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ABSTRACT 

Avery, Jeffrey K. Ph.D., Purdue University, August 2017. The Application of Decep­
tion to Software Security Patching. Major Professor: Eugene H. Spafford. 

Deception has been used for thousands of years to influence thoughts. Compar­

atively, deception has been used in computing since the 1970s. Its application to 

security has been documented in a variety of studies and products on the market, but 

continues to evolve with new research and tools. 

There has been limited research regarding the application of deception to software 

patching in non-real time systems. Developers and engineers test programs and ap­

plications before deployment, but they cannot account for every flaw that may occur 

during the Software Development Lifecycle (SDLC). Thus, throughout an applica­

tion’s lifetime, patches must be developed and distributed to improve appearance, 

security, and/or performance. Given a software security patch, an attacker can find 

the exact line(s) of vulnerable code in unpatched versions and develop an exploit 

without meticulously reviewing source code, thus lightening the workload to develop 

an attack. Applying deceptive techniques to software security patches as part of 

the defensive strategy can increase the workload necessary to use patches to develop 

exploits. 

Introducing deception into security patch development makes attackers’ jobs more 

difficult by casting doubt on the validity of the data they receive from their exploits. 

Software security updates that use deception to influence attackers’ decision making 

and exploit generation are called deceptive patches. Deceptive patching techniques 

could include inserting fake patches, making real patches confusing, and responding 



xiv 

falsely to requests as if the vulnerability still exists. These could increase attackers’ 

time spent attempting to discover, exploit and validate vulnerabilities and provide 

defenders information about attackers’ habits and targets. 

This dissertation presents models, implementations, and analysis of deceptive 

patches to show the impact of deception on code analysis. Our implementation shows 

that deceptive patches do increase the workload necessary to analyze programs. The 

analysis of the generated models show that deceptive patches inhibit various phases 

of attacker’s exploit generation process. Thus, we show that it is feasible to introduce 

deception into the software patching lifecycle to influence attacker decision making. 



1 

1. INTRODUCTION 

The patching ecosystem is beneficial for end users. Software patching has the following 

definition: a modification to or to modify software.1 An additional definition of the 

noun patch is as follows: a collection of changed functions aggregated based on source 

file of their origin [1]. These are the general definitions that form the basis for our 

identification of a patch. 

A special case of patching is software security patches. The definition of security 

patch is: a fix to a program that eliminates a vulnerability exploited by malicious 

hackers. 2 An additional definition provided by Altekar et al. is traditional method 

for closing known application vulnerabilities [1]. 

Based on the above definitions, we use the following as the working definition for 

a security patch: 

A modification that closes a known vulnerability in a program, eliminating the 

chance for that vulnerability instance to be exploited by malicious hackers. 

This definition emphasizes that the modification(s) to software prohibit a vulner­

ability from being exploited at a specific location of a program. This does not mean 

that the code is hardened to all of the vulnerability instances throughout the program. 

Instead, the patch fixes one vulnerability at one location. Fixing a vulnerability at 

a specific location could hide other instances of the same vulnerability, but this side 

effect is not the main goal of a security patch. This dissertation will focus on both 

security patches and the security patching protocol. 

1http://www.pcmag.com/encyclopedia/term/48892/patch 
2http://www.pcmag.com/encyclopedia/term/51050/security-patch 
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Patches are generated once a vulnerability is identified that can be exploited. 

There are three paths of vulnerability discovery that lead to patch development. 

Fig. 1.1.: Vulnerability Discovery Paths 

Figure 1.1 shows the various paths to identify a vulnerability in software. Path 1 

is the common vulnerability path. A developer identifies a vulnerability is present in 

a system and develops a patch. Once the patch is released, one path is end users can 

download the file to their machine and install the patch. This view is the positive 

result of software security patching. The second path is the negative effect of software 

security patching. Using the released patch, an exploit can be developed. This pro­

cess is called patch-based exploit generation and is the motivations for this research. 

The second path of vulnerability discovery begins with an external party identifying 

a vulnerability. These external parties notify software developers who then generate 

and release a patch. The third path begins with a malicious user identifying the vul­

nerability, generating an exploit and releasing the exploit. Developers observe attacks 
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against their system in production and then find the vulnerability being exploited. 

Once this occurs, developers generate a patch and release the code to end users. 

Delivery time constraints, third party programs, nonstandard coding practices, 

and other challenges contribute to bugs and vulnerabilities being introduced into 

programs that need to be fixed. The release of a software security patch (security 

patch or security update for short) traditionally means a vulnerability that can be 

exploited exists in unpatched versions of a program. This notification alerts attackers 

to develop exploits for unpatched systems. The potential use of patches to generate 

malicious exploits in practice motivates this research. 

The benefit of software security patches for malicious actors is captured by a 

Symantec Internet security threat report [2] released in 2015 stating “. . . malware 

authors know that many people do not apply these updates and so they can exploit 

well-documented vulnerabilities in their attacks.” 

Based on this knowledge, attackers use old patches and vulnerabilities to exploit 

systems. This is evident by empirical research published in the 2015 Verizon Data 

Breach Investigations Report [3]. This report states that 99.9% of the exploits that 

were detected took advantage of vulnerabilities made public 1+ years prior [3]. In 

May 2017, unpatched systems were left vulnerable for months after a vulnerability 

was discovered and the subsequent patch was released, because of the lack of action 

by end users to apply the update. This resulted in thousands of computers worldwide, 

including active machines at a hospital in the UK, being compromised by the Wan­

naCry ransomware [4]. As additional evidence of patch motivated exploits, in 2014, 

Tim Rains, Microsoft’s Director of Security, released a blog [5] stating “[In 2010, ] 42 

exploits for severe vulnerabilities were first discovered in the 30 days after security 

updates.” In June 2017, the SambaCry malware was first publicly observed, five days 

after the patch for the vulnerability in the Samba software package was released. As 
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quoted from an article on the Bleeping Computer news website about the SambaCry 

vulnerability, “According to public data, their actions started about five days after 

the Samba team announced they patched CVE-2017-7494...” 3 . 

With time to develop exploits and the ability to access both patched and un­

patched systems for testing, attackers can develop exploits that will successfully com­

promise vulnerable machines with high probability. Thus, traditional software secu­

rity patches can assist the exploit generation process. As a result, this dissertation 

discusses, explores and analyzes how deception can be applied to software patching 

as part of the defensive strategy to enhance the resiliency of patches and help protect 

systems from attack. 

1.1 Thesis Statement 

Using deception to protect software involves prior research in obfuscation, encryp­

tion and other hiding techniques, but the specific area of deceptive patches has seen 

little activity. We hypothesize that: 

It is feasible to develop a methodology to introduce deception into the soft­

ware patching lifecycle to influence malicious actors’ decision making and 

provide defenders with insight before, during and after attacks. Using this 

methodology, it is possible to enhance software security by using deception. 

This dissertation presents how deception can be applied to patching security vul­

nerabilities in software. Applying deceptive principles to the patching cycle can make 

attackers’ jobs more difficult. The goal of deceptive patches is to increase the cost 

to develop exploits based on patches. These patches can cause attackers to mistrust 

data collected from their exploits [6], not attack a system at all to prevent wasting 

3https://www.bleepingcomputer.com/news/security/linux-servers-hijacked-to-mine­
cryptocurrency-via-sambacry-vulnerability/ 
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resources, fear being exposed, and waste time attempting to develop an exploit for an 

incorrectly identified vulnerability. Thus, the impact of deceptive patches on program 

security is based on altering an attacker’s approach, causing him/her to cast doubt 

on the data collected or to increase the required workload to develop an exploit. To 

enhance the resiliency of patches, we apply deception and discuss its impact on the 

workload required for attackers to generate exploits based on patches. 

1.2 Patch Exploit Overview 

We assume that attackers have remote access to vulnerable machines or direct 

access to binary or source code. We also assume varying levels of awareness to de­

ceptive techniques. Attacks can take the form of scripted exploits, where a malicious 

actor has created an automated script to compromise a machine, or manual attacks. 

This dissertation will focus on patches that fix security vulnerabilities. These 

types of patches attempt to correct flaws that have been discovered through internal 

review or from outside reports. In general, all vulnerabilities must be inaccessible for 

the system to be secure. Thus, during the design stage of patch development, the 

main requirement is to remove the vulnerability to prevent it from being exploited. 

While this requirement is enough to lead to a patch that prevents exploits from suc­

ceeding, more can be done to further secure the system using the same or similar 

software. This dissertation shows the feasibility of adding additional steps to the 

design, implementation and release stage where developers explore and potentially 

use deception in the process of addressing a vulnerability. Such an approach will lead 

to well-planned, deceptive security patches that can increase the difficulty to develop 

exploits, influence an attacker’s decision making and expose an attacker’s exploits. 

Adversaries targeting a deceptive patch with an exploit can inform defenders of new 

attack techniques once their exploit is executed. Defenders can use this informa­
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tion to bolster their front line preventative defense techniques proactively instead of 

through post-analysis after a successful exploit. Deceptive patching techniques along 

with traditional preventative defense techniques can help to enhance the security of 

software. 

Fig. 1.2.: Patch-based Exploit Generation Timeline with Deceptive Patch Compo­
nents/Research Overlay. 

Figure 1.2 illustrates the patch-based exploit generation process and overlays 

where the concepts presented in this dissertation impact the attack sequence. The 

process of using patches to generate exploits begins when developers release the no­

tification for a patch or the notification for a vulnerability (in some instances these 

steps are combined). Once the patch is made available to the public, an attacker 

reverse engineers the patch to discover the vulnerability being fixed. Once this is 

identified, an exploit can be developed that compromises vulnerable machines. We 

apply deception to security patches to slow down and/or inhibit patch-based exploit 

generation. 

This work presents research on how deception can be applied to security patches. 

An outline of the contributions of this work is as follows: 

1.	 Explore the ability of releasing ghost patches for faux vulnerabilities to deceive 

attackers. 
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The first contribution examines at automatically inserting fake patches into 

code using a compiler. Exploring techniques, such as symbolic execution, that 

attackers can use to develop exploits using patched and unpatched binaries can 

aid in the development of fake patches that appear real. These patches can 

mislead an attacker, causing him/her to spend extra time investigating fake 

vulnerabilities. This will provide end users more time to apply patches and 

protect their systems. 

2.	 Discuss a protocol update/framework using current software update centers to 

re-release diversified versions of patches to deceive attackers. 

We introduce a series of steps to inject deception into the security patching 

process. Our analysis of inserting deceptive patches into the development and 

maintenance lifecycle of a program is a preliminary application of deception to 

the Software Development Lifecycle (SDLC). 

3.	 Develop and analyze a formal security model of deceptive patches. 

We introduce a general method using game theory models to capture the secu­

rity of deceptive patches. These models analyze how secure a deceptive patch 

is given a knowledgeable adversary and an oracle. We apply this generic model 

to specific instances of deceptive patches and discuss the security implications. 

1.3 Dissertation Order 

We discuss the outline of the dissertation and provide a brief overview of the 

chapters in this section. 

Chapter 2 covers the background for and related work to this dissertation. We 

discuss a working definition of patching and prior work on the economics of patching 

and patching techniques. We explore how software is exploited and discuss the gen­



8 

eral area of deception and how deception has been applied to software. Finally, we 

discuss prior work in deceptive patching and how elements of this dissertation address 

limitations in these approaches. 

Chapter 3 presents a model of software security patches. We discuss four compo­

nents that make up a patch as well as how to apply deception to each component. We 

present an economic analysis of patches and deceptive patches using time to qualify 

the impact of deception on exploit generation. We describe a mapping of our decep­

tive patching model onto the cyber kill chain [7] to show how deceptive patching can 

affect an attacker’s path to compromise. 

Chapter 4 discusses what makes up a patch from the architectural standpoint. We 

identify components that can be visualized from a static analysis standpoint, discuss 

how real elements can be dissimulated or hidden and how false elements can be shown. 

Components of our approach to show false elements appear in the 32nd International 

Conference on ICT Systems Security and Privacy Protection (IFIP SEC 2017) [8]. 

Chapter 5 identifies the location of a patch as a major component of the patching 

model. We discuss different types of patches based on where they are located in the 

cyber ecosystem (i.e. machines and networks). We then discuss how moving target 

defense (MTD) can be applied to software security patches and how the application 

is intuitive and a one-off approach. We also approach patching from the notification 

and presentation standpoint. We discuss the text within notifications that identify 

the presence of a patch as well as the notifications that appear during the installation 

of a patch. We briefly discuss how bias is exploited by deceptive operations. Finally, 

we describe a framework that given a patch, diversified versions of the patch can be 

released after the original patch, forcing an attacker to distinguish between an original 

patch and a diversified version of the same patch to avoid attempting to exploit 

a vulnerability that has a previously released patch, expending his/her resources. 



9 

We suggest the need to distinguish between diversified versions of the same patch 

will increase the workload required for attackers to develop patch-based exploits and 

discuss how this can be applied to a generalization of the current software security 

patching protocol using existing research. Elements of this chapter can be found in 

12th International Conference on Cyber Warfare and Security (ICCWS 2017) [9]. 

Chapter 6 discusses a game-theoretic approach to describing the resiliency of a 

deceptive patch. We discuss this general approach and then provide applications to 

different categories of deceptive patches. 

Finally, Chapter 7 concludes this dissertation and provides direction for future 

work. 
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2. LITERATURE REVIEW 

We explore the literature that relates to and is background for deceptive patches. We 

begin by exploring the research present on software patching, reviewing the definition 

of a patch, types of patches, as well as economic principles that support patching and 

patch development. We also discuss how patches can be exploited, which significantly 

motivates this research and identify related work on deceptive patches. 

There are four ways a patch can alter code: add new lines of code at the site 

of the vulnerability, change or edit vulnerable lines of code, remove vulnerable lines 

of code, or wrap the vulnerability in a protective block. Adding, editing, and re­

moving vulnerable lines of code operate internally to a susceptible function at the 

site of a vulnerability. These modifications prevent exploits from succeeding at the 

site of the vulnerability by detecting and/or addressing unauthorized changes in local 

state variables or removing the flawed code. Wrappers operate external to a vul­

nerable function. Wrappers can either cleanse input to a function before it is used 

or examine output of a function to verify its correctness before it is used in other 

locations throughout the program. Wrappers can detect exploits if the exploit alters 

the system’s state and/or program’s behavior. 

2.1 Types of Patches 

Patches can be categorized based on the developer, its application to the code, 

length, as well as what elements they actually update. Patches categorized based on 

the developer can be unofficial (those developed by 3rd party vendors) or traditional 

(those developed by the original code developers) [10]. While patches may require 
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a system restart to be applied, hot patches are applied to software as it is execut­

ing without the need to restart. For example, prior work by Payer et al. explores 

how dynamic analysis and sandboxes can provide patches for vulnerabilities during 

runtime [11]. Hot patches provide one solution to inhibiting patch-based exploit 

generation, but are not a general solution. For example, hot patches could cause in­

stability on a machine because of compatibility issues with existing programs running 

on a machine, which could be unacceptable for end users. Patches can also be cate­

gorized by length, either in lines of code or memory size. Using length as a delimiting 

factor can help identify the amount of code necessary to fix classes of vulnerabilities. 

Longer patches that change large sections of code are called bulky patches or service 

packs, while patches that change small portions of code are called point releases [10]. 

Security patches and data patches are based on the software element(s) they update. 

Security patches update vulnerable software components of a program that could be 

exploited, and data patches update rules and signatures used by protection appli­

cations to detect attacks [12]. We focus on security patches that use a traditional 

update mechanism, though our approach can be applied to any mechanism. 

Finally, patches can be categorized based on their location relative to the location 

of the vulnerability being fixed. External, or wrapper, patches are implemented in 

a separate location compared to where the vulnerability is located. For example, a 

buffer overflow attack where the variable’s size is known prior to entering the function 

can be detected by an external patch. Internal patches are located inside a vulnerable 

function and address the vulnerability by adding, editing and/or removing code within 

the function. This type of patch can detect and prevent exploits as soon as they occur, 

taking the necessary action(s) in real time. This allows for exploits to be detected 

in dynamic environments where variable sizes and locations are non-deterministic. 

Internal patches also have access to the internal state of a function. Zamboni et al. 
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provide a complete analysis of internal and external sensors, of which patches are a 

subset [13]. 

2.2 Patch Development Lifecycle 

Over the lifetime of an application, developers continue to update code, find vul­

nerabilities, discover areas where the code can be optimized, or add new features. Up­

dating code should follow a series of steps, ensuring the patch performs its intended 

functionality and does not add incompatibilities. Patches either fix vulnerabilities 

in code or aesthetically improve older versions of code. Brykczynski et al. describe 

a series of sequential steps to develop a security patch [14]. Figure 2.1 diagrams a 

general patch release process and each tier is described in Table 2.1 [15]. 

Fig. 2.1.: Lifecycle of patches
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Table 2.1.: The Patching Cycle
 

Design Develop patch requirements - usually done 
without community involvement 

Early Review Post patch to relevant mailing list; address 
any comments that may arise; if there are 
major issues, developers return to the design 
stage 

Wider Review More extensive review by others not involved 
in the early review; if there are major issues, 
developers return to the design stage 

Merge Place patch into mainline repository 
Stable Release Deploy patch to the public 

Long Term Maintenance Developers maintain the patch as the code 
undergoes other improvements 

The traditional patch lifecycle also shows that there are multiple stages of review 

and testing that take place to make sure the patch is suitable to fix the vulnerability. 

Vendors want to make sure that the issue is completely fixed and confidently ensure 

that additional issues with that vulnerability do not arise. 

The patch development lifecycle models the major stages to fixing vulnerabilities 

in code. The original image presents a waterfall type of model where each stage 

leads into the next upon completion. We slightly alter this model, adding additional 

feedback loops, representing a more granular approach to patch development. 

This lifecycle suggests that there exists an expectation that a patch fixes an issue 

present in code. This also suggests that the issue is a vulnerability present in the 

code that can be exploited. If a vendor is going to spend time reviewing, testing, 

and fixing one of their mistakes, the fix for the mistake should be correct in the sense 

that it actually fixes the error in the code. This belief that security patches always 

attempt to fix legitimate vulnerabilities supports the application of deception. 
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Specifically, deception is applied to the design and merge stage of the software 

patching lifecycle. The accepted belief is a patch fixes a vulnerability that is ex­

ploitable in the software. Fake patches are one way to apply deception to security 

patching to take advantage of this expectation that a patch is always code that ad­

dresses a real vulnerability. One challenge of adding fake patches is these patches 

cannot alter data flow or control flow in such a way that the program performs unre­

liably for benign and legitimate use. We address the idea of fake patches in Chapter 4. 

