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ABSTRACT

James Stephen, Julian PhD, Purdue University, December 2016. Securing Cloud-
Based Data Analytics: A Practical Approach. Major Professor: Patrick Eugster.

The ubiquitous nature of computers is driving a massive increase in the amount

of data generated by humans and machines. The shift to cloud technologies is a

paradigm change that offers considerable financial and administrative gains in the ef-

fort to analyze these data. However, governmental and business institutions wanting

to tap into these gains are concerned with security issues. The cloud presents new

vulnerabilities and is dominated by new kinds of applications, which calls for new

security solutions. In the direction of analyzing massive amounts of data, tools like

MapReduce, Apache Storm, Dryad and higher-level scripting languages like Pig Latin

and DryadLINQ have significantly improved corresponding tasks for software devel-

opers. The equally important aspect of securing computations performed by these

tools and ensuring confidentiality of data has seen very little support emerge for

programmers.

In this dissertation, we present solutions to a. secure computations being run

in the cloud by leveraging BFT replication coupled with fault isolation and b. se-

cure data from being leaked by computing directly on encrypted data. For securing

computations (a.), we leverage a combination of variable-degree clustering, approx-

imated and offline output comparison, smart deployment, and separation of duty

to achieve a parameterized tradeoff between fault tolerance and overhead in prac-

tice. We demonstrate the low overhead achieved with our solution when securing

data-flow computations expressed in Apache Pig, and Hadoop. Our solution allows

assured computation with less than 10 percent latency overhead as shown by our

evaluation. For securing data (b.), we present novel data flow analyses and program



xii

transformations for Pig Latin and Apache Storm, that automatically enable the ex-

ecution of corresponding scripts on encrypted data. We avoid fully homomorphic

encryption because of its prohibitively high cost; instead, in some cases, we rely on a

minimal set of operations performed by the client. We present the algorithms used

for this translation, and empirically demonstrate the practical performance of our

approach as well as improvements for programmers in terms of the effort required to

preserve data confidentiality.
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1. INTRODUCTION

The cloud as a computing platform is getting more popular and mature every day.

Computational needs of industry, academia, and government are being increasingly

met by processing data in the cloud. Recently announced government policies [1]

clearly show an urgent economic requirement for processing data in the cloud. Yet,

a major roadblock to adopting cloud technologies is the lack of trust on the various

facets of cloud computing. The fact that a potentially malicious entity can legally

access computing resources in the same data center or even on the same machines as

well-intended users increases the risk associated with moving computations into the

cloud. Malicious programs, faulty hardware, and software bugs can cause services to

fail and leak confidential data. In this context, it is important to have solutions that

allow us to leverage the immense potential of the cloud without sacrificing security

of computation and data.

1.1 Security in the Cloud

The term “security” is very broad and defines many criteria and corresponding

goals. We limit our discussion to the security goals of confidentiality, integrity and

availability. Most approaches to cloud security geared towards these goals focus by

and large on either (a) communication, (b) data, or (c) computation. Communication-

centric approaches (a) to security in public or in-house clouds focus on setting up thick

firewalls, which monitor in - and outbound traffic. Typically, ports that accept in-

coming data and specific protocols and services are allowed or disallowed based on

the configuration of the firewall. Though required, such perimeter security is not suf-

ficient because, zero-day attacks or insider attacks may compromise one or many of

the internal nodes. Once an internal node is compromised, it can alter computation
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output, delay computations and read confidential data. This can break the integrity,

availability and confidentiality of the system. Data-centric approaches (b) protect

data from computation failures and confidentiality leaks. In all functional systems,

data is under constant churn. Computation adds, deletes and morphs data into new

forms. From a security perspective, this means that efforts to secure data should

not make data non-pliable. Computation-centric approaches (c) to securing compu-

tation focus on fine-grained information-flow [2]. As with data-centric approaches,

information-flow approaches aim at protecting (sensitive) data from leaking. How-

ever, they do not ensure that the computation is behaving according to specification,

i.e., ensuring the computation is doing what it was intended to. In typical cloud

data-flow processing applications, where new data-sets are generated as outcome of

analysis and correlation of existing data-sets and stored for subsequent use, these out-

comes must be trustworthy. In fact, since in the larger picture data-sets are derived

from earlier data-sets, any false results computed violate integrity of the semantic

information in the original data-sets.

1.2 State of the Art

For ensuring the security goals of integrity and availability in the presence of ar-

bitrary faults, Byzantine fault tolerant (BFT) replication [3] can be utilized. BFT

techniques rely on multiple replicas of a computation comparing their output (assum-

ing a correct “majority”) to weed out erratic behaviour. While several fundamental

assumptions of BFT replication — e.g., determinism in replicas for comparisons, pos-

sibility of exploiting redundant hardware — are largely met by typical cloud-based

data-flow applications, existing BFT systems are inapplicable to such applications:

these focus on securing single monolithic servers, and only little work exists on apply-

ing BFT replication beyond such stand-alone servers. Cloud-based data-flow process-

ing systems, inversely, leverage cheap hardware by breaking down applications into

small components which are amenable to parallel execution. When applying BFT
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replication to any one of these components by running multiple replicas of each and

comparing their respective outcomes overheads sum up very quickly.

For ensuring confidentiality, data can be encrypted with cryptographic algorithms.

Further, several existing cryptographic systems (cryptosystems) allow meaningful op-

erations to be performed directly on encrypted data. Advances occurring regularly

in fully homomorphic encryption (FHE) schemes further increase the scope and per-

formance of computations on encrypted data. Unfortunately, such advancements in

cryptography have not translated into programmer-friendly frameworks for big data

analytics with acceptable performance. Currently, for big data programmers to effi-

ciently put existing homomorphic schemes to work they will have to explicitly make

use of corresponding cryptographic primitives. To make this task even more difficult

for the programmer, existing big data analytic jobs are typically expressed in domain

specific security-agnostic high-level data flow languages. This makes the explicit use

of cryptographic primitives even harder.

1.3 Contributions

In this dissertation we investigate approaches for securing analytic computations

on big data that run in cloud-like data centers. We start by investigating mechanisms

for ensuring integrity and availability of a sequence of tasks (e.g., MapReduce jobs) in

the presence of arbitrary (Byzantine) faults. We explore replication based techniques

and develop a system that allow configurable trade-offs between performance and

correctness. We leverage the information we obtain from the execution of replicas to

attribute fault and further isolate malicious nodes.

We then explore mechanisms that ensure confidentiality of data used for analytics

and prevent data from being leaked. To do this we develop systems for batch and

stream based computations. For both systems, we leverage properties of partial

homomorphic cryptographic systems that allow a minimal set of computations to

be executed on data that is already encrypted. We use program analysis to transform
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programs written for non encrypted data sets or data streams and convert them to

programs that work on encrypted data.

1.4 Problem Statement

There are currently no practical, programmer friendly solutions for securing cloud

based data analytics against arbitrary faults or data leaks. Current solutions place an

impractical burden on the programmer, are costly and does not offer solutions that

fit the cloud computing model.

1.5 Thesis Statement

This thesis will introduce systems for securing distributed, cloud based data an-

alytics. These solutions will use replication to ensure integrity and availability, and

computations over encrypted data to ensure confidentiality.

1.6 Organization

This dissertation contains six chapters. Chapter 2 describes our system for se-

curing integrity and availability of computations using Byzantine fault tolerant repli-

cation. Chapter 3 describes our system for ensuring confidentiality of data analytic

jobs. Chapter 4 also focuses on ensuring confidentiality, but looks specifically at the

challenges posed by stream data analytics. Chapter 5 discusses related work and

Chapter 6 concludes the dissertation.
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2. INTEGRITY AND AVAILABILITY IN THE CLOUD

This chapter presents our solution for performing byzantine fault tolerant data ana-

lytics (published in [4]).

2.1 Overview

Over the past few years, compute clouds have emerged as cost-efficient big data

analysis platforms for corporations and governments. Yet, many organizations still

decline to widely adopt cloud services because threats from zero day attacks or account

hijacking can result in compute nodes being compromised and integrity of computa-

tions being violated. Intuitively, Byzantine fault tolerant (BFT) replication [3] is a

powerful means of securing computation and thus achieving integrity and availability

in cloud-based computing. BFT suggests the use of multiple replicas of a sensitive

component, and hinges on the comparison of outcomes produced by these replicas to

determine components with erratic behavior (assuming a correct “majority”). While

several fundamental assumptions of BFT replication — e.g., determinism in replicas

for comparisons, possibility of exploiting redundant hardware — are largely met by

typical cloud-based data-flow applications, existing BFT systems are inapplicable to

such applications: these focus on securing single monolithic servers, and only little

work exists on applying BFT replication beyond such stand-alone servers. Cloud-

based data-flow processing systems, inversely, leverage cheap hardware by breaking

down applications into small components which are amenable to parallel execution.

When applying BFT replication to any one of these components by running multi-

ple replicas of each and comparing their respective outcomes overheads sum up very

quickly.
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2.1.1 Model

In many scenarios, institutions can trust the cloud providers themselves, but not

the users of the system. If we take the example of the US intelligence community,

different agencies have their own inhouse clouds. They want to improve sharing of

information with each other without exposing their own systems to potential weak-

nesses or infections in their peer systems [1]. Such a partial trust model also applies

to many large corporations which include subdivisions hosting their own datacenters.

Within this scenario, the present chapter is concerned with ensuring (a) integrity and

(b) availability, i.e., that computations indeed perform what they were supposed to

(e.g., to avoid obfuscating terrorist activities), and that these computations can be

performed in a timely manner (e.g., to be able to react to real threats on time).

2.1.2 ClusterBFT

This chapter presents ClusterBFT for cloud-based assured data processing and

analysis. ClusterBFT utilizes BFT replication techniques which impose less overhead

than existing cryptographic primitives, but breaks away from the mold of individu-

ally replicating every client request. More precisely, ClusterBFT creates sub-graphs

from acyclic data-flow graphs that are then replicated. This means, rather than en-

during the overhead of BFT consensus at each component involved in the data-flow

processing, we have a system with much less overhead that can dynamically adapt to

changes in required responsiveness and perceived threat level as well as to dynamic

deployment (elasticity). We use a combination of variable-grain clustering with ap-

proximated and offline comparison, separation of duty, and smart deployment to keep

overheads of BFT replication low while providing good fault isolation properties. In

summary, the main contributions of the chapter are (1) identification of challenges

and solutions for achieving availability and integrity of cloud-based data-flow com-

putations with BFT replication, (2) the architecture and implementation of a BFT

solution for such computations, and (3) the evaluation of this solution. Our evalua-
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tion shows less than 10 percent latency overhead in most cases for even complex data

analysis jobs.

2.1.3 Roadmap

The remainder of this chapter is structured as follows. Section 2.2 provides back-

ground information. Section 2.3 lists design principles and challenges. Section 2.4

describes the ClusterBFT architecture in detail. Section 2.5 describes its implemen-

tation. Section 2.6 presents evaluation results. Section 5.1 presents related work.

2.2 Background and Preliminaries

This section presents information pertinent to the remainder of the chapter.

2.2.1 BFT

Byzantine failures [3] model arbitrary faults that may occur in a process during

execution, including malign and benign faults. In order to explain our system better,

we further distinguish Byzantine failures by classifying them based on how they allow

deviation from correct execution. We use the categorization of Kihlstrom et al. [5]

which classifies Byzantine failures as follows:

• Omission (detectable): An omission failure occurs when a process does not send

a message that it is expected to send. These can be detected by setting timeouts

for messages. It is important to note here that in an asynchronous system, a

timeout does not necessarily imply a faulty component.

• Commission (detectable): A commission failure occurs when a process sends a

message it is not supposed to send. Such failures can be detected by checking

if the message is in agreement with at least f+1 other replicas.
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• Unobservable (non-detectable): Unobservable failures are those which other

processes cannot detect based on the messages they receive.

• Undiagnosable (non-detectable): Undiagnosable failures are those that cannot

be attributed to a specific process.

2.2.2 MapReduce and Pig

Big data analysis is one of the major use cases for moving towards cloud computing

and most cloud-specific programming models reflect this. Corresponding runtime

systems try to make use of large numbers of nodes available for data analysis to

decrease latency. The popular MapReduce [6] framework partitions input data and

assigns a mapper process to each input partition. These mapper processes produce

“intermediate” key-value pairs as output which are grouped by key and fed by key to

reducer processes which use these to generate final output. Hadoop [7] is a popular

open source implementation of MapReduce.

Apache Pig [8] is a platform for data analysis that consists of the PigLatin [9]

high-level language for expressing data analysis programs, and a runtime system. Pig

Latin scripts are typically compiled to MapReduce jobs that are executed using a

MapReduce engine such as Hadoop for Pig. To illustrate the benefits of our concepts,

we focus in this chapter on Pig data analysis jobs.

Throughout the chapter, unless otherwise specified, we use the term script to

refer to a Pig (Latin) script. We use the term job to refer to a MapReduce job and

task to refer to map or reduce tasks within a MapReduce job. We use the term job

cluster to refer to the group of nodes involved in executing a specific job.

2.2.3 System Model

We assume that the system is deployed on a cloud service that leases out virtual

machines to users. We refer to one such virtual computation unit as a node. This
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means that there could be multiple nodes on the same physical machine. We assume

that the number of nodes that are faulty at a given time is bounded. For the purpose

of this chapter we focus on computation and assume a trusted storage layer. We are

aware that assuming correctness of a storage system prone to Byzantine faults is am-

bitious, but it is not unrealistic either. Systems like DepSky [10] show its feasibility.

Further, the challenges that need to be solved even with the presence of a trusted

storage are tough and warrant investigation. We present a system for two adversary

models. For both models, we assume that the adversary cannot manipulate the cloud

service provider or violate its specifications. This includes preventing communication

between any two nodes, spawning new Byzantine nodes, and breaking computation-

ally hard cryptographic primitives. A strong adversary can manipulate all internal

aspects of a node and collude with other adversaries. This includes full control over

the executing processes, physical memory and messages being sent out of the node. A

weak adversary shares the same properties of a strong adversary, but may only cause

omission or commission faults.

2.3 ClusterBFT Design

This section presents first our motivation for using BFT techniques in the cloud,

before outlining challenges in such adoption and finally our solutions for overcoming

these.

2.3.1 BFT and the Cloud

We decided to adopt BFT replication due to several intuitive benefits:

Attribution: Along with tolerating benign or malign failures, BFT techniques can

also point to potentially faulty components which helps for attribution as well

as auditing. Indeed, being able to shield computation from malicious entities is

one thing, but in a sea of nodes such as a cloud datacenter it is also necessary to
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keep track of where such accesses were attempted, as these may hint to exploited

leaks and intruders.

Portability and interoperability: BFT techniques can be applied at a higher level

in the protocol stack — here typically at the level of data-flow program execution

— which allows them to be deployed easily across different cloud platforms

and infrastructures, thus supporting portability, cloud interoperability, and the

cloud-of-clouds paradigm [11].

Determinism: Popularity of data-flow languages like PigLatin or DryadLINQ [12]

shows the relevance of data analysis jobs that can be modeled as direct acyclic

graphs (DAGs). These computations and their constituents are by-and-large de-

terministic, which simplifies the comparison of redundant results. Inversely, con-

current client accesses pose challenges when replicating large monolithic servers.

Recent trends in cloud-based data processing include support for iterative and

incremental jobs which contradict the straightforward DAG model [13] but do

not hamper determinism.

Heterogeneity: BFT replication relies on heterogeneity of replicas to ensure that a

majority of replicas are not compromised simultaneously by means of the same

vulnerability. Cloud platforms do expose a uniform hypervisor layer on which

operating systems are deployed, but cloud providers offer a variety of operat-

ing system images that can be deployed on these nodes. Within an operating

system itself, adoption of address space layout randomization (ADSLR) intro-

duces further heterogeneity. DARPA’s Mission-Resilient Cloud program [14]

funds several projects aiming at creating moving targets specifically to further

narrow this gap [15].
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Fig. 2.1.: Part (i) shows a data-flow graph with 7 phases. (ii) focuses on n×m
replication of jobs J1, J2 and J3. (iii) shows clustered replication of J1, J2, J3
requiring only one round of BFT consensus. Tasks within a MapReduce job are
shown one behind the other.

