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ABSTRACT 
Cyber-physical systems (CPS) are integrated systems of computer-
based algorithms and physical components interacting with en
vironmental effects. In such systems, autonomous behaviors and 
overall performance mainly depend on a control software. Thus, 
it is crucial to test and analyze the control software of the CPS 
in various perspectives. One of the critical perspectives is energy 
efficiency because many cyber-physical systems (e.g. unmanned 
aerial vehicles, autonomous cars, health-care devices) operate with 
limited energy sources such as batteries. In this paper, we pro
pose CPSDiff: an energy-aware differential testing framework that 
generates test inputs to expose the maximal difference between 
two control programs in energy consumption. Our test generation 
technique uses meta-heuristic searching to find the input that max
imizes the energy consumption difference. The difference-revealing 
ability of our technique outperforms the random search algorithm 
and hill-climbing search algorithm. Our evaluation on two popu
lar unmanned aerial vehicle control programs provides a detailed 
comparison of their energy consumption under the same condition 
with a universal robotics simulator; CPSDiff found the input which 
exposes maximum battery consumption difference of around 47%. 

1 INTRODUCTION 
A cyber-physical system (CPS) is a combination of physical and cy
ber subsystems. For example, robotic vehicles, such as self-driving 
cars [5, 10, 12] and unmanned aerial vehicles (UAVs) [3, 11], include 
a control program, various sensors, and actuators from the two dif
ferent domains. The hybrid (discrete and continuous) components 
closely interact with each other and perform mission-critical tasks 
or autonomous operations. Among those several components in 
CPS, the control program plays a critical role. Autonomous oper
ations and complex missions require such a control program to 
take high-level commands, process sensor data, and control actua
tors. Therefore, the efficiency of a CPS significantly relies on the 
performance of the control program. 

The efficiency of a CPS can be measured in various perspec
tives. One of the important metrics is energy consumption because 
many CPS operate with limited energy sources. It is critical for 
a battery-powered system to reduce power consumption in order 
to achieve a longer operation time. Different control mechanisms 
may show distinct energy consumption for the same mission. An 
inefficient control mechanism may consume significantly more 

energy than a well-optimized one, and it may even lead to vehi
cle damages/failures because of energy deprivation and deficiency, 
especially in long-time continuous operations. [1, 2] 

Despite the importance, there has not been a practical solution 
for energy efficiency testing for CPS. Existing approaches in general 
energy efficiency testing [23, 26, 34] are not applicable to CPS since 
their usage scenarios are primarily in the cyber domain only, such 
as an extensive file I/O and cryptographic operations, or focus only 
on specific and pre-defined use cases. For energy-aware CPS test
ing, the testing mechanism should consider interactions between 
the cyber and physical domains and various environmental distur
bances. In addition, because of the nature of trade-offs between 
control properties [35], it is difficult to design general test oracle 
of energy consumption to support various scenarios. Otherwise, 
the engineers are required to identify important usage scenarios 
and develop test oracles [16] since these tasks require a substantial 
amount of manual effort and deep domain knowledge. 

There have been many studies in program analysis and test
ing for conventional systems, such as cloud [24], web server [18], 
and mobile systems [38]. However, CPS are fundamentally dif
ferent from such systems. A CPS runs on a micro-controller and 
orchestrates sensors and other physical components with external 
disturbances in real-time with non-determinism. The behavior of 
the control program is hardly analyzed and tested without a well-
configured infrastructure or a real physical operation environment. 
Furthermore, conventional control-domain tools, such as MATLAB 
Simulink [39], are mostly design-time testing tools and they require 
a specific model although there are many cases where a control 
model is unavailable or correctly acquiring it from the control pro
gram is infeasible in practice (e.g., legacy programs and proprietary 
software). Formal validation and verification approach [22, 34] 
would be one way to analyze CPS, but they are known to work 
only on small-scale software and suffer from the state explosion 
problem [22]. 

In this paper, we overcome the above challenges and propose a 
new practical approach to testing and comparing control software 
in the perspective of energy consumption. We were motivated by 
the fact that different control programs which have different control 
mechanisms or different versions of the programs cause behavioral 
differences of the target system. In addition, we observed that under 
certain types of operation or missions of a CPS, such differences 
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become more significant. Subsequently, the CPS consumes varying 
amounts of energy proportional to the differences. 

Based on the above observation, we propose a framework, called 
CPSDiff, that enables differential testing for control programs to 
automatically reveal performance differences in CPS, especially re
garding energy consumption. Given two control programs, CPSDiff 
simultaneously executes two programs in a black-box approach 
under the same physical simulation environment. Specifically, we 
mechanically generate random test inputs and apply those into the 
two programs and then compare the results based on a number of 
properties. Since our methodology is automatic black-box testing 
[17], CPSDiff does not require accessing the internals of the con
trol programs. CPSDiff executes the programs multiple times with 
automatically generated inputs on top of a universal robotics sim
ulator. The simulation supports various types of physical devices 
and environment effects, as such the generated inputs resemble 
real physical inputs. 

CPSDiff searches for the best input which exposes the maximum 
in energy difference. The large difference, the more effectively the 
input can reveal the difference of control software quality. To find 
the maximum difference, CPSDiff efficiently explores the input 
space by using our adaptive random searching algorithm and it 
can successfully find the differences efficiently, compared to other 
searching algorithms such as a random and a hill-climbing algo
rithm. 

We applied CPSDiff to a real-world CPS system, which is a 
commodity UAV with two popular control programs (ArduCopter 
[4] and PX4 [9]). Our evaluation results show that CPSDiff is 
able to successfully generate test cases which expose significant 
differences in energy consumption between the two UAV control 
programs. 

The contributions of this paper are summarized as follows: 

•	 We propose a differential testing framework for CPS control 
programs to expose their differences in energy consumption. 

