
CERIAS Tech Report 2017-01
Privacy-Preserving Analysis with Applications to Textual Data

 by Balamurugan Anandan
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

PRIVACY-PRESERVING ANALYSIS WITH APPLICATIONS

TO TEXTUAL DATA

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Balamurugan Anandan

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2017

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Christopher W. Clifton, Chair

Department of Computer Science

Dr. Jennifer Neville

Department of Computer Science

Dr. Luo Si

Department of Computer Science

Dr. Samuel S. Wagstaff, Jr.

Department of Computer Science

Approved by:

Dr. Sunil Prabhakar

Head of the Department Graduate Program

iii

To

Amma, Appa and Akka

iv

ACKNOWLEDGMENTS

This dissertation would not have been possible without the guidance and motiva­

tion of my advisor Prof. Chris Clifton. Working with him has helped me grow as an

individual, both professionally and personally. I am forever indebted to him.

My sincere gratitude to my committee members Prof. Jennifer Neville, Prof.

Luo Si and Prof. Samuel Wagstaff, who have helped me greatly in improving my

dissertation.

I would like to acknowledge my friends and colleagues especially Nesreen Ahmed,

Srikanth GV, Akash Kumar, Jaewoo Lee, Mummoorthy Murugesan, Ahmet Erhan

Nergiz, Keehwan Park, Pedro Pastrano, Ryan Rossi, Siddharth Singh, Christine Task

and John Ross Wallrabenstein for their useful personal and technical discussions,

which helped me succeed in my PhD.

I express my gratitude to my best friend Vikram Ilavarasan, who has always been

there for me. I would like to appreciate my friends Sureshkumar Govindaraj, Raj

Prabhu, Ashokvarda Rajagopalan, Vijay Ranganathan, Sakthiyuvraja Sakthivelmu­

rugan and Thillaivasan Veeranathan for helping me get through difficult times.

I am grateful to Dr. Jon Coker and my employer Omnitier for being very flexible

and supportive during my final year of PhD. I would also like to thank Micela Shivva

for her support during my stay in Rochester.

I sincerely thank Mrs. Patrica Clifton for her hospitality and kindness. I would

like to thank my brother-in-law for his support. I would also like to acknowledge my

niece Ragavi Rajkumar, who has brought me laughter and joy over the years.

Special thanks to Madhura R Choudhary for her friendship, support and encour­

agement.

Finally, I want to thank my parents and sister for their unconditional support and

sacrifice. To them, I dedicate this dissertation.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . ix

1 INTRODUCTION . 1

2 BACKGROUND AND RELATED WORK 4

2.1 Secure Computation . 4

2.1.1 Garbled Circuits . 4

2.1.2 Malicious Setting . 5

2.1.3 Homomorphic Encryption . 6

2.1.4 Secret Sharing . 8

2.2 Differential Privacy . 8

2.2.1 Sensitivity . 10

2.2.2 Laplace Mechanism . 10

2.2.3 Exponential Mechanism . 11

2.3 Two-Party Computational Differential Privacy 13

3 PRIVACY-PRESERVING ANALYSIS IN RATIONAL SETTING 15

3.1 Related Work . 15

3.2 Two-Party CDP: Semi-Honest Model 17

3.3 Two-Party CDP: Malicious Case . 19

3.3.1 Distributed Uniform Pseudo-Random Number Generation . . . 21

3.3.2 Security . 22

3.3.3 Efficiency . 22

3.4 Two-Party CDP with Rational Adversaries 23

3.4.1 Rational Adversaries . 23

3.4.2 Definition: Ideal/Real Style . 24

3.4.3 Differentially Private Function 25

3.4.4 Hamming Distance Protocol . 26

3.4.5 Noise Selection . 28

3.4.6 Complexity Analysis . 31

3.4.7 Security . 32

3.4.8 Impact of Differential Privacy 34

4 PRIVACY-PRESERVING DATA-OBLIVIOUS ALGORITHMS 37

vi

Page

4.1 Related Work . 40

4.1.1 Data-Obliviousness . 40

4.2 Privacy-Preserving Weighted Bipartite Matching 42

4.2.1 Secure Two-Party Matching Algorithm 44

4.2.2 Complexity Analysis . 54

4.2.3 Security . 55

4.2.4 Differentially Private Weighted Bipartite Matching 56

4.3 Minimum Vertex Cover for Bipartite Graph 57

4.3.1 Complexity Analysis . 61

4.3.2 Security . 61

4.4 Privacy-Preserving Articulation Points 62

4.4.1 Complexity Analysis . 66

4.4.2 Security . 67

4.5 Relaxed Data-Obliviousness . 68

4.5.1 f-Data-Oblivious Frequent Itemset Mining 69

4.5.2 Security . 73

5 PRIVACY-PRESERVING CLASSIFICATION 75

5.1 Related Work . 76

5.2 Differentially Private Feature Selection 76

5.2.1 Term Weights . 77

5.2.2 Chi-Squared Statistic . 78

5.2.3 Odds Ratio . 82

5.2.4 GSS Coefficient . 84

5.2.5 Bray-Curtis Dissimilarity . 88

5.2.6 Information Gain . 90

5.2.7 Mutual Information . 91

5.3 Feature Selection: Empirical Evaluation 93

5.3.1 Differentially Private Näıve Bayes Classifier 96

5.3.2 Differentially Private Regularized SVM 99

5.4 Differentially Private Decision Trees 100

6 CONCLUSION . 106

REFERENCES . 108

VITA . 114

vii

LIST OF TABLES

Table	 Page

3.1	 Notations . 17

4.1	 Plain-text view of the initial state of [M]. Actual values are non-deterministically

encrypted, e.g., (1,1)=E(0)=439, (4,4)=E(0)=227. 47

4.2	 Plain-text view of the initial state of [A] 47

4.3	 Plain-text view of [M] after permutation. Note that row and column ID’s

are not actually visible, and actual values re-encrypted, e.g., the upper left

corner (4,4) = E(0) = 186. 48

4.4	 Plain-text view of [A] after permutation 49

4.5	 Updated cost matrix [C] . 52

4.6	 Notations . 69

5.1	 2 × 2 contingency table . 77

5.2	 Contingency tables that differ by 1 . 79

5.3	 Multi-class contingency tables that differ by 1 80

5.4	 Category specific contingency tables . 80

5.5	 Smoothed contingency tables that differ by 1 82

5.6	 Smoothed multi-class contingency tables that differ by 1 83

5.7	 Smoothed category specific contingency tables 83

5.8	 Multi-class contingency table (D) . 86

5.9	 Category specific contingency tables . 86

5.10 Top 20 features (unigrams) selected using χ2 statistic 94

5.11 Top 20 features (unigrams) selected using BCD 94

5.12 Top 20 features (unigrams) selected using GSS 95

5.13 Accuracy (in %) of non-private näıve Bayes classifier 97

5.14 Accuracy (in %) of non-private SVM . 99

viii

LIST OF FIGURES

Figure	 Page

3.1	 Honest draw (blue/left column) vs malicious draw (red/right column) . . . 30

3.2	 Run time in ms . 31

3.3	 True output vs differentially private output 36

4.1	 An example bipartite graph and its adjacency matrices 38

4.2	 Bipartite graph with shared edge weights 44

4.3	 Snapshot of residual graph . 45

4.4	 Minimum vertex cover . 58

4.5	 Articulation points . 63

5.1	 Overlap of 100 private & top 100 non-private χ2 features 95

5.2	 Accuracy of differentially private näıve Bayes classifier with top 50 fea­
tures; x axis shows the values of f in log scale and y axis denoting the

accuracy . 97

5.3	 Accuracy of differentially private regularized SVM classifier with top 50

features; x axis shows the values of f in log scale and y axis denoting the

accuracy . 100

5.4	 Accuracy of differentially private decision trees 101

ix

ABSTRACT

Anandan, Balamurugan PhD, Purdue University, May 2017. Privacy-Preserving
Analysis with Applications to Textual Data. Major Professor: Christopher W.
Clifto.

Textual data plays a very important role in decision making and scientific research,

but cannot be shared freely if they contain personally identifiable information. In

this dissertation, we consider the problem of privacy-preserving text analysis, while

satisfying a strong privacy definition of differential privacy.

We first show how to build a two-party differentially private secure protocol for

computing similarity of text in the presence of malicious adversaries. We then relax

the utility requirement of computational differential privacy to reduce computational

cost, while still giving security with rational adversaries.

Next, we consider the problem of building a data-oblivious algorithm for minimum

weighted matching in bipartite graphs, which has applications to computing secure

semantic similarity of documents. We also propose a secure protocol for detecting

articulation points in graphs. We then relax the strong data-obliviousness definition

to give f-data-obliviousness based on the notion of indistinguishability, which helps

us to develop efficient protocols for data-dependent algorithms like frequent itemset

mining.

Finally, we consider the problem of privacy-preserving classification of text. A

main problem in developing private protocols for unstructured data is high dimen­

sionality. This dissertation tackles high dimensionality by means of differentially

private feature selection. We show that some of the well known feature selection

techniques perform poorly due to high sensitivity and we propose techniques that

perform well in a differential private setting. The feature selection techniques are em­

x

pirically evaluated using differentially private classifiers: näıve Bayes, support vector

machine and decision trees.

1

1 INTRODUCTION

In many real world applications, there is a necessity to share data (e.g., text docu­

ments and network data) with others. Sensitive information (e.g., electronic health

records) that contain personally identifiable information when disclosed intention­

ally or inadvertently without proper measures can cause serious privacy concerns.

k-safety [1], t-plausibility [2,3] and information theory based sanitizers [4,5] are some

of the syntactic and semantic text publishing techniques used for redacting sensitive

information before publishing them for data mining purposes. These data publishing

techniques are also prone to correlation based inference [6] and may be inadequate

for settings where data is shared among multiple parties, who want to learn useful

information from their combined data. This dissertation considers various scenarios

where privacy is an issue when computing with sensitive textual data and proposes

novel algorithms for solving them.

Let us consider a simple example of two mutually distrustful parties, who want

to compute the similarity of their input documents (represented by a binary vector)

without revealing their input documents. Secure multi-party computation (MPC)

deals with the problem of how to securely compute a function among mutually dis­

trustful parties, but a straightforward secure function evaluation approach (blindly

computing the result, with neither party learning anything but the final result) may

not be sufficient as computing a similarity function like hamming distance or dot

product could leak information from the final result. A malicious party whose only

intention is to learn if the other party has a particular feature/word in their document

can construct their input document with all zeros except for a one as the value for

the targeted word/feature in the document vector that he/she wants to learn. The

final result is then the other party’s value for that targeted word/feature, resulting

in a information leak.

2

Differential privacy, on the other hand, asks the question of what aggregate func­

tions can be computed on private data such that the output does not leak information

about an individual in the database. A differentially private function computed using

MPC techniques would solve the above problem, as the result would have sufficient

noise to mask that single individual’s value. Unfortunately, a simple solution like each

party contributing noise to the other party does not work in the two-party malicious

setting as we will see this in Chapter 3.

Computing a differentially private function securely using multi-party computa­

tion techniques prevents private information leakage both in the process, and from

information present in the function output, but poses new challenges if any of the

parties are malicious. A key challenge in developing a distributed differentially private

protocol is

How to securely sample a pseudo-random number from a Laplace distribu­

tion in the two-party malicious setting?

In Chapter 3, we show how to build a two-party differentially private secure pro­

tocol in the presence of malicious adversaries. We then relax the utility requirement

of computational differential privacy to reduce computational cost, which leads to

the notion of security with rational adversaries. Finally, we provide a modified two-

party computational differential privacy definition and show correctness and security

guarantees in the rational setting.

Applying secure multi-party computation techniques on an algorithm alone does

not guarantee privacy, if the underlying algorithm is data-dependent or if the output

of the algorithm can leak information. The first issue can be addressed through data-

oblivious computation, the second through differential privacy. However, both can

be difficult to achieve with graph algorithms. Chapter 4 addresses both problems,

demonstrating a differentially private data-oblivious protocol for minimum weighted

bipartite matching, minimum vertex cover for bipartite graphs and privately detecting

articulation points in an undirected graph.

3

There are situations where strict data-obliviousness is inefficient. For example,

consider an algorithm like frequent itemset mining, whose running time is dependent

on the input query (e.g., retrieve the itemsets that satisfy a threshold φ.) Frequent

itemset mining has been used on text [7, 8] for identifying topics and knowledge

discovery. A true data-oblivious algorithm would then have to access every itemset

to prevent information leaks due to the sequence and number of memory accesses.

But this is infeasible because the run time of the data-oblivious algorithm would be

exponential. This raises our next question.

Is it possible to develop efficient data-oblivious algorithms under a weaker

security guarantee?

In Section 4.5, we propose a relaxed data-oblivious definition f-data-obliviousness

that provides a weaker notion of data-obliviousness. We also develop an efficient

algorithm for frequent itemset mining and prove that it satisfies f-data-obliviousness.

Finally, we consider the problem of differentially private classification on unstruc­

tured data. A key challenge in applying differential privacy to text analysis is that

the noise added to the feature parameters is directly proportional to the number of

parameters learned. While careful feature selection would alleviate this problem, the

process of feature selection itself can reveal private information, requiring the appli­

cation of differential privacy to the feature selection process, which leads us to the

question.

Is it possible to build efficient private classifiers for text that satisfy differen­

tial privacy? Given the high dimensionality of text, which feature selection

techniques are suitable for differentially private analysis?

In Chapter 5, we analyze the sensitivity of various feature selection techniques used

in text classification and show that some of them are not suitable for differentially

private analysis due to high sensitivity. We also perform empirical evaluation on

differentially private näıve Bayes classifier, support vector machine and decision trees

to evaluate the efficiency of the private feature selection methods.

4

2 BACKGROUND AND RELATED WORK

This chapter provides the standard techniques and definitions from secure multi-party

computation and differential privacy for completeness of the solutions proposed in the

following chapters.

2.1 Secure Computation

Consider two parties P1 and P2 having private inputs, who wish to collaboratively

compute a function of their inputs without divulging their inputs because of confi­

dentiality issues. An example scenario occurs in knowledge discovery from sensitive

inputs like medical databases. The above problem can be solved by secure multi-party

computation (MPC) using well known generic protocols. A brief description of the

tools used for building secure protocols are described below.

2.1.1 Garbled Circuits

Garbled circuit technique introduced by Yao in [9] is a generic method for secure

two-party computation in the semi-honest setting. It allows two parties having in­

puts x, y respectively to evaluate an arbitrary function f(x, y) without leaking any

information other than what can be inferred from the output and their own input. To

summarize, one party generates a Boolean circuit and associates with each input wire

i, two random keys wi
0, wi

1 corresponding to 0, 1 bit respectively. Then for each gate,
o(bi,bj)the generator computes E bi bj (w) for all inputs bi, bj ∈ {0, 1}. The four cipher kw ,wi j

texts corresponding to each gate are then permuted and sent to the evaluator along

with the keys corresponding to its own input wires. The evaluator obtains the keys

associated with its input using oblivious transfer (OT) and then begins evaluating

5

the circuit. At the end, the generator reveals the mapping between the output keys

to bits.

2.1.2 Malicious Setting

The following definition and description is based on [10] Chapter 7. In a malicious

model, the adversaries may arbitrarily deviate from a specified protocol. The security

of a protocol in the malicious model is defined by comparing an execution of a protocol

in the real model to an execution in the ideal model. In an ideal scenario, there exists

an incorruptible trusted third party T to whom the parties send their inputs. The

trusted third party T computes the function on the inputs and returns back their

respective output.

Execution in the ideal model: Let P0, P1 be the parties computing the function­

ality f = (f0, f1), A be an adversary controlling Pi, where i ∈ {0, 1} and T be the

incorruptible trusted third party. Then, an execution in the ideal model proceeds as

follows.

Inputs: Each party Pj obtains its input xj of the same length n and let z be the

auxiliary input of the adversary A.

Send inputs to trusted party: The honest party P1−i always sends its received

input x1−i to the T . An adversary A controlling the party Pi may send its received

input xi or send some other input depending upon the auxiliary input z of the same

length to T on behalf of Pi. Let x̄ be the input of both the parties.

T sends output to adversary: T computes (f0(x̄), f1(x̄)) and sends fi(x̄) to A

controlling Pi.

Adversary instructs T to continue or halt: The adversary A upon receiving its

output could either send continue or aborti to T . If A sends continue to T , then T

sends f1−i(x̄) to the honest party P1−i. Otherwise, if A sends aborti to T , then the

T sends aborti to Pj .

6

Outputs: An honest party P1−i always outputs whatever it has received from the

T . The corrupted party outputs nothing. A can output a function (efficiently com­

putable) of its input, the auxiliary input z and messages it received from the T .

Let IDEALf,A(z)(x, y, n) be the random variable consisting of the output of the

adversary and the output of the honest party following an execution in the ideal

model as described above.

Execution in the real model: Let π be a two-party protocol for computing f in

the real model (in the absence of T), A be a non-uniform probabilistic polynomial-

time adversary that sends all messages in place of the corrupted party. The honest

party follows the protocol. Then, the joint execution of π with inputs (x, y), and

auxiliary input z to A in the real model is denoted as REALπ,A(z)(x, y, n), is defined

as the output of the honest party and the adversary A resulting from the protocol

execution. The secure two-party computation is defined as follows:

Definition 2.1.1 (Secure Two-Party Computation) Protocol π is said to secur­

ely compute f with abort in the presence of malicious adversaries if for every non­

uniform probabilistic polynomial-time adversary A in the real model, there exists a

non-uniform probabilistic polynomial-time adversary S for the ideal model, such that

for every i ∈ {0, 1}

 c
IDEALf,S(z),i(x, y, n) ≡ REALΠ,A(z),i(x, y, n)x,y,z∈{0,1}∗ ,n∈N x,y,z∈{0,1}∗ ,n∈N

2.1.3 Homomorphic Encryption

A public-key encryption scheme is homomorphic if it allows computations on the

ciphertexts without decrypting them first. Let Epk and Dsk denote the encryption

and decryption functions with pk and sk as the public and private keys respectively.

Then, an additive homomorphic encryption system has the following property. Given

an encryption of m1 and m2, Epk(m1) and Epk(m2), there exists an efficient algorithm

to compute the encryption of m1+m2, denoted by Epk(m1+m2) = Epk(m1)⊕Epk(m2).

7

The homomorphic addition is denoted by the operator ⊕. A formal definition is given

below.

Definition 2.1.2 [11] A public key encryption scheme (G, E, D) is additively ho­

momorphic if for all n and all (pk, sk) output by G(1n), it is possible to define groups

M, C such that:

• The plaintext space is M, and all ciphertexts output by Epk are elements of C.

• For every m1,m2 ∈ M, it holds that

pk, c1 = Epk(m1), c1 ⊗ Epk(m2) ≡ pk, Epk(m1), Epk(m1 + m2)

where the group operations are carried out in C and M, respectively.

Such an additive homomorphic scheme also supports the multiplication of a ci­

phertext and a scalar constant by repeated addition. i.e., Given a constant c and

the encryption of m1, Epk(m1), there exists an efficient algorithm to compute the

encryption of c × m1, denoted by Epk(c × m1) = c ⊗ Epk(m1). The operator ⊗ is

used to denote the homomorphic multiplication of a constant with a ciphertext. An

encryption scheme that meets the above definition is Paillier [12]. The threshold vari­

ation of Paillier is shown in [13], which is used for building protocols in Chapter 3.

A few other protocols proposed in [13] that are useful for building protocols in the

malicious setting are as follows.

Proving that you know a plain text (POK): A prover Pi than created the en­

cryption Epk(x) can give the zero-knowledge proof of knowledge P OK(Epk(x)) that

it knows an element x in the domain of valid plaintexts such that Dsk(Epk(x)) = x

Proving that multiplication is correct (POMC): Assume prover Pi is given

an encryption Epk(x) and chooses a constant c and calculates a random encryption

8

Epk(x×c) and sends Epk(x×c), Epk(c) to verifier. Then, Pi can give a zero-knowledge

proof P OMC(Epk(x), Epk(c), Epk(x × c)) to prove that Epk(x × c) is indeed the prod­

uct of the values contained in Epk(x) and Epk(c)

Threshold decryption: Given the common public key pk, and an encryption

Epk(x). There exists an efficient secure protocol in which each party uses their share

of the private key sk to output x for everyone.

2.1.4 Secret Sharing

The goal of a (t, n) secret sharing scheme is to divide a secret S in to n shares

S1, S2, . . . , Sn such that given any t shares, it is possible to reconstruct the secret S

and knowledge of k −1 or few shares does not reveal any information about the secret

S.

Shamir secret sharing [14] is an example (t, n) secret sharing scheme based on

polynomial interpolation. In Shamir’s secret scheme, the domain of secret and the

shares are elements of a finite field Fp, where p is a prime and p > n. To share a

secret S ∈ Fp, the dealer first chooses t − 1 elements a1, . . . , at−1 uniformly at random t−1from Fp. Then, builds a polynomial over the field Fp as follows f(x) = a0 + i=1 aix
i ,

where a0 = S. To share a secret among n parties, the dealer constructs n points on

the polynomial. For example, let z = 1, . . . , n and evaluates the polynomial f at each

z to get a point (z, f(z)), which is given to party Pz. Note that, we can recover the

t − 1 degree polynomial (along with the secret S) with t or more unique points on the

polynomial using Lagrange interpolation, but no information about the polynomial

or the secret is leaked with less than t points.

2.2 Differential Privacy

Differential privacy introduced in [15, 16] provides a strong guarantee of privacy

against an adversary with background knowledge, while learning some statistic over

9

a statistical database. It protects individual privacy by guaranteeing that the output

of a mechanism is approximately the same (or more precisely, from nearly indistin­

guishable distributions), regardless if any single individual is present or absent in a

dataset. Since, any information that can be learned with having an individual’s data

on the dataset can also be learned without it, there is no significant advantage for an

individual to opt-out of the dataset.

We will review differential privacy and then discuss the techniques used to achieve

differential privacy. Let D denote a sensitive database (collection of data elements)

with each tuple corresponding to an individual. Let M : D → Rd be a randomized

algorithm. Then, M satisfies f-Differential Privacy if and only if for any two neigh­

boring datasets D1 and D2, the distributions M(D1) and M(D2) differ at most by a

Emultiplicative factor of e . A formally definition of differential privacy is as follows.

Definition 2.2.1 (f-Differential Privacy [15, 16]) A randomized mechanism M

is f-differentially private if for all datasets D1 and D2 differing by at most one ele­

ment, and for all S ⊆ Range(M), the following holds

P (M(D1) ∈ S) E≤ e
P (M(D2) ∈ S)

The key idea behind differential privacy is that the contribution of a single in­

dividual to the publicly released result is small relative to the noise. This is done

by calibrating the noise based on the potential difference in results between any two

neighboring databases (databases that differ by one individual.). The difference be­

tween the results from the true world D and its neighbor D' is the difference the

privatization noise will need to obfuscate in order for the privatized results to not

give evidence about whether D or D' is the true world. The upper bound of this

difference over DI ∈ D is the sensitivity of query f . For example, if we assume a

binary dot product (the count of individuals for whom both parties have value 1), the

sensitivity is 1. Removing/Adding an individual (modifying a value from 1 to 0 or

vice versa) will change the outcome by at most one, regardless of the initial vectors.

��� ��� ��� ���

� �

10

In general, the sensitivity of dot product is the multiple of the maximum possible

values in the domain.

As with secure multi-party computation, differential privacy has a seminal result

giving a method for any query. The technique proposed by [16] to achieve f-differential

privacy is by adding a suitable noise generated from the Laplace distribution to the

output.

2.2.1 Sensitivity

One of the key parameters that determines the accuracy with which a query f can

answered with differential privacy is the £1 sensitivity of f . It captures the largest

change in f due to a change in single individual’s data item. Now, we define the two

sensitivities that have been used to achieve differential privacy.

Definition 2.2.2 (Global Sensitivity [16]) For a given function f : D → Rd, the

global sensitivity of f (with respect to the £1 metric) is

f(D1) − f(D2)GSf = max
D1,D2 1

where D1 and D2 differ in at most one element.

