
CERIAS Tech Report 2017-5
Deceptive Memory Systems
 by Christopher N. Gutierrez

Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

DECEPTIVE MEMORY SYSTEMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Christopher N. Gutierrez

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2017

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Eugene H. Spa↵ord, Co-Chair

Department of Computer Science

Dr. Saurabh Bagchi, Co-Chair

Department of Computer Science

Dr. Dongyan Xu

Department of Computer Science

Dr. Mathias Payer

Department of Computer Science

Approved by:

Dr. Voicu Popescu by Dr. William J. Gorman

Head of the Graduate Program

iii

This work is dedicated to my wife, Gina. Thank you for all of your love and

support. The moon awaits us.

iv

ACKNOWLEDGMENTS

I would like to thank Professors Eugene Spa↵ord and Saurabh Bagchi for their

guidance, support, and advice throughout my time at Purdue. Both have been instru­

mental in my development as a computer scientist, and I am forever grateful. I would

also like to thank the Center for Education and Research in Information Assurance

and Security (CERIAS) for fostering a multidisciplinary security culture in which I

had the privilege to be part of. Special thanks to Adam Hammer and Ronald Cas­

tongia for their technical support and Thomas Yurek for his programming assistance

for the experimental evaluation. I am grateful for the valuable feedback provided by

the members of my thesis committee, Professor Dongyen Xu, and Professor Math­

ias Payer. I am thankful for the financial support provided by the National Science

Foundation, under award number 1548114.

Personal thanks to my Mom, Dad, and Grandma for instilling me the value of

hard work and supporting my passion for computing at an early age. Thank you for

allowing me to forgo a year of birthday and Christmas gifts for my first computer. A

heartfelt thank you to my wife, Gina, for her unwavering support throughout my time

as a graduate student. Thanks to Je↵ Avery, Paul Wood, Mohammed Almeshekah,

Oyindamola Oluwatimi, and Abram Magner for their valuable feedback and support.

Thank you to all of my colleagues in the Dependable Computing Systems Laboratory

for their comments on the preliminary results. To all of my friends and family who

have shown me nothing but love, I thank you. Finally, huge thanks to my cat Buntu

for making me laugh and smile every day.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Thesis Statement . 3

1.2 DecMS Goals . 4

1.2.1 Preserve . 4

1.2.2 Impede . 5

1.2.3 Reduce . 5

1.2.4 Identify . 6

1.3 Contributions . 6

2 BACKGROUND AND RELATED WORK 8

2.1 Digital Assets to Protect . 9

2.2 Threat Space . 11

2.3 Data Destruction Methods . 13

2.3.1 Delete . 13

2.3.2 Secure Delete . 14

2.3.3 Data Replacement . 16

2.3.4 Transformation . 17

2.4 Data Destruction in Anti-Forensics 17

2.5 Defending Against Unauthorized Data Destruction 18

2.5.1 Access Control . 18

2.5.2 Data Preservation Strategies 20

2.5.3 Data Recovery and Repair 25

2.5.4 Unauthorized Destruction Detection Strategies 28

2.5.5 Combining Detection and Preservation 30

2.6 Deception for Defense . 32

2.7 Other Related Work . 38

3 THREATS AND DECEPTION . 42

3.1 Threat Model and Assumptions . 43

3.1.1 Wiper Malware Threats on Integrity 45

3.1.2 Anti-Forensics Threats to Availability and Utility 46

3.1.3 Anti-Forensics Threats to Authenticity 47

vi

Page
3.1.4 Crypto Ransomware Threats to Authenticity 49

3.1.5 Benign User . 50

3.1.6 Assumptions . 50

3.2 Planning Deception . 51

3.2.1 Strategic Goal . 51

3.2.2 Adversary Reaction . 52

3.2.3 Attacker Bias . 52

3.2.4 Deceptive Components . 53

3.2.5 Feedback Channels and Monitoring 58

3.2.6 Risks and Countermeasures 59

3.3 Cost of Deception . 60

3.3.1 Types of Systems . 63

3.3.2 Cost Impact of Deception on Systems 65

4 ARCHITECTURE AND DESIGN SPACE 70

4.1 DecMS Integration Location . 70

4.1.1 User-Level . 72

4.1.2 Kernel-Level . 74

4.1.3 Hardware-Level . 76

4.1.4 VM-Level . 78

4.1.5 Networking-Level . 80

4.1.6 Summary . 81

4.2 DecMS Integration Methods . 83

4.2.1 Modification . 85

4.2.2 Introspection . 86

4.2.3 Interposition . 87

4.2.4 Wrapper . 88

4.3 Monitoring Methods and Policy . 89

4.3.1 Deception and Adversary Co-location 90

4.3.2 Co-location with Protection 90

4.3.3 Deception in External Layers 91

4.3.4 Identification Methods . 91

4.3.5 Policies and Components of DecMS 91

4.4 Protection Methods and Policies . 93

4.4.1 Deception Policy . 93

4.4.2 Preservation Policy . 94

4.4.3 Other Protection Policies . 94

4.5 Summary of Integration Location 94

5 PROOF OF CONCEPT DESIGN . 96

5.1 Desired Traits . 96

5.1.1 Identification . 96

5.1.2 Impedance . 97

vii

Page
5.1.3 Preservation . 97

5.1.4 Reduce . 98

5.2 Threat Instances . 98

5.2.1 Ransomware . 98

5.2.2 Wiper Malware . 99

5.2.3 Anti-forensics . 100

5.3 Randomness Classifier . 102

5.3.1 Parameter Settings for Randomness Classifier 105

5.3.2 Randomness Tests . 105

5.3.3 Classification Training and Validation 106

5.4 Other Destructive Patterns . 107

5.5 Design Overview for DecMS-Kernel 109

5.6 Design Overview for DecMS-VMI 112

5.6.1 Assumptions . 114

5.6.2 Requirements . 115

6 EVALUATION . 116

6.1 Kernel-Based Evaluation . 116

6.1.1 Observation Policy and Service 116

6.1.2 Analysis Policy and Service 117

6.1.3 Preservation Policy and Service 118

6.1.4 Deception Policy and Service 119

6.1.5 Service Location . 119

6.1.6 Metrics of Interest . 119

6.1.7 Experimental Results . 121

6.1.8 Discussion . 125

6.2 VMI-based Evaluation . 127

6.2.1 Observation Policy and Service 129

6.2.2 Analysis Policy and Service 132

6.2.3 Preservation Policy and Service 134

6.2.4 Experimental Results . 136

7 CONCLUSION . 150

7.1 Summary . 150

7.2 Shortcomings, Enhancements, and Future Work 151

7.2.1 Counterdeception . 152

7.2.2 Alternative Analysis Policy 156

7.2.3 Other Limitations . 158

7.3 Conclusion . 160

LIST OF REFERENCES . 161

A ADDITIONAL PERFORMANCE RESULTS 171

VITA . 176

viii

LIST OF TABLES

Table	 Page

4.1	 Summary of possible layers to monitor and preserve data under destruc­
tion. 82

4.2	 Methods to support the goals of a DecMS 84

5.1	 Wiper Malware samples for evaluation 99

5.2	 A list of secure delete methods considered in the evaluation of DecMS-

VMI. 101

A.1	 DecMS-VMI latency for 32 MiB files. 174

A.2	 DecMS-VMI latency for 4 KiB files. 175

ix

LIST OF FIGURES

Figure	 Page

3.1	 Threats and loss of Parkerian security elements for various data destruc­
tion attacks. 44

3.2	 The costs of using deception on various systems. 66

4.1	 Possible layers of abstraction and monitoring methods for deception, based

on [81, Chapters 5, 7]. 71

5.1	 The distribution of files in training, validation, and testing sets. 102

5.2	 An illustration of write bu↵er sampling for DecMS-VMI 103

5.3	 Recall score on the validation set for increasing bu↵er sizes and a maximum

depth of tree parameters. 108

5.4	 Precision score on the validation set for increasing bu↵er sizes and a max­
imum depth of tree parameters. 109

5.5	 Classification tree for randomness testing with input bu↵er size of 4,096

bytes and tree depth of two. 110

5.6	 General flow of DecMS-Kernel. 110

5.7	 The integration method (wrapper) for DecMS-Kernel, highlighted in white.

. 111

5.8	 The integration methods (wrapper and introspection) for DecMS-VMI,

highlighted in white. 112

5.9	 DecMS-VMI interposes storage medium I/O in isolation. If the I/O ap­
pears to be destructive, DecMS-VMI preserves the data. 113

6.1	 DecMS-Kernel policies to determine if a write bu↵er is used to destroy

data . 118

6.2	 A comparison of real time file latency for 4 KiB files for DecMS-Kernel

under various sample sizes. 123

6.3	 A comparison of real time file latency for 32 MiB files for DecMS-Kernel

under various sample sizes. 124

6.4	 A comparison of real time file latency for 4 KiB files for DecMS-Kernel,

with and without the Analysis Policy and Preservation Policy. 125

x

Figure	 Page

6.5	 A comparison of real time file latency for 32 MiB files for DecMS-Kernel,

with and without the Analysis and Preservation Policies. 126

6.6	 DecMS-VMI examines file modifications and preserves the file if data de­
struction is suspected. 128

6.7	 Confusion matrix for PRNG data destruction, the worst performing test. 138

6.8	 PCMark 8 ofce benchmark results showing the overhead incurred by

DecMS-VMI for a variety of common ofce tasks. 142

6.9	 Median Latency introduced by DecMS-VMI and VMI when data destruc­
tion is suspect. 145

6.10 Cumulative latency (100 samples) to check for fraudulent timestamps. . 147

A.1	 Write latency for file sizes between 4 KiB to 128 KiB for DecMS-VMI. 171

A.2	 Write latency for file sizes between 256 KiB to 4 MiB for DecMS-VMI. 172

A.3	 Write latency for file sizes between 8 MiB to 32 MiB for DecMS-VMI. . 173

xi

ABSTRACT

Gutierrez, Christopher N. Ph.D., Purdue University, December 2017. Deceptive
Memory Systems. Major Professors: Eugene H. Spa↵ord and Saurabh Bagchi.

Unauthorized data destruction results in a loss of digital information and services,

a devastating issue for society and commerce that rely on the availability and integrity

of such systems. Remote adversaries who seek to destroy or alter digital information

persistently study the protection mechanisms and craft attacks that circumvent de­

fense mechanisms such as data back-up or recovery.

This dissertation evaluates the use of deception to enhance the preservation of

data under the threat of unauthorized data destruction attacks. The motivation for

the proposed solution is two-fold. (i) An honest and consistent view of the preserva­

tion mechanisms are observable and often controlled from within the system under

protection, allowing the adversary to identify an appropriate attack for the given sys­

tem. (ii) The adversary relies on some underlying I/O system to facilitate destruction

and assumes that the components operate according to a confirmation bias based on

prior interactions with similar systems. A deceptive memory system (DecMS) masks

the presence of data preservation and mimics a system according to the adversary’s

confirmation bias.

Two proofs of concepts and several destructive threat instances evaluate the fea­

sibility of a DecMS. The first proof of concept, DecMS-Kernel, uses rootkits’ stealth

mechanisms to mask the presence of DecMS and impede potential destructive writes

to enable preservation of data before destruction. The experimental results show that

DecMS is e↵ective against two common secure delete tools and an application that

mimics crypto ransomware methods.

xii

Based on the results of DecMS-Kernel, several improvements are incorporated into

a DecMS that uses virtual machine introspection. DecMS-VMI places the preserva­

tion mechanism out of reach from the system under protection. The virtual machine

under protection does not undergo any changes or need additional software to support

the deception, thus improving stealthiness. The results for DecMS-VMI demonstrate

the ability to preserve data under a wide range of destructive methods: 13 di↵erent

secure delete methods, four wiper malware, and one timestamp fabrication tool. Un­

der both prototype systems, all of the detected data under destruction is successfully

preserved. The overall results indicate that it is feasible to create deceptive systems

to enhance data preservation methods on interactive computing systems.

1

1 INTRODUCTION

In the information age, digital data is a critical asset. When adversaries destroy digital

information, it is challenging to recover it without a copy stored elsewhere. Physical

security can prevent adversaries from physically destroying storage devices. However,

it is possible to create malicious software to destroy data on a persistent storage

medium1 . Early examples date back to 1988 with programs such as the Jerusalem

Virus, which destroyed files on Fridays that fall on the 13th of each month [1]. Such

malware is referred to as wiper malware because it destroys files and makes them

unrecoverable. In the present day, loss of data, through an adversarial attack on

data availability, utility, and integrity [2], is more than a nuisance and can cause

substantial damage.

In 2017, high profile Wiper Malware, such as Shamoon and Stonedrill, have been

responsible for the destruction of files on many tens of thousands of computer systems

[3] [4]. In August 2012, the Shamoon Wiper Malware destroyed critical system files

and digital documents on about 30,000 corporate computers at Saudi Aramco [3].

The US Secretary of Defense at the time, Leon E. Panetta, stated that the a↵ected

machines “were rendered useless” and that “the Shamoon virus was probably the

most destructive attack that the private sector has seen to date” [5]. Wiper malware

target critical systems, such as those connected to the energy sector to cause power

outages [6].

Once an attacker gains access to a system, files are at risk for unauthorized data

destruction. Frequently modified user files, such as documents, images, or spread­

sheets, are targets for data destruction attacks. Adversaries may also target files that

require e↵ort to replace, such as operating system files that are necessary for system

1A persistent storage medium is a device to store information that persists between machine
reboot cycles.

2

stability and operation [6]. Destroying OS kernel files causes a system to become

unbootable, requiring the system administrators to rebuild the system.

Common among all software data destruction attacks is the reliance on underlying

system components to facilitate I/O requests. Both adversaries and users rely on sev­

eral layers of abstraction that translates a semantic I/O request (such as writing to a

named file on a file system) into machine code that controls the hardware components

of a computing system. Both users and adversaries assume that the underlying layers

work correctly to handle I/O requests. The system defenders can use the adversary’s

confirmation bias [7] to deceive.

In particular, this work proposes and evaluates Deceptive Memory Systems (Dec-

MS) to enhance the protection of digital assets located on file systems under the

threat of unauthorized data destruction. DecMS relies on existing security monitoring

techniques which observe suspicious activity. Rather than denying suspicious writes

that appear to be destructive, a DecMS system attempts to deceive an attacker into

believing her destructive actions are successful while providing the system defenders

with valuable information about the attacker.

Prior work in deception for defending computing systems relies upon isolated sys­

tems to lure attackers away from real systems. However, there are several advantages

to deceive an adversary [7] who is conducting unauthorized data destruction on real

systems. If the defenders can preserve the data under destruction without the adver­

sary’s knowledge, the defenders gain information about the adversary’s targets and

motivation. The defender observes the adversary from the context of a real system

rather than a honeypot system that may contain synthetic data, users, and context.

System defenders can craft deception into production systems to fool an adversary

into incorrectly believing that destructive actions are damaging real protection sys­

tems.

Some data destruction attacks bring systems o✏ine as quickly as possible. Another

viable deceptive strategy is to impede the speed of destructive actions. Forcing the

adversary to slow down provides a strategic advantage, allowing the system defenders

3

more time to react appropriately to an adversary. The system defenders may choose

to impede the attacker while preserving the data under destruction in an isolated

location.

Existing methods to recover from or mitigate unauthorized data destruction fall

short in several ways. Data replication, such as a complete replica of a storage device,

is taken periodically. An adversary can destroy data between backups, causing a loss

of information. Some file systems track all changes and allow users or system admin­

istrators to recover from an accidental loss of data. However, several of these systems

are not resilient to adversaries who disable the backup schemes before destroying

data. Other techniques attempt to recover data after destruction occurs, which are

time-consuming, expensive, or unreliable in retrieving the data [8]. Integrity monitor­

ing may be difcult to maintain on user files that frequently change and are targets

for destructive adversaries. Access control also fails to protect against unauthorized

data destruction. The adversary may gain a high level of privilege before executing

the destruction or may target user-level files, which may be difcult to replace.

The deceptive strategies explored in this dissertation are not alternatives to the

existing data preservation and security monitoring techniques, but instead, enhance

existing techniques through the use of deception. The system defenders may choose

to deny an adversary’s data destruction action or may use other data preservation

strategies, such as periodic backups of user files. However, this dissertation focuses

on the design and use of deception to enhance protection against data destruction

attacks.

1.1 Thesis Statement

It is feasible to use deception to enhance the preservation of digital assets against

unauthorized data destruction.

The dissertation demonstrates the feasibility by designing and implementing a

proof of concept system that monitors for destructive writes, preserve the data un­

4

der destruction, and presenting a false reality to the adversary that indicates her

destructive actions are successful.

1.2 DecMS Goals

Throughout this thesis document, the experiments are designed to demonstrate

the following enhancements:

DecMS Preservation Goal It is possible to preserve digital assets when destruc­

tion occurs;

DecMS Impedance Goal It is possible to impede data destruction to provide time

for defenses mechanisms to adjust;

DecMS Reduction Goal It is possible to reduce the e↵ectiveness of data destruc­

tion attacks;

DecMS Identification Goal It is possible to gain information about adversary

motivations by identifying targets for data destruction.

A successful proof of concept for any of the first three enhancement goals will

demonstrate the feasibility of DecMS. The final goal, DecMS Identification Goal, is

a secondary enhancement that will provide a benefit for system defenders. Evidence

of feasibility for the enhancement goals is given for each proof of concept system

considered.

1.2.1 Preserve

Rather than denying a potential destructive write, the action can appear successful

from the adversary’s perspective. The deception must persist throughout the attack

to observe all of the targets of an adversary. However, the data under destruction

must also be preserved to recover from an attack quickly. The preservation of data is

deceptive and is an action taken at the end of the attacker’s OODA loop but before

5

the attacker can observe if the destructive action is successful. The DecMS proof

of concept preserves data under destruction and hides the existence of the preserve

data.

1.2.2 Impede

Several attacks attempt to destroy data quickly to prevent system defenders re­

acting to data destruction. There are advantages to slowing the attacker down to

allow the system defender time to reconfigure the system and mitigate the severity

of an oncoming attack.

Impedance allows more time for the system defenders to orient, decide, and act to

subsequent unauthorized data destruction attempts. During the unauthorized data

destruction, the DecMS proof of concept system impedes the unauthorized writing

of files to preserve the data under destruction without the adversary’s knowledge.

Impedance in the DecMS proof of concept system demonstrates the feasibility of

slowing down a threat to allow the defender to observe and act on unauthorized data

destruction.

1.2.3 Reduce

If an adversary is aware that the data destruction methods are not successful,

then she may adjust her strategy. The defender’s deception feeds false information to

mislead the adversary into believing her data destruction is successful. The deception

causes the adversary to incorrectly orient, decide, and act on subsequent unauthorized

data destruction attempts, reducing the e↵ectiveness of her techniques. In the DecMS

proof of concept system, the feasibility of protecting against several data destruction

attacks is demonstrated.

6

1.2.4 Identify

Rather than denying suspicious behavior, the defenders may choose to learn about

an adversary by observing what the attacker is attempting to destroy. The configura­

tion of the system deceives the attacker into believing her data destruction methods

are useful while the defenders observe her actions. Identifying the targets of data

destruction allows system defenders to learn about their adversaries and react more

quickly to threats that follow a similar attack strategy. The information gained may

help protect other systems more quickly than capturing samples and conducting a

static or dynamic analysis. The motivation for the Identify Goal is that the portion

of attackers who can quickly break into systems is much higher than the portion of

defenders who can quickly discover breaches on their systems [9].

If the system suspects unauthorized data destruction for specific files, then the

system can react accordingly. Deception for defense provides an advantage in the

Observe, Orient, Decide, and Act loop (OODA) [7]. The deceptions may cause the

adversary to act incorrectly or induce confusion to slow down the decision process.

The Identify goal is relevant to the observation step in the OODA loop because

the defenders gain threat intelligence regarding targeted files. The DecMS proof of

concept system demonstrates feasibility by collecting the data assets that adversaries

target for data destruction and runtime information such as the process that requests

the destructive write.

1.3 Contributions

1. Chapter 3.2 describes the deceptive planning necessary to support a DecMS

System. In particular, the deceptive benefits, risks, and potential impact of

using a DecMS System are detailed. Several types of computing systems are

potentially suitable for DecMS enhancement, and the impact on performance

is detailed.

7

2. Chapter 4.1 details the various methods to integrate DecMS within a computing

system. Various layers of abstraction, deceptive strategies, and a discussion on

the advantages/disadvantages are provided.

3.	 Chapter 6.1 evaluates a DecMS system through the use of kernel modules to

enhance system calls relating to I/O. The results indicate that it is possible to

protect against data destruction and hide from the adversaries through the use

of several stealth techniques.

4. Chapter 6.2 evaluates a DecMS System by enhancing virtual machine moni­

toring by observing for data destruction indicators. The proposed system can

successfully protect against various data destruction techniques. The systems

also demonstrate an e↵ective attacker impedance to provide additional time for

adjusting defense strategies.

8

2 BACKGROUND AND RELATED WORK

In 1965, Daley and Neumann [10] described a general purpose file system, which

organizes files through a hierarchy of directories. References to files within the file

system are done so through symbolic references rather than their physical location on

the storage device. Directories are containers of files (or other directories), and a file

is an ordered sequence of data elements (e.g., bits, words, and characters). An entry

name references a file or directory. An entry name that points to a file is called a

branch, which also contains additional information about a file. Branch information

(henceforward referred to as metadata), consists of information about a file, such as

the physical address (location) of the file on the storage medium, and the creation or

modification time of the file, and other information about the state of the file.

Daley and Neumann’s work inspired several file systems such as New Technology

File System (NTFS), the File Allocation Table File System (FAT), Hierarchical File

System (HFS), and Extended File System (ext), to name a few. All of the above file

systems organize files through a hierarchy of directories, consist of files, and contain

metadata.

This thesis considers the protection against unauthorized data destruction on

digital assets stored file systems. Further, the scope of data destruction is limited

to software mechanisms that render data unrecoverable and does not consider the

physical destruction of data (e.g., pulverizing a hard drive). A device controller may

provide a method to destroy (also referred to as data sanitization) the contents of

the entire drive [11,12]. However, initiating the data sanitization may be inaccessible

adversaries because it may require physical access or access to the Basic Input-Output

System (BIOS) or Unified Extensible Firmware Interface (UEFI) [11]. This thesis

does not consider attackers who have physical access or access to data sanitization

methods on persistent storage devices.

9

Software data destruction is the overwriting of a digital asset such that the digital

asset is no longer recoverable. A digital asset is any information related to accessing

the file (including symbolic references, file system data structures, or directories), file

metadata, or the file itself. Unauthorized data destruction can be partial or complete

such that it produces a loss of information either temporarily or permanently. There

are a variety of techniques for unauthorized data destruction. For instance, a threat

may overwrite data arbitrarily to make data assets unavailable or replace data with

misleading information to trick users. In Section 2.2, a description of the threat space

is given.

Before describing the threat space, a discussion of the data assets that need protec­

tion is necessary. As computing resources are bounded, some information may have

priority for preservation over other data assets. The severity of unauthorized data

destruction is dependent on the importance and e↵ort necessary to replace or repair

the file. Several files, such as software binaries, are easily replaced because of online

software distribution. Binaries for widely deployed software are available through

various software repositories, such as the Advance Package Tool (APT) for Debian

Linux1 . User-produced files are difcult to replace if no backup copy is available.

2.1 Digital Assets to Protect

Digital assets are any files within a persistent storage medium, organized by a

file system, and accessed through an operating system via a set of system calls. A

file system is an organized structure of files on the storage medium and consists of

metadata, directories, and the files. Programming interfaces use a file system to

translate the logical organization of the files (directory path and file name) to a

physical location on the storage medium.

Unauthorized data destruction may target any of the above components. A file

may become unavailable if the file system data structures are corrupted or destroyed.

1
https://wiki.debian.org/Apt

https://wiki.debian.org/Apt

10

Metadata, which contains information about a file, may also be a target of data

destruction. File destruction may occur without modifying the metadata or file sys­

tem, allowing the file to be accessible from the operating system but may produce

unexpected results.

The e↵ort to recover from data destruction is dependent on the preparation before

destruction occurs. As storage space is finite, files are prioritized based on importance

and ease of replacement if destruction occurs. Attackers also consider the ease of

replacement when identifying digital assets for destruction.

For illustrative purposes and henceforward, threats target two categories of assets:

Replaceable Asset (RA), and Non-Replaceable Asset (NRA). The definition of NRAs

are assets that only exist within a given system and not replicated elsewhere. Exam­

ples of NRAs may include user created media files such as digital images and videos,

or system log files. The definition of RAs are files that are replicated elsewhere and

readily accessible to users or system administrators. Examples of RAs include files

such as widely deployed system libraries or applications.

Note that RAs and NRAs are perceptions that are subject to change based on

(mis)information available. An attacker may destroy a backup copy of a file, causing

the system administrator to misperceive an RA. A file that a system administrator

believes to be RA is in fact NRA. Likewise, a system administrator may mislead an

attacker into believing that she is destroying NRAs but is wasting e↵ort by destroying

RAs. The latter example is explored in subsequent sections and is fundamental in

deceiving a destructive adversary.

The perception of RAs and NRAs guides the strategies an attacker chooses in

data destruction. The destruction of RAs requires less e↵ort to recover compared

to the destruction of NRAs. However, the attacker may decide to target RAs for

other motivations, such as hiding the presence of files, compromising authenticity.

Another possible motivation is to render the target system unusable by overwriting

RAs that are necessary for system stability, jeopardizing the utility of the operating

11

system. Authenticity and utility are some security elements that unauthorized data

destruction threaten. Other threats and definitions of security elements are below.

2.2 Threat Space

The Parkerian Hexad is a framework which describes security with six elements:

Availability, Utility, Integrity, Authenticity, Confidentiality, and Possession, each of

which are defined by Parker [2]. While data destruction, in conjunction with other

malicious actions, can compromise any combination of the six elements of the Parke­

rian Hexad [2], this dissertation defines data destruction as the loss of at least one of

the security elements, with emphasis on the necessary conditions.

The last two elements listed above, confidentiality and possession, are not neces­

sary for unauthorized data destruction. A loss of Confidentiality requires more than

data destruction. A breach of confidentiality requires an attacker to read confidential

information. However, an attacker could destroy data without reading the data. A

loss of Possession overlaps with a loss of the other four remaining security elements.

As previously defined, data destruction overwrites data assets to produce a loss of

information. Therefore, the information at the location where the attacker overwrites

always results in a loss of Possession of that given information. The loss of possession,

henceforward, is implicit if not otherwise mentioned.

For each of the remaining four security elements, a brief description or summary

is given from “Toward a New Framework for Information Security?” [2]. Examples

for each security element are provided and are formulated with minimal overlap to

illustrate the threat boundaries of the data destruction. In practice, data destruction

combines the loss of a combination of security elements, which is discussed in Section

2.3.

Data destruction causes a loss in availability when, at the minimum, the overwrite

causes a misplacement of information. In Loss Scenario 1 [2], Parker illustrates a loss

of availability, without su↵ering a loss to other security elements, by an adversary

http:information.In

12

who renames a file without notifying valid users. When the attacker causes a loss in

availability for RAs such as drivers or kernel objects, a system may become unusable

until replacing or repairing the given files. A loss of availability on a NRAs is overcome

by methods to uncover or search for the misplaced file. Other examples include typical

uses of a delete command that cause a file to be misplaced.

The loss of authenticity through unauthorized data destruction causes, at the

minimum, misleading information. Data assets should remain consistent between

valid use. Unauthorized changes to a file that replaces information are misleading

because it violates the user’s perception of the file. Misleading information may

not cause a substantial loss in the other three security elements considered for data

destruction, as illustrated in Parker’s Loss Scenario 4 [2]. To clarify, overwriting

portions of files with misleading information always causes a partial loss of availability

and integrity. The overwritten parts of the file are no longer available. The data asset

also su↵ers a loss of integrity because the missing portions leave the file in a state

that is incomplete.

Replacing file metadata may produce misleading information, but the file itself

could still be available, have integrity, and have utility. For NRAs, it may be difcult

to recover the original data without replicating the original data. In practice, correla­

tion analysis can help overcome misleading information. For instance, file timestamp

metadata can be cross-checked with application logs to help clarify misleading times­

tamp information [13].

The loss of integrity occurs when, at the minimum, a destructive action produces

incomplete information. Parker [2] illustrates in Scenario 3 that the other three se­

curity elements (authenticity, availability, and utility) may not su↵er a loss when

integrity is lost. For NRAs, it may be difcult to recover portions of the files with­

out replications. Cryptographic checksums can help determine if a file is complete.

However, the creation of the checksum must occur before an attacker alters the file.

Further, the checksums must be in isolation from the attacker. Mechanisms such as

like Tripwire [14] can help detect a loss of integrity and other security elements.

13

The loss of utility occurs when, at the minimum, information is transformed then

replaced. Information transformation may have minimal impact on other security

elements. Parker illustrated in Loss Scenario 2 [2], that it is possible to lose utility,

through unauthorized encryption of files, without su↵ering a loss of other security

elements. Some loss of utility is recoverable for NRA if the attacker uses a poorly

implemented or weak encryption algorithm. For instance, an attacker may fail to

adequately destroy the decryption key, allowing the system administrator to recover

the key and decrypt the transformed data.

The recovery from unauthorized data destruction for NRAs is dependent on the

specific techniques that the attackers use.

2.3 Data Destruction Methods

There are several data destruction methods to consider. The work presented

considers software data destruction where the physical device is usable, but the data

is no longer available to the user. The data destruction methods may overwrite the

data within the file itself, the metadata associated with the file, or any symbolic

information that references the physical location of the file on the storage medium.

2.3.1 Delete

The definition of delete is “To remove or obliterate a record or item of data, such

as by overwriting data on disk or tape with new data or null characters” [15]. A

distinction between removing a record and removing an item is necessary. A record

is a reference that points to the location of a file within the file system. File deletion

overwrites the symbolic references (i.e., records) to specific file points to the physical

location on the storage medium.

The distinction is necessary. Deleting a file does not typically overwrite the con­

tents of a file. A deletion typically overwrites the record that points to the location

of the file on the physical media. “Modern file systems associate the deletion of a file

14

with the release of the storage related to that file” [16]. As the record that references

the file is overwritten, the file is no longer accessible from the file system. The ac­

tual contents of the file exist within the storage medium but are inaccessible without

special software that scans portions of the disks that are considered free.

Deleting a file may still cause issues for a user. The inability to find a file may cause

system instability. For instance, removing shared libraries or the binaries necessary

for booting the operating system may cause the system to be inaccessible until the

deleted files are replace or “undeleted.” The definition of undelete is to restore a file

previously deleted [17]. If the deleted file is a NRA, then it may be necessary to use

“undelete” tools to recover the deleted file, which is discussed in Section 2.5.3.

The e↵ect of deletion is that a user who wishes to access the deleted file will require

additional e↵ort. Data deletion is an attack on the availability security element.

The deletion causes a loss of availability of a file or may cause a system to become

unavailable if critical system files are deleted.

2.3.2 Secure Delete

In addition to or an alternative to unlinking a file from the file system, secure

delete overwrites the entire file so that the undelete tools cannot recover any portion

of the file. Secure deletion is necessary to preserve privacy. Certain files may contain

sensitive information, so they are securely deleted to ensure that the information

within a file is no longer available. However, when combining secure delete with

unauthorized data destruction, the results may be devastating.

To completely remove a file from a system, one must consider several other com­

ponents of a system, such as the physical storage medium, data replication, caches,

hardware/software redundancy, file system, or metadata [18]. The National Institute

of Science (NIST) provides guidelines for secure deletion of data concerning the type

of physical media in question [11].

15

The NIST recommendation includes overwriting portions of memory with random

bits, several times, depending on the storage medium. Alternatively, secure data dele­

tion could also write over portions of memory with a fixed pattern such as all zeros, all

ones, or some predefined pattern. This approach achieves secure data deletion with­

out physical access to the storage space and without destroying the physical medium.

However, the NIST recommendations consider the type of physical medium to ensure

the destruction of residual data that may be present. For example, for magnetic stor­

age devices, NIST recommends that several rounds of random bits be overwritten to

render recovery with magnetic analysis impossible [11]. Some algorithms for secure

deletion are detailed by the United States Defense Security Service [19, Section 4.4]

and Schneier [20].

Methods to securely delete data assets are typically available for users. However,

the secure delete method may not overwrite all the possible locations of a data asset

[18]. File system and data caches may complicate secure deletion if the goal is to

remove data assets from a system completely. The attacker must over-write the

logical storage location of the data object as well as temporary locations where the

data object may reside. Section 2.5.3 briefly describes how file caches and other

systems may help in the restoration of destroyed data assets.

Another method to securely delete data is to use a “free-space filling” service [12,

18] that periodically identifies unallocated portions of a storage device and overwrite

the free space rendering the data within the free space unrecoverable. An attacker

who wishes to destroy data only needs to delete (e.g., unlink from the file system)

and wait, or initiate, the free-space filling tool.

The overall process is similar to both delete and secure delete action with a dif­

ferent order of execution. Usually, the secure delete over-write occurs first before

deleting the file. The Free-space filling tools delete the file first and then overwrites

the space that it occupies. The di↵erence between space filling tools and secure

delete is delete-then-wipe (disk-filling tools) as opposed to a wipe-then-delete (secure

delete). The minor distinction, henceforward, is ignored and will both be referred

16

to as “secure delete” as it has negligible impact in designing defense and deception

systems to protect against unauthorized data destruction.

Secure delete causes a loss of availability, utility, and integrity. A securely deleted

file is no longer available because the file is unlinked from the file system. Further,

in addition to causing the file to go missing, the securely deleted file has no utility.

Irrelevant information replaces the file. As the securely deleted file is not whole, the

file su↵ers a loss of integrity. Secure delete, on its own, is not designed to mislead

the user. However, replacing the file with information, rather than securely deleting,

causes a loss of authenticity.