2.3.2 Challenges in Adopting BFT in the Cloud

Though intuitively BFT replication seems like a good match in many ways for

ensuring computation in the cloud, it has thus far not been adopted widely in such a

context due to a variety of open challenges:

C1. Scalability: Datasets are typically many magnitudes higher in cloud-based pro-

gramming than in previous scenarios. As BFT replication protocols hinge on

comparison of redundant outcomes, this translates to large overheads.

C2. Granularity: Data analysis scripts also tend to have multiple jobs where output

of one is fed to the second. This creates a job-chain in which a process that

was a server for one job acts as a client for the second job. Ideally, every

process is fine-grained and can be deployed dynamically. This means, näıve
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BFT replication of each job will result in R = 3f + 1 replicas for each task,

with n×m communication [16] and synchronization after every stage. This is

illustrated by Figure 2.1. The left part (i) shows a Pig-style data-flow graph,

while the middle part (ii) illustrates the n ×m interaction [16] occurring as a

result of replicating every node in the (sub)graph obtained after compilation

to MapReduce jobs: every edge corresponds here in fact corresponds to 4 × 4

interactions. This causes very high resource usage, limiting availability and

increasing cost for huge data-flows.

C3. Rigidity: Clouds represent very dynamic environments, being marketed to meet

instantaneous demands rather than having to over-provision constantly to meet

occasional spikes. This calls for solutions that are flexible and can be adapted

to some degree. The main knob to turn in BFT replication is the replication

degree, which however represents a coarse granularity: typically a replication

degree of 3f+1 = 4 with f = 1 already leads to substantial overhead. The next

larger step, 3f +1 = 7, to tolerate up to 2 failures already leads to prohibitively

larger overhead.

There are are also non-technical factors deterring adoption of BFT replication

in the cloud. As explained by Birman et al. [17], many cloud middleware service

providers have an inherent “fear of synchronization” irrespective of the existence of

fast consensus protocols and success stories like Chubby [18].

2.3.3 ClusterBFT Principles and Architecture Overview

ClusterBFT addresses the challenges C1-C3 above as follows:

Variable granularity: Observe that nothing forces us to replicate every individual

node in the data-flow graph. We could in fact replicate the execution of an

entire data-flow graph 3f + 1-fold, and compare the outcomes at the very end.

More generally speaking, we can choose any intermediate level for clustering



13

nodes in the graph and replicate these subgraphs (addressing C2 above). This

is illustrated by the right part (iii) of Figure 2.1, where the sub-graph of (ii) is

replicated as a whole and comparison only occurs at the end of this sub-graph.

The potential downside of such regrouping is that it may diminish the degree

of fault tolerance and precision of fault attribution: a single deviant node in a

group hampers the outcome of that replica, and identifying which node(s) in

the group exhibit Byzantine behavior becomes harder. In addition, if we do

not end up having sufficiently many identical replica responses, it takes longer

to run additional replicas thus increasing job latency. This tradeoff leads to an

additional knob for users to tweak (C3).

Variable replication: The BFT replication model allows control over how resources

are utilized. Based on the user’s confidence in the cluster, different degrees of

replication can be adopted with different guarantees. A user can specify an

optimistic, f + 1 replicas. In this case, the execution ensures safety, but may

require repeated runs to get correct output. If the user specifies 2f + 1 replicas,

a correct result can be guaranteed if all replicas always reply (no omission

failures). If 3f + 1 replicas are specified, a correct result can be guaranteed

under combination of any kind of Byzantine failure.

Approximate, offline redundancy: Instead of comparing the entire outputs of a

replica set in one go upon sub-job completion, we can choose to (1) only compare

digests, (2) start doing so before sub-job completion, and (3) allow the follow-up

sub-job to proceed based on the complete output before comparison completes.

This reduces the overhead of putting redundancy to work (addressing C1) in a

way allowing further fine-tuning of tradeoffs between performance and security

by control of the resilience of the digests (C3).

Separation of duty: Rather than baking the entire data-flow handling logic into

every node, we can separate architecturally the “front-end” of a data-flow pro-

cessing system which accepts jobs from the actual cluster of worker nodes such as
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MapReduce nodes executing the jobs. This architectural division is illustrated

in Figure 2.2 which outlines the architecture of our solution ClusterBFT detailed

in the next section. Components in the control tier are command and control

processes that provide direction and coordinate computations in the computa-

tion tier. The former tier is trusted, which is achievable by BFT replication

or by implicitly trusting the nodes, i.e., by closely (even manually) monitoring

nodes, or using nodes in the client network or private cloud. The benefit of this

separation is that it limits certain strong assumptions and expensive mecha-

nisms to the front-end, allowing the cluster to focus on work (cf. [19]) and to be

handled more dynamically (C3). This in turns allows the worker node cluster

to be adapted dynamically, by adding and removing nodes based on resource

requirements, measured performance, and of course suspicions.

Fault isolation: Another net advantage of the separation of duty is that the front-

end can keep track of suspicions observed, and can use specific deployment

policies to, for instance, narrow down the (set of) faulty node(s) in a replication

group delivering a faulty response by intentionally partly overlaying the repli-

cation group of a different job on the same nodes. Similarly, dummy jobs can

be used to further probe nodes in such a suspicious replication group. Thus the

tradeoff with attribution precision introduced by variable granularity does not

become a one-way path but becomes a tradeoff with the time it takes to recover

precision (C3).

In the following section we describe the architecture of ClusterBFT and how we put

these principles to work.

2.4 ClusterBFT Architecture and Components

In this section we look at the different components that make up ClusterBFT (see

Figure 2.2). Table 2.1 presents a summary of the symbols used in the following.
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Fig. 2.2.: Architecture

2.4.1 Request Handler

The request handler component is in the control tier. It accepts scripts submit-

ted by the client and submits the script for execution. It consists of three logical

subcomponents outlined below.

Client handler. The client submits the script to the client handler. The client also

specifies the number of expected failures f , a replication factor r and the total number

of verification points n based on the perceived threat level. Verification points are

vertices in the data-flow graph after which output from different replicas are matched.

The client handler generates a logical plan from the script. This is given as input to

the graph analyzer described below.

Graph analyzer. In order to reduce overhead and improve utilization, we need to

identify verification points in the data-flow graph that are most effective. Running

verification after every operation will cause very high overhead and running veri-
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Table 2.1.: Symbols

Symbol Meaning
r Replication factor
n Number of verification points
f Number of expected failures
s Suspicion level

Table 2.2.: Notation

Notation Meaning

ir[v] Input ratio of v
parents(v) All parents of vertex v

level(v)

1 if v = Load

max
p∈parents(v)

1 + level(p) else

min(v,M)
Number of edges between v and
the vertex closest to v in M

fication scarcely will result in more re-computations (hence higher resource usage)

when failures occur. The graph analyzer component, based on the adversary model,

identifies points in the data-flow graph for performing verification. Under the strong

adversary model, only points that correspond to data-flow between jobs are consid-

ered for verification. Under a weak adversary model, any point in the data flow graph

can be considered for verification.

With n verification points requested by the user, we use the marker function

defined in Algorithm 1 to identify the actual points. The symbols and notations used

in Algorithm 1 are defined in Tables 2.1 and 2.2. We explain the intuition behind the

marker function using an example. Consider the data-flow graph in Figure 2.3 and

assume the user specified one verification point. If we decide to perform verification

right after the vertex Load1, then the probability of identifying a fault is very low.

There is a much higher probability that at least one of the nodes that execute the

vertices below Load1 is faulty simply because there are more of them. On the other

end, if we run verification after Join2, then we most probably will know if result
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Algorithm 1 Marker function

1: V . Vertex set
2: n . Number of verification points
3: function mark(V, n )
4: M ← ∅ . Set of marked vertices
5: for 1.. n do
6: max← 0
7: for all v ∈ V do
8: scorev ← ir[v] +min(v,M)
9: if scorev > max then

10: m← v
11: max← scorev
12: end if
13: end for
14: M ←M ∪ {m}
15: end for
16: end function
17: function input ratio(v)
18: if v is Load then
19: ir[v]← input size(v)

total input size

20: else

21: ir[v]←
∑

p∈parents(v)

ipr[p]∑
level(n)=level(v)−1

ipr[n]

22: end if
23: end function

is going to be faulty, but the cost of re-computation, in case f + 1 replicas do not

agree becomes high; the entire sequence of operation needs to be recomputed. The

marker function considers two main parameters to arrive at a verification point that

is a good tradeoff between these two extremes. The ratio of input data that flows

through a vertex and distance of a vertex from another verification point. Using these

two values, the marker function arrives at a mid point suitable for verification. Once

the verification point is identified, the logical plan is instrumented with a verification

function and given to the job initiator. Details of what a verification function are

described next.
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Job initiator and verifier. The instrumented script gets compiled into one or

more MapReduce jobs and the job initiator associates a sub graph identifier sid with

each such job. The job initiator submits a total of r replicas of the job for execution

to the execution handler. All replicas are configured to have the same number of

reduce tasks. The verification function instrumented into the MapReduce job uses a

cryptographic hash function (SHA-256 in our prototype) to compute a digest of the

data streaming through the verification point and sends this digest to the verifier.

The verifier compares corresponding digests from different replicas and asserts that

at least f + 1 are same. The verifier is also responsible for isolating failures and

updating the suspicion level s for each node.The suspicion level of a node is defined

as total number of faults associated with the node divided by the total number of jobs

executed on the node. For clarity, details of fault isolation is specified as a separate

section (2.4.3), after we introduce the remaining components in our architecture.
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2.4.2 Execution Handler

Figure 2.4 shows the internals of the execution handler and how it interacts with

the request handler.

Execution tracker. The job submitted by the request handler is executed by the

execution tracker. Resources available in nodes are partitioned into uniform resource

units ru. A list of all resources is initially loaded from an administrator-provided

inclusion list into the resource table as a tuple 〈nid,#ru, 〈sid...〉, s〉. One tuple rep-

resents a node id nid, the number of resource units ru in that node, the current

allocation of sids and suspicion level s of a node. When the job initiator submits a

job, the job is first added to the job queue. The main sequence of operations that

take place after this is shown in Figure 2.4 (others are omitted for simplicity), and

detailed below:

<nodeid, #ru, <sid..> s>
<nodeid, #ru, <sid..> s>

..
<nodeid, #ru, <sid..> s> Resource 

Manager

Execution Tracker

2.

3.

4.

6. 
Verifier Untrusted Tier

5.

7. 

Resource Table

1.

Fig. 2.4.: Execution tracker & resource manager

1. A node in the untrusted domain with id nid sends a heartbeat message to the

execution tracker.

2. The execution tracker checks with the resource manager to see if there is a task

that can be scheduled on node nid.
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3. The resource manager queries the resource allocation table to retrieve the sids

of tasks currently running on node nid. Using this, the resource manager looks

at the list of running or submitted jobs to check if a there is a task from a job

that does not already have a task running on node nid.

4. The resource manager provides a list of ready tasks corresponding to the number

of free rus in node nid.

5. The execution tracker replies to the heartbeat message with the task that needs

to be executed.

6. During task execution, the verification function creates a message digest of data

streaming through the verification point and sends the digest to the verifier. The

verifier checks for f + 1 matching message digests from different replicas. If the

verifier times out without obtaining f + 1 matching message digests, the job is

initiated again with a higher value for r.

7. Based on the number of non-matching digests, the verifier updates the suspicion

levels of node nid. in the resource table.

Resource manager. We already outlined how the resource manager functions as

part of the working of the execution tracker. There are two goals that we try to

achieve by proper task selection: efficient execution and fast fault identification. Data

local tasks enable faster execution. For fast fault identification job clusters can be

overlapped in specific patterns. The scheduling strategy we use is to cause as many

intersections as there are resource units in a node. That means if one node has

three resource units, we try to pick tasks from three different jobs to execute. Other

strategies can also be used to overlap clusters which we intend to explore in future

work. The administrator can also configure a suspicion threshold such that if s >

threshold, then the resource manager will remove that node from its inclusion list and

ignore further requests from that node. At this point administrators can intervene to
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re-initialize the node by taking the node off the grid, applying securing patches and

reinserting the node.

Algorithm 2 Fault analyzer function

1: D ← A set of disjoint sets.
2: O ← A set of overlapping sets.
3: function Fault Analyzer(S) . S, set of nodes with commission fault
4: if ∀X | X ∈ D,S ∩X = ∅ then
5: D ← {S} ∪D
6: else if ∃Y | Y ∈ D and S ⊂ Y then
7: D ← D \ {Y }
8: O ← O ∪ {Y }
9: D ← D ∪ {S}

10: else
11: O ← O ∪ {S}
12: if |D| = f then
13: for each X ∈ D do
14: A← A ∪X
15: for each X ∈ O do
16: X ← X ∩ A
17: for each X ∈ D do
18: for each Y ∈ O do
19: if X ∩ Y 6= ∅ then
20: I ← I ∪ (X ∩ Y )

21: if | I |= 1 then
22: D ← D \ {X}
23: D ← D ∪ {I}
24: end function

2.4.3 Fault Identification and Isolation

As described in Section 2.4.2, the output verifier collects output digests and asserts

that at least f + 1 digests are the same. If the verifier receives an incorrect digest

or does not receive a digest from nodes executing the data-flow, the suspicion level

of all involved nodes is updated. This means if there is a faulty node that is part of

multiple job clusters, that faulty node is likely to have a higher suspicion level. Once

the verifier identifies a job cluster as returning incorrect result, the fault analyzer
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function in Algorithm 2 is used to further narrow down the list of suspicious nodes.

The fault analyzer works in two stages. In the first stage disjoint subsets of suspicious

nodes are isolated. This set of subsets is denoted by D (line 1). This is done until

the number of such subsets becomes equal to the highest value of f the system has

seen so far (line 12). This allows us to identify subsets of nodes such that there is

exactly one fault per subset. The second stage (lines 13-23) reduces the number of

nodes in these subsets by creating the intersection of a subset with other sets of faulty

nodes. The intuition for the second stage is that if there are f subsets in D and a

new set of faulty nodes intersects with only one of those f subsets, then the nodes in

the intersection must be faulty.

Byzantine behavior also means an infected node may be mostly producing cor-

rect output, and produce incorrect results occasionally. This means if nodes show

malicious intent/fail frequently, fault isolation becomes faster.

2.5 Implementation

This section presents our prototype implementation of ClusterBFT. ClusterBFT is

implemented in Java by modifying Hadoop 1.0.4 [20] and Pig 0.9.2. For instrumenting

the Pig logical plan we modified the Penny [21] monitoring tool, distributed as part

of Pig 0.9.2 source.

2.5.1 Hadoop

Hadoop uses a centralized job tracker and task trackers on each computation node.

The job tracker initiates a MapReduce job and task trackers spawn map or reduce

tasks for the job, and send heartbeat messages and job status updates to the job

tracker. It is relevant here to note that Hadoop allocates resources in a node as task

slots. Each node may have multiple task slots depending on the number of CPU cores

and physical memory available for processing. Typically 3-4 slots can be configured

on a node with 4 CPU cores.
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2.5.2 Request Handler

Penny consists of Penny agents that are inserted between Pig script states. These

agents in turn are implemented as user defined functions that can exchange messages

with other agents and a Penny coordinator. Our changes involve creating a verifying

function as a Penny tool that creates a SHA-256 digest and sends the digest back to

the coordinator in the trusted tier. We modified the Penny infrastructure to allow

creation of multiple coordinators, so that different replicas can reply back to different

coordinators.

2.5.3 Execution Handler

We implement the resource manager by creating a new task scheduler that extends

the TaskScheduler class in Hadoop. Hadoop allows creation of multiple job queues

to which jobs can be submitted. In ClusterBFT each replica of a job can be submitted

to one queue. In order to tolerate faulty nodes, we also need to ensure that tasks from

more than one replica of a job are not scheduled on a same node at any point of time.

Such a collocation could result in one faulty node modifying the outcome of more

than one replica and thus violating safety. Note that this does not prevent us from

collocating tasks from different jobs on the same node. We added data structures to

the JobInProgress class that will keep track of replica information to prevent this

during task scheduling. We also added a new alphanumeric parameter sub.graph.id

to the JobConf class. sub.graph.id corresponds to sid in Section 2.4.1 and is set

during job initiation. All replicas of a single job must have the same sub.graph.id.

JobTracker itself works without any modifications as our execution tracker.