2.2.2 Laplace Mechanism

Let Lap(µ, λ) be a Laplace distribution with mean µ and scale factor λ(> 0),

whose density function is given by

1 |x − µ|
h(x) = exp −

2λ λ

In [16] Dwork et al. proved that for a given query function f and a database D,

a randomized mechanism M, which returns f(D) + Y , where Y is drawn i.i.d from

Lap
GS

E
f satisfies f-differential privacy.

11

2.2.3 Exponential Mechanism

The Laplace mechanism achieves differential privacy by adding a real-valued noise

to the true answer. However, it is not suitable for queries that return non-numeric

values, or in situations where noise is irrelevant. Exponential mechanism E , proposed

in [17] is applicable for non-numeric queries. Let D be the domain of input datasets, R

be the range of noisy outputs and R be the real numbers. The exponential mechanism

E defines a scoring function q : D ×R → R that assigns a score to each pair (D, r)

where D ∈ D and r ∈ R. Given a database D and privacy parameter f, E outputs r
E×q(D,r)

2S(q)with probability proportional to e .

Theorem 2.2.1 [17] Let q : (Dn × R) → R be a scoring function that, given a

database D ∈ Dn , assigns a score to each outcome r ∈ R. The sensitivity of the

scoring function q is S(q) = maxr,AΔB=1 |q(A, r) − q(B, r)|. Let E be a mechanism for

choosing an outcome r ∈ Rn given a database instance D ∈ Dn then the mechanism

fq(D, r)E(D, q) = return r with probability ∝ exp
2S(q)

satisfies f-differential privacy.

In the global sensitivity framework, the noise magnitude depends upon the func­

tion f and the privacy parameter f. The global sensitivity measures the noise needed

to protect the privacy of an individual in the worst case scenario. But, it may not

be suitable for all functions because the noise magnitude may be very high and this

could lead to poor utility for highly sensitive functions. In the local sensitivity frame­

work [18], the noise will also be based upon the database D. The local sensitivity

LSf (D) of the function f with database D is defined as follows

������ ������

12

Definition 2.2.3 (Local Sensitivity [18]) For a given function f : D → Rd and

D ∈ D, the local sensitivity of f at D (with respect to the £1 metric) is

LSf (D) = max f(D) − f(D1)
D1 1

where D1 differs from D by a single element.

It is also easy to see that GSf = max LSf (x). However, releasing a function
x

calibrated with noise magnitude proportional to LSf (x) will not satisfy differential

privacy because the local sensitivity is itself sensitive. Therefore, a smooth upper

bound Sf to LSf is used such that adding noise proportional to Sf is safe.

Definition 2.2.4 (A Smooth Bound [18]) For β > 0, a function S : Dn → R+

is a β-smooth upper bound on the local sensitivity of f if it satisfies the following

requirements:

∀x ∈ Dn : S(x) ≥ LSf (x)

∀x, y ∈ Dn, d(x, y) = 1 : S(x) ≤ e βS(y)

An example of a function that satisfies Definition 2.2.4 is the smooth sensitivity

of f .

Definition 2.2.5 (Smooth sensitivity [18]) For β > 0, the β-smooth sensitivity

of f is

S ∗ −βd(x,y)LSf (y)f,β (x) = max e
y∈Dn

Definition 2.2.1 also called information theoretic privacy is the strongest defini­

tion of differential privacy as it holds against unbounded adversaries. A relaxed

indistinguishability-based computational differential privacy (IND-CPD) definition

proposed in [19] protects privacy against computationally bounded adversaries. IND­

CDP is the computational analogue of (f, δ)-DP where δ = negl(κ), where k is the

security parameter. In CDP, the adversary is modeled as polynomial sized circuits

(or non uniform probabilistic polynomial time TMs) and is denoted by {Aκ}κ∈N.

13

Definition 2.2.6 (IND-CDP [19]) An ensemble {fκ}κ∈N of randomized functions

fκ : D → Rκ provides fκ-IND-CDP if there exists a negligible function negl(.) such

that for every non-uniform PPT TM A, every polynomial p(.), every sufficiently large

κ ∈ N, all data sets D, D ' ∈ D of size at most p(κ) such that |DΔD ' | ≤ 1, and every

advice string zκ of size at most p(κ), it holds that

Pr[Aκ(fκ(D)) = 1] ≤ e E × Pr[Aκ(Fκ(D ')) = 1] + negl(κ)

where we write Aκ(x) for A(1κ, zκ, x) and the probability is taken over the ran­

domness of mechanism fκ and adversary Aκ.

2.3 Two-Party Computational Differential Privacy

We briefly review the two-party CDP definition in the malicious setting proposed

in [19]. Let {gκ}κ∈N, {hκ}κ∈N denote the ensembles of randomized interactive Turing

machines of gκ, hκ respectively and {(gκ, hκ)}κ∈N denote the ensemble of interactive

protocols of {gκ}κ∈N, {hκ}κ∈N. Then the definition of two-party differentially private

computation using the ideal/real paradigm is

Definition 2.3.1 (Two-Party CDP [19]) A two-party interactive protocol ensem­

ble {(gκ, hκ)}κ∈N for computing a function f(x, y) satisfies (γ, ξ) fκ-SIM+−CDP if

there exists an fκ-DP randomized mechanism f̂ = (f̂
g, f̂

h) such that

•	 Mechanism f̂ provides (γ, ξ) additive usefulness with respect to f.

•	 The protocol ensemble {(gκ, hκ)}κ∈N securely realizes the randomized function­

ality f̂ as per the ideal/real simulation paradigm.

Informally, the above definition states that for every Aκ in the real world, there

exists a simulator Sκ in ideal world when given a differentially private output f̂

(computed by trusted third party), Sκ should be able to simulate the protocol with Aκ

such that for every x, y ∈ {0, 1}κ the joint output in the ideal world is computationally

indistinguishable with the joint output in the real world.

14

The usefulness property is used to describe the utility/correctness of a differen­

tially private mechanism.

Definition 2.3.2 ((γ, ξ)-usefulness [19]) A differentially private output f̂(x, y) is

an additive (γ, ξ)-useful for a deterministic function f(x, y) if for all x, y ∈ D

Pr[|f̂(x, y) − f(x, y)| > γ(κ)] ≤ ξ(κ)

15

3 PRIVACY-PRESERVING ANALYSIS IN RATIONAL SETTING

Secure multi-party computation (MPC) and differential privacy are two notions of

privacy that deal respectively with how and what functions can be privately com­

puted. Computing a differentially private function using MPC techniques was first

considered in [20]. The idea is to design f̂ , an f-differentially private approximation

of the function f , and evaluate it using MPC.

As an example application, suppose two companies wish to compare customer lists.

If they share enough customers, they may wish to establish a collaboration. Using

secure function evaluation they can compute the distance without revealing their

inputs. Suppose one company simply wishes to know if the other has a particular

customer, it can construct a document containing only that name. The output/value

of the distance protocol reveals the presence of that individual in the other party’s

list. Differential privacy protects against this, adding sufficient noise to the outcome

to only give highly uncertain information about any individual, while still providing

reasonably accurate aggregate information.

3.1 Related Work

The closest work related to ours is [21]. It gives a distributed protocol to gener­

ate a Laplace sample from two exponential samples that involves computing secure

logarithm twice. We show how the composition method can be used to generate a

Laplace sample from a single uniform sample. While [21] does give a malicious se­

cure protocol, the malicious model security holds only when the number of parties is

greater than two.

Distributed pseudo-random number generation has been used in privacy-preserving

aggregation of time series data. It considers the problem of finding statistics from

16

a user’s data in the presence of an untrusted aggregator. A distributed protocol for

Laplace sample generation from multiple Gaussian samples (each party generates a

single Gaussian sample) is given in [22]. In [23], a method is given for distributed

sample generation from a geometric distribution. Our work faces a different challenge,

as rather than an untrusted aggregator, it is the participating parties that may not

be trusted.

Some of the papers that deal with distributed computational differential privacy

(CDP) are described below. The problem of an adversary gaining exclusive access to

output without getting caught in a two-party CDP malicious setting was discussed

in [24], but the paper does not provide solutions. [19] gives fundamental definitions for

two-party computational differential privacy and various relationships among them.

They also provide a two-party Hamming distance protocol for the honest but curious

(semi-honest) model and the malicious model, but they do not deal with verifiable

sample generation. In [19], at the end of the protocol one party gets a differentially

private output and the other party gets nothing. The party not receiving the output

generates the noise; the assumption is that a malicious party generating large noise is

essentially equivalent to a malicious party aborting. None of the above protocols have

a mechanism for verifiable noise generation. Even though one might argue that the

individual privacy is not compromised, a malicious adversary who would like to have

exclusive access to the output could add more noise than what is needed to render

the honest party’s output unusable.

The notion of allowing an adversary to cheat with non-negligible probability as

long as it caught with some high probability ω was formalized in [25], which intro­

duces secure multi-party computation in the presence of covert adversaries, a slightly

weakened view that allows malicious behavior to benefit the malicious party as long

as it is eventually detected. In our work, a rational adversary does not learn the

honest party’s input; the only consequence of successful cheating by an adversary is

a low quality output for the honest party.

17

Encrypting Reals: A p precision real value is converted into an integer by first

multiplying it with a constant 10p before encryption. To recover the real value after

decryption, the integer is multiplied with the scaling factor
10
1
p . Since N − 1 ≡

−1(mod N), we can represent −i by N − i in ZN . The lower half [1, lN
2 J] and upper

half [1N
2 l, N − 1] of the range [1, N − 1] is used to represent positive and negative

numbers respectively.

3.2	 Two-Party CDP: Semi-Honest Model

We illustrate the need for a secure protocol in the malicious setting using a Ham­

ming distance protocol, although the approach can be extended to any scalar-valued

function. A simple semi-honest solution is for each party to generate noise satisfying

differential privacy, and incorporate it in the result. An example two-party differen­

tially private Hamming distance protocol secure in the semi-honest setting using a

semantically secure additive homomorphic encryption scheme is given in Algorithm

1. Some of the notations used in this chapter are given in Table 3.1.

Table 3.1.: Notations

Pi Party i
pk Public Key
ski Private key share of Pi

xi Pi’s input vector x
jth element of xi

x̃ Encryption of x with public key
pk (Epk[x])

⊕	 Xor
E	 Homomorphic addition

xij

�	 Multiplication of constant with
encrypted value

This gives a “doubly noisy” result for P1, but since P1 knows the noise it con­

tributed, it can factor it’s own noise out to obtain a less noisy, but still differentially

private, output. P1 subtracts r1 from f1 to obtain its output. We can see that each

�

18

Algorithm 1 Two-party secure Hamming distance in HbC

Input: Party i’s input vector is xi.
Output: fi = (j

n x0j ⊕ x1j) + r1−i

1:	 Party P0 creates a key pair (pk, sk) and sends its encrypted input vector x̃0 and
public key pk to party P1.

2:	 ∀ i, P1 computes t̃i = x̃0i, if x1i = 0 and t̃i = 1̃E (−1 x̃0i) if x1i = 1.
3:	 P1 computes the Hamming distance by homomorphically summing t̃i to get s̃ =

En ˜
i=1ti.

4:	 P1 can homomorphically add a suitable noise r1 ∼ Lap(0, 1
E) to s̃ to obtain f̃

0 =
s̃E r̃1 and send the differentially private value to P0.

5:	 P0 decrypts the value f0 = Dpk(f̃
0) and sends f1 = f0 + r0 to P1 where r0 is noise

selected by P0.

party learns fi = (n
j x0j ⊕ x1j) + r1−i, where r1−i is randomly selected by P1−i,

so each party is left with a result containing sufficient (unknown) noise to provide

differential privacy. A brief argument that the protocol provides fκ-SIM-DP for P0

and fκ-DP for P1 in the semi-honest setting is given in [26].

The above protocol works fine as long as the parties do not deviate from the pro­

tocol, but fails if a party deviates from the protocol. There exist standard techniques,

like zero knowledge proofs as shown in [13] for Paillier encryption, to prove the verac­

ity of the statement at each step. But, the fundamental problem still persists because

a party who wishes to have exclusive access to the result can add a predetermined

large noise to make the output unusable for the honest party. The problem in the

above protocol is that each party’s output contains a noise sample randomly selected

by the other party. In Section 3.3, we show how two parties can engage in a protocol

to draw a sample from the required distribution, preventing this problem.

This chapter makes the following contributions

•	 A two-party protocol is given in Section 3.3 to generate a pseudo-random sample

from Laplace distribution in the presence of a malicious adversaries. As long

as one of the parties follow the protocol, the sample generated is a pseudo­

19

random sample from a Laplace distribution. Unfortunately, this protocol is

computationally quite expensive.

•	 We then introduce the notion of rational adversaries, which models the behavior

of an adversary in two-party CDP. Rational adversaries in two-party CDP have

the property that they cheat with the intention of getting exclusive access to

the output without being caught. Section 3.4 presents a definition of two-party

CDP in the rational setting with relaxed utility guarantees to develop more

practical protocols. We do this by defining a deterrence factor 1 − ω where

0 ≤ ω ≤ 1. I.e., any attempt to gain exclusive access to the output by an

adversary in the execution of the protocol is caught with probability at least

1 − ω. If ω is equal to 0, then the model is equivalent to two-party CDP in the

malicious model.

3.3 Two-Party CDP: Malicious Case

We show a generic method to compute two-party differentially private analysis

(using a Laplace mechanism to achieve DP) using garbled circuits, if there exists

one in the ideal environment. In a semi-honest model, the parties are assumed to

follow the protocol, which implies that the parties send their true inputs during an

execution. Given a protocol that is secure in the semi-honest setting, we can apply

zero knowledge proofs at each step to make it secure in the malicious model. However,

this does not impose any restriction on the choice of inputs. An adversary sending

incorrect inputs during an execution will go undetected. Hence, the idea of having

one party generate random noise that impacts the output of the other party does

not work; a party desiring exclusive access to the result can generate arbitrarily large

“noise” to corrupt the other party’s output; as this is a legitimate input, it is allowed

even in a malicious-secure protocol. In an ideal model, the pseudo-random sample

is generated by an incorruptible trusted third party. The key step in emulating the

20

ideal model is to generate a random sample from the required distribution even if

only one party behaves correctly.

This is easy if we desire a sample from a uniform distribution; the modulo sum of

the numbers generated by each party is a random sample as long as one party behaves

honestly. But we need a sample from a Laplace distribution; this can be done using

the composition method. Algorithm 2 gives the steps to generate a Laplace sample

with a specified mean 0 and scale parameter λ. The protocol given in [27] can be

used to securely compute an approximation of c[ln(x)], where c is a publicly known

multiplicative factor. Algorithm 2 outputs c × £ where £ ∼ Lap(0, λ). Since c is

public, each party can remove it from the differentially private result.

Algorithm 2 Two-party Laplace noise generation protocol

Input: Each party Pi has two random inputs, Xi ∈ {0, 1} and Yi, λ are p precision

numbers.

Output: c ∗ l, where l ∼ Lap(0, λ) and c is a publicly known multiplicative factor.

1: U1 = X1 ⊕ X2 (compute a random bit).
2: U2 = Y1 + Y2 mod (10p + 1)
3: Z = Πlog(U2)−c[ln(10p)] = c[ln(U ∗10p)]−c[ln(10p)) = c[ln(U)], where U ∼ (0, 1).
4: If U1 == 0, then Z ' = Z. Else, Z ' = −Z.
5: return λ ∗ Z '

The composition method is a generic method that can be used when the target

Cumulative Distribution Function (CDF) can be expressed as the convex sum of other

CDFs.

∞0
F (x) = pj Fj (x)

j=1

∞where pj > 0 and j=1 pj = 1

21

Laplace Distribution: A standard Laplace distribution is a symmetric exponential

distribution with pdf and cdf as ⎧⎨

⎧⎨
1 1x xif x < 0
 if x < 0
e
 e

2 2f(x) =
 and F (x) =
 ⎩
 ⎩
1 1 − 1
2

−x −xif x ≥ 0
 if x ≥ 0
e
 e

2

⎧⎨

⎧⎨
x if x < 0 0 if x < 0
e

F1(x) = and F2(x) = ⎩
 ⎩
1 − e
−x if x ≥ 0
1
 if x ≥ 0

Then,
1 1

F (x) = F1(x) + F2(x)
2 2

Computing the inverse we get

F −1(u) =

⎧⎨ ⎩

log(u) with prob. 0.5

−log(u) with prob. 0.5

3.3.1 Distributed Uniform Pseudo-Random Number Generation

A fixed precision uniform random sample from the interval [0,1] is generated by

each party. A p precision floating point sample can be scaled to the interval [0,10p]

by multiplying it with 10p. The sum of the individual samples modulo 10p gives a

uniformly random sample from the interval [0,10p]. The scaling factor used here is

10
1
p . Proposition 3.3.1 states this formally.

Proposition 3.3.1 Let U1, U2 be integers in the interval [0, 10p]. Then, U = U1 +

U2(mod10p + 1) is a uniform sample from U(0, 10p) if at least one of the sample

Ui ∼ U(0, 10p). If U1 ∼ U(0, 10p), then

Pr[U = u] = Pr[U = U1 + U2(mod10p + 1)]

1
= Pr[U1 = U + (10p − U2)(mod10p + 1)] =

10p + 1

22

3.3.2 Security

The security of the sample generation protocol against malicious adversaries holds

due to the generic techniques available for converting a semi-honest Yao’s garbled

circuit to be secure in the malicious model. There are two issues to consider when

considering malicious parties.

1. The circuit evaluator could deviate from the OT protocol and obtain keys for

both 0 and 1, thereby evaluating the function for different inputs.

2. Correctness of the protocol (the circuit generator could construct a different

circuit), which can in turn leak the input of the evaluator.

Security against a malicious evaluator can be prevented by using an oblivious transfer

secure against malicious adversaries [28]. Informally, the circuit evaluator can only

obtain keys corresponding to its own input and can only evaluate the function on its

input. In order to protect against a malicious circuit generator, techniques like cut­

and-choose have been widely used in which the generator constructs multiple circuits

and sends them to the evaluator. The evaluator then randomly ask the generator to

open half of the circuits to check the validity of the construction. The evaluator finally

evaluates the remaining circuits and uses the majority output as the true output.

3.3.3 Efficiency

The expensive operation in distributed Laplace sample generation is the secure

logarithm function. We used the secure logarithm proposed in [27], which approx­

imates the logarithm function by the Taylor series to q places. The latest work on

cut-and-choose for garbled circuits [29] shows that to achieve a negligible cheating

probability of 2−s requires constructing s circuits. Hence, the cut-and-choose tech­

nique to get a cheating probability of approximately 1%, or 2−7, would thus at least

be 7 times the cost of the semi-honest circuit. To give an idea of efficiency of the

method, we implemented a semi-honest version of the differentially private hamming

23

distance using FairplayMP [30]. We used q = 4 for our experimentation (i.e., the

first four terms of the Taylor series was used to approximate log). It took around

25 minutes on a 2.4GHz processor with 8GB of RAM to evaluate the circuit in a

semi-honest setting. A number of improvements in building efficient garbled circuits

have proposed in [31,32], but they are not practical at the moment against malicious

parties. This gives a protocol running time of several hours – feasible for some uses,

but in many cases impractical.

3.4 Two-Party CDP with Rational Adversaries

Secure multi-party computation in the semi-honest model offers no guarantees on

the quality of output for honest parties in the presence of dishonest parties. Although

MPC in the malicious model offers strict guarantees on output, it does not easily

produce efficient protocols for practical implementation and data analysis. We now

give a middle ground by relaxing the utility guarantee of the malicious model, which

leads to MPC in the presence of rational adversaries. This is done by introducing a

parameter ω that captures the probability of undetected cheating by an adversary in

the rational setting. A more formal definition follows.

3.4.1 Rational Adversaries

We define rational adversaries in MPC as parties who wish to gain exclusive

access to the correct output without getting caught. This is slightly different from

the fairness property requirement in MPC because an unfair party is always caught at

the end of the protocol. The scenario happens in differentially private data analysis,

where a randomized input of the parties directly contributes to the output of the

function. A rational adversary could generate arbitrarily large noise, distorting the

outcome for the other party, and argue that the large noise was generated as a random

sample. Hence, we introduce a deterrence factor 1 − ω such that 0 ≤ ω ≤ 1, which

denotes the probability with which an honest party can detect cheating, if a rational

24

adversary attempts to do so. For ω = 0, any attempt to cheat by a rational adversary

is always caught, equivalent to the malicious model.

Note that the protocol must still allow arbitrarily large noise, in order to satisfy

differential privacy. Thus detecting a high noise level does not imply cheating. The

key is that high noise levels must be an unlikely event, as opposed to an event a

dishonest party could cause on a regular basis.

3.4.2 Definition: Ideal/Real Style

We define two-party computational differential privacy in the rational model us­

ing a redefined ideal/real style paradigm to capture the probability of an adversary

gaining exclusive access to the output. Let P1, P2 be the parties, A be an adver­

sary controlling j ∈ {1, 2} and T be the incorruptible trusted third party. Then, an

execution in the modified ideal model with parameter ω proceeds as follows.

Inputs: Each party Pi obtains its input xi of length n; let z be the auxiliary input

of the adversary A.

Send inputs to trusted party: An honest party Pi always sends its received input

xi to T . An adversary A controlling the party Pj may send its received input xj or

send some other input of length n or abortj (may depend upon the auxiliary input z)

to T on behalf of Pj . Let x̄ be the received input of both the parties.

T sends output to adversary: T computes f(x, y) = (f1(x̄), f2(x̄)) and sends fj

to A controlling Pj .

Adversary instructs T to continue or halt: The adversary A upon receiving the

outputs could either send continue or abort to T .

Cheat Option: If A controlling the corrupted party Pj sends wj = cheatj to T ,

then:

1. With probability 1 − ω, the T sends corruptedj to the adversary and the honest

party.

25

2. With probability ω, the T sends undetected to the adversary and further asks

the adversary for the output fi(x̄) that needs to be sent to the honest party.

T sends output to Honest Party: T sends fi(x̄) to the honest party Pi.

Outputs: An honest party always outputs whatever it has received from T . The

corrupted party outputs nothing. A can output anything (efficiently computable)

from its input xj , the advice string z and messages it received from T .

The output of the honest parties and adversary in the above ideal model execution

is defined as IDEALRω (x̄). There are two types of unfairness in the model. One f,A(z)

is the abort call that is present in the standard ideal model in which the honest party

receives ⊥ as output. The second is when the adversary can with certain probability

(< ω) cause the honest party to obtain an inaccurate result. In our case, this is

noisy/inaccurate result with significantly higher probability than would be expected

from selecting a value from a Laplace distribution.

Security as emulation of real execution in the ideal model

Protocol Π is said to securely compute f (in the rational model with 1 − ω de­

terrent) if for any non-uniform probabilistic polynomial-time adversary A in the real

model, there exists a nonuniform probabilistic polynomial-time adversary B for the

ideal model, such that

IDEALRω x, n)

c
x, n)f,B(¯ ≡ REALΠ,A(¯

3.4.3 Differentially Private Function

If two parties P1, P2 want to securely compute a differentially private function

f̂(x, y) on their private inputs x, y respectively, then in an ideal environment, they

would send their inputs to T . T then computes f(x, y) and adds to it a random noise

sample (e.g., selected from Laplace distribution with the appropriate scale parameter)

and sends the approximated output to the parties. The ideal environment provides

f-DP to both the parties. We say a real protocol is secure when it emulates the

26

ideal world. Since the real world is only guaranteeing computational differential

privacy, the security is maintained even when the simulator is not efficient as pointed

out in [19]. Another way of looking at this is for any adversary in the real model

A, if there exists an adversary S in the ideal model, then the protocol in the real

model securely realizes the ideal functionality. In this case, the ideal model provides

information theoretic differential privacy, hence even an inefficient S should not be

able to simulate the attack in the ideal model. For interactive protocols, this leads to

the relaxed definition of fκ-SIM+−CDP.

