CERIAS Tech Report 2016-8 The Application of natural Language Processing to Open Source Intelligence for Ontology Development in the Advanced Persistent Threat Domain

by Corey T. Holzer Center for Education and Research Information Assurance and Security Purdue University, West Lafayette, IN 47907-2086

# THE APPLICATION OF NATURAL LANGUAGE PROCESSING TO OPEN SOURCE INTELLIGENCE FOR ONTOLOGY DEVELOPMENT IN THE ADVANCED PERSISTENT THREAT DOMAIN

by

**Corey T. Holzer** 

A Dissertation

Submitted to the Faculty of Purdue University In Partial Fulfillment of the Requirements for the degree of

**Doctor of Philosophy** 



Department of Technology West Lafayette, Indiana December 2016

# THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF DISSERTATION APPROVAL

Dr. J. Eric Dietz, Chair

Department of Computer and Information Technology

Dr. Biajian Yang

Department of Computer and Information Technology

Dr. Dongyan Xu

Department of Computer Science

Dr. John A. Springer

Department of Computer and Information Technology

# Approved by:

Dr. Kathryne A. Newton

Head of the Departmental Graduate Program

This work is dedicated to my wife, Rachael, and our children who selflessly support me in all my endeavors; allowing me to pursue my dreams.

# ACKNOWLEDGMENTS

There are several people that I would like to acknowledge for their support of this endeavor.

My wife, Rachael, who has shown me unwavering support for the 23 years that we have been together. I could never have accomplished what I have without her. I also want to thank my children Christina, Gwendolyn, Alannah, Joshua and Destini. Their faith in and love for me is a constant source of strength each and every day.

My Committee Chair, Dr. Eric Dietz for his guidance and mentorship throughout my dissertation and as my advisor while attending Purdue. My committee Dr. Yang, Dr. Xu, and Dr. Springer for their insights and guidance throughout the dissertation process. My thanks to Dr. Eugene "Spaf" Spafford, Director Emeritus of the CERIAS Program, because without his urging and guidance I might not have had this opportunity in the first place. To Mrs. Marlene Walls whose help and guidance through the administrative aspects of graduate life at Purdue saved me many hours of work and needlessly running around campus.

I want to acknowledge U.S. Army Cyber Command for selecting me as one of their FY15 Army Cyber Scholars. They saw in me the potential as a Cyber leader for the Army and demonstrated their confidence in that potential by selecting me. What I have accomplished over the last two years demonstrates that their confidence was well founded.

I wish to acknowledge Colonel Timothy Frambes, Lieutenant Colonel Charles D. (Dean) Smith, and Tommie L. Walker, Lieutenant Colonel (USA Retired) whose mentorship and leadership has been invaluable. I continually seek to emulate and incorporate their leadership styles into my own. I also want to thank James Lerums Colonel (USA Retired), Major Patrick Glass, and Captain Chris Baker fellow students and colleagues in military life. You were always there willing to give me the azimuth check as I made my way through my scholarly pursuits.

# TABLE OF CONTENTS

| LIST OF TABLES                       |
|--------------------------------------|
| LIST OF FIGURES xi                   |
| List of Abbreviations                |
| Abstract                             |
| Introduction                         |
| Background                           |
| Scope                                |
| Significance                         |
| Statement of Purpose                 |
| Assumptions                          |
| Limitations                          |
| Delimitations                        |
| Summary                              |
| Review of Relevant Literature        |
| Defining Advanced Persistent Threats |
| APT as an Attack6                    |
| APT as an Organization               |
| Phases of the APT Attack             |
| Reconnaissance                       |
| Weaponization                        |
| Delivery                             |
| Exploitation                         |
| Installation                         |
| Command and Control9                 |
| Actions on Objective9                |
| History of APTs 10                   |
| Shady Rat 10                         |
| Night Dragon                         |

|     | Poison Ivy Attack on RSA                         | . 11 |
|-----|--------------------------------------------------|------|
|     | Icefog                                           | . 11 |
|     | Stuxnet                                          | . 12 |
|     | GhostNet/Shadows in the Cloud                    | . 12 |
|     | New York Times Attack                            | . 13 |
|     | Trojan.APT.Seinup                                | . 14 |
|     | The Cost of the APT Threat                       | . 14 |
| Unc | derstanding the Challenge of Detecting APTs      | . 15 |
|     | Challenges Specific to APT Detection             | . 15 |
|     | Anti-detection Methods Employed with Malware     | . 15 |
|     | Anti-emulation                                   | . 16 |
|     | Anti-online                                      | . 16 |
|     | Anti-Analysis                                    | . 16 |
|     | Anti-hardware                                    | . 16 |
|     | Anti-debugger, Anti-disassembler, and Anti-Tools | . 16 |
|     | Anti-memory                                      | . 17 |
|     | Anti-process                                     | . 17 |
|     | Packers and Protectors                           | . 17 |
|     | Metamorphic or Polymorphic                       | . 17 |
|     | Defining and Evaluating Open Source Intelligence | . 17 |
|     | The Science of Natural Language Processing       | . 18 |
|     | Defining NLP and Key Terms                       | . 18 |
|     | Examples of NLP in the Public Domain             | . 20 |
|     | IBM's Watson                                     | . 21 |
|     | Stanford's CoreNLP                               | . 21 |
|     | BookNLP                                          | . 22 |
|     | Natural Language Toolkit                         | . 22 |
|     | How NLP Processes Human Language                 | . 22 |
|     | The Role of Ontology                             | . 23 |
|     | Ontology Basics                                  | . 24 |
|     | Ontology Development                             | . 24 |

| Prior Related Research                         |
|------------------------------------------------|
| Mundie and McIntire                            |
| Huang, Loia, and Kao26                         |
| Meckl, Tecuci, Boicu, and Marcu26              |
| Lundquist, Zhang, and Ouksel 27                |
| Summary                                        |
| Framework and Methodology                      |
| Framework                                      |
| Researcher Bias                                |
| Methodology                                    |
| Data Collection                                |
| Analysis                                       |
| Credibility                                    |
| Summary                                        |
| Research and Analysis                          |
| Building the Corpus                            |
| Building the Initial Training Lexicon          |
| Processing Documents through BookNLP           |
| Errors with NLP Output                         |
| Unhandled Exception                            |
| Import File Error – Non-ASCII Character        |
| Import File Error – Quotation Marks            |
| Escaping Characters                            |
| Examining the Documents in the Corpus          |
| Understanding the Tokens                       |
| Examining the Corpus Tokens                    |
| Removing Common Words from the Data 41         |
| Using Lemma                                    |
| Discrepancy between Variation and Lemma Counts |
| Multiple Lemma for One Variation               |
| Examining the NER                              |

| Multi-Token NER Issue                               | 45 |
|-----------------------------------------------------|----|
|                                                     |    |
| Building the Ontology                               | 46 |
| Selecting Terms for the Ontology                    | 46 |
| Statistical Analyses that were Applied              | 46 |
| Statistical Analyses that were Rejected             | 48 |
| How Analyses were Applied                           | 50 |
| Building the Ontology Structure                     | 50 |
| Classifying and Categorizing Terms                  | 50 |
| Class                                               | 50 |
| Individual                                          | 51 |
| Property                                            | 51 |
| Organizing the Ontology                             | 52 |
| Building the Draft Ontology                         | 52 |
| Basic Structure                                     | 54 |
| Summary                                             | 55 |
| Conclusions and Recommendations                     | 56 |
| Summary of Study                                    | 56 |
| Purpose of Study                                    | 56 |
| Significance of Study                               | 57 |
| Methodology Review                                  | 57 |
| Learning Curve                                      | 58 |
| Software Challenges                                 | 58 |
| Recommendations for Future Research                 | 59 |
| Expand the Ontology                                 | 60 |
| Incorporate Other Related Ontologies                | 60 |
| Apply the Ontology for Further Ontology Development | 60 |
| Improve Knowledge through Link Analysis             | 61 |
| The Role of Link Analysis                           | 61 |
| Measuring Knowledge                                 | 63 |
| A Brief History of Knowledge Management             | 63 |

| Human Resources Accounting (HRA)                  | 63  |
|---------------------------------------------------|-----|
| Balanced Scorecard (BSC)                          | 64  |
| Intellectual Capital (IC)                         | 65  |
| Economic Value Added™ (EVA™)                      | 65  |
| Recommended Solution for Measuring APT Knowledge  | 66  |
| Basic Scoring Approach                            | 67  |
| Weighted Scoring Approach                         | 67  |
| Apply the Ontology to Support Cyber Resiliency    | 67  |
| Summary                                           | 68  |
| References                                        | 69  |
| Appendix A. Corpus Statistics                     |     |
| Appendix B. Five Hundred (500) Most Common Tokens |     |
| Appendix C. Sample of the Ontology                | 113 |
| Vita                                              |     |

# LIST OF TABLES

| Table 1: NER Classifications                                           | 20   |
|------------------------------------------------------------------------|------|
| Table 2: Capture as an example lemma                                   | 20   |
| Table 3: Quantiles for All Tokens in the Corpus                        | 40   |
| Table 4: Quantiles for All Words in the Corpus                         | 40   |
| Table 5: 10 Most Common words in Contemporary American English         | 41   |
| Table 6: Sample Lemma                                                  | 42   |
| Table 7: Sample of One Variation with Two or More Lemmas               | 43   |
| Table 8: NER Classifications                                           | . 44 |
| Table 9: Top 15 Tokens (by Various Factors)                            | 48   |
| Table 10: Aliases for Command and Control that Appearing in the Corpus | 52   |

# LIST OF FIGURES

| Figure 1: Visual Representation of Coreference (Stanford NLP Group, n.da)           | 19   |
|-------------------------------------------------------------------------------------|------|
| Figure 2: Visual Representation of NER (Stanford NLP Group, n.da)                   | 19   |
| Figure 3: Watson structures Natural Language Resources within a domain (Internation | onal |
| Business Machines, n.d.).                                                           | 21   |
| Figure 4: Example of the Vertical and Horizontal Aspects of an Ontology             | 24   |
| Figure 5: Methodology Workflow                                                      | 29   |
| Figure 6: "Unhandled Exception" Error                                               | 35   |
| Figure 7: Sample character that createsd import issues                              | 35   |
| Figure 8: "Import Error" Issue                                                      | 36   |
| Figure 9: "File Not Loaded Properly" Message                                        | 36   |
| Figure 10: Quotation Marks Example                                                  | 37   |
| Figure 11: Sample of Document Tokens                                                | 38   |
| Figure 12: Distribution of Tokens (by Document)                                     | 39   |
| Figure 13: NER Classification Breakdown                                             | 45   |
| Figure 14: Sample of URLs Misidentified as Dates                                    | 45   |
| Figure 15: Representation off appearance Count as a Percentage of the Entire Corpu  | s 49 |
| Figure 16: Appearance Ratio for All Tokens in the Corpus                            | 49   |
| Figure 17: MySQL Database of Ontology Structure                                     | 53   |
| Figure 18: An example of a Class when viewed as a MySQL database table              | 53   |
| Figure 19: The class-subclass structure in Protégé                                  | 54   |
| Figure 20: Nesting of Classes                                                       | 55   |
| Figure 21: An Example of Link Analysis                                              | 62   |

# LIST OF ABBREVIATIONS

| APT   | Advanced Persistent Threat                         |
|-------|----------------------------------------------------|
| C2    | Command and Control                                |
| CND   | Computer Network Defense                           |
| CNE   | Computer Network Exploitation                      |
| CoCA  | Corpus of Contemporary American English            |
| CSS   | Creative Style Sheets                              |
| FTP   | File Transfer Protocol                             |
| GREAT | Kaspersky Lab Global Research and Analysis Team    |
| HTTP  | Hypertext Transfer Protocol                        |
| IDS   | Intrusion Detection System                         |
| NCHC  | National Center for High Performance and Computing |
| IMF   | Information Warfare Monitor                        |
| NER   | Named Entity Recognition                           |
| NLP   | Natural Language Processing                        |
| OSINT | Open Source Intelligence                           |
| OWL   | Ontology Language                                  |
| OWL2  | W3C's Ontology Language 2.0                        |
| PoS   | Parts of Speech                                    |
| RAT   | Remote Access Toolkit                              |
| SaaS  | Software as a Service                              |
| SCADA | Supervisory Control and Data Acquisition           |
| SCP   | Secure Copy Protocol                               |
| SFTP  | Secure File Transfer Protocol                      |
| SIEM  | Security Information and Event Management          |
| SSH   | Secure Shell                                       |
| SSL   | Secure Socket Layer                                |
| TTP   | Tactics, Techniques, and Procedures                |
| VPN   | Virtual Private Network                            |
| W3C   | World Wide Web Consortium's Web                    |

# ABSTRACT

Author: Holzer, Corey, T. Ph.D.
Institution: Purdue University
Degree Received: December 2016
Title: The Application of Natural Language Processing to Open Source Intelligence for Ontology Development in the APT Domain
Major Professor: J. Eric Dietz.

Over the past decade, the Advanced Persistent Threat (APT) has risen to forefront of cybersecurity threats. APTs are a major contributor to the billions of dollars lost by corporations around the world annually. The threat is significant enough that the *Navy Cyber Power 2020* plan identified them as a "must mitigate" threat in order to ensure the security of its warfighting network.

Reports, white papers, and various other open source materials offer a plethora of information to cybersecurity professionals regarding these APT attacks and the organizations behind them but mining and correlating information out of these various sources needs the support of standardized language and a common understand of terms that comes from an accepted APT ontology.

This paper and its related research applies the science of Natural Language Processing Open Source Intelligence in order to build an open source Ontology in the APT domain with the goal of building a dictionary and taxonomy for this complex domain.

# **INTRODUCTION**

Sophisticated hackers today employ complex operations in order to achieve their goals. They use intelligence gathering techniques to collect information about a potential target. They study these target networks and organizations to find weaknesses that they can use to their advantage. They execute attacks in a precise and careful manner in order to remain hidden from their targets. These attacks can even go dormant for months at a time or be executed over an extended period so as not to trip standard cybersecurity measures employed by their victims.

Conversely, intelligence about potential threats aids cybersecurity professionals in the defense of their networks as well. Like military forces on the battlefield these professionals need knowledge about those attacking their network and the means of attack that these adversaries employ in order for these professionals to better defend their network.

The rise in frequency and complexity of cyberattacks means that cybersecurity professionals are fighting a pitched battle and the intelligence they have is their best means of dealing with the threats that infiltrate their network and remain hidden within it in order to steal data or to do harm. Over the last decade these complex attacks known collectively as Advanced Persistent Threats (APTs) presented some of the greatest challenges to network and national security as the perpetrators executed these attacks against both the private and public sector.

This paper represents the author's research into the development of an APT ontology through the mining of open source intelligence. By employing the science of Natural Language Processing, it is the goal of this research to build a useful tool which will enable cybersecurity professionals to learn about these attacks

This chapter breaks down into seven sections. The first provides a brief background regarding APTs over the last decade. The second addresses the scope of the research. The third section lays out the significance of the research. The fourth provides the Statement of Purpose for the research. The final three sections outline the assumptions, limitations, and delimitations that could potentially affect the work at hand.

#### Background

Nearly one decade ago the term APT was coined. It described an emerging and complex form of cyberattacks that were engineered to steal data over an extended period of time while evading detection through a variety of techniques including small data transfers, use of non-malicious applications for malicious ends, etc. (Brill, 2010). These attackers were not seeking to do drastic or violent harm to an infected network. Instead they laid in wait eavesdropping on the network waiting for the right opportunity to present itself.

In his seminal work on APTs, Eric Cole likened these attackers and their attack to shoplifters. Cole notes, "At the point of entry the legitimate customer and shoplifter look identical. ... If that shoplifter is only in the store for 5 min[sic], the store has less than 5 min to detect and deal with the problem (Cole, 2012, p. 7)." To carry his analogy one step farther, if the shoplifter browses around the store doing little to cause suspicion and waiting for an ideal time (i.e. when the store owner is busy with a lunchtime crowd) to pilfer the item he desires the shop owner or the shop workers may never be any the wiser.

According to a market research report in 2015, the APT protection market generated \$3.9B USD in 2015 (PR Newswire, 2015). The figure is based on expenditures on items including Sandboxing, Endpoint Protection, Forensic Analysis, Security Information and Event Management (SIEM), Intrusion Detection Systems (IDS), Intrusion Protection Systems (IPS), Firewalls, etc. (PR Newswire, 2015). The same report by MarketsandMarkets estimated that this expenditure would more than double to \$8.7B USD in 2020 (PR Newswire, 2015). The cost of APT attacks will be discussed in greater depth in Chapter 2.

#### Scope

The research focused on the development of an ontology in the APT domain. This effort will not attempt to create new signatures or update existing signatures nor will it test to see if modified signatures can improve detection. For the reasons of timeframe and skillset, such an effort is beyond what the researcher would be able to complete to satisfy the requirements for his degree.

### Significance

In a world where so much of our commerce, infrastructure, and even national defense depends on the communication pathways provided by the internet, failure to detect and mitigate the threat represented by APTs could impact businesses, civilian infrastructure, and potentially national security of all nations. Current Cyber Network Defense measures are unable to reliably and regularly detect APTs that compromise both commercial and government networks. Part of the problem is incomplete understanding of these APTs and to see the various components of a single APT attack as parts of the larger whole.

The goal of this research is to build a comprehensive ontology based on information resources found in the open source domain. This work uses both open source intelligence and open source tools in the fields of natural language processing and ontology development.

#### **Statement of Purpose**

Upon its conclusion, this research will produce an ontology, built to OWL2 specifications in Protégé, for use in the APT culled from Open Source Intelligence (OSINT) resources found in the public domain of the World Wide Web.

### Assumptions

The design of this study is based upon the following assumptions:

- An APT domain ontology does not already exist in the public domain.
- The pool of Open Source Intelligence (OSINT) is significantly large enough to create a useful ontology pertaining to the APT domain.

### Limitations

The design of this research incorporates the following limitations:

- **OSINT** The pool of information used for this research will be limited to what information about APTs exists in the public domain.
- **Digital OSINT** The research will only include digitally based OSINT.

 Skillset – While I have some programing experience it is not significant enough nor do I possess the expertise in malware forensics needed to properly develop signatures for use by existing cybersecurity systems to detect and/or mitigate an APT attack.

### **Delimitations**

Factors outside of the control of the researcher creates the following delimitations:

- **Time** The Army has afforded the author a finite amount of time, two (2) years, to complete all the requirements of a graduate degree.
- Machine Processing The identification of ontological terms will be performed by software. Therefore, the amount of data that can be processed will be limited by how much data can be obtained and by the processing power of the systems being employed.
- **Open Source Intelligence** What information about APTs is available in the public domain is limited both by what cybersecurity companies wish to keep proprietary and what governments identify as classified information.
- Exclusion of other OSINT Limited assets for scanning and limited time for manually processing non-digital OSINT means that the research must exclude non-digital OSINT.

### **Summary**

In this chapter, you were provided with an overview of rise of the APT over the past decade as well as the projected growing costs of protecting systems and networks from these attacks over the next 5 years. We reviewed the significance of the research and the deliverables this researcher expects to provide upon completion. Finally, it addressed assumptions, limitations, and delimitations impacting the project at hand. The next chapter consists of a review of relevant literature pertaining to the current field of research.

# **REVIEW OF RELEVANT LITERATURE**

With the overview of the research complete, we will now move into a review of the relevant existing literature. This chapter covers eight areas of literature relevant to the current research effort. The first three sections provide context for the Advanced Persistent Threat by defining APTs, examining the APT attack in detail, and through an exploration of the decade long history of APT attacks and the costs associated with them. The fourth section defines the present challenges of detecting APT attacks as well as exploring the countermeasures used by malicious individuals in order to evade detection.

The last four sections examine concepts, disciplines, and related research in the APT domain which is relevant to this research. The first addresses the concept of Open Source Intelligence. The second explores the science of Natural Language Processing. The last defines ontologies. This chapter concludes with an exploration of research in the field of Advanced Persistent Threats, with particular focus on the development of APT ontologies.

#### **Defining Advanced Persistent Threats**

The United States Air Force first coined the phrase Advanced Persistent Threat in 2006 (Arsene, 2015; Ask et al., 2013; Bejtlich, n.d.). They created the term in order to facilitate discussions about the characteristics, activities involved, and the classification of these types of attacks (Ask et al., 2013).

It is proper to begin this research endeavor by defining how Advanced Persistent Threat will be used for our purposes. The threat is *Advanced* in that adversaries can employ tactics that cover the full spectrum of cyber-attacks (Ask et al., 2013; Bejtlich, n.d.; Bodeau, Graubart, Heinbockel, & Laderman, 2014; Cole, 2012). It is *Persistent* in that he is not an opportunistic hacker searching for easily infiltrated systems (Bejtlich, n.d.). Instead, the persistent attack is one that will operates over an extended period of time with a pre-determined target and desired end state for the cyber-attack (Bejtlich, n.d.; Bodeau et al., 2014; Radzikowski, 2016).

## **APT** as an Attack

The APT attack involves multiple methods, tools, and techniques used in a sophisticated complex manner in order to compromise the target and achieve what is usually a long-term objective (Chandran, P, & Poornachandran, 2015; ISACA, n.d.-a). The attacks are referred to as complex because they involve multiple forms of attack in order to compromise a target. A single APT can include a combination of social engineering of human targets, a phishing campaign as a call to action by a victim, and the use of malware to gain access and elevated permissions on target systems (Ask et al., 2013; ISACA, n.d.-b, n.d.-c).

The actual phases of an APT attack will be discussed in a later section. The discussion will follow the framework outlined by Lockheed Martin in its Cyber Kill Chain (Ask et al., 2013). It is important to note that as the APT attack phases should not be considered as discrete events where one phase ends and the next begins (Chandran et al., 2015). Keep in mind that there can be overlap as the attack propagates across the target network. It is also important to understand that while we use the term persistent it is not intended to mean that the attack is constantly active or that connections between the APTs' C2 server and compromised hosts is constant (Ask et al., 2013; Hutchins, Cloppert, & Amin, 2011; Raj, Chezhian, & Mrithulashri, 2014).

The sophistication and complexity of APT attacks make it hard for organizations to recognize one particular element as being only one piece of a larger plan (Armerding, 2012; Ask et al., 2013). In this game of cat and mouse the attacker has the advantage of having unlimited time, resources, the victim organization's prioritization of its business processes, and less fear of prosecution when the attack takes place across international borders (Auty, 2015).

## **APT** as an Organization

In addition to describing the attack, the term APT is used to describe the organizations that execute these attacks. In this context the discussion focuses on organizations that are well funded, well organized, and patient (Cole, 2012). They can infiltrate a network and remain hidden while monitoring it for a specific target or data to

exfiltrate (Bodeau et al., 2014). Their goal is stealthy execution instead of the kind of attack that draws attention to the person or persons committing the crime.

While it is understood that those responsible for APT attacks are well organized and that they possess significant funds, cybersecurity professionals must not confuse this with meaning that they are sponsored by state actors (Ask et al., 2013). Cybersecurity professionals attribute some APTs to state sponsored actors but state sponsorship in not a required component of the definition (Bejtlich, 2013; Mandiant, 2013). With APT defined let us explore the costs, both in financial and national security terms, associated with the threat.

#### Phases of the APT Attack

With the definitions complete, let us delve into the several phases that an APT attack employs in order to obtain the attacker's desired end state. One of the more widely accepted description of the APT Attack comes from Lockheed Martin. The "Lockheed Martin Cyber Kill Chain" breaks the attack into seven phases. We will use their model as a means of discussing Lockheed Martin's definition of each phase. The seven phases are as follows:

- Reconnaissance
- Weaponization
- Delivery
- Exploitation
- Installation
- Command and Control
- Actions on Objective

Additionally, the descriptions will include elements that other cybersecurity professionals and professional organizations include when discussing the APT attack.

# Reconnaissance

Reconnaissance is the selection and identification of the desired target. In this stage the APT is footprinting the target organization and collecting information including but not limited to names, positions, email addresses, physical locations, operating

systems, etc. (Hutchins et al., 2011). Through this information gathering process the APT determines who has ownership of the desired information that they seek to steal (2013). The APT will determine which employee to compromise as well as a potential means for doing so.

#### Weaponization

In the Weaponization phase, the APT puts together the code that they will use to compromise a target system (Hutchins et al., 2011). This will often involve the use of existing and proven code but, if needed, APTs will adapt or modify code in order to address a specific configuration or defensive challenge (Ask et al., 2013; Cole, 2012; Hutchins et al., 2011). When using code designed for the specific target, the code has no anti-virus signature which the target company might use to detect it (Websense, 2011).

### Delivery

In the Delivery phase, the APT transmits the weapon to the targeted system (Hutchins et al., 2011). Lockheed Martin identifies the most common delivery methods as email attachments, websites and removable media. In addition to those three, Ask, et.al. (Ask et al., 2013) identified social media as another means for launching at attack against an individual within the target organization. For the attack to move beyond this phase, the targeted individual most click on the link, attachment, or application for the attack to move into the next phase (Auty, 2015).

#### Exploitation

Exploitation involves compromising the host machine on the network. It is where the weaponized tool is triggered (Hutchins et al., 2011). The exploitation can be of a flaw in the operating system or an individual application on the host (Ask et al., 2013; Hutchins et al., 2011).

## Installation

The next phase of the attack is the Installation phase. Installation refers to the installation of a Remote Administration Tool (RAT) or backdoor that the APT can use to

gain control of the target's computer (Ask et al., 2013; Hutchins et al., 2011). Once the victim triggers the malicious code (e.g. by clicking the malicious link, opening the infected file, or visiting the compromised site, etc.) the code reaches back to its Command and Control (C2) server and provides the attacker with useful information about the target network's environment that could be useful in executing the later stages of the APT attack (Ask et al., 2013). Once installed the RAT can also lay dormant until the C2 server connects to it (Ask et al., 2013; Sikorski & Honig, 2012).

#### **Command and Control**

The Command and Control phase begins once the infected host beacons the C2 server (Hutchins et al., 2011). Attackers need to maintain access to the victim's network means that each communication with a compromised system (Auty, 2015). During this phase the APT will seek to obtain elevated privileges on the system and will install additional software to facilitate the attack (i.e., encryption) on compromised system and network (Ask et al., 2013). While the initial installation is achieved by software designed to exploit a zero-day vulnerability, the additional software is likely to be commonly known software that may even be approved to operate on the network for legitimate activities (e.g., SSH, SecureFTP, etc.) (Ask et al., 2013).

#### **Actions on Objective**

The final stage in Lockheed Martin's APT Kill Chain is the Actions on Objective phase. During this phase the APT is actively going after the data that they originally identified as their target (Hutchins et al., 2011). The APT uses previously installed software to determine the network layout including, but not limited to, mapping the hosts of networked drives, database servers, domain controllers, PKI, etc. (Ask et al., 2013). The goal here is to footprint the network and to establish a network account and elevate the privileges for that account (Ask et al., 2013). During this phase, the APT will also seek to compromise more hosts in order to strengthen its foothold in the target network. The extraction of the target data may also be accomplished using custom encryption and/or tunneling within other protocols to hide the data from security professionals (Websense, 2011).