2.3.3 Data Replacement

An adversary may securely delete data objects that a forensic examiner can use as

evidence of illegal activities. However, that is apparent when secure delete methods

destroy files on a storage medium [21]. Rather than replacing the file with randomly

distributed bits or other bit patterns, the attacker may replace the data.

Data replacement is advantageous for the attacker. Data replacement is more

stealthy than typical secure delete methods, especially if the replaced data appears

to be innocuous or indistinguishable from valid user data. Further, it may allow the

attacker to place misleading information to confuse or deceive a user. For instance,

file system metadata such as timestamps are critical for a forensic examiner to create

a timeline of illegal activities. An adversary may change the timestamp metadata

to obfuscate the order of events that took place or to cover evidence of file access or

modification.

An attacker may use tools such as timestomp 2, an anti-forensic tool that replaces

file system timestamp metadata with fabricated date and time entries. Timestamp

fabrication can increase the difculty for the forensic investigator. Data fabrication

2
https://www.offensive-security.com/metasploit-unleashed/timestomp/

https://www.offensive-security.com/metasploit-unleashed/timestomp/

17

is an attempt to impede the examination process, thus wasting time, money, or

personnel resources [22].

Data replacement causes a loss of authenticity at the minimum. Replacing times­

tamp metadata may mislead forensic analysts into believing a false chronologic order

of file modification. Data replacement, when used with secure delete, may deceive

the system defenders. If the replaced data is similar to free space on the disk, the

defender may not be aware of the missing data assets. The data that is overwritten

su↵ers a loss of availability, as mentioned in Section 2.2.

2.3.4 Transformation

Data transformation obscures data objects. The transformation may be benign,

such as data compression to save storage space, or to hide from observation, such as

encryption. When combining with data replacement and unauthorized data destruc­

tion, the results can lead to a loss of utility.

An example of unauthorized data destruction through transformation is crypto

ransomware. Crypto ransomware [23, 24] replaces the data object with an encrypted

version of the data. The encryption key is not available to the owner of the file, but

rather, the key is in possession by an adversary. If the attacker is successful, the user

is forced to pay extortion to recover the files. Other transformation techniques, such

as steganography, can also transform data to produce a loss of utility. The attacker

possesses the extraction key and may extort the owner to recover the original file.

Files may also be transformed and replaced to appear to be corrupt, but in reality,

are corrupted by an attacker. Data transformation can be combined with the other

destruction techniques to produce a combination of a loss of security elements.

2.4 Data Destruction in Anti-Forensics

The adversary’s ultimate goal of anti-forensics is to minimize the forensic quality

and quantity of incriminating information [25]. An attacker may use anti-forensics to

18

induce doubt and confusion through the use of fabricated evidence [26,27], resulting in

a loss of authenticity, integrity, or utility. Reducing the quantity of forensic evidence

is a loss of availability or integrity.

Anti-forensics may also be designed to increase the difculty of forensic analysis,

relative to the resources available. Rather than replacing or altering evidence, an

attacker may place additional false evidence. The di↵erence is that the addition of

evidence does not necessarily destroy data assets of interest 3. The forensic inves­

tigator must then distinguish between fabricated and truthful evidence. This thesis

e↵ort does not consider cases of false evidence that do not destroy data.

Anti-forensics overlaps with unauthorized data destruction. The di↵erence is that

anti-forensics is the destruction or the alteration of evidence that indicates malfea­

sance. Unauthorized data destruction may have alternative goals or motivations,

such as removing the availability or utility of data assets. Both unauthorized data

destruction and anti-forensics may produce a loss of integrity, availability, utility, or

authenticity, but the di↵erence in motivation guides the selection of data assets to

protect and the policies to enforce.

2.5 Defending Against Unauthorized Data Destruction

There are several methods to defend against unauthorized data destruction. For

each method, a description of the protection method is given. A short discussion is

also present which details the limitations to protect against certain types of unautho­

rized data destruction attacks.

2.5.1 Access Control

To limit the unauthorized destruction of a file, access control “protects shared re­

sources against unauthorized accesses [...] according to an access control policy” [28].

3The false evidence placed on persistent storage may overwrite previously deleted data assets of
interest

19

Access control may enforce one of the Parkerian security elements, such as confi­

dentiality (read permission) or integrity (write permission). For unauthorized data

destruction, integrity models such as the Biba Integrity model [29] or the Clark and

Wilson model [30] are relevant. Integrity Models protect unauthorized modifications

of data assets by explicitly assigning integrity levels for both subjects (e.g., users) and

objects (e.g., data assets). Integrity levels for subjects are e↵ectively the trustworthi­

ness that a subject will properly modify an object [31]. However, it is difcult to be

certain that an application on a computing system is trustworthy [32]. Both subjects

and object integrity levels must be properly defined to protect against unauthorized

data modification e↵ectively.

Ultimately, if the attacker can gain the highest level of privilege, access control

methods may fail. Other methods, such as data preservation or recovery strategies

can help mitigate against cases where attackers gain high levels of access. Nonetheless,

an attacker may cause significant damage even without a high level of access. For

instance, an attacker who has access to a shared directory may destroy files, causing

a loss of availability for other users. A malicious user within the group may securely

delete a file, causing a loss of availability to other users in the group. Tricking a user

to run a malicious application is another attack vector that can cause a loss of data.

A malicious application may run at the same level of access to the user who ran the

application, allowing the malicious application to destroy user-owned files.

Some systems may prevent overwriting altogether, even if the user gains high

levels of privilege. For instance, immutable and append-only files [33, Chapter 20]

or write-once, read-many (WORM) storage media [12] only allow file-appending and

no other type of write access. An attacker cannot overwrite any information on

immutable write-only systems. The immutability may be enforced by disabling the

access permission modification or through the use of storage media that does not

allow overwriting of files, such as optical disks [12].

20

2.5.2 Data Preservation Strategies

Mitigation and recovery strategies for unauthorized data destruction consists of

data replication and data logging. If successful, either strategy can reduce the severity

of unauthorized data destruction by recovering data that su↵ers a loss of Parkerian

Hexad security elements.

The data replication strategy consists of replicating data in a location that is

isolated from the attacker. If a file su↵ers a loss of integrity, availability, utility, or

authenticity, the replicated data can replace or repair the file in question. Observing

for invalid changes to a file may also help detect unauthorized data destruction.

The data logging strategy achieves the same goals with an alternative approach.

All changes to files are saved and indexed. If at some point a loss of a security element

is observed, the changes to the files are reverted to a valid state.

Data Replication

Data replication strategies define data objects to be preserved and therefore re­

place files if they succumb to a destructive attacker. As long as the adversary does not

have access to the backup storage medium or the systems that manage the backups,

the files in the backup are considered RA.

There are several systems to create replicates of data objects for recoverability

purposes in case of destructive adversaries or accidental destruction. However, un­

less otherwise noted, these systems are designed for accidental destruction, or hard­

ware/software failures and often fail to protect against motivated adversaries who

seek to destroy data.

Chervenak et al. [34] survey backup techniques for file systems and serves as the

foundation for the subsequent section. Definitions for each system from [34] are

given, and advantages/disadvantages of each backup technique under the threat of

unauthorized data destruction is detailed.

21

A full or incremental backup replicates the entire storage medium to a backup

location, usually stored separately from the original [34]. In the case that a system

su↵ers a loss, the backup is referenced to recover files. Incremental backups create

copies of data that have changed from a prior backup, which saves storage space

relative to a full backup.

Full and incremental backups are viable when a system su↵ers a loss in integrity,

availability, or utility for user files or some system files that are infrequently updated.

Another advantage is that full or incremental backups can complement other data

backup systems. A copy of a storage medium placed o↵site can supplement local

backups if the attacker can compromise local backups. The o↵site copy may require

the attacker to compromise additional systems or have physical access to the backup

copy to destroy data.

The creation of full or incremental backups is periodic, which the adversary may

consider when destroying data. The adversary may compromise a security element

between the creation of backups. A most recent backup copy of frequently modified

files may not exist if the file is created and destroyed between a full or incremental

backup. Another disadvantage is the lack of details when a system su↵ers a loss

of a security element. A comparison of the storage medium and the full backup is

necessary to identify losses of security elements. Further, the comparison may not

yield details on losses to authenticity or integrity for newly created files. A system may

have new files relative to the backup copy, and the administrator cannot determine

if the new file contains misleading information or if the file is incomplete. Full or

incremental backups may require the users and applications to halt during backup,

to prevent file modification during the backup process [34]. Online backup, described

below, handles the creation of a backup while users or applications are live on the

system.

Online backups must preserve files that are active without disrupting the end user

and without file inconsistencies [34]. The backup copies must be a valid copy of the

22

files or else the backup may introduce losses to security elements if an administrator

uses the backup.

Online backups may provide valuable information regarding the losses of security

elements during an attack. It may be possible to observe what security elements su↵er

a compromise for specific files. Further, supplemental information may accompany

the online backup, such as active users and processes during the creation of the online

backup.

If not properly handled, file inconsistencies may be introduced by online backup

systems [34]. It may be difcult to distinguish inconsistencies introduced by the online

backup and the attacker. Another disadvantage is that an attacker may be able to

introduce temporal inconsistencies because backups do not occur instantaneously and

the users on the system may modify files as the backup is in progress.

File base backups [34] are copies of files and directories. File-based backups may

not include the data that may exist between files and directories, such as slack space

used for malicious hiding of data [35].

File base backups allow for flexible policies for specific types of files and directories.

Frequently modified files may require more frequent backups compared to more static

files (e.g., system files, binaries, libraries).

File base backups do not capture information of previously deallocated files, which

may provide valuable information in reconstructing assets that su↵er a loss of a se­

curity element. Files that are partially destroyed, deleted, and no longer available on

the file system are not backed up. A loss of availability or integrity, through partial

destruction or deletion, may not be recoverable with file base backups.

Physical or device based backups [34] create a bit-by-bit replica of the disk, without

relying on the file system to replicate the data.

Physical level backups capture changes to slack space [35], which may help recover

from a loss of integrity (e.g., partial destruction of files) or a loss of availability (e.g.,

delete).

23

Partially destroyed files are not necessarily recoverable. Undelete and file carving

tools may help recover files. However, if an attacker has overwritten the files, the file

may be lost. Further, a defender cannot recover files that an attacker has completely

overwritten.

Tracking Changes

A simple solution to counter unauthorized data destruction is to save all writes

to persistent storage. An attacker cannot destroy data if it is impossible to overwrite

previous data. However, there are several challenges in saving all writes to persistent

storage that have limited storage capacity. In practice, such a system must address

management of accessing the most up-to-date version of a specific file, the ability to

recover prior versions of a file, and the policies to react to when the persistent storage

is full.

Snapshots and copy-on-write (CoW) systems [34] allow for a file system to track

changes after a snapshot of the file system is taken. A snapshot is a read-only state

of an entire file system. Subsequent writes copy the portions of the data before

applying the writes (copy-on-write). The written copies are also indexed to keep

track of changes. If unauthorized data destruction occurs, the administrator can

recover the original contents of the file by referring back to an older copy of the file.

Unification File Systems, such as UnionFS [36], support the ability to sandbox

potentially untrusted entities. A sandbox is a “forked”’ snapshot in which suspicious

actors are placed until their actions are verified as benign. Changes to persistent stor­

age within the sandbox are isolated from trusted users and processes. If the entity

within the sandbox is valid and trustworthy, changes within the sandbox can then

merge with the persistent storage. If the entity within the sandbox is malicious, the

changes within the sandbox do not a↵ect the persistent storage, and a system admin­

istrator can observe the files that the untrusted entity modified to gain knowledge of

attack patterns and motivation.

24

The unifying feature of the above systems is the creation of a read-only view of

the storage medium at some point in time. Changes to files after the snapshot are

saved and tracked.

After snapshot creation, the attacker must compromise the controls for CoW (e.g.,

remove the snapshot, disable CoW) to destroy data. The defenders can design systems

with a security perimeter to isolate the CoW snapshots and controls.

One disadvantage of snapshot and CoW systems are situations when a valid user

wishes to destroy a file. Destroying a file may require additional steps to remove the

file from snapshots, compared to the other backup schemes described above. Another

disadvantage is that snapshots may need to be updated to free up space of unneeded

copies of data. As all writes to existing files create copies, an attacker may attempt

to fill the disk by repeatedly overwriting files. Rather than overwriting the same

portions of the disk, as in the systems previously described, a CoW file system create

copies, which is a path for an attacker to fill the disk quickly with useless data.

Append-only, log, or continuous file systems write all modifications to storage

without overwriting existing data, which allows for users to roll back changes for

files [16]. As storage media are bounded, append-only, log, or continuous file systems

typically use a garbage collector or other mechanisms to free unwanted file versions.

The unifying feature of these systems is tracking the changes throughout the lifetime

of the file systems, and then the removal of obsolete information is decided later.

There are several version control systems specifically designed to recover from

faults or user-specified version recovery. Version files systems, such as Elephant [16],

retains important versions of specific files for recovery. The elephant system is de­

signed to keep landmarks, versions of files specified by the user or through automation

based on a heuristic. The elephant file system may also keep all version of a file. Other

file systems such as for Plan 9 [37] take periodic snapshots of the file system for later

recovery (if necessary). NILFS [38] continuously creates snapshots of the file system

as users write to the disk, which allows for recovery of files immediately after they

occur.

25

For digital forensics and security auditing, it may be necessary to have an ex­

haustive record of all files modified within an operating system to capture accurate

timelines. Systems like Elephant and NILFS provide resiliency to unauthorized data

destruction. However, sophisticated attackers may simply modify their strategies to

subvert systems such as Elephant or NILFS. Elephant and NILFS were not designed

to deceive attackers and the recovery, and checkpointing functionality is not isolated

from the end user. Further, the designs of append-only file system do not adequately

isolate the control mechanisms from the operating system, which may be untrusted.

As with Snapshot and CoW systems, if the controls and garbage collector for

the append-only file system (and the like) are isolated from the attacker, it is not

possible to destroy data directly. The attacker must rely on the garbage collector

to remove data. The policy of the garbage collector or related mechanism must be

carefully designed not to remove old data that may be useful to recover from a loss

of a security element.

The attacker’s actions may influence the garbage collector to remove old data,

even if the attacker is isolated from the garbage collector. For instance, an attacker

may attempt to fill the disk, similar to the strategy on CoW systems, to prompt the

garbage collector to remove old records to free space. A patient attacker may be

able to destroy data by waiting for the garbage collector to remove old versions of

overwritten data. In practice, the garbage collector and control mechanisms for the

above systems are accessible within the system that the user and, potentially, the

attacker uses.

2.5.3 Data Recovery and Repair

Data destruction may occur on systems that do not use any data redundancy

systems. If no backups are available to recover the original data, data recovery

attempts to reconstruct the destroyed data assets. Several of the techniques presented

below overlap with the field of digital forensics [39]. Specifically, data remanence,

26

the “retain[tion] previously stored information beyond its intended lifetime,” [40] is

helpful in recovering data that has su↵ered from unauthorized data destruction.

It may be necessary to identify the missing data assets or identify data assets that

are illegally modified. A subsequent section, Section 2.5.4, discusses identification

methods for unauthorized data destruction.

There are several methods to recover or repair previously deleted files or data.

Sluethkit, for instance, recovers “orphan” files that are inaccessible through the file

system but recoverable by analyzing file metadata to backtrack the location of the

file [41].

File carving may be necessary to reconstruct files that are fragmented and spread

across multiple locations on the storage medium [42]. However, if portions of the

deleted are missing because of a di↵erent file allocating the space of the deleted file,

it may be impossible to recover the file.

Data Caches

While not specifically designed to mitigate data destruction, data caches may

contain portions of data assets that have su↵ered a loss of a security element.

Journaling file systems duplicate data to repair file system inconsistencies caused

by an unexpected power loss [18]. Furthermore, file systems may store metadata

associated with a data object in a separate location from the data itself [18].

Hardware components may also contain portions of a destroyed data object. For

instance, a flash-based storage device may contain spare memory cells to degrade the

device uniformly, [18]. Hybrid storage devices [43], which combine both solid-state

drives and hard disk drives, cache frequently access files within the solid-state portion

of the disk. An attacker may fail to destroy data assets located on both the solid-state

and hard disk.

27

System caches may also pose a problem as portions of a file may still exist else­

where. Temporary directories, swap space, or in-memory file caches may contain file

fragments.

A system administrator may use all of the above to recover portions of a destroyed

file. However, as with undelete and file carving methods, full recovery of a destroyed

data object is not guaranteed, especially for in-memory file caches that contain highly

fragmented files [44].

Digital Forensics

It is infeasible to anticipate and store all forensically relevant states that are

generated by a computing system without negatively impacting performance [45].

CoW and Append-only storage systems help track changes to storage over time, but

there is always an upper bound on the amount of storage available on real systems.

Forensic examiners use information such as system log files, checkpoints, backups,

and metadata in an investigation. However, forensic quality of such information

is not guaranteed. Furthermore, specific data objects, such as metadata, were not

designed for digital forensics [45]. It is possible for an adversary to edit audit trails,

logs, or relevant metadata as the adversary may have access to such items or gain

access to such items through the use of rootkits [45–47]. Thus, the preservation of

quality data objects is further complicated under an adversary who seeks to destroy

or alter incriminating evidence through anti-forensic techniques. Prior work mitigates

these issues by isolating the logs outside the operating system [48] or secure audit

logging [49] to inhibit the attacker’s ability to corrupt or view log files.

An adversary may replace the incriminating data objects with random binary

bits, as suggested by NIST, to ensure that recovery is infeasible. However, Savoldi

et al. [21] indicate that using such techniques are not stealthy as the distribution of

securely deleted data objects is distinguishable on the disk. Further, the tools for

secure deletion may generate additional evidence of malfeasance [27]. Nonetheless,

28

the trade-o↵ between stealthiness and secure deletion is a decision that an adversary

must make.

2.5.4 Unauthorized Destruction Detection Strategies

Detection strategies attempt to detect destruction and react according to some

policies to mitigate or stop destructive actions or malware.

Signatures-Based Detection

Signature-based detection monitors behaviors and features for known destructive

malware [50]. The features can be (i) dynamic, derived from runtime interaction

with the suspected application; (ii) static, derived from code sequences that represent

malicious behavior; (iii) a hybrid of both [50].

The advantage of static signature-based detection is that it may protect a system

against known malware. However, there are several limitations in signature-based

detection. Some malware employs packers, metamorphic, or polymorphic techniques

[51] to obfuscate a binary, to hide features that signature-based detection schemes

rely upon. Further, generating signatures relies on careful analysis of malware and

the creation of signatures potentially by human experts [50]. Producing malware

signatures is outpaced by the rate at which malware is written. Another issue is that

signatures fail to detect previously unseen malware (zero-day malware) [50].

There are several examples of signature-based rules to detect destructive software.

For instance, device drivers that access the raw storage medium, which bypassing

the file system, is a sign of potentially destructive malware. Another example is

the detection of static features in known anti-forensic binaries such as timestamp

obfuscation or secure delete tools.

Dynamic signature-based features may observe destructive behaviors at runtime,

which may be more flexible in identifying destructive malware static-based detection.

Several standard secure delete algorithms contain distinguishing features that may

29

indicate data destruction attempts. Secure delete features may include sequences of

fixed patterns, such as zero bits, one bits, or other standard secure delete patterns.

Integrity monitoring software such as Tripwire [14] observe for any modification of a

file as an indication of an adverse modification of data assets. Overwriting portions

of a file that are not frequently updated, such as a file signature, may also indicate a

destructive action [23].

The advantage of dynamic signature-based detection for data destruction is that it

forces the attacker to modify behavior rather than modifying its source code/binary.

There are several methods [51] to obfuscate the static features in a binary file. Another

advantage is that the detection of destruction is not unique to a single instance of

malware, as in static binary features, but may also detect known destructive malware

that behaves similarly.

The disadvantage of dynamic features is false positive detection. Some benign

software may behave similarly to destructive malware. For fraudulent timestamp

modification, files from an archive (e.g., zip, tar, or rar files) may preserve the original

timestamp metadata. When extracting onto a new system, the discrepancy of the

newly created files and the timestamps written to the file system may cause a false

positive, as shown by Pennington et al. [52]. Similarly, updating system binaries may

trigger integrity monitoring software.

Anomaly-Based Detection

Anomaly-based detection observes and learns normal system behavior, without the

presence of an attacker, and detects derivations from the normal system behavior [50].

The advantage of anomaly-based detection schemes is the possibility of detecting

zero-day attacks, and the disadvantage is high false alarm rates and the challenge of

identifying features for detecting normal/anomalous behaviors [50].

Several anomaly-based detection schemes can help detect data destruction attacks.

For instance, a system may observe the entropy of I/O write bu↵ers. Anomalously

30

high entropy on a write bu↵er may indicate unauthorized encryption of a file, indicat­

ing the potential presence of Ransomware [23, 24, 53]. Anomalous I/O patterns may

also indicate data destruction attacks. Prior work observes that crypto ransomware

has distinct I/O patterns that may indicate an unauthorized encryption [23,24]. Con­

tienlla et al. in SheildFS [53] use anomalously high rates of read, write, or file rename

requests as an indication of unauthorized data encryption.

High false positive rates are a disadvantage of anomaly-based detection schemes.

For instance, false positive detection is observed in ShieldFS [53] when applications

such as Explorer and Visual Studio access a large number of files in short period.

The confusion may cause an incorrect insertion of deception or cause the system to

slow down at the incorrect time, both of which are undesirable for benign users on

the system.

2.5.5 Combining Detection and Preservation

Early works [52,54] have inspired the design of systems that prevent the accidental

or unauthorized data destruction or modification of files on persistent storage. The

Self-Securing Storage System (S4) [54] keeps all versions of changes to files for a

fixed window of time. The work builds on log-structured file systems but at a finer

granularity of file changes. Further, S4 uses security perimeters, which separates

access to the recovery and configuration mechanisms from the OS in case the OS

becomes untrusted. Without the security perimeter, an attacker can remove versions

of a file, e↵ectively destroying the data. For an attacker to destroy data on S4, she

must compromise the OS and the management interface. If the attacker only destroys

data on the OS, the administrator of S4 can recover the data.

An extension to S4 is a Storage-Based Intrusion Detection Systems (SBIDS) [52],

which observes disk access patterns for unauthorized actions. SBIDS observe for un­

usual access patterns that indicate that a machine may be under attack. The suspi­

cious actions include erroneous data/time modifications, unexpected update patterns

31

for critical files (e.g., system binaries or log files), or the hiding of files and directo­

ries. By combining S4 with SBIDS, an administrator can react to attacks, which are

observed and analyzed outside of the untrusted OS, and recover files that su↵er a loss

of a security element.

SBIDS and S4 provide an excellent solution for attacks against system binaries,

configuration files, logs, libraries, kernel objects, or unauthorized data and timestamp

modifications. Specifically, SBIDS demonstrates the ability detect unauthorized mod­

ifications to date and time stamps (a loss of authenticity), deletion of log records in

log files (a loss of integrity), and the creation of hidden files (loss of availability).

However, SBIDS does not address the problem of detecting unauthorized actions on

critical user files that are frequently updated. User critical files can vary and do not

have a rigid structure and access pattern compared to critical system files.

Other related work that combines detection and protection is ShieldFS [53]. By

using a CoW system, ShieldFS protects a Windows OS against Crytpo Ransomware.

If a process behaves like Ransomware, the files under unauthorized encryption are

recoverable by revoking the changes. The system monitors write patterns through a

custom driver. Features are extracted from disk activity, through the custom driver,

along with in-memory cryptographic features, referred to as CryptoFinder. The fea­

tures feed into a multi-tier classifier, which examines various changes to the storage

medium over time. ShieldFS mostly relies on the CryptoFinder, which contributed

to 69.3% of all the malicious samples in their experimental evaluation.

The results indicate that the SheildFS approach works for cryptographic ran­

somware, which causes a loss of utility by data transformation. Unfortunately, there

are a variety of methods to destroy data. For instance, wiper malware may not use

ciphers to destroy files. As discussed in Section 2.3, data destruction methodologies

may vary, and crypto ransomware focuses on a narrow set of methods (a loss of util­

ity through unauthorized data transformation). The experiments in this dissertation

examine a broader set of data destruction methods. The wide variety of methods

contribute to the challenge of unauthorized data destruction.

32

The ShieldFS [53] work inspired some of the design and architecture decisions of

DecMS. In short, the experimental evaluation improves upon the design of ShieldFS

[53]. The di↵erence in the experimental design is that the monitoring, analysis, and

data preservation mechanism are isolated from the attacker, and the OS where the

attacker resides is assumed to be untrusted. SheildFS provides some defense against

an attacker who attempts to disable SheildFS. Although the ShieldFS drivers are

designed to be immutable, the authors describe a path to disable ShieldFS under an

attacker who has administrative privileges or by compromising the OS kernel.

The Taser Intrusion Recovery System [55] uses taint analysis with filesystem snap­

shots and audit logs to help identify and revert file changes after an attack discovery.

Taser relies on the use of an IDS or a system administrator to identify “detection

points,” which may be a file or process that is suspicious. The recovery algorithm ref­

erences both the detection point and audit log and backtracks to find all relevant files

and reverts the changes. Benign changes replay from the snapshot point to recover

the changes that are not a↵ected by the tainted files. It may be difcult to manage

and revert the e↵ects of destructive actions when benign applications are a↵ected by

the unauthorized data destruction. Taser attempts to resolve the conflicts that may

occur when a tainted file or process interacts with a benign file or process.

2.6 Deception for Defense

Cybersecurity deception is described in detail by Almeshekah and Spa↵ord [7]. A

summary of relevant topics and definitions for this dissertation is given below.

Deception, as defined by Almeshekah and Spa↵ord [56] is “Planned actions taken

to mislead and confuse attackers and to thereby cause them to take (or not take)

specific actions that aid computer-security defenses.” However, defensive deception

when implemented as an isolated system has limitations, and there are benefits in

using deception in conjunction with other security tools [7].

33

In this dissertation, we explore deception as an enhancement of data preservation

(and other security mechanisms) under unauthorized data modification. The decep­

tive strategies are designed to work on systems with real users and not as an isolated

system for interacting with adversaries (such as honeypots).

Based on Almeshekah and Spa↵ord’s taxonomy for deception [7], this dissertation

describes deceptive components with Bell and Whaley’s terminology of dissimulation

(hiding the real) and simulation (showing the false). Dissimulation components con­

sist of (i) masking, (ii) repackaging, and (iii) dazzling. The simulation components

consist of (i) mimicking, (ii) inventing, and (iii) decoying.

Bell and Whaley order the above deceptive components from strongest to weakest

form of deception, where (i) indicates the strongest and (iii) is the weakest form of

simulation/dissimulation. Almehsekah and Spa↵ord [7] build on the Bell and Wha­

ley’s work, applied to information security:

We can deny the target access to the truth and show him the deceit.

When we cannot stop the truth from being observed, we can misdirect

the target’s focus to the deceit. When we cannot influence the target’s

focus, we can confuse the target by presenting him with the truth and one

or more plausible deceits.

When designing deceptive systems, this dissertation follows the ordering given above.

Deception can also be consistent or inconsistent [57]. Consistent deception presents a

consistent but false view of reality. The deception remains persistent despite the ad­

versary’s e↵ort in finding inconsistencies. The alternative is “inconsistent deception”

that presents deceptive information to an adversary, but the deception is ephemeral

or is easily verified to be false with some e↵ort. Inconsistent deception attempts to

disorient or confuse the adversary, which may be beneficial even if the adversary is

aware of the ruse. The system defender, who controls the fictional reality, can indi­

rectly influence the adversary’s actions. The adversary’s perception of a system is

unclear because the defender introduces inconsistent information which requires time

34

and e↵ort for the adversary to disseminate. If the attacker becomes aware of the in­

consistency, she may conclude that the (i) defender is using deception, (ii) the system

is faulty, or (iii) her perception of the system is incorrect. Neagoe and Bishop [57]

argue that consistent perception is difcult to achieve because of the variety of paths

that an attacker can use to examine if some information is consistent or inconsistent.

While consistent deception is used in sandbox systems such as honeypots, inconsistent

deception can induce confusion, frustration, or impede the attacker from achieving

her goals.

Both consistent and inconsistent deception provide advantages and disadvantages.

The challenge with consistent deception is to present the deception regardless of the

adversary’s strategies to reveal the truth. In comparison to inconsistent deception,

consistent deception requires more e↵ort for the defenders of the system. Alterna­

tively, the inconsistent deception may still disrupt the attacker who does not attempt

to unveil the deception and may require less e↵ort by the defenders to inject the

deception. This dissertation considers both consistent and inconsistent deception in

some of the experimental evaluation.

In defending computing defense system, there are several benefits in using decep­

tion with other security technologies. The benefits [56] are (i) “increases the entropy

of leaked information,” (ii) “increases the information obtained from compromise at­

tempts,” (iii) “give defenders an edge in the [Observe, Orient, Decide, and Act] OODA

loop,” and (iv) “increases the risk of attacking computer systems from the adversaries

side.” This thesis does not explicitly explore the of goals (i) and (ii). Information

leakage is a loss of confidentiality and is not a necessary condition in unauthorized

data modification as mentioned in Section 2.2. It is possible to obtain information

about an adversary from failed unauthorized data destruction attempts. However,

the work here only gathers such information and does not attribute or attempt to

understand the attacker strategies.

This thesis explores the benefits of (iii) and (iv). The OODA loop models how

adversaries and defenders behave in a conflict. The player who acts first has a tactical

35

advantage, and deception may disrupt a player’s view (e.g., observe and orient) of the

conflict, causing impedance during decision or selecting a suboptimal action [7, 56].

The advantage for the defender is additional time to decide and act when faced with

an adversary.

For unauthorized data modification, the defender may be able to prepare data

redundancy in anticipation to a destructive action. If the redundancy or replication is

isolated and hidden from the attacker, the attacker may believe that she is destroying

data without knowing that the assets are under protection. Through careful planning

and a successful deceit, a defender can recover from unauthorized data modification

quickly, giving the defender an advantage in the OODA loop. Injecting false responses

in the system may also cause the attacker to asset the situation, find alternative attack

strategies, and possibly confusing the attacker [7]. In the former case, the defender can

react more quickly to unauthorized data destruction than what the attacker perceives,

and in the latter case, the attacker is slowed down which gives the defenders more

time to react to an attacker.

Disrupting the attacker’s destruction through the use of false information may

increase the risk for the attacker (benefit (iv)). For instance, anti-forensics tech­

niques destroy incriminating information on a system. Feeding false information to

an attacker, such as showing the attacker’s expected “successful” outcome when she

is destroying incriminating information, gives the attacker a false sense of assurance.

Further, some data destruction attacks attempt to be stealthy until the attack is

unleashed to maximize the e↵ectiveness. If the attacker believes that she is destroy­

ing data, but the system is resilient to the attack, the adversary risks revealing her

presence within a system.

Almesheka and Spa↵ord describe a model to plan and integrate deception into

computer security defense [7]. The planning requires strategic goals and how an at­

tacker should react to deceit. The deception should exploit an attacker’s bias and

should reflect the simulation and dissimulation strategies. A feedback channel mea­

36

sures how an attacker reacts to the deception. Further, the risks of using deceptions

should be well-understood.

In particular, the costs of using deception may impact the end user, especially if

resources are shared between the deceptive system and the system in need of defense.

The deceptive system may have to compete for resources, which may be undesirable

for the system under protection. There is a need to understand how deceptive sys­

tems e↵ect “normal users’ activities” and identify if the risks of using deception are

acceptable [7]. Distinguishing between truths and lies is also a challenge in some

computing applications Forensics attempts to ascertain the truth, and deceptive in­

formation may lead an examiner to invalid conclusions. The deception introduced

for defensive purposes must be identifiable for a forensic examiner but difcult for

an attacker to identify as deceitful. Details for the deception planning, integration,

risks, benefits, and costs for the proposed system is found in Chapter 4.

Building on the work by Neagoe et al. [57], Sun et al. present Chameleon [58],

which explores consistent and inconsistent deception to vary the behavior of operating

systems. The authors present a case study to demonstrate Chameleon’s feasibility

against botnets. Chameleon injects deceit in several system calls, which is designed to

disrupt fragile software. The results indicate that the unpredictability of the system

calls slowed down the botnet’s ability to send spam without significantly degrading

the performance of standard desktop applications. The results indicate that malware

is sensitive to minor operating system misbehavior.

A viable deceptive strategy evaluated in this dissertation is mimicking a system

that an adversary expects and mask the adversary from the truthful nature of the

system. There are several techniques, primarily used by rootkits to hide from system

administrators and anti-malware software, to hide components of a system [25,59,60].

Isolation is necessary to preserve the integrity of the preserved data that is under

destruction or any forensically valuable information. Isolation relies on compart­

mentalization or security parameters such that the user is unable to modify critical

37

components or data. The existing techniques are designed to isolate rather than hide

the presence of the system.

For instance, FreeBSD could be configured to run in a secure mode which ensures

that flags for immutable and append-only files cannot be changed and kernel modules

cannot be loaded after boot [33, Chapter 20]. It may be possible to write logs and

preserve the data under destruction into an immutable and append-only file to prevent

an attacker from destroying files, even at the highest attacker privilege level 4 . While

isolation techniques are critical to preserving the integrity of logs or preserved data,

attackers could simply look for the presence of such files as evidence that a system is

using the above configuration and modify their attack strategy.

There are some existing data hiding techniques to increase the challenge of dis­

covering critical components of a system. Several of the data hiding techniques are in

use in malicious software, such as rootkits. Kernel Object Hooking (KOH) and Dy­

namic Kernel Object Manipulation (DKOM) are well-known strategies that rootkits

utilize to stay hidden from anti-malware software and system administrators. There

exists a rich body of literature ([59, Chapters 3-6]) that details how rootkits remain

hidden from monitoring. The same techniques can hide the presence of deceptive

technologies.

For instance, files associated with a deceptive system in persistent storage could

be inaccessible to any users within the system by modifying system calls (through

DKOM or KOH) to identify critical files and hide their presence from the operating

system [59, 61]. Other techniques, such as unlinking processes from the process lists,

could also hide the presence of deceptive components within the operating system.

