
CERIAS Tech Report 2017-3
The Application of Deception to Software Security Patching

 by Jeffrey K. Avery
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

THE APPLICATION OF DECEPTION TO SOFTWARE SECURITY PATCHING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Jeffrey K. Avery

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2017

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Eugene H. Spafford, Chair

Department of Computer Science

Dr. Saurabh Bagchi

Department of Computer Science

Dr. Cristina Nita-Rotaru

Department of Computer Science

Dr. Dongyan Xu

Department of Computer Science

Dr. Samuel S. Wagstaff, Jr.

Department of Computer Science

Approved by:

Dr. Voicu Popescu by Dr. William J. Gorman

Head of Department Graduate Program

iii

This work is dedicated to all who have helped to make me who I am today. I thank

you with all of my heart.

iv

ACKNOWLEDGMENTS

I cannot thank my advisor, Professor Eugene H. Spafford, enough for all of his

guidance, advice and support throughout my time as a student at Purdue. It is an

honor and a privilege to have been taught and trained by Professor Spafford to become

the research scientist I am today. The countless lessons I have learned over the years

through formal and informal conversations will serve me for the rest of my life and

career. I also thank my committee, Professor Saurabh Bagchi, Professor Christina

Nita-Rotaru and Professor Dongyen Xu for their support and advice throughout this

process.

To those who have helped me get to this point, I am forever grateful, humbled

and honored. “If I have seen further, it has been by standing on the shoulders of

giants.” Thanks for being the giants on whose shoulders I stood.

I thank Northrop Grumman, the GEM Consortium, the Purdue Doctoral Fel­

lowship, the VACCINE HS-STEM Career Development, and the Purdue Graduate

school for their support throughout my PhD. I also thank the National Science Foun­

dation for their support as portions of this research were funded under award number

1548114. Finally, to friends, faculty and staff in the Computer Science department,

CERIAS, the College of Science, and the Purdue Graduate School, I thank you.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

SYMBOLS . xi

ABBREVIATIONS . xii

ABSTRACT . xiii

1 INTRODUCTION . 1

1.1 Thesis Statement . 4

1.2 Patch Exploit Overview . 5

1.3 Dissertation Order . 7

2 LITERATURE REVIEW . 10

2.1 Types of Patches . 10

2.2 Patch Development Lifecycle . 12

2.3 Patching Economics . 14

2.4 Patch Generation . 15

2.4.1 Manual Patch Generation . 15

2.4.2 Automated Patch Generation 15

2.5 Software Exploit . 16

2.5.1 Vulnerability Research . 16

2.5.2 Application Exploit . 16

2.5.3 Patch-Based Exploit Generation 17

2.6 Deception . 19

2.6.1 Working Definition of Deception 20

2.6.2 Applying Deception to Software 21

vi

Page

2.6.3 Deceptive Patches . 22

2.7 Related Work . 24

3 A MODEL OF DECEPTIVE PATCHING 26

3.1 Patch Components . 26

3.1.1 Software Architecture . 27

3.1.2 System Input and Output . 27

3.1.3 System Architecture . 28

3.1.4 Deploy and Install Chain . 28

3.2 Applying Deception to Patch Components 29

3.2.1 Deceptive Software Architecture 29

3.2.2 Deceptive System Input and Output 32

3.2.3 Deceptive System Architecture 34

3.2.4 Deceptive Deploy and Install Chain 36

3.2.5 Combining Deceptive Patch Elements 37

3.3 Deceptive Patching Approach Discussion 38

3.3.1 Deceptive Patching vs. Traditional Patching 39

3.4 Cyber Kill Chain Analysis . 41

3.5 Modeling the Intended Effect of Deceptive Patching 42

3.5.1 Attacker Timeline to Exploit . 44

3.6 Chapter Summary . 46

4 SOFTWARE ARCHITECTURE . 47

4.1 Motivation . 47

4.2 Technical and Approach Background 48

4.3 Ghost Patching Approach . 49

4.3.1 Threat Model . 50

4.3.2 Properties of Ghost Patches . 50

4.3.3 Types of Faux Patches . 51

4.3.4 Implementation Properties . 52

vii

Page

4.3.5 Post Testing . 53

4.3.6 LLVM Workflow . 54

4.3.7 Implementation and Testing . 56

4.4 Ghost Patch Evaluation . 56

4.4.1 Simple Example . 57

4.5 Results . 59

4.5.1 Runtime Analysis . 59

4.5.2 Program Analysis . 60

4.6 Discussion . 66

4.6.1 Achieving the Ideal . 69

4.7 Chapter Summary . 73

5	 DECEPTIVE DISPATCHER: COMBINING DECEPTIVE SYSTEM AR­
CHITECTURE WITH DEPLOY AND INSTALL CHAIN 74

5.1 Example Application of MTD to Software Security Patches 75

5.1.1 Deceptive Command Line Tools 75

5.2 Deploy and Install Chain . 75

5.2.1 Overview . 75

5.3 Deceptive Dispatcher . 78

5.3.1 Overview . 78

5.3.2 Software Security Re-release Protocol 79

5.3.3 Realizing a Deceptive Dispatcher 82

5.4 Chapter Summary . 88

6 FORMAL MODEL OF DECEPTIVE PATCH EFFECT 89

6.1 Deceptive Patch Formal Model Approach 89

6.2 Modeling Impact of Deception on Patch-based Exploit Generation . . . 89

6.2.1 Security Parameters . 91

6.2.2 Oracle Sampling . 91

6.2.3 Complexity of Adversary Actions 91

viii

Page

6.2.4 Game Assumptions . 92

6.2.5 Generalized Game-based Model of Deceptive Patch Impact . . . 92

6.2.6 Faux Patches . 94

6.2.7 Obfuscated Patches . 95

6.2.8 Active Response Patches . 98

6.3 Achieving the Ideal . 100

6.3.1 Faux Patches . 100

6.3.2 Obfuscated Patches . 101

6.3.3 Active Response Patches . 102

6.3.4 General Security Parameter 104

6.4 Realizing Active Response Patches 105

6.4.1 Virtual Machine Implementation 105

6.4.2 Non-Virtual Machine Implementation 107

6.5 Chapter Summary . 109

7 CONCLUSIONS AND FUTURE WORK 110

7.1 Business Case . 110

7.2 Summary . 111

7.3 Future Work . 113

REFERENCES . 115

VITA . 124

ix

LIST OF TABLES

Table	 Page

2.1	 The Patching Cycle . 13

3.1	 Modeling the Space of Deceptive Patching. Gray Cell Background Indi­
cates an Infeasible Category. Green Cell Background Indicates a Category

that is Discussed in this Dissertation. 30

3.2	 Mapping Deceptive Patching Tools and Techniques onto the Cyber Kill

Chain. Green Background Indicates Tool or Technique Discussed in this

Dissertation. 43

3.3	 Deceptive Patch Timeline Symbols . 46

4.1	 Fake Patch Properties . 51

4.2	 t-test for Program Runtimes for Faux Patched vs. Unpatched Program

(100 Runs per Program) . 60

4.3	 KLEE Path Differences for Programs in KLEE-benchmark Suite 63

4.4	 t-test for KLEE Runtimes for Faux Patched vs. Unpatched Program (20

Runs per Program) . 67

6.1	 Deceptive Patch Examples . 90

x

LIST OF FIGURES

Figure	 Page

1.1	 Vulnerability Discovery Paths . 2

1.2	 Patch-based Exploit Generation Timeline with Deceptive Patch Compo­
nents/Research Overlay. 6

2.1	 Lifecycle of patches . 12

4.1	 Complete Flow to Create a Ghost Patch Using LLVM and bsdiff. Green

Shading Indicates Steps Added to Software Patching Process. 55

4.2	 Difference in Faux Patched vs. Unpatched Simple Program Runtime . . . 59

4.3	 KLEE Runtime Analysis for Simple Program 61

4.4	 KLEE Runtime Analysis for KLEE-benchmark Programs in Seconds . . . 62

4.5	 KLEE Path Analysis for KLEE-benchmark Programs 62

4.6	 KLEE Runtime Analysis Increase . 64

4.7	 KLEE Path Enumeration Increase . 64

4.8	 KLEE Runtime Analysis for KLEE-benchmark Programs Given Increasing

Faux Patch Additions . 65

4.9	 KLEE Runtime Analysis for KLEE-benchmark Programs Given Increasing

Faux Patch Additions . 65

4.10 KLEE Test Analysis for KLEE-benchmark Programs Given	 Increasing

Faux Patch Additions . 66

5.1	 High Level Overview of Re-release Protocol 81

xi

SYMBOLS

TP Time to identify a patch has been released

TL Time window between when a patch has been released and when

it is installed by benign end user

TI Time to install a patch

TA Time to attack

TP RI Time point at which the patch release was identified

TP ED Time point at which the patch executable was downloaded

TV I Time point at which the vulnerability was identified

TRE Time to reverse engineer a patch

TCE Time to create/generate and exploit

TED Time point at which exploit was developed

PO Original patch that was released to fix an actual vulnerability

Pn Subsequent patch that has been diversified based on the original

where n is a numerical value >= 1

λ A security parameter

xii

ABBREVIATIONS

SDLC Software Development Lifecycle

SOTA State of the Art

MTD Moving Target Defense

OODA Observe, Orient, Decide, Act

LoC Lines of Code

ROP Return Oriented Programming

PPT Probabilistic Polynomial Time

VM Virtual Machine

LLVM Lower-Level Virtual Machine

xiii

ABSTRACT

Avery, Jeffrey K. Ph.D., Purdue University, August 2017. The Application of Decep­
tion to Software Security Patching. Major Professor: Eugene H. Spafford.

Deception has been used for thousands of years to influence thoughts. Compar­

atively, deception has been used in computing since the 1970s. Its application to

security has been documented in a variety of studies and products on the market, but

continues to evolve with new research and tools.

There has been limited research regarding the application of deception to software

patching in non-real time systems. Developers and engineers test programs and ap­

plications before deployment, but they cannot account for every flaw that may occur

during the Software Development Lifecycle (SDLC). Thus, throughout an applica­

tion’s lifetime, patches must be developed and distributed to improve appearance,

security, and/or performance. Given a software security patch, an attacker can find

the exact line(s) of vulnerable code in unpatched versions and develop an exploit

without meticulously reviewing source code, thus lightening the workload to develop

an attack. Applying deceptive techniques to software security patches as part of

the defensive strategy can increase the workload necessary to use patches to develop

exploits.

Introducing deception into security patch development makes attackers’ jobs more

difficult by casting doubt on the validity of the data they receive from their exploits.

Software security updates that use deception to influence attackers’ decision making

and exploit generation are called deceptive patches. Deceptive patching techniques

could include inserting fake patches, making real patches confusing, and responding

xiv

falsely to requests as if the vulnerability still exists. These could increase attackers’

time spent attempting to discover, exploit and validate vulnerabilities and provide

defenders information about attackers’ habits and targets.

This dissertation presents models, implementations, and analysis of deceptive

patches to show the impact of deception on code analysis. Our implementation shows

that deceptive patches do increase the workload necessary to analyze programs. The

analysis of the generated models show that deceptive patches inhibit various phases

of attacker’s exploit generation process. Thus, we show that it is feasible to introduce

deception into the software patching lifecycle to influence attacker decision making.

1

1. INTRODUCTION

The patching ecosystem is beneficial for end users. Software patching has the following

definition: a modification to or to modify software.1 An additional definition of the

noun patch is as follows: a collection of changed functions aggregated based on source

file of their origin [1]. These are the general definitions that form the basis for our

identification of a patch.

A special case of patching is software security patches. The definition of security

patch is: a fix to a program that eliminates a vulnerability exploited by malicious

hackers. 2 An additional definition provided by Altekar et al. is traditional method

for closing known application vulnerabilities [1].

Based on the above definitions, we use the following as the working definition for

a security patch:

A modification that closes a known vulnerability in a program, eliminating the

chance for that vulnerability instance to be exploited by malicious hackers.

This definition emphasizes that the modification(s) to software prohibit a vulner­

ability from being exploited at a specific location of a program. This does not mean

that the code is hardened to all of the vulnerability instances throughout the program.

Instead, the patch fixes one vulnerability at one location. Fixing a vulnerability at

a specific location could hide other instances of the same vulnerability, but this side

effect is not the main goal of a security patch. This dissertation will focus on both

security patches and the security patching protocol.

1http://www.pcmag.com/encyclopedia/term/48892/patch
2http://www.pcmag.com/encyclopedia/term/51050/security-patch

2

Patches are generated once a vulnerability is identified that can be exploited.

There are three paths of vulnerability discovery that lead to patch development.

Fig. 1.1.: Vulnerability Discovery Paths

Figure 1.1 shows the various paths to identify a vulnerability in software. Path 1

is the common vulnerability path. A developer identifies a vulnerability is present in

a system and develops a patch. Once the patch is released, one path is end users can

download the file to their machine and install the patch. This view is the positive

result of software security patching. The second path is the negative effect of software

security patching. Using the released patch, an exploit can be developed. This pro­

cess is called patch-based exploit generation and is the motivations for this research.

The second path of vulnerability discovery begins with an external party identifying

a vulnerability. These external parties notify software developers who then generate

and release a patch. The third path begins with a malicious user identifying the vul­

nerability, generating an exploit and releasing the exploit. Developers observe attacks

3

against their system in production and then find the vulnerability being exploited.

Once this occurs, developers generate a patch and release the code to end users.

Delivery time constraints, third party programs, nonstandard coding practices,

and other challenges contribute to bugs and vulnerabilities being introduced into

programs that need to be fixed. The release of a software security patch (security

patch or security update for short) traditionally means a vulnerability that can be

exploited exists in unpatched versions of a program. This notification alerts attackers

to develop exploits for unpatched systems. The potential use of patches to generate

malicious exploits in practice motivates this research.

The benefit of software security patches for malicious actors is captured by a

Symantec Internet security threat report [2] released in 2015 stating “. . . malware

authors know that many people do not apply these updates and so they can exploit

well-documented vulnerabilities in their attacks.”

Based on this knowledge, attackers use old patches and vulnerabilities to exploit

systems. This is evident by empirical research published in the 2015 Verizon Data

Breach Investigations Report [3]. This report states that 99.9% of the exploits that

were detected took advantage of vulnerabilities made public 1+ years prior [3]. In

May 2017, unpatched systems were left vulnerable for months after a vulnerability

was discovered and the subsequent patch was released, because of the lack of action

by end users to apply the update. This resulted in thousands of computers worldwide,

including active machines at a hospital in the UK, being compromised by the Wan­

naCry ransomware [4]. As additional evidence of patch motivated exploits, in 2014,

Tim Rains, Microsoft’s Director of Security, released a blog [5] stating “[In 2010,] 42

exploits for severe vulnerabilities were first discovered in the 30 days after security

updates.” In June 2017, the SambaCry malware was first publicly observed, five days

after the patch for the vulnerability in the Samba software package was released. As

4

quoted from an article on the Bleeping Computer news website about the SambaCry

vulnerability, “According to public data, their actions started about five days after

the Samba team announced they patched CVE-2017-7494...” 3 .

With time to develop exploits and the ability to access both patched and un­

patched systems for testing, attackers can develop exploits that will successfully com­

promise vulnerable machines with high probability. Thus, traditional software secu­

rity patches can assist the exploit generation process. As a result, this dissertation

discusses, explores and analyzes how deception can be applied to software patching

as part of the defensive strategy to enhance the resiliency of patches and help protect

systems from attack.

1.1 Thesis Statement

Using deception to protect software involves prior research in obfuscation, encryp­

tion and other hiding techniques, but the specific area of deceptive patches has seen

little activity. We hypothesize that:

It is feasible to develop a methodology to introduce deception into the soft­

ware patching lifecycle to influence malicious actors’ decision making and

provide defenders with insight before, during and after attacks. Using this

methodology, it is possible to enhance software security by using deception.

This dissertation presents how deception can be applied to patching security vul­

nerabilities in software. Applying deceptive principles to the patching cycle can make

attackers’ jobs more difficult. The goal of deceptive patches is to increase the cost

to develop exploits based on patches. These patches can cause attackers to mistrust

data collected from their exploits [6], not attack a system at all to prevent wasting

3https://www.bleepingcomputer.com/news/security/linux-servers-hijacked-to-mine­
cryptocurrency-via-sambacry-vulnerability/

5

resources, fear being exposed, and waste time attempting to develop an exploit for an

incorrectly identified vulnerability. Thus, the impact of deceptive patches on program

security is based on altering an attacker’s approach, causing him/her to cast doubt

on the data collected or to increase the required workload to develop an exploit. To

enhance the resiliency of patches, we apply deception and discuss its impact on the

workload required for attackers to generate exploits based on patches.

1.2 Patch Exploit Overview

We assume that attackers have remote access to vulnerable machines or direct

access to binary or source code. We also assume varying levels of awareness to de­

ceptive techniques. Attacks can take the form of scripted exploits, where a malicious

actor has created an automated script to compromise a machine, or manual attacks.

This dissertation will focus on patches that fix security vulnerabilities. These

types of patches attempt to correct flaws that have been discovered through internal

review or from outside reports. In general, all vulnerabilities must be inaccessible for

the system to be secure. Thus, during the design stage of patch development, the

main requirement is to remove the vulnerability to prevent it from being exploited.

While this requirement is enough to lead to a patch that prevents exploits from suc­

ceeding, more can be done to further secure the system using the same or similar

software. This dissertation shows the feasibility of adding additional steps to the

design, implementation and release stage where developers explore and potentially

use deception in the process of addressing a vulnerability. Such an approach will lead

to well-planned, deceptive security patches that can increase the difficulty to develop

exploits, influence an attacker’s decision making and expose an attacker’s exploits.

Adversaries targeting a deceptive patch with an exploit can inform defenders of new

attack techniques once their exploit is executed. Defenders can use this informa­

6

tion to bolster their front line preventative defense techniques proactively instead of

through post-analysis after a successful exploit. Deceptive patching techniques along

with traditional preventative defense techniques can help to enhance the security of

software.

Fig. 1.2.: Patch-based Exploit Generation Timeline with Deceptive Patch Compo­
nents/Research Overlay.

Figure 1.2 illustrates the patch-based exploit generation process and overlays

where the concepts presented in this dissertation impact the attack sequence. The

process of using patches to generate exploits begins when developers release the no­

tification for a patch or the notification for a vulnerability (in some instances these

steps are combined). Once the patch is made available to the public, an attacker

reverse engineers the patch to discover the vulnerability being fixed. Once this is

identified, an exploit can be developed that compromises vulnerable machines. We

apply deception to security patches to slow down and/or inhibit patch-based exploit

generation.

This work presents research on how deception can be applied to security patches.

An outline of the contributions of this work is as follows:

1.	 Explore the ability of releasing ghost patches for faux vulnerabilities to deceive

attackers.

7

The first contribution examines at automatically inserting fake patches into

code using a compiler. Exploring techniques, such as symbolic execution, that

attackers can use to develop exploits using patched and unpatched binaries can

aid in the development of fake patches that appear real. These patches can

mislead an attacker, causing him/her to spend extra time investigating fake

vulnerabilities. This will provide end users more time to apply patches and

protect their systems.

2.	 Discuss a protocol update/framework using current software update centers to

re-release diversified versions of patches to deceive attackers.

We introduce a series of steps to inject deception into the security patching

process. Our analysis of inserting deceptive patches into the development and

maintenance lifecycle of a program is a preliminary application of deception to

the Software Development Lifecycle (SDLC).

3.	 Develop and analyze a formal security model of deceptive patches.

We introduce a general method using game theory models to capture the secu­

rity of deceptive patches. These models analyze how secure a deceptive patch

is given a knowledgeable adversary and an oracle. We apply this generic model

to specific instances of deceptive patches and discuss the security implications.

1.3 Dissertation Order

We discuss the outline of the dissertation and provide a brief overview of the

chapters in this section.

Chapter 2 covers the background for and related work to this dissertation. We

discuss a working definition of patching and prior work on the economics of patching

and patching techniques. We explore how software is exploited and discuss the gen­

8

eral area of deception and how deception has been applied to software. Finally, we

discuss prior work in deceptive patching and how elements of this dissertation address

limitations in these approaches.

Chapter 3 presents a model of software security patches. We discuss four compo­

nents that make up a patch as well as how to apply deception to each component. We

present an economic analysis of patches and deceptive patches using time to qualify

the impact of deception on exploit generation. We describe a mapping of our decep­

tive patching model onto the cyber kill chain [7] to show how deceptive patching can

affect an attacker’s path to compromise.

Chapter 4 discusses what makes up a patch from the architectural standpoint. We

identify components that can be visualized from a static analysis standpoint, discuss

how real elements can be dissimulated or hidden and how false elements can be shown.

Components of our approach to show false elements appear in the 32nd International

Conference on ICT Systems Security and Privacy Protection (IFIP SEC 2017) [8].

Chapter 5 identifies the location of a patch as a major component of the patching

model. We discuss different types of patches based on where they are located in the

cyber ecosystem (i.e. machines and networks). We then discuss how moving target

defense (MTD) can be applied to software security patches and how the application

is intuitive and a one-off approach. We also approach patching from the notification

and presentation standpoint. We discuss the text within notifications that identify

the presence of a patch as well as the notifications that appear during the installation

of a patch. We briefly discuss how bias is exploited by deceptive operations. Finally,

we describe a framework that given a patch, diversified versions of the patch can be

released after the original patch, forcing an attacker to distinguish between an original

patch and a diversified version of the same patch to avoid attempting to exploit

a vulnerability that has a previously released patch, expending his/her resources.

9

We suggest the need to distinguish between diversified versions of the same patch

will increase the workload required for attackers to develop patch-based exploits and

discuss how this can be applied to a generalization of the current software security

patching protocol using existing research. Elements of this chapter can be found in

12th International Conference on Cyber Warfare and Security (ICCWS 2017) [9].

Chapter 6 discusses a game-theoretic approach to describing the resiliency of a

deceptive patch. We discuss this general approach and then provide applications to

different categories of deceptive patches.

Finally, Chapter 7 concludes this dissertation and provides direction for future

work.

10

2. LITERATURE REVIEW

We explore the literature that relates to and is background for deceptive patches. We

begin by exploring the research present on software patching, reviewing the definition

of a patch, types of patches, as well as economic principles that support patching and

patch development. We also discuss how patches can be exploited, which significantly

motivates this research and identify related work on deceptive patches.

