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tures; x axis shows the values of f in log scale and y axis denoting the
 
accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
 

5.3	 Accuracy of differentially private regularized SVM classifier with top 50
 
features; x axis shows the values of f in log scale and y axis denoting the
 
accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
 

5.4	 Accuracy of differentially private decision trees . . . . . . . . . . . . . . . 101
 



ix 

ABSTRACT 

Anandan, Balamurugan PhD, Purdue University, May 2017. Privacy-Preserving 
Analysis with Applications to Textual Data. Major Professor: Christopher W. 
Clifto. 

Textual data plays a very important role in decision making and scientific research, 

but cannot be shared freely if they contain personally identifiable information. In 

this dissertation, we consider the problem of privacy-preserving text analysis, while 

satisfying a strong privacy definition of differential privacy. 

We first show how to build a two-party differentially private secure protocol for 

computing similarity of text in the presence of malicious adversaries. We then relax 

the utility requirement of computational differential privacy to reduce computational 

cost, while still giving security with rational adversaries. 

Next, we consider the problem of building a data-oblivious algorithm for minimum 

weighted matching in bipartite graphs, which has applications to computing secure 

semantic similarity of documents. We also propose a secure protocol for detecting 

articulation points in graphs. We then relax the strong data-obliviousness definition 

to give f-data-obliviousness based on the notion of indistinguishability, which helps 

us to develop efficient protocols for data-dependent algorithms like frequent itemset 

mining. 

Finally, we consider the problem of privacy-preserving classification of text. A 

main problem in developing private protocols for unstructured data is high dimen­

sionality. This dissertation tackles high dimensionality by means of differentially 

private feature selection. We show that some of the well known feature selection 

techniques perform poorly due to high sensitivity and we propose techniques that 

perform well in a differential private setting. The feature selection techniques are em­



x 

pirically evaluated using differentially private classifiers: näıve Bayes, support vector 

machine and decision trees. 
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1 INTRODUCTION 

In many real world applications, there is a necessity to share data (e.g., text docu­

ments and network data) with others. Sensitive information (e.g., electronic health 

records) that contain personally identifiable information when disclosed intention­

ally or inadvertently without proper measures can cause serious privacy concerns. 

k-safety [1], t-plausibility [2,3] and information theory based sanitizers [4,5] are some 

of the syntactic and semantic text publishing techniques used for redacting sensitive 

information before publishing them for data mining purposes. These data publishing 

techniques are also prone to correlation based inference [6] and may be inadequate 

for settings where data is shared among multiple parties, who want to learn useful 

information from their combined data. This dissertation considers various scenarios 

where privacy is an issue when computing with sensitive textual data and proposes 

novel algorithms for solving them. 

Let us consider a simple example of two mutually distrustful parties, who want 

to compute the similarity of their input documents (represented by a binary vector) 

without revealing their input documents. Secure multi-party computation (MPC) 

deals with the problem of how to securely compute a function among mutually dis­

trustful parties, but a straightforward secure function evaluation approach (blindly 

computing the result, with neither party learning anything but the final result) may 

not be sufficient as computing a similarity function like hamming distance or dot 

product could leak information from the final result. A malicious party whose only 

intention is to learn if the other party has a particular feature/word in their document 

can construct their input document with all zeros except for a one as the value for 

the targeted word/feature in the document vector that he/she wants to learn. The 

final result is then the other party’s value for that targeted word/feature, resulting 

in a information leak. 
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Differential privacy, on the other hand, asks the question of what aggregate func­

tions can be computed on private data such that the output does not leak information 

about an individual in the database. A differentially private function computed using 

MPC techniques would solve the above problem, as the result would have sufficient 

noise to mask that single individual’s value. Unfortunately, a simple solution like each 

party contributing noise to the other party does not work in the two-party malicious 

setting as we will see this in Chapter 3. 

Computing a differentially private function securely using multi-party computa­

tion techniques prevents private information leakage both in the process, and from 

information present in the function output, but poses new challenges if any of the 

parties are malicious. A key challenge in developing a distributed differentially private 

protocol is 

How to securely sample a pseudo-random number from a Laplace distribu­

tion in the two-party malicious setting? 

In Chapter 3, we show how to build a two-party differentially private secure pro­

tocol in the presence of malicious adversaries. We then relax the utility requirement 

of computational differential privacy to reduce computational cost, which leads to 

the notion of security with rational adversaries. Finally, we provide a modified two-

party computational differential privacy definition and show correctness and security 

guarantees in the rational setting. 

Applying secure multi-party computation techniques on an algorithm alone does 

not guarantee privacy, if the underlying algorithm is data-dependent or if the output 

of the algorithm can leak information. The first issue can be addressed through data-

oblivious computation, the second through differential privacy. However, both can 

be difficult to achieve with graph algorithms. Chapter 4 addresses both problems, 

demonstrating a differentially private data-oblivious protocol for minimum weighted 

bipartite matching, minimum vertex cover for bipartite graphs and privately detecting 

articulation points in an undirected graph. 
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There are situations where strict data-obliviousness is inefficient. For example, 

consider an algorithm like frequent itemset mining, whose running time is dependent 

on the input query (e.g., retrieve the itemsets that satisfy a threshold φ.) Frequent 

itemset mining has been used on text [7, 8] for identifying topics and knowledge 

discovery. A true data-oblivious algorithm would then have to access every itemset 

to prevent information leaks due to the sequence and number of memory accesses. 

But this is infeasible because the run time of the data-oblivious algorithm would be 

exponential. This raises our next question. 

Is it possible to develop efficient data-oblivious algorithms under a weaker 

security guarantee? 

In Section 4.5, we propose a relaxed data-oblivious definition f-data-obliviousness 

that provides a weaker notion of data-obliviousness. We also develop an efficient 

algorithm for frequent itemset mining and prove that it satisfies f-data-obliviousness. 

Finally, we consider the problem of differentially private classification on unstruc­

tured data. A key challenge in applying differential privacy to text analysis is that 

the noise added to the feature parameters is directly proportional to the number of 

parameters learned. While careful feature selection would alleviate this problem, the 

process of feature selection itself can reveal private information, requiring the appli­

cation of differential privacy to the feature selection process, which leads us to the 

question. 

Is it possible to build efficient private classifiers for text that satisfy differen­

tial privacy? Given the high dimensionality of text, which feature selection 

techniques are suitable for differentially private analysis? 

In Chapter 5, we analyze the sensitivity of various feature selection techniques used 

in text classification and show that some of them are not suitable for differentially 

private analysis due to high sensitivity. We also perform empirical evaluation on 

differentially private näıve Bayes classifier, support vector machine and decision trees 

to evaluate the efficiency of the private feature selection methods. 
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2 BACKGROUND AND RELATED WORK 

This chapter provides the standard techniques and definitions from secure multi-party 

computation and differential privacy for completeness of the solutions proposed in the 

following chapters. 

2.1 Secure Computation 

Consider two parties P1 and P2 having private inputs, who wish to collaboratively 

compute a function of their inputs without divulging their inputs because of confi­

dentiality issues. An example scenario occurs in knowledge discovery from sensitive 

inputs like medical databases. The above problem can be solved by secure multi-party 

computation (MPC) using well known generic protocols. A brief description of the 

tools used for building secure protocols are described below. 

2.1.1 Garbled Circuits 

Garbled circuit technique introduced by Yao in [9] is a generic method for secure 

two-party computation in the semi-honest setting. It allows two parties having in­

puts x, y respectively to evaluate an arbitrary function f(x, y) without leaking any 

information other than what can be inferred from the output and their own input. To 

summarize, one party generates a Boolean circuit and associates with each input wire 

i, two random keys wi 
0, wi 

1 corresponding to 0, 1 bit respectively. Then for each gate, 
o(bi,bj )the generator computes E bi bj (w ) for all inputs bi, bj ∈ {0, 1}. The four cipher kw ,wi j 

texts corresponding to each gate are then permuted and sent to the evaluator along 

with the keys corresponding to its own input wires. The evaluator obtains the keys 

associated with its input using oblivious transfer (OT) and then begins evaluating 
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the circuit. At the end, the generator reveals the mapping between the output keys 

to bits. 

2.1.2 Malicious Setting 

The following definition and description is based on [10] Chapter 7. In a malicious 

model, the adversaries may arbitrarily deviate from a specified protocol. The security 

of a protocol in the malicious model is defined by comparing an execution of a protocol 

in the real model to an execution in the ideal model. In an ideal scenario, there exists 

an incorruptible trusted third party T to whom the parties send their inputs. The 

trusted third party T computes the function on the inputs and returns back their 

respective output. 

Execution in the ideal model: Let P0, P1 be the parties computing the function­

ality f = (f0, f1), A be an adversary controlling Pi, where i ∈ {0, 1} and T be the 

incorruptible trusted third party. Then, an execution in the ideal model proceeds as 

follows. 

Inputs: Each party Pj obtains its input xj of the same length n and let z be the 

auxiliary input of the adversary A. 

Send inputs to trusted party: The honest party P1−i always sends its received 

input x1−i to the T . An adversary A controlling the party Pi may send its received 

input xi or send some other input depending upon the auxiliary input z of the same 

length to T on behalf of Pi. Let x̄ be the input of both the parties. 

T sends output to adversary: T computes (f0(x̄), f1(x̄)) and sends fi(x̄) to A 

controlling Pi. 

Adversary instructs T to continue or halt: The adversary A upon receiving its 

output could either send continue or aborti to T . If A sends continue to T , then T 

sends f1−i(x̄) to the honest party P1−i. Otherwise, if A sends aborti to T , then the 

T sends aborti to Pj . 
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Outputs: An honest party P1−i always outputs whatever it has received from the 

T . The corrupted party outputs nothing. A can output a function (efficiently com­

putable) of its input, the auxiliary input z and messages it received from the T . 

Let IDEALf,A(z)(x, y, n) be the random variable consisting of the output of the 

adversary and the output of the honest party following an execution in the ideal 

model as described above. 

Execution in the real model: Let π be a two-party protocol for computing f in 

the real model (in the absence of T ), A be a non-uniform probabilistic polynomial-

time adversary that sends all messages in place of the corrupted party. The honest 

party follows the protocol. Then, the joint execution of π with inputs (x, y), and 

auxiliary input z to A in the real model is denoted as REALπ,A(z)(x, y, n), is defined 

as the output of the honest party and the adversary A resulting from the protocol 

execution. The secure two-party computation is defined as follows: 

Definition 2.1.1 (Secure Two-Party Computation) Protocol π is said to secur­

ely compute f with abort in the presence of malicious adversaries if for every non­

uniform probabilistic polynomial-time adversary A in the real model, there exists a 

non-uniform probabilistic polynomial-time adversary S for the ideal model, such that 

for every i ∈ {0, 1}

  c   
IDEALf,S(z),i(x, y, n) ≡ REALΠ,A(z),i(x, y, n)x,y,z∈{0,1}∗ ,n∈N x,y,z∈{0,1}∗ ,n∈N 

2.1.3 Homomorphic Encryption 

A public-key encryption scheme is homomorphic if it allows computations on the 

ciphertexts without decrypting them first. Let Epk and Dsk denote the encryption 

and decryption functions with pk and sk as the public and private keys respectively. 

Then, an additive homomorphic encryption system has the following property. Given 

an encryption of m1 and m2, Epk(m1) and Epk(m2), there exists an efficient algorithm 

to compute the encryption of m1+m2, denoted by Epk(m1+m2) = Epk(m1)⊕Epk(m2). 
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The homomorphic addition is denoted by the operator ⊕. A formal definition is given 

below. 

Definition 2.1.2 [11] A public key encryption scheme (G, E, D) is additively ho­

momorphic if for all n and all (pk, sk) output by G(1n), it is possible to define groups 

M, C such that: 

• The plaintext space is M, and all ciphertexts output by Epk are elements of C. 

• For every m1,m2 ∈ M, it holds that 

pk, c1 = Epk(m1), c1 ⊗ Epk(m2) ≡ pk, Epk(m1), Epk(m1 + m2) 

where the group operations are carried out in C and M, respectively. 

Such an additive homomorphic scheme also supports the multiplication of a ci­

phertext and a scalar constant by repeated addition. i.e., Given a constant c and 

the encryption of m1, Epk(m1), there exists an efficient algorithm to compute the 

encryption of c × m1, denoted by Epk(c × m1) = c ⊗ Epk(m1). The operator ⊗ is 

used to denote the homomorphic multiplication of a constant with a ciphertext. An 

encryption scheme that meets the above definition is Paillier [12]. The threshold vari­

ation of Paillier is shown in [13], which is used for building protocols in Chapter 3. 

A few other protocols proposed in [13] that are useful for building protocols in the 

malicious setting are as follows. 

Proving that you know a plain text (POK): A prover Pi than created the en­

cryption Epk(x) can give the zero-knowledge proof of knowledge P OK(Epk(x)) that 

it knows an element x in the domain of valid plaintexts such that Dsk(Epk(x)) = x 

Proving that multiplication is correct (POMC): Assume prover Pi is given 

an encryption Epk(x) and chooses a constant c and calculates a random encryption 
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Epk(x×c) and sends Epk(x×c), Epk(c) to verifier. Then, Pi can give a zero-knowledge 

proof P OMC(Epk(x), Epk(c), Epk(x × c)) to prove that Epk(x × c) is indeed the prod­

uct of the values contained in Epk(x) and Epk(c) 

Threshold decryption: Given the common public key pk, and an encryption 

Epk(x). There exists an efficient secure protocol in which each party uses their share 

of the private key sk to output x for everyone. 

2.1.4 Secret Sharing 

The goal of a (t, n) secret sharing scheme is to divide a secret S in to n shares 

S1, S2, . . . , Sn such that given any t shares, it is possible to reconstruct the secret S 

and knowledge of k −1 or few shares does not reveal any information about the secret 

S. 

Shamir secret sharing [14] is an example (t, n) secret sharing scheme based on 

polynomial interpolation. In Shamir’s secret scheme, the domain of secret and the 

shares are elements of a finite field Fp, where p is a prime and p > n. To share a 

secret S ∈ Fp, the dealer first chooses t − 1 elements a1, . . . , at−1 uniformly at random  t−1from Fp. Then, builds a polynomial over the field Fp as follows f(x) = a0 + i=1 aix
i , 

where a0 = S. To share a secret among n parties, the dealer constructs n points on 

the polynomial. For example, let z = 1, . . . , n and evaluates the polynomial f at each 

z to get a point (z, f(z)), which is given to party Pz. Note that, we can recover the 

t − 1 degree polynomial (along with the secret S) with t or more unique points on the 

polynomial using Lagrange interpolation, but no information about the polynomial 

or the secret is leaked with less than t points. 

2.2 Differential Privacy 

Differential privacy introduced in [15, 16] provides a strong guarantee of privacy 

against an adversary with background knowledge, while learning some statistic over 
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a statistical database. It protects individual privacy by guaranteeing that the output 

of a mechanism is approximately the same (or more precisely, from nearly indistin­

guishable distributions), regardless if any single individual is present or absent in a 

dataset. Since, any information that can be learned with having an individual’s data 

on the dataset can also be learned without it, there is no significant advantage for an 

individual to opt-out of the dataset. 

We will review differential privacy and then discuss the techniques used to achieve 

differential privacy. Let D denote a sensitive database (collection of data elements) 

with each tuple corresponding to an individual. Let M : D → Rd be a randomized 

algorithm. Then, M satisfies f-Differential Privacy if and only if for any two neigh­

boring datasets D1 and D2, the distributions M(D1) and M(D2) differ at most by a 

Emultiplicative factor of e . A formally definition of differential privacy is as follows. 

Definition 2.2.1 (f-Differential Privacy [15, 16]) A randomized mechanism M 

is f-differentially private if for all datasets D1 and D2 differing by at most one ele­

ment, and for all S ⊆ Range(M), the following holds 

P (M(D1) ∈ S) E≤ e 
P (M(D2) ∈ S) 

The key idea behind differential privacy is that the contribution of a single in­

dividual to the publicly released result is small relative to the noise. This is done 

by calibrating the noise based on the potential difference in results between any two 

neighboring databases (databases that differ by one individual.). The difference be­

tween the results from the true world D and its neighbor D' is the difference the 

privatization noise will need to obfuscate in order for the privatized results to not 

give evidence about whether D or D' is the true world. The upper bound of this 

difference over DI ∈ D is the sensitivity of query f . For example, if we assume a 

binary dot product (the count of individuals for whom both parties have value 1), the 

sensitivity is 1. Removing/Adding an individual (modifying a value from 1 to 0 or 

vice versa) will change the outcome by at most one, regardless of the initial vectors. 
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In general, the sensitivity of dot product is the multiple of the maximum possible 

values in the domain. 

As with secure multi-party computation, differential privacy has a seminal result 

giving a method for any query. The technique proposed by [16] to achieve f-differential 

privacy is by adding a suitable noise generated from the Laplace distribution to the 

output. 

2.2.1 Sensitivity 

One of the key parameters that determines the accuracy with which a query f can 

answered with differential privacy is the £1 sensitivity of f . It captures the largest 

change in f due to a change in single individual’s data item. Now, we define the two 

sensitivities that have been used to achieve differential privacy. 

Definition 2.2.2 (Global Sensitivity [16]) For a given function f : D → Rd, the 

global sensitivity of f (with respect to the £1 metric) is 

f(D1) − f(D2)GSf = max 
D1,D2 1 

where D1 and D2 differ in at most one element. 

2.2.2 Laplace Mechanism 

Let Lap(µ, λ) be a Laplace distribution with mean µ and scale factor λ(> 0), 

whose density function is given by 

  

1 |x − µ|
h(x) = exp −

2λ λ 

In [16] Dwork et al. proved that for a given query function f and a database D, 

a randomized mechanism M, which returns f(D) + Y , where Y is drawn i.i.d from
 

Lap
GS

E
f satisfies f-differential privacy. 
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2.2.3 Exponential Mechanism 

The Laplace mechanism achieves differential privacy by adding a real-valued noise 

to the true answer. However, it is not suitable for queries that return non-numeric 

values, or in situations where noise is irrelevant. Exponential mechanism E , proposed 

in [17] is applicable for non-numeric queries. Let D be the domain of input datasets, R 

be the range of noisy outputs and R be the real numbers. The exponential mechanism 

E defines a scoring function q : D ×R → R that assigns a score to each pair (D, r) 

where D ∈ D and r ∈ R. Given a database D and privacy parameter f, E outputs r 
E×q(D,r) 

2S(q)with probability proportional to e . 

Theorem 2.2.1 [17] Let q : (Dn × R) → R be a scoring function that, given a 

database D ∈ Dn , assigns a score to each outcome r ∈ R. The sensitivity of the 

scoring function q is S(q) = maxr,AΔB=1 |q(A, r) − q(B, r)|. Let E be a mechanism for 

choosing an outcome r ∈ Rn given a database instance D ∈ Dn then the mechanism 

  
fq(D, r)E(D, q) = return r with probability ∝ exp 
2S(q)

satisfies f-differential privacy. 

In the global sensitivity framework, the noise magnitude depends upon the func­

tion f and the privacy parameter f. The global sensitivity measures the noise needed 

to protect the privacy of an individual in the worst case scenario. But, it may not 

be suitable for all functions because the noise magnitude may be very high and this 

could lead to poor utility for highly sensitive functions. In the local sensitivity frame­

work [18], the noise will also be based upon the database D. The local sensitivity 

LSf (D) of the function f with database D is defined as follows 
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Definition 2.2.3 (Local Sensitivity [18]) For a given function f : D → Rd and 

D ∈ D, the local sensitivity of f at D (with respect to the £1 metric) is 

LSf (D) = max f(D) − f(D1)
D1 1 

where D1 differs from D by a single element. 

It is also easy to see that GSf = max LSf (x). However, releasing a function 
x 

calibrated with noise magnitude proportional to LSf (x) will not satisfy differential 

privacy because the local sensitivity is itself sensitive. Therefore, a smooth upper 

bound Sf to LSf is used such that adding noise proportional to Sf is safe. 

Definition 2.2.4 (A Smooth Bound [18]) For β > 0, a function S : Dn → R+ 

is a β-smooth upper bound on the local sensitivity of f if it satisfies the following 

requirements: 

∀x ∈ Dn : S(x) ≥ LSf (x) 

∀x, y ∈ Dn, d(x, y) = 1 : S(x) ≤ e βS(y) 

An example of a function that satisfies Definition 2.2.4 is the smooth sensitivity 

of f . 

Definition 2.2.5 (Smooth sensitivity [18]) For β > 0, the β-smooth sensitivity 

of f is 

S ∗ −βd(x,y)LSf (y)f,β (x) = max e 
y∈Dn 

Definition 2.2.1 also called information theoretic privacy is the strongest defini­

tion of differential privacy as it holds against unbounded adversaries. A relaxed 

indistinguishability-based computational differential privacy (IND-CPD) definition 

proposed in [19] protects privacy against computationally bounded adversaries. IND­

CDP is the computational analogue of (f, δ)-DP where δ = negl(κ), where k is the 

security parameter. In CDP, the adversary is modeled as polynomial sized circuits 

(or non uniform probabilistic polynomial time TMs) and is denoted by {Aκ}κ∈N. 
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Definition 2.2.6 (IND-CDP [19]) An ensemble {fκ}κ∈N of randomized functions 

fκ : D → Rκ provides fκ-IND-CDP if there exists a negligible function negl(.) such 

that for every non-uniform PPT TM A, every polynomial p(.), every sufficiently large 

κ ∈ N, all data sets D, D ' ∈ D of size at most p(κ) such that |DΔD ' | ≤ 1, and every 

advice string zκ of size at most p(κ), it holds that 

Pr[Aκ(fκ(D)) = 1] ≤ e E × Pr[Aκ(Fκ(D ' )) = 1] + negl(κ) 

where we write Aκ(x) for A(1κ, zκ, x) and the probability is taken over the ran­

domness of mechanism fκ and adversary Aκ. 