•	 To our best knowledge, we propose first energy-aware differ
ential testing in the CPS domain. In the perspective of energy 
consumption, we compare control programs with automated test 
inputs and search the case which reveals potentially maximum 
energy difference of the systems. 

•	 We set up a universal robotics simulation framework, Robotic 
Operating System (ROS) and Gazebo simulation, which provide 
comprehensive simulation environments to remove physical 
cost and support systematic testing for different control software 
under the same simulation condition. 

•	 We develop new meta-heuristic search algorithm which utilizes 
a novel test strategy to expose a maximal difference. We apply 
CPSDiff to a practical use case, two different UAV control pro
grams, ArduCopter and PX4, and provide quantitative evaluation 
results. The detailed results are available in §6. 

The remainder of this paper is organized as follows. §2 provides 
the background and our motivating example of UAV systems. §3 
gives an overview of CPSDiff. §4 describes the details of our ap
proach, and §5 presents practical challenges we solve. §6 presents 
the implementation and evaluation of our research. Finally, §7-8 
outlines related work and concludes our paper. 

2 BACKGROUND AND MOTIVATION 
In this section, we provide a background of CPS with UAV as an 
example and our preliminary experiments to motivate CPSDiff. 

2.1 UAV system overview 
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Figure 1: A typical UAV control system architecture. 

As shown in Figure 1, a typical UAV system is composed of sev
eral components. The flight mission planning component takes 
high-level commands from a user and provides setpoint, a desired 
value such as a target altitude, to the controller. Taking the setpoint 
as a reference value, The goal of the controller is to maintain a stable 
flight with accurate tracking of the desired trajectory. For that, it 
attempts to reduce the error between the reference value and the 
measurement from a sensor. For example, a typical control mecha
nism, called proportional–integral–derivative (PID) controller [35], 
continuously calculates the error e (t ) between a desired setpoint 
r (t ) and a measured value. The proportional, integral and deriva
tive terms attempt to eliminate the error over time by adjusting the 
control input u (t ) in the feedback loop. In a typical UAV system, the 
control inputs are motor pulse width modulation (PWM) signals 
that are used to adjust the rotation of motors and to control the 
speed and the attitude of the vehicle. Measurements from various 
sensors are then transferred to the controller as a feedback in the 
control loop and the feedback is used as a next input. 

UAV is a hybrid system that exhibits both a continuous (in the 
physical domain) and a discrete behavior (in the cyber domain). In 
the physical domain, there are always external disturbances, such as 
wind and noises from different sensors. A controller and an estimator 
handle the disturbances to provide better responsiveness. In the 
cyber domain, UAV software supports various flight modes (e.g. 
auto, manual, and stabilized modes) for different flight missions. The 
flight mission planning component implements discrete behaviors 
of the UAV and an intelligent algorithm to handle high-level actions 
to improve the overall performance of the system. 

A control software is fairly complex and has many different con
trol properties. For example, stability is an important property of a 
control system. In a high-level description, a system can be consid
ered as stable if it remains in a constant state unless affected by an 
external impact and returns to the constant state when the external 
impact is removed. Another important property is responsiveness. 
It is about how fast the system approaches a target state. In or
der to be responsive, a controller may introduce a large overshoot, 
and thus the system may become unstable and consume more en
ergy. However, since it also reduces a settling time to get to the 
target point, energy consumption may be decreased because of the 
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saved time. Consequently, there exists no optimal control algorithm 
which shows the best performance to satisfy every property. This 
motivated us to come up with the new idea to automatically test 
control systems through a novel differential testing since comparing 
and understanding trade-offs of control software is important for 
choosing the better control software for diverse mission scenarios. 

2.2 Differential Testing 
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Figure 2: Differential Testing. Two programs run with the same 
inputs and two outputs under the same condition are compared to 
show differences. 

In general, differential testing [29] compares the execution of two 
programs side by side using the same inputs, as shown in Figure 2. 
Our testing mechanism automatically generates the inputs, run 
the two programs with the inputs, and evaluate the quality of the 
programs’ outputs for a comparison. 

As discussed previously, because of complex and conflicting 
properties of the control system, generating test cases and evaluat
ing test results for the control system require a huge effort. Without 
deep domain knowledge, defining a test oracle is a challenging task. 
Our test technique does not require the domain knowledge. We 
compare two control programs for showing the differences between 
their behavior, without the test oracles defined by a domain expert. 
The programs under test could be of two different versions or could 
have a totally different design and implementation to support the 
same function. While the differential test can be applicable to the 
comparison of two unknown qualities of programs, if the quality 
of one program is well-evaluated already, it can be used as base 
program to compare others. 

2.3 Motivative Example 

(a)Horizontal Flight (b)Zigzag Flight 

Figure 3: Flight Missions. The UAV flies following the pre-defined 
trajectories (white line) and moves to the target waypoints (green 
numbers). 

In order to expose the behavioral differences of control software, 
we performed preliminary experiments with two different propri
etary quad-rotor control programs: ArduCopter and PX4. We used 
the same hardware model, 3DR IRIS+ [6], for the two control pro
grams. The control software communicates with a ground control 
system (GCS) via Micro Air Vehicle Communication (MAVLink) 
protocol [8], and the GCS is able to send flight control messages 
and missions to the vehicle either at runtime or offline. In our ex
periments, we manually planned several flight missions and applied 
them to the two control programs. During the flights, we collect 
flight information for the motor speed and the energy consumption. 

Figure 3 shows two different flight missions, where the numbers 
represent a mission command sequence and the white line repre
sents a planned trajectory the UAV will fly on. The left mission 
is horizontal flight. The UAV will take off from the home position 
(number 0) to an altitude of 20m (number 1) and then horizontally 
fly 1km to the endpoint (number 2). The second mission is zigzag 
flight. The UAV will take off from the home position and then move 
left and right in a zigzag fashion. 
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Control Program 1: ArduCopter Control Program 2: PX4 

Figure 4: Comparison of motor speed and battery consumption in 
the horizontal flight mission 
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Control Program 1: ArduCopter Control Program 2: PX4 

Figure 5: Comparison of motor speed and battery consumption in 
the zigzag flight mission. 