There are four ways a patch can alter code: add new lines of code at the site

of the vulnerability, change or edit vulnerable lines of code, remove vulnerable lines

of code, or wrap the vulnerability in a protective block. Adding, editing, and re­

moving vulnerable lines of code operate internally to a susceptible function at the

site of a vulnerability. These modifications prevent exploits from succeeding at the

site of the vulnerability by detecting and/or addressing unauthorized changes in local

state variables or removing the flawed code. Wrappers operate external to a vul­

nerable function. Wrappers can either cleanse input to a function before it is used

or examine output of a function to verify its correctness before it is used in other

locations throughout the program. Wrappers can detect exploits if the exploit alters

the system’s state and/or program’s behavior.

2.1 Types of Patches

Patches can be categorized based on the developer, its application to the code,

length, as well as what elements they actually update. Patches categorized based on

the developer can be unofficial (those developed by 3rd party vendors) or traditional

(those developed by the original code developers) [10]. While patches may require

11

a system restart to be applied, hot patches are applied to software as it is execut­

ing without the need to restart. For example, prior work by Payer et al. explores

how dynamic analysis and sandboxes can provide patches for vulnerabilities during

runtime [11]. Hot patches provide one solution to inhibiting patch-based exploit

generation, but are not a general solution. For example, hot patches could cause in­

stability on a machine because of compatibility issues with existing programs running

on a machine, which could be unacceptable for end users. Patches can also be cate­

gorized by length, either in lines of code or memory size. Using length as a delimiting

factor can help identify the amount of code necessary to fix classes of vulnerabilities.

Longer patches that change large sections of code are called bulky patches or service

packs, while patches that change small portions of code are called point releases [10].

Security patches and data patches are based on the software element(s) they update.

Security patches update vulnerable software components of a program that could be

exploited, and data patches update rules and signatures used by protection appli­

cations to detect attacks [12]. We focus on security patches that use a traditional

update mechanism, though our approach can be applied to any mechanism.

Finally, patches can be categorized based on their location relative to the location

of the vulnerability being fixed. External, or wrapper, patches are implemented in

a separate location compared to where the vulnerability is located. For example, a

buffer overflow attack where the variable’s size is known prior to entering the function

can be detected by an external patch. Internal patches are located inside a vulnerable

function and address the vulnerability by adding, editing and/or removing code within

the function. This type of patch can detect and prevent exploits as soon as they occur,

taking the necessary action(s) in real time. This allows for exploits to be detected

in dynamic environments where variable sizes and locations are non-deterministic.

Internal patches also have access to the internal state of a function. Zamboni et al.

12

provide a complete analysis of internal and external sensors, of which patches are a

subset [13].

2.2 Patch Development Lifecycle

Over the lifetime of an application, developers continue to update code, find vul­

nerabilities, discover areas where the code can be optimized, or add new features. Up­

dating code should follow a series of steps, ensuring the patch performs its intended

functionality and does not add incompatibilities. Patches either fix vulnerabilities

in code or aesthetically improve older versions of code. Brykczynski et al. describe

a series of sequential steps to develop a security patch [14]. Figure 2.1 diagrams a

general patch release process and each tier is described in Table 2.1 [15].

Fig. 2.1.: Lifecycle of patches

13

Table 2.1.: The Patching Cycle

Design Develop patch requirements - usually done
without community involvement

Early Review Post patch to relevant mailing list; address
any comments that may arise; if there are
major issues, developers return to the design
stage

Wider Review More extensive review by others not involved
in the early review; if there are major issues,
developers return to the design stage

Merge Place patch into mainline repository
Stable Release Deploy patch to the public

Long Term Maintenance Developers maintain the patch as the code
undergoes other improvements

The traditional patch lifecycle also shows that there are multiple stages of review

and testing that take place to make sure the patch is suitable to fix the vulnerability.

Vendors want to make sure that the issue is completely fixed and confidently ensure

that additional issues with that vulnerability do not arise.

The patch development lifecycle models the major stages to fixing vulnerabilities

in code. The original image presents a waterfall type of model where each stage

leads into the next upon completion. We slightly alter this model, adding additional

feedback loops, representing a more granular approach to patch development.

This lifecycle suggests that there exists an expectation that a patch fixes an issue

present in code. This also suggests that the issue is a vulnerability present in the

code that can be exploited. If a vendor is going to spend time reviewing, testing,

and fixing one of their mistakes, the fix for the mistake should be correct in the sense

that it actually fixes the error in the code. This belief that security patches always

attempt to fix legitimate vulnerabilities supports the application of deception.

14

Specifically, deception is applied to the design and merge stage of the software

patching lifecycle. The accepted belief is a patch fixes a vulnerability that is ex­

ploitable in the software. Fake patches are one way to apply deception to security

patching to take advantage of this expectation that a patch is always code that ad­

dresses a real vulnerability. One challenge of adding fake patches is these patches

cannot alter data flow or control flow in such a way that the program performs unre­

liably for benign and legitimate use. We address the idea of fake patches in Chapter 4.

Deception is also applied to software security patching during the stable release

stage. This can be achieved by adding deceptive notifications and releasing patches

that are diversified versions of prior updates. We discuss this in more detail in Chap­

ter 5.

2.3 Patching Economics

The ecosystem of software development involves economic trade-offs between re­

leasing an application and further developing software [16]. Economic principles guide

when and how software is updated and when these updates are released. Time to fix

a bug, delivery vehicle, and vulnerability criticality all contribute to patch economics.

At its core, patching software is a risk management exercise [17, 18]. Identifying the

risks and rewards associated with a security patch helps guide developers as they de­

cide when to release updates. Managing this process and decisions that are involved

in a practical setting are discussed by Dadzie [19] and McKusick [20].

The economic culture of patching suggests that patches are released within optimal

windows of time after a vulnerability has been identified or an exploit has been

publicly released. This means that patches are released when a significant amount of

data about the vulnerability and corresponding fix have been gathered as well as a

15

minimal amount of time has passed since public notification. Studies also suggest that

public notification of a vulnerability increases the speed to patch a program [18, 21].

The current software development phase of an application impacts the economics

of a patch. If a patch is identified during testing, applying the patch could be more

economically efficient when compared to releasing a patch when software is in full

production mode. Finding bugs when code is in the maintenance phase costs more

than finding them in the production or development phase [16].

2.4 Patch Generation

Patches can be generated using manual analysis and coding or automated tools.

We briefly discuss prior work that studies manually and automatically creating patches.

2.4.1 Manual Patch Generation

Manual patch generation identifies vulnerabilities to be fixed using manual effort.

Once identified, the patch for the vulnerability is written, tested, and released by

developers [22]. A full treatment of this type of generation is outside the scope of

this work. Research by Sohn et al. explores improving manual patch generation for

input validation vulnerabilities [23].

2.4.2 Automated Patch Generation

A growing area of research uses static and dynamic analysis techniques to au­

tomatically find and patch vulnerabilities. An overview of software repair concepts

is provided by Monperrus [24]. Research by Wang et al. detects integer overflow

vulnerabilities and provides a patch to fix the flaw [25].

16

Deception can also be applied to influence the information provided by these tools.

We apply this concept by generating faux patches for input validation vulnerabilities

by inserting fake conditional statements that model actual patches. This is discussed

in more detail in Chapter 4.

2.5 Software Exploit

Hackers exploit publicly available applications by forcing the program to perform

functions that were not intended. One of the first steps to altering program behavior

is gaining an understanding of how the software operates. To achieve understanding,

attackers apply reverse engineering techniques to provide human readable analysis of

the application.

2.5.1 Vulnerability Research

Identifying and classifying vulnerabilities based on how they are introduced to

code can be used to develop more secure coding practices. Prior work by by Jang et

al. explores finding vulnerabilities based on prior patches for a given application [26].

Work by Krsul provides a full treatment of vulnerability analysis and categorization

[27]. Work by Xie et al. uses static analysis techniques to identify vulnerabilities

in software [28]. Analysis by Frei et al. uses patch and exploit release data to

identify trends in vulnerability detection, exploit, and patching [29]. Deceptive patch

development relies on vulnerability research to identify classes of vulnerabilities.

2.5.2 Application Exploit

Attackers use exploits to attack vulnerabilities in unpatched applications. These

attacks can provide attackers the ability to gain access to otherwise unavailable func­

17

tionality. One of the first steps in this process is reverse engineering the code to

either view its contents or identify vulnerable patterns in the program. Research has

identified major questions within reverse engineering and provided advances within

the field. This research also increases the scope of code and programs that can be

reverse engineered. Work by Rugaber et al. attempts to qualify the accuracy and

completeness of a reverse engineered program [30]. Research by Schwarz et al. and

Popa looks at reverse engineering executables and binary with non-standard coding

practices such as indirect jumps and code vs data identification [31,32]. Udupa et al.

study how to reverse engineer programs deceptively treated with obfuscation tech­

niques [33]. Prior work by Wang et al. looks at defeating these attack techniques by

reviewing how techniques such as encryption, anti-debugging code and even obfus­

cation can increase the difficulty to reverse engineer applications [34]. This limited

availability of “anti-reverse engineering” techniques is where deception can be ap­

plied. Adding fake patches does not prevent reverse engineering from occurring, but

it does alter the data to be analyzed, increasing the workload of an attacker.

2.5.3 Patch-Based Exploit Generation

Attackers use released patches to develop exploits against unpatched machines

[35–38]. This is possible because software patches inherently leak information about

the software being updated.

Binary Diff One disadvantage is that internal patches leak the location of a vul­

nerability that is present in unpatched code, providing attackers with a blueprint to

develop exploits against unpatched code that can be verified. A binary difference (or

diff) reports the differences in syntax between two provided binary files [39,40]. The

diff result can then be used to start the reverse engineering process and the exact lines

18

of code that were changed can be observed. This provides attackers with the same

patch that has been distributed to all other users of the application and as a result,

because of the patching monoculture where all systems receive the same update, the

vulnerability on all unpatched systems can be identified. This static analysis process

can be used to develop exploits manually [41, 42].

Deception can affect binary diff tools by adding deceptive patches to code that

increases the size of the diff result. By adding fake code to a patch, the amount

of information returned as a result of executing the diff command on a deceptively

patched and unpatched system could increase the workload or be too large to analyze.

Chapter 4 explores the impact of injecting deceptive patches into software.

Control Flow Analysis Another disadvantage is patches alter the behavior of a

program. Once the patch is applied, the result is a more secure and hardened program,

but in the timeframe between patch release and patch installation, this observable

difference is harmful. This altered behavior, when its outputs are compared to an

unpatched system over a range of inputs, can be used to identify the functionality of

a patch, and therefore the vulnerability being fixed. Because the behavior is altered,

the search space for an attacker using fuzzing, which as a technique is similar to brute

forcing a program to attempt to make it behave erratically, is diminished as a change

in program behavior can be used as the initial identifier that a patch is present and

can help identify inputs that trigger the execution of patch code [43, 44].

Attackers can use control flow analysis to identify a vulnerability based on its

patch. Analyzing, statically or dynamically, changes in the control flow graph between

a patched and unpatched system can expose the location, syntax and/or behavior of a

patch. This provides attackers with information about the vulnerability being fixed.

Deception can impact control flow analysis by increasing the number of paths

in a program or by hiding distinct paths in a program. Control flow obfuscation

19

techniques such as control flow flattening cause the control flow of a program to be

more difficult to identify and follow statically. Chapter 4 discusses how the application

of deceptive patches can alter control flow and increase attacker workload to develop

exploits based on patches.

Symbolic Execution A more efficient fuzzing technique is symbolic execution,

which uses symbolic or representative input values based on conditionals in code to

enumerate the paths throughout a program [45]. This technique can also be used to

dynamically identify new paths that are executed during runtime between a patched

and unpatched program. Identifying the different paths throughout a program and

new paths could expose the behavior of a patch and provide information about in­

put values necessary to exploit a vulnerability [38]. We apply symbolic execution to

program analysis as an indication of the workload required by an adversary perform­

ing program analysis. Deception can increase this workload by adding fake branch

statements in code. Chapter 4 explores this concept in more detail.

2.6 Deception

Deception has been used in computing since the 1970s [46–49]. Since its introduc­

tion, a variety of deceptive tools have been developed to bolster computer defenses.

Examples of deceptive tools are those that generate decoy documents [50], honey-

files [51], as well as the Deception Toolkit [52]. These documents are planted to

attract attention away from critical data or resources and alert defenders of potential

intrusions or exfiltration attempts. Though the negative applications of deception

receive most of the focus — a phishing attack that resulted in millions of stolen

credentials or malware that compromises machines across the world — benevolent

applications of deception exist. An in depth analysis of benevolent deception can

20

be found in [53, 54]. Below we present the definition of deception that we will use

throughout this work. Additional work on military deception, deceptive theory and

taxonomies have also been addressed, but analyzing this research is outside the scope

of this dissertation [55–58].

2.6.1 Working Definition of Deception

Deception has varying definitions based on different psychological principles. The

definition we will be working with is as follows: Planned actions taken to mislead

and/or confuse attackers/users and to thereby cause them to take (or not take) specific

actions that aid/weaken computer-security defenses [59, 60].

The above definition shows that an actor’s intent to manipulate an individual’s

perception is the main principle of deception. In the use of deception, one party

intentionally alters, creates or hides information to influence the behavior of other

parties.

In practice, deception can be separated into two components that work in tandem.

One element is hiding the real - dissimulation, and the other is showing the false ­

simulation. Below is a general taxonomy of deception from prior work by Bell et

al. [61, 62] that we use throughout this dissertation:

1. Dissimulation: hiding the real

(a) Masking

(b) Repackaging

(c) Dazzling

2. Simulation: showing the false

(a) Mimicking

21

(b) Inventing

(c) Decoying

Using these components of deception, we evaluate the effectiveness of deception’s

application to security. Specifically, we will look at deception’s application to software

patching in non-real time systems.

2.6.2 Applying Deception to Software

Program Obfuscation Obfuscating code can be carried out in a variety of ways.

One technique makes code difficult to understand and read by reorganizing statements

or altering statements that hide a program’s semantics. Another technique makes the

behavior of code more difficult to understand. Introducing noise to output can make

this more difficult to understand. Prior work by Collberg et al. provides a taxonomy

of software obfuscation techniques [63, 64].

Software Diversity Software diversity is an area of study that researches ways to

create a more diverse software base. Different versions of a program that all reach

the same output using different techniques and instructions limit the reach of any

one exploit developed against a vulnerability exposed in a program. This makes

the attackers’ task of generating an exploit with far-reaching success more difficult

to accomplish because multiple versions of an exploit may have to be developed to

achieve the same result of compromise. Research by Larsen et al. provides an overview

of software diversification [65].

22

2.6.3 Deceptive Patches

Diverse Patch Applying software diversity to software security patches is a spe­

cific application of Moving Target Defense (MTD) techniques [66]. Patch diversity

addresses the mono-culture problem created by current patching practices and could

increase the resources needed to develop patch-based exploits. A framework presented

by Coppens et al. introduces the idea of using diversification to protect patches

by releasing different versions of the same patch to end users [67]. Because there

could be multiple patches released for a single vulnerability, attackers must develop

multiple exploits for each version of a patch to have the potential for a widespread

attack [65, 68, 69]. This dissertation builds on these frameworks by showing how di­

versification can be realized using current patching protocols. Chapter 5 presents a

framework using currently available tools to re-release diversified versions of patches.

Faux Patch A faux patch is composed of fake patches for vulnerabilities that do not

exist in the same sense that a traditional patch is composed of legitimate patches for

vulnerabilities that do exist. Fake patches should be indistinguishable from legitimate

patches and force adversaries to expend resources searching for a vulnerability that

does not exist. A faux patch, in combination with a traditional patch, creates a ghost

patch. We study faux patches applied to input validation vulnerabilities in Chapter

4. Input validation vulnerabilities occur when developers do not include checks and

assertions that validate data input into a program. The traditional method of fixing

this type of vulnerability is to add conditional and/or assertion statements to the

code that can detect invalid input [38]. Thus, we use deception to take advantage of

this commonly used technique to fix this type of vulnerability. Fake patches share

similarities with decoy documents [50, 51, 70, 71] and decoy passwords [72], as they

are all red herring techniques [73].

23

Fake patches incorporate properties from legitimate patches, such as boundary

checks, value verification conditional statements, and permission checks but do not

alter program semantics. Prior work has suggested implementing and publicizing

faux patches, but no experimentation has been conducted on this topic [42, 74]. We

discuss our treatment of adding fake patches to code in Chapter 4. We develop a

compiler-based implementation that adds fake conditional statements to programs

and analyze the impact of the fake code. We analyze both runtime and workload

impact of these faux patches on programs and present our findings.

Obfuscated Patch An obfuscated patch fixes a legitimate vulnerability but is ide­

ally designed to be infeasible to reverse engineer and uncover the underlying flaw.

These patches increase the effort necessary for the adversary to identify the vulnera­

bility being fixed by the patch. Because these patches fix legitimate vulnerabilities,

they do alter the semantics of the program. The goal of these patches is to confuse

attackers as they develop exploits, burying the actual vulnerable code in layers of

obfuscated patch code. Prior work in this area has explored code diversification [67],

control flow obfuscation [63, 75], and encrypting patches [74].

Active Response Patch An active response patch will fix the underlying vulnera­

bility, but will respond to adversarial interaction as if the vulnerability is still present

(and potentially issue a notification of the intrusion) [76]. When interacting with an

active response patch, attackers should ideally be unable to identify whether the re­

mote system is patched or vulnerable. The main goal of these patches is to influence

attackers to believe their exploit was successful. This will allow defenders to monitor

the adversary’s actions throughout his/her attack. Prior work has suggested these

types of patches would be effective against remote attackers [77, 78].

24

The adversary is assumed to have access to the patch, though even with this

knowledge they should be unable to achieve a meaningful advantage in differentiating

between interactions with a patched and unpatched system. We show that of these

three deceptive patch techniques, active response patches are the most likely to satisfy

a meaningful security definition and be realized and deployed in practice.

2.7 Related Work

Work by Arujo et al. introduces the idea of a honeypatch [77]. A honeypatch is

composed of two major parts. The first component fixes the vulnerability and the

second component is a detection element that actually can detect when an attack is

occurring. Thus, if malicious input is received, this input is detected as malicious and

then execution is transferred to a honeypot environment that has the same state as the

original machine, including the exploited vulnerability and other vulnerabilities that

have been intentionally left in the honey pot. Thus, the behavior of patched compared

to unpatched machines appears equivalent when in reality, the patched machine is

protected against attacks exploiting the associated vulnerability [77]. Zamboni et

al. similarly study how patches can raise alerts once an attack is detected [13]. The

limitations with these works include the lack of automation to insert honeypatches

into vulnerable code and the dependency on an attacker’s inability to identify a

honeypot environment. Specifically, the ability to identify honeypot environments

has been shown in research [79] and during live exercises [80].

Crane et al. present a framework that describes how code can be instrumented

to place fake instructions in locations where an attacker expects real instructions.

These instructions would not be used by legitimate programs, but send information

to defenders if they are executed [81]. The main limitation of this work is the lack of

implementation and analysis that shows the feasibility of this technique in practice.

25

Bashar et al. discuss how patch distribution can be achieved without leaking

information and providing some analysis of applying deceptive techniques as a solution

[74]. This dissertation expands on concepts presented in this work by implementing a

fake patch insertion compiler and providing a software security development protocol

that applies software diversity to patches.

This dissertation advances the field of deceptive patching by analyzing a formal

model analyzing the impact of deception on software security patching, implementing

an automated fake patch compiler, and using this implementation to perform analysis

on fake patch generation.

26

3. A MODEL OF DECEPTIVE PATCHING

This chapter presents a model of deceptive patches. This chapter examines the space

of deceptive patching by first exploring the four basic elements of a software patch.

This allows us to overlay deceptive principles onto the patching model to create a

model of deceptive patches. Showing how the deceptive patch model interacts with

the cyber kill chain attack model identifies the potential impact deceptive patches

have on the stages of an attack. The cyber kill chain model is ideal for analyzing

deceptive patches because it captures the attack process, including exploit generation.

3.1 Patch Components

The space of patches is categorized into four areas that have distinct properties

from each other. Each category embodies a unique set of challenges and solutions for

deceptive applications. This also helps to provide recommendations, suggestions and

protocols for applying specific deceptive techniques to certain areas and expose areas

where deception is infeasible or redundant. Our model of a patch is separated into

four categories.

•	 Software Architecture - The physical and measurable components of a patch.

This includes elements such as patch size (Lines of Code (LoC), memory size),

loops, conditional statements, and variables. These elements can be measured

without executing a patch.

•	 System Input and Output - The activity of a patch. System Input and Output

captures the behavior of a patch, including input into and changes in machine

27

state as a result of a patch. These metrics can be observed while a program is

executing before, during and after patch code executes. These metrics can also

be observed if code is symbolically executed.

•	 System Architecture - Where the patch is located. Within the vulnerable func­

tion, in the firewall or outside the vulnerable function are all viable locations

for a patch.

•	 Deploy and Install Chain - The public release stating a patch is available. This

is how end users are notified that a patch is available. Also, the information

portrayed to end users during a patch’s installation is included in this chain.

These categories model the elements of a patch. These are the building blocks of

a patch, and these are the elements to which deception has been and can be applied.

3.1.1 Software Architecture

Software architecture encompasses the structural make up of a patch and all at­

tributes that can be measured from them. This includes any information that can be

gathered from static analysis or running tools on the patch, whether the patch has

been installed or not. Any information that can be gained without explicitly execut­

ing the patch falls in this category. This includes LoC, patch size in memory, paths

in a patch, number of loops, conditional statements, number of variables, number of

basic blocks, coding language and variable names.

3.1.2 System Input and Output

System input and output (System I/O) includes elements of a patch that are in­

put into a patch, present when a patch commences execution, or output as a result

28

of executing the patch. For example, this category consists of program runtime of

a patched program, register values during patch execution and dynamic control flow

during execution. System input and output also encompasses information that may

be leaked during the execution of a patch. For example, a patch that prevents spe­

cific input values leaks information about the state of the program as well as the

functionality of a patch [82].

3.1.3 System Architecture

System Architecture elements of a patch include where the patch may be placed.

The basic idea is that a patch has to be placed somewhere within the computing

ecosystem. Wrapper patches are located outside the function that is vulnerable but

detect pre and post conditions [13]. Data patches are implemented in firewalls and

on sensors that detect malicious traffic well before reaching any vulnerable machine

[12, 83].