Definition 3.4.1 ((γ, ξ, ω)fκ-SIM+−CDP) An ensemble of interactive protocols

{(gκ, hκ)}k∈N is a (γ, ξ, ω) fκ-SIM+−CDP two-party computation protocol for f =

(fg, fh) in the presence of rational adversaries with (1 − ω)-deterrence if there exists

an fκ-DP mechanism f̂ such that

•	 f̂ provides (γ, ξ) additive usefulness with respect to f .

•	 The protocol ensemble {(gκ, hκ)}k∈N securely realizes f̂ as per the modified ideal/

real style definition with parameter ω

(γ, ξ, ω) fκ-SIM+−CDP is very similar to the definition of (γ, ξ) fκ-SIM+−CDP

except that protocol needs to realize f̂ with respect to the relaxed ideal/real paradigm

that guarantees correctness/usefulness of output for the honest party with probability

1 − ω.

3.4.4 Hamming Distance Protocol

In this section, we show how to build an efficient protocol for finding Hamming

distance using a (semantically secure) threshold Paillier encryption between two­

1parties with ω =
m + β, where m, β are parameters in the noise selection protocol.

The two-party computationally differentially private hamming distance protocol

(Algorithm 3) works as follows. Initially, each party Pi encrypts its input vector xi

and sends it along with its proof of knowledge of plain text (POK) to the other party

�

�

27

Algorithm 3 Secure Hamming distance protocol

Input: Two Parties holds their share sk0 and sk1 of the private key and a common
public key pk. Party i’s input vector is xi. Output: n

i x0i ⊕ x1i + r '

1: for i do
2: ∀j x̃ij = Epk(xij) and create P OK(x̃ij)
3: Send encryptions x̃ij and P OK(x̃ij) to P1−i

4: end for
5: for i do
6: ∀j check whether P OK(x̃(1−i)j) is correct, Else ABORT
7: end for
8: Run Noise Selection protocol to select r̃0, r̃1

9: for P1 do
10: ∀j calculate z̃1j = Epk(x0j ⊕ x1j) using x̃0j E x̃1j E (−2x1j x̃0j)
11: s̃ = z̃11 E z̃12 . . . z̃1n E r̃0 E r̃1 = Epk j

n(x0j ⊕ x1j + r̃0 + r̃1)
12: Send s̃, ∀j POMC(x̃0j , x̃1j , Epk(−2x0j x1j))
13: end for
14: for P0 do
15: Check ∀j if P OMC(x̃0j , x̃1j , Epk(−2x0j x1j)) is correct, Else ABORT
16: Calculate z̃11 E z̃12 . . . z̃1n E r̃0 E r̃1 and verify if it matches with s̃
17: end for
18: Jointly decrypt s̃.
19: Pi gets the f-DP hamming distance by subtracting ri from s

P1−i. Since the secret key is split between the two parties, it is not possible for P1−i

to decrypt the encrypted values. P1−i checks for consistency of x̃i using the zero

knowledge proof. Then, the parties engage in the secure noise selection protocol to

select the random noise sample r̃i from a carefully selected Laplace distribution. To

compute the Hamming distance P1 does the following. For each j, P1 computes z̃1j by

homomorphically adding the values of x̃0j , x̃1j and −2 z̃1j . P1 computes the Ham­

ming distance by homomorphically summing z̃1j . Adding the left-over sample from

noise selection protocol r̃ik to the encrypted Hamming distance gives the differentially

private value. In order to the confirm that P1 does not deviate from the protocol, it

sends s̃ and proof of multiplication by constant (POMC) for each z̃1j. P0 verifies if

the multiplications were done correctly using POMC and checks if s̃ is correct by cal­

culating the homomorphic additions of z1j and r̃ik. Finally, they jointly decrypt the

value s̃. Since each party knows exactly one random noise added, they can subtract it

28

from the decrypted value to get the final answer (still containing the unknown noise,

thus guaranteeing each party’s result independently satisfies differential privacy.)1

3.4.5 Noise Selection

In the noise selection protocol, each party Pi generates a random set of samples

m from the Laplace distribution and sends it to the other party P1−i. P1−i randomly

selects m − 1 values to be decrypted by Pi and runs a goodness-of-fit test to verify

that they come from the appropriate distribution. The leftover encrypted r̃ik is used

for perturbing the output of P1−i. If a party tries to add more noise than needed by

generating samples with more noise than would be expected of a Laplace distribution

(to ensure a noisy sample is selected as the leftover), then it is caught with high

probability.

Algorithm 4 Secure noise selection protocol

Two Parties holds their share sk0 and sk1 of the private key and a common public
key pk and know the parameters µ and λ of the Laplace distribution.

1:	 for i do
2:	 Pi selects m random samples rij from the Laplace distribution and sends r̃(i)j

and P OK(r̃ij) to P1−i.
3: P1−i verifies P OK(r̃ij). If any of them fail then ABORT.
4:	 P1−i randomly selects m − 1 samples sent by Pi to be decrypted. Let the left

out sample be r̃il.
5:	 P1−i runs Anderson-Darling goodness of fit test on the decrypted samples to

check if they are sampled from Lap(µ, λ). If the test fails then goto step 2.
6:	 end for
7:	 The left out sample r̃(1−i)l, r̃(i)l obtained will be noise added for party Pi, P1−i

respectively.

1Note that we assume the parties do not share output, which would only give 2E-differential privacy.
If the parties chose to collude, they could simply share the original data to defeat the protections of
any protocol.

29

Goodness of Fit Test

We use the Anderson-Darling test [33] to determine if the samples fit the required

Laplace distribution. The Anderson-Darling test is defined as follows

H0: The data follow a specified distribution, Ha: The data do not follow a specified

distribution , α: significance value and the test statistic

A2 = −m − S, where

0m 2i − 1
S = [ln(F (Yi)) + ln(1 − F (Ym+1−i))]

m
i=1

where F is CDF of the specified distribution.

Given a set of samples, the test statistic is calculated based on distribution as­

sumed in null hypothesis(H0). Based on the significance value, the critical value is

also found. If the test statistic value A2 is greater than the critical value then H0 is

rejected.

Each party Pi uses the goodness of fit test to determine if the set of the samples

sent by P1−i is indeed generated from a Laplace distribution. The null hypothesis

is H0 : the samples r1, r2 . . . rm come from the Laplace distribution with parameters

µ, λ. Two types of errors are associated with the above protocol. The first type of

error is that an adversary may succeed in generating consistently noisier results than

would be expected of differential privacy. This could happen if the adversary slips in

a large fixed value hoping that it will not be selected for decryption, while picking the

rest of the m − 1 samples from the correct distribution. Or, the Goodness of fit could

fail to detect that the random samples are not generated from a Laplace distribution.

1
Pr(Cheating) = Pr(Not Rejecting ri|ri � Lap(µ, λ)) +

m
1 1

= Pr(Type II) + = β +
m m

where β is related to the power of the test.

30

The second type of error is a false Negative: when a party incorrectly rejects the

samples, when in fact the samples were generated from the correct distribution (but

fail to satisfy the goodness of fit test). The probability of this occurring is:

Pr(Rejecting ri|ri ∼ Lap(0, λ)) = Pr(Type I) = α

where α is the level of significance of the test of hypothesis.

One could argue that an adversary can send a worst predetermined sample that

barely passes the goodness of fit tests during the noise selection protocol. One strat­

egy would be for an adversary to draw a sample from the correct distribution and

gradually increase the values until it fails the test. We box plotted the original sam­

ple values against the maliciously modified sample values in Figure 3.1 for different

values of significance and sample sizes. We can see that as the sample size increases

the modified sample is pretty close to the actual distribution; while such malicious

behavior is possible, it has little impact on the utility of the result.

100 200 300 500
Sample Size

−40

−30

−20

−10

0

10

20

30

40

S
a
m

p
le

 V
a
lu

e
s

100 200 300 500
Sample Size

−40

−30

−20

−10

0

10

20

30

40

S
a
m

p
le

 V
a
lu

e
s

(a) E = 0.1 (b) E = 0.3

Figure 3.1.: Honest draw (blue/left column) vs malicious draw (red/right column)

31

3.4.6 Complexity Analysis

We show the complexity of the protocol in terms of the number of modular expo­

nentiations. In steps 1-3, each party Pi creates an encryption of its input and sends

it to the other party P1−i. It also verifies a constant round zero knowledge proof

of knowledge with P1−i. Hence, the total number of exponentiation is bounded by

O(n), where n is the size of the input vector. In secure noise selection, the number

of exponentiations is bounded by O(m), where m is the number of samples selected

by each party. In steps 10-12, party P1 does n homomorphic multiplications and n

zero knowledge proof of correct multiplications with P0. Hence, the total number

of exponentiations done in the protocol is bounded by O(n + m). Calculating the

Anderson-darling test statistic requires O(m log m) steps as the samples need to be

sorted. Hence, the total running time of the protocol is O(n + m log m).

100 150 200 250 300 350 400 450 500
Sample Size

2000

3000

4000

5000

6000

7000

8000

9000

10000

R
u
n
 T

im
e
(m

s)

Figure 3.2.: Run time in ms

To estimate the practical time cost, we implemented the noise selection protocol

using the Paillier encryption scheme in Java. Figure 3.2 shows the runtime of the

protocol for various values of samples sizes (m=100 to 500). By contrast,the gar­

bled circuit(GC) implementation of the protocol in the semi-honest setting took 28

minutes to generate a pseudo-random sample using FairPlay. Adapting the garbled

32

circuit to the malicious setting will only increase the computational cost of the pro­

tocol. Hence, building a CDP protocol in the presence of rational adversaries with

small error probability is significantly faster.

3.4.7 Security

Theorem 3.4.1 Assuming that the additively homomorphic threshold encryption sch­

eme is semantically secure, and zero knowledge proofs specified are secure, protocol 5

is (γ, ξ, ω)fκ-SIM+−CDP secure in the presence of rational adversaries.

In order to show that the protocol is (γ, ξ, ω)fκ-SIM+−CDP we need to show that

security holds for both P0 and P1 (represented by the function ensembles {gκ}k∈N,

{hκ}k∈N respectively). We will consider the cases separately. We first show that the

protocol ensures fκ-SIM+−CDP for P0 (i.e., when P1 is rational). In order to prove

that we need to show that for every adversary P0
∗ (represented as a function ensemble

{h∗ }k∈N) in the real model, there exists an adversary Hκ in the ideal model such that κ

the views of Hκ(x) and h∗
κ(x) are indistinguishable. The simulator Hκ is given the

black box of h∗
κ, works as follows.

1. Simulates h∗
κ to get the encrypted input x̃1j and P OK(x̃1j) for all j. Hκ acts

as the verifier and hκ
∗ as the prover. Hκ can extract the values of x1j with

overwhelming probability.

2. Sends x1 as the input to T and obtains the result fh = n
j (x0j ⊕ x1j) + r.

'	 ' n ' 3.	 Hκ on fh comes up with x0j for j = 1 to n and r such that fh = j (x0j ⊕

x1j) + r ' .

' ' ' 4.	 ∀j Hκ encrypts x0j and sends x̃0j , P OK(x0j) to hκ
∗ .

5.	 Hκ then runs the noise selection protocol with h∗
κ to select r ' as follows.

6.	 Hκ sends m − 1 random samples from Laplace distribution and sends it along

with r ' to hκ
∗ . It then makes h∗

κ to select r ' as its random noise by rerunning

33

h∗
κ with the different random tape. The probability of h∗

κ not selecting r ' in t

iterations is (m
m
−1)t, which goes to 0 as t increases. Hence, with multiple re-runs,

the probability of picking r ' in one of the iterations will be extremely close to

1.

7.	 Hκ receives a set of Laplace samples generated by h∗
κ. It reruns hκ

∗ until it

comes up with a noise r ' that is consistent with the output it received from

T .	 Use goodness of fit test to determine if h∗
κ is trying to cheat in any of the

runs.	 If yes, then sends cheat2 to T . If T returns undetected, then Hκ sends
n(x ' ⊕ x1j) + r '' to T as the output for P1. If T returns detected, then Hκj 0j

sends corrupted2 to h∗
κ and outputs whatever h∗

κ outputs. This step is inefficient,

but an inefficient simulator is sufficient for Computational Differential Privacy.

8.	 Hκ continues to run the protocol as the honest party gκ by computing z̃1j for

all j and homomorphically summing them along with r ' to get a differentially

private hamming distance value s̃. Hκ then sends s̃ and P OMC to h∗
κ.

9.	 Hκ outputs whatever h∗
κ outputs.

Now we show that the views of Hκ and h∗
κ are indistinguishable. In steps 1-3, Hκ

behaves similar to gκ except that instead of acting as verifier, it extracts the inputs

using the knowledge extractor and hence the views of Hκ and h∗
κ are indistinguishable.

In step 4, Hκ instead of sending x̃0j for all j, it sends x̃'
0j that satisfies the constraints

mentioned. Since, the underlying encryption scheme is semantically secure, the views

are indistinguishable. In Steps 5-7, Hκ works similarly to gκ except that it sends

r ' along with m − 1 random samples along with its required zero knowledge proofs

and reruns h∗ until it generates r ' as its sample. In step 8, Hκ runs exactly like the

honest party gκ computing z̃1j , s̃ and its corresponding zero knowledge proofs and

acts as a prover to h∗
κ. In the last step, Hκ jointly decrypts s̃ and outputs whatever

h∗
κ, hence the views are identical. At each step, the views are either computationally

indistinguishable or identical.

34

We prove the usefulness property of the protocol from the output in the ideal

model. It is easy to see that the output in the ideal environment satisfies (γ, ξ)­

usefulness because the noise sample selected from Laplace distribution is generated

by T and when the malicious adversary sends ’cheat’ it is detected with 1 − ω proba­

bility. Since the simulation in the real environment is indistinguishable from the ideal

environment, the usefulness property also holds for protocol 5.

We wish to reiterate that the simulation works because we are restricting to a

differentially private function that holds even against inefficient adversaries. Similarly,

we can argue the security when P0 is rational.

3.4.8 Impact of Differential Privacy

One concern that arises with differential privacy is the usefulness of the results.

Are they too noisy for practical utility? To do this, we look at a practical use of

the protocol: document comparison using the cosine similarity metric. There are

situations where two parties might want to calculate the similarity of their documents

without revealing the input documents. Cosine similarity is a widely used metric to

measure the similarity of two documents. Cosine similarity can be viewed as the dot

product of the normalized input vectors vectors.

x0j .x1j 0
j x0j x1j ' ' = . = <x0.x1>

�x0�2�x1�2 �x0�2 �x1�2j

If we assume that every term in the document has equal weight, i.e., 1 or 0

depending upon the presence or absence of a term, then the global sensitivity of the

√1cosine similarity function is upper bounded by
nm , where n and m are the total

number of terms present in the P0 and P1 document respectively. The notion of

differential privacy allows us to assume that each party knows the size of the other

party’s document.

Similarity measures usually weight the terms in order to efficiently compute the

metric. If tf-idf weighting mechanism is used to measure the importance of words.

�
� � � � � � � �

�

� � � � � � � �

� � � �

� � � �
� � � �

� �

35

Let β be the highest weight of a term in the domain, then the global sensitivity of

squared cosine similarity for Party P0 is always ≤ ||
2
x
β

0||
2

2 , where ||x0||2 is the norm of
2

the party P0 input vector. Let x1
' contain one term less than x1, the sensitivity is

given as
<x0.x1>

2 <x0.x1
' >2

Δs = max −
� 2 2 2 ' 2x1 xx1,x1 x0 2 2 x0 2 1 2

<x0.x1>
2 <x0.x ' 1>

2 (j x0j .x1j)
2 − (j x0j .x ' 1j)

2

≤ − =
2 2 2 2 2 2x0 x1 x0 x1 x0 x12 2 2 2 2 2

(x0j .x1j − x0j .x ')(x0j .x1j + x0j .x ')j j 1j j j 1j
=

2 2x0 x12 2

(x0s.x1s)(2 j x0j .x1j) 2β2

≤ ≤
x0

2 x1
2 ||x0||2

2 2 2

In step 2 and 5, we are using the fact that |x1| > |x ' |. Since, x0s.x1s ≤ β2 and1

x0j .x1j ≤ x1
2, we can upper bound Δs ≤ 2β2/||x0||22. Similarly, we can estimate j 2

the global sensitivity for party P1 as 2β2/||x1||22. Note that the noise distribution of

Pi only depends on his input vector xi and β (the highest term weight in the domain).

We now evaluate the utility of the protocol by computing differentially private

values for different levels of security. An f value of 0 in differential privacy denotes

perfect privacy as the probability of seeing the output in D and D ' are equal but

on the downside the utility will be low. In our experiments (Figure 3.3) we have

used f values of 0.1 and 0.3. We implemented the two-party secure differentially

private cosine similarity measure without term weighting using the secure dot product

protocol and ran the tests for different values of f. The global sensitivity of cosine

√1 ' similarity is
nm , so the random noise r is generated from Laplace distribution with

mean 0 and scale
E
√1
nm , where n, m are the number of terms in P0 and P1 respectively.

In order to show the deviation of the differentially private similarity score from

the true score (cosine similarity without privacy), we plotted the scores of each party

obtained on running the protocol along with the true scores. For each f value, we fixed

the input (i.e., document) of one party and varied the size of the document of other

party. We can see that if the document sizes are small, then the differentially private

36

0 20 40 60 80 100
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Document Size

C
o
s
in

e
 S

im
ila

ri
ty

True Answer

Party 1

Party 2

0 20 40 60 80 100
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Document Size

C
o
s
in

e
 S

im
ila

ri
ty

True Answer

Party 1

Party 2

(a) E = 0.1 (b) E = 0.3

Figure 3.3.: True output vs differentially private output

similarity scores are far away from the true but as the size increases, the differentially

private similarity score are better approximations of the true score. Hence a party

without malicious intent on running the protocol will be able to obtain similarity

score closer to the true value.

37

4 PRIVACY-PRESERVING DATA-OBLIVIOUS ALGORITHMS

Secure multi-party computation (MPC) enables multiple parties with private inputs

to jointly engage in a protocol to securely compute a function of their private data. It

guarantees different properties of security (i.e., privacy of inputs, correctness, fairness,

etc.) depending upon the model. At the end of the protocol, each party gets an output

and MPC guarantees that any information that can be learned from the protocol

execution can also be inferred from the output and one’s own input. There exists

various cryptographic primitives [9, 12,14] that have been used for developing secure

protocols.

One limitation of this model is that to really achieve this goal, the protocol must

be data-oblivious : the visible execution path (time, memory accessed, etc.) must be

independent of the other party’s data. More precisely, the distribution of executions

over a given input must be indistinguishable from the distribution of executions over

other inputs of the same size.

This problem is particularly apparent in graph algorithms - where presence or

absence of an edge may be significant from a privacy perspective. A näıve method to

satisfy data-obliviousness is to represent the data as an (encrypted) adjacency matrix,

and access every element when any one is accessed. To avoid this huge inefficiency, [34]

proposed to obliviously permute the matrix before accessing an element such that

the accesses look uniformly random. For example, let us assume we are running

an algorithm (say shortest path) on Figure 4.1a and we want to explore the edges of

Node 2. Instead of accessing the entire matrix (4.1b), the nodes are permuted (Figure

4.1c), and only row 1 is accessed. Since the permutation hides that row 1 corresponds

to node 2 (we assume the labels are encrypted), this reveals no information. Care

must be taken to avoid accessing the same row again, as such frequency of access does

reveal information.

38

1

2

3

4

5

6

2

5

5

4

7

8

5

6

8

(a) Bipartite graph

1 2 3 4 5 6
1 0 0 0 2 4 5
2 0 0 0 5 7 6
3 0 0 0 5 8 8
4 4 5 5 0 0 0
5 2 7 8 0 0 0
6 5 6 8 0 0 0

2 4 1 6 3 5
2 0 5 0 6 0 7
4 5 0 2 0 5 0
1 0 2 0 5 0 4
6 6 0 5 0 8 0
3 0 5 0 8 0 8
5 7 0 4 0 8 0

(b) Adjacency matrix (c) Permuted adjacency matrix

Figure 4.1.: An example bipartite graph and its adjacency matrices

There is a second problem that is not directly addressed by MPC: inference from

the output. While clever techniques such as the above can get us to the point where

we learn nothing that we cannot infer from our own input and the output, it is possible

that the output discloses sensitive information. Differential Privacy [35] deals with

what functions can be safely computed. It protects the privacy of individuals by

adding noise with magnitude proportional to the sensitivity of the queries posed to the

database: How much one individual can potentially impact the result of the function.

A relaxed definition of computation differential privacy was proposed in [19] that

holds against computationally bounded adversaries. Several works have dealt with

distributed computationally differentially private protocols [22–24]. A key component

of developing differentially private secure protocols is distributed noise generation, this

has been addressed for both two-party [36] and three or more party [21] protocols.

Combining MPC with differential privacy on the output gives a differentially private

39

secure multi-party computation, addressing the potential privacy risk inherent in the

output of the computation.

Achieving data-obliviousness and differential privacy can be difficult - graphs exist

that cause high execution times or require significant noise to be added. However, if

our problem allows us to restrict the space of graphs, these problems can be overcome.

We demonstrate this idea on bipartite graphs (Figure 4.1); specifically with weighted

matching and minimum vertex cover. The idea is that each party holds one “side” of

the bipartite graph, and the information on edge weights is split between the parties.

A simple example would be in computing the semantic similarity/distance be­

tween two documents (held by two parties). Each party has a sensitive document

(represented by a set of nodes/features), which they don’t want to reveal to the

other party. The edge weights represent the semantic similarity/distance between

the two nodes/features. One way to capture the semantic distance between two fea­

tures/words is shown in [37]. Then, computing the semantic distance between the two

documents can be formulated as a minimum weighted bipartite matching problem.

We now introduce relevant definitions from data-obliviousness and differential

privacy, introducing notation along the way. We will also discuss related work as we

go through this background material. Sections 4.2 and 4.3 give algorithms for data

oblivious weighted bipartite matching and minimum vertex cover, respectively. For

each, we give a secure multi-party computation to solve the problem, then show how

to incorporate differential privacy.

We use square brackets around a variable (e.g., [x]) to say that the value of x

is encrypted and it is not known to any of the parties involved in the protocol.

Since techniques such as linear secret sharing, threshold homomorphic encryption, or

Boolean garbled circuits can be used for realizing this, we use these terms interchange­

ably. For example, a linear secret sharing scheme (like [14]) can be used to securely

implement basic operations like addition and multiplication. Efficient techniques for

secure equality testing([x] =
?
[y]) and less than ([x] <

?
[y]) are given in [38]. We use

40

the notations ⊕, 8, ⊗ and ∨ to denote secure addition, subtraction, multiplication

and inclusive-or operations respectively.

4.1 Related Work

4.1.1 Data-Obliviousness

This work is based on the key idea introduced in [34], which presents nearly op­

timal secure graph algorithms for breadth-first search (BFS) and single-source single

destination (SSSD) shortest path.

Definition 4.1.1 (Data-Obliviousness [34]) Let d denote the input to the graph

algorithm. Also, let A(d) denote the sequence of memory access that the algorithm

makes. The algorithm is considered data-oblivious if for two inputs d and d ' of equal

length, the algorithm executes the same sequence of instructions and access patters

A(d) and A(d ') are indistinguishable to each party carrying out the computation.

An if/else condition (IFC) can be obliviously evaluated by executing both the if

and else blocks and updating the values depending upon the value of the condition.

For example,

if([cond]) return [value1]; else return [value2];

can be obliviously evaluated as

return ([cond] ⊗ [value1]) ⊕ ((1 8 [cond]) ⊗ [value2])

The above code snippet is used in the rest of the chapter by calling

Ifc([cond], [value1], [value2]).

Oblivious Vector Permutation: One of the basic building blocks used in this

chapter is random permutation of a vector V . This can be accomplished by generating

a random number for each element of the vector and then obliviously sorting the

vector V according to the random values assigned. [39, 40] proposes an O(n log n)

data-oblivious algorithm for sorting a vector of size n. We use this algorithm to

obliviously permute the rows and columns of a matrix n × n matrix [M] consistently

41

in O(n2 log n). Figure 4.1 shows a bipartite graph and its corresponding permuted

matrix. Note that the values are re-encrypted as part of the permutation, so that it

is not possible to link old/new entries to determine the permutation.