Conventionally, malware will remove itself once its task is complete or it is discovered and removed by antivirus software (Ask et al., 2013). The APT, however, is designed to stay invisible. It maintains persistence by reaching back to the C2 server for updates to the malicious code (Ask et al., 2013). Changing code enables the APT attack to avoid detection. Mandiant's APT Attack model includes cleanup as part of this phase (Mandiant, 2013; Saarinen, 2013). However, it is more likely that the APT will leave some software in place in order to facilitate quicker access if the adversaries wish to exfiltrate more information in the future. The security firm Mandiant has data demonstrating that a group identified as APT1 has left software in place to re-access a target network months, and even years, later (Bejtlich, 2013; Mandiant, 2013; Raj et al., 2014).

### **History of APTs**

With an understanding of the APT attack established, we will next look at some examples of cyber-attacks that were qualified as APTs. By no means is this intended to be an all-inclusive list. It is intended to demonstrate the variety of attack elements and the variety of targets.

#### **Shady Rat**

With earliest evidence indicating that this APT collected data in mid-2006, it is possible that it was stealing data even earlier than the logs provide (Alperovitch, 2011). Evidence collected by McAfee indicates that, unlike other APTs discussed here, this APT was used against a wide range of individuals and organizations in multiple industries. Initial installation took place via a spear-phishing email. The attachment triggered the download and installation of malware that, in turn, created a backdoor communication channel with its C2 server. In four of 71 instances where Shady RAT gained control of a target system, it remained persistent for 24 or more months (Alperovitch, 2011).

## **Night Dragon**

This attack targeted the Global Energy Business Community (McAfee, 2011). Commencing in 2009, Night Dragon employed social engineering and spear-phishing attacks to exploit vulnerabilities and compromise Microsoft Active Directory machines. The initial targets were extranet web servers and then internal desktops and servers to gain elevated permissions within the hosts and target network. Finally, the APT harvested sensitive proprietary and project-financing related information sending that information back to C2 servers on the Internet (McAfee, 2011).

#### **Poison Ivy Attack on RSA**

The APT identified two specific independent groups of RSA employees and crafted a spear-phishing campaign tailored to the target employees' job functions (RSA FraudAction Research Labs, 2011). The email contained a spreadsheet which executed code that leveraged an Adobe Flash vulnerability in order to inject a Poison Ivy RAT which, in turn, established a hard to connect reverse connection to the APT's C2 servers. The data stolen included RSA's SecureID two-factor authentication products (Ashford, 2011). Executive Chairman Art Coviello issued an open letter to customers in which he acknowledged that the stolen information "could potentially be used to reduce the effectiveness of a current two-factor authentication implementation as part of a broader attack (Ashford, 2011; Coviello, n.d.)."

# Icefog

This APT attack has been used numerous times starting in 2011 with most of the attacks targeting organizations in Japan and South Korea (Kaspersky Lab Global Research and Analysis Team, 2013). Kaspersky Lab's Global Research & Analysis Team (GREAT) researched the attacks and determined that their targets were supply chains of "government institutions, military contractors, maritime and ship-building groups, telecom operators, satellite operators, industrial and high technology companies and mass media (Kaspersky Lab Global Research and Analysis Team, 2013)."

The APT achieved their initial insertion through spear-phishing campaigns and attachments which exploited known vulnerabilities in the host's operating system (Kaspersky Lab Global Research and Analysis Team, 2013). GREAT identified at least 6 variations in the manner in which Icefog exfiltrates data (Kaspersky Lab Global Research and Analysis Team, 2013). They are as follows (with designations established by GREAT) (Kaspersky Lab Global Research and Analysis Team, 2013):

- The "old" 2011 Icefog sends stolen data by e-mail
- Type "1" "normal" Icefog interacts with C2 servers
- Type "2" Icefog interacts with a script-based proxy server that redirects attacker commands
- Type "3" Icefog observed to use a certain kind of C2 via a different means of communication
- **Type "4" Icefog** another C2 variation with a different means of communication
- Icefog-NG communicates by direct TCP connection to port 5600

# Stuxnet

In 2010 this worm was weaponized with the specific goal of impacting systems that run Supervisory Control And Data Acquisition (SCADA) engineered by Siemens (Kushner, 2013). The worm was initially uploaded via USB to a Windows workstation and started spreading across the target network without impacting any systems that did not run the SCADA software. Once it entered a machine where the SCADA was present it would connect with its C2 server and receive software updates (Kushner, 2013). The worm then compromised the system and began gathering information in order to get the elevated permissions needed to take control of centrifuges making them fail. The software would also provide false information back to the user giving the appearance that everything was functioning normally (Kushner, 2013).

### **GhostNet/Shadows in the Cloud**

In a collaborative effort, Information Warfare Monitor (IMF) and Shadowserver Foundation (2010) documented the complex network of systems used to conduct cybercrime and cyber espionage operations against unsuspecting targets in the government, academic, and corporate sectors. The research built upon a research effort conducted by an Information Warfare Monitor partner, SecDev, titled *GhostNet* which they performed in 2009 (Bradbury, 2010; Information Warfare Monitor & Shadowserver Foundation, 2010). SecDev initiated the *GhostNet* investigation at the behest of the Office of the Holiness the Dali Lama which was a victim of the APT attack (Bradbury, 2010).

The IMF and Shadowserver (2010) determined the following:

- C2 infrastructure leveraged cloud-based social media services in order to compromise unsuspecting targets.
- The complex network of compromised systems employed C2 servers, malware, botnets, and drop sites in order to compromise targets and to exfiltrate data undetected.
- Stolen data included classified and sensitive documents as identified by classified markings on multiple documents.
- Hackers exfiltrated data from 44 systems across nine countries.

The investigation determined that the entire system required four different types of hacking tasks in order to successfully complete the task of stealing data (Information Warfare Monitor & Shadowserver Foundation, 2010):

- Malware Authors to develop the malware that compromised target systems.
- Website Crackers to maintain the malicious websites
- **Envelope Stealers** who are individuals who steal username and password combinations on compromised networks.
- Virtual Asset Stealers and Virtual Asset Sellers who possess an understanding of what data has value in the underground or criminal economy.

# **New York Times Attack**

In 2013, the New York Times announced that their network was compromised through the installation of malware which led to the extraction of the network's user database (Perlroth, 2013). In its 2014 "M-Trends: Beyond the Breach" Report, Mandiant stated that the suspected APT group took specific steps to change their cyber operations following the disclosure in order to "better hide its activities (Mandiant, 2014, p. 20)."

#### Trojan.APT.Seinup

Discovered in 2013, this Trojan targeted Google Docs. The APT attack leveraged this legitimate cloud based Software as a Service (SaaS) in order to leverage the legitimate Secure Socket Layer (SSL) of Google Docs to protect their malicious communications (Naval, Laxmi, Rajarajan, Gaur, & Conti, 2014).

With this brief sample the reader can see that detecting APTs is a challenge for cybersecurity professionals. Next, we will examine some of the technical reasons that make it so difficult.

#### The Cost of the APT Threat

On a regular and increasingly frequent basis companies, government organizations, and industries are reporting breeches of their network and the extraction of thousands if not millions of data records. Despite the security measures these organizations put in place to ensure the security of the data customers provide to them. For example, in 2011 RSA spent \$66 million USD to undo the damage caused by an APT attack (TrendLabs, n.d.). In a 2015 study by the Ponemon Institute, the researcher estimated that it can cost up to \$161 each record lost (Ponemon Institute, 2015). When one considers that some APT attacks can compromise millions of users' records the cost could potentially bankrupt businesses.

The threat is not limited to consumer market. The US government's Office of Personnel Management reported a data breech in 2014 which involved 25,000 or more personnel records of government employees (Bisson, 2015). Breeches like this could present a risk to national security. The Stuxnet attack in 2010 had the potential of causing significant damage to nuclear facilities which could place lives and national infrastructures at risk as well (Damballa, 2010; Kushner, 2013). It is for this reason that the U.S. President issued an Executive Order in 2013 calling for the development of a Cyber Resiliency Framework (United States. The White House, 2013). It also prompted the U.S. Navy to declare APTs as a "must mitigate" threat (Card & Rogers, 2012).

#### **Understanding the Challenge of Detecting APTs**

With the previous examples providing a context for understanding how APTs function we can now address what challenges exist in detecting APTs. While APTs can employ a variety of known attack elements (e.g., phishing, malware, etc.) which can be detected by current security measures, attackers are still able to execute their attacks unnoticed. The question for security professionals, therefore, how are these attackers employing these detectable tools in a manner that leaves them undetected.

#### **Challenges Specific to APT Detection**

Conventional means of intrusion detection often fail to detect APTs because they are implemented to mitigate risks associated with automated viruses and worms, not the focused manually-operated attack of an APT (Hutchins et al., 2011). In its annual *M*-*Trends*, Mandiant (Mandiant, 2010), estimated that only 24% of APT malware is detected by security software. This is due to multiple factors. The target organization's decision not to inspect outbound packets (Ask et al., 2013; Auty, 2015; Villeneuve & Bennett, 2012). Data is encrypted (Ask et al., 2013; Villeneuve & Bennett, 2012). The affected machines send data to a trusted source (Villeneuve & Bennett, 2012).

#### Anti-detection Methods Employed with Malware

As discussed in the previous section, APTs commonly employ malware as a means to gain their initial foothold into a target network and to gain elevated permissions on host machines. Malware comes in many forms including Trojan horses, worms, rootkits, scareware, spyware, and viruses (Egele, Scholte, Kirda, & Kruegel, 2012; Sikorski & Honig, 2012). Regardless of which family the malware belongs to the software is designed to remain undetected on an infected system (Brand, Valli, & Woodward, 2010).

Malware developers must overcome the various forms of detection the forensics analysts use to reveal the presence of malware as described above. Malware developers have varied methods at their disposal to defeat detection. These means fall into several areas.

## Anti-emulation

Malware developers employ techniques which detect that their malware is running in a virtual environment and the malware will either stay dormant or use deception code to provide a false signature to forensic experts trying to dissect the malware (Brand et al., 2010).

### Anti-online

Companies offer third party malware analysis services online. However, there are limits to how well these services work because the online environment may not match conditions to trigger the malware or it may act differently than it would in a real-world network (Brand et al., 2010).

#### Anti-Analysis

Anti-analysis refers to changing the code such that it becomes harder to read during the analysis process (Brand et al., 2010; Shosha, James, Hannaway, Liu, & Gladyshev, 2012). These techniques target the way analysis is conducted. Code is deceptively transformed such that the analysis tools cannot establish a signature for the malware (Brand et al., 2010). De-obfuscation methods of analysis fail because that analysis happens on the files whereas the malware's transformation back into identifiable malicious code happens in memory as part of the unpacking process (Egele et al., 2012).

### Anti-hardware

Malware developers can use check to determine whether the malware is being analyzed based on signatures of CPU usage and register usage during the debugging session (Brand et al., 2010).

#### Anti-debugger, Anti-disassembler, and Anti-Tools

In the same way that malware can detect if the operating system is running in a virtual environment, malware developers can design their malware to detect if the code is being debugged, disassembled, or examined by other tools (Brand et al., 2010).

#### Anti-memory

In case the malware analyst is clever or experienced enough to dump memory as a means of defeating anti-analysis measures, the malware developer can use anti-memory measures in order to frustrate the forensics analyst's effort. For example, the developer can have the packer that unpacks the code into memory to delete code as soon as it is executed (Brand et al., 2010).

# Anti-process

Anti-Process techniques are designed to mitigate the attempts by forensic analysts debugging of running processes. The technique changes the entry point from to a different one which foils the debugging effort (Brand et al., 2010).

#### **Packers and Protectors**

Obfuscation and its subset, packing, are techniques used by malware developers to make static analysis more difficult for the forensics experts (Brand et al., 2010; Sikorski & Honig, 2012). Obfuscation is a means of hiding or disguising code (Sikorski & Honig, 2012). Packing uses compression and a wrapping program as a means of disguising the true purpose of program (Sikorski & Honig, 2012). Even more challenging for analysts and malware detection is recursive packaging which obfuscates code in multiple layers of recursive compression (Egele et al., 2012).

## Metamorphic or Polymorphic

This type of malware is constructed in such a manner that it can re-engineer or recode itself (Raj et al., 2014; Sikorski & Honig, 2012). This recoding takes place each time it propagates or is distributed through a network. This type of malware hinders the use of signature-based protection tools (Raj et al., 2014).

### **Defining and Evaluating Open Source Intelligence**

With related research understood, we can start to explore the independent elements that will go into the present research. Therefore, the next three sections will address Open Source Intelligence (OSINT) which will be used to establish our ontology and as our data for text-mining and link analysis, which will be discussed in the following two sections.

Intelligence organizations and law enforcement at all levels of government use data and information found in open sources for decades (Fleisher, 2008; Steele, 2007). Traditionally, OSINT was characterized by searching through publicly available sources of information to include books, journals, magazines, etc. (Burwell, 1999; Fleisher, 2008). Steele formalizes the definition of OSINT as "information that has been deliberately discovered, discriminated, distilled and disseminated to a select audience (Steele, 2007, p. 132)."

Steele (2007) notes that the change to OSINT is the result of three distinct trends (1) the proliferation of the Internet; (2) the consequence of the related "information explosion" of published useful knowledge which is experiencing an exponential growth; and (3) the availability of formerly restricted sources of information resulting from failed states and newer non-state threats. Best (2011) acknowledges that the challenge with OSINT is not the collection of information but the filtering and distillation of the retrieved content into meaningful metadata that can be analyzed.

#### The Science of Natural Language Processing

In this section, we will explore the science of Natural Language Processing (NLP). It is broken down into three subsections. First, we will define the concept of Natural Language Processing (NLP) and terms used within this field of study that are applicable to the present research. Next, we will provide some examples of applications of NLP in the public domain. The third section provides a brief examination into how NLP analyzes human language. The last section explores some of the NLP tools available in the public domain with particular attention to the tools used within the present research.

# Defining NLP and Key Terms

NLP is the science which enables computers to breaking down unstructured human language (Radev, 2015; Sims, 2015). It is a subset of machine learning which draws upon the fields of Linguistics, Theoretical Computer Science, Mathematics, Statistics, Artificial Intelligence, Psychology and more (Radev, 2015). When we say unstructured human language, we refer to language as it is written or spoken.

While human language has its own structure it is not a structure that is conducive for machine searching or for relating ideas, concepts, or terms to one another (Radev, 2015). Documents that cover a particular area of study are referred to as the corpora (Börner, 2007; International Business Machines, n.d.).

The following list identifies commonly used NLP terms.

- **Information Extraction** The process of extracting structured information from unstructured natural language texts (Waldron, n.d.).
- **Bag of Words** A modeling techniques for training the NLP software to identify the sentiment of a given passage of text (Waldron, n.d.).
- **Coreference** is the ability of software to identify relationships between specific and general terms within a text. Figure 1 is an illustration of determining a relationship between the multiple instances of his with President Xi Jinping mentioned at the beginning of the sentence.

-----Coref------President Xi Jinping of China, on his first state visit to the United States, showed off his familiarity with American history and pop culture on Tuesday night.

Figure 1: Visual Representation of Coreference (Stanford NLP Group, n.d.-a)

**Named Entity Recognition (NER)** – the process of identifying or classifying terms within text by a broader classification (Finkel, Grenager, & Manning, 2005). Figure 2 illustrates how NLP software uses NER to classify words in analyzed text. Table 1: NER Classifications lists the 13 NER classifications used by Stanford CoreNLP. It is important to note that the Classification 'O' is a catch-all for any term that cannot be distinguished as one of the other NERs.



Figure 2: Visual Representation of NER (Stanford NLP Group, n.d.-a)

| Table 1: NER Classifications            |  |  |
|-----------------------------------------|--|--|
| Named Entity Recognition Classification |  |  |
| DATE                                    |  |  |
| DURATION                                |  |  |
| LOCATION                                |  |  |
| MISC                                    |  |  |
| MONEY                                   |  |  |
| NUMBER                                  |  |  |
| 0                                       |  |  |
| ORDINAL                                 |  |  |
| ORGANIZATION                            |  |  |
| PERCENT                                 |  |  |
| PERSON                                  |  |  |
| SET                                     |  |  |
| TIME                                    |  |  |

- Sentiment Analysis The ability to extract not only terms but also the positive or negative tone of the text (Waldron, n.d.).
- **Corpora or Corpus** A large collection of texts within a specific domain (Waldron, n.d.)
- Lemma the root word of tokens appearing in the corpora or in a single document (Jones, 1999). Table 2.1 below provides an illustration. The words capture, captured, captures, and capturing appear in the corpus. All of these words are derivatives of the lemma capture.

| Lemma   | Word      | Appearances |
|---------|-----------|-------------|
|         | capture   | 195         |
|         | captured  | 93          |
| capture | captures  | 60          |
|         | capturing | 35          |

| Table 2: Ca | pture as an examp | ole lemma |
|-------------|-------------------|-----------|
|-------------|-------------------|-----------|

## Examples of NLP in the Public Domain

A variety of well-known and frequently used tools apply NLP to accomplish specific goals. The most common example is search engines (Radev, 2015). These websites, and their related robots, use NLP as a tool to index websites and facilitate user searches. Other examples include web-based translation tools (i.e. Google Translate), and Natural Language Assistants (e.g. Siri, Cortana, etc.) (Radev, 2015).

# IBM's Watson

Another example of an NLP application is International Business Machines' (IBM) Watson Application Program Interface (API). The Watson system, like the other NLP tools described later, processes various forms of the written human word (e.g. Word Documents, Portable Document Format (PDF), HTML web pages, etc.) and pairs of questions and answers are stored within Watson's database which users can then query (International Business Machines, n.d.).

The Watson application has been used to analyze thousands of medical documents and build searchable databases of diseases and their symptoms. **Error! Reference source not found.**, below, provides an example of how Watson processes numerous medical resources to build a structured understanding of cancer and other diseases with similar symptoms, treatments, and side effects.

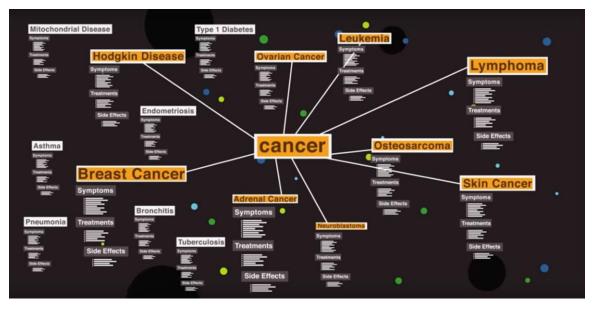



Figure 3: Watson structures Natural Language Resources within a domain (International Business Machines, n.d.).

# Stanford's CoreNLP

Stanford's CoreNLP (CoreNLP) is actively developed by Stanford's Natural Language Processing Group (NLP Group). The NLP Group members include faculty, post doctorates, graduates, undergraduates, and programmers (Stanford NLP Group, n.d.b). CoreNLP is a collection of tools, built in Java, which can extract word lemmas, parts of speech, proper names of individuals and corporations, markup sentence structure and more (Manning et al., 2014).

## BookNLP

BookNLP is an extension of the CoreNLP. It is designed to scale CoreNLP's functionality to larger source documents (Bamman, Underwood, & Smith, 2014). It also leverages MaltParser for dependency parsing (trained on CoreNLP's typed dependencies). The project was last updated over 3 years ago, based on its GitHub repository (https://github.com/dbamman/book-nlp),

## Natural Language Toolkit

Natural Language Toolkit (NLTK) is a collection of tools written in Python designed to work with human language data (Bird, Loper, & Klien, 2009). An open source package currently in its third version, NLTK has over 100 predefined corpora and training models and can process 14 languages (Bird et al., 2009).

#### How NLP Processes Human Language

The two main functional roles of NLP are semantic and syntactic analysis (Collobert et al., 2011). Syntactic focuses on the way language is structured and deriving an understanding of the language through the understanding of the structure. Semantics focuses on the mapping of language to derive meaning from the way that words are used within natural language(Wang, Berant, & Liang, 2015). Collobert et. al. (2011) further divides these two areas into four main roles for NLP as follows:

- **Parts of Speech (PoS) Tagging** which is used to identify words by their syntactic role (e.g. nouns, verbs, adjectives, etc.) (Collobert et al., 2011; Wang et al., 2015);
- Shallow Parsing or Chunking which is used to identify syntactic phrases, commonly Noun Phrases and Verb Phrases (Collobert et al., 2011);
- Named Entity Recognition (NER), which identifies parts of the sentence into categories like people and places (Collobert et al., 2011), and;

• Semantic Role Labelling analyzes the semantics of a sentence and establishes relationships between the semantic components (Collobert et al., 2011).

Beyond these parsing functions, NLP offers the following functionality when processing text:

- **Deep Analytics** involves advanced data processing techniques to facilitate more precisely targeted and more complex searches (Sims, 2015);
- Machine Translation which involves converting human text from one language to another (Sims, 2015);
- **Co-reference Resolution** is a tool that resolve the relationship between terms that refer to the same subject (Sims, 2015), and;
- Automatic Summarization functionality in NLP can be used to produced readable summaries of denser texts (Sims, 2015).

In order for NLP to provide usable data regarding a particular domain it is often useful to train the NLP system with a lexicon (Collobert et al., 2011; Hake & Vaishalideshmukh, n.d.; Lee et al., 2011; Wang et al., 2015). With the lexicon, the NLP application has a starting point from which to analyze documents within a domain. It is for this reason that the methodology in the first iteration includes a manual processing of documents by the research team. By default, CoreNLP is trained using the coreference library developed out of the SIGNLL Conference on Computational Natural Language Learning 2011 (CoNNL-11) (Lee et al., 2011).

#### The Role of Ontology

An ontology is designed to establish a common vocabulary and give practitioners the ability to easily share concepts (Mundie & McIntire, 2013). An ontology helps improve knowledge management within a domain (Dey, Rastogi, & Kumar, 2007). The development of an ontology is further intended to streamline the process of information sharing and to avoid problems of misrepresentation or miscommunication resulting from parties using incompatible terminology (Huang, Acampora, Loia, Lee, & Kao, 2011). Previous research in the area of malware analysis and APT detection will be discussed in the section on Prior Related Research.

### **Ontology Basics**

Dey, Rastogi, and Kumar (2007) notes that the role of ontologies is to help improve knowledge management by formalizing the representation of domain-specific knowledge. Hitzler, et al. (2012) adds that these terms, often referred to as vocabulary, are used to precisely describe the domain. These terms can be identified by the frequency of their appearance in natural language texts (Dey et al., 2007; P Velardi, Fabriani, & Missikoff, 2001). The importance of terms and their relationship to other terms can be determined by the co-occurrence of terms within natural language texts (P Velardi et al., 2001). Karoui, Aufaure, and Bennacer (2007) take co-occurrence one step farther by weighting the relationship based on the proximity of terms to one another within the document.

## **Ontology Development**

Ontologies are developed both vertically and horizontally (Navigli & Velardi, 2004; P Velardi et al., 2001; Paola Velardi, Faralli, & Navigli, 2013). From top-tobottom, terms move from broader terms to more specific ones (Paola Velardi et al., 2013). For example, if the term at the top of the chain is communication, the next level could contain two terms secure and unsecure. Under Unencrypted Communications there would be more specific individuals including Hypertext Transfer Protocol (HTTP), File Transfer Protocol (FTP), and email. Individuals under Secure Communications could include Secure File Transfer Protocol (SFTP), Secure Shell (SSH), Secure Copy Protocol (SCP), Virtual Private Network (VPN), etc. In other ontologies the subordinate terms may also be a part of the parent term (e.g. the lobby of the hotel) (P Velardi et al., 2001). Individuals are specific instances of the parent term (i.e. Apache or Nginx are instances of a web server) (P Velardi et al., 2001). Figure 4: Example of the Vertical and Horizontal Aspects of an OntologyFigure 4, below, is a visual representation of the same.

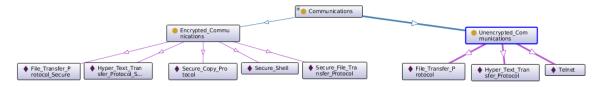



Figure 4: Example of the Vertical and Horizontal Aspects of an Ontology

In addition to classes and individuals, ontologies can specify properties of classes and properties of individuals (Horridge, Knublauch, Rector, Stevens, & Wroe, 2004). Properties define attributes of a class or an individual. In the example, above, a property might be the type of encryption used (e.g. MD5 or SHA2) to encrypt the communication or it could be the ports used to communicate between hosts.

### **Prior Related Research**

This section will look at some of the research that focus on the use of ontologies for malware analysis and the development of fuzzy logic and cognitive agents for use in detecting APT attacks. As has been previously illustrated, malware is a significant tool in the execution of an APT attack. Therefore, research done in this area is impactful on the work in the present effort.

## Mundie and McIntire

In Mundie and McIntire's (Mundie & McIntire, 2013) research they sought to develop an ontology for Malware Analysis. Their work was motivated by four challenges in the business of malware analysis: (1) security teams and their customers were wasting time negotiating requirements because they did not "speak the same language;" (2) human resources departments couldn't hire the right malware analysts because they could not properly explain job requirements; (3) certification programs did not have a standardized way to assess the abilities of malware analysts; and (4) information sharing within the malware analysis community is impeded by a lack of shared foundation (Mundie & McIntire, 2013).

Their work employed six increasingly complex levels of knowledge representation (Mundie & McIntire, 2013):

- **Controlled Vocabulary** collection of preferred terms.
- **Taxonomy** hierarchically related terms in a controlled vocabulary.
- **Static Ontology** an ontology that describes static aspects of the world.
- **Dynamic Ontology** an ontology hat describes changing aspects of the world.

- Intentional Ontology a subjective ontology based on the motivation of agents.
- **Meta-model** An ontology template that can generate ontologies by filling-in the parameters.

Their work yielded a vocabulary of approximately 270 malware analysis terms and a taxonomy outlined in World Wide Web Consortium's Web (W3C) Ontology Language (OWL). Mundie and McIntire built their initial ontology using the email archive of a malware analysis team. They also included various recognized textbooks in the malware analysis field and some Internet resources (Mundie & McIntire, 2013).

#### Huang, Loia, and Kao

Huang, Loia, Lee, and Kao (Huang et al., 2011) research sought to apply fuzzy logic and ontologies for their application of inferring knowledge about malware, and designing an intelligent decision making system whose behavioral rules can be used to detect viruses and other malicious programs. As with Mundie and McIntire's research they employed OWL to build their malware behavior ontology (Huang et al., 2011).

To test the effectiveness of their decision-making system they evaluated its performance against 30 "attendance records" from the National Center for High Performance and Computing (NCHC) malware repository. Their reported results and conclusion indicate that the employment of fuzzy logic and ontology was feasible and usable for a malware behavioral analysis system (Huang et al., 2011).

#### Meckl, Tecuci, Boicu, and Marcu

Meckl, Tecuci, Boicu, and Marcu (2015) attempted to improve cyber defense against APTs using an operational semantic approach. The motivation for their work was to reduce false positives thus increasing the efficiency and reducing the costs associated with automated APT analysis. To achieve this, they are proposing developing collaborative cognitive agents that can apply updates based on new intelligence. In theory, the work of this present study could potentially inform this agent (Meckl et al., 2015).

#### Lundquist, Zhang, and Ouksel

In Lundquist, Zhang, and Ouksel (Lundquist, Zhang, & Ouksel, 2015), the research focused on applying an ontology to the analysis of network traffic in order to determine the nature of the traffic as a threat or as innocuous. The extent of the threat (or non-threat) is also determined as part of this scan. If the sentiment scan is inconclusive the traffic data goes through further processing that involves alternate ontologies and/or expanded data from a longer observation window (Lundquist et al., 2015).