Deception is also applied to software security patching during the stable release 

stage. This can be achieved by adding deceptive notifications and releasing patches 

that are diversified versions of prior updates. We discuss this in more detail in Chap­

ter 5. 

2.3 Patching Economics 

The ecosystem of software development involves economic trade-offs between re­

leasing an application and further developing software [16]. Economic principles guide 

when and how software is updated and when these updates are released. Time to fix 

a bug, delivery vehicle, and vulnerability criticality all contribute to patch economics. 

At its core, patching software is a risk management exercise [17, 18]. Identifying the 

risks and rewards associated with a security patch helps guide developers as they de­

cide when to release updates. Managing this process and decisions that are involved 

in a practical setting are discussed by Dadzie [19] and McKusick [20]. 

The economic culture of patching suggests that patches are released within optimal 

windows of time after a vulnerability has been identified or an exploit has been 

publicly released. This means that patches are released when a significant amount of 

data about the vulnerability and corresponding fix have been gathered as well as a 
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minimal amount of time has passed since public notification. Studies also suggest that 

public notification of a vulnerability increases the speed to patch a program [18, 21]. 

The current software development phase of an application impacts the economics 

of a patch. If a patch is identified during testing, applying the patch could be more 

economically efficient when compared to releasing a patch when software is in full 

production mode. Finding bugs when code is in the maintenance phase costs more 

than finding them in the production or development phase [16]. 

2.4 Patch Generation 

Patches can be generated using manual analysis and coding or automated tools. 

We briefly discuss prior work that studies manually and automatically creating patches. 

2.4.1 Manual Patch Generation 

Manual patch generation identifies vulnerabilities to be fixed using manual effort. 

Once identified, the patch for the vulnerability is written, tested, and released by 

developers [22]. A full treatment of this type of generation is outside the scope of 

this work. Research by Sohn et al. explores improving manual patch generation for 

input validation vulnerabilities [23]. 

2.4.2 Automated Patch Generation 

A growing area of research uses static and dynamic analysis techniques to au­

tomatically find and patch vulnerabilities. An overview of software repair concepts 

is provided by Monperrus [24]. Research by Wang et al. detects integer overflow 

vulnerabilities and provides a patch to fix the flaw [25]. 
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Deception can also be applied to influence the information provided by these tools. 

We apply this concept by generating faux patches for input validation vulnerabilities 

by inserting fake conditional statements that model actual patches. This is discussed 

in more detail in Chapter 4. 

2.5 Software Exploit 

Hackers exploit publicly available applications by forcing the program to perform 

functions that were not intended. One of the first steps to altering program behavior 

is gaining an understanding of how the software operates. To achieve understanding, 

attackers apply reverse engineering techniques to provide human readable analysis of 

the application. 

2.5.1 Vulnerability Research 

Identifying and classifying vulnerabilities based on how they are introduced to 

code can be used to develop more secure coding practices. Prior work by by Jang et 

al. explores finding vulnerabilities based on prior patches for a given application [26]. 

Work by Krsul provides a full treatment of vulnerability analysis and categorization 

[27]. Work by Xie et al. uses static analysis techniques to identify vulnerabilities 

in software [28]. Analysis by Frei et al. uses patch and exploit release data to 

identify trends in vulnerability detection, exploit, and patching [29]. Deceptive patch 

development relies on vulnerability research to identify classes of vulnerabilities. 

2.5.2 Application Exploit 

Attackers use exploits to attack vulnerabilities in unpatched applications. These 

attacks can provide attackers the ability to gain access to otherwise unavailable func­
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tionality. One of the first steps in this process is reverse engineering the code to 

either view its contents or identify vulnerable patterns in the program. Research has 

identified major questions within reverse engineering and provided advances within 

the field. This research also increases the scope of code and programs that can be 

reverse engineered. Work by Rugaber et al. attempts to qualify the accuracy and 

completeness of a reverse engineered program [30]. Research by Schwarz et al. and 

Popa looks at reverse engineering executables and binary with non-standard coding 

practices such as indirect jumps and code vs data identification [31,32]. Udupa et al. 

study how to reverse engineer programs deceptively treated with obfuscation tech­

niques [33]. Prior work by Wang et al. looks at defeating these attack techniques by 

reviewing how techniques such as encryption, anti-debugging code and even obfus­

cation can increase the difficulty to reverse engineer applications [34]. This limited 

availability of “anti-reverse engineering” techniques is where deception can be ap­

plied. Adding fake patches does not prevent reverse engineering from occurring, but 

it does alter the data to be analyzed, increasing the workload of an attacker. 

2.5.3 Patch-Based Exploit Generation 

Attackers use released patches to develop exploits against unpatched machines 

[35–38]. This is possible because software patches inherently leak information about 

the software being updated. 

Binary Diff One disadvantage is that internal patches leak the location of a vul­

nerability that is present in unpatched code, providing attackers with a blueprint to 

develop exploits against unpatched code that can be verified. A binary difference (or 

diff ) reports the differences in syntax between two provided binary files [39,40]. The 

diff result can then be used to start the reverse engineering process and the exact lines 
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of code that were changed can be observed. This provides attackers with the same 

patch that has been distributed to all other users of the application and as a result, 

because of the patching monoculture where all systems receive the same update, the 

vulnerability on all unpatched systems can be identified. This static analysis process 

can be used to develop exploits manually [41, 42]. 

Deception can affect binary diff tools by adding deceptive patches to code that 

increases the size of the diff result. By adding fake code to a patch, the amount 

of information returned as a result of executing the diff command on a deceptively 

patched and unpatched system could increase the workload or be too large to analyze. 

Chapter 4 explores the impact of injecting deceptive patches into software. 

Control Flow Analysis Another disadvantage is patches alter the behavior of a 

program. Once the patch is applied, the result is a more secure and hardened program, 

but in the timeframe between patch release and patch installation, this observable 

difference is harmful. This altered behavior, when its outputs are compared to an 

unpatched system over a range of inputs, can be used to identify the functionality of 

a patch, and therefore the vulnerability being fixed. Because the behavior is altered, 

the search space for an attacker using fuzzing, which as a technique is similar to brute 

forcing a program to attempt to make it behave erratically, is diminished as a change 

in program behavior can be used as the initial identifier that a patch is present and 

can help identify inputs that trigger the execution of patch code [43, 44]. 

Attackers can use control flow analysis to identify a vulnerability based on its 

patch. Analyzing, statically or dynamically, changes in the control flow graph between 

a patched and unpatched system can expose the location, syntax and/or behavior of a 

patch. This provides attackers with information about the vulnerability being fixed. 

Deception can impact control flow analysis by increasing the number of paths 

in a program or by hiding distinct paths in a program. Control flow obfuscation 
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techniques such as control flow flattening cause the control flow of a program to be 

more difficult to identify and follow statically. Chapter 4 discusses how the application 

of deceptive patches can alter control flow and increase attacker workload to develop 

exploits based on patches. 

Symbolic Execution A more efficient fuzzing technique is symbolic execution, 

which uses symbolic or representative input values based on conditionals in code to 

enumerate the paths throughout a program [45]. This technique can also be used to 

dynamically identify new paths that are executed during runtime between a patched 

and unpatched program. Identifying the different paths throughout a program and 

new paths could expose the behavior of a patch and provide information about in­

put values necessary to exploit a vulnerability [38]. We apply symbolic execution to 

program analysis as an indication of the workload required by an adversary perform­

ing program analysis. Deception can increase this workload by adding fake branch 

statements in code. Chapter 4 explores this concept in more detail. 

2.6 Deception 

Deception has been used in computing since the 1970s [46–49]. Since its introduc­

tion, a variety of deceptive tools have been developed to bolster computer defenses. 

Examples of deceptive tools are those that generate decoy documents [50], honey-

files [51], as well as the Deception Toolkit [52]. These documents are planted to 

attract attention away from critical data or resources and alert defenders of potential 

intrusions or exfiltration attempts. Though the negative applications of deception 

receive most of the focus — a phishing attack that resulted in millions of stolen 

credentials or malware that compromises machines across the world — benevolent 

applications of deception exist. An in depth analysis of benevolent deception can 
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be found in [53, 54]. Below we present the definition of deception that we will use 

throughout this work. Additional work on military deception, deceptive theory and 

taxonomies have also been addressed, but analyzing this research is outside the scope 

of this dissertation [55–58]. 

2.6.1 Working Definition of Deception 

Deception has varying definitions based on different psychological principles. The 

definition we will be working with is as follows: Planned actions taken to mislead 

and/or confuse attackers/users and to thereby cause them to take (or not take) specific 

actions that aid/weaken computer-security defenses [59, 60]. 

The above definition shows that an actor’s intent to manipulate an individual’s 

perception is the main principle of deception. In the use of deception, one party 

intentionally alters, creates or hides information to influence the behavior of other 

parties. 

In practice, deception can be separated into two components that work in tandem. 

One element is hiding the real - dissimulation, and the other is showing the false ­

simulation. Below is a general taxonomy of deception from prior work by Bell et 

al. [61, 62] that we use throughout this dissertation: 

1. Dissimulation: hiding the real 

(a) Masking 

(b) Repackaging 

(c) Dazzling 

2. Simulation: showing the false 

(a) Mimicking 
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(b) Inventing 

(c) Decoying 

Using these components of deception, we evaluate the effectiveness of deception’s 

application to security. Specifically, we will look at deception’s application to software 

patching in non-real time systems. 

2.6.2 Applying Deception to Software 

Program Obfuscation Obfuscating code can be carried out in a variety of ways. 

One technique makes code difficult to understand and read by reorganizing statements 

or altering statements that hide a program’s semantics. Another technique makes the 

behavior of code more difficult to understand. Introducing noise to output can make 

this more difficult to understand. Prior work by Collberg et al. provides a taxonomy 

of software obfuscation techniques [63, 64]. 

Software Diversity Software diversity is an area of study that researches ways to 

create a more diverse software base. Different versions of a program that all reach 

the same output using different techniques and instructions limit the reach of any 

one exploit developed against a vulnerability exposed in a program. This makes 

the attackers’ task of generating an exploit with far-reaching success more difficult 

to accomplish because multiple versions of an exploit may have to be developed to 

achieve the same result of compromise. Research by Larsen et al. provides an overview 

of software diversification [65]. 
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2.6.3 Deceptive Patches 

Diverse Patch Applying software diversity to software security patches is a spe­

cific application of Moving Target Defense (MTD) techniques [66]. Patch diversity 

addresses the mono-culture problem created by current patching practices and could 

increase the resources needed to develop patch-based exploits. A framework presented 

by Coppens et al. introduces the idea of using diversification to protect patches 

by releasing different versions of the same patch to end users [67]. Because there 

could be multiple patches released for a single vulnerability, attackers must develop 

multiple exploits for each version of a patch to have the potential for a widespread 

attack [65, 68, 69]. This dissertation builds on these frameworks by showing how di­

versification can be realized using current patching protocols. Chapter 5 presents a 

framework using currently available tools to re-release diversified versions of patches. 

Faux Patch A faux patch is composed of fake patches for vulnerabilities that do not 

exist in the same sense that a traditional patch is composed of legitimate patches for 

vulnerabilities that do exist. Fake patches should be indistinguishable from legitimate 

patches and force adversaries to expend resources searching for a vulnerability that 

does not exist. A faux patch, in combination with a traditional patch, creates a ghost 

patch. We study faux patches applied to input validation vulnerabilities in Chapter 

4. Input validation vulnerabilities occur when developers do not include checks and 

assertions that validate data input into a program. The traditional method of fixing 

this type of vulnerability is to add conditional and/or assertion statements to the 

code that can detect invalid input [38]. Thus, we use deception to take advantage of 

this commonly used technique to fix this type of vulnerability. Fake patches share 

similarities with decoy documents [50, 51, 70, 71] and decoy passwords [72], as they 

are all red herring techniques [73]. 
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Fake patches incorporate properties from legitimate patches, such as boundary 

checks, value verification conditional statements, and permission checks but do not 

alter program semantics. Prior work has suggested implementing and publicizing 

faux patches, but no experimentation has been conducted on this topic [42, 74]. We 

discuss our treatment of adding fake patches to code in Chapter 4. We develop a 

compiler-based implementation that adds fake conditional statements to programs 

and analyze the impact of the fake code. We analyze both runtime and workload 

impact of these faux patches on programs and present our findings. 

Obfuscated Patch An obfuscated patch fixes a legitimate vulnerability but is ide­

ally designed to be infeasible to reverse engineer and uncover the underlying flaw. 

These patches increase the effort necessary for the adversary to identify the vulnera­

bility being fixed by the patch. Because these patches fix legitimate vulnerabilities, 

they do alter the semantics of the program. The goal of these patches is to confuse 

attackers as they develop exploits, burying the actual vulnerable code in layers of 

obfuscated patch code. Prior work in this area has explored code diversification [67], 

control flow obfuscation [63, 75], and encrypting patches [74]. 

Active Response Patch An active response patch will fix the underlying vulnera­

bility, but will respond to adversarial interaction as if the vulnerability is still present 

(and potentially issue a notification of the intrusion) [76]. When interacting with an 

active response patch, attackers should ideally be unable to identify whether the re­

mote system is patched or vulnerable. The main goal of these patches is to influence 

attackers to believe their exploit was successful. This will allow defenders to monitor 

the adversary’s actions throughout his/her attack. Prior work has suggested these 

types of patches would be effective against remote attackers [77, 78]. 
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The adversary is assumed to have access to the patch, though even with this 

knowledge they should be unable to achieve a meaningful advantage in differentiating 

between interactions with a patched and unpatched system. We show that of these 

three deceptive patch techniques, active response patches are the most likely to satisfy 

a meaningful security definition and be realized and deployed in practice. 

2.7 Related Work 

Work by Arujo et al. introduces the idea of a honeypatch [77]. A honeypatch is 

composed of two major parts. The first component fixes the vulnerability and the 

second component is a detection element that actually can detect when an attack is 

occurring. Thus, if malicious input is received, this input is detected as malicious and 

then execution is transferred to a honeypot environment that has the same state as the 

original machine, including the exploited vulnerability and other vulnerabilities that 

have been intentionally left in the honey pot. Thus, the behavior of patched compared 

to unpatched machines appears equivalent when in reality, the patched machine is 

protected against attacks exploiting the associated vulnerability [77]. Zamboni et 

al. similarly study how patches can raise alerts once an attack is detected [13]. The 

limitations with these works include the lack of automation to insert honeypatches 

into vulnerable code and the dependency on an attacker’s inability to identify a 

honeypot environment. Specifically, the ability to identify honeypot environments 

has been shown in research [79] and during live exercises [80]. 

Crane et al. present a framework that describes how code can be instrumented 

to place fake instructions in locations where an attacker expects real instructions. 

These instructions would not be used by legitimate programs, but send information 

to defenders if they are executed [81]. The main limitation of this work is the lack of 

implementation and analysis that shows the feasibility of this technique in practice. 
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Bashar et al. discuss how patch distribution can be achieved without leaking 

information and providing some analysis of applying deceptive techniques as a solution 

[74]. This dissertation expands on concepts presented in this work by implementing a 

fake patch insertion compiler and providing a software security development protocol 

that applies software diversity to patches. 

This dissertation advances the field of deceptive patching by analyzing a formal 

model analyzing the impact of deception on software security patching, implementing 

an automated fake patch compiler, and using this implementation to perform analysis 

on fake patch generation. 



26 

3. A MODEL OF DECEPTIVE PATCHING 

This chapter presents a model of deceptive patches. This chapter examines the space 

of deceptive patching by first exploring the four basic elements of a software patch. 

This allows us to overlay deceptive principles onto the patching model to create a 

model of deceptive patches. Showing how the deceptive patch model interacts with 

the cyber kill chain attack model identifies the potential impact deceptive patches 

have on the stages of an attack. The cyber kill chain model is ideal for analyzing 

deceptive patches because it captures the attack process, including exploit generation. 

3.1 Patch Components 

The space of patches is categorized into four areas that have distinct properties 

from each other. Each category embodies a unique set of challenges and solutions for 

deceptive applications. This also helps to provide recommendations, suggestions and 

protocols for applying specific deceptive techniques to certain areas and expose areas 

where deception is infeasible or redundant. Our model of a patch is separated into 

four categories. 

•	 Software Architecture - The physical and measurable components of a patch. 

This includes elements such as patch size (Lines of Code (LoC), memory size), 

loops, conditional statements, and variables. These elements can be measured 

without executing a patch. 

•	 System Input and Output - The activity of a patch. System Input and Output 

captures the behavior of a patch, including input into and changes in machine 
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state as a result of a patch. These metrics can be observed while a program is 

executing before, during and after patch code executes. These metrics can also 

be observed if code is symbolically executed. 

•	 System Architecture - Where the patch is located. Within the vulnerable func­

tion, in the firewall or outside the vulnerable function are all viable locations 

for a patch. 

•	 Deploy and Install Chain - The public release stating a patch is available. This 

is how end users are notified that a patch is available. Also, the information 

portrayed to end users during a patch’s installation is included in this chain. 

These categories model the elements of a patch. These are the building blocks of 

a patch, and these are the elements to which deception has been and can be applied. 

3.1.1 Software Architecture 

Software architecture encompasses the structural make up of a patch and all at­

tributes that can be measured from them. This includes any information that can be 

gathered from static analysis or running tools on the patch, whether the patch has 

been installed or not. Any information that can be gained without explicitly execut­

ing the patch falls in this category. This includes LoC, patch size in memory, paths 

in a patch, number of loops, conditional statements, number of variables, number of 

basic blocks, coding language and variable names. 

3.1.2 System Input and Output 

System input and output (System I/O) includes elements of a patch that are in­

put into a patch, present when a patch commences execution, or output as a result 
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of executing the patch. For example, this category consists of program runtime of 

a patched program, register values during patch execution and dynamic control flow 

during execution. System input and output also encompasses information that may 

be leaked during the execution of a patch. For example, a patch that prevents spe­

cific input values leaks information about the state of the program as well as the 

functionality of a patch [82]. 

3.1.3 System Architecture 

System Architecture elements of a patch include where the patch may be placed. 

The basic idea is that a patch has to be placed somewhere within the computing 

ecosystem. Wrapper patches are located outside the function that is vulnerable but 

detect pre and post conditions [13]. Data patches are implemented in firewalls and 

on sensors that detect malicious traffic well before reaching any vulnerable machine 

[12, 83]. 

3.1.4 Deploy and Install Chain 

Deploy chain elements of a patch include any publicly available information of a 

patch that can be downloaded and installed. This information can be pushed to end 

user machines and displayed via update applications, email, or placed on software 

vendor websites for users to download. 