Single Source Single Destination (SSSD) Algorithm: Given a secret shared

weighted matrix [W] of a graph G = (V, E), a source [s] and destination [t], [34]

presents a secure data-oblivious SSSD path algorithm to get a shortest path [PT]

from the source [s] to a given destination [t] in O(|V |2) time. [PT] is a set of tuples

of the form ([v1], [v2], [c]), where [v1], [v2] and [c] correspond to the head, tail and

capacity of an edge in the path and it always returns a path of length |V | − 1 to

conceal the distance between [s] and [t].

[41,42] have proposed data-oblivious algorithms for maximum matching in bipar­

tite graphs. [41] proposes to securely solve fingerprint identification matching using

a data-oblivious maximum bipartite matching algorithm. Maximum flow algorithms

can also be used for solving maximum matching in bipartite graphs. [42] proposes

data-oblivious algorithms for maximum flow based on Edmonds-Karp algorithm and

Push-Relabel algorithm, with a runtime complexity of O(|V |5) and O(|V |4) respec­

tively. In this section, we propose data-oblivious protocols for weighted bipartite

matching as the above protocols are not suitable for our task. [43] proposes an algo­

rithm to privately release the maximum weighted matching in a bipartite graph under

a relaxed notion of differential privacy. However, when we extend this to a distributed

setting we must take into account that the access patterns can reveal information;

the setting in [43] does not face this issue.

Another technique that can be used to develop data-oblivious protocols is by

oblivious RAM (ORAM) [44, 45]. It was originally developed for the client-server

setting in which client stores its sensitive data in the server. ORAM enables the client

with a small trusted memory to access the data without revealing its access patterns to

the server. Each memory access has a polylogarithmic overhead O((log n)2), where n

is the size of the memory. There are ORAM extensions to the multi-party setting [46,

47] which has an overhead of O((log n)3) for hiding access patterns. Similar to other

�

42

techniques, additional overhead may have to be introduced to prevent information

leaks due to sequence and total number of memory access, when using ORAM to

develop data-oblivious algorithms.

Distributed Computational Differential Privacy

One challenge in generating a differentially private output in a multi-party setting

is the generation of random noise from a specific distribution. Chapter 3 proposed

a two-party protocol for generating a random sample from a Laplace distribution

with a specific scale parameter in the presence of malicious adversaries. [21] presents

protocols for generating random variates with more than two parties. We use these

protocols for generating a random sample from Laplace distribution.

4.2 Privacy-Preserving Weighted Bipartite Matching

Given a bipartite graph G = (V, E) where Q ∪ R = V and Q ∩ R = ϕ; and W ,

a cost matrix that assigns integer edge weights to e ∈ E; the assignment problem is

to find a perfect matching (E ' ⊆ E) in G such that the total cost of the matching is

minimized. In a perfect matching, each node in Q is connected to a node in R and

vice-versa. A solution to this problem is the Hungarian algorithm [48], which finds

the minimum weighted bipartite matching by the following algorithm. Let C be a

temporary matrix initialized to W .

1. Construct G ' , a subgraph of G with only the 0-weight edges (i.e., there is an

edge (i, j) in G ' iff Ci,j = 0).

2. Find the maximum matching E ' in G ' .

3. If there is a perfect matching in G ' , then Wi,j is the minimum weighted (i,j)∈E

matching solution, where (i, j) is an edge in E ' .

43

4. Otherwise, the algorithm finds the vertex cover of G ' . Let X ⊆ Q and Y ⊆ R

be the vertex cover, then the weight matrix C is updated by equation 1, with

Δ set such that at least one new 0-weight edge is introduced in G ' (i.e., one of

the non-zero edge weight in C has become zero.) ⎧

Ci,j − Δ if i /∈ X, j /∈ Y
⎪⎪⎪⎪⎪⎨

Ci,j = Ci,j if i ∈ X, j /∈ Y (4.1)⎪⎪⎪⎪⎪⎩Ci,j +Δ if i ∈ X, j ∈ Y

where Δ = min (Ci,j). Δ is minimum weight of the uncovered edges (i, j),
i/∈X,j /∈Y

where i ∈ QnX and j ∈ RnY .

5. Goto step 2.

Given n = |G| (i.e., |Q| = |R| = n), the algorithm requires a maximum of
2

n
4

2
iterations. Each iteration requires a maximum of O(n2). Hence, the algorithm

finishes in O(n4).

In a two-party scenario, let Q and R belong to two different parties P0 and P1.

There exist situations where W may be private and not known to both the parties,

but they still want to find the minimum weighted bipartite matching. For example,

P0 may have several customizable production plants; P1 has several components it

needs. The weights from P0 are the cost to produce each component on each line

(e.g., in Figure 4.2, P0 can produce component 4 with cost 1, component 5 with cost

3, and component 6 with cost 4.) P1 has costs to move components from P0’s plants

to where the component is needed (e.g., 1, 2, and 4 for component 4). The sum of

these weights is the total cost (Figure 4.1a). While both parties want to achieve the

minimum cost, they do not want to reveal their costs and thus compromise pricing

negotiations. Instead, [W] (the encrypted weight matrix) is constructed to sum these

without revealing weights to either party.

44

1

2

3

4

5

6

11
2

3
4

1

1

3

25
4

4 1

4

5

1

26

Figure 4.2.: Bipartite graph with shared edge weights

4.2.1 Secure Two-Party Matching Algorithm

In the secure version, the two parties P0, P1 hold Q, R respectively. They want to

compute the minimum weighted bipartite matching without revealing any information

about their individual edge weights. If a linear secret sharing scheme like [14] is used,

then the encrypted weight matrix [W] (for the above example) is constructed by each

party secret sharing its input weight with the other party and locally summing their

shares to obtain [W]. If [14] is used, then we assume that there exists a third party to

aid in secure multiplication. A third party may not be needed if other techniques such

as Boolean circuits or homomorphic encryption is used. We present a data-oblivious

algorithm for minimum weighted bipartite matching. In Section 4.2.4 we show how

to extend this algorithm to provide differential privacy in the output.

1. Without loss of generality, let the input nodes (Q and R) of the parties P0 and

P1 be of size n
2 . Let [M] be the residual graph represented by an adjacency

matrix of 2n + 3 × 2n + 3 nodes. The edge weights in [M] are either 0 or 1,

capturing the presence or absence of an edge. An edge (i, j), where i ∈ Q and

j ∈ R exists in [M], if and only if [Ci,j] = 0 ([C] is a copy of [W]). Note that

[Mi,j] is always 0 if i, j ∈ R or i, j ∈ Q. We need a copy of [W], so that the edge

weights can be modified in [C] without destroying the original weight matrix.

The locations from 1 to n
2 and n

2 + 1 to n correspond to the nodes in Q and

R, n + 1 and n + 2 are a source(s) and sink(t) node and n + 3 to 2n + 3 are

45

s

1

2

3

t

4

5

6

f0 f1 f2 f6. . .

(a) Initial residual graph, an edge (1,4) is added in iteration 1

s

1

2

3

t

4

5

6

f0 f1 f2 f6. . .

(b) Residual graph if two more 0 edges are added: (2,4) and
(1,5)

Figure 4.3.: Snapshot of residual graph

fake vertices included to prevent information leakage. For example, a list of

fake vertices will be returned by the SSSD algorithm if there is no path between

the [s] and [t]. The source node n + 1 is connected to all the nodes of Q (i.e.,

nodes 1 to n/2) and all the nodes in R (i.e., nodes numbered n/2 + 1 to n) are

connected to sink node n + 2. The fake nodes form a simple cycle and are not

connected to the original nodes or source/sink nodes.

We also define an indicator vector [A] of size 2n + 3 to denote nodes in Q. I.e.,

the elements of A from 1 to n/2 will be 1 and others will be set to 0. Similarly,

we create indicator vectors for [B] to represent the nodes in R and [S], [T], [F]

46

to represent the source, sink and fake nodes respectively. The solid lines in

Figure 4.3a shows the initial state of the residual graph [M]. These indicator

vectors will be consistently permuted with the matrices [C], [W], [M] such that

no party can identify the location of their input nodes, but can still perform
?

secure node testing like [cond] = ([Av] = 1). [cond] will be set to an encryption

of 1 if v belongs to Q and an encryption of 0 otherwise.

1: [C] = [W]

2: [M] = [0]{2n+3×2n+3}

3: [A] = [1]n/2[0](3n+6)/2

4: [B] = [0]n/2[1]n/2[0]n+3

5: [S] = [0]n[1][0]n+2

6: [T] = [0]n+1[1][0]n+1

7: [F] = [0]n+2[1]n+1

8: for i = 1 to n/2 do

9: [Mn+1,i] = [1]

10: end for

11: for i = n/2 + 1 to n do

12: [Mi,n+2] = [1]

13: end for

14: for i = n + 3 to 2n + 2 do

15: [Mi,i+1] = [1]

16: end for

17: [M2n+3,n+3] = [1]

The values in the residual graph matrix [M] and auxiliary indicator vectors

[A], [B], [S], [T] and [F] are encrypted using a non-deterministic scheme. I.e,

two encryptions of 1 or 0 produce different cipher texts. Since the initialization

step is fixed, both parties know the indices of the nodes in the vector/matrix

and the values present in the residual matrix and auxiliary indicator vectors.

A permutation/re-encryption at the beginning of step 2 hides this. The plain

47

Table 4.1.: Plain-text view of the initial state of [M]. Actual values are non-
deterministically encrypted, e.g., (1,1)=E(0)=439, (4,4)=E(0)=227.

1 2 3 4 5 6 s t f0 f1 . . . f6

1 0 0 0 0 0 0 0 0 0 0 . . . 0
2 0 0 0 0 0 0 0 0 0 0 . . . 0
3 0 0 0 0 0 0 0 0 0 0 . . . 0
4 0 0 0 0 0 0 0 1 0 0 . . . 0
5 0 0 0 0 0 0 0 1 0 0 . . . 0
6 0 0 0 0 0 0 0 1 0 0 . . . 0
s 1 1 1 0 0 0 0 0 0 0 . . . 0
t 0 0 0 0 0 0 0 0 0 0 . . . 0
f0 0 0 0 0 0 0 0 0 0 1 . . . 0
f1 0 0 0 0 0 0 0 0 0 0 . . . 0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

f6 0 0 0 0 0 0 0 0 1 0 . . . 0

Table 4.2.: Plain-text view of the initial state of [A]

1 2 3 4 5 6 s t f0 f1 . . . f6

A 1 1 1 0 0 0 0 0 0 0 . . . 0

text views of the adjacency matrix [M] and indicator vector [A] are shown in

Tables 4.1 and 4.2 for the graph in Figure 4.1a.

2. The main outline of the secure weighted bipartite matching is given as follows.

The first step is to find an augmentative path from the source [s] to sink [t] in the

residual graph [M] using the SSSD path algorithm given in [34]. If there exists a

valid path, then the residual flow is updated in [M]. An existence of a valid path

means that we can increase the maximum matching. Otherwise, the minimal

vertex cover is found and the weights in the cost matrix [C] are updated to

introduce new zero edges in [M]. An execution of SSSD, UpdateResidualGraph

and MinVertexCover reveals the location of some of the nodes, so the nodes are

permuted after every call so that the access to particular rows of [C] or [M] look

48

random. During secure permutation, apart from permuting the indices of the

nodes, it also re-encrypts the values. Therefore, the parties do know the indices

of any nodes and any access to particular row of the matrix or a particular

element in a vector will look like random access to all the parties. Following

the example, after permutation the matrix [M] and vector [A] could look like

Table 4.3 and 4.4. The algorithm for an oblivious execution is as follows.

n2+2n1: for i = 1 to do
4

2: P ermute [W], [C], [M], [A], [B], [S], [T], [F].

3: [PT] = SSSD([M], s, [t])

4: [valid path] = IfV alidPath([PT])

5: P ermute [W], [C], [M], [A], [B], [S], [T], [F], [PT].

6: [M] = UpdateResidualGraph(G, [valid path], [PT])

7: P ermute [W], [C], [M], [A], [B], [S], [T], [F].

8: ([X '] , [Y ']) = MinV ertexCover([M], [A], [B])

9: ([X] , [Y]) = IFC([valid path], ([X], [Y]), ([X '], [Y ']))

10: [min '] = findmin([X], [Y])

11: [min] = IFC([valid path], [0], [min '])

12: [C] = UpdateW eights([C], [X], [Y], [min])

13: [M] = UpdateZeroEdges([C])

14: end for

15: [MM] = maximumMatching([W], [M], [A], [B])

Table 4.3.: Plain-text view of [M] after permutation. Note that row and column ID’s
are not actually visible, and actual values re-encrypted, e.g., the upper left corner
(4,4) = E(0) = 186.

4 f1 s 1 5 f0 f2 3 t 2 . . .
4 0 0 0 0 0 0 0 0 1 0 . . .
f1 0 0 0 0 0 0 1 0 0 0 . . .
s 0 0 0 1 0 0 0 1 0 1 . . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

49

Table 4.4.: Plain-text view of [A] after permutation

4 f1 s 1 5 f0 f2 3 t 2 . . .
A 0 0 0 1 0 0 0 1 0 1 . . .

3.	 IfValidPath: SSSD always returns a path [PT] containing n + 1 tuples/edges

to conceal the true length of the path. This is because the maximum length of a

valid path in [M] can have at-most n + 1 edges (there are n+2 nodes excluding

the fake nodes). The capacity of the true and fake tuples/edges are [1] and [0]

respectively. If there exists a path of length l, then the first l tuples contain the

true edges of the path with capacity [1], followed by n − l + 1 fake tuples with

capacity [0]. The rest of the fake path could be PTl = ([t], [f3], [0]), PTl+1 =

([f3], [f4], [0]) and so on. If there exists no path, SSSD returns a list of fake

tuples PT0 to PTn with capacity [0]. The first tuple will be PT0 = ([s], [fr], [0]),

followed by the fake tuples PT1 = ([fr], [fr+1], [0]), P2 = ([fr+1], [fr+2], [0]) and

so on. Therefore, we need to validate the augmentation path P returned by

SSSD by checking if the first tuple’s capacity is [0]. The secret shared variable

[valid path] has value [1] if there exists a valid path from [s] to [t] and [0]

otherwise. In the first iteration, there are no augmentation paths from [s] to

[t]. Hence, [valid path] will be set to [0].

?
1:	 [valid path] = [PT0.c] = [0]

4.	 UpdateResidualGraph: Given a path [PT] and its validity [valid path], the

flow of the residual graph [M] is updated. For each edge (v1, v2) in the path,

we open its locations in the adjacency matrix [M] and subtract the capacity

from the flow. If the weight/flow of an edge (v1, v2) is updated from [1] to [0],

we also add the flow to the back-edge (v2, v1) to allow another augmenting path

in future iterations to undo some of the flow used by the current augmenting

path. For example, SSSD returns a valid path from [s] to [t], if run on residual

50

graph shown in Figure 4.3a. The updated residual graph is shown by the solid

lines in Figure 4.3b.

Care must be taken to avoid updating the flow on the edges between fake nodes

as this can destroy the structure of fake nodes. This can be achieved by setting

the [capacity] to [0], when [t] is reached. Revealing the locations of the edges in

residual graph [M] does not leak information because the rows and columns of

[M] are permuted/re-encrypted; it is not possible to distinguish between a true

node and a fake node, and the access to rows of [M] appears random.

1:	 [capacity] = [valid path]

2:	 for i = 0 to n do

3: Open v1 and v2 in PTi

4: [Mv1,v2] = [Mv1,v2] 8 [capacity]

5: [Mv2,v1] = [Mv2,v1] ⊕ [capacity]
?

6: [cond] = v2 = [t]

7: [capacity] = Ifc([cond], [0], [capacity])

8:	 end for

5.	 FindMin and UpdateWeights: If a perfect matching has not been found yet,

then we need to introduce new zero weight edges in the residual graph to increase

the maximum matching. This is done by first finding the minimum vertex cover

of [M], which returns the indicator vectors [X] and [Y] that represent vertex

cover in Q and R. The algorithm for MinVertexCover is given in Section 4.3.

Since, we try to find the minimum weighted matching, the minimum (Δ) weight

of the uncovered edges (head and tail are not in the vertex cover) is found and

the weight of the edges [C] are updated according to equation 1. If the perfect

matching has already been found, then [X] will be equal to [A] and [Y] is set to

all [0]’s. Steps 10-15 check if all the elements in [Y] are set to [0], if so then [min]

is set to [0]. Hence, none of the entries will be updated if a perfect matching

is already found. The first for loop computes the minimum of the uncovered

51

nodes and second loop is used for updating the cost of the edges. Let Λ be the

maximum possible edge weight.

1: [min] = [Λ]

2:

3:

for i, j = 1 to 2|V | + 3 do

[cond1] = ([Ai]
?
= [1]) ⊗ ([Bj]

?
= [1])

4: [cond2] = ([Xi]
?
= [0]) ⊗ ([Yj]

?
= [0])

5: [flag] = [cond1] ⊗ [cond2]

6: [cost] = Ifc([flag], [Ci,j], [Λ])
?

7: [cond] = [cost] < [min]

8: [min] = Ifc([cond], [cost], [min])

9: end for

10: [sum] = [0]

11: for i = 1 to 2|V | + 3 do

12: [sum] = [sum] ⊕ [Yi]

13: end for
?

14: [cond] = [sum] = [0]

15: [min] = Ifc([cond], [0], [min])

16: for i, j = 1 to 2|V | + 3 do
?

17: [cond1] = ([Ai] = [1]) ⊗ ([Bj]
?

18: [cond2] = ([Xi] = [1]) ⊗ ([Yj]
?

19: [cond3] = ([Xi] = [0]) ⊗ ([Yj]

20: [Δ] = [cond1] ⊗ [min]

?
= [1])
?
= [1])
?
= [0])

21: [Ci,j] = Ifc([cond2], [Ci,j] ⊕ [Δ], [Ci,j])

22: [Ci,j] = Ifc([cond3], [Ci,j] 8 [Δ], [Ci,j])

23: end for

For example, if the input to the MinVertexCover is the residual graph shown

by only the solid lines in Figure 4.3a, it returns [X] and [Y] with all [0] ' s. This

is because there are no edges between the set R and Q; the minimum vertex

cover set is null. The uncovered nodes are the set R ∪ Q. We can see that

52

Table 4.5.: Updated cost matrix [C]

2 4 1 6 3 5
2 0 3 0 4 0 5
4 3 0 0 0 3 0
1 0 0 0 3 0 2
6 4 0 3 0 6 0
3 0 3 0 6 0 6
5 5 0 2 0 6 0

the minimum edge weight between the uncovered edges is 2 (edge (1,4)). The

values in [C] will look like Table 4.5. To show the full matrix we have included

only nodes from Q and R. In reality, [C] will also have fake nodes with zero

weights. This update replaces one of the non-zero edge weights (namely, (1, 4))

with [0].

6.	 UpdateZeroEdges: If the weights are updated in the previous step, then at

least one of the non-zero weights in [C] has become [0], which in turn introduces

a new edge in the residual graph [M]. It is also possible that a zero weighted

unmatched edge in [C] could become non-zero. Therefore, for each edge (i, j),

we add it to the residual graph [M] if and only if the cost of the edge (i, j) is zero

and it has not already been matched. Only unmatched zero weights are added

to the residual graph because if an edge is already matched, then [Mi,j] = 0 and

[Mj,i] = 1. In the first iteration, [C1,4] becomes [0], therefore a new zero edge

would be introduced in the residual graph(refer Figure 4.3a).

1:	 for i, j = 1 to 2|V | + 3 do
? ?

2: [cond 1] = ([Ai] = [1]) ⊗ ([Bj = [1])
?

3: [cond 2] = [Ci,j] = [0]

4: [Mi,j] = Ifc([cond 1], [cond 2] 8 [Mj,i], [Mi,j])

5:	 end for

7.	 MaximumMatching: At the end, we have found a minimum weighted perfect

matching of the weighted bipartite graph. In order to compute the minimum

53

sum, we iterate over the edges of residual graph to check if an edge(i, j) is

matched (i.e., [Mj,i] is [1]) and the cost of the corresponding matched edge [Wi,j]

is added to minimum sum. At the end of the instruction 7, [sum] contains the

true output to the minimum weighted bipartite matching problem but it is still

not available to the parties in plain text. In Section 4.2.4, we will describe how

much noise needs to be added to this so that the final output is differentially

private.

1: [sum] = [0]

2: for i, j = 1 to 2|V | + 3 do
? ?

3: [cond1] = ([Ai] = [1]) ⊗ ([Bj] = [1])
?

4: [cond2] = ([Mj,i] = [1])

5: [flag] = [cond1] ⊗ [cond2]

6: [sum] = [sum] + Ifc([flag], [Wi,j], [0])

7: end for

8: return [sum]

At each iteration, the algorithm tries to increase the number of maximum

matches by checking if there exists a path between [s] and [t] in the residual

graph. If there is a path, then the maximum matching is increased. Otherwise,

a new zero edge is introduced in the residual graph by finding a minimum of

the uncovered edges and updating the weights in the cost matrix [C]. Finding

the minimum weighted matching in the insecure version requires a maximum

of n
4

2
iterations. The data-oblivious algorithm is similar to that of the insecure

version except that increasing the maximum matching and updating weights to

introduce zero edges are mutually exclusive steps. Therefore, the algorithms

requires a maximum of n
4

2
+ n

2 iterations of find minimum weighted perfect

matching.

54

4.2.2 Complexity Analysis

The SSSD algorithm for finding an augmentative path takes at most O(|V |2).

Step 3 takes a constant amount of time as it invokes constant number of secure

equality operations. Step 4 takes a linear amount of time to update the residual

graph because the length of the path is |V |. Steps 5-7 run in O(|V |2) time as it

visits each element of the matrix. The costliest step is the data-oblivious matrix

permutation which takes O(|V |2 log |V |). Therefore each iteration of the algorithm is

bounded by O(|V |2 log |V |). Since the number of iterations needed to find a perfect

matching is O(|V |2), the overall complexity of the algorithm is O(|V |4 log |V |).

To determine the practicality of the algorithm, we give a rough estimate of the

run time of the algorithm in terms of number of secure operations (multiplication

plus comparison operations). In a linear secret sharing scheme, multiplication and

comparison dominate the run time as additions and subtractions can be done locally.

We estimate clock time based on [49], which showed that a secure scalar product of

100K length vector can be done in 550ms. Hence, on average a single multiplication

takes 5.5µs. The total run time of the algorithm (steps 1 to 15) would be approxi­
|V |2+2|V |mately (5.5 × C ×

4) µs, where C is the total number of secure operations done

in steps 2-13 of the algorithm. Step 4 (IfValidPath) does a single secure operation.

Step 13 (UpdateZero edges) takes (2|V | + 3)2 iterations and performs 6 operations

in each iteration (3 comparisons and 3 multiplications). So, in total Step 13 has

6(2|V | + 3)2 operations. Similarly, we can compute for Steps 4, 6, 8-15, which can be

upper bounded by 77(2|V | + 3)2 secure operations. Step 2 (SSSD) takes (2|V | + 3)2

iterations and needs 35 secure operations in each iteration. So, the total number of op­

erations are 35(2|V |+3)2 . Step 2, 5 and 7 (oblivious permutation) can be implemented

by oblivious sorting, which roughly does (2|V | + 3)2 log(2|V | + 3) iterations and has

17 operations in each iterations (1 secure comparison and 16 multiplications). So the

total number of secure operations of steps 2, 5 and 7 are 51×(2|V |+3)2 log(2|V |+3).

So, C can be upper bounded by 163 × (2|V | + 3)2 log(2|V | + 3). For |V | = 10, the

55

algorithm should take around 20 seconds. For |V | = 50, the algorithm should take

around 200 minutes.

