
CERIAS Tech Report 2018-01
Automated Differential Testing for Energy-Efficient Control Software

 by Hongjun Choi
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Automated Differential Testing for Energy-Efficient Control

Software

Hongjun Choi
choi293@purdue.edu

Bruce V Nguyen
nguye167@purdue.edu

Sayali Kate
skate@purdue.edu

Purdue University Purdue University Purdue University
United States United States United States

Xiangyu Zhang Dongyan Xu
xyzhang@cs.purdue.edu dxu@cs.purdue.edu

Purdue University Purdue University
United States United States

ABSTRACT
Cyber-physical systems (CPS) are integrated systems of computer-
based algorithms and physical components interacting with en­
vironmental effects. In such systems, autonomous behaviors and
overall performance mainly depend on a control software. Thus,
it is crucial to test and analyze the control software of the CPS
in various perspectives. One of the critical perspectives is energy
efficiency because many cyber-physical systems (e.g. unmanned
aerial vehicles, autonomous cars, health-care devices) operate with
limited energy sources such as batteries. In this paper, we pro­
pose CPSDiff: an energy-aware differential testing framework that
generates test inputs to expose the maximal difference between
two control programs in energy consumption. Our test generation
technique uses meta-heuristic searching to find the input that max­
imizes the energy consumption difference. The difference-revealing
ability of our technique outperforms the random search algorithm
and hill-climbing search algorithm. Our evaluation on two popu­
lar unmanned aerial vehicle control programs provides a detailed
comparison of their energy consumption under the same condition
with a universal robotics simulator; CPSDiff found the input which
exposes maximum battery consumption difference of around 47%.

1 INTRODUCTION
A cyber-physical system (CPS) is a combination of physical and cy­
ber subsystems. For example, robotic vehicles, such as self-driving
cars [5, 10, 12] and unmanned aerial vehicles (UAVs) [3, 11], include
a control program, various sensors, and actuators from the two dif­
ferent domains. The hybrid (discrete and continuous) components
closely interact with each other and perform mission-critical tasks
or autonomous operations. Among those several components in
CPS, the control program plays a critical role. Autonomous oper­
ations and complex missions require such a control program to
take high-level commands, process sensor data, and control actua­
tors. Therefore, the efficiency of a CPS significantly relies on the
performance of the control program.

The efficiency of a CPS can be measured in various perspec­
tives. One of the important metrics is energy consumption because
many CPS operate with limited energy sources. It is critical for
a battery-powered system to reduce power consumption in order
to achieve a longer operation time. Different control mechanisms
may show distinct energy consumption for the same mission. An
inefficient control mechanism may consume significantly more

energy than a well-optimized one, and it may even lead to vehi­
cle damages/failures because of energy deprivation and deficiency,
especially in long-time continuous operations. [1, 2]

Despite the importance, there has not been a practical solution
for energy efficiency testing for CPS. Existing approaches in general
energy efficiency testing [23, 26, 34] are not applicable to CPS since
their usage scenarios are primarily in the cyber domain only, such
as an extensive file I/O and cryptographic operations, or focus only
on specific and pre-defined use cases. For energy-aware CPS test­
ing, the testing mechanism should consider interactions between
the cyber and physical domains and various environmental distur­
bances. In addition, because of the nature of trade-offs between
control properties [35], it is difficult to design general test oracle
of energy consumption to support various scenarios. Otherwise,
the engineers are required to identify important usage scenarios
and develop test oracles [16] since these tasks require a substantial
amount of manual effort and deep domain knowledge.

There have been many studies in program analysis and test­
ing for conventional systems, such as cloud [24], web server [18],
and mobile systems [38]. However, CPS are fundamentally dif­
ferent from such systems. A CPS runs on a micro-controller and
orchestrates sensors and other physical components with external
disturbances in real-time with non-determinism. The behavior of
the control program is hardly analyzed and tested without a well-
configured infrastructure or a real physical operation environment.
Furthermore, conventional control-domain tools, such as MATLAB
Simulink [39], are mostly design-time testing tools and they require
a specific model although there are many cases where a control
model is unavailable or correctly acquiring it from the control pro­
gram is infeasible in practice (e.g., legacy programs and proprietary
software). Formal validation and verification approach [22, 34]
would be one way to analyze CPS, but they are known to work
only on small-scale software and suffer from the state explosion
problem [22].

In this paper, we overcome the above challenges and propose a
new practical approach to testing and comparing control software
in the perspective of energy consumption. We were motivated by
the fact that different control programs which have different control
mechanisms or different versions of the programs cause behavioral
differences of the target system. In addition, we observed that under
certain types of operation or missions of a CPS, such differences

mailto:dxu@cs.purdue.edu
mailto:xyzhang@cs.purdue.edu

become more significant. Subsequently, the CPS consumes varying
amounts of energy proportional to the differences.

Based on the above observation, we propose a framework, called
CPSDiff, that enables differential testing for control programs to
automatically reveal performance differences in CPS, especially re­
garding energy consumption. Given two control programs, CPSDiff
simultaneously executes two programs in a black-box approach
under the same physical simulation environment. Specifically, we
mechanically generate random test inputs and apply those into the
two programs and then compare the results based on a number of
properties. Since our methodology is automatic black-box testing
[17], CPSDiff does not require accessing the internals of the con­
trol programs. CPSDiff executes the programs multiple times with
automatically generated inputs on top of a universal robotics sim­
ulator. The simulation supports various types of physical devices
and environment effects, as such the generated inputs resemble
real physical inputs.

CPSDiff searches for the best input which exposes the maximum
in energy difference. The large difference, the more effectively the
input can reveal the difference of control software quality. To find
the maximum difference, CPSDiff efficiently explores the input
space by using our adaptive random searching algorithm and it
can successfully find the differences efficiently, compared to other
searching algorithms such as a random and a hill-climbing algo­
rithm.

We applied CPSDiff to a real-world CPS system, which is a
commodity UAV with two popular control programs (ArduCopter
[4] and PX4 [9]). Our evaluation results show that CPSDiff is
able to successfully generate test cases which expose significant
differences in energy consumption between the two UAV control
programs.

The contributions of this paper are summarized as follows:

•	 We propose a differential testing framework for CPS control
programs to expose their differences in energy consumption.

•	 To our best knowledge, we propose first energy-aware differ­
ential testing in the CPS domain. In the perspective of energy
consumption, we compare control programs with automated test
inputs and search the case which reveals potentially maximum
energy difference of the systems.

•	 We set up a universal robotics simulation framework, Robotic
Operating System (ROS) and Gazebo simulation, which provide
comprehensive simulation environments to remove physical
cost and support systematic testing for different control software
under the same simulation condition.

•	 We develop new meta-heuristic search algorithm which utilizes
a novel test strategy to expose a maximal difference. We apply
CPSDiff to a practical use case, two different UAV control pro­
grams, ArduCopter and PX4, and provide quantitative evaluation
results. The detailed results are available in §6.

The remainder of this paper is organized as follows. §2 provides
the background and our motivating example of UAV systems. §3
gives an overview of CPSDiff. §4 describes the details of our ap­
proach, and §5 presents practical challenges we solve. §6 presents
the implementation and evaluation of our research. Finally, §7-8
outlines related work and concludes our paper.