Interestingly, there were significant differences in the battery 
consumption of the two control programs during several missions. 
As shown in Figure 4, ArduCopter finished the horizontal flight mis
sion early and consumed less energy than PX4. Upon the mission 
completion, ArduCopter consumed around 21% of the total capacity 
of the battery, while the PX4 consumed 31%. The difference in the 
amount of consumed battery is roughly 10%. However, in the zigzag 
flight mission in Figure 5, PX4 outperforms ArduCopter. At the end 
of the mission, PX4 consumed 8%, but ArduCopter consumed 11%. 
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Based on these preliminary experiments, we observed that the 
control programs show different performance depending on the 
type of the mission. 
Limitations of the Existing Testing Tools. Model-based testing 
with Simulink [39] relies on models to generate test scenarios and 
oracles in order to find interesting test inputs. A domain expert 
should carefully choose the scenarios and manually test the system. 
However, as described in §2.1, the control program is complex, 
and thus obtaining an accurate control model from the control 
program is practically infeasible. Moreover, manually testing such 
complex programs requires a substantial amount of effort. For 
example, ArduCopter and PX4 have around 600 and 400 control 
parameters, respectively. Different parameter settings affect the 
control programs to have diverse internal behaviors and energy 
consumption. Therefore, experts should subsequently choose test 
cases and oracles to test the system on every different configuration 
manually. 
Our Approach. Our objective is to provide an automated testing 
tool, CPSDiff, which requires no accurate control models and test 
oracles. CPSDiff uses a differential testing technique: it systemati
cally executes two control programs and exposes their maximum 
performance differences. The tool also requires no deep domain 
knowledge to design test scenarios. We use a high fidelity robotics 
simulator to test the CPS control software with automatically gener
ated missions under the potentially hostile physical environments. 

3 OVERVIEW 
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Figure 6: An overview of automated differential testing of 
CPSDiff 

The overall workflow of CPSDiff is presented in Figure 6. CPSDiff 
requires two different control programs for the testing. The control 
programs differ in that they may implement different control mech
anisms, have different internal components, and support different 
sets of autonomous actions, etc. For a fair comparison, we config
ure the control programs to operate in the same flight mode. The 
flight mode defines how the system operates, including manual, 
autopilot, or mixed operations. For example, in ArduCopter and 
PX4, there are many built-in flight modes; ArduCopter has 14 and 
PX4 has 5 modes. In our experiments, we use the autopilot mode 
for both of the control programs, which controls the UAV based on 
a pre-programmed mission script transmitted from GCS. 

In the second step, CPSDiff generates an input mission and 
environment effects. An input mission is defined by two property 
groups. The first is a sequence of mission commands, which in
cludes various types of flight behaviors, such as takeoff, waypoint 
flight, landing and loitering. The commands potentially have causal 
relationships with each other that can be represented by a state 

transition diagram. CPSDiff uses these state transitions for the 
automatic generation of appropriate test cases which have different 
sequences of commands. The second is mission command parame
ters. Once the sequence of commands is chosen, CPSDiff generates 
parameter values for each mission command. For example, the 
waypoint command has three parameters: latitude, longitude, and 
altitude. The input generator populates the parameters with values 
based on the given input space. Besides the input mission, CPSDiff 
also generates environment effects if required. 

In the searching step, CPSDiff runs the two simulations simul
taneously under the same condition except control programs, and 
then profiles the flight information while performing the input mis
sion. Our objective function evaluates the quality of the output after 
the mission. The evaluation data allow our searching mechanism 
to find the maximum difference between the two control programs 
in energy consumption. Our meta-heuristic search algorithm run 
multiple iterations for a given time budget (i.e. number of search 
iterations). 

4 DESIGN 
In this section, we discuss the universal robotics simulator and the 
further details of each component of CPSDiff. 

(a) Real 3DR IRIS+ (b) Simulated vehicle 

Figure 7: A UAV used for control software testing. 

4.1 Universal Robotics Simulator 
A highly reliable test environment is essential in CPS testing. Since 
the control software always interacts with physical devices and 
external environmental effects, field testing with a real hardware 
platform would be the most accurate way for testing. However, 
field testing requires expensive hardware and a significant amount 
of time to test various scenarios. In addition, unexpected behaviors 
or failures during the tests can damage devices physically and 
may cause critical safety issues. Thus, instead of a real hardware 
platform, we use a high-fidelity simulation framework, Gazebo [7]. 

Gazebo is the most popular 3D robotics simulator in the robotics 
research, and has a modular design to support different kinds of 
robotics and their components. It describes physical properties of 
a robot using the Universal Robotics Description Format (URDF) 
or the Simulation Description Format (SDF). A User can develop 
his/her own physical vehicles or objects with this standard XML 
format. This way, Gazebo is able to simulate virtually any type of 
physical objects as long as we define our objects’ physical properties 
and implement custom components as plugins. In our case, we use 
3DR IRIS+ quadcopter shown in Figure 7 for the target hardware 
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model and the corresponding URDF. All the components such as 
sensors, UAV dynamics, and external influences are simulated by 
Gazebo plugins or physics engines in the Gazebo simulator. 

ArmedStart

arm 
throttle

mission
start

DisarmedTakeoff Land

Waypoint

Loitering

Hovering

...

Mission	Commands

mission 
completed

...

Figure 8: Mission state transition diagram. The mission commands 
have causal relationships and a mission input includes an appropri
ate sequence of mission commands. 