Another technique that may combine both isolation and hiding is Virtual Machine

Introspection (VMI). VMI allows a host machine to access the contents of memory

within a guest virtual machine by examining the “hardware states and events and

uses this information to extrapolate the software state” of the virtual machine [62]. A

deceptive system could be placed within the Virtual Machine Manager (VMM), intro­

4Assuming that the attacker cannot access the system before boot to disable immutable files.

38

spect a guest virtual machine, preserve information, and respond deceptively. VMI

provides some distinct advantages over the previously discussed hiding techniques.

One disadvantage of DKOM and KOH is that the core functionality exists within the

same system where a potential attacker resides. An attacker could compromise the

system and uncover the deception. A challenge of VMI is to extrapolate the semantic

meaning of low-level hardware changes [62]. However, techniques exist [63] to address

the challenge of the “semantic gap” [63].

Other isolation and data hiding techniques place system components near the

hardware, which are inaccessible unless an administrator has physical access to the

machine. Another design alternative is placing the deceptive system on the network,

which intercepts, analyzes, and modifies network trafc outside of the system under

protection. All of the above data isolation and hiding techniques are considered in

designing the architecture for the experimental evaluation in Section 4.1.

2.7 Other Related Work

Barik et al. describe a system that enhances the logging mechanism for MAC DTS

(Modified, accessed, created, Date and timestamp) for the Ext2 File system [64]. The

proposed system preserves MAC DTS for key files through the use of Loadable Kernel

Modules for virtual file systems (VFS). The system uses two unused inode fields in

the VFS to (i) indicate the file is critical and (ii) a pointer to the MAC DTS trail

blocks. The goal is to preserve MAC DTS against an adversary who attempts to

purge evidence by modifying critical timestamps.

While the work by Barik et al. [64] is similar to the work presented in this disser­

tation, there are some crucial distinctions. First, Barik et al. do not explicitly use

deception to trick an adversary into believing that their evidence wiping technique

is working correctly [64]. Secondly, the authors do not attempt to hide the presence

of the of their proposed system. If an adversary is aware of the scheme proposed by

Barik et al. [64], they can trivially check to see if the two unused inode fields are in

39

use. Third, the logging mechanism is not resilient to unauthorized modification. If

an adversary is aware of the scheme proposed by Barik et al. [64], she can merely

enumerate through the MAC DTS Trail Blocks and modify the entries.

Milkovic [47] describes how a rootkit could subvert memory forensic tools5 that

dump the contents of memory for forensic analysis and possibly exposing the rootkit

to an examiner. Milkovic proposes a method that intercepts system write calls and

examines the parameters to determine if a memory acquisition tool is dumping mem­

ory. If a memory acquisition tool is detected, the rootkit removes evidence of its

existence from memory before the memory acquisition tool can dump the contents

of memory for later examination. From the forensic investigator’s perspective, the

memory acquisition tool appears to be behaving normally but in actuality is failing

to capture malicious processes that are memory-resident. The same methodology

applies to defense. DecMS could be designed to be memory-resident. If an attacker

attempts to observe portions of memory that reveal DecMS, intercept the call and

produce plausible results to induce attacker doubt regarding DecMS.

Kuperman and Spa↵ord [65] describe AUDLIB, a method to wrap libraries to pro­

duce application-level audit information. AUDLIB uses Library Interposition to inter­

cept library function calls to generate detailed audit information with a higher degree

of fidelity than typical kernel logging. AUDLIB can produce a detailed audit trail that

includes timestamps, PID, PPID, the caller, and the library that the caller invoked.

Further, AUDLIB can identify misuses such as string, overflow, and return-to-libc at­

tacks with little overhead to the end user.

AUDLIB is capable of detecting anti-forensics actions and other items of forensic

interests. However, AUDLIB is not designed with deceptive capabilities. An attacker

could simply check to see if AUDLIB is installed on a given operating system and disable

it. Library Interposition is a valuable method that DecMS could use to identify actions

of forensic interest but must be combined with hiding and isolation techniques to be

e↵ective.
5
http://www.volatilityfoundation.org/

http://www.volatilityfoundation.org/

40

Nance et al. discuss the research challenges involved in digital forensics and VMI

[66]. In particular, they point out the challenges, from a digital forensics perspective,

of developing a VMI tool. They discuss the methods in which the goals VMI can be

achieved while considering the risks of unauthorized entities who may use VMI for

malfeasance. The work presented in this dissertation assumes that the interposition,

regardless of the method, is trusted and not compromised. Further, the authors

discuss the ability to conduct VMI for covert operations. The authors point out that

covert VMI is applicable in deception, where one can simulate hardware failures or

in general, influence the actions of processes. The discussion motivates the research

presented in this dissertation. The authors point out that such a system is challenging

because of the issues of “monitoring non-quiescent systems.” Finally, the authors also

discuss the possibility of detecting VMI on a virtual machine. The authors discuss

that an attacker could analyze system wall time or page faults to determine if she

is running within a VM with VMI. While the research challenge of exploring VMI

detection is relevant to DecMS with VMI, it is out of scope with the thesis statement.

However, design choices of DecMS are driven from the discussion presented by Nance

et al. [66], as it is more challenging to determine if a system has VMI compared to

determine if a system runs deceptive software within the host operating system.

Savoldi et al. [21] evaluates the feasibility of identifying regions on a disk where a

secure deletion action may have occurred. The same methods can be used to identify

where destruction took place to determine destruction as they occur. As shown by

Savoldi et al. [21], the statistical test suite for pseudorandom number generators [67]

and the entropy-based classifier could be used to identify secure delete actions.

More recent work uses similar methods to detect secure deletion before reaching

the disk. Unveil [24] and CryptoDrop [23] use features to detect the presence of

destructive actions. Unveil monitors for stealthy Ransomware within an anti-malware

analysis system and monitors the entropy of writes to the disk as a detection feature.

CryptoDrop uses file signatures and entropy as part of its detection features.

41

Bacs et al. [68] design an intrusion detection system called Storage-Level Intrusion

ChecKer (SLICK) to protect virtual storage devices. SLICK monitors write accesses

to specific regions of the disk that are critical, such as the master boot record (MBR),

bootloader, or space beyond the region of the file system. Particularly, the bootloader

and MBR are locations that an attacker replaces to execute code before the OS starts

or causes the OS to fail to boot, respectively. SLICK monitors for any modifications

in those regions and successfully detects all modifications.

The Drakvuf system [69] uses VMI to analyze malware through VMI. The goals in

Drakvuf that related to this thesis document include data collection fidelity, stealthi­

ness, and isolation. Data fidelity in VMI is a challenge [66]. Drakvuf uses active VMI

to insert breakpoints at key locations to halt the virtual machine to gather runtime

information, thus avoiding the non-quiescent inconsistency problems [66]. Drakvuf is

a malware analysis system designed to test and identify malicious applications. With

some e↵ort, it may be possible to use Drakvuf to protect live virtual machine systems

with real users. Some of the experimental results use Drakvuf to observe for data

destruction actions. One of the prototype systems, DecMS-VMI, extends Drakvuf to

analyze for data destruction, preserves files, and injects deceptive responses to protect

a guest virtual machine.

42

3 THREATS AND DECEPTION

Designing a DecMS requires an understanding of the threats, the cost/risks of in­

troducing deception, monitoring for the desirable conditions to introduce deception,

and the methodologies to achieve the deceptive goals [7]. As with any security sys­

tem, trade-o↵s guide in the design of the architecture. The design of the architecture

explored in this dissertation is guided deceptive planning detailed in [7].

First, an explicit threat model is necessary to design deception for defense. Build­

ing on the threat space introduced in Section 2.2, a definition of several threats are

given. Details regarding the destructive methods are presented, which is critical in

identifying destruction. Later, in Chapter 5, instances of each of the threats described

here are given to evaluate prototypes of DecMS. The threat models will help support

the DecMS Identification and Reduction Goals.

Second, the deceptive planning in Section 3.2 follows the guidelines provided by [7]

to plan a defensive deception that is e↵ective in deceiving an attacker. The deceptive

goals and attacker biases guide the design decisions in subsequent sections. Based

on the assumed threats, the deception planning details the needs for monitoring

for a DecMS. Several services are identified to help facilitate the deception. The

contributions include a deceptive plan to produce plausible false reality and support

the DecMS Reduction Goal.

Third, the costs of deception within an I/O system are given. A crucial part of

planning for deception is understanding the costs and risks of using a deceptive system

[7]. Efciency degradation is the cost of placing deception within the I/O system.

System defenders should determine the acceptable trade-o↵ for gaining resiliency of

data destruction at the cost I/O performance. A set of costs for deploying DecMS

is defined. Given the costs, identifying the computing systems where a DecMS can

provide defense benefits is also considered. The contributions include the cost factors

43

associated with deception on I/O systems and several computing systems that may

be suitable for a DecMS. Further, the costs of deception and suitable systems guide

the design choices for the Impedance and Preservation Goals.

Fourth, the design space and architectures to exploit the adversary’s biases are

detailed. The architectures vary in complexity and e↵ort necessary to protect against

unauthorized data destruction. Some design and integration methods provide a bal­

ance of achieving the deceptive goals with an acceptable cost increase. The contri­

butions include several design strategies given the threats, assumptions, and the cost

factors in using deception to protect against unauthorized data destruction.

Finally, the placement of DecMS is also considered. The benefit of placing the

monitoring and deception services within the system under protection is a simplistic

design but at the cost of stealthiness. Alternatively, DecMS can be placed outside

the system under protection but may require additional work to monitor the system

from the outside. The challenges of both designs are detailed, and the contributions

include the trade-o↵s of both design. Further, the monitoring and protection policies

for identifying when the DecMS should impede data destruction to protect critical

assets are also considered.

3.1 Threat Model and Assumptions

The selection basis for the threats to evaluate the hypothesis statement is as fol­

lows. First, the threats should be instances of real unauthorized data destruction and

not synthetically created. Using real malware samples will demonstrate the e↵ective­

ness of exploiting the confirmation bias of current malware threats. To adequately

assess the threat space, the evaluations use several threats to span the possible losses

to Parkerian Hexad security elements caused by unauthorized data destruction. The

selection of threats evaluates the feasibility for DecMS to protect against all security

elements that are relevant to data destruction, as identified in Section 2.2.

44

Figure 3.1.: Threats and loss of Parkerian security elements for various data destruc­
tion attacks.

Figure 3.1 illustrates three types of threats, their respective data destruction

method, and the loss of a Parkerian security element. Note that between the anti-

forensics and wiper malware threats, the entire threat space is covered. Below, each

of the three threats from Figure 3.1 is detailed.

The definitions of assets that DecMS protects are in Section 2.1, which include

RA and NRA files and metadata stored on a file system. Each threat focuses on a

subset of assets to meet their end goals. The goals, motivations, and targeted assets

are necessary to guide the deception design and defense, which refined in subsequent

sections.

A definition of benign users is also necessary as the addition of deception relating

to I/O may a↵ect legitimate users, by limiting the resources available to the users or

45

by incorrectly presenting deception to benign users. The benign user is also defined

below and will serve as a baseline in the experimental evaluation.

3.1.1 Wiper Malware Threats on Integrity

Wiper malware destroys digital assets to render computing services and data un­

usable. Other wiper malware may have di↵erent goals and methods. Below, a de­

scription of a particular type of wiper malware that targets the loss of integrity is

detailed for evaluating DecMS.

Goals

The goal of wiper malware is to destroy data assets to render data recovery difcult

and to cause the system to become unusable. The motivation is to bring computing

resources o✏ine or to halt users from completing tasks. The specific reasons may

include financial gain, failing to pay extortion or to cause chaos.

Targets

Wiper malware targets both RA and NRA objects on a file system. RA objects

may include partition tables, master boot records (MBR), or other assets that are

critical for system stability. Several recovery tools exist to repair MBR [70] or parti­

tion table corruption [71]. The NRA includes frequently updated user files, such as

those found in a home directory.

Methods

Wiper malware attempts to destroy files quickly with the goal of making a recovery

difcult. Portions of files, such as file signatures, are overwritten so that recovery

software cannot easily distinguish the beginning of a file. Overwriting file system

46

data structures such as the MBR or partition table also complicates file recovery

mechanisms as the indexes to the files are no longer available to the system defenders.

The wiper malware threat focuses on causing a loss of integrity of RAs and NRAs.

The entire contents of a file are not entirely lost to the above methods. It may be

possible to recover portions of a file because of the methods above only target a

small portion of a file rather than the entire asset. Figure 3.1 shows that the wiper

malware threat causes a complete loss of integrity from the partial destruction of

files. A partial loss of availability and utility is the result of the possibility of partial

recovery NRAs.

Alternative Goals and Methods

Wiper malware may also target evidence of malfeasance to hide the methodology of

the data destruction from forensic investigators or system defenders. Wipers may also

attempt to overwrite the entire disk or file but at the cost of the speed of exploitation.

A full destruction of a particular data asset, as defined for the evaluation of DecMS,

is closely related to anti-forensics threats to Availability and Utility.

3.1.2 Anti-Forensics Threats to Availability and Utility

Anti-forensic techniques are specifically designed to overcome forensic analysis

software [35] or destroy digital evidence rendering it unrecoverable [27]. Data de­

struction is a particularly difcult problem to overcome in forensic investigation [27].

An attacker will not simply delete incriminating evidence, but rather, securely delete

incriminating data segments on the disk.

Goals

The goal of the anti-forensic attacks on Availability and Utility is to purge NRA

from a persistent storage medium completely. The files under destruction should no

47

longer be available, and information that replaces the targeted files should have no

utility.

Targets

The assumed targets of Anti-forensic attacks on Availability and Utility are NRA.

Nonrecoverable files represent forensic evidence that is local to the storage medium.

The evidence is assumed not to be replicated elsewhere.

Methods

The methods for data destruction are known secure delete algorithms. Several of

the algorithms follow standards that are designed to destroy targeted data completely

and may include multiple overwrites. For example, tools such as shred [72] or srm [73]

are designed to erase data in a way that renders recovery impossible. The secure

delete methods the file, the associated metadata, and any information stored within

file system data structures.

Alternative Goals and Methods

Secure delete methods overlap with anti-forensics and wiper malware. It is possible

to securely delete data from a file by overwriting the complete file with arbitrary data.

Anti-forensics may target specific records in a log file rather than destroying the whole

file. The partial destruction of a file overlaps with the assumed methods of the wiper

malware threat.

3.1.3 Anti-Forensics Threats to Authenticity

An attacker may destroy forensically valuable information such as file timestamps,

which may be overwritten with misleading information causing a loss of authenticity.

48

Goals

The goal of an anti-forensic attack on Authenticity is to overwrite data with

misleading information to obfuscate the evidence of a crime. Forensic examiners use

file system timestamps to create a forensic timeline, and replacing timestamps with

fraudulent times is one method to reduce the quality of forensic evidence.

Targets

The assumed targets for threats against authenticity are replacing the MAC DTS

for the file system metadata associated with a given file.

Methods

There exist libraries or system calls that handle changes to MAC DTS file system

metadata. The assumption is that the attacker uses the well-documented library to

modify MAC DTS to change the timestamp of a file. The MAC DTS replacement

can be innocuous, blending in with other files without raising suspicion.

Alternative Goals and Methods

Rather than replacing the MAC DTS, other file system metadata can be replaced

with misleading information. Rather than removing a log entry, for instance, the

adversary may replace the log with an entry that is innocuous. Other attacks that

cause a loss of authenticity may include replacing executable programs with ones that

contain hidden functionality such as a backdoor into the system.

A threat that modifies MAC DTS satisfies the requirement of exploring an attack

on authenticity. The alternative goals and methods are protected by other mecha­

nisms, such as integrity monitoring for binaries and log files.

49

3.1.4 Crypto Ransomware Threats to Authenticity

Rather than destroying critical data, Crypto Ransomware renders a target’s com­

puter or data unusable unless the user pays a fee. The focus of ransomware is to

cause a loss of data utility and availability to the user.

Targets

The targets for the Crypto Ransomware threats are user files that are NRA. RA

are not considered as a user or system administrator can easily replace the file if

backups exist.

Goals

The goal of Crypto Ransomware is to extort payment by transforming user files

into an unusable state. Restoring files is not possible unless an extortion payment is

received.

Method

The assumption of the transformation method is an encryption method with a

key that is not in the user’s or system administrator’s possession. The key is assumed

to be computationally intractable to recover.

Alternative Goals and Methods

Other data transformation methods are possible that render user files unrecover­

able. For instance, a steganographic method could place user files within multimedia

files. The extraction can use a key, which is out of the user’s possession. However,

steganography is not typically used in this way.

50

3.1.5 Benign User

A benign user is assumed to be well behaved and does not attempt do any unau­

thorized data destruction. The impact of the deceptive system should not hinder the

end users’ ability to complete their tasks. The benign user will serve as a baseline

for the experimental evaluation. Several user tasks are simulated in the experimental

evaluation to determine if the deception causes any disruption to the end user.

A user may write compressed files to the disk, which may have high entropy and

potentially confuse a monitor for identifying destructive writes. High entropy writes

may cause misclassification. Several data destructive methods (Crypto Ransomware

and secure delete) overwrite assets with randomly selected bits. The false positive

may cause unwanted disruptions for the end user or may indicate signs of the existence

of DecMS for threats.

3.1.6 Assumptions

Assumptions for all of the above threats follows:

1. It is assumed that the threat compromises the machine and can execute de­

structive actions.

2.	 The threat adversaries destroys data by overwriting a data object, partially or

completely, on a storage medium accessible from the compromised machine.

3. The attacker does not have physical access to the storage medium.	 Ergo, the

attacker cannot physically destroy the storage medium and uses the software

data destruction methods outlined above.

4. The attacker may have administrator access to the compromised machine but

cannot avoid monitoring 1 .
1For example, Kernel Object Hooking (KOH), Dynamic Kernel Object Manipulation (DKOM),

or Direct Kernel Structure Manipulation (DKSM) [59, 74] could be used to remain hidden from
security monitoring from within an OS.

51

3.2 Planning Deception

In this section, the plans for the deception is outlined to evaluate the hypothesis

statement for the dissertation.

3.2.1 Strategic Goal

As detailed in [7], it is critical to specify the strategic goals of the deception. The

goals of the deception are given.

1. To	 gain information about the targets of the destructive adversary while

preserving data under destruction.

2. If preservation of data is not possible, impede the destruction with plausible

but misleading faults that are difcult to attribute.

3. Decrease the e↵ectiveness of data destruction while increasing the risk of re­

vealing the adversary and her techniques.

The first goal is to provide the system defenders with a list of assets that adver­

saries target and aligns with the DecMS Identification Goal. The list of assets may

provide insight regarding the data assets that interest the threats. Rather than pre­

venting the destruction, the data under destruction is preserved and isolated from the

attacker, aligning with the DecMS Preservation Goal. While the same benefits can be

gained from dynamic malware analysis, some preliminary information is obtainable

from the DecMS. Further, it may be challenging to capture the malware sample, as

seen in some wiper malware that destroys itself before wiping files from persistent

storage [75].

The second goal is to prevent a potential weakness of the deceptive strategy in use

for the first goal. As storage space is fixed, there may be a situation where preserving

data is not possible. It may be best to slow the attacker down or cause confusion to

prevent the storage medium from becoming full. The impedance may allow time for

52

the system to remove useless information, compress data to make space to preserve

data from potential destruction or allow time to analyze the system state, which

aligns with the DecMS Impedance Goal. The deception that will react to such events

is designed to appear plausible from the perspective of the end user on the system

under protection to not raise suspicion.

The third deceptive goal is to reduce the e↵ectiveness of an attacker’s method

to destroy data, satisfying the DecMS Reduction Goal. As the first two goals are

to deceive the attacker, the third goal is successful if the deception can mitigate the

destruction attempts. The more successful the data preservation is, the less reliable

the tools and data destruction methods are for the adversary, even if the adversary can

fool the analysis of data destruction. There should be a risk for the adversary even if

DecMS produces a false negative when attempting to identify data destruction. The

increased risk could be that the data under destruction may still be recoverable or

the e↵ort needed to destroy the data does not match the perception of the adversary.

3.2.2 Adversary Reaction

The adversary should assume that all of her destructive actions are successful,

even if the adversary validates that the data under destruction is no longer available.

Any impedance caused by the secondary goal should be innocuous and not raise the

adversary’s suspicion. The adversary should not suspect that the data destruction

tools are not e↵ective in meeting her goals. The threats should continue operating as

if the data destruction are e↵ective.

3.2.3 Attacker Bias

The bias that is exploited is the confirmation bias as mentioned in [7]. The

adversary assumes that the information presented to her is truthful. Any detection of

malicious behavior will cause a denial of access to the compromised system to prevent

further disarray. The confirmation bias is the belief that most computing systems

53

report truthful information about the system state and not attempt to deceive the

end user [7]. A destructive action should be successful, and the expected results

should be verifiable. However, it may be unnecessary as there is typically no reason

to validate a result of changes to persistent storage because past interactions have

biased the user into believing results do not change unless explicitly modified by

some entity within the system. Further, it is common to occasionally see a drop

of performance in computing for a variety of reasons (e.g., network issues, memory

leakage, waiting for I/O, scheduling, competing for shared resources).

3.2.4 Deceptive Components

Based on the goals, there are several viable options for the deceptive components.

The deception should be in regards to the system’s functionality or state [7]. Fur­

ther, the deceptive system should “identify patterns and characteristics [...] and the

conditions when to deceive” [7]. Identifying destructive patterns, characteristics, and

conditions require DecMS to (i) monitor I/O and (ii) analyze the I/O.

There are several methods to monitor and analyze I/O. To provide flexibility in

observing and analyzing the destructive methods outlined in Section 3.1, DecMS uses

several policies that are defined by the system defenders. In DecMS, the Monitoring

Policies define the methods to identify adversary destructive behaviors. The Monitor­

ing Policies consist of an Observation Policy, which defines types of I/O requests that

may be related to data destruction. The Observation Policy focuses on observing the

I/O that may be of interest. The Analysis Policy takes the observable information per

the Observation Policy and determines the conditions when to deceive and to preserve

data that is under destruction. If the analysis policy identifies that a deception or

preservation should take place, the Protection Policies detail the appropriate actions

to take. The Protection Policies consist of a Preservation Policy, which preserves the

data that is under destruction, and a Deception Policy, to obfuscate the true nature of

54

the system. For each of the Monitoring and Protection policies, an associated service

actualizes the rules defined by the policies.

Patterns, Characteristics, and Conditions Of Deception

The deceptive system must identify unauthorized data destruction events to re­

spond deceptively. Several prior works in misuse/intrusion detection may identify

common unauthorized data destruction patterns. Work that can help identify unau­

thorized data destruction is given in Section 2.5.4.

Some write requests for specific files may always be unauthorized and the mon­

itoring should identify when such requests occur. Some of the integrity monitoring

methods can help identify unauthorized modifications to trigger deceptive responses.

The conditions for a deceptive response may consist of black/whitelists where the

blacklists provide a list of conditions, such as files or locations on a storage medium,

where there should always be a deceptive response or a whitelist where the system

should never inject deception. The rationale for a whitelist could be trade-o↵s in

time/space, or there may be conditions where deception is undesired, such as re­

quests from high privileged processes. Whitelists may also decrease the e↵ectiveness

of the deception if the attacker can modify her attack to take place within a whitelist

directory or if she can whitelist her destructive actions.

Other conditions and events may also modify the deception to support the goals.

For instance, if storage space is abundant, the system may preserve all I/O that

modifies files and allow the users on the system to operate without impedance. If

storage is scarce, the deceptive strategy may adjust to impede writes that appear

destructive.

Deceptive System Functionality and State

The Protection Policies should provide adequate defense and deception neces­

sary to deceive threats and protect the truth regarding the “system functionality”

55

or “system state” [7]. The deception may consist of any combinations (or multiple

combinations of) simulations/dissimulations. A single simulation/dissimulation pair

may not be sufcient to provide protection. Further, information regarding the true

system functionality and state may also be protected by other security mechanisms,

such as access control or integrity monitoring, but an emphasis is given to deceptive

strategies in this dissertation.

Modifying the way I/O operates to support the deceptive goals requires that

the adversary cannot uncover the true system functionality of overwriting a file by

manipulating the adversary’s perception through denial, misdirection, or confusion

[7].

Examples to deceive the system functionality includes masking the presence of the

services relating to the Monitoring or Protection Policies. A deception that protects

that system state may consist of a mask that hides the internal state of the system.

Deception regarding the system I/O exploits the confirmation bias of the adver­

sary’s assumption that overwriting data is an e↵ective way to achieve data destruction.

Note that all of the assumed threats use data overwriting to destroy some portion of a

file (or metadata) on a file system. The deception alters the overwrite functionality of

the system by preserving the data under destruction while reporting to the adversary

that the overwrite is successful.

An inconsistent deception for I/O may report that an overwrite is successful, but

upon review, the adversary discovers that the overwritten data is not on the storage

medium. Both strategies for I/O are viable, but the advantages/disadvantages require

discussing implementation details, which are given in Chapter 6.

The state of the system should appear weak to a data destruction attack to deceive

the adversary into using methods that DecMS is capable of handling correctly. The

deception can take the form of decoy data preservation services that are located

within the system under protection, without the attacker realizing the existence of

DecMS. Further, the impact of the attacks should also be convincing to an adversary.

As mentioned previously, a deception could convince the adversary that her data

56

destruction attacks are e↵ective in destroying data by showing that the destroyed

files are no longer available.

Several services are necessary to support the goals of the deception. The Obser­

vation Policy and service mechanisms watch the users within a computing system for

destructive actions. Second, data preservation services are necessary to meet the first

goal. The Analysis Policy and service identify data destruction and the Preservation

Policy and service preserves the data from potentially malicious destructive actions.

The data preservation service can incorporate one of the many preservation methods

systems from section 2.5.2.

If the services that are necessary to support the goals degrade system performance,

the attacker may uncover the presence of the deception. Deception regarding the

system activity may help obfuscate or deny the presence of service activity within the

system.

Specifically, there may be noticeable performance delay that occurs only during

data destruction. An adversary may conduct a statistical analysis to determine if

there are hidden services that are not visible from within the operating system.

The presence of the monitoring may be hidden from the users or may be iso­

lated from the system under protection. There are several viable locations for the

monitoring service, which are described in Section 4.1.

The system under protection may have mechanisms in place that attempt to pre­

serve user data. However, the data preservation within the system under protection

may be disabled after the attacker has compromised the system. If the attacker dis­

ables protection services, the attacker may perceive that the system is vulnerable to

unauthorized data destruction attacks. However, the perception of the system is in­

correct if the attacker is denied access to information that indicates that a protection

system exists outside the system under protection. The attacker’s false perception of

the system state helps support the first goal of gathering information about attacker’s

targets for unauthorized data destruction.

57

Simulation and Dissimulation

Below are some simulation/dissimulation strategies for DecMS. The presentation

is left at a high level as it is necessary to provide implementation details to describe

the strategy adequately.

Mimicking The adversary’s confirmation bias is that the system should behave

based on previous interactions with a similar system. A viable strategy is to configure

DecMS to behave in a indistinguishable manner to a system without DecMS. There

are several challenges to mimic a system with the monitoring and protection services.

If resources are shared between the services and the system under protection, then

the attacker may observe delays at unexpected times.

For example, DecMS could show the results of a successful data destruction attack

to convince the adversary that the attack was a success. The reality is that data is

preserved elsewhere.

Inventing Rather than mimicking a system without DecMS, the alternative strat­

egy is to invent plausible causes of discrepancies. Some services, such as preservation

or analysis, may require additional delays that would not appear in a system without

DecMS. Inventing a cause of the delay, such as a networking delay or waiting for a

shared resource to become free may help deceive threat.

For instance, DecMS could invent arbitrary delays during benign writes to hide

true delays that caused by a preservation service. Inventing hardware or OS related

faults could also impede an attacker when data destruction is taking place.

Decoying If inventing is not convincing, then decoy services could lead an attacker

away from the true services. Several decoy services may purposefully be visible or

partially visible to an adversary. An attacker who disables or circumvents the decoy

service could fail to investigate the true service.

58

For example, a decoy preservation service can be enabled on an operating system to

show that a system has protection against unauthorized data destruction. However, a

service outside of the operating system, such as a hardware component, could provide

the true preservation.

Masking Masking the true configuration of the system could be achieved through

isolation techniques in addition to more deceptive techniques. For instance, DecMS

can insert deceptive responses whenever the adversary attempts to uncover informa­

tion regarding the services of DecMS.

Repackaging If masking whole or parts of DecMS are difcult, then repackaging

can help in deceiving an adversary. DecMS can be repackaged to appear as an innocu­

ous service that is unrelated to the goals of DecMS. For instance, a driver or kernel

module could be repackaged to support the goals of DecMS. The attacker may not

bother to verify that the kernel module is di↵erent from her preconception because

of her confirmation bias.

Dazzling If the repackaging is not convincing to an adversary, then dazzling the

adversary is a viable option. For DecMS, dazzling may consist of producing several

plausible instances of DecMS. The dazzling strategy should make it difcult for an

adversary to identify the correct DecMS. Further, the risk should be high for an

adversary who interacts with the incorrect DecMS.

3.2.5 Feedback Channels and Monitoring

The defender uses the feedback channels to monitor the actions of the adversary

[7]. To protect against unauthorized data destruction, the feedback channel should

determine when a destructive action is taking place to react accordingly. The reaction,

as mentioned previously, should preserve the data under destruction to meet the first

goal. The defenders should also react when the adversary is attempting to fill the

59

disk with meanless data to disrupt the system under protection in a way that may

negatively impact users of the system. The disruption may be in the form of halting

the system until sufcient storage space is available. Under such circumstances, the

attacker may be aware of the deception so the adversary may react with a counter

deception to potentially disrupt or impede the attacker.

The feedback and monitoring channel depends on the implementation of the de­

ception. However, to protect against unauthorized data destruction, the following

actions should be monitored to support the deception.

•	 Identify writes that appear to be destructive

•	 Identify writes to any sensitive files that should preserve, regardless of the in­

formation that is written.

•	 A mechanism to determine the state of the system to adjust strategies as nec­

essary.

Identifying destructive actions relies on existing detection mechanisms and thus

inherits the possibility of false positives and false negatives. As with other security

monitoring tools, the accuracy may not be perfect. There is a non-zero chance that

a benign user’s write appears destructive. Further, the monitoring and feedback

channels may also degrade system performance, which also a↵ects benign users.

3.2.6 Risks and Countermeasures

The final step of planning the deception is to identify the risks and the potential

impact on the adversaries and benign users on the system. The risks and impact are

then examined to determine if the risks of using deception are worth the benefits.

As mentioned in [7] there are risks associated with changes to the system that

a↵ect the adversary and the benign users or computing services on the system under

protection. The e↵ort necessary to destroy data under the proposed system is quan­

tified, but additional experiments with real attackers and systems are left for future

60

work. In addition to performance impact, real users may become confused when mis­

information is presented. The confusion is subjective to the user who consumes the

deception and quantifying the confusion is also left for future work.

Several experiments will quantify the performance and degradation of the specific

deceptive strategies and systemization of the deception. The increase in write latency

and the decrease in throughput are viable measurements to quantify the impact of the

deceptive system. Likewise, the same measurements can also indicate the impedance

on the adversary. Other measurements, such as the percentage of files preserved will

quantify the accuracy of identifying destructive writes and the ability to safeguard

the files under destruction.

There are several viable strategies to deceive the attacker. The specific strategies

to deceive the adversary depend on the type of system and the amount of risk the

specific system may take. Hardware, software, virtual machines, and networking

solutions are viable places that may be modified to support the goals of the deception.

The design choices for implementing the deception, the types of systems that are

resilient to the risks introduced by deception warrant an in-depth discussion. Section

3.3 describes the types of systems that may support the risks of using deception and

Section 4.1 and 4.2 details the viable design choices to meet the goals.

3.3 Cost of Deception

While providing benefits, deception comes at a cost. The system defenders must

support additional computing systems to manage, deploy, observe, or analyze the

e↵ectiveness of deceptions. Depending on the implementation, additional computa­

tional overhead and latency may be observable in the defended system. Since security

resources are bounded and often compete with other required services, deception may

also compete for resources. Further, adding deception into the system may need ad­

ditional hardware to reduce the overhead associated with deception.

61

Some of the costs include additional CPU cycles, storage space, and network trans­

mission. For this dissertation, the costs for deploying deception to defend against

data destruction are associated with storage medium metrics, which include storage

space (for preserving data) and latency/throughput (for analyzing potential destruc­

tion). Further, any additional hardware/software introduced to a system increases

the chance of failure because of increasing the baseline complexity and reliance on

multiple systems. Misinformation may also cause user confusion or cause applications

to misbehave. Additional hardware, software, and other technologies such as virtual

machines may also be necessary to support the observation, analysis, and preservation

of unauthorized data destruction.

Below are performance or stability metrics that deception may degrade. While this

dissertation does not optimize for performance, the metrics are important nonetheless

to provide insight to help improve deceptive systems in future work.

Latency - The cost, measured in time, of “how long it takes for a given job or piece

of work to be completed” [76]. Latency metrics are typically given as a mean or

median for a fixed amount of data written to or read from the storage medium.

Throughput “a measure of how much work gets done in a given time interval”

[77]. Throughput measurements are a unit of information (e.g., bits, bytes, or

kilobits) per a unit of time (e.g., milliseconds), typically taken as a mean or

median.

Variation The measurement of the “amount of variation [...] sometimes described

as spread or dispersion” [78]. The unit of measurement is a statistic such as a

variance or standard deviation for any of the other metrics in this list.

Permanent Error Rate A catastrophic error that cannot be repaired by a recovery

mechanism [79]. Permanent errors are detectable, either by a mechanism or

because they cause a catastrophic failure. Measurements for permanent error

rate include mean time to failure.