Install chain includes elements concerning installing the patch and explaining sec­

tions of a program that will be altered. Elements such as ease of understanding, ease 

of installing and the feedback mechanisms that are provided as a patch is installed are 

other parts of the install chain. In addition to the code, a patch includes information 
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that provides notifications to system administrators and end users about the state of 

patch installation and files that were changed, added or removed. 

The types of notifications within this category are as follows: 

•	 Identification - information indicating that a patch will be released or has been 

released. 

•	 Release - information provided at the moment a patch is released. This notifi­

cation could be incorporated with the identification notice. 

•	 Download - information displayed when a patch is downloaded onto a machine. 

•	 Execution - information presented when a patch is installed on a machine. 

•	 Result/Outcome - information shown regarding the successful or unsuccessfully 

installed on a machine. 

3.2 Applying Deception to Patch Components 

Each element of a patch can be deceptively influenced. We explore the basic 

components of applying each principle of deception to each element of a patch to serve 

as building blocks for more complex deceptive patches/combinations of deceptive 

principles within a deceptive patch. We also provide prior work/research or point to 

specific chapters within this dissertation for each deceptively influenced component 

of deception. 

3.2.1 Deceptive Software Architecture 

Deceptive software architecture applies deceptive techniques to the software ar­

chitecture, or structural attributes, of a patch. This includes elements such as coding 



30 

T
ab

le
 3
.1
.:

 M
o
d
el
in
g 
th
e 
S
p
ac
e 
of

 D
ec
ep
ti
ve

 P
at
ch
in
g.

 G
ra
y

 C
el
l 
B
ac
k
gr
ou

n
d

 I
n
d
ic
at
es

 a
n

 I
n
fe
as
ib
le

 C
at
eg
or
y.

 G
re
en

 C
el
l 

B
ac
k
gr
ou

n
d

 I
n
d
ic
at
es

 a
 C

at
eg
or
y

 t
h
at

 i
s 
D
is
cu
ss
ed

 i
n

 t
h
is

 D
is
se
rt
at
io
n
.

S
o
ft
w
a
re

 A
rc
h
it
e
ct
u
re

 
S
y
st
e
m

 I
n
p
u
t 
a
n
d

 O
u
t­

p
u
t 

S
y
st
e
m

 A
rc
h
it
e
ct
u
re

 
D
e
p
lo
y

 
a
n
d

 
In

st
a
ll

 
C
h
a
in

 
M

a
sk

 
h
id
e 

p
at
ch

 
ar
ch
it
ec
tu
ra
l

co
m
p
on

en
ts

 
h
id
e 
p
at
ch

 i
n
p
u
t 
an

d
 o
u
t­

p
u
t 

h
id
e 

th
e 

lo
ca
ti
on

 
of

 
a 

p
at
ch

 
h
id
e 
p
at
ch

 n
ot
ifi
ca
ti
on

s

R
e
p
a
ck
a
g
e

 
h
id
e 
th
e 
re
al

 p
at
ch

 w
it
h
in

so
m
et
h
in
g 

el
se

 
th
at

 
is

 
fu
n
ct
io
n
al

 

ac
ti
ve

 r
es
p
on

se
, 
h
id
e 
th
e

b
eh
av
io
r 
of

 a
 p
at
ch

 w
it
h
in

ot
h
er

 b
eh
av
io
r 

h
id
e 

th
e 

lo
ca
ti
on

 
of

 
a 

p
at
ch

 
w
it
h
in

 
so
m
et
h
in
g 

el
se

 

h
id
e 

th
e 

n
ot
ifi
ca
ti
on

 
of

a 
p
at
ch

 w
it
h
in

 s
om

et
h
in
g

el
se

 

D
a
zz

le
 

m
ak
e 
th
e 
st
ru
ct
u
re

 o
f 
th
e

p
at
ch

 c
on

fu
si
n
g,

 o
b
fu
sc
at
e

th
e 
co
d
e 

ra
n
d
om

 
or

 
co
n
fu
si
n
g 

re
­

sp
on

se
 

m
ak
e 
th
e 
lo
ca
ti
on

 c
on

fu
s­

in
g 
or

 r
an

d
om

 
m
ak
e 
th
e 
n
ot
ifi
ca
ti
on

 c
on

­
fu
si
n
g,

 
p
u
zz
li
n
g,

 
h
ar
d

 t
o 

re
ad

 

M
im

ic
 

fa
ke

 
p
at
ch

 
th
at

 
ex
h
ib
it
s 

st
ru
ct
u
ra
l 

ch
ar
ac
te
ri
st
ic
s

of
 a

 r
ea
l 
p
at
ch

 

fa
ke

 
p
at
ch

 
th
at

 
ex
h
ib
it
s 

b
eh
av
io
ra
l 
ch
ar
ac
te
ri
st
ic
s

of
 a

 r
ea
l 
p
at
ch

 

fa
ke

 p
at
ch

 t
h
at

 s
h
ar
es

 l
o­

ca
ti
on

 
ch
ar
ac
te
ri
st
ic
s 

to
 

re
al

 p
at
ch
es

 

fa
ke

 n
ot
ifi
ca
ti
on

 t
h
at

 e
x
­

h
ib
it
s 
ch
ar
ac
te
ri
st
ic
s 
or

 a
re
al

 p
at
ch

 n
ot
ifi
ca
ti
on

 

In
v
e
n
t 

fa
ke

 
p
at
ch

 
th
at

 
ap

p
ea
rs

 
re
al

 b
u
t 
it

 i
s 
co
m
p
le
te
ly

m
ad

e 
u
p

 

fa
ke

 p
at
ch

 b
eh
av
io
r 
th
at

 is
co
m
p
le
te
ly

 m
ad

e 
u
p

 
fa
ke

 l
o
ca
ti
on

 t
h
at

 i
s 
co
m
­

p
le
te
ly

 f
ab

ri
ca
te
d

 
fa
ke

 n
ot
ifi
ca
ti
on

 o
f a

 p
at
ch

th
at

 
is

 
co
m
p
le
te
ly

 
m
ad

e 
u
p

 
D
e
co

y
 

fa
ke

 p
at
ch

 t
h
at

 i
s 
st
ru
c­

tu
re
d

 s
u
ch

 t
h
at

 i
t 
w
il
l 
at
­

tr
ac
t 
at
te
n
ti
on

 

fa
ke

 b
eh
av
io
r 
m
ea
n
t 
to

 a
t­

tr
ac
t 

at
te
n
ti
on

 
fr
om

 
an

 
ad

ve
rs
ar
y

 

fa
ke

 l
o
ca
ti
on

 o
f 
a 
p
at
ch

 i
n

a 
co
m
m
on

ly
 v

is
it
ed

 a
re
a 

su
ch

 
th
at

 
th
e 

p
at
ch

 
is

 
in
v
it
in
g 

fa
ke

 n
ot
ifi
ca
ti
on

 m
ea
n
t 
to

at
tr
ac
t 
at
te
n
ti
on

 



31 

language, lines of code, number of basic blocks, variable names, memory size, basic 

block ordering, control flow and other elements that can be collected using static 

analysis tools or observation. It can also be said that these elements are gathered 

without executing the patch. 

Mask Masking software architecture can be achieved by completely hiding one or 

more elements of a patch’s structure. Examples include encrypting a patch, hiding 

the size and preventing the size from being calculated, or hiding the order of basic 

block execution [74]. Hiding these elements does not mean that they have to truly 

be invisible. For a patch to actually be applied, there is necessarily some change that 

the system must undergo. The key for hiding this information is to make it such 

that the software architecture elements cannot be detected by an adversary. Even 

with this relaxed definition, masking software architecture is infeasible given current 

technologies and standards of practice. The structural information about a patch can 

be leaked using side channel information. As a concrete example, if a patch’s code 

is encrypted, it must be decrypted to be read on a machine for execution. Thus, an 

attacker can collect information on the commands being executed within an encrypted 

block of code by observing the instructions being called once this block is entered by 

a process. 

Repackage Repackaging software architecture components can be achieved by en­

veloping these elements within another container. Examples include interweaving a 

patch within another program. Prior work in software diversity can be applied to 

repackaging software architecture [65, 67, 84]. 
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Dazzle Dazzling software architecture components attempts to confuse an adver­

sary. Examples include obfuscating source code [63, 64, 85–88]. Chapter 5 applies 

dazzling to software security patch architecture. 

Mimic Mimicking software architecture components creates fake copies of real patches. 

These fake copies look and behave similarly to their real counterparts. Chapter 4 and 

work by Colbert et al. [63] and Crane et al. [81] explores mimicking software archi­

tecture in more detail. 

Invent Inventing software architecture components applies new and fabricated be­

haviors, characteristics and concepts to the software architecture of patches. These 

elements should appear real. Collberg et al. research the impact of adding bogus 

code to programs in an effort to obfuscate [89]. 

Decoy Decoying software architecture components is similar to mimicking, but it 

is meant to attract attention away from the real elements. Decoys do not completely 

appear exactly as their real counterparts, but they have similarities such that they 

appear real. Chapter 4 applies decoy techniques to software security patch architec­

ture. 

3.2.2 Deceptive System Input and Output 

Deceptive system input and output applies deceptive techniques to the input and 

output of a patch. This component of a patch represents the behavior of a patch. This 

can also be thought of as the stimulants to activate a patch, the program or machine 

state during patch execution and after patch execution. This is all the information 

that can be observed or calculated from a patch executing with inputs. 
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Mask Masking system input and output applies deceptive techniques to prevent 

input or output from being detected or measured. This suggests that before a patch 

executes and after a patch executes, program and/or machine state remain the same 

and changes cannot be measured or detected. 

This deceptive principle is infeasible under system input and output as machine 

state must be altered (i.e. at the least the instruction pointer is incremented with a 

NOP instruction) once a line of code is run. 

Repackage Repackaging system input and output involves enveloping any patch 

behavior within another vehicle such that the legitimate responses or input are not 

observed or detected. An example of a repackaging system input and output can be 

found in the REDHERRING tool [77, 78] as well as work by Crane et al. [81]. 

Dazzle Dazzling system input and output creates confusing responses or makes the 

response from or input to a patch confusing. One way to implement such an approach 

would be to provide random responses to input. Work by Stewart [90], Goh [91] and 

Balepin et al. [92] discuss responding to intrusions using various techniques, including 

dazzling. 

Mimic Mimicking system input and output entails copying legitimate input or out­

put, setting system state and using that as the response or input into a patch where 

the patch’s state or response is different. Thus, the patch acts like and appears to an 

observer as another patch. Arujo et al. [77] and Crane et al. [81] apply this principle 

to deceive potential adversaries. 

Invent Inventing system input and output creates elements to present a new real­

ity. This principle provides the most flexibility to create new content and influence 
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adversary decision making. Collberg et al. explain concepts and provide examples of 

bogus control flow in programs [63]. 

Decoy Decoying system input and output copies characteristics of legitimate system 

input and output to attract attention. Arujo et al. apply this principle to patch 

responses from honeypots [77]. 

3.2.3 Deceptive System Architecture 

Deceptive system architecture applies deceptive techniques to the system architec­

ture through a patch. This component of a patch represents the location of a patch 

within the system architecture. It can be said that system architecture is crafting, 

identifying and implementing where in the system a patch will be located. Studying 

where a patch can be implemented and identifying different locations where a patch 

can be implemented in turn can provide information about a patch as well as about 

the state of a system. Adding deceptive techniques to a patch’s location could make 

the patch itself more difficult to exploit. 

Mask Masking the system architecture of a deceptive patch involves concealing the 

exact location of a patch. This makes the patch location non-observable. This also 

has similarities to masking the software architecture of a patch. Because a patch 

changes software by adding, removing or editing some code, the location of a patch 

is infeasible to mask. 

Repackage Repackaging the system architecture of a deceptive patch places a patch 

in another location where the new location serves a different purpose. Repackaging 

system architecture is also similar to repacking software architecture. Crane et al. 
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apply repackaging to create beaconing Return-Oriented Programming (ROP) gadgets 

[81]. 

Dazzle Dazzling the system architecture of a deceptive patch attempts to confuse 

an adversary regarding the location of a patch. This is a prime example of applying 

moving target defense techniques to patches. Making the location of a patch con­

fusing and unstable makes exploiting the patch more difficult as the system may not 

consistently respond. MTD tactics and procedures, which have mainly been applied 

to computer networking, fall within this principle of deception [66, 93–97]. 

Mimic Mimicking the system architecture of a deceptive patch copies the location 

of a patch and implements or applies that in another location or system but shows 

some false components. One aspect of making a system seem to have a patch at a 

specific location, when in reality, all that is implemented is a shell. Mimicking system 

architecture is similar to mimicking the software architecture of a patch. 

Invent Inventing system architecture of a deceptive patch involves creating a new 

reality about the location of a patch. This means that fake information about a 

patch is provided. This could mean that the patch itself is fake, similar to inventing 

software architecture, or that the location of a real patch is fake. 

Decoy Decoying the system architecture of a deceptive patch involves placing false 

patches in locations that are attractive to an adversary. This idea is meant to shift 

attention toward these locations and away from other legitimate or more vulnera­

ble areas. This type of patch is also closely related to decoy software architecture 

elements. Crane et al. apply this principle by implementing decoy ROP gadgets 

where the real gadget(s) are expected with beaconing capabilities and their security 
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implications [81]. Chapter 5 addresses the application of repackaging and dazzling to 

system architecture. 

3.2.4 Deceptive Deploy and Install Chain 

Deceptive deploy and install chain applies deceptive techniques to the deploy chain 

of a patch as well as the installation process of a patch. This includes notifications 

before, during and after patch installation, the results of a patch, input into a patch 

and register values as a result of the patch execution. This component of deceptive 

patches is influenced by work studying deception within consumer advertising [98,99]. 

Mask Masking deploy and install chain elements of a deceptive patch involves hid­

ing or concealing the notification information such as text, images, and sounds. This 

information notifies end users that a patch is available to install and provides status 

updates during as well as after the installation of a patch. Hiding this information 

and side channel leaks can be accomplished by not releasing any information about 

a patch, its effects on a system or the success or failure of a patch. Prior work 

has discussed the economic implications of hiding vulnerability disclosure and patch 

notifications [100]. 

Repackage Repackaging deploy and install chain elements of a deceptive patch 

will hide notifications about the presence of, installation of and success of a patch 

within other objects, code, data, etc. A simple example is to use stenography to 

hide a textual message about the contents of a patch within an image or within a 

separate patch’s description. Chapter 5 discusses the application of this principle by 

repackaging old deploy and install chain notification in re-released patches. 
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Dazzle Dazzling deploy and install chain elements of a deceptive patch makes these 

notifications confusing to identify, view or understand. The real notification data 

could be written in a different language or provided to an end user in some way 

that takes time and resources to observe clearly/in a traditional manner. A simple 

example is to mix the letters in the notification text to make it unreadable without 

expending additional resources. 

Mimic Mimicking deploy and install chain elements of a deceptive patch copies the 

syntax and semantics of other deploy and install chain instances from other patches. 

Using the same structure, wording and flow of information to the end user as another 

patch as well as fabricating this information is an example. 

Invent Inventing deploy and install chain elements of a deceptive patch creates 

new realities about a patch being available or about the installation process. Fake 

notifications can be provided that create a new reality that vulnerabilities in code 

are being fixed by a patch. An example is to release a notification that says a patch 

is available for a vulnerability when there is no patch, or notifications during the 

installation of a patch can all be false. 

Decoy Decoying deploy and install chain elements of a deceptive patch introduces 

fake notifications that are attractive to adversaries. These notifications appear promis­

ing in terms of being useful to accomplish an adversary’s goal(s) and elicit further 

investigation. 

3.2.5 Combining Deceptive Patch Elements 

Each of the above deceptive patch categories, apart from those that have been 

identified as infeasible, can be combined with other deceptive patch categories. The 
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combinations used to develop a deceptive patch are based on the needs of as well as 

the attack vector that has been identified by the developer. For example, if the patch’s 

code is accessible by an attacker, the software architecture, system input and output, 

system architecture, as well as deploy and install chain elements are observable. Thus, 

deception could be applied to one or multiple patch elements to deceive attackers. If 

the patch’s code is not accessible, then deception could only need to be applied to 

the system input and output to deceive attackers. The order that multiple deceptive 

techniques are applied to a program is dependant on the needs of the developer and 

the program being patched. For example, if deception is being applied to both the 

system input and output and the software architecture, and the attacker can view 

the patch, applying deception to the system input and output first and then applying 

deception to software architecture to hide the real patch and/or show false elements 

layers the deceptive techniques that have been applied. 

Prior work combines multiple categories of deceptive patches. REDHERRING 

combines both dazzling and mimicking system input output [77]. Faux patches, 

explained in more detail in Chapter 4, combines mimicking and decoying software 

architecture. 

3.3 Deceptive Patching Approach Discussion 

As part of this research, key details that influence how deceptive patches are 

designed and implemented must be discussed. This section compares perspectives of 

patching code and explains why we believe our approach best accomplishes the goal 

of influencing an attacker’s decision making. 
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3.3.1 Deceptive Patching vs. Traditional Patching 

The main goal of traditional patches is to remove the vulnerability from the code. 

First, developers detect or are notified of a vulnerability or existing exploit for their 

program. If they have access to the source code, they can make the necessary changes 

to address the vulnerability, making any exploit(s) against that vulnerability harm­

less. If they do not have access to the source code, an exploit signature can be created 

and applied to a firewall to detect high level elements of the exploit as it travels on 

the network. Traditional patches are beneficial because they improve the security of 

a function by addressing the vulnerability when implemented correctly and preserve 

the main functionality of the code. Simultaneously, traditional patches can weaken 

systems because they leak information to an attacker about the system’s state. These 

patches expose flaws to attackers that they can utilize to gain elevated privileges, 

steal data and/or perform malicious unauthorized actions [42]. 

Deceptive patches have two primary goals. The first is to address the vulnerability 

present in the code. This goal has the same security benefits as traditional patches. 

The second goal is to influence an attacker’s decision making. Deceptive patches can 

themselves be fake or complex. These types of patches can influence an attacker to 

develop exploits for fake vulnerabilities, for an incorrectly assumed vulnerability, or 

waste time and resources. Deceptive patches can also return data that attackers or 

malicious programs expect or believe to be confidential, is fake, or is misleading based 

on their complexity. Because the nature of these patches is to fix the issue as well 

as deceive an attacker trying to exploit the vulnerability, they may not expose the 

vulnerability to an attacker as easily as traditional patches. 

Keeping an attacker’s interest is important for the success of deceptive patches. 