3.1.4 Deploy and Install Chain

Deploy chain elements of a patch include any publicly available information of a

patch that can be downloaded and installed. This information can be pushed to end

user machines and displayed via update applications, email, or placed on software

vendor websites for users to download.

Install chain includes elements concerning installing the patch and explaining sec­

tions of a program that will be altered. Elements such as ease of understanding, ease

of installing and the feedback mechanisms that are provided as a patch is installed are

other parts of the install chain. In addition to the code, a patch includes information

29

that provides notifications to system administrators and end users about the state of

patch installation and files that were changed, added or removed.

The types of notifications within this category are as follows:

•	 Identification - information indicating that a patch will be released or has been

released.

•	 Release - information provided at the moment a patch is released. This notifi­

cation could be incorporated with the identification notice.

•	 Download - information displayed when a patch is downloaded onto a machine.

•	 Execution - information presented when a patch is installed on a machine.

•	 Result/Outcome - information shown regarding the successful or unsuccessfully

installed on a machine.

3.2 Applying Deception to Patch Components

Each element of a patch can be deceptively influenced. We explore the basic

components of applying each principle of deception to each element of a patch to serve

as building blocks for more complex deceptive patches/combinations of deceptive

principles within a deceptive patch. We also provide prior work/research or point to

specific chapters within this dissertation for each deceptively influenced component

of deception.

3.2.1 Deceptive Software Architecture

Deceptive software architecture applies deceptive techniques to the software ar­

chitecture, or structural attributes, of a patch. This includes elements such as coding

30

T
ab

le
 3
.1
.:

 M
o
d
el
in
g
th
e
S
p
ac
e
of

 D
ec
ep
ti
ve

 P
at
ch
in
g.

 G
ra
y

 C
el
l
B
ac
k
gr
ou

n
d

 I
n
d
ic
at
es

 a
n

 I
n
fe
as
ib
le

 C
at
eg
or
y.

 G
re
en

 C
el
l

B
ac
k
gr
ou

n
d

 I
n
d
ic
at
es

 a
 C

at
eg
or
y

 t
h
at

 i
s
D
is
cu
ss
ed

 i
n

 t
h
is

 D
is
se
rt
at
io
n
.

S
o
ft
w
a
re

 A
rc
h
it
e
ct
u
re

S
y
st
e
m

 I
n
p
u
t
a
n
d

 O
u
t­

p
u
t

S
y
st
e
m

 A
rc
h
it
e
ct
u
re

D
e
p
lo
y

a
n
d

In

st
a
ll

C
h
a
in

M

a
sk

h
id
e

p
at
ch

ar
ch
it
ec
tu
ra
l

co
m
p
on

en
ts

h
id
e
p
at
ch

 i
n
p
u
t
an

d
 o
u
t­

p
u
t

h
id
e

th
e

lo
ca
ti
on

of

a

p
at
ch

h
id
e
p
at
ch

 n
ot
ifi
ca
ti
on

s

R
e
p
a
ck
a
g
e

h
id
e
th
e
re
al

 p
at
ch

 w
it
h
in

so
m
et
h
in
g

el
se

th
at

is

fu
n
ct
io
n
al

ac
ti
ve

 r
es
p
on

se
,
h
id
e
th
e

b
eh
av
io
r
of

 a
 p
at
ch

 w
it
h
in

ot
h
er

 b
eh
av
io
r

h
id
e

th
e

lo
ca
ti
on

of

a

p
at
ch

w
it
h
in

so
m
et
h
in
g

el
se

h
id
e

th
e

n
ot
ifi
ca
ti
on

of

a
p
at
ch

 w
it
h
in

 s
om

et
h
in
g

el
se

D
a
zz

le

m
ak
e
th
e
st
ru
ct
u
re

 o
f
th
e

p
at
ch

 c
on

fu
si
n
g,

 o
b
fu
sc
at
e

th
e
co
d
e

ra
n
d
om

or

co
n
fu
si
n
g

re
­

sp
on

se

m
ak
e
th
e
lo
ca
ti
on

 c
on

fu
s­

in
g
or

 r
an

d
om

m
ak
e
th
e
n
ot
ifi
ca
ti
on

 c
on

­
fu
si
n
g,

p
u
zz
li
n
g,

h
ar
d

 t
o

re
ad

M
im

ic

fa
ke

p
at
ch

th
at

ex
h
ib
it
s

st
ru
ct
u
ra
l

ch
ar
ac
te
ri
st
ic
s

of
 a

 r
ea
l
p
at
ch

fa
ke

p
at
ch

th
at

ex
h
ib
it
s

b
eh
av
io
ra
l
ch
ar
ac
te
ri
st
ic
s

of
 a

 r
ea
l
p
at
ch

fa
ke

 p
at
ch

 t
h
at

 s
h
ar
es

 l
o­

ca
ti
on

ch
ar
ac
te
ri
st
ic
s

to

re
al

 p
at
ch
es

fa
ke

 n
ot
ifi
ca
ti
on

 t
h
at

 e
x
­

h
ib
it
s
ch
ar
ac
te
ri
st
ic
s
or

 a
re
al

 p
at
ch

 n
ot
ifi
ca
ti
on

In
v
e
n
t

fa
ke

p
at
ch

th
at

ap

p
ea
rs

re
al

 b
u
t
it

 i
s
co
m
p
le
te
ly

m
ad

e
u
p

fa
ke

 p
at
ch

 b
eh
av
io
r
th
at

 is
co
m
p
le
te
ly

 m
ad

e
u
p

fa
ke

 l
o
ca
ti
on

 t
h
at

 i
s
co
m
­

p
le
te
ly

 f
ab

ri
ca
te
d

fa
ke

 n
ot
ifi
ca
ti
on

 o
f a

 p
at
ch

th
at

is

co
m
p
le
te
ly

m
ad

e
u
p

D
e
co

y

fa
ke

 p
at
ch

 t
h
at

 i
s
st
ru
c­

tu
re
d

 s
u
ch

 t
h
at

 i
t
w
il
l
at
­

tr
ac
t
at
te
n
ti
on

fa
ke

 b
eh
av
io
r
m
ea
n
t
to

 a
t­

tr
ac
t

at
te
n
ti
on

fr
om

an

ad

ve
rs
ar
y

fa
ke

 l
o
ca
ti
on

 o
f
a
p
at
ch

 i
n

a
co
m
m
on

ly
 v

is
it
ed

 a
re
a

su
ch

th
at

th
e

p
at
ch

is

in
v
it
in
g

fa
ke

 n
ot
ifi
ca
ti
on

 m
ea
n
t
to

at
tr
ac
t
at
te
n
ti
on

31

language, lines of code, number of basic blocks, variable names, memory size, basic

block ordering, control flow and other elements that can be collected using static

analysis tools or observation. It can also be said that these elements are gathered

without executing the patch.

Mask Masking software architecture can be achieved by completely hiding one or

more elements of a patch’s structure. Examples include encrypting a patch, hiding

the size and preventing the size from being calculated, or hiding the order of basic

block execution [74]. Hiding these elements does not mean that they have to truly

be invisible. For a patch to actually be applied, there is necessarily some change that

the system must undergo. The key for hiding this information is to make it such

that the software architecture elements cannot be detected by an adversary. Even

with this relaxed definition, masking software architecture is infeasible given current

technologies and standards of practice. The structural information about a patch can

be leaked using side channel information. As a concrete example, if a patch’s code

is encrypted, it must be decrypted to be read on a machine for execution. Thus, an

attacker can collect information on the commands being executed within an encrypted

block of code by observing the instructions being called once this block is entered by

a process.

Repackage Repackaging software architecture components can be achieved by en­

veloping these elements within another container. Examples include interweaving a

patch within another program. Prior work in software diversity can be applied to

repackaging software architecture [65, 67, 84].

32

Dazzle Dazzling software architecture components attempts to confuse an adver­

sary. Examples include obfuscating source code [63, 64, 85–88]. Chapter 5 applies

dazzling to software security patch architecture.

Mimic Mimicking software architecture components creates fake copies of real patches.

These fake copies look and behave similarly to their real counterparts. Chapter 4 and

work by Colbert et al. [63] and Crane et al. [81] explores mimicking software archi­

tecture in more detail.

Invent Inventing software architecture components applies new and fabricated be­

haviors, characteristics and concepts to the software architecture of patches. These

elements should appear real. Collberg et al. research the impact of adding bogus

code to programs in an effort to obfuscate [89].

Decoy Decoying software architecture components is similar to mimicking, but it

is meant to attract attention away from the real elements. Decoys do not completely

appear exactly as their real counterparts, but they have similarities such that they

appear real. Chapter 4 applies decoy techniques to software security patch architec­

ture.

3.2.2 Deceptive System Input and Output

Deceptive system input and output applies deceptive techniques to the input and

output of a patch. This component of a patch represents the behavior of a patch. This

can also be thought of as the stimulants to activate a patch, the program or machine

state during patch execution and after patch execution. This is all the information

that can be observed or calculated from a patch executing with inputs.

33

Mask Masking system input and output applies deceptive techniques to prevent

input or output from being detected or measured. This suggests that before a patch

executes and after a patch executes, program and/or machine state remain the same

and changes cannot be measured or detected.

This deceptive principle is infeasible under system input and output as machine

state must be altered (i.e. at the least the instruction pointer is incremented with a

NOP instruction) once a line of code is run.

Repackage Repackaging system input and output involves enveloping any patch

behavior within another vehicle such that the legitimate responses or input are not

observed or detected. An example of a repackaging system input and output can be

found in the REDHERRING tool [77, 78] as well as work by Crane et al. [81].

Dazzle Dazzling system input and output creates confusing responses or makes the

response from or input to a patch confusing. One way to implement such an approach

would be to provide random responses to input. Work by Stewart [90], Goh [91] and

Balepin et al. [92] discuss responding to intrusions using various techniques, including

dazzling.

Mimic Mimicking system input and output entails copying legitimate input or out­

put, setting system state and using that as the response or input into a patch where

the patch’s state or response is different. Thus, the patch acts like and appears to an

observer as another patch. Arujo et al. [77] and Crane et al. [81] apply this principle

to deceive potential adversaries.

Invent Inventing system input and output creates elements to present a new real­

ity. This principle provides the most flexibility to create new content and influence

34

adversary decision making. Collberg et al. explain concepts and provide examples of

bogus control flow in programs [63].

Decoy Decoying system input and output copies characteristics of legitimate system

input and output to attract attention. Arujo et al. apply this principle to patch

responses from honeypots [77].

3.2.3 Deceptive System Architecture

Deceptive system architecture applies deceptive techniques to the system architec­

ture through a patch. This component of a patch represents the location of a patch

within the system architecture. It can be said that system architecture is crafting,

identifying and implementing where in the system a patch will be located. Studying

where a patch can be implemented and identifying different locations where a patch

can be implemented in turn can provide information about a patch as well as about

the state of a system. Adding deceptive techniques to a patch’s location could make

the patch itself more difficult to exploit.

Mask Masking the system architecture of a deceptive patch involves concealing the

exact location of a patch. This makes the patch location non-observable. This also

has similarities to masking the software architecture of a patch. Because a patch

changes software by adding, removing or editing some code, the location of a patch

is infeasible to mask.

Repackage Repackaging the system architecture of a deceptive patch places a patch

in another location where the new location serves a different purpose. Repackaging

system architecture is also similar to repacking software architecture. Crane et al.

35

apply repackaging to create beaconing Return-Oriented Programming (ROP) gadgets

[81].

Dazzle Dazzling the system architecture of a deceptive patch attempts to confuse

an adversary regarding the location of a patch. This is a prime example of applying

moving target defense techniques to patches. Making the location of a patch con­

fusing and unstable makes exploiting the patch more difficult as the system may not

consistently respond. MTD tactics and procedures, which have mainly been applied

to computer networking, fall within this principle of deception [66, 93–97].

Mimic Mimicking the system architecture of a deceptive patch copies the location

of a patch and implements or applies that in another location or system but shows

some false components. One aspect of making a system seem to have a patch at a

specific location, when in reality, all that is implemented is a shell. Mimicking system

architecture is similar to mimicking the software architecture of a patch.

Invent Inventing system architecture of a deceptive patch involves creating a new

reality about the location of a patch. This means that fake information about a

patch is provided. This could mean that the patch itself is fake, similar to inventing

software architecture, or that the location of a real patch is fake.

Decoy Decoying the system architecture of a deceptive patch involves placing false

patches in locations that are attractive to an adversary. This idea is meant to shift

attention toward these locations and away from other legitimate or more vulnera­

ble areas. This type of patch is also closely related to decoy software architecture

elements. Crane et al. apply this principle by implementing decoy ROP gadgets

where the real gadget(s) are expected with beaconing capabilities and their security

36

implications [81]. Chapter 5 addresses the application of repackaging and dazzling to

system architecture.

3.2.4 Deceptive Deploy and Install Chain

Deceptive deploy and install chain applies deceptive techniques to the deploy chain

of a patch as well as the installation process of a patch. This includes notifications

before, during and after patch installation, the results of a patch, input into a patch

and register values as a result of the patch execution. This component of deceptive

patches is influenced by work studying deception within consumer advertising [98,99].

Mask Masking deploy and install chain elements of a deceptive patch involves hid­

ing or concealing the notification information such as text, images, and sounds. This

information notifies end users that a patch is available to install and provides status

updates during as well as after the installation of a patch. Hiding this information

and side channel leaks can be accomplished by not releasing any information about

a patch, its effects on a system or the success or failure of a patch. Prior work

has discussed the economic implications of hiding vulnerability disclosure and patch

notifications [100].

Repackage Repackaging deploy and install chain elements of a deceptive patch

will hide notifications about the presence of, installation of and success of a patch

within other objects, code, data, etc. A simple example is to use stenography to

hide a textual message about the contents of a patch within an image or within a

separate patch’s description. Chapter 5 discusses the application of this principle by

repackaging old deploy and install chain notification in re-released patches.

37

Dazzle Dazzling deploy and install chain elements of a deceptive patch makes these

notifications confusing to identify, view or understand. The real notification data

could be written in a different language or provided to an end user in some way

that takes time and resources to observe clearly/in a traditional manner. A simple

example is to mix the letters in the notification text to make it unreadable without

expending additional resources.

Mimic Mimicking deploy and install chain elements of a deceptive patch copies the

syntax and semantics of other deploy and install chain instances from other patches.

Using the same structure, wording and flow of information to the end user as another

patch as well as fabricating this information is an example.

Invent Inventing deploy and install chain elements of a deceptive patch creates

new realities about a patch being available or about the installation process. Fake

notifications can be provided that create a new reality that vulnerabilities in code

are being fixed by a patch. An example is to release a notification that says a patch

is available for a vulnerability when there is no patch, or notifications during the

installation of a patch can all be false.

Decoy Decoying deploy and install chain elements of a deceptive patch introduces

fake notifications that are attractive to adversaries. These notifications appear promis­

ing in terms of being useful to accomplish an adversary’s goal(s) and elicit further

investigation.

3.2.5 Combining Deceptive Patch Elements

Each of the above deceptive patch categories, apart from those that have been

identified as infeasible, can be combined with other deceptive patch categories. The

38

combinations used to develop a deceptive patch are based on the needs of as well as

the attack vector that has been identified by the developer. For example, if the patch’s

code is accessible by an attacker, the software architecture, system input and output,

system architecture, as well as deploy and install chain elements are observable. Thus,

deception could be applied to one or multiple patch elements to deceive attackers. If

the patch’s code is not accessible, then deception could only need to be applied to

the system input and output to deceive attackers. The order that multiple deceptive

techniques are applied to a program is dependant on the needs of the developer and

the program being patched. For example, if deception is being applied to both the

system input and output and the software architecture, and the attacker can view

the patch, applying deception to the system input and output first and then applying

deception to software architecture to hide the real patch and/or show false elements

layers the deceptive techniques that have been applied.

Prior work combines multiple categories of deceptive patches. REDHERRING

combines both dazzling and mimicking system input output [77]. Faux patches,

explained in more detail in Chapter 4, combines mimicking and decoying software

architecture.

3.3 Deceptive Patching Approach Discussion

As part of this research, key details that influence how deceptive patches are

designed and implemented must be discussed. This section compares perspectives of

patching code and explains why we believe our approach best accomplishes the goal

of influencing an attacker’s decision making.

39

3.3.1 Deceptive Patching vs. Traditional Patching

The main goal of traditional patches is to remove the vulnerability from the code.

First, developers detect or are notified of a vulnerability or existing exploit for their

program. If they have access to the source code, they can make the necessary changes

to address the vulnerability, making any exploit(s) against that vulnerability harm­

less. If they do not have access to the source code, an exploit signature can be created

and applied to a firewall to detect high level elements of the exploit as it travels on

the network. Traditional patches are beneficial because they improve the security of

a function by addressing the vulnerability when implemented correctly and preserve

the main functionality of the code. Simultaneously, traditional patches can weaken

systems because they leak information to an attacker about the system’s state. These

patches expose flaws to attackers that they can utilize to gain elevated privileges,

steal data and/or perform malicious unauthorized actions [42].

Deceptive patches have two primary goals. The first is to address the vulnerability

present in the code. This goal has the same security benefits as traditional patches.

The second goal is to influence an attacker’s decision making. Deceptive patches can

themselves be fake or complex. These types of patches can influence an attacker to

develop exploits for fake vulnerabilities, for an incorrectly assumed vulnerability, or

waste time and resources. Deceptive patches can also return data that attackers or

malicious programs expect or believe to be confidential, is fake, or is misleading based

on their complexity. Because the nature of these patches is to fix the issue as well

as deceive an attacker trying to exploit the vulnerability, they may not expose the

vulnerability to an attacker as easily as traditional patches.

Keeping an attacker’s interest is important for the success of deceptive patches.

These patches also have a psychological effect on attackers. Future attacks could

be prevented or attackers may approach systems much more cautiously if they have

40

knowledge that deceptive patches have been implemented in the system they are

attacking. Without sure knowledge of how the deception works or a way to verify the

information they receive, malicious actors will be more wary to attack systems.

Thus because of the added benefits of deceptive patches, namely the psychologi­

cal effect and the potential for counter-intelligence gathering by defenders, deceptive

patching has the potential to improve program security more than traditional patch­

ing. Thus, this research will analyze deception’s application to patching and potential

impact on software security.

Deceptive Patching Limitations Deceptive patches are not without limitations.

A list of deceptive patch limitations follows:

1. The potential increase in time to develop deceptive patches.	 Because decep­

tive techniques must be studied and analyzed for different types of vulnerabili­

ties, creating a deceptive patch may be more involved compared to traditional

patches. Researching and developing ways to optimize deceptive patch creation

will reveal techniques to decrease the development time.

2. The risk of counter-attacks. An attacker with knowledge that deception exists

on a system can purposefully use exploits that they know a defender expects

and give defenders the false idea their defenses are effective.

3. The lack of concealing the general location of actual vulnerabilities.	 Decep­

tive patches can dazzle the legitimate patch locations by injecting many false

patches, potentially increasing the workload required to identify actual vulner­

abilities based on a patch. This does not completely hide the location of the

actual vulnerability.

41

4. The increase in patch size. Adding fake code to legitimate patches will increase

the memory size of a patch.

3.4 Cyber Kill Chain Analysis

In this section, we map each component of a patch onto the cyber kill chain model

and show where deceptive techniques and tools that are associated with a particular

component impact the kill chain [7]. The cyber kill chain model captures the series

of steps an attacker performs to collect target information, develop and release an

exploit and maintain presence in the compromised system. Table 3.2 provides a

general overview of major types of patches in prior work as well as those that are

addressed in this dissertation (listed by chapter title or section heading). Listing a

deceptive patch concept or technique at a specific stage in the cyber kill chain suggests

that the patch impacts decisions made during this phase.

Many of the deceptive patch techniques and concepts impact the reconnaissance

phase of the cyber kill chain. This occurs because exploits are developed based on a

patch. When deception is applied, attackers will be influenced during the information

gathering phase of the exploit development kill chain. Attackers use a patch to

develop their exploit, so as they are studying the patch and attempting to understand

its behavior, components, and information gathering, deception will influence the

information they gather and their subsequent actions. This analysis is important

because interrupting the cyber kill chain early affects the future steps in the sequence.

Because deception impacts components within a patch used by the attacker to make

decisions, and deception is observed by an attacker, the information gathered by an

attacker may be deceptive.

One observation from this table is that the weaponization phase is not affected

by deceptive patching. The attacker is not prevented from creating an exploit and in

42

some instances, depending on the environment of the patch may be baited to make

an exploit. This suggests that deceptive patching should be considered a supplemen­

tal defensive mechanism that is implemented alongside more traditional defensive

techniques to provide resiliency against attacks.

We also note that deceptive patches impact the Observe, Orient, Decide and Act

(OODA) loop [102] decision making model in a similar manner compared to the cyber

kill chain. The steps within this model are observe, orient, decide and act. This model

describes the decision making process of actors engaged in conflict with the premise

that completing the loop more quickly and accurately than an adversary results in a

successful action taking place and gaining momentum. Deceptive patches impact the

observe and orient stages of the OODA loop, influencing the remaining two steps in

the decision making process. The consistency of our deceptive patch model with both

the cyber kill chain and the OODA loop suggest that the model accurately represents

the deceptive patch space.

3.5 Modeling the Intended Effect of Deceptive Patching

Deceptive patching can also be modeled in terms of the goals and outcomes. In

this section we explore how each element of a patch, when deceptively implemented,

impacts an attackers time to discover a vulnerability based on a patch as well as their

time to develop an exploit. We first explore elements that make up an attackers’

timeline to attack and analyze how elements of a deceptive patch impact this timeline.

43

T
ab

le
 3
.2
.:

M
ap

p
in
g
D
ec
ep
ti
ve

 P
at
ch
in
g
T
o
ol
s
an

d
 T

ec
h
n
iq
u
es

 o
n
to

 t
h
e
C
y
b
er

 K
il
l
C
h
ai
n
.
G
re
en

 B
ac
k
gr
ou

n
d

 I
n
d
ic
at
es

T
o
ol

 o
r
T
ec
h
n
iq
u
e
D
is
cu
ss
ed

 i
n

 t
h
is

 D
is
se
rt
at
io
n
.