2.5.4 Ensuring Determinism

The data parallelism leveraged by MapReduce may naturally lead to non-determinism,

which can be observed through differing digest values across replicas even without



24

faulty processes. For example in order to calculate an average, instead of finding the

sum of all values of a key and dividing it by the number of values, users may decide to

maintain a moving average, causing final outputs to differ (in the least few significant

bits of precision). Our current prototype works around this issue by ensuring that the

user programs deal with only integer values or truncate the last few decimal points

before performing arithmetic operations. For a more general solution we intend to

address this issue in future work by ordering the intermediate mapper output based

on mapper ids.
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2.6 Evaluation

To assess the benefits of our approach, we evaluate (a) overhead incurred by Clus-

terBFT, (b) gains of ClusterBFT under different replication degrees in the presence

of failures (c) effectiveness of fault isolation algorithm and (d) system performance for

higher approximation accuracy. Setup. For evaluations in Section 2.6.1 and 2.6.2,

we use planet-lab based Vicci [22] as our testbed. Machines are 12-core Intel Xeon

servers with 48GB RAM virtualized using Linux containers. Our untrusted tier con-

sists of 32 nodes and our trusted tier consists of 2 nodes. We use Amazon EC2 for

the evaluation in Section 2.6.4 with 8 nodes in the untrusted tier and 4 nodes in the

trusted tier.

2.6.1 Verification Overhead: Twitter Data Analysis

First we measure the overhead involved in computing digests required for verifica-

tion. For this we use the Twitter data-set from [23] and compute SHA-256 digests at

different points for two Pig scripts. The data-set consists of two columns, user-id and

follower-id represented as numeric values. We run two Pig scripts outlined in [24].

The first script (Twitter Follower Analysis ) counts the number of followers for each

user. It loads the data, filters out empty records, groups the record by user-id, cal-

culates the counts and saves the user-id and respective counts. The second script

(Twitter Two Hop Analysis) lists pairs of users that are are two hops away from one
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another. This job does a self-join that matches one user with all its follower’s follow-

ers. The data-flow graphs for these two scripts are presented in Figure 2.5 (i) and (ii)

respectively. Figures 2.7 and 2.6 shows the total time taken for job completion when

digests are computed at different points of the respective jobs. In both graphs, Single

Execution shows the time taken by a single replica of the script and BFT Execution

shows the time taken by 4 replicas of the script to execute. BFT Execution also

includes the overhead of matching f + 1 digests generated by the replicas. Pure Pig

shows the baseline run with no verification points or replication. When digests are

computed at multiple points in the data-flow graph, it is abbreviated using the first

letter of the verification point. When digests are computed at multiple points in the

data-flow graph, it is abbreviated using the first letter of the verification point. Fig-

ure 2.7 show a minimal overhead of 8% and worst case of 9%, 14% and 19% overhead

with 1, 2 and 3 verification points respectively.

Table 2.3.: ClusterBFT in the presence of Byzantine failures

r =2 r = 3, case 1 r = 3, case 2 r = 4
Measure C P C P C P C P

Latency (s) 1.6× 2.1× 1.1× 1.1× 1.6× 2.1× 1.1× 1.1×
CPU time spent (ms) 3.5× 4.1× 3.1× 3.1× 4.5× 6.2× 4.2× 4.2×
File read (Bytes) 3.6× 4× 2.6× 3× 4.7× 6× 3.6× 4×
File write(Bytes) 3.4× 4× 2.4× 3× 4.7× 6× 3.4× 4×
HDFS write (Bytes) 2× 4× 2× 3× 2× 6× 3× 4×
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2.6.2 Performance under Failures: IRTA Airline Traffic Analysis

Next we look at ClusterBFT’s performance in the presence of node failures. The

input data-set for this evaluation is a 1.3GB subset of airline data-set provided by

RITA [25]. We run a multi-store query outlined in [24] that finds the top 20 airports

with respect to incoming flights, outgoing flights, and overall. The data-flow graph

for this script is shown in Figure 2.5 (iii). The evaluation is set up for f = 1 and we

show the benefits of ClusterBFT under various replication degrees with 2 verification

points. We compare ClusterBFT (C in Table 2.3) with modified version of Pig which

verifies digest of the final output only and not anywhere else in the data-flow graph

(P in Table 2.3). The results are shown in terms of a multiplier over a single run of

standard Pig without replication or digest computation. For both executions (C and

P), one node was set up to always produce commission failures resulting in an incorrect

digest. Also for r = 3, we took two measurements. The first measurement (case 1)

shows results when all computations got done within the verifier timeout value. The

second measurement (case 2) shows one correct replica not responding within the

verifier timeout causing the script to be scheduled again with higher timeout value.

Results show that latency decreases by 23% (r = 2, r = 3 case 2 ) for test runs that

require rescheduling. For runs that do not require rescheduling, our latency is on par

with running multiple replicas, and show up to 14% reduced overhead.

2.6.3 Effectiveness of Fault Isolation: Simulation

Next we evaluate the fault analyzer algorithm outlined in Figure 2. We wrote a

Java-based simulator that mimics resource allocation in a 250 node Hadoop cluster.

Each node is given 3 slots on which tasks can be scheduled. We consider jobs as falling

under three categories: large (requiring 20 to 30 slots), medium (10 to 15 slots) and

small (3 to 5 slots). The exact number of slots is determined uniformly at random.

Each job is also associated with a unit of time as length. We studied the algorithm

under various ratios of small, medium and large jobs as well as various length for jobs.
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We present a subset of our results here. Figure 2.8 shows the average number of jobs

that got completed when the number of disjoint faulty sets (D) becomes equal to f

(Figure 2 line 12). This point is important because the number of suspicious nodes

will not increase after this point. We show measurements for two ratios of job sizes

and two values of f . Job size ratio r1 indicates |large| : |medium| : |small| = 6 : 3 : 1

and r2 indicates 2 : 2 : 1. For f = 1, we used 4 replicas and f = 2, we used

7 replicas. The abscissa shows the probability with which a faulty node produces

a commission failure. This result shows that if a node produces commission faults

with very high probability, then by the time 10 jobs complete execution, we can

isolate the fault to a much smaller subset. If a node produces commission faults with

probability of .6 or more, less than 20 jobs are required to isolate the fault. The

size of these subsets indicate the number of suspicious nodes, and this is explored in

Figure 2.9 and Figure 2.10. In order to understand the number of nodes suspected

by the algorithm and the suspicion level (s) of these nodes, we group suspicion level

into four categories: no suspicion, Low (with 0 < s <= 0.33), Med (0.33 < s ≤ 0.66)

and High (0.66 < s ≤ 1). The goal of the algorithm is to narrow the suspicion

down to fewer nodes, or in other words, we should have less nodes with high value

for s. Figure 2.9 shows how s changes with time. The initial values (Time < 15)

indicates that no job has so far showed a commission fault. After this point we see

that the number of nodes with s > 0 increases. It is also worthwhile to note that

at around Time = 25, |D| becomes equal to f and the number of nodes with s > 0

does not increase further. The graph clearly shows that nodes start with High and

Med suspicion levels, but over time, the suspicion levels of faulty nodes remain High,

and of others are reduced. In fact, in these trials, by Time = 50, only the real faulty

nodes were left in the High suspicion category. In Figure 2.10, we show occasional

spikes in the number of suspicious nodes that we observed in some of the runs. This

happens before |D| becomes equal to f . This is because it may so happen that two

replicas of large jobs show commission fault and all nodes in them gets a non zero
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value for s. But within a few more runs the algorithm prunes the suspicion list and

increasingly suspects the real faulty nodes as can be seen when Time > 35.
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Fig. 2.11.: Computing average weather temperatures

2.6.4 Approximation Accuracy: Weather Average Temperature

Here we test how ClusterBFT performs if we increase the approximation accuracy

from the default, one digest at one verification point, to multiple digests at each

verification points. For this experiment we move away from the assumption of implicit

trust within the trusted tier and instantiate 3f + 1 replicas of the request handler.

We use the BFT-SMaRT [26] library for achieving Byzantine fault tolerance within

these request handler replicas. Input data for this experiment is a 640MB subset of

the Daily Surface Summary of Day weather data [27]. The script involves finding

average temperate over multiple years for each weather station followed by counting

the number of stations with the same average. We take measurements for different

values of f and change the number of lines d for which a digest is created. Figure 2.11

shows the results. In the figure, Full refers to script execution with digest computed

and verified only for the output. ClusterBFT refers to using ClusterBFT with 2

verification points and Individual refers to digest computed for each vertex of the



31

data-flow graph. Results show that latency overhead of ClusterBFT is within 10-18%

of full replication even with increasing approximation accuracy.
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3. CONFIDENTIALITY IN BATCH PROCESSING

SYSTEMS

This chapter presents our solution for performing confidential batch data analytics

(published in [28,29]).

3.1 Overview

The cloud computing model has evolved as a cost-efficient data analysis platform

for corporations, governments and other institutions. A rich set of tools like MapRe-

duce [6], Dryad [30], or Spark [13] — just to name a few — allow developers to execute

data analysis jobs in the cloud easily. However, in order to take advantage of these

possibilities, developers are faced with the decision of moving sensitive data to the

cloud, and placing trust on infrastructure providers. Even with a trusted provider,

malicious users and programs and defective software can leak data.

3.1.1 Computing on Encrypted Data

Several existing cryptographic systems (“cryptosystems”) allow meaningful oper-

ations to be performed directly on encrypted data. Advances occurring regularly in

fully homomorphic encryption (FHE) schemes (e.g. [31]) further increase the scope

and performance of computations on encrypted data. These cryptosystems present

an opportunity to maintain sensitive data only in an encrypted form in the cloud

while still enabling meaningful data analysis. Even within an enterprise, maintaining

data in an encrypted format helps prevent insider attacks and accidental leaks.

Unfortunately, such advancements in cryptography have not translated into pro-

grammer friendly frameworks for big data analysis with acceptable performance. Cur-
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rently, for a big data programmer to efficiently put existing homomorphic schemes to

work she will have to explicitly make use of corresponding cryptographic primitives in

her data analysis jobs. Consider a simple program that finds the total marks obtained

by students: the programmer is burdened by the task of identifying an encryption

scheme suitable to represent such an operation (Paillier [32] in this example with ad-

dition) and express the operation (summing) in cryptographic terms (multiplication

of encrypted operands followed by a modulo division by the square of the public key).

To make this task even more difficult for the programmer, big data analysis jobs

are typically expressed in domain-specific security-agnostic high-level data flow lan-

guages, like Pig Latin [9] or FlumeJava [33], which are commonly compiled to se-

quences of several MapReduce tasks [6]. This makes the explicit use of cryptographic

primitives even harder. Recent approaches to automatically leveraging partially ho-

momorphic encryption (PHE) — e.g., addition of values encrypted with Paillier cryp-

tosystem via multiplication — for secure cloud-based computing target different ap-

plication scenarios or work-loads. For instance, the MySQL-based CryptDB [34]

supports SQL queries on encrypted data yet does not enable parallelization through

MapReduce; MrCrypt [35] only supports individual MapReduce tasks.

3.1.2 Approach

In this chapter we present a program analysis and transformation scheme for the

Pig Latin high-level big data analysis language which enable the efficient execution

of corresponding scripts by exploiting cloud resources but without exposing data in

the clear. We implemented this program analysis and transformation inside a secure

Pig Latin runtime (SPR). More specifically, we extend the scope of encryption-enabled

big data analysis based on the following insights:

Extended program perspective: By analyzing entire data flow programs, SPR can

identify many opportunities for operating in encrypted mode. For example, SPR

can identify operations in Pig Latin scripts that are inter-dependent with respect to
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encryption, or inversely, independent of each other. More precisely, when applying

two (or more) operations to the same data item, many times the second opera-

tion does not use any side-effect of the former, but operates on the original field

value. Thus, multiple encryptions of a same field can support different operations

by carefully handling relationships between encryptions.

Extended system perspective: By considering the possibility of performing subcom-

putations on the client side, SPR can still exploit cloud resources rather than giving

up and forcing users to run entire data flow programs in their limited local infras-

tructure, or defaulting to FHE (and then aborting [35]) when PHE does not suffice.

For example, several programs in the PigMix (I+II) benchmarks [36] end up aver-

aging over the values of a given attribute for several records after performing some

initial filtering and computations. While the summation underlying averaging can

be performed in the cloud via an additive homomorphic encryption (AHE) scheme,

the subsequent division can be performed on the client side.

Considering that the amount of data continuously decreases as computation ad-

vances in most analysis jobs, it makes sense to compute as much as possible in the

cloud.

3.1.3 Contributions

The contributions of this chapter are as follows. After presenting background

information on homomorphic encryption and Pig Latin, we

1. propose an execution model for executing Pig Latin scripts in the cloud without

sacrificing confidentiality of data.

2. outline a novel data flow analysis and transformation technique for Pig Latin

that distinguishes between operations with side-effects (e.g., whose results are

used to create new intermediate data) and without (e.g., filters). The results

are semantically equivalent programs executable by SPR that maximize the

amount of computations done on encrypted data in the cloud.
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3. present initial evaluation results for an implementation of our solution based on

the runtime of Pig Latin scripts obtained from the open-source Apache Pig [8]

PigMix benchmarks.

The remainder of this chapter is organized as follows. Section 3.2 presents back-

ground information on homomorphic encryption and Pig Latin. Section 3.3 outlines

the design of our solution. Section 3.4 presents our program analysis and transforma-

tion. Section 3.5 outlines the implementation of SPR. Section 3.6 presents empirical

evaluation. Section 3.7 discusses limitations. Section 5.2 contrasts with related work.

3.2 Background

This section presents background information on homomorphic encryption and

our target language Pig Latin.

3.2.1 Homomorphic Encryption

A cryptosystem is said to be homomorphic (with respect to certain operations) if

it allows computations (consisting in such operations) on encrypted data. If E(x) and

D(x) denote the encryption and decryption functions for input data x respectively,

then a cryptosystem is said to be homomorphic with respect to addition if ∃ψ s.t.

D(E(x1)ψE(x2)) = x1 + x2
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Dually a cryptosystem is said to provide additive homomorphic encryption (AHE).

Similarly a cryptosystem is said to be homomorphic with respect to multiplication or

support multiplicative homomorphic encryption (MHE) if ∃χ s.t.

D(E(x1)χE(x2)) = x1 × x2

Other homomorphisms are with respect to operators such as “≤” and “≥” (order-

preserving encryption – OPE) or equality comparison “=” (deterministic encryption

– DET). Randomized (RAN) encryption does not support any operators, and is in-

tuitively, the most desirable form of encryption because it does not allow an attacker

to learn anything.

3.2.2 Pig/Pig Latin

Apache Pig [8] is a data analysis platform which includes the Pig runtime system

for the high-level data flow language Pig Latin [9]. Pig Latin expresses data analysis

jobs as sequences of data transformations, and is compiled to MapReduce [6] tasks

by Pig. The MapReduce tasks are then executed by Hadoop [20] and output data

is presented as a folder in HDFS [37]. Pig allows data analysts to query big data

without the complexity of writing MapReduce programs. Also, Pig does not require

a fixed schema to operate, allowing seamless interoperability with other applications

in the enterprise ecosystem. These desirable properties of Pig Latin as well as its

wide adoption1 prompted us to select it as the data flow language for SPR.

We give a short overview of Pig Latin here and refer the reader to [9] for more

details.

Types. Pig Latin includes simple types and complex types. The former include signed

32-bit and 64-bit integers (int and long respectively), 32-bit and 64-bit floating point

1According to IBM [38], “Yahoo estimates that between 40% and 60% of its Hadoop workloads are
generated from Pig [...] scripts. With 100,000 CPUs at Yahoo and roughly 50% running Hadoop,
that’s a lot[...]”.
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values (float, double), arrays of characters and bytes (chararray, bytearray),

and booleans. Pig Latin also pre-defines certain values for these types (e.g., null).

Complex types include the following:

• bags {...} are collections of tuples.

• tuples (...) are ordered sets of fields.

• maps [...] are sets of key-value pairs key#value.

Furthermore, a field is a data item, which can be a bag, tuple, or map. Pig Latin

statements work with relations ; a relation is simply a (outermost) bag of tuples.

Relations are referred to by named variables called aliases. Pig Latin supports as-

signments to variables.

Operators and expressions. Relations are also created by applying operators to

other relations. The main relational operators include:

JOIN This same operator is used with various parameters to distinguish between inner

and outer joins. The syntax closely adheres to the SQL standard.

GROUP Elements of several relations can be grouped according to various criteria.

Note that GROUP creates a nested set of output tuples while JOIN creates a flat

set of output tuples.

FOREACH...GENERATE Generates data transformations based on columns of data.