These patches also have a psychological effect on attackers. Future attacks could 

be prevented or attackers may approach systems much more cautiously if they have 



40 

knowledge that deceptive patches have been implemented in the system they are 

attacking. Without sure knowledge of how the deception works or a way to verify the 

information they receive, malicious actors will be more wary to attack systems. 

Thus because of the added benefits of deceptive patches, namely the psychologi­

cal effect and the potential for counter-intelligence gathering by defenders, deceptive 

patching has the potential to improve program security more than traditional patch­

ing. Thus, this research will analyze deception’s application to patching and potential 

impact on software security. 

Deceptive Patching Limitations Deceptive patches are not without limitations. 

A list of deceptive patch limitations follows: 

1. The potential increase in time to develop deceptive patches.	 Because decep­

tive techniques must be studied and analyzed for different types of vulnerabili­

ties, creating a deceptive patch may be more involved compared to traditional 

patches. Researching and developing ways to optimize deceptive patch creation 

will reveal techniques to decrease the development time. 

2. The risk of counter-attacks. An attacker with knowledge that deception exists 

on a system can purposefully use exploits that they know a defender expects 

and give defenders the false idea their defenses are effective. 

3. The lack of concealing the general location of actual vulnerabilities.	 Decep­

tive patches can dazzle the legitimate patch locations by injecting many false 

patches, potentially increasing the workload required to identify actual vulner­

abilities based on a patch. This does not completely hide the location of the 

actual vulnerability. 
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4. The increase in patch size. Adding fake code to legitimate patches will increase 

the memory size of a patch. 

3.4 Cyber Kill Chain Analysis 

In this section, we map each component of a patch onto the cyber kill chain model 

and show where deceptive techniques and tools that are associated with a particular 

component impact the kill chain [7]. The cyber kill chain model captures the series 

of steps an attacker performs to collect target information, develop and release an 

exploit and maintain presence in the compromised system. Table 3.2 provides a 

general overview of major types of patches in prior work as well as those that are 

addressed in this dissertation (listed by chapter title or section heading). Listing a 

deceptive patch concept or technique at a specific stage in the cyber kill chain suggests 

that the patch impacts decisions made during this phase. 

Many of the deceptive patch techniques and concepts impact the reconnaissance 

phase of the cyber kill chain. This occurs because exploits are developed based on a 

patch. When deception is applied, attackers will be influenced during the information 

gathering phase of the exploit development kill chain. Attackers use a patch to 

develop their exploit, so as they are studying the patch and attempting to understand 

its behavior, components, and information gathering, deception will influence the 

information they gather and their subsequent actions. This analysis is important 

because interrupting the cyber kill chain early affects the future steps in the sequence. 

Because deception impacts components within a patch used by the attacker to make 

decisions, and deception is observed by an attacker, the information gathered by an 

attacker may be deceptive. 

One observation from this table is that the weaponization phase is not affected 

by deceptive patching. The attacker is not prevented from creating an exploit and in 
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some instances, depending on the environment of the patch may be baited to make 

an exploit. This suggests that deceptive patching should be considered a supplemen­

tal defensive mechanism that is implemented alongside more traditional defensive 

techniques to provide resiliency against attacks. 

We also note that deceptive patches impact the Observe, Orient, Decide and Act 

(OODA) loop [102] decision making model in a similar manner compared to the cyber 

kill chain. The steps within this model are observe, orient, decide and act. This model 

describes the decision making process of actors engaged in conflict with the premise 

that completing the loop more quickly and accurately than an adversary results in a 

successful action taking place and gaining momentum. Deceptive patches impact the 

observe and orient stages of the OODA loop, influencing the remaining two steps in 

the decision making process. The consistency of our deceptive patch model with both 

the cyber kill chain and the OODA loop suggest that the model accurately represents 

the deceptive patch space. 

3.5 Modeling the Intended Effect of Deceptive Patching 

Deceptive patching can also be modeled in terms of the goals and outcomes. In 

this section we explore how each element of a patch, when deceptively implemented, 

impacts an attackers time to discover a vulnerability based on a patch as well as their 

time to develop an exploit. We first explore elements that make up an attackers’ 

timeline to attack and analyze how elements of a deceptive patch impact this timeline. 
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3.5.1 Attacker Timeline to Exploit 

An attacker follows a generic timeline as s/he develops an exploit based on a 

patch. Each component of the timeline builds on the prior segment such that each 

element’s time is the cumulative effect of all prior elements. 

Time to Identify Patch The time to identify a patch encompasses the time to 

identify that a patch for some software is available. Traditionally, this time is minimal 

as when a patch is publicly available, a notification is also released. This time applies 

to both benign end users as well as malicious adversaries. 

Time Lag This is the time window between when a patch is released and when a 

benign user actually downloads, installs and applies the patch. Bambenek explains 

that during this window, attackers use the patch to develop and release exploits, 

taking advantage of the unpatched systems [103]. Forced updates and hot patches 

attempt to shorten this time frame, making exploit generation more difficult. 

Time to Reverse Engineer The time to discover the vulnerability that a patch 

is fixing is the segment of time that begins once a patch is discovered and ends when 

the vulnerability being fixed is identified. This time period is unique to patch-based 

exploit generation as the patch itself fixes the vulnerability but also identifies the 

vulnerability being fixed. This is also the time segment that is immediately impacted 

by deceptive patching techniques. Lengthening the time to reverse engineer a patch 

to identify the legitimate vulnerability being fixed provides more time for end users 

to update their system. 

Time to Create/Generate an Exploit The time to develop an exploit is the 

time segment that begins once the vulnerability is discovered and ends once a re­
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liable exploit is developed. A reliable exploit is one that consistently exploits the 

vulnerability being fixed. Once an exploit is developed, this time segment stops. 

Time to Install Patch This is the time for benign users to install a patch on their 

system. This time includes the time to edit, add or remove files, perform checks, start 

and restart the system and to show that the patch was successfully installed on the 

machine. This period also includes the time for end users to verify the compatibility 

of patches with other programs running on their machines, legacy programs and 

standards [104]. 

Time Point Patch Release Identified The time point a patch release is identified 

is the exact time that either a benign user or malicious adversary discovers that a 

software security patch is available for download. This time point can be different for 

each class of user. 

Time Point Patch Executable Downloaded The time point a patch executable 

is downloaded represents the exact time that a benign user downloads a patch to 

install it on their system. We only represent the benign user’s time because we assume 

an attacker downloads the available patch quickly after discovery. Automatic updates 

using an update center that pulls patches from a central server to each individual 

machine attempts to decrease the time from patch release to patch download. 

Time Point Vulnerability Identified We identify the time point in which the 

vulnerability being updated by the patch is identified. This occurs once the patch 

is successfully reverse engineered. This is an implication that the code has been 

statically and/or dynamically analyzed. 
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Table 3.3.: Deceptive Patch Timeline Symbols
 

Time Symbol Description 
TP Time to identify a patch has been released 
TL Time between when a patch has been re­

leased and when it is installed by benign end 
user 

TI Time to install a patch, including the time to 
verify the patch is compatible with software 
on the machine to be updated 

TRE Time to reverse engineer a patch 
TCE Time to create/generate and exploit 
TA Time to attack 
TP RI Time point at which the patch release was 

identified 
TP ED Time point at which the patch executable 

was downloaded 
TV I Time point at which the vulnerability was 

identified 
TED Time point at which exploit was developed 

Time Point Exploit Developed The exact time when an exploit has been im­

plemented and tested and reliably exploits the vulnerability being patched. 

3.6 Chapter Summary 

This chapter presents and discusses a model of what composes a software secu­

rity patch, applies deceptive principles to this model and then maps specific deceptive 

patch tools and concepts onto the cyber kill chain. We discuss where gaps are present 

in the field and how they are addressed by concepts, implementation and analysis pre­

sented in this dissertation. We also analyze an economic model of deceptive patches 

and visualize how they influence patch-based exploit generation. 
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4. SOFTWARE ARCHITECTURE 

This chapter presents an approach to adding simulated patches to code. Using a 

compiler-based tool, fake patches are inserted that mimic integer input validation 

vulnerability patches. The choice to analyze deceptive patches for input validation 

vulnerabilities is based on the common patching structure used to patch legitimate 

input validation vulnerabilities in software [38]. These patches suggest that a vul­

nerability is present at a location where the vulnerability is not. We also analyze 

program runtime impact to identify how fake patches affect legitimate program exe­

cution as well as dynamic analysis runtime to measure the effect of fake patches on 

software path enumeration, which can be used to develop exploits. Finally, we discuss 

limitations to our approach. 1 

4.1 Motivation 

As described in Chapters 1 and 2, attackers use techniques such as binary diffing 

and control flow analysis to reverse engineer patches and develop exploits for the 

vulnerability being fixed. As analysis techniques improve, the speed of patch-based 

exploit development improves, giving end users less time to protect their systems by 

applying the patch. One method to create more time for end users to protect their 

systems is to use deception to influence attackers, causing them to expend more time 

analyzing the patch compared to the time to analyze currently implemented patches. 

We implement a proof-of-concept compiler-based tool to insert deceptive patches that 

mimic legitimate patches. 

1Portions of this chapter are taken from Ghost Patches: Faux Patches for Faux Vulnerabilities [8] 
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4.2 Technical and Approach Background 

Deception Fake patches are an application of showing the false by mimicking and 

decoying and hiding the real by dazzling. They show the false by including charac­

teristics of real patches, mimicking a real patch and attracting attention away from 

traditional patches as a decoy. Fake patches hide the real by reducing the certainty of 

which patches are real and which are decoys. This added uncertainty adds a layer of 

protection to legitimate patches by causing a greater potential for increased workload 

to exploit vulnerabilities based on patches. 

LLVM Lower Level Virtual Machine, LLVM, is a “collection of modular and reusable 

compiler tool chain technologies [105].” This tool started as a research project at the 

University of Illinois at Urbana-Champaign in 2000 by Vikram Adve and Chris Lat­

tner. The ghost patch implementation uses an LLVM pass to insert faux patching. We 

use LLVM because of its versatile front end compiler options, removing restrictions 

on source code language to implement and apply faux patches. 

Symbolic Execution Automatic exploit techniques use symbolic execution to gen­

erate malicious inputs to programs [38,44]. Symbolic execution uses branch statement 

conditional expressions to generate paths throughout a program. By generating sam­

ple input values for each branch of a conditional statement, each path in a program 

can be covered without the computational strain of a brute force approach. Once sym­

bolic execution is completed, all input and variable values that form a path through 

the program are known. Comparing the signatures from an unpatched program and 

a patched program can identify changes in the branches within each program and 

attackers can use these discrepancies to develop an exploit. Symbolic execution is 

applied to dynamic analysis within KLEE [106]. This tool creates symbolic execution 

signatures. We use the runtime of KLEE to indicate the amount of work necessary to 
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develop an exploit. An increase in runtime suggests that more patches throughout a 

program were discovered by the tool. This increase in paths to enumerate because of 

faux patches ideally results in a longer analysis time, which correlates to an increased 

workload to identify the legitimate path and associated patch. 

Input Validation Vulnerabilities This work targets input validation vulnerabil­

ities. A common patch to these types of vulnerabilities is to add boundary checks 

in the form of if-statements [38]. Thus, given a patched and unpatched program, a 

diff between the two programs will show additional branch statements in the patched 

version. These branch statements can be used to then determine input values that 

will exploit an unpatched program. 

4.3 Ghost Patching Approach 

This research studies how a fake patch can be implemented in conjunction with a 

traditional patch and measures its impact on program analysis and runtime. These 

fake patches should alter the control flow of a program, but not the data flow of 

information. Thus, given two programs, one with a ghost patch and the other with a 

traditional patch, the final output should be identical. 

Our approach is based on a common patching behavior that input validation 

vulnerabilities are fixed by adding conditional statements that validate the value of 

variables that can be tainted by malicious input [38]. Thus, to deceive attackers, we 

add fake patches to code that mimic these input validation conditional statements, 

making exploit generation using patches more resource intensive. 
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4.3.1 Threat Model 

We consider attackers who are using patches to develop exploits and have access 

to both patched and unpatched versions of a program, and can control and monitor 

the execution of both as our threat model. 

Ghost patching is designed for input validation vulnerabilities that have not been 

discovered by the public or do not have a widely available exploit. If there are scripts 

that already exploit a well known vulnerability, ghost patches can still be applied but 

with less effectiveness. Public exploit databases2 or “underground” forums could be 

monitored to determine if exploits have been developed. 

We specifically look at input validation vulnerabilities that involve integers. These 

vulnerabilities can be exploited because of a lack of boundary checking and can cause 

subtle program misbehavior through integer overflows or underflows. 

Finally, ghost patches target input validation vulnerabilities in enterprise scale 

systems. Real time systems are not suitable for ghost patches because adding con­

trol flow statements could increase the runtime of code, potentially violating time 

constraints of functions in these systems. 

4.3.2 Properties of Ghost Patches 

This work applies concepts from decoy documents to deceptive patches. Decoy 

documents are fake documents inserted into a file system or on a personal computer 

and are meant to intentionally mislead attackers. These documents also mimic real 

documents and are decoys meant to attract attention away from critical data. Bowen 

et al. and Stolfo et al. have conducted research on decoy documents [50, 70] and 

created a list of properties that decoy documents should embody. We slightly modify 

2E.g. https://www.exploit-db.com/ 

http:https://www.exploit-db.com
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Table 4.1.: Fake Patch Properties
 

Property Explanation Implementation 
Effort 

Non-interfering Fake patches should not interfere 
with program output nor inhibit 
performance beyond some thresh­
old determined on a case to case 
basis. 

Experimentation 

Conspicuous Fake patches should be “easy” to 
locate by potential attackers. 

Easy 

Believable Fake patches should be plausible 
and not immediately detected as 
deceptive. 

Easy 

Differentiable Traditional and fake patches 
should be distinguishable by de­
velopers. 

Experimentation 

Variability Fake patches should incorporate 
some aspect of randomness when 
implemented. 

Easy 

Enticing Fake patches should be attractive 
to potential attackers such that 
they are not automatically dis­
carded. 

Experimentation 

Shelf-life Fake patches should have a pe­
riod of time before they are dis­
covered. 

Experimentation 

these properties and present in Table 4.1 our list of fake patch properties as well as 

whether the property is trivial to implement or requires further experimentation. 

4.3.3 Types of Faux Patches 

Faux patches could be generated using a variety of different structures. Faux 

patches could be generated using a conditional statement with code in the body 

of the statement. We explore this construction in more detail as we discuss our 

implementation of faux patches. Faux patches can also be constructed as a loop. 
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These patches would perform some calculation that does not impact the data flow 

throughout a program but would alter the control flow. Because loops iterate multiple 

times during a program run, their impact on program runtime can be significant. 

Further analysis could identify acceptable loop conditional operators and values that 

impact program runtime within an acceptable threshold. Faux patches could also be 

one or more lines of code that calculate a value within a program. One example is 

to apply the concept of opaque predicates to create expressions that are trivial to 

calculate but difficult to understand [63]. Finally, faux patches could be implemented 

as entire functions. This type of faux patch inserts fake functions calls that appear 

to perform operations that do not impact data flow. 

4.3.4 Implementation Properties 

The implementation of fake patches applies deception to patching because it at­

tracts attention away from a traditional patch, but does not impact the data flow 

of the function being patched. Fake patches should be designed such that they are 

not marked as dead-code and removed from the binary as a result of compiler opti­

mization nor should they be trivial to identify by attackers. These patches should 

also address the properties outlined in Table 4.1. Implementation components of a 

fake patch should at a minimum include at least one randomly generated value and a 

conditional statement. Other implementation specifics depend on the actual program 

being patched. 

Control Flow Fake patches having conditional statements that alter control flow 

will make them apparent to attackers using static and dynamic analysis tools. This 

addresses the conspicuous property. This also mimics the trend of patches for input 

validation vulnerabilities. 
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Mimicking this trend could deceive attackers by showing changes that are expected 

but fake, addressing the enticing property. Experimentation will show how fake 

patches affect overall program runtime, addressing the non-interfering property. We 

implement fake patch conditional statements such that they include the destination 

or left-hand-side of an LLVM intermediate representation store instruction in the 

original program mathematically compared to a randomly generated value. The use 

of a random value addresses the variability property. 

We form the body of if-statements by adding code that solves different mathe­

matical expressions with the original program’s value as input. These expressions do 

not alter the value of the legitimate variable. Thus, data flow is preserved. The body 

of fake patch statements should be plausible for the program being patched. This 

suggests that the body of a fake patch should be developed based on the behavior of 

the program being patched. 

4.3.5 Post Testing 

After applying a ghost patch to software, further testing should be conducted for 

the following: 

1. Evaluating ghost patch impact on software runtime and program memory (i.e. 

lines of code). 

2. Verifying ghost patch does	 not introduce incompatibilities by applying unit 

testing. 

A ghost patch should be evaluated for its impact on the program’s performance 

to determine if it is feasible. This determination is dependent upon each program 

and the execution environment of the program. The memory impact of a ghost patch 

should also be considered. The size of a ghost patch should be reasonable for end users 



54 

to download and apply to vulnerable systems. Developers should establish an upper 

threshold such that the feasibility is measurable and can be validated. Conjectures 

about patch size and acceptable runtime are outside of the scope of this research. We 

do analyze the statistical impact of ghost patches on program runtime and program 

analysis. 

4.3.6 LLVM Workflow 

The workflow of our LLVM prototype begins with a traditionally patched file (we 

assume developers have previously created a traditional patch). First, this tradi­

tionally patched file is compiled using clang [107]. This creates intermediate repre­

sentation bytecode of the traditionally patched program. Next, this file is compiled 

a second time, applying our ghost patch LLVM pass. This pass adds one or more 

fake patches, which are also implemented in bytecode, after store instructions in the 

traditionally patched program’s bytecode. 

We choose store instructions because they are a natural instruction that prop­

agates data throughout a program. The store instruction transfers data from one 

location to another. Thus, placing fake patches after store instructions that identify 

boundaries directly after the data is stored in a variable provides the most spatial and 

temporal locality. By this we mean placing the patch right after the store instruction 

provides temporal locality in that the time between a vulnerable segment of code 

executing and the patch executing is minimized. By spatial locality, we mean that 

there is minimal space between the location of the vulnerable segment of code and 

the location of the patch. Other options for loading points of faux patches include 

load instructions, because this is another location where data is propagated through 

code. Also, load instructions could propagate malicious code, these could be insertion 

points. A final general option is specific patterns of instructions. An example is a 
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load followed by an add followed by a multiplication. We use conditional statements 

because these statements create branches within code that can be easily detected. 