2 BACKGROUND AND MOTIVATION
In this section, we provide a background of CPS with UAV as an
example and our preliminary experiments to motivate CPSDiff.

2.1 UAV system overview

Controller

Disturbance
w(t)

Σ UAV	
Dynamics

PID

State	
Estimator

Sensors

Noise
v(t)

+ -

Setpoint	
r(t) e(t) u(t) y(t)

Uncertainty

Cyber	
Domain

Physical
Domain

Flight
Mission	
Planning

Commands

Figure 1: A typical UAV control system architecture.

As shown in Figure 1, a typical UAV system is composed of sev­
eral components. The flight mission planning component takes
high-level commands from a user and provides setpoint, a desired
value such as a target altitude, to the controller. Taking the setpoint
as a reference value, The goal of the controller is to maintain a stable
flight with accurate tracking of the desired trajectory. For that, it
attempts to reduce the error between the reference value and the
measurement from a sensor. For example, a typical control mecha­
nism, called proportional–integral–derivative (PID) controller [35],
continuously calculates the error e (t) between a desired setpoint
r (t) and a measured value. The proportional, integral and deriva­
tive terms attempt to eliminate the error over time by adjusting the
control input u (t) in the feedback loop. In a typical UAV system, the
control inputs are motor pulse width modulation (PWM) signals
that are used to adjust the rotation of motors and to control the
speed and the attitude of the vehicle. Measurements from various
sensors are then transferred to the controller as a feedback in the
control loop and the feedback is used as a next input.

UAV is a hybrid system that exhibits both a continuous (in the
physical domain) and a discrete behavior (in the cyber domain). In
the physical domain, there are always external disturbances, such as
wind and noises from different sensors. A controller and an estimator
handle the disturbances to provide better responsiveness. In the
cyber domain, UAV software supports various flight modes (e.g.
auto, manual, and stabilized modes) for different flight missions. The
flight mission planning component implements discrete behaviors
of the UAV and an intelligent algorithm to handle high-level actions
to improve the overall performance of the system.

A control software is fairly complex and has many different con­
trol properties. For example, stability is an important property of a
control system. In a high-level description, a system can be consid­
ered as stable if it remains in a constant state unless affected by an
external impact and returns to the constant state when the external
impact is removed. Another important property is responsiveness.
It is about how fast the system approaches a target state. In or­
der to be responsive, a controller may introduce a large overshoot,
and thus the system may become unstable and consume more en­
ergy. However, since it also reduces a settling time to get to the
target point, energy consumption may be decreased because of the

2

saved time. Consequently, there exists no optimal control algorithm
which shows the best performance to satisfy every property. This
motivated us to come up with the new idea to automatically test
control systems through a novel differential testing since comparing
and understanding trade-offs of control software is important for
choosing the better control software for diverse mission scenarios.

2.2 Differential Testing

Output1

Output1

Output1

Output1Program1

Program2

Test	
Cases
Test	
Cases
Test	
Cases

Output1

Output2

Behavioral
Difference

Objective
Function

Figure 2: Differential Testing. Two programs run with the same
inputs and two outputs under the same condition are compared to
show differences.

In general, differential testing [29] compares the execution of two
programs side by side using the same inputs, as shown in Figure 2.
Our testing mechanism automatically generates the inputs, run
the two programs with the inputs, and evaluate the quality of the
programs’ outputs for a comparison.

As discussed previously, because of complex and conflicting
properties of the control system, generating test cases and evaluat­
ing test results for the control system require a huge effort. Without
deep domain knowledge, defining a test oracle is a challenging task.
Our test technique does not require the domain knowledge. We
compare two control programs for showing the differences between
their behavior, without the test oracles defined by a domain expert.
The programs under test could be of two different versions or could
have a totally different design and implementation to support the
same function. While the differential test can be applicable to the
comparison of two unknown qualities of programs, if the quality
of one program is well-evaluated already, it can be used as base
program to compare others.

2.3 Motivative Example

(a)Horizontal Flight (b)Zigzag Flight

Figure 3: Flight Missions. The UAV flies following the pre-defined
trajectories (white line) and moves to the target waypoints (green
numbers).

In order to expose the behavioral differences of control software,
we performed preliminary experiments with two different propri­
etary quad-rotor control programs: ArduCopter and PX4. We used
the same hardware model, 3DR IRIS+ [6], for the two control pro­
grams. The control software communicates with a ground control
system (GCS) via Micro Air Vehicle Communication (MAVLink)
protocol [8], and the GCS is able to send flight control messages
and missions to the vehicle either at runtime or offline. In our ex­
periments, we manually planned several flight missions and applied
them to the two control programs. During the flights, we collect
flight information for the motor speed and the energy consumption.

Figure 3 shows two different flight missions, where the numbers
represent a mission command sequence and the white line repre­
sents a planned trajectory the UAV will fly on. The left mission
is horizontal flight. The UAV will take off from the home position
(number 0) to an altitude of 20m (number 1) and then horizontally
fly 1km to the endpoint (number 2). The second mission is zigzag
flight. The UAV will take off from the home position and then move
left and right in a zigzag fashion.

0 20 40 60 80 100 120 140
Time (sec)

0

200

400

600

800

1000

M
ot

or
 S

pe
ed

 (r
ad

/s
)

motor0
motor1
motor2

motor3
battery

0

20

40

60

80

100

Re
m

ai
ni

ng
 B

at
te

ry
 (%

)

0 50 100 150
Time (sec)

0

200

400

600

800

1000

M
ot

or
 S

pe
ed

 (r
ad

/s
)

motor0
motor1
motor2

motor3
battery

0

20

40

60

80

100

Re
m

ai
ni

ng
 B

at
te

ry
 (%

)

Control Program 1: ArduCopter Control Program 2: PX4

Figure 4: Comparison of motor speed and battery consumption in
the horizontal flight mission

0 10 20 30 40 50 60 70
Time (sec)

0

200

400

600

800

1000

M
ot

or
 S

pe
ed

 (r
ad

/s
)

motor0
motor1
motor2

motor3
battery

0

20

40

60

80

100

Re
m

ai
ni

ng
 B

at
te

ry
 (%

)

0 10 20 30 40 50
Time (sec)

0

200

400

600

800

1000

M
ot

or
 S

pe
ed

 (r
ad

/s
)

motor0
motor1
motor2

motor3
battery

0

20

40

60

80

100

Re
m

ai
ni

ng
 B

at
te

ry
 (%

)
Control Program 1: ArduCopter Control Program 2: PX4

Figure 5: Comparison of motor speed and battery consumption in
the zigzag flight mission.

Interestingly, there were significant differences in the battery
consumption of the two control programs during several missions.
As shown in Figure 4, ArduCopter finished the horizontal flight mis­
sion early and consumed less energy than PX4. Upon the mission
completion, ArduCopter consumed around 21% of the total capacity
of the battery, while the PX4 consumed 31%. The difference in the
amount of consumed battery is roughly 10%. However, in the zigzag
flight mission in Figure 5, PX4 outperforms ArduCopter. At the end
of the mission, PX4 consumed 8%, but ArduCopter consumed 11%.