FILTER This operator is used with tuples or rows of data, rather than with columns

of data as FOREACH...GENERATE.

Operators also include arithmetic operators (e.g.,+, -, \, *), comparisons, casts,

and STORE and LOAD operators.

Pig Latin is an expression-oriented language. Expressions are written in conven-

tional mathematical infix notation, and can include operators and functions described

next.
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Functions. Pig Latin includes built-in and user-defined functions. The former in-

clude several different categories:

• Eval functions operate on tuples. Examples include AVG, COUNT, CONCAT, SUM,

TOKENIZE.

• Math functions are self-explanatory. Examples include ABS or COS.

• String functions operate on character strings. Examples include SUBSTRING or

TRIM.

User-defined functions (UDFs) in Pig Latin are classified as: (1) built-in UDFs, or

(2) custom UDFs. The former are pre-defined functions that are delivered with the

language toolchain. Examples include “composed” functions like SUM. In this chapter

we focus on the former kind of UDFs due to the complexity involved in analyzing the

latter.

Example. To understand the constructs of Pig Latin, we present a simple word

count example in Listing 3.1. In this example, a relation input_lines is first gener-

ated with elements called line of type chararray read from an input input_file.

Next, the script breaks these lines into tokens, representing individual words. Then,

occurrences of a same word are GROUPed, and their respective number of occurrences

COUNTed. Finally the data in this table is STOREd in a file output_file.

1 input_lines = LOAD ’input_file’ AS (line:chararray);

2 words = FOREACH input_lines GENERATE FLATTEN(TOKENIZE(line)) AS

word;

3 word_groups = GROUP words BY word;

4 word_count = FOREACH word_groups GENERATE group, COUNT(words);

5 STORE word_count INTO ’output_file’;

Listing 3.1: Source Pig Latin script S1
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3.3 Execution Model

SPR is a runtime for Pig Latin that supports cloud-based execution of scripts

written in the original Pig Latin language in a confidentiality-preserving manner.

The adversary in our model can have full control of the cloud infrastructure. This

means the adversary can see all data stored in the cloud and the scripts that operate

on data. In order to preserve confidentiality in the presence of such an adversary only

encrypted data is maintained in the cloud and SPR operates on this encrypted data.

However, SPR does not address integrity and availability issues. (Corresponding

solutions are described in our previous work [4] which inversely, however, does not

address confidentiality.)

Figure 3.1 presents an overview of the execution model of SPR. Script execution

proceeds by the following steps:

1. Program transformation. Script execution starts when a user submits a

Pig Latin script operating on unencrypted data (source script). SPR analyzes the

script to identify the required encryption schemes under which the input data should

be encrypted. For the transformed script to operate on encrypted data, operators

in the source script are replaced with calls to secure UDFs that perform the corre-

sponding operations on encrypted data. E.g., an addition a + b in the source script

will be replaced by a × b mod n2, with n the public key used for encrypting a and

b. Constants are also replaced with their encrypted values to generate a target script

that executes entirely on encrypted data. Details of this transformation yielding an

encryption-enabled script are presented in Section 3.4.

2. Infer encryption schemes. Using the input file names used in the source script,

the encryption service checks what parts of the input data are already encrypted and

stored in the cloud. Some parts of the input data might already be encrypted under

multiple encryption schemes (to support multiple operations) and other parts might

not be available in the cloud at all. The encryption service maintains an input data

encryption schema which keeps track of this mapping between plain text input data
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and encrypted data available in the cloud. Based on the input data encryption schema

and the required encryption schemes inferred in the previous step, the encryption

service identifies the encryption schemes missing from the cloud.

3. Encrypt and send. Once the required encryption schemes that are missing

from the cloud is identified, the encryption service loads the unencrypted data from

local storage, encrypts it appropriately and sends it to the cloud storage. The en-

cryption service makes use of several encryption schemes each implemented using

different cryptosystems. Implementation details of these encryption schemes are pre-

sented in 3.5. Each of these encryption schemes has its own characteristics. The

first scheme is randomized (RAN) encryption which does not support any operators,

and is intuitively, the most secure encryption scheme. The next scheme is the deter-

ministic (DET) encryption scheme which allows equality comparisons over encrypted

data. Order-preserving encryption (OPE) scheme allows order comparisons using the

order-preserving symmetric encryption [39]. Lastly, additive homomorphic encryp-

tion (AHE) allows additions over encrypted data, and multiplicative homomorphic

encryption (MHE) allows us to perform multiplications over encrypted data.

4. Execute transformed script. When all required encrypted data are loaded in

the cloud, the execution handler issues a request to start executing the target script.

5. UDFs. SPR defines a set of pre-defined UDFs that handle cryptographic opera-

tions. Such UDFs are used to perform operations like additions and multiplications

over encrypted data. The target script calls these UDFs using standard Pig Latin

syntax as part of the script execution process.

6. Re-encryption. During the target script execution, intermediate data may be

generated as operations are performed. The encryption scheme of that data depends

on the last operation performed on that data. For example, after an addition oper-

ation, the resulting sum is already encrypted under AHE. If that intermediate data

is subsequently involved in an operation that requires an encryption scheme other

than the one it is encrypted under (for example multiplying the sum with another
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value requires MHE), the operation cannot be performed. (The ability to apply ad-

ditions and multiplications in sequence is viewed as defining characteristic of FHE.)

SPR handles this situation by re-encrypting the intermediate data. Specifically, the

intermediate data is sent to the client where it can be securely decrypted and then

encrypted under the required encryption scheme (for example the sum is re-encrypted

under MHE), before sent back to the cloud. Once the re-encryption is complete, the

execution of target script can proceed.

7. Results. Once the job is complete, the encrypted results are sent to the client

where they can be decrypted.

3.4 Program Analysis and Transformation

In this section we give a high level overview of how Pig Latin scripts are analyzed

by SPR and transformed to enable execution over encrypted input data.

3.4.1 Running Example

We use the Pig Latin script shown in Listing 3.2 as a running example to explain

the analysis and subsequent transformation process. This script is representative of
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the most commonly used relational operations in Pig Latin and allows us to explain

key features about SPR. The script loads two input files: input1 with two fields and

input2 with a single field. The script then filters out all rows from input1 which

are less than or equal to 10 (Line 3). Lines 4 and 5 group input1 by the first field

and find the sum of the second field for each group. Line 6 joins the sum per group

with the second input file input2 to produce the final result which is stored into an

output file out (Line 7).

1 A = LOAD ’input1’ AS (a0, a1);

2 B = LOAD ’input2’ AS (x0);

3 C = FILTER A BY a0 > 10;

4 D = GROUP C BY a1 ;

5 E = FOREACH D GENERATE group AS b0, SUM(C.a0) AS b1;

6 F = JOIN E BY b0, B BY x0;

7 STORE F into ’out’;

Listing 3.2: Source Pig Latin script S1

3.4.2 Definitions

In order to describe our program analysis and transformation we first introduce

the following definitions.

Map of expression trees (MET). All the expressions that are part of the source

script are represented as trees and added to the map of expression trees (MET) as

values. The keys of the MET are simple literals used to access these expression trees.

Figure 3.3a shows the MET for the Pig Latin script in Listing 3.2. Keys of the MET

are shown in square brackets. Note that operands that are not part of any expression

are surrounded by a nop (no operation) vertex and operands that are part of a group

by or join operation are surrounded by an assert_det (assert deterministic) vertex.

The assert_det vertex can be seen as a simple operator that requires its operand

to be present in DET encryption.
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>

a0 10

assert_det

a1

nop

group

sum

a0

assert_det

b0

assert_det

x0

[1] [2]

[3] [4]

[5] [6]

(a) Map of expression trees

A: LOAD B: LOAD

C: FILTER A BY [1]

D: GROUP C BY [2]

E: FOREACH D GENERATE [3],[4]

F: JOIN E BY [5], B BY [6]

(b) Data flow graph

Fig. 3.3.: MET and DFG for Pig Latin script in Listing 2. Keys of MET are shown
in square brackets.

Data flow graph. We represent a Pig Latin script S using a data flow graph (DFG).

More precisely, S = {V,E}, where V is a set of vertices and E is a set of ordered

pairs of vertices. Each v ∈ V represents a relation in S. Each e ∈ E represents a data

flow dependency between two vertices in V . Note that it follows from the nature of

the Pig Latin language that DFG is acyclic. For describing our analysis, we consider

a vertex v ∈ V representing the Pig Latin relation R to have two parts: (a) the
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Pig Latin statement representing R with all expressions replaced by their keys in the

MET and (b) the fields in the schema of R.

Programmatically a data flow graph G exposes the following interface

• Iterator getIter() Returns an iterator representing the list of relations in G in

topologically sorted order.

Annotated field (AF). We represent each field in the schema of each relation

by an annotated field abstraction. In other words there will be one AF for every

〈relation, field〉 pair. The intution behind using AFs instead of actual field names

is that in the transformed program one field in the source script may be loaded as

multiple fields, each under a different encryption scheme. Each AF consists of the

following three annotations.

• parent: AFs track their lineage using this parent field. The parent of an anno-

tated field could be another annotated field or an expression tree in the MET.

In cases where an AF represents a field which is newly generated as part of a

Pig Latin relational operation (GROUP ..BY, FOREACH etc.), the parent will be

the expression tree used to generate it. Otherwise, the parent of an AF will be

the corresponding AF in the vertex in the DAG that comes before it.

• avail: This annotation represents the set of encryption schemes available for the

field being represented. At the begining of the analysis this property will be

empty. This will be filled in as part of the program analysis.

• req: This represents the encryption scheme that is required for this field by our

execution engine for encryption-enabled execution.

Map of annotated fields (MAF). We capture the mapping between 〈relation, field〉

pairs and corresponding AFs using map of annotated fields (MAF). The MAF for the

Pig Latin script in Listing 3.2 is shown in Table 3.1. Note that annotated fields

are unique within a Pig Latin script which allows us to implement the MAF as a

bidirectional map allowing lookups based on keys as well as values.



45

Table 3.1.: Map of annotated fields for Pig Latin script in Listing 3.2. †Keys are
pairs of 〈relation, field〉 and ‡values are corresponding annotated fields. NE
represents no encryption.

Key† Value‡ After analysis

A,a0 f0<null,NE,NE> f0<null,{ALL},OPE>

A,a1 f1<null,NE,NE> f1<null,{ALL},NE>

B,x0 f2<null,NE,NE> f2<null,{ALL},DET>

C,a0 f3<f0,NE,NE> f3<f0,{ALL},NE>

C,a1 f4<f1,NE,NE> f4<a1,{ALL},DET>

D,gr f5<[2],NE,NE> f5<[2],{DET},NE>

D,a0 f6<f3,NE,NE> f6<f3,{ALL},AHE>

D,a1 f7<f4,NE,NE> f7<f4,{ALL},NE>

E,b0 f8<[3],NE,NE> f8<[3],{DET},DET>

E,b1 f9<[4],NE,NE> f9<[4],{AHE},NE>

F,b0 f10<f4,NE,NE> f10<f4,{ALL},NE>

F,b1 f11<f3,NE,NE> f11<f3,{AHE},NE>

F,x0 f12<f3,NE,NE> f12<f3,{ALL},NE>

Algorithm 3 Determining available encryption scheme for fields in MAF fs for a
DFG G

1: met . MET for DFG G
2: procedure availableEnc(G, fs)
3: iter ← G.getIter();
4: while r ← iter.next() do
5: anFields← getAFs(fs, r)
6: for each af ∈ anFields do
7: findAvail(af)

8: end while
9: end procedure

10: function findAvail(af) . af is Annotated Field
11: if af.parent is null then
12: af.avail← encService(met.getkey(af))
13: else if af.parent ∈ met.keys() then
14: exprTree← met.get(af.parent)
15: af.avail← outenc(exprTree.root.operator)
16: else
17: af.avail← af.parent.avail

18: end function
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Table 3.2.: Description of functions used in program analysis and transformation

Function name Description

getAFs(maf, r) Returns list of annotated fields which contain the rela-
tion r as a part of their key in maf

outEnc(op) Returns the encryption scheme in which the result will
be after performing the operation op

inEnc(op) Returns encryption schemes in which the operands of
operator op much be specified

addToList(list, elem) Adds elem to the list of values represented by list

replaceAF(af, fld) Replaces all occurrences of the annotated field af in
expressions and relations with the field fld

insertVertex(v, bv) Inserts new vertex v before vertex bv inmet. The parent
of v is set to be the parent of bv and the parent of bv is
set to be v

3.4.3 Analysis

Using the programming abstractions defined above, we describe the program anal-

ysis and transformation that we perform. Before the analysis, as part of initialization,

all operators and UDFs to be used in the script are pre-registered with the encryp-

tion scheme required for operands and the encryption scheme of output generated.

Some Pig Latin relational operators also require fields to be in specific encryption

schemes. For example, the field or expression which is the grouped field of GROUP

BY, require the field or expression to be available in DET encryption. Further the

encryption scheme of the new “group” field generated by the GROUP BY operator

will also be available in DET encryption. For example, the assert_det function

that we introduced will be registered with required encryption scheme as DET and

output encryption scheme also as DET. To keep the description simple, we encap-

sulate this static information as two function calls in our algorithm: outEnc(oper)

which returns the output encryption scheme of the operator oper and inEnc(oper)

which returns the operand encryption scheme required for oper. These functions are

summarized in Table 3.2.
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The available encryption scheme for each AF is identified by observing the lin-

eage information available through the parent field of AFs and metadata about the

encrypted input file. Details of available encryption scheme analysis is presented by

Algorithm 3. The available encryption schemes for AFs part of the LOAD operation

are set based on metadata about the encrypted file. For other than LOAD operators,

the available encryption schemes for AFs depend on their lineage. If the AF is derived

by an expression, available schemes for the AF are determined by the deriving ex-

pression. For example, the available encryption scheme for the AF representing field

b1 in B = FOREACH A GENERATE a0+a1 as b1; is determined by the expression

a0 + a1 or more precisely by the operator +. If the AF is not explicitly derived, but

is carried forward from a parent relation, then the AF simply inherits the available

encryption schemes of the parent AF. For example, the available encryption schemes

for the AF representing field a0 in B = FILTER A BY a0 < 10; is same as the

encryption schemes available for the parent AF representing field a0 in relation A.

Next we describe how the required encryption field is populated in each AF. As

part of our initialization, once the MAF is generated, we replace each field in the

MET by the AF representing that field. Once this is done, the required encryption

for each AF can be identified by iterating over all leaf vertices of all expression trees

in the MET. The required encryption scheme for each leaf vertex is the same as

inEnc(parent operator), where parent operator is the operator for which the leaf

vertex is the operand. This procedure is thus straightforward and we do not present

this as a separate algorithm.

3.4.4 Transformation

Next we describe how a Pig Latin script, represented as S = {V,E}, is transformed

into the encryption-enabled target script. We describe the transformation process in

multiple sections. In each section we give an overview of why we perform a specific

transformation and then describe the transformation process itself.
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1 A = LOAD ’enc_input1’ AS (a0_ope, a0_ah, a1_det);
2 B = LOAD ’enc_input2’ AS (x0_det);
3 C = FILTER A BY OPE_GREATER(a0_ope ,

’0xD0004D3D841327F2CCE7133ABE1EFC14’);
4 D = GROUP C BY a1_det ;
5 E = FOREACH D GENERATE group AS b0, SUM(B.a0_ah) AS b1;
6 F = JOIN E BY b0, B BY x0_det;
7 STORE F into ’out’;

Listing 3.3: Transformed Pig Latin script

Algorithm 4 Program transformation

1: S . Pig Latin script S
2: met . MET
3: file . input file used in LOAD
4: procedure transformMain(S)
5: for each input file ∈ S do
6: transform(input file)

7: end procedure
8: function transform(file)
9: initilize empty(list)

10: for each pt col id ∈ file do
11: af ← AFFromCol(pt col id)
12: findReq(list, af, pt col id)
13: encFileLoader(list, file)

14: end function
15: function findReq(list, parent af, pt col id)
16: for each af ∈ maf | af.parent == parent af do
17: if af.req 6⊆ af.avail then
18: insertVertex(re enc, af)
19: else
20: enc field← encService(pt col id, af.req)
21: addToList(list, enc field)
22: replaceAF(af, enc field)
23: findReq(list, af)

24: end function

Multiple encryption fields. A potential overhead for the client is having to re-

encrypt data in an encryption scheme appropriate for execution in the cloud. We

use multiple encryptions for the same column whenever possible to minimize such
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computations on the client side. For example in Listing 3.2 column a0 is used for

comparison (line 3) and for addition (line 5). The näıve approach in this case would

be to load column a0 in OPE to do the comparison and to re-encrypt it to AHE

between lines 3 and 5 to enable addition. But this puts a computational burden

on the client cluster, and requires sending data back-and-forth between the client

and the cluster, thus increasing latency. Such a re-encryption can be avoided if we

transform the source Pig Latin script such that both encryption forms for a0 are

loaded upfront as two columns. We identify opportunities for such optimizations

using the MAF abstraction. We describe next how the different encryption schemes

to be loaded for a field ai (ai being a field in the source script and not an AF) can be

identified. Once the req field is populated in MAF as part of analysis, we query the

MAF for all AFs where ai is part of the key. These AFs represent all usages of field

ai in the Pig Latin script. The set of values of req of these AFs and their child AFs

represents the different encryption schemes required for field ai. The transformation

then generates the list of fields to be loaded from the encrypted version of the input

file using metadata returned by the encryption service, and modifies the MET to

use the newly loaded fields. This is described as function findReq in Algorithm 4.