2.3 Two-Party Computational Differential Privacy 

We briefly review the two-party CDP definition in the malicious setting proposed 

in [19]. Let {gκ}κ∈N, {hκ}κ∈N denote the ensembles of randomized interactive Turing 

machines of gκ, hκ respectively and {(gκ, hκ)}κ∈N denote the ensemble of interactive 

protocols of {gκ}κ∈N, {hκ}κ∈N. Then the definition of two-party differentially private 

computation using the ideal/real paradigm is 

Definition 2.3.1 (Two-Party CDP [19]) A two-party interactive protocol ensem­

ble {(gκ, hκ)}κ∈N for computing a function f(x, y) satisfies (γ, ξ) fκ-SIM+−CDP if 

there exists an fκ-DP randomized mechanism f̂ = (f̂  
g, f̂  

h) such that 

•	 Mechanism f̂  provides (γ, ξ) additive usefulness with respect to f. 

•	 The protocol ensemble {(gκ, hκ)}κ∈N securely realizes the randomized function­

ality f̂  as per the ideal/real simulation paradigm. 

Informally, the above definition states that for every Aκ in the real world, there 

exists a simulator Sκ in ideal world when given a differentially private output f̂  

(computed by trusted third party), Sκ should be able to simulate the protocol with Aκ 

such that for every x, y ∈ {0, 1}κ the joint output in the ideal world is computationally 

indistinguishable with the joint output in the real world. 
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The usefulness property is used to describe the utility/correctness of a differen­

tially private mechanism. 

Definition 2.3.2 ((γ, ξ)-usefulness [19]) A differentially private output f̂(x, y) is 

an additive (γ, ξ)-useful for a deterministic function f(x, y) if for all x, y ∈ D 

Pr[|f̂(x, y) − f(x, y)| > γ(κ)] ≤ ξ(κ) 
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3 PRIVACY-PRESERVING ANALYSIS IN RATIONAL SETTING 

Secure multi-party computation (MPC) and differential privacy are two notions of 

privacy that deal respectively with how and what functions can be privately com­

puted. Computing a differentially private function using MPC techniques was first 

considered in [20]. The idea is to design f̂ , an f-differentially private approximation 

of the function f , and evaluate it using MPC. 

As an example application, suppose two companies wish to compare customer lists. 

If they share enough customers, they may wish to establish a collaboration. Using 

secure function evaluation they can compute the distance without revealing their 

inputs. Suppose one company simply wishes to know if the other has a particular 

customer, it can construct a document containing only that name. The output/value 

of the distance protocol reveals the presence of that individual in the other party’s 

list. Differential privacy protects against this, adding sufficient noise to the outcome 

to only give highly uncertain information about any individual, while still providing 

reasonably accurate aggregate information. 

3.1 Related Work 

The closest work related to ours is [21]. It gives a distributed protocol to gener­

ate a Laplace sample from two exponential samples that involves computing secure 

logarithm twice. We show how the composition method can be used to generate a 

Laplace sample from a single uniform sample. While [21] does give a malicious se­

cure protocol, the malicious model security holds only when the number of parties is 

greater than two. 

Distributed pseudo-random number generation has been used in privacy-preserving 

aggregation of time series data. It considers the problem of finding statistics from 
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a user’s data in the presence of an untrusted aggregator. A distributed protocol for 

Laplace sample generation from multiple Gaussian samples (each party generates a 

single Gaussian sample) is given in [22]. In [23], a method is given for distributed 

sample generation from a geometric distribution. Our work faces a different challenge, 

as rather than an untrusted aggregator, it is the participating parties that may not 

be trusted. 

Some of the papers that deal with distributed computational differential privacy 

(CDP) are described below. The problem of an adversary gaining exclusive access to 

output without getting caught in a two-party CDP malicious setting was discussed 

in [24], but the paper does not provide solutions. [19] gives fundamental definitions for 

two-party computational differential privacy and various relationships among them. 

They also provide a two-party Hamming distance protocol for the honest but curious 

(semi-honest) model and the malicious model, but they do not deal with verifiable 

sample generation. In [19], at the end of the protocol one party gets a differentially 

private output and the other party gets nothing. The party not receiving the output 

generates the noise; the assumption is that a malicious party generating large noise is 

essentially equivalent to a malicious party aborting. None of the above protocols have 

a mechanism for verifiable noise generation. Even though one might argue that the 

individual privacy is not compromised, a malicious adversary who would like to have 

exclusive access to the output could add more noise than what is needed to render 

the honest party’s output unusable. 

The notion of allowing an adversary to cheat with non-negligible probability as 

long as it caught with some high probability ω was formalized in [25], which intro­

duces secure multi-party computation in the presence of covert adversaries, a slightly 

weakened view that allows malicious behavior to benefit the malicious party as long 

as it is eventually detected. In our work, a rational adversary does not learn the 

honest party’s input; the only consequence of successful cheating by an adversary is 

a low quality output for the honest party. 
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Encrypting Reals: A p precision real value is converted into an integer by first 

multiplying it with a constant 10p before encryption. To recover the real value after 

decryption, the integer is multiplied with the scaling factor 
10
1 
p . Since N − 1 ≡ 

−1(mod N), we can represent −i by N − i in ZN . The lower half [1, lN 
2 J] and upper 

half [1N 
2 l, N − 1] of the range [1, N − 1] is used to represent positive and negative 

numbers respectively. 

3.2	 Two-Party CDP: Semi-Honest Model 

We illustrate the need for a secure protocol in the malicious setting using a Ham­

ming distance protocol, although the approach can be extended to any scalar-valued 

function. A simple semi-honest solution is for each party to generate noise satisfying 

differential privacy, and incorporate it in the result. An example two-party differen­

tially private Hamming distance protocol secure in the semi-honest setting using a 

semantically secure additive homomorphic encryption scheme is given in Algorithm 

1. Some of the notations used in this chapter are given in Table 3.1. 

Table 3.1.: Notations 

Pi Party i 
pk Public Key 
ski Private key share of Pi 

xi Pi’s input vector x 
jth element of xi 

x̃ Encryption of x with public key 
pk (Epk[x]) 

⊕	 Xor 
E	 Homomorphic addition 

xij 

�	 Multiplication of constant with 
encrypted value 

This gives a “doubly noisy” result for P1, but since P1 knows the noise it con­

tributed, it can factor it’s own noise out to obtain a less noisy, but still differentially 

private, output. P1 subtracts r1 from f1 to obtain its output. We can see that each 
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Algorithm 1 Two-party secure Hamming distance in HbC
 
Input: Party i’s input vector is xi. 
Output: fi = ( j

n x0j ⊕ x1j ) + r1−i 

1:	 Party P0 creates a key pair (pk, sk) and sends its encrypted input vector x̃0 and 
public key pk to party P1. 

2:	 ∀ i, P1 computes t̃i = x̃0i, if x1i = 0 and t̃i = 1̃E (−1 x̃0i) if x1i = 1. 
3:	 P1 computes the Hamming distance by homomorphically summing t̃i to get s̃ = 

En ˜
i=1ti. 

4:	 P1 can homomorphically add a suitable noise r1 ∼ Lap(0, 1 
E ) to s̃ to obtain f̃  

0 = 
s̃E r̃1 and send the differentially private value to P0. 

5:	 P0 decrypts the value f0 = Dpk(f̃  
0) and sends f1 = f0 + r0 to P1 where r0 is noise 

selected by P0. 

party learns fi = ( n
j x0j ⊕ x1j ) + r1−i, where r1−i is randomly selected by P1−i, 

so each party is left with a result containing sufficient (unknown) noise to provide 

differential privacy. A brief argument that the protocol provides fκ-SIM-DP for P0 

and fκ-DP for P1 in the semi-honest setting is given in [26]. 

The above protocol works fine as long as the parties do not deviate from the pro­

tocol, but fails if a party deviates from the protocol. There exist standard techniques, 

like zero knowledge proofs as shown in [13] for Paillier encryption, to prove the verac­

ity of the statement at each step. But, the fundamental problem still persists because 

a party who wishes to have exclusive access to the result can add a predetermined 

large noise to make the output unusable for the honest party. The problem in the 

above protocol is that each party’s output contains a noise sample randomly selected 

by the other party. In Section 3.3, we show how two parties can engage in a protocol 

to draw a sample from the required distribution, preventing this problem. 

This chapter makes the following contributions 

•	 A two-party protocol is given in Section 3.3 to generate a pseudo-random sample 

from Laplace distribution in the presence of a malicious adversaries. As long 

as one of the parties follow the protocol, the sample generated is a pseudo­
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random sample from a Laplace distribution. Unfortunately, this protocol is 

computationally quite expensive. 

•	 We then introduce the notion of rational adversaries, which models the behavior 

of an adversary in two-party CDP. Rational adversaries in two-party CDP have 

the property that they cheat with the intention of getting exclusive access to 

the output without being caught. Section 3.4 presents a definition of two-party 

CDP in the rational setting with relaxed utility guarantees to develop more 

practical protocols. We do this by defining a deterrence factor 1 − ω where 

0 ≤ ω ≤ 1. I.e., any attempt to gain exclusive access to the output by an 

adversary in the execution of the protocol is caught with probability at least 

1 − ω. If ω is equal to 0, then the model is equivalent to two-party CDP in the 

malicious model. 

3.3 Two-Party CDP: Malicious Case 

We show a generic method to compute two-party differentially private analysis 

(using a Laplace mechanism to achieve DP) using garbled circuits, if there exists 

one in the ideal environment. In a semi-honest model, the parties are assumed to 

follow the protocol, which implies that the parties send their true inputs during an 

execution. Given a protocol that is secure in the semi-honest setting, we can apply 

zero knowledge proofs at each step to make it secure in the malicious model. However, 

this does not impose any restriction on the choice of inputs. An adversary sending 

incorrect inputs during an execution will go undetected. Hence, the idea of having 

one party generate random noise that impacts the output of the other party does 

not work; a party desiring exclusive access to the result can generate arbitrarily large 

“noise” to corrupt the other party’s output; as this is a legitimate input, it is allowed 

even in a malicious-secure protocol. In an ideal model, the pseudo-random sample 

is generated by an incorruptible trusted third party. The key step in emulating the 
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ideal model is to generate a random sample from the required distribution even if 

only one party behaves correctly. 

This is easy if we desire a sample from a uniform distribution; the modulo sum of 

the numbers generated by each party is a random sample as long as one party behaves 

honestly. But we need a sample from a Laplace distribution; this can be done using 

the composition method. Algorithm 2 gives the steps to generate a Laplace sample 

with a specified mean 0 and scale parameter λ. The protocol given in [27] can be 

used to securely compute an approximation of c[ln(x)], where c is a publicly known 

multiplicative factor. Algorithm 2 outputs c × £ where £ ∼ Lap(0, λ). Since c is 

public, each party can remove it from the differentially private result. 

Algorithm 2 Two-party Laplace noise generation protocol
 
Input: Each party Pi has two random inputs, Xi ∈ {0, 1} and Yi, λ are p precision
 
numbers.
 
Output: c ∗ l, where l ∼ Lap(0, λ) and c is a publicly known multiplicative factor.
 

1: U1 = X1 ⊕ X2 (compute a random bit). 
2: U2 = Y1 + Y2 mod (10p + 1) 
3: Z = Πlog(U2)−c[ln(10p)] = c[ln(U ∗10p)]−c[ln(10p)) = c[ln(U)], where U ∼ (0, 1). 
4: If U1 == 0, then Z ' = Z. Else, Z ' = −Z. 
5: return λ ∗ Z ' 

The composition method is a generic method that can be used when the target 

Cumulative Distribution Function (CDF) can be expressed as the convex sum of other 

CDFs. 

∞0 
F (x) = pj Fj (x) 

j=1 

∞where pj > 0 and j=1 pj = 1 
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Laplace Distribution: A standard Laplace distribution is a symmetric exponential 

distribution with pdf and cdf as ⎧⎨
 
⎧⎨
1 1x xif x < 0
 if x < 0
e
 e


2 2f(x) =
 and F (x) =
 ⎩
 ⎩
1 1 − 1 
2 

−x −xif x ≥ 0
 if x ≥ 0
e
 e

2 

⎧⎨
 
⎧⎨
x if x < 0 0 if x < 0
e


F1(x) = and F2(x) = ⎩
 ⎩
1 − e
−x if x ≥ 0
1
 if x ≥ 0
 

Then, 
1 1 

F (x) = F1(x) + F2(x)
2 2 

Computing the inverse we get 

F −1(u) = 

⎧⎨ ⎩
 

log(u) with prob. 0.5
 

−log(u) with prob. 0.5
 

3.3.1 Distributed Uniform Pseudo-Random Number Generation 

A fixed precision uniform random sample from the interval [0,1] is generated by 

each party. A p precision floating point sample can be scaled to the interval [0,10p] 

by multiplying it with 10p. The sum of the individual samples modulo 10p gives a 

uniformly random sample from the interval [0,10p]. The scaling factor used here is 

10
1 
p . Proposition 3.3.1 states this formally. 

Proposition 3.3.1 Let U1, U2 be integers in the interval [0, 10p]. Then, U = U1 + 

U2(mod10p + 1) is a uniform sample from U(0, 10p) if at least one of the sample 

Ui ∼ U(0, 10p). If U1 ∼ U(0, 10p), then 

Pr[U = u] = Pr[U = U1 + U2(mod10p + 1)] 

1 
= Pr[U1 = U + (10p − U2)(mod10p + 1)] = 

10p + 1 
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3.3.2 Security 

The security of the sample generation protocol against malicious adversaries holds 

due to the generic techniques available for converting a semi-honest Yao’s garbled 

circuit to be secure in the malicious model. There are two issues to consider when 

considering malicious parties. 

1. The circuit evaluator could deviate from the OT protocol and obtain keys for 

both 0 and 1, thereby evaluating the function for different inputs. 

2. Correctness of the protocol (the circuit generator could construct a different 

circuit), which can in turn leak the input of the evaluator. 

Security against a malicious evaluator can be prevented by using an oblivious transfer 

secure against malicious adversaries [28]. Informally, the circuit evaluator can only 

obtain keys corresponding to its own input and can only evaluate the function on its 

input. In order to protect against a malicious circuit generator, techniques like cut­

and-choose have been widely used in which the generator constructs multiple circuits 

and sends them to the evaluator. The evaluator then randomly ask the generator to 

open half of the circuits to check the validity of the construction. The evaluator finally 

evaluates the remaining circuits and uses the majority output as the true output. 

3.3.3 Efficiency 

The expensive operation in distributed Laplace sample generation is the secure 

logarithm function. We used the secure logarithm proposed in [27], which approx­

imates the logarithm function by the Taylor series to q places. The latest work on 

cut-and-choose for garbled circuits [29] shows that to achieve a negligible cheating 

probability of 2−s requires constructing s circuits. Hence, the cut-and-choose tech­

nique to get a cheating probability of approximately 1%, or 2−7, would thus at least 

be 7 times the cost of the semi-honest circuit. To give an idea of efficiency of the 

method, we implemented a semi-honest version of the differentially private hamming 
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distance using FairplayMP [30]. We used q = 4 for our experimentation (i.e., the 

first four terms of the Taylor series was used to approximate log). It took around 

25 minutes on a 2.4GHz processor with 8GB of RAM to evaluate the circuit in a 

semi-honest setting. A number of improvements in building efficient garbled circuits 

have proposed in [31,32], but they are not practical at the moment against malicious 

parties. This gives a protocol running time of several hours – feasible for some uses, 

but in many cases impractical. 

3.4 Two-Party CDP with Rational Adversaries 

Secure multi-party computation in the semi-honest model offers no guarantees on 

the quality of output for honest parties in the presence of dishonest parties. Although 

MPC in the malicious model offers strict guarantees on output, it does not easily 

produce efficient protocols for practical implementation and data analysis. We now 

give a middle ground by relaxing the utility guarantee of the malicious model, which 

leads to MPC in the presence of rational adversaries. This is done by introducing a 

parameter ω that captures the probability of undetected cheating by an adversary in 

the rational setting. A more formal definition follows. 

3.4.1 Rational Adversaries 

We define rational adversaries in MPC as parties who wish to gain exclusive 

access to the correct output without getting caught. This is slightly different from 

the fairness property requirement in MPC because an unfair party is always caught at 

the end of the protocol. The scenario happens in differentially private data analysis, 

where a randomized input of the parties directly contributes to the output of the 

function. A rational adversary could generate arbitrarily large noise, distorting the 

outcome for the other party, and argue that the large noise was generated as a random 

sample. Hence, we introduce a deterrence factor 1 − ω such that 0 ≤ ω ≤ 1, which 

denotes the probability with which an honest party can detect cheating, if a rational 
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adversary attempts to do so. For ω = 0, any attempt to cheat by a rational adversary 

is always caught, equivalent to the malicious model. 

Note that the protocol must still allow arbitrarily large noise, in order to satisfy 

differential privacy. Thus detecting a high noise level does not imply cheating. The 

key is that high noise levels must be an unlikely event, as opposed to an event a 

dishonest party could cause on a regular basis. 

3.4.2 Definition: Ideal/Real Style 

We define two-party computational differential privacy in the rational model us­

ing a redefined ideal/real style paradigm to capture the probability of an adversary 

gaining exclusive access to the output. Let P1, P2 be the parties, A be an adver­

sary controlling j ∈ {1, 2} and T be the incorruptible trusted third party. Then, an 

execution in the modified ideal model with parameter ω proceeds as follows. 

Inputs: Each party Pi obtains its input xi of length n; let z be the auxiliary input 

of the adversary A. 

Send inputs to trusted party: An honest party Pi always sends its received input 

xi to T . An adversary A controlling the party Pj may send its received input xj or 

send some other input of length n or abortj (may depend upon the auxiliary input z) 

to T on behalf of Pj . Let x̄ be the received input of both the parties. 

T sends output to adversary: T computes f(x, y) = (f1(x̄), f2(x̄)) and sends fj 

to A controlling Pj . 

Adversary instructs T to continue or halt: The adversary A upon receiving the 

outputs could either send continue or abort to T . 

Cheat Option: If A controlling the corrupted party Pj sends wj = cheatj to T , 

then: 

1. With probability 1 − ω, the T sends corruptedj to the adversary and the honest 

party. 
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2. With probability ω, the T sends undetected to the adversary and further asks 

the adversary for the output fi(x̄) that needs to be sent to the honest party. 

T sends output to Honest Party: T sends fi(x̄) to the honest party Pi. 

Outputs: An honest party always outputs whatever it has received from T . The 

corrupted party outputs nothing. A can output anything (efficiently computable) 

from its input xj , the advice string z and messages it received from T . 

The output of the honest parties and adversary in the above ideal model execution 

is defined as IDEALRω (x̄). There are two types of unfairness in the model. One f,A(z)

is the abort call that is present in the standard ideal model in which the honest party 

receives ⊥ as output. The second is when the adversary can with certain probability 

(< ω) cause the honest party to obtain an inaccurate result. In our case, this is 

noisy/inaccurate result with significantly higher probability than would be expected 

from selecting a value from a Laplace distribution. 

Security as emulation of real execution in the ideal model 

Protocol Π is said to securely compute f (in the rational model with 1 − ω de­

terrent) if for any non-uniform probabilistic polynomial-time adversary A in the real 

model, there exists a nonuniform probabilistic polynomial-time adversary B for the 

ideal model, such that

  
IDEALRω x, n) 

c 
x, n)f,B(¯ ≡ REALΠ,A(¯

3.4.3 Differentially Private Function 

If two parties P1, P2 want to securely compute a differentially private function 

f̂(x, y) on their private inputs x, y respectively, then in an ideal environment, they 

would send their inputs to T . T then computes f(x, y) and adds to it a random noise 

sample (e.g., selected from Laplace distribution with the appropriate scale parameter) 

and sends the approximated output to the parties. The ideal environment provides 

f-DP to both the parties. We say a real protocol is secure when it emulates the 
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ideal world. Since the real world is only guaranteeing computational differential 

privacy, the security is maintained even when the simulator is not efficient as pointed 

out in [19]. Another way of looking at this is for any adversary in the real model 

A, if there exists an adversary S in the ideal model, then the protocol in the real 

model securely realizes the ideal functionality. In this case, the ideal model provides 

information theoretic differential privacy, hence even an inefficient S should not be 

able to simulate the attack in the ideal model. For interactive protocols, this leads to 

the relaxed definition of fκ-SIM+−CDP. 

Definition 3.4.1 ( (γ, ξ, ω)fκ-SIM+−CDP) An ensemble of interactive protocols 

{(gκ, hκ)}k∈N is a (γ, ξ, ω) fκ-SIM+−CDP two-party computation protocol for f = 

(fg, fh) in the presence of rational adversaries with (1 − ω)-deterrence if there exists 

an fκ-DP mechanism f̂  such that 

•	 f̂  provides (γ, ξ) additive usefulness with respect to f . 

•	 The protocol ensemble {(gκ, hκ)}k∈N securely realizes f̂  as per the modified ideal/ 

real style definition with parameter ω 

(γ, ξ, ω) fκ-SIM+−CDP is very similar to the definition of (γ, ξ) fκ-SIM+−CDP 

except that protocol needs to realize f̂  with respect to the relaxed ideal/real paradigm 

that guarantees correctness/usefulness of output for the honest party with probability 

1 − ω. 

3.4.4 Hamming Distance Protocol 

In this section, we show how to build an efficient protocol for finding Hamming 

distance using a (semantically secure) threshold Paillier encryption between two­

1parties with ω = 
m + β, where m, β are parameters in the noise selection protocol. 