3

Based on these preliminary experiments, we observed that the
control programs show different performance depending on the
type of the mission.
Limitations of the Existing Testing Tools. Model-based testing
with Simulink [39] relies on models to generate test scenarios and
oracles in order to find interesting test inputs. A domain expert
should carefully choose the scenarios and manually test the system.
However, as described in §2.1, the control program is complex,
and thus obtaining an accurate control model from the control
program is practically infeasible. Moreover, manually testing such
complex programs requires a substantial amount of effort. For
example, ArduCopter and PX4 have around 600 and 400 control
parameters, respectively. Different parameter settings affect the
control programs to have diverse internal behaviors and energy
consumption. Therefore, experts should subsequently choose test
cases and oracles to test the system on every different configuration
manually.
Our Approach. Our objective is to provide an automated testing
tool, CPSDiff, which requires no accurate control models and test
oracles. CPSDiff uses a differential testing technique: it systemati­
cally executes two control programs and exposes their maximum
performance differences. The tool also requires no deep domain
knowledge to design test scenarios. We use a high fidelity robotics
simulator to test the CPS control software with automatically gener­
ated missions under the potentially hostile physical environments.

3 OVERVIEW

High-Level	
Behaviors

Mission	
Sequence	
Generation

Mission	
Parameters
Generation

Input	Generation

Environmental	Effect	
Generation

Searching

Simulation1

Simulation2

Objective	
Function

Test	Input	
and

Maximum	
Difference

Figure 6: An overview of automated differential testing of
CPSDiff

The overall workflow of CPSDiff is presented in Figure 6. CPSDiff
requires two different control programs for the testing. The control
programs differ in that they may implement different control mech­
anisms, have different internal components, and support different
sets of autonomous actions, etc. For a fair comparison, we config­
ure the control programs to operate in the same flight mode. The
flight mode defines how the system operates, including manual,
autopilot, or mixed operations. For example, in ArduCopter and
PX4, there are many built-in flight modes; ArduCopter has 14 and
PX4 has 5 modes. In our experiments, we use the autopilot mode
for both of the control programs, which controls the UAV based on
a pre-programmed mission script transmitted from GCS.

In the second step, CPSDiff generates an input mission and
environment effects. An input mission is defined by two property
groups. The first is a sequence of mission commands, which in­
cludes various types of flight behaviors, such as takeoff, waypoint
flight, landing and loitering. The commands potentially have causal
relationships with each other that can be represented by a state

transition diagram. CPSDiff uses these state transitions for the
automatic generation of appropriate test cases which have different
sequences of commands. The second is mission command parame­
ters. Once the sequence of commands is chosen, CPSDiff generates
parameter values for each mission command. For example, the
waypoint command has three parameters: latitude, longitude, and
altitude. The input generator populates the parameters with values
based on the given input space. Besides the input mission, CPSDiff
also generates environment effects if required.

In the searching step, CPSDiff runs the two simulations simul­
taneously under the same condition except control programs, and
then profiles the flight information while performing the input mis­
sion. Our objective function evaluates the quality of the output after
the mission. The evaluation data allow our searching mechanism
to find the maximum difference between the two control programs
in energy consumption. Our meta-heuristic search algorithm run
multiple iterations for a given time budget (i.e. number of search
iterations).

4 DESIGN
In this section, we discuss the universal robotics simulator and the
further details of each component of CPSDiff.

(a) Real 3DR IRIS+ (b) Simulated vehicle

Figure 7: A UAV used for control software testing.

4.1 Universal Robotics Simulator
A highly reliable test environment is essential in CPS testing. Since
the control software always interacts with physical devices and
external environmental effects, field testing with a real hardware
platform would be the most accurate way for testing. However,
field testing requires expensive hardware and a significant amount
of time to test various scenarios. In addition, unexpected behaviors
or failures during the tests can damage devices physically and
may cause critical safety issues. Thus, instead of a real hardware
platform, we use a high-fidelity simulation framework, Gazebo [7].

Gazebo is the most popular 3D robotics simulator in the robotics
research, and has a modular design to support different kinds of
robotics and their components. It describes physical properties of
a robot using the Universal Robotics Description Format (URDF)
or the Simulation Description Format (SDF). A User can develop
his/her own physical vehicles or objects with this standard XML
format. This way, Gazebo is able to simulate virtually any type of
physical objects as long as we define our objects’ physical properties
and implement custom components as plugins. In our case, we use
3DR IRIS+ quadcopter shown in Figure 7 for the target hardware

4

model and the corresponding URDF. All the components such as
sensors, UAV dynamics, and external influences are simulated by
Gazebo plugins or physics engines in the Gazebo simulator.

ArmedStart

arm
throttle

mission
start

DisarmedTakeoff Land

Waypoint

Loitering

Hovering

...

Mission	Commands

mission
completed

...

Figure 8: Mission state transition diagram. The mission commands
have causal relationships and a mission input includes an appropri­
ate sequence of mission commands.

4.2 Test Input Generation
We use a mission and environment effects as a test input. Generat­
ing the input mission consists of two steps: generating a sequence
of mission commands and populating parameters to each generated
mission command. We denote a test input vector as I = {t , w }
where t is the sequence of missions commands with parameter
values and w represents the wind effects.
Mission Sequence Generation. In our test scenarios, the UAV
would undergo a series of pre-programmed behaviors. For exam­
ple, the UAV starts the mission with vertical takeoff (T) from the
same home position in each scenario and performs a sequence of
mission commands such as waypoint (WP), loitering (LO), hover­
ing (HO). The mission completes when the UAV safely lands to
the target position with the land (L) mission command. Figure 8
shows the possible transitions between the mission commands.
CPSDiff generates a sequence of an arbitrary number of input
mission commands in a random manner. Using the mission state
machine, it traverses the topology randomly, and each traversed
path represents a sequence of input mission commands as shown
in Table 1.

Table 1: Randomly generated a sequence of mission commands.

Test No. A sequence of mission commands

T1 T → W P → LO → W P → L → T → LO → L
T2 T → HO → W P → W P → L
T3 T → LO → L → T → L → T → W P → L

Mission Parameter Value Generation. Every mission command
has its own set of parameters. MAVLink supports at most 7 pa­
rameters for each command. For example, WP command requires
latitude, longitude and altitude as the parameters. We test the
behaviors of UAVs within a virtual fence, and thus each parame­
ter is assigned a value range: [minlat ,maxlat], [minlon ,maxlon],
[minalt ,maxalt]. For each parameter, CPSDiff selects a value from
a uniform distribution within the given value interval.

In order to test with a realistic environment, CPSDiff also in­
serts wind and wind gust effects w . The environmental effects are
simulated in the Gazebo plugins and described with the plugin pa­
rameters in URDF. The wind plugin has the following parameters:
direction, force. Windgust has direction, duration, force and start
time.

4.3 Objective Function
CPSDiff runs two simulations with the generated test input vector I
in parallel and profiles the information of vehicles’ behaviors during
the simulation, e.g., flight time, distance, motor speeds and battery
consumption over time. When the mission is completed in both the
control systems, the output values (i.e., battery consumption) are
compared. Our test objective is to find the input that maximizes
the performance difference. In this paper, we compare the amount
of consumed energy for the performance difference.