Listing 3.3 shows the transformed Pig Latin script for our example. Note that field

a0 is loaded twice, under two encryption schemes.

Re-encryption and constants. AFs where the req encryption is not a subset of

avail represent cases where a valid encryption scheme is not present to perform an

operation. In such cases, we wrap the AFs in a specific reencrypt operation in the

target script. This operation contacts the encryption service on the trusted client

to convert the field to the required encryption scheme. Constants in MET are also

transformed into encrypted form as required for the operation in which they are

used. Note that Listing 3.3 shows the constant 10 encrypted using the OPE scheme

to perform the comparison.
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3.5 Implementation

In this section we provide details about our prototype implementation of SPR.

3.5.1 Overview

SPR is implemented as 6084 lines of Java code with two separate builds: (a) a

client component which is deployed in the trusted space and (b) a cloud component

which is deployed in the untrusted cloud (see Figure 3.1). The client component can

generate and read both public and private keys used for encrypting and decrypting

data as well as access the plain text input. The cloud component can only read

the public keys used to encrypt data and has no access to private keys or plain text

input. We use ØMQ [40] as the underlying messaging passing subsystem of SPR and

the GNU multiple precision arithmetic library GMP [41] to perform fast arbitrary

precision arithmetic operations. Both these libraries are implemented in native code

and we use JNI to invoke the corresponding functions from Java. Our current version

of SPR works with Apache Pig 0.11.1 running on top of Hadoop 1.2.1.

3.5.2 Program Transformation

Program transformation is the component responsible for generating the trans-

formed Pig Latin data flow graph that works on encrypted data by performing the

transformation process described in Section 3.4.4. In particular, if a transformed

script contains re-encryption operations, the program transformation component as-

signs a unique operation id to each such operation. This operation id is included as

part of the re-encryption function in the transformed Pig Latin script. Subsequently,

the details needed to perform the re-encryption (for example the encryption schemes

involved) are assigned to the operation id which is then registered with the encryption

service. When the script is executed, the encryption service uses the operation id to

retrieve the information needed to perform the re-encryption.
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3.5.3 Encryption Service

The encryption service handles the initial data encryption as well as runtime re-

encryptions. Initial data encryption are performed using Pig Latin scripts on the

client-side where data is available as plain text. Encryption is done using UDFs that

take each data item and convert it into a ciphertext corresponding to the required

encryption scheme. Re-encryption requests are received by the trusted client over

TCP sockets. These requests are added into blocking queues of worker threads.

Worker threads process each request and return a response.

We implement randomized encryption (RAN) using Blowfish [42] to encrypt inte-

ger values, taking advantage of its smaller 64-bit block size, and use AES [43] which

has a 128-bit block size to encrypt everything else. We use CBC mode in both of

these cryptosystems with a random initialization vector. We construct determin-

istic encryption (DET) using Blowfish and AES pseudo-random permutation block

ciphers for values of 64 bits and 128 bits respectively, and pad smaller values ap-

propriately to match the expected block size. For values longer than 128 bits we

follow the approach used in CryptDB [34] and use a variant of CMC mode [44] with

a zero initialization vector. We perform order-preserving encryption (OPE) using

the implementation from CryptDB. We use the Paillier [32] cryptosystem to imple-

ment additive homomorphic encryption (AHE), and the ElGamal [45] cryptosystem

to implement multiplicative homomorphic encryption (MHE).

3.5.4 UDFs

The cloud component consists of custom UDFs and communication channels. Re-

encryption operations are implemented as aggregation UDFs that take an entire re-

lation as argument. This allows us to pipeline re-encryption requests as opposed to

re-encrypting tuple by tuple. We also defined cryptographic equivalents of built-in

Pig Latin UDFs like SUM(), or <.
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3.6 Evaluation

This section evaluates our approach in terms of runtime performance and pro-

grammer effort. We also share lessons learned.

3.6.1 Synopsis

We evaluate four aspects of our approach:

(a) practicality to compute over encrypted data in terms of latency,

(b) programmer effort saved by our automatic transformations with respect to man-

ual handling of (partially) homomorphic encryption,

(c) performance compared to existing solutions for querying on encrypted data, and

(d) scalability by running queries on large data-sets TBs.

3.6.2 Practicality: PigMix

We ran the Apache PigMix [36] benchmark to evaluate the practicality and per-

formance of SPR . The evaluation was carried out using a cluster of 11 c3.large nodes

from Amazon EC2 [46]. The nodes had two 64 bit virtual CPUs and 3.75 GB of RAM.

Input data with 3300000 rows (5GB) was generated by the PigMix data generator

script and encrypted at the client side. We discuss these results here.

Figure 3.4 shows the results of the PigMix benchmark. On average we observe

3× overhead in terms of latency, which is extremely low compared to FHE (e.g.,

for simple multiplications we measured around 300000× slowdown with HElib [47])

which is currently still at least 1000′000×. We also observed that this overhead is

correlated more towards size of the input data and not the actual computation. Some

of the challenges we faced during the tranformation deals with limitations of Pig Latin

in dealing with constants bigger than 32 bit integers or 64 bit longs. The range
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Fig. 3.4.: Latency of Pig Latin scripts in PigMix

of numbers that appear in the cipher text space may exceed what can be represented

using integers and longs and we overcome this by representing numeric constants

as strings and converting them to arbitary presicion objects like BigIntegers within

UDFs. More details are outlined in our workshop report in [28].

3.6.3 Programmer Effort: PigMix

We now compare the number of tokens in the Pig Latin script written to be com-

puted on plain text data with the Pig Latin script generated by our transformation.

This gauges the additional work that a programmer would have to do in order to

explicitly enable her script to compute on encrypted input data. We use the PigMix

Pig Latin benchmarks for this comparison. Table 3.3 summarizes this result. As can

be observed, our transformation generates Pig Latin scripts with 18% more keywords

on average. For the scripts used in the PigMix benchmark, our transformation pro-

duces scripts which are between 5% and 36% more complex than the original scripts.

As can be understood from our analysis, these additions are far from trivial.
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Script Original Transformed % Increase

L1 85 100 15
L2 75 86 11
L3 89 99 10
L4 62 70 8
L5 84 95 11
L6 66 74 8
L7 68 91 23
L8 61 72 11
L9 41 46 5
L10 46 57 11
L11 76 89 13
L12 134 158 24
L13 76 81 5
L14 73 79 6
L15 73 82 9
L16 62 80 18
L17 101 139 38

Table 3.3.: Number of tokens in original and transformed PigMix scripts

3.6.4 Performance Comparison: Weather Data

In order to compare our solution against the state of the art CryptDB system,

we chose an application that analyses historical weather data set. The data set com-

prises of station names, dates and temperatures recorded on those dates on respective

stations. The application issues common queries against an encrypted version of this

data set. We compare the time taken by our solution to that of CryptDB. Cognizant

of the fact that CryptDB was designed to address a different set of challenges than

SPR we perform this comparison to understand how well our system and CryptDB

performs when size of data increases. CryptDB is built on top of MySQL, a database

that stores data in specialized data structures like B+ trees and optimized for data

retrieval using indices and supports transactions including updates. In contrast, SPR

is built on top of the Pig runtime, which specializes on reading from flat files. Fur-

thermore, the Pig runtime depends on MapReduce, which has an intermediate stage

which involves writing data to disk before reducers read it remotely over TCP chan-
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nels. Conversely, by using MapReduce, Pig can leverage the processing power and

memory of multiple machines while CryptDB is confined to a single node. We perform

three comparisons: (1) how our solution performs on a fixed size cluster as size of

input data set varies, (2) how our solution scales by increasing the number of nodes in

the cluster and (3) what is the monetary cost of performing the computation (in Ama-

zon EC2). The results presented here compare the latency of running a query that

finds the average temperature for each station using encrypted data. We compare the

time taken by CryptDB (single node) with the latency of running equivalent Pig Latin

script on a Hadoop cluster with 4 nodes (3 worker nodes and 1 control node). We

used m3.medium nodes on Amazaon EC2 for all our evaluations. As can be observed

from Figure 3.7 SPRis able to exploit the parallelism offered by multiple nodes and

scales well. CryptDB was designed for high throughput in terms of queries per second

and not for processing high volumes of data. This can be observed by the increase in

time taken for the queries over CryptDB as the number of records increases. For 15

million rows, SPR is 2.7× faster than CryptDB and shows much slower increase in

job completion latency as the number of rows increases. Figure 3.5 shows how time

taken by SPR changes as the number of nodes in the cluster increases. We show the

time taken by CryptDB running on one node as a base line. We can observe that

running on encrypted data shows trends comparable to regular Pig Latin jobs and la-

tency reduces as the number of nodes increases. It may seem surprising that the time

taken by the Pig Latin script running on one node was quite comparable to the time

taken by CryptDB. The reason for this is that for both CryptDB and SPR the time

taken is bound by the number of cryptographic operations that the CPU has to per-

form; which is the same for both systems. Furthermore, in order to find the average

temperature, we find the AHESUM and COUNT of temperature readings for each group.

Because both the UDFs implements combiner and algebraic interfaces, and the

number of distinct groups we have is not high, most of the output generated by the

map phase is combined before being pulled by the reducer. Also, even with a single

node, we have two mappers and one reducer running simultaneously providing some
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level of parallelism. These factors limit the overhead caused by data transfers and

the latency is predominantly determined by the time taken by the CPU to perform

a fixed number of operations.

We also look at the monetary cost of running our computation and compare it

with the cost of running CryptDB. We compute the cost by summing up the total

amount charged by Amazon for all the nodes used for running our experiments. We

present the calculated cost in Figure 3.8. As can be observed, we incur a (surprisingly)

similar overall cost despite completing the job up to 2.7× faster.
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3.6.5 Scalability: Word Count

In order to test the efficacy of our solution on big data, we ran experiments using

1 TB of data obtained from Wikipedia dumps [48]. Since the data was in XML

format, we first ran a Pig Latin script to obtain the text section from the file. Next,

we tokenized and encrypted all the words, then executed our word count script on the

encrypted words. Lastly, we decrypted and stored the top 5 words. In addition to an

encrypted word count, we also ran our word count script on the plain text. The time

for SPR does not include the time needed to encrypt the data, since it is assumed
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that the user will have the encrypted data on the untrusted cloud. We measure the

latency of running word count on the encrypted input. We use Hadoop clusters of

50 and 75 nodes and summarize the results in Figure 3.6. We observe that for both

jobs, reduction in latency as number of nodes increase follows the same trend.
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3.6.6 Threats to Validity

In evaluating our system, we have considered several threats to validity. Multi-

tenancy and the virtualized nature of Amazon EC2 can lead to variations in latency

measurements. We thus ran all our evaluations several times (5 typically) and took

the average to counter variations. The variations in latency we observed in different

runs of the same Pig Latin scripts were relatively low (4%). For CryptDB we observed

a variance of up to (10%). We have tried to use benchmarks that are representative,

meaningful and used by other publications. PigMix, for example is a standard bench-

mark used by Apache on every new release of the Pig runtime system. While the

data sets we used for it are only in the GB order, such sizes are not atypical for big

data in fact [49], and used also by others [35]. One factor to consider with respect to

big data analysis is that when volume of data becomes very high, characteristics on

input data may heavily determine the time taken for completion.

3.7 Discussion

Two big drawbacks of computing on encrypted data is bloating of data size and

additional CPU cycles required to do more complicated arithmetic. For example, if

we are using Paillier with 1024 bit length keys, a 64 bit long may get converted to

a cipher text 2048 bits in length (an increase of 32 times) and an addition in plain

text is replaced by multiplication of cipher text followed by a modulo operation in

Paillier. Unfortunately we cannot avoid paying a higher price in terms of storage and

computation based on state of art cryptosystems. Another aspect of security that

we do not consider is that even though data is encrypted, an attacker can still see

data access patterns. This includes frequency of data access, groups of data accessed

together, operations done on data etc.
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4. CONFIDENTIALITY IN STREAM PROCESSING

SYSTEMS

This chapter presents our solution for performing confidential data analytics over

streaming data (published in [50]).

4.1 Overview

The ubiquity of computing devices is driving a massive increase in the amount of

data generated by humans and machines. With the advent of the Internet of Things

(IoT), many more billions of devices are expected to continuously collect sensitive

data (e.g., location data, personal health data) and compute on it. Due to limited

storage and computation capacity available on IoT devices, the current de facto model

for building IoT applications is to send the data gathered from physical devices to the

cloud for both computation and storage (e.g., SmartThings [51], Nest [52]). Many IoT

applications therefore leverage the cloud to compute on data streams from a large

number of devices. For example, to compute variable tolls or to identify highway

accidents, a smart city application may collect vehicle license plate numbers, speed,

and location information at the cloud.

Due to the sheer amount of the streaming data, building a private cloud infras-

tructure is very expensive compared to using a low cost public (untrusted) cloud

infrastructure such as Amazon EC2 or Microsoft Azure. Therefore, public clouds are

typically used for processing continuous queries including on sensitive data. However,

this trend is leading to increasing concerns over data confidentiality, and is becom-

ing one of the major factors preventing more widespread adoption of IoT solutions.

For instance, a recent study, among 2,062 American consumers, shows that the top

concern is ”Who is seeing my data?” [53].
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One way to mitigate these concerns is to encrypt data at the source (i.e., IoT

device), and to solely use cloud infrastructure for storage purposes (e.g., Bolt [54]).

Thus, as long as encryption keys are maintained securely by consumers, their data

remains secured. While this approach addresses the aforementioned confidentiality

concerns, all computations need to be performed in trusted environments. This solu-

tion strongly limits the computational capabilities available for IoT solutions.

A promising approach to tackle these issues is to use homomorphic encryption and

execute all operations over encrypted data. However, fully homomorphic encryption

(FHE) is prohibitive in practice [55], causing slowdowns by an order of 109×. An

alternate, practical approach is to use less expensive partially homomorphic encryp-

tion (PHE) to execute specific operations over encrypted data. Yet, existing solutions

use a storage system to this end. For instance, the seminal CryptDB [34] was imple-

mented on top of MySQL, while MONOMI [56] and Talos [57] were implemented on

top of Postgres. These database-centric solutions are not a good fit for many IoT ap-

plications because IoT applications are typically implemented as continuous queries

in a stream processing system.

A straightforward application of PHE to existing stream processing solutions to

support computations over encrypted data is however unlikely to be practical: (G1)

Dozens of PHE schemes exist, varying by operations supported, efficiency, size of

encrypted data etc.; IoT application developers do not necessarily possess sufficient

in-depth knowledge of crypto(graphic) schemes to judiciously select among these. For

resource-constrained IoT devices, efficiency incurred by individual crypto systems is a

major concern. (G2) Moreover, encryption typically increases the size of input data,

with different factors for different crypto systems. Specific optimizations are required

to reduce this size difference to make the solution practical. (G3) Furthermore, due

to the limitations of PHE schemes, special handling is required for variable initializa-

tions and constants in a program. (G4) With applications running continuously and

potentially infinitely, secret keys used for encryption need to be updated periodically

or on demand (e.g., when there is a compromise). Such updates on the IoT devices
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should be made transparently to the IoT application and should not lead stream-

ing queries to miss results. (G5) Processing continuous queries typically involves a

pipeline of computing tasks and each task may have one or more instances running

concurrently. The deployment profile which maps task instances to VMs in the cloud

should make balanced use of resources to avoid bottlenecks. While some optimiza-

tion heuristics are known, they do not consider encryption which shifts bottlenecks.