4.2.3 Security

Theorem 4.2.1 The minimum weighted bipartite matching algorithm is secure with

respect to Definition 4.1.1.

To prove that the algorithm (call A) given in Section 4.2 is secure, we need to

show for any input bipartite graph G = (V, E) with n nodes (1) the sequence of

execution is the same as any bipartite graph G ' = (V ' , E ') with n nodes and (2) the

distribution of memory accesses of A in G is indistinguishable with the distribution

of memory accesses of A in a random bipartite graph G ' with n nodes. All the

steps in the algorithm executes the same set of instructions for any bipartite graph

with n vertices because all conditional statement has been serialized and all control

loops are conditioned on the number of vertices. To prove the memory accesses are

indistinguishable we analyze each step. The initialization is a standard step and

accesses the same memory locations for any bipartite graph of size n. The main

n2+2n nfor loop executes for
4 times as it is a complete bipartite graph with

2 nodes

in each set. Step 1 (permutation) and 2 (SSSD) are data-oblivious and the proofs

for them are given in [34, 40]. Step 3 is data-oblivious because it always executes

one instruction and checks the capacity of the first tuple in the path P . In step 4,

the number of memory access is the same as the path P is always of length n but

the memory accesses are different. Data-obliviousness is achieved by means of the

crucial permutation step done before opening the vertices in path P . Hence the data

accesses appear random. Data-obliviousness for finding the minimum vertex cover

is shown in Section 4.3. Steps 5, 6 and 7 all access the same memory locations for

any graph of the same size. Therefore, all the steps in the algorithm either access

the same memory location or the distribution of the location of memory access are

indistinguishable. Hence the algorithm is secure with respect to Definition 4.1.1.

�

56

4.2.4 Differentially Private Weighted Bipartite Matching

The global sensitivity of the Weighted bipartite matching under edge privacy

(neighboring graphs differ by a single edge weight) is Λ, where Λ is the maximum

possible value that an edge weight can take. To avoid adding large noise, we can

instead compute smooth sensitivity of minimum weighted bipartite matching that

satisfies (f, δ) differential privacy. The maximum local sensitivity of a weighted bi­

partite graph G with n nodes at distance k for any k ≥ n
2 − 1 is Λ. Therefore the

smooth sensitivity is equal to ⎧ ⎪⎪⎨ ⎪⎪⎩

e−βk max LS(G ') if k ≤ n
2 − 2

d(G,G)=kS ∗ (G) = max

e
−β(n
2 −1)Λ if k ≥ n − 1

2

Computing the max local sensitivity at distance k for k ≤ n
2 − 2 could take expo­

nential time. Therefore, we upper bound the maximum change in minimum weighted

bipartite matching by min(XWM(G) − NWM(G), Λ), where XW M/NW M is the

maximum/minimum weighted bipartite matching of G respectively. Given a secure

data-oblivious algorithm A for computing NWM from weighted bipartite graph G,

it is possible to compute XWM from G using A. This is done constructing another

graph G ' where the number of nodes is the same as G and replacing w(e) in G with

w ' (e) − w(e) in G ' , where w ' (e) is the maximum weight of an edge in [W]. The edges

of NWM in G ' are the same as the edges of XWM in G. Therefore, we can com­

pute the upper bound of smoothed local sensitivity of minimum weighted bipartite

matching in polynomial time. For weighted bipartite graphs for which difference be­

tween XWM and NWM is smaller than Λ, we can achieve better utility by adding

noise magnitude proportional to the smooth sensitivity and achieve (f, δ) differential

privacy. The upper bounded smooth sensitivity is as follows

S ∗ (G) = max(min(XWM(G) - NWM(G), Λ), e −β(n
2 −1)Λ)

57

Since the values of n, Λ, β are known, we can securely compute the smooth sen­

sitivity (i.e., [S∗(G)]). We can use the protocols specified in [21, 36] to generate a

uniformly random noise from Laplace distribution with smooth sensitivity. The se­

curely generated random noise can then be added to the true output [MM] to obtain

a differentially private minimum weighted bipartite matching [MM], which can then

be opened by the parties.

The utility of the minimum weighted matching sum [MM] depends upon the

amount of noise introduced. If GS is used, then the error/variance of the result is

2Λ2

E2 , which can be quite large if Λ is large. In case of LS, the error is dependent upon
S∗(G)

2
the input graph 2

E . In the worst case, S∗(G) is equal to Λ.

4.3 Minimum Vertex Cover for Bipartite Graph

A vertex cover of a graph G = (V, E) is the set of vertices such that each edge

e ∈ E on the graph is incident to at least one vertex of the set. A vertex cover is

minimum if there are no other vertex covers that have fewer vertices. The problem of

finding a minimum vertex cover for a graph is NP-hard. But, a polynomial algorithm

exists for finding a min vertex cover in a bipartite graph due to the equivalence

between vertex cover and maximum matching. Given a bipartite graph G, maximum

matching M and two partitions A and B, the minimum vertex cover is found as

follows (1) find all the vertices that are reachable from any of the unmatched vertices

of A. (2) Let A ' ⊆ A and B ' ⊆ B are the reachable vertices. Then, (A \A ') ∪ B ' is

the minimum vertex cover.

The algorithm below shows how to compute the minimum vertex cover securely

given a secret shared maximum matching bipartite flow graph [M] and auxiliary

indicator vectors [A], [B] and [F] computed by the previous algorithm. A possible

input of this algorithm is shown in Figure 4.4a. The matched edges are represented by

dashed edges (e.g., edge (1,5) is matched and it is represented by a dashed backward-

edge (5,1) in [M] by [M5,1] = 1).

58

s

1

2

3

4

t

5

6

7

8

f0 f1 f2 f8. . .

(a) Bipartite graph with maximum matching

s

1

2

3

4

t

5

6

7

8

f0 f1 f2 f8. . .

(b) After n iterations: Nodes 3, 5 and 7 form the min vertex
cover

Figure 4.4.: Minimum vertex cover

1. Let [P] be a encrypted vector of size 2|V | + 3 with the encrypted field color.

Initialize the color of all the nodes to white.

2. Randomly select a node from the fake vertices. Let it be [fr]. This can be done

by assigning random values [ri] to each element of the node and picking the

index i, which has the maximum random value [ri] and [Fi] set to 1. Step 4

shows the pseudo-code to randomly pick an element from a vector obliviously.

3. Find all unmatched vertices in the set [A] ([A] can also be considered as a set;

[Av] = [1] denoting the presence of node v in [A] and [0] otherwise). This is

59

done by assigning [Pi.color] = [gray] iff i ∈ A, [Mi,j] = [1] (existence of an edge)

and [Mk,i] = [0], ∀k ∈ B (node i is not matched with any k for all k ∈ B). In

Figure 4.4a, node 2 is the only unmatched node and its color is set to gray.

1: for i = 1 to 2|V | + 3 do

2: [matched] = [0]

3: for j = 1 to 2|V | + 3 do
? ?

4: [cond1] = ([Ai] = [1]) ⊗ ([Bj] = [1])
?

5: [cond2] = ([Mj,i] = [1])

6: [matched] = [matched] ∨ ([cond1] ⊗ [cond2])

7: end for

8: [Pi.color] = Ifc([matched], [white], [grey])

9: end for

4. We want to find all the nodes that are reachable from the unmatched vertices

in set [A]. Deterministically picking a node to explore can reveal information,

therefore we randomly pick a non-fake node whose color is gray (i.e., [Pi.color] =

[gray]) and assign it to [v]. This can be done by assigning random values [Ri]

to each node and picking the index [i] that has the highest random value. If

there are no such nodes, we set [v] = [fr], where [fr] is randomly picked fake

node in step 2.

1: [v] = [0]

2: [max] = [0]

3: for i = 1 to 2|V | + 3 do
? ?

4: [cond1] = ([Ai] = [1]) ∨ ([Bi] = [1])
?

5: [cond2] = [Pi.color] = [gray]

6: [r] = [cond1] ⊗ [cond2] ⊗ [Ri]

7: [cond3] = [r] >
?
[max]

8: [max] = Ifc([cond3], [r], [max])

9: [v] = Ifc([cond3], [i], [v])

60

10: end for
?

11: [cond] = [v] = [0]

12: [v] = Ifc([cond], [fr], [v])

5. Open the index [v] to access the row Mv. Opening the location does not reveal

any information because the nodes are permuted so the access looks random.

Also, the algorithm never access any row of [M] twice. Then, expand the

list of the reachable nodes from v. For all the vertices i, if [Mv,i] = [1] and

[Pi.color] = [white], set [Pi.color] = [gray]. Then the color of Pv is set to black

to denote that the children of v have been explored.

1: open([v])

2: for i = 1 to 2|V | + 3 do
?

3: [condf] = [Mv,i] = [1]
?

4: [condw] = [Pi.color] = [white]

5: [Pi.color] = Ifc([condf] ⊗ [condw], [gray], [Pi.color])

6: end for

7: [Pv.color] = [black]

6. Repeat steps 4-5 n − 1 times.

7. After Step 6, all nodes that are reachable from unmatched nodes of [A] are

marked black and unreachable nodes are marked white. If [f8] was the randomly

selected fake node in step 2, the state of [M] is shown in Figure 4.4b. Let [X]

and [Y] are indicator vectors to specify vertex cover nodes that are in [A] and

[B] respectively. If X = A ∩ {white nodes} and Y = B ∩ {black nodes}, then

X ∪Y is the minimum vertex cover of [M]. It can be securely realized as follows.

1: for i = 1 to 2|V | + 3 do
?

2: [condc] = [Pi.color] = [white]

3: [X] = IFC([condc] ⊗ [Ai], [1], [0])

4: [Y] = IFC((1 − [condc]) ⊗ [Bi], [1], [0])

5: end for

61

8. Return	 [X] and [Y]. Since this algorithm is called as a subroutine by the

algorithm in Section 4.2, the vertex covers are not opened here.

4.3.1 Complexity Analysis

The overall complexity of the secure algorithm to find the minimum vertex cover

of a bipartite graph is O(|V 2|). This can be proved by analyzing every step of the

algorithm. Step 1 and 2 take linear time O(|V |). Step 3 takes O(|V |2) time as it access

every element of the adjacency matrix. Steps 4 and 5 take linear time O(|V |) to select

and expand a random gray colored node. Since, steps 4 and 5 are the executed |V |

times, the total run time time O(|V |2). Step 7 also does a linear amount of work to

find the vertex covers.

4.3.2 Security

Theorem 4.3.1 The minimum vertex cover algorithm is secure with respect to Def­

inition 4.1.1.

To prove that the algorithm (call B) is secure, we need to show, for any input bipartite

graph G = (V, E) with n nodes and its corresponding maximum matching residual

matrix [M] and indicator vectors [A], [B] and [F], (1) the sequence of execution is the

same as any bipartite graph G ' = (V ' , E ') with n nodes and maximum matching [M ']

and indicator vectors [A] ' , [B '] and [F ']; and (2) the distribution of memory accesses

of B in G is indistinguishable with the distribution of memory accesses of B in a

random bipartite graph G ' with n nodes. Steps 1, 2 and 3 are initialization steps

and have the same executions and memory accesses for any bipartite graph G with

maximal matching [M] with n nodes. Step 4 used for picking a random node also

accesses the same memory locations of [A], [B] and [P]. Step 5 executes the same

instructions but can access different memory locations for different bipartite graphs.

Step 5 provides data-obliviousness because of the permutation: any access to a row

62

of [M] is equally likely. Also, each row of the matrix is accessed only once in the

whole execution. Step 4 and 5 are executed n times for any bipartite graph of size n.

Step 7 used for finding the minimal vertex cover executes the same instructions and

accesses the same memory for any bipartite graph of size n. Therefore, the algorithm

executes the same number of instructions and all the instructions in the algorithm

either access the same memory location or the distribution of the location of memory

access are indistinguishable. Hence the algorithm is secure with respect to Definition

4.1.1.

4.4 Privacy-Preserving Articulation Points

A node v ∈ V in a undirected graph G = (V, E) is an articulation point (or cut

vertex), iff removing it and edges incident on it will increase the number of connected

components in the graph. Finding them is useful in designing reliable networks as

failure of a single node would split the network into two or more disconnected com­

ponents.

In the secure version, given a secret shared adjacency matrix [M] of G, we want

to identify articulation points v ∈ V such that the information about [M] is not

leaked. Steps 1-6 of the below algorithm constructs a secure depth first tree (DFT)

of the graph G. Steps 7 and 8 identifies the articulation points in the algorithm using

dfn and low. Figure 4.5 shows an example of an undirected graph with a plausible

dfn/low value for each node.

1. Let [P] be a secret shared vector with five fields visited, parent, depth, dfn and

low, where visited denotes if the node has been already visited in the depth

first tree (DFT), depth is the depth of the node in DFT. parent specifies the

parent of node, dfn denotes the order in which the node was visited in the DFT

and low of node v denotes the earliest visited node that can be reached from

the descendent of v.

63

f

d

e

a

b

c

(a) An undirected graph

6
6

a

1
1

b

3
1

c

4
2

d

5
2 e

2
1f

(b) DFT with dfn and low

Figure 4.5.: Articulation points

2. Initialize the counter	 time = 0. Set the visited and depth variable of all the

nodes to 0 and 1 respectively. Assign a special value ⊥ to all parent variable.

3. Since we are building a DFT, we pick an unvisited random node that has the

highest depth and set it has the current working node ([v]). The first for loop

finds the maximum depth from all the previously unvisited nodes and it is

stored in the variable [max]. Then it creates a temporary protected array [T]

that assigns 1 if the node is unvisited and has the maximum depth. In order

to select a random element from the potential node in T , random values are

assigned to each element in the array. Then, the node with maximum value is

picked as the working node [v].

64

1: [max] = 0

2: for i = 1 to |V | do

3:	 [c1] = [Pi.depth] >
?
[max]

?

4: [c2] = [Pi.visited] = 0

5: [max] = IFC([c1] ⊗ [c2], [Pi.depth), [max])

6: end for

7: [imax] = 0

8: [rmax] = 0

9: for i = 1 to |V | do
?

10: [c1] = [Pi.depth] = [max]
?

11: [c2] = [Pi.visited] = 0

12: [Ti] = [c1] ⊗ [c2] ⊗ [RAND]

13: [c] = [Ti] >
?
[rmax]

14: [rmax] = IFC([c], [Ti], [rmax])

15: [imax] = IFC([c], i, [imax])

16: end for

17: [v] = [imax]

4. Reveal the location of [v] in the adjacency matrix [M] and let the row of the

node be Mv. Increment the counter time and assign dfn and low number to

time. Then set the visited flag of v to 1.

1: [time] = [time] + 1

2: [Pv.dfn] = [time]

3: [Pv.low] = [time]

4: [Pv.visited] = 1

5. Extend the depth first search tree by discovering unvisited nodes from current

node v. When a unvisited node u is discovered then parent of u is set to v, the

depth of v is set to depth of v plus one. If the node u is already visited, then

65

the edge (u, v) is a back edge and v can reach a lower numbered node u in the

DFS tree. Therefore the low of v is updated to dfn number of u.

1: for i = 1 to |V | do
?

2: [c1] = [Mv,i] = [1]
?

3: [c2] = [Pi.visited] = [1]
?

4: [c3] = [Pv.parent] = [i]

5: [c4] = [c1] ⊗ (1 − [c2])

6: [Pi.depth] = IFC([c4], [Pv.depth] + 1, [Pi.depth])

7: [Pi.parent] = IFC([c4], [v], [Pi.parent])

8: [c5] = [c1] ⊗ [c2] ⊗ (1 − [c3])

9: [c6] = [Pi.dfn] <
?
[Pv.low]

10: [Pv.low] = IFC([c5] ⊗ [c6], [Pi.dfn], [Pv.low])

11: end for

6. Repeat steps 3-6 n − 1 times

7. Compute the low function for all the nodes in their descending order of discov­

ery. For every node v, if any of its children u can get to a lowest numbered

node v ' in DFS tree, then the low of v is set to low of u because v can also get

to v ' by following the tree edge (v, u).

1: for v in descending order of dfn do

2: for i = 1 to |V | do
?

3: [c1] = [Pi.parent] = [v]

4: [c2] = [Pv.low] >
?
[Pi.low]

5: [c3] = [c1] ⊗ [c2]

6: [Pv.low] = IFC([c3], [Pi.low], [Pv.low])

7: end for

8: end for

8. Let [A] be a protected binary vector with 1/0 representing if the corresponding

element is an articulation point or not. A root node is an articulation point if

66

it has more than one children in the DFS tree. The first for loop checks for the

number of children of root node r and sets Ar appropriately. For the rest of

the nodes, a node v is an articulation point if its dfs no is less than or equal to

low no of any its children (i.e., dfs(v) ≤ low(u), where u is the child of v). The

second for loop

1: for r = 1 to |V | do
?

2: [c1] = [Pr.depth] = [1]

3: [t] = 0

4: for i = 1 to |V | do
?

5: [c2] = [Pi.parent] = [r]

6: [t] = [t] + [c2]

7: end for

8: [c3] = [t] >
?
[1]

9: [Ar] = [c1] ⊗ [c3]

10: end for

11: for v = 1 to |V | do

12: for i = 1 to |V | do
?

13: [c1] = [Mv,i] = [1]

14: [c2] = [Pv.dfn] <
?
[Pi.low]

15: [c3] = [c1] ⊗ [c2]

16: [Av] = IFC([c3], [1], [Av])

17: end for

18: end for

4.4.1 Complexity Analysis

Steps 1-3 of the algorithm take linear time as it involves creating a protected

vector P with five fields, initializing them and randomly selecting a potential node

to explore from the depth first tree respectively. Step 4 takes a constant amount of

67

time as it just initializes the fields of the working node. Step 5 takes linear time as

it analysis each element of the vector [Mv] and updates the depth first search tree

with new nodes. Steps 3-5 are repeated n − 1 times so that the DFS tree is built

completely. Therefore total time is bounded by O(|V |2). Steps 7 takes O(|V |2) time

as it goes through every element of the adjacency matrix [M] to update the low

function. Step 8 also takes O(|V |2) time as it access the protection vector [P] for

every node v in the graph. Permuting the rows and columns of the matrix (optional

step and it is called before step 1 only if the node labels reveal any information) takes

time O(|V |2 log |V |) and it overwhelms the running time of the other steps in the

algorithm. Hence the overall complexity of the algorithm is O(|V |2 log |V |). If the

permutation step is skipped then the algorithm takes O(|V |2) time to run.

4.4.2 Security

Theorem 4.4.1 The articulation points detection algorithm is secure with respect to

Definition 4.1.1.

As before, we will analyze each step of the algorithm to prove that it is secure. All

the steps in the algorithm execute the same set of instructions for any graph with

fixed size of n vertices because all conditional statement has been serialized and all

control loops are conditioned on the number of vertices. To show that the memory

accesses are indistinguishable for G and G ' with a fixed node size n, we analyze each

step of the algorithm. Steps 1 and 2 are initialization steps and accesses the same

memory locations for any graph with n nodes. Step 3 also accesses the same memory

locations of the protected vector [P] and [T] for any graph with n nodes. In steps

4 and 5, the local of memory accesses differ and depends upon the current working

node v, but the memory accesses are indistinguishable because the node [v] is selected

uniformly at random and the row [Mv] is never accessed twice during the execution

of the algorithm. Similar to steps 4 and 5, step 6 also accesses different locations

but each node v is accessed in the reverse order in which they were opened. If the

68

distribution of memory accesses in step 4 and 5 is indistinguishable with memory

access of G ' then so is step 6. The location of memory access of step 8 are the same

for any graph of size n as it accesses [P] for each node in the graph. Therefore, all

the steps in the algorithm either access the same memory location or the distribution

of the location of memory access are indistinguishable. Hence the algorithm is secure

with respect to Definition 4.1.1.

4.5 Relaxed Data-Obliviousness

There exist problems for which a secure algorithm that satisfies the Definition

4.1.1 is inefficient. One such problem is frequent itemset mining. With the massive

amount of data available, it is desirable for a client to, for example, encrypt its data

on a cloud server to reduce privacy risks. However, this introduces new challenges

if the client wants to mine frequent itemset from the encrypted data as the access

patterns along with the execution path could leak sensitive information about the

data to the server.

A simple but inefficient way to fix this problem is to let the server run a secure

algorithm on an encrypted dataset to compute the frequency of all the itemsets and

return the encrypted results to client. Then, the client can filter the false positives

to obtain frequent itemsets. This algorithm satisfies the Definition 4.1.1 but it is

impractical as the runtime is exponential.

Therefore, we introduce a new relaxed notion of data-obliviousness based on dif­

ferential privacy.

Definition 4.5.1 (f-Data-Obliviousness) Let d denote the input to an algorithm.

Also, let A(d) denote the sequence of memory access that the algorithm makes. The

algorithm is considered f-data-oblivious if for two inputs d and d ' that differ by a

single element, the total number of instructions executed and access patters of A(d)

and A(d ') are f-indistinguishable to each party carrying out the computation.

69

The above definition relaxes the Definition 4.1.1 in two ways. 1) The indistin­

guishability holds only against any two neighboring inputs and not against all possible

inputs of the same size. 2) An adversary seeing A(d) and A(d ') cannot distinguish the

two inputs d, d ' except with some small probability specified by the privacy parameter

f.

4.5.1 f-Data-Oblivious Frequent Itemset Mining

The goal of frequent itemset mining [51] is to find sets of items that are frequently

occurring in a dataset (specified by a threshold φ). It has applications in marketing,

placing frequently items together, etc. [7] used frequent itemset mining to determine

the top categories in a text. A number of cryptographic approaches have been pro­

posed to find frequent itemsets from a private dataset like [52–55]. However, these

algorithms are not data-oblivious, therefore a data-dependent execution can leak in­

formation. I.e. the parties executing the algorithm on an encrypted dataset can

learn additional information (e.g., a boundary separating the frequent and infrequent

itemsets). With sufficient background information this can lead to privacy breaches.

We now propose an efficient data-oblivious frequent itemset mining algorithm that

satisfies our new relaxed notion of data-obliviousness, f-data-obliviousness.

Table 4.6.: Notations

[x] Secret shared/Encrypted x

D Database

|D| Size of D

Di ith document/tuple in database D

Lk Set of itemsets at iteration k

Lk ith
i itemset in Lk

Lk
i .bv Bit vector field of Lk

i

Lk
i .itemset Itemset of Lk

i

70

Algorithm 5 f-data-oblivious frequent itemset mining

Input: A dataset [D] ∈ D, items [I] represented as an indicator vector, privacy budget
f, φ - threshold , d - maximum size of the itemset.
Output: Frequent itemets.

1: f1 = E
2×d

2: for z = 1 to |[I]| do
3: [Lz

1.itemset] = [Iz]
4: [L1

z.bv] = [0]|D|

5: end for
6: for x = 1 to |D| do
7: for y = 1 to |Dx| do
8: for z = 1 to |[L1]| do

?
9: [c] = [Dx,y] = [L1

z.itemset]
10: [Lz

1.bv[x]] = Ifc([c], [1], [L1
z

11: end for
12: end for
13: end for
14: count = DpCount([L1], f1))
15: [LI1] = DpSample([L1], count, f1)
16: for k = 2 to d do
17: [Lk] = CandGen([LIk−1])
18: count = DpCount([Lk], f1))

.bv[x]])

19: [LIk] = DpSample([Lk], count, f1)
20: end for

Given a private dataset [D], privacy budget f and a threshold φ, the algorithm to

compute the frequent itemsets using f-data-oblivious frequent itemset mining algo­

rithm is shown in Algorithm 5. Some of the notations used in this section are shown

in Table 4.6.

A secret shared itemset Lk
i is represented by three fields: 1) An inverted index

represented by an indicator vector (bv) of size |D|. A 0/1 in the ith bit of bv indicates

the absence/presence of an item in the ith document respectively. 2) Similarly, an

itemset is represented by a indicator vector with 1 denoting the presence of an item

in the itemset. 3) An integer count to represent the total number of occurrences of

an itemset in a corpus. All three fields are secret shared and are not known to the

server/parties executing the algorithm.