4.2 Test Input Generation 
We use a mission and environment effects as a test input. Generat
ing the input mission consists of two steps: generating a sequence 
of mission commands and populating parameters to each generated 
mission command. We denote a test input vector as I = {t , w }
where t is the sequence of missions commands with parameter 
values and w represents the wind effects. 
Mission Sequence Generation. In our test scenarios, the UAV 
would undergo a series of pre-programmed behaviors. For exam
ple, the UAV starts the mission with vertical takeoff (T ) from the 
same home position in each scenario and performs a sequence of 
mission commands such as waypoint (WP ), loitering (LO), hover
ing (HO). The mission completes when the UAV safely lands to 
the target position with the land (L) mission command. Figure 8 
shows the possible transitions between the mission commands. 
CPSDiff generates a sequence of an arbitrary number of input 
mission commands in a random manner. Using the mission state 
machine, it traverses the topology randomly, and each traversed 
path represents a sequence of input mission commands as shown 
in Table 1. 

Table 1: Randomly generated a sequence of mission commands. 

Test No. A sequence of mission commands 

T1 T → W P → LO → W P → L → T → LO → L 
T2 T → HO → W P → W P → L 
T3 T → LO → L → T → L → T → W P → L 

Mission Parameter Value Generation. Every mission command 
has its own set of parameters. MAVLink supports at most 7 pa
rameters for each command. For example, WP command requires 
latitude, longitude and altitude as the parameters. We test the 
behaviors of UAVs within a virtual fence, and thus each parame
ter is assigned a value range: [minlat ,maxlat ], [minlon ,maxlon ], 
[minalt ,maxalt ]. For each parameter, CPSDiff selects a value from 
a uniform distribution within the given value interval. 

In order to test with a realistic environment, CPSDiff also in
serts wind and wind gust effects w . The environmental effects are 
simulated in the Gazebo plugins and described with the plugin pa
rameters in URDF. The wind plugin has the following parameters: 
direction, force. Windgust has direction, duration, force and start 
time. 

4.3 Objective Function 
CPSDiff runs two simulations with the generated test input vector I 
in parallel and profiles the information of vehicles’ behaviors during 
the simulation, e.g., flight time, distance, motor speeds and battery 
consumption over time. When the mission is completed in both the 
control systems, the output values (i.e., battery consumption) are 
compared. Our test objective is to find the input that maximizes 
the performance difference. In this paper, we compare the amount 
of consumed energy for the performance difference. 

Figure 9: Examples of PWM signals. 

Energy Consumption. Many battery related works [20, 31, 32] 
focus on estimating the energy consumption of battery-powered 
devices, using accurate battery models or additional hardware de
vices to measure real energy consumption. However, we use a 
simple measurement method, as our purpose is just to compare 
the two results rather than accurately measure the consumption. 
Intuitively, the control program regulates control signals and in 
the UAV system, the signals control the speed of multiple electric 
motors to generate a torque. In other words, the electric motor 
control is a main role of the control software. Thus, we simplify 
the battery model by taking an advantage of this fact: the energy 
consumption is proportional to motor speeds and the control pro
grams only generate pulse-width modulation (PWM) signals which 
control the motor speeds directly. This way, CPSDiff estimates the 
energy consumption by only relying on the motor speeds. 

Speeds of the UAV DC Motors are controlled by the periodic 
PWM signals. According to the different duty-cycle c = tper iod /ton 
of PWM as shown in Figure 9, the switch turns on and off and the ef
fective voltage Vef f is applied to the motor. Our target system, 3DR 
IRIS+, has a 5100 mAh polymer (LiPo) battery pack and we assume 
average 50A current is drawn at 100% duty cycle, i.e., full throttle. 
During the simulation, CPSDiff collects the information on energy 
consumption by sampling the current. The total remaining battery, 
Br em , is then calculated as given below: 

nn 
Br em = Btot − Ik (tk+1 − tk ) 

k=1 

The current Ik is sampled at every time tk and the consumed cur
rent in each sampling period from tk+1 to tk is derived. The sum of 
consumed current is subtracted from total battery capacity Btot to 
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get the remaining battery Br em . After the simulation is completed 
with mission completion, CPSDiff compares the remaining battery 
to assess the quality of output. Our search algorithm uses this out
put to find best results. We do not limit our objective function to the 
difference in energy consumption. Depending on the application, 
CPSDiff can be set up to use the different objective functions to 
show differences in other properties such as stability, overshoot, 
responsiveness, etc. 

4.4 Search Algorithm 
Our goal is to find mission inputs by maximizing the objective func
tion value, the difference of energy consumption. Since our input 
space is too large, brute-force approach is infeasible. Therefore, 
CPSDiff uses a meta-heuristic search algorithm to efficiently find 
the best input. 

To solve this problem, intuitively, the first simplest approach is 
random search with bounded trials. Because of the notion of ran
domness, the pure random search is extremely explorative, which 
means that the algorithm mostly explores globally to find the op
timal value. Another opponent approach is Hill-Climbing search 
algorithm, largely doing local improvements in the limited region. 
However, if the limited region is not promising, the local optimum 
is not a good solution in the global space. 

In the CPS and control programs, the test input space is continu
ous and hybrid. For example, the input of a UAV system consists 
of two level: discrete mission commands and its continuous pa
rameters. Especially, every value for the continuous parameters is 
impossible to be visited, and the best possible output can not be 
guaranteed unless the entire space is visited. 

In this context, we propose a practical search algorithm to bal
ance between exploration and exploitation. Our algorithm uses 
adaptive random search [21] with novel testing strategies to address 
the above limitations. The CPS simulation usually takes a long time 
because of some unique properties such as real-time simulation 
and heavy computations. Therefore, the key strategy in the given 
limited time and resource is to improve input quality instead of 
running lots of simulation. If we are able to select high-quality 
inputs which are more likely to generate better output, the output 
will approach to the optimal value more quickly. 