This stage creates a new ghost patched program. Next, this ghost patched pro­

gram is compiled into binary using the clang compiler. If the file being patched is 

part of a larger project, the build tool for the project should be mapped to clang to 

ensure the project gets compiled with the correct flag(s). After the ghost patched 

code is compiled, the patched and unpatched (this file is before any traditional patch 

has been applied) binaries are supplied to a binary diff tool, such as bsdiff, to create 

a patch file that can be distributed and applied to unpatched programs. A work flow 

diagram of this process is shown in Figure 4.1. 

Fig. 4.1.: Complete Flow to Create a Ghost Patch Using LLVM and bsdiff. Green 
Shading Indicates Steps Added to Software Patching Process. 
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4.3.7 Implementation and Testing 

We implemented a proof-of-concept that addresses input validation vulnerabilities 

involving integer variables. We believe our approach can be extended to other variable 

types and data structures without loss of generality. Our implementation uses LLVM 

and is about 900 lines of C++ code. 

4.4 Ghost Patch Evaluation 

The prototype of the faux patch program was developed using an LLVM pass 

on an Ubuntu 14.04 x86 64 virtual machine with 2 cores and 4GB RAM. We used 

LLVM (version 3.4) to develop our pass because it includes a front end compiler 

supports optimizations to be developed and applied to programs agnostic of the coding 

language. 

Fake patches increase the number of branches in a program because of the con­

ditional statements that are added at store instructions. One method to quantify 

the impact of fake patches on both program runtime and program analysis is to use 

symbolic execution. Symbolic execution identifies paths through a program using 

symbolic inputs based on conditional statements throughout a program [38]. Attack­

ers can use symbolic execution to identify new paths through a program as well as 

the input values that cause these paths to be traversed. This analysis can be used 

to automatically identify inputs that satisfy the conditions to execute the code of a 

patch. This would provide attackers with the necessary information to develop an 

attack that exploits the vulnerability being fixed in unpatched programs by using 

input values that satisfy patched code conditions in unpatched programs. We apply 

symbolic execution to deceptive patches and use both the number of paths enumer­

ated as well as the analysis runtime to provide insight into the required workload 
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to analyze faux patched and unpatched programs. Specifically, we use KLEE [106] 

(version 1.3) to perform this analysis because of its compatibility with LLVM. 

4.4.1 Simple Example 

We evaluated our approach using the example below, which allows a user to en­

ter two values and then copies each value into an integer variable and lacks input 

validation code. Then, some operations are performed and the results returned. 

int calculate(int alpha, int beta); 

int main(){ 

int a,b,c; 

int d = 9; 

printf("Enter a value: \n");
 

scanf("%d", &a);
 

printf("Enter another value: \n");
 

scanf("%d", &b);
 

c = calculate(a,b);
 

printf("Value of C: %d\n",c);
 

a = b + d;
 

if(a > 27)
 

c = c * d;
 

else
 

b = a - b;
 



58 

d += d; 

return a; 

} 

int calculate (int alpha, int beta){ 

if(alpha > 88) 

return (alpha + beta); 

else 

return (alpha * beta); 

} 

We also showed the results of our approach using approximately 15 examples 

from a publicly available benchmark for the KLEE symbolic execution tool. This 

benchmark was created by NEC Laboratories America with the purpose of research 

and testing. 3 This suite includes programs with single source files that use input to 

perform various options such as filling in values of an array or calculating the sum of 

a variable in a loop. 

Experimentation To evaluate our approach, we compare the length of time for 

KLEE [106], a symbolic execution, dynamic analysis tool, to analyze a legitimately 

patched and faux patched version of the code. We use the runtime of KLEE to 

suggest the impact of a faux patch on attacker workload for exploit generation. We 

take advantage of the fact that each new branch will be analyzed because fake patches 

are indistinguishable from traditional patches from a software perspective. 

To show the effect of our approach on program analysis, we evaluate whether 

the time to dynamically analyze traditionally patched code is significantly different 
3https://github.com/shiyu-dong/klee-benchmark 
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statistically when compared to dynamically analyzing fake patched code using a t 

test. We also evaluated program runtime using this same experimental structure to 

determine a fake patch’s effect on program performance. 

4.5 Results 

4.5.1 Runtime Analysis 

Using our simple code example, we collected runtime values using the time com­

mand for both the original program and a faux patched program. Figure 4.2 shows 

the difference in program runtime between a fake patched program and the unpatched 

program across 100 executions. Using this data, we determined the statistical signif­

icance of this difference in runtime using a t test. We concluded that there was no 

statistical significance between the runtimes for the original program and the faux 

patched program. 

Fig. 4.2.: Difference in Faux Patched vs. Unpatched Simple Program Runtime 

Table 4.2 provides the t-test values that provide insight to the statistical signifi­

cance between the runtime of a faux patched and unpatched program. If the value 

in the t-stat column is greater than the value in the t-Critical two tail value column 
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Table 4.2.: t-test for Program Runtimes for Faux Patched vs. Unpatched Program 
(100 Runs per Program) 

Program Name t-stat value t-Critical two tail value 
ex12 2.114756796 1.973612462 
ex17 0.140895756 1.972079034 
ex21 -0.952802154 1.972017478 
ex23 0.523293161 1.972204051 
ex34 -0.123895226 1.972017478 
ex42 -0.082101492 1.972017478 

or less than the negation of the value in the t-Critical two tail value column, then 

the sets being measured have a statistically significant difference. For this analysis, 

this means that if one of the conditions holds true, then the program runtimes differ 

significantly. This would suggest that faux patches have a statistically significant 

impact on program runtime. 

Based on this table, one program’s runtime differs significantly between a faux 

and unpatched program. This statistically significant difference in runtime is caused 

by the program not having a significant number of instructions. Thus, adding faux 

patches almost doubles the program’s size, increasing program runtime. 

4.5.2 Program Analysis 

We collected values for the runtime of KLEE using the time command as it an­

alyzed an unpatched, traditionally patched and faux patched version of our simple 

code example. Figure 4.3 represents the runtime for our simple program across 100 

executions for faux patched, unpatched and traditionally patched versions. A t test 

using these values revealed that there is a statistical significance in KLEE’s runtime 

between a traditionally patched program and a faux patched program. This suggests 

that it is more resource intensive to analyze a faux patched program compared to a 
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Fig. 4.3.: KLEE Runtime Analysis for Simple Program 

traditionally patched program for our simple example, thus, analyzing ghost patches 

would also require more resources. 

We also show the impact of faux patches on the runtime of an example symbolic 

execution tool, KLEE [106] for programs in the KLEE-benchmark suite. The runtime 

of KLEE is an indication of the impact faux patches have on program analysis. We 

also show the differences in the number of paths between an unpatched and faux 

patched program. We omit outliers from graphs for visualization purposes. We also 

only include programs where the difference in the number of KLEE paths between 

faux patched and unpatched programs is nonzero. Of the 30 programs, there are 

16 programs that result in differences of KLEE paths between faux patched and 

unpatched programs. Of these 16 programs, 8 exhibit an increase in the average 

number of paths enumerated and 8 exhibit a decrease in the average number of paths 

enumerated. After further analysis, these programs that increase the average number 

of paths have symbolic variables that directly control the number of times a loop 

executes. Figure 4.5 shows the programs that exhibit a change in the number of 

KLEE paths excluding outliers. These outliers are programs that have a difference 

in the number of KLEE paths that is greater than 48. We remove these values 
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from the graph but include all programs with differences in the number of KLEE 

paths enumerated in Table 4.3. Within this table, there are also negative values. 

These values represent programs with fewer paths enumerated by KLEE in their faux 

patched version compared to the unpatched version. This occurs because the faux 

patched version has optimization techniques applied based on how the compiler adds 

faux patches. 

Fig. 4.4.: KLEE Runtime Analysis for KLEE-benchmark Programs in Seconds
 

Fig. 4.5.: KLEE Path Analysis for KLEE-benchmark Programs
 

We also performed an experiment testing correlation between the number of faux 

patches added to a program and the impact on KLEE’s runtime, number of paths 
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Table 4.3.: KLEE Path Differences for Programs in KLEE-benchmark Suite
 

Program Identifier Average Number of 
Conditional State­
ments Added 

Average Number of 
Paths Added from 
Faux Patch KLEE 
Analysis 

ex9 6.4 -0.15 
ex12 3 0.4 
ex16 12 221.4 
ex17 11.5 0.45 
ex20 9 -48.65 
ex21 4 6.6 
ex23 7 18.5 
ex25 187.65 797.15 
ex27 9.25 -5 
ex28 3 -5 
ex31 4 -4.3 
ex34 10 0.5 
ex39 4 -582.85 
ex42 3 0.3 
ex49 6 -51.85 
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and number of tests generated. We use this test to provide insight into faux patches’ 

impact on workload required to analyze a program. 

Fig. 4.6.: KLEE Runtime Analysis Increase
 

Fig. 4.7.: KLEE Path Enumeration Increase 

Figures 4.8, 4.9, and 4.10 show the change in runtime, paths enumerated and tests 

generated respectively using KLEE when the number of conditional statements added 

increases for each store instruction. We compare the program analysis values when we 
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Fig. 4.8.: KLEE Runtime Analysis for KLEE-benchmark Programs Given Increasing 
Faux Patch Additions 

Fig. 4.9.: KLEE Runtime Analysis for KLEE-benchmark Programs Given Increasing 
Faux Patch Additions 

add 1, 5, 10, 15, and 30 conditional statements per store instruction (this is equivalent 

to adding 2, 10, 20, 30, and 60 new branches or paths per store instruction). These 

graphs show that increasing the number of faux patches added to a program does 

not generally increase the analysis runtime, paths enumerated, nor tests generated. 

This suggests that the workload required to analyze faux patched programs is not 
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Fig. 4.10.: KLEE Test Analysis for KLEE-benchmark Programs Given Increasing 
Faux Patch Additions 

positively correlated to the number of faux patches in a program. We also provide 

the t-test values for KLEE runtime values for faux patched and unpatched programs. 

Table 4.4 shows that there are two programs where the difference between KLEE’s 

runtime for each program is statistically significant (ex23 and ex34). These variables 

in these programs that are symbolically represented are used in store instructions 

throughout the code or directly set the value of variables that are used in store 

instructions. Because faux patches use the store instruction to insert fake patches, 

the symbolically represented variables impact the path taken at a faux patch. Thus, 

symbolically executing the program with faux patches adds conditional statements 

that are directly impacted by the value of the symbolic variable. 

4.6 Discussion 

Based on testing of the KLEE-benchmarking suite, this section provides a more 

in-depth analysis of how ghost patching impacts these programs. Of the 30 programs 

tested, the average KLEE analysis runtime for analyzing faux patched programs in­
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Table 4.4.: t-test for KLEE Runtimes for Faux Patched vs. Unpatched Program (20 
Runs per Program) 

Program Name t-stat value t-Critical two tail value 
ex12 0.31772884 2.024394164 
ex17 -0.814844341 2.063898562 
ex21 1.299052449 2.028094001 
ex23 3.856578304 2.085963447 
ex34 -16.77526962 2.032244509 
ex42 1.516182129 2.079613845 
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creased when compared to unpatched programs. After further analysis, this increase 

is attributed to the increase in instructions that are added by the faux patch protocol, 

not an increase in the number of paths to analyze. This is supported by our analysis 

which shows the number of paths KLEE enumerates for faux patched and unpatched 

programs is equivalent but the number of instructions KLEE executes increases for 

faux patched programs. 

Programs that increase KLEE’s runtime analysis when faux-patched have simi­

larities that suggest key program characteristics for efficient faux patch application. 

Each of the programs with an increase in KLEE analysis runtime contain loops where 

the number of iterations is dependent, either directly or indirectly, on the symboli­

cally modeled variable. In these programs, the symbolically modeled variable is the 

input value of the program. In the two programs where a larger increase in the av­

erage number of paths between faux patched and unpatched programs is observed, 

the input variable that is symbolically modeled by KLEE is directly responsible for 

the number of iterations that the loop performs. Thus, as the value used for the 

symbolically modeled variable changes during each program execution instance, so 

does the number of paths throughout the program. The third program’s input vari­

able indirectly impacts the number of loops that are executed, thus, the impact on 

the number of paths is reflected by a small increase in the number of KLEE paths 

comparing faux to unpatched versions. 

The one consistent increase for all program is the positive increase in the number 

of branch statements in the code. At a minimum, this approach adds noise to code 

and when paired with legitimate patches, increasing the workload of attackers using 

binary diff and static analysis approaches. 

We also identified the types of conditional statements that were inserted as faux 

patches. Based on the three programs that saw an increase in KLEE analysis runtime, 
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there is no definitive ordering or ranking to the statements that are inserted into the 

code and an increase in analysis runtime or the number of paths. This suggests that 

the impact of faux patches is based on a combination of the selected value used in the 

conditional statements we well as the comparison operator used in these statements. 

4.6.1 Achieving the Ideal 

Based on our analysis, faux patches that are inserted at store instructions are best 

applied to programs with input variables that are written to use a store instruction. 

This corresponds to using the assignment operator, “=,” instead of a library call such 

as memcpy or strcpy. An additional characteristic of an ideal program is one with one 

or more loops where the number of iterations is delineated by the value of an input 

variable. Another characteristic of ideal programs is the store instruction is in the 

body of a while loop. Thus, the faux patch is evaluated each time the loop executes, 

which increases the number of branch points in the program. We see this behavior 

in Figure 4.7 with program ex16. The increase in the number of paths is caused by 

the value of the input variable controlling the number of loop iterations as well as 

the input variable being written to in a store instruction within the body of the loop. 

This same behavior is also evident in the same figure with program ex23, which also 

resulted in an increase in the number of paths enumerated for faux patched programs 

compared to unpatched programs. 

Patch Obfuscation There are limitations associated with ghost patches that could 

provide attackers an advantage in identifying fake patches and analyzing fake patched 

code. Attackers could use exploit generation tools that perform analysis in parallel 

[38] to distribute the analysis load across multiple machines and optimize exploit 

generation. One solution is to develop fake patches that increase the length of each 
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path in a program such that tools are unable to identify the legitimate patch and as 

a result cannot develop an exploit. Another solution is to implement polymorphic 

patches. Ghost patches can utilize randomization to create polymorphic patches 

that can be distributed based on different heuristics (i.e. based on region, Operating 

System version, or staggered by time). The non-deterministic nature of a polymorphic 

ghost patch could make exploit development more difficult because the same patch 

would not be applied to each end system. In this case, the traditional patch would also 

have to be altered for each patch instance to prevent attackers who utilize multiple 

instances of a patch to expose the legitimate vulnerability. 

Based on our observations, traditional patches for input validation vulnerabilities 

detect malicious input and return gracefully from the function. This prevents a com­

promise, but when viewing a binary diff, searching for differences that add return 

commands could be an identification technique. Applying obfuscation to fake and 

legitimate patches or to the function being patched could increase the difficulty in 

distinguishing between each type of patch. Future work should explore obfuscation 

techniques to make code more difficult to understand [108] and control flow more 

difficult to evaluate [109]. 

Active Response Patches Based on the non-interfering property, faux patches 

should not alter the semantics of the program. The verify step will expose that fake 

patches do not alter program behavior. Thus, at worst, a brute force approach could 

expose the vulnerability by analyzing program behavior for each path in a program 

and identifying which path changes a program’s behavior. 

One solution is to use the active response technique for legitimate patches. Ac­

tive response patches prevent a vulnerability from being exploited but respond to 

exploits using the same response as an unpatched program. The response could re­

turn sanitized data from the actual machine or transfer execution to a honeypot 
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environment [77]. This masking would increase the resources necessary for dynamic 

analysis tools to identify unpatched systems. Further research could develop tech­

niques that hinder or prevent exploit verification. An overview of active response 

patches is provided in Chapter 3. 

Approach Limitation Another limitation revealed by our experiments suggests 

that ghost patches only have a dynamic analysis impact when there are multiple 

store operations within a program’s intermediate representation (i.e. operations that 

includes an = sign). Programs that use standard functions (i.e. memmov,memcpy) to 

assign values semantically perform the same operation but are represented differently 

syntactically, and thus, a fake patch cannot be applied. 

Adding new lines of code also could add unexpected vulnerabilities. The faux 

patch code is like any other code that could have a vulnerability. Ghost patched 

code could also be attacked. Providing attackers with additional paths that could be 

attacked could result in a denial of service type of attack that slows overall program 

runtime, which could impact the machine’s performance. 

During our analysis, we discovered a number of interesting side effects of faux 

patches. The first is that because of the use of randomized values, some faux patches 

are not executed by the symbolic execution engine. This could mean the random 

value falls outside of the symbolically modeled variable or that the symbolic execution 

engine selected values do not interact with the inserted faux patch. This suggests that 

the value used in the faux patch conditional statement should be carefully assigned 

depending on the domain of the associated variable. 

In general, software architecture deception’s effectiveness is limited because a de­

ceptive technique does not hide real or show false deceptive behavior. Thus, given a 

patch, the behavior of a program with the patch applied and without the patch will 

be different. Given a deceptive patch where the software architecture is altered and 
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an unpatched system, each will exhibit different behavior. Because of this, attackers 

could still develop an exploit given a deceptive software architecture. One way to de­

feat this is to also add deceptive techniques to the software input and output values. 

This could hide real behavior or show false behavior of a patch, which is discussed in 

more detail in Chapter 3. 

We only analyze our proof-of-concept using one symbolic execution implemen­

tation. Symbolic execution has a number of challenges that are difficult to model. 

Representing memory addresses symbolically when their value is calculated based on 

user input is one challenge that KLEE does not directly address [110]. Future work 

could analyze faux patched programs using additional symbolic execution tools [111]. 

Finally, attackers could develop heuristics to contain this path explosion problem. 

Identifying patches that do not alter a program’s data flow could help to expose faux 

patches and reduce the amount of work for an attacker. Dissimulating this information 

could provide a way to make these heuristics difficult to identify and apply, raising 

the bar for attackers to distinguish between legitimate and fake patches. 

Our proof of concept implementation shows that the application of deception, in 

the form of fake patches, to software patching is feasible. Our evaluation shows that 

a faux patch does have an impact on exploit generation, increasing the number of 

branches in a program, by increasing the resources necessary to analyze a program. 

These same patches also impact a program’s runtime, but this effect is not statistically 

significant. This suggests that deception can be used to make exploit generation using 

patches more resource intensive, enhancing the security of software patches. With 

additional research and testing, this approach, either as a stand-alone technique or in 

conjunction with other deceptive and detection methods, could impose an exponential 

increase in program analysis, making exploit generation based on patches an expensive 
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operation while only adding a minimal increase in program runtime. Our proof of 

concept implemented and analyzed in this research supports this claim. 