71

Algorithm 6 Candidate generation

Input: [Lk] itemsets with corresponding frequencies and bit vector.
Output: Candidate [Lk+1] itemsets.

1: function CandGen()
2: [Lk+1] = ∅
3: for i = 1 to |Lk| do
4: for j = i + 1 to |Lk| do
5: [c] = IsNeighbor([Lk

i],[L
k
j])

6: if c == 1 then
7: T.bv = [Lk

i .bv] 8 [Lk
j .bv]

8: T.itemset = [Lk
i�.itemset] ∨ [Lk

j .itemset]
9: [Lk+1] = [Lk+1] T
10: end if
11: end for
12: end for
13: return [Lk+1]
14: end function
15: function IsNeighbor([Li],[Lj])
16: count = 0
17: for i = 1 to |Li.itemset| do
18: [c] = [Li.itemset(i)] ⊕ [Li.itemset(i)]
19: [count] = [count] + [c]
20: end for

?
21: [c] = [count] = [2]
22: Open and return [c]
23: end function

Steps 2-5 of Algorithm 5 initializes the itemset indicator vector of 1-itemsets of

the dataset and its corresponding inverted index to 0. Steps 6-13 parses the private

dataset and obliviously computes the inverted index of 1-itemsets. The sub functions

used in the algorithm are DpCount, DpSample, IsNeighbor and CandGen. Given

a set of k-itemsets, a threshold φ and privacy f parameter, DpCount gives a differen­

tially private count of the number of k-itemsets that are above the threshold φ. Given

an Lk along with the field [Lk
i .count], DpSample uses the algorithm given in [21] to

securely sample count elements from [Lk] based on the scoring function [Lk
i .count].

The function CandGen (Algorithm 6) takes as input a set of differentially private

k-itemsets and generates (k + 1)-itemset candidates. It iterates over the k-itemsets

72

and considers every pair possible pair for candidate generation. For each pair, it first

checks if the itemsets are neighbors. If so, a new (k + 1)-itemset is generated with its

itemset field set to the inclusive-or (∨) of the itemset field of the neighbors. Then,

the new itemset’s bv field is set to the intersection of the inverted index field bv.

The function isNeighbor is used to obliviously check if two secret shared itemsets

are neighbors. It basically finds the xor of the indicator vector itemset to check if

two itemsets differ by two elements. The result is returned as plain text. One can

argue that it leaks additional information: if two k-itemsets are neighbors. However,

since the processing is done on an f differentially private output, the post processing

still satisfies differential privacy.

Algorithm 7 Differentially private count

1: function DpCount(Lk , φ, f)
2: [res] = 0
3: for i = 1 to |Lk| do
4: [Lk

i .count] = 0
5: for j = 1 to |D| do
6: [Li

k.count] = [Lk
i .count] + [Li

k

7: end for
8: end for
9: for i = 1 to |Lk| do

?
10: [c] = [Lk

i .count] > φ
11: [res] = Ifc([c], [res] + 1, [res])
12: end for
13: [res] = [res] + [x ∼ Lap(0, 1

E)]
14: open [res] and return it.
15: end function

.bv(j)]

The function DpCount takes as input [Lk] (the k-itemsets along with its fields

bv and itemset), threshold count φ and privacy budget f. Steps 3-8 of Algorithm 7

iterates each k-itemset in [Lk] and computes the count of each itemset by summing

the inverted index vector. Then steps 9-12 compute the number of k-itemsets whose

count is above the threshold and then releases a noisy result after adding a noise

73

sampled from Lap(0, 1
E). [21] gives a secure algorithm to sample a random variate

from a Laplace distribution with a given µ and λ for the multi-party setting.

The itemsets that were sampled during each iteration are sent to the client for de­

cryption. It is possible that some of the results returned by server may be infrequent

but the client can discard them after decryption. The execution is randomized, there­

fore the server does not learn significant additional information. Note that no noise

is added to the frequencies. False negatives can be introduced but the algorithm does

not leak information because of the memory accesses except with some probability

specified by the privacy parameter f.

4.5.2 Security

Theorem 4.5.1 The frequent itemset mining algorithm is secure with respect to Def­

inition 4.5.1.

As before, we will analyze each step of the algorithm to prove that it is secure. Let

d and d ' be two neighboring datasets of size n that differ by a single item. Steps

2-12 of Algorithm 5 executes the same set of instructions for any two neighboring

datasets d and d ' because all conditional statements have been serialized and all con­

trol loops are conditioned on either the number of items in the domain or size of the

dataset. To prove that the number of instructions executed by the Algorithm 5 is

f-indistinguishable, we show that the sub-functions functions DpCount, DpSample,

IsNeighbor and CandGen invoked by Algorithm 5 are f-indistinguishable. The func­

tion IsNeighbor always executes the same number of instructions for datasets d and

d ' as the control loop is dependent upon the number of items in the universe. In case

of DpCount, DpSample and CandGen, the number of instructions that they execute

is dependent upon size of Lk, which may not be fixed for d and d ' . The number of

k-itemsets to be selected in the kth iteration is based on DpCount. Since, DpCount

returns a differentially private count of the number of k-itemsets that have a fre­

quency above the threshold φ using the Laplace mechanism, the values DpCount(d)

74

and DpCount(d ') are f-indistinguishable. Therefore, we can conclude that the num­

ber of instructions executed by the Algorithm 5 itself is f-indistinguishable.

Steps 1-12 of Algorithm 5 access the same memory location for datasets d and d ' .

To show that the location of memory access are f-indistinguishable, we prove that the

location of memory access in each of the functions DpCount, DpSample, IsNeighbor

and CandGen are f-indistinguishable. At iteration k, the function loops over each

itemset in k-itemsets and accesses the fields of k-itemset to perform some computa­

tion. In each iteration, the functions DpCount and DpSample are used for selecting

differentially private k-itemsets, the memory locations returned by DpSample(d) and

DpSample(d ') are f-indistinguishable. Therefore, all the steps in the algorithm either

access the same memory location or the distribution of the location of memory access

are f-indistinguishable. Hence the algorithm is secure with respect to Definition 4.5.1.

75

5 PRIVACY-PRESERVING CLASSIFICATION

A particular issue with text analysis is that high dimensionality poses high costs:

computational for cryptographic techniques, and in terms of added noise for random­

ization mechanisms such as f-differential privacy. One way to address these costs is

through feature selection, moving from a high-dimensional feature space to only a

few critical features. Unfortunately, the process of feature selection has the potential

to reveal private information.

Differential privacy addresses this, by reducing the confidence in any information

released. For example, the selection (or non-selection) of a feature under differential

privacy could be a result of random chance; preventing making strong inferences

about individuals based on the inclusion of the individual’s data in the dataset. We

thus propose differentially private feature selection.

The main contributions in this section are as follows

1. We derive the global sensitivity of various feature selection techniques and show

that some of them are very sensitive to small changes in a corpus, and is therefore

not suitable for differential private feature selection. We also propose modifica­

tions to existing techniques and show that they are less sensitive to individual

changes to a database and can perform better in a differentially private setting.

2. We provide empirical evaluation to show that for techniques with low sensitiv­

ity, feature selection can be effective while satisfying differential privacy. We

also evaluate the differentially private feature selection in practical setting by

building differentially private classifiers: näıve Bayes, support vector machine

and decision trees.

In this section, we assume that the data owner has access to the sensitive database

and can run these differentially private algorithms to get the private classifiers. The

76

feature selection techniques can also be used to select split points in decision tree

learning. In Section 5.4, we extend the results of [56] showing that using low sensitivity

feature selection improves decision tree accuracy.

5.1 Related Work

Differentially private decision tree algorithms have been proposed in [56, 57]. [56]

proposes an interactive algorithm, in which the data miner poses queries to a private

database for building a differentially private decision tree. Section 5.4 uses their al­

gorithm for evaluating different privacy-preserving feature selection techniques. [56]

proposes to build a decision tree in the non-interactive setting by releasing a gener­

alized dataset that satisfies differential privacy. The noisy dataset is then used for

building the decision tree.

[58] shows that the global sensitivity of χ2 statistic is asymptotically constant

when the marginal totals are equally distributed. In this chapter, we do not make

any assumptions on the distribution of the dataset and show that sensitivity grows

as a function of the size of the dataset.

Algorithms for building a differentially private näıve Bayes (DP-NB) classifier

are shown in [59–61]. [59] builds a DP-NB classifier to infer private attributes ac­

curately from data containing categorical attributes. [60] extends the classifier to

include numerical attributes. [61] develops protocols for building a DP-NB classifier

over horizontally and vertically distributed data. However, these algorithms work on

micro-data, which does not need differentially private feature selection. Section 5.3.1

shows a differentially private näıve Bayes classifier for unstructured data with private

feature selection.

5.2 Differentially Private Feature Selection

We now derive the upper bounds on the sensitivity for several well-known feature

selection techniques, which will then be used with the exponential or Laplace mech­

77

anism for selecting features privately. Note that global sensitivity is based on the

impact any possible feature could have on the result, not just those features present

in the dataset D.

Let D ∈ D be a corpus containing N documents (each document di is represented

by a list of features). Let wi be a feature in D and cj be a category present in D, then

Nwi,cj denote the number of documents of category cj that contains the feature wi,

Nwi,cj denote the number of documents that belong to category cj but does not contain

the feature wi, Nwi,cj denote the number of documents that contains the feature wi

but does not belong to category cj , and Nwi,cj denote the number of documents that

neither has the feature wi nor belong to category cj . Also, let Ncj denote the number

of documents that belongs to class cj and Ncj denote the number of documents that

belongs to a class other than cj . Similarly, we can define for Nwi and Nwi . Table 5.1

shows a 2 × 2 contingency table built from a database D for feature wi. We will use

this table in the rest of the section for analyzing the global sensitivity of the feature

selection methods for binary classification task.

Table 5.1.: 2 × 2 contingency table

cj cj

wi Nwi,cj Nwi,cj Nwi

wi Nwi,cj Nwi,cj Nwi

Ncj Ncj N

5.2.1 Term Weights

A simple technique for feature selection is to select the features based on their

weight (e.g., inverse document frequency). IDF measures the importance of a feature,

���� ����

78

i.e., whether the feature is common or rare across all documents in D. A smoothed

IDF of wi is computed by

N
IDF (D, wi) = log

1 + Nwi

Without loss of generality, let us assume that the count of Nwi increases by 1 in the

neighboring dataset D ' . Then, the global sensitivity of the IDF weighting is log N
N
+1 .

N + 1 N
GSIDF = log − log

2 + Nwi 1 + Nwi

N + 1 ≤ log
N

5.2.2 Chi-Squared Statistic

The χ2 statistic measures the lack of independence between a feature wi and a

category cj , which is compared with the χ2 distribution to measure the extremeness.

For Table 5.1, the statistic is computed as follows.

)2N(Nwi,cj Nwi,cj − Nwi,cj Nwi,cjχ2(D, wi, cj) =
(Nwi)(Nwi)(Ncj)(Ncj)

The range of the chi-squared statistic is between 0 and N(£ − 1), where N is the

number of observations and £ is the minimum of the number of rows and columns in

the contingency table. A näıve analysis shows that the global sensitivity of the χ2

statistic for a 2 × 2 contingency table is not more than N + 1. While we do not show

that this bound is tight, we can show that the noise needed to satisfy differential

privacy is at least N
2 .

�

���� �������� ���� ���� ����

79

Table 5.2.: Contingency tables that differ by 1

(a) A (b) B

cj cj

wi N − 1 0
wi 0 1

cj cj

wi N − 1 0
wi 1 1

To prove the lower bound for the global sensitivity is at least N
2 +

2
1
N , we will

derive the local sensitivity using the two neighboring databases given in Table 5.2a

and 5.2b. Therefore,

LSχ2 (A) = max ||χ2(A) − χ2(D ')||1
D

≥ |χ2(A) − χ2(B)|
N(N − 1)2 (N + 1)(N − 1)2

= −
(N − 1)2 2N(N − 1)
2N2 − (N2 − 1) N2 + 1

= =
2N 2N

N 1
= +

2 2N

Therefore, the global sensitivity is at least N
2 +

2
1
N . While one could argue that the

datasets shown in Tables 5.2a and 5.2b are unlikely, differential privacy considers all

possible neighboring datasets present in the universe and adds noise proportional to

the maximum change in query value. Techniques such as [35], which satisfies a weaker

security notion, can be used to provide better utility as they add noise proportional

to the dataset that is being published. In the rest of section, we consider the global

sensitivity of the feature selection techniques.

80

Table 5.3.: Multi-class contingency tables that differ by 1

(a) A for k > 2 (b) B neighbor of A

c1 c2 c3 . . . ck

wi N − k + 1 0 0 . . . 0
wi 0 1 1 . . . 1

c1 c2 c3 . . . ck

wi N − k + 1 0 0 . . . 0
wi 1 1 1 . . . 1

c1 c1

wi N − k + 1 0
wi 0 k − 1

Table 5.4.: Category specific contingency tables

(a) Ac1 (b) Bc1

(c) Acj (d) Bcj

c1 c1

wi N − k + 1 0
wi 1 k − 1

cj cj
wi 0 N − k + 1
wi 1 k − 2

cj cj
wi 0 N − k + 1
wi 1 k − 1

Similarly, we derive the lower bound for global sensitivity of χ2 for k > 2 (multi­

class). For k > 2, we can compute the χ2 statistic between the term wi and each

category cj and then combine the category-specific scores as follows.

0 Ncjχ2(D, wi) = χ2(D, wi, cj)
N

j 0
N × χ2(D, wi) = Ncj χ

2(D, wi, cj)
j

N−k+1We show that global sensitivity of χ2 is at least
k for k > 2. We use the

multi-class contingency tables given in 5.3a and 5.3b for deriving the lower bound on

global sensitivity. The category specific contingency tables of 5.3a and 5.3b are shown

in Tables 5.4(a-d). Acj and Bcj denote the class-specific (i.e., class cj) contingency

tables for the databases A and B respectively.

�� ��������
����������

���������� ��������� ��������� ����

81

LSχ2 (B, wi) ≥ χ2(B, wi) − χ2(A, wi) 0 0
= Ncj χ

2(B, wi, cj) − Ncj χ
2(A, wi, cj)

cj ∈B cj ∈A

(N − k + 1) (N)(N − k + 1)2(k − 1)2

=
N (N − k + 1)(k − 1)2(N − k + 1)
k0 1 (N)(N − k + 1)2

+
N (N − k + 1)(k − 1)(N − 1)

j=2

(N − k + 2) (N + 1)(N − k + 1)2(k − 1)2

−
N + 1 (N − k + 2)(k)(k − 1)(N − k + 1) 0k 1 (N + 1)(N − k + 1)2

−
N + 1 (N − k + 1)(k)(N)

j=2 0k (N − k + 1)
= (N − k + 1) +

(k − 1)(N − 1)
j=2 0(N − k + 1)(k − 1)

k
(N − k + 1) − −

k (k)(N)
j=2

(k)(N − k + 1) − (k − 1)(N − k + 1)
=

k 0 0k
(N − k + 1)

k
(N − k + 1)

+ −
(k − 1)(N − 1) (k)(N)

j=2 j=2

(N − k + 1) (N − k + 1) (k − 1)(N − k + 1)
= + −

k N − 1 (k)(N)

(N − k + 1)

>
k

(k−1)(N−k+1)The last inequality holds because (N −k+1) > .
(N−1) (k)(N)

���� �������� ����

82

5.2.3 Odds Ratio

Odds Ratio quantifies how strongly the presence or absence of a feature wi is

associated with the presence or absence of a category cj in the corpus. For a 2 × 2

contingency table, OR is estimated as follows.

Pr(wi|cj)Pr(wi|cj) Nwi,cj Nwi,cjOR(D, wi, cj) = =
Pr(wi|cj)Pr(wi|cj) Nwi,cj Nwi,cj

Table 5.5.: Smoothed contingency tables that differ by 1

(a) A (b) B

cj cj

wi N − 1
2

1
2

wi
1
2

3
2

cj cj

wi N − 1
2

1
2

wi
3
2

3
2

1
2

3
2

1
2

3
2

The global sensitivity of odds ratio is unbounded. The difference between the

odds ratio of a database D with a zero Nwi,cj value and a neighboring database D '

with non-zero Nwi,cj value is infinite. In case of a smoothed OR (0.5 added to each

cell), we can show that the global sensitivity is at least 4N − 2 for a 2 × 2 contingency

table. The smoothed contingency tables of Table 5.2a and 5.2b are shown in Table

5.5a and Table 5.5b. From smoothed contingency tables, we have

LSOR(B, wi, cj) ≥ OR(B, wi, cj) − OR(A, wi, cj)

(N −) (N −)
=
 −
1 3

44

= 6N − 3 − 2N + 1

= 4N − 2

83

Table 5.6.: Smoothed multi-class contingency tables that differ by 1

(a) A for k > 2 (b) B neighbor of A

c1 c2 c3 . . . ck

wi N − k + 3
2

1
2

1
2 . . . 1

2

wi
1
2

3
2

3
2 . . . 3

2

c1 c2 c3 . . . ck

wi N − k + 3
2

1
2

1
2 . . . 1

2

wi
3
2

3
2

3
2 . . . 3

2

c1 c1

wi N − k + 3
2

k−1
2

wi
1
2

3(k−1)
2

Table 5.7.: Smoothed category specific contingency tables

(a) Ac1 (b) Bc1

c1 c1

wi N − k + 3
2

k−1
2

wi
3
2

3(k−1)
2

(c) Acj (d) Bcj

cj cj

wi
1
2 N − k + 3

2 + k−2
2

wi
3
2

3(k−2)
2 + 1

2

cj cj

wi
1
2 N − k + 3

2 + k−2
2

wi
3
2

3(k−1)
2

Similarly, we derive the lower bound for global sensitivity of OR for k > 2. For

k > 2, we can compute the OR between the term wi and each category cj and then

combine the category-specific scores as follows.

0 NcjOR(D, wi) = OR(D, wi, cj)
N

j 0
N × OR(D, wi) = Ncj OR(D, wi, cj)

j

���� ��������� � ����������� � �����������
����������

�����

84

The smoothed contingency tables of Table 5.3a and 5.3b are shown in Table 5.6a

and Table 5.6b. The category specific contingency tables are shown in Tables 5.7(a-d).

From smoothed contingency tables, we have

0 0
LSOR(B, wi) ≥ Ncj OR(B, wi, cj) − Ncj OR(A, wi, cj)

j j

)(3(k−1))(3(k−1)(n − k + 3) (n − k + 3)
2 2 2 2 = (n − k + 2) − (n − k + 3)

k−1 3(k−1)
4 4 0 1 (3(k−2) 1 1 (3(k−1)+))

2 2 2 2 2+ 2 −
3 3 (k−2) 3 3 (k−2)(n − k + +) (n − k + +)j=2 2 2 2 2 2 2

3 3
= (n − k + 2)(n − k +)(6) − (n − k + 3)(n − k +)(2)

2 20 3(k−2) 1 (k−1)(+)
2 2 2+ 2 −

3 (k−2) 3 (k−2)3(n − k + +) (n − k + +)j=2 2 2 2 2 0 4
= 4n 2 + 12n − 8nk + 4k2 − 12k + 9 + −

3 (2n − k + 1)
j=2

4(k − 1)
= 4n 2 + 12n − 8nk + 4k2 − 12k + 9 −

3 (2n − k + 1)

As n increases, the local sensitivity is dominated by the 4n2 term.

5.2.4 GSS Coefficient

Galavotti et al. [62] proposed a simplified χ2 statistic that removed factors that

emphasized rare words and rare categories. For a binary classification task, it is

computed as follows

GSS(D, wi, cj) = Pr(wi, cj)Pr(wi, ci) − Pr(wi, ci)Pr(wi, cj)

Nwi,cj Nwi,cj − Nwi,cj Nwi,cj=
N2

��� ������ ������ ���

85

A positive/negative value of GSS coefficient denote positive/negative relationship

and zero means no relationship between the feature wi and class cj . Maximizing the

above equation is equivalent to maximizing N2 × GSS(D, wi, cj). We propose to use

the absolute value of the numerator to compute GSS so that the range of GSS is in

the interval [0, N
4

2
], which captures both positive and negative relationship.

Therefore, we will be maximizing the equation |Nwi,cj Nwi,cj − Nwi,cj Nwi,cj |. The

global sensitivity of this equation is N for a 2 × 2 contingency table (Table 5.1). To

prove the global sensitivity, we will assume that the neighboring database differs in

the element Nwi,cj by 1.

GSGSS(wi,cj) = |(Nwi,cj + 1)Nwi,cj − Nwi,cj Nwi,cj |

− |Nwi,cj Nwi,cj − Nwi,cj Nwi,cj |

≤ Nwi,cj Nwi,cj + Nwi,cj − Nwi,cj Nwi,cj

− Nwi,cj Nwi,cj + Nwi,cj Nwi,cj

= Nwi,cj

≤ N

For k > 2, GSS coefficient can be computed by first finding the GSS coefficient

for each category cj and then computing the average of category-specific scores.

0 NcjGSS(D, wi) = GSS(D, wi, cj)
N

j

Maximizing the above equation is equivalent to maximizing GSS(D, wi) = N3 ×

GSS(D, wi). The following analysis is based on the (general) multi-class contingency

Table 5.8. Without loss of generality, we will assume that the neighboring database

������ �

������

86

D ' differ in the element Nwi,c1 (i.e., D ' has count Nwi,c1 + 1). The category specific

contingency tables of neighboring databases D and D ' are shown in Tables 5.9(a-d).

Table 5.8.: Multi-class contingency table (D)

c1 c2 c3 . . . ck

wi Nwi,c1 Nwi,c2 Nwi,c3 . . . Nwi,ck

wi Nwi,c1 Nwi,c2 Nwi,c3 . . . Nwi,ck

c1 c1

wi Nwi,c1 Nwi − Nwi,c1

wi Nwi,c1 Nwi − Nwi,c1

Table 5.9.: Category specific contingency tables

(a) Dc1 (b) D ' c1

(c) Dcj
(d) D ' cj

c1 c1

wi Nwi,c1 + 1 Nwi − Nwi,c1

wi Nwi,c1 Nwi − Nwi,c1

cj cj

wi Nwi,cj Nwi − Nwi,cj

wi Nwi,cj Nwi − Nwi,cj

cj cj

wi Nwi,cj Nwi − Nwi,cj + 1

wi Nwi,cj Nwi − Nwi,cj

GSGSS(wi) = |GSS(D ' , wi) − GSS(D, wi)| 0 0
= Ncj GSS(D, wi, cj) − Ncj GSS(D ' , wi, cj)

cj ∈D cj ∈D

����� ��� ���
��� ���� ��� ���

��� ���������

�������� ���
��� ���������������� ��� ��� ���������������� ��� ����������

�����

87

=	 Nc1 Nwi,c1 (Nwi − Nwi,c1) − Nwi,c1 (Nwi − Nwi,c1)

k0
+	 Ncj Nwi,cj (Nwi − Nwi,cj) − Nwi,cj (Nwi − Nwi,cj)

j=2

−	 (Nc1 + 1) (Nwi,c1 + 1)(Nwi − Nwi,c1) − Nwi,c1 (Nwi − Nwi,c1)

k0
+	 Ncj Nwi,cj (Nwi − Nwi,cj) − Nwi,cj (Nwi − Nwi,cj + 1)

j=2

Let, V = Nc1 Pj = Ncj

W = Nwi,c1 Qj = Nwi,cj

X = Nwi − Nwi,c1 Rj = Nwi − Nwi,cj

Y = Nwi,c1 Sj = Nwi,cj

Z = Nwi − Nwi,c1 Tj = Nwi − Nwi,cj

≤ V	 (W)(Z) − (Y)(X) − (V + 1) (W + 1)(Z) − (Y)(X)

k0
+ Pj (Qj)(Tj) − (Sj)(Rj) − (Qj)(Tj) + (Sj)(Rj + 1)

j=2

k
0
= − (V)(Z) − (W)(Z) − Z + (Y)(X) + (Pj)(Sj)

j=2

k0
≤ − (V)(Z) − (W)(Z) − Z + (Ncj)N

j=2

k0
≤ NNc1 + Z(1 + W) + N Ncj

j=2

k
0 N	 N ≤ N	 Ncj + (1 +)
2	 2

j=1

5	 N
N2 =	 +

4	 2

The first inequality uses the fact that |a| − |b| ≤ |a − b|. The second inequality

holds because Sj ≤ N and (Y)(X) ≥ 0. The third inequality uses the fact that

�� ��

 �� ��

88

Z ≤ N . For the last inequality, the expression Z(1 + W) subjected to the constraint

W + Z ≤ N reaches the maximum value at W = Z = N
2 .