Figure 9: Examples of PWM signals.

Energy Consumption. Many battery related works [20, 31, 32]
focus on estimating the energy consumption of battery-powered
devices, using accurate battery models or additional hardware de­
vices to measure real energy consumption. However, we use a
simple measurement method, as our purpose is just to compare
the two results rather than accurately measure the consumption.
Intuitively, the control program regulates control signals and in
the UAV system, the signals control the speed of multiple electric
motors to generate a torque. In other words, the electric motor
control is a main role of the control software. Thus, we simplify
the battery model by taking an advantage of this fact: the energy
consumption is proportional to motor speeds and the control pro­
grams only generate pulse-width modulation (PWM) signals which
control the motor speeds directly. This way, CPSDiff estimates the
energy consumption by only relying on the motor speeds.

Speeds of the UAV DC Motors are controlled by the periodic
PWM signals. According to the different duty-cycle c = tper iod /ton
of PWM as shown in Figure 9, the switch turns on and off and the ef­
fective voltage Vef f is applied to the motor. Our target system, 3DR
IRIS+, has a 5100 mAh polymer (LiPo) battery pack and we assume
average 50A current is drawn at 100% duty cycle, i.e., full throttle.
During the simulation, CPSDiff collects the information on energy
consumption by sampling the current. The total remaining battery,
Br em , is then calculated as given below:

nn
Br em = Btot − Ik (tk+1 − tk)

k=1

The current Ik is sampled at every time tk and the consumed cur­
rent in each sampling period from tk+1 to tk is derived. The sum of
consumed current is subtracted from total battery capacity Btot to

5

get the remaining battery Br em . After the simulation is completed
with mission completion, CPSDiff compares the remaining battery
to assess the quality of output. Our search algorithm uses this out­
put to find best results. We do not limit our objective function to the
difference in energy consumption. Depending on the application,
CPSDiff can be set up to use the different objective functions to
show differences in other properties such as stability, overshoot,
responsiveness, etc.

4.4 Search Algorithm
Our goal is to find mission inputs by maximizing the objective func­
tion value, the difference of energy consumption. Since our input
space is too large, brute-force approach is infeasible. Therefore,
CPSDiff uses a meta-heuristic search algorithm to efficiently find
the best input.

To solve this problem, intuitively, the first simplest approach is
random search with bounded trials. Because of the notion of ran­
domness, the pure random search is extremely explorative, which
means that the algorithm mostly explores globally to find the op­
timal value. Another opponent approach is Hill-Climbing search
algorithm, largely doing local improvements in the limited region.
However, if the limited region is not promising, the local optimum
is not a good solution in the global space.

In the CPS and control programs, the test input space is continu­
ous and hybrid. For example, the input of a UAV system consists
of two level: discrete mission commands and its continuous pa­
rameters. Especially, every value for the continuous parameters is
impossible to be visited, and the best possible output can not be
guaranteed unless the entire space is visited.

In this context, we propose a practical search algorithm to bal­
ance between exploration and exploitation. Our algorithm uses
adaptive random search [21] with novel testing strategies to address
the above limitations. The CPS simulation usually takes a long time
because of some unique properties such as real-time simulation
and heavy computations. Therefore, the key strategy in the given
limited time and resource is to improve input quality instead of
running lots of simulation. If we are able to select high-quality
inputs which are more likely to generate better output, the output
will approach to the optimal value more quickly.

The algorithm 1 represents a adaptive random search. Initially,
the algorithm takes an initial test input and mission-related in­
formation (i.e. a sequence of mission commands and input range
vectors) as an input, which was generated during the test input
generation step. Line 11-19 correspond to the main loop to find
the maximum difference. At line 12-13, two simulations generate
energy consumptions with the test input I and then I is stored in
the history H . At line 14-15, when the difference is higher than
the current best solution, the new solution is selected. Otherwise,
new test input I is generated by using adaptive random selection
algorithm at line 16.
Test Strategies. Basically, the algorithm utilizes the random search.
However, we use additional test strategies to speed up the search
procedure and distribute selected inputs evenly across the input
space. While the original random selection algorithm selects a
single input randomly, our algorithm selects an input among k
randomly selected candidates based on the quality of the input.

Algorithm 1 Adaptive Random Search.
1: N ← number of iterations
2: M ← sequence of mission commands
3: R ← input range vectors of parameters of mission commands
4: S1, S2 ← simulation with program1 and program2
5: t ← GenerateInitialRandomInput(M, R)
6: w ← GenerateRandomWindEffect()
7: I ← {t, w }
8: H ← null
9: BEST ← I
10:
11: while N >= 0 do
12: o1, o2 ← outputs generated by S1 and S2 with test input I
13: H ← I
14: if Diff(o1, o2) > BEST then
15: BEST ← I
16: t ← AdaptiveRandomSelection(M, R, H)
17: w ← GenerateRandomWindEffect()
18: N ← N − 1
19: return BEST

Algorithm 2 Adaptive Random Selection.
1: M ← sequence of mission commands
2: R ← input range vectors of parameters of mission commands
3: H ← history of t
4: k ← number of randomly generated candidates
5:
6: randomly generate k candidates c1, c2, . . . ck
7: qscor e = 0
8: for each candidate ci do
9: si ← calculate qscore for ci
10: if si > qscor e then
11: t = ci
12: return t

•	 Strategy1: Evenly Spread. Intuitively, adjacent test cases are
more likely to result in similar results. In other words, given a
previously executed test case, new test cases located away from
the one is more likely to expose better results. CPSDiff takes
an advantage of this intuition to generate the test cases which
are more evenly spread across the input space in order to test
different area. Among the k candidates, for each candidate ci ,
distance di is determined from the closest previous test case
and the candidate with the largest distance di has higher input
quality.

•	 Strategy2: Sudden Behavioral Change. In autonomous mis­
sions of CPS, the control software has to control the physical
devices (i.e. motor speed in UAV case) according to the expected
behavior. When the mission requires a more sudden change in
its behavior, the program may require a better control ability
than monotonous and stable movement. When we choose an
input, we score the input based on this property. For example,
UAV system flies to a certain target position. The target position
is along the current flight direction, the control program does
not require to adjust yaw (head direction). On the contrary, if the
UAV flies to the opposite direction or performs a sudden rise, the
control program needs to do additional operations. In this con­
text, we evaluate the input quality. One example we implement is

6

turning direction. The sharper turnings are more likely to cause
performance difference. When we select next target position,
among the random k candidates, for each candidate ci , turning
angle θi is calculated with two previous mission waypoints on
the planned trajectory. The candidate with the smaller θi has
higher input quality.

Input Quality. We measure the input quality which is more likely
to generate better output by using the above strategies. The algo­
rithm 2 shows the adaptive random selection with the score of input
quality. Specifically, the algorithm selects k candidates randomly
(line 6). Then, the highest scored input is selected based on its
quality score, qscore (line 8-12). The qscore is calculated using the
above strategies.

When we use more than one strategy and metric to measure the
quality of an input, we can use weighted score sum. w j denotes the
relative weight of importance of the score and fj is the correspond­
ing score function. A candidate ci is evaluated in terms of score
function. The total score qscore is defined as follows:

nn
qscoreci = w j fj (ci)

j=1

For the reasonable weight, we may empirically configure the value
on each strategy.