62

Undetected Error Rate An error that remains undetected caused by “inadequacy

in the error check facilities” [79]. Undetected errors may cause the storage

system to misbehave by corrupting data or causing the system to perform poorly

(memory leakage).

Storage Space The measurement of information that occupies space on a storage

device.

The impact of each cost will ultimately depend on the implementation. It may

be possible, for instance, to use specialized hardware to optimize processing delays.

Several types of systems are portable, so power is an important cost factor to consider.

However, power constraints are not considered in this thesis and are assumed to be

adequate unless a need for additional hardware is necessary.

Deception may also produce misleading information for adversaries on the system.

As seen in [58], misleading information may take the form of false errors, which may

cause transient, permanent, or silent errors for malicious applications. Transient er­

rors [79] or fault tolerance [80] will ultimately impact the latency/throughput/variation

(to analyze the fault) or storage space (e.g., error correcting codes) if the system shares

resources with the system under protection.

Additionally, there is a non-zero chance that a benign user may interact with the

deception. The deceptive information could disrupt benign users who are unaware of

the presence of deceptive information, such as system administrators, to misconfigure

the system to overcome a perceived error or performance degradation. Further, adding

additional systems increases complexity and testing, thus increasing the risks of bugs

and other errors.

The storage space increase to support the DecMS Preservation Goal may increase a

variety of ways. For instance, a system may be configured to copy-on-write everything

until the storage device is no longer in use. In the worse case, if every overwrite is

unique, then the additional storage space necessary is O(nk) where n is the size of

the drive and k is the number of complete overwrites of n before the drive fails or is

63

no longer in use. The above scheme is not practical; a more reasonable solution is to

reuse portions of the storage devices when preservation instances that are no longer

useful.

3.3.1 Types of Systems

The applicability of deception, given the costs above, may not be suitable for some

systems. Introducing additional latency may be unacceptable for certain computing

services, while perfectly acceptable for others. For instance, the additional overhead

introduced by analyzing and injecting deception on a system primarily for user media

consumption is acceptable given the degradation of storage performance. In contrast,

it may be unacceptable to reduce the performance of real-time systems, which has

strict deadlines to meet.

Four systems modes (interactive, batch, transaction, and real-time systems [81])

characterize the acceptable/unacceptable use of deception on storage mediums.

Interactive systems are primarily for active users who interact with computing

resources continuously. A user is interactive with the system through input periph­

erals and observes changes through an output device such as a monitor or termi­

nal [82]. Important aspects of interactive systems include low “response time” to

allow a user to issue a command and observe output, and meet user’s expectations

of latency/throughput [81, Chapter 2.4.1]. Latency on interactive systems is a major

factor and deception, ideally, should be imperceivable to the end user. Delays are im­

perceivable to a user when they are below 0.1 s [83]. Current storage devices, such as

SSDs, write at a rate of about 500 Megabits per second. At 0.1 seconds, the amount

of data written is about 6.25 megabytes. When writing files under 6.25 megabytes,

the overhead from deception may be imperceivable.

Similar to an interactive system, transaction systems are designed to process a

large number of transactions concurrently. A user interacts with transaction systems

through queries (a transaction) with an expectation of a short latency of about one or

64

two seconds [84, Chapter 1.7]. For transaction systems, data consistency is important.

Transactions must guarantee “atomicity,” meaning the transactions cannot be in an

incomplete state [84]. Thus, transaction systems are sensitive to any failures and

faults.

Batch systems, contrasted to interactive and transaction systems, do not have an

active user interacting with the systems [81, Chapter 1.4.1]. Instead, batch systems

gather jobs, processes them, and save results. Batch systems maximize throughput,

CPU utilization, and turnaround time, measured by jobs completed within a time

interval [81, Chapter 2.4.1]. Batch systems are not as sensitive to errors compared

to other systems. Faults are handled by discarding the results and relaunching the

batch job.

Real-time systems provide guarantees that a given task will complete within a

predictable time interval and by a certain deadline [81, Chapter 2.4.1]. Some real-

time systems face catastrophic failures if the processing does not complete within

the time interval [85]. Throughput and latency are crucial measurements for real-

time systems. Any changes to real-time systems should not encumber the ability

to complete tasks before the predefined deadline with predictable time intervals. A

real-time system may disregard inputs to keep up with the time requirements, which

is not a feature in the other systems considered [84].

For some systems, deceptive information may be unacceptable if it impacts certain

resources. For instance, if a deception scheme impacts the latency for a real-time

system, it may be unacceptable. Other systems are flexible for certain impacts caused

by a deception. Storage space and throughput, for instance, may be flexible on

interactive or real-time systems. A user may not notice if the increase in latency is

imperceivable small [83] or mixed with other user interactions. Real-time systems

have a narrow set of requirements, and thus storage requirements are known ahead

of time. Below, the systems discussed above are compared to their tolerance of

degradation for several cost factors.

65

3.3.2 Cost Impact of Deception on Systems

Given the above characterization of systems and potential costs associated with

the use of deception, Figure 3.2 illustrates a comparison of the non-economical costs

under three possible levels of impact: Tolerable, Undesirable, and Unacceptable. Sys­

tems that tolerate degraded performance are designed to handle the degradation, or

the specific metric is not critical to delivering the system’s end goals. The undesir­

able category describes systems that do not fail under instances of poor performance,

but the degradation causes inconvenience. Finally, systems that have unacceptable

degradation have little to no tolerance for reduced performance and risk catastrophe

if observed.

For each type of systems considered in Figure 3.2, resources between the deception

and the system under protection are shared. However, for illustrative purposes, each

system type does not overlap. In practice, systems may service multiple computing

roles, such as running batch jobs on an interactive system when a user is not present2

There are several caveats under all of the systems considered. Some real-time

systems have soft deadlines rather than hard deadlines [85]. Some interactive sys­

tems have a lower tolerance than others. Some interactive systems, such as video

editing require high storage throughput for rendering high-resolution media. We as­

sume the typical case for each system based on the general design goals listed in

the cited references. Further, the ordering (from left to right) from tolerable to un­

acceptable is relative to the systems (batch, real-time, interactive, and transaction)

under consideration. Further, interactive, transaction and batch systems may also

be cloud-based. The cloud systems may increase the allowable latency or variance as

networking may introduce additional delays. Real-time systems are not cloud-based

as networking delays are difcult to predict unless there is a dedicated communica­

tion line. Cloud systems are not explicitly considered in Figure 3.2, but may allow

for more performance degradation for transaction systems and interactive systems,

specifically, latency and variance.

2Seti@Home setiathome.berkeley.edu

setiathome.berkeley.edu

66

Figure 3.2.: The costs of using deception on various systems.

The increase of I/O latency may not impact batch systems. Batch systems typi­

cally queue jobs to run. Latency is, therefore, more acceptable on batch systems com­

pared to interactive and transaction systems. For both interactive and transaction

systems, a user is engaged in the system and expects tasks to complete quickly [81,84].

However, any delays below a certain threshold are imperceivable to users [83] so there

67

are acceptable increases in latency. Increasing the latency for real-time systems is un­

acceptable compared to the other systems considered. Any additional delay caused

by or resulting from deception may cause the real-time system to miss tight dead­

lines [81].

A decrease in throughput caused by or resulting from deception may be tolerable

in interactive systems. On an interactive system, users are typically consuming or

producing a small amount of data from the storage medium. When high throughput

is necessary on an interactive system, a user can work on other tasks, so the decrease

in throughput is amortized. Compared to batch or transaction systems, a reduction

in throughput is undesirable. Transaction systems are servicing concurrent users, so

a reduction in throughput will cause fewer users serviced over time. Likewise, an

important metric for a batch system is the number of jobs completed over time. For

real-time systems, it is unacceptable for a decrease in throughput if it impacts the

ability to complete tasks by the deadline [81].

An increase in variance may also be acceptable for some systems. Batch systems

are designed to service jobs. The workload of batch systems depends on the number

of jobs to process. The variance is dependent on system load, and batch systems

are expected to handle a variety of workloads. As a live user is present in both

transaction and interactive systems, an increase in variance is undesirable. Users

operating such systems expect tasks to complete within a reasonable time frame

concerning their expectation [81]. High variance means that some transactions or

other user interactions may take a longer period than what is expected of the user.

Likewise, a high variance will produce a wide degree of possibilities, which are not

handled gracefully on real-time systems that have tight deadlines to meet [81].

For interactive systems, an increase error permanent rate is more tolerable com­

pared to other systems. If an error occurs, the user can react and follow up with

additional inquiries to resolve the issue or find alternatives. For batch and trans­

action systems, the errors will reduce the throughput, which is undesirable as the

goals of those systems are high throughput. For batch systems, a system job can

68

be relaunched after resolving the issue [84, Chapter 1.7]. Real-time systems should

gracefully handle errors by disregarding the issue to meet tight deadlines or halt the

execution to prevent a catastrophic result. Depending on the type of error, a real-

time system error may also be unacceptable. The assumption for permanent errors

is that they are detectable, so a real-time system should be designed to handle the

errors appropriately.

Silent errors are undesirable for interactive systems. Silent errors cause an appli­

cation or operating system to misbehave in unforeseen ways. Identifying silent errors

require manual investigation to find the cause. An interactive system, by definition,

has a real user present and may intervene or determine the cause once the issue is ob­

servable. It may be as simple as restarting the machine to resolve memory leak issues

or may require running diagnosis tools to help root problems like hardware failures.

For real-time, transactions, and batch systems, client errors cause substantial issues.

For a transaction system, storing invalid or incomplete transactions are unacceptable.

Batch systems may report incorrect results for a job which is also unacceptable. Silent

errors for real-time systems may disrupt the ability to process information within the

deadline, which is acceptable.

Several systems can tolerate some storage overhead caused by deception. For

instance, interactive systems storage is flexible. The user may manage the storage by

removing unneeded files or saving files o↵site. The user has control and can react to

the lack of storage so that the additional overhead may have minimal impact. If a

deception scheme impacts the latency for a real-time system, it may be unacceptable.

As real-time systems are designed for a well-defined space, the storage require­

ment should be defined ahead of time, so adjustments could be made to support the

additional storage costs.

Other systems are flexible for certain impacts caused by a deception. Storage space

and throughput, for instance, may be flexible on interactive or real-time systems. A

user may not notice that a task takes twice as long if the increase in latency is

69

imperceivable small or amortize with other user interactions. Real-time systems have

a narrow set of requirements, and thus storage requirements are known ahead of time.

70

4 ARCHITECTURE AND DESIGN SPACE

4.1 DecMS Integration Location

A computing system has several layers of abstraction to allow programmers and

users to achieve their goals without focusing on lower layer mechanics. Rather than

fully understanding the complexities of the system, a programmer or user can focus

on high-level goals without worrying about the specifics of the OS and hardware. A

user’s goal may be to write a report and send it to her colleagues. She wants to focus

on the contents of her report and not machine code that is required to operate the

storage device. Likewise, adversaries who develop malware and exploits and rely on

the consistency of the lower levels of abstraction to achieve her goals. As mentioned

in section 3.2.3 the adversary’s confirmation bias is that the lower levels will operate

similarly to her prior interactions. The various layers of abstractions, where the

attacker may not check and validate for consistency according to her perception, are

viable locations to insert deception.

The deception exploits the adversary’s bias that the code (or hardware) at a lower

layer is trustworthy in completing an I/O request. As stated in Ken Thompson’s

Reflections on Trusting Trust:

“you can’t trust code that you didn’t write yourself [...] No amount of

source-level verification or scrutiny will protect you from using untrusted

code [32].”

The above quote applies to adversaries as much as well-behaved users. At some point,

the adversary relies on code at a lower-layer of abstraction to facilitate the I/O. The

layers in which the adversary fails to check for deception are viable locations for

facilitating the deceptive goals.

71

Figure 4.1.: Possible layers of abstraction and monitoring methods for deception,
based on [81, Chapters 5, 7].

Figure 4.1 is an illustration of typical computing systems, arranged by layers of

abstraction. The figure is based on the description of a multi-layer machine in [86,

Chapter 1], where the highest layer of abstraction interacts with lower layers through

a translation or interpretation of languages that are specific to each layer. As the

focus of this dissertation is on I/O, the translations or interpretations are in the form

of I/O requests. For instance, a high layer may request to write an English sentence

to the end of a named file. Lower levels translate the name of the file to the physical

location of the file on a specific storage medium. At the lowest layer, the I/O request

executes on the electronic circuits within the physical hardware.

The layers in Figure 4.1 illustrate the various I/O software layers, inspired by

the I/O software layers description in [81, Chapter 5]. Figure 4.1 contains additional

layers to describe the hardware below the software and a few optional layers, such as

the virtual machine layer and networking layer. The optional layers may be present

in systems that use virtual machines or if the I/O request is for a file on a network

storage system such as NFS.

The layers in Figure 4.1 are categorized as follows. At the top, user-space is where

applications request I/O through a well-defined software mechanism such as an OS

system call. User permissions control mechanisms limit the read/write/execute per­

missions of certain files and locations of the disk. Below the user-space level are

the kernel layers, where I/O requests require administrative permission and have full

access to the storage medium. However, some of the hardware functionality may be

72

inaccessible even within the kernel layers. Some functionality, such as hardware diag­

nosis information requires a special boot sequence that exists outside of the operating

system. Furthermore, the hardware controller may be inaccessible without physically

attaching a device to program the firmware.

The accessibility of the various layers requires a variety of e↵ort for the attacker to

gain access. At the user level, an attacker may be able to overwrite user files. If the

attacker gains administrative privileges, the attacker may overwrite any files within

the file system. Further, if an attacker has physical access to the device, she may able

to reprogram the I/O controller to cause damage to files that may be inaccessible for

security monitoring done at the OS level.

The deception may be hidden from view by placing the deceptive components

below where the adversary has access. Further, the security tools, such as access

control, may also supplement the deceptive components by denying access.

For each layer in Figure 4.1, a short description, advantages, disadvantages, and

examples are given.

4.1.1 User-Level

At the highest level, the user level application may be a valid place for inserting

deception. An application can be modified to observe for destructive actions and

provide mechanisms to protect against the data destruction. There may be several

tools within the system for data destruction. For example, some secure deletion ap­

plications such as shred or srm are standard tools used by benign end-users to delete

sensitive data from the disk securely. One possible strategy is to simply replace these

tools with versions that achieve the deceptive goals. However, the adversary may

install her own data destruction tools or use other techniques that do not rely on the

binaries on the system. Application level modification should, therefore, be supple­

mented with other security tools, such as denying the installation of tools and have

a trusted procedure to modify and update system binaries. Additional mechanisms,

73

such as a method to preserve the data under destruction, may be necessary with

user-level modification to support the deceptive goals.

Advantage

One advantage of inserting deception at the user-level is the simplicity. The states

of the operating system and applications are available at the user-level without having

to transform or interpret the information at higher levels. At lower levels, it may be

difcult to make decisions and select the best strategy to deceive the adversary. For

instance, monitoring for deception at the virtual machine level requires bridging the

semantic gap, which is nontrivial.

Even with a simplistic approach, the deception may work well against automated

tools or adversaries that do not check for deceptive strategies. It may not be necessary

to insert deception at lower levels of abstraction if the goals can be met at the user

level.

Disadvantage

It may be difcult to deceive the adversary if she can view the entire decep­

tion system. Users and potential adversaries interact with a computing system at

the user level. The attacker may exist on the user level (or lower), so the simula­

tion/dissimulation strategies may be difcult if the attacker has full access to the

same level where the deception exists.

Several of the deceptive strategies involving hiding. The dissimulation strategy

of masking may be particularly difcult to do convincingly, but other dissimulations

strategies such as repackaging or dazzling may be more suitable at the user level.

The mimicking simulation strategy may be difcult for a defender to achieve if the

attacker can easily distinguish di↵erences between a system with or without DecMS.

74

Nonetheless, even if the attacker can detect the presence of DecMS, she may decide

to go elsewhere1 and target a system without DecMS.

Inserting a DecMS at the user level may require additional security tools. Hiding

a deceptive component may rely on tools that operate at a lower level. For example,

a process listing tool may not report any processes that are in use for the deception.

Examples

Modifying user level applications to support a DecMS is one possible approach.

Prior work, such as the embedded sensors/detectors in Diego Zamboni’s work in [87]

can help detect destructive writes and trigger the use of a deceptive strategy. The

work, however, was not focused on achieving a deception but rather detecting attacks.

Other techniques can help support deception but may require additional tools at lower

levels of abstraction. For instance, rather than modifying the source code, a user

process can be instrumented with deceptive mechanisms through control hijacking

[88]. The advantage is that the binaries on persistent storage are not modified, and

the evidence of the deception occurs only in memory. Code injection modifies the

execution flow that attempts to write to storage and checks for destructive intent.

However, the components to insert the deception into the user level may require

administrative privileges or exist at a lower level, such as the kernel.

4.1.2 Kernel-Level

At the kernel level, an attacker must gain administrative privileges to view or

modify the kernel. There are several viable places to insert deception within the

kernel. The OS contains I/O related software that interfaces with user applications

that request to read or write to a file on some storage device. I/O related system

calls handle the requests. Other interfaces to hardware devices, such as drivers or

interrupt handlers, may be instrumented or modified to support the deceptive goals.

1Finding an alternative attack may not be an option for a targeted attack.

75

Advantages

For an attacker to gain a clear view of the abstraction between the user level and

the kernel level, the may need to gain administrative privileges. The access control

mechanisms on interactive systems typically protect the OS kernel. If the deception

requires portions of the system to remain inaccessible, then there is an advantage to

placing the deceptive system within the kernel as there exist control mechanisms to

deny users access to kernel modification.

The advantage of operating system modification is access to a rich collection of

forensically valuable information, such as running processes, timestamp changes, file

writes, and active users. The information can be later used for forensic analysis if the

destructive writes are unauthorized and malicious.

Disadvantages

While it may be suitable to protect against user-level applications that are par­

taking in unauthorized data destruction, kernel level deception may be broken if an

attacker gains administrative privileges. Security monitoring tools that exist within

a kernel [89] are shown to be weak against a persistent attacker who is motivated to

circumvent such security mechanisms.

In regards to ease of development, it may be harder to modify a kernel to support

a DecMS. Further, kernel code is sensitive to changes and an increase in system

instability is undesirable.

Examples

Modifications to the POSIX read, write, or open system calls may be configured to

examine the write bu↵er for destructive patterns before reaching the storage medium.

Shared libraries are another viable location to examine for destructive I/O. Prior

work in function, library, or system call interposition [65,90] could be the mechanism

76

used in monitoring for deception. Wrapping system libraries also provide a defensive

advantage to hide the presence of DecMS. Recent work in [53] use custom drivers to

observe for write patterns typical in crypto ransomware. In the domain of deception,

prior work in honeypots [89] uses custom kernel modules to intercept system calls to

gain an understanding of an attacker within the honeypot system. Work in [58] use

inconsistent deception in modifying the system calls and show that malware operates

poorly within these systems with some degradation to benign applications.

All of the above examples are viable strategies to monitor and react to destructive

I/O operations.

4.1.3 Hardware-Level

Another viable layer of abstraction is to insert deception within hardware com­

ponents. It may be difcult for an adversary who does not have physical access to a

device to identify if there are undesired components attached to hardware interfaces

and bus lines. Also, it may be difcult to verify that the controllers are operating

correctly without physical access to the hardware controller. However, there are some

challenges in understanding the semantic meaning of the I/O requests without con­

text or additional information from the higher levels of abstraction. For example, it

is non-trivial to determine the specific file under destruction by examining raw disk

access only. Mapping low-level disk operations to files are considered a semantic gap

problem for disk storage [91].

Advantages

At the hardware level, the deception may be hidden unless the attacker has phys­

ical access to the system. Deceptive dissimulations, such as masking, may be hard to

unmask at the hardware level. To detect the presence of a hardware attachment, the

attacker may have to conduct timing analysis to see if a specific task completes slower

than expected. Hardware changes may also have some other e↵ects that an attacker

77

may use to determine the presence of a hardware device without having physical ac­

cess to the machine. If the hardware device that is in use for the deception alters

data caches, then the attacker can measure the cache hit/miss rate and determine

if the machine has additional hardware attached to the storage system. Both tim­

ing and cache analysis may be difcult to do compared to the detection methods at

higher levels of abstraction. However, the timing and cache analysis may be simpler

to conduct than compromising a system administrator account if the deception exists

in the kernel or user levels. Nonetheless, masking and mimicking deceptive strategies

may work well with hardware solutions if performance and cache hit/miss rates are

not a↵ected.

Some deceptive systems may be instrumented without a↵ecting performance degra­

dation. A data bus that is sending information from one device to another may be

observed by physically attaching a wire to the bus. A deceptive system could simply

relay all the information sent over the bus and preserve an audit log of all requests

sent to and from the devices. Further, hardware solutions may increase performance

in comparison to the software solutions at higher levels.

Modifying the physical layer to enable deception may outperform solutions that

place the analysis within the software. For example, Spensky et al. interpose a SATA

controller with a physical device and demonstrates a near identical read through­

put compared to the same system without the instrumentation [92]. However, other

experiments show a degraded write performance compared to a system without in­

terposing at the SATA controller.

Disadvantages

One disadvantage of placing deception within the physical layer is the additional

cost of using hardware. The layers above are all software solutions and do not require

special hardware to support the deception. Reprogramming the hardware controllers

is a valid strategy to insert deception within the hardware, however, reprogramming

78

hardware controllers is often nontrivial and may require a special hardware interface

to access the firmware. Physical modifications and testing for consistency in hardware

may also be more challenging than compared to software solutions.

It may also be necessary to gather other information to determine the best de­

ceptive strategy when monitoring for deception. Simply logging and preserving audit

logs for destructive writes may be meaningless for a user, system administrator, or

forensic examiner. Because of the hardware semantic gap problem, it may be dif­

cult, or impossible, to determine the specific process or the user who requested the

destructive write by examining only the raw disk writes. Gathering such information

may require examining higher levels of abstraction.

Examples

A hardware controller or a device connected to the data bus, for instance, may

keep an audit of all writes to a storage device. The device may store the audit trail

on a write-only device such as an optical disc.

Dione [91] interposes disk operations outside of the “system-under-analysis” with

physical hardware or virtualize software. Dione then translates the raw disks requests

to high-level data objects through the use of Sleuth Kit. Interposing at the hardware-

level may be feasible through similar techniques proposed by Dione to monitor for

destructive disk writes and to insert deception when necessary.

4.1.4 VM-Level

Virtual machine introspection (VMI) may also be used to inspect a virtual machine

and examine system calls for file modifications [62,63]. The monitoring for deception

exists outside of the system under protection within the virtual machine monitor

(VMM). VMI allows a host machine to access the contents of memory within a guest

virtual machine, interpose events, and “extrapolate the software state” of the virtual

machine [62]. The challenge of VMI is bridging the semantic gap, that is, gather

79

meaningful information about the guest OS from raw memory access. It is typically

assumed that the VMM is isolated from the guest OS and several security tools take

advantage of the isolation. For instance, IDS [62] and dynamic malware analysis [69]

systems are some of the security tools enabled by VMI.

Advantages

There are several advantages of placing deception outside the protected operating

system and within a VMM. First, if an attacker infiltrates a guest virtual machine,

it is difcult for the attacker to reach the host. Virtual machines and the VMM

are designed to be isolated.Secondly, VMI can be stealthy [63, 69, 93], increasing the

difculty for an attacker to uncover the deception.

Disadvantages

There are also some disadvantages of VMI. Similar to the challenges of inserting

deception near the hardware, the challenge with VMI is bridging the semantic gap,

i.e., determining which files are changed from outside the operating system, from

information stored in system memory. Prior work [94] and an associated open source

project [95] address semantic gap challenges. Rekall, a memory forensic framework,

profiles modern operating systems and provides indexes to kernel objects as they

reside in memory2 .

Placing DecMS within a VMM is not as flexible as placing DecMS within the

operating system. One disadvantage is that commercial operating systems frequently

update, so the indexes to in-memory kernel objects must be updated for the VMI

mechanism as well. However, it is evident when updates are available thus the main­

tenance of a system with VMI can be managed accordingly.

2
http://www.rekall-forensic.com/posts/2014-02-20-profile-selection.html

http://www.rekall-forensic.com/posts/2014-02-20-profile-selection.html

80

Examples

As referenced earlier, there are several tools available to inspect a virtual machine

from a VMM. In particular, the Drakvuf VMI mechanism [69] works well because

Drakvuf is stealthy and provides an advantage to deceptive strategies that attempt

to mask the deception or mimic a system without deception.

4.1.5 Networking-Level

Networking is another layer where deception can be inserted into. Particular to

I/O, there is network file system that sends read/write requests for files over the

network. A deceptive system can inspect all the read/write requests and identify

writes that may be destructive or the deceptive system may create an audit trail of

commands that overwrite data, which are reversible if the writes are later determined

to be destructive.

Advantages

As with other layers of abstraction, the attacker may not have access to routers

or servers where the deception is taking place. The separation between the system

under protection and the deceptive systems provides advantages when the deception

calls for masking or mimicking strategies.

The other advantage is that interception I/O at the networking level is more

well defined compared to analyzing raw disk accesses or VMI in which both require

bridging the semantic game.

Another advantage is that user tolerance for latency may be up to 0.1 ms [83],

allowing for some delays without significantly harming the user experience. Deceptive

strategies that are designed to impede the attacker can be repackaged as networking

delays caused by network congestion or other factors.

81

Disadvantages

A disadvantage of placing deception at the networking layers is that it may be

difcult to partition the network so that the attacker is not able to view the deception.

That is, relative to the partitioning of deceptive components that require hiding that

is within the physical layer. It may be difcult to control the attacker’s access certain

segments of the networking where the NFS exists but it still may easier to control

compared to placing the deception in the user or kernel layers. Another challenge

with networking layer deception is the lack of information about active users within

the system under protection, which is the same problem when placing deception in

the physical layer. Additional tools may be necessary to gather information when

reacting to an adversary with deception.

Examples

The work on storage based intrusion detection systems (SBIDS) [52] describe

the inspection of reading/write requests on an NFS. The read/write requests are

inspected for behaviors that are suspect. A similar strategy can check for destructive

write patterns.

4.1.6 Summary

As discussed above, placing deception within each I/O layer has advantages and

disadvantages. Some of the weaknesses that appear in several layers are the require­

ment of using other security mechanisms for protecting the deception. Some of the

additional security mechanisms are standard in modern systems, such as access con­

trol or requiring physical access to program hardware components.

While the discussion focuses on individual layers of deception, it is possible to

place deception within multiple layers of abstraction. For instance, the kernel level

or VM level deception can work in conjunction with deception in lower layers, such

82

Table 4.1: Summary of possible layers to monitor and preserve data under destruction.

Layer Advantages Disadvantages Examples
User Simplicity. Hard to hide from

threat. Threat can dis­
able.

Embedded Sen­
sors/detectors [87].

Kernel Protection under ac­
cess control. Access to
system state

Access control to ker­
nel may fail. More
complex to modify and
test than user layer.

Library and system
call interposition [65,
90]. Modified kernel or
drivers [53, 89].

Virtual Solution separates
trusted and untrusted
system. The adver­
sary must compromise
VMM. More stealthy
compared to user or
kernel layer

The semantic gap
problem and mainte­
nance.

Virtual machine intro­
spection [69], virtual
disk monitoring [91].

Hardware Inaccessible to remote
threats. May provide
performance improve­
ment.

Higher cost compared
to software solutions.
The semantic gap
problem for hardware.

Modified firmware
or hardware con­
troller [92].

Network Separates trusted /
untrusted system. A
higher threshold of ac­
ceptable delays and re­
duced throughput.

Observing system in­
ternal state and infor­
mation. Not as flexi­
ble compared to other
solutions

Network interposition
or monitoring [52].

83

as the physical or network layers. The higher layers have a better semantic view of

the system where the attacker operates and can monitor and provide information to

the deception in lower layers.

The decision to place deception within certain layers is driven by attacker biases

and assumptions of the attacker’s capability. It may be sufcient to protect against

unauthorized data destruction attacks through the use of a deceptive kernel module

if the attacker does not gain administrative access to the system under protection.

The other factor in deciding where to place the deception is the impact on well-

behaved users on the system. As discussed in Section 3.3, some performance penalty

may be acceptable for some systems (e.g., interactive or batch systems) but not

others (e.g., real-time systems). In selecting the layer(s) to place the deception, one

must consider performance penalties that may not be suitable. However, it may

be possible to minimize some of the performance penalty if the dedicated hardware

supports the deception. A pure software solution may not be suitable because of the

performance cost on some systems, but a solution could split the deception between

high layers (e.g., kernel or VM layers) and lower levels (e.g., physical or networking

layers). Placing deception in lower layers, however, requires additional testing and

costs compared to pure software solutions but the cost may be justified if the data

within the system is protected.

4.2 DecMS Integration Methods

At each layer of abstraction, information is passed between layers to facilitate the

I/O. At the highest layer, the user (or process) on the system requests to overwrite

a file, and at the lowest layer, the hardware writes the specified data to a location

determined by higher levels of abstraction. The information may transform between

layers into a language that is suitable for the given layer of abstraction. For instance,

the data flow at the high layer may be a string that represents a file and a bu↵er.

84

Table 4.2: Methods to support the goals of a DecMS

At lower layers of abstraction, the data flow between layers may be in the form of a

smaller segment of the write bu↵er and a physical address of the storage device.

The deception modifies or observes the data that passes between layers. The

deception may support the original requests (e.g., write to a specific location on a

storage medium) but may also include additional tasks that are not part of the user’s

perception of the system (e.g., write audit information for every write request).

There are several strategies to observe or modify data flow between or within

the same layer to support a deception. Figure 4.2 illustrates all the strategies to

observe or modify I/O flow between (or within) layers. L
r represents the layer when

the I/O request originates and the request passes to a lower layer. The layer below,

L
e represents the execution of the I/O request. The specifics of the execution is

dependent on the layer, but it can be a translation of the request to a language that

a lower layer understands. The execution may also break the requestion into smaller

segments, bu↵er the request, or any code execution that is necessary to facilitate the

85

request at the specific layer. Next, layer L
v verifies the I/O by either receiving the

sought information or a status code that indicates the I/O is a success or failure.

Note that L
r

, L
e

, L
v may exist on separate layers or the same layers. For instance, L

r

and L
v may be a request and validation at the user layer. For simplicity sake, L

e is

assumed to be in a di↵erent layer than L
r or Lv but in practice may all exist within

the same layer. For instance, L
r a function call, L

e is the function, and L
v is the

continuation of the code execution after the function call.

The layer itself may undergo a modification to support a deception, introspection

can passively observe information, interposition can disrupt to data flow and route it

to a di↵erent layer or component within the layer, or a wrapper can insert addition

layers before and after a specific layer.

Each of the above strategies has advantages and disadvantages to consider. The

discussion below explores and discusses the strategies. Each strategy is independent

of the layer where the deception is placed, but the specific implementations may have

a performance impact. For instance, wrappers may have a performance penalty that

is higher than using introspection. The additional layers may cause additional per­

formance overhead compared to a strategy that passively observes the I/O. Further,

the specific strategies may require additional security mechanisms to protect the de­

ception. For instance, the wrapper strategy may require additional mechanisms to

deny the user access to the new layers inserted between layers.

4.2.1 Modification

A modification to a layer is when a layer is replaced to support the deception.

The strategy is analogous to trojan horse applications that contain additional func­

tionality hidden and undesired by the end user. The modified layer may support the

functionality of the layer and only insert deception when necessary. In Figure 4.2, the

layer L
e is replaced with L

d

. The letter d or D is the nomenclature that represents a

deception.

86

To help support the deceptive goals, D may impede requests, preserve data un­

der destruction, gather information regarding the files under destruction, or respond

deceptively with false errors.

Advantages

Depending on the layer, it may be simple to replace or modify the layer. For

instance, a standard I/O library or drive can be replaced with a customized version

to support the deception. If the modification is within a layer that is inaccessible

to the user (e.g., within the physical layer), then it may be difcult to recognize the

presence of a modified layer.

Disadvantages

If the adversary has access to the modified layer, she may compare the modified

layer with her expectation. For instance, a library or drive can be compared with a

cryptographic checksum, detecting the presence of the modification.

4.2.2 Introspection

Introspection, based on the definition from [96], “a technique for externally mon­

itoring the runtime state of a system-level virtual machine.” Rather than observing

the state of a virtual machine, the definition is broadened to include any layer of ab­

straction. Introspection observes the state of the layers and the information exchange

between layers without disrupting or altering the said information or layers. The

observation is passive but still exploits the adversary’s confirmation bias that the I/O

request is not observed closely by the system defenders. Introspection is analogous

to an eavesdropper on a channel who observes but does not modify the information

exchanged between the communicating parties.

87

The introspection strategy can help in achieving the deceptive goals by observing

for data destruction actions and preserve data before L
e executes. While D itself

cannot inject false information or disrupt information flow, D may work with other

strategies and trigger other deception mechanisms to react to specific events.

Advantages

It may be difcult for an adversary to observe the presence of introspection because

the information flow is not disrupted and there are no modifications to any of the

layers. Because of its passivity, there may be no noticeable performance impact,

especially if there is no resource sharing between the introspection system and the

system under protection. For preserving an audit log of all changes, the introspection

method may work well as long as the introspection system can handle the I/O requests

without dropping requests.

Disadvantages

There may be a race condition if the introspection observes then reacts to an

event. Reacting to an event may require additional strategies such as a modification

or interposition at di↵erent layers.

4.2.3 Interposition

Rather than passively observing the I/O passed between layers, the introspection

strategy intercepts the I/O between layers and redirects the information to di↵erent

location. In Figure 4.2, the D component receives the information that L
e should

receive. After D facilitates the request, with possible deception, D then sends some

information to layer L
v to verify the I/O request.

Interposition may help in the deceptive goals. The interposition may inspect all

I/O request, properly facilitate the request, and only react deceptively under some

88

circumstance. If the I/O request is suspicious, D may respond slowly, preserve the

data under destruction, or partially fulfill the request to confuse the adversary.

