
in 1975 [SASC75] can be fruitfully applied in the
context of Assumption-Based Design. An approach
for developing application-based security models in
1984 [LHM84] included explicit security
assumptions and assertions to be met by the
implemented system, but did not provide a
refinement structure for them. NIST has recently
published a System Security Engineering report
[RMO16] that addresses assurance cases as a means
of building trust in systems but generally avoids
detailed methodologies at the level addressed here.

VI. CONCLUSIONS AND FUTURE WORK

This paper has described how a structured design
process can improve secure system design. The

assumption-driven design process facilitates the
discovery of implicit assumptions that would
normally be left unstated by traditional design
methods. These unstated assumptions, now made
explicit, may or may not be satisfied by the final
design, but those making decisions about a design
will have gained a more complete understanding
about the design’s suitability.

The assumption-driven design process adds rigor
to the design process and can help move secure
system design from art towards science. The
structure it brings should increase the likelihood that
designs will not only meet stated security
requirements but also address intended security
goals. It is a straightforward process that is a close
approximation to one that has been internally used
and informally taught by our organization.

Although some parts of the process may seem
obvious, especially to experienced designers, the
point of this paper is to describe a process that leads
to better designs and can be taught and should be
taught. When coupled with a strong foundation in
the principles of systems security and a good
toolbox of security mechanisms, teaching it should
lead to system designers and security practitioners
obtaining the necessary skills for effective secure
system design.

The artifacts created through the bookkeeping
process are an additional benefit to this process.
They not only help keep the design process
converging toward success, but they can add value
in other significant ways. Evaluation of designs can
be reduced to assessing the set of assumptions that
have been addressed and the arguments that were
created for validity. Such evaluations are more
meaningful than addressing checklists of
requirements, as they reflect the actual satisfaction
of security objectives.

The artifacts offer a different perspective when
considering threat models. Rather than creating
threat models for specific use cases, a more
comprehensive threat model can be expressed in
terms of assumptions and tailored for specific use
cases by adjusting acceptable confidence value
thresholds. Assessing suitability against various
threat models is reduced to evaluating each of the
explicit assumptions against the thresholds
appropriate to desired use cases. As an added

9

0

benefit, divining designer’s intent would no longer
be necessary, as it would be directly reflected in the
bookkeeping.

Bookkeeping artifacts also facilitate changes to
designs. When new requirements are identified it is
possible to restart the design process, and if
necessary, backtrack to previously visited portions
of the design tree. Even if the original designers are
not involved in the redesign, insight that they gained
using the process is reflected in the artifacts and is
available to the new design team.

More work is needed if the benefits of
assumption-driven design are to be realized. If it is
going to advance beyond the practice of a few
designers to a process broadly taught and used,
expanded curricula for existing security courses
must be developed and socialized. System
integration issues and mechanism-specific
assumption analysis must be included when
teaching about security mechanisms. More detail
about the process itself and worked examples of
designs created with it are needed. The examples
must demonstrate key portions of the process such
as identifying assumptions, selecting refinement
goals, and generating candidate refinements. These
examples would also need to include the
bookkeeping artifacts, showing how they are useful
during the design for performing backtracking and
ensuring the proper set of derived requirements, and
post design, for such analyses as evaluation and
suitability of use. Automated tools to support the
entire Assumption-Driven Design process will be
needed to handle any large, complex design.

Security by design is the object of the process
described here, but the process could be applied to
privacy by design as well. In this case, the
assumptions would need to reflect appropriately
tailored privacy properties.

Capturing the thinking behind this design
methodology has proved challenging, reinforcing
our intuition about the complexity and subtlety of
security designs and the need for an effective design
process. Although originally intended to support
training junior analysts, the effort resulted in
documenting a design process that we hope will be
useful to a much broader community. Adherence to
the assumption-driven design process is difficult,
but we believe it can serve as a practical and

effective framework for trusted system design,
encouraging critical thinking by focusing designers
on security issues most pertinent to identified
security goals.

VII. ACKNOWLEDGEMENTS
This paper reflects many years of experience in

reviewing designs submitted to the authors’
organization for review. The authors of those
designs, whom we cannot list, and their interactions
with the authors of this paper substantially
influenced the ideas documented here. Discussions
with Perry Alexander, Dylan McNamee, , Sami
Saydjari were also helpful. Carl Landwehr assisted
with drafting and editing. Responsibility for any
remaining errors or omissions remains with the
authors.

REFERENCES

[ANDE72] Anderson, J P. "Computer security techno[ogy
planning study," ESD-TR- 73-51, vol 1, ESD/AFSC,
Hanscom AFB, Bedford, Mass., Oct. 1972 (NTIS AD-758
206) .

[BIAR05] M. Bishop and H. Armstrong, “Uncovering
Assumptions in Information Security,” Proceedings of the
Fourth World Conference on Information Security
Education pp. 223-231, May 2005.