5 PRACTICAL CHALLENGES
In this section, we discuss how we address some important practical
challenges applying to real cases.
Comparing Apples and Oranges. Since we compare only the
control programs, except those, all other components and running
environment should be identical. That is, for the reasonable com­
parison, we need to perform differential testing of two different
programs under the same condition. In our experiments, we set
up two virtual machines with the same hardware configuration
and run those in the same machine. For the same simulated hard­
ware, we use a popular UAV model, 3DR IRIS+, using the same
URDF. In Gazebo simulator, URDF describes the UAV model such
as the kinematics and dynamic properties of the model, attached
sensors including IMU, GPS, etc. We select the common flight
modes supported in the both control programs and generate test
scenarios which perform the same high-level behavior and then use
the identical communication protocol and input in both simulation
setups. Then, both programs are run in parallel. CPSDiff collects
test results after completion of the input missions.

We use the UAV case as our subjected target in this paper. How­
ever, CPSDiff is able to test any type of CPS system, since Gazebo
supports any kinds of robotic simulation with URDF. Gazebo pro­
vides different types of hardware as plugins and a user can also
define custom models.
Handling Large Input Space. Our input space is large and con­
tinuous. Searching entire space is computationally infeasible with
limited computing resources. Since our goal is to compare two
control programs in the given scenarios, we do not use the entire
space. Especially, in UAV case, flight area is almost unlimited, and
position parameters, one of the input parameters, should be limited.
To address this issue, we set a virtual fence to limit the flight area.

Even though we limit the flight area with virtual fence, input
space is continuous and large. To search the maximum difference in
such a large space, we consider a way of controlling the degree of
exploration versus exploitation. Our algorithm is explorative than
exploitative. We run multiple iterations with new inputs and select
more difference-revealing inputs with a heuristic ‘test strategy’. In
§6, our experiment results will show that our algorithm outperforms
the other two algorithms: random (extremely explorative algorithm)
and hill climbing (exploitative algorithm).

1ms
(1ms in realtime)

(a) Configuration 1
Real_time_update_rate: 1000
max_step_size: 0.001

2ms
(1ms in realtime)

(b) Configuration 2
Real_time_update_rate: 1000
max_step_size: 0.002

(c) Configuration 3
Real_time_update_rate: 2000
max_step_size: 0.001

1ms
(0.5ms in realtime)

2X faster
unstable (lower accuracy)

2X faster
computational overhead

realtime
(default)

Figure 10: Simulation time configurations. different update rate
and step size setting: (a) real-time, (b) 2x-faster with the double step
size, and (c) 2x-faster with the double update rate.

Simulation Acceleration. CPS Simulation is computationally
expensive and time-consuming. Our algorithm runs a simulation
per each iteration, which takes approximately two minutes. For the
larger number of iterations, for example, 1,000 iterations, the total
execution will take over one and a half days.

Obviously, the larger number of iterations, the more likely to
find the best output in the search algorithm. In order to increase
the number of iterations, we have to spend a longer total testing
time or given the same total testing time, we can decrease the
time taken by each iteration. We take two approaches to reduce
the simulation time. One option is to speed up a simulation it­
self by using a simulation timer instead of real-time simulation.
Gazebo supports the simulation clock in the world configuration
with two parameters: real time update rate and max step size.
As shown in Figure 10, real time update rate determines the
rate at which physics updates are taken per second. Along with
max step size parameter, the time duration in seconds of each
physics update step is determined. The product of two parameters
represents the target real-time factor, or the ratio of simulation
time to real-time. For example, as in configuration 3 in Figure 10,
if we set real time update rate to 2000 (update every 0.002 sec­
ond), with a max step size of 0.001 (one step is 1ms), then our
simulation will run 2x faster than real-time simulation. The second
option is adjusting the system timer. We use virtual machines to
execute two simulations in parallel. By default, the virtual machine
keeps all time sources synchronized to the time of a host system.
With the tuning timers and time synchronization mechanism in
the virtual machine, the guest clock can be accelerated. VirtualBox
[41] has a built in feature for this to accelerate the guest clock with
a VBoxManage command-line interface and the parameter value of
the rate of the virtual clock.

We need to note that the above time-related configuration should
be carefully chosen with preliminary experiments. Otherwise, the
simulation will generate the results with poor accuracy or severe

7

computational overhead and thus give unstable time values. The
configuration 2 in Figure 10 speeds up the simulation 2 times faster,
but the increased step size reduces the accuracy of simulation
because the coarse-grained update looses intermediate states be­
tween the updates, while the configuration 3 gives limited speed-up
because of heavy computation in limited hardware performance.
real time update rate would cause more frequent update on the
limited machine. Because of that, the maximum allowable accel­
eration is also limited. With this configuration, we accelerate the
simulation maximum 2 times faster than the real-time simulator
with stable simulation. This helps to reduce the total simulation
time and thus increase the number of iterations to search more
inputs in the given time.

6 EVALUATION
In this section, we present the experimental evaluation of our search
algorithm in CPSDiff.

6.1 Implementation
Objective Function. For the evaluation purpose, we have im­
plemented a prototype of CPSDiff using Python. The prototype
supports a differential testing of the battery consumption by two
UAV control systems under test: ArduCopter and PX4. The testing
involves a computation of a difference value for each test input. In
the tool, this difference value is defined as a relative value as given
below:

abs(ConBattArducopter − ConBattPx4)Diff = min(ConBattArducopter, ConBattPx4)

The amounts of consumed battery, ConBattArducopter and
ConBattPx4 are calculated by our battery model described in §4.3.
We implement the model as a plugin of the Gazebo simulator. The
difference value, Diff, is computed by the objective function which
obtains the amounts of consumed battery from the log files gener­
ated by the ArduCopter simulation and the PX4 simulation respec­
tively.
Algorithms. The prototype includes an implementation of our
Adaptive Random (AR) algorithm that is presented in §4.4 with our
proposed test strategy. Further, in order to compare the perfor­
mance of AR, we implemented two more search methods:

•	 Hill-Climb with Random Restart (HCRR): This is a popular meta­
heuristic approach [27], where a hill-climb is an iterative method,
which attempts to find an optimal solution by searching in the
nearby region of a current good solution. In each iteration, the
hill-climb selects the next best input from the current best input
and a neighboring candidate input. In our implementation, the
neighbor is chosen randomly by tweaking the parameters of the
mission commands of the current best input. For that, we add
the values taken from the uniform distribution (−np , np) to the
values of the parameters, where np is a small percentage (e.g.
5%) of the input range of a parameter p. Since, the hill-climb
exploits only the neighboring space of the best input, the method
performs few random restarts. Each restart initiates a hill-climb
from a new randomly selected input and thus allowing to explore
the input space.

•	 Random: This is a purely random input generation method, in
which a selection of the next input does not depend on the previ­
ous inputs. Thus, this method results into a random exploration
of the input space.