These and potentially other research efforts have some overlap with our current effort, but the researcher contends that this does not invalidate our efforts. Instead, the researcher holds that the research could augment these other research efforts and others like them.

## Summary

In this chapter, we defined of the term Advanced Persistent Threat both in terms of the attack and the actor. With that groundwork laid, we explored the phases of the APT attack in the context of the widely-accepted Lockheed Martin "Cyber Kill Chain." We looked at several illustrative historic examples of known APT attacks and the current challenges cybersecurity professionals face when trying to detect APT attacks. We also examined the costs associated with data breeches resulting from APT attacks.

We examined the concepts of OSINT, ontology development and natural language processing as an intelligence building tool. Finally, we examined prior research efforts in the fields of APT and malware ontologies and the application of those ontologies.

# FRAMEWORK AND METHODOLOGY

With definitions, history, and a review of prior APT research complete, it is time to layout the approach that the author intends to apply in the present endeavor. This chapter will examine the framework, researcher's biases, the proposed methodology including the two phases the research will take, a review of the data to be collected, the tools that will be used to analyze the raw data, and finally the researcher's credibility.

#### Framework

As demonstrated in the literature review, previous research efforts sought to develop a meaningful ontology as a part of malware analysis and incorporating a semantic approach to improve defense against APT attacks. However, none of these prior efforts sought to apply link analysis to the existing APT knowledgebase in an effort to refine or improve the threat intelligence that exists for each individual APT.

The author acknowledges that some corporate entities may have explored employing link analysis to expand their threat intelligence about APTs but, that work being of a proprietary nature, it has not been published in the public domain as open research.

### **Researcher Bias**

While there is always a risk of bias when dealing with qualitative or hybrid research efforts, steps within the methodology outlined below are designed to minimize the possibility that it will affect the outcome of this research effort. My only vested interest in this research is to provide the most thorough effort that I can within the time parameters available to me.

### Methodology

This section lays out the methodology used in the research related to this paper. It describes the workflow illustrated in , below.

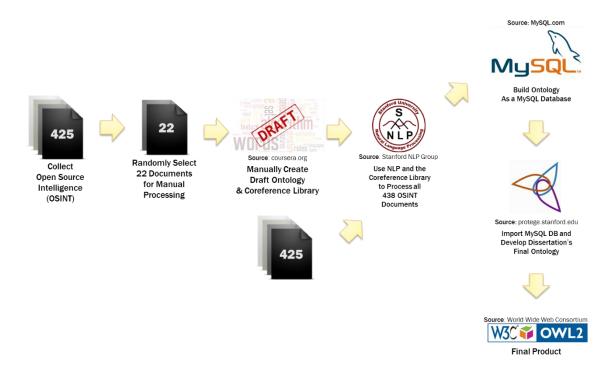



Figure 5: Methodology Workflow

The first step in the research process involved the collection of OSINT pertaining to APT incidents over the past decade. During the literature review research, the search for resources uncovered two repositories of documents pertaining to APT attacks. These two repositories contain over 700 documents include reports by cybersecurity professionals and organizations covering individual incidents and studies of trends about cyberattacks over time. Organized by year, these primary sources span from 2008 through 2016. The size of these repositories provides a significant foundation for building this study's ontology.

As a part of the merging of the two repositories, this step included the removal of duplicates documents. Other documents were removed for other reasons as explained in Chapter 4.

As discussed in the 'Science of NLP' section of the Literature Review, in order for NLP software to produce the most useful analysis regarding a domain, the software needs to be trained regarding the lexicon of the domain. Therefore, the researcher selected 5% of the documents randomly from the final knowledgebase and read through the selected documents and identified terms and phrases that are meaningful within the APT domain. The next two steps on the methodology were performed in parallel as neither required the other as a preceding task. The two steps were the NLP processing of the remaining documents in the corpus and the building of an initial ontology using the terms identified during the manual analysis.

The researcher included this step for multiple reasons. First, to understand the breadth and scope of an APT domain ontology. Second, as a familiarization with the ontology building software used in the research.

After completing the two parallel tasks, the next step was the extraction of domain relevant terms from the processed documents. Using knowledge gleaned from the manual processing of documents, I determined to use a statistical approach to initially identify ontological terms and then to use contextual analysis to identify additional terms. From there I used a tool I am familiar with to build the relational structure of the ontology and then connected Protégé to the database in order to develop and the final ontology (presented in OWL2 in Appendix C).

### **Data Collection**

The data collected in this research comes in two forms. The first is the statistical analysis of the tokens outputted by NLP. The second is the identified terms in the APT ontology and the lexicon used in the NLP step of the methodology.

As mentioned in the previous section, statistical analysis of the NLP output (in the form of tokens) enabled the identification of terms for use in the ontology and would facilitate the identification of additional terms through their contextual use.

In order to facilitate the statistical analysis of the NLP output, I first turned to Excel but the number of tokens in the entire corpus made statistical analysis in excel difficult. Excel spreadsheets are limited to 1,048,576 rows or records and, as mentioned previously, the corpus of 425 documents consists of 2,423,738 tokens. Therefore, it would take three separate tabs of a spreadsheet just to contain the raw data. This would make analysis more complex than it needed to be.

As a result, I turned to MySQL for its ability to handle the 2.4+ million tokens (records) in the corpus and use its querying capability to summarize the data the output to build the domain ontology. I used MySQL to summarize the data in the corpus and then

analyzed those results using Excel and SAS. By summarizing, I am referring to counting the number of appearances of original words, lemmas, and NER. I then used that.

Before selecting terms for the ontology, it was important to gain both a contextual understanding of terms as they are used within the texts of the corpus as well as statistical analysis of word frequency within it. This process is explained in more detail in Chapter 4.

#### Analysis

Analysis of the available open source intelligence employed a recognized industry standard and the processing of documents were performed with multiple software packages. The next section examines the standard and software for developing the ontology. It will be followed by a review of the software package chosen by the researcher to perform the link analysis of the available OSINT.

As discussed previously, an accepted industry standard for ontology development is OWL, which is currently in its second edition (Huang et al., 2011; W3C OWL Working Group, 2012). OWL2 provides the structure to show the vertical relationship between entities and their properties (e.g. communication to secure communications) as well as the horizontal relationships between like properties (e.g. SSH to SFTP) (Hitzler et al., 2012).

While OWL2 provides the structure, Protégé provides the user interface to work with ontologies. Developed as a tool to develop Semantic Web Applications, Protégé provides access to ontologies, as well as tools to visualize, edit and use ontologies (Horridge et al., 2004; Knublauch, Fergerson, Noy, & Musen, 2004). Protégé is designed to simplify the use of the OWL2's notoriously difficult structure (Knublauch et al., 2004). It's incorporation in several other ontology development research projects weighed heavily in the researcher's decision to use it for the current research effort (Abulaish & Dey, 2007; Huang et al., 2011; Mikroyannidis & Theodoulidis, 2007; Mundie & McIntire, 2013). This work was conducted using the Protégé resource, which is supported by grant GM10331601 from the National Institute of General Medical Sciences of the United States National Institutes of Health (Musen & The Protégé Team, 2015).

#### Credibility

The credibility of any study is paramount to the researcher and to the product developed. The credibility for the present research project will be built on the foundation of industry standards for the work being performed as well as widely used and recognized tools to perform the work. The use of such standards and tools ensure that the research is repeatable by any researcher with access to the tools and the raw data used in this endeavor.

The researcher has 23 years of experience in the arena of networking and cybersecurity. Ten years of the 23 have been with the United States Army. As an Officer his focus has been on the installation, operation, maintenance, and security of both the tactical and operational networks within the Army up to and include theater level operational network spanning seven Army installations in the United States Army Pacific footprint which stretches from Japan up to Alaska and down to Hawaii.

### Summary

This chapter examined the framework and methodology the researcher intends to employ in the current research. It also addressed the technical tools the research will use that are widely accepted within the fields of natural language processing, and ontology development.

# **RESEARCH AND ANALYSIS**

This chapter of the paper is an examination of the methodology employed during the research and the analysis of the same. This chapter is broken down into ### sections. The first section focuses on building the corpus. The second outlines the manual process for building the training lexicon. The third examines the processing of the documents through the NLP software and addresses issues with migrating that data into MySQL for statistical analysis. The fourth section presents an analysis of the NLP output as well as the steps taken to filter through the output in order to find ontological terms more efficiently. The fifth section addresses the selection process used to identify ontology appropriate terms and the building of the ontology structure itself.

#### **Building the Corpus**

As previously discussed, the first step of the research relied on two APT documentation repositories found on GitHub. After downloading both repositories they contained a combined 742 files. Several files had issues (e.g. unprintable characters in the filename, filenames greater than 256 characters, etc.) that were correctable without impacting the integrity of the file's content. However, many files were excluded from the process for various reasons. These reasons are as follows:

- Two hundred and ninety-two (292) files were duplicates as determined by the tool *fslint*.
- Ten (10) files were excluded because they were written in foreign languages. While there are online tools that can translate documents; given the limited number of documents, my lack of knowledge of these languages, and time it was more efficient to eliminate them.
- Eight (8) files were eliminated because they were encrypted, or had errors that prevented text extraction by the text extraction tool.
- Six (6) files generated errors for invalid PDF formats while trying to extract text. A manual review of these files revealed that the extracted text was unusable.

• Despite all software support recommendations, the parsing of one (1) continually failed.

With 314 files either duplicates or containing issues that made them unusable for this study, the ontology development relied upon 425 documents pertaining to various APT attacks over the last eight years.

During this process, each document received a document number, primarily as a means to track the processing of documents. Secondarily to facilitate the random selection of the documents that I used to establish the initial lexicon.

### **Building the Initial Training Lexicon**

As described in Chapter 2, NLP software needs to be "training" when it starts working with documents in a new domain in order to better identify parts of speech, named entities, etc. In order to establish the training lexicon, I selected 22 documents randomly using the document numbers assigned during the "Establishing the Corpus" phase, described above, and a random number generator.

The 22 documents selected, represented just over 5% of the total corpus (5.02%) and the random number generator ensured that the documents covered a diverse number of incidents. While reading through the original documents provided the initial lexicon, formatting requirements for the lexicon necessitated that I also process the documents through the NLP software in order to simplify the building of the training file. However, there were issues with the NLP software's output that could not be avoided and which will be discussed in the next subsection.

### Processing Documents through BookNLP

After extracting the plain text out of the documents in the corpus the natural language processing of the documents began. As discussed in Chapter 3, I employed Stanford CoreNLP through the extension BookNLP to process the text in all the documents.

Numerous documents still contained what the software flagged as 'Untokenizable Characters.' These were presented as unprintable characters in the ASCII character set.

These messages appeared to be warnings as the software successfully completed its execution.

## **Errors with NLP Output**

During my early experimentation with CoreNLP and BookNLP I ran into errors processing some of the PDF documents including the types of issues mentioned above. In order to avoid eliminating more documents for technical issues, I extracted the text of these files using the Python script *pdf2txt.py*. Even after performing this step there were some issues which are outlined below along with steps taken to correct these errors.

## **Unhandled** Exception

While MySQL imported the tab delimited output from BookNLP, some of the documents generated the error in Figure 6 and the process simply failed.

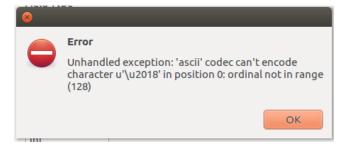



Figure 6: "Unhandled Exception" Error

Examining the file revealed a non-ASCII character in the "Original Word." The character in question is shown in line 442 in Figure 7. Given that this token is not one that would be used in the ontology the easiest solution was to replace the character with a number.

| 167.tokens.csv |    |    |          |      | 196.tokens.csv 250.tokens.csv 250.tokens.csv           |  |  |
|----------------|----|----|----------|------|--------------------------------------------------------|--|--|
| 439            | 52 |    | 437 2224 | 2225 | NN 439 A A a NN O nn taise -1                          |  |  |
| 440            | 53 | 17 | 438 2227 | 2228 | NN 439 R R r NN 0 nn false -1                          |  |  |
| 441            | 54 | 17 | 439 2230 | 2231 | NN 434 C C c NN 0 dobj false -1                        |  |  |
| 442            | 55 | 17 | 440 2233 | 2234 | SS 441 🕨 🕨 CD NUMBER num false -1                      |  |  |
| 443            | 55 | 17 | 441 2236 | 2244 | S 439 February February February NNP DATE dep false -1 |  |  |
| 444            | 55 | 17 | 442 2245 | 2246 | 441 ( -LRBlrbLRB- 0 dep false -1                       |  |  |
| 445            | 55 | 17 | 443 2246 | 2247 | 442 1 1 1 LS NUMBER dep false -1                       |  |  |
| 446            | 55 | 17 | 444 2247 | 2248 | N 443 ) -RRBrrbRRB- O dep false -1                     |  |  |
| 447            | 55 | 17 | 445 2249 | 2250 | SS 446 ; ; ; CD NUMBER num false -1                    |  |  |

Figure 7: Sample character that createsd import issues

## Import File Error – Non-ASCII Character

When there were non-ASCII characters (as shown in Figure 7) in the first row of the of the tab delimited file the error messages in Figure 8 were displayed and no records were imported. Clicking through this error resulted in the error in Figure 9. As with the "Unhandled Exception" error above, replacing these with an ASCII punctuation character.

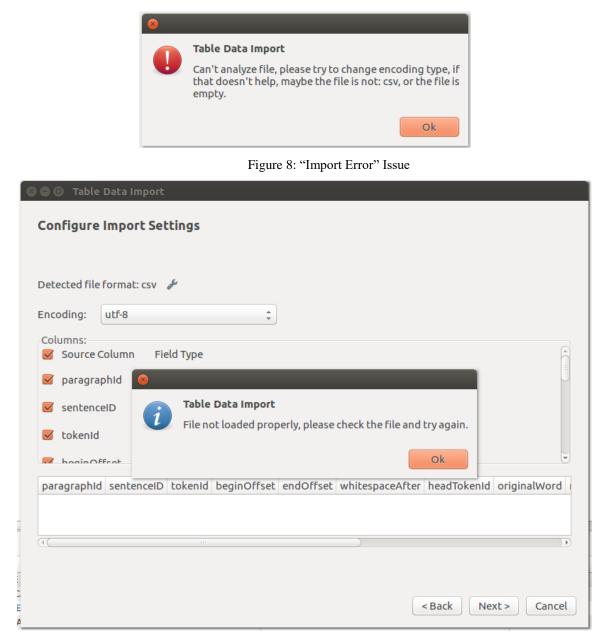



Figure 9: "File Not Loaded Properly" Message

#### Import File Error – Quotation Marks

This error was more challenging to uncover because no errors were generated. The file would process correctly but later I would discover a discrepancy in the number of records in the document table and the largest token ID as generated by BookNLP. Through trial and error, I realized that the errors were being caused by different quotation marks within the original text as shown in Figure 10. Escaping the quotations with a backslash (\) corrected this problem.

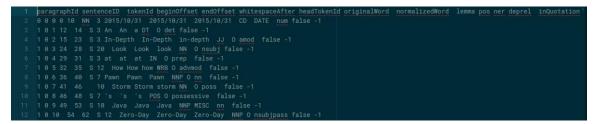
|   |               | 438.tokens.csv             |                                |                  |
|---|---------------|----------------------------|--------------------------------|------------------|
| 1 | paragraphId s | entenceID tokenId beginOff | set endOffset whitespaceA      | fter headTokenId |
| 2 | 00045 -       | 1 "````` O null fal        | lse -1                         |                  |
| 3 | 001511        | 3 Winnti Winnti winnti F   | FW O dep true -1               |                  |
| 4 | 0 0 2 11 12   | NN 3 " '' '' '' 0 punct    | t true -1                      |                  |
| 5 | 1 0 3 14 18   | S 0 More More more JJR (   | 0 dep false -1                 |                  |
| 6 | 1 0 4 19 23   | S 3 than than than IN (    | 0 prep false -1                |                  |
| 7 | 1 0 5 24 28   | S 7 just just just RB (    | 0 <mark>advmod</mark> false -1 |                  |
| 8 | 1062930       | S 7 a a a DT 0 det false - |                                |                  |
| 9 | 1073135       | NNN 4 game game game NN    | 0 <u>dep</u> false -1          |                  |

Figure 10: Quotation Marks Example

### **Escaping Characters**

As with the problem described in the previous subsection regarding quotation marks. There were many other characters that generated errors during the MySQL import because they are special characters that MySQL treats differently including the backslash (\). In order to be processed properly these special characters need to be escaped with a backslash just as in the example above. With the NLP processing complete and all the data imported into the MySQL database, it is time to proceed with the statistical analysis of the NLP output itself.

#### **Examining the Documents in the Corpus**


A person reading a book processes what he reads very differently from an NLP program that breaks the document down into tokens. While this can be understood conceptually, when the processing was complete and all the data was imported into the database it was daunting to see that there were more than 2.4 million tokens in the document. It would be impossible to process through all those records and create the

ontology in the time afforded to me. I determined that in order to build the ontology it was necessary to reduce the number of records in order to get to the most meaningful and useful terms.

The following five subsections provide statistical analysis of the database and walk the reader through the steps taken to remove extraneous words and get to those words that are useful for ontology development in this domain. The first section looks at the concept of the token. The second examines all the tokens produced by BookNLP. The third explains the removal of common word tokens. The fourth explores the use of lemma. The last examines the NER as another means of interpreting the data.

#### **Understanding the Tokens**

Reading through the Processing the 22 documents produced 128,120 total tokens with only a small percentage of these tokens being significant for building the APT Ontology. there was a significant amount of clutter or noise within these documents that had to be sifted through to find the needed keywords. Figure 11, below, is a sample of the tokenized output generated by BookNLP for one of the selected documents. Notice that line 10 is the possessive apostrophe s ('s) that is actually part of the word in the previous token (Storm). Figure 11 contains a partial list of this and similar tokens in those 22 documents.



#### Figure 11: Sample of Document Tokens

Another issue with how the NLP software parsed the documents can be seen in lines 8 and 9 of Figure 11. BookNLP broke up a two-word phrase which is actually the name of the APT discussed in the document. Therefore, in order to build an accurate lexicon required human intervention to modify the normal function of the software.

The issues described in this subsection are not an indictment of the software, it is functioning as the designers intended. In fact, my inexperience with the software probably contributed to some of the challenges described.

### **Examining the Corpus Tokens**

With an understanding of what tokens are established, we can move forward and look at the corpus. The corpus consists of various types of documents including blog posts, corporate white papers, and academic explorations of various APTs. The 425 documents contain 2,423,738 tokens in total.

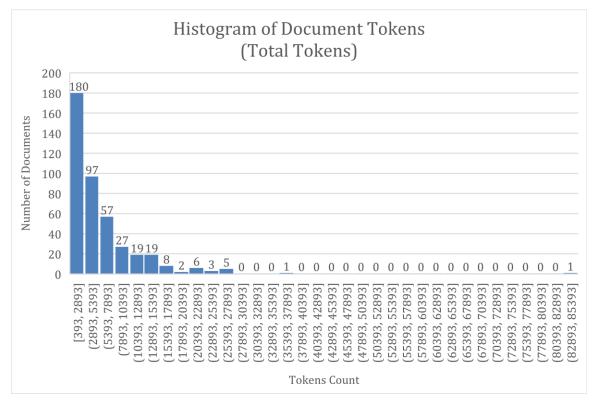



Figure 12: Distribution of Tokens (by Document)

The mean tokens in a given document is 5702.91294. The largest document contains 84,473 tokens while the smallest consists of 393 tokens. Table 3, below, highlights the quantile data for all tokens in the Corpus Documents. The histogram (Figure 12), illustrates the breakdown of the documents by the number of tokens extracted during the NLP processing of the corpus. It shows 277 documents (65.18% of the total) contain less than 5393 tokens. Seventy-five percent (75%) of the documents contain less than 7,144 tokens. These two statistics coincide with the fact that most documents were website reports and summary white papers. The two outlying documents explain the discrepancy between the mean

| Level      | Quantile |
|------------|----------|
| 100% Max   | 84,473   |
| 99%        | 26,705   |
| 95%        | 16,562   |
| 90%        | 13,116   |
| 75% Q3     | 7,144    |
| 50% Median | 3,611    |
| 25% Q1     | 1,924    |
| 10%        | 1,203    |
| 5%         | 986      |
| 1%         | 509      |
| 0% Min     | 393      |

Table 3: Quantiles for All Tokens in the Corpus

These numbers reflect all tokens within the documents. They include punctuations, symbols, and numbers as well as actual words. While these tokens provide important information and context they are not likely to contain ontologically meaningful terms. Removing these tokens from the documents we are left with the words that may be included in the ontology.

| Level      | Quantile |
|------------|----------|
| 100% Max   | 44,824   |
| 99%        | 22,008   |
| 95%        | 12,938   |
| 90%        | 9,824    |
| 75% Q3     | 5,521    |
| 50% Median | 2,838    |
| 25% Q1     | 1,561    |
| 10%        | 990      |
| 5%         | 818      |
| 1%         | 408      |
| 0% Min     | 198      |

Table 4: Quantiles for All Words in the Corpus

The mean number of words in the corpus documents is 4441.64706 while the median is 2,838 as shown in Table 4. Ninety-five percent (95%) of the documents are between 0 and 13,827 words in length. With most documents being less than 10 pages in

size, these sizes make perfect sense. However, this is still a large number of terms that need to filtered down in order for me to more readily identify ontological terms.

### **Removing Common Words from the Data**

Examining the corpus tokens, it quickly became obvious that there were frequently appearing words that would not provide anything useful for ontology development. With some additional investigation and research, I realized that the words appearing in the corpus with the greatest frequency were contained within the list of the most common words in the Corpus of Contemporary American English (CoCA) (Davies, 2016). Table 5, below, shows the 10 most common words in the CoCA with their appearance rate in all 425 corpus documents.

| Common<br>Word | Appearances | Appearances per<br>Corpus Document | % of Corpus<br>Tokens |
|----------------|-------------|------------------------------------|-----------------------|
| the            | 107,486     | 252.9082                           | 5.6940                |
| be             | 50,884      | 119.7271                           | 2.6956                |
| and            | 38,463      | 90.5012                            | 2.0376                |
| of             | 42,756      | 100.6024                           | 2.2650                |
| а              | 41,026      | 96.5318                            | 2.1733                |
| in             | 28,241      | 66.4494                            | 1.4961                |
| to             | 41,211      | 96.9671                            | 2.1831                |
| have           | 10,678      | 25.1247                            | 0.5657                |
| it             | 9,145       | 21.5176                            | 0.4845                |
| Ι              | 1,583       | 3.7247                             | 0.0839                |

Table 5: 10 Most Common words in Contemporary American English

Filtering out the 5,000 most common words in the contemporary American English language removed 1,248,000 of the words in the corpus or 66.1122% of the word tokens within the corpus. This process left the corpus with 639,700 original words.

### Using Lemma

In an effort to further reduce clutter within the summarization, I sought more potential ways to combine rows in the summary table. The lemma provided a tailored solution for this problem. Table 6, below is a sample of the summary table for all lemma

|                      |                      | Table 6: | Sample Lemi              | ma      |                          |           |
|----------------------|----------------------|----------|--------------------------|---------|--------------------------|-----------|
|                      |                      | Part of  | Documen<br>t Count<br>by | Lemma   | Documen<br>t Count<br>by | Variation |
| Lemma                | Variation            | Speech   | Lemma                    | Appears | Variation                | Appears   |
|                      | alert                | JJ       |                          |         | 68                       | 172       |
| alert                | alerted              | VBD      | 107                      | 265     | 19                       | 25        |
| alen                 | alerting             | VBG      | 107                      |         | 12                       | 12        |
|                      | alerts               | VBZ      |                          |         | 37                       | 56        |
| alert-14-281-<br>01p | ALERT-14-281-<br>01P | NN       | 1                        | 1       | 1                        | 1         |
| alert-avoiding       | Alert-avoiding       | JJ       | 1                        | 1       | 1                        | 1         |
| Alert/Scarewar<br>e  | Alert/Scareware      | NNP      | 1                        | 1       | 1                        | 2         |
| alert5               | alert5               | NN       | 1                        | 1       | 1                        | 1         |
| alerted16            | alerted16            | CD       | 1                        | 1       | 1                        | 1         |
| Alerter              | Alerter              | NNP      | 1                        | 1       | 1                        | 3         |
| Alerts               | Alerts               | NNP      | 5                        | 5       | 5                        | 5         |
| alertwall.exe        | alertwall.exe        | NN       | 1                        | 1       | 1                        | 1         |

beginning with the word 'alert.' The search produced 12 rows of data based with 9 unique lemmas.

From this table, we can see that the lemma alert has 4 variations for the text actually found in the documents (alert, alerted, altering, and alerts). The lemma alert appears in 107 total documents and appears a total of 265 times.

There are two important items to note at this juncture. One is a point about what might appear as a mathematical discrepancy and the other is a result of the NLP software.

Regardless of the issues that will be explained momentarily the final compilation of tokens resulted in 98,945 lemmas with 97,886 variations. Only 2,772 Lemma or 2.80156% had more than one variation.

## Discrepancy between Variation and Lemma Counts

Looking at Table 6, once again, one will note that there is a difference between the number of documents by Lemma and by word variation for the words with the lemma alert (107 vs. 136). After some evaluation, the reason for the difference is the overlapping appearances of variations within the same document. For example, the variations alerts

and altered may appear in the same document and will be counted once for each variation but only once for the lemma.

### Multiple Lemma for One Variation

The second issue was far subtler to detect. While the first lemma in Table 6 includes the variation *alerts* there is a second lemma (Alerts in the second to last row) that has the same variation, *Alerts*. Taking into account just the variation both instances of the word alerts should fall under the lemma alert and appear in 38 documents a total of 61 times. However, upon further investigation, the difference comes down to the part of speech. The first instance is a verb while the second is part of a noun phrase. Therefore, CoreNLP and, by extension, BookNLP recognizes the lemma for the noun as *alerts* instead of *alert*.