The two-party computationally differentially private hamming distance protocol 

(Algorithm 3) works as follows. Initially, each party Pi encrypts its input vector xi 

and sends it along with its proof of knowledge of plain text (POK) to the other party 
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Algorithm 3 Secure Hamming distance protocol
 
Input: Two Parties holds their share sk0 and sk1 of the private key and a common 
public key pk. Party i’s input vector is xi. Output: n

i x0i ⊕ x1i + r ' 

1: for i do 
2: ∀j x̃ij = Epk(xij) and create P OK(x̃ij ) 
3: Send encryptions x̃ij and P OK(x̃ij ) to P1−i 

4: end for 
5: for i do 
6: ∀j check whether P OK(x̃(1−i)j ) is correct, Else ABORT 
7: end for 
8: Run Noise Selection protocol to select r̃0, r̃1 

9: for P1 do 
10: ∀j calculate z̃1j = Epk(x0j ⊕ x1j ) using x̃0j E x̃1j E (−2x1j x̃0j ) 
11: s̃ = z̃11 E z̃12 . . . z̃1n E r̃0 E r̃1 = Epk j

n(x0j ⊕ x1j + r̃0 + r̃1) 
12: Send s̃, ∀j POMC(x̃0j , x̃1j , Epk(−2x0j x1j )) 
13: end for 
14: for P0 do 
15: Check ∀j if P OMC(x̃0j , x̃1j , Epk(−2x0j x1j )) is correct, Else ABORT 
16: Calculate z̃11 E z̃12 . . . z̃1n E r̃0 E r̃1 and verify if it matches with s̃ 
17: end for 
18: Jointly decrypt s̃. 
19: Pi gets the f-DP hamming distance by subtracting ri from s 

P1−i. Since the secret key is split between the two parties, it is not possible for P1−i 

to decrypt the encrypted values. P1−i checks for consistency of x̃i using the zero 

knowledge proof. Then, the parties engage in the secure noise selection protocol to 

select the random noise sample r̃i from a carefully selected Laplace distribution. To 

compute the Hamming distance P1 does the following. For each j, P1 computes z̃1j by 

homomorphically adding the values of x̃0j , x̃1j and −2 z̃1j . P1 computes the Ham­

ming distance by homomorphically summing z̃1j . Adding the left-over sample from 

noise selection protocol r̃ik to the encrypted Hamming distance gives the differentially 

private value. In order to the confirm that P1 does not deviate from the protocol, it 

sends s̃ and proof of multiplication by constant (POMC) for each z̃1j. P0 verifies if 

the multiplications were done correctly using POMC and checks if s̃ is correct by cal­

culating the homomorphic additions of z1j and r̃ik. Finally, they jointly decrypt the 

value s̃. Since each party knows exactly one random noise added, they can subtract it 
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from the decrypted value to get the final answer (still containing the unknown noise, 

thus guaranteeing each party’s result independently satisfies differential privacy.)1 

3.4.5 Noise Selection 

In the noise selection protocol, each party Pi generates a random set of samples 

m from the Laplace distribution and sends it to the other party P1−i. P1−i randomly 

selects m − 1 values to be decrypted by Pi and runs a goodness-of-fit test to verify 

that they come from the appropriate distribution. The leftover encrypted r̃ik is used 

for perturbing the output of P1−i. If a party tries to add more noise than needed by 

generating samples with more noise than would be expected of a Laplace distribution 

(to ensure a noisy sample is selected as the leftover), then it is caught with high 

probability. 

Algorithm 4 Secure noise selection protocol
 
Two Parties holds their share sk0 and sk1 of the private key and a common public 
key pk and know the parameters µ and λ of the Laplace distribution. 

1:	 for i do 
2:	 Pi selects m random samples rij from the Laplace distribution and sends r̃(i)j 

and P OK(r̃ij ) to P1−i. 
3: P1−i verifies P OK(r̃ij ). If any of them fail then ABORT. 
4:	 P1−i randomly selects m − 1 samples sent by Pi to be decrypted. Let the left 

out sample be r̃il. 
5:	 P1−i runs Anderson-Darling goodness of fit test on the decrypted samples to 

check if they are sampled from Lap(µ, λ). If the test fails then goto step 2. 
6:	 end for 
7:	 The left out sample r̃(1−i)l, r̃(i)l obtained will be noise added for party Pi, P1−i 

respectively. 

1Note that we assume the parties do not share output, which would only give 2E-differential privacy. 
If the parties chose to collude, they could simply share the original data to defeat the protections of 
any protocol. 
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Goodness of Fit Test 

We use the Anderson-Darling test [33] to determine if the samples fit the required 

Laplace distribution. The Anderson-Darling test is defined as follows 

H0: The data follow a specified distribution, Ha: The data do not follow a specified 

distribution , α: significance value and the test statistic 

A2 = −m − S, where 

0m 2i − 1 
S = [ln(F (Yi)) + ln(1 − F (Ym+1−i))] 

m 
i=1 

where F is CDF of the specified distribution. 

Given a set of samples, the test statistic is calculated based on distribution as­

sumed in null hypothesis(H0). Based on the significance value, the critical value is 

also found. If the test statistic value A2 is greater than the critical value then H0 is 

rejected. 

Each party Pi uses the goodness of fit test to determine if the set of the samples 

sent by P1−i is indeed generated from a Laplace distribution. The null hypothesis 

is H0 : the samples r1, r2 . . . rm come from the Laplace distribution with parameters 

µ, λ. Two types of errors are associated with the above protocol. The first type of 

error is that an adversary may succeed in generating consistently noisier results than 

would be expected of differential privacy. This could happen if the adversary slips in 

a large fixed value hoping that it will not be selected for decryption, while picking the 

rest of the m − 1 samples from the correct distribution. Or, the Goodness of fit could 

fail to detect that the random samples are not generated from a Laplace distribution. 

1 
Pr(Cheating) = Pr(Not Rejecting ri|ri � Lap(µ, λ)) + 

m 
1 1 

= Pr(Type II) + = β + 
m m 

where β is related to the power of the test. 
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The second type of error is a false Negative: when a party incorrectly rejects the 

samples, when in fact the samples were generated from the correct distribution (but 

fail to satisfy the goodness of fit test). The probability of this occurring is: 

Pr( Rejecting ri|ri ∼ Lap(0, λ)) = Pr(Type I) = α 

where α is the level of significance of the test of hypothesis. 

One could argue that an adversary can send a worst predetermined sample that 

barely passes the goodness of fit tests during the noise selection protocol. One strat­

egy would be for an adversary to draw a sample from the correct distribution and 

gradually increase the values until it fails the test. We box plotted the original sam­

ple values against the maliciously modified sample values in Figure 3.1 for different 

values of significance and sample sizes. We can see that as the sample size increases 

the modified sample is pretty close to the actual distribution; while such malicious 

behavior is possible, it has little impact on the utility of the result. 
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Figure 3.1.: Honest draw (blue/left column) vs malicious draw (red/right column) 
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3.4.6 Complexity Analysis 

We show the complexity of the protocol in terms of the number of modular expo­

nentiations. In steps 1-3, each party Pi creates an encryption of its input and sends 

it to the other party P1−i. It also verifies a constant round zero knowledge proof 

of knowledge with P1−i. Hence, the total number of exponentiation is bounded by 

O(n), where n is the size of the input vector. In secure noise selection, the number 

of exponentiations is bounded by O(m), where m is the number of samples selected 

by each party. In steps 10-12, party P1 does n homomorphic multiplications and n 

zero knowledge proof of correct multiplications with P0. Hence, the total number 

of exponentiations done in the protocol is bounded by O(n + m). Calculating the 

Anderson-darling test statistic requires O(m log m) steps as the samples need to be 

sorted. Hence, the total running time of the protocol is O(n + m log m). 
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Figure 3.2.: Run time in ms 

To estimate the practical time cost, we implemented the noise selection protocol 

using the Paillier encryption scheme in Java. Figure 3.2 shows the runtime of the 

protocol for various values of samples sizes (m=100 to 500). By contrast,the gar­

bled circuit(GC) implementation of the protocol in the semi-honest setting took 28 

minutes to generate a pseudo-random sample using FairPlay. Adapting the garbled 
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circuit to the malicious setting will only increase the computational cost of the pro­

tocol. Hence, building a CDP protocol in the presence of rational adversaries with 

small error probability is significantly faster. 

3.4.7 Security 

Theorem 3.4.1 Assuming that the additively homomorphic threshold encryption sch­

eme is semantically secure, and zero knowledge proofs specified are secure, protocol 5 

is (γ, ξ, ω)fκ-SIM+−CDP secure in the presence of rational adversaries. 

In order to show that the protocol is (γ, ξ, ω)fκ-SIM+−CDP we need to show that 

security holds for both P0 and P1 (represented by the function ensembles {gκ}k∈N, 

{hκ}k∈N respectively ). We will consider the cases separately. We first show that the 

protocol ensures fκ-SIM+−CDP for P0 (i.e., when P1 is rational). In order to prove 

that we need to show that for every adversary P0 
∗ (represented as a function ensemble 

{h∗ }k∈N) in the real model, there exists an adversary Hκ in the ideal model such that κ

the views of Hκ(x) and h∗ 
κ(x) are indistinguishable. The simulator Hκ is given the 

black box of h∗ 
κ, works as follows. 

1. Simulates h∗ 
κ to get the encrypted input x̃1j and P OK(x̃1j ) for all j. Hκ acts 

as the verifier and hκ 
∗ as the prover. Hκ can extract the values of x1j with 

overwhelming probability. 

2. Sends x1 as the input to T and obtains the result fh = n
j (x0j ⊕ x1j ) + r. 

'	 ' n ' 3.	 Hκ on fh comes up with x0j for j = 1 to n and r such that fh = j (x0j ⊕ 

x1j ) + r ' . 

' ' ' 4.	 ∀j Hκ encrypts x0j and sends x̃0j , P OK(x0j ) to hκ
∗ . 

5.	 Hκ then runs the noise selection protocol with h∗ 
κ to select r ' as follows. 

6.	 Hκ sends m − 1 random samples from Laplace distribution and sends it along 

with r ' to hκ
∗ . It then makes h∗ 

κ to select r ' as its random noise by rerunning 
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h∗ 
κ with the different random tape. The probability of h∗ 

κ not selecting r ' in t 

iterations is (m
m 
−1 )t, which goes to 0 as t increases. Hence, with multiple re-runs, 

the probability of picking r ' in one of the iterations will be extremely close to 

1. 

7.	 Hκ receives a set of Laplace samples generated by h∗ 
κ. It reruns hκ 

∗ until it 

comes up with a noise r ' that is consistent with the output it received from 

T .	 Use goodness of fit test to determine if h∗ 
κ is trying to cheat in any of the 

runs.	 If yes, then sends cheat2 to T . If T returns undetected, then Hκ sends 
n(x ' ⊕ x1j ) + r '' to T as the output for P1. If T returns detected, then Hκj 0j 

sends corrupted2 to h∗ 
κ and outputs whatever h∗ 

κ outputs. This step is inefficient, 

but an inefficient simulator is sufficient for Computational Differential Privacy. 

8.	 Hκ continues to run the protocol as the honest party gκ by computing z̃1j for 

all j and homomorphically summing them along with r ' to get a differentially 

private hamming distance value s̃. Hκ then sends s̃ and P OMC to h∗ 
κ. 

9.	 Hκ outputs whatever h∗ 
κ outputs. 

Now we show that the views of Hκ and h∗ 
κ are indistinguishable. In steps 1-3, Hκ 

behaves similar to gκ except that instead of acting as verifier, it extracts the inputs 

using the knowledge extractor and hence the views of Hκ and h∗ 
κ are indistinguishable. 

In step 4, Hκ instead of sending x̃0j for all j, it sends x̃' 
0j that satisfies the constraints 

mentioned. Since, the underlying encryption scheme is semantically secure, the views 

are indistinguishable. In Steps 5-7, Hκ works similarly to gκ except that it sends 

r ' along with m − 1 random samples along with its required zero knowledge proofs 

and reruns h∗ until it generates r ' as its sample. In step 8, Hκ runs exactly like the 

honest party gκ computing z̃1j , s̃ and its corresponding zero knowledge proofs and 

acts as a prover to h∗ 
κ. In the last step, Hκ jointly decrypts s̃ and outputs whatever 

h∗ 
κ, hence the views are identical. At each step, the views are either computationally 

indistinguishable or identical. 
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We prove the usefulness property of the protocol from the output in the ideal 

model. It is easy to see that the output in the ideal environment satisfies (γ, ξ)­

usefulness because the noise sample selected from Laplace distribution is generated 

by T and when the malicious adversary sends ’cheat’ it is detected with 1 − ω proba­

bility. Since the simulation in the real environment is indistinguishable from the ideal 

environment, the usefulness property also holds for protocol 5. 

We wish to reiterate that the simulation works because we are restricting to a 

differentially private function that holds even against inefficient adversaries. Similarly, 

we can argue the security when P0 is rational. 

3.4.8 Impact of Differential Privacy 

One concern that arises with differential privacy is the usefulness of the results. 

Are they too noisy for practical utility? To do this, we look at a practical use of 

the protocol: document comparison using the cosine similarity metric. There are 

situations where two parties might want to calculate the similarity of their documents 

without revealing the input documents. Cosine similarity is a widely used metric to 

measure the similarity of two documents. Cosine similarity can be viewed as the dot 

product of the normalized input vectors vectors. 

x0j .x1j 0 
j x0j x1j ' ' = . = <x0.x1> 

�x0�2�x1�2 �x0�2 �x1�2j 

If we assume that every term in the document has equal weight, i.e., 1 or 0 

depending upon the presence or absence of a term, then the global sensitivity of the 

√1cosine similarity function is upper bounded by 
nm , where n and m are the total 

number of terms present in the P0 and P1 document respectively. The notion of 

differential privacy allows us to assume that each party knows the size of the other 

party’s document. 

Similarity measures usually weight the terms in order to efficiently compute the 

metric. If tf-idf weighting mechanism is used to measure the importance of words. 
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Let β be the highest weight of a term in the domain, then the global sensitivity of 

squared cosine similarity for Party P0 is always ≤ ||
2
x
β

0||
2

2 , where ||x0||2 is the norm of 
2 

the party P0 input vector. Let x1 
' contain one term less than x1, the sensitivity is 

given as 
<x0.x1>

2 <x0.x1
' >2 

Δs = max − 
� 2 2 2 ' 2x1 xx1,x1 x0 2 2 x0 2 1 2 

<x0.x1>
2 <x0.x ' 1>

2 ( j x0j .x1j )
2 − ( j x0j .x ' 1j )

2 

≤ − = 
2 2 2 2 2 2x0 x1 x0 x1 x0 x12 2 2 2 2 2 

( x0j .x1j − x0j .x ' )( x0j .x1j + x0j .x ' )j j 1j j j 1j 
= 

2 2x0 x12 2 

(x0s.x1s)(2 j x0j .x1j ) 2β2 

≤ ≤ 
x0

2 x1
2 ||x0||2 

2 2 2 

In step 2 and 5, we are using the fact that |x1| > |x ' |. Since, x0s.x1s ≤ β2 and1

x0j .x1j ≤ x1
2, we can upper bound Δs ≤ 2β2/||x0||22. Similarly, we can estimate j 2

the global sensitivity for party P1 as 2β2/||x1||22. Note that the noise distribution of 

Pi only depends on his input vector xi and β (the highest term weight in the domain). 

We now evaluate the utility of the protocol by computing differentially private 

values for different levels of security. An f value of 0 in differential privacy denotes 

perfect privacy as the probability of seeing the output in D and D ' are equal but 

on the downside the utility will be low. In our experiments (Figure 3.3) we have 

used f values of 0.1 and 0.3. We implemented the two-party secure differentially 

private cosine similarity measure without term weighting using the secure dot product 

protocol and ran the tests for different values of f. The global sensitivity of cosine 

√1 ' similarity is 
nm , so the random noise r is generated from Laplace distribution with 

mean 0 and scale 
E 
√1 
nm , where n, m are the number of terms in P0 and P1 respectively. 

In order to show the deviation of the differentially private similarity score from 

the true score (cosine similarity without privacy), we plotted the scores of each party 

obtained on running the protocol along with the true scores. For each f value, we fixed 

the input (i.e., document) of one party and varied the size of the document of other 

party. We can see that if the document sizes are small, then the differentially private 
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Figure 3.3.: True output vs differentially private output 

similarity scores are far away from the true but as the size increases, the differentially 

private similarity score are better approximations of the true score. Hence a party 

without malicious intent on running the protocol will be able to obtain similarity 

score closer to the true value. 
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4 PRIVACY-PRESERVING DATA-OBLIVIOUS ALGORITHMS 

Secure multi-party computation (MPC) enables multiple parties with private inputs 

to jointly engage in a protocol to securely compute a function of their private data. It 

guarantees different properties of security (i.e., privacy of inputs, correctness, fairness, 

etc.) depending upon the model. At the end of the protocol, each party gets an output 

and MPC guarantees that any information that can be learned from the protocol 

execution can also be inferred from the output and one’s own input. There exists 

various cryptographic primitives [9, 12,14] that have been used for developing secure 

protocols. 

One limitation of this model is that to really achieve this goal, the protocol must 

be data-oblivious : the visible execution path (time, memory accessed, etc.) must be 

independent of the other party’s data. More precisely, the distribution of executions 

over a given input must be indistinguishable from the distribution of executions over 

other inputs of the same size. 

This problem is particularly apparent in graph algorithms - where presence or 

absence of an edge may be significant from a privacy perspective. A näıve method to 

satisfy data-obliviousness is to represent the data as an (encrypted) adjacency matrix, 

and access every element when any one is accessed. To avoid this huge inefficiency, [34] 

proposed to obliviously permute the matrix before accessing an element such that 

the accesses look uniformly random. For example, let us assume we are running 

an algorithm (say shortest path) on Figure 4.1a and we want to explore the edges of 

Node 2. Instead of accessing the entire matrix (4.1b), the nodes are permuted (Figure 

4.1c), and only row 1 is accessed. Since the permutation hides that row 1 corresponds 

to node 2 (we assume the labels are encrypted), this reveals no information. Care 

must be taken to avoid accessing the same row again, as such frequency of access does 

reveal information. 
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(a) Bipartite graph
 

1 2 3 4 5 6 
1 0 0 0 2 4 5 
2 0 0 0 5 7 6 
3 0 0 0 5 8 8 
4 4 5 5 0 0 0 
5 2 7 8 0 0 0 
6 5 6 8 0 0 0 

2 4 1 6 3 5 
2 0 5 0 6 0 7 
4 5 0 2 0 5 0 
1 0 2 0 5 0 4 
6 6 0 5 0 8 0 
3 0 5 0 8 0 8 
5 7 0 4 0 8 0 

(b) Adjacency matrix (c) Permuted adjacency matrix 

Figure 4.1.: An example bipartite graph and its adjacency matrices 

There is a second problem that is not directly addressed by MPC: inference from 

the output. While clever techniques such as the above can get us to the point where 

we learn nothing that we cannot infer from our own input and the output, it is possible 

that the output discloses sensitive information. Differential Privacy [35] deals with 

what functions can be safely computed. It protects the privacy of individuals by 

adding noise with magnitude proportional to the sensitivity of the queries posed to the 

database: How much one individual can potentially impact the result of the function. 

A relaxed definition of computation differential privacy was proposed in [19] that 

holds against computationally bounded adversaries. Several works have dealt with 

distributed computationally differentially private protocols [22–24]. A key component 

of developing differentially private secure protocols is distributed noise generation, this 

has been addressed for both two-party [36] and three or more party [21] protocols. 

Combining MPC with differential privacy on the output gives a differentially private 
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secure multi-party computation, addressing the potential privacy risk inherent in the 

output of the computation. 

Achieving data-obliviousness and differential privacy can be difficult - graphs exist 

that cause high execution times or require significant noise to be added. However, if 

our problem allows us to restrict the space of graphs, these problems can be overcome. 

We demonstrate this idea on bipartite graphs (Figure 4.1); specifically with weighted 

matching and minimum vertex cover. The idea is that each party holds one “side” of 

the bipartite graph, and the information on edge weights is split between the parties. 

A simple example would be in computing the semantic similarity/distance be­

tween two documents (held by two parties). Each party has a sensitive document 

(represented by a set of nodes/features), which they don’t want to reveal to the 

other party. The edge weights represent the semantic similarity/distance between 

the two nodes/features. One way to capture the semantic distance between two fea­

tures/words is shown in [37]. Then, computing the semantic distance between the two 

documents can be formulated as a minimum weighted bipartite matching problem. 

We now introduce relevant definitions from data-obliviousness and differential 

privacy, introducing notation along the way. We will also discuss related work as we 

go through this background material. Sections 4.2 and 4.3 give algorithms for data 

oblivious weighted bipartite matching and minimum vertex cover, respectively. For 

each, we give a secure multi-party computation to solve the problem, then show how 

to incorporate differential privacy. 

We use square brackets around a variable (e.g., [x]) to say that the value of x 

is encrypted and it is not known to any of the parties involved in the protocol. 

Since techniques such as linear secret sharing, threshold homomorphic encryption, or 

Boolean garbled circuits can be used for realizing this, we use these terms interchange­

ably. For example, a linear secret sharing scheme (like [14]) can be used to securely 

implement basic operations like addition and multiplication. Efficient techniques for 

secure equality testing([x] = 
? 
[y]) and less than ([x] < 

? 
[y]) are given in [38]. We use 
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the notations ⊕, 8, ⊗ and ∨ to denote secure addition, subtraction, multiplication 

and inclusive-or operations respectively. 