[BENS00] Benson, Robert L. The Venona Story. Center for
Cryptologic History, National Security Agency, Ft.
Meade, MD. pp 26-27, undated but prior to 2000.
Available at: https://www.nsa.gov/about/cryptologic-
heritage/historical-figures-
publications/publications/coldwar/assets/files/venona_stor
y.pdf

[BISH12] M. Bishop, “Computer Security:Art and Science,”
Addison-Wesley, 2012, ch.13.

[ECK63] Eckberg, C. R. (1964). WS-133B Fault Tree
Analysis Program Plan. Seattle, WA: The Boeing
Company. D2-30207-1. Available at:
http://www.dtic.mil/get-tr-doc/pdf?AD=AD0299561

[GLW14] Goodenough, J.H.F Lipson and C.B. Weinstock,
Arguing Security – Creating Security Assurance Cases,
US-CERT, 2001, updated 2014. Available at
https://www.us-
cert.gov/bsi/articles/knowledge/assurance-cases/arguing-
security-creating-security-assurance-cases

[LHM84] Landwehr, C.E., C.L. Heitmeyer, and J. D. McLean.
A Security Model for Military Message Systems. ACM
Trans. on Computer Systems, Vol. 2, No. 3, August, 1984,
pp. 198-222.

[LBBN05] T. Levin, T. Benzel, G. Bhaskare, T. Nguyen, P.
Clark, and C. Irivne, “Design principles for security,”
2005.

[LOSC98] Loscocco, P. A., S. D. Smalley, P. A. Muckelbauer,
R. C. Taylor, S. J. Turner, and J. F. Farrell. The

1

http://www.dtic.mil/get-tr-doc/pdf?AD=AD0299561
http:https://www.us
https://www.nsa.gov/about/cryptologic

1

inevitability of failure: The flawed assumption of security
in modern computing environments. In Proc. Nat'l Info.
Sys. Sec. Conf., pages 303--314, October 1998. Available
at https://www.nsa.gov/resources/everyone/digital-media-
center/publications/research-papers/assets/files/the-
inevitability-of-failure-paper.pdf

[PMMSF02] Park, J., A. Moore, B. Montrose, B. Strohmayer,
J. Froscher. A Methodology, A Language, and a Tool to
Privde Information Security Assurance Arguments. NRL
Memorandum Report NRL/MR/5540—02-8600, Feb.
2002.

[RMO16] Ross, R., J. McEvilly, J.C. Oren. System Security
Engineering. NIST Special Publication 800-160,
November 2016. Available at:
https://doi.org/10.6028/NIST.SP.800-160

[SAND09] Sandia National Laboratories. The Information
Design Assurance Red Team. Available at
http://www.idart.sandia.gov/methodology/IDART.html

[SASC75] J.H. Saltzer, M.D. Schroeder. The protection of
information in computer systems. Proceedings of the
IEEE, 1975

[SHF01] G. Stoneburner, C. Hayden, and A. Feringa, NIST
Special Publication 800-27, “Engineering Principles for
Information Technology Security (A Baseline for
Achieving Security) Revision A,” Booz-Allen-Hamilton
Inc., McLean, VA, 2001.

[TRIP17] Trippel, Timothy, Ofir Weisse, Wenyuan Xu, Peter
Honeyman, Kevin Fu, “WALNUT: Waging Doubt on the
Integrity of MEMS Accelerometers with Acoustic
Injection Attacks,” ESORICS 2017, Paris, France.

[WEIS73] Weissman, C., “System Security
Analysis/Certification Methodology and Results,” SP-
3728, System Development Corp., Santa
Monica, Calif., Oct. 1973.

[WEIS94] Weissman, C., “Penetration Testing,” Information
Securitv Essavs,

Abrams, M.D., S. Jajodia, H. Podell, eds., IEEE

Computer Society Press,1994. Available at:

https://www.acsac.org/secshelf/book001/11.pdf

1

https://www.nsa.gov/resources/everyone/digital-media-center/publications/research-papers/assets/files/the-inevitability-of-failure-paper.pdf
https://www.nsa.gov/resources/everyone/digital-media-center/publications/research-papers/assets/files/the-inevitability-of-failure-paper.pdf
https://www.nsa.gov/resources/everyone/digital-media-center/publications/research-papers/assets/files/the-inevitability-of-failure-paper.pdf
https://doi.org/10.6028/NIST.SP.800-160
http://www.idart.sandia.gov/methodology/IDART.html
https://www.acsac.org/secshelf/book001/11.pdf

2

Figure 1. Example System: Addition of wireless connectivity to existing wired network.

1

3

 Figure 2. Example design tree created from following design process.

1

4

Figure 3. An example node from a design tree showing children nodes resulting from an iteration of the
design process. The nodes are annotated to show how identified assumptions drive the process and are

revised with each new candidate design.

1

5

 Figure 4. Flow chart describing the entire process.

1