S
o
ft
w
a
re

A
rc
h
it
e
c­

tu
re

S
y
st
e
m

In

p
u
t

a
n
d

O
u
tp

u
t

S
y
st
e
m

A
rc
h
it
e
c­

tu
re

D
e
p
lo
y

a
n
d

In

st
a
ll

C
h
a
in

R
e
co

n
n
a
is
sa
n
ce

 G
h
os
t
P
at
ch
es

 [
8]

A
ct
iv
e

R
es
p
on

se

[7
6,

91
,
92
,
10
1]
,

H
on

ey
-

P
at
ch
es

 [
77
]

M
T
D

 P
at
ch
in
g

D
ec
ep
ti
ve

 D
is
p
at
ch
er

W
e
a
p
o
n
iz
a
ti
o
n

D
e
li
v
e
ry

D
at
a
P
at
ch
es

 [
12
, 3
4]

E
x
p
lo
it
a
ti
o
n

L
eg
it
im

at
e
P
at
ch
es

A
ct
iv
e

R
es
p
on

se
,

H
on

ey
P
at
ch
es

M
T
D

 P
at
ch
in
g

D
ec
ep
ti
ve

 D
is
p
at
ch
er

In
st
a
ll
a
ti
o
n

M
T
D

 P
at
ch
in
g

C
o
m
m
a
n
d

 a
n
d

C
o
n
tr
o
l

A
ct
iv
e

R
es
p
on

se
,

H
on

ey
P
at
ch
es

A
ct
io
n
s

o
n

O
b
je
ct
iv
e
s

A
ct
iv
e
R
es
p
on

se

44

3.5.1 Attacker Timeline to Exploit

An attacker follows a generic timeline as s/he develops an exploit based on a

patch. Each component of the timeline builds on the prior segment such that each

element’s time is the cumulative effect of all prior elements.

Time to Identify Patch The time to identify a patch encompasses the time to

identify that a patch for some software is available. Traditionally, this time is minimal

as when a patch is publicly available, a notification is also released. This time applies

to both benign end users as well as malicious adversaries.

Time Lag This is the time window between when a patch is released and when a

benign user actually downloads, installs and applies the patch. Bambenek explains

that during this window, attackers use the patch to develop and release exploits,

taking advantage of the unpatched systems [103]. Forced updates and hot patches

attempt to shorten this time frame, making exploit generation more difficult.

Time to Reverse Engineer The time to discover the vulnerability that a patch

is fixing is the segment of time that begins once a patch is discovered and ends when

the vulnerability being fixed is identified. This time period is unique to patch-based

exploit generation as the patch itself fixes the vulnerability but also identifies the

vulnerability being fixed. This is also the time segment that is immediately impacted

by deceptive patching techniques. Lengthening the time to reverse engineer a patch

to identify the legitimate vulnerability being fixed provides more time for end users

to update their system.

Time to Create/Generate an Exploit The time to develop an exploit is the

time segment that begins once the vulnerability is discovered and ends once a re­

45

liable exploit is developed. A reliable exploit is one that consistently exploits the

vulnerability being fixed. Once an exploit is developed, this time segment stops.

Time to Install Patch This is the time for benign users to install a patch on their

system. This time includes the time to edit, add or remove files, perform checks, start

and restart the system and to show that the patch was successfully installed on the

machine. This period also includes the time for end users to verify the compatibility

of patches with other programs running on their machines, legacy programs and

standards [104].

Time Point Patch Release Identified The time point a patch release is identified

is the exact time that either a benign user or malicious adversary discovers that a

software security patch is available for download. This time point can be different for

each class of user.

Time Point Patch Executable Downloaded The time point a patch executable

is downloaded represents the exact time that a benign user downloads a patch to

install it on their system. We only represent the benign user’s time because we assume

an attacker downloads the available patch quickly after discovery. Automatic updates

using an update center that pulls patches from a central server to each individual

machine attempts to decrease the time from patch release to patch download.

Time Point Vulnerability Identified We identify the time point in which the

vulnerability being updated by the patch is identified. This occurs once the patch

is successfully reverse engineered. This is an implication that the code has been

statically and/or dynamically analyzed.

46

Table 3.3.: Deceptive Patch Timeline Symbols

Time Symbol Description
TP Time to identify a patch has been released
TL Time between when a patch has been re­

leased and when it is installed by benign end
user

TI Time to install a patch, including the time to
verify the patch is compatible with software
on the machine to be updated

TRE Time to reverse engineer a patch
TCE Time to create/generate and exploit
TA Time to attack
TP RI Time point at which the patch release was

identified
TP ED Time point at which the patch executable

was downloaded
TV I Time point at which the vulnerability was

identified
TED Time point at which exploit was developed

Time Point Exploit Developed The exact time when an exploit has been im­

plemented and tested and reliably exploits the vulnerability being patched.

3.6 Chapter Summary

This chapter presents and discusses a model of what composes a software secu­

rity patch, applies deceptive principles to this model and then maps specific deceptive

patch tools and concepts onto the cyber kill chain. We discuss where gaps are present

in the field and how they are addressed by concepts, implementation and analysis pre­

sented in this dissertation. We also analyze an economic model of deceptive patches

and visualize how they influence patch-based exploit generation.

47

4. SOFTWARE ARCHITECTURE

This chapter presents an approach to adding simulated patches to code. Using a

compiler-based tool, fake patches are inserted that mimic integer input validation

vulnerability patches. The choice to analyze deceptive patches for input validation

vulnerabilities is based on the common patching structure used to patch legitimate

input validation vulnerabilities in software [38]. These patches suggest that a vul­

nerability is present at a location where the vulnerability is not. We also analyze

program runtime impact to identify how fake patches affect legitimate program exe­

cution as well as dynamic analysis runtime to measure the effect of fake patches on

software path enumeration, which can be used to develop exploits. Finally, we discuss

limitations to our approach. 1

4.1 Motivation

As described in Chapters 1 and 2, attackers use techniques such as binary diffing

and control flow analysis to reverse engineer patches and develop exploits for the

vulnerability being fixed. As analysis techniques improve, the speed of patch-based

exploit development improves, giving end users less time to protect their systems by

applying the patch. One method to create more time for end users to protect their

systems is to use deception to influence attackers, causing them to expend more time

analyzing the patch compared to the time to analyze currently implemented patches.

We implement a proof-of-concept compiler-based tool to insert deceptive patches that

mimic legitimate patches.

1Portions of this chapter are taken from Ghost Patches: Faux Patches for Faux Vulnerabilities [8]

48

4.2 Technical and Approach Background

Deception Fake patches are an application of showing the false by mimicking and

decoying and hiding the real by dazzling. They show the false by including charac­

teristics of real patches, mimicking a real patch and attracting attention away from

traditional patches as a decoy. Fake patches hide the real by reducing the certainty of

which patches are real and which are decoys. This added uncertainty adds a layer of

protection to legitimate patches by causing a greater potential for increased workload

to exploit vulnerabilities based on patches.

LLVM Lower Level Virtual Machine, LLVM, is a “collection of modular and reusable

compiler tool chain technologies [105].” This tool started as a research project at the

University of Illinois at Urbana-Champaign in 2000 by Vikram Adve and Chris Lat­

tner. The ghost patch implementation uses an LLVM pass to insert faux patching. We

use LLVM because of its versatile front end compiler options, removing restrictions

on source code language to implement and apply faux patches.

Symbolic Execution Automatic exploit techniques use symbolic execution to gen­

erate malicious inputs to programs [38,44]. Symbolic execution uses branch statement

conditional expressions to generate paths throughout a program. By generating sam­

ple input values for each branch of a conditional statement, each path in a program

can be covered without the computational strain of a brute force approach. Once sym­

bolic execution is completed, all input and variable values that form a path through

the program are known. Comparing the signatures from an unpatched program and

a patched program can identify changes in the branches within each program and

attackers can use these discrepancies to develop an exploit. Symbolic execution is

applied to dynamic analysis within KLEE [106]. This tool creates symbolic execution

signatures. We use the runtime of KLEE to indicate the amount of work necessary to

49

develop an exploit. An increase in runtime suggests that more patches throughout a

program were discovered by the tool. This increase in paths to enumerate because of

faux patches ideally results in a longer analysis time, which correlates to an increased

workload to identify the legitimate path and associated patch.

Input Validation Vulnerabilities This work targets input validation vulnerabil­

ities. A common patch to these types of vulnerabilities is to add boundary checks

in the form of if-statements [38]. Thus, given a patched and unpatched program, a

diff between the two programs will show additional branch statements in the patched

version. These branch statements can be used to then determine input values that

will exploit an unpatched program.

4.3 Ghost Patching Approach

This research studies how a fake patch can be implemented in conjunction with a

traditional patch and measures its impact on program analysis and runtime. These

fake patches should alter the control flow of a program, but not the data flow of

information. Thus, given two programs, one with a ghost patch and the other with a

traditional patch, the final output should be identical.

Our approach is based on a common patching behavior that input validation

vulnerabilities are fixed by adding conditional statements that validate the value of

variables that can be tainted by malicious input [38]. Thus, to deceive attackers, we

add fake patches to code that mimic these input validation conditional statements,

making exploit generation using patches more resource intensive.

50

4.3.1 Threat Model

We consider attackers who are using patches to develop exploits and have access

to both patched and unpatched versions of a program, and can control and monitor

the execution of both as our threat model.

Ghost patching is designed for input validation vulnerabilities that have not been

discovered by the public or do not have a widely available exploit. If there are scripts

that already exploit a well known vulnerability, ghost patches can still be applied but

with less effectiveness. Public exploit databases2 or “underground” forums could be

monitored to determine if exploits have been developed.

We specifically look at input validation vulnerabilities that involve integers. These

vulnerabilities can be exploited because of a lack of boundary checking and can cause

subtle program misbehavior through integer overflows or underflows.

Finally, ghost patches target input validation vulnerabilities in enterprise scale

systems. Real time systems are not suitable for ghost patches because adding con­

trol flow statements could increase the runtime of code, potentially violating time

constraints of functions in these systems.

4.3.2 Properties of Ghost Patches

This work applies concepts from decoy documents to deceptive patches. Decoy

documents are fake documents inserted into a file system or on a personal computer

and are meant to intentionally mislead attackers. These documents also mimic real

documents and are decoys meant to attract attention away from critical data. Bowen

et al. and Stolfo et al. have conducted research on decoy documents [50, 70] and

created a list of properties that decoy documents should embody. We slightly modify

2E.g. https://www.exploit-db.com/

http:https://www.exploit-db.com

51

Table 4.1.: Fake Patch Properties

Property Explanation Implementation
Effort

Non-interfering Fake patches should not interfere
with program output nor inhibit
performance beyond some thresh­
old determined on a case to case
basis.

Experimentation

Conspicuous Fake patches should be “easy” to
locate by potential attackers.

Easy

Believable Fake patches should be plausible
and not immediately detected as
deceptive.

Easy

Differentiable Traditional and fake patches
should be distinguishable by de­
velopers.

Experimentation

Variability Fake patches should incorporate
some aspect of randomness when
implemented.

Easy

Enticing Fake patches should be attractive
to potential attackers such that
they are not automatically dis­
carded.

Experimentation

Shelf-life Fake patches should have a pe­
riod of time before they are dis­
covered.

Experimentation

these properties and present in Table 4.1 our list of fake patch properties as well as

whether the property is trivial to implement or requires further experimentation.

4.3.3 Types of Faux Patches

Faux patches could be generated using a variety of different structures. Faux

patches could be generated using a conditional statement with code in the body

of the statement. We explore this construction in more detail as we discuss our

implementation of faux patches. Faux patches can also be constructed as a loop.

52

These patches would perform some calculation that does not impact the data flow

throughout a program but would alter the control flow. Because loops iterate multiple

times during a program run, their impact on program runtime can be significant.

Further analysis could identify acceptable loop conditional operators and values that

impact program runtime within an acceptable threshold. Faux patches could also be

one or more lines of code that calculate a value within a program. One example is

to apply the concept of opaque predicates to create expressions that are trivial to

calculate but difficult to understand [63]. Finally, faux patches could be implemented

as entire functions. This type of faux patch inserts fake functions calls that appear

to perform operations that do not impact data flow.

4.3.4 Implementation Properties

The implementation of fake patches applies deception to patching because it at­

tracts attention away from a traditional patch, but does not impact the data flow

of the function being patched. Fake patches should be designed such that they are

not marked as dead-code and removed from the binary as a result of compiler opti­

mization nor should they be trivial to identify by attackers. These patches should

also address the properties outlined in Table 4.1. Implementation components of a

fake patch should at a minimum include at least one randomly generated value and a

conditional statement. Other implementation specifics depend on the actual program

being patched.

Control Flow Fake patches having conditional statements that alter control flow

will make them apparent to attackers using static and dynamic analysis tools. This

addresses the conspicuous property. This also mimics the trend of patches for input

validation vulnerabilities.

53

Mimicking this trend could deceive attackers by showing changes that are expected

but fake, addressing the enticing property. Experimentation will show how fake

patches affect overall program runtime, addressing the non-interfering property. We

implement fake patch conditional statements such that they include the destination

or left-hand-side of an LLVM intermediate representation store instruction in the

original program mathematically compared to a randomly generated value. The use

of a random value addresses the variability property.

We form the body of if-statements by adding code that solves different mathe­

matical expressions with the original program’s value as input. These expressions do

not alter the value of the legitimate variable. Thus, data flow is preserved. The body

of fake patch statements should be plausible for the program being patched. This

suggests that the body of a fake patch should be developed based on the behavior of

the program being patched.

4.3.5 Post Testing

After applying a ghost patch to software, further testing should be conducted for

the following:

1. Evaluating ghost patch impact on software runtime and program memory (i.e.

lines of code).

2. Verifying ghost patch does	 not introduce incompatibilities by applying unit

testing.

A ghost patch should be evaluated for its impact on the program’s performance

to determine if it is feasible. This determination is dependent upon each program

and the execution environment of the program. The memory impact of a ghost patch

should also be considered. The size of a ghost patch should be reasonable for end users

54

to download and apply to vulnerable systems. Developers should establish an upper

threshold such that the feasibility is measurable and can be validated. Conjectures

about patch size and acceptable runtime are outside of the scope of this research. We

do analyze the statistical impact of ghost patches on program runtime and program

analysis.

4.3.6 LLVM Workflow

The workflow of our LLVM prototype begins with a traditionally patched file (we

assume developers have previously created a traditional patch). First, this tradi­

tionally patched file is compiled using clang [107]. This creates intermediate repre­

sentation bytecode of the traditionally patched program. Next, this file is compiled

a second time, applying our ghost patch LLVM pass. This pass adds one or more

fake patches, which are also implemented in bytecode, after store instructions in the

traditionally patched program’s bytecode.

We choose store instructions because they are a natural instruction that prop­

agates data throughout a program. The store instruction transfers data from one

location to another. Thus, placing fake patches after store instructions that identify

boundaries directly after the data is stored in a variable provides the most spatial and

temporal locality. By this we mean placing the patch right after the store instruction

provides temporal locality in that the time between a vulnerable segment of code

executing and the patch executing is minimized. By spatial locality, we mean that

there is minimal space between the location of the vulnerable segment of code and

the location of the patch. Other options for loading points of faux patches include

load instructions, because this is another location where data is propagated through

code. Also, load instructions could propagate malicious code, these could be insertion

points. A final general option is specific patterns of instructions. An example is a

55

load followed by an add followed by a multiplication. We use conditional statements

because these statements create branches within code that can be easily detected.

This stage creates a new ghost patched program. Next, this ghost patched pro­

gram is compiled into binary using the clang compiler. If the file being patched is

part of a larger project, the build tool for the project should be mapped to clang to

ensure the project gets compiled with the correct flag(s). After the ghost patched

code is compiled, the patched and unpatched (this file is before any traditional patch

has been applied) binaries are supplied to a binary diff tool, such as bsdiff, to create

a patch file that can be distributed and applied to unpatched programs. A work flow

diagram of this process is shown in Figure 4.1.

Fig. 4.1.: Complete Flow to Create a Ghost Patch Using LLVM and bsdiff. Green
Shading Indicates Steps Added to Software Patching Process.

56

4.3.7 Implementation and Testing

We implemented a proof-of-concept that addresses input validation vulnerabilities

involving integer variables. We believe our approach can be extended to other variable

types and data structures without loss of generality. Our implementation uses LLVM

and is about 900 lines of C++ code.

4.4 Ghost Patch Evaluation

The prototype of the faux patch program was developed using an LLVM pass

on an Ubuntu 14.04 x86 64 virtual machine with 2 cores and 4GB RAM. We used

LLVM (version 3.4) to develop our pass because it includes a front end compiler

supports optimizations to be developed and applied to programs agnostic of the coding

language.

Fake patches increase the number of branches in a program because of the con­

ditional statements that are added at store instructions. One method to quantify

the impact of fake patches on both program runtime and program analysis is to use

symbolic execution. Symbolic execution identifies paths through a program using

symbolic inputs based on conditional statements throughout a program [38]. Attack­

ers can use symbolic execution to identify new paths through a program as well as

the input values that cause these paths to be traversed. This analysis can be used

to automatically identify inputs that satisfy the conditions to execute the code of a

patch. This would provide attackers with the necessary information to develop an

attack that exploits the vulnerability being fixed in unpatched programs by using

input values that satisfy patched code conditions in unpatched programs. We apply

symbolic execution to deceptive patches and use both the number of paths enumer­

ated as well as the analysis runtime to provide insight into the required workload

57

to analyze faux patched and unpatched programs. Specifically, we use KLEE [106]

(version 1.3) to perform this analysis because of its compatibility with LLVM.

4.4.1 Simple Example

We evaluated our approach using the example below, which allows a user to en­

ter two values and then copies each value into an integer variable and lacks input

validation code. Then, some operations are performed and the results returned.

int calculate(int alpha, int beta);

int main(){

int a,b,c;

int d = 9;

printf("Enter a value: \n");

scanf("%d", &a);

printf("Enter another value: \n");

scanf("%d", &b);

c = calculate(a,b);

printf("Value of C: %d\n",c);

a = b + d;

if(a > 27)

c = c * d;

else

b = a - b;

58

d += d;

return a;

}

int calculate (int alpha, int beta){

if(alpha > 88)

return (alpha + beta);

else

return (alpha * beta);

}

We also showed the results of our approach using approximately 15 examples

from a publicly available benchmark for the KLEE symbolic execution tool. This

benchmark was created by NEC Laboratories America with the purpose of research

and testing. 3 This suite includes programs with single source files that use input to

perform various options such as filling in values of an array or calculating the sum of

a variable in a loop.

Experimentation To evaluate our approach, we compare the length of time for

KLEE [106], a symbolic execution, dynamic analysis tool, to analyze a legitimately

patched and faux patched version of the code. We use the runtime of KLEE to

suggest the impact of a faux patch on attacker workload for exploit generation. We

take advantage of the fact that each new branch will be analyzed because fake patches

are indistinguishable from traditional patches from a software perspective.

To show the effect of our approach on program analysis, we evaluate whether

the time to dynamically analyze traditionally patched code is significantly different
3https://github.com/shiyu-dong/klee-benchmark

59

statistically when compared to dynamically analyzing fake patched code using a t

test. We also evaluated program runtime using this same experimental structure to

determine a fake patch’s effect on program performance.

4.5 Results

4.5.1 Runtime Analysis

Using our simple code example, we collected runtime values using the time com­

mand for both the original program and a faux patched program. Figure 4.2 shows

the difference in program runtime between a fake patched program and the unpatched

program across 100 executions. Using this data, we determined the statistical signif­

icance of this difference in runtime using a t test. We concluded that there was no

statistical significance between the runtimes for the original program and the faux

patched program.

Fig. 4.2.: Difference in Faux Patched vs. Unpatched Simple Program Runtime

Table 4.2 provides the t-test values that provide insight to the statistical signifi­

cance between the runtime of a faux patched and unpatched program. If the value

in the t-stat column is greater than the value in the t-Critical two tail value column

60

Table 4.2.: t-test for Program Runtimes for Faux Patched vs. Unpatched Program
(100 Runs per Program)

Program Name t-stat value t-Critical two tail value
ex12 2.114756796 1.973612462
ex17 0.140895756 1.972079034
ex21 -0.952802154 1.972017478
ex23 0.523293161 1.972204051
ex34 -0.123895226 1.972017478
ex42 -0.082101492 1.972017478

or less than the negation of the value in the t-Critical two tail value column, then

the sets being measured have a statistically significant difference. For this analysis,

this means that if one of the conditions holds true, then the program runtimes differ

significantly. This would suggest that faux patches have a statistically significant

impact on program runtime.

Based on this table, one program’s runtime differs significantly between a faux

and unpatched program. This statistically significant difference in runtime is caused

by the program not having a significant number of instructions. Thus, adding faux

patches almost doubles the program’s size, increasing program runtime.

4.5.2 Program Analysis

We collected values for the runtime of KLEE using the time command as it an­

alyzed an unpatched, traditionally patched and faux patched version of our simple

code example. Figure 4.3 represents the runtime for our simple program across 100

executions for faux patched, unpatched and traditionally patched versions. A t test

using these values revealed that there is a statistical significance in KLEE’s runtime

between a traditionally patched program and a faux patched program. This suggests

that it is more resource intensive to analyze a faux patched program compared to a

61

Fig. 4.3.: KLEE Runtime Analysis for Simple Program

traditionally patched program for our simple example, thus, analyzing ghost patches

would also require more resources.

We also show the impact of faux patches on the runtime of an example symbolic

execution tool, KLEE [106] for programs in the KLEE-benchmark suite. The runtime

of KLEE is an indication of the impact faux patches have on program analysis. We

also show the differences in the number of paths between an unpatched and faux

patched program. We omit outliers from graphs for visualization purposes. We also

only include programs where the difference in the number of KLEE paths between

faux patched and unpatched programs is nonzero. Of the 30 programs, there are

16 programs that result in differences of KLEE paths between faux patched and

unpatched programs. Of these 16 programs, 8 exhibit an increase in the average

number of paths enumerated and 8 exhibit a decrease in the average number of paths

enumerated. After further analysis, these programs that increase the average number

of paths have symbolic variables that directly control the number of times a loop

executes. Figure 4.5 shows the programs that exhibit a change in the number of

KLEE paths excluding outliers. These outliers are programs that have a difference

in the number of KLEE paths that is greater than 48. We remove these values

62

from the graph but include all programs with differences in the number of KLEE

paths enumerated in Table 4.3. Within this table, there are also negative values.