4.7 Chapter Summary 

This work proposed, implemented and evaluated ghost patching as a technique 

to mislead attackers using patches to develop exploits against input validation vul­

nerabilities. We discuss fake patch properties as well as analyze a proof of concept 

using LLVM. Through experimentation, we found that fake patches add latency to 

program runtime that is not statistically significant while adding a statistically signif­

icant amount of latency to program analysis. If used by program developers as they 

develop patches for security flaws, we believe faux patches could disrupt the exploit 

generation process, providing more time for end users to update their systems. 
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5. DECEPTIVE DISPATCHER: COMBINING 

DECEPTIVE SYSTEM ARCHITECTURE WITH DEPLOY 

AND INSTALL CHAIN 

Applying deception to the system architecture of a patch can influence attackers by 

causing uncertainty about the location and functionality of a patch. This chapter 

explores how software diversification, an MTD technique, can be applied to the cur­

rent software security patching protocol. MTD techniques apply to software security 

patches because these patches can be implemented differently while performing the 

same functionality. Part of implementing these software diversified patches includes 

altering the deploy and install chain notifications for a patch. 

This chapter also discusses the application of deception to the language used in 

these notifications. A general overview of how language can influence biases is also 

provided. A methodology is also described that adds deception to the current soft­

ware patch lifecycyle by combining deceptive system architecture with deploy and 

install chain notifications. Applying software diversity to patch development, decep­

tive language to patch notifications, and re-releasing these patches as new updates 

can influence attackers by causing uncertainty in the reconnaissance phase of their 

attack. An empirical analysis of how these re-released patches could be perceived by 

attackers and discussion about the metrics that can be used to trigger a re-release 

are also provided.1 

1Sections of this chapter are from our published work: Offensive Deception in Computing [9] 
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5.1 Example Application of MTD to Software Security Patches 

We discuss a variety of ways to apply MTD to software security patches, showing 

how the application is a one-off approach. This suggests that the applications can 

be implemented using current patching protocols. Examples of MTD patches are 

provided and a methodology for creating and releasing diversified patches is presented 

in this chapter. 

5.1.1 Deceptive Command Line Tools 

In the Windows operating system, users can display the patches that have been 

applied on their system via command line tools such as wmic. The command rpm 

can be used to list patches on Linux systems. Applying deception to alter these 

commands could alter their output to reflect the presence of a patch when that patch 

is not present and vice versa. This serves as an example of how currently available 

tools and commands can be altered to respond deceptively to queries. A challenge 

that must be addressed, which is outside the scope of this dissertation, is how to 

distinguish between legitimate versus malicious use of these altered commands to 

report the correct information for each scenario. 

5.2 Deploy and Install Chain 

5.2.1 Overview 

Empirically, there are three main stages where notifications occur once a patch is 

released. The first identifies that a patch is available. This notification can be pre­

sented through an update platform, through an alert system where a link is provided 

to the update, or through email. The next phase where notifications are observ­
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able occurs when a patch is being installed. These notifications provide feedback 

to the end user installing the patch. For example, these notifications could include 

information about files that are being added, edited and/or removed, progress of the 

installation, restarting the computer, and prompts for users to accept or decline. The 

final notification identifies whether the patch was successfully installed or if an error 

occurred and the patch was not able to install. This message is sometimes presented 

to the user, or it can be found in a centralized notification center. 

Background The background of this work is rooted in deceptive semantics and 

communication. This area has received some attention in the fields of sociology and 

psychology, but little has been done in the field of security. This looks at exposing 

biases in end users by simulating communication or by hiding real communication. 

Other work has looked at examples of benevolent deception. These techniques 

are used to hide unnecessary or extremely technical details and/or provide relief to 

end users. With patches, benevolent deception is applied with the progress bar. The 

bar is meant to simulate the relative amount of work that has been completed by 

the executable to install the patch. This progress bar, though, is not an accurate or 

actual representation of the amount of work and is meant to give end users a sense 

of work being done [53]. 

Deceptive Text and Bias Prior work by Pfleeger et al. has studied behavioral 

science and its impact on cyber security tool development [112]. Ding et al. research 

how to create a dictionary of words from phishing emails that elicit biases [113]. 

Attackers use deceptive techniques to exploit end users’ biases and cause them to 

take/not take actions that further the success of the attack. Deceptive attacks are 

comprised of at least one of the following components: force or fool. The force compo­

nent attempts to command the recipient to follow some action. The fool component 
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attempts to hide the deception so that it is not obvious to a recipient. Exploiting 

biases that appeal to emotions/triggers helps to hide elements that would expose the 

deception. 

When a deceptive attack is viewed or received, the recipient must decide what 

his/her plan of action will be. This decision-making process is influenced by the words 

used in the attack, visual stimuli, current external factors and prior knowledge. One 

formal treatment of the decision-making process is the OODA loop [102]. Disrupting 

this process prevents an informed decision from being made. Force words interrupt 

this process by limiting the time available to make a decision, temporarily withholding 

access to something of value to the recipient, or completely removing access 

Throughout this work, we use the following definition of bias by Bennett et al: An 

inclination to judge others or interpret situations based on a personal and oftentimes 

unreasonable point of view [114]. Almeshekah et. al provide an overview of bias and 

its role in deception [115]. 

Using deceptive patches exploits an attacker’s automation bias and anchoring or 

localism bias. Attackers rely on the automatically released patch being legitimate and 

the vulnerabilities it fixes being present in unpatched code. These patches can support 

intelligence gathering by recording commands executed by unsuspecting attackers in 

honeypot environments as well as waste attacker resources. Prior work by Araujo et. 

al. [77, 78] supports using deceptive patches to improve system defense. 

Deceptive Semantic Generation Because notifications and alerts are written 

in text and statically presented, using advertising techniques to deceive users is a 

viable approach. Text color, position, size, images, time of appearance, frequency, 

repetition, etc. can all be used to deceive those observing. 
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5.3 Deceptive Dispatcher 

The release of a traditional patch serves as a trigger for attackers to investigate the 

associated program for vulnerabilities and develop a corresponding exploit. Research 

and enterprise defenses focus on the speed and efficiency of patching systems while 

they are in use [11,116,117]. Research on adding deception into the current software 

security protocol is scarce. Software diversity as an MTD deceptive technique with 

deploy and install chain deception can be combined to generate and release deceptive 

patches using current technologies that cast uncertainty on this trigger. This section 

describes the application of deception to a general software security patching protocol 

by re-releasing diversified versions of previously released patches. Chapter 2 provides 

details on the current patch lifecycle, software diversity and software diversity’s ap­

plication to patching. 

5.3.1 Overview 

Given a patch that was released at some prior time, t, this methodology suggests 

releasing a diversified or a refactored version of the same patch at time, t + δ. This 

refactored patch will use the same or similar notifications in the deploy and install 

chain as the initial patch, but the code will look and behave slightly differently with 

the same output as the original patch. The main point of this approach is that 

the re-released patch addresses the same vulnerability but replaces PO. Thus, the 

program’s state of security remains consistent, but the code changes. The deception 

takes advantage of the expectation that patches change code in applications to address 

exploitable vulnerabilities present in software. The premise of this approach suggests 

that an attacker’s exploit generation process will be influenced by diversified patches, 



79 

causing them to search for a vulnerability that ideally has already been patched by 

installing the prior release. 

5.3.2 Software Security Re-release Protocol 

A software security patching protocol is a generalization of the series of steps that 

are taken to identify a vulnerability, generate, and release a patch. This protocol is 

based on the general patch lifecycle shown in Figure 2.1 with more granular stages. 

1.	 Identify vulnerability: [43] 

(a) 3rd party identifies vulnerability and notifies vendor 

(b) Internal developer(s) identify vulnerability and notify corresponding de­

veloper 

(c) Developer of the software identifies vulnerability 

2.	 Replicate unintended behavior: This step verifies the vulnerability is reach­

able and a security flaw. 

3.	 Identify approach to fix flaw: Developers discuss how to fix the flaw and 

review options. 

4.	 Implement fix: The actual code to fix the vulnerability is implemented 

5.	 Test and review the fix to verify completeness and accuracy: The 

code to fix the vulnerability is reviewed by other developers 

6.	 Generate executable patch: The patch is packaged such that it is ready to 

release and install on end user machines 

7.	 Release patch to public 
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This general protocol identifies the major steps in the security patch protocol 

where these patches are for programs used by public end users. We add deception by 

appending steps to the end of this protocol. 

8.	 Document executable that was released, vulnerability fixed and no­

tification released: The patch executable, vulnerability and notification are 

saved in a database. 

9.	 Develop multiple diversified versions of original patch PO: Based on 

PO, diversified versions of the patch are automatically or manually developed. 

10.	 Test and review diversified patch Pn: Diversified patches are tested and 

reviewed by other developers to verify that they fix the original vulnerability 

that was addressed by PO, have “enough diversity” when compared to PO, 

and they are compatible with the program using unit tests. Once verified, the 

subsequent diversified patch is uploaded to the same database as PO in the same 

record as the original patch. 

11.	 Stimulus occurs that triggers patch re-release: After some amount of 

time passes, an event or series of events occur that trigger a re-release. 

12.	 Identify patch Pn to re-release: The specific diversified patch to be re-

released is selected based on observed stimuli. 

13.	 Generate executable patch: The re-released patch is packaged such that it 

can be installed automatically on end user machines. 

14.	 Re-release patch to public 

This protocol adds deception to the patching lifecycle by re-releasing patches. 

These patches are diversified versions of the original patch. Not all patches can be 
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diversified, so not all patches can be re-released. We discuss metrics to re-release a 

patch as well as identify candidates for re-releasing a patch. Because the re-released 

patch is a diversified version of the original patch, it will not alter the code’s behavior 

given that the prior patch was installed. The patch may change other aspects of the 

program, so the patch may be larger than PO. Developing these additional patches 

during time δ does not increase the time to release a patch. Also this protocol only 

duplicates the existing security in place by the original patch release PO. Subsequent 

patches do not remove security from the program. We visually represent the protocol 

in Figure 5.1. 

Fig. 5.1.: High Level Overview of Re-release Protocol 

Patch re-release takes advantage of the expectation that patches fix flaws that exist 

in unpatched code. Fake patches are another approach to addressing this expectation, 

but the challenge with fake patches is attackers have the capability to identify the 

fallacy behind these patches. Chapter 4 provides more details explaining how fake 

patches can be distinguished from legitimate patches. Because patch re-releases are 

diversified versions of actual patches, they also fix the original vulnerability that was 

present in the unpatched code. This approach forces an attacker to identify whether 

a released patch is an original patch that fixes an original vulnerability or whether it 

is a diversified re-release that still addresses the original vulnerability. Because end 

users have ideally applied the original patch, it does not actually alter any program 
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behavior. This added step increases the resources an attacker would need to expend 

to determine if a patch is worth exploring. 

As a side effect, re-releases provide end users who have not patched their systems 

with PO, the opportunity to patch the original vulnerability with a new patch. Cur­

rently, to back patch a system, the end user must identify the missed patch to be 

applied from an archive of prior patches or wait for a subsequent patch that may 

include the missed patch as part of the update. Finding the original patch could 

increase the workload of end users, further deterring them from installing the fix and 

leaving their system vulnerable to attack. Waiting for a subsequent patch also leaves 

the system vulnerable to attack. 

The re-released patch also will have a notification announcing a new patch is avail­

able. This notification could be a duplicate of the information sent with PO, or it 

could be semantically equivalent but syntactically different. Adding deceptive lan­

guage and appearance to the patch deploy and install chain could influence attackers 

and cause them to expend resources on exploiting a vulnerability that has already 

been potentially fixed in end users’ code. 

5.3.3 Realizing a Deceptive Dispatcher 

Re-releasing patches can be manually or automatically generated by the software 

update centers used by different operating systems. Operating systems have software 

update centers that receive data when an update is available and display notifications 

to end users about the availability of a patch. This section describes how the patch 

update centers can provide diversified patches, identifies metrics that can be used 

to trigger the release of a diversified patch, and discusses the potential security and 

performance impact of diversified patches. 
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Patch Selection Metrics Characteristics of patches cause them to be more suit­

able to diversify and re-released. We use this section to identify metrics that can be 

used to identify viable patches to diversify. 

•	 Length of a Patch 

The length of a patch can be used to select patches to diversify. Patches com­

prised of more lines of code provide more data to diversify than patches with 

fewer lines of code. If a patch has fewer lines of code, the original version of the 

patch could be similar to the diversified, thus making identifying the re-release 

trivial. The length of a patch is a viable metric to select patches to diversify. 

•	 Vulnerability Being Fixed 

The vulnerability a patch is fixing can dictate if a patch should be diversified. 

If a vulnerability can only be fixed in a limited number of ways, the goal of 

diversification and re-releasing patches may be compromised as the patch could 

be identified as a re-release. If a vulnerability can be fixed in a variety of ways, 

the patch for that vulnerability could be a good candidate for diversification 

and re-release. 

Diversification Metrics Once a patch is selected to diversify, selecting the di­

versified version of the patch to save and potentially re-release is dependant on the 

difference between the each version of the patch. For example, a diversified version 

of a patch should be different compared to the original version of the patch such 

that the two cannot be trivially identified as equivalent. Also, subsequent diversified 

versions should also be different compared to each other for the same reason. Mea­

suring the difference between two versions of code can be based the following metrics. 

Prior work has studied methods to measure the differences between obfuscated and 
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diversified code and the results from these can influence the generation of a metric of 

deception [64, 65,93,118]. 

•	 Differences in the lines of code 

The length, lines of code, of a patch compared to the length of a diversified 

patch can indicate the amount of deception added as well as provide insight 

into the increase in workload to analyze a patch. The longer a patch, the more 

lines of code to analyze and/or execute, thus, the more time necessary to reverse 

engineer a patch. Thus, the greater the difference between the number of lines 

in the original patch compared to the diversified patch can be used to select a 

diversified version to save for re-release. 

A limitation with this metric is the greater the difference between the two 

versions, the larger the diversified patch and the longer the execution time of 

the diversified patch. Thus, performance and patch size must be considered 

when considering diversified patches to save for re-release. 

•	 Number of different lines between deceptive and original patch 

The differences in the lines of code between versions of a patch can also provide 

a measure for the amount of deception added and identify diversified patches 

to save for re-release. If each line of code in a diversified patch is different than 

each line in an original patch, then it is more difficult to distinguish between 

an entirely new patch being released and a diversified patch being re-released. 

The differences between lines of code within each version could be caused by 

rearranging the code or by using different lines of code. 

•	 Number of differences in code execution 

Another metric for the amount of diversification is the differences in system 

input and output between the original patch and the diversified patch. Each 
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version of the patch can fix the same vulnerability, but respond to input and 

provide output differently. The number of different responses to input and 

different outputs could identify amount of diversification applied and make dis­

tinguishing between a re-released and a newly released patch more difficult. 

Re-release Metrics Patches can be re-released for a variety of reasons. We use 

this section to identify a number of metrics that can be used to trigger a patch re-

release. These metrics are associated with creating a campaign for attackers to follow 

and believe. The more plausible developers make the campaign, the more effective 

the deception. 

•	 Outside/3rd Party Trigger 

Outside vendors, especially those who have partnerships or whose products are 

used with another vendor’s products can cause a patch re-release. If a 3rd 

party vendor discovers a vulnerability and releases an update to their software, 

a separate patch might be necessary to remain compatible with the updated 

software. Thus, using a 3rd party’s release event is a viable trigger for re-

releasing a patch. 

•	 Time 

Time could trigger a patch re-release. If substantial time, which could vary case 

by case, has passed between the original patch, PO, and a diversified patch, Pn, 

then a re-release could be triggered. 

•	 Attacks against software 

Discovering numerous exploits that are active against an application could trig­

ger a re-release. When attention is on a particular program,re-releasing a patch 

could divert attackers’ attention to develop new exploits based on the newest 

release. 
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Discussion: Side Effects and Limitations From an end user’s perspective, side 

effects are positive. As end users, code has already been updated. Thus, re-applying 

a patch to code that has already been patched has minimal adverse effects. If the 

patch has not been applied, then there is a positive side effect if end users apply this 

new patch. They will have another chance to protect their systems, something that 

does not happen in the current patching ecosystem. The question to ask with this 

approach is if an end user does not apply the original patch, what probability is there 

that s/he will apply these subsequent patches? A user study should be conducted 

to determine patching behavior among end users, separating them based on different 

demographics. This study is outside of the scope this dissertation. 

From an attacker’s perspective, side effects are related to additional work. An 

attacker must distinguish an original patch fixing a legitimate vulnerability from a 

re-released patch that also fixes the same vulnerability. Ideally, the time between 

original and re-release will allow for the original patch to be forgotten or at least not 

be readily available for an attacker to compare against. 

Another side effect is from a software input/output perspective. Because the 

re-released patch and original patch are alternative versions of the same patch, their 

software input and output are the same. Given a program that has been patched with 

PO and a program patched with Pn, the program behavior is identical. Thus, from a 

user perspective, the dynamic analysis of each type of program would be identical. If 

the program has been kept up to date with patches, then the re-released patched pro­

gram and the unpatched program, which is the originally patched program, will also 

have the same behavior. Given the expectation that program behavior of a patched 

and unpatched program should be different and based on the notification accompa­

nying the re-released patch, viewing no change in program behavior could influence 

attacker behavior. A limitation of the deceptive dispatcher is that generating diver­
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sified patches expends developer’s time and increases the time to release legitimate 

patches. Automated software diversification is an active area of research that removes 

the manual effort necessary to generate diversified patches. Also, diversified patches 

are developed once the exploitable vulnerability has been addressed. Thus, programs 

are no longer vulnerable when the diversified patch is being generated. Generating 

these patches also does not take precedent over generating patches for exploitable 

vulnerabilities in software. 

Another challenge is that because end users do not always patch their systems, 

the potential for them to apply re-released patches is also limited. Developers cannot 

force end users to apply a patch for their software. Future work could research and 

identify methods that can increase the probability of patch installation. End users 

could be deceived by deceptive deploy and install chain messages. This could also 

contribute to them not installing a patch for example because of miss-understanding 

the criticality of the patch based on the notification. 

A potential negative impact of diverse patching is an increase in patching size. 

Diverse patches behave identically, but use different instructions. Thus, patches that 

perform identically could have different sizes. This suggests that diversified patches 

addressing the same vulnerability could replace, edit or add one line of code or re­

place the entire program. Correlated to size, diversified patches could negatively 

affect overall program performance. Less optimized code that behaves the same but 

performs additional instructions compared to the original patch would execute slower. 