In total, there were only 1,057 distinct variations identified by multiple lemma. Only 1 variation had more than 2 lemmas associated with it. Table 7, below, provides a sample of the typical situations where this occurred.

| Variation | Related<br>Lemmas | Various<br>Lemmas | Total<br>Appearances |
|-----------|-------------------|-------------------|----------------------|
| SYS       | 3                 | sy, sy., sys      | 102                  |
| 02i       | 2                 | 02i, 02us         | 14                   |
| 0xed      | 2                 | 0xe, 0xed         | 3                    |
| 10ms      | 2                 | 10m, 10ms         | 1                    |
| 2000s     | 2                 | 2000, 2000s       | 10                   |
| 3DES      | 2                 | 3de, 3des         | 44                   |
|           |                   | 4-byte, 4-        |                      |
| 4-bytes   | 2                 | bytes             | 11                   |

Table 7: Sample of One Variation with Two or More Lemmas

## **Examining the NER**

As discussed in Chapter 2, NLP employs a classification system when identifying Named Entity Recognition (NER) for each token. The tool identifies each token by one of 13 classifications. The first column in Table 8 shows the classification type. The second and fourth columns are the counts for each classification within the corpus before and after all punctuation, numbers only, and common word tokens were removed, respectively. The third and fifth columns represent the percentages of corpus tokens, again before and after the removal of less useful tokens. As a reminder, the Classification 'O' is a catch-all for all tokens that the Classifier cannot identify as one of the other 12 classifications. Figure 13, Provides a stacked graph illustrating the same calculations.

| NER            | Base To   | kens    | Adjusted T | Adjusted Tokens |  |  |
|----------------|-----------|---------|------------|-----------------|--|--|
| Classification | Count     | Percent | Count      | Percent         |  |  |
| 0              | 2,117,681 | 87.37%  | 1,698,627  | 89.98%          |  |  |
| Number         | 136,643   | 5.64%   | 57,833     | 3.06%           |  |  |
| Date           | 41,099    | 1.70%   | 19,228     | 1.02%           |  |  |
| Organization   | 40,617    | 1.68%   | 39,861     | 2.11%           |  |  |
| Misc           | 20,985    | 0.87%   | 20,478     | 1.08%           |  |  |
| Location       | 16,864    | 0.70%   | 16,859     | 0.89%           |  |  |
| Percent        | 13,998    | 0.58%   | 4,754      | 0.25%           |  |  |
| Person         | 11,236    | 0.46%   | 11,229     | 0.59%           |  |  |
| Time           | 8,598     | 0.35%   | 7,403      | 0.39%           |  |  |
| Duration       | 6,194     | 0.26%   | 5,603      | 0.30%           |  |  |
| Money          | 6,012     | 0.25%   | 2,069      | 0.11%           |  |  |
| Ordinal        | 3,267     | 0.13%   | 3,267      | 0.17%           |  |  |
| Set            | 544       | 0.02%   | 489        | 0.03%           |  |  |
|                | 2,423,738 | 100.00% | 1,887,700  | 100.00%         |  |  |

Table 8: NER Classifications

That there are still tokens which are classified by numbers, dates, time, and other numerically related classifications is the result of CoreNLP's identifying words that represent numbers (e.g. one, ten, fifth, etc.). The NER classifications for locations and organizations, and people proved useful in the current research as it helped to extract target locations, organizations and individuals for some of the APT attacks. However, the NER classification system was not perfect for the current research. During the processing of documents there were two issues which reduced this method's usefulness for the current research.

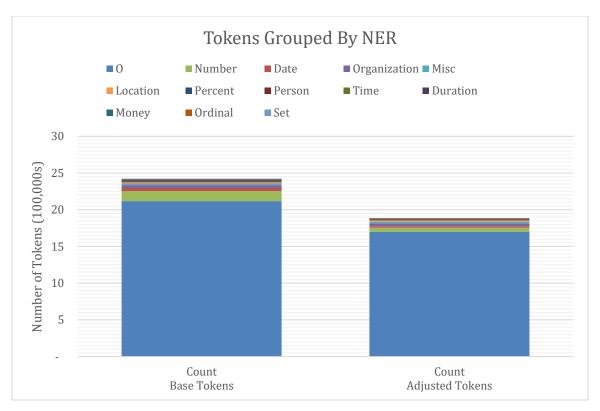



Figure 13: NER Classification Breakdown

## **NER** Misidentification

The first of these issues was misidentification. The software is only as good as the training that the classifier has prior to analysis of a document. Without additional training for the software many tokens were misidentified. For example, Bitdefender, Bitcoin, FT.com, and other tokens were misidentified as locations. Another instance of misidentification can be seen in blog URLs. In Figure 14, below, shows five URLs that contain these dates.



Figure 14: Sample of URLs Misidentified as Dates

## Multi-Token NER Issue

The second issue is not an error as much as it is just the result of the way CoreNLP and BookNLP breakdown the processed documents. As the program breaks the document down into individual words, any location, organization or individual that spans more than one word is not tracked as such. For example, United Nations or United States each exist as two tokens in the corpus instead of one.

With the data extracted from the documents and summarized within MySQL, we can move forward into the process of laying out the structures of the ontology and identifying terms to fill it.

### **Building the Ontology**

With the documents processed, the data imported and summarized for statistical analysis and identification of terms. The first subsection will focus on the process gone through to select terms. The second will address the ontological structure as designed.

#### **Selecting Terms for the Ontology**

In the previous section, you were presented with some of the statistical analysis done to evaluate the nature of the corpus collected. However, apply statistical analysis for the purpose of identifying potential ontological terms. To this end, examining the frequency of terms as a means of doing just that. To this end, I considered five different permutations. They were:

- Appearances
- Appearances per Document
- Appearances per Corpus Documents
- Percentage of Corpus Documents
- Percentage of Corpus Tokens

The reasons for accepting and rejecting these different values are explained in the following two subsections. The third subsection, discusses how the accepted calculations were applied to the corpus.

#### Statistical Analyses that were Applied

In order to identify potential terms, it is useful to understand how the frequency of appearances relates to the larger whole. There are several ratios that were selected to

identify potentially useful term. They are *Appearances per Document*, *Appearances per Corpus Documents*, and *Percentage of Corpus Documents*.

*Appearances per Document* is the ratio of total appearances divided by the number of documents the word appears in. This number assumes that the number of appearances within the documents that it appears; indicating it is an important term. The range of values for this statistic ranges from 1 to 716.25.

*Percentage of Corpus Documents* uses the simple percentage of all corpus documents that the given term appears in. The mean percentage is 0.541% or approximately 2.3 documents while the minimum is 0.2353% (1 document) and maximum is 95.059% (404 documents). The mean percentage represents approximately

*Appearances per Corpus Documents* divides the number of appearances based on the total of 425 documents in the corpus. This is an effort to normalize the appearances across all documents. Whereas the minimum and maximum of the Appearances per Document ranged from 1 to 716.25, the range for Appearances per Corpus Documents is from 0.0024 to 47.1882. The mean is 0.014 and the mode is 0.0024.

Identifying words based on these three measurements alone would have included terms that would not provide anything meaningful to the ontology. Table 9 shows the top 15 tokens by each of the statistics. The reader will see clear overlap in the three lists as expected but there are differences in these lists.

|                        | Appearanc          | <u>r (-</u> | Appearanc        | ~)         | % of                |
|------------------------|--------------------|-------------|------------------|------------|---------------------|
| Token                  | es per<br>Document | Token       | es per<br>Corpus | Token      | Corpus<br>Documents |
| cid                    | 716.250            | cid         | 47.188           | malware    | 95.059              |
| soft@hotmail.com       | 206.000            | malware     | 19.969           | data       | 88.235              |
| xfish                  | 197.000            | 's          | 14.421           | server     | 80.235              |
| Ponmocup<br>JinDiQIAO@ | 170.000            | data        | 11.645           | 's         | 79.529              |
| hotmail.com            | 162.000            | server      | 9.713            | malicious  | 77.882              |
| ShimRat                | 162.000            | С           | 7.875            | Windows    | 75.529              |
| Packrat                | 146.000            | Windows     | 6.696            | Microsoft  | 71.059              |
| Exposureindicating     | 143.000            | S           | 5.998            | attackers  | 69.412              |
| TERRACOTTA             | 137.000            | attackers   | 5.974            | IP         | 68.706              |
| Xing                   | 127.000            | com         | 5.911            | further    | 64.941              |
| gif.dec                | 126.000            | IP          | 5.741            | С          | 64.000              |
| Mofang                 | 111.000            | C2          | 5.595            | email      | 60.235              |
| GreenSky27             | 110.000            | malicious   | 5.468            | servers    | 59.529              |
| 2_digits               | 107.000            | C&C         | 5.426            | executable | 59.059              |
| Invincea               | 91.000             | Microsoft   | 4.520            | detection  | 58.118              |

Table 9: Top 15 Tokens (by Various Factors)

#### Statistical Analyses that were Rejected

The *Percentage of all Corpus* Tokens is a ratio of the number of appearances divided by the total number of corpus tokens (1,887,700). However, it quickly became apparent that this ratio would not be a useful statistic for screening. Only one word represents more than 0.44959474 % of the corpus and a single appearance in the corpus is 0.00005297% of the whole and only 9,299 words that individually make up 0.00026487% or more of the corpus. The minor variation in the values makes distinguishing the value of this statistic difficult to use.

Figure 15, below, is a graphing of individual token counts as a percentage of the corpus that count represents. While there is measurable change from the smallest (1 appearance) to the largest (20,055 appearances), distinguishing the percentage difference between numbers closer together is subtler. Whereas, Figure 16, illustrates the percentages for all corpus tokens.

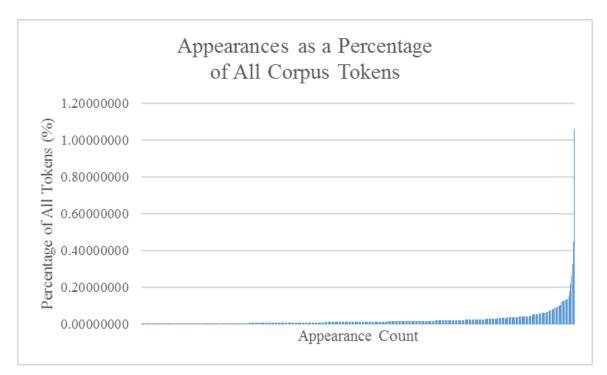



Figure 15: Representation off appearance Count as a Percentage of the Entire Corpus

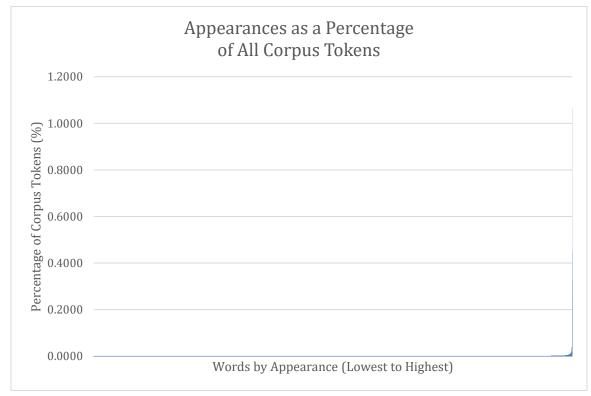



Figure 16: Appearance Ratio for All Tokens in the Corpus

The second statistic rejected for use was the statistic of **Appearances**. As a counting statistic, this number keeps growing without any relationship or correlation to

the overall corpus. Looking at this number by itself does not distinguish between a word appearing many times in one document or numerous times in one or a few documents.

#### How Analyses were Applied

Using these three measurements in combination with knowledge gained from the manual processing of documents and reviews of the documents terms were extracted from and it took 15-20 hours to identify terms from the entire corpus. In total, the process garnered in excess of 2,000 terms were identified as classes, identities and properties for APTs and their subcomponents. In retrospect, the process was not perfect. Chapter 5 includes a discussion and an assessment of the process.

#### **Building the Ontology Structure**

With the terms extracted from the OSINT it was a matter of building and populating the ontology. However, this is not as simple as the statement above might make it appear. The next subsection outlines the first step of organizing and identifying the terms and the role that they serve in the ontology. The second outlines how the organization of the ontology was decided upon and touches on some of the versions that were ultimately rejected. The last subsection provides a brief overview of how the structure moved from concept to reality.

#### **Classifying and Categorizing Terms**

The first step in the process required the identification of terms in one of several areas:

## Class

Any term that is not a by name reference. Instead it describes a larger group to which subclasses or identities would belong. APT, itself was an easy class to identify and subclasses of APT are Organization and Attack. In some cases, classes were defined by groups of individual entities that share a common relationship. An example of this is the class Protocol. Under protocol were included the various protocols identified by name and/or port in the corpus (e.g. FTP, SSH, HTTP, etc.).

#### Individual

Individual terms are those terms that represent specific instances of a class. An example of this would be specific nations defined as Targets of a particular APT. Another would be the specific name of an APT Attack or APT Organization. From a programming standpoint, this is equivalent to the instantiation of a class.

Not every class has an individual because there are details that may not have been details that were not contained in a given whitepaper or even known by its author. The best example of these would-be personnel within an organization. The ontology includes the "job positions" with some definition but few whitepapers actually contained names of people within these organization. The way these organizations appear to function, names would probably change so frequently that to maintain that sort of information would be impossible.

### Property

A property is simply an attribute of a class or individual entity. Properties of a class are placeholders for values that the individual instance will fill. A variety of variable types were used for these properties. Most properties used strings to specify values but in some instances, it was just as efficient and simple example of this is the port that a protocol uses to communicate. Some of the other properties are Boolean in nature.

There is one property that all classes (and thus individuals have) and that is the property labeled *Alias*. From an ontological standpoint, *aliases* are just a string variable but for purposes of this specific ontology they are actually a very important property. As ontologies are designed to standardize language, I thought it was important to include a property that includes any alternate versions of a term found within the corpus.

Table 10, below, shows just some of the variations for the term Command and Control found in the corpus. As discussed in the previous section on NLP, some of these lines might be the result of NLP processing but it is clear that there is enough variation in the way the term Command and Control is identified that it only seemed logical that these variations be recorded within the ontology.

|                     |                      |           | 1           |
|---------------------|----------------------|-----------|-------------|
| Lemma               | Variation            | Documents | Appearances |
| c&c                 | C&C                  | 171       | 2306        |
| c2                  | C2s                  | 29        | 72          |
| c2                  | C2                   | 169       | 2378        |
| c2host              | C2host               | 1         | 1           |
| c2host              | C2host               | 1         | 1           |
| c2infrastructure    | C2infrastructure     | 1         | 1           |
| c2s                 | C2s                  | 2         | 2           |
| commandandcontrol   | commandandcontrol    | 1         | 2           |
| command-and-control | command-and-control  | 1         | 1           |
| command-and-control | command-and-controls | 1         | 1           |
| command-and-control | Command-and-control  | 81        | 150         |

Table 10: Aliases for Command and Control that Appearing in the Corpus

## Organizing the Ontology

With the terms identified and categorized, the ontology was ready to be organized into a structure. With such a large group of terms it was easier to work with them in small groups and this worked well with building classes as well. However, while Protégé may be an intuitive tool for some, it was not so in this case. Limited experience with the tool meant is was as much of a hindrance to the process as anything else.

### Building the Draft Ontology

Given that data about the terms was already contained within a database and my familiarity with the tools that MySQL offers for database design, it made sense to create the structure within MySQL. Figure 17, below, shows the first draft of the ontology as developed in MySQL Workbench.

A familiarity with relational databases made it easy to conceptualize the work being done and the structure required. Tables represented classes. Columns represented properties that the classes possessed. Rows within the table became individual instantiations of the particular class. Foreign keys indicated relationships between classes and allowed for a many-to-many relationship exist between different classes.

Figure 18, below, shows the Protocol class. It has several properties including the port, aliases, whether it is encrypted, and with what type of encryption. The Protocol

53

Class has relationships with Legitimate Software (legal software used for illicit means) as well as Malware, Command-and-Control (not shown), etc.

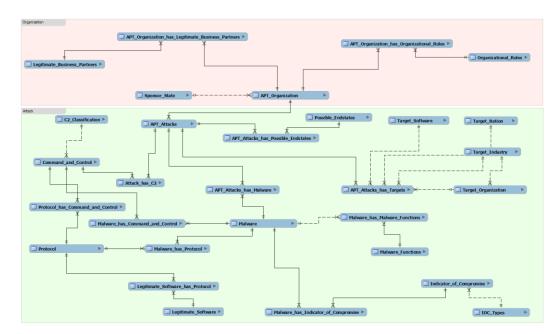



Figure 17: MySQL Database of Ontology Structure

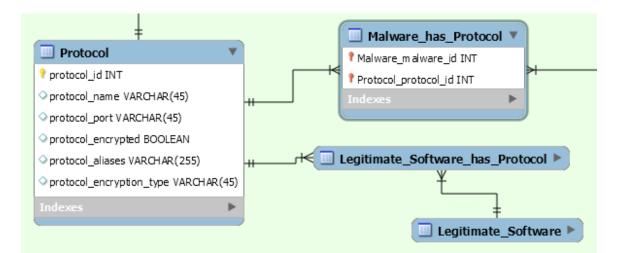



Figure 18: An example of a Class when viewed as a MySQL database table

After the draft was built it was easy to create the database. Records for individual identities were added to the appropriate tables along with all properties. Working with a familiar tool made for more expedient work and made for less issues with assigning information to their proper location. Once the work was complete within the database, the data was exported in XML format which is compatible with Protégé.

I was then able to import that structure into Protégé and make the structural changes required to account for something that I had not considered during the drafting process (e.g. an unforeseen relationship, or a new property).

#### **Basic Structure**

Figure 17, above, is divided into two sections as represented by the two background colors. The two regions represent the two subclasses of Advanced Persistent Threat. The upper third (in red) contains elements of the ontology which focus upon the Organizational subclass. The lower two-thirds (in green) contains elements related to the Attack subclass.

As the tables reflect classes it takes a little maneuvering to get them where they need to be when placed inside the ontology. While each class is represented by a table in MySQL, tables are not nested within tables to reflect the subclass nature that they represent in the ontology. Within Protégé it is a relatively easy process to move classes within the structure to create the class-subclass structure desired. Figure 19, below, is an illustration of nesting the table for Malware under the attack class.

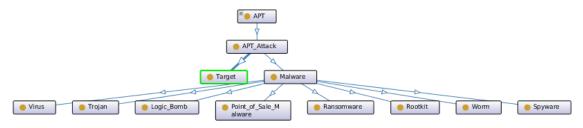



Figure 19: The class-subclass structure in Protégé

Figure 20, illustrates the nesting of subclasses within subclasses as the target tables for nations, industries, organizations and software are nested within a targets class that did not actually exist as a table within the database but made perfect sense for the organization of the ontology.

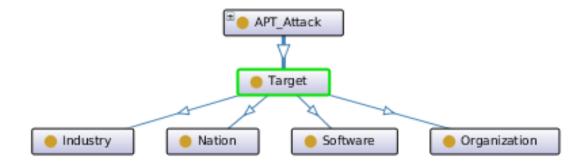



Figure 20: Nesting of Classes

### Summary

In this chapter, we examined this paper's related research. It examined the steps taken to evaluate and merge the two open source knowledgebases to establish the corpus. We explored the various challenges both in processing the documents with CoreNLP and with importing the NLP output into a database for statistical analysis and identification of key terms for the ontology. It concluded with the logic and process used to identify the terms for the ontology and the steps taken to put those terms into the ontological format.

# **CONCLUSIONS AND RECOMMENDATIONS**

The work for this research is done. Its objective was to establish an open source ontology for use in the Advanced Persistent Threat domain. In this chapter, we will review a summary of the study looking at the purpose, significance, and methodology. After which, some future research recommendations will be presented which can use the work done here both to take advantage of this work and to advance it such that its relevance to the cybersecurity community may continue beyond the present effort.

### **Summary of Study**

This section is intended to be a retrospective review of the purpose and significance of the study, and a review of the methodology employed herein.

### **Purpose of Study**

In a world where so much of our commerce, infrastructure, and even national defense depends on the communication pathways provided by the internet, failure to detect and mitigate the threat represented by APTs could impact businesses, civilian infrastructure, and potentially national security of all nations. Current CND measures are unable to reliably and regularly detect APTs that compromise both commercial and government networks. Part of the problem is incomplete understanding of these APTs and to see the various components of a single APT attack as parts of the larger whole.

The goal of this research was threefold. First, to collate OSINT found in the public domain about the individual APTs and from that knowledge build an ontology for the entire domain. Second, was to enable the standardization of language so as to facilitate easier communication about the domain. Third, was that this research could inform cybersecurity professionals with the knowledge that can be incorporated into the improvement of CND.

### Significance of Study

As discussed in Chapter 1, the importance of the current research is how it can standardize terminology and definitions as well as providing a comprehensive informational resource for the cybersecurity and IT communities. Whether the ontology supports research designed to protect networks or to provides information that can be used when performing risk assessments and disaster recovery plans. Having a foundation of common terms and definitions for this domain will help share the results of disparate research findings and the development of business plans designed to protect networks from would-be attackers.

The variation of terms used in the small sample size as this was intriguing. In a profession where acronyms are used so frequently, the variation in what terms and acronyms are used and how they are used is analogous to two people speaking in different dialects or using colloquialisms that convey different means to each of the parties. This work has given me (and hopefully my reader) an appreciation for minimizing those differences need to be minimized in order to maximize communication and ultimately results.

## **Methodology Review**

With the work complete and looking back at the path the research has taken, I believe that the methodology was sound but there are some realities that could have been better planned for. Because of challenges faced along the way minor adjustments were made in order to keep the work moving forward. As mentioned in Chapter 4, while MySQL was originally intended to be a solution for collating the output from the NLP process, in the end it offered me a path to get around challenges faced with Protégé and building the ontology.

When issues arose either with software errors or technology limitations, I found alternate paths around the problem. As a technology professional and a leader of Soldiers, it is what is expected when adversity presents itself. So, when the research faced a technological challenge, I found a way around it. As a person who has worked in the technology field for almost 25 years, the opportunity to learn new software and new technologies has always been an exciting part of the job. I've rarely felt like I was not up to the challenge that comes from exploring new arenas. However, in this instance, the research faced challenges because for several factors which we will explore in the following subsections.

### Learning Curve

As mentioned previously, I relish the opportunity to explore new technologies. However, several of the programs used in this research were not intuitive in a manner that foster quick learning and mastery. Learning the finer points of CoreNLP, BookNLP, and Protégé took far more time than I originally envisioned. As discussed in Chapter 4, the challenge of mastering Protégé made me have to rely more heavily on MySQL than I initially planned.

There were points during the research that I looked for other software options both for the processing of documents and building the ontology but with time as an always looming factor, it ultimately came down to plodding ahead with the software the research started with.

#### Software Challenges

Protégé and CoreNLP are both comprehensive programs and there are numerous plugins that enable greater functionality. With time constraints to complete this work and my limited programming experience in Java and Python, I believed that these numerous extensions of the two programs would enable me find a solution that time and my programming limitations prevented me from addressing myself.

However, as I quickly came to learn, many of these plugins were developed by researchers like myself. The solutions they developed address a particular research challenge they faced and had the time to develop themselves. This meant that some of the plugins were focused to meet a very specific task and thus were not a 100% solution as I hoped and trying to use two or three plugins to address my need became more of a quagmire than a help.

Also, in many cases when the research was done or the funding stopped the developers stopped updating the plugins. While the developers of the main software packages continue to release new versions the plugin developers do not and as the core software changes, the plugin may or may not continue to function with the newer version of the core software.

Another effect of these orphaned plugins was a challenge in finding support. One of the foundations of open source software development is that there is a community of users ready to help one another should one user find himself facing an issue he cannot solve on his own. However, when it comes to these orphaned pieces of software there may or may not be the people in the community who know how to help a user who is trying to get past a cryptic error.

In summary, the assumption that there would be solutions readily available to deal with any problem was a bigger assumption than should have been made. At least given the restraints placed on it. Given what I've learned over the past months, my recommendation to anyone doing this type of work is to allow the research team the time necessary to examine what software has been developed, what state that software is in, and what resources are available to resolve issues when they arise. With the summary of study complete, we will conclude this work by examining some recommendations for future related research.

# **Recommendations for Future Research**

The work done here was designed to be as complete a work as can be done from a small sample of the content available on APTs as has been developed over the last decade. However, it was intended to be just the first step in a larger effort.

New APT organizations will develop new, and likely, more complex attacks and employ new techniques to defeat security measures implemented by cybersecurity professionals. Therefore, this ontology must continue to evolve, to expand, and, if necessary, be restructured in order to meet those new challenges.

The next three subsections recommend different ways in which the work here can be adapted and employed so as to continue to be a product that is useful in the open source domain. The first section contains recommendations about means to expand this ontology and how to integrate it with other related ontologies in the public domain. The second section proposes the use of this ontology with the science of Link Analysis in order to potentially develop inferred understanding of new APTs in the future as well as means to insulate a network from such an attack. The second section also explores means of measuring the knowledge gained in this manner. The third, and final, subsection looks at applying this ontology in support of Cyber Resiliency Frameworks which were developed to help organizations protect their processes and their IT infrastructure from APT attacks.

# **Expand the Ontology**

The work begun here should be only the first step. Ontologies are intended to be maintained and expanded as the domain they describe changes and grows. To let any ontology to atrophy is to degrade its usefulness and limit its meaningfulness. Therefore, this section, and its subsections, briefly explore ways to keep this ontology meaningful in the APT domain.

#### **Incorporate Other Related Ontologies**

The OWL2 standard for ontology development allows for ontologies to build upon one another and expand their usefulness while reducing the amount of work it takes to do so. During this research, a concerted effort was taken to build a unique product in large part because it had to stand on its own for academic scrutiny.

However, as we move past this specific research, efforts should be made to incorporate applicable ontologies. For example, malware ontologies and ontologies that look at the larger cybersecurity domain could provide meaningful information with terms, attributes and properties already written in standardized language.

# Apply the Ontology for Further Ontology Development

This research used only two finite knowledgebases with which to establish the corpus but more information about previously known and new APTs are published

regularly. Using the ontology established herein, future research should explore ways for this ontology to enable searching for additional data.

Terms collected here (both general and identifying) should be used to find more published materials available in Open Source. This new information would then be incorporated back into the ontology and to keep it current with the changing face of the APT threat.

## Improve Knowledge through Link Analysis

The commonality of terms demonstrated in the current research illustrates that there are similarities between APT campaigns. Whether different attack employ the same botnet, malware, or two campaigns are waged by the same group, inference can reveal information that may not be explicitly stated about an APT through the application of link analysis.

The next section examines the role of link analysis to improve or expand knowledge. The following section examines the role of knowledge management and suggests an approach for scoring or measuring the knowledge known vs. what is inferred through link analysis in the proposed future research.

#### The Role of Link Analysis

Also referred to as relationship extraction, it is the identification of relationships between two or more entities whether they are individuals, organizations, entities, etc. (Best, 2011). The relationship between them is derived from the context in which the reference is used. For example, if ABC Corporation's Finance Department is managed by Jenny Grier, VP of Finance and JJ and Anna Glass are Billing Managers within the department then there is a boss-employee relationship or association between them as illustrated below in Figure 21: An Example of Link Analysis.

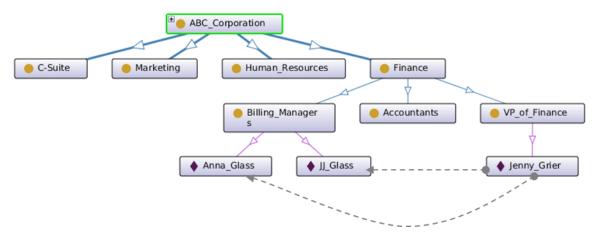



Figure 21: An Example of Link Analysis

The research performed my Ben-Dov, et.al. (Ben-Dov, Wu, Cairns, & Place, 2004) explores the use of link analysis and inference from that analysis can produce increased knowledge. Their efforts were an extension of prior done by Davies, and Swanson and Smalheiser (Ben-Dov et al., 2004). One of the biggest challenges to their research is that contemporary link-analysis tools operated on structured data (Ben-Dov et al., 2004). They overcame the obstacle by processing text through information extraction or text mining as a precursor to the link analysis.

For their research, Ben-Dov, et.al. (Ben-Dov et al., 2004) used two different methods for text mining that the present research must consider. Co-occurrence links uses pattern matching to determine if target phrases exist within a sentence. However, the mechanism does not apply any semantics or syntactic logic to determine how the two terms relate to one another. The second method that they employed Semantic links work by connect noun phrases and verb identification with the application of linguistic and semantic constraints. They accomplished this by using Declarative Information Analysis Language developed at ClearForest Labs (Ben-Dov et al., 2004).