These values represent programs with fewer paths enumerated by KLEE in their faux

patched version compared to the unpatched version. This occurs because the faux

patched version has optimization techniques applied based on how the compiler adds

faux patches.

Fig. 4.4.: KLEE Runtime Analysis for KLEE-benchmark Programs in Seconds

Fig. 4.5.: KLEE Path Analysis for KLEE-benchmark Programs

We also performed an experiment testing correlation between the number of faux

patches added to a program and the impact on KLEE’s runtime, number of paths

63

Table 4.3.: KLEE Path Differences for Programs in KLEE-benchmark Suite

Program Identifier Average Number of
Conditional State­
ments Added

Average Number of
Paths Added from
Faux Patch KLEE
Analysis

ex9 6.4 -0.15
ex12 3 0.4
ex16 12 221.4
ex17 11.5 0.45
ex20 9 -48.65
ex21 4 6.6
ex23 7 18.5
ex25 187.65 797.15
ex27 9.25 -5
ex28 3 -5
ex31 4 -4.3
ex34 10 0.5
ex39 4 -582.85
ex42 3 0.3
ex49 6 -51.85

64

and number of tests generated. We use this test to provide insight into faux patches’

impact on workload required to analyze a program.

Fig. 4.6.: KLEE Runtime Analysis Increase

Fig. 4.7.: KLEE Path Enumeration Increase

Figures 4.8, 4.9, and 4.10 show the change in runtime, paths enumerated and tests

generated respectively using KLEE when the number of conditional statements added

increases for each store instruction. We compare the program analysis values when we

65

Fig. 4.8.: KLEE Runtime Analysis for KLEE-benchmark Programs Given Increasing
Faux Patch Additions

Fig. 4.9.: KLEE Runtime Analysis for KLEE-benchmark Programs Given Increasing
Faux Patch Additions

add 1, 5, 10, 15, and 30 conditional statements per store instruction (this is equivalent

to adding 2, 10, 20, 30, and 60 new branches or paths per store instruction). These

graphs show that increasing the number of faux patches added to a program does

not generally increase the analysis runtime, paths enumerated, nor tests generated.

This suggests that the workload required to analyze faux patched programs is not

66

Fig. 4.10.: KLEE Test Analysis for KLEE-benchmark Programs Given Increasing
Faux Patch Additions

positively correlated to the number of faux patches in a program. We also provide

the t-test values for KLEE runtime values for faux patched and unpatched programs.

Table 4.4 shows that there are two programs where the difference between KLEE’s

runtime for each program is statistically significant (ex23 and ex34). These variables

in these programs that are symbolically represented are used in store instructions

throughout the code or directly set the value of variables that are used in store

instructions. Because faux patches use the store instruction to insert fake patches,

the symbolically represented variables impact the path taken at a faux patch. Thus,

symbolically executing the program with faux patches adds conditional statements

that are directly impacted by the value of the symbolic variable.

4.6 Discussion

Based on testing of the KLEE-benchmarking suite, this section provides a more

in-depth analysis of how ghost patching impacts these programs. Of the 30 programs

tested, the average KLEE analysis runtime for analyzing faux patched programs in­

67

Table 4.4.: t-test for KLEE Runtimes for Faux Patched vs. Unpatched Program (20
Runs per Program)

Program Name t-stat value t-Critical two tail value
ex12 0.31772884 2.024394164
ex17 -0.814844341 2.063898562
ex21 1.299052449 2.028094001
ex23 3.856578304 2.085963447
ex34 -16.77526962 2.032244509
ex42 1.516182129 2.079613845

68

creased when compared to unpatched programs. After further analysis, this increase

is attributed to the increase in instructions that are added by the faux patch protocol,

not an increase in the number of paths to analyze. This is supported by our analysis

which shows the number of paths KLEE enumerates for faux patched and unpatched

programs is equivalent but the number of instructions KLEE executes increases for

faux patched programs.

Programs that increase KLEE’s runtime analysis when faux-patched have simi­

larities that suggest key program characteristics for efficient faux patch application.

Each of the programs with an increase in KLEE analysis runtime contain loops where

the number of iterations is dependent, either directly or indirectly, on the symboli­

cally modeled variable. In these programs, the symbolically modeled variable is the

input value of the program. In the two programs where a larger increase in the av­

erage number of paths between faux patched and unpatched programs is observed,

the input variable that is symbolically modeled by KLEE is directly responsible for

the number of iterations that the loop performs. Thus, as the value used for the

symbolically modeled variable changes during each program execution instance, so

does the number of paths throughout the program. The third program’s input vari­

able indirectly impacts the number of loops that are executed, thus, the impact on

the number of paths is reflected by a small increase in the number of KLEE paths

comparing faux to unpatched versions.

The one consistent increase for all program is the positive increase in the number

of branch statements in the code. At a minimum, this approach adds noise to code

and when paired with legitimate patches, increasing the workload of attackers using

binary diff and static analysis approaches.

We also identified the types of conditional statements that were inserted as faux

patches. Based on the three programs that saw an increase in KLEE analysis runtime,

69

there is no definitive ordering or ranking to the statements that are inserted into the

code and an increase in analysis runtime or the number of paths. This suggests that

the impact of faux patches is based on a combination of the selected value used in the

conditional statements we well as the comparison operator used in these statements.

4.6.1 Achieving the Ideal

Based on our analysis, faux patches that are inserted at store instructions are best

applied to programs with input variables that are written to use a store instruction.

This corresponds to using the assignment operator, “=,” instead of a library call such

as memcpy or strcpy. An additional characteristic of an ideal program is one with one

or more loops where the number of iterations is delineated by the value of an input

variable. Another characteristic of ideal programs is the store instruction is in the

body of a while loop. Thus, the faux patch is evaluated each time the loop executes,

which increases the number of branch points in the program. We see this behavior

in Figure 4.7 with program ex16. The increase in the number of paths is caused by

the value of the input variable controlling the number of loop iterations as well as

the input variable being written to in a store instruction within the body of the loop.

This same behavior is also evident in the same figure with program ex23, which also

resulted in an increase in the number of paths enumerated for faux patched programs

compared to unpatched programs.

Patch Obfuscation There are limitations associated with ghost patches that could

provide attackers an advantage in identifying fake patches and analyzing fake patched

code. Attackers could use exploit generation tools that perform analysis in parallel

[38] to distribute the analysis load across multiple machines and optimize exploit

generation. One solution is to develop fake patches that increase the length of each

70

path in a program such that tools are unable to identify the legitimate patch and as

a result cannot develop an exploit. Another solution is to implement polymorphic

patches. Ghost patches can utilize randomization to create polymorphic patches

that can be distributed based on different heuristics (i.e. based on region, Operating

System version, or staggered by time). The non-deterministic nature of a polymorphic

ghost patch could make exploit development more difficult because the same patch

would not be applied to each end system. In this case, the traditional patch would also

have to be altered for each patch instance to prevent attackers who utilize multiple

instances of a patch to expose the legitimate vulnerability.

Based on our observations, traditional patches for input validation vulnerabilities

detect malicious input and return gracefully from the function. This prevents a com­

promise, but when viewing a binary diff, searching for differences that add return

commands could be an identification technique. Applying obfuscation to fake and

legitimate patches or to the function being patched could increase the difficulty in

distinguishing between each type of patch. Future work should explore obfuscation

techniques to make code more difficult to understand [108] and control flow more

difficult to evaluate [109].

Active Response Patches Based on the non-interfering property, faux patches

should not alter the semantics of the program. The verify step will expose that fake

patches do not alter program behavior. Thus, at worst, a brute force approach could

expose the vulnerability by analyzing program behavior for each path in a program

and identifying which path changes a program’s behavior.

One solution is to use the active response technique for legitimate patches. Ac­

tive response patches prevent a vulnerability from being exploited but respond to

exploits using the same response as an unpatched program. The response could re­

turn sanitized data from the actual machine or transfer execution to a honeypot

71

environment [77]. This masking would increase the resources necessary for dynamic

analysis tools to identify unpatched systems. Further research could develop tech­

niques that hinder or prevent exploit verification. An overview of active response

patches is provided in Chapter 3.

Approach Limitation Another limitation revealed by our experiments suggests

that ghost patches only have a dynamic analysis impact when there are multiple

store operations within a program’s intermediate representation (i.e. operations that

includes an = sign). Programs that use standard functions (i.e. memmov,memcpy) to

assign values semantically perform the same operation but are represented differently

syntactically, and thus, a fake patch cannot be applied.

Adding new lines of code also could add unexpected vulnerabilities. The faux

patch code is like any other code that could have a vulnerability. Ghost patched

code could also be attacked. Providing attackers with additional paths that could be

attacked could result in a denial of service type of attack that slows overall program

runtime, which could impact the machine’s performance.

During our analysis, we discovered a number of interesting side effects of faux

patches. The first is that because of the use of randomized values, some faux patches

are not executed by the symbolic execution engine. This could mean the random

value falls outside of the symbolically modeled variable or that the symbolic execution

engine selected values do not interact with the inserted faux patch. This suggests that

the value used in the faux patch conditional statement should be carefully assigned

depending on the domain of the associated variable.

In general, software architecture deception’s effectiveness is limited because a de­

ceptive technique does not hide real or show false deceptive behavior. Thus, given a

patch, the behavior of a program with the patch applied and without the patch will

be different. Given a deceptive patch where the software architecture is altered and

72

an unpatched system, each will exhibit different behavior. Because of this, attackers

could still develop an exploit given a deceptive software architecture. One way to de­

feat this is to also add deceptive techniques to the software input and output values.

This could hide real behavior or show false behavior of a patch, which is discussed in

more detail in Chapter 3.

We only analyze our proof-of-concept using one symbolic execution implemen­

tation. Symbolic execution has a number of challenges that are difficult to model.

Representing memory addresses symbolically when their value is calculated based on

user input is one challenge that KLEE does not directly address [110]. Future work

could analyze faux patched programs using additional symbolic execution tools [111].

Finally, attackers could develop heuristics to contain this path explosion problem.

Identifying patches that do not alter a program’s data flow could help to expose faux

patches and reduce the amount of work for an attacker. Dissimulating this information

could provide a way to make these heuristics difficult to identify and apply, raising

the bar for attackers to distinguish between legitimate and fake patches.

Our proof of concept implementation shows that the application of deception, in

the form of fake patches, to software patching is feasible. Our evaluation shows that

a faux patch does have an impact on exploit generation, increasing the number of

branches in a program, by increasing the resources necessary to analyze a program.

These same patches also impact a program’s runtime, but this effect is not statistically

significant. This suggests that deception can be used to make exploit generation using

patches more resource intensive, enhancing the security of software patches. With

additional research and testing, this approach, either as a stand-alone technique or in

conjunction with other deceptive and detection methods, could impose an exponential

increase in program analysis, making exploit generation based on patches an expensive

73

operation while only adding a minimal increase in program runtime. Our proof of

concept implemented and analyzed in this research supports this claim.

4.7 Chapter Summary

This work proposed, implemented and evaluated ghost patching as a technique

to mislead attackers using patches to develop exploits against input validation vul­

nerabilities. We discuss fake patch properties as well as analyze a proof of concept

using LLVM. Through experimentation, we found that fake patches add latency to

program runtime that is not statistically significant while adding a statistically signif­

icant amount of latency to program analysis. If used by program developers as they

develop patches for security flaws, we believe faux patches could disrupt the exploit

generation process, providing more time for end users to update their systems.

74

5. DECEPTIVE DISPATCHER: COMBINING

DECEPTIVE SYSTEM ARCHITECTURE WITH DEPLOY

AND INSTALL CHAIN

Applying deception to the system architecture of a patch can influence attackers by

causing uncertainty about the location and functionality of a patch. This chapter

explores how software diversification, an MTD technique, can be applied to the cur­

rent software security patching protocol. MTD techniques apply to software security

patches because these patches can be implemented differently while performing the

same functionality. Part of implementing these software diversified patches includes

altering the deploy and install chain notifications for a patch.

This chapter also discusses the application of deception to the language used in

these notifications. A general overview of how language can influence biases is also

provided. A methodology is also described that adds deception to the current soft­

ware patch lifecycyle by combining deceptive system architecture with deploy and

install chain notifications. Applying software diversity to patch development, decep­

tive language to patch notifications, and re-releasing these patches as new updates

can influence attackers by causing uncertainty in the reconnaissance phase of their

attack. An empirical analysis of how these re-released patches could be perceived by

attackers and discussion about the metrics that can be used to trigger a re-release

are also provided.1

1Sections of this chapter are from our published work: Offensive Deception in Computing [9]

75

5.1 Example Application of MTD to Software Security Patches

We discuss a variety of ways to apply MTD to software security patches, showing

how the application is a one-off approach. This suggests that the applications can

be implemented using current patching protocols. Examples of MTD patches are

provided and a methodology for creating and releasing diversified patches is presented

in this chapter.

5.1.1 Deceptive Command Line Tools

In the Windows operating system, users can display the patches that have been

applied on their system via command line tools such as wmic. The command rpm

can be used to list patches on Linux systems. Applying deception to alter these

commands could alter their output to reflect the presence of a patch when that patch

is not present and vice versa. This serves as an example of how currently available

tools and commands can be altered to respond deceptively to queries. A challenge

that must be addressed, which is outside the scope of this dissertation, is how to

distinguish between legitimate versus malicious use of these altered commands to

report the correct information for each scenario.

5.2 Deploy and Install Chain

5.2.1 Overview

Empirically, there are three main stages where notifications occur once a patch is

released. The first identifies that a patch is available. This notification can be pre­

sented through an update platform, through an alert system where a link is provided

to the update, or through email. The next phase where notifications are observ­

76

able occurs when a patch is being installed. These notifications provide feedback

to the end user installing the patch. For example, these notifications could include

information about files that are being added, edited and/or removed, progress of the

installation, restarting the computer, and prompts for users to accept or decline. The

final notification identifies whether the patch was successfully installed or if an error

occurred and the patch was not able to install. This message is sometimes presented

to the user, or it can be found in a centralized notification center.

Background The background of this work is rooted in deceptive semantics and

communication. This area has received some attention in the fields of sociology and

psychology, but little has been done in the field of security. This looks at exposing

biases in end users by simulating communication or by hiding real communication.

Other work has looked at examples of benevolent deception. These techniques

are used to hide unnecessary or extremely technical details and/or provide relief to

end users. With patches, benevolent deception is applied with the progress bar. The

bar is meant to simulate the relative amount of work that has been completed by

the executable to install the patch. This progress bar, though, is not an accurate or

actual representation of the amount of work and is meant to give end users a sense

of work being done [53].

Deceptive Text and Bias Prior work by Pfleeger et al. has studied behavioral

science and its impact on cyber security tool development [112]. Ding et al. research

how to create a dictionary of words from phishing emails that elicit biases [113].

Attackers use deceptive techniques to exploit end users’ biases and cause them to

take/not take actions that further the success of the attack. Deceptive attacks are

comprised of at least one of the following components: force or fool. The force compo­

nent attempts to command the recipient to follow some action. The fool component

77

attempts to hide the deception so that it is not obvious to a recipient. Exploiting

biases that appeal to emotions/triggers helps to hide elements that would expose the

deception.

When a deceptive attack is viewed or received, the recipient must decide what

his/her plan of action will be. This decision-making process is influenced by the words

used in the attack, visual stimuli, current external factors and prior knowledge. One

formal treatment of the decision-making process is the OODA loop [102]. Disrupting

this process prevents an informed decision from being made. Force words interrupt

this process by limiting the time available to make a decision, temporarily withholding

access to something of value to the recipient, or completely removing access

Throughout this work, we use the following definition of bias by Bennett et al: An

inclination to judge others or interpret situations based on a personal and oftentimes

unreasonable point of view [114]. Almeshekah et. al provide an overview of bias and

its role in deception [115].

Using deceptive patches exploits an attacker’s automation bias and anchoring or

localism bias. Attackers rely on the automatically released patch being legitimate and

the vulnerabilities it fixes being present in unpatched code. These patches can support

intelligence gathering by recording commands executed by unsuspecting attackers in

honeypot environments as well as waste attacker resources. Prior work by Araujo et.

al. [77, 78] supports using deceptive patches to improve system defense.

Deceptive Semantic Generation Because notifications and alerts are written

in text and statically presented, using advertising techniques to deceive users is a

viable approach. Text color, position, size, images, time of appearance, frequency,

repetition, etc. can all be used to deceive those observing.

78

5.3 Deceptive Dispatcher

The release of a traditional patch serves as a trigger for attackers to investigate the

associated program for vulnerabilities and develop a corresponding exploit. Research

and enterprise defenses focus on the speed and efficiency of patching systems while

they are in use [11,116,117]. Research on adding deception into the current software

security protocol is scarce. Software diversity as an MTD deceptive technique with

deploy and install chain deception can be combined to generate and release deceptive

patches using current technologies that cast uncertainty on this trigger. This section

describes the application of deception to a general software security patching protocol

by re-releasing diversified versions of previously released patches. Chapter 2 provides

details on the current patch lifecycle, software diversity and software diversity’s ap­

plication to patching.

5.3.1 Overview

Given a patch that was released at some prior time, t, this methodology suggests

releasing a diversified or a refactored version of the same patch at time, t + δ. This

refactored patch will use the same or similar notifications in the deploy and install

chain as the initial patch, but the code will look and behave slightly differently with

the same output as the original patch. The main point of this approach is that

the re-released patch addresses the same vulnerability but replaces PO. Thus, the

program’s state of security remains consistent, but the code changes. The deception

takes advantage of the expectation that patches change code in applications to address

exploitable vulnerabilities present in software. The premise of this approach suggests

that an attacker’s exploit generation process will be influenced by diversified patches,

79

causing them to search for a vulnerability that ideally has already been patched by

installing the prior release.

5.3.2 Software Security Re-release Protocol

A software security patching protocol is a generalization of the series of steps that

are taken to identify a vulnerability, generate, and release a patch. This protocol is

based on the general patch lifecycle shown in Figure 2.1 with more granular stages.

1.	 Identify vulnerability: [43]

(a) 3rd party identifies vulnerability and notifies vendor

(b) Internal developer(s) identify vulnerability and notify corresponding de­

veloper

(c) Developer of the software identifies vulnerability

2.	 Replicate unintended behavior: This step verifies the vulnerability is reach­

able and a security flaw.

3.	 Identify approach to fix flaw: Developers discuss how to fix the flaw and

review options.

4.	 Implement fix: The actual code to fix the vulnerability is implemented

5.	 Test and review the fix to verify completeness and accuracy: The

code to fix the vulnerability is reviewed by other developers

6.	 Generate executable patch: The patch is packaged such that it is ready to

release and install on end user machines

7.	 Release patch to public

80

This general protocol identifies the major steps in the security patch protocol

where these patches are for programs used by public end users. We add deception by

appending steps to the end of this protocol.

8.	 Document executable that was released, vulnerability fixed and no­

tification released: The patch executable, vulnerability and notification are

saved in a database.

9.	 Develop multiple diversified versions of original patch PO: Based on

PO, diversified versions of the patch are automatically or manually developed.

10.	 Test and review diversified patch Pn: Diversified patches are tested and

reviewed by other developers to verify that they fix the original vulnerability

that was addressed by PO, have “enough diversity” when compared to PO,

and they are compatible with the program using unit tests. Once verified, the

subsequent diversified patch is uploaded to the same database as PO in the same

record as the original patch.

11.	 Stimulus occurs that triggers patch re-release: After some amount of

time passes, an event or series of events occur that trigger a re-release.

12.	 Identify patch Pn to re-release: The specific diversified patch to be re-

released is selected based on observed stimuli.

13.	 Generate executable patch: The re-released patch is packaged such that it

can be installed automatically on end user machines.

14.	 Re-release patch to public

This protocol adds deception to the patching lifecycle by re-releasing patches.

These patches are diversified versions of the original patch. Not all patches can be

81

diversified, so not all patches can be re-released. We discuss metrics to re-release a

patch as well as identify candidates for re-releasing a patch. Because the re-released

patch is a diversified version of the original patch, it will not alter the code’s behavior

given that the prior patch was installed. The patch may change other aspects of the

program, so the patch may be larger than PO. Developing these additional patches

during time δ does not increase the time to release a patch. Also this protocol only

duplicates the existing security in place by the original patch release PO. Subsequent

patches do not remove security from the program. We visually represent the protocol

in Figure 5.1.

Fig. 5.1.: High Level Overview of Re-release Protocol

Patch re-release takes advantage of the expectation that patches fix flaws that exist

in unpatched code. Fake patches are another approach to addressing this expectation,

but the challenge with fake patches is attackers have the capability to identify the

fallacy behind these patches. Chapter 4 provides more details explaining how fake

patches can be distinguished from legitimate patches. Because patch re-releases are

diversified versions of actual patches, they also fix the original vulnerability that was

present in the unpatched code. This approach forces an attacker to identify whether

a released patch is an original patch that fixes an original vulnerability or whether it

is a diversified re-release that still addresses the original vulnerability. Because end

users have ideally applied the original patch, it does not actually alter any program

82

behavior. This added step increases the resources an attacker would need to expend

to determine if a patch is worth exploring.

As a side effect, re-releases provide end users who have not patched their systems

with PO, the opportunity to patch the original vulnerability with a new patch. Cur­

rently, to back patch a system, the end user must identify the missed patch to be

applied from an archive of prior patches or wait for a subsequent patch that may

include the missed patch as part of the update. Finding the original patch could

increase the workload of end users, further deterring them from installing the fix and

leaving their system vulnerable to attack. Waiting for a subsequent patch also leaves

the system vulnerable to attack.

The re-released patch also will have a notification announcing a new patch is avail­

able. This notification could be a duplicate of the information sent with PO, or it

could be semantically equivalent but syntactically different. Adding deceptive lan­

guage and appearance to the patch deploy and install chain could influence attackers

and cause them to expend resources on exploiting a vulnerability that has already

been potentially fixed in end users’ code.

5.3.3 Realizing a Deceptive Dispatcher

Re-releasing patches can be manually or automatically generated by the software

update centers used by different operating systems. Operating systems have software

update centers that receive data when an update is available and display notifications

to end users about the availability of a patch. This section describes how the patch

update centers can provide diversified patches, identifies metrics that can be used

to trigger the release of a diversified patch, and discusses the potential security and

performance impact of diversified patches.

83

Patch Selection Metrics Characteristics of patches cause them to be more suit­

able to diversify and re-released. We use this section to identify metrics that can be

used to identify viable patches to diversify.