5.2.5 Bray-Curtis Dissimilarity

Bray-Curtis dissimilarity (BCD) is used to quantify the distance between two

samples. The sum of the absolute differences between the counts is divided by the

sum of the abundances in the two samples to get BCD.

|Xi − Yi|
BCD(X, Y) = i

i Xi + i Yi

We now show how BCD can be used to measure the independence of a feature wi and

category cj. Let OD denote the observed frequencies in the contingency table built wi,cj

from the corpus D for feature wi and category cj ; ED be the expected frequency for wi,cj

feature wi and category cj under the null hypothesis (i.e., wi and cj are independent).

The dissimilarity becomes zero if and only if wi and cj are independent. Higher values

indicate that the null hypothesis should be rejected (i.e., the occurrence of wi and

cj are not independent.) Therefore, we want to select features that maximize the

following equation. 01
OD − EDBCD(D, wi) = x,y x,y2N

x,y

where x ∈ {wi, wi} denotes the presence or absence of a feature wi and y ∈

{c1, c2, . . . , ck} for 2 × k contingency table. Ex,y is computed as N × Pr(x) × Pr(y).
Nwi NcjFor example, Ewi,cj =

N . Maximizing the above equation is equivalent to maxi­

mizing OD − ED . x,y x,y x,y

We will use Table 5.8 to prove that the sensitivity of BCD is 2k, where k is

number of categories in the database D. Without loss of generality, let us assume

����� ��� � �
��� �� ���������������� �������� �������� ���� ���� �������� ���� ���� �������� ���� ���� ����

������������� ���� ���� ��������� ���� ���� ��������� ���� ���� ��������� ���� ���� �����
��������� �������� �������� �������� ����

�

�

�

89

that the value of Nwi,c1 increases by 1 in the neighboring database D ' , then the global

sensitivity of BCD can be proved as follows.

GSBCD(wi) = |BCD(D ' , wi) − BCD(D, wi)| 0 0
OD = − ED − OD − ED

x,y x,y x,y x,y
x,y x,y

(Nwi + 1)(Nc1 + 1)
= (Nwi,c1 + 1) −

(N + 1)
k0 (Nwi + 1)Ncj+ Nwi,cj −

(N + 1)
j=2

k
Nwi (Nc1 + 1) 0 Nwi Ncj+ Nwi,c1 − + Nwi,cj −

(N + 1) (N + 1)
j=2

Nwi Nc1

k
Nwi Ncj

0
− Nwi,c1 − + Nwi,cj −

N N
j=2

k
Nc1 Nwi

0 Nwi Ncj+ Nwi,c1 − + Nwi,cj −
N N

j=2

(Nwi + 1)(Nc1 + 1) Nwi Nc1 = Nwi,c1 + 1 − − Nwi,c1 −
(N + 1) N

k
(Nwi Nwi Ncj

0 + 1)Ncj+ Nwi,cj − − Nwi,cj −
(N + 1) N

j=2

(Nwi)(Nc1 + 1) Nc1 Nwi+ Nwi,c1 − − Nwi,c1 −
(N + 1) N

k
Nwi Ncj

0 Nwi Ncj+ Nwi,cj − − Nwi,cj −
(N + 1) N

j=2

(Nwi + 1)(Nc1 + 1) (Nwi)(Nc1)≤ 1 − +
(N + 1) N

k0 (Nwi + 1)(Ncj) (Nwi)(Ncj) + − +
(N + 1) N

j=2

(Nc1 + 1)(Nwi) (Nc1)(Nwi)+ − +
(N + 1) N 0k (Ncj)(Nwi) (Ncj)(Nwi) + − +
(N + 1) N

j=2

���� �������� �������� �������� �������� ���� ���� �������� ���� ���� ����

�

90

N(N + 1) − N(Nwi + 1)(Nc1 + 1) + (N + 1)(Nwi Nc1) =
N(N + 1)

k0 −N(Nwi + 1)(Ncj) + (N + 1)(Nwi)(Ncj) +
N(N + 1)

j=2

−(N)(Nc1 + 1)(Nwi) + (N + 1)(Nc1)(Nwi)+
N(N + 1) 0k −N(Ncj)(Nwi) + (N + 1)(Ncj)(Nwi) +
N(N + 1)

j=2 0(N − Nwi)(N − Nc1)
k

(Ncj)(Nwi − N)
≤ +

N(N + 1) N(N + 1)
j=2 0(Nwi)(Nc1 − N)
k

Ncj Nwi + +
N(N + 1) N(N + 1)

j=2

2kN2

≤ ≤ 2k
N(N + 1)

The first inequality uses the fact |a|−|b| ≤ |a−b| and the second to last inequality

holds because each term in the numerator is bounded by N 2 .

5.2.6 Information Gain

Information gain [63] measures the number of bits of information obtained for

prediction by knowing the presence or absence of a term/feature in a document.

0
IG(D, wi) = − Pr(cj) log Pr(cj)

j 0 0 Pr(cj , w ')
+ Pr(cj , w ') log

Pr(w ')
j w ∈{wi,wi}

�

�

� �

�

�

�
�

�

91

Maximizing the above equation is equivalent to maximize the following equation.

0 0 Pr(cj , w ')
IG ' (D, wi) = − Pr(cj , w ') log

Pr(w ')
j w ∈{wi,wi}0 0 Nw ,cj Nw ,cjIG ' (D, wi) = − log

N Nwj w ∈{wi,wi}0 0 Nw ,cjN ∗ IG ' (D, wi) = − Nw ,cj log
Nwj w ∈{wi,wi}

[56] showed that the global sensitivity of the above equation is equal to log(N + 1) +

1 .
ln 2

5.2.7 Mutual Information

Mutual Information [63] between a feature wi and a category cj is computed as

follows.
Pr(wi, cj)

I(wi, cj) = log
Pr(wi)Pr(cj)

To measure the global goodness of a feature, the category specific scores are combined

as:

0
MI(D, wi) = Pr(cj)I(wi, cj)

j 01
= Ncj I(wi, cj)

N
j

We will instead maximize N × MI(D, wi). It is easy to show that the global

sensitivity is unbounded for the above equation. If we compute a smoothed MI

(0.5 is added to each cell), then we can show that the global sensitivity is at most

N log(3) + log(N + 1) + 1 . The following proof uses the fact that x log x+1 goes to
ln 2 x

1

ln 2 as x goes to ∞, and 0 when x goes to 0.

�
�� �������

���������� � ���������� �������� �������� �������� �������� ����

92

The following analysis is based on the Table 5.8. Without loss of generality, we

will assume that the neighboring database D ' differ in the element Nwi,c1 (i.e., D ' has

count Nwi,c1 + 1).

GSMI (wi) = MI ' (D, wi) − MI ' (D ' , wi)avg avg0 0
= N ' I ' (wi, cj) − I(wi, cj)cj

Ncj

j j

(N + 1)(Nwi,c1 + 1) NNwi,c1 = (Nc1 + 1) log − (Nc1) log
(Nwi + 1)(Nc1 + 1) (Nwi)(Nc1) 0 (N + 1)(Nwi,cj) NNwi,cj+ (Ncj) log − (Ncj) log

j=2
(Nwi + 1)(Ncj) (Nwi)(Ncj)

(N + 1)(Nwi,c1 + 1)(Nwi)(Nc1) (N + 1)(Nwi,c1 + 1)
= Nc1 log + log

(N)(Nwi,c1)(Nwi + 1)(Nc1 + 1) (Nwi + 1)(Nc1 + 1) 0 (N + 1)(Nwi)+ (Ncj) log
(N)(Nwi + 1)

j=2

(Nwi,c1 + 1)(Nc1) (N + 1)(Nwi,c1 + 1)
= Nc1 log + log

(Nwi,c1)(Nc1 + 1) (Nwi + 1)(Nc1 + 1) 0 (N + 1)(Nwi)+ (Ncj) log
(N)(Nwi + 1)

j=1

(Nwi,c1 + 1) (Nc1 + 1) (N + 1)(Nwi,c1 + 1)
= Nc1 log − Nc1 log + log

(Nwi,c1) (Nc1) (Nwi + 1)(Nc1 + 1) 0 0(N + 1) (Nwi + 1)
+ (Ncj) log − (Ncj) log

(N) (Nwi)j=1 j=1

(Nwi,c1 + 1) (Nc1 + 1) (N + 1)(Nwi,c1 + 1)
= Nc1 log − Nc1 log + log

(Nwi,c1) (Nc1) (Nwi + 1)(Nc1 + 1) 0(N + 1) (Nwi + 1)
+ (N) log − (Ncj) log

(N) (Nwi)j=1

(Nwi,c1 + 1) (N + 1)(Nwi,c1 + 1) (N + 1) ≤ Nc1 log + log + (N) log
(Nwi,c1) (Nwi + 1)(Nc1 + 1) (N)

1 ≤ N log 3 + log(N + 1) +
ln 2

93

5.3 Feature Selection: Empirical Evaluation

We now present an empirical evaluation to demonstrate the impact of selecting a

low sensitive feature selection method when using differential privacy. We present χ2

as a baseline, as this is a feature selection technique with a solid theoretical grounding

(but unfortunately, high sensitivity.) We compare with Bray-Curtis dissimilarity and

information gain, as they are the only options with sub-linear sensitivity. GSS is

included because its sensitivity (N) is much smaller compared to its range ([0, N
4

2
]).

We used the 20 newsgroup dataset from the UCI repository [64] for empiri­

cal evaluation, which contains approximately 20,000 documents distributed across

20 different newsgroups (some of them are related, e.g., comp.sys.ibm.pc.hardware

and comp.graphics). We created a subset D from [64] by grouping all the com­

puter/recreation related documents (|D| = 5287) with the label +1/-1 respectively

and used the exponential mechanism for privately selecting (unigram) features.

Intuitively, the exponential mechanism scores all the features in F (feature uni­

verse) according to the database D and selects features each with probability propor­
E×g(D,wi)

2×m×Δg
tional to e , where m is the number of features by which the two neighboring

databases differ1 and g is quality function that is used to measure a feature.

In this dissertation, we consider the whole vocabulary of [64] as F . Higher values

of m denote stronger privacy as an adversary will not be able to distinguish the

presence/absence of m features except with some probability indicated by f. The top

20 features selected by the non-private and differentially private χ2 statistic are shown

in Table 5.10. Similarly, the Tables 5.11 and 5.12 show the top 20 features selected by

the non-private and differentially private feature selection techniques BCD and GSS

respectively. Differentially private χ2 performs poorly due to high sensitivity.

For a more complete comparison of the effectiveness of different differentially pri­

vate feature selection techniques, we compute the overlap of top 100 features selected

privately with the top 100 features selected by the non-private χ2 statistic. Figure 5.1

shows the percentage overlap of the features for different values of m and f. We can

1Neighboring databases have the same number of documents but differ by m features

94

see that BCD and GSS perform well compared to other techniques in the differentially

private setting. An interesting result that we see is the performance of information

gain in the private setting. While IG has relatively low sensitivity, the scores were

all in the range [-5247, -4755]. As a result, the scores were not very discriminatory,

and a small amount of noise relative to the overall possible range of scores turns out

to be significant, resulting in a significant change in the top 100 features. In spite

of the high sensitivity, GSS performed well because the scores were highly discrim-

Table 5.10.: Top 20 features (unigrams) selected using χ2 statistic

χ2 statistic
(Non-private)

DP χ2 statistic
(f = 0.5, m = 1)

windows , team
car , dod

game , year
season , bike

program , players
hockey , card
play , writes

software , baseball
league , graphics

dos , cars

prob , stage
vonda , formatting
subjects , queries

zoroastrian , assassination
morandini , inclination
manfredo , inqmind
finances , daystar
correlation , citroen
eashtar , oxidizer
versatile , ramdisk

Table 5.11.: Top 20 features (unigrams) selected using BCD

BCD
(Non-private)

DP-BCD
(f = 0.5, m = 1)

DP-BCD
(f = 0.5, m = 5)

writes, article
windows, team

year, car
game, dod

program, apr
good, system

software, problem
card, play
file, season

bike, graphics

writes , article
windows , team

year , car
game , dod

apr , program
system , problem
software, problem

good , file
card , play

season , graphics

writes , dod
article , windows

team , year
car , funniest
wasn , files

computer , ftp
good , game

program , play
guzman , psi

avenue , system

95

Table 5.12.: Top 20 features (unigrams) selected using GSS

GSS
(Non-private)

DP-GSS
(f = 0.5, m = 1)

DP-GSS
(f = 0.5, m = 5)

article, windows
team, year
car, game

dod, program
apr, good

system, software
problem, card

play, file
season, bike

graphics, computer

writes, article
windows , team

car, year
game, dod

apr , program
good, card

play, software
system, file

problem, season
games, graphics

windows, writes
article, season
year, software
graphics, don

team, trumpeted
admits, moreillon
adulteries, play

deftwmrc, tractatus
board, prc
game, xauth

inatory (range [3, 1552584]). The global sensitivity of χ2, OR, and MI are all high

and performed equally poorly. Therefore, we do not include the overlap of OR, MI

over χ2 in our comparison graph. In the next section, we compare the performance

of differentially private feature technique in a practical setting.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

O
v
e
rl
a
p

BCD
CHI
GSS
IG

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Epsilon

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

O
v
e
rl
a
p

BCD
CHI
GSS
IG

(a) m = 1 (b) m = 3

Figure 5.1.: Overlap of 100 private & top 100 non-private χ2 features

96

5.3.1 Differentially Private Näıve Bayes Classifier

Näıve Bayes is a classification algorithm that is used to predict the class C of a

given instance W = (W1,W2, . . . ,Wn). It computes P (C|W) by making a conditional

assumption that Wi is independent of other Wj given C. Formally, the problem is to

find cj such that

argmax Pr(C = cj) Pr(Wi = wi|C = cj)

cj
i

To make predictions, we need to estimate P (cj) and P (wj |cj) from a training dataset.

To learn a differentially private näıve Bayes classifier (DP-NB), it is enough to release

the differentially private counts of Nwi,cj and Ncj . Since, the amount of noise added

to Nwi,cj and Ncj is proportion to the number of parameters learned, we use private

feature selection for estimating the parameters of top m features.

To access the effectiveness of the differentially private feature selection techniques,

we compare the performance of differentially private näıve Bayes (achieves document

privacy2) classifier with private feature selection to the baseline non-private näıve

Bayes (NP-NB) classifier. We created two datasets from the 20 newsgroup dataset.

COMP/REC dataset consists of 2907 documents related to computer and 2380 recre­

ational documents. The SCI/POL dataset consists of 2372 science documents and

1949 documents related to politics. The binary classification task was to identify the

type of each document. In both cases, we consider the 20 newsgroup dataset as the

domain and the set of all unigrams present in the domain as feature universe F . The

top m features from F were selected based on the private database D and a feature

selection technique g. The baseline accuracy (computed using 5-fold cross validation)

of the NP-NB classifier for the datasets are shown in Table 5.13. The first column

shows the accuracy (%) of NP-NB when all the features were used for classification.

The second column shows the accuracy of NP-NB when the top 50 features were used

for classification with the feature selection techniques CHI, IG, BCD and GSS.

2Neighboring databases differ by a single document

97

The algorithm for building a DP-NB is shown in Algorithm 8. Step 1 allocates

the privacy budget for releasing Ncj . Step 2 splits the rest of the privacy budget

in to two halves. One half of the privacy budget is used for privately selecting the

top m features and the other half is used for learning the probabilities of the top m

features. Step 4 of the algorithm computes the statistic based on the given feature

selection technique g. Then, step 6 selects the top m features each with probability
E×statistic(D,wi)

2×m×Δg
proportional to e . The noisy class counts Ncj are computed in Step 7.

Steps 8-12, compute the noisy posterior probabilities (Pi,j) for each of the top m

features, where Pi,j denotes the differentially private probability of the feature wi

given category cj .

Table 5.13.: Accuracy (in %) of non-private näıve Bayes classifier

All Features Top 50 Features

CHI IG BCD GSS

COMP/REC 98.4 90.1 90.0 89.3 89.3

SCI/POL 95.8 83.7 83.7 82.5 82.5

0.1 0.25 0.5 0.75 1
Epsilon

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra
cy

DP-BCD
DP-GSS
DP-CHI

DP-IG
All features

0.1 0.25 0.5 0.75 1
Epsilon

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra

cy

DP-BCD
DP-GSS
DP-CHI

DP-IG
All features

(a) COMP/REC dataset (b) SCI/POL dataset

Figure 5.2.: Accuracy of differentially private näıve Bayes classifier with top 50 fea­
tures; x axis shows the values of f in log scale and y axis denoting the accuracy

98

Algorithm 8 Differentially private näıve Bayes classifier

Input: A dataset D ∈ D, universal feature set F , privacy budget f, the number of
features to learn m, feature selection technique g and its sensitivity Δg
Output: Differentially private parameters P̂i,j and N̂cj of näıve Bayes classifier

1:	 f1 = 0.05 × f
2:	 f2 = 0.475 × f
3:	 for wi ∈ D do
4: Compute Statistic[i] based on feature selection technique g
5:	 end for
6:	 Sample m features using Exponential mechanism with Statistic[i] as the scoring

function, Δg as the sensitivity and f2 as the privacy budget. i.e., Pr(wi) ∝
E2×statistic[i]

2×m×Δg
e
ˆ7:	 Ncj = Ncj + Lap(1), where j ∈ {0, 1}

E1

8:	 for i = 1 to k do
9: for j ∈ {0, 1} do
10: P̂i,j = Nwi,cj + Lap(m)

E2

ˆ P̂i,j
11: Pi,j =
N̂cj

12: end for
13: end for
14: Publish P̂i,j and N̂cj

Figures 5.2a and 5.2b shows the accuracy of the DP-NB classifier with differentially

private feature selection techniques DP-GSS, DP-BCD, DP-CHI on COMP/REC and

SCI/POL dataset respectively. We also plotted the results when every feature (All-

Features) was used for building a DP-NB classifier. For All-Features, the differentially

private counts for every feature in F were learned using D. No budget was spent

on feature selection, but the noise added to each Pi,j in step 10 is proportional to
|F|Lap(
2×E2

). The x axis shows the privacy budget f in log scale and accuracy in y

axis. Each data point in the box plot is the accuracy computed using 5-fold cross

validation. The experiment was re-run 25 times and the average accuracy in each

of 25 trials were shown as a box plot. For log f ≥ 0.25, the DP-NB classifier with

DP-BCD/DP-GSS feature selection technique, performs better than DP-χ2, DP-IG

or All-Features.

99

5.3.2 Differentially Private Regularized SVM

For a binary classification task, a support vector machine (SVM) [65] constructs

a hyperplane that maximizes the margin between the two classes. There also exist

techniques such as the kernel trick for SVM, which have been shown to perform well

on non-linearly separable data. [66] proposed a differentially private algorithm for

regularized SVM based on objective perturbation, which involves adding noise to the

objective function prior to minimizing.

We evaluate the performance of non-private SVM (NP-SVM) and differentially pri­

vate SVM (DP-SVM) with private feature selection using the datasets COMP/REC

and SCI/POL. The baseline accuracy (computed using 5-fold cross validation) of the

non-private SVM classifier for the datasets are shown in Table 5.14. The first column

shows the accuracy (%) of NP-SVM when all the features were used for classification.

The second column shows the accuracy (%) of SVM when the top 50 features were

used for classification with the feature selection techniques CHI, IG, BCD and GSS.

Table 5.14.: Accuracy (in %) of non-private SVM

All Features Top 50 Features

CHI IG BCD GSS

COMP/REC 97.6 91.0 91.1 91.1 91.1

SCI/POL 96.3 83.6 83.7 82.2 82.2

Figures 5.3a and 5.3b shows the accuracy of the DP-SVM classifier with differen­

tially private feature selection techniques DP-GSS, DP-BCD, DP-CHI on COMP/REC

and SCI/POL dataset respectively. We were not able to plot the results for All-

Features as the implementation of [66] didn’t scale well beyond 2000 features. There­

fore, we have plotted the box plots for DP-SVM with differentially private top 2000

features. The x axis shows the privacy budget f in log scale and accuracy in y axis.

Each data point in the box plot is the accuracy computed using 5-fold cross validation.

The experiment was re-run 25 times and the average accuracy in each of 25 trials were

100

0.1 0.25 0.5 0.75 1
Epsilon

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

u
ra

cy

DP-BCD
DP-GSS
DP-CHI

DP-IG
Top 2000 features

0.1 0.25 0.5 0.75 1
Epsilon

0.4

0.5

0.6

0.7

0.8

A
cc

u
ra
cy

DP-BCD
DP-GSS
DP-CHI

DP-IG
Top 2000 features

(a) COMP/REC dataset (b) SCI/POL dataset

Figure 5.3.: Accuracy of differentially private regularized SVM classifier with top 50
features; x axis shows the values of f in log scale and y axis denoting the accuracy

shown as a box plot. For log f ≥ 0.25, the DP-SVM with DP-BCD/DP-GSS feature

selection technique, performs better than DP-χ2, DP-IG or top 2000 features.

SVM vs Näıve Bayes Classifier

In case of the non-private version, the performance of SVM was comparable to

or better than non-private NB except when All-Features was used with COMP/REC

dataset. In case of the differentially private version, the performance of DP-SVM is

better than DP-NB if the top 50 features were selected using DP-BCD or DP-GSS

for f ≤ 0.25. For f > 0.25, the accuracies are similar3 .

5.4 Differentially Private Decision Trees

A decision tree is learnt from a training dataset using the top-down approach.

Initially the whole dataset is present in the root node. Beginning from the root node,

3We believe that DP-SVM with All-Features will perform better than DP-NB with All-Features
because the DP-SVM with top 2000 features performed better than DP-NB when the features were
selected using non-private χ2 feature selection technique. However, we were not able to validate it
due to scalability issues with the implementation.

101

0.1 0.25 0.5 0.75 1
Epsilon

0.72

0.74

0.76

0.78

0.80

0.82

A
cc
u
ra
cy

DP-GSS
DP-BCD
DP-MAX
DP-IG

GSS
BCD
MAX
IG

0.1 0.25 0.5 0.75 1
Epsilon

0.5

0.6

0.7

0.8

0.9

1.0

A
cc
u
ra
cy

DP-GSS
DP-BCD
DP-MAX
DP-IG

GSS
BCD
MAX
IG

(a) Adult data set (b) Mushroom data set

0.1 0.25 0.5 0.75 1
Epsilon

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

A
cc
u
ra
cy

DP-GSS
DP-BCD
DP-MAX
DP-IG

GSS
BCD
MAX
IG

0.1 0.25 0.5 0.75 1
Epsilon

0.45

0.50

0.55

0.60

0.65

0.70

A
cc
u
ra
cy

DP-GSS
DP-BCD
DP-MAX
DP-IG

GSS
BCD
MAX
IG

(c) Car data set (d) Contraceptive method choice data set

0.1 0.25 0.5 0.75 1
Epsilon

0.67

0.68

0.69

0.70

0.71

0.72

0.73

0.74

0.75

A
cc
u
ra
cy

DP-GSS
DP-BCD
DP-MAX
DP-IG

GSS
BCD
MAX
IG

(e) Connect-4 data set

Figure 5.4.: Accuracy of differentially private decision trees

�
�

� �

102

the data is partitioned into subsets (intermediate nodes) such that similar instances

are present in each node. This is achieved by selecting a best splitting attribute for

partitioning. The algorithm continues to recurse on each subset (intermediate node),

considering only attributes never selected before. It stops if every element in a node

belongs to the same class or if there are no more attributes to be selected. The

number of instances of each class in a leaf node is saved for future decision making of

a test dataset.