Advantages

By disrupting the information flow between layers, the interposition has more

control over the introspection strategy. The interposition may require some tasks to

complete before allowing the I/O to continue to other layers. For instance, D may

need to write an audit log or copy some information before L
v executes. Another

advantage is that the L
e remains unmodified so the adversary cannot simply check

L
e for integrity.

Disadvantages

The Disadvantage with interposition is a decrease in stealthiness compared to

introspection. The adversary may look for evidence of disrupting the data flow be­

tween layers, which is comparatively less stealthy than the introspection strategy

which does not alter information flow. The challenge for the defender is to protect

the mechanisms that disrupt the flow of information between layers.

4.2.4 Wrapper

Rather than changing the flow of information, the wrapper strategy changes the

information that is passed between layers to inject deception into the I/O. The right-

most column in Figure 4.2, D1 is placed between L
r and L

e

. D1 may simply modify

the requests sent to L
e to meet some deceptive goal. Likewise, D2 is placed between

L
e and L

v

. The D1 and D2 wrappers are either new layers that exist between L
v

, L
e

,

or L
v or they may exist within the layers.

Modifying the information can help facilitate the deceptive goals. The D1 layer can

observe the specific targets, identify destructive behaviors, preserve the data under

89

destruction, or impede the speed with which attackers destroy files. The D2 layer can

also impede but may modify the values returned to L
v to confuse the adversary.

Advantages

The advantage of wrappers over the other strategies is that it allows L
e to execute

while allowing modification of the I/O before and after. An attacker can verify that

L
e executes and that the integrity of L

e is valid.

Disadvantages

The wrapper does not have as much flexibility as the modification or interposition

strategy. The deceptive strategies are a modification to the I/O between layers rather

than modifying how a specific layer behaves. Further, the defenders must protect D1

and D2, which could be challenging if the attacker has access to the layers.

4.3 Monitoring Methods and Policy

Section 4.1 describes the various layers of abstraction to place the deception, and

in Section 4.2, the strategies to insert the deception are detailed. Each layer of

abstraction and the strategies must also consider the location of the adversary and

the location of where any processing, logging, and data preservation takes place.

The deception can share system resources with the adversary, however, if the

deception is not adequately protected, the adversary may be able to uncover the

deception or disable it.

There are several trade-o↵s to consider. If the attacker is not checking for decep­

tion, it may be sufcient to place the deception within the same layer of abstraction to

which the adversary has access, referred to as co-location henceforward. The attacker

may simply check for the deception, but the defenders may also use additional pro­

tection or deceptive mechanisms to protect the deceptive components, referred to as

90

co-location with protection. Finally, the deception may be external to the abstraction

layer that the adversary has access.

4.3.1 Deception and Adversary Co-location

As the name implies, the adversary and the deception are within the same layer of

abstraction. It is assumed that the adversary and deception components have access

to the same set of resources. If the adversary and the deception exist within the user

or kernel layers of abstraction, then they both share resources such as CPU, mem­

ory, networking, and storage space. For physical space, the deception and adversary

share hardware channels, power, and other hardware components. For networking,

the adversary and deception share networking bandwidth, routing, switches, or other

network-related resources. Likewise, if the deception is co-located within the VMM,

the adversary and the deception can both view guest OS and control the VM config­

urations.

There are some advantages in placing monitoring and analysis components within

the same layer. First, it may be sufcient to protect against automated attacks that

are designed on systems without deception. If the attacker does not bother to check

for deception, then her automated exploits may not correctly handle events that may

divert the adversary into the unexpected. Prior work in deceptive systems show

that disrupting attackers with deception are e↵ective in reducing their impact on the

system under attack [58].

4.3.2 Co-location with Protection

Additional protection mechanisms can help aid in the deception. Access con­

trol can deny adversaries access to deceptive subsystems or audit logs. Additional

deception may also help, for instance, by hiding the presence of interposition and

introspection.

91

Several of the techniques are utilized by malicious software such as rootkits that

hide the presence of processes and other tools for system administrators and security

monitoring tools. At the user layer, access control can help deny users who wish

to read/write/execute deceptive components of the system. At the kernel layer, the

components of the system can be set to be immutable so that the adversary cannot

change components even if she has administrative access on the machine. At the

networking or VM layers, there may exist decoys to confuse the adversary.

However, the disadvantage is that an attacker can look for changes to the system

that is out of the ordinary for evidence of deception. Further, the adversary can focus

on moving to a lower layer of abstraction to circumvent the deception.

4.3.3 Deception in External Layers

Rather than placing the deception within the same layer that the attacker has

access to, the analysis and monitoring can be inserted in a layer of abstraction to

which the attacker does not have access. There are several viable options. However,

a good understanding of the capabilities of the adversary is necessary. The deception,

analysis, and monitoring must be with placed in a layer that reflects the adversary’s

capabilities. For instance, if the adversary exists only within userspace, then a DecMS

at the kernel layer may be sufcient.

One challenge with placing deception external to the layers that an adversary has

access to are the various e↵ects that the deception can have in higher layers that may

confuse benign users or cause the adversary to raise suspicion.

4.3.4 Identification Methods

4.3.5 Policies and Components of DecMS

DecMS consists of four main components, each consisting of a policy and a method

to enforce or execute the policy: Protection, Detection, Deception, and Clean-Up.

92

Monitoring Policies

The Monitoring Policies handle the monitoring as stated in [7]. The monitoring

policies determine what set of events should trigger a deceptive response or other

protection mechanisms. For the experimental evaluation, the Monitoring Policies

consists of a Observation Policy and Analysis Policy.

Observation Policy

Purpose The Observation Policies should instrument I/O and observe for circum­

stances that require additional analysis by the Analysis Policy and service. The Ob­

servation Policy determines the set of files, libraries, users, or processes that DecMS

interacts with. The Observation Policy indicates which user files (e.g., all files in a

user’s home directory) to protect with DecMS and which to ignore. The Observation

Policy also indicates what specific events require additional analysis. The overall pur­

pose is to determine which files or events need further processing under the Analysis

Policy. The Observation Policy consists of blacklist/whitelist users, files (directories

or specific files), events such as system calls relating to a storage medium or other

identifiers that can help identify data items of interests.

Analysis Policy

Purpose The Analysis Policies should specify the methods to identify destructive

I/O, define the conditions to deceive a potential attacker, and define other conditions

that warrant a defensive action, as determined by the Protection Policies.

The Detection Policy defines the strategy, given the situation, that is best suited

to determine if a deceptive response is necessary. The Detection Policy dictates the

set of methods needed to detect if a deceptive response is warranted correctly. The

Detection Methods can be included signature-based, behavior-based, or heuristic-

based detection schemes. The purpose of Detection Methods is to determine if a

93

Stratagem should be used or to let the system call continue without modification or

interruption.

A commonly deployed method to detect known malicious applications is signature-

based detection. The core idea is to examine the binary of the malware for key

patterns of known malicious code. Malware counters anti-malware software through

polymorphic techniques that modify distinguishing features before execution. An­

other approach that can be used to identify key actions or data objects is through

behavior-based detection schemes. The core idea is to observe the actions of some

applications for some period. If the actions fall outside the scope of what is expected,

fail the application.

4.4 Protection Methods and Policies

The goal of the protection policies is to facilitate the deception and provide general

protection or resilience against attacks targeting one of the Parkerian Hexad for data

destruction attacks. The Deception Policy is responsible for injecting deceit into the

protected system at some given time. It may take the form of a deceptive response

for some I/O request or the configuration of the system to remain hidden from the

threats.

4.4.1 Deception Policy

Purpose To define the deceptive response given the conditions reported by the

Monitoring Policies and insert deceit into the system under protection.

The goal of the Deception Policy is to decide on the deceptive strategy to execute,

given the policy decisions and observations in the previous two components. The

Deception Methods are simulations/dissimulations that are designed to deceive an

adversary.

For example, the selected stratagem may attempt to deceive an adversary, who

is destroying incriminating evidence, by pausing the write system call, logging the

94

incident, and creating a copy of the data elsewhere. The Preservation Policy and

service are responsible for handling the data preservation.

4.4.2 Preservation Policy

Purpose To preserve any data that is overwritten by destructive I/O and define the

conditions to identify, retain, migrate, compress, or remove stagnant data to optimize

storage space utilization.

The Preservation Policy should provide a strategy for tracking deception and

anticipate how the users will react to the stratagem. For example, a policy could be

defined to log all changes to a file of interest or simply log the final change to a file.

Several challenges in designing a preservation policy when storage space is fixed. The

Preservation Policy should also determine how long data under preservation should

be preserved before moving elsewhere, compressed to save space, or to delete so that

space can be used.

4.4.3 Other Protection Policies

In addition to the above policies, several additional policies may exist to help

protect data from unauthorized data destruction attacks. Some protection mecha­

nisms, such as access control, may be implicit as modern operating systems use access

control. While not explicitly explored in this thesis, it is possible to further protect

the data by communicating the data destruction actions to their security mechanisms

such as an IDS.

4.5 Summary of Integration Location

Inserting the monitoring, preservation, and the deceptive systems within the hard­

ware may reduce the risks of performance degradation. Software solutions are also

possible and are relatively easier to implement compared to hardware solutions. How­

95

ever, the performance of a software solution may not work as well as a hardware

solution, especially if resource sharing is necessary between the system under protec­

tion and deceptive system. A virtual machine monitor or networking solutions may

also be viable options. VMI may monitor for adversaries and insert deception dur­

ing appropriate opportunities. Similarly, network interposition may also monitor for

destructive changes to network storage mediums and insert deception when necessary.

Some of the solutions outlined above allow for the deception service and compo­

nents to be isolated from the adversary. As the assumption is that the attacker does

not have physical access to the compromised system, she may not be able to identify

hardware or networking solutions that support the deceptive components. Denying

the adversary from the truth is critical for some deceptive strategies and isolating

the deceptive service and components is an advantage over some architectures. The

deceptive service and components may also exist within the system itself, which pro­

vides several benefits, such as having access to the operating system internals, but it

may be difcult to remain hidden from the adversary.

Each of the designs has strategic advantages and disadvantages. As shown in the

top of the Figure 4.1, placing deceptive service and components near the application

level help preserve files under unauthorized destruction but at the cost to stealthiness

(if the attacker can examine the layer with the deception). Placing the deception in

lower layers of abstraction, such as within the hardware, may increase stealthiness,

but the deceptive system complexity increases as it is necessary to translate raw

disk writes to files as the policies may define specific write patterns as destructive

for certain types of files. Further, selecting the layers to insert deception may also

depend on the deceptive technique, which is guided by the type of adversary that the

defender faces.

96

5 PROOF OF CONCEPT DESIGN

5.1 Desired Traits

In the previous chapter, several design choices and architectures to support decep­

tive goals are detailed. For the proof of concept, two prototypes are selected based on

the goals of this dissertation. The DecMS-Kernel proof of concept uses a kernel mod­

ule to hide the presence of DecMS and reactively preserves the files from destruction

before the writes occur. The DecMS-VMI proof of concept builds on the experimen­

tal results of DecMS-Kernel by placing the deception and preservation outside of the

system under protection. Below, a discussion for each of the goals that lead to the

design of the prototypes is provided.

5.1.1 Identification

Trait The identification method should accurately identify files that are under threat

of unauthorized data destruction and provide information of forensic value,

such as timestamp information, active running processes, and the method that

triggers the data destruction.

The Monitoring Policies and services should provide a list of files that can easily be

understood by a system administrator. Some of the low-level preservation mechanism

may preserve files by preserving raw storage blocks that may need additional process­

ing to be easily understood by a system administrator. The engineering challenges

in developing a hardware-based DecMS motivated the decision to use DecMS-Kernel

and DecMS-VMI as the proof of concept systems in the experimental evaluation.

DecMS-Kernel has a full view of the system under protection, so it is possible to

log the desired information. Likewise, for DecMS-VMI, the proof of concept relies

97

on existing software to bridge the semantic gap. Capturing file-level and forensics

information is possible through VMI.

5.1.2 Impedance

Trait The impedance should provide sufcient time to adjust the deceptive service

or preserve a file under destruction and have an acceptable impact on the user.

Further, the impedance should be designed with the DecMS Preservation Goal

to preserve the data under destruction without compromising data integrity and

authenticity.

The wrapper method from Section 4.2 is capable of halting the flow of an I/O

request to allow the Analysis or Preservation services to complete tasks. The mod­

ification method is practically challenging if the source code for applications, or the

operating system, is not available. The introspection method requires additional

mechanisms to halt the I/O request. The interposition circumvents the valid layer(s)

to facilitate the I/O request and may require an implementation to service the I/O

when benign writes occur.

5.1.3 Preservation

Trait The preserved data should maintain its integrity and should not be modified

by the adversary after preservation.

The Protection Policies and service should hide the presence of the file or place

the file in a location that is inaccessible. Two approaches are selected: (i) threat

collocation with protection and (ii) external layer to the threat.

For DecMS-Kernel, files and the preserved data relevant to DecMS are hidden

from the process list along with the kernel module. For DecMS-VMI, DecMS is not

accessible from within the VM. All preserved data is placed outside of the VM.

98

5.1.4 Reduce

Trait Demonstrate the ability to reduce the e↵ectiveness of threats that lead to a

loss of security elements caused by unauthorized data destruction.

The prototypes should be able to protect against instances of the threat space

from Section 3.1. In the following sections, instances of threats are given to evaluate

the e↵ectiveness of the proof of concept instances in enhancing data preservation.

5.2 Threat Instances

In the following section, several threats instances are detailed and are later used

to evaluate the DecMS prototypes.

5.2.1 Ransomware

Ransomware renders user files on a system inaccessible until a ransom payment

is received. Typically, the malware encrypts user multimedia files that are NRA, but

may also target backup files [97]. The malware operator will leave behind a message

instructing the user to send a payment in exchange for file decryption. A well-designed

piece of ransomware can encrypt user files using a public key scheme to minimize any

possibility of decryption without payment [98].

Some widespread strains of ransomware in 2016, such as TeslaCrypt and Al­

phaCrypt, use symmetric encryption. TeslaCrypt and AlphaCrypt use AES with

a local, randomly generated key, which is sent to a server while the local copy of the

key is deleted. Variants of this program can be thwarted by retrieving the key lo­

cally or intercepting the key in communication [99]. More sophisticated ransomware,

such as CryptoLocker, CryptoWall 4.0, Samas, TorrentLocker, KeRanger, and Locky

encrypt the AES symmetric key with an RSA public key to avoid locally storing or

communicating the AES key in an exploitable way [97, 100–104].

99

Name MD5
Destover 2618dd3e5c59ca851f03df12c0cab3b8
Shamoon d214c717a357fe3a455610b197c390aa
Shamoon 2 2cd0a5f1e9bcce6807e57ec8477d222a
Stonedril 0ccc9ec82f1d44c243329014b82d3125

Table 5.1: Wiper Malware samples for evaluation

To evaluate the e↵ectiveness of DecMS-Kernel against ransomware, a ransomware­

like application, based on the methodology of the Linux.Encoder.1 Linux ran­

somware and its OS X variant KeRanger 1 was developed2. The ransomware statically

links the ARMmbed 3 TLS libraries for RSA public key encryption as well as AES

encryption in CBC mode [105] [97]. The AES key is stored encrypted via RSA public

key encryption and prepended to the files targeted by the ransomware along with the

Initialization Vector (IV) for AES. The code to encrypt the test files is based on the

crypt and hash application found in the ARMmbed GitHub [106].

5.2.2 Wiper Malware

Destover, the Wiper Malware that infamously infected Sony computers in 2014,

overwrote master boot records with 64 KiB 4 of 0xAA [107]. Shamoon destroyed data

on a storage medium by overwriting with a JPEG file fragment [108]. An attacker

may destroy a file by overwriting the entire file or portions of the files that would

render the file unusable for some applications [109].

The MBR is an obvious target for Wiper malware [108]. Destroying the MBR

or partition table will render the storage medium unusable. The blacklist for our

evaluation includes ‘e:,” “PhysicalDisk1,” “Harddisk1” [110], which point to NTFS

data structures protected by DecMS-VMI.

1The source code or sample of the actual ransomware was not acquired.
2Thomas Yurek, an undergraduate student at Purdue University developed and evaluated the

experimental crypto ransomware on DecMS-Kernel.
3
https://tls.mbed.org/

4KiB is defined as 210 bytes.

https://tls.mbed.org/

100

5.2.3 Anti-forensics

The anti-forensic threats considered include falsified timestamp evaluation and

secure delete methods.

DecMS-Kernel Secure Delete Anti-Forensics

Secure delete methods are used to evaluate DecMS-Kernel e↵ectiveness against

attacks on availability. Two configurations of srm are evaluated. The default setting

is based on the secure delete algorithm described by Peter Gutmann [111], which

consists of 38 passes:

1. A single pass of 1-bits

2. Five passes of random bits

3. 27 special values defined in [111]

4. Five passes of random bits

Optionally, srm has a “less secure” mode that consists of a pass of 1-bits followed by

a pass of random bits.

DecMS-VMI Anti-forensic Evaluation

Two anti-forensic techniques are considered on a Windows 7 VM: secure delete

and timestamp fabrication. While the design of DecMS may be able to counter other

anti-forensic techniques, such as data concealment or obfuscation, we focus on secure

delete and timestamp fabrication to cover the entire threat space outline in Chapter

3.1.

The secure delete tools evaluated under DecMS-VMI are listed in Figure 5.2.

101

Table 5.2: A list of secure delete methods considered in the evaluation of DecMS-VMI.

Algorithm Description
AFSSI-5020 Three passes: random data, complement w/

8-bit shift, complement w/ 16-bits shift [112]
AR 380-19 Three passes: random byte, random byte,

complement of the second random byte [112]
British HMG IS5 (Baseline) Single pass of zeros [112]
British HMG IS5 (Enhanced) Three passes: zeros, ones, random data [112]
Canadian RCMP TSSIT OPS-II Seven passes: Three alternating passes of zeros

and ones, then a random byte [112]
DoD 5220.22-M(ECE) Seven passes: A combination of random bytes,

complement of random bytes, and zeros [112]
DoD 5220.22-M (e) Three passes: zeros, then ones, then random

[112] [113]
German VSITR Same as Canadian RCMP TSSIT OPS-II [112]
Gutmann’s 35-pass method 35 passes: data (1-4), fixed patterns (5-31),

random data (32-35) [111]
Overwrite with zeros Single pass of all zeros [114]
Pseudorandom data Overwrite with random bits [112]
Russian GOST P50739-95 Three passes: Single pass of zeros, then ran­

dom data [112]
Schneier’s Algorithm [20] Seven passes: zeros, ones, remaining passes

consist of random data [112]

102

5.3 Randomness Classifier

For both DecMS-Kernel and DecMS-VMI, a classification tree is used. This section

provides the details for training, testing, and validating the classification tree.

Figure 5.1.: The distribution of files in training, validation, and testing sets.

The classification tree training uses the scikit-learn Python library [115], which

uses an optimized version of the Classification and Regression Tree (CART) algorithm.

We explore the maximum depth parameter, up to a maximum depth of four, which

produces classification trees that consist of, at most, four randomness features and

four Boolean statements.

The Observation Policy provides the Analysis Policy with: a write bu↵er, contain­

ing the data to be written to a file; a File Handle, metadata information about the

file; an o↵set, the location of where the write bu↵er should write to the file. For each

interposed write bu↵er, we must consider the sample size, sample o↵set, and sample

frequency for system write calls issued to a file.

103

Figure 5.2.: An illustration of write bu↵er sampling for DecMS-VMI

Let B
i represent the write bu↵er provided by the Observation Policy. A sample

o↵set S
o defines the starting location in B

i for analysis. A sample size S
k which

defines the amount of data that is inspected per B
i

. A sample frequency, S
f , defines

the frequency to inspect the write bu↵er B
i

. An illustration of the above is shown in

Figure 5.2.

The sample o↵set, in conjunction with the o↵set provided by the Observation

Policy, defines locations of interests within the file. Several files use file signatures

[109] and metadata located at the beginning of a file5 .

There are several design choices one must consider for the Analysis Policy. The

sample size and sample frequency is a trade-o↵ between accuracy and time: larger

samples provide more information to identify if the write is destructive but the anal­

ysis latency grows as the sample size increases.

The sample size should be at least the recommended minimum input size for each

NIST randomness feature used in our classifier. The maximum sample size must also

consider testing the entire write bu↵er, sub-segments of the write bu↵er, or combine

several write bu↵ers. We constrain the maximum bu↵er size as the smallest file size
5In DecMS-VMI, the file signatures are used to help identify data destruction

104

in Windows, 4,096 bytes. We validate our classifier by exploring several bu↵er sizes

between 16 bytes to 4,096 bytes and identify a bu↵er size that provides high accuracy.

The features of our classification tree consist of p-values returned by NIST ran­

domness tests [67]. Our evaluation shows that even with four randomness tests (or

fewer), False Postive (FP) and False Negative (FN) rates6 can fall below 1% and

would be acceptable in many scenarios.

We also observed through experimentation that a sample o↵set of zero provides

viable information, such as file signatures. Further, we also set the sampling frequency

to only analyze the first write to a file. We show that only sampling the first write is

sufcient to detect the data destruction in our evaluation.

We use disjoint training and validation sets for our experimental evaluation. The

training set is used to train our classification tree, the validation set explores the

optimal parameters for our classification tree, and the testing set evaluates previ­

ously unseen data with the optimal classification parameters, which we present in

conjunction with other detection mechanisms in Section 6.2.4.

There are two class labels for classification. The benign class are writes that are

not destructive and the destructive class are destructive writes. For the benign class,

we use the forensics files corpora detailed in [116]. Specifically, DecMS is evaluated

against the Govdocs17 data set, which consists of files gathered from .gov domains.

The full distribution of training, validation, and testing sets are shown in Figure 5.1.

The Govdocs1 data set provides ten “threads,” each consisting of about 1,000

randomly selected files from the entire corpora. The intention for the “threads” is for

researchers to select distinct threads for training, validation, and testing.

For the training and validation destructive class, we use the same files overwritten

with pseudorandom bits using the shred [72] utility.

The benign class consists of all 991 files in thread0 for training and 993 files in

thread1 for validation. For the destructive class, we use the same files overwritten

6FP and FN rates often referred to as Type-I and Type-II error rates, respectively.

7
http://digitalcorpora.org/corpora/govdocs

http://digitalcorpora.org/corpora/govdocs

105

with pseudorandom bits using the shred [72] utility. The training and validation set

each consist of an equal number of benign and destructive class samples.

5.3.1 Parameter Settings for Randomness Classifier

For our evaluation, we measure the accuracy with increasing write bu↵er sizes

for DecMS. We find the optimal bu↵er size by evaluating the precision and recall for

bu↵ers ranging from 16, 32, ..., 4,096 bytes. We vary the depth of the classification

tree from 1 to 4. As the depth of the tree increases, the classification latency increases,

but there is a better fit to the data. Our policy defines a sample o↵set of zero, and

the sampling frequency is defined to sample only the first system write call to a file.

The rationale is derived from the observation that the secure delete tools we examine,

shown in Table 5.2, destroy files sequentially from the beginning of the file to the end

of the file. Therefore sampling from every system write call on a file is redundant.

The parameter values can be changed either deterministically or can be sampled from

distribution to add to the entropy of the protected system.

5.3.2 Randomness Tests

Through our evaluation, we decided on a tree that uses four di↵erent randomness

tests [67] that provide high accuracy and low computational cost: Frequency (Mono­

bit) Test, Frequency Test Within a Block, Runs Test, and Longest-Run-of-Ones in a

Block Test.

Frequency Monobit Test

The Frequency (Monobit) Test calculates the proportions of zero and one bits in

a binary sequence. Each proportion is expected to be about 1/2 if the sequence is to

be considered random. A sample size of at least 100 bits is recommended [67].

106

Frequency Test Within a Block

Rather than comparing the ratio of one-bits to zero-bits over the entire sequence,

the Frequency Test Within a Block breaks the sequence up into blocks. For each

block, the number of ones observed should be approximately half the length of the

block size if the sequence is random. NIST recommends a sample that is at least 100

bits long, a block size of at least 20 bits, a block size greater than 1% of the input

sequences, and less than 100 block segments [67].

Runs Test

The Runs Test examines the “runs” within a given sequence. A run is an un­

interrupted sequence of identical bits. The test examines if the runs within a given

sequence “vary in length as expected for a random sequence” [67]. The minimum

sample size is 100 bits.

Longest-Run-of-Ones in a Block Test

The Longest-Run-of-Ones Test is measured within a block of the given sequence

and is compared to what is expected for a random sequence of the same block size.

NIST provides recommendations for the block size relative to the size of the input

sequence. For instance, for a sample length of at least 128-bits, NIST recommends

block sizes of eight bits. For larger sample lengths, the block size is increased: block

size of 128 for input length of 6272 and 10,000 for input length of 750,000 [67].

5.3.3 Classification Training and Validation

Classification accuracy is measured by recall and precision in our evaluation. Re­

call is measured by TP . A high recall rate is of importance because DecMS should TP+FN

capture all data destruction activities (i.e., a low FN). Precision is measured by TP .TP+FP

A high precision value indicates a low FP rate, meaning that few benign cases are

107

classified as destructive. It is difcult to achieve a high precision without reducing

the recall or vice versa [117]. While both metrics are of importance, the impact of a

false positive classification is preserving a file when a benign write occurs, potentially

slowing down a valid write to a file. The impact of a false negative classification is

missing a destructive action and not preserving a file under destruction.

Figures 5.3 and 5.4 illustrate the recall and precision of various bu↵er sizes and

max tree depth configurations. The x-axis is the maximum depth training parameter

and the y-axis is the write bu↵er size. Each cell in the figures represent the preci­

sion/recall rate of training and validating the classifier with the given parameters.

The general trend is that as the size of the bu↵er increases, the recall and precision

increases. A bu↵er size of 512 bytes or above is capable of over 0.95 precision and

over 0.98 recall. For the tree depth parameter, our results show a trend of increasing

recall and precision rate as the depth of the tree increases. Note that even while

inspecting small write bu↵ers between 16 to 256 bytes, DecMS is capable of recall

rate above 0.9 and precision rate above 0.84.

The box highlighted in red in Figures 5.3 and 5.4 indicates the classification pa­

rameters selected for our testing of DecMS. We select a bu↵er size of 4,096 and tree

depth of two because the recall and precision rates on our validation sets are both

above 99% and increasing the depth of the tree does not significantly improve the

accuracy. Figure 5.5 details the classification tree created by our training. Three

features are used in this classification tree: Frequency Test within a Block, Block Fre­

quency (monobit) Test, and longest runs [67]. The false positives we observed in our

validation did not follow any discernible pattern and were approximately uniformly

spread among HTML, GIF, and SWF files.

5.4 Other Destructive Patterns

The classification process also considers common write patterns found in data

destruction. For example, bleachbit writes all zeros over a file for destruction,

108

Figure 5.3.: Recall score on the validation set for increasing bu↵er sizes and a maxi­
mum depth of tree parameters.

whereas srm uses a combination of random bits and fixed patterns. The common

destruction patterns are an additional check to the randomness test.

DecMS-Kernel first examines the write bu↵er to determine randomness. If the

bu↵er is classified as benign, DecMS-Kernel then checks the write bu↵er for fixed

patterns. For our experimental evaluation, DecMS-Kernel also checks if the write

bu↵er contains all zeros or all ones.

In addition to the randomness test and common destructive patterns, DecMS-VMI

uses file signatures to detect destruction. Overwriting a file signature is a promising

indicator for data destruction, as indicated in [23] for crypto ransomware. While some

files, such as ASCII text files, do not use file signatures, multimedia files often do.

109

Figure 5.4.: Precision score on the validation set for increasing bu↵er sizes and a
maximum depth of tree parameters.

When overwriting the beginning of a file, we check to see if the write bu↵er contains

a file signature that matches the file extension 8 .

5.5 Design Overview for DecMS-Kernel

Figure 5.7 illustrates the integration method for the DecMS-Kernel proof of con­

cept. A wrapper for several system calls inspects for destructive write requests. Figure

5.6 illustrates, at a high level, the DecMS-Kernel proof of concept. The Observation

Policy defines a set of system calls that write to a file. When a process invokes a

system call that modifies files, DecMS-Kernel intercepts and inspects which files are

accessed. Step (1) shows that a process is calling the sys open system call. Step

8An adversary may circumvent this analysis by writing a file signature that matches the file
extension then overwriting the rest of the file.

110

Figure 5.5.: Classification tree for randomness testing with input bu↵er size of 4,096
bytes and tree depth of two.

Figure 5.6.: General flow of DecMS-Kernel.

(2) intercepts the sys open system call and identifies if the file should be protected,

based on the Observation Policy. DecMS-Kernel places the file descriptor in the

“protected files list.” At some later point, if the process calls sys write (Step (3)),

on a protected file, DecMS-Kernel determines (Step (4)), as defined by the Analysis

111

Figure 5.7.: The integration method (wrapper) for DecMS-Kernel, highlighted in
white.

Policy, if the write bu↵er contains random binary data or write templates commonly

used for data destruction. If classified as “destructive,” DecMS-Kernel triggers the

Deception or Preservation, Step (5). The Preservation Service can back-up the data

before destruction can occur, and the Deception service can report that the file was

successfully written. Step (6) sends a return value to the caller of the sys write call.

The return value can appear to look as if the write was successful without additional

execution of code.

The design space consists of the placement of DecMS-Kernel, the policies to pro­

tect data items of interest, the policies to drive the randomness testing, and the policy

on reacting to detection of data destruction. The system call wrapper may also hide

the presence of the services and files through the use of several existing rootkit hiding

techniques.

112

Figure 5.8.: The integration methods (wrapper and introspection) for DecMS-VMI,
highlighted in white.

5.6 Design Overview for DecMS-VMI

DecMS-VMI is designed to protect against data destruction attacks and is a sup­

plement to existing security monitoring tools, such as anti-malware or intrusion de­

tection systems, and data back-up/redundancy technology. DecMS-VMI observes

persistent storage I/O, through active VMI that wraps several system calls (Fig­

ure 5.8), and provides resiliency against destructive I/O. The introspection observes

for system state and provides forensically valuable information when data destruc­

tion is observed. The high level design of DecMS-VMI is shown in Figure 5.9. The

trusted monitoring system, shown on the right, monitors for data destruction on the

Untrusted System, shown on the left. The monitoring system is isolated from the po­

tentially compromised “Untrusted System,” where a destructive attacker may reside.

We assume that the monitoring and the analysis code are trusted and inaccessible

from the compromised machine.

113

Figure 5.9.: DecMS-VMI interposes storage medium I/O in isolation. If the I/O
appears to be destructive, DecMS-VMI preserves the data.

114

The top of Figure 5.9 shows an application in the Untrusted System that writes

data to a file located on some storage medium such as a Solid State Drive (SSD).

DecMS-VMI, located on the Trusted Monitoring System, interposes (1) when a file is

opened for writing to create a temporary checkpoint. Next DecMS-VMI interposes all

writes to an existing file, determines if the I/O is destructive (2), and the checkpoint

is preserved (3) if the behavior is suspect. If the application is malicious, it may

overwrite a critical file and compromise the file’s integrity, availability, or utility [2].

Each of the numbered items in Figure 5.9 are policy driven, to provide flexibility

in deployment. The Observation Policy (Section 6.2.1) defines the files/directories

under protection, and the I/O related system calls to interpose. The Analysis Policy

(Section 6.2.2) describes a set of metrics derived from the interposed system call

parameters and defines a procedure to determine if a destructive action is taking

place on the live system. The Preservation Policy (Section 6.2.3) describes how to

preserve the data under destruction.

5.6.1 Assumptions

To summarize, we make the following assumptions:

1. The attacker destroys data by overwriting a data object, partially or completely,

that is located on the compromised machine.

2. The attacker does not have physical access to the storage medium.	 Ergo, the

attacker cannot physically destroy the disk.

3. The attacker may have administrator access to the compromised machine but

cannot avoid monitoring of our proposed system 9 .

4.	 The VMM analysis and storage used by DecMS-VMI is assumed to be within

our Trusted Computing Base (TCB).

9For example, Kernel Object Hooking (KOH), Dynamic Kernel Object Manipulation (DKOM),
or Direct Kernel Structure Manipulation (DKSM) [59, 74] could be used to remain hidden from
security monitoring.

115

5.	 Our proposed system works in conjunction with other security monitoring tools,

such as Anti-virus scanners (AVS), and Intrusion Detection Systems (IDS).

However, we assume that AVS, IDS, and other security monitoring systems fail

to identify the entity that is destroying data as malicious to demonstrate the

e↵ectiveness of DecMS-VMI.

6. Our prototype implementation does not consider the case when valid users wish

to securely destroy or encrypt data.

5.6.2 Requirements

Preservation: Upon detecting events of interest, a log of the event and the data under

destruction should be preserved. The logging and preserved data should be inacces­

sible to the adversary.

High Accuracy: Detection of data destruction should be accurate with few false nega­

tives (incorrectly identifying a suspicious write as benign). False positives (incorrectly

identifying a benign write as destructive) should also be kept low, to avoid encum­

bering the end user with degraded system performance. We focus on obtaining low

false negative rates to reduce the risk of data loss when destruction occurs.

Acceptable Performance: DecMS-VMI should impact latency and throughput for le­

gitimate users as little as possible.

116

6 EVALUATION

6.1 Kernel-Based Evaluation

6.1.1 Observation Policy and Service

To intercept system calls, we used the Suterusu Loadable Kernel Module Rootkit

[60]. Suterusu is an open source modern rootkit designed for x86(64) Linux 3.X ker­

nels. The rootkit demonstrates several common features, such as hiding the presence

of processes, files, and network sockets. The process and file hiding features are used

to mask the presence of DecMS-Kernel. Further, Suterusu hooks system read/write

calls for logging keystrokes. Care was taken to remove malicious functionality such as

the keylogger and remote execution of arbitrary binaries. The design choice of using

Suterusu is driven by its ability to hide and ease of extensibility.