•	 Length of a Patch

The length of a patch can be used to select patches to diversify. Patches com­

prised of more lines of code provide more data to diversify than patches with

fewer lines of code. If a patch has fewer lines of code, the original version of the

patch could be similar to the diversified, thus making identifying the re-release

trivial. The length of a patch is a viable metric to select patches to diversify.

•	 Vulnerability Being Fixed

The vulnerability a patch is fixing can dictate if a patch should be diversified.

If a vulnerability can only be fixed in a limited number of ways, the goal of

diversification and re-releasing patches may be compromised as the patch could

be identified as a re-release. If a vulnerability can be fixed in a variety of ways,

the patch for that vulnerability could be a good candidate for diversification

and re-release.

Diversification Metrics Once a patch is selected to diversify, selecting the di­

versified version of the patch to save and potentially re-release is dependant on the

difference between the each version of the patch. For example, a diversified version

of a patch should be different compared to the original version of the patch such

that the two cannot be trivially identified as equivalent. Also, subsequent diversified

versions should also be different compared to each other for the same reason. Mea­

suring the difference between two versions of code can be based the following metrics.

Prior work has studied methods to measure the differences between obfuscated and

84

diversified code and the results from these can influence the generation of a metric of

deception [64, 65,93,118].

•	 Differences in the lines of code

The length, lines of code, of a patch compared to the length of a diversified

patch can indicate the amount of deception added as well as provide insight

into the increase in workload to analyze a patch. The longer a patch, the more

lines of code to analyze and/or execute, thus, the more time necessary to reverse

engineer a patch. Thus, the greater the difference between the number of lines

in the original patch compared to the diversified patch can be used to select a

diversified version to save for re-release.

A limitation with this metric is the greater the difference between the two

versions, the larger the diversified patch and the longer the execution time of

the diversified patch. Thus, performance and patch size must be considered

when considering diversified patches to save for re-release.

•	 Number of different lines between deceptive and original patch

The differences in the lines of code between versions of a patch can also provide

a measure for the amount of deception added and identify diversified patches

to save for re-release. If each line of code in a diversified patch is different than

each line in an original patch, then it is more difficult to distinguish between

an entirely new patch being released and a diversified patch being re-released.

The differences between lines of code within each version could be caused by

rearranging the code or by using different lines of code.

•	 Number of differences in code execution

Another metric for the amount of diversification is the differences in system

input and output between the original patch and the diversified patch. Each

85

version of the patch can fix the same vulnerability, but respond to input and

provide output differently. The number of different responses to input and

different outputs could identify amount of diversification applied and make dis­

tinguishing between a re-released and a newly released patch more difficult.

Re-release Metrics Patches can be re-released for a variety of reasons. We use

this section to identify a number of metrics that can be used to trigger a patch re-

release. These metrics are associated with creating a campaign for attackers to follow

and believe. The more plausible developers make the campaign, the more effective

the deception.

•	 Outside/3rd Party Trigger

Outside vendors, especially those who have partnerships or whose products are

used with another vendor’s products can cause a patch re-release. If a 3rd

party vendor discovers a vulnerability and releases an update to their software,

a separate patch might be necessary to remain compatible with the updated

software. Thus, using a 3rd party’s release event is a viable trigger for re-

releasing a patch.

•	 Time

Time could trigger a patch re-release. If substantial time, which could vary case

by case, has passed between the original patch, PO, and a diversified patch, Pn,

then a re-release could be triggered.

•	 Attacks against software

Discovering numerous exploits that are active against an application could trig­

ger a re-release. When attention is on a particular program,re-releasing a patch

could divert attackers’ attention to develop new exploits based on the newest

release.

86

Discussion: Side Effects and Limitations From an end user’s perspective, side

effects are positive. As end users, code has already been updated. Thus, re-applying

a patch to code that has already been patched has minimal adverse effects. If the

patch has not been applied, then there is a positive side effect if end users apply this

new patch. They will have another chance to protect their systems, something that

does not happen in the current patching ecosystem. The question to ask with this

approach is if an end user does not apply the original patch, what probability is there

that s/he will apply these subsequent patches? A user study should be conducted

to determine patching behavior among end users, separating them based on different

demographics. This study is outside of the scope this dissertation.

From an attacker’s perspective, side effects are related to additional work. An

attacker must distinguish an original patch fixing a legitimate vulnerability from a

re-released patch that also fixes the same vulnerability. Ideally, the time between

original and re-release will allow for the original patch to be forgotten or at least not

be readily available for an attacker to compare against.

Another side effect is from a software input/output perspective. Because the

re-released patch and original patch are alternative versions of the same patch, their

software input and output are the same. Given a program that has been patched with

PO and a program patched with Pn, the program behavior is identical. Thus, from a

user perspective, the dynamic analysis of each type of program would be identical. If

the program has been kept up to date with patches, then the re-released patched pro­

gram and the unpatched program, which is the originally patched program, will also

have the same behavior. Given the expectation that program behavior of a patched

and unpatched program should be different and based on the notification accompa­

nying the re-released patch, viewing no change in program behavior could influence

attacker behavior. A limitation of the deceptive dispatcher is that generating diver­

87

sified patches expends developer’s time and increases the time to release legitimate

patches. Automated software diversification is an active area of research that removes

the manual effort necessary to generate diversified patches. Also, diversified patches

are developed once the exploitable vulnerability has been addressed. Thus, programs

are no longer vulnerable when the diversified patch is being generated. Generating

these patches also does not take precedent over generating patches for exploitable

vulnerabilities in software.

Another challenge is that because end users do not always patch their systems,

the potential for them to apply re-released patches is also limited. Developers cannot

force end users to apply a patch for their software. Future work could research and

identify methods that can increase the probability of patch installation. End users

could be deceived by deceptive deploy and install chain messages. This could also

contribute to them not installing a patch for example because of miss-understanding

the criticality of the patch based on the notification.

A potential negative impact of diverse patching is an increase in patching size.

Diverse patches behave identically, but use different instructions. Thus, patches that

perform identically could have different sizes. This suggests that diversified patches

addressing the same vulnerability could replace, edit or add one line of code or re­

place the entire program. Correlated to size, diversified patches could negatively

affect overall program performance. Less optimized code that behaves the same but

performs additional instructions compared to the original patch would execute slower.

A threshold of acceptable runtimes for a program would provide developers the nec­

essary data to test if the performance of a diversified patch is acceptable.

88

5.4 Chapter Summary

In this chapter, a discussion of software diversification and its application to the

current software security patching protocol is presented. This chapter also discusses

the application of deception to the language used in these notifications and gives a

general overview of biases that are influenced based on the presence of deception.

Also a methodology is described that adds deception to the current software patch

lifecycle by combining deceptive system architecture with deploy and install chain

notifications. Applying software diversity to patch development, deceptive language

to patch notifications and re-releasing these patches as new updates can influence

attackers by causing uncertainty in the reconnaissance phase of their attack. An

empirical analysis of how these re-released patches could be perceived by attackers

and discussion about the metrics that can be used to trigger a re-release are also

provided. Finally, limitations of this deceptive dispatcher are identified.

89

6. FORMAL MODEL OF DECEPTIVE PATCH EFFECT

6.1 Deceptive Patch Formal Model Approach

The paradigm that deceptive data, tools and behavior are difficult to distinguish

from their legitimate counterparts is intuitively understood, but a formal represen­

tation of why deception works and its impact on the security provided by patches is

lacking. As an emerging research area, it is important to develop this strong founda­

tion from which to reason about the security impact of proposed techniques.

Thus, we present a number of deceptive models that represent a variety of de­

ceptive patches to move toward a formal model of deception. These models identify

theoretically secure techniques as well as those that fall short of theoretical security.

For techniques that fall short, additional analysis shows they could still be effective

in practice.

In this chapter, we first introduce formal game-based security definitions that

capture the technique’s claimed security impact and present a general game-based

model using these definitions. We then apply this general model to faux, obfuscated,

and active response patches to formally analyze their security impact. Finally, we

discuss whether these ideal properties of deceptive systems can be achieved in reality.

6.2 Modeling Impact of Deception on Patch-based Exploit Generation

In game-based security proofs, the probability of an adversary succeeding in a

game is bounded to demonstrate the construction possesses a particular property. In

simulation-based security proofs, the real-world construction is demonstrated to be

90

Table 6.1.: Deceptive Patch Examples

Original Faux

int vul_func(char *input_string, int vul_func(char *input_string,
int input_length){ int input_length){
char string[20] char string[20]

if(input_string == "test")
strcpy(string, input_string); string[9] = "W"

...
return 0; return 0;

} }

Obfuscated Active Response

int vul_func(char *input_string, int vul_func(char *input_string,
int input_length){ int input_length){
char string[20]; char string[20]
int i; if(input_len > 20 || input_len < 0)
while(i < input_len) transfer_exec();

string[i] = 0 else
string[i] += input_len[i] strncpy(...);

return 0; ...
} return 0;

}

91

computationally indistinguishable from an ideal-world construction. Because both

ghost and obfuscated patches alter the semantics of a program (the transitional patch

component removes the vulnerability, thus the semantics are altered), there is no

indistinguishability between the ideal and real-world solution, making a simulation-

based proof trivial. Thus, in this work, we adopt the game-based approach.

6.2.1 Security Parameters

It is common to require that an adversary, A, bound to probabilistic polynomial

time (PPT) has at most a negligible advantage in breaking the security guarantee

under consideration with respect to a security parameter, λ. For example, λ may be

the size of the cryptographic key. In Section 6.3.3, we introduce a notion of λ in the

context of deceptive patches.

6.2.2 Oracle Sampling

Both game-based and simulation-based approaches to modeling security for de­

ceptive patching require an oracle, O, that samples patches from a given distribution,

D. Sampling patches efficiently from D is less straightforward than, e.g., sampling

from Z∗
p. In particular, patches must at minimum retain a degree of plausibility to

prevent an adversary from constructing an efficient distinguisher.

6.2.3 Complexity of Adversary Actions

The PPT adversary, A, tends to have two primary operations: using Identify

to locate the vulnerability a patch fixes, and using Verify to check that the vulner­

ability is exploitable in unpatched systems. In general we argue that both of these

have straightforward polynomial time constructions for most deceptive patching tech­

92

niques. However, we shall see an example of a deceptive technique where Verify may

not allow the construction of an efficient distinguisher.

6.2.4 Game Assumptions

We assume characteristics about a game’s sets and adversary capabilities.

•	 We assume both deceptive and legitimate patch sets are large. These sets must

be large to allow adversaries to query for examples as well as provide a challenge

an unknown number of times.

•	 We assume an adversaries has unlimited resources. We do not place time bounds

on an adversary.

•	 We assume the set of deceptive and legitimate patches contain similar content.

•	 We assume the set of deceptive and legitimate patches are of similar size.

•	 We assume an adversary can use any analysis technique to study the oracle’s

response.

•	 We assume active responses can mimic any response from a legitimate system.

6.2.5 Generalized Game-based Model of Deceptive Patch Impact

The generalized game-based model of deceptive patch impact identifies the pro­

tocol used to represent the effect of deceptive patches.

1. Adversary, A, requests a polynomial number of patches, P, sampled from a set

of legitimate patches, L, and deceptive patches, D.

93

$ $
2. The Oracle responds with random	 P ← L and P ← D. The adversary can

request patches individually from each set, with full knowledge of the set from

which the patch originates.

3.	 A requests a challenge response, P’.

4. The system uniformly selects	 a random value b ∈ {0, 1}, which determines

whether the response is sampled from L or D. Thus, A must distinguish whether

P’ is a legitimate or deceptive patch and potentially identify the vulnerability

being addressed.

5. Optionally, adversary, A, requests a polynomial number of patches, P, sampled

from a set of legitimate patches, L, and deceptive patches, D.

$ $
6. Again, the Oracle responds with random P ← L and P ← D. The adversary

can request patches individually from each set, with full knowledge of the set

from which the patch originates. These responses are mutually exclusive from all

prior responses and an adversary cannot specifically request to see the challenge

response.

7. Eventually, A outputs a guess bit b' ∈ {0, 1}, and wins whenever b' = b and

loses otherwise.

We apply the general protocol above to faux, obfuscated, and active response

patches. This protocol provides insight into the impact of deceptive patches. An

adversary achieving greater than 50% plus some trivial percentage suggests that the

enhancements to security by the deceptive patch under analysis are distinguishable.

94

6.2.6 Faux Patches

Adversarial Model

We consider a PPT adversary, A, that attempts to distinguish between a legit­

imate patch and a faux patch. We assume that A has access to and can interact

fully with samples of both legitimate and faux patches, as both are generally publicly

available.

Indistinguishability Game

In the Faux Patch Indistinguishability game, an adversary A is asked to distinguish

between a patch, P, sampled from legitimate, (P ∈ L), or faux, (P ∈ F), patches.

Protocol 6.2.1: P−IND Patch Indistinguishability

Adversary A	 Patch Oracle O

(1)	 Request P ∈ L, −→
0 ≤ i ≤ poly(λ)

$←−	 P ← L, (2)
0 ≤ i ≤ poly(λ)

(3)	 Request P ∈ F , −→
0 ≤ i ≤ poly(λ)

$←−	 P ← F , (4)
0 ≤ i ≤ poly(λ)

(5)	 Request Challenge −→ b ∈ {0, 1}
$	 $←− b(P’ ← L) + (1 − b)(P’ ← F) (6)

(7)1 Request P ∈ L, P = P’, −→
0 ≤ i ≤ poly(λ)

←− P ∈ L, 0 ≤ i ≤ poly(λ) (8)
(9)	 Request P ∈ F , P = P’, −→

0 ≤ i ≤ poly(λ)
←−	 P ∈ F , (10)

0 ≤ i ≤ poly(λ)

(11) Guess b’ =
?
b −→

95

The Faux Patch Indistinguishability game of Protocol 6.2.1 proceeds as follows:

(1) Adversary, A, requests a polynomial number of patches P sampled from the set

$
of legitimate patches, L. (2) The Oracle responds with random P ← L. (3) Similarly,

A requests a polynomial number of patches P sampled from the set of faux patches

$F . (4) The Oracle responds with random P ← F . (5) A requests a challenge patch,

P’. (6) The system uniformly selects a random value b ∈ {0, 1}, which determines

whether the patch is sampled from L or F . Thus, A must distinguish whether P’

is a legitimate or faux patch. (7) Adversary, A, optionally requests a polynomial

$
number of legitimate patches P ← L that have not been queried before, and such

$
that P = P’. (8) The Oracle responds with sampled patches P ← L. (9) Similarly, A

$
optionally requests a polynomial number of faux patches P ← F that have not been

queried before, and such that P = P’. (10) The Oracle responds with sampled patches

$
P ← F . (11) Eventually, A outputs a guess bit b ' ∈ {0, 1}, and wins whenever b ' = b

and loses otherwise.

Let AdvF−
A

IND = Pr[b ' = b] represent the probability of A winning the game. We

− 1require that the advantage of a PPT adversary, A, is |AdvF−IND | ≤ t where t isA 2

a negligible function in the security parameter, λ.

6.2.7 Obfuscated Patches

Adversarial Model

We consider an adversary, A, bound to PPT that attempts to identify whether the

obfuscated response is an obfuscated patch fixing a hidden underlying vulnerability

or just obfuscated code with no underlying vulnerability. We assume that A has

1In game-based security models, the adversary is allowed to continue querying the oracle after receiv­
ing the challenge on any input which is not the challenge itself. This permits adaptive adversaries,
who use knowledge of the challenge to influence their strategy [119].

96

access to the obfuscated response. A also can interact with the obfuscated response

to validate whether the vulnerability they have identified exists.

Vulnerability Identification Game

In the Obfuscated Patch Identification game, an adversary, A, is asked to identify

whether obfuscated code is a patch (P ∈ O) fixing an underlying vulnerability, V , or

just obfuscated code with no underlying vulnerability (P̄ ∈ O).

The Vulnerability Identification game of Protocol 6.2.2 proceeds as follows: (1)

Adversary, A, requests a polynomial number of patches, P, sampled from the set of

$
obfuscated code, O. (2) The oracle responds with random P ← O. (3) A attempts to

identify the vulnerability obfuscated in each patch, P. (4) A attempts to validate the

legitimacy of the identified vulnerability obfuscated in each patch, P. (5) Adversary,

A, requests a polynomial number of non-patched code, P̄, sampled from the set of

$
obfuscated code, O. (6) The oracle responds with random P̄ ← O. (7) A attempts

to validate the lack of a vulnerability in the obfuscated non-patched code, P̄. (8)

A requests a challenge, c, such that c has not been seen in prior requests nor will

be seen in subsequent requests. (9) Optionally, adversary, A, requests a polynomial

number of patches, P ' , sampled from the set of obfuscated code, O, that have not
$

been requested previously. (10) The oracle responds with random P ' ← O. (11) A

attempts to identify the vulnerability obfuscated in each patch, P ' . (12) A attempts

to validate the legitimacy of the identified vulnerability obfuscated in each patch, P ' .

(13) Optionally, adversary, A, requests a polynomial number of non-patched code, P ̄' ,

sampled from the set of obfuscated code, O, that have not been previously requested.

P ̄'
$

(14) The oracle responds with random	 ← O. (15) A attempts to validate the lack

¯of a vulnerability in the obfuscated non-patched code, P ' . (16) Eventually, A outputs

a guess bit b ' ∈ {0, 1}, and wins whenever b ' = b and loses otherwise.

97

Protocol 6.2.2: V−ID Vulnerability Identification

Adversary A	 Patch Oracle O

(1)	 Request P ∈ O, −→
0 ≤ i ≤ poly(λ)

$←−	 P ← O, (2)
0 ≤ i ≤ poly(λ)

(3)	 Identify(V ∈ P),
0 ≤ i ≤ poly(λ)

(4)	 Verify(V ∈ P),
0 ≤ i ≤ poly(λ)

(5)	 Request P̄ ∈ O, −→
0 ≤ i ≤ poly(λ)

$←−	 P̄← O, (6)
0 ≤ i ≤ poly(λ)

(7)	 Verify(V ∈ P̄),
0 ≤ i ≤ poly(λ)

¯
(8) Challenge c ∈ P, P̄, P ' , P ' −→ b ∈ {0, 1}
←− r ← b(P(c)) + (1 − b)(P̄(c)) (6)

(9)	 Request P’ ∈ O, P’ = P −→
0 ≤ i ≤ poly(λ)

$←−	 P’ ← O, (10)
0 ≤ i ≤ poly(λ)

(11)	 Identify(V ∈ P’),
0 ≤ i ≤ poly(λ)

(12)	 Verify(V ∈ P’),
0 ≤ i ≤ poly(λ)

¯ ¯
(13) Request P ' ∈ O, P ' = P̄ −→
0 ≤ i ≤ poly(λ)

P ̄'
$←−	 ← O, (14)

0 ≤ i ≤ poly(λ)
(15)	 Verify(V ∈ P ̄'),

0 ≤ i ≤ poly(λ)
?

(16) Guess b’ = b −→

Let AdvV−ID = Pr[b = 1] represent the probability of A winning the game. We A

require that the advantage of a PPT adversary, A, is |AdvV−ID| ≤ t where t isA

negligible in the security parameter, λ.

98

6.2.8 Active Response Patches

Adversarial Model

We assume an adversary, A, bound to PPT that interacts with a remote system,

S, in a black box manner. That is, A exchanges messages with S and attempts to

distinguish with non-negligible advantage between two possible states of S: a patched

state, P, or an unpatched state, P̄. In the case of deceptive and obfuscated patches,

we assume that A has access to the patched and unpatched source code, as this

is generally publicly available, and can interact with each version for an unlimited

amount of time.

Indistinguishability Game

In the Active Response Indistinguishability game, an adversary, A, is asked to

distinguish between a patched (P) or unpatched (P̄) remote system, S, by issuing

challenges and evaluating the corresponding responses. Note that A can evaluate not

only the content of the response, but also auxiliary information, Aux (e.g., packet

delay).

The Active Response Patch Indistinguishability game of Protocol 6.2.3 proceeds

as follows:

(1) Adversary, A, issues a polynomial number of challenges ci to a patched sys­

tem, thus we denote the challenges as members of the set CP
' which is a subset of

all challenges C ' issued before the distinguishing stage. (2) The system queries the

patched system on ci and returns the corresponding response ri ← P(ci). (3) Simi­

larly, A issues a polynomial number of challenges ci to an unpatched system (denoted

P̄), and we denote the challenges as members of the set CP̄' . (4) The system queries

the unpatched system on ci and returns the corresponding response ri ← P̄(ci). (5)

99

Protocol 6.2.3: AR−IND Patch Indistinguishability

Adversary A Server S

(1) ci ∈ C ' P ⊂ C ' , −→
0 ≤ i ≤ poly(λ)

←− ri ← P(ci), (2)
0 ≤ i ≤ poly(λ)

(3) ci ∈ C '
P̄ ⊂ C ' , −→

0 ≤ i ≤ poly(λ)
←− ri ← P̄(ci), (4)

0 ≤ i ≤ poly(λ)
(5) Challenge c ∈ C ' −→

←−
b ∈ {0, 1}

r ← b(P(c)) + (1 − b)(P̄(c)) (6)
(7) c ' i ∈ CP, c = c ' i, −→

0 ≤ i ≤ poly(λ)
←− r ' i ← P(c ' i), (8)

0 ≤ i ≤ poly(λ)
(9) c ' i ∈ CP̄, c = c ' i, −→

0 ≤ i ≤ poly(λ)
←− r ' i ← P̄(c ' i), (10)

0 ≤ i ≤ poly(λ)

(11) Guess b’
?
= b −→

100

A selects a challenge, c, which has not been issued previously, and queries the sys­

tem. (6) The system uniformly selects a random value b ∈ {0, 1}, which determines

whether the challenge is issued to a patched or unpatched system. Thus, A must

distinguish whether r was the response from P or P̄. (7) Adversary, A, optionally

issues a polynomial number of challenges c ' i ∈ C ' to a patched system, such that c ' i

has not been queried before. (8) The system queries the patched system on ci
' and

returns the corresponding response ri
' ← P(ci

'). (9) Similarly, A optionally issues a

polynomial number of challenges ci
' to an unpatched system (denoted P̄). (10) The

system queries the unpatched system on c ' i and returns the corresponding response

' ' r ← P̄(c). (11) Eventually, A outputs a guess bit b ' ∈ {0, 1}, and wins whenever i i

b ' = b and loses otherwise.