The algorithm 1 represents a adaptive random search. Initially, 
the algorithm takes an initial test input and mission-related in
formation (i.e. a sequence of mission commands and input range 
vectors) as an input, which was generated during the test input 
generation step. Line 11-19 correspond to the main loop to find 
the maximum difference. At line 12-13, two simulations generate 
energy consumptions with the test input I and then I is stored in 
the history H . At line 14-15, when the difference is higher than 
the current best solution, the new solution is selected. Otherwise, 
new test input I is generated by using adaptive random selection 
algorithm at line 16. 
Test Strategies. Basically, the algorithm utilizes the random search. 
However, we use additional test strategies to speed up the search 
procedure and distribute selected inputs evenly across the input 
space. While the original random selection algorithm selects a 
single input randomly, our algorithm selects an input among k 
randomly selected candidates based on the quality of the input. 

Algorithm 1 Adaptive Random Search. 
1: N ← number of iterations 
2: M ← sequence of mission commands 
3: R ← input range vectors of parameters of mission commands 
4: S1, S2 ← simulation with program1 and program2 
5: t ← GenerateInitialRandomInput(M, R) 
6: w ← GenerateRandomWindEffect() 
7: I ← {t, w }
8: H ← null 
9: BEST ← I 
10: 
11: while N >= 0 do 
12: o1, o2 ← outputs generated by S1 and S2 with test input I 
13: H ← I 
14: if Diff(o1, o2) > BEST then 
15: BEST ← I 
16: t ← AdaptiveRandomSelection(M, R, H) 
17: w ← GenerateRandomWindEffect() 
18: N ← N − 1 
19: return BEST 

Algorithm 2 Adaptive Random Selection. 
1: M ← sequence of mission commands 
2: R ← input range vectors of parameters of mission commands 
3: H ← history of t 
4: k ← number of randomly generated candidates 
5: 
6: randomly generate k candidates c1, c2, . . . ck 
7: qscor e = 0 
8: for each candidate ci do 
9: si ← calculate qscore for ci 
10: if si > qscor e then 
11: t = ci 
12: return t 

•	 Strategy1: Evenly Spread. Intuitively, adjacent test cases are 
more likely to result in similar results. In other words, given a 
previously executed test case, new test cases located away from 
the one is more likely to expose better results. CPSDiff takes 
an advantage of this intuition to generate the test cases which 
are more evenly spread across the input space in order to test 
different area. Among the k candidates, for each candidate ci , 
distance di is determined from the closest previous test case 
and the candidate with the largest distance di has higher input 
quality. 

•	 Strategy2: Sudden Behavioral Change. In autonomous mis
sions of CPS, the control software has to control the physical 
devices (i.e. motor speed in UAV case) according to the expected 
behavior. When the mission requires a more sudden change in 
its behavior, the program may require a better control ability 
than monotonous and stable movement. When we choose an 
input, we score the input based on this property. For example, 
UAV system flies to a certain target position. The target position 
is along the current flight direction, the control program does 
not require to adjust yaw (head direction). On the contrary, if the 
UAV flies to the opposite direction or performs a sudden rise, the 
control program needs to do additional operations. In this con
text, we evaluate the input quality. One example we implement is 
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turning direction. The sharper turnings are more likely to cause 
performance difference. When we select next target position, 
among the random k candidates, for each candidate ci , turning 
angle θi is calculated with two previous mission waypoints on 
the planned trajectory. The candidate with the smaller θi has 
higher input quality. 

Input Quality. We measure the input quality which is more likely 
to generate better output by using the above strategies. The algo
rithm 2 shows the adaptive random selection with the score of input 
quality. Specifically, the algorithm selects k candidates randomly 
(line 6). Then, the highest scored input is selected based on its 
quality score, qscore (line 8-12). The qscore is calculated using the 
above strategies. 

When we use more than one strategy and metric to measure the 
quality of an input, we can use weighted score sum. w j denotes the 
relative weight of importance of the score and fj is the correspond
ing score function. A candidate ci is evaluated in terms of score 
function. The total score qscore is defined as follows: 

nn 
qscoreci = w j fj (ci ) 

j=1 

For the reasonable weight, we may empirically configure the value 
on each strategy. 

5 PRACTICAL CHALLENGES 
In this section, we discuss how we address some important practical 
challenges applying to real cases. 
Comparing Apples and Oranges. Since we compare only the 
control programs, except those, all other components and running 
environment should be identical. That is, for the reasonable com
parison, we need to perform differential testing of two different 
programs under the same condition. In our experiments, we set 
up two virtual machines with the same hardware configuration 
and run those in the same machine. For the same simulated hard
ware, we use a popular UAV model, 3DR IRIS+, using the same 
URDF. In Gazebo simulator, URDF describes the UAV model such 
as the kinematics and dynamic properties of the model, attached 
sensors including IMU, GPS, etc. We select the common flight 
modes supported in the both control programs and generate test 
scenarios which perform the same high-level behavior and then use 
the identical communication protocol and input in both simulation 
setups. Then, both programs are run in parallel. CPSDiff collects 
test results after completion of the input missions. 

We use the UAV case as our subjected target in this paper. How
ever, CPSDiff is able to test any type of CPS system, since Gazebo 
supports any kinds of robotic simulation with URDF. Gazebo pro
vides different types of hardware as plugins and a user can also 
define custom models. 
Handling Large Input Space. Our input space is large and con
tinuous. Searching entire space is computationally infeasible with 
limited computing resources. Since our goal is to compare two 
control programs in the given scenarios, we do not use the entire 
space. Especially, in UAV case, flight area is almost unlimited, and 
position parameters, one of the input parameters, should be limited. 
To address this issue, we set a virtual fence to limit the flight area. 

Even though we limit the flight area with virtual fence, input 
space is continuous and large. To search the maximum difference in 
such a large space, we consider a way of controlling the degree of 
exploration versus exploitation. Our algorithm is explorative than 
exploitative. We run multiple iterations with new inputs and select 
more difference-revealing inputs with a heuristic ‘test strategy’. In 
§6, our experiment results will show that our algorithm outperforms 
the other two algorithms: random (extremely explorative algorithm) 
and hill climbing (exploitative algorithm). 