The Ben-Dov et al. research is part of a larger domain referred to as Network Science. It is identified as an emerging discipline which examines the interconnections among diverse entities (Börner, Sanyal, & Vespignani, 2007). The use of the work network is not intended to limit this science to computer networks. It is intended to describe interrelations between any group of nodes or entities. For example, these could be biological entities within a biosphere, or the relationship between cited research within this dissertation (Börner et al., 2007). As Börner et al. notes, Network Science "aims to develop theoretical and practical approaches and techniques to increase our understanding of natural and man made[sic] networks (Börner et al., 2007, p. 538)."

## Measuring Knowledge

Knowledge management is a relatively new field of study that grew out of the change to the American business world from primarily manufacturing and industrial to a structure that focuses on service-oriented business. This change created the demand within business for companies to better measure a wealth built upon the knowledge and experience of its employees.

However, the means for measuring and, more importantly, valuing the knowledge as an asset to a given company was a challenge. Something as tacit as knowledge was difficult to quantify and even harder to put a dollar value on.

The following subsections provide a very brief overview of the thinking that businesses apply in the measurement of knowledge and provides a simple recommendation for measuring knowledge gained through inference in the proposed future research.

## A Brief History of Knowledge Management

The shift in business models and the lack of a standard system for valuing knowledge created a gap which needed to be filled. academia and business economics savvy individuals stepped in to fill the need and close the gap. This section presents a review of literature pertaining to these efforts.

#### Human Resources Accounting (HRA)

Initially developed by accounting theorists, HRA began as an effort to address the value of HC to an organization and as a managerial tool (Flamholtz, Bullen, & Wei, 2002). HRA has seen its popularity grow and wane over the last five decades (Flamholtz et al., 2002).

HRA measures the Human Capital (HC) within an organization. It treats HC as an asset and quantifies the value of the asset in terms of an individual's intelligence, skills, and expertise (Bontis, Dragonetti, Jacobsen, & Roos, 1999; Mahmudul Hoque, 2010).

This model provides input for managerial and financial decisions (Mahmudul Hoque, 2010). Similar to the valuation of equipment or other assets within the company, HRA considers "the historical, acquisition, replacement, or opportunity cost of human assets (Bontis et al., 1999, p. 393)." HRA has three major function (Flamholtz et al., 2002):

- Provides numerical information about the cost and value of people to an organization;
- Serves as an analytical framework to facilitate decision making; and
- Motivates decision-makers to adopt a human-resources perspective.

# Balanced Scorecard (BSC)

As with HRA discussed in the previous subsection., Kaplan and Norton designed BSC to function as both a means to calculate knowledge within an organization but also to facilitate the decision making process (Bontis et al., 1999). BSC tracks numerous dimensions within an organization in a systematic way.

BSC was developed from a multi-year, multi-company study sponsored by Harvard Business School (Bontis et al., 1999). Unlike some of the other models discussed, BSC includes factors both internal and external to the organization (Bontis et al., 1999; Moore, Rowe, & Widener, 2001).

The authors intended the model to challenge organizations to reinterpret the vision for the business as well as the business' long-term strategy in terms of four specific perspectives (Bontis et al., 1999). In order to accomplish this reinterpretation, the authors intended top management to communicate across organizational units and develop aligned strategies for the entire organization, and to communicate these new strategies to all levels of the organization.

Kaplan and Norton recommend four specific perspectives for measurement: (1) financial perspective which includes traditional accounting; (2) customer perspective which takes a marketing styled approach toward those groups that the organization targets for its services; (3) internal business which focuses on the concept of the value chain; and (4) learning and growth which includes measurements related to employees and the systems the company has in place to facilitate learning and knowledge sharing (Bontis et al., 1999; Moore et al., 2001; Patton, 2007).

#### Intellectual Capital (IC)

Although termed as capital there is nothing in IC that encompasses the conventional concept from economics or accounting (Kim, Yoo, & Lee, 2011). Kim, et.al. describe it as a "non-monetary asset without physical substance that can reap economic benefit (Kim et al., 2011, p. 2244)." IC is composed of HC, Organizational Capital (OC), and Customer Capital (CC).

In addition to what was previously discussed, Kim, et.al. notes that another driving force in HC relates to employees' commitment to the organization's mission and their satisfaction with the role that they fill within the organization. Bontis maintains that this is a source of creativity and innovation (Bontis et al., 1999).

OC is comprised of the organization's routines and processes which give it its competitive advantage. Management philosophy, culture, and information technology contribute to OC as well (Kim et al., 2011).

CC refers to the organization's relationships within the market. Of these three components, CC has the most direct effect on the company's value and performance (Kim et al., 2011). In its comparison of several other research efforts into IC, Kim et.al. determined that there are multiple dimensions which contribute to the valuation of IC within an organization and that each of those dimensions has numerous sub-dimensions which contribute to each. Several of which were outlined above.

Skandia's model used 91 IC metrics in addition to 73 traditional metrics to calculate the company's IC assets (Bontis, 2001). When they standardized the model to create a *universal IC report*, the number of metrics expanded to 112 (Bontis, 2001).

## Economic Value Added<sup>TM</sup> (EVA<sup>TM</sup>)

As a knowledge measurement, EVA<sup>™</sup> (hereafter referred to as EVA which is a registered trademark) is a tool closely related to the financial concept of Residual Income (RI) (Bontis et al., 1999; Ryan, 2011). RI is the value remaining in an organization after all other capital investors' have been compensated and other factors have been accounted for (i.e. depreciation) (Ryan, 2011). EVA stands as both a common language and means

of benchmarking the value-creation of intangible assets. Proper knowledge management will also increase EVA within the company (Bontis et al., 1999).

Stern Stewart and Company developed EVA in the late 1980s as a "tool to assist corporations to pursue their prime financial directive [and aid] in maximizing the wealth of their shareholders (Bontis et al., 1999, p. 394)." However, the concept was by no means revolutionary. In the 1920s, General Motors applied the concept of RI to measure the performance of divisions within the company (Bontis et al., 1999; Ryan, 2011).

Ryan identifies three reasons for the adjustments that differentiate EVA from RI:

- "To convert from accrual to cash accounting. Investors are interested in cash flows, so many of the accounting adjustments made, such as allowances for doubtful debt, should be eliminated (Ryan, 2011, p. 3)"
- "Spending on 'market building' items such as research, staff training and advertising costs should be capitalised [sic] to the extent that they have not been in the financial statements (Ryan, 2011, p. 3)."
- All items of profit and expenditure should be included (Ryan, 2011). This concludes the brief overviews of the business world's most common knowledge management systems.

#### Recommended Solution for Measuring APT Knowledge

The ontology developed in the present research along with any modifications and expansions in previous sections of this chapter provides an excellent template for measuring the knowledge collected about individual APTs and about the APT domain. The next subsection makes a general suggestion regarding any scoring method that might be employed. The second and third subsections look at a simple and weighted scoring approach.

When intelligence about an APT is discovered through link analysis they should be treated as 'unverified.' Therefore, the same weight should not be applied to these data points as to documented data points as this could potentially bias the research and skew the final score of each APT and the overall results of the study.

Therefore, the recommendation would be to modify whatever score is given to these 'unverified' data points. If later expansion of the knowledge base provides

documented proof that an inferred data point is accurate, and thus verified, the modifier should then be removed and the APT's scorecard adjusted accordingly.

#### **Basic Scoring Approach**

These attributes may have a one-to-one or many-to-one relationship within the vertical relationships of the ontology. Meaning there may be more than one data point for each attribute for a given APT or there may be none.

As an example of the many-to-one relationship, a given APT could employ multiple means of delivery in order to inject the APT into a target network (e.g., removable media, email attachment, malicious site, etc.). Knowing each of those means of delivery means that there are more data known about a given threat. Therefore, each data point should be counted individually when scoring each APT.

#### Weighted Scoring Approach

The compelling thought supporting such a scoring methodology rested in the concept that some data points would be more useful for IDS and IPS detection. The researcher even considered different ways to rank the importance of different data points including surveying a subset of the cybersecurity profession with emphasis on experience with APT detection.

A weighted scoring system certainly has a place in further research where one places a value upon the 'usefulness' of data based on detection criteria. Should future research delve into the application of threat intelligence for APT detection, then modifiers based on the usefulness of the data should be employed.

## Apply the Ontology to Support Cyber Resiliency

Within the last three years, MITRE and NIST have developed cyber resiliency models with the goal of enabling organizations to build resiliency into their IT and business infrastructure and to address ongoing threats like APTs. As the goal of these methodologies is to ensure the survival and rapid recovery of the entire business, the ontology developed here could provide the kind of standardized language needed to properly integrate IT risk management plans within the risk management plans for the business and support the application of the Cyber Resiliency methodologies.

The use of an ontology in work like risk management and resiliency planning would reduce the time it takes to develop and implement plans. It would facilitate improved communications and effectiveness of training. Ultimately, should the need arise, the execution of these plans could be done more smoothly both because of the common language and the increased knowledge that the ontology could provide.

## **Summary**

In this chapter, we examined the purpose and significance of the present study. We also reviewed the methodology and critiqued its design. After the critique was concluded, a series of further research efforts were recommended in order to make use of the work begun here. The recommendations for further research include the expansion of the ontology through expanded search for new content and the integration of applicable ontologies available in the public domain. Further recommendations were made, which involved the use of inferential analysis and a means for measuring the amount of knowledge possessed about both the domain and individual APTs by applying tools and techniques from the field of Knowledge Management.

## REFERENCES

 Abulaish, M., & Dey, L. (2007). Interoperability among distributed overlapping ontologies - A fuzzy ontology framework. *Proceedings - 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings), WI'06*, 397–403. http://doi.org/10.1109/WI.2006.105

Alperovitch, D. (2011). Revealed: Operation Shady RAT. White Paper, 1–14.

- Armerding, T. (2012). SANS Digital Forensics and Incident Response Blog | Advanced Persistent Threats Can Be Beaten | SANS Institute. misc. Retrieved from https://digital-forensics.sans.org/blog/2012/08/10/advanced-persistent-threats-canbe-beaten
- Arsene, L. (2015). The Anatomy of Advanced Persistent Threats Dark Reading. Retrieved April 28, 2016, from http://www.darkreading.com/partnerperspectives/bitdefender/the-anatomy-of-advanced-persistent-threats/a/d-id/1319525
- Ashford, W. (2011). RSA hit by advanced persistent threat attacks. Retrieved April 30, 2016, from http://www.computerweekly.com/news/1280095471/RSA-hit-by-advanced-persistent-threat-attacks
- Ask, M., Bloemerus, P., Bondarenko, P., Nordbø, A., Rekdal, J. E., Rekdal, J. E., ... Rekdal, J. E. (2013). *Advanced Persistent Threat (APT) Beyond the Hype*. Gjøvik.
- Auty, M. (2015). Anatomy of an Advanced Persistent Threat. *Network Security*, 2015(4), 13–16. article. http://doi.org/10.1016/S1353-4858(15)30028-3
- Bamman, D., Underwood, T., & Smith, N. A. (2014). A Bayesian Mixed Effects Model of Literary Character. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL 2014), 370–379.
- Bejtlich, R. (n.d.). TaoSecurity: What Is APT and What Does It Want? Retrieved April 27, 2016, from http://taosecurity.blogspot.se/2010/01/what-is-apt-and-what-does-itwant.html
- Bejtlich, R. (2013). China's "Advanced Persistent Threat" to American Computer Networks. *Hampton Roads International Security Quarterly*, (January), 16–19. article. http://doi.org/http://dx.doi.org/10.1108/17506200710779521

- Ben-Dov, M., Wu, W., Cairns, P. A., & Place, A. (2004). Improving Knowledge Discovery By Combining Text-Mining And Link-Analysis Techniques Semantics links. *Foundations*, (Davies), 1–7.
- Best, C. (2011). Challenges in open source intelligence. Proceedings 2011 European Intelligence and Security Informatics Conference, EISIC 2011, 58–62. http://doi.org/10.1109/EISIC.2011.41
- Bird, S., Loper, E., & Klien, E. (2009). Natural Language Processing with Python.O'Reilly Media Inc.
- Bisson, D. (2015). The OPM Breach: Timeline of a Hack. Retrieved April 30, 2016, from http://www.tripwire.com/state-of-security/security-data-protection/cybersecurity/the-opm-breach-timeline-of-a-hack/
- Bodeau, D., Graubart, R., Heinbockel, W., & Laderman, E. (2014). Cyber Resiliency
   Engineering Aid Cyber Resiliency Techniques: Potential Interactions and Effects
   Deborah Bodeau Approved By (techreport). Bedford.
- Bontis, N. (2001). Assessing knowledge assets: a review of the models used to measure intellectual capital. *International Journal of Management Reviews*, *3*(1), 41–60. http://doi.org/10.1111/1468-2370.00053
- Bontis, N., Dragonetti, N. C., Jacobsen, K., & Roos, G. (1999). The Knowledge Toolbox: A Review of the Tools Available to Measure and Manage Intangible Resources. *European Management Journal*, 17(4), 391–402. http://doi.org/16/S0263-2373(99)00019-5
- Börner, K. (2007). Making sense of mankind's scholarly knowledge and expertise:
  Collecting, interlinking, and organizing what we know and different approaches to mapping (network) science. *Environment and Planning B: Planning and Design*, 34(5), 808–825. http://doi.org/10.1068/b3302t
- Börner, K., Sanyal, S., & Vespignani, A. (2007). Network Science. Annual Review of Information Science & Technology, 41, 537–607. Retrieved from http://ivl.cns.iu.edu/km/pub/2007-borner-arist-s.pdf
- Bradbury, D. (2010). Shadows in the cloud: Chinese involvement in advanced persistent threats. *Network Security*, 2010(5), 16–19. article. http://doi.org/10.1016/S1353-4858(10)70058-1

- Brand, M., Valli, C., & Woodward, A. (2010). Malware Forensics: Discovery of the Intent of Deception. *Journal of Digital Forensics, Security and Law*, 5(4), 31–42. article. Retrieved from http://ojs.jdfsl.org/index.php/jdfsl/article/view/142
- Brill, A. E. (2010). From Hit and Run to Invade and Stay: How Cyberterrorists Could Be Living Inside Your Systems. *Defence Against Terrorism Review*, 3(2), 23–36.
- Burwell, H. P. (1999). Online Competitive Intelligence: Increase Your Profits Using Cyber-Intelligence. (M. Sankey & C. R. Ernst, Eds.). book, Facts on Demand Press.

Card, K. L., & Rogers, M. S. (2012). Navy Cyber Power 2020 (techreport).

- Chandran, S., P, H., & Poornachandran, P. (2015). An Efficient Classification Model for Detecting Advanced Persistent Threat. In 2015 International Conference on Advances in Computing, Communications and Informatics (pp. 2001–2009). inproceedings, IEEE.
- Cole, E. (2012). Advanced Persistent Threat: Understanding the Danger and How to Protect Your Organization. Google Books. book, Waltham: Syngress.
- Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P. (2011). Natural Language Processing (Almost) from Scratch. *Journal of Machine Learning Research*, *12*, 2493–2537. http://doi.org/10.1.1.231.4614
- Coviello, A. (n.d.). Open Letter to RSA Customers. Retrieved April 30, 2016, from https://www.sec.gov/Archives/edgar/data/790070/000119312511070159/dex991.ht m
- Damballa. (2010). Advanced Persistent Threats (APT). article. Retrieved from https://www.damballa.com/downloads/r{\_}pubs/advanced-persistent-threat.pdf
- Davies, M. (2016). Word frequency: based on 450 million word COCA corpus. Retrieved from http://www.wordfrequency.info/free.asp?s=y
- Dey, L., Rastogi, A. C., & Kumar, S. (2007). Generating concept ontologies through text mining. Proceedings - 2006 IEEE/WIC/ACM International Conference on Web Intelligence, 23–29. http://doi.org/10.1109/WI.2006.86
- Egele, M., Scholte, T., Kirda, E., & Kruegel, C. (2012). A survey on automated dynamic malware-analysis techniques and tools. ACM Computing Surveys, 44(2), 1–42. article. http://doi.org/10.1145/2089125.2089126

- Finkel, J. R., Grenager, T., & Manning, C. (2005). Incorporating non-local information into information extraction systems by gibbs sampling. *In Acl*, (1995), 363–370. http://doi.org/10.3115/1219840.1219885
- Flamholtz, E. G., Bullen, M. L., & Wei, H. (2002). Human resource accounting: A historical perspective and future implications. *Management Decision*, 40(10), 947. http://doi.org/10.1108/00251740210452818
- Fleisher, C. (2008). Using open source data in developing competitive and marketing intelligence. *European Journal of Marketing*, 42(April), 852–866. http://doi.org/10.1108/03090560810877196
- Hake, T., & Vaishalideshmukh, P. (n.d.). Building of Domain Ontology using NLP, 220–225.
- Hitzler, P., Parsia, B., Patel-Schneider, P. F., & Rudolph, S. (2012). OWL 2 Web Ontology Language Primer. *W2C*, (December), 1–123.
- Horridge, M., Knublauch, H., Rector, A., Stevens, R., & Wroe, C. (2004). A Practical Guide To Building OWL Ontologies Using The Protege-OWL Plugin and CO-ODE Tools. The University Of Manchester. Manchester: The University of Manchester.
- Huang, H. De, Acampora, G., Loia, V., Lee, C. S., & Kao, H. Y. (2011). Applying FML and Fuzzy Ontologies to malware behavioural analysis. *IEEE International Conference on Fuzzy Systems*, 2018–2025. http://doi.org/10.1109/FUZZY.2011.6007716
- Hutchins, E. M., Cloppert, M. J., & Amin, R. M. (2011). Intelligence-driven computer network defense informed by analysis of adversary campaigns and intrusion kill chains. *6th Annual International Conference on Information Warfare and Security*, (July), 1–14. techreport. Retrieved from http://papers.rohanamin.com/wpcontent/uploads/papers.rohanamin.com/2011/08/iciw2011.pdf\$\\$nhttp://www.lockh eedmartin.com/content/dam/lockheed/data/corporate/documents/LM-White-Paper-Intel-Driven-Defense.pdf
- Information Warfare Monitor, & Shadowserver Foundation. (2010). *Shadows in the Cloud: Investigating Cyber Espionage 2.0.*
- International Business Machines. (n.d.). IBM Watson: What is Watson? Retrieved September 1, 2016, from http://www.ibm.com/watson/what-is-watson.html

- ISACA. (n.d.-a). APT. Retrieved April 28, 2016, from https://cybersecurity.isaca.org/csxthreats-and-controls/threats/apt
- ISACA. (n.d.-b). Malware. Retrieved April 28, 2016, from https://cybersecurity.isaca.org/csx-threats-and-controls/threats/malware
- ISACA. (n.d.-c). Social Engineering. Retrieved April 28, 2016, from https://cybersecurity.isaca.org/csx-threats-and-controls/threats/social-engineering
- Jones, K. S. (1999). What is the role of NLP in text retrieval. *Natural Language Information Retrieval*, (March 1997), 1–12. Retrieved from http://www.cl.cam.ac.uk/users/sht25/ksj5.pdf
- Karoui, L., Aufaure, M. A., & Bennacer, N. (2007). Context-based hierarchical clustering for the ontology learning. *Proceedings - 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings), WI'06*, 420–427. http://doi.org/10.1109/WI.2006.55
- Kaspersky Lab Global Research and Analysis Team. (2013). The Icefog APT: A Tale of Cloak and Three Daggers. Retrieved April 29, 2016, from https://securelist.com/blog/research/57331/the-icefog-apt-a-tale-of-cloak-and-threedaggers/
- Kim, T. (Terry), Yoo, J. J.-E., & Lee, G. (2011). The HOINCAP scale: measuring intellectual capital in the hotel industry. *The Service Industries Journal*, 31(13), 2243–2272. http://doi.org/10.1080/02642069.2010.504817
- Knublauch, H., Fergerson, R., Noy, N., & Musen, M. (2004). The Protege-OWL Plugin: An Open Development Environment for Semantic Web Applications. *Third International Semantic Web Conference, Hiroshima, Japan.*

Kushner, D. (2013). The Real Story of Stuxnet. IEEE Spectrum, (March), 48-53.

Lee, H., Peirsman, Y., Chang, A., Chambers, N., Surdeanu, M., & Jurafsky, D. (2011). Stanford's Multi-Pass Sieve Coreference Resolution System at the CoNLL-2011 Shared Task. Proceedings of the Fifteenth Conference on Computational Natural Language Learning: Shared Task. Association for Computational Linguistics, 28– 34.

- Lundquist, D., Zhang, K., & Ouksel, A. (2015). Ontology-driven cyber-security threat assessment based on sentiment analysis of network activity data. *Proceedings - 2014 International Conference on Cloud and Autonomic Computing, ICCAC 2014*, 5–14. http://doi.org/10.1109/ICCAC.2014.42
- Mahmudul Hoque. (2010). Methods and Accounting Treatment of HRA. Retrieved July 7, 2016, from http://www.articlesbase.com/international-studies-articles/methods-and-accounting-treatment-of-hra-2773625.html
- Mandiant. (2010). M-Trends: The Advanced Persistent Threat. White Paper, Milpitas: FireEye. http://doi.org/10.1049/etr.2014.0025
- Mandiant. (2013). APT1 Exposing One of China's Cyber Espionage Units. Milpitas: FireEye. Retrieved from http://intelreport.mandiant.com/Mandiant\_APT1\_Report.pdf
- Mandiant. (2014). M-Trends: Beyond the Breach. White Paper, Milpitas: FireEye.
- Manning, C. D., Bauer, J., Finkel, J., Bethard, S. J., Surdeanu, M., & McClosky, D.
  (2014). The Stanford CoreNLP Natural Language Processing Toolkit. *Proceedings* of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, 55–60. http://doi.org/10.3115/v1/P14-5010
- McAfee. (2011). Global Energy Cyberattacks: "Night Dragon," 19. Retrieved from www.mcafee.com
- Meckl, S., Tecuci, G., Boicu, M., & Marcu, D. (2015). Towards an Operational Semantic Theory of Cyber Defense Against Advanced Persistent Threats. In STIDS 2015 Proceedings (pp. 58–65).
- Mikroyannidis, A., & Theodoulidis, B. (2007). Heraclitus II: A framework for ontology management and evolution. *Proceedings - 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main Conference Proceedings), WI'06*, 514–521. http://doi.org/10.1109/WI.2006.90
- Moore, C., Rowe, B. J., & Widener, S. K. (2001). HCS: Designing a Balanced Scorecard in a Knowledge-Based Firm. *Issues in Accounting Education*, 16(4), 569–601. http://doi.org/10.2308/iace.2001.16.4.569

- Mundie, D. A., & McIntire, D. M. (2013). An Ontology for Malware Analysis. Proceedings - 2013 International Conference on Availability, Reliability and Security, ARES 2013, 556–558. http://doi.org/10.1109/ARES.2013.73
- Musen, M. A., & The Protégé Team. (2015). The Protégé Project: A Look Back and a Look Forward. AI Matters, 116(4), 4–12. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4883684/
- Naval, S., Laxmi, V., Rajarajan, M., Gaur, M. S., & Conti, M. (2014). Employing Program Semantics for Malware Detection, *10*(12), 2591–2604. article. http://doi.org/10.1109/TIFS.2015.2469253
- Navigli, R., & Velardi, P. (2004). Learning Domain Ontologies from Document Warehouses and Dedicated Web Sites. *Computational Linguistics*, 30(2), 151–179. http://doi.org/10.1162/089120104323093276
- Patton, J. R. (2007). Metrics for Knowledge-Based Project Organizations. SAM Advanced Management Journal, 72(1), 33–43. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=bth&AN=24688728&site=e host-live
- Perlroth, N. (2013). Chinese Hackers Infiltrate New York Times Computers The New York Times. Retrieved April 29, 2016, from http://www.nytimes.com/2013/01/31/technology/chinese-hackers-infiltrate-new-york-times-computers.html?\_r=0
- Ponemon Institute. (2015). 2015 Cost of Data Breach Study: Global Analysis, (June), 1–19.
- PR Newswire. (2015, October 15). Advanced Persistent Threat Protection Market Worth8.7 Billion USD by 2020. *PR Newswire*, p. 2. Pune.
- Radev, D. R. (2015). 01.01 Introduction (8:38) University of Michigan | Coursera. Retrieved September 1, 2016, from https://www.coursera.org/learn/naturallanguage-processing/lecture/oX0lw/01-01-introduction-8-38
- Radzikowski, P. S. (2016). CyberSecurity: Expanded Look at the APT Life Cycle and Mitigation. Retrieved from http://drshem.com/2016/02/11/cybersecurity-expandedlook-apt-life-cycle-mitigation/

- Raj, V. S., Chezhian, R. M., & Mrithulashri, M. (2014). Advanced Persistent Threats & Recent High Profile Cyber Threat Encounters. *International Journal of Innovative Research in Computer and Communication Engineering*, 2(1), 2412–2417.
- RSA FraudAction Research Labs. (2011). Anatomy of an Attack Speaking of Security -The RSA Blog and Podcast. Retrieved April 30, 2016, from https://blogs.rsa.com/anatomy-of-an-attack/
- Ryan, N. (2011). Economic value added versus profit-based measures of performance (Vol. 900).
- Saarinen, M. O. (2013). Developing a Grey Hat C2 and RAT for APT Security Training and Assessment. In *GreHack 2013* (pp. 12–24). Grenoble: GreHack.
- Shosha, A. F., James, J. I., Hannaway, A., Liu, C.-C., & Gladyshev, P. (2012). Digital Forensics and Cyber Crime. In M. Rogers & K. C. Seigfried-Spellar (Eds.), *Digital Forensics and Cyber Crime* (pp. 66–80). incollection, Lafayette: Springer.
- Sikorski, M., & Honig, A. (2012). Practical Malware Analysis: The Hands-on Guide to Dissecting Malicious Software. book.
- Sims, S. (2015). Everything You Need to Know about Natural Language Processing. Retrieved September 1, 2016, from http://www.kdnuggets.com/2015/12/naturallanguage-processing-101.html
- Stanford NLP Group. (n.d.-a). Stanford CoreNLP a suite of core NLP tools | Stanford CoreNLP. Retrieved from http://stanfordnlp.github.io/CoreNLP/
- Stanford NLP Group. (n.d.-b). The Stanford Natural Language Processing Group. Retrieved from http://nlp.stanford.edu/
- Steele, R. D. (2007). Open source intelligence. In L. K. Johnson (Ed.), Handbook of Intelligence Studies (pp. 129–147). New York: Routledge.
- TrendLabs. (n.d.). Connecting the APT Dots TrendLabs Security Intelligence Blog. Retrieved April 30, 2016, from http://blog.trendmicro.com/trendlabs-securityintelligence/connecting-the-apt-dots-infographic/
- United States. The White House. (2013). Executive Order 13636: Improving Critical Infrastructure Cybersecurity. *Federal Register*, 78(33), 1–8. article.