Let AdvAR−IND = Pr[b ' = b] represent the probability of A winning the game. We A

− 1require that the advantage of a PPT adversary, A, is |AdvAR−IND | ≤ t where t isA 2

negligible in the security parameter, λ.

6.3 Achieving the Ideal

To claim a primitive such as deceptive patching increases the security of a system,

the primitive must be shown to satisfy a meaningful definition of a security property.

As we will see, the assumptions that form the model of deceptive patches are unreal­

istic in practice for faux and obfuscated patches, suggesting that these categories are

not formally secure.

6.3.1 Faux Patches

By empirical analysis, AdvF−IND −
2
1 ≤ t for a negligible function t will not hold A

true, as given access to an unpatched system the adversary can run Verify(V) in

101

polynomial time on any vulnerability, V , they have identified in the patch, P. Because

adversaries have access to the code, dynamic analysis and program execution can be

used to verify if a patch is faux or legitimate. Automated tools such as KLEE [106]

and Triton [120] use symbolic execution to develop reliable exploits [44] and can help

attackers distinguish between the patches because the response from a faux patch

during execution is distinguishable from that of a legitimate patch. Faux patches

should not alter data flow nor should they alter control flow by returning from a

function while legitimate patches can exhibit at least one of these characteristics.

Thus, in practice, the assumption of similar set content does not hold true.

Despite adding faux patches to alter the available paths, symbolic execution, or

dynamic analysis in general, can run in polynomial time to verify whether a patch

is faux or legitimate. As P ∈ F , by definition V does not exist and so A has a

non-negligible advantage in distinguishing patches sampled from F or L.

6.3.2 Obfuscated Patches

One approach to cryptography requires formal security definitions based on the

presumed difficulty of computationally bounded adversaries from solving well-studied

mathematical problems. Obfuscated patching follows the latter approach, employing

ad hoc methods to disguise the underlying vulnerability addressed by the patch.

Obfuscated patches are comparable to the goals of white box cryptography [121],

which attempts to obfuscate keys embedded in software made available to adversaries.

However, it is not known whether any rigorous security guarantees can be achieved

in this model, as cryptanalysis has broken white box constructions [122].

An adversary, A, with access to Verify(V) will not have advantage |AdvV−ID| ≤ t,A

as both Identify and Verify run in polynomial time. Automated tools exist that

perform automated exploit generation and code analysis in polynomial time, even

102

with the application of obfuscation [33,123]. Also, the set of obfuscated patches and

obfuscated non-patch code are not similar as patches can alter data and control flow

of a program, i.e. return statements, while non-patch code should not alter data nor

control flow.

6.3.3 Active Response Patches

The goal of active response patches is to prevent an adversary from construct­

ing a distinguisher for patched and unpatched systems which has a non-negligible

advantage. We argue that this deceptive patching technique may be able to satisfy

|AdvAR−IND − 1 | ≤ t in Protocol 6.2.3. A 2

The strategy of the remote system, S, with which the adversary interacts is to

design a deceptive patch that fixes the underlying vulnerability, but issues responses

indistinguishable from an unpatched system (discussed in Section 6.4). Even though

A is given access to the patch and has complete2 information, it may not be possible

to remotely distinguish the responses from either an unpatched or patched system

with non-negligible advantage.

We propose using the size of the domain from which vulnerable code can respond

as the security parameter λ, i.e., the space from which vulnerable code can respond

to an exploit. The larger this domain, the higher the probability of a deceptive

approach being distinguishable. The smaller this domain, the lower the probability

of a deceptive approach being distinguishable. That is, if many responses exist from

exploiting vulnerable code, a deceptive patch is less likely to be indistinguishable as

an attacker has a larger surface with which to verify the legitimacy of the patch.

2In game theory, complete information refers to games where all players have complete knowledge of
the game structure and payoffs. In contrast, games of perfect information allow all players to observe
every move by other players. The distinguishing game of Protocol 6.2.3 is a game of complete but
imperfect information, as A has access to the patch yet does not observe whether or not the system
invokes the patch.

103

If a vulnerability only has one response to exploits against it, a deceptive patch for

this vulnerability has a higher probability of being indistinguishable from unpatched

systems, as the ability to verify the legitimacy of a patch is constrained.

Because active response patches meet the criteria of being theoretically secure,

we define a λ for these types of patches. Active response patches attempt to mimic

vulnerable machines. Thus the ability to completely mimic a vulnerable machine

and how these machines will respond to exploits against a vulnerability is key to the

success of these patches. Thus, λ represents the security parameter such that the

impact of deception on the security provided by a patch is either directly or inversely

related to the size of λ (i.e. the larger the security parameter the larger impact

the deceptive patch has on program security and the smaller the security parameter

smaller the impact the deceptive patch has on program security).

For active response patches, the security parameter, λ, is the size of the space that

must be modeled. The size of the space can be represented by the number of responses

possible for the vulnerability being patched. In general, this space can be described

using a spectrum. On one end are vulnerabilities that when exploited result in a

program crashing or have a single course of action. These vulnerabilities are trivial

to model. On the other end, vulnerabilities that result in memory leaks, escalated

privileges, etc. are more difficult to model. This difficulty stems from the fact that

every capability of an attacker who successfully exploits a vulnerability that displays

or impacts contents in memory is unknown a priori. Thus, the more possibilities an

active response must model, the less secure the algorithm. The fewer possibilities an

active response must model, the more secure the algorithm.

104

6.3.4 General Security Parameter

There is no general security parameter of deceptive patches. The security param­

eter is a measure of the difficulty to distinguish between legitimate and deceptive

patches. The length and/or size of the security parameter provides an indication

about the difficulty of distinguishing between a deceptive and legitimate patch. Faux

and obfuscating patches attempt to increase the distance between the software ar­

chitecture, system input and output, system architecture and/or deploy and install

chain of these deceptive patches and legitimate patches.

There is no general security parameter that provides insight as to the difficulty of

distinguishing a deceptive patch or choosing a better deceptive patch over a moderate

deceptive patch. The intuition is based on the fact that some deceptive patches alter

code to hide the real patch, i.e. faux and obfuscation patches, and others alter code

to show the false patch to make it seem real, i.e. active response patches. Deceptive

patches that alter system architecture attempt to make changes to the code that

it is different from the nondeceptive version. These deceptive techniques attempt to

create a deceptive patch that does not appear the same as a legitimate patch by hiding

the real elements using noise or rearranging code. Creating these different versions

makes the original/legitimate patch more difficult to identify because the software

architecture or system input and output is different from the expected. Thus, the

security parameter for patches that hide the real elements of a patch should be based

on a measure of difference between the original patch and the faux or obfuscated patch.

Developing a general measure of this difference is outside the scope of this research,

but prior work has identified techniques to measure differences between versions of

code [64]. Active response patches attempt to appear the same as legitimate patches

in that the system input and output data are indistinguishable. Because these patches

show false information that appears real, the security parameter should be based on

105

how similar responses from active response patches are to vulnerable systems. Thus,

the security parameter for active response patches indicates a similarity between

deceptive and legitimate patches while the security parameter for faux and obfuscation

patches indicates a differences between the two types of patches.

6.4 Realizing Active Response Patches

We have argued that active response patches may be able to satisfy a meaningful

formal security definition. We now present plausible methods of implementing and

deploying active response mechanisms which satisfy the security definition.

Active responses provide deceptive data to attackers in real time. That is, data is

dynamically or statically generated and presented to the attacker to influence their

decision making process. We discuss two techniques for implementing active responses

in software security patches, as well as advantages and challenges of each.

6.4.1 Virtual Machine Implementation

Some websites use threads and/or virtual machines (VMs) to provide clients with

content. Clients are sandboxed in their own VM or thread as their requests are ana­

lyzed and delivered. A VM or thread based infrastructure is well-suited to implement

active response patches that transfer execution to virtualized honeypot environments.

The vulnerable VM or thread will be isolated and instrumented such that an adver­

saries actions can be stealthily monitored, allowing the defender to learn information

about the adversary’s strategy and goals.

106

Motivation

The goal of invoking VMs is to transfer execution to an isolated and sandboxed

environment upon detection of an adversary attempting to compromise a machine

through a patched exploit. Transferring execution to a honeypot environment allows

the operational software to continue servicing legitimate requests, and the attack steps

may be monitored and logged without impacting operational machine performance

and security. This could aid security analysis, and defenders identify novel attack

vectors while ensuring legitimate data remains safe.

Framework

This approach is composed of two phases: the detection phase, and the deception

and monitoring phase. The detection phase identifies the exploit, while the deception

and monitoring phase begins when the attacker executes commands within the VM.

The VM should be vulnerable to the same vulnerability that triggered the transfer

of execution. The VM is populated with deceptive and potentially legitimate data.

Thus, when attackers execute commands, the VM responds with data that plausibly

exists on the operational machine being attacked. As attackers execute commands

and access data, their activities are logged for future analysis.

Challenges

Using a honeypot to transfer execution once an exploit is detected introduces

unique challenges to system security. The honeypot must be periodically updated

with plausible and active data as out-of-date files and login information could expose

the sandbox [124]. The data must appear plausible, as attackers could have access to

other data and techniques to verify the data, causing them to mistrust the information

107

[80]. These VMs could also be detected by the adversary through timing analysis, and

identifying the presence or absence of hardware and drivers [125]. Another challenge

is preventing attackers from overloading the honeypots and potentially using them to

launch attacks against the legitimate system.

Because prior work shows sandbox environments can be fingerprinted consistently

and reliably by an adversary [124], this approach would be best applied to envi­

ronments where all execution (both regular and honeypot) is performed in virtual

machines that are started when a user requests resources and stopped when they are

finished.

Advantages

This approach creates an interactive and isolated environment that can be ef­

ficiently controlled by defenders. Defenders can monitor activity within VMs and

quickly create, restart and stop VM’s compared to physical machines. This flexibility

gives defenders the ability to adapt to attackers’ methods.

6.4.2 Non-Virtual Machine Implementation

Some computing environments allow users to remotely access the physical hard­

ware. These systems could use virtualization to transfer execution to a vulnerable

sandboxed VM when an exploit is detected. Prior research has shown that an adver­

sary can distinguish between sandbox environments and normal user machines [124].

Thus, other approaches to implementing active response patches that do not use the

sandbox technique must be explored.

108

Motivation

Using deceptive defense on the local machine through the use of a deceptive dae­

mon could influence how attackers execute their attack. Keeping both the data and

the attacker stationary and on the same machine removes the need for back-end data

to be duplicated in the case of the honeypot implementation. Thus, dynamic and

plausible deceptive responses can be presented using real time data.

Framework

The deceptive daemon is comprised of two phases: detection stage and monitoring

stage. The detection stage occurs when an attack is launched against a previously

patched flaw. This detection code will identify an active exploit and invoke the

deceptive daemon. The monitoring stage occurs when the daemon has been invoked

for a specific flaw. This stage observes the process that initialized the exploit and

monitors all execution. Active responses are presented to attackers in this phase, and

during monitoring the daemon will determine how to respond to requests. Once a

process has been identified as initiating an attack, that process is considered tainted.

Every request from and response to these processes must be identified, analyzed,

and deceptive techniques applied based on security policies. Responses to requests

will be cached along with the process requesting the data and “kill chain” events

to form a signature of the attacker [7]. This signature can be used to identify an

adversary in subsequent attacks. The cached data can be used to quickly respond to

similar requests, as well as preserve consistency across multiple exploits against the

same flaw [126]. Execution can be transferred to a honeypot during an exploit if an

executable is uploaded to isolate its execution.

109

Challenges

This approach introduces unique challenges to secure and protect a host machine,

as the daemon runs on the operational machine along with legitimate programs and

data. Challenges about storage must also be addressed, as deceptive data and policy

statements are cached and saved. Trade-offs between storing the data on disk or

using an external device must be measured. This approach will also impact system

performance, as the daemon will consume system resources that are traditionally

reserved for legitimate processes. Running the program on the machine in a stealthy

manner is important to keep attackers engaged, as the daemon being discovered may

also be a deterrent. Having techniques and methods in place if the daemon crashes

must be addressed. Using redundancy by implementing multiple versions of deceptive

daemons on a machine would keep the machine protected in case of a failure.

Advantages

This approach prevents data that is not related to an exploit from needlessly being

copied. Only the data that is necessary is identified and processed.

6.5 Chapter Summary

In this chapter, we present a generic template to model the theoretical security of

deceptive patches. This template can be used to identify the decisions an attacker will

make when provided deceptive content. We also show how some deceptive patches do

not provide theoretical security, but suggest that these patches may still have benefit

to defenders and developers. We also prove that deceptive patches that alter patch

behavior provide theoretical security within our security model.

110

7. CONCLUSIONS AND FUTURE WORK

Deception adds a layer of defense to current defense techniques. Software security

patches are the state of practice in defending against vulnerabilities. These updates

prevent exploits from succeeding by blocking the vulnerability. This means that

malicious code that would take advantage of the flaw in an unpatched program is

prevented from successfully exploiting the program. This occurs by either removing

malicious content through error correcting or exiting the program itself. Deception

is an added layer of defense that, used with traditional preventative techniques, can

enhance the security of systems.

7.1 Business Case

Deceptive patches can be applied to different corporate/business categories. Cer­

tain technologies could implement some active response patches, but given the cur­

rent state of obfuscation and faux patching, these are not feasible to apply with great

confidence to successfully thwart attackers. Because active response patches are in­

distinguishable from unpatched systems, an attacker in the reconnaissance phase

performing dynamic analysis only interacts with the system’s responses. Businesses

with technology that uses remote servers that respond to requests can employ ac­

tive response patches to better protect their systems by identifying information that

interests attackers. By applying active response patches to vulnerabilities that can

be exploited, defenders can gain information about attacker’s interests as he/she per­

forms reconnaissance to begin their attack and interacts with active response patches.

Businesses with remote servers such as Google, Microsoft, and others with websites

111

that could contain vulnerabilities could benefit by applying active response patches in

their applications. Businesses that use, support or develop tools that take user input

without the user viewing the code being executed can apply active response patches.

Results in this dissertation suggest there is promise for implementing faux patches

to increase attacker workload. The results suggest that an attacker’s workload in­

creases when analyzing patches to develop exploits. Further studies must be con­

ducted to identify additional program characteristics where faux patch application is

advantageous. Businesses that release patches to end users to download could apply

faux and/or obfuscated patches to increase the analysis time of attackers developing

exploits based on patches.

7.2 Summary

In this dissertation, we identified and presented how deception can be applied

to software security patches. First, we discussed patch-based exploit generation,

the motivation for our work. We discussed current events that fall under this type

of attack. We discussed the literature providing background material for deceptive

patches as well as prior work in the area of deceptive patching. We then identified and

discussed the major components of a software patch in Chapter 3. We discussed how

these components can be deceptively implemented as well as how adding deception to

each component impacts the cyber kill chain. We also presented a timeline analysis

of the effects of deceptive patches.

Prior work has looked at manually adding deceptive patches to code, but our

explanation of ghost patches in Chapter 4 is the first to add fake input validation

patches to code using an automated compiler tool. We discuss implementation, anal­

ysis and implications of this work. Results suggest deceptive patching is feasible. We

implemented, tested and analyzed a tool that inserts deceptive patches, specifically

112

fake patches into code. We show that for programs where an input variable deter­

mines the number of times a loop executes, either directly or indirectly, the number

of paths in a faux patched program that are enumerated by KLEE is unequal to the

number of paths in unpatched programs. We did not observe any general charac­

teristics in the KLEE-benchmark suite that indicated an addition of faux patches

would increase the number of paths enumerated. We also performed an experiment

that added multiple conditional statements for each store instruction in the program.

This experiment showed that increasing the number of faux patches that are inserted

per store instruction does not generally increase the number of paths nor the runtime

of KLEE to enumerate these paths. The experiment had the opposite effect in some

instances, decreasing the number of paths and decreasing KLEE’s runtime compared

the paths and runtime after adding a single faux patch per store instruction. We con­

clude that adding faux patches to programs does not generally increase the number

of paths or runtime of KLEE. This suggests that adding faux patches does not induce

a path explosion when using symbolic execution to analyze a program. Thus, faux

patches do not generally increase the dynamic analysis of a program nor increase the

workload of an attacker. Our experiments suggest that other factors such as the val­

ues used in the conditional statements of faux patches and the comparison operators

used influence the number of paths more than the number of faux patches added.

This chapter presents two measures of the difficulty of deception, specifically in

analyzing deception. The runtime of an analysis tool as well as the number of paths

throughout a program indicate the amount of deception added as well as the difficulty

to analyze and study this deception. The runtime of a program provides an indication

to the difficulty of analyzing a program using brute force techniques. If the runtime

of an analysis tool increases when analyzing deceptive patches, this suggests that the

amount of data to analyze overall has increased. The number of paths throughout

113

a program provide a similar indication to the change in workload for an attacker.

Optimizations have been implemented within KLEE, i.e. dead path and dead code

removal, such that using this tool is applied to model a relatively knowledgeable

attacker.

In Chapter 5, we discuss the idea of introducing moving target defense techniques

to software security patches and provide analysis based on prior work in the semantics

of deception on software security patch notifications. Finally, we present a framework

using the traditional software patching lifecycle, add subsequent steps to generate

diverse versions of released patches, and discuss metrics that trigger the release of

these diversified patches.

In Chapter 6 we analyzed a formal model of deceptive patches that examines the

impact of deceptive patches using a game theoretic approach.

7.3 Future Work

The research conducted and presented in this dissertation provides a number of

results that can be used to continue to progress the field of deceptive patching. Our

compiler approach is the first to apply deceptive techniques to software security patch­

ing using automated techniques.

One additional piece of work to extend the implementation of faux patches applies

the technique to additional vulnerability classes. Inserting fake patches that appear

to fix cross-site scripting vulnerabilities, buffer overflows, and other string related

vulnerabilities provides an interesting area of study and expands the capabilities of

faux patches. Also, performing a user study to measure the distinguishability between

faux patches and legitimate patches would provide insight on additional characteris­

tics that must be present to make faux patches more plausible. Performing this user

114

study with both participants who are knowledgeable about computer science, coding

and exploits and those who are naive would provide interesting results.

Another interesting area of research is to develop more comprehensive testing

benchmarks for deceptive tools. One component that is lacking wide range support

in the area of deceptive patching is testing and specifically how deceptive tools can

be tested and shown to be effective as well as efficient. Developing benchmarks and

baseline measurements so that researchers can more effectively gauge the influence of

their tools is key to progressing this field of research.

Researching and applying machine learning to deception is a future area of study

that could have an impact on the way we perform defense. Classification and clus­

tering techniques can be used to identify and develop the efficient and effective de­

ceptive patch given inputs such as the vulnerability being fixed, the length of time

the vulnerability has been public, the size of the project, etc. Truly automated patch

development and application and then deceptive patch development and application

guides us toward automated software security where applications are able to harden

themselves against exploit.

As research on deceptive patches expands, new proposed techniques should be

evaluated with respect to a clear and meaningful definition of security. The shift

to rigorous modeling transitioned cryptography from an art to a science, and this

approach should be followed by other areas claiming security guarantees.

This dissertation presents components and a general workflow for a Deceptive

Dispatcher tool that re-releases diversified versions of previously released patches.

Implementing and analyzing the performance and effectiveness of this should guide

future work.

REFERENCES

115

REFERENCES

[1] G. Altekar, I. Bagrak, P. Burstein, and A. Schultz, “Opus: Online patches and
updates for security,” in Usenix Security, vol. 5, 2005, p. 18.

[2] Symantec, “Internet security threat report,” 2015.

[3] V. Enterprise and Affiliates, “2015 data breach investigations report,” 2015.

[4] M.	 Kumar, “Wannacry ransomware: Everything you need to
know immediately,” 2017, http://thehackernews.com/2017/05/
how-to-wannacry-ransomware.html.

[5] T.	 Rains, “When vulnerabilities are exploited: The timing of first known ex­
ploits for remote code execution vulnerabilities,” Microsoft, Tech. Rep., 2014.

[6] F. Cohen, “A note on the role of deception in information protection,”	 Com­
puters & Security, vol. 17, no. 6, pp. 483–506, 1998.

[7] E. M. Hutchins, M. J. Cloppert, and R. M. Amin, “Intelligence-driven computer
network defense informed by analysis of adversary campaigns and intrusion kill
chains,” Leading Issues in Information Warfare & Security Research, vol. 1,
p. 80, 2011.

[8] J. Avery and E. H. Spafford, “Ghost patches:	 Fake patches for fake vulner­
abilities,” in International Conference on ICT Systems Security and Privacy
Protection. IEEE, 2017.

[9] J. Avery, M. Almeshekah, and E. Spafford, “Offensive deception in computing,”
in International Conference on Cyber Warfare and Security, 2017, p. 23.

[10]	 “Patch (computing),” 2016, https://en.wikipedia.org/wiki/Patch (computing).

[11] M. Payer	 and T. R. Gross, “Hot-patching a web server: A case study of
asap code repair,” in International Conference on Privacy, Security and Trust.
IEEE, 2013, pp. 143–150.

[12] W. Cui, M. Peinado, H. J. Wang, and M. E. Locasto, “Shieldgen: Automatic
data patch generation for unknown vulnerabilities with informed probing,” in
Security & Privacy. IEEE, 2007, pp. 252–266.

[13] D. Zamboni, “Using internal sensors for computer intrusion detection,” Ph.D.
dissertation, Purdue University, 2001.

[14] B. Brykczynski and R. A. Small, “Reducing internet-based intrusions: Effective
security patch management,” Software, vol. 20, no. 1, pp. 50–57, 2003.

https://en.wikipedia.org/wiki/Patch
http://thehackernews.com/2017/05

116

[15] J. Corbet, “How	 to participate in the linux community,” 2008, http://ldn.
linuxfoundation.org/book/how-participate-linux-community.

[16] A. Arora, J. P.	 Caulkins, and R. Telang, “Research note—sell first, fix later:
Impact of patching on software quality,” Management Science, vol. 52, no. 3,
pp. 465–471, 2006.

[17]	 “Patch management,” 2008, https://www.infosec.gov.hk/english/technical/
files/patch.pdf.

[18] S. Beattie, S. Arnold, C. Cowan, P. Wagle, C. Wright, and A. Shostack, “Timing
the application of security patches for optimal uptime.” in Large Installation
System Administration Conference, vol. 2, 2002, pp. 233–242.