A threshold of acceptable runtimes for a program would provide developers the nec­

essary data to test if the performance of a diversified patch is acceptable. 
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5.4 Chapter Summary 

In this chapter, a discussion of software diversification and its application to the 

current software security patching protocol is presented. This chapter also discusses 

the application of deception to the language used in these notifications and gives a 

general overview of biases that are influenced based on the presence of deception. 

Also a methodology is described that adds deception to the current software patch 

lifecycle by combining deceptive system architecture with deploy and install chain 

notifications. Applying software diversity to patch development, deceptive language 

to patch notifications and re-releasing these patches as new updates can influence 

attackers by causing uncertainty in the reconnaissance phase of their attack. An 

empirical analysis of how these re-released patches could be perceived by attackers 

and discussion about the metrics that can be used to trigger a re-release are also 

provided. Finally, limitations of this deceptive dispatcher are identified. 
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6. FORMAL MODEL OF DECEPTIVE PATCH EFFECT 

6.1 Deceptive Patch Formal Model Approach 

The paradigm that deceptive data, tools and behavior are difficult to distinguish 

from their legitimate counterparts is intuitively understood, but a formal represen­

tation of why deception works and its impact on the security provided by patches is 

lacking. As an emerging research area, it is important to develop this strong founda­

tion from which to reason about the security impact of proposed techniques. 

Thus, we present a number of deceptive models that represent a variety of de­

ceptive patches to move toward a formal model of deception. These models identify 

theoretically secure techniques as well as those that fall short of theoretical security. 

For techniques that fall short, additional analysis shows they could still be effective 

in practice. 

In this chapter, we first introduce formal game-based security definitions that 

capture the technique’s claimed security impact and present a general game-based 

model using these definitions. We then apply this general model to faux, obfuscated, 

and active response patches to formally analyze their security impact. Finally, we 

discuss whether these ideal properties of deceptive systems can be achieved in reality. 

6.2 Modeling Impact of Deception on Patch-based Exploit Generation 

In game-based security proofs, the probability of an adversary succeeding in a 

game is bounded to demonstrate the construction possesses a particular property. In 

simulation-based security proofs, the real-world construction is demonstrated to be 
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Table 6.1.: Deceptive Patch Examples
 

Original Faux 

int vul_func(char *input_string, int vul_func(char *input_string, 
int input_length){ int input_length){ 
char string[20] char string[20] 

if(input_string == "test") 
strcpy(string, input_string); string[9] = "W" 

... 
return 0; return 0; 

} } 

Obfuscated Active Response 

int vul_func(char *input_string, int vul_func(char *input_string, 
int input_length){ int input_length){ 
char string[20]; char string[20] 
int i; if(input_len > 20 || input_len < 0) 
while(i < input_len) transfer_exec(); 

string[i] = 0 else 
string[i] += input_len[i] strncpy(...); 

return 0; ... 
} return 0; 

} 
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computationally indistinguishable from an ideal-world construction. Because both 

ghost and obfuscated patches alter the semantics of a program (the transitional patch 

component removes the vulnerability, thus the semantics are altered), there is no 

indistinguishability between the ideal and real-world solution, making a simulation-

based proof trivial. Thus, in this work, we adopt the game-based approach. 

6.2.1 Security Parameters 

It is common to require that an adversary, A, bound to probabilistic polynomial 

time (PPT) has at most a negligible advantage in breaking the security guarantee 

under consideration with respect to a security parameter, λ. For example, λ may be 

the size of the cryptographic key. In Section 6.3.3, we introduce a notion of λ in the 

context of deceptive patches. 

6.2.2 Oracle Sampling 

Both game-based and simulation-based approaches to modeling security for de­

ceptive patching require an oracle, O, that samples patches from a given distribution, 

D. Sampling patches efficiently from D is less straightforward than, e.g., sampling 

from Z∗ 
p. In particular, patches must at minimum retain a degree of plausibility to 

prevent an adversary from constructing an efficient distinguisher. 

6.2.3 Complexity of Adversary Actions 

The PPT adversary, A, tends to have two primary operations: using Identify 

to locate the vulnerability a patch fixes, and using Verify to check that the vulner­

ability is exploitable in unpatched systems. In general we argue that both of these 

have straightforward polynomial time constructions for most deceptive patching tech­
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niques. However, we shall see an example of a deceptive technique where Verify may 

not allow the construction of an efficient distinguisher. 

6.2.4 Game Assumptions 

We assume characteristics about a game’s sets and adversary capabilities. 

•	 We assume both deceptive and legitimate patch sets are large. These sets must 

be large to allow adversaries to query for examples as well as provide a challenge 

an unknown number of times. 

•	 We assume an adversaries has unlimited resources. We do not place time bounds 

on an adversary. 

•	 We assume the set of deceptive and legitimate patches contain similar content. 

•	 We assume the set of deceptive and legitimate patches are of similar size. 

•	 We assume an adversary can use any analysis technique to study the oracle’s 

response. 

•	 We assume active responses can mimic any response from a legitimate system. 

6.2.5 Generalized Game-based Model of Deceptive Patch Impact 

The generalized game-based model of deceptive patch impact identifies the pro­

tocol used to represent the effect of deceptive patches. 

1. Adversary, A, requests a polynomial number of patches, P, sampled from a set 

of legitimate patches, L, and deceptive patches, D. 
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$ $
2. The Oracle responds with random	 P ← L and P ← D. The adversary can 

request patches individually from each set, with full knowledge of the set from 

which the patch originates. 

3.	 A requests a challenge response, P’. 

4. The system uniformly selects	 a random value b ∈ {0, 1}, which determines 

whether the response is sampled from L or D. Thus, A must distinguish whether 

P’ is a legitimate or deceptive patch and potentially identify the vulnerability 

being addressed. 

5. Optionally, adversary, A, requests a polynomial number of patches, P, sampled 

from a set of legitimate patches, L, and deceptive patches, D. 

$ $
6. Again, the Oracle responds with random P ← L and P ← D. The adversary 

can request patches individually from each set, with full knowledge of the set 

from which the patch originates. These responses are mutually exclusive from all 

prior responses and an adversary cannot specifically request to see the challenge 

response. 

7. Eventually, A outputs a guess bit b' ∈ {0, 1}, and wins whenever b' = b and 

loses otherwise. 

We apply the general protocol above to faux, obfuscated, and active response 

patches. This protocol provides insight into the impact of deceptive patches. An 

adversary achieving greater than 50% plus some trivial percentage suggests that the 

enhancements to security by the deceptive patch under analysis are distinguishable. 
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6.2.6 Faux Patches 

Adversarial Model 

We consider a PPT adversary, A, that attempts to distinguish between a legit­

imate patch and a faux patch. We assume that A has access to and can interact 

fully with samples of both legitimate and faux patches, as both are generally publicly 

available. 

Indistinguishability Game 

In the Faux Patch Indistinguishability game, an adversary A is asked to distinguish 

between a patch, P, sampled from legitimate, (P ∈ L), or faux, (P ∈ F), patches. 

Protocol 6.2.1: P−IND Patch Indistinguishability 

Adversary A	 Patch Oracle O 

(1)	 Request P ∈ L, −→ 
0 ≤ i ≤ poly(λ) 

$←−	 P ← L, (2) 
0 ≤ i ≤ poly(λ) 

(3)	 Request P ∈ F , −→ 
0 ≤ i ≤ poly(λ) 

$←−	 P ← F , (4) 
0 ≤ i ≤ poly(λ) 

(5)	 Request Challenge −→ b ∈ {0, 1}
$	 $←− b(P’ ← L) + (1 − b)(P’ ← F) (6) 

(7)1 Request P ∈ L, P  = P’, −→ 
0 ≤ i ≤ poly(λ) 

←− P ∈ L, 0 ≤ i ≤ poly(λ) (8) 
(9)	 Request P ∈ F , P  = P’, −→ 

0 ≤ i ≤ poly(λ) 
←−	 P ∈ F , (10) 

0 ≤ i ≤ poly(λ) 

(11) Guess b’ = 
? 
b −→ 
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The Faux Patch Indistinguishability game of Protocol 6.2.1 proceeds as follows: 

(1) Adversary, A, requests a polynomial number of patches P sampled from the set 

$
of legitimate patches, L. (2) The Oracle responds with random P ← L. (3) Similarly, 

A requests a polynomial number of patches P sampled from the set of faux patches 

$F . (4) The Oracle responds with random P ← F . (5) A requests a challenge patch, 

P’. (6) The system uniformly selects a random value b ∈ {0, 1}, which determines 

whether the patch is sampled from L or F . Thus, A must distinguish whether P’ 

is a legitimate or faux patch. (7) Adversary, A, optionally requests a polynomial 

$
number of legitimate patches P ← L that have not been queried before, and such 

$
that P = P’. (8) The Oracle responds with sampled patches P ← L. (9) Similarly, A 

$
optionally requests a polynomial number of faux patches P ← F that have not been 

queried before, and such that P = P’. (10) The Oracle responds with sampled patches 

$
P ← F . (11) Eventually, A outputs a guess bit b ' ∈ {0, 1}, and wins whenever b ' = b 

and loses otherwise. 

Let AdvF−
A 

IND = Pr[b ' = b] represent the probability of A winning the game. We 

− 1require that the advantage of a PPT adversary, A, is |AdvF−IND | ≤ t where t isA 2 

a negligible function in the security parameter, λ. 

6.2.7 Obfuscated Patches 

Adversarial Model 

We consider an adversary, A, bound to PPT that attempts to identify whether the 

obfuscated response is an obfuscated patch fixing a hidden underlying vulnerability 

or just obfuscated code with no underlying vulnerability. We assume that A has 

1In game-based security models, the adversary is allowed to continue querying the oracle after receiv­
ing the challenge on any input which is not the challenge itself. This permits adaptive adversaries, 
who use knowledge of the challenge to influence their strategy [119]. 
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access to the obfuscated response. A also can interact with the obfuscated response 

to validate whether the vulnerability they have identified exists. 

Vulnerability Identification Game 

In the Obfuscated Patch Identification game, an adversary, A, is asked to identify 

whether obfuscated code is a patch (P ∈ O) fixing an underlying vulnerability, V , or 

just obfuscated code with no underlying vulnerability (P̄ ∈ O). 

The Vulnerability Identification game of Protocol 6.2.2 proceeds as follows: (1) 

Adversary, A, requests a polynomial number of patches, P, sampled from the set of 

$
obfuscated code, O. (2) The oracle responds with random P ← O. (3) A attempts to 

identify the vulnerability obfuscated in each patch, P. (4) A attempts to validate the 

legitimacy of the identified vulnerability obfuscated in each patch, P. (5) Adversary, 

A, requests a polynomial number of non-patched code, P̄, sampled from the set of 

$
obfuscated code, O. (6) The oracle responds with random P̄ ← O. (7) A attempts 

to validate the lack of a vulnerability in the obfuscated non-patched code, P̄. (8) 

A requests a challenge, c, such that c has not been seen in prior requests nor will 

be seen in subsequent requests. (9) Optionally, adversary, A, requests a polynomial 

number of patches, P ' , sampled from the set of obfuscated code, O, that have not 
$

been requested previously. (10) The oracle responds with random P ' ← O. (11) A 

attempts to identify the vulnerability obfuscated in each patch, P ' . (12) A attempts 

to validate the legitimacy of the identified vulnerability obfuscated in each patch, P ' . 

(13) Optionally, adversary, A, requests a polynomial number of non-patched code, P ̄' , 

sampled from the set of obfuscated code, O, that have not been previously requested. 

P ̄' 
$

(14) The oracle responds with random	 ← O. (15) A attempts to validate the lack 

¯of a vulnerability in the obfuscated non-patched code, P ' . (16) Eventually, A outputs 

a guess bit b ' ∈ {0, 1}, and wins whenever b ' = b and loses otherwise. 
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Protocol 6.2.2: V−ID Vulnerability Identification 

Adversary A	 Patch Oracle O 

(1)	 Request P ∈ O, −→ 
0 ≤ i ≤ poly(λ) 

$←−	 P ← O, (2) 
0 ≤ i ≤ poly(λ) 

(3)	 Identify(V ∈ P), 
0 ≤ i ≤ poly(λ) 

(4)	 Verify(V ∈ P), 
0 ≤ i ≤ poly(λ) 

(5)	 Request P̄ ∈ O, −→ 
0 ≤ i ≤ poly(λ) 

$←−	 P̄← O, (6) 
0 ≤ i ≤ poly(λ) 

(7)	 Verify(V  ∈ P̄), 
0 ≤ i ≤ poly(λ)
 

¯
(8) Challenge c  ∈ P, P̄, P ' , P ' −→ b ∈ {0, 1}
←− r ← b(P(c)) + (1 − b)(P̄(c)) (6) 

(9)	 Request P’ ∈ O, P’ = P −→ 
0 ≤ i ≤ poly(λ) 

$←−	 P’ ← O, (10) 
0 ≤ i ≤ poly(λ) 

(11)	 Identify(V ∈ P’), 
0 ≤ i ≤ poly(λ) 

(12)	 Verify(V ∈ P’), 
0 ≤ i ≤ poly(λ)
 

¯ ¯
(13) Request P ' ∈ O, P ' = P̄ −→ 
0 ≤ i ≤ poly(λ) 

P ̄' 
$←−	 ← O, (14) 

0 ≤ i ≤ poly(λ) 
(15)	 Verify(V  ∈ P ̄' ), 

0 ≤ i ≤ poly(λ) 
?

(16) Guess b’ = b −→ 

Let AdvV−ID = Pr[b = 1] represent the probability of A winning the game. We A 

require that the advantage of a PPT adversary, A, is |AdvV−ID| ≤ t where t isA 

negligible in the security parameter, λ. 
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6.2.8 Active Response Patches 

Adversarial Model 

We assume an adversary, A, bound to PPT that interacts with a remote system, 

S, in a black box manner. That is, A exchanges messages with S and attempts to 

distinguish with non-negligible advantage between two possible states of S: a patched 

state, P, or an unpatched state, P̄. In the case of deceptive and obfuscated patches, 

we assume that A has access to the patched and unpatched source code, as this 

is generally publicly available, and can interact with each version for an unlimited 

amount of time. 

Indistinguishability Game 

In the Active Response Indistinguishability game, an adversary, A, is asked to 

distinguish between a patched (P) or unpatched (P̄) remote system, S, by issuing 

challenges and evaluating the corresponding responses. Note that A can evaluate not 

only the content of the response, but also auxiliary information, Aux (e.g., packet 

delay). 

The Active Response Patch Indistinguishability game of Protocol 6.2.3 proceeds 

as follows: 

(1) Adversary, A, issues a polynomial number of challenges ci to a patched sys­

tem, thus we denote the challenges as members of the set CP 
' which is a subset of 

all challenges C ' issued before the distinguishing stage. (2) The system queries the 

patched system on ci and returns the corresponding response ri ← P(ci). (3) Simi­

larly, A issues a polynomial number of challenges ci to an unpatched system (denoted 

P̄), and we denote the challenges as members of the set CP̄' . (4) The system queries 

the unpatched system on ci and returns the corresponding response ri ← P̄(ci). (5) 
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Protocol 6.2.3: AR−IND Patch Indistinguishability
 

Adversary A Server S 

(1) ci ∈ C ' P ⊂ C ' , −→ 
0 ≤ i ≤ poly(λ) 

←− ri ← P(ci), (2) 
0 ≤ i ≤ poly(λ) 

(3) ci ∈ C ' 
P̄ ⊂ C ' , −→ 

0 ≤ i ≤ poly(λ) 
←− ri ← P̄(ci), (4) 

0 ≤ i ≤ poly(λ) 
(5) Challenge c  ∈ C ' −→ 

←− 
b ∈ {0, 1}

r ← b(P(c)) + (1 − b)(P̄(c)) (6) 
(7) c ' i ∈ CP, c = c ' i, −→ 

0 ≤ i ≤ poly(λ) 
←− r ' i ← P(c ' i), (8) 

0 ≤ i ≤ poly(λ) 
(9) c ' i ∈ CP̄, c = c ' i, −→ 

0 ≤ i ≤ poly(λ) 
←− r ' i ← P̄(c ' i), (10) 

0 ≤ i ≤ poly(λ) 

(11) Guess b’ 
? 
= b −→ 
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A selects a challenge, c, which has not been issued previously, and queries the sys­

tem. (6) The system uniformly selects a random value b ∈ {0, 1}, which determines 

whether the challenge is issued to a patched or unpatched system. Thus, A must 

distinguish whether r was the response from P or P̄. (7) Adversary, A, optionally 

issues a polynomial number of challenges c ' i  ∈ C ' to a patched system, such that c ' i 

has not been queried before. (8) The system queries the patched system on ci 
' and 

returns the corresponding response ri 
' ← P(ci

' ). (9) Similarly, A optionally issues a 

polynomial number of challenges ci 
' to an unpatched system (denoted P̄). (10) The 

system queries the unpatched system on c ' i and returns the corresponding response 

' ' r ← P̄(c ). (11) Eventually, A outputs a guess bit b ' ∈ {0, 1}, and wins whenever i i

b ' = b and loses otherwise. 

Let AdvAR−IND = Pr[b ' = b] represent the probability of A winning the game. We A 

− 1require that the advantage of a PPT adversary, A, is |AdvAR−IND | ≤ t where t isA 2 

negligible in the security parameter, λ. 

6.3 Achieving the Ideal 

To claim a primitive such as deceptive patching increases the security of a system, 

the primitive must be shown to satisfy a meaningful definition of a security property. 

As we will see, the assumptions that form the model of deceptive patches are unreal­

istic in practice for faux and obfuscated patches, suggesting that these categories are 

not formally secure. 

6.3.1 Faux Patches 

By empirical analysis, AdvF−IND − 
2
1 ≤ t for a negligible function t will not hold A 

true, as given access to an unpatched system the adversary can run Verify(V) in 
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polynomial time on any vulnerability, V , they have identified in the patch, P. Because 

adversaries have access to the code, dynamic analysis and program execution can be 

used to verify if a patch is faux or legitimate. Automated tools such as KLEE [106] 

and Triton [120] use symbolic execution to develop reliable exploits [44] and can help 

attackers distinguish between the patches because the response from a faux patch 

during execution is distinguishable from that of a legitimate patch. Faux patches 

should not alter data flow nor should they alter control flow by returning from a 

function while legitimate patches can exhibit at least one of these characteristics. 

Thus, in practice, the assumption of similar set content does not hold true. 