(G6) Finally, as hinted to by their names, PHE schemes do not support arbitrary

operations. Unsupported operations have to be performed on the trusted client side

in a plain text form. Consequently, either the query processing can continue on the

trusted client side or the intermediate results can be re-encrypted to the schemes

required by subsequent operations and continued in the cloud. Deployment profiles

must be cognizant of such re-encryptions.

This paper presents STYX, a novel programming abstraction and managed run-

time system, that leverages PHE to provide confidentiality for IoT applications dele-

gating online streaming jobs to the public cloud. STYX operates on streaming data

without revealing any plain text information to the untrusted cloud. Figure 4.1 gives

a high level overview of STYX. A user designs, implements, and initiates the stream

analysis program that runs in the untrusted cloud. IoT sensors automatically encrypt

generated data before emitting them in the stream for analysis. Additional streams of
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encrypted private data required for analysis can be sent independently from a trusted

tier maintained by the user.

To perform analytics in the untrusted cloud over encrypted data (whilst address-

ing G1-G6), STYX: 1. enables programmers to develop applications using the STYX

API for typical plain text streams and automatically transforms the application to

work with encrypted streams. This means that developers will only focus on appli-

cation logic and not on the details of the underlying crypto systems (G1); 2. handles

variable initializations and constants correctly through transformations (G2 and G3);

3. utilizes PHE-specific optimization techniques (e.g., field masking) to reduce en-

crypted data size and provides efficient implementation of these techniques so they

can run on IoT devices (G3); 4. supports transparent update of secret keys on IoT

devices (G4); 5. deduces the best way to deploy an application through an analytical

modeling module (G5); and 6. is capable of executing the remainder of the compu-

tation in the trusted tier or re-encrypting a data stream (or parts of it) to enable

further computation in the public cloud if a given sequence of computations cannot

be performed due to PHE limitations (G6).

This paper makes the following contributions:

• We introduce a secure stream abstraction that exposes a high level API through

which programmers can express programs that can be executed in the public cloud

in a way preserving confidentiality without having to know the details of underlying

crypto systems. We also introduce STYX, a system that support this API and

addresses related challenges.

• Describe how STYX analyzes programs written using the STYX API and identifies

the computations that can be executed purely on encrypted data and the computa-

tions that cannot, due to the limitations of PHE. STYX maximizes the amount of

computation performed in the cloud by splitting computation between the untrusted

cloud and a small number of trusted nodes while automatically performing required
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Table 4.1.: STYX crypto systems

Crypto system Operation
Random AES –
Deterministic AES x1 = x2 ⇐⇒ E(x1) = E(x2)
Boldyreva et al. [58] x1 > x2 ⇐⇒ E(x1) > E(x2)
Paillier [32] x1 + x2 = D(E(x1)ψE(x2))
ElGamal [45] x1 × x2 = D(E(x1)ψE(x2))

re-encryptions. Fast serialization techniques and encryption pre-computation are

two techniques used to assure the efficiency of STYX.

• Propose a heuristic that analyzes resource availabilities and requirements and gen-

erates a deployment profile that optimizes cloud usage.

• Evaluate the implementation of STYX on multiple benchmarks and case studies.

Our results indicate that STYX can be used to express many real-world IoT applica-

tions, including variable smart city toll applications, while ensuring confidentiality

transparently and keeping low overhead.

The remainder of this paper is organized as follows. Section 4.2 presents back-

ground information on PHE and continuous queries. We give an overview of our

solution in Section 4.3. Sections 4.4 and 4.5 present the design of STYX and its run-

time system respectively. We discuss implementation details of STYX in Section 4.6

and present our evaluation results in Section 4.7.

4.2 Background

In this section we present background information on partially homomorphic en-

cryption (PHE) and systems that support continuous queries.
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4.2.1 PHE

A crypto system is said to be homomorphic (with respect to certain operations) if

it allows computations (consisting in such operations) on encrypted data. If E(x) and

D(x) denote the encryption and decryption functions for input data x respectively,

then a crypto system is said to be homomorphic with respect to φ if ∃ψ s.t.

D(E(x1)ψE(x2)) = x1φx2

E.g., a crypto system is said to provide additive homomorphic encryption (AHE)

when φ ← +. Other homomorphisms are with respect to operators such as “×”

(multiplicative homomorphic encryption – MHE), “≤” and “≥” (order-preserving

encryption – OPE) or equality comparison “=” (deterministic encryption – DET).

4.2.2 Continuous Queries

The core abstractions offered by systems that support continuous queries are

streams, tuples, and fields. Briefly, a single logical data unit is a field, one or more

fields make up a tuple and an unbounded stream of tuples is denoted as a stream.

The tuples in the stream are processed in a distributed fashion. Application logic is

arranged as a directed graph where vertexes of the graph are computation components

and edges are streams that represent the data flow between components. Application

programmers write application logic for the vertexes of the graph. A subset of these

vertexes are also designated as source vertexes. These source vertexes act as entry

points for data into the graph. Source vertexes typically read data from a queue,

log file, or external subscriptions. As data is generated in real time and added to

the queue, it is picked up by the source vertexes and forwarded down the graph for

processing according to a specified grouping clause provided by the programmer.

Figure 4.2 shows a graph with four vertexes with v1 designated as the source

vertex. The figure also shows streams s1, s2, s3 and s4. Each vertex of the graph
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Fig. 4.2.: STYX graph and tasks

may have multiple runtime instantiations called tasks. In Figure 4.2, vertex v2 has

two tasks running in Node 1 (a node represents a virtual or physical machine) and

v3 has three tasks running in Node 2. We refer to this assignment (i.e., a specific

number of tasks to each vertex) the deployment profile of the graph.

The stream emitted by each vertex is declared explicitly in the vertex itself. Once

all vertexes of the graph are designed, the graph is assembled by defining the input

stream of each vertex and specifying grouping clauses.

4.3 STYX Overview

In this section, we give an overview of STYX’s threat model, program abstractions,

and runtime execution flow.

4.3.1 Threat Model

STYX provides strong confidentiality guarantees against an adversary with full

access to servers in the cloud: the adversary can have root access to cloud servers.
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Fig. 4.3.: STYX execution flow

This means that the adversary may inspect all data in the server and even examine

RAM or CPU caches of physical machines. STYX’s goal is to preserve confidentiality

against such an adversary. We note that STYX’s goal is to preserve confidentiality

and not integrity or availability. We assume that STYX has access to a set of limited

but trusted resources outside the cloud. As we shall see shortly, this environment is

leveraged to perform certain computations.

4.3.2 STYX Abstractions

One of the main challenges of computing over encrypted data is that the appli-

cation developer needs to have a detailed understanding of each crypto system used

to encrypt fields of a stream. Adoption of PHE and even FHE for generic applica-

tion development will depend on the ease with which a programmer can incorporate

the properties offered by the crypto system into their regular programming tasks.

STYX tackles this problem by offering simple programming abstractions to express

and operate on encrypted data streams. E.g., fields representing sensitive data are

defined using the secure field abstraction, irrespective of the kind of operation that

needs to be performed on them or the underlying crypto system used to represent the

field. STYX relieves the programmer from the task of identifying the crypto system

required for the operation that the programmer needs to perform. To this end, a pro-

grammer simply annotates the stream with the desired operation and STYX deduces

the crypto system that needs to be used at the source IoT devices.



67

4.3.3 Execution Flow

We now give an overview of the STYX execution flow. Figure 4.3 outlines the steps

followed by STYX from the time a STYX graph is designed. Application programmers

use the STYX API to design a graph which contains the application logic. STYX

then performs homomorphism analysis on the graph to identify the crypto systems

required to execute the graph in a confidential manner. The details of this analysis

are communicated to the IoT devices which generate key pairs corresponding to the

crypto systems. A detailed explanation of these steps are given in Section 4.4.

Next, STYX analytically identifies the number of tasks required for different ver-

texes. It then schedules the graph for execution. STYX leverages the idea that often

users have some limited (but trusted) computing resources. We refer to these re-

sources as the trusted tier. The compute resources in the cloud, though potentially

unlimited for practical purposes, are untrusted. STYX utilizes the trusted tier for ap-

plication development and compilation and uses the cloud for the deployment phase.

In deployments that require resources from the trusted tier, STYX tries to minimize

their usage. The detail of deployment steps are presented in Section 4.5.

4.4 STYX Secure Streams

In this section, we describe the programming abstractions used in STYX and

explain how these abstractions are leveraged for improving performance.

4.4.1 Program Model

Application programmers use the abstractions provided by our STYX Java API to

specify a graph. In what follows, we explain the abstractions that are new to STYX

over typical stream processing systems such as Storm. These abstractions are also

summarized in Table 4.2.
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1 /** Code executed when a vertex receives a tuple */
2 @EncOperations(operations = { "{eq}", "{sum}" })
3 public class StyxSumVertex extends StyxVertex {
4 SlotBasedSum<SecField> slidingWindowGroupSums =
5 new SlotBasedSum<SecField>(60);
6 public void execute(Tuple tuple) {
7 //if timing tuple ...
8 emitCurrentWindowCounts(slidingWindowGroupSums);
9 //else ...

10 SecField group = FieldOper.getField(tuple, 0);
11 SecField value = FieldOper.getField(tuple, 1);
12 slidingWindowGroupSums
13 .updateSum(group, getCurTimeSec(), value);
14 }
15 }
16 /** Track sum of values per group in each time slot */
17 public class SlotBasedSum<T> {
18 ...
19 public void updateSum(T group, int slot, SecField value) {
20 SecField[] sums = objGroupSum.get(group);
21 if (sums == null) {
22 sums = new SecField[this.numSlots];
23 init(sums, value);
24 objGroupSum.put(obj, sums);
25 }
26 sums[slot] = SecureOper.add(sums[slot], value);
27 }
28 }

Listing 4.1: STYX code for finding the sum of each group in a sliding window

STYX API. STYX exposes its programming abstractions using an API described

below.

SecField. Programmers use this class to realize the secure field abstraction that

refers to a confidential input field. E.g., programmers can get a reference to the

first value in a tuple as shown in Listing 4.1 Line 10. Secure fields can also be

initialized by reading an encrypted value directly from an input stream.

SecOper. Secure operations are operations provided by STYX that allow program-

mers to implement standard operations like multiply, add, compare and equal.

Programmers use the SecOper class to perform these operations. Secure operators

take secure fields as input and return a secure field or Boolean value as result.

E.g., in order to perform an addition, programmers may write code similar to
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SecField result = SecOper.add(operand1, operand2) in order to add two

secure fields, operand1 and operand2.

StyxVertex. This base class is extended by programmers to express the computation

in a vertex of the graph. This class provides the execute() method which is

invoked by STYX when a tuple arrives at a vertex for execution.

Table 4.2.: STYX abstractions

STYX API Function
SecField Confidential field
SecOper.add(f1, f2)1 f1× f2 mod n2

SecOper.multiply(f1, f2)2 f1.a ×f2.a
f1.b × f2.b

SecOper.compare(f1, f2) 3 f1 ≤ f2

1 n represents the public key used to encrypt f1 and f2.
2 MHE scheme cipher text contains two components denoted here by a and b.
3 OPE scheme requires comparisons over integers 128 bits and higher.

Stream annotations. Along with using the STYX API, programmers also anno-

tate each stream with the operations they want to perform on that stream. E.g.,

StyxSumVertex in Listing 4.1 shows a secure stream with two fields, and the vertex

implementing the standard Group By..Sum operation. For this, the programmer

uses the definition operations = { "{eq}", "{sum}" }. This shows that the

first field is used in equality comparisons and the second field in summing. These

annotations enable our compile-time graph analysis to identify the crypto systems

for performing these operations and to apply additional performance improvement

techniques introduced in Section 4.4.2.

Example. Listing 4.1 shows code snippets used in a STYX vertex class. The code

is part of a graph that keeps track of the sum of values in different groups within

a sliding window (last one minute in this example). The input tuple contains two

fields: the group name and the value for that group (Lines 10 and 11). The code



70

shown retrieves the group and value fields from the input tuple (Lines 10, 11) and

updates the sum for that group’s current time slot (Line 12) with the value. Every

time the vertex receives a timing tuple, signifying a minute has elapsed, it emits the

sum of all groups in the current sliding window (Line 8). The object maintaining the

sliding window internally contains a map and updates the group’s sum every time the

updateSum() method is called using STYX’s SecureOper.add() method (Line 26).

Note that Line 2 also shows the stream annotations.

Listing 4.2 shows just the function updateSum() from Listing 4.1 written without

using STYX abstractions. As can be seen, this requires the programmer to explicitly

read the public key (see Line 2), and perform the exact AHE evaluation operation

for addition – multiplication followed by modulus using the square of the public key

if using the Paillier crypto system as in Line 10.

1 public class SlotBasedSum<T> {
2 BigInteger publicKey = readPubKey();
3 public void updateSum(T group, int slot, BigInteger value) {
4 BigInteger[] sums = objGroupSum.get(group);
5 if (sums == null) {
6 sums = new BigInteger[this.numSlots];
7 init(sums, "AHE");
8 objGroupSum.put(group, sums);
9 }

10 sums[slot] = sums[slot].multiply(value)
11 .mod(publicKey.multiply(publicKey));
12 }
13 }

Listing 4.2: Code for finding the sum of each group in a sliding window without
STYX abstractions

4.4.2 Processing Secure Streams

We now give details on how we tackle the challenges introduced in Section 1 when

processing continuous queries over encrypted streams.

Field masking. Computing on encrypted data introduces the additional challenge

of dealing with operands with increased sizes. For instance, an addition of two long
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operands (each 64 bits) in plain text may transform into an operation over 1024 bit

operands in the encrypted data stream. This means a factor of 16 increase in the

operand size. Typically, in stream processing systems, the source vertex receives all

the fields in the stream, irrespective of a field being used or not. For plain text

program graphs, this is usually not a substantial overhead and the additional com-

putation required for removing unused fields may not always offset the improvement

that is observed. When the computation happens over encrypted data, filtering out

fields will have a much more significant impact because of the size of the fields. E.g.,

consider a stream with two fields similar to the stream used for Group By..Sum in

Listing 4.1. If there is a continuous query which finds unique groups, the second field

will be unused. Simply removing the unused field reduces the size of a tuple from

160 bytes to 32 bytes. STYX performs this unused field removal automatically using

field masking. Considering the fact that an unused field may be at any index within

a tuple, if we simply drop the field, program logic that accesses the field after it has

been dropped may fail. To avoid this problem, we mask unused fields by not remov-

ing them, but replacing them with nulls. To identify unused fields, STYX relies on

the stream annotations described in Section 4.4.1. For each vertex, we identify fields

for which no operations are specified. Our masking process itself is very lightweight.

Since we have information about fields to be masked at compile time, we update the

STYX runtime with this information. STYX then suppresses the emission of the

masked fields.

Key management. If a device is compromised, it will need to update its private key

along with relevant security patches. There also may be a need to periodically update

or revoke keys in an IoT device. If a continuous query aggregates data over a sliding

window, it is not possible to perform these operations without disrupting the output.

This is because if we decide to switch over to a new key at time t, aggregations in the

sliding window that span both sides of time t will contain tuples encrypted with both

old and new keys and will fail. STYX supports such key changes without disrupting

the output. When a key change is initiated, tuples are emitted under the old and
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new key for the time span of the sliding window in the application graph. When the

StyxVertex base class detects a key change in the stream, it creates a new instance

of the application vertex class to process the stream. The stream encrypted with

the new key is channeled into the new instance of the vertex class, while the stream

encrypted with the old key gets processed as before. STYX suppresses emissions

from the new vertex instance until the new instance contains tuples spanning the full

length of the sliding window. At this point, the old instance of the application vertex

class is discarded and the stream from the new instance is emitted.

Initialization and constants. Now we address the challenge of variable initializa-

tions. Standard operations like sum = sum + value usually require sum to be ini-

tialized to 0 or another constant value (say k) before being executed. When the same

operation is performed over encrypted data, sum must be initialized to the encrypted

value of the k, and further, encrypted using the same crypto system and key as value.

STYX handles this by allowing the runtime to request constants from the trusted tier.

E.g., STYX code like SecField sum = SecureOper.getConstant(k, value) is

used to initialize a variable to k (used within the init(sums, value) method in

Listing 4.1, Line 23). STYX uses its internal meta data to identify that the field

value is derived from the second field in the input stream and requests the trusted

tier to return k encrypted using the same crypto system and key as variable value.