Test Driver. After an input is generated in each iteration of the
algorithm, the test driver of the tool triggers two simulations, Ar­
duCopter and PX4, with that generated input. While the simulations
are running, CPSDiff collects flight information from the simu­
lation logs. At the end of both simulations, it computes the Diff
value as described above and then this value is used by the algo­
rithm to decide about the next input. During the experiments, we
observed that sometimes a simulation gets stuck for some reason
which we could not handle. Since the tool execution is dependent
on the completion of the simulations, we set the timeout after which
a stuck simulation is aborted and the corresponding iteration is
excluded from the result computation. The timeout value is config­
ured based on the maximum time required by a correct simulation
in the experiment.

6.2 Experiment Setup
We performed experiments on each of the three algorithms: 1)
AR, 2) HCRR, and 3) Random. We run both ArduCopter and PX4
simulation on Ubuntu 64-bit virtual machines with Intel(R) Xeon(R)
CPU E5620 @ 2.40GHz x8 processor and 3.8 GB RAM.

Home	Position
(40.4222,	-86.9322)

Figure 11: Virtual fence for our experiment

Input Space. We tested the autopilot flight mode of our systems
under test (SUT). To generate a mission for the autopilot, we used
four commands that are supported by both of the SUT: takeoff (T),
land (L), waypoint (WP) and loiter for time (LO). Moreover, we used
the same input space for all our experiments. First, we fixed the
length of a mission command sequence to six, where the first and
the last commands in a sequence are always T and L respectively,
whereas a sequence of remaining four commands is a random
combination of WP and LO commands. Second, in order to reduce
the simulation time, we have defined a virtual fence as shown in
Figure 11. The length and width of the virtual fence are both 500
meters, each with the latitude parameter of range [40.4220, 40.4224]
and the longitude parameter of range [−86.9325, −86.9319]. It has
the height of 15 meters with the altitude parameter of range [5, 20].
Moreover, we have set the range for the delay parameter to [0, 5]
seconds. The delay parameter is used by the WP and LO commands to
specify the time spent by the UAV at the location (latitude, longitude,
and altitude) before executing the next command in a sequence.
Finally, each mission takes off from the same home location as
indicated in Figure 11.

8

With the above settings for an input space, a software-in-the­
loop simulation (ArduCopter as well as PX4) in each iteration of
our experiment requires around 2-3 minutes of execution time.
Number of Input Missions. We evaluated the performance of
the algorithms for 100 input missions. In order to generate missions,
AR is configured to iterate 100 times, where in each iteration, thirty
heuristically computed waypoints are considered as candidates
while generating the next input mission. Random is configured to
iterate 100 times, where each iteration generates a completely ran­
dom next input mission. HCRR is configured to restart 10 times and
to perform a hill-climb using 9 iterations after every restart, where
a completely random input mission is generated at each restart
(=10 missions) and 9 missions are generated from the neighboring
input space of the random mission after each restart (=9×10=90
missions).

Further, in order to see if the algorithms show a similar per­
formance when they are run for a longer time, we increased the
number of missions to 1,000. For that, AR and Random are config­
ured to iterate 1,000 times, and HCRR is configured to have 1,000
iterations using 20 restarts and a hill-climb with 49 iterations after
every restart.

Since the algorithms use some proportion of randomness, we
repeated the experiment of 100 missions five times and the ex­
periment of 1000 missions twice for each of the three algorithms.
s.

6.3 Results and Discussion
Our goal in the experiment is to efficiently find an input i.e., a
mission, that would demonstrate as large as the possible difference
in the battery consumption of ArduCopter and PX4.

Each algorithm takes around 4 hours on our system to complete
an experiment of 100 inputs. At the end of the five trials, on average,
AR is able to find the larger difference (46.84%) compared to HCRR
(35.01%) and Random (34.37%). Similarly, the experiment of 1,000
inputs, that takes around 42 hours to complete on our system, too
shows that AR is more efficient than the other two algorithms: on
average, it is able to find the larger difference (61.01%) compared to
HCRR (38.06%) and Random (45.67%). In other words, for the given
number of iterations, AR seems to find the input mission of our
interest (the mission that results in the largest difference among all
the missions generated by all the three algorithms) comparatively
faster than the other two algorithms.

Figure 12: Average maximum battery consumption difference.

Figure 12 shows a graph of averages of the maximum battery
consumption difference values for each algorithm. The left part of

the graph (until x=100 iterations) represents the averages computed
by combining the results of both sets of experiments: the five trials
of 100 iterations and the two trials of 1,000 iterations, whereas
the right part (after x=100 iterations) represents the averages of
the results of 1,000-iterations experiments. The (x,y) point marked
by a circle in the graph indicates that y is the average maximum
difference value until x number of iterations of the algorithm. E.g.,
for AR, the average of the maximum difference value found until
60 iterations of the five experiments of 100 iterations and two
experiments of 1,000 iterations are 44.19%. It can be observed from
the graph that AR takes less number of iterations to search a large
difference value: e.g. a difference value of 40% is found within
only 30 iterations of AR, whereas the number iterations required
to reach this difference value by HCRR and Random is greater than
100.
Best Result Input Mission. Figure 13 shows the flight trajectories
(2D) corresponding to the best input mission (i.e. the mission of
maximum difference value) searched by each of the three algorithms.
The major visual difference between the trajectory of AR input and
the trajectories of HCRR and Random inputs is the sharpness of
turns. Every single turn in the AR input trajectory makes the UAV
to fly in almost opposite direction, as opposed to those in the HCRR
and Random, which do not show very drastic changes in the flight
direction.

(a)Random (b)HCRR (C)AR

Figure 13: The best input mission found by each algorithm after
100 iterations.

Distribution of Battery Consumption Difference. We also per­
formed an input space exploration experiment with the intent of
studying a possibly entire distribution of the difference values. For
that, we executed Random for a large number of iterations: in
particular, for the 3,000 purely random input missions. Figure 14a
shows the distribution of these 3,000 Diff values. It is observed that
the difference values are mostly less than 35%, with around 7% of
3,000 difference values greater than 35%. We use this distribution as
a base to compare the distributions of the difference values found
by the 100-iterations experiment for each algorithm.
AR vs. HCRR and Random. According to the above experiment
results, we see that AR outperforms HCRR and Random. Distribu­
tions of Diff values in Figure 14 show the difference-revealing ability
of each algorithm. It can be observed that AR has a better ability to
reveal larger difference values compared to other two algorithms:
more number of input missions that lead to Diff greater than 35%
are found by AR; moreover, as per the spread of the last quartiles
of the box-and-whisker plots in Figure 14, AR tends to find more
cases of large difference values (>27%) than HCRR and Random.
We think that AR is comparatively more effective in finding the

9

0.0 0.1 0.2 0.3 0.4 0.5
Average Battery Difference

0
1
2
3
4
5
6

Fr
eq

ue
nc

y
(%

) Base

(a) Base distribution

0.0 0.1 0.2 0.3 0.4 0.5
Average Battery Difference

0
1
2
3
4
5
6

Fr
eq

ue
nc

y (
%) Base

Random

(b) Distribution for Random

0.0 0.1 0.2 0.3 0.4 0.5
Average Battery Difference

0
1
2
3
4
5
6

Fr
eq

ue
nc

y (
%) Base

HCRR

(c) Distribution for HCRR

0.0 0.1 0.2 0.3 0.4 0.5
Average Battery Difference

0
1
2
3
4
5
6

Fr
eq

ue
nc

y (
%) Base

AR

(d) Distribution for AR

Figure 14: Distribution of battery consumption difference values,
Diff, found by 100-iterations experiments for each algorithm.