4.1 Related Work 

4.1.1 Data-Obliviousness 

This work is based on the key idea introduced in [34], which presents nearly op­

timal secure graph algorithms for breadth-first search (BFS) and single-source single 

destination (SSSD) shortest path. 

Definition 4.1.1 (Data-Obliviousness [34]) Let d denote the input to the graph 

algorithm. Also, let A(d) denote the sequence of memory access that the algorithm 

makes. The algorithm is considered data-oblivious if for two inputs d and d ' of equal 

length, the algorithm executes the same sequence of instructions and access patters 

A(d) and A(d ' ) are indistinguishable to each party carrying out the computation. 

An if/else condition (IFC) can be obliviously evaluated by executing both the if 

and else blocks and updating the values depending upon the value of the condition. 

For example, 

if([cond]) return [value1]; else return [value2]; 

can be obliviously evaluated as 

return ([cond] ⊗ [value1]) ⊕ ((1 8 [cond]) ⊗ [value2]) 

The above code snippet is used in the rest of the chapter by calling 

Ifc([cond], [value1], [value2]). 

Oblivious Vector Permutation: One of the basic building blocks used in this 

chapter is random permutation of a vector V . This can be accomplished by generating 

a random number for each element of the vector and then obliviously sorting the 

vector V according to the random values assigned. [39, 40] proposes an O(n log n) 

data-oblivious algorithm for sorting a vector of size n. We use this algorithm to 

obliviously permute the rows and columns of a matrix n × n matrix [M ] consistently 
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in O(n2 log n). Figure 4.1 shows a bipartite graph and its corresponding permuted 

matrix. Note that the values are re-encrypted as part of the permutation, so that it 

is not possible to link old/new entries to determine the permutation. 

Single Source Single Destination (SSSD) Algorithm: Given a secret shared 

weighted matrix [W ] of a graph G = (V, E), a source [s] and destination [t], [34] 

presents a secure data-oblivious SSSD path algorithm to get a shortest path [PT ] 

from the source [s] to a given destination [t] in O(|V |2) time. [PT ] is a set of tuples 

of the form ([v1], [v2], [c]), where [v1], [v2] and [c] correspond to the head, tail and 

capacity of an edge in the path and it always returns a path of length |V | − 1 to 

conceal the distance between [s] and [t]. 

[41,42] have proposed data-oblivious algorithms for maximum matching in bipar­

tite graphs. [41] proposes to securely solve fingerprint identification matching using 

a data-oblivious maximum bipartite matching algorithm. Maximum flow algorithms 

can also be used for solving maximum matching in bipartite graphs. [42] proposes 

data-oblivious algorithms for maximum flow based on Edmonds-Karp algorithm and 

Push-Relabel algorithm, with a runtime complexity of O(|V |5) and O(|V |4) respec­

tively. In this section, we propose data-oblivious protocols for weighted bipartite 

matching as the above protocols are not suitable for our task. [43] proposes an algo­

rithm to privately release the maximum weighted matching in a bipartite graph under 

a relaxed notion of differential privacy. However, when we extend this to a distributed 

setting we must take into account that the access patterns can reveal information; 

the setting in [43] does not face this issue. 

Another technique that can be used to develop data-oblivious protocols is by 

oblivious RAM (ORAM) [44, 45]. It was originally developed for the client-server 

setting in which client stores its sensitive data in the server. ORAM enables the client 

with a small trusted memory to access the data without revealing its access patterns to 

the server. Each memory access has a polylogarithmic overhead O((log n)2), where n 

is the size of the memory. There are ORAM extensions to the multi-party setting [46, 

47] which has an overhead of O((log n)3) for hiding access patterns. Similar to other 



 
�
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techniques, additional overhead may have to be introduced to prevent information 

leaks due to sequence and total number of memory access, when using ORAM to 

develop data-oblivious algorithms. 

Distributed Computational Differential Privacy 

One challenge in generating a differentially private output in a multi-party setting 

is the generation of random noise from a specific distribution. Chapter 3 proposed 

a two-party protocol for generating a random sample from a Laplace distribution 

with a specific scale parameter in the presence of malicious adversaries. [21] presents 

protocols for generating random variates with more than two parties. We use these 

protocols for generating a random sample from Laplace distribution. 

4.2 Privacy-Preserving Weighted Bipartite Matching 

Given a bipartite graph G = (V, E) where Q ∪ R = V and Q ∩ R = ϕ; and W , 

a cost matrix that assigns integer edge weights to e ∈ E; the assignment problem is 

to find a perfect matching (E ' ⊆ E) in G such that the total cost of the matching is 

minimized. In a perfect matching, each node in Q is connected to a node in R and 

vice-versa. A solution to this problem is the Hungarian algorithm [48], which finds 

the minimum weighted bipartite matching by the following algorithm. Let C be a 

temporary matrix initialized to W . 

1. Construct G ' , a subgraph of G with only the 0-weight edges (i.e., there is an 

edge (i, j) in G ' iff Ci,j = 0). 

2. Find the maximum matching E ' in G ' . 

3. If there is a perfect matching in G ' , then Wi,j is the minimum weighted (i,j)∈E
 

matching solution, where (i, j) is an edge in E ' .
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4. Otherwise, the algorithm finds the vertex cover of G ' . Let X ⊆ Q and Y ⊆ R 

be the vertex cover, then the weight matrix C is updated by equation 1, with 

Δ set such that at least one new 0-weight edge is introduced in G ' (i.e., one of 

the non-zero edge weight in C has become zero.) ⎧ 

Ci,j − Δ if i /∈ X, j /∈ Y 
⎪⎪⎪⎪⎪⎨ 

Ci,j = Ci,j if i ∈ X, j /∈ Y (4.1)⎪⎪⎪⎪⎪⎩Ci,j +Δ if i ∈ X, j ∈ Y 

where Δ = min (Ci,j ). Δ is minimum weight of the uncovered edges (i, j), 
i/∈X,j /∈Y 

where i ∈ QnX and j ∈ RnY . 

5. Goto step 2. 

Given n = |G| (i.e., |Q| = |R| = n ), the algorithm requires a maximum of
2 

n
4 

2 
iterations. Each iteration requires a maximum of O(n2). Hence, the algorithm 

finishes in O(n4). 

In a two-party scenario, let Q and R belong to two different parties P0 and P1. 

There exist situations where W may be private and not known to both the parties, 

but they still want to find the minimum weighted bipartite matching. For example, 

P0 may have several customizable production plants; P1 has several components it 

needs. The weights from P0 are the cost to produce each component on each line 

(e.g., in Figure 4.2, P0 can produce component 4 with cost 1, component 5 with cost 

3, and component 6 with cost 4.) P1 has costs to move components from P0’s plants 

to where the component is needed (e.g., 1, 2, and 4 for component 4). The sum of 

these weights is the total cost (Figure 4.1a). While both parties want to achieve the 

minimum cost, they do not want to reveal their costs and thus compromise pricing 

negotiations. Instead, [W ] (the encrypted weight matrix) is constructed to sum these 

without revealing weights to either party. 
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Figure 4.2.: Bipartite graph with shared edge weights 

4.2.1 Secure Two-Party Matching Algorithm 

In the secure version, the two parties P0, P1 hold Q, R respectively. They want to 

compute the minimum weighted bipartite matching without revealing any information 

about their individual edge weights. If a linear secret sharing scheme like [14] is used, 

then the encrypted weight matrix [W ] (for the above example) is constructed by each 

party secret sharing its input weight with the other party and locally summing their 

shares to obtain [W ]. If [14] is used, then we assume that there exists a third party to 

aid in secure multiplication. A third party may not be needed if other techniques such 

as Boolean circuits or homomorphic encryption is used. We present a data-oblivious 

algorithm for minimum weighted bipartite matching. In Section 4.2.4 we show how 

to extend this algorithm to provide differential privacy in the output. 

1. Without loss of generality, let the input nodes (Q and R) of the parties P0 and 

P1 be of size n 
2 . Let [M ] be the residual graph represented by an adjacency 

matrix of 2n + 3 × 2n + 3 nodes. The edge weights in [M ] are either 0 or 1, 

capturing the presence or absence of an edge. An edge (i, j), where i ∈ Q and 

j ∈ R exists in [M ], if and only if [Ci,j ] = 0 ([C] is a copy of [W ]). Note that 

[Mi,j] is always 0 if i, j ∈ R or i, j ∈ Q. We need a copy of [W ], so that the edge 

weights can be modified in [C] without destroying the original weight matrix. 

The locations from 1 to n 
2 and n 

2 + 1 to n correspond to the nodes in Q and 

R, n + 1 and n + 2 are a source(s) and sink(t) node and n + 3 to 2n + 3 are 
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(a) Initial residual graph, an edge (1,4) is added in iteration 1
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(b) Residual graph if two more 0 edges are added: (2,4) and 
(1,5) 

Figure 4.3.: Snapshot of residual graph 

fake vertices included to prevent information leakage. For example, a list of 

fake vertices will be returned by the SSSD algorithm if there is no path between 

the [s] and [t]. The source node n + 1 is connected to all the nodes of Q (i.e., 

nodes 1 to n/2) and all the nodes in R (i.e., nodes numbered n/2 + 1 to n) are 

connected to sink node n + 2. The fake nodes form a simple cycle and are not 

connected to the original nodes or source/sink nodes. 

We also define an indicator vector [A] of size 2n + 3 to denote nodes in Q. I.e., 

the elements of A from 1 to n/2 will be 1 and others will be set to 0. Similarly, 

we create indicator vectors for [B] to represent the nodes in R and [S], [T ], [F ] 
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to represent the source, sink and fake nodes respectively. The solid lines in 

Figure 4.3a shows the initial state of the residual graph [M ]. These indicator 

vectors will be consistently permuted with the matrices [C], [W ], [M ] such that 

no party can identify the location of their input nodes, but can still perform 
?

secure node testing like [cond] = ([Av] = 1). [cond] will be set to an encryption 

of 1 if v belongs to Q and an encryption of 0 otherwise. 

1: [C] = [W ] 

2: [M ] = [0]{2n+3×2n+3} 

3: [A] = [1]n/2[0](3n+6)/2 

4: [B] = [0]n/2[1]n/2[0]n+3 

5: [S] = [0]n[1][0]n+2 

6: [T ] = [0]n+1[1][0]n+1 

7: [F ] = [0]n+2[1]n+1 

8: for i = 1 to n/2 do 

9: [Mn+1,i] = [1] 

10: end for 

11: for i = n/2 + 1 to n do 

12: [Mi,n+2] = [1] 

13: end for 

14: for i = n + 3 to 2n + 2 do 

15: [Mi,i+1] = [1] 

16: end for 

17: [M2n+3,n+3] = [1] 

The values in the residual graph matrix [M ] and auxiliary indicator vectors 

[A], [B], [S], [T ] and [F ] are encrypted using a non-deterministic scheme. I.e, 

two encryptions of 1 or 0 produce different cipher texts. Since the initialization 

step is fixed, both parties know the indices of the nodes in the vector/matrix 

and the values present in the residual matrix and auxiliary indicator vectors. 

A permutation/re-encryption at the beginning of step 2 hides this. The plain 
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Table 4.1.: Plain-text view of the initial state of [M ]. Actual values are non-
deterministically encrypted, e.g., (1,1)=E(0)=439, (4,4)=E(0)=227. 

1 2 3 4 5 6 s t f0 f1 . . . f6 

1 0 0 0 0 0 0 0 0 0 0 . . . 0 
2 0 0 0 0 0 0 0 0 0 0 . . . 0 
3 0 0 0 0 0 0 0 0 0 0 . . . 0 
4 0 0 0 0 0 0 0 1 0 0 . . . 0 
5 0 0 0 0 0 0 0 1 0 0 . . . 0 
6 0 0 0 0 0 0 0 1 0 0 . . . 0 
s 1 1 1 0 0 0 0 0 0 0 . . . 0 
t 0 0 0 0 0 0 0 0 0 0 . . . 0 
f0 0 0 0 0 0 0 0 0 0 1 . . . 0 
f1 0 0 0 0 0 0 0 0 0 0 . . . 0 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

f6 0 0 0 0 0 0 0 0 1 0 . . . 0 

Table 4.2.: Plain-text view of the initial state of [A]
 

1 2 3 4 5 6 s t f0 f1 . . . f6 

A 1 1 1 0 0 0 0 0 0 0 . . . 0 

text views of the adjacency matrix [M ] and indicator vector [A] are shown in 

Tables 4.1 and 4.2 for the graph in Figure 4.1a. 

2. The main outline of the secure weighted bipartite matching is given as follows. 

The first step is to find an augmentative path from the source [s] to sink [t] in the 

residual graph [M ] using the SSSD path algorithm given in [34]. If there exists a 

valid path, then the residual flow is updated in [M ]. An existence of a valid path 

means that we can increase the maximum matching. Otherwise, the minimal 

vertex cover is found and the weights in the cost matrix [C] are updated to 

introduce new zero edges in [M ]. An execution of SSSD, UpdateResidualGraph 

and MinVertexCover reveals the location of some of the nodes, so the nodes are 

permuted after every call so that the access to particular rows of [C] or [M ] look 
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random. During secure permutation, apart from permuting the indices of the 

nodes, it also re-encrypts the values. Therefore, the parties do know the indices 

of any nodes and any access to particular row of the matrix or a particular 

element in a vector will look like random access to all the parties. Following 

the example, after permutation the matrix [M ] and vector [A] could look like 

Table 4.3 and 4.4. The algorithm for an oblivious execution is as follows. 

n2+2n1: for i = 1 to do
4 

2: P ermute [W ], [C], [M ], [A], [B], [S], [T ], [F ]. 

3: [PT ] = SSSD([M ], s, [t]) 

4: [valid path] = IfV alidPath([PT ]) 

5: P ermute [W ], [C], [M ], [A], [B], [S], [T ], [F ], [PT ]. 

6: [M ] = UpdateResidualGraph(G, [valid path], [PT ]) 

7: P ermute [W ], [C], [M ], [A], [B], [S], [T ], [F ]. 

8: ([X ' ] , [Y ' ]) = MinV ertexCover([M ], [A], [B]) 

9: ([X] , [Y ]) = IFC([valid path], ([X], [Y ]), ([X ' ], [Y ' ])) 

10: [min ' ] = findmin([X], [Y ]) 

11: [min] = IFC([valid path], [0], [min ' ]) 

12: [C] = UpdateW eights([C], [X], [Y ], [min]) 

13: [M ] = UpdateZeroEdges([C]) 

14: end for 

15: [MM ] = maximumMatching([W ], [M ], [A], [B]) 

Table 4.3.: Plain-text view of [M ] after permutation. Note that row and column ID’s 
are not actually visible, and actual values re-encrypted, e.g., the upper left corner 
(4,4) = E(0) = 186. 

4 f1 s 1 5 f0 f2 3 t 2 . . . 
4 0 0 0 0 0 0 0 0 1 0 . . . 
f1 0 0 0 0 0 0 1 0 0 0 . . . 
s 0 0 0 1 0 0 0 1 0 1 . . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
. . . 

. . . 
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Table 4.4.: Plain-text view of [A] after permutation 

4 f1 s 1 5 f0 f2 3 t 2 . . . 
A 0 0 0 1 0 0 0 1 0 1 . . . 

3.	 IfValidPath: SSSD always returns a path [PT ] containing n + 1 tuples/edges 

to conceal the true length of the path. This is because the maximum length of a 

valid path in [M ] can have at-most n + 1 edges (there are n+2 nodes excluding 

the fake nodes). The capacity of the true and fake tuples/edges are [1] and [0] 

respectively. If there exists a path of length l, then the first l tuples contain the 

true edges of the path with capacity [1], followed by n − l + 1 fake tuples with 

capacity [0]. The rest of the fake path could be PTl = ([t], [f3], [0]), PTl+1 = 

([f3], [f4], [0]) and so on. If there exists no path, SSSD returns a list of fake 

tuples PT0 to PTn with capacity [0]. The first tuple will be PT0 = ([s], [fr], [0]), 

followed by the fake tuples PT1 = ([fr], [fr+1], [0]), P2 = ([fr+1], [fr+2], [0]) and 

so on. Therefore, we need to validate the augmentation path P returned by 

SSSD by checking if the first tuple’s capacity is [0]. The secret shared variable 

[valid path] has value [1] if there exists a valid path from [s] to [t] and [0] 

otherwise. In the first iteration, there are no augmentation paths from [s] to 

[t]. Hence, [valid path] will be set to [0]. 

?
1:	 [valid path] = [PT0.c] = [0] 

4.	 UpdateResidualGraph: Given a path [PT ] and its validity [valid path], the 

flow of the residual graph [M ] is updated. For each edge (v1, v2) in the path, 

we open its locations in the adjacency matrix [M ] and subtract the capacity 

from the flow. If the weight/flow of an edge (v1, v2) is updated from [1] to [0], 

we also add the flow to the back-edge (v2, v1) to allow another augmenting path 

in future iterations to undo some of the flow used by the current augmenting 

path. For example, SSSD returns a valid path from [s] to [t], if run on residual 
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graph shown in Figure 4.3a. The updated residual graph is shown by the solid 

lines in Figure 4.3b. 

Care must be taken to avoid updating the flow on the edges between fake nodes 

as this can destroy the structure of fake nodes. This can be achieved by setting 

the [capacity] to [0], when [t] is reached. Revealing the locations of the edges in 

residual graph [M ] does not leak information because the rows and columns of 

[M ] are permuted/re-encrypted; it is not possible to distinguish between a true 

node and a fake node, and the access to rows of [M ] appears random. 

1:	 [capacity] = [valid path] 

2:	 for i = 0 to n do 

3: Open v1 and v2 in PTi 

4: [Mv1,v2 ] = [Mv1,v2 ] 8 [capacity] 

5: [Mv2,v1 ] = [Mv2,v1 ] ⊕ [capacity] 
?

6: [cond] = v2 = [t] 

7: [capacity] = Ifc([cond], [0], [capacity]) 

8:	 end for 

5.	 FindMin and UpdateWeights: If a perfect matching has not been found yet, 

then we need to introduce new zero weight edges in the residual graph to increase 

the maximum matching. This is done by first finding the minimum vertex cover 

of [M ], which returns the indicator vectors [X] and [Y ] that represent vertex 

cover in Q and R. The algorithm for MinVertexCover is given in Section 4.3. 

Since, we try to find the minimum weighted matching, the minimum (Δ) weight 

of the uncovered edges (head and tail are not in the vertex cover) is found and 

the weight of the edges [C] are updated according to equation 1. If the perfect 

matching has already been found, then [X] will be equal to [A] and [Y ] is set to 

all [0]’s. Steps 10-15 check if all the elements in [Y ] are set to [0], if so then [min] 

is set to [0]. Hence, none of the entries will be updated if a perfect matching 

is already found. The first for loop computes the minimum of the uncovered 
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nodes and second loop is used for updating the cost of the edges. Let Λ be the 

maximum possible edge weight. 

1: [min] = [Λ] 

2: 

3: 

for i, j = 1 to 2|V | + 3 do 

[cond1] = ([Ai] 
?
= [1]) ⊗ ([Bj ] 

?
= [1]) 

4: [cond2] = ([Xi] 
?
= [0]) ⊗ ([Yj ] 

?
= [0]) 

5: [flag] = [cond1] ⊗ [cond2] 

6: [cost] = Ifc([flag], [Ci,j ], [Λ]) 
? 

7: [cond] = [cost] < [min] 

8: [min] = Ifc([cond], [cost], [min]) 

9: end for 

10: [sum] = [0] 

11: for i = 1 to 2|V | + 3 do 

12: [sum] = [sum] ⊕ [Yi] 

13: end for 
?

14: [cond] = [sum] = [0] 

15: [min] = Ifc([cond], [0], [min]) 

16: for i, j = 1 to 2|V | + 3 do 
?

17: [cond1] = ([Ai] = [1]) ⊗ ([Bj ] 
?

18: [cond2] = ([Xi] = [1]) ⊗ ([Yj ] 
?

19: [cond3] = ([Xi] = [0]) ⊗ ([Yj ] 

20: [Δ] = [cond1] ⊗ [min] 

?
= [1]) 
?
= [1]) 
?
= [0]) 

21: [Ci,j ] = Ifc([cond2], [Ci,j ] ⊕ [Δ], [Ci,j ]) 

22: [Ci,j ] = Ifc([cond3], [Ci,j ] 8 [Δ], [Ci,j ]) 

23: end for 

For example, if the input to the MinVertexCover is the residual graph shown 

by only the solid lines in Figure 4.3a, it returns [X] and [Y ] with all [0] ' s. This 

is because there are no edges between the set R and Q; the minimum vertex 

cover set is null. The uncovered nodes are the set R ∪ Q. We can see that 
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Table 4.5.: Updated cost matrix [C] 

2 4 1 6 3 5 
2 0 3 0 4 0 5 
4 3 0 0 0 3 0 
1 0 0 0 3 0 2 
6 4 0 3 0 6 0 
3 0 3 0 6 0 6 
5 5 0 2 0 6 0 

the minimum edge weight between the uncovered edges is 2 (edge (1,4)). The 

values in [C] will look like Table 4.5. To show the full matrix we have included 

only nodes from Q and R. In reality, [C] will also have fake nodes with zero 

weights. This update replaces one of the non-zero edge weights (namely, (1, 4)) 

with [0]. 