1ms 
(1ms in realtime)

(a) Configuration 1 
Real_time_update_rate: 1000
max_step_size: 0.001

2ms 
(1ms in realtime)

(b) Configuration 2
Real_time_update_rate: 1000
max_step_size: 0.002

(c) Configuration 3
Real_time_update_rate: 2000
max_step_size: 0.001

1ms 
(0.5ms in realtime)

2X faster
unstable (lower accuracy)

2X faster
computational overhead

realtime
(default)

Figure 10: Simulation time configurations. different update rate 
and step size setting: (a) real-time, (b) 2x-faster with the double step 
size, and (c) 2x-faster with the double update rate. 

Simulation Acceleration. CPS Simulation is computationally 
expensive and time-consuming. Our algorithm runs a simulation 
per each iteration, which takes approximately two minutes. For the 
larger number of iterations, for example, 1,000 iterations, the total 
execution will take over one and a half days. 

Obviously, the larger number of iterations, the more likely to 
find the best output in the search algorithm. In order to increase 
the number of iterations, we have to spend a longer total testing 
time or given the same total testing time, we can decrease the 
time taken by each iteration. We take two approaches to reduce 
the simulation time. One option is to speed up a simulation it
self by using a simulation timer instead of real-time simulation. 
Gazebo supports the simulation clock in the world configuration 
with two parameters: real time update rate and max step size. 
As shown in Figure 10, real time update rate determines the 
rate at which physics updates are taken per second. Along with 
max step size parameter, the time duration in seconds of each 
physics update step is determined. The product of two parameters 
represents the target real-time factor, or the ratio of simulation 
time to real-time. For example, as in configuration 3 in Figure 10, 
if we set real time update rate to 2000 (update every 0.002 sec
ond), with a max step size of 0.001 (one step is 1ms), then our 
simulation will run 2x faster than real-time simulation. The second 
option is adjusting the system timer. We use virtual machines to 
execute two simulations in parallel. By default, the virtual machine 
keeps all time sources synchronized to the time of a host system. 
With the tuning timers and time synchronization mechanism in 
the virtual machine, the guest clock can be accelerated. VirtualBox 
[41] has a built in feature for this to accelerate the guest clock with 
a VBoxManage command-line interface and the parameter value of 
the rate of the virtual clock. 

We need to note that the above time-related configuration should 
be carefully chosen with preliminary experiments. Otherwise, the 
simulation will generate the results with poor accuracy or severe 
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computational overhead and thus give unstable time values. The 
configuration 2 in Figure 10 speeds up the simulation 2 times faster, 
but the increased step size reduces the accuracy of simulation 
because the coarse-grained update looses intermediate states be
tween the updates, while the configuration 3 gives limited speed-up 
because of heavy computation in limited hardware performance. 
real time update rate would cause more frequent update on the 
limited machine. Because of that, the maximum allowable accel
eration is also limited. With this configuration, we accelerate the 
simulation maximum 2 times faster than the real-time simulator 
with stable simulation. This helps to reduce the total simulation 
time and thus increase the number of iterations to search more 
inputs in the given time. 

6 EVALUATION 
In this section, we present the experimental evaluation of our search 
algorithm in CPSDiff. 

6.1 Implementation 
Objective Function. For the evaluation purpose, we have im
plemented a prototype of CPSDiff using Python. The prototype 
supports a differential testing of the battery consumption by two 
UAV control systems under test: ArduCopter and PX4. The testing 
involves a computation of a difference value for each test input. In 
the tool, this difference value is defined as a relative value as given 
below: 

abs(ConBattArducopter − ConBattPx4)Diff = min(ConBattArducopter, ConBattPx4) 

The amounts of consumed battery, ConBattArducopter and 
ConBattPx4 are calculated by our battery model described in §4.3. 
We implement the model as a plugin of the Gazebo simulator. The 
difference value, Diff, is computed by the objective function which 
obtains the amounts of consumed battery from the log files gener
ated by the ArduCopter simulation and the PX4 simulation respec
tively. 
Algorithms. The prototype includes an implementation of our 
Adaptive Random (AR) algorithm that is presented in §4.4 with our 
proposed test strategy. Further, in order to compare the perfor
mance of AR, we implemented two more search methods: 

•	 Hill-Climb with Random Restart (HCRR): This is a popular meta
heuristic approach [27], where a hill-climb is an iterative method, 
which attempts to find an optimal solution by searching in the 
nearby region of a current good solution. In each iteration, the 
hill-climb selects the next best input from the current best input 
and a neighboring candidate input. In our implementation, the 
neighbor is chosen randomly by tweaking the parameters of the 
mission commands of the current best input. For that, we add 
the values taken from the uniform distribution (−np , np ) to the 
values of the parameters, where np is a small percentage (e.g. 
5%) of the input range of a parameter p. Since, the hill-climb 
exploits only the neighboring space of the best input, the method 
performs few random restarts. Each restart initiates a hill-climb 
from a new randomly selected input and thus allowing to explore 
the input space. 

•	 Random: This is a purely random input generation method, in 
which a selection of the next input does not depend on the previ
ous inputs. Thus, this method results into a random exploration 
of the input space. 

Test Driver. After an input is generated in each iteration of the 
algorithm, the test driver of the tool triggers two simulations, Ar
duCopter and PX4, with that generated input. While the simulations 
are running, CPSDiff collects flight information from the simu
lation logs. At the end of both simulations, it computes the Diff 
value as described above and then this value is used by the algo
rithm to decide about the next input. During the experiments, we 
observed that sometimes a simulation gets stuck for some reason 
which we could not handle. Since the tool execution is dependent 
on the completion of the simulations, we set the timeout after which 
a stuck simulation is aborted and the corresponding iteration is 
excluded from the result computation. The timeout value is config
ured based on the maximum time required by a correct simulation 
in the experiment. 