Note that the number of potential encryptions of a constant is bound by the num-

ber of unique fields across all streams in a graph. This allows the trusted tier to

pre-compute and cache commonly used values and reduce latency.

Identifying encryption schemes. This step identifies the crypto systems that are

required for the various fields based on the operations that the application wishes to

perform on those fields. To apply these inferences, STYX first has to identify different

streams and their grouping clauses in the application logic. This can be derived from

the graph declaration as explained in Section 4.4.1. Secondly, we need to identify the

operations performed on each stream. STYX derives this from program annotations

in each vertex class in the graph. Once STYX derives the distinct streams and
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operations to be performed on those streams, we can proceed similarly as in our prior

work [29] to infer the crypto systems required to execute the graph.

In what follows, we briefly summarize how these techniques work. We start by

constructing an expression tree where fields in tuples form the leaf nodes. Operations

performed on those fields form the non-leaf nodes. For STYX graphs, we use field

annotations (as specified in Section 4.4.1) to determine the non-leaf, operator nodes.

For each operator, a lookup table identifies the crypto system of the operands and

result of the operator. Our goal now is to identify the crypto system in which all the

leaf nodes (fields) should be encrypted. This can be done by identifying the parent

operator node for each leaf node and using the lookup table to identify the type of

crypto system required for operands for that operator node. There can also be a

mismatch between parent and child operator nodes if they do not belong to the same

crypto system. In this case (unlike in [29]) a re-encryption operator is inserted in

between, which converts the stream from one crypto system to the other. These re-

encryption nodes are marked to be executed on the trusted tier so that the scheduler

can place the tasks correctly.

Automatic re-encryption. Once the analyzer determines the crypto systems re-

quired for each stream, it may turn out that some operations cannot be performed

over the available homomorphic crypto systems in the cloud. To get around this issue,

STYX may decide to either perform those operations in the trusted tier or re-encrypt

the stream in the trusted tier. For re-encryption, STYX inserts special re-encryption

vertexes into the graph and marks them so they get scheduled on the trusted tier

only.

Encrypting public streams. Though the IoT devices handle most of the encryp-

tions, sometimes the programmer may have plain text data from public streams like

stock quotes which are part of an application logic. Though these data are public,

we may need to encrypt them because if they are to be combined or compared with

private data already encrypted for computing in the cloud, the public data should

also be encrypted under the same key for such operations to succeed. For easily



74

Given

S : [s1, s2 . . . sn] Available slots

V : [v1, v2 . . . vm] Vertexes

A : {[a11 . . . a1m] , . . . , [am1 . . . amm]} where,

aij : Output from vi that goes to vj for unit input

C : [c1, c2 . . . cm] where

ci : Relative load on any sj processing vi

Unknowns

di : Input consumed by single instance of i

Di : Input consumed by all instances of i

T : {t1, t2 . . . tm} where

ti : Number of slots for vi

From definitions

D1 ← d1 × t1
∀1 < i ≤ m,

Di ← d1 × t1 × {A1i + A2
1i + . . . Al

1i} where,

l is the length of longest path between v1 and vi

Linear program constraints

∀0 < i < m, ti ≥ 1 All vis are allocated

∀0 < i < m,Di < ci × ti
Linear program objective function

max
t

(D1)

Fig. 4.4.: STYX heuristics

integrating public data into a program, STYX provides special vertex classes that

encrypt plain text streams.

4.5 STYX Deployment

In this section we describe how graphs are deployed into the STYX runtime.
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4.5.1 Deployment profile generation

As defined in Section 4.2, the number of runtime tasks assigned for each vertex in

the graph is called the deployment profile of the graph. A good deployment profile is

required to avoid bottlenecks and ensure good resource utilization.

Utilization. To reason about the effectiveness of deployment profiles, we first define

utilization. Utilization of a vertex for a time interval is defined as the amount of

time the vertex spends processing in that time interval. E.g., if a vertex spends 5

minutes in a 10 minute interval processing tuples and the rest of the time waiting for

tuples to arrive, then it has utilization of 0.5. As utilization of a vertex approaches

1, we can assume it is starting to become a bottleneck. Good resource utilization

is usually achieved by the programmer explicitly specifying the number of tasks for

each computation vertex. Programmers are perfectly suited to do this as they under-

stand, via application logic, which vertexes handle more data or computation, and

can correspondingly allocate more tasks for those vertexes. In STYX, when the com-

putation graph is transformed and operations are converted to their cryptographic

equivalents, the utilization of a vertex changes substantially. This means that pro-

grammers need to thoroughly understand overheads of each crypto system, which

goes against STYX’s design goals.

Heuristic. We propose a linear programming based heuristic which automatically

converts the deployment profile for a plain text graph into an optimized deployment

profile for the corresponding STYX graph. Figure 4.4 shows the formal representation

of the heuristics that we use. S represents the slots available for instances to use and

V represents the vertexes in the graph that needs to be allocated. A slot is typically a

Java virtual machine (JVM) or an executor thread within a JVM. We assume all slots

have the same processing capacity. The matrix A represents how much each vertex

amplifies its input. A is derived by executing the plain text graph on sample data.

To compute the amount of data arriving at a vertex, we consider all paths of varying

lengths that end up at that vertex from the source. The A matrix gives the amount
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of data at vertexes which are one edge away from the source (for unit input). To find

data arriving at the vertex i (represented by di) through paths of length 2 and higher,

we compute the power matrix of A represented in Figure 4.4 as A2, A3 etc. The vector

C represents the load on each vertex relative to one another. C is derived by first

inverting the number of instances for each vertex (from the deployment profile) in

the plain text version of the graph and then scaling it with respect to the crypto

operations performed by the vertex.

For example, assume that a programmer specifies the number of instances for each

vertex as v1 : 1, v2 : 3, v3 : 2, v4 : 6 for the plain text graph presented in Figure 4.2.

Thus, we start with the vector {1, 1/3, 1/2, 1/6} or simply {6, 2, 3, 1}. The intuition

here is that for vertexes that come under heavy load, the programmer will allocate a

higher number of instances in the deployment profile to accommodate the load. At

the next step, we scale down the value of each element in the above vector based

on a reduction factor. This reduction factor is derived empirically based on our

observations. We use a reduction factor of 3 for AHE schemes, 2 for DET and 6 for

re-encryption nodes. Consequently, and based on Figure 4.2, if v3 receives a stream

(s2) with a field encrypted under AHE, we scale down the value corresponding to v3

to 1, after which we arrive at C ← {6, 2, 1, 1}. After scaling down each element we

get the C vector which can be used in the linear program.

In Figure 4.4, T represents the deployment profile, and ti represents the number

of slots allocated to execute vertex vi. Our target now is to derive each ti. To this

end, we define two sets of constraints. The first set of constraints ensures each vertex

is allocated to at least one slot. The second set of constraints ensures that for all

vertexes, the load (described by c) is less than the capacity of the nodes to process

it. Under these constraints, we maximize the amount of data that can be consumed

at the source vertex.
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4.5.2 STYX scheduler

The primary responsibility of the STYX scheduler is to decide on which host

machines vertexes of the graph will be executed. The STYX scheduler is provided

with two lists of hostnames, one that lists hosts in the untrusted cloud, and another

that lists hosts in the trusted client environment. The scheduler reads the graph

annotation to identify where each vertex must be executed.

For components that need execution in a trusted environment, the scheduler sends

the appropriate class files to the worker instances running on the trusted side. The

trusted side workers have access to private keys that are required for encryptions

or crypto system transformations. The workers in the untrusted cloud only see the

encrypted data and have access only to the public keys required to perform the

homomorphic operations.

We note that the scheduler service can also run in the untrusted cloud. An attacker

can try to manipulate the scheduler in the following two ways: (i) by trying to execute

trusted vertexes in the untrusted cloud and (ii) by trying to execute untrusted code

in the trusted tier. The former way does not compromise confidentiality since the

untrusted cloud does not possess the private keys required to reveal the plain text

data. However, the latter can compromise confidentiality if the attacker is successful

in executing malicious code that retrieves private keys or read data when they are

in plain text while being re-encrypted. To avoid this, a hash of the vertexes to be

executed in the trusted tier is generated before deployment. When tasks are delivered

to the trusted tier for execution, the trusted tier first computes a hash of the task class,

and compares it with the hash generated before deployment. Execution proceeds only

if there is a match.

4.6 Implementation

In this section we lay out some of the implementation details of STYX. STYX’s

processes in the cloud are implemented by modifying Apache Storm [59]. Storm is
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an online, distributed computation system. Application logic in Storm is packaged

into directed graphs called topologies. Vertexes of the topologies are computation

components and edges represent data flows between components. There are two types

of components in Storm: (i) spouts that act as event generators, and (ii) bolts that

capture the program logic. In other words, spouts produce the data streams upon

which the bolts operate. Modifications to Storm are limited to implementing a new

scheduler (by overriding the IScheduler interface) and changes to the way a Storm

topology is submitted (StormSubmitter and related classes). These changes add

an additional 1031 lines of code to Storm. The programming interfaces and runtime

cryptographic classes that allow computations over encrypted data are packaged as

a separate jar library, implemented in 3633 lines of Java code. The cryptographic

classes make use the GNU multiple precision arithmetic library GMP [41] to perform

fast arbitrary precision arithmetic operations invoked using the Java native interface

(JNI). Randomized encryption (RAN) is implemented using AES [43] with CBC mode

with a random initialization vector. Deterministic encryption (DET) is implemented

using an AES pseudo-random permutation block cipher following the approach used

in CryptDB [34] that uses a variant of CMC mode [44] with a zero initialization vector.

The Boldyreva et al. [58] crypto system is used as our OPE scheme implementation.

The Paillier [32] crypto system is used as our AHE scheme, and finally ElGamal [45]

is used as the MHE scheme.

4.7 Evaluation

In this section, we evaluate STYX using standard benchmarks and use cases. Our

goal is to understand the overhead and thus feasibility of the system, and to estimate

the efficacy of the heuristics presented in Section 4.5.
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Table 4.3.: Description of continuous queries used for smart meter analytics

# Query Output
Q1 Number of readings Total number of readings for the given time window
Q2 Consumption Sum of total resource consumption for the given time

window
Q3 Peak consumption Sorted list of the aggregate consumption per 10 seconds

in the given window
Q4 Top consumers List of the distinct consumers, sorted by their total

(monthly) consumption
Q5 Consumption series Time-series of aggregate consumption per 10 seconds in

the given window
Q6 Billing Monthly bill for each consumer based on the time of

usage
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Fig. 4.5.: Smart meter query throughput

4.7.1 Smart Meter Analytics

In this evaluation we study the throughput of STYX by running a set of analytical

queries to analyze electricity usage of homes. We use the Smart * dataset [60] available

at [61] as our input. This dataset represents electrical meter readings collected over

a 24-hour period at the rate of 1 reading per minute from 443 unique homes, totaling

637526 records. Each reading is a tuple of three fields: timestamp, meter id and meter

reading. We define throughput as the number of tuples processed by the application

graph in unit time. The runtime was configured to not drop tuples using a fixed sized
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queue. When a queue becomes full, the source vertexes will stop emitting tuples.

When slots in the queue free up, the vertex starts emitting tuples again. To measure

throughput, we adapted the queries used in IoTBench [62] for streaming systems.

Details of queries are given in Table 4.3. We used a time window of 60 seconds.

To run continuous queries for at least 600 seconds, we repeated the same dataset

but adjusted the timestamps. We ran these queries on 4 large nodes on Amazon

EC2. For STYX, one of the 4 nodes was specified as a trusted node. The bandwidth

of the trusted node was throttled to 8 Mbit/s to simulate a wide area network link.

Results of our evaluation are presented in Figure 4.5. Q1 simply counts the number of

readings and performs at 96% throughput of plain text stream. Queries Q2 to Q6, all

perform Paillier addition and execute between 59% and 70% of plaintext throughput.

The results also show the effect of field masking. For Q1, Q2, Q3 and Q5, we are able

to mask one field, resulting in an average of 7% increase in throughput. Since queries

Q4 and Q6 use all the fields in the stream, no fields could be masked.
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Fig. 4.7.: LRB graph
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4.7.2 Linear Road Benchmark

We use the Linear Road Benchmark (LRB) [63] that models variable toll calcula-

tion for a city or county and is quite widespread in the evaluation of stream processing

systems. LRB simulates vehicles traveling through an expressway with vehicles gen-

erating position reports at fixed time intervals. Position reports contain information

like expressway identifier, direction of travel, lane of travel, mile marker, offset within

the mile, etc. These position reports are processed by a toll levying agency (e.g.,

city, county) to dynamically: (i) calculate the amount of toll to be levied on the

vehicle, and (ii) identify accident locations in order to alert vehicles upstream of the

accident etc. LRB also specifies latency invariants like time within which a toll must

be calculated and the time within which an accident has to be identified. The upper

limit within which the system needs to report tolls and accidents is 5 seconds. The

benchmark rates the system by the highest number of expressways (L) the system can

support while maintaining these invariants. Figure 4.6a shows the Storm topology

which implements the standard linear road and Figure 4.6b shows the transformed

STYX topology. Note that Figure 4.6b contains two new vertexes v6, v7 which are

re-encryption vertexes that are executed within the trusted tier. We ran the experi-

ment for three hours, and the rate at which position reports are emitted for one single

expressway is shown in Figure 4.8. Observe that the rate of input steadily increases

up to 1811 tuples per second.

LRB baseline and hypothesis validation. We first ran a baseline deployment

of LRB by assigning each vertex a single task. This allows us to observe each indi-

vidual vertex to see how they consume resources and verify the hypothesis made in

Section 4.5.1 that bottlenecks change when running on encrypted data streams. We

plot utilization (cf. Section 4.5) against time for the duration of a LRB run (10784

seconds) on Storm with plain text data (see Figure 4.9) and on STYX with encrypted

data (Figure 4.10). We can observe that in Figure 4.9 vertexes v4 and v2 have the

highest utilization values until around the 8000s mark, and after that vertex v1 be-
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Fig. 4.8.: LRB data profile

comes the node with the highest load. This increase is because the number of tuples

that requires a toll notification increases substantially after 8000s. In the transformed

STYX graph running on encrypted streams, v5 and v1 come under high load until

8000s, and after that v1 becomes the primary bottleneck. This validates our hypothe-

sis that primary bottlenecks differ between graphs running on plain text vs encrypted

streams.
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Fig. 4.10.: STYX LRB baseline

Performance of STYX deployment profile. Now we benchmark both the Storm

topology graph and the transformed STYX graph using LRB. For this, we deployed
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both graphs on 15 large nodes in Amazon EC2 in the best possible configuration so

that the maximum number of highways supported can be identified. Table 4.4 show

the results. For plain text streams Storm supports 20 expressways, while using STYX

with encrypted streams we can support 15 expressways. We also plot response times

for all notification triggering tuples – times taken for notifications to be issued from

the time respective tuples enter the system. The response times for STYX are shown

in Figure 4.12 and the response times for Storm are shown in Figure 4.11. Response

times for STYX peak faster than Storm, but for 15 expressways STYX is able to

maintain the response time below the threshold allowed by the benchmark.

Table 4.4.: LRB comparison

System L Time (ms)1 Profile2

Storm 20 2694.44 5, 4, 1, 3, 2
STYX 15 2672.97 5, 2, 1, 2, 3, 1, 1

1 Average response time.
2 Deployment profile for vertexes in order v1, ..., v5 for Storm and v1, ..., v7 for
STYX.
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Effectiveness of analytical model. The effectiveness of the model can be evaluated

by looking at how well the model converts the deployment profile for the plain text

streams to the deployment profile for the encrypted streams in STYX. Referring back

to Figures 4.9 and 4.10, these graphs can also be used as a baseline to understand

our model from Section 4.5.1. Vertexes with higher utilization value should get more
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instances to execute them. Table 4.5 shows the response time of STYX deployment

profile of the Storm graph and corresponding STYX graph. As can be seen, the

deployment profile generated by STYX results in the lowest response time. This

profile is also in accordance with Figure 4.10 which shows vertexes v1 and v4 should

get the highest numbers of instances.

Table 4.5.: LRB deployment profile response time

STYX deployment profile Response time (ms)
5, 2, 1, 2, 3, 1, 11 2672.97
4, 2, 1, 4, 2, 1, 1 2714.30
5, 4, 1, 3, 2, 1, 1 2781.40

1 Deployment profile generated by STYX.

4.7.3 Encryption Overhead of IoT Device

We chose Raspberry Pi [64] to evaluate the overhead of encryption on IoT devices.