input cases of our interest because it is able to guide the search
of flight trajectories that contain sharp turns using its Strategy2.
This strategy (described in §4.4) incorporates sudden behavioral
changes such as sharp turns in a flight trajectory, which leads to the
execution of more control operations in the controllers, and thus
are the likely situations for exposing the performance difference in
the different implementations of controllers. Our AR implementa­
tion takes the sharpness of turns into account while selecting each
waypoint in the trajectory from k random candidates. Whereas, in
the case of HCRR and Random, we cannot guarantee the presence
of sharp turns in the trajectories. In HCRR, each random restart
selects a completely random shape which may not contain sharp
turns. Moreover, a hill-climb starts with this trajectory of random
shape and only finds the neighbors of the waypoints in the trajec­
tory: since the selection of neighbors also is completely random,
it may not change the sharpness of turns very quickly. Also, in
Random, each trajectory is of completely random shape, which
may not contain sharp turns.

6.4 Further Research
Input Minimization. Our current input uses a sequence of ran­
dom mission commands. In the experiments, we used a long enough
length of a mission command sequence in order to generate all pos­
sible combinations and we fixed the number. Therefore, in the
randomly generated sequence, some of the sub-sequences may be

duplicated or not useful to expose differences because both SUTs
show the same behavior under that sub-sequence. We can define
the critical mission as one that the minimum number of mission se­
quence which has most difference-revealing ability out of an entire
mission sequence. While the entire sequence is still able to expose
differences, it takes resources, and identifying the critical mission
is beneficial. CPSDiff are able to measure intermediate energy
consumption at each command completion point. The extension of
our tool will support the function to identify the critical mission.
Simulation Speed. Our current simulation is computationally ex­
pensive. Although we can configure physics properties in Gazebo to
increase real-time-update-rate and accelerate simulation 2-3 times,
the simulation time is still a bottleneck for a large number of search
iteration. In addition, when we increase step-size(resolution of the
time window) of the physical update, we encountered unstable
simulation with lower accuracy because of coarse-grained state
update. In our future work, we plan to provide a solution to address
this issues with help from control theory. We believe that the use
of an adaptive step size based estimation of the local error and
extrapolation can significantly reduce the computational cost. This
will be implemented as a plugin of the simulator.

7 RELATED WORK
CPS Testing. Control software is the core element in CPS, which
includes several components such as controllers, network, and
many intelligent features for autonomous operations. Especially,
the control software has a large number of control parameters
which are required to be well configured to give higher control
performance. Testing and analysis of the control software in such
complex CPS presents a big challenge. Although both cyber and
physical domain have many research works separately, little re­
search on testing methods for CPS has been performed. The core of
control software, controllers, have been widely studied in theoreti­
cal control domain [14, 35]. They mostly focuses on the controller
tuning [13, 36] and optimization [19, 33] rather than the automated
system testing. Another approach is formal verification of CPS.
Model-checking methods [15, 40] have been used in Simulink mod­
els. Many model-based testing approaches have been applied to
control models in Simulink[28, 30, 37, 42]. These techniques mainly
rely on the models to generate test cases and oracles. However,
none of these techniques are directly applied to control software
and sufficient to demonstrate reliability in real implementation
since there are always a gap between models and real implemen­
tations. The target of our work is control software which includes
not only core controller but also autonomous features (e.g. path
planning) in cyber domain. We test the control software within the
integrated system through accurate simulation of the system.
Energy Efficiency Testing. Energy efficiency is an important is­
sue especially for battery-powered systems because devices cannot
operate for a long time without energy consumption optimization.
In order to handle this issue, there have been some energy-aware re­
searches. Li et al. [26, 26] focus on storage energy consumption for
mobile systems. They tested energy consumption on storage with
different software storage stacks based on real power consumption.
Then, they figured out which software stack is a major cause of

10

energy overhead and proposed storage energy models and optimiza­
tion. During testing, they used typical IO operations (sequential,
random read and write) with microbenchmarks and 5 test scenarios
with real applications. WearDrive [23] provides energy-efficient
storage operation for wearable devices by distributing offline com­
putation to phone. With some typical wearable workloads, they
tested energy benefits. AppScope [43] is an energy consumption
measurement framework on Android platform. To estimate the
energy consumption of individual Android applications, AppScope
monitored application’s hardware usage at the kernel level with a
pre-defined operation sequence. [25] tested energy properties of
an Android app with minimized test-suite. Some battery related
works [20, 31, 32] in CPS also build mathematical battery models
to predict energy consumption or use additional hardware devices
to measure real energy consumption, but these works still rely on
a few pre-defined test scenarios.

8	 CONCLUSION
We propose CPSDiff, an automated differential testing for energy-
efficient control software, which utilizes adaptive random search
to expose larger differences. The approach has been successfully
applied to a real case study and generates test cases to compare dif­
ferent control programs. Our evaluation results show that CPSDiff
automatically generate test inputs and our search algorithm outper­
forms than other ordinary search algorithms (Random and HCRR)
to reveal larger difference values.

REFERENCES
[1]	 Business Insider - The Pentagonfis most advanced drone keeps falling out of the

sky. http://www.businessinsider.com/the-pentagons-most-advanced-drone­
keeps-falling-out-of-the-sky-2016-1.

[2]	 International Business Times - Why do US military drones keep crash­
ing? Pentagon silent over mysterious loss of 20 hi-tech weapons.
http://www.ibtimes.co.uk/why-do-us-military-drones-keep-crashing­
pentagon-silent-over-mysterious-loss-20-hi-tech-weapons-1539364.

[3]	 3D Robotics - Drone & UAV Technology. https://3dr.com/.
[4]	 Ardupilot Open Source Autopilot. http://ardupilot.org/.
[5]	 commaai/openpilot: open source driving agent. https://github.com/commaai/

openpilot.
[6]	 Drone - 3DR IRIS. https://3dr.com/support/articles/207358106/iris.
[7]	 Gazebo. http://gazebosim.org/.
[8]	 MAVLink Micro Air Vehicle Communication Protocol. http:

//qgroundcontrol.org/mavlink/start.
[9] Open Source for Drones - PX4 Open Source Autopilot. http://px4.io/.
[10]	 Self-driving cars now legal in California. http://www.cnn.com/2012/09/25/tech/

innovation/self-driving-car-california/index.html.
[11]	 The UAV - Unmanned Aerial Vehicle. http://www.theuav.com.
[12]	 Waymo (formerly the Google self-driving car project). https://waymo.com.
[13]	 A Ali. 2008. A new objective function for controller tuning. In IFAC Proceedings

Volumes (IFAC-PapersOnline).
[14]	 Kiam Heong Ang, G Chong, and Yun Li. 2005. PID control system analysis,

design, and technology. IEEE Transactions on Control Systems Technology 13, 4
(July 2005), 559–576.

[15]	 Jire Barnat, Lubo Brim, Jan Beran, Kratochvila, and Italo R Oliveira. 2012. Exe­
cuting Model Checking Counterexamples in Simulink. In 2012 Sixth International
Symposium on Theoretical Aspects of Software Engineering (TASE). Masaryk Uni­
versity, Brno, Czech Republic, IEEE, 245–248.