[19] J. Dadzie, “Understanding software patching,” ACM Queue, vol. 3, no. 2, pp.
24–30, 2005.

[20] M. K. McKusick, “A conversation with Tim Marsland.”	 ACM Queue, vol. 3,
no. 4, pp. 20–28, 2005.

[21] A. Arora, R. Krishnan, R. Telang,	 and Y. Yang, “An empirical analysis of
software vendors’ patching behavior: Impact of vulnerability disclosure,” Inter­
national Conference on Information Systems, p. 22, 2006.

[22] J. Dadzie, “Understanding software patching,” ACM Queue, vol. 3, no. 2, pp.
24–30, 2005.

[23] J.-W. Sohn and J. Ryoo, “Securing web applications with better “patches”: An
architectural approach for systematic input validation with security patterns,”
in International Conference on Availability, Reliability and Security. IEEE,
2015, pp. 486–492.

[24] M. Monperrus, “A critical review of automatic patch generation learned from
human-written patches: Essay on the problem statement and the evaluation of
automatic software repair,” in International Conference on Software Engineer­
ing. ACM, 2014, pp. 234–242.

[25] T. Wang, C. Song, and W. Lee, “Diagnosis and emergency patch generation for
integer overflow exploits,” in International Conference on Detection of Intru­
sions and Malware, and Vulnerability Assessment. Springer, 2014, pp. 255–275.

[26] J. Jang, A. Agrawal, and D. Brumley, “Redebug: Finding unpatched code clones
in entire os distributions,” in Security & Privacy. IEEE, 2012, pp. 48–62.

[27] I. V. Krsul, “Software vulnerability analysis,” Ph.D. dissertation, Purdue Uni­
versity, 1998.

[28] Y. Xie and A. Aiken, “Static detection of security vulnerabilities in scripting lan­
guages,” in USENIX Security Symposium, ser. USENIX-SS’06. Berkeley, CA,
USA: USENIX Association, 2006, http://dl.acm.org/citation.cfm?id=1267336.
1267349.

[29] S. Frei, M. May, U. Fiedler, and B. Plattner, “Large-scale vulnerability anal­
ysis,” in SIGCOMM Workshop on Large-Scale Attack Defense. ACM, 2006,
pp. 131–138.

http://dl.acm.org/citation.cfm?id=1267336
https://www.infosec.gov.hk/english/technical
http://ldn

117

[30] S. Rugaber, T. Shikano, and R. K. Stirewalt, “Adequate reverse engineering,”
in International Conference on Automated Software Engineering. IEEE, 2001,
pp. 232–241.

[31] M. Popa, “Binary code disassembly for reverse engineering,” Journal of Mobile,
Embedded and Distributed Systems, vol. 4, no. 4, pp. 233–248, 2012.

[32] B. Schwarz, S. Debray, and G. Andrews, “Disassembly of executable code re­
visited,” in Working Conference on Reverse Engineering. IEEE, 2002, pp.
45–54.

[33] S. K. Udupa, S. K. Debray, and M. Madou, “Deobfuscation: Reverse engineer­
ing obfuscated code,” in Working Conference on Reverse Engineering. IEEE,
2005, pp. 10–pp.

[34] C. Wang and S. Suo, The Practical Defending of Malicious Reverse Engineering.
University of Gothenburg, 2015.

[35] M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale exploratory analysis
of software vulnerability life cycles,” in International Conference on Software
Engineering. IEEE Press, 2012, pp. 771–781.

[36] S. Frei, M. May, U. Fiedler, and B. Plattner, “Large-scale vulnerability anal­
ysis,” in SIGCOMM Workshop on Large-Scale Attack Defense. ACM, 2006,
pp. 131–138.

[37] T.	 Rains, “When vulnerabilities are exploited: The timing of first known ex­
ploits for remote code execution vulnerabilities,” Microsoft Secure Blog,
2014, https://blogs.microsoft.com/microsoftsecure/2014/06/17/when­
vulnerabilities-are-exploited-the-timing-of-first-known-exploits-for-remote­
code-execution-vulnerabilities/.

[38] D.	 Brumley, P. Poosankam, D. Song, and J. Zheng, “Automatic patch-based
exploit generation is possible: Techniques and implications,” in Security & Pri­
vacy, May 2008, pp. 143–157.

[39] C.	 Percival, “Binary diff/patch utility,” 2003, http://www.daemonology.net/
bsdiff.

[40] H. Flake, “Structural comparison of executable objects,” in	 Detection of In­
trusions and Malware & Vulnerability Assessment, 2004, pp. 161–173, http:
//subs.emis.de/LNI/Proceedings/Proceedings46/article2970.html.

[41] B. Lee, “Darungrim: A patch analysis and binary diffing tool,” Black Hat, 2011.

[42] J. Oh, “Fight against 1-day exploits: Diffing binaries vs anti-diffing binaries,”
Black Hat, 2009.

[43] L. Ablon and A. Bogart, Zero Days, Thousands of Nights: The Life and Times
of Zero-Day Vulnerabilities and Their Exploits. Rand Corporation, 2017.

[44] T.	 Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley, “AEG: Automatic
Exploit Generation.” in Network and Distributed System Security Symposium,
vol. 11, 2011, pp. 59–66.

http:http://www.daemonology.net
https://blogs.microsoft.com/microsoftsecure/2014/06/17/when

118

[45] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know
about dynamic taint analysis and forward symbolic execution (but might have
been afraid to ask),” in Security & Privacy. IEEE Computer Society, 2010,
pp. 317–331.

[46] A. Dewdey, Computer Recreations, a Core War Bestiary of Virus, Worms and
Other Threats To Computer Memories. Scientific America, 1985, vol. 252.

[47] K. D. Mitnick and W. L. Simon, The Art of Deception: Controlling the Human
Element of Security. John Wiley & Sons, 2011.

[48] E. Spafford, “More than passive	 defense,” 2011, https://www.cerias.purdue.
edu/site/blog/post/more than passive defense/.

[49] C.	 Stoll, The Cuckoo’s Egg: Tracking a Spy Through the Maze of Computer
Espionage. Simon and Schuster, 2005.

[50] M. B. Salem and S. J. Stolfo, “Decoy document deployment for effective mas­
querade attack detection,” in Detection of Intrusions and Malware, and Vul­
nerability Assessment. Springer, 2011, pp. 35–54.

[51] J. Yuill, M. Zappe, D. Denning, and F. Feer, “Honeyfiles: Deceptive files for
intrusion detection,” in SMC Information Assurance Workshop. IEEE, 2004,
pp. 116–122.

[52] F. Cohen et al., “The deception toolkit,” Risks Digest, vol. 19, 1998.

[53] E. Adar, D. S. Tan, and J. Teevan, “Benevolent deception in human computer
interaction,” in SIGCHI Conference on Human Factors in Computing Systems.
ACM, 2013, pp. 1863–1872.

[54] M. H. Almeshekah and E. H. Spafford, “Using deceptive information in com­
puter security defenses,” International Journal of Cyber Warfare and Terror­
ism, vol. 4, no. 3, pp. 46–58, 2014.

[55] N. Rowe, “A taxonomy of deception in cyberspace,” in International Conference
on Information Warfare and Security, 2006, pp. 173–181.

[56] U. States, Military Deception, ser. Joint pub 3-13.4. Joint Chiefs of Staff, 2006,
https://fas.org/irp/doddir/dod/jp3 13 4.pdf.

[57] U. S. of America,	 Joint Doctrine for Military Deception, ser. Joint pub 3-58.
Joint Chiefs of Staff, 1996, http://purl.access.gpo.gov/GPO/LPS50196.

[58] F. Cohen, D. Lambert, C. Preston, N. Berry,	 C. Stewart, and E. Thomas,
“A framework for deception,” National Security Issues in Science, Law, and
Technology, 2001.

[59] J. J. Yuill, “Defensive computer-security deception operations: Processes, prin­
ciples and techniques,” Ph.D. dissertation, North Carolina State University,
2006.

[60] M. H. Almeshekah and E. H. Spafford, “Planning and integrating deception
into computer security defenses,” in New Security Paradigms Workshop. ACM,
2014, pp. 127–138.

http://purl.access.gpo.gov/GPO/LPS50196
https://fas.org/irp/doddir/dod/jp3
https://www.cerias.purdue

119

[61] J. B. Bell and B. Whaley,	 Cheating and Deception. New Brunswick, N.J. :
Transaction Publishers, 1991, reprint, with new introd. Originally published:
Cheating. New York, N.Y. : St. Martin’s Press, 1982.

[62] B. Whaley, “Toward a general theory of deception,”	 The Journal of Strategic
Studies, vol. 5, no. 1, pp. 178–192, 1982.

[63] C.	 Collberg and J. Nagra, “Surreptitious software,” Upper Saddle River, NJ:
Addision-Wesley Professional, 2010.

[64] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating trans­
formations,” The University of Auckland, Tech. Rep., 1997.

[65] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “SoK: Automated software
diversity,” in Security & Privacy. IEEE, 2014, pp. 276–291.

[66] J. Xu, P.	 Guo, M. Zhao, R. F. Erbacher, M. Zhu, and P. Liu, “Comparing
different moving target defense techniques,” in Workshop on Moving Target
Defense. ACM, 2014, pp. 97–107.

[67] B.	 Coppens, B. D. Sutter, and K. D. Bosschere, “Protecting your software
updates,” Security & Privacy, vol. 11, no. 2, pp. 47–54, 2013.

[68] M. Jacob, M. H. Jakubowski, P. Naldurg, C. W. N. Saw, and R. Venkatesan,
“The superdiversifier: Peephole individualization for software protection,” in
International Workshop on Security. Springer, 2008, pp. 100–120.

[69] M. Franz,	 “E unibus pluram: Massive-scale software diversity as a defense
mechanism,” in New Security Paradigms Workshop. ACM, 2010, pp. 7–16.

[70] B. M. Bowen, S. Hershkop, A. D. Keromytis, and S. J. Stolfo, “Baiting inside
attackers using decoy documents,” in Security and Privacy in Communication
Networks, 2009, pp. 51–70.

[71] B. Whitham, “Canary files: Generating fake files to detect critical data loss from
complex computer networks,” in Cyber Security, Cyber Peacefare and Digital
Forensic. The Society of Digital Information and Wireless Communication,
2013, pp. 170–179.

[72] A.	 Juels and R. L. Rivest, “Honeywords: Making password-cracking de­
tectable,” in SIGSAC Conference on Computer & Communications Security.
ACM, 2013, pp. 145–160.

[73] C. Laney, S. O. Kaasa, E. K. Morris, S. R. Berkowitz, D. M. Bernstein, and
E. F. Loftus, “The red herring technique: A methodological response to the
problem of demand characteristics,” Psychological Research, vol. 72, no. 4, pp.
362–375, 2008.

[74] M. A. Bashar, G. Krishnan, M. G. Kuhn, E. H. Spafford, and S. Wäġstäff Jr,
“Low-threat security patches and tools,” in International Conference on Soft­
ware Maintenance. IEEE, 1997, pp. 306–313.

[75] H. Chang and M. J. Atallah, “Protecting software code by guards,” in Workshop
on Digital Rights Management. Springer, 2001, pp. 160–175.

120

[76] I. Balepin, S. Maltsev, J. Rowe, and K. Levitt, “Using specification-based intru­
sion detection for automated response,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2003, pp. 136–154.

[77] F. Araujo, K. W. Hamlen, S. Biedermann, and S. Katzenbeisser, “From patches
to honey-patches: Lightweight attacker misdirection, deception, and disinfor­
mation,” in SIGSAC Conference on Computer and Communications Security.
ACM, 2014, pp. 942–953.

[78] F. Araujo, M. Shapouri, S. Pandey, and K. Hamlen, “Experiences with honey-
patching in active cyber security education,” in Workshop on Cyber Security
Experimentation and Test, 2015.

[79] T.	 Holz and F. Raynal, “Detecting honeypots and other suspicious environ­
ments,” in SMC Information Assurance Workshop. IEEE, 2005, pp. 29–36.

[80] K. E. Heckman, M. J. Walsh, F. J. Stech, T. A. O’Boyle, S. R. DiCato, and A. F.
Herber, “Active cyber defense with denial and deception: A cyber-wargame
experiment,” Computers & Security, vol. 37, pp. 72–77, 2013.

[81] S. Crane, P. Larsen, S. Brunthaler, and M. Franz, “Booby trapping software,”
in New Security Paradigms Workshop. ACM, 2013, pp. 95–106.

[82] J. Heusser and P.	 Malacaria, “Quantifying information leaks in software,” in
Annual Computer Security Applications Conference. ACM, 2010, pp. 261–269.

[83] X. Wang, Z. Li, J. Xu, M. K. Reiter, C. Kil, and J. Y. Choi, “Packet vac­
cine: Black-box exploit detection and signature generation,” in Conference on
Computer and Communications Security. ACM, 2006, pp. 37–46.

[84] T. Jackson, B. Salamat, A. Homescu, K. Manivannan, G. Wagner, A. Gal,
S. Brunthaler, C. Wimmer, and M. Franz, “Compiler-generated software diver­
sity,” in Moving Target Defense. Springer, 2011, pp. 77–98.

[85] C.	 S. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and
obfuscation-tools for software protection,” Transactions on Software Engineer­
ing, vol. 28, no. 8, pp. 735–746, 2002.

[86] S. Banescu, M. Ochoa, and A. Pretschner, “A framework for measuring software
obfuscation resilience against automated attacks,” in International Workshop
on Software Protection. IEEE, 2015, pp. 45–51.

[87] D. Dunaev and L. Lengyel, “Method of software obfuscation using petri nets,” in
Central European Conference on Information and Intelligent Systems. Faculty
of Organization and Informatics Varazdin, 2013, p. 242.

[88] Y. Kanzaki, A. Monden, and C. Collberg, “Code artificiality:	 A metric for
the code stealth based on an n-gram model,” in International Workshop on
Software Protection. IEEE Press, 2015, pp. 31–37.

[89] C.	 Collberg, C. Thomborson, and D. Low, “Manufacturing cheap, resilient,
and stealthy opaque constructs,” in Symposium on Principles of Programming
Languages. ACM, 1998, pp. 184–196.

121

[90] J. N. Stewart, “Advanced technologies/tactics techniques, procedures: Closing
the attack window, and thresholds for reporting and containment,” Best Prac­
tices in Computer Network Defense: Incident Detection and Response, vol. 35,
p. 30, 2014.

[91] H. C. Goh, “Intrusion deception in defense of	 computer systems,” Master’s
thesis, Naval Postgraduate School, 2007.

[92] I. Balepin, S. Maltsev, J. Rowe, and K. Levitt, “Using specification-based intru­
sion detection for automated response,” in International Workshop on Recent
Advances in Intrusion Detection. Springer, 2003, pp. 136–154.

[93] R.	 Zhuang, S. A. DeLoach, and X. Ou, “Towards a theory of moving target
defense,” in Workshop on Moving Target Defense. ACM, 2014, pp. 31–40.

[94] A. Cui and S. J. Stolfo, “Symbiotes and defensive mutualism:	 Moving target
defense,” in Moving Target Defense. Springer, 2011, pp. 99–108.

[95] R. Zhuang, S. Zhang, A. Bardas, S. A. DeLoach, X. Ou, and A. Singhal, “In­
vestigating the application of moving target defenses to network security,” in
International Symposium on Resilient Control Systems. IEEE, 2013, pp. 162–
169.

[96] H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein, “Finding focus in the
blur of moving-target techniques,” Security & Privacy, vol. 12, no. 2, pp. 16–
26, 2014.

[97] J. H. Jafarian,	 E. Al-Shaer, and Q. Duan, “Openflow random host muta­
tion: Transparent moving target defense using software defined networking,”
in Workshop on Hot Topics in Software Defined Networks. ACM, 2012, pp.
127–132.

[98] D. Cohen, “Surrogate indicators and deception in advertising,” The Journal of
Marketing, pp. 10–15, 1972.

[99] D. M. Gardner, “Deception in advertising: A conceptual approach,” The Jour­
nal of Marketing, pp. 40–46, 1975.

[100] A. Arora, R. Krishnan, R. Telang, and Y. Yang, “An empirical analysis of
software vendors’ patching behavior: Impact of vulnerability disclosure,” Inter­
national Conference on Information Systems, p. 22, 2006.

[101] H. Chang, “Building self-protecting software with active and passive defenses,”
Ph.D. dissertation, Purdue University, 2003.

[102] J. R. Boyd, “The essence of winning and losing,” 1996.

[103] J. Bambenek, “The patch window	 is gone: Automated patch-based exploit
generation,” Infosec Community Forum, 2005, https://isc.sans.edu/forums/
diary/The+Patch+Window+is+Gone+Automated+PatchBased+Exploit+
Generation/4310/.

[104] H. Cavusoglu, H. Cavusoglu, and J. Zhang, “Economics of security patch man­
agement.” in Workshop on the Economics of Information Security, 2006.

https://isc.sans.edu/forums

122

[105] C. Lattner, The LLVM Compiler Infrastructure. University of Illinois, Urbana-
Campaign, 2017, http://llvm.org/.

[106] C. Cadar, D. Dunbar, D. R. Engler et al., “KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs,” in Operating
Systems Design and Implementation, vol. 8, 2008, pp. 209–224.

[107] C. Lattner, “LLVM and Clang: Next generation compiler technology,” in The
BSD Conference, 2008, pp. 1–2.

[108] S. Dolan, “mov is turing-complete,” pp. 1–4, 2013, http://www.cl.cam.ac.uk/
∼sd601/papers/mov.pdf.

[109] A. Moser, C. Kruegel,	 and E. Kirda, “Limits of static analysis for malware
detection,” in Applied Computer Security Applications Conference. IEEE,
2007, pp. 421–430.

[110] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted to know
about dynamic taint analysis and forward symbolic execution (but might have
been afraid to ask),” in Security & Privacy. IEEE, 2010, pp. 317–331.

[111] C. Cadar and K. Sen, “Symbolic execution for software testing: Three decades
later,” Communications of the ACM, vol. 56, no. 2, pp. 82–90, 2013.

[112] S. L. Pfleeger and D. D. Caputo, “Leveraging behavioral science to mitigate
cyber security risk,” Computers & Security, vol. 31, no. 4, pp. 597–611, 2012.

[113] K. Ding, N. Pantic, Y. Lu, S. Manna, and M. I. Husain, “Towards building a
word similarity dictionary for personality bias classification of phishing email
contents,” in International Conference on Semantic Computing. IEEE, 2015,
pp. 252–259.

[114] M. Bennett and E. Waltz,	 Counterdeception Principles and Applications for
National Security. Artech House Norwood, MA, 2007.

[115] M. H. Almeshekah and E. H. Spafford, “Cyber security deception,” in	 Cyber
Deception. Springer, 2016, pp. 25–52.

[116] I. Lee, “Dymos: A dynamic modification system,” Ph.D. dissertation, Univer­
sity of Wisconsin, Madison, 1983.

[117] G. Buban, P. Donlan, A. Marinescu, T. McGuire, D. Probert, H. Vo, and
Z. Wang, “Patching of in-use functions on a running computer system,” Patent
7 784 044, Aug. 24, 2010.

[118] Y. Kanzaki, A. Monden, and C. Collberg, “Code artificiality:	 A metric for
the code stealth based on an n-gram model,” in International Workshop on
Software Protection. IEEE Press, 2015, pp. 31–37.

[119] O. Goldreich, Foundations of Cryptography. New York, NY, USA: Cambridge
University Press, 2006, vol. 1.

[120] F. Saudel and J. Salwan, “Triton: A dynamic symbolic execution framework,”
in Symposium sur la sécurité des technologies de l’information et des commu­
nications. SSTIC, 2015, pp. 31–54.

http:http://www.cl.cam.ac.uk
http:http://llvm.org

123

[121] S. Chow, P.	 Eisen, H. Johnson, and P. C. Van Oorschot, “A white-box des
implementation for drm applications,” in Workshop on Digital Rights Manage­
ment, Springer. ACM, 2002, pp. 1–15.

[122] W. Michiels, P. Gorissen, and H. D. L. Hollmann, “Cryptanalysis of a generic
class of white-box implementations,” in Selected Areas in Cryptography, 2008,
pp. 414–428, https://doi.org/10.1007/978-3-642-04159-4 27.

[123] S. Banescu, M. Ochoa, and A. Pretschner, “A framework for measuring software
obfuscation resilience against automated attacks,” in International Workshop
on Software Protection (SPRO). IEEE, 2015, pp. 45–51.

[124] A. Yokoyama, K. Ishii, R. Tanabe, Y. Papa, K. Yoshioka, T. Matsumoto,
T. Kasama, D. Inoue, M. Brengel, M. Backes et al., “Sandprint: Fingerprinting
malware sandboxes to provide intelligence for sandbox evasion,” in Interna­
tional Symposium on Research in Attacks, Intrusions, and Defenses. Springer,
2016, pp. 165–187.

[125] T.	 Garfinkel, K. Adams, A. Warfield, and J. Franklin, “Compatibility is
not transparency: Vmm detection myths and realities,” in USENIX Work­
shop on Hot Topics in Operating Systems. USENIX Association, 2007,
pp. 6:1–6:6, http://static.usenix.org/legacy/events/hotos07/tech/full papers/
garfinkel/garfinkel html/.

[126] M. H. Almeshekah, “Using deception to enhance security,” Ph.D. dissertation,
Purdue University, 2015.

http://static.usenix.org/legacy/events/hotos07/tech/full
https://doi.org/10.1007/978-3-642-04159-4

VITA

124

VITA

Jeffrey K. Avery was born the younger of twin boys in Heidelberg, Germany

in 1990. After a number of moves because of military orders, he graduated co­

valedictorian from Bel Air High School, Bel Air, MD in 2008. Afterward, he graduated

magna cum laude from the University of Maryland, Baltimore County in 2012 as a

Meyerhoff Scholar with his bachelor’s degree in computer science. That same year,

he was admitted into the Computer Science Ph.D. program at Purdue University. He

received his Master’s Degree, also in Computer Science, in 2014.

Jeffrey completed a number of successful internships, including stints at Army

Research Laboratory, Johns Hopkins Applied Physics Laboratory, McAfee, Inc., and

Sypris Electronics, Inc. His research interests include network security, anti-phishing

and deception. Upon receipt of his Ph.D., he accepted a position as a software

engineer in the Future Technical Leaders program at Northorp Grumman.