- Velardi, P., Fabriani, P., & Missikoff, M. (2001). Using text processing techniques to automatically enrich a domain ontology. *Formal Ontology in Information Systems*. *IOS Press*, 270–284. http://doi.org/10.1145/505168.505194
- Velardi, P., Faralli, S., & Navigli, R. (2013). OntoLearn Reloaded: AGraph-Based Algorithm for Taxonomy Induction. *Computational Linguistics*, 39(3), 665–707.
- Villeneuve, N., & Bennett, J. (2012). Detecting APT Activity with Network Traffic Analysis. Cupertino. Retrieved from http://www.trendmicro.pl/cloudcontent/us/pdfs/security-intelligence/white-papers/wp-detecting-apt-activity-withnetwork-traffic-analysis.pdf
- W3C OWL Working Group. (2012). OWL 2 Web Ontology Language Document Overview. *OWL 2 Web Ontology Language*, (December), 1–7. Retrieved from http://www.w3.org/TR/owl2-overview/
- Waldron, M. (n.d.). 10 Common NLP Terms Explained for the Text Analysis Novice -AYLIEN. Retrieved October 1, 2016, from http://blog.aylien.com/10-common-nlpterms-explained-for-the-text/
- Wang, Y., Berant, J., & Liang, P. (2015). Building a Semantic Parser Overnight. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), 1332–1342. Retrieved from http://www.aclweb.org/anthology/P15-1129
- Websense. (2011). Advanced Persistent Threats and Other Advanced Attacks. White Paper, Websense. Retrieved from http://www.websense.com/assets/whitepapers/whitepaper-websense-advanced-persistent-threats-and-other-advancedattacks-en.pdf

# **APPENDIX A. CORPUS STATISTICS**

The data in this appendix represents the comparison of key document characteristics both in their base form (0 words extracted) and their adjusted form with the 5,000 most common words removed.

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 1                  | 2,032           | 390                   | 161              | 614                       | 368                           | 661                                   | 380                                       | 8                       | 7                           | 801                                 | 680                 |
| 2                  | 26,071          | 4,093                 | 1,012            | 2,590                     | 1,552                         | 2,996                                 | 1,611                                     | 12                      | 12                          | 14,314                              | 6,652               |
| 3                  | 3,652           | 790                   | 77               | 926                       | 397                           | 1,046                                 | 412                                       | 11                      | 10                          | 2,077                               | 708                 |
| 4                  | 1,648           | 150                   | 20               | 480                       | 130                           | 543                                   | 133                                       | 10                      | 8                           | 1,199                               | 279                 |
| 5                  | 1,940           | 301                   | 43               | 578                       | 266                           | 626                                   | 270                                       | 12                      | 10                          | 1,078                               | 518                 |
| 6                  | 1,549           | 209                   | 24               | 506                       | 200                           | 540                                   | 204                                       | 10                      | 8                           | 979                                 | 337                 |
| 7                  | 604             | 72                    | 14               | 285                       | 106                           | 312                                   | 108                                       | 7                       | 7                           | 404                                 | 114                 |
| 8                  | 5,024           | 349                   | 155              | 791                       | 383                           | 880                                   | 393                                       | 10                      | 9                           | 3,272                               | 1,248               |
| 9                  | 1,308           | 226                   | 105              | 421                       | 198                           | 445                                   | 198                                       | 10                      | 8                           | 638                                 | 339                 |
| 10                 | 3,904           | 532                   | 5                | 481                       | 173                           | 548                                   | 182                                       | 10                      | 8                           | 2,491                               | 876                 |
| 11                 | 1,024           | 117                   | 18               | 363                       | 109                           | 408                                   | 114                                       | 7                       | 6                           | 694                                 | 195                 |
| 12                 | 829             | 98                    | 13               | 340                       | 154                           | 369                                   | 156                                       | 10                      | 9                           | 497                                 | 221                 |
| 13                 | 21,124          | 2,078                 | 326              | 2,975                     | 1,446                         | 3,552                                 | 1,511                                     | 12                      | 12                          | 14,571                              | 4,149               |
| 14                 | 3,190           | 359                   | 45               | 851                       | 344                           | 928                                   | 353                                       | 8                       | 8                           | 2,057                               | 729                 |
| 15                 | 2,288           | 262                   | 37               | 775                       | 325                           | 850                                   | 335                                       | 13                      | 11                          | 1,428                               | 561                 |
| 16                 | 3,541           | 786                   | 191              | 865                       | 452                           | 935                                   | 454                                       | 12                      | 10                          | 1,655                               | 909                 |
| 17                 | 2,392           | 515                   | 177              | 649                       | 435                           | 685                                   | 449                                       | 9                       | 8                           | 742                                 | 958                 |
| 18                 | 4,055           | 857                   | 521              | 782                       | 432                           | 856                                   | 449                                       | 12                      | 11                          | 1,426                               | 1,251               |
| 20                 | 2,517           | 266                   | 107              | 793                       | 416                           | 879                                   | 423                                       | 11                      | 10                          | 1,397                               | 747                 |

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 21                 | 1,911           | 211                   | 29               | 708                       | 295                           | 759                                   | 302                                       | 10                      | 9                           | 1,227                               | 444                 |
| 22                 | 5,151           | 1,140                 | 156              | 1,205                     | 654                           | 1,330                                 | 669                                       | 11                      | 10                          | 2,349                               | 1,506               |
| 23                 | 12,056          | 1,459                 | 209              | 1,972                     | 1,105                         | 2,335                                 | 1,164                                     | 11                      | 10                          | 7,355                               | 3,033               |
| 24                 | 6,086           | 862                   | 72               | 1,333                     | 571                           | 1,504                                 | 581                                       | 11                      | 8                           | 3,820                               | 1,332               |
| 25                 | 3,903           | 527                   | 127              | 971                       | 429                           | 1,073                                 | 443                                       | 9                       | 8                           | 2,302                               | 947                 |
| 26                 | 3,758           | 444                   | 128              | 728                       | 336                           | 846                                   | 360                                       | 11                      | 8                           | 2,228                               | 958                 |
| 27                 | 6,523           | 875                   | 127              | 1,314                     | 769                           | 1,476                                 | 787                                       | 13                      | 11                          | 3,581                               | 1,940               |
| 28                 | 1,652           | 170                   | 31               | 638                       | 259                           | 676                                   | 258                                       | 9                       | 9                           | 1,077                               | 374                 |
| 29                 | 1,683           | 239                   | 18               | 566                       | 244                           | 620                                   | 247                                       | 12                      | 10                          | 994                                 | 432                 |
| 30                 | 1,998           | 240                   | 50               | 638                       | 254                           | 705                                   | 262                                       | 11                      | 10                          | 1,246                               | 462                 |
| 31                 | 2,655           | 630                   | 59               | 675                       | 341                           | 754                                   | 355                                       | 8                       | 7                           | 1,241                               | 725                 |
| 32                 | 1,713           | 190                   | 15               | 576                       | 213                           | 635                                   | 224                                       | 9                       | 8                           | 1,117                               | 391                 |
| 33                 | 2,454           | 331                   | 114              | 608                       | 283                           | 655                                   | 284                                       | 11                      | 9                           | 1,287                               | 722                 |
| 34                 | 2,466           | 500                   | 17               | 813                       | 452                           | 883                                   | 458                                       | 11                      | 10                          | 1,200                               | 749                 |
| 35                 | 1,694           | 172                   | 8                | 561                       | 235                           | 634                                   | 248                                       | 10                      | 8                           | 1,157                               | 357                 |
| 36                 | 629             | 63                    | 3                | 278                       | 80                            | 302                                   | 79                                        | 7                       | 7                           | 467                                 | 96                  |
| 37                 | 2,748           | 355                   | 50               | 695                       | 269                           | 791                                   | 280                                       | 11                      | 9                           | 1,784                               | 559                 |
| 38                 | 5,934           | 935                   | 250              | 1,310                     | 598                           | 1,475                                 | 608                                       | 10                      | 9                           | 3,474                               | 1,275               |
| 39                 | 7,853           | 1,281                 | 106              | 1,188                     | 332                           | 1,441                                 | 357                                       | 11                      | 10                          | 5,629                               | 837                 |
| 40                 | 1,756           | 389                   | 58               | 486                       | 174                           | 543                                   | 190                                       | 10                      | 10                          | 1,003                               | 306                 |
| 41                 | 3,914           | 450                   | 39               | 944                       | 391                           | 1,087                                 | 404                                       | 11                      | 9                           | 2,532                               | 893                 |
| 42                 | 2,832           | 619                   | 61               | 885                       | 548                           | 965                                   | 558                                       | 12                      | 10                          | 1,357                               | 795                 |
| 43                 | 5,959           | 920                   | 99               | 1,552                     | 907                           | 1,707                                 | 930                                       | 12                      | 11                          | 3,102                               | 1,838               |
| 44                 | 24,136          | 3,713                 | 1,249            | 3,252                     | 1,761                         | 3,763                                 | 1,814                                     | 13                      | 13                          | 13,280                              | 5,894               |
| 45                 | 11,058          | 2,685                 | 772              | 1,361                     | 817                           | 1,500                                 | 842                                       | 9                       | 8                           | 4,398                               | 3,203               |

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 46                 | 15,089          | 1,955                 | 192              | 2,505                     | 1,438                         | 2,867                                 | 1,481                                     | 13                      | 11                          | 9,070                               | 3,872               |
| 47                 | 6,557           | 989                   | 74               | 1,453                     | 672                           | 1,654                                 | 698                                       | 10                      | 8                           | 4,152                               | 1,342               |
| 48                 | 1,375           | 150                   | 11               | 466                       | 166                           | 516                                   | 174                                       | 10                      | 8                           | 910                                 | 304                 |
| 49                 | 8,725           | 1,033                 | 193              | 1,892                     | 1,045                         | 2,108                                 | 1,058                                     | 11                      | 9                           | 5,011                               | 2,488               |
| 50                 | 15,630          | 1,856                 | 492              | 2,277                     | 1,272                         | 2,629                                 | 1,324                                     | 12                      | 12                          | 9,365                               | 3,917               |
| 51                 | 1,558           | 203                   | 43               | 511                       | 220                           | 569                                   | 229                                       | 10                      | 10                          | 944                                 | 368                 |
| 52                 | 1,755           | 257                   | 45               | 617                       | 294                           | 686                                   | 300                                       | 11                      | 9                           | 1,001                               | 452                 |
| 53                 | 2,662           | 592                   | 59               | 690                       | 352                           | 746                                   | 356                                       | 12                      | 11                          | 1,243                               | 768                 |
| 54                 | 3,438           | 553                   | 96               | 968                       | 495                           | 1,085                                 | 512                                       | 10                      | 9                           | 1,931                               | 858                 |
| 55                 | 3,260           | 365                   | 153              | 787                       | 290                           | 850                                   | 297                                       | 11                      | 9                           | 2,139                               | 603                 |
| 56                 | 1,338           | 158                   | 6                | 500                       | 186                           | 553                                   | 190                                       | 10                      | 8                           | 919                                 | 255                 |
| 57                 | 7,315           | 1,486                 | 146              | 1,303                     | 681                           | 1,485                                 | 713                                       | 12                      | 11                          | 3,762                               | 1,921               |
| 59                 | 1,066           | 192                   | 16               | 402                       | 224                           | 419                                   | 223                                       | 7                       | 7                           | 475                                 | 383                 |
| 60                 | 3,341           | 624                   | 67               | 982                       | 544                           | 1,079                                 | 565                                       | 11                      | 11                          | 1,639                               | 1,011               |
| 61                 | 2,731           | 550                   | 58               | 707                       | 307                           | 780                                   | 320                                       | 12                      | 11                          | 1,523                               | 600                 |
| 62                 | 3,810           | 475                   | 28               | 864                       | 407                           | 997                                   | 426                                       | 10                      | 9                           | 2,317                               | 990                 |
| 63                 | 705             | 150                   | 9                | 287                       | 125                           | 302                                   | 125                                       | 6                       | 6                           | 367                                 | 179                 |
| 64                 | 687             | 75                    | 15               | 232                       | 85                            | 253                                   | 87                                        | 9                       | 7                           | 420                                 | 177                 |
| 65                 | 3,913           | 526                   | 107              | 814                       | 371                           | 922                                   | 383                                       | 11                      | 11                          | 2,401                               | 879                 |
| 66                 | 8,569           | 1,773                 | 244              | 1,697                     | 1,060                         | 1,891                                 | 1,097                                     | 12                      | 11                          | 4,190                               | 2,362               |
| 67                 | 9,526           | 1,738                 | 293              | 1,421                     | 811                           | 1,587                                 | 837                                       | 11                      | 10                          | 4,237                               | 3,258               |
| 68                 | 3,785           | 836                   | 63               | 789                       | 360                           | 875                                   | 368                                       | 11                      | 9                           | 2,129                               | 757                 |
| 69                 | 5,399           | 635                   | 72               | 1,223                     | 485                           | 1,394                                 | 497                                       | 11                      | 8                           | 3,594                               | 1,098               |
| 70                 | 3,016           | 566                   | 32               | 907                       | 473                           | 1,000                                 | 488                                       | 12                      | 11                          | 1,689                               | 729                 |
| 71                 | 1,544           | 168                   | 24               | 473                       | 147                           | 530                                   | 150                                       | 8                       | 8                           | 1,037                               | 315                 |

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 72                 | 3,476           | 479                   | 39               | 842                       | 373                           | 957                                   | 384                                       | 13                      | 12                          | 2,063                               | 895                 |
| 73                 | 5,726           | 1,173                 | 135              | 1,267                     | 671                           | 1,452                                 | 695                                       | 12                      | 11                          | 3,014                               | 1,404               |
| 74                 | 2,349           | 277                   | 75               | 600                       | 274                           | 671                                   | 280                                       | 10                      | 10                          | 1,427                               | 570                 |
| 75                 | 3,166           | 603                   | 94               | 808                       | 468                           | 888                                   | 481                                       | 10                      | 10                          | 1,443                               | 1,026               |
| 76                 | 11,325          | 1,553                 | 242              | 2,075                     | 1,114                         | 2,417                                 | 1,161                                     | 12                      | 11                          | 6,784                               | 2,746               |
| 77                 | 3,655           | 791                   | 77               | 928                       | 399                           | 1,048                                 | 414                                       | 11                      | 10                          | 2,077                               | 710                 |
| 78                 | 1,273           | 153                   | 43               | 431                       | 185                           | 479                                   | 194                                       | 10                      | 9                           | 750                                 | 327                 |
| 79                 | 9,372           | 2,330                 | 400              | 1,517                     | 865                           | 1,705                                 | 895                                       | 11                      | 11                          | 4,238                               | 2,404               |
| 80                 | 1,553           | 145                   | 13               | 588                       | 229                           | 641                                   | 234                                       | 10                      | 10                          | 1,013                               | 382                 |
| 81                 | 3,161           | 343                   | 85               | 929                       | 430                           | 1,027                                 | 445                                       | 11                      | 9                           | 1,951                               | 782                 |
| 82                 | 2,788           | 457                   | 44               | 811                       | 369                           | 894                                   | 378                                       | 10                      | 10                          | 1,615                               | 672                 |
| 83                 | 14,648          | 1,913                 | 192              | 2,469                     | 1,422                         | 2,821                                 | 1,461                                     | 13                      | 11                          | 8,697                               | 3,846               |
| 85                 | 5,550           | 998                   | 220              | 1,157                     | 564                           | 1,283                                 | 577                                       | 11                      | 10                          | 2,783                               | 1,549               |
| 86                 | 3,383           | 784                   | 190              | 849                       | 437                           | 921                                   | 441                                       | 12                      | 10                          | 1,581                               | 828                 |
| 87                 | 3,682           | 371                   | 44               | 956                       | 304                           | 1,111                                 | 318                                       | 11                      | 8                           | 2,666                               | 601                 |
| 88                 | 11,070          | 1,962                 | 179              | 1,939                     | 1,039                         | 2,209                                 | 1,063                                     | 12                      | 10                          | 6,108                               | 2,821               |
| 89                 | 4,166           | 823                   | 129              | 898                       | 390                           | 1,006                                 | 399                                       | 11                      | 10                          | 2,365                               | 849                 |
| 90                 | 7,471           | 896                   | 129              | 1,457                     | 554                           | 1,726                                 | 576                                       | 12                      | 10                          | 5,130                               | 1,316               |
| 91                 | 2,889           | 535                   | 38               | 826                       | 406                           | 912                                   | 417                                       | 12                      | 12                          | 1,622                               | 694                 |
| 92                 | 5,530           | 1,138                 | 115              | 1,253                     | 677                           | 1,374                                 | 697                                       | 10                      | 10                          | 2,851                               | 1,426               |
| 93                 | 1,978           | 210                   | 50               | 446                       | 135                           | 506                                   | 136                                       | 9                       | 8                           | 1,393                               | 325                 |
| 94                 | 2,038           | 331                   | 49               | 656                       | 275                           | 724                                   | 283                                       | 11                      | 10                          | 1,187                               | 471                 |
| 95                 | 4,601           | 1,189                 | 100              | 855                       | 360                           | 982                                   | 373                                       | 13                      | 12                          | 2,531                               | 781                 |
| 96                 | 9,034           | 1,212                 | 233              | 1,624                     | 772                           | 1,867                                 | 803                                       | 12                      | 10                          | 5,458                               | 2,131               |
| 97                 | 2,148           | 246                   | 65               | 656                       | 280                           | 718                                   | 290                                       | 11                      | 10                          | 1,376                               | 461                 |

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 98                 | 2,044           | 148                   | 73               | 749                       | 358                           | 819                                   | 367                                       | 10                      | 9                           | 1,271                               | 552                 |
| 99                 | 9,412           | 1,505                 | 278              | 1,927                     | 996                           | 2,217                                 | 1,039                                     | 10                      | 10                          | 5,315                               | 2,314               |
| 100                | 1,579           | 261                   | 71               | 471                       | 234                           | 520                                   | 241                                       | 11                      | 10                          | 823                                 | 424                 |
| 101                | 7,645           | 1,493                 | 175              | 1,620                     | 970                           | 1,782                                 | 995                                       | 12                      | 11                          | 3,578                               | 2,399               |
| 102                | 3,230           | 370                   | 13               | 796                       | 230                           | 928                                   | 245                                       | 13                      | 11                          | 2,420                               | 427                 |
| 103                | 4,631           | 723                   | 88               | 1,014                     | 431                           | 1,145                                 | 441                                       | 10                      | 10                          | 2,860                               | 960                 |
| 104                | 3,732           | 388                   | 99               | 887                       | 523                           | 978                                   | 532                                       | 10                      | 8                           | 1,997                               | 1,248               |
| 105                | 4,522           | 1,154                 | 274              | 842                       | 435                           | 923                                   | 448                                       | 12                      | 11                          | 1,905                               | 1,189               |
| 106                | 3,548           | 494                   | 55               | 980                       | 478                           | 1,078                                 | 486                                       | 11                      | 11                          | 2,116                               | 883                 |
| 107                | 7,402           | 1,477                 | 380              | 1,393                     | 720                           | 1,588                                 | 745                                       | 11                      | 10                          | 4,110                               | 1,435               |
| 108                | 1,423           | 229                   | 21               | 458                       | 178                           | 506                                   | 185                                       | 9                       | 7                           | 820                                 | 353                 |
| 109                | 3,369           | 411                   | 64               | 783                       | 369                           | 888                                   | 386                                       | 12                      | 11                          | 2,015                               | 879                 |
| 110                | 10,053          | 1,600                 | 257              | 1,635                     | 863                           | 1,883                                 | 896                                       | 13                      | 11                          | 5,913                               | 2,283               |
| 111                | 1,924           | 187                   | 62               | 632                       | 287                           | 691                                   | 294                                       | 10                      | 9                           | 1,198                               | 477                 |
| 112                | 17,694          | 3,892                 | 864              | 2,560                     | 1,654                         | 2,877                                 | 1,715                                     | 13                      | 11                          | 7,673                               | 5,265               |
| 113                | 5,743           | 940                   | 134              | 1,194                     | 528                           | 1,344                                 | 540                                       | 12                      | 11                          | 3,385                               | 1,284               |
| 114                | 7,902           | 1,622                 | 155              | 1,476                     | 875                           | 1,656                                 | 907                                       | 13                      | 12                          | 3,735                               | 2,390               |
| 115                | 11,883          | 1,815                 | 267              | 2,084                     | 1,146                         | 2,383                                 | 1,180                                     | 13                      | 11                          | 6,638                               | 3,163               |
| 116                | 4,596           | 948                   | 84               | 826                       | 430                           | 894                                   | 432                                       | 10                      | 9                           | 2,247                               | 1,317               |
| 117                | 804             | 90                    | 15               | 336                       | 104                           | 362                                   | 108                                       | 8                       | 6                           | 528                                 | 171                 |
| 118                | 9,910           | 1,903                 | 337              | 1,874                     | 1,165                         | 2,134                                 | 1,206                                     | 12                      | 11                          | 5,119                               | 2,551               |
| 119                | 1,505           | 140                   | 5                | 529                       | 188                           | 576                                   | 194                                       | 10                      | 10                          | 1,009                               | 351                 |
| 120                | 743             | 201                   | 23               | 279                       | 146                           | 301                                   | 153                                       | 8                       | 7                           | 313                                 | 206                 |
| 121                | 2,419           | 336                   | 265              | 585                       | 296                           | 652                                   | 311                                       | 9                       | 8                           | 1,209                               | 609                 |
| 122                | 7,528           | 712                   | 59               | 1,239                     | 362                           | 1,497                                 | 383                                       | 12                      | 10                          | 5,713                               | 1,044               |

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 123                | 3,423           | 497                   | 88               | 1,016                     | 502                           | 1,117                                 | 510                                       | 11                      | 10                          | 2,020                               | 818                 |
| 124                | 1,954           | 1,131                 | 49               | 344                       | 293                           | 345                                   | 292                                       | 8                       | 7                           | 188                                 | 586                 |
| 125                | 8,038           | 1,011                 | 89               | 1,472                     | 788                           | 1,685                                 | 820                                       | 12                      | 11                          | 4,714                               | 2,224               |
| 126                | 14,378          | 2,373                 | 479              | 2,067                     | 1,158                         | 2,377                                 | 1,197                                     | 13                      | 13                          | 8,099                               | 3,427               |
| 127                | 4,901           | 678                   | 296              | 1,176                     | 538                           | 1,324                                 | 552                                       | 12                      | 10                          | 2,776                               | 1,151               |
| 128                | 13,587          | 3,046                 | 897              | 2,511                     | 1,838                         | 2,711                                 | 1,867                                     | 12                      | 11                          | 4,835                               | 4,809               |
| 129                | 3,404           | 723                   | 153              | 963                       | 583                           | 1,056                                 | 596                                       | 12                      | 11                          | 1,424                               | 1,104               |
| 130                | 6,255           | 585                   | 160              | 1,151                     | 439                           | 1,324                                 | 463                                       | 11                      | 9                           | 4,355                               | 1,155               |
| 131                | 1,474           | 250                   | 60               | 531                       | 265                           | 570                                   | 271                                       | 9                       | 8                           | 736                                 | 428                 |
| 132                | 1,052           | 114                   | 7                | 358                       | 167                           | 393                                   | 170                                       | 9                       | 9                           | 686                                 | 245                 |
| 133                | 4,173           | 927                   | 66               | 1,120                     | 649                           | 1,217                                 | 671                                       | 12                      | 12                          | 1,890                               | 1,290               |
| 134                | 1,530           | 197                   | 41               | 503                       | 242                           | 554                                   | 250                                       | 10                      | 10                          | 886                                 | 406                 |
| 135                | 2,732           | 1,013                 | 57               | 643                       | 438                           | 660                                   | 439                                       | 8                       | 8                           | 763                                 | 899                 |
| 137                | 6,277           | 836                   | 258              | 1,252                     | 661                           | 1,391                                 | 672                                       | 12                      | 11                          | 3,578                               | 1,605               |
| 138                | 2,414           | 329                   | 58               | 571                       | 190                           | 634                                   | 192                                       | 10                      | 9                           | 1,669                               | 358                 |
| 139                | 5,090           | 803                   | 144              | 937                       | 378                           | 1,082                                 | 399                                       | 11                      | 9                           | 3,026                               | 1,117               |
| 140                | 410             | 43                    | 2                | 219                       | 81                            | 230                                   | 81                                        | 6                       | 5                           | 266                                 | 99                  |
| 141                | 6,289           | 693                   | 88               | 1,220                     | 526                           | 1,430                                 | 561                                       | 13                      | 12                          | 4,091                               | 1,417               |
| 143                | 3,377           | 304                   | 263              | 836                       | 258                           | 923                                   | 264                                       | 11                      | 10                          | 2,295                               | 515                 |
| 144                | 11,622          | 3,605                 | 727              | 4,075                     | 3,619                         | 4,183                                 | 3,629                                     | 12                      | 11                          | 2,367                               | 4,923               |
| 145                | 1,636           | 267                   | 41               | 611                       | 335                           | 651                                   | 336                                       | 9                       | 8                           | 849                                 | 479                 |
| 146                | 4,217           | 839                   | 155              | 1,614                     | 1,108                         | 1,689                                 | 1,117                                     | 11                      | 8                           | 1,661                               | 1,562               |
| 147                | 2,250           | 298                   | 20               | 658                       | 199                           | 744                                   | 206                                       | 11                      | 8                           | 1,539                               | 393                 |
| 148                | 1,712           | 192                   | 14               | 536                       | 209                           | 588                                   | 216                                       | 9                       | 7                           | 1,115                               | 391                 |
| 149                | 2,957           | 457                   | 55               | 770                       | 301                           | 879                                   | 316                                       | 12                      | 10                          | 1,921                               | 524                 |