Suterusu relies on inline function hooking that modifies a targeted function to

transfer execution to another routine [60]. Suterusu provides hijack start, hijack

stop, hijack pause, hijack resume helper functions to easily hijack functions.

The following functions are hijacked for DecMS-Kernel. A short description is

provided for each hijacked function.

sys open - DecMS-Kernel keeps track of each file a user has open. The opened file

is inspected according to a predefined Monitoring Policies, as shown in Figure

5.6 (2). For our evaluation, DecMS-Kernel places files into the “protected file

list” if sys open is invoked by a user process with a write request. Further,

only regular files are placed in the “protected file list.” Directory files, block

devices, character devices, pipes, sockets, and symbolic links are ignored in our

experimental evaluation.

117

sys write - When a write system call is invoked, DecMS-Kernel checks if the file is in

the “protected file list.” If so, it passes the write bu↵er through the randomness

classifier. If the bu↵er is classified as destructive, then execute Preservation

Policy (Figure 5.6 (5)). The policy defined in our experimental evaluation is

to save the file elsewhere, with the assumption of sufcient storage space, and

allow the sys write to continue after the file is copied.

sys close - If the file is in the “protected file list,” then remove it.

6.1.2 Analysis Policy and Service

Figure 6.1 illiterates the policies to determine if a file is undergoing data de­

struction and whether the file should be copied. The policy we use to evaluate

DecMS-Kernel is to test if the first write to a file is destructive. Two checks are

then conducted. The randomness test uses a classification tree and the “common

secure delete patterns” to determine if the write bu↵er contains all ones or all zeros.

Checking subsequent writes to track how a file is changed over time is certainly

possible with DecMS-Kernel. However, analyzing the bu↵er for every system write

call on a file may not provide enough forensic value to justify the increased latency,

and in the case of a secure delete with multiple rounds, could result in excessive

storage space being used for pseudorandom data. However, checking the first write

call to a file can be circumvented by an attacker who first writes benign information

and then later switches to data destruction. The defined policy should take into

consideration whether the potential savings in computational overhead and storage

space is worth the vulnerability to a targeted attack against DecMS-Kernel.

During initialization, DecMS-Kernel hijacks all three system calls listed above.

One potential flaw is that hijacking is paused to allow the system call to execute.

There is a window of opportunity for other threads to execute the system call without

the hijacking enabled [60]; thus Suterusu hijacking is not thread-safe. After the

118

Figure 6.1.: DecMS-Kernel policies to determine if a write bu↵er is used to destroy
data

system call completes, the hijacking resumes. Coppola [60] explains that locks and

permanently hijacking the system calls would solve the issue.

6.1.3 Preservation Policy and Service

If a process attempts to destroy a protected file, the file is saved using Redhat

Linux System Auditing (audit) [118]. Using Linux System Auditing allows for exist­

119

ing parsing tools to work to extract information generated by DecMS-Kernel. Further,

audit is easily configurable with trigger actions if the log file is full, the disk is full,

as well as sending log information over a network1 . Another advantage is that we can

leverage Suterusu hiding file and network connections to covertly backup data.

Protected files that are under destruction are encoded and sent to the audit dae­

mon. For our evaluation, the data is stored locally and only accessible under a

privileged account.

6.1.4 Deception Policy and Service

A denial of the truth is the deceptive strategy explored in this prototype imple­

mentation. A masking strategy hides the true nature of the system through a rootkit

mechanism. Suterusu hides the existence of the kernel module that handles both the

presence of DecMS-Kernel and the preservation. To complement the dissimulation

(hiding the real), the simulation (showing the false) is implicit by returning that all

writes to a file are successful. The state of the system is also hidden. Files that are

associated with the data preservation are not viewable through typical file listings

(e.g., ls).

6.1.5 Service Location

All of the services above are co-located with the threats but with additional pro­

tection. The assumption is that the attacker is running in user mode and all the

protection mechanisms execute with elevated privileges.

6.1.6 Metrics of Interest

For the experimental evaluation of DecMS-Kernel, two metrics of interest are cal­

culated: the ability to accurately classify write bu↵ers as benign or destructive, the

1
http://linux.die.net/man/5/auditd.conf

http://linux.die.net/man/5/auditd.conf

120

latency associated with conducting such an analysis on a live system, and the ability

to accurately preserve the data under destruction. For the Monitoring Policies, the

accuracy is necessary to determine if the system is capable of detecting data destruc­

tion. The latency also indicates the e↵ectiveness of the Protection Policies. High

latency indicates that some unknown service is present whenever a data destruction

action takes place. The preservation service must be able to preserve the entirety of

a file before the destruction occurs.

Detection Latency

The detection latency is a measurement of several components of DecMS-Kernel.

However, the execution of each component is driven by the system’s defined policies.

The components that contribute to the detection latency include:

1. Interception of system calls

2. Determining if a bu↵er is random or contains common data destruction patterns

3. The latency to preserve the data under destruction

Write bu↵er interception occurs each time the sys write system call is invoked.

However, the randomness analysis only occurs if the write call is applied to a file

marked for protection, shown in Figure 5.6 (2), the Observation Policy. Furthermore,

the Protection Policies, shown in Figure 5.6 (4), could be configured to always check

for randomness for each write call applied to the protected file. However, the policy

we define for the experimental evaluation simply checks for randomness and common

data destruction patterns on the first write to the file and subsequent writes to the file

are not analyzed for randomness. This was done to minimize computational overhead

and prevent excessive storage from being allocated to random data. If the first write

was classified as destructive, the entire file was moved elsewhere.

121

Relationship of Accuracy and Latency

In general, the accuracy of the randomness test increases as the sample size in­

creases. However, the latency to conduct the randomness test increases as the sample

size increases. While this dissertation does not optimize for performance, the analysis

could be further improved by using specialized hardware such as a graphics processing

unit (GPU) [119] that is capable of calculating randomness features more efciently

than a software solution. For our evaluation, we measure the accuracy and latency

with increasing input sizes for DecMS-Kernel. The minimum bu↵er size we measure

reflects the recommended minimum size for each randomness test feature2 as defined

by NIST in [67]. The maximum bu↵er size we measure reflects the default block size

for Ubuntu 14.04.4 LTS, 4,096 bytes.

6.1.7 Experimental Results

Our experimental evaluation was conducted within a Linux 3.18.27 Ubuntu 14.04.4

LTS VMWare Fusion Virtual Machine with 2GB of RAM and one processor core. The

host system is a MacBook Pro with Mac OS X 10.10.5, 2.7 GHz Intel Core i7, 8 GB

1067 MHz DDR3 RAM and a 256GB Solid State SATA Hard Drive.

Latency Analysis

There are two sources of latency associated with DecMS-Kernel: inline function

hooking and randomness classification. Inline function hooking intercepts system

write calls and latency is observed for each write to the disk. As defined by our

Observation Policy in Figure 6.1, the write bu↵er passes through our randomness

classifier and common secure delete pattern checker only on the first bu↵er written

to storage.

2NIST recommends 120 bits for Frequency (monobit), Frequency Block, and Runs Tests, and
128 bits for longest run-of-ones Test

122

Figure 6.2 shows the latency test of DecMS-Kernel compared against the system

baseline as well as DecMS-Kernel with only system call interception enabled (without

inspecting the write bu↵er for randomness or destruction templates). The latency

samples 500 separate file writes of 4 KiB. The median latency for the baseline is 0.0075

ms, and the median latency of DecMS-Kernel without conducting any classification

is 0.015 ms. Thus the cost of each write call interception is about 0.0075 ms. The

median latency for DecMS-Kernel of bu↵er size 16 bytes and a max depth of one is

0.024 ms, which adds about 0.017 ms of overhead. Likewise, the median overhead

caused by a classification tree with a maximum depth of two and bu↵er size of 4,096

bytes (D2B4096) is 0.046 ms, and for the D4B4096 3 classification tree, the median

latency is 0.117 ms.

Note that the costs associated with the randomness classification become increas­

ingly large as the file size increases. The cost to intercept the write bu↵er eventually

becomes much larger than the cost to run the randomness test once. In Figure 6.3,

the latency for a 32 MiB 4 file is shown. The cost associated with writes interception

with 32 MiB. files is estimated to be about 93.05 ms. As shown in Figure 6.3, the

increased latency from the baseline for 32 MiB files is about 60.00 ms.

Figures 6.4 and 6.5 compare the latency of DecMS-Kernel with data backup en­

abled for 4 KiB files and 32 MiB files respectively. When DecMS-Kernel detects data

destruction, the file is hex encoded [120] and sent to the auditd for storage. The hex

encoding increases the overhead by a factor of 2.95x. The overhead for hex encoding

was calculated by measuring the average latency of 1000 10 Mib files for both the

baseline and hex encoding only. The usage of hex encoding is for convenience and

can be avoided altogether by writing the raw binary values out to the log. The total

median latency increase for 4 KiB files when a write bu↵er is classified as destructive

is a factor 19.5. For 32 MiB files, the median latency increases by a factor 20.6.

To summarize, the latency introduced by DecMS-Kernel is about three times the

latency of the baseline. Because our policy only checks for randomness on the first

3Maximum depth of four and bu↵er size of 4,096

4MiB is 220 bytes.

123

write to a protected file, the latency associated with intercepting the write bu↵er out­

weighs the cost to run the tree classifier and common secure delete template matching

regardless of the configuration explored in Section 5.3.3. The latency to move a file

if the write bu↵er is classified as destructive increases the baseline latency by about

a factor of 20.

Figure 6.2.: A comparison of real time file latency for 4 KiB files for DecMS-Kernel
under various sample sizes.

Evaluation Against Applications

The evaluation is conducted on the shred [72] and srm [73] command line applica­

tions. Of the 993 test files, all were successfully detected by DecMS-Kernel, indicating

that the Protection Policies and service are working under the experimental config­

124

Figure 6.3.: A comparison of real time file latency for 32 MiB files for DecMS-Kernel
under various sample sizes.

uration and threat assumptions. DecMS-Kernel is configured to detect if the file is

undergoing destruction and a log is generated.

Ransomware Evaluation

We tested DecMS-Kernel by measuring the ability to detect encryption of all the

files greater than 4,096 KiB in the Diverse testing set. The results show that DecMS-

Kernel is capable of detecting 916/917 of those files. The misclassification of one out

of the 917 was caused by the incorrect classification of the random bu↵er written by

the experimental ransomware.

One false negative classification out of 917 provides a significant improvement

compared to the system without DecMS-Kernel. However, the loss of even a single

125

Figure 6.4.: A comparison of real time file latency for 4 KiB files for DecMS-Kernel,
with and without the Analysis Policy and Preservation Policy.

file is devastating if the file is not replaceable. The classifier can be adjusted to

improve accuracy, but perfect accuracy is not possible. For the DecMS-VMI proof

of concept, a file is always preserved (temporarily based on some retention policy)

upon opening a file. Even if a destructive write is misclassified, the file may still be

preserved.

6.1.8 Discussion

DecMS-Kernel is capable of detecting data destruction with high rates of recall

and precision.

We measured the latency of DecMS-Kernel, and our experimental results show

that it is suitable for users with low I/O demands. Furthermore, we demonstrate

126

Figure 6.5.: A comparison of real time file latency for 32 MiB files for DecMS-Kernel,
with and without the Analysis and Preservation Policies.

that DecMS-Kernel is capable of defending against commonly available secure delete

tools such as shred and srm as well as the ransomware which may use the commonly

observed combination of AES for file encryption and RSA public key encryption to

encrypt the AES key.

The above results show that the DecMS-Kernel proof of concept is capable of

preserving files under destruction and providing a log of targets that a threat may

target, satisfying the DecMS Identification Goal, DecMS Impedance Goal, and DecMS

Preservation Goal. Two types of threats are shown to be unsuccessful in destroying

data, which indicates that it may be possible to reduce the e↵ectiveness of some data

destruction methods (DecMS Reduction Goal).

127

There are several improvements guiding the design choices in the subsequent eval­

uations of DecMS. For large files (32 MiB in the evaluation), it appears that the

latency may not be suitable. Specifically, copying the files to another location is only

suitable for small file sizes because of the large latency. Likewise, the large observable

latency may indicate to the attacker that the I/O system is doing additional work

during destructive actions. The masking/mimicking strategy at the kernel level may,

therefore, be unsuitable under the current configuration.

Given the above results, the following design choices were made. First, the process

preserving data under destruction should be optimized. An obvious choice is to use a

logging or snapshot file system that only saves changes to a file rather than overwriting

a file. A logging or snapshot file system will not require copying the entire contents of

a file when a destructive write is observed. However, the challenge is hiding the fact

that a logging or snapshot file system is in place. The control mechanisms of the file

system, to roll back to an older version of a file, should be outside of both the user

and threats control. Based on the results above, the following proof of concept places

the Monitoring Policies and Protection Policies, and associated services, outside of

the system under protection.

6.2 VMI-based Evaluation

Our prototype implementation DecMS-VMI interposes system calls through Vir­

tual Machine Introspection (VMI) and places the analysis and preservation within the

Virtual Machine Monitor (VMM), which is part of the Trusted Monitoring System

(Figure 5.9). The challenge with VMI is bridging the semantic gap, i.e., determining

file activity from outside the operating system. Prior work [94] and an associated

open source project [95] address semantic gap challenges, which security monitoring

tools [69] use reliably.

128

Our evaluation of DecMS-VMI protects a Windows 5 VM against data destruction

and uses VMI to intercept system calls associated with storage medium I/O. The

cost of DecMS-VMI is a decrease in I/O performance. However, we show that the

additional overhead may be acceptable in some settings.

Figure 6.6.: DecMS-VMI examines file modifications and preserves the file if data
destruction is suspected.

Figure 6.6 illustrates the high-level design of DecMS-VMI when placed within

the VMM. When a process invokes a system call that writes to a file, DecMS-VMI

intercepts the system call and inspects the parameters (1). The Observation Policy

defines the set of system calls to monitor and a set of files that are under protection.

A temporary checkpoint of the file system occurs each time a file is open for writing.

Later, when the process writes to the file (2), the Analysis Policy examines the system

call parameters and decides if the write is suspect or benign. If the write is suspicious,

the temporary checkpoint converts to a permanent snapshot. If an attacker destroys

5Our prototype and associated third-party software protect Windows 7, but we do not anticipate
significant obstacles to using DecMS-VMI with more recent versions of Windows. Conceptually, it
should also port to Linux, Mac OS, and other systems.

http:snapshot.If

129

the files, a system administrator can use the snapshot of the file system to recover

the files. Temporary checkpoints are later consumed by a garbage collector to free up

storage space if they are no longer needed, according to the Preservation Policy.

6.2.1 Observation Policy and Service

Method

To intercept I/O system calls and inspect their parameters, we used the Drakvuf

Dynamic Malware Analysis System [69]. Drakvuf runs inside the VMM and inserts

breakpoints in key memory locations inside the VM’s memory to transfer control

to the VMM. When an application within the VM issues a system call, control is

transferred to Drakvuf. The design of Drakvuf is stealthy, such that it is difcult to

detect the presence of Drakvuf within the monitored environment. We implement

DecMS-VMI as a plugin for Drakvuf.

Policy

Our DecMS-VMI prototype intercepts two system calls on the guest VM: open file

and write a file. To open a file for writing, applications within the guest VM must issue

an open system call and request access permission for a given file. The Observation

Policy examines all open system calls and determines if the file is open for writing

by examining the call parameters. If the system call requests a write permission,

the Observation Policy determines if the file should be protected based on a blacklist

or whitelist. Algorithm 1 contains pseudocode summarizing the Observation Policy

decision flow for open file system calls 6.2.1.

If the file is on the blacklist, we take a snapshot of the file system because the file

is considered critical to system stability. Whitelisted files are considered unimportant

and do not require preservation. If the file is on neither list, DecMS-VMI takes

130

Algorithm 1 Open File VMI Pseudocode

if	 File is opened for writing then
if	 File is in Blacklist then
Create a Snapshot (Permanent)
Done

else if File is in Whitelist then
Done

else
Create Checkpoint (Temporary)

end if
end if

131

a temporary checkpoint of the file system, and subsequent write system calls are

analyzed, according to the Analysis Policy, to determine if the write is suspect.

Implementation

Several files may always need protection from destruction, regardless of the write

pattern. Data objects that are critical for system stability, such as the Master Boot

Record (MBR), are present in the blacklist. If a file on a blacklist is opened for writing,

the Preservation Policy is automatically triggered, which handles the preservation of

the file that is open for writing. The blacklist for our evaluation consists of references

any devices in the Win32 Device Namespaces and the NT Namespaces [110].

Ignoring certain data objects, defined on the whitelist, provides an increase in

performance by avoiding analysis of files that are not important. Data objects on

the whitelist, such as caches and temporary files, are ignored. For our experimental

evaluation, the whitelist includes all files that exist outside a specified “evaluation”

directory. We do this for two reasons. First, it allows us to have better control

over our experimental analysis because the system may contain file caches that are

periodically written to, potentially interfering with our results. Secondly, in practice,

the system files are much easier to recover from if destroyed. Users are more concerned

with personal files, typically stored in their home directory.

DecMS-VMI examines the following Windows system calls according to the Ob­

servation Policy:

NtOpenFile is the Windows system call used to open existing files, while

NTCreatFile can both open existing files and create new ones. The prototype Ob­

servation Policy identifies that the file exists and opened with the write permission

by examining the DesiredAccess and CreateDisposition call parameters.

The NtWriteFile Windows system call writes data to an open file [121]. The

FileHandle, Buffer, ByteOffset, and Length parameters are given to the Anal­

132

ysis Policy, if the file is not in the blacklist or whitelist, to determine if write is

suspected of being destructive.

The NtSetInformationFile modify file metadata [122]. DecMS-VMI uses the

FileInformationClass, FileInformation, and FileHandle parameters. When

a FILE BASIC INFORMATION is indicated by FileInformationClass, a times­

tamp change is being made. For each timestamp type, a new time is specified in

FileInformation. The Observation Policy in our evaluation examines all timestamp

modifications for malicious timestamp changes. The Analysis Policy determines if

one of the timestamp arguments as given to one of these system calls will result in

a significant timestamp shift from the current time. We assume that the timestamp

on the VM and the VMM are synchronized, and system time changes within the VM

are tracked. The Preservation Policy logs all incidents within the VMM.

6.2.2 Analysis Policy and Service

The interposed information is analyzed to identify destructive actions. The Anal­

ysis Policy describes the set of algorithms to determine if a write call is suspect. The

Analysis Policy details feature extraction that is then used to decide if a write is

suspect. Feature extraction should be quick to minimize analysis latency.

Policy

Our experimental policy examines the first write to the beginning of a file. We

later demonstrate in our evaluation that our conservative sampling provides high

accuracy and acceptable performance. The analysis extracts the following features.

File Signatures We use the file signature corpus found in [123]. If the system

call overwrites the file signature with data that does not match the file extension, we

flag the write as suspicious.

Data Destruction Patterns Several secure delete algorithms, as shown in Ta­

ble 5.2, overwrite files with repetitive patterns. To identify common secure delete

133

patterns, the Analysis Policy examines if the entire write bu↵er consists of repetitive

bytes, such as 0xFF or 0x00. If the first 4 KiB of the write bu↵er contains a fixed

pattern, we flag the write a suspicious.

Randomness Testing Several data destruction tools use random binary data to

overwrite files. Prior work in [23,24,53] use entropy as a metric to identify encryption

in ransomware. Instead, we use a classification tree with features used in evaluating

cryptographic pseudorandom number generators [67]. The experimental evaluation

demonstrates e↵ectiveness for detecting data destruction attacks. The benefit of using

a classification tree is the ease of implementation in C to provide a minimum impact

on latency. A detailed description of the randomness test training and validation is

given in Section 5.3. If the first 4 KiB of the write bu↵er appears to contain random

binary data, we flag the write as suspicious.

Algorithm 2 shows the flow of our prototype implementation handling system

write calls. The ordering of the detection methods is from most efcient to least

efcient to compute. First, we check to see if the file extension in the FileHandle

does not match the file signature found in the write bu↵er. Next, we check if the

bu↵er contains known destructive patterns. Finally, a randomness test examines the

write bu↵er. If any of the tests return true, then the checkpoint, created when the

file was open, converts to a persistent snapshot.

Algorithm 2 Write File VMI Pseudocode

if First write and beginning of file then
if File signature does not match file extension then
Change checkpoint to snapshot

else if Sampled bu↵er is a common pattern then
Change checkpoint to snapshot

else if Sampled bu↵er is random then
Change checkpoint to snapshot

end if
else if MAC DTS Update then
if DTS does not match the current time ± � then
Log incident, including the original and attempted change MAC DTS.

end if
end if

134

Implementation

Drakvuf interposes system calls within the guest VM transfers control between the

guest VM and the VMM. When the guest VM issues an open or write system call,

control transfers to the VMM. The previously mentioned features are extracted then

pass through a decision process, shown in Algorithm 2. After the analysis completes,

control transfers back to the guest VM, and the operating system continues.

A tree classifier identifies if a bu↵er contains random data. In Section 5.3, the

details regarding parameter constraints and features to produce our classification tree.

6.2.3 Preservation Policy and Service

If a protected file is undergoing data destruction, the Preservation Policy defines

the actions necessary to preserve the data, the information to log regarding the state

of the VM, and the policies relating to the retention of temporary checkpoints when

a file is open for writing.

Method

Several design choices are possible regarding the preservation of data under de­

struction. Upon detecting a destructive write and before the write is committed to

storage, the files under destruction can move into a container that is isolated from the

attacker. We define the above to be a reactive strategy. While the design is simple,

the latency may be high if the file size is large. The reactive strategy only creates

back-ups of files as destruction occurs, thus only occupying space when necessary.

In contrast to the reactive strategy, the proactive strategy protects data in an­

ticipation of a destructive action. The advantage is that there are several existing

schemes to quickly create a checkpoint of the storage medium or file to reduce latency

relative to the reactive strategy. For example, a copy-on-write (CoW) scheme may

outperform a reactive strategy. A checkpoint under a CoW scheme preserves the stor­

135

age state, and any changes to the storage are tracked. Analysis of destructive actions

can occur after the data is written, reducing the latency compared to the reactive

strategy. If destruction is determined, the system can rollback to the checkpoint. One

disadvantage is that a checkpoint must be taken in a consistent state and be updated

periodically to save disk space.

A version control or log-structured file system provides advantages over a CoW

scheme. All writes are appended to the disk with a checkpoint number. Checkpoints

are taken continuously, allowing for a system administrator to roll back to a consistent

state if data destruction occurs. A disadvantage is a need for garbage collection. As

writes occur on the disk, checkpoints are created and consume disk space. A garbage

collector can run periodically, have a minimum time to retain checkpoints, and run

when the disk is nearly full — all based on policy.

We find that for data preservation, a log-structured file system works well because

writes are in append mode only, writes are efcient, and automatic garbage collection

is possible (when checkpoints are no longer needed). We choose to use NilFS [124]

for this purpose because of its superior performance for file writes. NilFS uses check­

points, which can be garbage collected, and snapshots, which are permanent. A

checkpoint converts to a snapshot upon command. We use the snapshot feature to

make a permanent copy of the file system when we suspect a file is the target of data

destruction. From the perspective of the Windows VM, the user is writing files to

an NTFS disk while the hypervisor and Host OS translate the writes to NilFS. The

creation of NilFS snapshots is done outside the Windows VM thus protecting it from

a compromised guest OS.

Implementation

For our experimental evaluation, we take checkpoints synchronously when a file

is opened. When a checkpoint is required, the task is given to a thread pool. Al­

though NiLFS takes checkpoints quickly, we do not want the VM to hang during the

136

checkpoint creation. Subsequent writes block until the checkpoint completes. From

our experimental evaluation, we found that this strategy does not impact the write

performance significantly while providing certainty that the checkpoint matches the

storage state.

6.2.4 Experimental Results

Our experimental evaluation is conducted on a machine running Ubuntu 16.04.2

LTS (GNU/Linux 4.4.0-75-generic x86 64) configured with Xen 4.8.0 with 4,096 MiB

Domain0 memory and four dedicated vCPUs. The host machine is a Dell Pow­

erEdge R410 with two Intel Xeon X5570s clocked at 2.93 GHz with 16 GB DDR3

Synchronized 1333Mhz RAM and a Samsung 850 250 GB SSD. We use the Drakvuf

v0.4-7a79990 VMI tool to intercept Windows system calls associated with file I/O.

The Windows Guest VM uses 2 GB of RAM, two vCPUs, and two virtual disks. The

first disk contains the operating system and uses a Logical Volume Manager (LVM)

partition on the host machine. The second virtual machine disk exists within a NilFS

partition. All the experimental evaluation is conducted on the second disk, as it is

easier to control the read/write accesses on a disk without interference from the OS

related temporary files.

We compare the experimental results to our baseline system, which is a Windows

VM that does not have DecMS-VMI enabled but uses NILFS to create a periodic

checkpoint. The baseline system is a fair comparison to DecMS-VMI as it has the

benefits of using NILFS to periodically take checkpoints but without the benefit

of monitoring for potential data destruction. The garbage collector and continuous

checkpointing are disabled to provide optimal disk performance for the baseline. The

hardware and VM configuration for the baseline and DecMS-VMI are identical.

We evaluate the three requirements identified in Section 5.6.2: accuracy, preser­

vation, and performance. For data preservation, we check the di↵erence between the

files under protection before and after running wiper malware samples, listed in Ta­

137

ble 5.1, and the secure delete tools, listed in Table 5.2. Some of the secure delete

tools use deterministic patterns for every secure delete, such as overwriting with all

zeros (e.g., British HMG IS5). Other methods generate random data at runtime (e.g.,

AFSSI-5020), so the data used to overwrite the file is di↵erent each run of the algo­

rithm. While the sample size of wiper malware seems small, consider that modern

wiper malware is not designed to be as widespread as other malware such as botnets

or ransomware. The samples in our evaluation represent a sample of all the latest

wiper malware found in the wild.

We refer to ordinary files that should not trigger the system as benign. The benign

files used in our evaluation are from GovDocs [116].

For accuracy, we measure the recall and precision rates of our Analysis Policy to

identify benign writes and destructive writes. Finally, to measure the performance

impact of our prototype implementation, we measure and compare the latency and

throughput on the same hardware with and without DecMS-VMI enabled. We also

run PCMark 8 [125] to measure the performance impact of completing ofce tasks.

Metrics of Interest

Just as in the DecMS-Kernel prototype evaluation, the metrics of interest for

DecMS-VMI are: the accuracy of benign or destructive classes, the impact on the

latency associated with conducting such an analysis on a live system, and the ability

to preserve the files under destruction.

While both metrics are of importance, the cost of false positive classification is

producing a NILFS snapshot on benign writes, which produces write latency for

valid users. Therefore, we favor a higher recall value than precision when selecting

parameters for our classifier. A high recall implies that there is are few false negative

classifications. If speed is a priority, then a high precision rate may be of interest,

implying that the classifier has few false positive classifications.

138

The components that contribute to latency include the latency to intercept system

calls via VMI, the time needed to calculate features, the latency to run the Analysis

Policy (e.g., classification time), and the latency to trigger and create a checkpoint

or snapshot.

Accuracy Analysis

(a) Initial Results

(b) Corrected Results

Figure 6.7.: Confusion matrix for PRNG data destruction, the worst performing test.

139

In this section, we evaluate the accuracy of our Analysis Policy to distinguish

between benign writes and destructive writes. The test set consists of two classes

of files: Benign and Destructive. The Benign Class consists of Govdocs1 files from

Thread2, which represents common files real users typically encounter and DecMS-

VMI should not mistake writing these files as suspicious. The Benign files consist

mostly of multimedia files such as PDF, HTML, and JPEG. Figure 5.1 lists the file-

type distribution for testing accuracy.

The evaluation consists of overwriting files and observing the outcome of the Anal­

ysis Policy. For the Benign class, we overwrite the files’ contents, without changing

the file type, as would be the common case for benign use. For the Destructive class,

we overwrite the files with all of the secure delete tools found in Table 5.2.

DecMS-VMI with our experimental Analysis Policy can correctly preserve files for

all data destruction tools at 100% True Positive Rate, except for the Pseudorandom

Data destruction method. Figure 6.7a shows the confusion matrix for DecMS-VMI

under the Pseudorandom Data destruction method, which consists of overwriting a

file with a single pass of pseudorandom bits. The false negative rate is 0.2%, in other

words, out of 989 files, DecMS-VMI falsely identified two destructive overwrites as

benign. A CSV file and an XML file are not triggered by file signature/extension

mismatch because of the lack of fixed file signature for flat text files. In practice,

false negative files are not necessarily lost. The checkpoints are available until the

NILFS garbage collector runs, which can be set to only remove checkpoints if older

than some date/time or if the filesystem is nearly full.

The false positive rate is 0.51%: five files out of 989 benign writes were incorrectly

classified as destructive. Four of the five files triggered a snapshot because of a mis­

matched file signature. Upon further inspection, we verified that the four files (three

Excel spreadsheets, and one PDF) in our testing set simply have mismatched file ex­

tensions and signatures. There are several reasons why the mismatch can happen in

practice. As mentioned in [23], file signatures may change between di↵erent software

versions. The three Excel Spreadsheets use a file signature for which was not in our

140

file signature corpus. It appears that these three files use an older file signature that

we did not account. After adjusting the file signature corpus, we have a false positive

rate of 0.2%, as shown in Figure 6.7b. The PDF file (206709.pdf in the GovDocs

dataset) has 112 bytes of data before the correct file signature, which may indicate

file corruption. The other false positive file, 186957.pdf in GovDocs, was incorrectly

classified as destructive by our randomness classification tree.

DecMS-VMI also successfully detects all of the Wiper Malware in Table 5.1 upon

the first suspicious write. Not only did we detect the first suspicious write for all of

the samples, but we show in the following section that all of the files were successfully

preserved without any unauthorized modification.

Preservation Under Wipers

To test if DecMS-VMI can accurately preserve data under destruction, we test

against four wiper malware samples that have caused substantial damage to real

systems. Table 5.1 list of all the malware we evaluate.

Our test environment consists of files found in GovDocs Thread9. We place all of

the files under a protected directory in a separate disk image in our Windows VM.

We also populate the VM with synthetic data to make the VM appear to be a real

system rather than a malware analysis system. Internet connection is disabled in our

test environment, as none of the samples require a network connection to destroy files

on the system, according to the tech reports for each malware sample [4,107,108,126].

The malware samples use two approaches to destroy files on the system: over­

writing each user file or by-passing the file system and overwriting the raw disk. The

Shamoon, Shamoon2, and Stonedrill samples overwrite data using raw disk access,

which triggered the Blacklist in our Analysis Policy. The Destover sample overwrites

the protected files using a JPEG image fragment. The Analysis Policy triggers a

snapshot, because of mismatched file extension and file signature, to preserve the files

141

under destruction. Therefore, the detection happens either before or upon the first

destructive write to a protected file.

We ran each sample under administrative privileges with DecMS-VMI enabled

and verified that the malware samples destroy data. After the destruction completes,

we mount the disk image of the first snapshot taken because of the malware’s data

destruction actions. We then compare all of the files from the snapshot to the original

files using the Unix diff tool. All files were successfully preserved against all of the

Wiper malware samples considered.

Performance Analysis

The performance evaluation consists of two categories: the latency for benign user

tasks and suspect file writes.

Benign Activity For benign user activity, we evaluate the performance by using

PCMark 8 [125]. PCMark 8 is a benchmark suite to measure system performance

under common user tasks. We evaluate DecMS-VMI using the “Work Benchmark”

test suite [125] which consists of web browsing, document processing, and spreadsheet

editing6. These tests mimic how real users interact with the software and measures

user interface and runtime latencies. Below, a summary of each of the PCMark 8

Work Benchmark test for the evaluation follows. For details, refer to the PCMark 8

Technical Guide [125].

The Work Benchmark contains two separate web browser performance tests. The

JunglePin Test simulates a user browsing on a social networking website. The test

measures the latency to render the page and the rendering speed for several anima­

tions. The other web browser test, Amazonia Test, is an online commerce website,

which consists of the latency to update a shopping cart and several animations. Both

tests use Internet Explorer 9.

6We do not consider the video chat test because our experimental machine does not properly
pass through GPU requests from the VM to the host machine.

142

(a) Work Tests

(b) Storage Tests

Figure 6.8.: PCMark 8 ofce benchmark results showing the overhead incurred by
DecMS-VMI for a variety of common ofce tasks.

The Work Benchmark also includes a word processing test called the Writing Test.

The test measures the time to load/save a document, resize the window, copy/paste

text, and add a picture to a document. The Writing test uses a document editor

develop by PCMark.

143

The Spreadsheet Test measures the time to open and close a spreadsheet, copy

and paste data between spreadsheets, process data, and edit cells. The Spreadsheet

Test uses LibreOfce Calc, an open source ofce document editor, for data processing.

Figure 6.8a illustrates the overhead of DecMS-VMI under several benign user

tasks, from the Work Benchmark, which is typical in a work environment. The ratio

shown in the bar chart is the Median overhead introduced by VMI and the DecMS-

VMI Analysis Policy. The plot shows that the majority of the overhead is from

VMI for all tests, with DecMS-VMI analysis contributing to less than 1.6% overhead,

compared to the baseline, for all cases. The JunglePin Test performs the worst,

with 20.09% total overhead, with 1.54% overhead caused by DecMS-VMI analysis.

It appears that the overhead is caused by the rich image content of the JunglePin

website. The majority of the overhead is from intercepting the file creation and write

system calls for each image on the JunglePin web page. Additional overhead may

also be caused by a system-wide impact associated with the use of VMI

The Work Benchmark measurements include the latency that e↵ects user interface

elements, such as the scroll speed for both JunglePin and Amazonia, resizing the

window when writing a document, and the latency to edit a cell in a spreadsheet

citepcmark. It appears that the UI elements are a↵ected by using VMI (discussed

with the throughput analysis), even without running any analysis or preservation.