[56] showed that a low sensitivity criteria for split point selection, MAX, signifi­

cantly improved differentially private decision tree accuracy. We extend their results,

comparing BCD and GSS against the measures they used. We built a differentially

private decision tree (DP-DT) classifier based on the algorithm proposed in [56]. The

key differences in constructing a DP-DT are as follows. 1) At each node, the best

splitting attribute should be chosen privately. This is done by scoring each attribute

using a quality function (like information gain, gini impurity etc.) and using the

exponential mechanism to chose the attribute privately. 2) To check the stopping cri­

teria, [56] uses a heuristic, which requires each class count be larger on average than

the standard deviation of the noise in the noisy instance count of the subset. 3) The

number of instances of each class in a leaf node should be released in differentially

private manner.

Apart from information gain and gini index, [56] also evaluated a DP-DT classifier

on the MAX operator described in [67]. MAX is computed as follows.

0
MAX(D, A) = max (NA ,c)

c ∈{c0,c1}
A ∈A

Given a database D and an attribute A, MAX computes the sum of the highest

class frequencies over the values of A. The sensitivity of the MAX function is 1. [56]

got the best results using MAX operator as it had the lowest sensitivity among the

scoring functions. In this section, we also evaluate the performance of BCD and GSS

103

as a scoring function to select the splitting attribute privately and compare their

performance against IG and MAX.

We evaluated the performance of the private decision tree on adult, mushroom,

car and connect-4 datasets from the UCI data repository [64]. The datasets were first

cleaned by removing any missing values and discrete attributes with at most 16 values

were used for tree construction. A non-private decision tree classifier [68] (NP-DT)

and differentially private decision tree classifier [56] (DP-DT) with GSS, BCD, MAX

and IG as the scoring functions were implemented to compare their performance in

a private setting. The accuracy of decision trees were computed using 5-fold cross

validation and the average accuracy value over the rounds are shown in Figure 5.4(a­

e). For the DP-DT, the experiment was repeated 25 times; the average accuracy over

the 5-fold cross validated rounds for each of the 25 trials is given as a box plot.

1. Adult:	 The Adult dataset is drawn from the United States Census [64]. It

is composed of 30,718 instances after the removal of instances with missing

values. The binary classification task is to predict whether an adult income is

greater than 50,000 a year based on the discrete attributes workclass, education,

marital-status, relationship, race and sex. Figure 5.4a shows the accuracy of

NP-DT and DP-DT with GSS, BCD, MAX and IG as the scoring function.

When privacy is not an issue, the decision tree with IG has an accuracy of

81.5%, which is marginally better than the other scoring functions (∼81.3%).

In case of DP-DT, built using a differential private feature selection, we can see

that the accuracy of differentially private GSS, BCD and MAX are at least 1%

better than the differentially private IG for f ≤ 0.5. As we increase f, the gap

widens and there is about 2% gap for f = 1. For f ≤ 0.5, DP-GSS performs the

best and for f ≥ 0.75 DP-MAX is the best performing scoring function.

2. Mushroom: The Mushroom dataset consists of 8124 samples corresponding to

23 species of gilled mushrooms, categorized as edible or poisonous. The clas­

sification task is to predict whether whether a mushroom sample is poisonous

104

or edible depending upon 22 characteristics such as shape, color, surface, etc.

When all the attributes were considered for building a decision tree, NP-DT

with GSS, BCD and MAX performed much better than IG (100% vs 97.5%).

Therefore, we restricted ourselves to a subset (attribute ids 14-22) so that the

performance of the non-private versions were close (97.3% vs 97.1%). When dif­

ferential privacy was used, DP-GSS and DP-BCD scoring functions performed

better than DP-IG and DP-MAX for f ≤ 0.25. But, for f ≥ 0.5, the performance

of DP-MAX was better than DP-GSS, DP-BCD by about 6%.

3. Car:	 The Car evaluation dataset was derived from a simple hierarchical deci­

sion model [69]. It consists of 1728 examples with 4 class labels (unacceptable,

acceptable, good and very good). For our binary classification task, we con­

sidered ‘unacceptable’ as class ‘0’ and rest of the them as class ‘1’ and used

six features on price, technology, and comfort of a car for building the decision

tree. The accuracy of the NP-DT with GSS (85.7%) was slightly lower than

IG and BCD (86.4% and 86.3% respectively). For f ≤ 0.25, the accuracy of

the private scoring functions were almost the same. For f ≥ 0.5, there is a

significant performance improvement when DP-MAX was used and we can see

at least 1-3% gain when it is used as the splitting criteria.

4. Connect-4:	 The connect-4 dataset consists of all legal 8-ply positions in the

game of connect-4 in which neither player has won yet with the class label in­

dicating the outcome of the first player (win, loss or draw) [64]. It is composed

of 67557 samples with 42 attributes describing which player has each position

of the board. In our experiments, we discarded the ’draw’ instances and con­

sidered ‘win’ as class ‘1’ and loss as class ‘0’ and the binary classification task

is to predict if the first player won or lost the game. When every attribute was

considered for building a NP-DT, BCD performed much better than IG. There­

fore, we restricted ourselves to a subset (first 10 attribute ids a1-a6, b1-b4), so

that the performance of the NP-DT with all the scoring functions were close

105

(∼74.9%). Unlike the other datasets, the gains of using a DP-GSS, DP-BCD or

DP-MAX were not huge, but they were still able to beat DP-IG by 0.1%- 0.5%

and the median of the accuracies was consistently better.

In summary, the DP-DT with DP-GSS and DP-BCD perform better than DP­

DT with DP-IG as the scoring function when the size of the dataset is large and the

performance is similar when the dataset size is small. An interesting result we see

with DP-MAX scoring function is that, although it is a low sensitive function, the

accuracy of DP-DT with DP-GSS is better or same as that of DP-MAX for small

values of epsilon (f ≤ 0.25). Smaller values of epsilon means better privacy. But as

the value of epsilon is increased, the performance of DP-MAX is better DP-BCD and

DP-GSS except on the connect-4 dataset.

106

6 CONCLUSION

In this dissertation, we considered the problem of privacy-preserving text analysis with

differential privacy. Providing differential privacy in a secure two-party computation

is challenging with malicious adversaries because the solution of each party adding

noise to the other party’s output to guarantee differential privacy does not work.

Even rational adversaries may behave maliciously (can add a predetermined large

noise) to gain exclusive access to the result, and the very noise that provides privacy

protection also limits detection of malicious behavior.

We presented a secure two-party protocol for pseudo-random sample generation

from an arbitrary Laplace distribution using garbled circuits in a malicious setting.

A direct consequence of this is the ability to build protocols for differentially private

analysis with verifiable noise. As long as one of the parties behave honestly (i.e.

generates a standard uniform sample), a malicious party will not be able to influence

the final result. Unfortunately, this protocol is expensive, limiting its use to off-line

settings.

We also present a much more efficient protocol that succeeds against rational

adversaries: parties where the cost of getting caught behaving maliciously outweighs

the benefits. We demonstrate this in the context of a simple two-party protocol.

The idea of a two-party distributed sampling protocol given in Section 3.3 can be

extended to the multi-party case; the rational adversary approach in Section 3.4 is

more challenging. We leave the question of building efficient protocol for multi-party

case for future work.

In Chapter 4, we investigated the problem of developing data-oblivious algorithms.

In Section 4.2, we presented a data-oblivious secure two-party algorithm for weighted

bipartite matching based on the Hungarian algorithm. We show how to create a

differentially private version that provides a guarantee of differential privacy to both

107

parties. The data-oblivious algorithm presented in Section 4.2 has an overhead of

O(log |V |) compared to an insecure version (plus the constant factor imposed by com­

puting on encrypted data.) We also presented a data-oblivious algorithms for com­

puting the minimum vertex cover in bipartite graphs and detecting articulation points

in undirected graphs. We then introduced f-data-obliviousness, a relaxed notion of

data-obliviousness that helps us to develop efficient protocols for data-dependent al­

gorithms like frequent itemset mining.

Finally, we consider the problem of privacy-preserving classification. Private data

analysis is a challenging task when confronted with high dimensional data such as

text. While feature selection can alleviate these problems, it must be done carefully

to avoid introducing new privacy leaks.

We showed that some of the feature selection techniques can be effective while

still satisfying differential privacy. Others, however, provide a nearly random selec­

tion when differential privacy is satisfied. This work demonstrates that protecting

privacy requires more than simply applying privacy protection methods to existing

data analysis techniques. Careful selection of analysis techniques that both perform

the desired analysis, and do so in a way that inherently limits privacy risks, can sig­

nificantly improve results when privacy protection methods are used. While we deal

only with appropriateness of feature selection techniques, the basic ideas are relevant

to any data analysis task where various techniques may be appropriate for the task.

REFERENCES

108

REFERENCES

[1] Venkatesan T Chakaravarthy,	 Himanshu Gupta, Prasan Roy, and Mukesh K
Mohania. Efficient techniques for document sanitization. In Proceedings of the
17th ACM Conference on Information and Knowledge Management, CIKM ’08,
pages 843–852. ACM, 2008.

[2] Wei Jiang, Mummoorthy Murugesan, Chris Clifton, and Luo Si. t-plausibility:
Semantic preserving text sanitization. In Proceedings of the International Confer­
ence on Computational Science and Engineering, volume 3, pages 68–75. IEEE,
2009.

[3] Balamurugan Anandan, Chris Clifton, Wei Jiang, Mummoorthy Murugesan, Pe­
dro Pastrana-Camacho, and Luo Si. t-plausibility: Generalizing words to desen­
sitize text. Transactions on Data Privacy, 5(3):505–534, 2012.

[4] David Sánchez, Montserrat Batet, and Alexandre Viejo. Automatic general-
purpose sanitization of textual documents. IEEE Transactions on Information
Forensics and Security, 8(6):853–862, 2013.

[5] David Sánchez, Montserrat Batet, and Alexandre Viejo. Utility-preserving san­
itization of semantically correlated terms in textual documents. Information
Sciences, 279:77–93, 2014.

[6] Balamurugan Anandan and Chris Clifton.	 Significance of term relationships
on anonymization. In Proceedings of the 2011 IEEE/WIC/ACM International
Conferences on Web Intelligence and Intelligent Agent Technology, volume 3,
pages 253–256. IEEE Computer Society, 2011.

[7] Chris Clifton, Robert Cooley, and Jason Rennie. Topcat: Data mining for topic
identification in a text corpus. IEEE Transactions on Knowledge and Data En­
gineering, 16(8):949–964, 2004.

[8] Ronen Feldman and Haym Hirsh. Exploiting background information in knowl­
edge discovery from text. Journal of Intelligent Information Systems, 9(1):83–97,
1997.

[9] Andrew Chi-Chih Yao.	 How to generate and exchange secrets. In Proceedings
of the 27th Annual Symposium on Foundations of Computer Science, FOCS ’86,
pages 162–167. IEEE, 1986.

[10] Oded Goldreich.	 Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, 2009.

[11] Carmit Hazay and Yehuda Lindell.	 Efficient Secure Two-Party Protocols: Tech­
niques and Constructions. Springer Science and Business Media, 2010.

109

[12] Pascal Paillier.	 Public-key cryptosystems based on composite degree residuos­
ity classes. In Proceedings of the 18th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, EUROCRYPT ’99, pages
223–238. Springer, 1999.

[13] Ronald Cramer, Ivan	 Damg̊ard, and Jesper B Nielsen. Multiparty computa­
tion from threshold homomorphic encryption. In Proceedings of the 20th Annual
International Conference on the Theory and Application of Cryptographic Tech­
niques, EUROCRYPT ’01, pages 280–300. Springer, 2001.

[14] Adi Shamir. How to share a secret.	 Communications of the ACM, 22(11):612–
613, 1979.

[15] Cynthia Dwork.	 Differential privacy. In Proceedings of the 33rd International
Conference on Automata, Languages and Programming - Volume Part II, ICALP
’06, pages 1–12, Venice, Italy, 2006. Springer-Verlag.

[16] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating
noise to sensitivity in private data analysis. In Proceedings of the 3rd Theory of
Cryptography Conference, TCC ’06, pages 265–284. Springer, 2006.

[17] Frank McSherry and Kunal Talwar. Mechanism design via differential privacy. In
Proceedings of the 48th Annual Symposium on Foundations of Computer Science,
FOCS ’07, pages 94–103. IEEE, 2007.

[18] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. Smooth sensitivity and
sampling in private data analysis. In Proceedings of the 39th Annual ACM Sym­
posium on Theory of Computing, STOC ’07, pages 75–84. ACM, 2007.

[19] Ilya Mironov, Omkant Pandey, Omer Reingold, and Salil Vadhan. Computational
differential privacy. In Proceedings of the 29th Annual International Cryptology
Conference, CRYPTO ’09, pages 126–142, Berlin, Heidelberg, 2009. Springer-
Verlag.

[20] Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed private data analysis:
Simultaneously solving how and what. In Proceedings of the 28th Annual Inter­
national Cryptology Conference, CRYPTO ’08, pages 451–468. Springer, 2008.

[21] Fabienne	 Eigner, Matteo Maffei, Ivan Pryvalov, Francesca Pampaloni, and
Aniket Kate. Differentially private data aggregation with optimal utility. In Pro­
ceedings of the 30th Annual Computer Security Applications Conference, ACSAC
’14, pages 316–325. ACM, 2014.

[22] Vibhor Rastogi and Suman Nath. Differentially private aggregation of distributed
time-series with transformation and encryption. In Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data, SIGMOD
’10, pages 735–746. ACM, 2010.

[23] Elaine Shi, HTH Chan, Eleanor Rieffel, Richard Chow, and Dawn Song. Privacy-
preserving aggregation of time-series data. In Proceedings of the Annual Network
and Distributed System Security Symposium, NDSS ’11. Internet Society, 2011.

[24] Chris Clifton and Balamurugan Anandan. Challenges and opportunities for secu­
rity with differential privacy. In Proceedings of the 9th International Conference
on Information Systems Security, pages 1–13. Springer, 2013.

110

[25] Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Ef­
ficient protocols for realistic adversaries. Journal of Cryptology, 23(2):281–343,
2010.

[26] Gilles Barthe, George Danezis, Benjamin Grégoire, César Kunz, and Santiago
Zanella-Béguelin. Verified computational differential privacy with applications to
smart metering. In Proceedings of the 26th IEEE Computer Security Foundations
Symposium, CSF ’13, pages 287–301. IEEE, 2013.

[27] Yehuda Lindell and Benny Pinkas.	 Privacy preserving data mining. Journal of
Cryptology, 15(3):177–206, 2002.

[28] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters.	 A framework for ef­
ficient and composable oblivious transfer. In Proceedings of the 28th Annual
International Cryptology Conference, CRYPTO ’08, pages 554–571. Springer,
2008.

[29] Yehuda Lindell.	 Fast cut-and-choose-based protocols for malicious and covert
adversaries. Journal of Cryptology, 29(2):456–490, 2016.

[30] Assaf Ben-David, Noam Nisan, and Benny Pinkas.	 FairplayMP: A system for
secure multi-party computation. In Proceedings of the 15th ACM SIGSAC Con­
ference on Computer and Communications Security, CCS ’08, pages 257–266.
ACM, 2008.

[31] Yan Huang, David Evans, Jonathan Katz, and Lior Malka.	 Faster secure two-
party computation using garbled circuits. In Proceedings of the 20th USENIX
Security Symposium, USENIX ’11.

[32] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure compu­
tation with malicious adversaries. In Proceedings of the 21st USENIX Security
Symposium, USENIX ’12.

[33] Michael A Stephens.	 EDF statistics for goodness of fit and some comparisons.
Journal of the American Statistical Association, 69(347):730–737, 1974.

[34] Marina Blanton, Aaron Steele, and Mehrdad Alisagari. Data-oblivious graph al­
gorithms for secure computation and outsourcing. In Proceedings of the 8th ACM
SIGSAC Symposium on Information, Computer and Communications Security,
ASIACCS ’13, pages 207–218. ACM, 2013.

[35] Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and
Moni Naor. Our data, ourselves: Privacy via distributed noise generation. In Pro­
ceedings of the 25th Annual International Conference on the Theory and Appli­
cation of Cryptographic Techniques, EUROCRYPT ’06, pages 486–503. Springer,
2006.

[36] Balamurugan Anandan and Chris Clifton. Laplace noise generation for two-party
computational differential privacy. In Proceedings of the 13th Annual Conference
on Privacy, Security and Trust, 2015, PST ’15, pages 54–61. IEEE, 2015.

[37] Andrew L Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng,
and Christopher Potts. Learning word vectors for sentiment analysis. In Pro­
ceedings of the 49th Annual Meeting of the Association for Computational Lin­
guistics: Human Language Technologies–Volume 1, pages 142–150. Association
for Computational Linguistics, 2011.

111

[38] Octavian Catrina and Sebastiaan De Hoogh.	 Improved primitives for secure
multiparty integer computation. In Proceedings of the International Conference
on Security and Cryptography for Networks, pages 182–199. Springer, 2010.

[39] Michael T Goodrich.	 Randomized shellsort: A simple oblivious sorting algo­
rithm. In Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’10, pages 1262–1277. Society for Industrial and Applied
Mathematics, 2010.

[40] Michael T Goodrich. Zig-zag sort: A simple deterministic data-oblivious sorting
algorithm running in o (n log n) time. In Proceedings of the 46th Annual ACM
Symposium on Theory of Computing, STOC ’14, pages 684–693. ACM, 2014.

[41] Marina Blanton and Siddharth Saraph.	 Oblivious maximum bipartite match­
ing size algorithm with applications to secure fingerprint identification. In Pro­
ceedings of the 20th European Symposium on Research in Computer Security,
ESORICS ’15, pages 384–406. Springer, 2015.

[42] Abdelrahaman Aly, Edouard Cuvelier, Sophie Mawet, Olivier Pereira, and Math­
ieu Van Vyve. Securely solving simple combinatorial graph problems. In Finan­
cial Cryptography and Data Security, FC ’13, pages 239–257. Springer, 2013.

[43] Justin Hsu, Zhiyi Huang, Aaron Roth, Tim Roughgarden, and Zhiwei Steven
Wu. Private matchings and allocations. In Proceedings of the 46th Annual ACM
Symposium on Theory of Computing, STOC ’14, pages 21–30. ACM, 2014.

[44] Emil Stefanov, Marten Van Dijk, Elaine Shi, Christopher Fletcher, Ling Ren,
Xiangyao Yu, and Srinivas Devadas. Path ORAM: An extremely simple obliv­
ious RAM protocol. In Proceedings of the 20th ACM SIGSAC Conference on
Computer and Communications Security, CCS ’13, pages 299–310. ACM, 2013.

[45] Oded Goldreich and Rafail Ostrovsky.	 Software protection and simulation on
oblivious RAMs. Journal of the ACM, 43(3):431–473, 1996.

[46] Marcel Keller and Peter Scholl.	 Efficient, oblivious data structures for MPC.
In Proceedings of the International Conference on the Theory and Application of
Cryptology and Information Security, ASIACRYPT ’14, pages 506–525. Springer,
2014.

[47] Steve Lu and Rafail Ostrovsky.	 Distributed oblivious RAM for secure two-party
computation. In Proceedings of the 10th Theory of Cryptography Conference,
TCC ’13, pages 377–396. Springer, 2013.

[48] Harold W Kuhn.	 The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2(1-2):83–97, 1955.

[49] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast
privacy-preserving computations. In Proceedings of the 13th European Sympo­
sium on Research in Computer Security, ESORICS ’08, pages 192–206. Springer,
2008.

[50] Stanley L Warner.	 Randomized response: A survey technique for eliminating
evasive answer bias. Journal of the American Statistical Association, 60(309):63–
69, 1965.

112

[51] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining associ­
ation rules. In Proceedings of the 20th International Conference on Very Large
Databases, volume 1215 of VLDB ’94, pages 487–499, 1994.

[52] Jaideep Vaidya and Chris Clifton.	 Privacy preserving association rule mining in
vertically partitioned data. In Proceedings of the 8th ACM SIGKDD Interna­
tional Conference on Knowledge Discovery and Data Mining, KDD ’02, pages
639–644. ACM, 2002.

[53] Murat Kantarcioglu and Chris Clifton.	 Privacy-preserving distributed mining
of association rules on horizontally partitioned data. IEEE Transactions on
Knowledge and Data Engineering, 16(9):1026–1037, 2004.

[54] Tamir Tassa.	 Secure mining of association rules in horizontally distributed
databases. IEEE Transactions on Knowledge and Data Engineering, 26(4):970–
983, 2014.

[55] Justin Zhan, Stan Matwin, and LiWu Chang.	 Privacy-preserving collaborative
association rule mining. In Proceedings of the IFIP Annual Conference on Data
and Applications Security and Privacy, DBSEC ’05, pages 153–165. Springer,
2005.

[56] Arik Friedman and Assaf Schuster. Data mining with differential privacy. In
Proceedings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’10, pages 493–502. ACM, 2010.

[57] Noman Mohammed, Rui Chen, Benjamin Fung, and Philip S Yu.	 Differentially
private data release for data mining. In Proceedings of the 17th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD ’11,
pages 493–501. ACM, 2011.

[58] Stephen E Fienberg, Aleksandra Slavković, and Carline Uhler. Privacy preserving
GWAS data sharing. In Proceedings of the 11th IEEE International Conference
on Data Mining Workshops, ICDMW ’11, pages 628–635. IEEE, 2011.

[59] Graham Cormode. Personal privacy vs population privacy: Learning to attack
anonymization. In Proceedings of the 17th ACM SIGKDD International Con­
ference on Knowledge Discovery and Data Mining, KDD ’11, pages 1253–1261.
ACM, 2011.

[60] Jaideep Vaidya, Basit Shafiq, Anirban Basu, and Yuan Hong.	 Differentially pri­
vate naive Bayes classification. In Proceedings of the 2013 IEEE/WIC/ACM
International Joint Conferences on Web Intelligence and Intelligent Agent
Technologies-Volume 01, pages 571–576. IEEE Computer Society, 2013.

[61] Mengdi Huai, Liusheng Huang, Wei Yang, Lu Li,	 and Mingyu Qi. Privacy-
preserving naive Bayes classification. In Proceedings of the International Con­
ference on Knowledge Science, Engineering and Management, pages 627–638.
Springer, 2015.

[62] Luigi Galavotti, Fabrizio Sebastiani, and Maria Simi.	 Experiments on the use
of feature selection and negative evidence in automated text categorization. In
Research and Advanced Technology for Digital Libraries. Springer, 2000.

113

[63] Yiming Yang and Jan O Pedersen.	 A comparative study on feature selection
in text categorization. In Proceedings of the 4th International Conference on
Machine Learning, ICML ’97, pages 412–420, 1997.

[64] M. Lichman. UCI machine learning repository, 2013.

[65] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine Learn­
ing, 20(3):273–297, 1995.

[66] Kamalika Chaudhuri, Claire Monteleoni, and Anand D Sarwate.	 Differentially
private empirical risk minimization. Journal of Machine Learning Research,
12:1069–1109, 2011.

[67] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen.	 Clas­
sification and Regression Trees. CRC press, 1984.

[68] J. Ross Quinlan.	 Induction of decision trees. Machine Learning, 1(1):81–106,
1986.

[69] Marko Bohanec and Vladislav Rajkovic.	 Knowledge acquisition and explana­
tion for multi-attribute decision making. In Proceedings of the 8th International
Workshop on Expert Systems and their Applications, pages 59–78, 1988.

VITA

114

VITA

Balamurugan Anandan received his BE in computer science from Kongu Engi­

neering College, India in 2005 and MS in computer science from University of Illinois

at Chicago in 2009. His research interests are in the intersection of data mining and

privacy, specifically focussing on developing privacy-preserving protocols for text min­

ing. He is also affiliated with the Center for Education and Research in Information

Assurance and Security (CERIAS). He received his PhD in computer science in May

2017.