6.	 UpdateZeroEdges: If the weights are updated in the previous step, then at 

least one of the non-zero weights in [C] has become [0], which in turn introduces 

a new edge in the residual graph [M ]. It is also possible that a zero weighted 

unmatched edge in [C] could become non-zero. Therefore, for each edge (i, j), 

we add it to the residual graph [M ] if and only if the cost of the edge (i, j) is zero 

and it has not already been matched. Only unmatched zero weights are added 

to the residual graph because if an edge is already matched, then [Mi,j ] = 0 and 

[Mj,i] = 1. In the first iteration, [C1,4] becomes [0], therefore a new zero edge 

would be introduced in the residual graph(refer Figure 4.3a). 

1:	 for i, j = 1 to 2|V | + 3 do 
? ?

2: [cond 1] = ([Ai] = [1]) ⊗ ([Bj = [1]) 
?

3: [cond 2] = [Ci,j ] = [0] 

4: [Mi,j ] = Ifc([cond 1], [cond 2] 8 [Mj,i], [Mi,j ]) 

5:	 end for 

7.	 MaximumMatching: At the end, we have found a minimum weighted perfect 

matching of the weighted bipartite graph. In order to compute the minimum 
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sum, we iterate over the edges of residual graph to check if an edge(i, j) is 

matched (i.e., [Mj,i] is [1]) and the cost of the corresponding matched edge [Wi,j ] 

is added to minimum sum. At the end of the instruction 7, [sum] contains the 

true output to the minimum weighted bipartite matching problem but it is still 

not available to the parties in plain text. In Section 4.2.4, we will describe how 

much noise needs to be added to this so that the final output is differentially 

private. 

1: [sum] = [0] 

2: for i, j = 1 to 2|V | + 3 do 
? ?

3: [cond1] = ([Ai] = [1]) ⊗ ([Bj ] = [1]) 
?

4: [cond2] = ([Mj,i] = [1]) 

5: [flag] = [cond1] ⊗ [cond2] 

6: [sum] = [sum] + Ifc([flag], [Wi,j], [0]) 

7: end for 

8: return [sum] 

At each iteration, the algorithm tries to increase the number of maximum 

matches by checking if there exists a path between [s] and [t] in the residual 

graph. If there is a path, then the maximum matching is increased. Otherwise, 

a new zero edge is introduced in the residual graph by finding a minimum of 

the uncovered edges and updating the weights in the cost matrix [C]. Finding 

the minimum weighted matching in the insecure version requires a maximum 

of n
4 

2 
iterations. The data-oblivious algorithm is similar to that of the insecure 

version except that increasing the maximum matching and updating weights to 

introduce zero edges are mutually exclusive steps. Therefore, the algorithms 

requires a maximum of n
4 

2 
+ n 

2 iterations of find minimum weighted perfect 

matching. 
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4.2.2 Complexity Analysis 

The SSSD algorithm for finding an augmentative path takes at most O(|V |2). 

Step 3 takes a constant amount of time as it invokes constant number of secure 

equality operations. Step 4 takes a linear amount of time to update the residual 

graph because the length of the path is |V |. Steps 5-7 run in O(|V |2) time as it 

visits each element of the matrix. The costliest step is the data-oblivious matrix 

permutation which takes O(|V |2 log |V |). Therefore each iteration of the algorithm is 

bounded by O(|V |2 log |V |). Since the number of iterations needed to find a perfect 

matching is O(|V |2), the overall complexity of the algorithm is O(|V |4 log |V |). 

To determine the practicality of the algorithm, we give a rough estimate of the 

run time of the algorithm in terms of number of secure operations (multiplication 

plus comparison operations). In a linear secret sharing scheme, multiplication and 

comparison dominate the run time as additions and subtractions can be done locally. 

We estimate clock time based on [49], which showed that a secure scalar product of 

100K length vector can be done in 550ms. Hence, on average a single multiplication 

takes 5.5µs. The total run time of the algorithm (steps 1 to 15) would be approxi­
|V |2+2|V |mately (5.5 × C × 

4 ) µs, where C is the total number of secure operations done 

in steps 2-13 of the algorithm. Step 4 (IfValidPath) does a single secure operation. 

Step 13 (UpdateZero edges) takes (2|V | + 3)2 iterations and performs 6 operations 

in each iteration (3 comparisons and 3 multiplications). So, in total Step 13 has 

6(2|V | + 3)2 operations. Similarly, we can compute for Steps 4, 6, 8-15, which can be 

upper bounded by 77(2|V | + 3)2 secure operations. Step 2 (SSSD) takes (2|V | + 3)2 

iterations and needs 35 secure operations in each iteration. So, the total number of op­

erations are 35(2|V |+3)2 . Step 2, 5 and 7 (oblivious permutation) can be implemented 

by oblivious sorting, which roughly does (2|V | + 3)2 log(2|V | + 3) iterations and has 

17 operations in each iterations (1 secure comparison and 16 multiplications). So the 

total number of secure operations of steps 2, 5 and 7 are 51×(2|V |+3)2 log(2|V |+3). 

So, C can be upper bounded by 163 × (2|V | + 3)2 log(2|V | + 3). For |V | = 10, the 
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algorithm should take around 20 seconds. For |V | = 50, the algorithm should take 

around 200 minutes. 

4.2.3 Security 

Theorem 4.2.1 The minimum weighted bipartite matching algorithm is secure with 

respect to Definition 4.1.1. 

To prove that the algorithm (call A) given in Section 4.2 is secure, we need to 

show for any input bipartite graph G = (V, E) with n nodes (1) the sequence of 

execution is the same as any bipartite graph G ' = (V ' , E ' ) with n nodes and (2) the 

distribution of memory accesses of A in G is indistinguishable with the distribution 

of memory accesses of A in a random bipartite graph G ' with n nodes. All the 

steps in the algorithm executes the same set of instructions for any bipartite graph 

with n vertices because all conditional statement has been serialized and all control 

loops are conditioned on the number of vertices. To prove the memory accesses are 

indistinguishable we analyze each step. The initialization is a standard step and 

accesses the same memory locations for any bipartite graph of size n. The main 

n2+2n nfor loop executes for 
4 times as it is a complete bipartite graph with 

2 nodes 

in each set. Step 1 (permutation) and 2 (SSSD) are data-oblivious and the proofs 

for them are given in [34, 40]. Step 3 is data-oblivious because it always executes 

one instruction and checks the capacity of the first tuple in the path P . In step 4, 

the number of memory access is the same as the path P is always of length n but 

the memory accesses are different. Data-obliviousness is achieved by means of the 

crucial permutation step done before opening the vertices in path P . Hence the data 

accesses appear random. Data-obliviousness for finding the minimum vertex cover 

is shown in Section 4.3. Steps 5, 6 and 7 all access the same memory locations for 

any graph of the same size. Therefore, all the steps in the algorithm either access 

the same memory location or the distribution of the location of memory access are 

indistinguishable. Hence the algorithm is secure with respect to Definition 4.1.1. 
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4.2.4 Differentially Private Weighted Bipartite Matching 

The global sensitivity of the Weighted bipartite matching under edge privacy 

(neighboring graphs differ by a single edge weight) is Λ, where Λ is the maximum 

possible value that an edge weight can take. To avoid adding large noise, we can 

instead compute smooth sensitivity of minimum weighted bipartite matching that 

satisfies (f, δ) differential privacy. The maximum local sensitivity of a weighted bi­

partite graph G with n nodes at distance k for any k ≥ n 
2 − 1 is Λ. Therefore the 

smooth sensitivity is equal to ⎧ ⎪⎪⎨ ⎪⎪⎩
 

e−βk max LS(G ' ) if k ≤ n 
2 − 2 

d(G,G )=kS ∗ (G) = max 

e
−β(n 
2 −1)Λ if k ≥ n − 1

2 

Computing the max local sensitivity at distance k for k ≤ n 
2 − 2 could take expo­

nential time. Therefore, we upper bound the maximum change in minimum weighted 

bipartite matching by min(XWM(G) − NWM(G), Λ), where XW M/NW M is the 

maximum/minimum weighted bipartite matching of G respectively. Given a secure 

data-oblivious algorithm A for computing NWM from weighted bipartite graph G, 

it is possible to compute XWM from G using A. This is done constructing another 

graph G ' where the number of nodes is the same as G and replacing w(e) in G with 

w ' (e) − w(e) in G ' , where w ' (e) is the maximum weight of an edge in [W ]. The edges 

of NWM in G ' are the same as the edges of XWM in G. Therefore, we can com­

pute the upper bound of smoothed local sensitivity of minimum weighted bipartite 

matching in polynomial time. For weighted bipartite graphs for which difference be­

tween XWM and NWM is smaller than Λ, we can achieve better utility by adding 

noise magnitude proportional to the smooth sensitivity and achieve (f, δ) differential 

privacy. The upper bounded smooth sensitivity is as follows 

S ∗ (G) = max(min(XWM(G) - NWM(G), Λ), e −β(n 
2 −1)Λ) 
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Since the values of n, Λ, β are known, we can securely compute the smooth sen­

sitivity (i.e., [S∗(G)]). We can use the protocols specified in [21, 36] to generate a 

uniformly random noise from Laplace distribution with smooth sensitivity. The se­

curely generated random noise can then be added to the true output [MM ] to obtain 

a differentially private minimum weighted bipartite matching [MM ], which can then 

be opened by the parties. 

The utility of the minimum weighted matching sum [MM ] depends upon the 

amount of noise introduced. If GS is used, then the error/variance of the result is 

2Λ2 

E2 , which can be quite large if Λ is large. In case of LS, the error is dependent upon 
S∗(G)

2 
the input graph 2 

E . In the worst case, S∗(G) is equal to Λ. 

4.3 Minimum Vertex Cover for Bipartite Graph 

A vertex cover of a graph G = (V, E) is the set of vertices such that each edge 

e ∈ E on the graph is incident to at least one vertex of the set. A vertex cover is 

minimum if there are no other vertex covers that have fewer vertices. The problem of 

finding a minimum vertex cover for a graph is NP-hard. But, a polynomial algorithm 

exists for finding a min vertex cover in a bipartite graph due to the equivalence 

between vertex cover and maximum matching. Given a bipartite graph G, maximum 

matching M and two partitions A and B, the minimum vertex cover is found as 

follows (1) find all the vertices that are reachable from any of the unmatched vertices 

of A. (2) Let A ' ⊆ A and B ' ⊆ B are the reachable vertices. Then, (A \A ' ) ∪ B ' is 

the minimum vertex cover. 

The algorithm below shows how to compute the minimum vertex cover securely 

given a secret shared maximum matching bipartite flow graph [M ] and auxiliary 

indicator vectors [A], [B] and [F ] computed by the previous algorithm. A possible 

input of this algorithm is shown in Figure 4.4a. The matched edges are represented by 

dashed edges (e.g., edge (1,5) is matched and it is represented by a dashed backward-

edge (5,1) in [M] by [M5,1] = 1). 
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(a) Bipartite graph with maximum matching
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(b) After n iterations: Nodes 3, 5 and 7 form the min vertex 
cover 

Figure 4.4.: Minimum vertex cover 

1. Let [P ] be a encrypted vector of size 2|V | + 3 with the encrypted field color. 

Initialize the color of all the nodes to white. 

2. Randomly select a node from the fake vertices. Let it be [fr]. This can be done 

by assigning random values [ri] to each element of the node and picking the 

index i, which has the maximum random value [ri] and [Fi] set to 1. Step 4 

shows the pseudo-code to randomly pick an element from a vector obliviously. 

3. Find all unmatched vertices in the set [A] ( [A] can also be considered as a set; 

[Av] = [1] denoting the presence of node v in [A] and [0] otherwise). This is 
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done by assigning [Pi.color] = [gray] iff i ∈ A, [Mi,j ] = [1] (existence of an edge) 

and [Mk,i] = [0], ∀k ∈ B ( node i is not matched with any k for all k ∈ B). In 

Figure 4.4a, node 2 is the only unmatched node and its color is set to gray. 

1: for i = 1 to 2|V | + 3 do 

2: [matched] = [0] 

3: for j = 1 to 2|V | + 3 do 
? ?

4: [cond1] = ([Ai] = [1]) ⊗ ([Bj ] = [1]) 
?

5: [cond2] = ([Mj,i] = [1]) 

6: [matched] = [matched] ∨ ([cond1] ⊗ [cond2]) 

7: end for 

8: [Pi.color] = Ifc([matched], [white], [grey]) 

9: end for 

4. We want to find all the nodes that are reachable from the unmatched vertices 

in set [A]. Deterministically picking a node to explore can reveal information, 

therefore we randomly pick a non-fake node whose color is gray (i.e., [Pi.color] = 

[gray]) and assign it to [v]. This can be done by assigning random values [Ri] 

to each node and picking the index [i] that has the highest random value. If 

there are no such nodes, we set [v] = [fr], where [fr] is randomly picked fake 

node in step 2. 

1: [v] = [0] 

2: [max] = [0] 

3: for i = 1 to 2|V | + 3 do 
? ?

4: [cond1] = ([Ai] = [1]) ∨ ([Bi] = [1]) 
?

5: [cond2] = [Pi.color] = [gray] 

6: [r] = [cond1] ⊗ [cond2] ⊗ [Ri] 

7: [cond3] = [r] > 
? 
[max] 

8: [max] = Ifc([cond3], [r], [max]) 

9: [v] = Ifc([cond3], [i], [v]) 
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10: end for 
?

11: [cond] = [v] = [0] 

12: [v] = Ifc([cond], [fr], [v]) 

5. Open the index [v] to access the row Mv. Opening the location does not reveal 

any information because the nodes are permuted so the access looks random. 

Also, the algorithm never access any row of [M ] twice. Then, expand the 

list of the reachable nodes from v. For all the vertices i, if [Mv,i] = [1] and 

[Pi.color] = [white], set [Pi.color] = [gray]. Then the color of Pv is set to black 

to denote that the children of v have been explored. 

1: open([v]) 

2: for i = 1 to 2|V | + 3 do 
?

3: [condf ] = [Mv,i] = [1] 
?

4: [condw] = [Pi.color] = [white] 

5: [Pi.color] = Ifc([condf ] ⊗ [condw], [gray], [Pi.color]) 

6: end for 

7: [Pv.color] = [black] 

6. Repeat steps 4-5 n − 1 times. 

7. After Step 6, all nodes that are reachable from unmatched nodes of [A] are 

marked black and unreachable nodes are marked white. If [f8] was the randomly 

selected fake node in step 2, the state of [M ] is shown in Figure 4.4b. Let [X] 

and [Y ] are indicator vectors to specify vertex cover nodes that are in [A] and 

[B] respectively. If X = A ∩ {white nodes} and Y = B ∩ {black nodes}, then 

X ∪Y is the minimum vertex cover of [M ]. It can be securely realized as follows. 

1: for i = 1 to 2|V | + 3 do 
?

2: [condc] = [Pi.color] = [white] 

3: [X] = IFC([condc] ⊗ [Ai], [1], [0]) 

4: [Y ] = IFC((1 − [condc]) ⊗ [Bi], [1], [0]) 

5: end for 
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8. Return	 [X] and [Y ]. Since this algorithm is called as a subroutine by the 

algorithm in Section 4.2, the vertex covers are not opened here. 

4.3.1 Complexity Analysis 

The overall complexity of the secure algorithm to find the minimum vertex cover 

of a bipartite graph is O(|V 2|). This can be proved by analyzing every step of the 

algorithm. Step 1 and 2 take linear time O(|V |). Step 3 takes O(|V |2) time as it access 

every element of the adjacency matrix. Steps 4 and 5 take linear time O(|V |) to select 

and expand a random gray colored node. Since, steps 4 and 5 are the executed |V | 

times, the total run time time O(|V |2). Step 7 also does a linear amount of work to 

find the vertex covers. 

4.3.2 Security 

Theorem 4.3.1 The minimum vertex cover algorithm is secure with respect to Def­

inition 4.1.1. 

To prove that the algorithm (call B) is secure, we need to show, for any input bipartite 

graph G = (V, E) with n nodes and its corresponding maximum matching residual 

matrix [M ] and indicator vectors [A], [B] and [F ], (1) the sequence of execution is the 

same as any bipartite graph G ' = (V ' , E ' ) with n nodes and maximum matching [M ' ] 

and indicator vectors [A] ' , [B ' ] and [F ' ]; and (2) the distribution of memory accesses 

of B in G is indistinguishable with the distribution of memory accesses of B in a 

random bipartite graph G ' with n nodes. Steps 1, 2 and 3 are initialization steps 

and have the same executions and memory accesses for any bipartite graph G with 

maximal matching [M ] with n nodes. Step 4 used for picking a random node also 

accesses the same memory locations of [A], [B] and [P ]. Step 5 executes the same 

instructions but can access different memory locations for different bipartite graphs. 

Step 5 provides data-obliviousness because of the permutation: any access to a row 
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of [M ] is equally likely. Also, each row of the matrix is accessed only once in the 

whole execution. Step 4 and 5 are executed n times for any bipartite graph of size n. 

Step 7 used for finding the minimal vertex cover executes the same instructions and 

accesses the same memory for any bipartite graph of size n. Therefore, the algorithm 

executes the same number of instructions and all the instructions in the algorithm 

either access the same memory location or the distribution of the location of memory 

access are indistinguishable. Hence the algorithm is secure with respect to Definition 

4.1.1. 

4.4 Privacy-Preserving Articulation Points 

A node v ∈ V in a undirected graph G = (V, E) is an articulation point (or cut 

vertex), iff removing it and edges incident on it will increase the number of connected 

components in the graph. Finding them is useful in designing reliable networks as 

failure of a single node would split the network into two or more disconnected com­

ponents. 

In the secure version, given a secret shared adjacency matrix [M ] of G, we want 

to identify articulation points v ∈ V such that the information about [M ] is not 

leaked. Steps 1-6 of the below algorithm constructs a secure depth first tree (DFT) 

of the graph G. Steps 7 and 8 identifies the articulation points in the algorithm using 

dfn and low. Figure 4.5 shows an example of an undirected graph with a plausible 

dfn/low value for each node. 

1. Let [P ] be a secret shared vector with five fields visited, parent, depth, dfn and 

low, where visited denotes if the node has been already visited in the depth 

first tree (DFT), depth is the depth of the node in DFT. parent specifies the 

parent of node, dfn denotes the order in which the node was visited in the DFT 

and low of node v denotes the earliest visited node that can be reached from 

the descendent of v. 
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(b) DFT with dfn and low 

Figure 4.5.: Articulation points 

2. Initialize the counter	 time = 0. Set the visited and depth variable of all the 

nodes to 0 and 1 respectively. Assign a special value ⊥ to all parent variable. 

3. Since we are building a DFT, we pick an unvisited random node that has the 

highest depth and set it has the current working node ([v]). The first for loop 

finds the maximum depth from all the previously unvisited nodes and it is 

stored in the variable [max]. Then it creates a temporary protected array [T ] 

that assigns 1 if the node is unvisited and has the maximum depth. In order 

to select a random element from the potential node in T , random values are 

assigned to each element in the array. Then, the node with maximum value is 

picked as the working node [v]. 



64 

1: [max] = 0 

2: for i = 1 to |V | do 

3:	 [c1] = [Pi.depth] > 
? 
[max]
 
?


4: [c2] = [Pi.visited] = 0 

5: [max] = IFC([c1] ⊗ [c2], [Pi.depth), [max]) 

6: end for 

7: [imax] = 0 

8: [rmax] = 0 

9: for i = 1 to |V | do 
?

10: [c1] = [Pi.depth] = [max] 
?

11: [c2] = [Pi.visited] = 0 

12: [Ti] = [c1] ⊗ [c2] ⊗ [RAND] 

13: [c] = [Ti] > 
? 
[rmax] 

14: [rmax] = IFC([c], [Ti], [rmax]) 

15: [imax] = IFC([c], i, [imax]) 

16: end for 

17: [v] = [imax] 

4. Reveal the location of [v] in the adjacency matrix [M ] and let the row of the 

node be Mv. Increment the counter time and assign dfn and low number to 

time. Then set the visited flag of v to 1. 

1: [time] = [time] + 1 

2: [Pv.dfn] = [time] 

3: [Pv.low] = [time] 

4: [Pv.visited] = 1 

5. Extend the depth first search tree by discovering unvisited nodes from current 

node v. When a unvisited node u is discovered then parent of u is set to v, the 

depth of v is set to depth of v plus one. If the node u is already visited, then 
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the edge (u, v) is a back edge and v can reach a lower numbered node u in the 

DFS tree. Therefore the low of v is updated to dfn number of u. 

1: for i = 1 to |V | do 
?

2: [c1] = [Mv,i] = [1] 
?

3: [c2] = [Pi.visited] = [1] 
?

4: [c3] = [Pv.parent] = [i] 

5: [c4] = [c1] ⊗ (1 − [c2]) 

6: [Pi.depth] = IFC([c4], [Pv.depth] + 1, [Pi.depth]) 

7: [Pi.parent] = IFC([c4], [v], [Pi.parent]) 

8: [c5] = [c1] ⊗ [c2] ⊗ (1 − [c3]) 

9: [c6] = [Pi.dfn] < 
? 
[Pv.low] 

10: [Pv.low] = IFC([c5] ⊗ [c6], [Pi.dfn], [Pv.low]) 

11: end for 

6. Repeat steps 3-6 n − 1 times 

7. Compute the low function for all the nodes in their descending order of discov­

ery. For every node v, if any of its children u can get to a lowest numbered 

node v ' in DFS tree, then the low of v is set to low of u because v can also get 

to v ' by following the tree edge (v, u). 

1: for v in descending order of dfn do 

2: for i = 1 to |V | do 
?