Since DecMS-VMI interposes storage I/O, we want to examine the impact of I/O

performance degradation without considering the degraded UI performance. We run

PCMark 8’s “Storage Benchmark,” [125] which measures storage latency performance,

to compare the latency of the baseline and DecMS-VMI. The Storage Benchmark

simulates disk usage and does not simulate the UI, which is the main distinction

compared to the Work Benchmark.

The storage performance consists of I/O traces of several popular applications:

four from Adobe Systems, three from Microsoft, and two computer games. The Adobe

Systems applications include Photoshop, a photo editing application; InDesign, a

web-publishing application; AfterE↵ects, a video editing and e↵ects application; and

144

Illustrator, a vector image editing application. The Microsoft tests include Microsoft

Word, Excel, and Powerpoint. The two computer games are Battlefield 3, a first-

person shooter, and World of Warcraft, an online role-playing game. All tests have a

single configuration except Photoshop, which runs under a “light” or “heavy” usage.

Figure 6.8b shows the median overhead for storage I/O for DecMS-VMI. The

Adobe Photoshop and AfterE↵ects Test performed the worst with a median overhead

of 3-4%. Based on the description of the tests [125], it appears that the Photoshop and

AfterE↵ects Tests are heavy in random access I/O and writing. The best performing

tests are World of Warcraft and Battlefield 3 with a median overhead of less than

1.5%. Both games are heavy in reading content on the disk and DecMS-VMI does

not interpose file read system calls. Based on the results, it appears that DecMS-VMI

introduces a latency increase of between 1% to 4% on disk storage.

To confirm that VMI interposition adds overhead to the entire system (includ­

ing the UI), we ran DecMS-VMI using the CrystalDiskMark 5.2.1 [127] throughput,

a Windows disk benchmarking application, to measure reading performance under

DecMS-VMI. Recall that our experimental policies do not interpose read system calls.

VMI reduces throughput for sequential reads by an average of 5.6% and 27% for

random reads, compared to our baseline. The above provides evidence that the VMI

methods we rely on account for overhead outside of system calls we interpose for

DecMS-VMI.

We also examined the write throughput under DecMS-VMI, which exposes a lim­

itation to using VMI in this implementation. Under the CrystalDiskMark random

write test, we observed a decrease in performance of 57.5% in our prototype imple­

mentation of DecMS-VMI. However, 95.4% of the performance reduction was caused

by VMI. Nonetheless, these results show that DecMS-VMI may not be suitable for

applications that demand high throughput of random writes. Sequential writes, how­

ever, perform relatively well with 4.12% decrease in throughput, with VMI accounting

for about 72.1%.

145

Figure 6.9.: Median Latency introduced by DecMS-VMI and VMI when data de­
struction is suspect.

Suspicious Activity To measure performance when a write is suspect, we mea­

sure the latency for destructive actions under various file sizes. Our test consists of

overwriting di↵erent files of di↵erent sizes, from 4 KiB to 32 MiB. We measure the

median latency (n = 100) to destroy an individual file of a specific size by overwriting

the file with pseudorandom data. As defined by our Analysis Policy, the randomness

test executes last, so all features of the analysis and classification execute during the

test. Thus, the test represents the longest execution path for DecMS-VMI analysis.

Figure 6.9 contains the latency results of writing a fixed file size that triggers

DecMS-VMI to convert a checkpoint into a snapshot. Recall that DecMS-VMI only

examines the first 4 KiB to identify if a write is suspected of data destruction. As the

size of the file increases, as shown on the X-axis, the analysis time becomes a smaller

ratio to the time it takes to write the file. Thus, for small destructive writes, we see a

large multiplicative factor in overhead. For 4 KiB files, the overhead is increased by

146

a factor 7.44X compared to the baseline. While the overhead seems to be quite large,

this may not be relevant to a legitimate user. Foremost, if the latency is increased

for a malicious action (data destruction), then that is a desirable outcome. So, we

only worry about this increased latency for a false positive, i.e., a legitimate write

by a legitimate user is mistaken to be a destructive write. We have seen from our

accuracy analysis (Figure 6.7b) that this happens very rarely (0.2% of the cases).

Finally, the worst case increase in latency is for the smallest file size of 4 KiB, and

that increases latency from 0.16 ms to 1.20 ms, which is not perceptible for a user-

interactive workload. Figures A.1, A.2, and A.3 in the appendix contains the write

latencies for various file sizes, measured in milliseconds, for DecMS-VMI.

Summary of Results

Our results show that DecMS-VMI protects against data destruction attacks at

the cost of tolerable overhead under several common workloads. While the overhead is

non-negligible, our results indicate that there are several use cases where the overhead

may be acceptable. The majority of the overhead is caused by VMI and not the

DecMS-VMI analysis. For benign user tasks, the DecMS-VMI analysis only accounts

for 1.4% to 9.29% (Figure 6.8a) of the total latency introduced, which is between

0.13% to 1.54% additional overhead compared to the baseline system. There has

already been more than a 5x reduction in VMI overhead from 2004 to 2011 [62] [128]

and as VMI mechanisms continue to improve in performance, DecMS-VMI will also

inherit the benefits.

Latency analysis: Timestamp modification 7

Figure 6.10 illustrates the latency of determining if a timestamp is fraudulent.

The latency is measured as the cumulative latency of changing 100 timestamps and

averaged. Note that in our parlance, one timestamp consists of four di↵erent 64-bit

7Assistance from Thomas Yurek for prototype implementation and evaluation.

147

values [129]: creation, last access, last written, last update, all of which are updated

together. The baseline median latency for changing a timestamp is 7.46 ms, while the

latency associated with VMI is 29.30 ms, a 3.83X increase. We suspect that the large

factor increase in latency is because writing timestamp metadata to a file is quick

and only requires writing 256-bits worth of data. The median latency associated with

comparing the timestamp passed in as a parameter and the true system time is 36 ms,

an increase of 22.9% over simple VMI. The increase in latency for timestamp update

still keeps the total time to less than 30 ms and so should be tolerable for most user

interactive scenarios. However, an informed attacker could examine the timestamp

modification latency within the guest VM to determine if DecMS-VMI is running.

Figure 6.10.: Cumulative latency (100 samples) to check for fraudulent timestamps.

Protecting Against Storage Saturation

One potential issue in the DecMS-VMI configuration is protecting against a threat

that saturates the system with multiple overwrites to the same file. As the DecMS­

148

VMI system uses NilFS, overwriting the same storage location multiple times with

destructive writes causes the storage medium to fill at a linear rate. That is, for

each destructive write of size n at the same location, the NilFS system must consume

O(kn), where k is the number of times a file is overwritten.

If the NilFS storage medium is full, a snapshot or checkpoint cannot be taken. The

Preservation Policy should indicate what should happen. One strategy is to ignore

checkpoint/snapshot creation each time such a request is observed from the VMM.

Another policy is to impede the request and free old checkpoints. However, if the

attacker is aware of policies of DecMS, she may attempt to remove old checkpoints

that contain valuable information. Alternatively, the Deception Policy and service

can inject a deceptive response.

Rather than denying the write request, an inconsistency response is given. The

DecMS-VMI policy reports to the guest OS that the overwrite actions are successful,

but the files still exist within the protected VM. If the adversary observes the failure,

the attacker may attempt an alternative strategy to destroy the data, allowing for

additional information to be gathered regarding attacker strategy. Further, the NilFS

does not increase its space usage when the deception is injected into the system.

The silent error approach is successful for all of the secure delete methods in Figure

5.2, except Gutmann’s 35-pass method. On Gutmann’s 35-pass method, the Analysis

Policy failed to detect data destruction for nine of the 35-passes. Nonetheless, the

other 26 passes did not occupy space on the NilFS storage.

Note that some of the specifications for the secure delete algorithms require a

verification between each write cycle. The experimental evaluation shows that the

write action attempts three times and continues regardless of the fact that the data

is not observable from the guest VM.

The results from the silent error experiment show that the data destruction tools

do not follow the usual programming standard. One issue is that the secure delete

specifications do not detail what to do if overwriting and verification failed. Another

insight from this experiment is the fact that an inconsistent view of deception can be

149

e↵ective if the threat does not validate its actions properly. Finally, the silent error

injection is e↵ective for several secure delete algorithms; thus DecMS-VMI is capable

of adjusting strategies based on the state of the system.

150

7 CONCLUSION

7.1 Summary

This dissertation explores the use of deception to defend digital assets from remote

threats that destroy information by overwriting data. Rather than halting a detected

data destruction, the deception is designed to gather information about the adversary

while preserving the data under destruction for later recovery.

Several design choices to achieve the above goals are presented in Chapter 4. A

summary of the contributions include details in planning the deception for a DecMS

system. The deceptive goals are defined, and several viable deceptive strategies were

given. The deceptive planning also describes several services to facilitate the deception

and preserve data from destruction. The design decisions for DecMS are driven by the

goals and risks of using deception. Several computing systems are evaluated based on

the cost metrics. DecMS could viably protect batch and interactive systems because

of the flexibility in some cost factors. Further, the hardware and software design

space are explored, and several locations are identified to monitor and defend against

destructive threats.

Two software solutions, Kernel-based and VMI-based DecMS, are selected based

on their ease of deployment while providing isolation techniques to mask the presence

of the deception. In Chapter 6 the Kernel-based (DecMS-Kernel) and VMI-based

(DecMS-VMI) solutions are evaluated. Both solutions attempt to mask the presence

of DecMS and mimic the baseline system.

The evaluation of DecMS-Kernel demonstrates the ability to protect against secure

delete and ransomware-like threats by preserving the data under destruction. One

potential issue of DecMS-Kernel is the relatively high latency for large files; large files

migrate to a log file, and the latency may be noticeable for an active adversary. The

151

impedance should be long enough to preserve the data under destruction without

increasing suspicion. While an optimized solution is not a goal of the work presented

here, improvements in performance were integrated into DecMS-VMI.

For DecMS-VMI, several improvements are incorporated based on the evaluation

of DecMS-Kernel. First, a continuous logging file system preserves the files under

destruction, significantly reducing the latency and throughput of the data destruction.

Next, the control mechanisms for the preservation are placed outside of the system

under protection, increasing the difculty for an attacker to access DecMS from within

the guest OS. In addition to the masking and mimicking strategy, a masking/inventing

strategy is explored. The results indicate that the DecMS-VMI system is capable of

defending against several wiper malware, secure delete, and timestamp fabrication

techniques. The data is successfully preserved for nearly all threat instances and file

preservation, except one single file where the classifier incorrectly identified a secure

delete as a benign write.

By hiding the presence of data preservation and back-up system, it may be possible

to use deception to protect a system against adversarial data destruction attacks. A

careful understanding of threat bias and destruction methods is necessary to provide

protection. The current proof of concept systems assumes that the threat will not

attempt to overcome the defense mechanisms of DecMS. Future work should evaluate

threats that attempt to overcome the deception and preservation methods found in

DecMS. Further, the solutions here are not optimized for performance, so reducing

the latency or increasing the throughput may be valuable. Improvements in speed is

a desired for benign users on the system and may also increase the challenge for the

adversary who conducts statistical analysis to uncover the presence of DecMS.

7.2 Shortcomings, Enhancements, and Future Work

The discussion below is focused on the DecMS-VMI proof of concept system as

several of the shortcomings of DecMS-Kernel were addressed in DecMS-VMI.

152

7.2.1 Counterdeception

If the attacker becomes aware of DecMS-VMI, she may decide to go elsewhere and

target a system without DecMS-VMI. However, if the attacker is persistent, she will

attempt to circumvent DecMS-VMI. Counterdeception is an analysis of a denial and

deception operation [130, Chapter 7]. A destructive adversary’s counterdeception

analysis may yield methods to circumvent the data preservation enhancements of

DecMS. Three viable counterdeception strategies that an adversary may employ are

(i) to remain hidden from DecMS monitoring from within the OS, (ii) run the data

destruction outside of DecMS, or (iii) avoid the behaviors and heuristics that cause

the snapshot to trigger.

Hide from Monitoring

Attackers have an array of techniques to hide from security monitoring tools and

system administrators. As mentioned in Section 6.1.1, a variety of techniques exists,

predominantly in use by rootkits, to hide from security monitoring (e.g., KOH or

DKOM). If the attacker is successful in avoiding the VMM monitoring, then snapshot

or checkpoint creation never triggers, which makes the recovery of the destroyed data

difcult. Specifically, the adversary may install her own privileged I/O software to

avoid the DecMS-VMI system call monitoring altogether. In addition to writing

the I/O software, the attacker must circumvent software integrity and authenticity

validation1, and have the privilege to install custom drivers or to make changes to

the kernel.

Another approach for the attacker is to use rootkit hiding techniques to avoid the

VMM monitoring. In the current prototype configuration of DecMS-VMI, an attacker

who uses a KOH should be able to circumvent the system call monitoring. However,

a KOH detection technique already exists in Drakvuf, the VMI tool on which DecMS-

VMI builds. The System Service Descriptor Table (SSDT) Monitoring plug-in allows

1Such as Windows 10 driver verification [131].

153

Drakvuf to detect if the system call table within Windows is modified. The SSDT

Monitoring plugin can be extended to work with DecMS-VMI and trigger a snapshot

before any modification to the SSDT is observed, in addition to other actions at the

security administrator’s discretion. The attacker must use a hiding technique that

DecMS-VMI, or VM security monitoring software, fail to detect. While there are

several methods, such as KOH or DKOM, the attacker must evaluate the stealthiness

against VM security monitoring tools. Rather than avoiding all monitoring, the

attacker may choose a strategy that requires less e↵ort to avoid some aspects of

DecMS-VMI. The attacker may alter her destructive behavior to avoid the snapshot

trigger or destroy the data from a location that the current configuration of DecMS-

VMI cannot observe.

Out-of-band Destruction

Another counterdeception method to circumvent DecMS is to modify the boot-

loader and destroy data from outside the operating system. An attacker who writes

over the bootloader without detection can destroy the files or the entire file system

without the risk of the VMM interposing OS system calls. In our evaluation, any

changes to the NTFS data structures automatically trigger a snapshot of the file sys­

tem. Our experimental evaluation does not include malware that attempts to replace

the bootloader, but some samples did modify the partition table, which is detected

and in principle should work the same if the malware overwrites the bootloader. How­

ever, a limitation of DecMS-VMI, assuming the KOH/DKOM detection methods fail,

is if the attacker replaces the bootloader by circumventing the VMI interposition, then

she may be able to destroy files without triggering checkpoints/snapshots. Under the

experimental configuration of DecMS-VMI, an attacker may be able to replace the

bootloader without detection if she can execute before DecMS-VMI is enabled. The

experimental evaluation assumes that DecMS-VMI is enabled before any malware or

data destruction tools execute. In practice, if a race condition exists, the attacker

154

is likely to use it for out-of-band destruction. An attacker may modify an existing

wiper malware to execute before DecMS-VMI is enabled.

Bacs et al. in [68] successfully demonstrate the ability to modify changes to

virtual disks at specified locations such as the bootloader. The work identifies specific

regions of the virtual disk for any modification without relying on VMI. One solution

is to combine the detection mechanism in [68] with the preservation methods in the

work proposed here. Before modifying the bootloader, create a snapshot so that

the filesystem is recoverable if the modification is malicious. The advantage is that

monitoring for changes on specific regions of a virtual disk can be done without

DecMS-VMI or the guest OS running, mitigating the race condition attack mentioned

previously.

Another possibility is to escape the guest OS and compromise the host machine

[132]. Once the attacker compromises the host machine, which is assumed to be

trusted in this dissertation, the attacker may destroy the preserved files. In addition

to common security practices to audit and verify the correctness of VM software,

DecMS can be layered and protect the files stored on the host OS. Protecting the

host machine from an attacker who escapes the VM is outside of the scope of DecMS.

Modify Behavior to Misclassify Destruction

An attacker may avoid the behavior and heuristic indicators that trigger a snap­

shot of the file system. To circumvent our experimental Analysis Policy, the attacker

may destroy a file by overwriting it with data that is non-random, that does not follow

common data destruction patterns, and avoids overwriting file signatures. However,

note that our experimental policy creates a checkpoint each time a protected file is

opened for writing. For an attacker to overcome the checkpoint and destroy a file

permanently, she must circumvent the Analysis Policy and force the NILFS garbage

collector to deallocate the relevant checkpoint. The e↵ort to force the NILFS garbage

collection to run is high (compared to the baseline system), requiring the attacker to

155

either fill the storage space and wait until the checkpoint is destroyed or wait until

the minimum retention time for checkpoints is met. For both cases, the speed of the

attacker is reduced compared to the state of practice.

Alternatively, an attacker may also avoid the Analysis Policy by overwriting small

segments of the file. The experimental Analysis Policy only analyzes write bu↵ers of

at least 4,096 KiB and when writes occur at the beginning of a file, as a trade-o↵

of robustness for speed. Currently, the experimental Analysis Policy is adjustable to

sample all writes or to sample the write bu↵ers randomly. Additional experimentation

is necessary to determine the sampling rate to provide sufcient protection without

compromising performance.

The attacker may move a file from a blacklisted directory into one that is whitelisted,

such as a web-browser cache, and destroy the file there. The Observation Policy can

monitor the NtSetInformationFile system call, which renames and moves files, to mit­

igate the attack. DecMS-VMI takes a snapshot if a file is moved from a protected

directory to one with less strict monitoring rules. Similarly, NtDeleteFile should also

be monitored to prevent an attacker from deleting protected files and then filling the

space on the disk.

The weaknesses above are not exclusive to DecMS-VMI but all security monitoring

tools. Attackers are persistent and eventually discover new methods to avoid moni­

toring. However, the design of DecMS-VMI increases the challenge of unauthorized

data destruction by isolating the snapshot or checkpoint mechanism and preserving

the data under destruction that is out of reach for the attacker. Some policy changes

can help mitigate destructive attacks by periodically taking snapshots regardless of

the changes observed, a standard configuration of NILFS. Further, DecMS-VMI can

introduce inconsistencies to produce doubt for the attacker’s data destruction meth­

ods. As mentioned in prior work related to VMI, the latency associated with VMI

can be hidden from the attacker by adjusting for the timing delay within the guest

VM [62], making the detection of DecMS-VMI from the attackers’ perspective more

difcult. Further, injecting deceptive faults into the VM to disrupt the data destruc­

156

tion may also slow down or disrupt the attacker. The uncertainty and confusion may

cause the attacker to stall and waste time overcoming faults that may not exist, as

shown by the work of Sun et al. [58].

For the prototype evaluation of DecMS-VMI, if the attacker is aware of all of the

methods to trigger a snapshot, then, with minimal e↵ort, the attacker may modify

her destruction to avoid triggering a snapshot and force (or wait) for the garbage

collector to remove temporary checkpoints. Even if the attacker does not trigger the

garbage collector, it may be difcult for the defender to identify and recover from

some destructive incidents. Specifically, attacks on integrity or authenticity may be

troublesome if there is no clear indication of when a file su↵ered a loss of integrity

or authenticity. The defender is forced to trace through the checkpoints and identify

when the incident occurred. Slowing down the speed at which the defender can recover

files may be sufcient to meet the goals and motivation of adversary.

Counter-Counterdeception

Identifying the strategies to circumvent DecMS can help produce features to iden­

tify destructive adversaries. Almeshekah and Spa↵ord identify that a successful de­

ception for defense should monitor the perception and actions of an adversary to

adjust the defense accordingly [7]. Features such as (i) filling the disk with check­

points/snapshots at a high rate (to force garbage collection) or (ii) out-of-band writing

to the guest virtual disk are both viable counter-counterdeception features. Future

work for DecMS should investigate the use of counter-counterdeception features to

identify adversaries that attempt to circumvent the protection mechanisms of DecMS.

7.2.2 Alternative Analysis Policy

An efcient method to identify Crypto Ransomware is analyzing read/write pat­

terns, as shown in [23, 24, 53]. Ransomware follows several predictable I/O patterns,

157

such as overwriting the file with the encrypted version or copying the encrypted file

elsewhere and destroying the original file [24].

Read/Write patterns may apply to detecting Wiper Malware. However, it appears

that Wipers overwrite files and do not necessarily read the file contents before de­

struction. Future work should investigate other I/O patterns that are write-centric.

Other possible detection metrics include the process-centric approach in [53], which

measures the rate at which a process writes to files.

File type funneling quantifies the number of file type read and written to a storage

medium per process [23]. Other patterns, such as directory listing, file type coverage,

and file renaming, are features for the classifier in [53]. File-centric features may not

be applicable for Wiper Malware. Wipers may write directly to a storage medium,

bypassing file system conventions [4,107,108]. All of the above metrics are file-centric

and are not readily applicable to low-level disk writing. Applying the above metrics

for low-level storage access requires the defender to bridge the semantic gap to a raw

storage medium. Prior work [91] provides some solution to the raw storage medium

semantic gap problem.

Some of the metrics listed above are not applicable to secure delete tools. For

example, secure delete tools do not need to read a file before destroying it. Listing

the files within a directory is not required for secure deletion. Some secure delete

tools do not follow conventional patterns and thus make detection difcult without

prior knowledge of how the tool works. For instance, the sdelete secure delete tool

renames a file 26 times before destruction [113]. However, it appears that renaming

files before destruction is uncommon.

Anomaly detection is another viable detection method, proposed in Garfinkel and

Rosenblum’s VMI work [62], that we do not consider in our experimental evaluation.

The experimental evaluation for DecMS-VMI demonstrates that the performance

impact is small for false positive detection. The disadvantage is the need to train for

benign interactions of files.

158

A substantial di↵erence between Wiper Malware and Ransomware is the stabil­

ity of the compromised system. The goal of Ransomware is to collect an extortion

payment. Ransomware must present the ransom note to the end user, which means

there must be a system that is at least partly functional to provide such output to

the user. Presumably, if the user pays the extortion, the files are unlocked.

The goal of some wiper malware is to make a system or data unavailable to users.

The attacker is not required to present a message to the end user upon wiping a

machine 2 . Several examples [4,108] restart the compromised machine, which displays

a Master Boot Record error.

7.2.3 Other Limitations

A benign user may have a legitimate reason to destroy or encrypt data, and that

should not trigger DecMS-VMI. The grounds to destroy or encrypt data may be

completely valid for privacy reasons. Our current implementation does not support

valid data destruction or encryption from within the VM. A simple solution to support

valid data destruction or encryption is through a manual out-of-band mechanism

whereby the user approaches the system administrator to disable DecMS-VMI for

the specific user’s VM temporarily. The simple solution, however, is a path for an

attacker to subject the users and system administrators to social engineering whereby

the protection is temporarily disabled for unauthorized data destruction. A better

solution for benign data encryption and destruction is left for future work.

The extra storage requirement of DecMS-VMI is directly related to the frequency

and size of edits made to protected files. As NilFS behaves similarly to a versioning file

system, the physical size of a snapshot is only the size of changes made to files. With

a false positive rate of roughly one in one thousand, an administrator can expect that

a snapshot, containing all changes to all protected files since the last snapshot, will be

generated for roughly every one thousand saved changes. In practice, the size of these

2There are exceptions [107] if the attacker wishes to let the defenders know of the destruction
and convey a message.

159

snapshots should be much smaller than the total size of all protected directories, and

so the extra storage needed to use DecMS-VMI is comparatively small, depending

heavily on entropy of the writes.

Additional enhancements for storage space that is not explored in this dissertation

is combing NILFS with a full backup, to optimize storage space for the guest VMs un­

der protection. If storage space on the guest OS is full, then the storage is unavailable

until the garbage collector can free storage space by purging old checkpoints. One pos­

sible solution is to periodically create a full backup of the entire NILFS storage from

the host OS. All of the snapshots and checkpoints are then cleared, to free up space

on NILFS. If at some point a destructive adversary is discovered, then the full backup

can be referenced to recover files. Backing up and cleaning the NILFS snapshots frees

up storage for the guest OS and is a trade-o↵ of convenience. If the destruction oc­

curred before the full backup but discovered after clearing the checkpoints/snapshots,

then the system administrator must reference the full backup rather than rollback to

an old checkpoint/snapshot. Future work should explore the benefits of using a full

backup (and clearing snapshots/checkpoints) with DecMS configuration that uses a

log-structured filesystem.

Our prototype implementation of DecMS-VMI only supports the snapshot or

checkpointing at the file system level and does not allow for recovery of individual

files without reverting the entire file system. While it is suitable for recovering from

devastating wiper malware that attempts to bring a system and data o✏ine quickly,

the current solution does not directly provide methods to repair individual files. The

system administrator would then need to manually identify what files should be saved

or reverted before rolling back to an earlier snapshot. One solution is to replace the

log-structured file system with one that tracks changes at the file level. The system

administrator may then revert specific files to previous versions without rolling back

the entire file system.

Another limitation of the current prototype of DecMS-VMI is if destruction ac­

tions are intermingled with benign writes to the storage medium. In the current

160

implementation of DecMS-VMI, the snapshots roll back to the state before data de­

struction takes place, undoing benign writes along with destructive writes. It may

be difcult to revert the e↵ects of destructive actions when benign applications are

a↵ected by the destruction. Fortunately, there are existing systems, such as the

Taser Intrusion Recovery System [55] mentioned in Section 2.5.5. Taser resolves the

issue through taint analysis. Taser requires snapshots that are already in place in

DecMS-VMI. However, incorporating that into DecMS-VMI will require additional

engineering e↵ort; to work with a taint analysis system is left for future work.

While the dissertation does not focus on performance, there are several enhance­

ments to explore in future work. Improving throughput should be a priority to help

expand the applicability to other computer systems, such as batch and transaction

systems. The DecMS-VMI prototype also e↵ects the user interface, which may be an

issue if used in practice. It appears that transferring control to the VMM whenever

there is an open or write system call causes the UI to stall. Another future enhance­

ment is to avoid checkpoint/snapshot for destructive writes to small files. It may be

quicker to copy the file than to issue a checkpoint for the entire file system.

Another area of future work, which may improve performance and further isolate

DecMS from potential adversaries, is to place DecMS within hardware components

such as a hardware wrapper around storage devices or placing DecMS within the

hardware controller itself. Future work should examine if it is feasible to improve

performance so that an attacker cannot determine if DecMS is in place without insider

knowledge or access to the physical system.

7.3 Conclusion

The evidence provided by the experimental evaluation confirms the thesis: It is

feasible to use deception to enhance the preservation of digital assets against unau­

thorized data destruction.

LIST OF REFERENCES

161

LIST OF REFERENCES

[1] A. Solomon,	 “A Brief History of PC Viruses,” Computer Fraud & Security
Bulletin, vol. 1993, no. 12, pp. 9–19, 1993.

[2] D. B. Parker, “Toward a New Framework for Information Security?,” in Com­
puter Security Handbook, pp. 3.1–3.23, John Wiley & Sons, Inc., 2012.

[3] N. Perloroth, “In Cyberattack on Saudi Firm, U.S. Sees Iran Firing Back,” New
York Times, October 2012. http://www.nytimes.com/2012/10/24/business/
global/cyberattack-on-saudi-oil-firm-disquiets-us.html News report.
Accessed: 2017-06-02.

[4] C. Raiu, M. A. Hasbini, S. Belov, and S. Mineev, “From Shamoon to Stonedrill
– Wipers Attacking Saudi Organizations and Beyond,” Kaspersky Lab, March
2017. Version 1.05. Report.

[5] L. E. Panetta, “Remarks by Secretary Panetta on Cybersecurity to the Business
Executives for National Security,” October 2012. Transcript from http://
archive.defense.gov/transcripts/transcript.aspx?transcriptid=5136
Accessed: 2017-06-02.

[6] “Internet Security Tech Report,” Symantec, vol. 22, April 2017.
https://www.symantec.com/content/dam/symantec/docs/reports/istr­
22-2017-en.pdf Report. Accessed: 2017-10-30.

[7] M.	 H. Almeshekah and E. H. Spa↵ord, “Planning and Integrating Deception
into Computer Security Defenses,” in Proceedings of the 2014 New Security
Paradigms Workshop, NSPW ’14, (New York, NY, USA), pp. 127–138, ACM,
2014.

[8] M.	 Perklin, “Anti-Forensics and Anti-Anti-Forensics,” DEFCON 20, July
2014. https://www.defcon.org/images/defcon-20/dc-20-presentations/
Perklin/DEFCON-20-Perklin-AntiForensics.pdf Presentation. Accessed:
2017-11-17.

[9]	 “2015 Data Breach Investigations Report,” Verizon Wireless, 2015.
http://www.verizonenterprise.com/resources/reports/rp data-breach­
investigation-report 2015 en xg.pdf Report. Accessed: 2017-11-17.

[10] R.	 C. Daley and P. G. Neumann, “A General-purpose File System for Sec­
ondary Storage,” in Proceedings of the November 30–December 1, 1965, Fall
Joint Computer Conference, Part I, AFIPS ’65 (Fall, part I), (New York, NY,
USA), pp. 213–229, ACM, 1965.

http://www.nytimes.com/2012/10/24/business/global/cyberattack-on-saudi-oil-firm-disquiets-us.html
http://www.nytimes.com/2012/10/24/business/global/cyberattack-on-saudi-oil-firm-disquiets-us.html
http://archive.defense.gov/transcripts/transcript.aspx?transcriptid=5136
http://archive.defense.gov/transcripts/transcript.aspx?transcriptid=5136
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://www.symantec.com/content/dam/symantec/docs/reports/istr-22-2017-en.pdf
https://www.defcon.org/images/defcon-20/dc-20-presentations/Perklin/DEFCON-20-Perklin-AntiForensics.pdf
https://www.defcon.org/images/defcon-20/dc-20-presentations/Perklin/DEFCON-20-Perklin-AntiForensics.pdf
http://www.verizonenterprise.com/resources/reports/rp_data-breach-investigation-report_2015_en_xg.pdf
http://www.verizonenterprise.com/resources/reports/rp_data-breach-investigation-report_2015_en_xg.pdf
http:3.1�3.23

162

[11] R.	 Kissel, A. Regenscheid, M. Scholl, and K. Stine, “NIST Special Publica­
tion 800-88 Guidelines for Media Sanitization.” National Institute of Stan­
dards and Technology, September 2006. Revision 1. http://ws680.nist.gov/
publication/get pdf.cfm?pub id=50819 Accessed: 2017-11-17.

[12] J. Reardon,	 Secure Data Deletion. Information Security and Cryptography,
Springer International Publishing, 2016.

[13] B. D. Carrier, A Hypothesis-based Approach to Digital Forensic Investigations.
PhD thesis, Purdue University, West Lafayette, IN, USA, 2006. AAI3232156.

[14] G. H. Kim and E. H. Spa↵ord, “The Design and Implementation of Tripwire:
A File System Integrity Checker,” in Proceedings of the 2nd ACM Conference
on Computer and Communications Security, CCS ’94, (New York, NY, USA),
pp. 18–29, ACM, 1994.

[15]	 “Delete,” in A Dictionary of Computer Science (A. Butterfield and G. E.
Ngondi, eds.), Oxford University Press, 7th ed., 2016.

[16] D.	 J. Santry, M. J. Feeley, N. C. Hutchinson, and A. C. Veitch, “Elephant:
The File System that Never Forgets,” Hot Topics in Operating Systems, 1999.
Proceedings of the 7th Workshop on, pp. 2–7, 1999.

[17] M.	 Weik, “Undelete,” in Computer Science and Communications Dictionary,
pp. 1857–1857, Boston, MA: Springer US, 2001.

[18] J. Reardon, D. Basin, and S. Capkun, “SoK: Secure Data Deletion,” in Pro­
ceedings of the 2013 IEEE Symposium on Security and Privacy, SP ’13, (Wash­
ington, DC, USA), pp. 301–315, IEEE Computer Society, 2013.

[19]	 “Ofce of the Designated Approving Authority (ODAA) Process Manual,” De­
fense Security Service, United States of America, November 2013. Version 3.2.

[20] B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in
C. New York, NY, USA: John Wiley & Sons, Inc., 2nd ed., 1995.

[21] A. Savoldi, M. Piccinelli, and P. Gubian, “A Statistical Method for Detecting
On-disk Wiped Areas,” Digital Investigation, vol. 8, no. 3, pp. 194 – 214, 2012.

[22] G. C. Kessler, “Anti-Forensics and the Digital Investigator,” in Proceedings of
the 5th Australian Digital Forensics Conference, December 2007.

[23] N. Scaife, H. Carter, P. Traynor, and K. R. B. Butler, “CryptoLock (and Drop
It): Stopping Ransomware Attacks on User Data,” 2016 IEEE 36th Interna­
tional Conference on Distributed Computing Systems (ICDCS), vol. 00, pp. 303–
312, 2016.

[24] A.	 Kharaz, S. Arshad, C. Mulliner, W. Robertson, and E. Kirda, “UN­
VEIL: A Large-Scale, Automated Approach to Detecting Ransomware,” in 25th
USENIX Security Symposium (USENIX Security 16), (Austin, TX), pp. 757–
772, USENIX Association, 2016.

[25] B. Blunden, The Rootkit Arsenal: Escape and Evasion in the Dark Corners of
the System. Jones & Bartlett Learning, 2011.

http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=50819
http://ws680.nist.gov/publication/get_pdf.cfm?pub_id=50819
http:ICDCS),vol.00

163

[26] J. Williams and A. Torres, “ADD – Complicating Memory Forensics Through
Memory Disarray,” ShmooCon, January 2014.

[27] R. Harris, “Arriving at an Anti-forensics Consensus: Examining How to Define
and Control the Anti-forensics Problem,” Digital Investigation, vol. 3, pp. 44–
49, Sept. 2006.

[28] G. Brose, “Access Control,” in Encyclopedia of Cryptography and Security
(H. C. A. van Tilborg and S. Jajodia, eds.), pp. 2–7, Boston, MA: Springer
US, 2011.

[29] A. Estes, “Biba Integrity Model,” in Encyclopedia of Cryptography and Security
(H. C. A. van Tilborg and S. Jajodia, eds.), pp. 81–81, Boston, MA: Springer
US, 2011.