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 150                | 27,122          | 3,435                 | 1,969            | 2,809                     | 1,714                         | 3,331                                 | 1,802                                     | 13                      | 13                          | 16,204                              | 5,514               |
| 151                | 22,225          | 5,085                 | 451              | 3,327                     | 2,241                         | 3,761                                 | 2,296                                     | 12                      | 11                          | 11,482                              | 5,207               |
| 152                | 1,347           | 141                   | 60               | 411                       | 197                           | 456                                   | 208                                       | 9                       | 8                           | 663                                 | 483                 |
| 153                | 4,100           | 593                   | 119              | 985                       | 481                           | 1,089                                 | 486                                       | 11                      | 11                          | 2,372                               | 1,016               |
| 154                | 4,227           | 599                   | 117              | 979                       | 467                           | 1,088                                 | 474                                       | 11                      | 11                          | 2,475                               | 1,036               |
| 155                | 13,570          | 3,034                 | 897              | 2,498                     | 1,825                         | 2,698                                 | 1,854                                     | 12                      | 11                          | 4,835                               | 4,804               |
| 156                | 1,852           | 181                   | 53               | 631                       | 261                           | 700                                   | 266                                       | 10                      | 10                          | 1,143                               | 475                 |
| 157                | 2,783           | 412                   | 78               | 698                       | 311                           | 782                                   | 316                                       | 11                      | 10                          | 1,683                               | 610                 |
| 158                | 2,835           | 425                   | 72               | 674                       | 299                           | 762                                   | 305                                       | 11                      | 9                           | 1,714                               | 624                 |
| 159                | 6,463           | 1,125                 | 310              | 1,354                     | 782                           | 1,508                                 | 799                                       | 12                      | 10                          | 3,367                               | 1,661               |
| 160                | 8,085           | 2,080                 | 225              | 1,723                     | 1,115                         | 1,871                                 | 1,136                                     | 13                      | 12                          | 3,122                               | 2,658               |
| 161                | 773             | 158                   | 32               | 371                       | 166                           | 394                                   | 168                                       | 8                       | 8                           | 416                                 | 167                 |
| 163                | 3,686           | 756                   | 93               | 862                       | 489                           | 943                                   | 507                                       | 11                      | 10                          | 1,614                               | 1,223               |
| 164                | 2,099           | 258                   | 24               | 671                       | 254                           | 749                                   | 260                                       | 12                      | 11                          | 1,384                               | 433                 |
| 165                | 3,842           | 795                   | 102              | 944                       | 367                           | 1,072                                 | 375                                       | 12                      | 10                          | 2,300                               | 645                 |
| 167                | 2,508           | 222                   | 84               | 623                       | 258                           | 691                                   | 261                                       | 10                      | 8                           | 1,506                               | 696                 |
| 168                | 13,800          | 2,062                 | 418              | 1,979                     | 1,121                         | 2,282                                 | 1,158                                     | 12                      | 11                          | 7,975                               | 3,345               |
| 169                | 15,391          | 2,627                 | 482              | 2,179                     | 1,240                         | 2,519                                 | 1,282                                     | 13                      | 12                          | 8,693                               | 3,589               |
| 170                | 1,117           | 149                   | 12               | 421                       | 140                           | 446                                   | 141                                       | 9                       | 7                           | 692                                 | 264                 |
| 171                | 8,495           | 1,351                 | 195              | 1,470                     | 699                           | 1,728                                 | 729                                       | 10                      | 9                           | 5,196                               | 1,753               |
| 172                | 393             | 32                    | 15               | 220                       | 76                            | 231                                   | 77                                        | 10                      | 8                           | 268                                 | 78                  |
| 173                | 11,846          | 2,014                 | 1,588            | 2,151                     | 1,470                         | 2,325                                 | 1,504                                     | 13                      | 11                          | 4,539                               | 3,705               |
| 174                | 3,050           | 445                   | 57               | 762                       | 257                           | 867                                   | 267                                       | 10                      | 8                           | 1,967                               | 581                 |
| 175                | 1,434           | 119                   | 85               | 619                       | 263                           | 659                                   | 268                                       | 9                       | 9                           | 931                                 | 299                 |
| 176                | 2,197           | 203                   | 33               | 662                       | 224                           | 725                                   | 222                                       | 11                      | 10                          | 1,642                               | 319                 |

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 177                | 720             | 118                   | 10               | 356                       | 153                           | 377                                   | 154                                       | 11                      | 9                           | 408                                 | 184                 |
| 179                | 1,453           | 137                   | 19               | 517                       | 192                           | 575                                   | 200                                       | 10                      | 9                           | 1,006                               | 291                 |
| 180                | 1,451           | 145                   | 33               | 544                       | 239                           | 610                                   | 249                                       | 9                       | 8                           | 902                                 | 371                 |
| 181                | 1,404           | 140                   | 28               | 522                       | 229                           | 584                                   | 236                                       | 9                       | 8                           | 878                                 | 358                 |
| 182                | 4,574           | 820                   | 63               | 1,151                     | 585                           | 1,281                                 | 598                                       | 10                      | 8                           | 2,661                               | 1,030               |
| 183                | 2,717           | 713                   | 62               | 675                       | 305                           | 753                                   | 315                                       | 11                      | 9                           | 1,301                               | 641                 |
| 184                | 5,592           | 896                   | 137              | 1,195                     | 651                           | 1,306                                 | 658                                       | 12                      | 10                          | 3,048                               | 1,511               |
| 185                | 2,303           | 221                   | 36               | 590                       | 172                           | 665                                   | 181                                       | 10                      | 9                           | 1,647                               | 399                 |
| 188                | 1,858           | 176                   | 42               | 608                       | 199                           | 679                                   | 206                                       | 10                      | 8                           | 1,286                               | 354                 |
| 189                | 2,083           | 314                   | 53               | 663                       | 280                           | 724                                   | 285                                       | 11                      | 10                          | 1,241                               | 475                 |
| 190                | 4,797           | 576                   | 84               | 861                       | 391                           | 1,006                                 | 415                                       | 12                      | 10                          | 2,927                               | 1,210               |
| 191                | 5,301           | 772                   | 140              | 1,062                     | 478                           | 1,202                                 | 495                                       | 11                      | 10                          | 3,195                               | 1,194               |
| 192                | 1,373           | 235                   | 27               | 502                       | 259                           | 527                                   | 258                                       | 9                       | 8                           | 649                                 | 462                 |
| 194                | 2,697           | 316                   | 132              | 811                       | 403                           | 874                                   | 406                                       | 11                      | 10                          | 1,575                               | 674                 |
| 195                | 2,319           | 292                   | 70               | 735                       | 293                           | 808                                   | 303                                       | 10                      | 9                           | 1,435                               | 522                 |
| 196                | 2,894           | 257                   | 85               | 718                       | 256                           | 809                                   | 264                                       | 12                      | 10                          | 1,935                               | 617                 |
| 197                | 2,556           | 270                   | 15               | 795                       | 280                           | 879                                   | 288                                       | 12                      | 9                           | 1,692                               | 579                 |
| 198                | 2,714           | 293                   | 100              | 789                       | 378                           | 850                                   | 383                                       | 11                      | 10                          | 1,537                               | 784                 |
| 199                | 2,735           | 303                   | 97               | 769                       | 361                           | 831                                   | 366                                       | 11                      | 10                          | 1,541                               | 794                 |
| 200                | 1,582           | 153                   | 44               | 572                       | 209                           | 621                                   | 215                                       | 9                       | 7                           | 981                                 | 404                 |
| 201                | 8,790           | 1,093                 | 208              | 1,588                     | 829                           | 1,857                                 | 867                                       | 11                      | 10                          | 5,415                               | 2,074               |
| 202                | 5,664           | 1,203                 | 145              | 1,075                     | 584                           | 1,229                                 | 612                                       | 12                      | 11                          | 2,915                               | 1,401               |
| 203                | 2,885           | 261                   | 45               | 862                       | 294                           | 984                                   | 306                                       | 9                       | 8                           | 2,102                               | 477                 |
| 204                | 1,972           | 169                   | 149              | 792                       | 328                           | 848                                   | 331                                       | 10                      | 8                           | 1,141                               | 513                 |
| 205                | 10,139          | 1,991                 | 478              | 1,968                     | 1,253                         | 2,179                                 | 1,290                                     | 12                      | 11                          | 4,938                               | 2,732               |

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 206                | 2,025           | 271                   | 77               | 650                       | 316                           | 722                                   | 322                                       | 11                      | 9                           | 1,149                               | 528                 |
| 207                | 3,300           | 479                   | 71               | 717                       | 320                           | 793                                   | 322                                       | 11                      | 10                          | 2,008                               | 742                 |
| 208                | 1,736           | 201                   | 47               | 590                       | 230                           | 651                                   | 232                                       | 11                      | 10                          | 1,152                               | 336                 |
| 209                | 3,960           | 458                   | 62               | 1,182                     | 627                           | 1,331                                 | 648                                       | 12                      | 10                          | 2,263                               | 1,177               |
| 210                | 2,650           | 305                   | 57               | 632                       | 243                           | 720                                   | 260                                       | 7                       | 6                           | 1,722                               | 566                 |
| 211                | 2,728           | 540                   | 85               | 1,231                     | 1,206                         | 1,232                                 | 1,207                                     | 9                       | 9                           | 36                                  | 2,067               |
| 212                | 10,413          | 705                   | 6,124            | 981                       | 555                           | 1,067                                 | 565                                       | 12                      | 11                          | 1,775                               | 1,809               |
| 213                | 2,637           | 288                   | 45               | 835                       | 373                           | 941                                   | 384                                       | 12                      | 11                          | 1,666                               | 638                 |
| 214                | 483             | 79                    | 6                | 331                       | 268                           | 333                                   | 269                                       | 8                       | 8                           | 86                                  | 312                 |
| 215                | 14,831          | 2,940                 | 865              | 2,539                     | 1,425                         | 2,817                                 | 1,447                                     | 12                      | 11                          | 6,992                               | 4,034               |
| 216                | 9,598           | 2,197                 | 392              | 1,686                     | 914                           | 1,964                                 | 949                                       | 11                      | 10                          | 4,867                               | 2,142               |
| 217                | 1,686           | 247                   | 84               | 607                       | 340                           | 645                                   | 347                                       | 12                      | 11                          | 858                                 | 497                 |
| 218                | 4,646           | 726                   | 481              | 1,040                     | 548                           | 1,140                                 | 557                                       | 12                      | 11                          | 2,149                               | 1,290               |
| 219                | 2,788           | 861                   | 308              | 785                       | 507                           | 825                                   | 513                                       | 10                      | 9                           | 782                                 | 837                 |
| 220                | 3,742           | 829                   | 91               | 946                       | 469                           | 1,070                                 | 487                                       | 12                      | 10                          | 1,858                               | 964                 |
| 221                | 953             | 100                   | 13               | 395                       | 164                           | 429                                   | 167                                       | 9                       | 8                           | 595                                 | 245                 |
| 222                | 17,639          | 2,976                 | 471              | 2,212                     | 1,368                         | 2,555                                 | 1,426                                     | 13                      | 13                          | 9,735                               | 4,457               |
| 223                | 23,045          | 4,549                 | 615              | 2,758                     | 1,574                         | 3,182                                 | 1,635                                     | 11                      | 10                          | 12,203                              | 5,678               |
| 224                | 36,573          | 5,411                 | 1,179            | 3,291                     | 2,175                         | 3,824                                 | 2,271                                     | 13                      | 13                          | 21,541                              | 8,442               |
| 225                | 27,007          | 4,316                 | 683              | 2,444                     | 1,462                         | 2,871                                 | 1,531                                     | 12                      | 12                          | 15,837                              | 6,171               |
| 226                | 6,250           | 1,137                 | 133              | 1,099                     | 535                           | 1,273                                 | 556                                       | 12                      | 12                          | 3,500                               | 1,480               |
| 227                | 15,453          | 4,717                 | 659              | 2,886                     | 1,994                         | 3,153                                 | 2,047                                     | 12                      | 12                          | 5,865                               | 4,212               |
| 228                | 12,982          | 1,805                 | 167              | 1,997                     | 814                           | 2,362                                 | 850                                       | 12                      | 11                          | 8,913                               | 2,097               |
| 229                | 5,315           | 1,083                 | 120              | 1,064                     | 520                           | 1,199                                 | 532                                       | 10                      | 9                           | 2,664                               | 1,448               |
| 230                | 6,892           | 1,174                 | 451              | 1,146                     | 630                           | 1,263                                 | 642                                       | 11                      | 10                          | 3,333                               | 1,934               |

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 231                | 8,589           | 1,760                 | 318              | 1,046                     | 504                           | 1,225                                 | 528                                       | 11                      | 10                          | 5,023                               | 1,488               |
| 232                | 5,071           | 1,006                 | 104              | 1,009                     | 456                           | 1,132                                 | 467                                       | 10                      | 9                           | 2,837                               | 1,124               |
| 233                | 7,144           | 1,319                 | 172              | 1,356                     | 705                           | 1,524                                 | 718                                       | 11                      | 10                          | 3,645                               | 2,008               |
| 234                | 5,985           | 942                   | 155              | 1,129                     | 524                           | 1,309                                 | 556                                       | 13                      | 11                          | 3,713                               | 1,175               |
| 235                | 2,643           | 375                   | 42               | 797                       | 396                           | 887                                   | 406                                       | 11                      | 10                          | 1,571                               | 655                 |
| 236                | 2,895           | 373                   | 69               | 817                       | 415                           | 904                                   | 429                                       | 10                      | 7                           | 1,599                               | 854                 |
| 237                | 7,963           | 1,206                 | 155              | 1,428                     | 727                           | 1,617                                 | 744                                       | 10                      | 9                           | 4,604                               | 1,998               |
| 238                | 1,036           | 124                   | 16               | 374                       | 128                           | 409                                   | 132                                       | 10                      | 9                           | 695                                 | 201                 |
| 239                | 3,571           | 354                   | 224              | 719                       | 262                           | 827                                   | 269                                       | 10                      | 8                           | 2,355                               | 638                 |
| 240                | 6,861           | 822                   | 296              | 1,556                     | 833                           | 1,745                                 | 860                                       | 11                      | 10                          | 3,954                               | 1,789               |
| 241                | 3,411           | 776                   | 73               | 1,142                     | 764                           | 1,218                                 | 774                                       | 11                      | 8                           | 1,507                               | 1,055               |
| 242                | 2,118           | 343                   | 106              | 679                       | 346                           | 738                                   | 353                                       | 9                       | 9                           | 1,043                               | 626                 |
| 243                | 3,435           | 424                   | 100              | 792                       | 344                           | 876                                   | 348                                       | 11                      | 10                          | 2,140                               | 771                 |
| 244                | 3,115           | 343                   | 128              | 730                       | 263                           | 832                                   | 272                                       | 11                      | 9                           | 2,069                               | 575                 |
| 245                | 3,987           | 619                   | 172              | 1,157                     | 633                           | 1,265                                 | 649                                       | 13                      | 12                          | 2,120                               | 1,076               |
| 246                | 12,127          | 1,252                 | 321              | 2,148                     | 879                           | 2,481                                 | 904                                       | 13                      | 11                          | 8,781                               | 1,773               |
| 247                | 4,638           | 981                   | 71               | 946                       | 445                           | 1,066                                 | 459                                       | 11                      | 10                          | 2,562                               | 1,024               |
| 248                | 8,208           | 1,858                 | 329              | 1,088                     | 540                           | 1,252                                 | 565                                       | 11                      | 8                           | 4,524                               | 1,497               |
| 249                | 4,689           | 564                   | 85               | 931                       | 333                           | 1,086                                 | 353                                       | 9                       | 8                           | 3,265                               | 775                 |
| 250                | 9,667           | 1,866                 | 272              | 1,764                     | 1,167                         | 1,946                                 | 1,194                                     | 11                      | 10                          | 4,292                               | 3,237               |
| 251                | 5,448           | 1,104                 | 155              | 1,067                     | 530                           | 1,215                                 | 550                                       | 12                      | 11                          | 2,954                               | 1,235               |
| 252                | 6,597           | 778                   | 96               | 1,330                     | 588                           | 1,505                                 | 611                                       | 11                      | 10                          | 4,215                               | 1,508               |
| 253                | 20,407          | 5,392                 | 2,732            | 3,532                     | 2,780                         | 3,759                                 | 2,815                                     | 13                      | 13                          | 6,008                               | 6,275               |
| 254                | 1,135           | 297                   | 12               | 310                       | 157                           | 331                                   | 159                                       | 6                       | 6                           | 519                                 | 307                 |
| 255                | 4,651           | 898                   | 182              | 1,224                     | 696                           | 1,324                                 | 700                                       | 11                      | 10                          | 2,310                               | 1,261               |

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 256                | 1,502           | 102                   | 4                | 423                       | 92                            | 484                                   | 97                                        | 10                      | 9                           | 1,204                               | 192                 |
| 257                | 25,972          | 3,347                 | 489              | 3,284                     | 1,807                         | 3,804                                 | 1,861                                     | 12                      | 12                          | 17,321                              | 4,815               |
| 258                | 4,219           | 860                   | 158              | 1,113                     | 637                           | 1,220                                 | 648                                       | 11                      | 10                          | 2,010                               | 1,191               |
| 259                | 3,744           | 715                   | 111              | 774                       | 410                           | 872                                   | 422                                       | 9                       | 7                           | 1,760                               | 1,158               |
| 260                | 12,315          | 1,205                 | 218              | 1,815                     | 760                           | 2,187                                 | 798                                       | 12                      | 11                          | 8,244                               | 2,648               |
| 261                | 1,978           | 458                   | 67               | 489                       | 239                           | 523                                   | 241                                       | 10                      | 9                           | 947                                 | 506                 |
| 262                | 10,306          | 1,924                 | 409              | 1,507                     | 837                           | 1,714                                 | 869                                       | 12                      | 10                          | 5,267                               | 2,706               |
| 263                | 16,562          | 3,633                 | 549              | 2,498                     | 1,692                         | 2,804                                 | 1,748                                     | 12                      | 11                          | 7,554                               | 4,826               |
| 264                | 1,948           | 223                   | 16               | 606                       | 192                           | 684                                   | 203                                       | 10                      | 8                           | 1,340                               | 369                 |
| 265                | 4,254           | 875                   | 97               | 856                       | 376                           | 958                                   | 386                                       | 11                      | 9                           | 2,449                               | 833                 |
| 266                | 1,155           | 313                   | 12               | 368                       | 186                           | 383                                   | 186                                       | 10                      | 10                          | 454                                 | 376                 |
| 267                | 2,134           | 659                   | 30               | 630                       | 391                           | 676                                   | 398                                       | 12                      | 12                          | 804                                 | 641                 |
| 268                | 1,196           | 157                   | 33               | 450                       | 217                           | 490                                   | 221                                       | 8                       | 8                           | 688                                 | 318                 |
| 269                | 13,116          | 2,181                 | 655              | 2,156                     | 1,192                         | 2,442                                 | 1,240                                     | 13                      | 13                          | 6,849                               | 3,431               |
| 270                | 1,572           | 222                   | 49               | 506                       | 249                           | 543                                   | 250                                       | 9                       | 8                           | 867                                 | 434                 |
| 271                | 1,002           | 111                   | 10               | 372                       | 108                           | 414                                   | 116                                       | 10                      | 8                           | 688                                 | 193                 |
| 272                | 5,965           | 932                   | 172              | 1,121                     | 523                           | 1,282                                 | 541                                       | 10                      | 9                           | 3,570                               | 1,291               |
| 273                | 1,385           | 125                   | 8                | 473                       | 137                           | 535                                   | 145                                       | 8                       | 7                           | 1,013                               | 239                 |
| 274                | 6,531           | 1,320                 | 187              | 1,310                     | 660                           | 1,491                                 | 692                                       | 12                      | 10                          | 3,436                               | 1,588               |
| 275                | 2,407           | 420                   | 21               | 757                       | 328                           | 841                                   | 341                                       | 10                      | 8                           | 1,403                               | 563                 |
| 276                | 2,262           | 470                   | 48               | 603                       | 250                           | 675                                   | 259                                       | 11                      | 10                          | 1,314                               | 430                 |
| 277                | 2,753           | 365                   | 54               | 715                       | 331                           | 787                                   | 338                                       | 13                      | 11                          | 1,621                               | 713                 |
| 278                | 462             | 46                    | 8                | 213                       | 67                            | 226                                   | 68                                        | 6                       | 4                           | 321                                 | 87                  |
| 279                | 6,073           | 1,160                 | 302              | 1,117                     | 530                           | 1,280                                 | 547                                       | 11                      | 10                          | 3,297                               | 1,314               |
| 280                | 1,768           | 203                   | 8                | 519                       | 165                           | 575                                   | 173                                       | 10                      | 9                           | 1,188                               | 369                 |

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 281                | 2,842           | 333                   | 69               | 772                       | 367                           | 861                                   | 377                                       | 12                      | 9                           | 1,726                               | 714                 |
| 282                | 14,398          | 2,140                 | 989              | 2,572                     | 1,582                         | 2,872                                 | 1,641                                     | 11                      | 10                          | 7,954                               | 3,315               |
| 283                | 7,025           | 1,032                 | 179              | 997                       | 532                           | 1,128                                 | 549                                       | 11                      | 10                          | 4,132                               | 1,682               |
| 284                | 1,043           | 169                   | 56               | 386                       | 177                           | 412                                   | 176                                       | 9                       | 9                           | 553                                 | 265                 |
| 285                | 1,854           | 326                   | 19               | 611                       | 260                           | 657                                   | 270                                       | 10                      | 8                           | 1,034                               | 475                 |
| 286                | 21,340          | 3,527                 | 615              | 3,326                     | 2,006                         | 3,772                                 | 2,074                                     | 13                      | 11                          | 12,048                              | 5,150               |
| 287                | 1,456           | 437                   | 24               | 315                       | 156                           | 339                                   | 155                                       | 11                      | 10                          | 559                                 | 436                 |
| 288                | 2,751           | 472                   | 306              | 853                       | 468                           | 900                                   | 472                                       | 11                      | 10                          | 1,189                               | 784                 |
| 289                | 7,219           | 1,320                 | 268              | 1,361                     | 666                           | 1,574                                 | 693                                       | 12                      | 11                          | 4,072                               | 1,559               |
| 290                | 5,215           | 583                   | 208              | 1,006                     | 427                           | 1,149                                 | 443                                       | 9                       | 8                           | 3,258                               | 1,166               |
| 291                | 1,102           | 166                   | 12               | 384                       | 128                           | 431                                   | 129                                       | 10                      | 8                           | 739                                 | 185                 |
| 292                | 19,246          | 5,188                 | 422              | 3,578                     | 3,058                         | 3,678                                 | 3,084                                     | 13                      | 12                          | 3,447                               | 10,189              |
| 293                | 5,560           | 1,296                 | 218              | 1,146                     | 589                           | 1,274                                 | 606                                       | 10                      | 10                          | 2,690                               | 1,356               |
| 294                | 1,353           | 213                   | 54               | 424                       | 190                           | 466                                   | 193                                       | 9                       | 8                           | 798                                 | 288                 |
| 295                | 1,999           | 290                   | 36               | 548                       | 236                           | 609                                   | 242                                       | 10                      | 9                           | 1,163                               | 510                 |
| 296                | 17,114          | 6,239                 | 475              | 1,349                     | 976                           | 1,413                                 | 988                                       | 12                      | 11                          | 3,360                               | 7,040               |
| 297                | 6,193           | 966                   | 196              | 1,315                     | 729                           | 1,495                                 | 760                                       | 12                      | 11                          | 3,442                               | 1,589               |
| 298                | 1,687           | 300                   | 33               | 504                       | 261                           | 558                                   | 273                                       | 9                       | 8                           | 864                                 | 490                 |
| 299                | 1,087           | 205                   | 6                | 322                       | 118                           | 348                                   | 123                                       | 7                       | 6                           | 618                                 | 258                 |
| 300                | 2,569           | 647                   | 29               | 648                       | 323                           | 719                                   | 329                                       | 9                       | 6                           | 1,286                               | 607                 |
| 301                | 3,967           | 720                   | 90               | 787                       | 401                           | 862                                   | 410                                       | 10                      | 9                           | 2,011                               | 1,146               |
| 302                | 2,597           | 898                   | 22               | 694                       | 387                           | 750                                   | 395                                       | 10                      | 9                           | 938                                 | 739                 |
| 303                | 1,191           | 193                   | 8                | 437                       | 173                           | 479                                   | 175                                       | 9                       | 7                           | 740                                 | 250                 |
| 304                | 6,735           | 2,178                 | 173              | 1,171                     | 697                           | 1,297                                 | 719                                       | 11                      | 10                          | 2,731                               | 1,653               |
| 305                | 3,700           | 595                   | 59               | 967                       | 475                           | 1,075                                 | 489                                       | 11                      | 10                          | 2,215                               | 831                 |

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 306                | 986             | 122                   | 24               | 360                       | 135                           | 403                                   | 137                                       | 8                       | 8                           | 683                                 | 157                 |
| 307                | 1,449           | 289                   | 59               | 465                       | 222                           | 512                                   | 228                                       | 9                       | 8                           | 734                                 | 367                 |
| 308                | 1,753           | 330                   | 18               | 502                       | 226                           | 548                                   | 233                                       | 9                       | 8                           | 944                                 | 461                 |
| 309                | 2,719           | 292                   | 17               | 761                       | 288                           | 876                                   | 298                                       | 10                      | 9                           | 1,839                               | 571                 |
| 311                | 14,738          | 2,422                 | 606              | 2,290                     | 1,273                         | 2,608                                 | 1,309                                     | 13                      | 12                          | 8,345                               | 3,365               |
| 312                | 5,703           | 1,078                 | 132              | 1,203                     | 666                           | 1,346                                 | 691                                       | 12                      | 11                          | 2,878                               | 1,615               |
| 313                | 6,906           | 1,314                 | 153              | 1,581                     | 856                           | 1,798                                 | 893                                       | 12                      | 11                          | 3,662                               | 1,777               |
| 314                | 7,185           | 938                   | 218              | 1,121                     | 528                           | 1,318                                 | 560                                       | 11                      | 10                          | 4,311                               | 1,718               |
| 315                | 1,035           | 144                   | 9                | 332                       | 118                           | 377                                   | 127                                       | 8                       | 8                           | 679                                 | 203                 |
| 316                | 1,180           | 103                   | 21               | 448                       | 159                           | 496                                   | 163                                       | 10                      | 8                           | 811                                 | 245                 |
| 317                | 3,484           | 710                   | 123              | 1,063                     | 586                           | 1,135                                 | 595                                       | 10                      | 8                           | 1,720                               | 931                 |
| 318                | 1,222           | 163                   | 58               | 436                       | 198                           | 483                                   | 208                                       | 8                       | 8                           | 729                                 | 272                 |
| 320                | 11,947          | 2,291                 | 548              | 1,862                     | 1,112                         | 2,077                                 | 1,140                                     | 12                      | 12                          | 5,798                               | 3,310               |
| 321                | 14,074          | 2,530                 | 979              | 2,444                     | 1,603                         | 2,758                                 | 1,653                                     | 12                      | 12                          | 6,712                               | 3,853               |
| 322                | 14,041          | 2,509                 | 191              | 1,836                     | 1,041                         | 2,090                                 | 1,073                                     | 11                      | 9                           | 7,496                               | 3,845               |
| 323                | 13,300          | 4,883                 | 912              | 2,200                     | 1,721                         | 2,305                                 | 1,730                                     | 12                      | 12                          | 2,726                               | 4,779               |
| 324                | 2,187           | 216                   | 14               | 602                       | 244                           | 698                                   | 261                                       | 11                      | 11                          | 1,502                               | 455                 |
| 325                | 2,642           | 448                   | 103              | 688                       | 393                           | 742                                   | 399                                       | 10                      | 9                           | 1,269                               | 822                 |
| 326                | 7,905           | 1,245                 | 148              | 1,339                     | 520                           | 1,578                                 | 544                                       | 10                      | 10                          | 5,178                               | 1,334               |
| 327                | 3,912           | 583                   | 173              | 913                       | 476                           | 984                                   | 487                                       | 11                      | 10                          | 2,071                               | 1,085               |
| 328                | 1,290           | 282                   | 24               | 397                       | 182                           | 437                                   | 184                                       | 9                       | 8                           | 732                                 | 252                 |
| 329                | 1,520           | 180                   | 16               | 616                       | 313                           | 658                                   | 316                                       | 11                      | 11                          | 874                                 | 450                 |
| 330                | 5,268           | 1,534                 | 209              | 901                       | 528                           | 991                                   | 544                                       | 12                      | 12                          | 1,926                               | 1,599               |
| 331                | 4,684           | 750                   | 42               | 853                       | 414                           | 981                                   | 433                                       | 11                      | 11                          | 2,658                               | 1,234               |
| 332                | 1,837           | 352                   | 20               | 466                       | 206                           | 506                                   | 206                                       | 11                      | 9                           | 1,026                               | 439                 |