3: [c1] = [Pi.parent] = [v] 

4: [c2] = [Pv.low] > 
? 
[Pi.low] 

5: [c3] = [c1] ⊗ [c2] 

6: [Pv.low] = IFC([c3], [Pi.low], [Pv.low]) 

7: end for 

8: end for 

8. Let [A] be a protected binary vector with 1/0 representing if the corresponding 

element is an articulation point or not. A root node is an articulation point if 
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it has more than one children in the DFS tree. The first for loop checks for the 

number of children of root node r and sets Ar appropriately. For the rest of 

the nodes, a node v is an articulation point if its dfs no is less than or equal to 

low no of any its children (i.e., dfs(v) ≤ low(u), where u is the child of v). The 

second for loop 

1: for r = 1 to |V | do 
?

2: [c1] = [Pr.depth] = [1] 

3: [t] = 0 

4: for i = 1 to |V | do 
?

5: [c2] = [Pi.parent] = [r] 

6: [t] = [t] + [c2] 

7: end for 

8: [c3] = [t] > 
? 
[1] 

9: [Ar] = [c1] ⊗ [c3] 

10: end for 

11: for v = 1 to |V | do 

12: for i = 1 to |V | do 
?

13: [c1] = [Mv,i] = [1] 

14: [c2] = [Pv.dfn] < 
? 
[Pi.low] 

15: [c3] = [c1] ⊗ [c2] 

16: [Av] = IFC([c3], [1], [Av]) 

17: end for 

18: end for 

4.4.1 Complexity Analysis 

Steps 1-3 of the algorithm take linear time as it involves creating a protected 

vector P with five fields, initializing them and randomly selecting a potential node 

to explore from the depth first tree respectively. Step 4 takes a constant amount of 
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time as it just initializes the fields of the working node. Step 5 takes linear time as 

it analysis each element of the vector [Mv] and updates the depth first search tree 

with new nodes. Steps 3-5 are repeated n − 1 times so that the DFS tree is built 

completely. Therefore total time is bounded by O(|V |2). Steps 7 takes O(|V |2) time 

as it goes through every element of the adjacency matrix [M ] to update the low 

function. Step 8 also takes O(|V |2) time as it access the protection vector [P ] for 

every node v in the graph. Permuting the rows and columns of the matrix (optional 

step and it is called before step 1 only if the node labels reveal any information) takes 

time O(|V |2 log |V |) and it overwhelms the running time of the other steps in the 

algorithm. Hence the overall complexity of the algorithm is O(|V |2 log |V |). If the 

permutation step is skipped then the algorithm takes O(|V |2) time to run. 

4.4.2 Security 

Theorem 4.4.1 The articulation points detection algorithm is secure with respect to 

Definition 4.1.1. 

As before, we will analyze each step of the algorithm to prove that it is secure. All 

the steps in the algorithm execute the same set of instructions for any graph with 

fixed size of n vertices because all conditional statement has been serialized and all 

control loops are conditioned on the number of vertices. To show that the memory 

accesses are indistinguishable for G and G ' with a fixed node size n, we analyze each 

step of the algorithm. Steps 1 and 2 are initialization steps and accesses the same 

memory locations for any graph with n nodes. Step 3 also accesses the same memory 

locations of the protected vector [P ] and [T ] for any graph with n nodes. In steps 

4 and 5, the local of memory accesses differ and depends upon the current working 

node v, but the memory accesses are indistinguishable because the node [v] is selected 

uniformly at random and the row [Mv] is never accessed twice during the execution 

of the algorithm. Similar to steps 4 and 5, step 6 also accesses different locations 

but each node v is accessed in the reverse order in which they were opened. If the 
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distribution of memory accesses in step 4 and 5 is indistinguishable with memory 

access of G ' then so is step 6. The location of memory access of step 8 are the same 

for any graph of size n as it accesses [P ] for each node in the graph. Therefore, all 

the steps in the algorithm either access the same memory location or the distribution 

of the location of memory access are indistinguishable. Hence the algorithm is secure 

with respect to Definition 4.1.1. 

4.5 Relaxed Data-Obliviousness 

There exist problems for which a secure algorithm that satisfies the Definition 

4.1.1 is inefficient. One such problem is frequent itemset mining. With the massive 

amount of data available, it is desirable for a client to, for example, encrypt its data 

on a cloud server to reduce privacy risks. However, this introduces new challenges 

if the client wants to mine frequent itemset from the encrypted data as the access 

patterns along with the execution path could leak sensitive information about the 

data to the server. 

A simple but inefficient way to fix this problem is to let the server run a secure 

algorithm on an encrypted dataset to compute the frequency of all the itemsets and 

return the encrypted results to client. Then, the client can filter the false positives 

to obtain frequent itemsets. This algorithm satisfies the Definition 4.1.1 but it is 

impractical as the runtime is exponential. 

Therefore, we introduce a new relaxed notion of data-obliviousness based on dif­

ferential privacy. 

Definition 4.5.1 (f-Data-Obliviousness) Let d denote the input to an algorithm. 

Also, let A(d) denote the sequence of memory access that the algorithm makes. The 

algorithm is considered f-data-oblivious if for two inputs d and d ' that differ by a 

single element, the total number of instructions executed and access patters of A(d) 

and A(d ' ) are f-indistinguishable to each party carrying out the computation. 
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The above definition relaxes the Definition 4.1.1 in two ways. 1) The indistin­

guishability holds only against any two neighboring inputs and not against all possible 

inputs of the same size. 2) An adversary seeing A(d) and A(d ' ) cannot distinguish the 

two inputs d, d ' except with some small probability specified by the privacy parameter 

f. 

4.5.1 f-Data-Oblivious Frequent Itemset Mining 

The goal of frequent itemset mining [51] is to find sets of items that are frequently 

occurring in a dataset (specified by a threshold φ). It has applications in marketing, 

placing frequently items together, etc. [7] used frequent itemset mining to determine 

the top categories in a text. A number of cryptographic approaches have been pro­

posed to find frequent itemsets from a private dataset like [52–55]. However, these 

algorithms are not data-oblivious, therefore a data-dependent execution can leak in­

formation. I.e. the parties executing the algorithm on an encrypted dataset can 

learn additional information (e.g., a boundary separating the frequent and infrequent 

itemsets). With sufficient background information this can lead to privacy breaches. 

We now propose an efficient data-oblivious frequent itemset mining algorithm that 

satisfies our new relaxed notion of data-obliviousness, f-data-obliviousness. 

Table 4.6.: Notations 

[x] Secret shared/Encrypted x 

D Database 

|D| Size of D 

Di ith document/tuple in database D 

Lk Set of itemsets at iteration k 

Lk ith 
i itemset in Lk 

Lk
i .bv Bit vector field of Lk

i 

Lk
i .itemset Itemset of Lk

i 
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Algorithm 5 f-data-oblivious frequent itemset mining
 
Input: A dataset [D] ∈ D, items [I] represented as an indicator vector, privacy budget 
f, φ - threshold , d - maximum size of the itemset. 
Output: Frequent itemets. 

1: f1 = E 
2×d 

2: for z = 1 to |[I]| do 
3: [Lz

1.itemset] = [Iz] 
4: [L1 

z.bv] = [0]|D| 

5: end for 
6: for x = 1 to |D| do 
7: for y = 1 to |Dx| do 
8: for z = 1 to |[L1]| do 

?
9: [c] = [Dx,y] = [L1 

z.itemset] 
10: [Lz

1.bv[x]] = Ifc([c], [1], [L1 
z

11: end for 
12: end for 
13: end for 
14: count = DpCount([L1], f1)) 
15: [LI1] = DpSample([L1], count, f1) 
16: for k = 2 to d do 
17: [Lk] = CandGen([LIk−1]) 
18: count = DpCount([Lk], f1)) 

.bv[x]])
 

19: [LIk] = DpSample([Lk], count, f1) 
20: end for 

Given a private dataset [D], privacy budget f and a threshold φ, the algorithm to 

compute the frequent itemsets using f-data-oblivious frequent itemset mining algo­

rithm is shown in Algorithm 5. Some of the notations used in this section are shown 

in Table 4.6. 

A secret shared itemset Lk
i is represented by three fields: 1) An inverted index 

represented by an indicator vector (bv) of size |D|. A 0/1 in the ith bit of bv indicates 

the absence/presence of an item in the ith document respectively. 2) Similarly, an 

itemset is represented by a indicator vector with 1 denoting the presence of an item 

in the itemset. 3) An integer count to represent the total number of occurrences of 

an itemset in a corpus. All three fields are secret shared and are not known to the 

server/parties executing the algorithm. 
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Algorithm 6 Candidate generation
 
Input: [Lk] itemsets with corresponding frequencies and bit vector. 
Output: Candidate [Lk+1] itemsets. 

1: function CandGen() 
2: [Lk+1] = ∅ 
3: for i = 1 to |Lk| do 
4: for j = i + 1 to |Lk| do 
5: [c] = IsNeighbor([Lk

i ],[L
k
j ]) 

6: if c == 1 then 
7: T.bv = [Lk

i .bv] 8 [Lk
j .bv] 

8: T.itemset = [Lk
i�.itemset] ∨ [Lk

j .itemset] 
9: [Lk+1] = [Lk+1] T 
10: end if 
11: end for 
12: end for 
13: return [Lk+1] 
14: end function 
15: function IsNeighbor([Li],[Lj ]) 
16: count = 0 
17: for i = 1 to |Li.itemset| do 
18: [c] = [Li.itemset(i)] ⊕ [Li.itemset(i)] 
19: [count] = [count] + [c] 
20: end for 

?
21: [c] = [count] = [2] 
22: Open and return [c] 
23: end function 

Steps 2-5 of Algorithm 5 initializes the itemset indicator vector of 1-itemsets of 

the dataset and its corresponding inverted index to 0. Steps 6-13 parses the private 

dataset and obliviously computes the inverted index of 1-itemsets. The sub functions 

used in the algorithm are DpCount, DpSample, IsNeighbor and CandGen. Given 

a set of k-itemsets, a threshold φ and privacy f parameter, DpCount gives a differen­

tially private count of the number of k-itemsets that are above the threshold φ. Given 

an Lk along with the field [Lk
i .count], DpSample uses the algorithm given in [21] to 

securely sample count elements from [Lk] based on the scoring function [Lk
i .count]. 

The function CandGen (Algorithm 6) takes as input a set of differentially private 

k-itemsets and generates (k + 1)-itemset candidates. It iterates over the k-itemsets 
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and considers every pair possible pair for candidate generation. For each pair, it first 

checks if the itemsets are neighbors. If so, a new (k + 1)-itemset is generated with its 

itemset field set to the inclusive-or (∨) of the itemset field of the neighbors. Then, 

the new itemset’s bv field is set to the intersection of the inverted index field bv. 

The function isNeighbor is used to obliviously check if two secret shared itemsets 

are neighbors. It basically finds the xor of the indicator vector itemset to check if 

two itemsets differ by two elements. The result is returned as plain text. One can 

argue that it leaks additional information: if two k-itemsets are neighbors. However, 

since the processing is done on an f differentially private output, the post processing 

still satisfies differential privacy. 

Algorithm 7 Differentially private count
 

1: function DpCount(Lk , φ, f) 
2: [res] = 0 
3: for i = 1 to |Lk| do 
4: [Lk

i .count] = 0 
5: for j = 1 to |D| do 
6: [Li

k.count] = [Lk
i .count] + [Li

k 

7: end for 
8: end for 
9: for i = 1 to |Lk| do 

? 
10: [c] = [Lk

i .count] > φ 
11: [res] = Ifc([c], [res] + 1, [res]) 
12: end for 
13: [res] = [res] + [x ∼ Lap(0, 1 

E )] 
14: open [res] and return it. 
15: end function 

.bv(j)]
 

The function DpCount takes as input [Lk] (the k-itemsets along with its fields 

bv and itemset), threshold count φ and privacy budget f. Steps 3-8 of Algorithm 7 

iterates each k-itemset in [Lk] and computes the count of each itemset by summing 

the inverted index vector. Then steps 9-12 compute the number of k-itemsets whose 

count is above the threshold and then releases a noisy result after adding a noise 



73 

sampled from Lap(0, 1 
E ). [21] gives a secure algorithm to sample a random variate 

from a Laplace distribution with a given µ and λ for the multi-party setting. 

The itemsets that were sampled during each iteration are sent to the client for de­

cryption. It is possible that some of the results returned by server may be infrequent 

but the client can discard them after decryption. The execution is randomized, there­

fore the server does not learn significant additional information. Note that no noise 

is added to the frequencies. False negatives can be introduced but the algorithm does 

not leak information because of the memory accesses except with some probability 

specified by the privacy parameter f. 

4.5.2 Security 

Theorem 4.5.1 The frequent itemset mining algorithm is secure with respect to Def­

inition 4.5.1. 

As before, we will analyze each step of the algorithm to prove that it is secure. Let 

d and d ' be two neighboring datasets of size n that differ by a single item. Steps 

2-12 of Algorithm 5 executes the same set of instructions for any two neighboring 

datasets d and d ' because all conditional statements have been serialized and all con­

trol loops are conditioned on either the number of items in the domain or size of the 

dataset. To prove that the number of instructions executed by the Algorithm 5 is 

f-indistinguishable, we show that the sub-functions functions DpCount, DpSample, 

IsNeighbor and CandGen invoked by Algorithm 5 are f-indistinguishable. The func­

tion IsNeighbor always executes the same number of instructions for datasets d and 

d ' as the control loop is dependent upon the number of items in the universe. In case 

of DpCount, DpSample and CandGen, the number of instructions that they execute 

is dependent upon size of Lk, which may not be fixed for d and d ' . The number of 

k-itemsets to be selected in the kth iteration is based on DpCount. Since, DpCount 

returns a differentially private count of the number of k-itemsets that have a fre­

quency above the threshold φ using the Laplace mechanism, the values DpCount(d) 
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and DpCount(d ' ) are f-indistinguishable. Therefore, we can conclude that the num­

ber of instructions executed by the Algorithm 5 itself is f-indistinguishable. 

Steps 1-12 of Algorithm 5 access the same memory location for datasets d and d ' . 

To show that the location of memory access are f-indistinguishable, we prove that the 

location of memory access in each of the functions DpCount, DpSample, IsNeighbor 

and CandGen are f-indistinguishable. At iteration k, the function loops over each 

itemset in k-itemsets and accesses the fields of k-itemset to perform some computa­

tion. In each iteration, the functions DpCount and DpSample are used for selecting 

differentially private k-itemsets, the memory locations returned by DpSample(d) and 

DpSample(d ' ) are f-indistinguishable. Therefore, all the steps in the algorithm either 

access the same memory location or the distribution of the location of memory access 

are f-indistinguishable. Hence the algorithm is secure with respect to Definition 4.5.1. 
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5 PRIVACY-PRESERVING CLASSIFICATION 

A particular issue with text analysis is that high dimensionality poses high costs: 

computational for cryptographic techniques, and in terms of added noise for random­

ization mechanisms such as f-differential privacy. One way to address these costs is 

through feature selection, moving from a high-dimensional feature space to only a 

few critical features. Unfortunately, the process of feature selection has the potential 

to reveal private information. 

Differential privacy addresses this, by reducing the confidence in any information 

released. For example, the selection (or non-selection) of a feature under differential 

privacy could be a result of random chance; preventing making strong inferences 

about individuals based on the inclusion of the individual’s data in the dataset. We 

thus propose differentially private feature selection. 

The main contributions in this section are as follows 

1. We derive the global sensitivity of various feature selection techniques and show 

that some of them are very sensitive to small changes in a corpus, and is therefore 

not suitable for differential private feature selection. We also propose modifica­

tions to existing techniques and show that they are less sensitive to individual 

changes to a database and can perform better in a differentially private setting. 

2. We provide empirical evaluation to show that for techniques with low sensitiv­

ity, feature selection can be effective while satisfying differential privacy. We 

also evaluate the differentially private feature selection in practical setting by 

building differentially private classifiers: näıve Bayes, support vector machine 

and decision trees. 

In this section, we assume that the data owner has access to the sensitive database 

and can run these differentially private algorithms to get the private classifiers. The 
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feature selection techniques can also be used to select split points in decision tree 

learning. In Section 5.4, we extend the results of [56] showing that using low sensitivity 

feature selection improves decision tree accuracy. 

5.1 Related Work 

Differentially private decision tree algorithms have been proposed in [56, 57]. [56] 

proposes an interactive algorithm, in which the data miner poses queries to a private 

database for building a differentially private decision tree. Section 5.4 uses their al­

gorithm for evaluating different privacy-preserving feature selection techniques. [56] 

proposes to build a decision tree in the non-interactive setting by releasing a gener­

alized dataset that satisfies differential privacy. The noisy dataset is then used for 

building the decision tree. 

[58] shows that the global sensitivity of χ2 statistic is asymptotically constant 

when the marginal totals are equally distributed. In this chapter, we do not make 

any assumptions on the distribution of the dataset and show that sensitivity grows 

as a function of the size of the dataset. 

Algorithms for building a differentially private näıve Bayes (DP-NB) classifier 

are shown in [59–61]. [59] builds a DP-NB classifier to infer private attributes ac­

curately from data containing categorical attributes. [60] extends the classifier to 

include numerical attributes. [61] develops protocols for building a DP-NB classifier 

over horizontally and vertically distributed data. However, these algorithms work on 

micro-data, which does not need differentially private feature selection. Section 5.3.1 

shows a differentially private näıve Bayes classifier for unstructured data with private 

feature selection. 

5.2 Differentially Private Feature Selection 

We now derive the upper bounds on the sensitivity for several well-known feature 

selection techniques, which will then be used with the exponential or Laplace mech­
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anism for selecting features privately. Note that global sensitivity is based on the 

impact any possible feature could have on the result, not just those features present 

in the dataset D. 

Let D ∈ D be a corpus containing N documents (each document di is represented 

by a list of features). Let wi be a feature in D and cj be a category present in D, then 

Nwi,cj denote the number of documents of category cj that contains the feature wi, 

Nwi,cj denote the number of documents that belong to category cj but does not contain 

the feature wi, Nwi,cj denote the number of documents that contains the feature wi 

but does not belong to category cj , and Nwi,cj denote the number of documents that 

neither has the feature wi nor belong to category cj . Also, let Ncj denote the number 

of documents that belongs to class cj and Ncj denote the number of documents that 

belongs to a class other than cj . Similarly, we can define for Nwi and Nwi . Table 5.1 

shows a 2 × 2 contingency table built from a database D for feature wi. We will use 

this table in the rest of the section for analyzing the global sensitivity of the feature 

selection methods for binary classification task. 

Table 5.1.: 2 × 2 contingency table 

cj cj 

wi Nwi,cj Nwi,cj Nwi 

wi Nwi,cj Nwi,cj Nwi 

Ncj Ncj N 

5.2.1 Term Weights 

A simple technique for feature selection is to select the features based on their 

weight (e.g., inverse document frequency). IDF measures the importance of a feature, 
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i.e., whether the feature is common or rare across all documents in D. A smoothed 

IDF of wi is computed by 

N 
IDF (D, wi) = log 

1 + Nwi 

Without loss of generality, let us assume that the count of Nwi increases by 1 in the 

neighboring dataset D ' . Then, the global sensitivity of the IDF weighting is log N
N 
+1 . 

N + 1 N 
GSIDF = log − log

2 + Nwi 1 + Nwi 

N + 1 ≤ log 
N 

5.2.2 Chi-Squared Statistic 

The χ2 statistic measures the lack of independence between a feature wi and a 

category cj , which is compared with the χ2 distribution to measure the extremeness. 

For Table 5.1, the statistic is computed as follows. 

)2N(Nwi,cj Nwi,cj − Nwi,cj Nwi,cjχ2(D, wi, cj ) = 
(Nwi )(Nwi )(Ncj )(Ncj ) 

The range of the chi-squared statistic is between 0 and N(£ − 1), where N is the 

number of observations and £ is the minimum of the number of rows and columns in 

the contingency table. A näıve analysis shows that the global sensitivity of the χ2 

statistic for a 2 × 2 contingency table is not more than N + 1. While we do not show 

that this bound is tight, we can show that the noise needed to satisfy differential 

privacy is at least N 
2 . 
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Table 5.2.: Contingency tables that differ by 1 

(a) A (b) B 

cj cj 

wi N − 1 0 
wi 0 1 

cj cj 

wi N − 1 0 
wi 1 1 

To prove the lower bound for the global sensitivity is at least N 
2 + 

2
1 
N , we will 

derive the local sensitivity using the two neighboring databases given in Table 5.2a 

and 5.2b. Therefore, 

LSχ2 (A) = max ||χ2(A) − χ2(D ' )||1 
D 

≥ |χ2(A) − χ2(B)| 
N(N − 1)2 (N + 1)(N − 1)2 

= − 
(N − 1)2 2N(N − 1) 
2N2 − (N2 − 1) N2 + 1 

= = 
2N 2N 

N 1 
= + 

2 2N 

Therefore, the global sensitivity is at least N 
2 + 

2
1 
N . While one could argue that the 

datasets shown in Tables 5.2a and 5.2b are unlikely, differential privacy considers all 

possible neighboring datasets present in the universe and adds noise proportional to 

the maximum change in query value. Techniques such as [35], which satisfies a weaker 

security notion, can be used to provide better utility as they add noise proportional 

to the dataset that is being published. In the rest of section, we consider the global 

sensitivity of the feature selection techniques. 
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Table 5.3.: Multi-class contingency tables that differ by 1 

(a) A for k > 2 (b) B neighbor of A 

c1 c2 c3 . . . ck 

wi N − k + 1 0 0 . . . 0 
wi 0 1 1 . . . 1 

c1 c2 c3 . . . ck 

wi N − k + 1 0 0 . . . 0 
wi 1 1 1 . . . 1 

c1 c1 

wi N − k + 1 0 
wi 0 k − 1 

Table 5.4.: Category specific contingency tables 

(a) Ac1 (b) Bc1 

(c) Acj (d) Bcj 

c1 c1 

wi N − k + 1 0 
wi 1 k − 1 

cj cj 
wi 0 N − k + 1 
wi 1 k − 2 

cj cj 
wi 0 N − k + 1 
wi 1 k − 1 

Similarly, we derive the lower bound for global sensitivity of χ2 for k > 2 (multi­

class). For k > 2, we can compute the χ2 statistic between the term wi and each 

category cj and then combine the category-specific scores as follows. 