[30] S. De Capitani di Vimercati and P. Samarati,	 “Clark and Wilson Model,” in
Encyclopedia of Cryptography and Security (H. C. A. van Tilborg and S. Jajodia,
eds.), pp. 208–209, Boston, MA: Springer US, 2011.

[31] M.	 Bishop, “Biba Integrity Model,” in Computer Security: Art and Science,
Addison-Wesley, 2003.

[32] K. Thompson, “Reflections on Trusting Trust,” Communications of the ACM,
vol. 27, pp. 761–763, Aug. 1984.

[33] S. Garfinkel, G. Spa↵ord, and A. Schwartz, Practical Unix & Internet Security,
3rd Edition. O’Reilly Media, Inc., 2003.

[34] A. Chervenak, V. Vellanki, and Z. Kurmas, “Protecting File Systems: A Survey
of Backup Techniques,” in Joint NASA and IEEE Mass Storage Conference,
1998.

[35] H. Berghel, “Hiding Data, Forensics, and Anti-forensics,” Communications of
the ACM, vol. 50, pp. 15–20, April 2007.

[36] P. Gupta, H. Krishnan, C. P. Wright, M. Zubair, J. Dave, and E. Zadok, “Ver­
satility and Unix Semantics in a Fan-Out Unification File System,” tech. rep.,
Stony Brook University, 2004. FSL-04-01.

[37] R. Pike, D. Presotto, S. Dorward, B. Flandrena, K. Thompson, H. Trickey, and
P. Winterbottom, “Plan 9 from Bell Labs,” Computing Systems, vol. 8, no. 3,
pp. 221–254, 1995.

[38] R.	 Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and S. Moriai, “The
Linux Implementation of a Log-structured File System,” SIGOPS Operating
Systems Review, vol. 40, pp. 102–107, July 2006.

[39] G.	 Palmer, “A Road Map for Digital Forensic Research,” Proceedings of the
2001 Digital Forensics Research Workshop (DFRWS 2004), pp. 1–42, 2001.

[40] M. Kuhn, “Data Remanence,” in Encyclopedia of Cryptography and Security
(H. C. A. van Tilborg and S. Jajodia, eds.), pp. 306–306, Boston, MA: Springer
US, 2011.

164

[41] B.	 Carrier, “NTFS Orphan Files,” The Sleuth Kit Informer, Septem­
ber 2004. Issue 16. https://www.sleuthkit.org/informer/sleuthkit­
informer-16.html Accessed: 2017-8-28.

[42] S. L. Garfinkel, “Carving Contiguous and Fragmented Files with Fast Object
Validation,” Digital Investigation, vol. 4, pp. 2–12, Sept. 2007.

[43] K. Bazzani, “Hybrid-device Storage Based on Environmental State,” September
2014. US Patent 8,850,151.

[44] M. H. Ligh, A. Case, J. Levy, and A. Walters, The Art of Memory Forensics:
Detecting Malware and Threats in Windows, Linux, and Mac Memory. Wiley
Publishing, 1st ed., 2014.

[45] F. Buchholz and E. Spa↵ord, “On the Role of File System Metadata in Digital
Forensics,” Digital Investigation, vol. 1, pp. 298–309, December 2004.

[46] E. H. Spa↵ord, “Some Challenges in Digital Forensics,” Research Advances in
Digital Forensics. Proceedings of the IFIP Conference on Distributed Comput­
ing Systems (ICDCS 2006), (Lisbon, Portugal), Springer, August 2006.

[47] L. Milkovic, “Defeating Windows Memory Forensics,” 29th Chaos Communica­
tion Congress, December 2012. Presentation.

[48] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M. Chen, “ReVirt:
Enabling Intrusion Analysis Through Virtual-machine Logging and Replay,”
SIGOPS Operating Systems Review, vol. 36, pp. 211–224, Dec. 2002.

[49] B. Schneier and J. Kelsey, “Secure Audit Logs to Support Computer Forensics,”
in ACM Transactions on Information and System Security, vol. 2, (New York,
NY, USA), pp. 159–176, ACM, May 1999.

[50] N. Idika and A. P. Mathur, “A Survey of Malware Detection Techniques,” tech.
rep., Purdue University, February 2007. #4328.

[51] P. Okane, S. Sezer, and K. McLaughlin, “Obfuscation: The Hidden Malware,”
IEEE Security and Privacy, vol. 9, no. 5, pp. 41–47, 2011.

[52] A. G. Pennington, J. L. Grifn, J. S. Bucy, J. D. Strunk, and G. R. Ganger,
“Storage-Based Intrusion Detection,” ACM Transactions on Information and
System Security, vol. 13, pp. 30:1–30:27, Dec. 2010.

[53] A. Continella, A. Guagnelli, G. Zingaro, G. De Pasquale, A. Barenghi,
S. Zanero, and F. Maggi, “ShieldFS: A Self-healing, Ransomware-aware Filesys­
tem,” in Proceedings of the 32nd Annual Conference on Computer Security Ap­
plications, ACSAC ’16, (New York, NY, USA), pp. 336–347, ACM, 2016.

[54] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N. Soules, and G. R.
Ganger, “Self-securing Storage: Protecting Data in Compromised System,” in
Proceedings of the 4th Conference on Symposium on Operating System Design
& Implementation – Volume 4, OSDI’00, (Berkeley, CA, USA), USENIX Asso­
ciation, 2000.

[55] A. Goel, K. Po, K. Farhadi, Z. Li, and E. de Lara, “The Taser Intrusion Recov­
ery System,” in Proceedings of the 20th ACM Symposium on Operating Systems
Principles, SOSP ’05, (New York, NY, USA), pp. 163–176, ACM, 2005.

https://www.sleuthkit.org/informer/sleuthkit-informer-16.html
https://www.sleuthkit.org/informer/sleuthkit-informer-16.html
http:Security,vol.13
http:Review,vol.36

165

[56] M. H. Almeshekah and E. H. Spa↵ord, “Cyber Security Deception,” in Cyber
Deception (S. Jajodia, V. S. Subrahmanian, V. Swarup, and C. Wang, eds.),
pp. 25–52, Springer, 2016.

[57] V. Neagoe and M. Bishop, “Inconsistency in Deception for Defense,” in Pro­
ceedings of the 2006 Workshop on New Security Paradigms, NSPW ’06, (New
York, NY, USA), pp. 31–38, ACM, 2007.

[58] R. Sun, D. E. Porter, D. Oliveira, and M. Bishop, “The Case for Less Predictable
Operating System Behavior,” in 15th Workshop on Hot Topics in Operating
Systems (HotOS XV), (Kartause Ittingen, Switzerland), USENIX Association,
2015.

[59] J. Kong, Designing BSD Rootkits. San Francisco, CA, USA: No Starch Press,
2007.

[60] M.	 Coppola, “Suterusu Rootkit: Inline Kernel Function Hooking
on x86 and ARM,” Michael Coppola’s Blog, June 2013. https:
//poppopret.org/2013/01/07/suterusu-rootkit-inline-kernel­
function-hooking-on-x86-and-arm/ Accessed: 2016-06-06.

[61] J. F. Levine, J. B.	 Grizzard, and H. L. Owen, “Detecting and Categorizing
Kernel-level Rootkits to Aid Future Detection,” IEEE Security Privacy, vol. 4,
pp. 24–32, Jan 2006.

[62] T. Garfinkel and M. Rosenblum, “A Virtual Machine Introspection Based Archi­
tecture for Intrusion Detection,” in In Proceedings of Network and Distributed
Systems Security Symposium, pp. 191–206, The Internet Society, 2003.

[63] X. Jiang, X. Wang, and D. Xu, “Stealthy Malware Detection and Monitoring
Through VMM-based “Out-of-the-Box” Semantic View Reconstruction,” ACM
Transactions on Information and System Security, vol. 13, no. 2, pp. 1–28, 2010.

[64] M. S. Barik, G. Gupta, S. Sinha, A. Mishra, and C. Mazumdar, “An Efcient
Technique for Enhancing Forensic Capabilities of Ext2 File System,” Digital
Investigation, vol. 4, pp. 55–61, 2007.

[65] B. A. Kuperman and E. Spa↵ord, “Audlib: A Configurable, High-fidelity Ap­
plication Audit Mechanism,” Software – Practice and Experience, vol. 39, no. 7,
pp. 701–736, 2009.

[66] K. Nance, B. Hay, and M. Bishop, “Investigating the Implications of Virtual Ma­
chine introspection for Digital Forensics,” International Conference on Avail­
ability, Reliability and Security, ARES 2009, pp. 1024–1029, 2009.

[67] A. Rukhin, J. Soto, J. Nechvatal, S. Miles, E. Barker, S. Leigh, M. Levenson,
M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, “A Statistical Test Suite
for Random and Pseudorandom Number Generators for Cryptographic Appli­
cations,” National Institute of Standards and Technology, vol. 800, no. April,
p. 131, 2010.

[68] A.	 Bacs, C. Giu↵rida, B. Grill, and H. Bos, “Slick: An Intrusion Detection
System for Virtualized Storage Devices,” in Proceedings of the 31st Annual
ACM Symposium on Applied Computing, SAC ’16, (New York, NY, USA),
pp. 2033–2040, ACM, 2016.

https://poppopret.org/2013/01/07/suterusu-rootkit-inline-kernel-function-hooking-on-x86-and-arm/
https://poppopret.org/2013/01/07/suterusu-rootkit-inline-kernel-function-hooking-on-x86-and-arm/
https://poppopret.org/2013/01/07/suterusu-rootkit-inline-kernel-function-hooking-on-x86-and-arm/

166

[69] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and A. Kiayias,
“Scalability, Fidelity and Stealth in the DRAKVUF Dynamic Malware Analysis
System,” in Proceedings of the 30th Annual Computer Security Applications
Conference, 2014.

[70]	 “Use Bootrec.exe in the Windows RE to Troubleshoot Startup Issues,”
Microsoft Corporation, March 2017. https://support.microsoft.com/en-us/
help/927392/use-bootrec-exe-in-the-windows-re-to-troubleshoot­
startup-issues Technical support website. Accessed: 2017-10-26.

[71] C. Grenier, “Testdisk,” CGSecurity, June 2016. http://www.cgsecurity.org/
Open source software website. Accessed: 2017-10-26.

[72]	 “Shred – Linux Man Page,” Linux Documentation, 2014. http://
linux.die.net/man/1/shred Software documentation. Accessed: 2017-12-01.

[73]	 “Srm - Secure File Deletion for POSIX Systems,” SourceForge, 2014. http:
//srm.sourceforge.net/ Software website. Accessed: 2017-12-01.

[74] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion, “SoK: Introspections
on Trust and the Semantic Gap,” in Proceedings of the 2014 IEEE Symposium
on Security and Privacy, SP ’14, (Washington, DC, USA), pp. 605–620, IEEE
Computer Society, 2014.

[75] T. Haq, “Meet GreenDispenser: A New Breed of ATM Malware,” Proofpoint,
September 2015. https://www.proofpoint.com/us/threat-insight/post/
Meet-GreenDispenser Technical blog. Accessed: 2017-10-19.

[76]	 “Latency,” in A Dictionary of Computer Science (A. Butterfield and G. E.
Ngondi, eds.), Oxford University Press, 7th ed., 2016.

[77]	 “Throughput,” in A Dictionary of Computer Science (A. Butterfield and G. E.
Ngondi, eds.), Oxford University Press, 7th ed., 2016.

[78]	 “Measures of Variation,” in A Dictionary of Computer Science (A. Butterfield
and G. E. Ngondi, eds.), Oxford University Press, 7th ed., 2016.

[79] “Error Rate,” in A Dictionary of Computer Science (A. Butterfield and G. E.
Ngondi, eds.), Oxford University Press, 7th ed., 2016.

[80] “Fault-tolerant System,” in A Dictionary of Computer Science (A. Butterfield
and G. E. Ngondi, eds.), Oxford University Press, 7th ed., 2016.

[81] A. S. Tanenbaum and H. Bos, Modern Operating Systems. Upper Saddle River,
NJ, USA: Prentice Hall Press, 4th ed., 2014.

[82] “Interactive,” in A Dictionary of Computer Science (A. Butterfield and G. E.
Ngondi, eds.), Oxford University Press, 7th ed., 2016.

[83] S.	 K. Card, G. G. Robertson, and J. D. Mackinlay, “The Information Visu­
alizer, An Information Workspace,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’91, (New York, NY, USA),
pp. 181–186, ACM, 1991.

[84] P. Bernstein and E. Newcomer, Principles of Transaction Processing. The Mor­
gan Kaufmann Series in Data Management Systems, Elsevier Science, 2009.

https://support.microsoft.com/en-us/help/927392/use-bootrec-exe-in-the-windows-re-to-troubleshoot-startup-issues
https://support.microsoft.com/en-us/help/927392/use-bootrec-exe-in-the-windows-re-to-troubleshoot-startup-issues
https://support.microsoft.com/en-us/help/927392/use-bootrec-exe-in-the-windows-re-to-troubleshoot-startup-issues
http://www.cgsecurity.org/
http://linux.die.net/man/1/shred
http://linux.die.net/man/1/shred
http://srm.sourceforge.net/
http://srm.sourceforge.net/
https://www.proofpoint.com/us/threat-insight/post/Meet-GreenDispenser
https://www.proofpoint.com/us/threat-insight/post/Meet-GreenDispenser

167

[85]	 “Real-time systems,” in Encyclopedia of Computer Science (E. D. Reilly, A. Ral­
ston, and D. Hemmendinger, eds.), John Wiley & Sons, 4th ed., 2003.

[86] A. S.	 Tanenbaum, Structured Computer Organization (5th Edition). Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 2005.

[87] D. Zamboni, Using Internal Sensors for Computer Intrusion Detection. PhD
thesis, Purdue University, West Lafayette, IN, 2001. AAI3055548.

[88] A. D. Keromytis, “Bu↵er Overflow Attacks,” in Encyclopedia of Cryptography
and Security (H. C. A. van Tilborg and S. Jajodia, eds.), pp. 174–177, Boston,
MA: Springer US, 2011.

[89]	 “Know Your Enemy: Sebek,” The Honeynet Project, pp. 1–21, November 2003.
http://old.honeynet.org/papers/sebek.pdf Report. Accessed: 2017-12-02.

[90] T. W. Curry, “Profiling and Tracing Dynamic Library Usage via Interposition,”
in Proceedings of the USENIX Summer 1994 Technical Conference on USENIX
Summer 1994 Technical Conference, USTC’94, (Berkeley, CA, USA), pp. 18–18,
USENIX Association, 1994.

[91] J. Mankin and D.	 Kaeli, “DIONE: A Flexible Disk Monitoring and Analysis
Framework,” in Proceedings of the 15th International Conference on Research
in Attacks, Intrusions, and Defenses, RAID’12, pp. 127–146, Springer-Verlag
(Berlin, Heidelberg), 2012.

[92] C.	 Spensky, H. Hu, and K. Leach, “LO-PHI: Low-Observable Physical Host
Instrumentation for Malware Analysis,” in Proceedings of the Network and Dis­
tributed System Security Symposium, The Internet Society, 2016.

[93] Z. Deng, X. Zhang, and D. Xu, “SPIDER: Stealthy Binary Program Instrumen­
tation and Debugging via Hardware Virtualization,” in Proceedings of the 29th
Annual Computer Security Applications Conference, ACSAC ’13, (New York,
NY, USA), pp. 289–298, ACM, 2013.

[94] W. Lee, B.	 D. Payne, and M. Carbone, “Secure and Flexible Monitoring of
Virtual Machines,” in 23rd Annual Computer Security Applications Conference
(ACSAC 2007), (Los Alamitos, CA, USA), pp. 385–397, IEEE Computer Soci­
ety, 2007.

[95] B. Payne, S. Maresca, T. K. Lengye, and A. Saba, “LibVMI.” GitHub Reposi­
tory, 2016. github.com/libvmi/libvmi Software. Accessed: 2016-11-16.

[96] B. D. Payne, “Virtual Machine Introspection,” in Encyclopedia of Cryptography
and Security (H. C. A. van Tilborg and S. Jajodia, eds.), pp. 1360–1362, Boston,
MA: Springer US, 2011.

[97] C. Xiao and J. Chen, “New OS X Ransomware KeRanger Infected Transmission
BitTorrent Client Installer,” Palo Alto Networks Blog, March 2016. http://
researchcenter.paloaltonetworks.com/2016/03/new-os-x-ransomware­
keranger-infected-transmission-bittorrent-client-installer/ Blog.
Accessed: 2016-06-06.

[98] A. Young and M. Yung, “Cryptovirology: Extortion-based security threats and
countermeasures,” in Symposium on Security and Privacy, pp. 129–140, IEEE,
1996.

http://old.honeynet.org/papers/sebek.pdf
github.com/libvmi/libvmi
http://researchcenter.paloaltonetworks.com/2016/03/new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/
http://researchcenter.paloaltonetworks.com/2016/03/new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/
http://researchcenter.paloaltonetworks.com/2016/03/new-os-x-ransomware-keranger-infected-transmission-bittorrent-client-installer/

168

[99] F. Sinitsyn,	 “TeslaCrypt 2.0 Disguised as CryptoWall,” Kaspersky Lab, July
2015. Blog. https://securelist.com/blog/research/71371/teslacrypt-2­
0-disguised-as-cryptowall/ Accessed: 2016-06-06.

[100] E. v. Dorp, “CryptoLocker – A New Ransomware Variant,” Emsisoft, Septem­
ber 2013. Blog. https://blog.emsisoft.com/2013/09/10/cryptolocker-a­
new-ransomware-variant/ Accessed: 2016-06-06.

[101] D. Bisson, “Under the Hood of Cryptowall 4.0,” Tripwire, Inc., February 2016.
News article. http://www.tripwire.com/state-of-security/security­
awareness/under-the-hood-of-cryptowall-4-0/ Accessed: 2016-06-06.

[102] M. Mallen, “No Mas, Samas: What’s in this Ransomware’s Modus
Operandi?,” Microsoft Malware Protection Center, March 2016. Blog.
https://blogs.technet.microsoft.com/mmpc/2016/03/17/no-mas-samas­
whats-in-this-ransomwares-modus-operandi/ Accessed: 2016-06-06.

[103] “The	 Current State of Ransomware: TorrentLocker,” Sophos, December
2015. Blog. https://blogs.sophos.com/2015/12/23/the-current-state­
of-ransomware-torrentlocker/ Accessed: 2016-06-06.

[104] Hasherezade,	 “Look Into Locky Ransomware,” Malwarebytes Labs, March
2016. Blog. https://blog.malwarebytes.org/threat-analysis/2016/03/
look-into-locky/ Accessed: 2016-06-06.

[105] B.	 Botezatu, “Linux Ransomware Debut Fails on Predictable En­
cryption Key,” Bitdefender Labs, November 2015. Blog. https:
//labs.bitdefender.com/2015/11/linux-ransomware-debut-fails-on­
predictable-encryption-key/, Accessed: 2017-12-01.

[106]	 “mbedtls – An Open Source, Portable, Easy to Use, Readable and Flexible SSL
Library.” GitHub Repository, https://github.com/ARMmbed/mbedtls, Com­
mit 9fa2e86d93b9b6e04c0a797b34aaf7b6066fbb25, 2016. C source code.

[107] K. Baumgartner, “Sony/Destover: Mystery North Korean Actor’s Destructive
and Past Network Activity,” Kaspersky Lab, December 2014. Blog. https:
//securelist.com/blog/research/67985/destover/ Accessed: 2017-05-06.

[108] D.	 Tarakanov, “Shamoon The Wiper: Further Details (Part II),” Kasper­
sky Lab, September 2012. Blog. https://securelist.com/blog/incidents/
57784/shamoon-the-wiper-further-details-part-ii/ Accessed: 2017-05­
06.

[109] T.	 Sammes and B. Jenkinson, Forensic Computing: A Practitioner’s Guide.
London, UK, UK: Springer-Verlag, 2000.

[110]	 “Naming Files, Paths, and Namespaces,” Microsoft Corporation, 2016.
Developer documentation. https://msdn.microsoft.com/en-us/library/
windows/desktop/aa365247(v=vs.85).aspx Accessed: 2017-06-02.

[111] P. Gutmann, “Secure Deletion of Data from Magnetic and Solid-state Memory,”
in Proceedings of the 6th Conference on USENIX Security Symposium, Focusing
on Applications of Cryptography – Volume 6, SSYM’96, (Berkeley, CA, USA),
pp. 8–8, USENIX Association, 1996.

https://securelist.com/blog/research/71371/teslacrypt-2-0-disguised-as-cryptowall/
https://securelist.com/blog/research/71371/teslacrypt-2-0-disguised-as-cryptowall/
https://blog.emsisoft.com/2013/09/10/cryptolocker-a-new-ransomware-variant/
https://blog.emsisoft.com/2013/09/10/cryptolocker-a-new-ransomware-variant/
http://www.tripwire.com/state-of-security/security-awareness/under-the-hood-of-cryptowall-4-0/
http://www.tripwire.com/state-of-security/security-awareness/under-the-hood-of-cryptowall-4-0/
https://blogs.technet.microsoft.com/mmpc/2016/03/17/no-mas-samas-whats-in-this-ransomwares-modus-operandi/
https://blogs.technet.microsoft.com/mmpc/2016/03/17/no-mas-samas-whats-in-this-ransomwares-modus-operandi/
https://blogs.sophos.com/2015/12/23/the-current-state-of-ransomware-torrentlocker/
https://blogs.sophos.com/2015/12/23/the-current-state-of-ransomware-torrentlocker/
https://blog.malwarebytes.org/threat-analysis/2016/03/look-into-locky/
https://blog.malwarebytes.org/threat-analysis/2016/03/look-into-locky/
https://labs.bitdefender.com/2015/11/linux-ransomware-debut-fails-on-predictable-encryption-key/
https://labs.bitdefender.com/2015/11/linux-ransomware-debut-fails-on-predictable-encryption-key/
https://labs.bitdefender.com/2015/11/linux-ransomware-debut-fails-on-predictable-encryption-key/
https://github.com/ARMmbed/mbedtls
https://securelist.com/blog/research/67985/destover/
https://securelist.com/blog/research/67985/destover/
https://securelist.com/blog/incidents/57784/shamoon-the-wiper-further-details-part-ii/
https://securelist.com/blog/incidents/57784/shamoon-the-wiper-further-details-part-ii/
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx

169

[112] G.	 Trant, J. Low, and D. v. Lith, “Eraser Appendix A: Erasure Methods.”
http://eraser.heidi.ie/appendix-a-erasure-methods/, 2016. Developer
documentation. Accessed: 2016-11-27.

[113] M. Russinovich, “SDelete v2.0,” Microsoft Corporation, July 2016. https://
technet.microsoft.com/en-us/sysinternals/sdelete.aspx Software web-
site. Accessed: 2017-12-01.

[114] A. Ziem,	 “BleachBit – Clean Your System and Free Disk Space.” https://
www.bleachbit.org/, 2016. Software website. Accessed: 2016-06-06.

[115] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas­
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, Nov. 2011.

[116] S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt, “Bringing Science to Digital
Forensics with Standardized Forensic Corpora,” Digital Investigation, vol. 6,
no. Supplement, pp. S2 – S11, 2009. The Proceedings of the 9th Annual DFRWS
Conference.

[117] O. Maimon and L. Rokach, Data Mining and Knowledge Discovery Handbook.
Springer Publishing Company, Incorporated, 2nd ed., 2010.

[118]	 “Redhat Enterprise Linux Security Guide – System Auditing,”
Red Hat, Inc. https://access.redhat.com/documentation/
en-US/Red Hat Enterprise Linux/6/html/Security Guide/chap­
system auditing.html Software documentation. Accessed: 2016-06-06.

[119]	 “GPU (Graphics Processing Unit),” in A Dictionary of Computer Science
(A. Butterfield and G. E. Ngondi, eds.), Oxford University Press, 7th ed., 2016.

[120] J.	 Pepas, “Hexify: A Tiny Function Which Converts Binary Data Into
Hex.” GitHubGist Repository, https://gist.github.com/cellularmitosis/
0d8c0abf7f8aa6a2dff3, 2016. C source code.

[121]	 “ZwWriteFile Routine,” Microsoft Corporation, 2016. msdn.microsoft.com/
en-us/library/windows/hardware/ff567121(v=vs.85).aspx Developer doc­
umentation. Accessed: 2016-11-27.

[122]	 “ZwSetInformationFile Routine,” Microsoft Corporation. Developer doc­
umentation. msdn.microsoft.com/en-us/library/windows/hardware/
ff567096(v=vs.85).aspx Accessed: 2016-11-16.

[123] G.	 C. Kessler, “File Signatures Table.” http://www.garykessler.net/
library/file sigs.html, 2017. Technical Website. Accessed: 2017-06-02.

[124] R.	 Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and S. Moriai, “The
Linux Implementation of a Log-structured File System,” SIGOPS Operating
System Review, vol. 40, pp. 102–107, July 2006.

[125] “PCMark 8 Technical Guide,” Futuremark Corporation, April 2016.

http://eraser.heidi.ie/appendix-a-erasure-methods/
https://technet.microsoft.com/en-us/sysinternals/sdelete.aspx
https://technet.microsoft.com/en-us/sysinternals/sdelete.aspx
https://www.bleachbit.org/
https://www.bleachbit.org/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/chap-system_auditing.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/chap-system_auditing.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security_Guide/chap-system_auditing.html
https://gist.github.com/cellularmitosis/0d8c0abf7f8aa6a2dff3
https://gist.github.com/cellularmitosis/0d8c0abf7f8aa6a2dff3
msdn.microsoft.com/en-us/library/windows/hardware/ff567121(v=vs.85).aspx
msdn.microsoft.com/en-us/library/windows/hardware/ff567121(v=vs.85).aspx
msdn.microsoft.com/en-us/library/windows/hardware/ff567096(v=vs.85).aspx
msdn.microsoft.com/en-us/library/windows/hardware/ff567096(v=vs.85).aspx
http://www.garykessler.net/library/file_sigs.html
http://www.garykessler.net/library/file_sigs.html

170

[126] R.	 Falcone, “Second Wave of Shamoon 2 Attacks Identi­
fied,” Palo Alto Networks Blog, January 2017. Blog. https:
//researchcenter.paloaltonetworks.com/2017/01/unit42-second-wave­
shamoon-2-attacks-identified/ Accessed: 2017-11-29.

[127] K. Kasumu, “CrystalDiskMark.” http://crystalmark.info/?lang=en, 2017.
Software website. Accessed: 2017-06-02.

[128] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Gifn, and W. Lee, “Virtuoso: Nar­
rowing the semantic gap in virtual machine introspection,” in 2011 IEEE Sym­
posium on Security and Privacy (SP), pp. 297–312, IEEE, 2011.

[129]	 “File Times,” Microsoft Corporation, 2017. Software documentation. https:
//msdn.microsoft.com/en-us/library/windows/desktop/ms724290(v=
vs.85).aspx Accessed: 2017-11-27.

[130] K. E. Heckman, F. J. Stech, R. K. Thomas, B. Schmoker, and A. W. Tsow,
Cyber Denial, Deception and Counter Deception: A Framework for Supporting
Active Cyber Defense. Springer Publishing Company, Incorporated, 1st ed.,
2015.

[131] “Driver	 Signing,” Microsoft Corporation. https://docs.microsoft.com/
en-us/windows-hardware/drivers/install/driver-signing Software doc­
umentation. Accessed: 2017-12-4.

[132] C. Brook, “VMWare Patchs Pwn2Own VM Escape Vulnerabilities,” Threatpost,
March 2017. Blog. https://threatpost.com/vmware-patches-pwn2own-vm­
escape-vulnerabilities/124629/ Accessed: 2017-11-30.

https://researchcenter.paloaltonetworks.com/2017/01/unit42-second-wave-shamoon-2-attacks-identified/
https://researchcenter.paloaltonetworks.com/2017/01/unit42-second-wave-shamoon-2-attacks-identified/
https://researchcenter.paloaltonetworks.com/2017/01/unit42-second-wave-shamoon-2-attacks-identified/
http://crystalmark.info/?lang=en
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724290(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724290(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724290(v=vs.85).aspx
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/driver-signing
https://docs.microsoft.com/en-us/windows-hardware/drivers/install/driver-signing
https://threatpost.com/vmware-patches-pwn2own-vm-escape-vulnerabilities/124629/
https://threatpost.com/vmware-patches-pwn2own-vm-escape-vulnerabilities/124629/

APPENDIX

171

A ADDITIONAL PERFORMANCE RESULTS

Figure A.1.: Write latency for file sizes between 4 KiB to 128 KiB for DecMS-VMI.

172

Figure A.2.: Write latency for file sizes between 256 KiB to 4 MiB for DecMS-VMI.

173

Figure A.3.: Write latency for file sizes between 8 MiB to 32 MiB for DecMS-VMI.

174

T
ab

le
 A

.1
:
D
ec
M
S
-V

M
I
la
te
n
cy

 f
or

 3
2
M
iB

fi
 le
s.

B
L
O

B
L
W

B
L
C

B
L
S

D
M
S
O

D
M
S
W

D
M
S
C

D
M
S
S

V
M
I
O

V
M
I
W

V
M
I
C

V
M
I
S

co
u
nt

10
0

m
ea
n

5.
23
2

st
d

0.
50
7

m
in

2.
39
4

25
%

5.
06
4

50
%

5.
15
2

75
%

5.
24
1

m
ax

7.
13
8

10
0

14
7.
44
0

13
.1
85

13
2.
65
5

14
2.
71
0

14
5.
59
6

14
7.
70
1

22
1.
69
4

10
0

0.
07
5

0.
02
0

0.
06
4

0.
07
0

0.
07
1

0.
07
2

0.
24
3

10
0

15
2.
74
8

13
.2
04

13
5.
11
4

14
8.
05
6

15
0.
82
0

15
3.
03
3

22
6.
76
9

10
0

8.
96
0

12
.5
04

3.
75
9

5.
69
8

5.
93
9

6.
31
7

10
5.
40
5

10
0

17
0.
42
0

26
.2
78

14
3.
84
1

15
5.
73
2

15
9.
30
1

17
5.
14
3

29
1.
48
0

10
0

0.
36
8

0.
05
0

0.
26
8

0.
33
8

0.
36
2

0.
38
9

0.
57
3

10
0

17
9.
74
8

29
.9
90

14
9.
61
8

16
1.
90
9

16
5.
86
9

18
4.
17
0

29
5.
79
7

10
0

7.
16
1

7.
46
4

3.
78
4

5.
14
1

5.
27
5

5.
46
9

52
.5
50

10
0

16
6.
78
4

26
.0
13

14
1.
97
2

15
0.
79
9

15
7.
90
0

17
0.
40
3

30
6.
44
9

10
0

0.
24
7

0.
06
1

0.
18
9

0.
22
8

0.
24
2

0.
24
9

0.
75
7

10
0

17
4.
19
3

26
.7
61

14
7.
61
7

15
6.
29
8

16
5.
47
9

18
3.
49
4

31
0.
99
1

175

T
ab

le
 A

.2
:
D
ec
M
S
-V

M
I
la
te
n
cy

 f
or

 4
 K

iB
fi

 le
s.

B
L
O

B
L
W

B
L
C

B
L
S

D
M
S
O

D
M
S
W

D
M
S
C

D
M
S
S

V
M
I
O

V
M
I
W

V
M
I
C

V
M
I
S

co
u
nt

10
0

m
ea
n

0.
13
8

st
d

0.
52
5

m
in

0.
07
5

25
%

0.
07
6

50
%

0.
07
8

75
%

0.
08
2

m
ax

5.
33
6

10
0

0.
04
9

0.
01
3

0.
04
2

0.
04
3

0.
04
3

0.
04
6

0.
10
1

10
0

0.
04
2

0.
00
8

0.
03
8

0.
03
8

0.
03
8

0.
04
1

0.
08
5

10
0

0.
23
0

0.
53
3

0.
15
7

0.
15
8

0.
16
2

0.
16
9

5.
50
1

10
0

0.
36
0

0.
14
2

0.
26
5

0.
31
7

0.
33
4

0.
34
2

1.
62
5

10
0

0.
71
5

1.
11
6

0.
38
7

0.
45
5

0.
53
9

0.
60
6

9.
37
6

10
0

0.
33
0

0.
05
4

0.
26
2

0.
30
2

0.
31
7

0.
34
3

0.
73
8

10
0

1.
40
6

1.
15
0

0.
98
9

1.
13
5

1.
20
7

1.
27
8

10
.4
02

10
0

0.
28
6

0.
42
0

0.
18
4

0.
19
9

0.
21
9

0.
24
9

4.
31
1

10
0

0.
19
2

0.
04
3

0.
14
7

0.
16
2

0.
17
6

0.
20
1

0.
37
9

10
0

10
0

0.
19
3

0.
67
2

0.
05
9

0.
45
5

0.
14
4

0.
49
7

0.
15
6

0.
52
7

0.
17
0

0.
55
2

0.
20
7

0.
65
5

0.
57
6

4.
82
4

VITA

176

VITA

Christopher Noe Gutierrez is a first-generation college graduate and the first in his

family to earn an advanced degree. He graduated from California State University,

Bakersfield (CSUB), his hometown, in 2008 with a degree in computer science. While

attending CSUB, Christopher tutored computer science and mathematics and was

award several scholarships and research stipends, which piqued his interest in com­

puter security. He was recognized by the CSUB Computer Science Department for

Outstanding Academic Achievement and continued his studies at California State

University Northridge (CSUN) with a scholarship from the LSAMP - Bridge to the

Doctorate Program. Christopher earned a master’s degree from CSUN and was

awarded the Outstanding Academic Achievement from the Department of Computer

Science.

Christopher earned a Ph.D. from Purdue University with funding through the

Frederick N. Andrews Fellowship and research assistantships from the United States

Missile Defense Agency, Northrop Grumman, and the National Science Foundation.

In 2017, Christopher received the Diamond Award from Center for Education and

Research in Information Assurance and Security (CERIAS). His general research

interests include computing systems security and deceptive systems. Christopher

accepted a Research Scientist position with the Security and Privacy Research Lab

at Intel Corporation.