Raspberry Pi is a widely popular IoT device and has the capabilities similar to devices

found in highway cameras, vehicle tracking, and telemetry devices. We implemented

AHE, MHE, and DET for Raspberry Pi version B. We measured the latency to

encrypt 16 bytes, a typical message size. Our results are shown in Figure 4.13. The

encryption latency is acceptable, as it is less than 150ms even for complex schemes

like AHE and MHE.
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4.7.4 Application Case Studies

New York taxi statistics. This application finds the top 10 most frequent routes

during the last 30 minutes of taxi servicing. A route is represented by a starting

grid cell and an ending grid cell. The data for this application is based on a data

set released under FOIL (Freedom of Information Law) and publicly available [65].

The input data contains the locations (latitude and longitude) and times of passenger

pick ups, MD5 digest of the medallion of the taxi that picked up the passenger, trip

times and drop off locations (latitude and longitude). We use a simplified version of

this data which contains passenger pick up time, drop off time, and route id. The

dataset contains records that span over a one year time frame. Whenever the top

10 change, the output is appended. In order to evaluate the effect of key changes

on response time, we simulate a key change at the beginning of each month. This

means all data that are emitted with a time stamp within the first 30 minutes of every

month will be encrypted under the old and new key. Response time is defined as the

time between an input tuple that triggers a change in top 10 enters the system, and

when the top 10 corresponding to that tuple is output. We deployed this application

on 10 large nodes on Amazon EC2. Table 4.6 summarizes the results of these runs.

We can see that STYX completes processing the data with only an additional 25%

time compared to the Storm running on plain text stream. Furthermore, the increase

in completion time or response time caused by effecting a key change every month

is minimal (about 1%). Figure 4.14 shows the response time for the full run with

key changes every month. In this plot, we can see intermittent spikes (total of 12) in

response time for some tuples around the time a key change is in progress, but the

majority of tuples (90th percentile within 31ms and 99th percentile within 818ms)

respond with the same response time as when no change was in effect.

Heartbeat analysis. Finally, we study how STYX can be used for a realistic online

application like a heart beat monitor. The end user application runs on specialized

hardware (the monitoring device) that is capable of fast encryption and decryption.
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Table 4.6.: Top-10 taxi routes

System Completion time (s) Average response time (ms)
Storm 8106 36.05
STYX1 10039 45.10
STYX2 10140 46.61

1 Entire stream emitted under same key.
2 Stream emitted with a new key every month.
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Fig. 4.15.: Heartbeat analysis response time

The monitoring device counts the number of heartbeats per minute, encrypts this

value and sends it to the cloud for processing and storing. The graph running in

the cloud keeps track of daily, weekly, monthly and yearly statistics. The end user

may request to see these statistics on their device, in which case the data is retrieved

from the topology and shown to the end user. The statistics are maintained by two

vertexes, a “per user” vertex (v1) and an “all users” vertex (v2). User statistics are

distributed across the multiple instances of v1. v1 also emits a summary of its per

user statistics every minute which is grouped by week, month, or year by v2 to find

the average value across all users. The client’s device emits a message every time

the client requests to see a specific data point. For this application, the most critical

metric is the response time, that is the time a user has to wait after requesting to

see a metric until the metric is actually displayed. The results of this evaluation

are presented in Figure 4.15. As can be seen, the response times for STYX are
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very close to the plain text version for up to 1000 client devices after which STYX’s

response time degrades compared to the plain text stream running on Storm. This

demonstrates that for applications where the input rate is not very high, we are able

to get response times similar to plain text streams.
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5. RELATED WORK

This chapter presents work related to this thesis. The first section present works

related to integrity and availability and the second section present works related to

confidentiality.

5.1 Integrity and Availability

Systems providing integrity. File systems like SUNDR [66], Sirius [67], Cloud-

Proof [68], and Caelus [69] ensure integrity of data stored in them, but do not verify

correctness of computation results. This means a byzantine computation can produce

incorrect results that may be saved in these file systems. An alternate approach to

integrity is enforcing data flow or control flow integrity in programs. Work done by

Castro et al. [70] computes the data-flow graph of a program using static analysis.

The program is then instrumented to ensure that the runtime flow matches the stat-

ically computed data-flow. Systems like SIF [71], [72], Urflow [73] and Resin [74] use

this approach. Control flow integrity protection mechanisms like [75] follow the same

approach, but for control flow. However, as pointed out by [76], attacks can succeed

without changing the control-flow of the target programs. Further, both approaches

do not protect against byzantine faults in compute nodes. Verna [77] is a web appli-

cation platform that provides end-to-end integrity guarantees against attackers with

full access to the web and database servers. Verena uses authenticated data struc-

tures [78–80] to verify the integrity of a web page by verifying the results of queries

on data stored at the server.

Systems providing BFT. Works like PBFT [81, 82], Q/U protocol [83] and HQ

Replication [84] show how to make BFT replication practical in general. Libraries

like UpRight [85], BFT-SMaRt [26] and EBAWA [86] make it practical for anyone to
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efficiently and quickly implement some of these systems. Recent work like Zyzzyva [87]

(based on Fast Paxos [88,89]) further improve the performance and efficiency of some

of these solutions. All these solutions focus on replicating monolithic servers and do

not provide parametrizable tradeoffs between overhead and fault tolerance. Yin et

al. [19] separate request ordering from request execution in BFT server replication;

we separate our architecture based on differences in the guarantees offered by nodes

and not for consistency (no mutable shared state).

BFT in cloud. With respect to cloud-based computations, Byzantine Fault Tolerant

Mapreduce [90] explores executing Byzantine fault tolerant MapReduce jobs in the

cloud and tries to reduce overhead by only starting f + 1 replicas of map and reduce

tasks. Byzantine fault tolerance is achieved by restarting map and reduce tasks if

f + 1 replicas do not agree on the output. This reduces the overhead when failures

are not frequent but does not reduce the number of synchronization points required

during job execution. BFTCloud [91] tries to secure generic computations run on

voluntary resource clouds, but does not look at data-flow job specific optimizations.

BFTHadoop [90] applies BFT replication to all sub-components involved in a Hadoop

MapReduce job. Most of these solutions explore adapting BFT solutions to the cloud,

but ClusterBFT differs from them in the following ways. None of these solutions try

to reduce the number of verification instances required, or to actively identify faulty

nodes by overlapping job clusters. ClusterBFT also provides parametrizable tradeoffs

between overhead and performance.

Verifiability. Works like Pepper [92] and Ginger [93] show that output verifiabil-

ity [94,95] is becoming more practical. These systems allows the computation initiator

to encode the computation in such a way that it is possible to verify the result us-

ing the computation output and key. Pinocchio [96] further reduces the overhead

involved and allows public verifiability. Even with these considerable improvements,

these systems incur an overhead that is linearly proportional to the complexity of the

computation. These systems are also limited with respected to computations involv-
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ing dynamic looping constructs; requiring the programmer to inform the compiler

how far the loop should be unrolled.

5.2 Confidentiality

Approaches to protect confidentiality of data vary based on system and threat

models. Differential privacy [97] aims to improve the accuracy of statistical queries,

without revealing information about individual records. The server which performs

the query in this case is trusted with access to plain text data. This is in contrast

to SPR that assumes data and computation reside in an untrusted server. sTile [98]

keeps data confidential by distributing computations onto large numbers of nodes in

the cloud, requiring the adversary to control more than half of the nodes in order to

reconstruct input data. SPORC [99] and Depot [100] are systems that run mostly on

the clients, without having to trust a server. Airavat [101] combines mandatory access

control and differential privacy to enable MapReduce computations over sensitive

data. Both sTile and Airavat require the cloud provider and cloud infrastructure to

be trustworthy. Excalibur [102] utilizes trusted platform modules to ensure cloud

administrators cannot modify or examine data. Compared to SPR, Excalibur adds

extra cost because the trusted platform modules need to be installed and maintained.

However, SPR does not guarantee integrity. Several systems [103, 104] focus on

transparently encrypting and decrypting data transmitted to a server. Like mentioned

above for file systems, these systems also cannot compute on encrypted data.

Program analysis. MrCrypt [35] consists in a program analysis for MapReduce

jobs that tracks operations and their requirements in terms of PHE. When sequences

of operations are applied to a same field, the analysis defaults to FHE, noting that

the system does not currently execute such jobs at all due to lack of available FHE

cryptosystems. Thus several PigMix benchmarks are incompletely covered for eval-

uation. Work has also been done on secure programming languages for distributed

systems. These include languages like DSL [105] and SMCL [106], which include type
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systems that ensure that programs run securely. However, these languages focus on

other issues such as interaction between different users, and (thus) do not support

automatic parallelization via MapReduce or a similar framework.

Systems that process encrypted data. CryptDB [34] is a seminal system leverag-

ing PHE for data management. As mentioned earlier CryptDB is a database system

that stores encrypted data and executes SQL queries directly on encrypted data.

CryptDB uses a trusted proxy that analyzes queries and decrypts columns to an

encryption level suitable for query execution. It does not consider the more expres-

sive kind of data flow programs as in Pig Latin, or MapReduce-style parallelization

of queries. Monomi [56] improves performance of encrypted queries similar to those

used in CryptDB and introduces a designer to automatically choose an efficient design

suitable for each workload. Seabed [107] introduces a new symmetric key cryptosys-

tem that is partially homomorphic with respect to addition to perform data analysis.

Bost et al. [108] introduce algorithms for performing machine learning classification

on encrypted data. Both these are orthogonal to our work and these new cryptosys-

tems can be easily integrated with SPR to reduce execution overheads. Mylar [109]

is a platform for building web applications, which protects data confidentiality by

ensuring that the web server only sees encrypted data. Data is decrypted only in the

client’s browser. This protects web applications from attackers with full access to

servers. Mylar is more suited for stateless web applications and not suited to perform

typical data analysis queries.

Stream processing systems. To the best of our knowledge, STYX is the first

system to address the issue of data confidentiality in the context of continuous query

execution by successfully putting PHE to work. A large body of work on stream

and data flow processing has addressed many challenges related to stream process-

ing such as fault tolerance, continuous query processing and analytics (e.g., Aurora

project [110–112], and Telegraph project [113, 114]). With the advent of cloud com-

puting, the need for highly scalable stream processing systems has resulted in the

next generation of stream processing systems such as Storm [59], Heron [115], Spark
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streaming [116], and Samza [117]. STYXs design is based on the stream process-

ing design of Storm; our concepts can also be implemented on top of other stream

processing systems. Systems line CryptDB and Monomi discussed above follow a

centralized database design and do not consider streaming workloads as supported

by STYX. As such it is unclear whether CryptDB or Monomi can effectively process

stream data workloads.

Trusted hardware. An alternate approach to ensure confidentiality is to use spe-

cially designed hardware [118–122]. Hardware security modules (HSMs) [123], for

example can be used to store secret keys in the cloud. AWS CloudHSM [124] offer

APIs for securely storing and manipulating secret keys. This approach can protect

secret keys, but user data still needs to be in plain text for computations to happen.

Further, HSMs and related services are expensive. Another specialized hardware

that is becoming popular now is Intel SGX [125]. SGX offers hardware encrypted

and integrity protected physical memory, which allows data and code to reside in the

untrusted cloud. SGX introduces a set of new instructions that allows a process to

create a secure region within the main memory known as an enclave. Haven [126]

protects unmodified legacy applications by running applications within a small library

OS that executes inside an SGX enclave. CipherBase [127] provides an FPGA-based

implementation of a trusted hardware that can be used to run a commercial SQL

database system without sacrificing data confidentiality. TrustedDB [128] preserves

confidentiality by using a server-hosted, tamper-proof trusted hardware in critical

query processing stages. These approaches require the end user to trust another

party (Intel for SGX). Trusting another party may not always be practical because

of government regulations or policies. Relying only on trusted hardware also means

that we are unable to utilize the compute capacity that is currently available in the

form of commodity hardware. These approaches can also be used complimentary to

our approach by allowing secure computations or sub-computations to be performed

on a trusted hardware in an untrusted cloud.
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6. CONCLUSION

In this chapter we summarize our work and describe future directions.

6.1 Summary

We presented the design and evaluation of three systems; ClusterBFT, a sys-

tem for assured data processing and analysis, SPR, a system able to perform big

data analysis jobs on encrypted data and STYX, a distributed system for evaluating

continuous queries over encrypted data streams. ClusterBFT achieves its objectives

with practical overheads by using variable-degree clustering, approximated output

comparison and fault isolation.

SPR leverages data flow analysis and program transformation to perform big data

analysis jobs on encrypted data, which allows us to leverage untrusted cloud resources

while at the same time preserving confidentiality. Our program transformations trans-

late Pig Latin scripts into semantically equivalent scripts that operate entirely on

encrypted data. By automatically transforming Pig Latin scripts, developer efforts

for achieving security are minimized. We evaluated our approach through standard

benchmarks and applications and demonstrated its applicability and performance.

Our evaluations show that our approach scales well and can handle big volumes of

encrypted data whilst retaining good performance. Furthermore, we gauge the sav-

ings in terms of developer effort of our automatic approach by comparing scripts that

operate on unencrypted data with the transformed Pig Latin script which our system

generates.

Finally, our system to execute continuous queries, STYX also leverages untrusted

public cloud resources as its compute platform without sacrificing confidentiality.

STYX exposes an API which allows programmers to develop secure applications with
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little or no knowledge of the underlying crypto systems and STYX heuristics ensure

a deployment that optimizes cloud usage. Our evaluations show that we can meet

the latency requirements even when the volume of encrypted traffic is high.

6.2 Future Directions

Improving cryptosystems. The latency and computation overhead of performing

evaluations on encrypted operands can be reduced by improving the underlying par-

tially homomorphic cryptosystems. Seabed [107] reduces the overhead of performing

additions on encrypted operands by introducing a new symmetric key cryptosystem.

Similarly, symmetric key cryptosystems, partially homomorphic with respect to mul-

tiplication can reduce overhead of multiplication operations. Yet another aspect of

cryptosystems that can be improved is the size of encrypted operands. If we can de-

sign cryptosystems with the size of encrypted operands comparable to the size of plain

text, cost of data transmission and computation can be brought down substantially.

Big data machine learning. Machine learning has become synonymous with many

common tasks required as part of our daily lives. Medical or genomics predictions,

spam detection, face recognition, finance, etc., all rely on machine learning. Many of

these applications handle sensitive data as well. Performing these machine learning

algorithms over encrypted data is one way to achieve the confidentiality requirements

of such sensitive data. Bost et al., [108] introduce few classification techniques that

can be run over encrypted data, but does not address challenges of scale caused

by big data. Improvements in this direction will allow faster adoption and improve

applicability of these techniques.

Program analysis. We can also investigate a number of optimizations and further

heuristics for selecting from different possible execution paths in the transformed

Pig Latin script. In particular, paths which perform re-encryption of data at clients

(in contrast to client-side termination or costly re-encryption in the cloud as with

FHE) and minimizing these re-encryptions themselves. To this end we can employ
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sampling to determine amounts of data at different points in analysis jobs in order

to better select between different options.



REFERENCES



96

REFERENCES

[1] “Department of Defense Information Enterprise Strategic Plan 2011-2012,”
http://dodcio.defense.gov/docs/DodIESP-r16.pdf.

[2] D. Denning, “A Lattice Model of Secure Information Flow,” Communications
of the ACM, vol. 19, no. 5, pp. 236–242, 1976.

[3] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,”
Transactions on Programming Languages and Systems, vol. 4, pp. 382–401,
1982.

[4] J. J. Stephen and P. Eugster, “Assured Cloud-Based Data Analysis with Clus-
terBFT,” in International Conference on Middleware (MIDDLEWARE), 2013,
pp. 82–102.

[5] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “Byzantine Fault Detec-
tors for Solving Consensus,” The Computer Journal, vol. 46, no. 1, pp. 16–35,
2003.

[6] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large
Clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[7] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop Dis-
tributed File System,” in Symposium on Mass Storage Systems and Technologies
(MSST), 2010, pp. 1–10.

[8] “Apache Pig,” http://pig.apache.org.

[9] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig Latin: A
Not-So-Foreign Language for Data Processing,” in International Conference on
the Management of Data (SIGMOD), 2008, pp. 1099–1110.

[10] A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa, “DepSky: De-
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