0 Ncjχ2(D, wi) = χ2(D, wi, cj )
N 

j 0 
N × χ2(D, wi) = Ncj χ

2(D, wi, cj ) 
j 

N−k+1We show that global sensitivity of χ2 is at least 
k for k > 2. We use the 

multi-class contingency tables given in 5.3a and 5.3b for deriving the lower bound on 

global sensitivity. The category specific contingency tables of 5.3a and 5.3b are shown 

in Tables 5.4(a-d). Acj and Bcj denote the class-specific (i.e., class cj ) contingency 

tables for the databases A and B respectively. 
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LSχ2 (B, wi) ≥ χ2(B, wi) − χ2(A, wi) 0 0 
= Ncj χ

2(B, wi, cj ) − Ncj χ
2(A, wi, cj ) 

cj ∈B cj ∈A 

(N − k + 1) (N)(N − k + 1)2(k − 1)2 

= 
N (N − k + 1)(k − 1)2(N − k + 1) 
k0 1 (N)(N − k + 1)2 

+ 
N (N − k + 1)(k − 1)(N − 1)

j=2 

(N − k + 2) (N + 1)(N − k + 1)2(k − 1)2 

− 
N + 1 (N − k + 2)(k)(k − 1)(N − k + 1) 0k 1 (N + 1)(N − k + 1)2 

− 
N + 1 (N − k + 1)(k)(N)

j=2 0k (N − k + 1) 
= (N − k + 1) + 

(k − 1)(N − 1)
j=2 0(N − k + 1)(k − 1) 

k
(N − k + 1) − − 

k (k)(N)
j=2 

(k)(N − k + 1) − (k − 1)(N − k + 1) 
= 

k 0 0k
(N − k + 1) 

k
(N − k + 1) 

+ − 
(k − 1)(N − 1) (k)(N)

j=2 j=2 

(N − k + 1) (N − k + 1) (k − 1)(N − k + 1) 
= + − 

k N − 1 (k)(N)
 
(N − k + 1)
 

> 
k 

(k−1)(N−k+1)The last inequality holds because (N −k+1) > .
(N−1) (k)(N) 
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5.2.3 Odds Ratio 

Odds Ratio quantifies how strongly the presence or absence of a feature wi is 

associated with the presence or absence of a category cj in the corpus. For a 2 × 2 

contingency table, OR is estimated as follows. 

Pr(wi|cj )Pr(wi|cj ) Nwi,cj Nwi,cjOR(D, wi, cj ) = = 
Pr(wi|cj )Pr(wi|cj ) Nwi,cj Nwi,cj 

Table 5.5.: Smoothed contingency tables that differ by 1 

(a) A (b) B 

cj cj 

wi N − 1 
2 

1 
2 

wi 
1 
2 

3 
2 

cj cj 

wi N − 1 
2 

1 
2 

wi 
3 
2 

3 
2 

1 
2

3 
2

1 
2

3 
2

The global sensitivity of odds ratio is unbounded. The difference between the 

odds ratio of a database D with a zero Nwi,cj value and a neighboring database D ' 

with non-zero Nwi,cj value is infinite. In case of a smoothed OR (0.5 added to each 

cell), we can show that the global sensitivity is at least 4N − 2 for a 2 × 2 contingency 

table. The smoothed contingency tables of Table 5.2a and 5.2b are shown in Table 

5.5a and Table 5.5b. From smoothed contingency tables, we have 

LSOR(B, wi, cj ) ≥ OR(B, wi, cj ) − OR(A, wi, cj ) 

(N − ) (N − ) 
=
 −
1 3 

44 

= 6N − 3 − 2N + 1 

= 4N − 2 
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Table 5.6.: Smoothed multi-class contingency tables that differ by 1 

(a) A for k > 2 (b) B neighbor of A 

c1 c2 c3 . . . ck 

wi N − k + 3 
2 

1 
2 

1 
2 . . . 1 

2 

wi 
1 
2 

3 
2 

3 
2 . . . 3 

2 

c1 c2 c3 . . . ck 

wi N − k + 3 
2 

1 
2 

1 
2 . . . 1 

2 

wi 
3 
2 

3 
2 

3 
2 . . . 3 

2 

c1 c1 

wi N − k + 3 
2 

k−1 
2 

wi 
1 
2 

3(k−1) 
2 

Table 5.7.: Smoothed category specific contingency tables 

(a) Ac1 (b) Bc1 

c1 c1 

wi N − k + 3 
2 

k−1 
2 

wi 
3 
2 

3(k−1) 
2 

(c) Acj (d) Bcj 

cj cj 

wi 
1 
2 N − k + 3 

2 + k−2 
2 

wi 
3 
2 

3(k−2) 
2 + 1 

2 

cj cj 

wi 
1 
2 N − k + 3 

2 + k−2 
2 

wi 
3 
2 

3(k−1) 
2 

Similarly, we derive the lower bound for global sensitivity of OR for k > 2. For 

k > 2, we can compute the OR between the term wi and each category cj and then 

combine the category-specific scores as follows. 

0 NcjOR(D, wi) = OR(D, wi, cj )
N 

j 0 
N × OR(D, wi) = Ncj OR(D, wi, cj ) 

j 
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The smoothed contingency tables of Table 5.3a and 5.3b are shown in Table 5.6a 

and Table 5.6b. The category specific contingency tables are shown in Tables 5.7(a-d). 

From smoothed contingency tables, we have 

0 0 
LSOR(B, wi) ≥ Ncj OR(B, wi, cj ) − Ncj OR(A, wi, cj ) 

j j 

)(3(k−1) )(3(k−1)(n − k + 3 ) (n − k + 3 )
2 2 2 2 = (n − k + 2) − (n − k + 3)

k−1 3(k−1) 
4 4 0 1 (3(k−2) 1 1 (3(k−1)+ ) )

2 2 2 2 2+ 2 − 
3 3 (k−2) 3 3 (k−2)(n − k + + ) (n − k + + )j=2 2 2 2 2 2 2 

3 3 
= (n − k + 2)(n − k + )(6) − (n − k + 3)(n − k + )(2)

2 20 3(k−2) 1 (k−1)( + )
2 2 2+ 2 − 

3 (k−2) 3 (k−2)3(n − k + + ) (n − k + + )j=2 2 2 2 2 0 4 
= 4n 2 + 12n − 8nk + 4k2 − 12k + 9 + − 

3 (2n − k + 1) 
j=2 

4(k − 1) 
= 4n 2 + 12n − 8nk + 4k2 − 12k + 9 − 

3 (2n − k + 1) 

As n increases, the local sensitivity is dominated by the 4n2 term. 

5.2.4 GSS Coefficient 

Galavotti et al. [62] proposed a simplified χ2 statistic that removed factors that 

emphasized rare words and rare categories. For a binary classification task, it is 

computed as follows 

GSS(D, wi, cj ) = Pr(wi, cj )Pr(wi, ci) − Pr(wi, ci)Pr(wi, cj ) 

Nwi,cj Nwi,cj − Nwi,cj Nwi,cj= 
N2 
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A positive/negative value of GSS coefficient denote positive/negative relationship 

and zero means no relationship between the feature wi and class cj . Maximizing the 

above equation is equivalent to maximizing N2 × GSS(D, wi, cj ). We propose to use 

the absolute value of the numerator to compute GSS so that the range of GSS is in 

the interval [0, N
4 

2 
], which captures both positive and negative relationship. 

Therefore, we will be maximizing the equation |Nwi,cj Nwi,cj − Nwi,cj Nwi,cj |. The 

global sensitivity of this equation is N for a 2 × 2 contingency table (Table 5.1). To 

prove the global sensitivity, we will assume that the neighboring database differs in 

the element Nwi,cj by 1. 

GSGSS(wi,cj ) = |(Nwi,cj + 1)Nwi,cj − Nwi,cj Nwi,cj | 

− |Nwi,cj Nwi,cj − Nwi,cj Nwi,cj | 

≤ Nwi,cj Nwi,cj + Nwi,cj − Nwi,cj Nwi,cj 

− Nwi,cj Nwi,cj + Nwi,cj Nwi,cj 

= Nwi,cj 

≤ N 

For k > 2, GSS coefficient can be computed by first finding the GSS coefficient 

for each category cj and then computing the average of category-specific scores. 

0 NcjGSS(D, wi) = GSS(D, wi, cj )
N 

j 

Maximizing the above equation is equivalent to maximizing GSS(D, wi) = N3 × 

GSS(D, wi). The following analysis is based on the (general) multi-class contingency 

Table 5.8. Without loss of generality, we will assume that the neighboring database 
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D ' differ in the element Nwi,c1 (i.e., D ' has count Nwi,c1 + 1). The category specific 

contingency tables of neighboring databases D and D ' are shown in Tables 5.9(a-d). 

Table 5.8.: Multi-class contingency table (D) 

c1 c2 c3 . . . ck 

wi Nwi,c1 Nwi,c2 Nwi,c3 . . . Nwi,ck 

wi Nwi,c1 Nwi,c2 Nwi,c3 . . . Nwi,ck 

c1 c1 

wi Nwi,c1 Nwi − Nwi,c1 

wi Nwi,c1 Nwi − Nwi,c1 

Table 5.9.: Category specific contingency tables 

(a) Dc1 (b) D ' c1 

(c) Dcj 
(d) D ' cj 

c1 c1 

wi Nwi,c1 + 1 Nwi − Nwi,c1 

wi Nwi,c1 Nwi − Nwi,c1 

cj cj 

wi Nwi,cj Nwi − Nwi,cj 

wi Nwi,cj Nwi − Nwi,cj 

cj cj 

wi Nwi,cj Nwi − Nwi,cj + 1 

wi Nwi,cj Nwi − Nwi,cj 

GSGSS(wi) = |GSS(D ' , wi) − GSS(D, wi)| 0 0 
= Ncj GSS(D, wi, cj ) − Ncj GSS(D ' , wi, cj ) 

cj ∈D cj ∈D 
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=	 Nc1 Nwi,c1 (Nwi − Nwi,c1 ) − Nwi,c1 (Nwi − Nwi,c1 ) 

k0 
+	 Ncj Nwi,cj (Nwi − Nwi,cj ) − Nwi,cj (Nwi − Nwi,cj ) 

j=2 

−	 (Nc1 + 1) (Nwi,c1 + 1)(Nwi − Nwi,c1 ) − Nwi,c1 (Nwi − Nwi,c1 ) 

k0 
+	 Ncj Nwi,cj (Nwi − Nwi,cj ) − Nwi,cj (Nwi − Nwi,cj + 1) 

j=2 

Let, V = Nc1 Pj = Ncj 

W = Nwi,c1 Qj = Nwi,cj 

X = Nwi − Nwi,c1 Rj = Nwi − Nwi,cj 

Y = Nwi,c1 Sj = Nwi,cj
 

Z = Nwi − Nwi,c1 Tj = Nwi − Nwi,cj
 

≤ V	 (W )(Z) − (Y )(X) − (V + 1) (W + 1)(Z) − (Y )(X) 

k0 
+ Pj (Qj )(Tj ) − (Sj )(Rj ) − (Qj )(Tj ) + (Sj )(Rj + 1) 

j=2
 

k
0 
= − (V )(Z) − (W )(Z) − Z + (Y )(X) + (Pj )(Sj ) 

j=2 

k0 
≤ − (V )(Z) − (W )(Z) − Z + (Ncj )N 

j=2 

k0 
≤ NNc1 + Z(1 + W ) + N Ncj
 

j=2
 

k
0 N	 N ≤ N	 Ncj + (1 + )
2	 2 

j=1 

5	 N 
N2 =	 + 

4	 2 

The first inequality uses the fact that |a| − |b| ≤ |a − b|. The second inequality 

holds because Sj ≤ N and (Y )(X) ≥ 0. The third inequality uses the fact that 



   

�� ��

 �� ��

88 

Z ≤ N . For the last inequality, the expression Z(1 + W ) subjected to the constraint 

W + Z ≤ N reaches the maximum value at W = Z = N 
2 . 

5.2.5 Bray-Curtis Dissimilarity 

Bray-Curtis dissimilarity (BCD) is used to quantify the distance between two 

samples. The sum of the absolute differences between the counts is divided by the 

sum of the abundances in the two samples to get BCD. 

|Xi − Yi|
BCD(X, Y ) = i 

i Xi + i Yi 

We now show how BCD can be used to measure the independence of a feature wi and 

category cj. Let OD denote the observed frequencies in the contingency table built wi,cj 

from the corpus D for feature wi and category cj ; ED be the expected frequency for wi,cj 

feature wi and category cj under the null hypothesis (i.e., wi and cj are independent). 

The dissimilarity becomes zero if and only if wi and cj are independent. Higher values 

indicate that the null hypothesis should be rejected (i.e., the occurrence of wi and 

cj are not independent.) Therefore, we want to select features that maximize the 

following equation. 01 
OD − EDBCD(D, wi) = x,y x,y2N 

x,y 

where x ∈ {wi, wi} denotes the presence or absence of a feature wi and y ∈ 

{c1, c2, . . . , ck} for 2 × k contingency table. Ex,y is computed as N × Pr(x) × Pr(y). 
Nwi NcjFor example, Ewi,cj = 

N . Maximizing the above equation is equivalent to maxi­

mizing OD − ED . x,y x,y x,y 

We will use Table 5.8 to prove that the sensitivity of BCD is 2k, where k is 

number of categories in the database D. Without loss of generality, let us assume 
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that the value of Nwi,c1 increases by 1 in the neighboring database D ' , then the global 

sensitivity of BCD can be proved as follows. 

GSBCD(wi) = |BCD(D ' , wi) − BCD(D, wi)| 0 0 
OD = − ED − OD − ED 

x,y x,y x,y x,y 
x,y x,y 

(Nwi + 1)(Nc1 + 1) 
= (Nwi,c1 + 1) − 

(N + 1) 
k0 (Nwi + 1)Ncj+ Nwi,cj − 

(N + 1) 
j=2 

k
Nwi (Nc1 + 1) 0 Nwi Ncj+ Nwi,c1 − + Nwi,cj − 

(N + 1) (N + 1) 
j=2 

Nwi Nc1 

k
Nwi Ncj 

0 
− Nwi,c1 − + Nwi,cj − 

N N 
j=2 

k
Nc1 Nwi 

0 Nwi Ncj+ Nwi,c1 − + Nwi,cj − 
N N 

j=2 

(Nwi + 1)(Nc1 + 1) Nwi Nc1 = Nwi,c1 + 1 − − Nwi,c1 − 
(N + 1) N 

k
(Nwi Nwi Ncj 

0 + 1)Ncj+ Nwi,cj − − Nwi,cj − 
(N + 1) N 

j=2 

(Nwi )(Nc1 + 1) Nc1 Nwi+ Nwi,c1 − − Nwi,c1 − 
(N + 1) N 

k
Nwi Ncj 

0 Nwi Ncj+ Nwi,cj − − Nwi,cj − 
(N + 1) N 

j=2 

(Nwi + 1)(Nc1 + 1) (Nwi )(Nc1 )≤ 1 − + 
(N + 1) N 

k0 (Nwi + 1)(Ncj ) (Nwi )(Ncj ) + − + 
(N + 1) N 

j=2 

(Nc1 + 1)(Nwi ) (Nc1 )(Nwi )+ − + 
(N + 1) N 0k (Ncj )(Nwi ) (Ncj )(Nwi ) + − + 
(N + 1) N 

j=2 
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N(N + 1) − N(Nwi + 1)(Nc1 + 1) + (N + 1)(Nwi Nc1 ) = 
N(N + 1) 

k0 −N(Nwi + 1)(Ncj ) + (N + 1)(Nwi )(Ncj ) + 
N(N + 1) 

j=2 

−(N)(Nc1 + 1)(Nwi ) + (N + 1)(Nc1 )(Nwi )+ 
N(N + 1) 0k −N(Ncj )(Nwi ) + (N + 1)(Ncj )(Nwi ) + 
N(N + 1) 

j=2 0(N − Nwi )(N − Nc1 ) 
k

(Ncj )(Nwi − N)
≤ + 

N(N + 1) N(N + 1) 
j=2 0(Nwi )(Nc1 − N) 
k

Ncj Nwi + + 
N(N + 1) N(N + 1) 

j=2
 

2kN2
 

≤ ≤ 2k 
N(N + 1) 

The first inequality uses the fact |a|−|b| ≤ |a−b| and the second to last inequality 

holds because each term in the numerator is bounded by N 2 . 

5.2.6 Information Gain 

Information gain [63] measures the number of bits of information obtained for 

prediction by knowing the presence or absence of a term/feature in a document. 

0 
IG(D, wi) = − Pr(cj ) log Pr(cj ) 

j 0 0 Pr(cj , w ' )
+ Pr(cj , w ' ) log 

Pr(w ')
j w ∈{wi,wi} 
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Maximizing the above equation is equivalent to maximize the following equation.
 

0 0 Pr(cj , w ' )
IG ' (D, wi) = − Pr(cj , w ' ) log 

Pr(w ')
j w ∈{wi,wi}0 0 Nw ,cj Nw ,cjIG ' (D, wi) = − log

N Nwj w ∈{wi,wi}0 0 Nw ,cjN ∗ IG ' (D, wi) = − Nw ,cj log 
Nwj w ∈{wi,wi} 

[56] showed that the global sensitivity of the above equation is equal to log(N + 1) + 

1 .
ln 2 

5.2.7 Mutual Information 

Mutual Information [63] between a feature wi and a category cj is computed as 

follows. 
Pr(wi, cj )

I(wi, cj ) = log 
Pr(wi)Pr(cj ) 

To measure the global goodness of a feature, the category specific scores are combined 

as: 

0 
MI(D, wi) = Pr(cj )I(wi, cj) 

j 01 
= Ncj I(wi, cj )

N 
j 

We will instead maximize N × MI(D, wi). It is easy to show that the global 

sensitivity is unbounded for the above equation. If we compute a smoothed MI 

(0.5 is added to each cell), then we can show that the global sensitivity is at most 

N log(3) + log(N + 1) + 1 . The following proof uses the fact that x log x+1 goes to 
ln 2 x
 

1
 
ln 2 as x goes to ∞, and 0 when x goes to 0. 
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The following analysis is based on the Table 5.8. Without loss of generality, we 

will assume that the neighboring database D ' differ in the element Nwi,c1 (i.e., D ' has 

count Nwi,c1 + 1). 

GSMI (wi) = MI ' (D, wi) − MI ' (D ' , wi)avg avg0 0 
= N ' I ' (wi, cj ) − I(wi, cj )cj 

Ncj
 

j j
 

(N + 1)(Nwi,c1 + 1) NNwi,c1 = (Nc1 + 1) log − (Nc1 ) log 
(Nwi + 1)(Nc1 + 1) (Nwi )(Nc1 ) 0 (N + 1)(Nwi,cj ) NNwi,cj+ (Ncj ) log − (Ncj ) log 

j=2 
(Nwi + 1)(Ncj ) (Nwi )(Ncj ) 

(N + 1)(Nwi,c1 + 1)(Nwi )(Nc1 ) (N + 1)(Nwi,c1 + 1) 
= Nc1 log + log 

(N)(Nwi,c1 )(Nwi + 1)(Nc1 + 1) (Nwi + 1)(Nc1 + 1) 0 (N + 1)(Nwi )+ (Ncj ) log 
(N)(Nwi + 1) 

j=2 

(Nwi,c1 + 1)(Nc1 ) (N + 1)(Nwi,c1 + 1) 
= Nc1 log + log 

(Nwi,c1 )(Nc1 + 1) (Nwi + 1)(Nc1 + 1) 0 (N + 1)(Nwi )+ (Ncj ) log 
(N)(Nwi + 1) 

j=1 

(Nwi,c1 + 1) (Nc1 + 1) (N + 1)(Nwi,c1 + 1) 
= Nc1 log − Nc1 log + log 

(Nwi,c1 ) (Nc1 ) (Nwi + 1)(Nc1 + 1) 0 0(N + 1) (Nwi + 1) 
+ (Ncj ) log − (Ncj ) log 

(N) (Nwi )j=1 j=1 

(Nwi,c1 + 1) (Nc1 + 1) (N + 1)(Nwi,c1 + 1) 
= Nc1 log − Nc1 log + log 

(Nwi,c1 ) (Nc1 ) (Nwi + 1)(Nc1 + 1) 0(N + 1) (Nwi + 1) 
+ (N) log − (Ncj ) log 

(N) (Nwi )j=1 

(Nwi,c1 + 1) (N + 1)(Nwi,c1 + 1) (N + 1) ≤ Nc1 log + log + (N) log 
(Nwi,c1 ) (Nwi + 1)(Nc1 + 1) (N) 

1 ≤ N log 3 + log(N + 1) + 
ln 2 
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5.3 Feature Selection: Empirical Evaluation 

We now present an empirical evaluation to demonstrate the impact of selecting a 

low sensitive feature selection method when using differential privacy. We present χ2 

as a baseline, as this is a feature selection technique with a solid theoretical grounding 

(but unfortunately, high sensitivity.) We compare with Bray-Curtis dissimilarity and 

information gain, as they are the only options with sub-linear sensitivity. GSS is 

included because its sensitivity (N) is much smaller compared to its range ([0, N
4 

2 
]). 