6.2 Experiment Setup 
We performed experiments on each of the three algorithms: 1) 
AR, 2) HCRR, and 3) Random. We run both ArduCopter and PX4 
simulation on Ubuntu 64-bit virtual machines with Intel(R) Xeon(R) 
CPU E5620 @ 2.40GHz x8 processor and 3.8 GB RAM. 

Home	Position
(40.4222,	-86.9322)

Figure 11: Virtual fence for our experiment 

Input Space. We tested the autopilot flight mode of our systems 
under test (SUT). To generate a mission for the autopilot, we used 
four commands that are supported by both of the SUT: takeoff (T), 
land (L), waypoint (WP) and loiter for time (LO). Moreover, we used 
the same input space for all our experiments. First, we fixed the 
length of a mission command sequence to six, where the first and 
the last commands in a sequence are always T and L respectively, 
whereas a sequence of remaining four commands is a random 
combination of WP and LO commands. Second, in order to reduce 
the simulation time, we have defined a virtual fence as shown in 
Figure 11. The length and width of the virtual fence are both 500 
meters, each with the latitude parameter of range [40.4220, 40.4224] 
and the longitude parameter of range [−86.9325, −86.9319]. It has 
the height of 15 meters with the altitude parameter of range [5, 20]. 
Moreover, we have set the range for the delay parameter to [0, 5] 
seconds. The delay parameter is used by the WP and LO commands to 
specify the time spent by the UAV at the location (latitude, longitude, 
and altitude) before executing the next command in a sequence. 
Finally, each mission takes off from the same home location as 
indicated in Figure 11. 
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With the above settings for an input space, a software-in-the
loop simulation (ArduCopter as well as PX4) in each iteration of 
our experiment requires around 2-3 minutes of execution time. 
Number of Input Missions. We evaluated the performance of 
the algorithms for 100 input missions. In order to generate missions, 
AR is configured to iterate 100 times, where in each iteration, thirty 
heuristically computed waypoints are considered as candidates 
while generating the next input mission. Random is configured to 
iterate 100 times, where each iteration generates a completely ran
dom next input mission. HCRR is configured to restart 10 times and 
to perform a hill-climb using 9 iterations after every restart, where 
a completely random input mission is generated at each restart 
(=10 missions) and 9 missions are generated from the neighboring 
input space of the random mission after each restart (=9×10=90 
missions). 

Further, in order to see if the algorithms show a similar per
formance when they are run for a longer time, we increased the 
number of missions to 1,000. For that, AR and Random are config
ured to iterate 1,000 times, and HCRR is configured to have 1,000 
iterations using 20 restarts and a hill-climb with 49 iterations after 
every restart. 

Since the algorithms use some proportion of randomness, we 
repeated the experiment of 100 missions five times and the ex
periment of 1000 missions twice for each of the three algorithms. 
s. 

6.3 Results and Discussion 
Our goal in the experiment is to efficiently find an input i.e., a 
mission, that would demonstrate as large as the possible difference 
in the battery consumption of ArduCopter and PX4. 

Each algorithm takes around 4 hours on our system to complete 
an experiment of 100 inputs. At the end of the five trials, on average, 
AR is able to find the larger difference (46.84%) compared to HCRR 
(35.01%) and Random (34.37%). Similarly, the experiment of 1,000 
inputs, that takes around 42 hours to complete on our system, too 
shows that AR is more efficient than the other two algorithms: on 
average, it is able to find the larger difference (61.01%) compared to 
HCRR (38.06%) and Random (45.67%). In other words, for the given 
number of iterations, AR seems to find the input mission of our 
interest (the mission that results in the largest difference among all 
the missions generated by all the three algorithms) comparatively 
faster than the other two algorithms. 

Figure 12: Average maximum battery consumption difference. 

Figure 12 shows a graph of averages of the maximum battery 
consumption difference values for each algorithm. The left part of 

the graph (until x=100 iterations) represents the averages computed 
by combining the results of both sets of experiments: the five trials 
of 100 iterations and the two trials of 1,000 iterations, whereas 
the right part (after x=100 iterations) represents the averages of 
the results of 1,000-iterations experiments. The (x,y) point marked 
by a circle in the graph indicates that y is the average maximum 
difference value until x number of iterations of the algorithm. E.g., 
for AR, the average of the maximum difference value found until 
60 iterations of the five experiments of 100 iterations and two 
experiments of 1,000 iterations are 44.19%. It can be observed from 
the graph that AR takes less number of iterations to search a large 
difference value: e.g. a difference value of 40% is found within 
only 30 iterations of AR, whereas the number iterations required 
to reach this difference value by HCRR and Random is greater than 
100. 
Best Result Input Mission. Figure 13 shows the flight trajectories 
(2D) corresponding to the best input mission (i.e. the mission of 
maximum difference value) searched by each of the three algorithms. 
The major visual difference between the trajectory of AR input and 
the trajectories of HCRR and Random inputs is the sharpness of 
turns. Every single turn in the AR input trajectory makes the UAV 
to fly in almost opposite direction, as opposed to those in the HCRR 
and Random, which do not show very drastic changes in the flight 
direction. 

(a)Random (b)HCRR (C)AR 

Figure 13: The best input mission found by each algorithm after 
100 iterations. 