[16]	 E T Barr, M Harman, and P McMinn. 2015. The oracle problem in software
testing: A survey. IEEE transactions on . . . (2015).

[17]	 Boris Beizer. 1995. Black-box Testing: Techniques for Functional Testing of Software
and Systems. John Wiley & Sons, Inc., New York, NY, USA.

[18]	 Mustafa Bozkurt, Mark Harman, and Youssef Hassoun. 2011. Testing Web
Services: a Survey.

[19]	 Yuan Cao and Jin Ma. 2010. Research on PID parameters optimization of synchro­
nous generator excitation control system. In 2010 5th International Conference
on Critical Infrastructure (CRIS). North China Electric Power University, Beijing,
China, IEEE, 1–5.

[20] Wanli Chang, Alma Pröbstl, Dip Goswami, Majid Zamani, and Samarjit
Chakraborty. 2015. Battery- and Aging-Aware Embedded Control Systems
for Electric Vehicles. In 2014 IEEE Real-Time Systems Symposium (RTSS). TUM
CREATE, Singapore City, Singapore, IEEE, 238–248.

[21]	 Tsong Yueh Chen, Fei-Ching Kuo, Robert G Merkel, and T H Tse. 2010. Adaptive
Random Testing - The ART of test case diversity. Journal of Systems and Software
83, 1 (2010), 60–66.

[22]	 Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
2001. Progress on the State Explosion Problem in Model Checking. In Informatics
- 10 Years Back. 10 Years Ahead. Springer-Verlag, London, UK, UK, 176–194.
http://dl.acm.org/citation.cfm?id=647348.724453

[23]	 Jian Huang, Anirudh Badam, Ranveer Chandra, and Edmund B Nightingale. 2015.
WearDrive: Fast and Energy-Efficient Storage for Wearables.. In USENIX Annual
Technical Conference. 613–625.

[24]	 Koray Inki, Ismail Ari, and Hasan Sozer. 2012. A Survey of Software Testing in
the Cloud. In 2012 International Conference on Software Security and Reliability
Companion. IEEE, 18–23.

[25]	 Reyhaneh Jabbarvand, Alireza Sadeghi, Hamid Bagheri, and Sam Malek. 2016.
Energy-aware test-suite minimization for Android apps. ACM.

[26]	 Jing Li, Anirudh Badam, Ranveer Chandra, Steven Swanson, Bruce L Worthing-
ton, and Qi Zhang. 2014. On the energy overhead of mobile storage systems.. In
FAST. 105–118.

[27]	 Sean Luke. 2009. Essentials of Metaheuristics. available at
http://cs.gmu.edu/∼sean/book/metaheuristics/.

[28]	 Reza Matinnejad, Shiva Nejati, Lionel C Briand, and Thomas Bruckmann. 2016.
Automated test suite generation for time-continuous simulink models. ICSE
14-22-May-2016 (2016), 595–606.

[29]	 William M McKeeman. 1998. Differential Testing for Software. Digital Technical
Journal (1998).

[30]	 Swarup Mohalik, Ambar A Gadkari, Anand Yeolekar, K C Shashidhar, and S
Ramesh. 2013. Automatic test case generation from Simulink/Stateflow models
using model checking. Software Testing Verification and Reliability 24, 2 (Jan.
2013), 155–180.

[31]	 E N Moraes and L B Becker. 2012. Energy Profile Evaluation of a Cyber-Physical
System. Computing System Engineering ((2012).

[32]	 Elisabete NakonecznyMoraes and Leandro Buss Becker. 2012. Remaining Battery
Lifetime Determination in Cyber-Physical Systems. Procedia Computer Science
10 (Jan. 2012), 215–224.

[33]	 North China Electric Power University, Beijing, China 2014. PID parameter
optimization based on fuzzy control. North China Electric Power University,
Beijing, China.

[34]	 Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. 2014. Unit testing of
energy consumption of software libraries. SAC (2014).

[35]	 K Ogata and Y Yang. 1970. Modern control engineering. (1970).
[36]	 Olympia Roeva and Tsonyo Slavov. 2014. PID Controller Tuning based on Meta-

heuristic Algorithms for Bioprocess Control. Biotechnology and Biotechnological
Equipment 26, 5 (April 2014), 3267–3277.

[37]	 M Satpathy. 2008. Randomized directed testing (REDIRECT) for
Simulink/Stateflow models. In Proceedings of the 8th ACM International
Conference on Embedded Software, EMSOFT’08. Science Lab, Bangalore, India,
217–226.

[38]	 O Starov, S Vilkomir, and A Gorbenko. 2015. Testing-as-a-service for mobile
applications: state-of-the-art survey. Dependability Problems of . . . (2015), 55–71.

[39]	 Inc. The MathWorks. 2017. Simulink - Simulation and Model-Based Design
- MATLAB & Simulink. https://nl.mathworks.com/products/simulink.html.
(2017).

[40]	 University of Maryland, College Park, United States 2008. An instrumentation-
based approach to controller model validation. University of Maryland, College
Park, United States.

[41]	 Oracle VM VirtualBox. 2004-2017 Oracle Corporation. Fine-tuning timers and
time synchronization. https://www.virtualbox.org/manual/ch09.html. (2004­
2017 Oracle Corporation).

[42]	 Andreas Windisch. 2009. Search-based testing of complex simulink models
containing stateflow diagrams. In 2009 31st International Conference on Software
Engineering - Companion Volume. Technische Universitat Berlin, Berlin, Germany,
IEEE, 395–398.

[43]	 Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang, and Hojung
Cha. 2012. AppScope: Application Energy Metering Framework for Android
Smartphone Using Kernel Activity Monitoring.. In USENIX Annual Technical
Conference, Vol. 12. 1–14.

11

http://www.businessinsider.com/the-pentagons-most-advanced-drone-keeps-falling-out-of-the-sky-2016-1
http://www.businessinsider.com/the-pentagons-most-advanced-drone-keeps-falling-out-of-the-sky-2016-1
http://www.ibtimes.co.uk/why-do-us-military-drones-keep-crashing-pentagon-silent-over-mysterious-loss-20-hi-tech-weapons-1539364
http://www.ibtimes.co.uk/why-do-us-military-drones-keep-crashing-pentagon-silent-over-mysterious-loss-20-hi-tech-weapons-1539364
https://3dr.com/
http://ardupilot.org/
https://github.com/commaai/openpilot
https://github.com/commaai/openpilot
https://3dr.com/support/articles/207358106/iris
http://gazebosim.org/
http://qgroundcontrol.org/mavlink/start
http://qgroundcontrol.org/mavlink/start
http://px4.io/
http://www.cnn.com/2012/09/25/tech/innovation/self-driving-car-california/index.html
http://www.cnn.com/2012/09/25/tech/innovation/self-driving-car-california/index.html
http://www.theuav.com
https://waymo.com
http://dl.acm.org/citation.cfm?id=647348.724453
https://nl.mathworks.com/products/simulink.html
https://www.virtualbox.org/manual/ch09.html
http://cs.gmu.edu/�sean/book/metaheuristics