Despite adding faux patches to alter the available paths, symbolic execution, or 

dynamic analysis in general, can run in polynomial time to verify whether a patch 

is faux or legitimate. As P ∈ F , by definition V does not exist and so A has a 

non-negligible advantage in distinguishing patches sampled from F or L. 

6.3.2 Obfuscated Patches 

One approach to cryptography requires formal security definitions based on the 

presumed difficulty of computationally bounded adversaries from solving well-studied 

mathematical problems. Obfuscated patching follows the latter approach, employing 

ad hoc methods to disguise the underlying vulnerability addressed by the patch. 

Obfuscated patches are comparable to the goals of white box cryptography [121], 

which attempts to obfuscate keys embedded in software made available to adversaries. 

However, it is not known whether any rigorous security guarantees can be achieved 

in this model, as cryptanalysis has broken white box constructions [122]. 

An adversary, A, with access to Verify(V) will not have advantage |AdvV−ID| ≤ t,A 

as both Identify and Verify run in polynomial time. Automated tools exist that 

perform automated exploit generation and code analysis in polynomial time, even 
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with the application of obfuscation [33,123]. Also, the set of obfuscated patches and 

obfuscated non-patch code are not similar as patches can alter data and control flow 

of a program, i.e. return statements, while non-patch code should not alter data nor 

control flow. 

6.3.3 Active Response Patches 

The goal of active response patches is to prevent an adversary from construct­

ing a distinguisher for patched and unpatched systems which has a non-negligible 

advantage. We argue that this deceptive patching technique may be able to satisfy 

|AdvAR−IND − 1 | ≤ t in Protocol 6.2.3. A 2 

The strategy of the remote system, S, with which the adversary interacts is to 

design a deceptive patch that fixes the underlying vulnerability, but issues responses 

indistinguishable from an unpatched system (discussed in Section 6.4). Even though 

A is given access to the patch and has complete2 information, it may not be possible 

to remotely distinguish the responses from either an unpatched or patched system 

with non-negligible advantage. 

We propose using the size of the domain from which vulnerable code can respond 

as the security parameter λ, i.e., the space from which vulnerable code can respond 

to an exploit. The larger this domain, the higher the probability of a deceptive 

approach being distinguishable. The smaller this domain, the lower the probability 

of a deceptive approach being distinguishable. That is, if many responses exist from 

exploiting vulnerable code, a deceptive patch is less likely to be indistinguishable as 

an attacker has a larger surface with which to verify the legitimacy of the patch. 

2In game theory, complete information refers to games where all players have complete knowledge of 
the game structure and payoffs. In contrast, games of perfect information allow all players to observe 
every move by other players. The distinguishing game of Protocol 6.2.3 is a game of complete but 
imperfect information, as A has access to the patch yet does not observe whether or not the system 
invokes the patch. 
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If a vulnerability only has one response to exploits against it, a deceptive patch for 

this vulnerability has a higher probability of being indistinguishable from unpatched 

systems, as the ability to verify the legitimacy of a patch is constrained. 

Because active response patches meet the criteria of being theoretically secure, 

we define a λ for these types of patches. Active response patches attempt to mimic 

vulnerable machines. Thus the ability to completely mimic a vulnerable machine 

and how these machines will respond to exploits against a vulnerability is key to the 

success of these patches. Thus, λ represents the security parameter such that the 

impact of deception on the security provided by a patch is either directly or inversely 

related to the size of λ (i.e. the larger the security parameter the larger impact 

the deceptive patch has on program security and the smaller the security parameter 

smaller the impact the deceptive patch has on program security). 

For active response patches, the security parameter, λ, is the size of the space that 

must be modeled. The size of the space can be represented by the number of responses 

possible for the vulnerability being patched. In general, this space can be described 

using a spectrum. On one end are vulnerabilities that when exploited result in a 

program crashing or have a single course of action. These vulnerabilities are trivial 

to model. On the other end, vulnerabilities that result in memory leaks, escalated 

privileges, etc. are more difficult to model. This difficulty stems from the fact that 

every capability of an attacker who successfully exploits a vulnerability that displays 

or impacts contents in memory is unknown a priori. Thus, the more possibilities an 

active response must model, the less secure the algorithm. The fewer possibilities an 

active response must model, the more secure the algorithm. 
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6.3.4 General Security Parameter 

There is no general security parameter of deceptive patches. The security param­

eter is a measure of the difficulty to distinguish between legitimate and deceptive 

patches. The length and/or size of the security parameter provides an indication 

about the difficulty of distinguishing between a deceptive and legitimate patch. Faux 

and obfuscating patches attempt to increase the distance between the software ar­

chitecture, system input and output, system architecture and/or deploy and install 

chain of these deceptive patches and legitimate patches. 

There is no general security parameter that provides insight as to the difficulty of 

distinguishing a deceptive patch or choosing a better deceptive patch over a moderate 

deceptive patch. The intuition is based on the fact that some deceptive patches alter 

code to hide the real patch, i.e. faux and obfuscation patches, and others alter code 

to show the false patch to make it seem real, i.e. active response patches. Deceptive 

patches that alter system architecture attempt to make changes to the code that 

it is different from the nondeceptive version. These deceptive techniques attempt to 

create a deceptive patch that does not appear the same as a legitimate patch by hiding 

the real elements using noise or rearranging code. Creating these different versions 

makes the original/legitimate patch more difficult to identify because the software 

architecture or system input and output is different from the expected. Thus, the 

security parameter for patches that hide the real elements of a patch should be based 

on a measure of difference between the original patch and the faux or obfuscated patch. 

Developing a general measure of this difference is outside the scope of this research, 

but prior work has identified techniques to measure differences between versions of 

code [64]. Active response patches attempt to appear the same as legitimate patches 

in that the system input and output data are indistinguishable. Because these patches 

show false information that appears real, the security parameter should be based on 
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how similar responses from active response patches are to vulnerable systems. Thus, 

the security parameter for active response patches indicates a similarity between 

deceptive and legitimate patches while the security parameter for faux and obfuscation 

patches indicates a differences between the two types of patches. 

6.4 Realizing Active Response Patches 

We have argued that active response patches may be able to satisfy a meaningful 

formal security definition. We now present plausible methods of implementing and 

deploying active response mechanisms which satisfy the security definition. 

Active responses provide deceptive data to attackers in real time. That is, data is 

dynamically or statically generated and presented to the attacker to influence their 

decision making process. We discuss two techniques for implementing active responses 

in software security patches, as well as advantages and challenges of each. 

6.4.1 Virtual Machine Implementation 

Some websites use threads and/or virtual machines (VMs) to provide clients with 

content. Clients are sandboxed in their own VM or thread as their requests are ana­

lyzed and delivered. A VM or thread based infrastructure is well-suited to implement 

active response patches that transfer execution to virtualized honeypot environments. 

The vulnerable VM or thread will be isolated and instrumented such that an adver­

saries actions can be stealthily monitored, allowing the defender to learn information 

about the adversary’s strategy and goals. 
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Motivation 

The goal of invoking VMs is to transfer execution to an isolated and sandboxed 

environment upon detection of an adversary attempting to compromise a machine 

through a patched exploit. Transferring execution to a honeypot environment allows 

the operational software to continue servicing legitimate requests, and the attack steps 

may be monitored and logged without impacting operational machine performance 

and security. This could aid security analysis, and defenders identify novel attack 

vectors while ensuring legitimate data remains safe. 

Framework 

This approach is composed of two phases: the detection phase, and the deception 

and monitoring phase. The detection phase identifies the exploit, while the deception 

and monitoring phase begins when the attacker executes commands within the VM. 

The VM should be vulnerable to the same vulnerability that triggered the transfer 

of execution. The VM is populated with deceptive and potentially legitimate data. 

Thus, when attackers execute commands, the VM responds with data that plausibly 

exists on the operational machine being attacked. As attackers execute commands 

and access data, their activities are logged for future analysis. 

Challenges 

Using a honeypot to transfer execution once an exploit is detected introduces 

unique challenges to system security. The honeypot must be periodically updated 

with plausible and active data as out-of-date files and login information could expose 

the sandbox [124]. The data must appear plausible, as attackers could have access to 

other data and techniques to verify the data, causing them to mistrust the information 
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[80]. These VMs could also be detected by the adversary through timing analysis, and 

identifying the presence or absence of hardware and drivers [125]. Another challenge 

is preventing attackers from overloading the honeypots and potentially using them to 

launch attacks against the legitimate system. 

Because prior work shows sandbox environments can be fingerprinted consistently 

and reliably by an adversary [124], this approach would be best applied to envi­

ronments where all execution (both regular and honeypot) is performed in virtual 

machines that are started when a user requests resources and stopped when they are 

finished. 

Advantages 

This approach creates an interactive and isolated environment that can be ef­

ficiently controlled by defenders. Defenders can monitor activity within VMs and 

quickly create, restart and stop VM’s compared to physical machines. This flexibility 

gives defenders the ability to adapt to attackers’ methods. 

6.4.2 Non-Virtual Machine Implementation 

Some computing environments allow users to remotely access the physical hard­

ware. These systems could use virtualization to transfer execution to a vulnerable 

sandboxed VM when an exploit is detected. Prior research has shown that an adver­

sary can distinguish between sandbox environments and normal user machines [124]. 

Thus, other approaches to implementing active response patches that do not use the 

sandbox technique must be explored. 



108 

Motivation 

Using deceptive defense on the local machine through the use of a deceptive dae­

mon could influence how attackers execute their attack. Keeping both the data and 

the attacker stationary and on the same machine removes the need for back-end data 

to be duplicated in the case of the honeypot implementation. Thus, dynamic and 

plausible deceptive responses can be presented using real time data. 

Framework 

The deceptive daemon is comprised of two phases: detection stage and monitoring 

stage. The detection stage occurs when an attack is launched against a previously 

patched flaw. This detection code will identify an active exploit and invoke the 

deceptive daemon. The monitoring stage occurs when the daemon has been invoked 

for a specific flaw. This stage observes the process that initialized the exploit and 

monitors all execution. Active responses are presented to attackers in this phase, and 

during monitoring the daemon will determine how to respond to requests. Once a 

process has been identified as initiating an attack, that process is considered tainted. 

Every request from and response to these processes must be identified, analyzed, 

and deceptive techniques applied based on security policies. Responses to requests 

will be cached along with the process requesting the data and “kill chain” events 

to form a signature of the attacker [7]. This signature can be used to identify an 

adversary in subsequent attacks. The cached data can be used to quickly respond to 

similar requests, as well as preserve consistency across multiple exploits against the 

same flaw [126]. Execution can be transferred to a honeypot during an exploit if an 

executable is uploaded to isolate its execution. 



109 

Challenges 

This approach introduces unique challenges to secure and protect a host machine, 

as the daemon runs on the operational machine along with legitimate programs and 

data. Challenges about storage must also be addressed, as deceptive data and policy 

statements are cached and saved. Trade-offs between storing the data on disk or 

using an external device must be measured. This approach will also impact system 

performance, as the daemon will consume system resources that are traditionally 

reserved for legitimate processes. Running the program on the machine in a stealthy 

manner is important to keep attackers engaged, as the daemon being discovered may 

also be a deterrent. Having techniques and methods in place if the daemon crashes 

must be addressed. Using redundancy by implementing multiple versions of deceptive 

daemons on a machine would keep the machine protected in case of a failure. 

Advantages 

This approach prevents data that is not related to an exploit from needlessly being 

copied. Only the data that is necessary is identified and processed. 

6.5 Chapter Summary 

In this chapter, we present a generic template to model the theoretical security of 

deceptive patches. This template can be used to identify the decisions an attacker will 

make when provided deceptive content. We also show how some deceptive patches do 

not provide theoretical security, but suggest that these patches may still have benefit 

to defenders and developers. We also prove that deceptive patches that alter patch 

behavior provide theoretical security within our security model. 
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7. CONCLUSIONS AND FUTURE WORK 

Deception adds a layer of defense to current defense techniques. Software security 

patches are the state of practice in defending against vulnerabilities. These updates 

prevent exploits from succeeding by blocking the vulnerability. This means that 

malicious code that would take advantage of the flaw in an unpatched program is 

prevented from successfully exploiting the program. This occurs by either removing 

malicious content through error correcting or exiting the program itself. Deception 

is an added layer of defense that, used with traditional preventative techniques, can 

enhance the security of systems. 

7.1 Business Case 

Deceptive patches can be applied to different corporate/business categories. Cer­

tain technologies could implement some active response patches, but given the cur­

rent state of obfuscation and faux patching, these are not feasible to apply with great 

confidence to successfully thwart attackers. Because active response patches are in­

distinguishable from unpatched systems, an attacker in the reconnaissance phase 

performing dynamic analysis only interacts with the system’s responses. Businesses 

with technology that uses remote servers that respond to requests can employ ac­

tive response patches to better protect their systems by identifying information that 

interests attackers. By applying active response patches to vulnerabilities that can 

be exploited, defenders can gain information about attacker’s interests as he/she per­

forms reconnaissance to begin their attack and interacts with active response patches. 

Businesses with remote servers such as Google, Microsoft, and others with websites 



111 

that could contain vulnerabilities could benefit by applying active response patches in 

their applications. Businesses that use, support or develop tools that take user input 

without the user viewing the code being executed can apply active response patches. 

Results in this dissertation suggest there is promise for implementing faux patches 

to increase attacker workload. The results suggest that an attacker’s workload in­

creases when analyzing patches to develop exploits. Further studies must be con­

ducted to identify additional program characteristics where faux patch application is 

advantageous. Businesses that release patches to end users to download could apply 

faux and/or obfuscated patches to increase the analysis time of attackers developing 

exploits based on patches. 

7.2 Summary 

In this dissertation, we identified and presented how deception can be applied 

to software security patches. First, we discussed patch-based exploit generation, 

the motivation for our work. We discussed current events that fall under this type 

of attack. We discussed the literature providing background material for deceptive 

patches as well as prior work in the area of deceptive patching. We then identified and 

discussed the major components of a software patch in Chapter 3. We discussed how 

these components can be deceptively implemented as well as how adding deception to 

each component impacts the cyber kill chain. We also presented a timeline analysis 

of the effects of deceptive patches. 

Prior work has looked at manually adding deceptive patches to code, but our 

explanation of ghost patches in Chapter 4 is the first to add fake input validation 

patches to code using an automated compiler tool. We discuss implementation, anal­

ysis and implications of this work. Results suggest deceptive patching is feasible. We 

implemented, tested and analyzed a tool that inserts deceptive patches, specifically 
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fake patches into code. We show that for programs where an input variable deter­

mines the number of times a loop executes, either directly or indirectly, the number 

of paths in a faux patched program that are enumerated by KLEE is unequal to the 

number of paths in unpatched programs. We did not observe any general charac­

teristics in the KLEE-benchmark suite that indicated an addition of faux patches 

would increase the number of paths enumerated. We also performed an experiment 

that added multiple conditional statements for each store instruction in the program. 

This experiment showed that increasing the number of faux patches that are inserted 

per store instruction does not generally increase the number of paths nor the runtime 

of KLEE to enumerate these paths. The experiment had the opposite effect in some 

instances, decreasing the number of paths and decreasing KLEE’s runtime compared 

the paths and runtime after adding a single faux patch per store instruction. We con­

clude that adding faux patches to programs does not generally increase the number 

of paths or runtime of KLEE. This suggests that adding faux patches does not induce 

a path explosion when using symbolic execution to analyze a program. Thus, faux 

patches do not generally increase the dynamic analysis of a program nor increase the 

workload of an attacker. Our experiments suggest that other factors such as the val­

ues used in the conditional statements of faux patches and the comparison operators 

used influence the number of paths more than the number of faux patches added. 

This chapter presents two measures of the difficulty of deception, specifically in 

analyzing deception. The runtime of an analysis tool as well as the number of paths 

throughout a program indicate the amount of deception added as well as the difficulty 

to analyze and study this deception. The runtime of a program provides an indication 

to the difficulty of analyzing a program using brute force techniques. If the runtime 

of an analysis tool increases when analyzing deceptive patches, this suggests that the 

amount of data to analyze overall has increased. The number of paths throughout 
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a program provide a similar indication to the change in workload for an attacker. 

Optimizations have been implemented within KLEE, i.e. dead path and dead code 

removal, such that using this tool is applied to model a relatively knowledgeable 

attacker. 

In Chapter 5, we discuss the idea of introducing moving target defense techniques 

to software security patches and provide analysis based on prior work in the semantics 

of deception on software security patch notifications. Finally, we present a framework 

using the traditional software patching lifecycle, add subsequent steps to generate 

diverse versions of released patches, and discuss metrics that trigger the release of 

these diversified patches. 

In Chapter 6 we analyzed a formal model of deceptive patches that examines the 

impact of deceptive patches using a game theoretic approach. 

7.3 Future Work 

The research conducted and presented in this dissertation provides a number of 

results that can be used to continue to progress the field of deceptive patching. Our 

compiler approach is the first to apply deceptive techniques to software security patch­

ing using automated techniques. 

One additional piece of work to extend the implementation of faux patches applies 

the technique to additional vulnerability classes. Inserting fake patches that appear 

to fix cross-site scripting vulnerabilities, buffer overflows, and other string related 

vulnerabilities provides an interesting area of study and expands the capabilities of 

faux patches. Also, performing a user study to measure the distinguishability between 

faux patches and legitimate patches would provide insight on additional characteris­

tics that must be present to make faux patches more plausible. Performing this user 
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study with both participants who are knowledgeable about computer science, coding 

and exploits and those who are naive would provide interesting results. 

Another interesting area of research is to develop more comprehensive testing 

benchmarks for deceptive tools. One component that is lacking wide range support 

in the area of deceptive patching is testing and specifically how deceptive tools can 

be tested and shown to be effective as well as efficient. Developing benchmarks and 

baseline measurements so that researchers can more effectively gauge the influence of 

their tools is key to progressing this field of research. 

Researching and applying machine learning to deception is a future area of study 

that could have an impact on the way we perform defense. Classification and clus­

tering techniques can be used to identify and develop the efficient and effective de­

ceptive patch given inputs such as the vulnerability being fixed, the length of time 

the vulnerability has been public, the size of the project, etc. Truly automated patch 

development and application and then deceptive patch development and application 

guides us toward automated software security where applications are able to harden 

themselves against exploit. 

As research on deceptive patches expands, new proposed techniques should be 

evaluated with respect to a clear and meaningful definition of security. The shift 

to rigorous modeling transitioned cryptography from an art to a science, and this 

approach should be followed by other areas claiming security guarantees. 

This dissertation presents components and a general workflow for a Deceptive 

Dispatcher tool that re-releases diversified versions of previously released patches. 

Implementing and analyzing the performance and effectiveness of this should guide 

future work. 
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