Distribution of Battery Consumption Difference. We also per
formed an input space exploration experiment with the intent of 
studying a possibly entire distribution of the difference values. For 
that, we executed Random for a large number of iterations: in 
particular, for the 3,000 purely random input missions. Figure 14a 
shows the distribution of these 3,000 Diff values. It is observed that 
the difference values are mostly less than 35%, with around 7% of 
3,000 difference values greater than 35%. We use this distribution as 
a base to compare the distributions of the difference values found 
by the 100-iterations experiment for each algorithm. 
AR vs. HCRR and Random. According to the above experiment 
results, we see that AR outperforms HCRR and Random. Distribu
tions of Diff values in Figure 14 show the difference-revealing ability 
of each algorithm. It can be observed that AR has a better ability to 
reveal larger difference values compared to other two algorithms: 
more number of input missions that lead to Diff greater than 35% 
are found by AR; moreover, as per the spread of the last quartiles 
of the box-and-whisker plots in Figure 14, AR tends to find more 
cases of large difference values (>27%) than HCRR and Random. 
We think that AR is comparatively more effective in finding the 
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Figure 14: Distribution of battery consumption difference values, 
Diff, found by 100-iterations experiments for each algorithm. 

input cases of our interest because it is able to guide the search 
of flight trajectories that contain sharp turns using its Strategy2. 
This strategy (described in §4.4) incorporates sudden behavioral 
changes such as sharp turns in a flight trajectory, which leads to the 
execution of more control operations in the controllers, and thus 
are the likely situations for exposing the performance difference in 
the different implementations of controllers. Our AR implementa
tion takes the sharpness of turns into account while selecting each 
waypoint in the trajectory from k random candidates. Whereas, in 
the case of HCRR and Random, we cannot guarantee the presence 
of sharp turns in the trajectories. In HCRR, each random restart 
selects a completely random shape which may not contain sharp 
turns. Moreover, a hill-climb starts with this trajectory of random 
shape and only finds the neighbors of the waypoints in the trajec
tory: since the selection of neighbors also is completely random, 
it may not change the sharpness of turns very quickly. Also, in 
Random, each trajectory is of completely random shape, which 
may not contain sharp turns. 

6.4 Further Research 
Input Minimization. Our current input uses a sequence of ran
dom mission commands. In the experiments, we used a long enough 
length of a mission command sequence in order to generate all pos
sible combinations and we fixed the number. Therefore, in the 
randomly generated sequence, some of the sub-sequences may be 

duplicated or not useful to expose differences because both SUTs 
show the same behavior under that sub-sequence. We can define 
the critical mission as one that the minimum number of mission se
quence which has most difference-revealing ability out of an entire 
mission sequence. While the entire sequence is still able to expose 
differences, it takes resources, and identifying the critical mission 
is beneficial. CPSDiff are able to measure intermediate energy 
consumption at each command completion point. The extension of 
our tool will support the function to identify the critical mission. 
Simulation Speed. Our current simulation is computationally ex
pensive. Although we can configure physics properties in Gazebo to 
increase real-time-update-rate and accelerate simulation 2-3 times, 
the simulation time is still a bottleneck for a large number of search 
iteration. In addition, when we increase step-size(resolution of the 
time window) of the physical update, we encountered unstable 
simulation with lower accuracy because of coarse-grained state 
update. In our future work, we plan to provide a solution to address 
this issues with help from control theory. We believe that the use 
of an adaptive step size based estimation of the local error and 
extrapolation can significantly reduce the computational cost. This 
will be implemented as a plugin of the simulator. 

7 RELATED WORK 
CPS Testing. Control software is the core element in CPS, which 
includes several components such as controllers, network, and 
many intelligent features for autonomous operations. Especially, 
the control software has a large number of control parameters 
which are required to be well configured to give higher control 
performance. Testing and analysis of the control software in such 
complex CPS presents a big challenge. Although both cyber and 
physical domain have many research works separately, little re
search on testing methods for CPS has been performed. The core of 
control software, controllers, have been widely studied in theoreti
cal control domain [14, 35]. They mostly focuses on the controller 
tuning [13, 36] and optimization [19, 33] rather than the automated 
system testing. Another approach is formal verification of CPS. 
Model-checking methods [15, 40] have been used in Simulink mod
els. Many model-based testing approaches have been applied to 
control models in Simulink[28, 30, 37, 42]. These techniques mainly 
rely on the models to generate test cases and oracles. However, 
none of these techniques are directly applied to control software 
and sufficient to demonstrate reliability in real implementation 
since there are always a gap between models and real implemen
tations. The target of our work is control software which includes 
not only core controller but also autonomous features (e.g. path 
planning) in cyber domain. We test the control software within the 
integrated system through accurate simulation of the system. 
Energy Efficiency Testing. Energy efficiency is an important is
sue especially for battery-powered systems because devices cannot 
operate for a long time without energy consumption optimization. 
In order to handle this issue, there have been some energy-aware re
searches. Li et al. [26, 26] focus on storage energy consumption for 
mobile systems. They tested energy consumption on storage with 
different software storage stacks based on real power consumption. 
Then, they figured out which software stack is a major cause of 
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energy overhead and proposed storage energy models and optimiza
tion. During testing, they used typical IO operations (sequential, 
random read and write) with microbenchmarks and 5 test scenarios 
with real applications. WearDrive [23] provides energy-efficient 
storage operation for wearable devices by distributing offline com
putation to phone. With some typical wearable workloads, they 
tested energy benefits. AppScope [43] is an energy consumption 
measurement framework on Android platform. To estimate the 
energy consumption of individual Android applications, AppScope 
monitored application’s hardware usage at the kernel level with a 
pre-defined operation sequence. [25] tested energy properties of 
an Android app with minimized test-suite. Some battery related 
works [20, 31, 32] in CPS also build mathematical battery models 
to predict energy consumption or use additional hardware devices 
to measure real energy consumption, but these works still rely on 
a few pre-defined test scenarios. 

8	 CONCLUSION 
We propose CPSDiff, an automated differential testing for energy-
efficient control software, which utilizes adaptive random search 
to expose larger differences. The approach has been successfully 
applied to a real case study and generates test cases to compare dif
ferent control programs. Our evaluation results show that CPSDiff 
automatically generate test inputs and our search algorithm outper
forms than other ordinary search algorithms (Random and HCRR) 
to reveal larger difference values. 
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