We used the 20 newsgroup dataset from the UCI repository [64] for empiri­

cal evaluation, which contains approximately 20,000 documents distributed across 

20 different newsgroups (some of them are related, e.g., comp.sys.ibm.pc.hardware 

and comp.graphics). We created a subset D from [64] by grouping all the com­

puter/recreation related documents (|D| = 5287) with the label +1/-1 respectively 

and used the exponential mechanism for privately selecting (unigram) features. 

Intuitively, the exponential mechanism scores all the features in F (feature uni­

verse) according to the database D and selects features each with probability propor­
E×g(D,wi)
 
2×m×Δg
tional to e , where m is the number of features by which the two neighboring 

databases differ1 and g is quality function that is used to measure a feature. 

In this dissertation, we consider the whole vocabulary of [64] as F . Higher values 

of m denote stronger privacy as an adversary will not be able to distinguish the 

presence/absence of m features except with some probability indicated by f. The top 

20 features selected by the non-private and differentially private χ2 statistic are shown 

in Table 5.10. Similarly, the Tables 5.11 and 5.12 show the top 20 features selected by 

the non-private and differentially private feature selection techniques BCD and GSS 

respectively. Differentially private χ2 performs poorly due to high sensitivity. 

For a more complete comparison of the effectiveness of different differentially pri­

vate feature selection techniques, we compute the overlap of top 100 features selected 

privately with the top 100 features selected by the non-private χ2 statistic. Figure 5.1 

shows the percentage overlap of the features for different values of m and f. We can 

1Neighboring databases have the same number of documents but differ by m features 
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see that BCD and GSS perform well compared to other techniques in the differentially 

private setting. An interesting result that we see is the performance of information 

gain in the private setting. While IG has relatively low sensitivity, the scores were 

all in the range [-5247, -4755]. As a result, the scores were not very discriminatory, 

and a small amount of noise relative to the overall possible range of scores turns out 

to be significant, resulting in a significant change in the top 100 features. In spite 

of the high sensitivity, GSS performed well because the scores were highly discrim-

Table 5.10.: Top 20 features (unigrams) selected using χ2 statistic 

χ2 statistic 
(Non-private) 

DP χ2 statistic 
(f = 0.5, m = 1) 

windows , team 
car , dod 

game , year 
season , bike 

program , players 
hockey , card 
play , writes 

software , baseball 
league , graphics 

dos , cars 

prob , stage 
vonda , formatting 
subjects , queries 

zoroastrian , assassination 
morandini , inclination 
manfredo , inqmind 
finances , daystar 
correlation , citroen 
eashtar , oxidizer 
versatile , ramdisk 

Table 5.11.: Top 20 features (unigrams) selected using BCD
 

BCD 
(Non-private) 

DP-BCD 
(f = 0.5, m = 1) 

DP-BCD 
(f = 0.5, m = 5) 

writes, article 
windows, team 

year, car 
game, dod 

program, apr 
good, system 

software, problem 
card, play 
file, season 

bike, graphics 

writes , article 
windows , team 

year , car 
game , dod 

apr , program 
system , problem 
software, problem 

good , file 
card , play 

season , graphics 

writes , dod 
article , windows 

team , year 
car , funniest 
wasn , files 

computer , ftp 
good , game 

program , play 
guzman , psi 

avenue , system 
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Table 5.12.: Top 20 features (unigrams) selected using GSS
 

GSS 
(Non-private) 

DP-GSS 
(f = 0.5, m = 1) 

DP-GSS 
(f = 0.5, m = 5) 

article, windows 
team, year 
car, game 

dod, program 
apr, good 

system, software 
problem, card 

play, file 
season, bike 

graphics, computer 

writes, article 
windows , team 

car, year 
game, dod 

apr , program 
good, card 

play, software 
system, file 

problem, season 
games, graphics 

windows, writes 
article, season 
year, software 
graphics, don 

team, trumpeted 
admits, moreillon 
adulteries, play 

deftwmrc, tractatus 
board, prc 
game, xauth 

inatory (range [3, 1552584]). The global sensitivity of χ2, OR, and MI are all high 

and performed equally poorly. Therefore, we do not include the overlap of OR, MI 

over χ2 in our comparison graph. In the next section, we compare the performance 

of differentially private feature technique in a practical setting. 
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Figure 5.1.: Overlap of 100 private & top 100 non-private χ2 features 



96 

5.3.1 Differentially Private Näıve Bayes Classifier 

Näıve Bayes is a classification algorithm that is used to predict the class C of a 

given instance W = (W1,W2, . . . ,Wn). It computes P (C|W ) by making a conditional 

assumption that Wi is independent of other Wj given C. Formally, the problem is to 

find cj such that 

 
argmax Pr(C = cj ) Pr(Wi = wi|C = cj ) 

cj 
i 

To make predictions, we need to estimate P (cj ) and P (wj |cj ) from a training dataset. 

To learn a differentially private näıve Bayes classifier (DP-NB), it is enough to release 

the differentially private counts of Nwi,cj and Ncj . Since, the amount of noise added 

to Nwi,cj and Ncj is proportion to the number of parameters learned, we use private 

feature selection for estimating the parameters of top m features. 

To access the effectiveness of the differentially private feature selection techniques, 

we compare the performance of differentially private näıve Bayes (achieves document 

privacy2) classifier with private feature selection to the baseline non-private näıve 

Bayes (NP-NB) classifier. We created two datasets from the 20 newsgroup dataset. 

COMP/REC dataset consists of 2907 documents related to computer and 2380 recre­

ational documents. The SCI/POL dataset consists of 2372 science documents and 

1949 documents related to politics. The binary classification task was to identify the 

type of each document. In both cases, we consider the 20 newsgroup dataset as the 

domain and the set of all unigrams present in the domain as feature universe F . The 

top m features from F were selected based on the private database D and a feature 

selection technique g. The baseline accuracy (computed using 5-fold cross validation) 

of the NP-NB classifier for the datasets are shown in Table 5.13. The first column 

shows the accuracy (%) of NP-NB when all the features were used for classification. 

The second column shows the accuracy of NP-NB when the top 50 features were used 

for classification with the feature selection techniques CHI, IG, BCD and GSS. 

2Neighboring databases differ by a single document 
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The algorithm for building a DP-NB is shown in Algorithm 8. Step 1 allocates 

the privacy budget for releasing Ncj . Step 2 splits the rest of the privacy budget 

in to two halves. One half of the privacy budget is used for privately selecting the 

top m features and the other half is used for learning the probabilities of the top m 

features. Step 4 of the algorithm computes the statistic based on the given feature 

selection technique g. Then, step 6 selects the top m features each with probability 
E×statistic(D,wi)
 

2×m×Δg
proportional to e . The noisy class counts Ncj are computed in Step 7. 

Steps 8-12, compute the noisy posterior probabilities (Pi,j ) for each of the top m 

features, where Pi,j denotes the differentially private probability of the feature wi 

given category cj . 

Table 5.13.: Accuracy (in %) of non-private näıve Bayes classifier 

All Features Top 50 Features 

CHI IG BCD GSS 

COMP/REC 98.4 90.1 90.0 89.3 89.3 

SCI/POL 95.8 83.7 83.7 82.5 82.5 
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(a) COMP/REC dataset (b) SCI/POL dataset 

Figure 5.2.: Accuracy of differentially private näıve Bayes classifier with top 50 fea­
tures; x axis shows the values of f in log scale and y axis denoting the accuracy 
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Algorithm 8 Differentially private näıve Bayes classifier
 
Input: A dataset D ∈ D, universal feature set F , privacy budget f, the number of 
features to learn m, feature selection technique g and its sensitivity Δg 
Output: Differentially private parameters P̂i,j and N̂cj of näıve Bayes classifier 

1:	 f1 = 0.05 × f 
2:	 f2 = 0.475 × f 
3:	 for wi ∈ D do 
4: Compute Statistic[i] based on feature selection technique g 
5:	 end for 
6:	 Sample m features using Exponential mechanism with Statistic[i] as the scoring 

function, Δg as the sensitivity and f2 as the privacy budget. i.e., Pr(wi) ∝ 
E2×statistic[i]
 

2×m×Δg
e 
ˆ7:	 Ncj = Ncj + Lap( 1 ), where j ∈ {0, 1}

E1 

8:	 for i = 1 to k do 
9: for j ∈ {0, 1} do 
10: P̂i,j = Nwi,cj + Lap(m )

E2
 

ˆ P̂i,j
11: Pi,j = 
N̂cj 

12: end for 
13: end for 
14: Publish P̂i,j and N̂cj 

Figures 5.2a and 5.2b shows the accuracy of the DP-NB classifier with differentially 

private feature selection techniques DP-GSS, DP-BCD, DP-CHI on COMP/REC and 

SCI/POL dataset respectively. We also plotted the results when every feature (All-

Features) was used for building a DP-NB classifier. For All-Features, the differentially 

private counts for every feature in F were learned using D. No budget was spent 

on feature selection, but the noise added to each Pi,j in step 10 is proportional to 
|F|Lap(
2×E2 

). The x axis shows the privacy budget f in log scale and accuracy in y 

axis. Each data point in the box plot is the accuracy computed using 5-fold cross 

validation. The experiment was re-run 25 times and the average accuracy in each 

of 25 trials were shown as a box plot. For log f ≥ 0.25, the DP-NB classifier with 

DP-BCD/DP-GSS feature selection technique, performs better than DP-χ2, DP-IG 

or All-Features. 
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5.3.2 Differentially Private Regularized SVM 

For a binary classification task, a support vector machine (SVM) [65] constructs 

a hyperplane that maximizes the margin between the two classes. There also exist 

techniques such as the kernel trick for SVM, which have been shown to perform well 

on non-linearly separable data. [66] proposed a differentially private algorithm for 

regularized SVM based on objective perturbation, which involves adding noise to the 

objective function prior to minimizing. 

We evaluate the performance of non-private SVM (NP-SVM) and differentially pri­

vate SVM (DP-SVM) with private feature selection using the datasets COMP/REC 

and SCI/POL. The baseline accuracy (computed using 5-fold cross validation) of the 

non-private SVM classifier for the datasets are shown in Table 5.14. The first column 

shows the accuracy (%) of NP-SVM when all the features were used for classification. 

The second column shows the accuracy (%) of SVM when the top 50 features were 

used for classification with the feature selection techniques CHI, IG, BCD and GSS. 

Table 5.14.: Accuracy (in %) of non-private SVM 

All Features Top 50 Features 

CHI IG BCD GSS 

COMP/REC 97.6 91.0 91.1 91.1 91.1 

SCI/POL 96.3 83.6 83.7 82.2 82.2 

Figures 5.3a and 5.3b shows the accuracy of the DP-SVM classifier with differen­

tially private feature selection techniques DP-GSS, DP-BCD, DP-CHI on COMP/REC 

and SCI/POL dataset respectively. We were not able to plot the results for All-

Features as the implementation of [66] didn’t scale well beyond 2000 features. There­

fore, we have plotted the box plots for DP-SVM with differentially private top 2000 

features. The x axis shows the privacy budget f in log scale and accuracy in y axis. 

Each data point in the box plot is the accuracy computed using 5-fold cross validation. 

The experiment was re-run 25 times and the average accuracy in each of 25 trials were 
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(a) COMP/REC dataset (b) SCI/POL dataset 

Figure 5.3.: Accuracy of differentially private regularized SVM classifier with top 50 
features; x axis shows the values of f in log scale and y axis denoting the accuracy 

shown as a box plot. For log f ≥ 0.25, the DP-SVM with DP-BCD/DP-GSS feature 

selection technique, performs better than DP-χ2, DP-IG or top 2000 features. 

SVM vs Näıve Bayes Classifier 

In case of the non-private version, the performance of SVM was comparable to 

or better than non-private NB except when All-Features was used with COMP/REC 

dataset. In case of the differentially private version, the performance of DP-SVM is 

better than DP-NB if the top 50 features were selected using DP-BCD or DP-GSS 

for f ≤ 0.25. For f > 0.25, the accuracies are similar3 . 

5.4 Differentially Private Decision Trees 

A decision tree is learnt from a training dataset using the top-down approach. 

Initially the whole dataset is present in the root node. Beginning from the root node, 

3We believe that DP-SVM with All-Features will perform better than DP-NB with All-Features 
because the DP-SVM with top 2000 features performed better than DP-NB when the features were 
selected using non-private χ2 feature selection technique. However, we were not able to validate it 
due to scalability issues with the implementation. 
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Figure 5.4.: Accuracy of differentially private decision trees 
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the data is partitioned into subsets (intermediate nodes) such that similar instances 

are present in each node. This is achieved by selecting a best splitting attribute for 

partitioning. The algorithm continues to recurse on each subset (intermediate node), 

considering only attributes never selected before. It stops if every element in a node 

belongs to the same class or if there are no more attributes to be selected. The 

number of instances of each class in a leaf node is saved for future decision making of 

a test dataset. 

[56] showed that a low sensitivity criteria for split point selection, MAX, signifi­

cantly improved differentially private decision tree accuracy. We extend their results, 

comparing BCD and GSS against the measures they used. We built a differentially 

private decision tree (DP-DT) classifier based on the algorithm proposed in [56]. The 

key differences in constructing a DP-DT are as follows. 1) At each node, the best 

splitting attribute should be chosen privately. This is done by scoring each attribute 

using a quality function (like information gain, gini impurity etc.) and using the 

exponential mechanism to chose the attribute privately. 2) To check the stopping cri­

teria, [56] uses a heuristic, which requires each class count be larger on average than 

the standard deviation of the noise in the noisy instance count of the subset. 3) The 

number of instances of each class in a leaf node should be released in differentially 

private manner. 

Apart from information gain and gini index, [56] also evaluated a DP-DT classifier 

on the MAX operator described in [67]. MAX is computed as follows. 

0 
MAX(D, A) = max (NA ,c ) 

c ∈{c0,c1}
A ∈A 

Given a database D and an attribute A, MAX computes the sum of the highest 

class frequencies over the values of A. The sensitivity of the MAX function is 1. [56] 

got the best results using MAX operator as it had the lowest sensitivity among the 

scoring functions. In this section, we also evaluate the performance of BCD and GSS 
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as a scoring function to select the splitting attribute privately and compare their 

performance against IG and MAX. 

We evaluated the performance of the private decision tree on adult, mushroom, 

car and connect-4 datasets from the UCI data repository [64]. The datasets were first 

cleaned by removing any missing values and discrete attributes with at most 16 values 

were used for tree construction. A non-private decision tree classifier [68] (NP-DT) 

and differentially private decision tree classifier [56] (DP-DT) with GSS, BCD, MAX 

and IG as the scoring functions were implemented to compare their performance in 

a private setting. The accuracy of decision trees were computed using 5-fold cross 

validation and the average accuracy value over the rounds are shown in Figure 5.4(a­

e). For the DP-DT, the experiment was repeated 25 times; the average accuracy over 

the 5-fold cross validated rounds for each of the 25 trials is given as a box plot. 

1. Adult:	 The Adult dataset is drawn from the United States Census [64]. It 

is composed of 30,718 instances after the removal of instances with missing 

values. The binary classification task is to predict whether an adult income is 

greater than 50,000 a year based on the discrete attributes workclass, education, 

marital-status, relationship, race and sex. Figure 5.4a shows the accuracy of 

NP-DT and DP-DT with GSS, BCD, MAX and IG as the scoring function. 

When privacy is not an issue, the decision tree with IG has an accuracy of 

81.5%, which is marginally better than the other scoring functions (∼81.3%). 

In case of DP-DT, built using a differential private feature selection, we can see 

that the accuracy of differentially private GSS, BCD and MAX are at least 1% 

better than the differentially private IG for f ≤ 0.5. As we increase f, the gap 

widens and there is about 2% gap for f = 1. For f ≤ 0.5, DP-GSS performs the 

best and for f ≥ 0.75 DP-MAX is the best performing scoring function. 

2. Mushroom: The Mushroom dataset consists of 8124 samples corresponding to 

23 species of gilled mushrooms, categorized as edible or poisonous. The clas­

sification task is to predict whether whether a mushroom sample is poisonous 
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or edible depending upon 22 characteristics such as shape, color, surface, etc. 

When all the attributes were considered for building a decision tree, NP-DT 

with GSS, BCD and MAX performed much better than IG (100% vs 97.5%). 

Therefore, we restricted ourselves to a subset (attribute ids 14-22) so that the 

performance of the non-private versions were close (97.3% vs 97.1%). When dif­

ferential privacy was used, DP-GSS and DP-BCD scoring functions performed 

better than DP-IG and DP-MAX for f ≤ 0.25. But, for f ≥ 0.5, the performance 

of DP-MAX was better than DP-GSS, DP-BCD by about 6%. 

3. Car:	 The Car evaluation dataset was derived from a simple hierarchical deci­

sion model [69]. It consists of 1728 examples with 4 class labels (unacceptable, 

acceptable, good and very good). For our binary classification task, we con­

sidered ‘unacceptable’ as class ‘0’ and rest of the them as class ‘1’ and used 

six features on price, technology, and comfort of a car for building the decision 

tree. The accuracy of the NP-DT with GSS (85.7%) was slightly lower than 

IG and BCD (86.4% and 86.3% respectively). For f ≤ 0.25, the accuracy of 

the private scoring functions were almost the same. For f ≥ 0.5, there is a 

significant performance improvement when DP-MAX was used and we can see 

at least 1-3% gain when it is used as the splitting criteria. 

4. Connect-4:	 The connect-4 dataset consists of all legal 8-ply positions in the 

game of connect-4 in which neither player has won yet with the class label in­

dicating the outcome of the first player (win, loss or draw) [64]. It is composed 

of 67557 samples with 42 attributes describing which player has each position 

of the board. In our experiments, we discarded the ’draw’ instances and con­

sidered ‘win’ as class ‘1’ and loss as class ‘0’ and the binary classification task 

is to predict if the first player won or lost the game. When every attribute was 

considered for building a NP-DT, BCD performed much better than IG. There­

fore, we restricted ourselves to a subset (first 10 attribute ids a1-a6, b1-b4), so 

that the performance of the NP-DT with all the scoring functions were close 
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(∼74.9%). Unlike the other datasets, the gains of using a DP-GSS, DP-BCD or 

DP-MAX were not huge, but they were still able to beat DP-IG by 0.1%- 0.5% 

and the median of the accuracies was consistently better. 

In summary, the DP-DT with DP-GSS and DP-BCD perform better than DP­

DT with DP-IG as the scoring function when the size of the dataset is large and the 

performance is similar when the dataset size is small. An interesting result we see 

with DP-MAX scoring function is that, although it is a low sensitive function, the 

accuracy of DP-DT with DP-GSS is better or same as that of DP-MAX for small 

values of epsilon (f ≤ 0.25). Smaller values of epsilon means better privacy. But as 

the value of epsilon is increased, the performance of DP-MAX is better DP-BCD and 

DP-GSS except on the connect-4 dataset. 
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6 CONCLUSION 

In this dissertation, we considered the problem of privacy-preserving text analysis with 

differential privacy. Providing differential privacy in a secure two-party computation 

is challenging with malicious adversaries because the solution of each party adding 

noise to the other party’s output to guarantee differential privacy does not work. 

Even rational adversaries may behave maliciously (can add a predetermined large 

noise) to gain exclusive access to the result, and the very noise that provides privacy 

protection also limits detection of malicious behavior. 

We presented a secure two-party protocol for pseudo-random sample generation 

from an arbitrary Laplace distribution using garbled circuits in a malicious setting. 

A direct consequence of this is the ability to build protocols for differentially private 

analysis with verifiable noise. As long as one of the parties behave honestly (i.e. 

generates a standard uniform sample), a malicious party will not be able to influence 

the final result. Unfortunately, this protocol is expensive, limiting its use to off-line 

settings. 

We also present a much more efficient protocol that succeeds against rational 

adversaries: parties where the cost of getting caught behaving maliciously outweighs 

the benefits. We demonstrate this in the context of a simple two-party protocol. 

The idea of a two-party distributed sampling protocol given in Section 3.3 can be 

extended to the multi-party case; the rational adversary approach in Section 3.4 is 

more challenging. We leave the question of building efficient protocol for multi-party 

case for future work. 

In Chapter 4, we investigated the problem of developing data-oblivious algorithms. 

In Section 4.2, we presented a data-oblivious secure two-party algorithm for weighted 

bipartite matching based on the Hungarian algorithm. We show how to create a 

differentially private version that provides a guarantee of differential privacy to both 
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parties. The data-oblivious algorithm presented in Section 4.2 has an overhead of 

O(log |V |) compared to an insecure version (plus the constant factor imposed by com­

puting on encrypted data.) We also presented a data-oblivious algorithms for com­

puting the minimum vertex cover in bipartite graphs and detecting articulation points 

in undirected graphs. We then introduced f-data-obliviousness, a relaxed notion of 

data-obliviousness that helps us to develop efficient protocols for data-dependent al­

gorithms like frequent itemset mining. 

Finally, we consider the problem of privacy-preserving classification. Private data 

analysis is a challenging task when confronted with high dimensional data such as 

text. While feature selection can alleviate these problems, it must be done carefully 

to avoid introducing new privacy leaks. 

We showed that some of the feature selection techniques can be effective while 

still satisfying differential privacy. Others, however, provide a nearly random selec­

tion when differential privacy is satisfied. This work demonstrates that protecting 

privacy requires more than simply applying privacy protection methods to existing 

data analysis techniques. Careful selection of analysis techniques that both perform 

the desired analysis, and do so in a way that inherently limits privacy risks, can sig­

nificantly improve results when privacy protection methods are used. While we deal 

only with appropriateness of feature selection techniques, the basic ideas are relevant 

to any data analysis task where various techniques may be appropriate for the task. 
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