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 333                | 1,110           | 131                   | 50               | 461                       | 254                           | 489                                   | 256                                       | 10                      | 9                           | 611                                 | 318                 |
| 334                | 4,883           | 942                   | 105              | 1,197                     | 715                           | 1,323                                 | 741                                       | 12                      | 11                          | 2,443                               | 1,393               |
| 335                | 509             | 297                   | 14               | 183                       | 154                           | 184                                   | 155                                       | 2                       | 2                           | 38                                  | 160                 |
| 336                | 1,042           | 136                   | 9                | 372                       | 129                           | 417                                   | 135                                       | 7                       | 6                           | 679                                 | 218                 |
| 337                | 3,369           | 442                   | 142              | 781                       | 396                           | 876                                   | 408                                       | 11                      | 10                          | 1,820                               | 965                 |
| 338                | 1,849           | 243                   | 45               | 597                       | 278                           | 673                                   | 287                                       | 9                       | 9                           | 1,096                               | 465                 |
| 339                | 1,522           | 258                   | 7                | 481                       | 191                           | 550                                   | 196                                       | 8                       | 7                           | 872                                 | 385                 |
| 340                | 918             | 111                   | 3                | 375                       | 143                           | 403                                   | 145                                       | 8                       | 6                           | 613                                 | 191                 |
| 341                | 6,050           | 886                   | 306              | 1,019                     | 446                           | 1,185                                 | 464                                       | 11                      | 10                          | 3,484                               | 1,374               |
| 342                | 2,765           | 299                   | 28               | 695                       | 264                           | 787                                   | 273                                       | 10                      | 8                           | 1,849                               | 589                 |
| 343                | 715             | 114                   | 2                | 257                       | 93                            | 282                                   | 95                                        | 7                       | 5                           | 453                                 | 146                 |
| 344                | 5,137           | 612                   | 72               | 1,121                     | 557                           | 1,288                                 | 584                                       | 11                      | 10                          | 3,339                               | 1,114               |
| 345                | 2,321           | 477                   | 74               | 670                       | 361                           | 727                                   | 369                                       | 11                      | 10                          | 1,119                               | 651                 |
| 346                | 10,318          | 1,297                 | 635              | 2,390                     | 1,462                         | 2,658                                 | 1,498                                     | 13                      | 12                          | 6,106                               | 2,280               |
| 347                | 1,087           | 147                   | 4                | 356                       | 115                           | 397                                   | 120                                       | 9                       | 8                           | 724                                 | 212                 |
| 348                | 1,232           | 102                   | 20               | 427                       | 157                           | 477                                   | 164                                       | 9                       | 8                           | 841                                 | 269                 |
| 349                | 23,753          | 3,497                 | 880              | 4,086                     | 2,532                         | 4,616                                 | 2,595                                     | 13                      | 12                          | 13,825                              | 5,551               |
| 350                | 6,306           | 782                   | 130              | 1,438                     | 709                           | 1,651                                 | 740                                       | 12                      | 11                          | 3,880                               | 1,514               |
| 351                | 5,845           | 2,096                 | 34               | 979                       | 551                           | 1,088                                 | 560                                       | 10                      | 9                           | 2,275                               | 1,440               |
| 352                | 3,946           | 885                   | 84               | 756                       | 297                           | 858                                   | 306                                       | 11                      | 9                           | 2,351                               | 626                 |
| 353                | 587             | 110                   | 25               | 271                       | 191                           | 281                                   | 191                                       | 10                      | 9                           | 162                                 | 290                 |
| 354                | 1,589           | 189                   | 24               | 439                       | 148                           | 492                                   | 156                                       | 11                      | 9                           | 1,055                               | 321                 |
| 355                | 5,857           | 1,063                 | 52               | 1,269                     | 586                           | 1,450                                 | 600                                       | 11                      | 10                          | 3,434                               | 1,308               |
| 356                | 84,473          | 39,396                | 253              | 1,801                     | 1,102                         | 2,023                                 | 1,127                                     | 13                      | 13                          | 4,890                               | 39,934              |
| 357                | 7,663           | 1,979                 | 810              | 1,320                     | 799                           | 1,450                                 | 821                                       | 11                      | 9                           | 2,655                               | 2,219               |

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 358                | 4,591           | 1,324                 | 77               | 863                       | 325                           | 987                                   | 339                                       | 10                      | 9                           | 2,414                               | 776                 |
| 359                | 3,891           | 575                   | 40               | 983                       | 436                           | 1,125                                 | 453                                       | 12                      | 11                          | 2,410                               | 866                 |
| 360                | 6,634           | 1,486                 | 185              | 1,269                     | 675                           | 1,423                                 | 690                                       | 11                      | 10                          | 3,475                               | 1,488               |
| 361                | 21,855          | 4,804                 | 1,198            | 3,882                     | 2,938                         | 4,183                                 | 2,984                                     | 13                      | 13                          | 7,942                               | 7,911               |
| 362                | 7,761           | 1,879                 | 385              | 1,471                     | 820                           | 1,639                                 | 847                                       | 12                      | 12                          | 3,703                               | 1,794               |
| 363                | 10,581          | 1,203                 | 175              | 1,829                     | 724                           | 2,170                                 | 756                                       | 13                      | 13                          | 7,724                               | 1,479               |
| 364                | 1,121           | 162                   | 28               | 351                       | 144                           | 382                                   | 146                                       | 10                      | 8                           | 614                                 | 317                 |
| 365                | 10,981          | 2,015                 | 266              | 1,792                     | 877                           | 2,054                                 | 904                                       | 13                      | 13                          | 6,446                               | 2,254               |
| 366                | 836             | 168                   | 13               | 310                       | 128                           | 339                                   | 131                                       | 8                       | 8                           | 465                                 | 190                 |
| 367                | 3,835           | 891                   | 123              | 1,136                     | 629                           | 1,217                                 | 640                                       | 10                      | 8                           | 1,822                               | 999                 |
| 368                | 7,112           | 781                   | 306              | 1,720                     | 994                           | 1,893                                 | 1,005                                     | 13                      | 11                          | 4,023                               | 2,002               |
| 369                | 1,748           | 179                   | 27               | 478                       | 137                           | 551                                   | 146                                       | 10                      | 8                           | 1,248                               | 294                 |
| 370                | 1,616           | 190                   | 13               | 561                       | 183                           | 615                                   | 185                                       | 9                       | 8                           | 1,125                               | 288                 |
| 371                | 1,727           | 111                   | 92               | 505                       | 213                           | 549                                   | 219                                       | 8                       | 8                           | 881                                 | 643                 |
| 372                | 3,612           | 511                   | 24               | 1,081                     | 576                           | 1,214                                 | 591                                       | 11                      | 9                           | 2,052                               | 1,025               |
| 373                | 12,394          | 2,555                 | 444              | 2,667                     | 1,676                         | 2,991                                 | 1,724                                     | 9                       | 9                           | 6,061                               | 3,334               |
| 374                | 15,194          | 2,142                 | 1,284            | 2,644                     | 1,648                         | 2,944                                 | 1,708                                     | 11                      | 10                          | 8,106                               | 3,662               |
| 375                | 3,355           | 684                   | 116              | 1,010                     | 536                           | 1,085                                 | 543                                       | 10                      | 8                           | 1,709                               | 846                 |
| 376                | 6,076           | 798                   | 276              | 1,227                     | 685                           | 1,362                                 | 704                                       | 13                      | 13                          | 3,206                               | 1,796               |
| 377                | 3,024           | 738                   | 192              | 678                       | 330                           | 748                                   | 339                                       | 10                      | 8                           | 1,321                               | 773                 |
| 378                | 1,315           | 128                   | 28               | 391                       | 144                           | 436                                   | 148                                       | 10                      | 8                           | 875                                 | 284                 |
| 379                | 9,044           | 1,225                 | 420              | 1,787                     | 822                           | 2,047                                 | 841                                       | 13                      | 11                          | 5,370                               | 2,029               |
| 380                | 2,495           | 215                   | 13               | 625                       | 195                           | 710                                   | 207                                       | 8                       | 8                           | 1,831                               | 436                 |
| 381                | 16,367          | 1,780                 | 417              | 2,277                     | 1,066                         | 2,652                                 | 1,098                                     | 12                      | 11                          | 10,814                              | 3,356               |
| 382                | 7,948           | 858                   | 161              | 1,263                     | 508                           | 1,467                                 | 530                                       | 11                      | 10                          | 5,513                               | 1,416               |

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 383                | 10,672          | 1,846                 | 208              | 1,752                     | 1,046                         | 1,985                                 | 1,081                                     | 13                      | 11                          | 5,381                               | 3,237               |
| 384                | 7,704           | 2,319                 | 244              | 1,363                     | 838                           | 1,534                                 | 872                                       | 11                      | 9                           | 3,414                               | 1,727               |
| 385                | 2,027           | 357                   | 36               | 600                       | 306                           | 653                                   | 313                                       | 11                      | 10                          | 1,053                               | 581                 |
| 386                | 1,813           | 388                   | 56               | 524                       | 251                           | 578                                   | 261                                       | 11                      | 10                          | 925                                 | 444                 |
| 387                | 13,260          | 3,091                 | 345              | 1,988                     | 1,442                         | 2,126                                 | 1,462                                     | 11                      | 10                          | 4,617                               | 5,207               |
| 388                | 7,181           | 1,617                 | 157              | 1,116                     | 464                           | 1,295                                 | 478                                       | 11                      | 10                          | 4,085                               | 1,322               |
| 389                | 4,908           | 1,126                 | 136              | 1,063                     | 517                           | 1,192                                 | 537                                       | 11                      | 10                          | 2,606                               | 1,040               |
| 390                | 1,760           | 223                   | 50               | 493                       | 213                           | 545                                   | 220                                       | 9                       | 8                           | 1,047                               | 440                 |
| 392                | 21,055          | 2,224                 | 455              | 3,233                     | 1,715                         | 3,790                                 | 1,787                                     | 13                      | 12                          | 14,588                              | 3,788               |
| 393                | 2,069           | 304                   | 47               | 753                       | 408                           | 819                                   | 424                                       | 10                      | 9                           | 1,108                               | 610                 |
| 394                | 3,862           | 460                   | 91               | 980                       | 430                           | 1,084                                 | 433                                       | 11                      | 10                          | 2,373                               | 938                 |
| 395                | 4,836           | 931                   | 133              | 1,013                     | 515                           | 1,114                                 | 529                                       | 12                      | 11                          | 2,539                               | 1,233               |
| 396                | 4,104           | 966                   | 50               | 1,195                     | 685                           | 1,294                                 | 696                                       | 11                      | 10                          | 1,805                               | 1,283               |
| 397                | 1,288           | 202                   | 57               | 504                       | 257                           | 550                                   | 272                                       | 10                      | 10                          | 625                                 | 404                 |
| 398                | 1,026           | 176                   | 24               | 384                       | 188                           | 413                                   | 190                                       | 11                      | 10                          | 560                                 | 266                 |
| 399                | 1,203           | 190                   | 11               | 410                       | 163                           | 453                                   | 172                                       | 8                       | 8                           | 730                                 | 272                 |
| 400                | 14,007          | 5,594                 | 451              | 1,906                     | 1,355                         | 2,053                                 | 1,380                                     | 12                      | 12                          | 3,979                               | 3,983               |
| 401                | 7,545           | 1,342                 | 139              | 1,375                     | 622                           | 1,563                                 | 644                                       | 11                      | 10                          | 4,621                               | 1,443               |
| 402                | 6,609           | 1,035                 | 387              | 1,212                     | 606                           | 1,393                                 | 635                                       | 11                      | 10                          | 3,586                               | 1,601               |
| 403                | 7,144           | 664                   | 723              | 1,797                     | 1,440                         | 1,867                                 | 1,452                                     | 10                      | 10                          | 1,609                               | 4,148               |
| 404                | 7,855           | 1,325                 | 153              | 1,700                     | 931                           | 1,903                                 | 963                                       | 13                      | 12                          | 4,587                               | 1,790               |
| 405                | 11,064          | 5,033                 | 243              | 1,696                     | 1,269                         | 1,782                                 | 1,284                                     | 12                      | 11                          | 2,597                               | 3,191               |
| 406                | 8,804           | 1,440                 | 260              | 1,530                     | 808                           | 1,758                                 | 846                                       | 12                      | 10                          | 4,758                               | 2,346               |
| 407                | 2,883           | 641                   | 205              | 905                       | 501                           | 990                                   | 512                                       | 12                      | 11                          | 1,388                               | 649                 |
| 408                | 5,307           | 1,561                 | 138              | 1,292                     | 948                           | 1,357                                 | 963                                       | 9                       | 9                           | 1,357                               | 2,251               |

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 409                | 5,214           | 1,462                 | 128              | 1,002                     | 513                           | 1,099                                 | 526                                       | 12                      | 11                          | 2,471                               | 1,153               |
| 411                | 12,927          | 2,863                 | 287              | 2,116                     | 1,371                         | 2,389                                 | 1,417                                     | 12                      | 11                          | 6,218                               | 3,559               |
| 412                | 3,751           | 979                   | 435              | 710                       | 453                           | 757                                   | 457                                       | 10                      | 10                          | 1,076                               | 1,261               |
| 413                | 11,283          | 1,934                 | 304              | 1,921                     | 1,181                         | 2,165                                 | 1,216                                     | 12                      | 12                          | 5,975                               | 3,070               |
| 414                | 1,485           | 212                   | 43               | 446                       | 196                           | 497                                   | 204                                       | 11                      | 10                          | 897                                 | 333                 |
| 415                | 3,494           | 581                   | 101              | 902                       | 433                           | 1,004                                 | 441                                       | 11                      | 11                          | 1,980                               | 832                 |
| 416                | 6,227           | 904                   | 133              | 1,323                     | 674                           | 1,484                                 | 700                                       | 12                      | 10                          | 3,390                               | 1,800               |
| 417                | 807             | 88                    | 2                | 350                       | 114                           | 382                                   | 117                                       | 8                       | 7                           | 561                                 | 156                 |
| 419                | 3,991           | 657                   | 66               | 989                       | 510                           | 1,102                                 | 522                                       | 11                      | 11                          | 2,186                               | 1,082               |
| 420                | 15,581          | 5,289                 | 174              | 3,474                     | 3,160                         | 3,514                                 | 3,172                                     | 12                      | 10                          | 3,055                               | 7,063               |
| 421                | 2,274           | 323                   | 37               | 616                       | 240                           | 695                                   | 255                                       | 10                      | 9                           | 1,344                               | 570                 |
| 422                | 3,149           | 950                   | 193              | 953                       | 555                           | 1,026                                 | 564                                       | 13                      | 11                          | 1,289                               | 717                 |
| 423                | 8,693           | 1,035                 | 297              | 1,317                     | 580                           | 1,550                                 | 602                                       | 10                      | 10                          | 5,481                               | 1,880               |
| 424                | 6,027           | 1,154                 | 134              | 1,058                     | 486                           | 1,215                                 | 506                                       | 11                      | 9                           | 3,642                               | 1,097               |
| 425                | 1,453           | 193                   | 102              | 545                       | 378                           | 575                                   | 382                                       | 8                       | 8                           | 470                                 | 688                 |
| 426                | 727             | 122                   | 52               | 388                       | 214                           | 397                                   | 214                                       | 11                      | 9                           | 302                                 | 251                 |
| 427                | 3,918           | 584                   | 447              | 1,145                     | 657                           | 1,246                                 | 666                                       | 11                      | 10                          | 1,815                               | 1,072               |
| 428                | 12,050          | 2,530                 | 807              | 3,720                     | 3,164                         | 3,861                                 | 3,190                                     | 12                      | 12                          | 3,297                               | 5,416               |
| 429                | 2,020           | 279                   | 34               | 634                       | 298                           | 705                                   | 306                                       | 10                      | 9                           | 1,220                               | 487                 |
| 430                | 2,607           | 235                   | 60               | 811                       | 354                           | 892                                   | 362                                       | 10                      | 9                           | 1,477                               | 835                 |
| 431                | 3,611           | 511                   | 14               | 900                       | 371                           | 1,033                                 | 381                                       | 11                      | 9                           | 2,338                               | 748                 |
| 432                | 11,357          | 1,613                 | 424              | 2,446                     | 1,187                         | 2,737                                 | 1,211                                     | 12                      | 11                          | 6,542                               | 2,778               |
| 433                | 2,268           | 419                   | 58               | 638                       | 269                           | 718                                   | 283                                       | 10                      | 9                           | 1,300                               | 491                 |
| 434                | 1,547           | 171                   | 39               | 484                       | 208                           | 528                                   | 212                                       | 10                      | 8                           | 928                                 | 409                 |
| 435                | 2,054           | 298                   | 88               | 964                       | 751                           | 983                                   | 750                                       | 9                       | 8                           | 758                                 | 910                 |

| Document<br>Number | Total<br>Tokens | Punctuation<br>Tokens | Digits<br>Tokens | Unique<br>Lemma<br>(Base) | Unique<br>Lemma<br>(Adjusted) | Unique<br>Original<br>Words<br>(Base) | Unique<br>Original<br>Words<br>(Adjusted) | Unique<br>NER<br>(Base) | Unique<br>NER<br>(Adjusted) | Common<br>Word<br>Tokens<br>Removed | Remaining<br>Tokens |
|--------------------|-----------------|-----------------------|------------------|---------------------------|-------------------------------|---------------------------------------|-------------------------------------------|-------------------------|-----------------------------|-------------------------------------|---------------------|
| 436                | 2,684           | 285                   | 31               | 840                       | 324                           | 924                                   | 326                                       | 10                      | 9                           | 1,788                               | 580                 |
| 437                | 3,125           | 431                   | 59               | 868                       | 366                           | 965                                   | 376                                       | 9                       | 8                           | 2,053                               | 582                 |
| 438                | 18,718          | 2,456                 | 382              | 3,186                     | 2,076                         | 3,623                                 | 2,132                                     | 13                      | 13                          | 11,109                              | 4,771               |
| 439                | 26,705          | 3,555                 | 847              | 3,293                     | 1,853                         | 3,930                                 | 1,930                                     | 13                      | 13                          | 16,091                              | 6,212               |
| 440                | 8,893           | 2,325                 | 856              | 1,329                     | 881                           | 1,431                                 | 893                                       | 10                      | 10                          | 2,428                               | 3,284               |
| 441                | 1,393           | 221                   | 25               | 465                       | 215                           | 507                                   | 223                                       | 10                      | 9                           | 771                                 | 376                 |

| Lemma         | Original Word | Documents<br>Appeared<br>In | Appearances | Appearances<br>per<br>Document | Appearances<br>per Corpus<br>Document | % of<br>Corpus<br>Documents | % of<br>Corpus<br>Tokens |
|---------------|---------------|-----------------------------|-------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------|
| cid           | cid           | 28                          | 20055       | 716.2500                       | 47.1882                               | 6.5882                      | 1.0624                   |
| malware       | malware       | 404                         | 8487        | 21.0074                        | 19.9694                               | 95.0588                     | 0.4496                   |
| S             | 's            | 338                         | 6129        | 18.1331                        | 14.4212                               | 79.5294                     | 0.3247                   |
| datum         | data          | 375                         | 4949        | 13.1973                        | 11.6447                               | 88.2353                     | 0.2622                   |
| server        | server        | 341                         | 4128        | 12.1056                        | 9.7129                                | 80.2353                     | 0.2187                   |
| c             | С             | 272                         | 3347        | 12.3051                        | 7.8753                                | 64.0000                     | 0.1773                   |
| windows       | Windows       | 321                         | 2846        | 8.8660                         | 6.6965                                | 75.5294                     | 0.1508                   |
| S             | S             | 227                         | 2549        | 11.2291                        | 5.9976                                | 53.4118                     | 0.1350                   |
| attacker      | attackers     | 295                         | 2539        | 8.6068                         | 5.9741                                | 69.4118                     | 0.1345                   |
| com           | com           | 214                         | 2512        | 11.7383                        | 5.9106                                | 50.3529                     | 0.1331                   |
| ip            | IP            | 292                         | 2440        | 8.3562                         | 5.7412                                | 68.7059                     | 0.1293                   |
| c2            | C2            | 169                         | 2378        | 14.0710                        | 5.5953                                | 39.7647                     | 0.1260                   |
| malicious     | malicious     | 331                         | 2324        | 7.0211                         | 5.4682                                | 77.8824                     | 0.1231                   |
| c&c           | C&C           | 171                         | 2306        | 13.4854                        | 5.4259                                | 40.2353                     | 0.1222                   |
| microsoft     | Microsoft     | 302                         | 1921        | 6.3609                         | 4.5200                                | 71.0588                     | 0.1018                   |
| cyber         | CYBER         | 209                         | 1865        | 8.9234                         | 4.3882                                | 49.1765                     | 0.0988                   |
| e             | E             | 155                         | 1857        | 11.9806                        | 4.3694                                | 36.4706                     | 0.0984                   |
| server        | servers       | 253                         | 1821        | 7.1976                         | 4.2847                                | 59.5294                     | 0.0965                   |
| email         | email         | 256                         | 1705        | 6.6602                         | 4.0118                                | 60.2353                     | 0.0903                   |
| dll           | DLL           | 206                         | 1649        | 8.0049                         | 3.8800                                | 48.4706                     | 0.0874                   |
| md5           | MD5           | 242                         | 1608        | 6.6446                         | 3.7835                                | 56.9412                     | 0.0852                   |
| china         | China         | 157                         | 1544        | 9.8344                         | 3.6329                                | 36.9412                     | 0.0818                   |
| d             | D             | 180                         | 1496        | 8.3111                         | 3.5200                                | 42.3529                     | 0.0792                   |
| payload       | payload       | 234                         | 1473        | 6.2949                         | 3.4659                                | 55.0588                     | 0.0780                   |
| configuration | configuration | 182                         | 1380        | 7.5824                         | 3.2471                                | 42.8235                     | 0.0731                   |

# APPENDIX B. FIVE HUNDRED (500) MOST COMMON TOKENS

| Lemma         | Original Word | Documents<br>Appeared<br>In | Appearances | Appearances<br>per<br>Document | Appearances<br>per Corpus<br>Document | % of<br>Corpus<br>Documents | % of<br>Corpus<br>Tokens |
|---------------|---------------|-----------------------------|-------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------|
| backdoor      | backdoor      | 186                         | 1370        | 7.3656                         | 3.2235                                | 43.7647                     | 0.0726                   |
| byte          | bytes         | 188                         | 1292        | 6.8723                         | 3.0400                                | 44.2353                     | 0.0684                   |
| module        | module        | 126                         | 1275        | 10.1190                        | 3.0000                                | 29.6471                     | 0.0675                   |
| http          | HTTP          | 218                         | 1212        | 5.5596                         | 2.8518                                | 51.2941                     | 0.0642                   |
| 0             | 0             | 93                          | 1207        | 12.9785                        | 2.8400                                | 21.8824                     | 0.0639                   |
| registry      | registry      | 197                         | 1206        | 6.1218                         | 2.8376                                | 46.3529                     | 0.0639                   |
| infected      | infected      | 231                         | 1175        | 5.0866                         | 2.7647                                | 54.3529                     | 0.0622                   |
| n             | Ν             | 117                         | 1174        | 10.0342                        | 2.7624                                | 27.5294                     | 0.0622                   |
| b             | В             | 153                         | 1089        | 7.1176                         | 2.5624                                | 36.0000                     | 0.0577                   |
| apt           | APT           | 158                         | 1083        | 6.8544                         | 2.5482                                | 37.1765                     | 0.0574                   |
| attacker      | attacker      | 229                         | 1067        | 4.6594                         | 2.5106                                | 53.8824                     | 0.0565                   |
| r             | R             | 116                         | 1024        | 8.8276                         | 2.4094                                | 27.2941                     | 0.0542                   |
| trojan        | Trojan        | 188                         | 1002        | 5.3298                         | 2.3576                                | 44.2353                     | 0.0531                   |
| binary        | binary        | 195                         | 982         | 5.0359                         | 2.3106                                | 45.8824                     | 0.0520                   |
| executable    | executable    | 251                         | 979         | 3.9004                         | 2.3035                                | 59.0588                     | 0.0519                   |
| t             | Т             | 109                         | 976         | 8.9541                         | 2.2965                                | 25.6471                     | 0.0517                   |
| directory     | directory     | 191                         | 974         | 5.0995                         | 2.2918                                | 44.9412                     | 0.0516                   |
| id            | ID            | 172                         | 973         | 5.6570                         | 2.2894                                | 40.4706                     | 0.0515                   |
| appendix      | Appendix      | 140                         | 856         | 6.1143                         | 2.0141                                | 32.9412                     | 0.0453                   |
| website       | website       | 216                         | 846         | 3.9167                         | 1.9906                                | 50.8235                     | 0.0448                   |
| micro         | Micro         | 69                          | 825         | 11.9565                        | 1.9412                                | 16.2353                     | 0.0437                   |
| vulnerability | vulnerability | 185                         | 810         | 4.3784                         | 1.9059                                | 43.5294                     | 0.0429                   |
| org           | org           | 95                          | 809         | 8.5158                         | 1.9035                                | 22.3529                     | 0.0429                   |
| detection     | detection     | 247                         | 804         | 3.2551                         | 1.8918                                | 58.1176                     | 0.0426                   |
| functionality | functionality | 206                         | 795         | 3.8592                         | 1.8706                                | 48.4706                     | 0.0421                   |
| variant       | variant       | 174                         | 795         | 4.5690                         | 1.8706                                | 40.9412                     | 0.0421                   |
| dropper       | dropper       | 135                         | 779         | 5.7704                         | 1.8329                                | 31.7647                     | 0.0413                   |
| encrypted     | encrypted     | 194                         | 777         | 4.0052                         | 1.8282                                | 45.6471                     | 0.0412                   |
| variant       | variants      | 176                         | 768         | 4.3636                         | 1.8071                                | 41.4118                     | 0.0407                   |
| password      | password      | 168                         | 767         | 4.5655                         | 1.8047                                | 39.5294                     | 0.0406                   |

| Lemma      | Original Word | Documents<br>Appeared<br>In | Appearances | Appearances<br>per<br>Document | Appearances<br>per Corpus<br>Document | % of<br>Corpus<br>Documents | % of<br>Corpus<br>Tokens |
|------------|---------------|-----------------------------|-------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------|
| f          | F             | 111                         | 759         | 6.8378                         | 1.7859                                | 26.1176                     | 0.0402                   |
| exe        | EXE           | 180                         | 748         | 4.1556                         | 1.7600                                | 42.3529                     | 0.0396                   |
| download   | download      | 226                         | 747         | 3.3053                         | 1.7576                                | 53.1765                     | 0.0396                   |
| further    | further       | 276                         | 729         | 2.6413                         | 1.7153                                | 64.9412                     | 0.0386                   |
| url        | URL           | 187                         | 719         | 3.8449                         | 1.6918                                | 44.0000                     | 0.0381                   |
| espionage  | ESPIONAGE     | 155                         | 714         | 4.6065                         | 1.6800                                | 36.4706                     | 0.0378                   |
| temp       | temp          | 147                         | 714         | 4.8571                         | 1.6800                                | 34.5882                     | 0.0378                   |
| korea      | Korea         | 63                          | 707         | 11.2222                        | 1.6635                                | 14.8235                     | 0.0375                   |
| email      | emails        | 154                         | 696         | 4.5195                         | 1.6376                                | 36.2353                     | 0.0369                   |
| decoy      | Decoy         | 98                          | 694         | 7.0816                         | 1.6329                                | 23.0588                     | 0.0368                   |
| filename   | filename      | 142                         | 686         | 4.8310                         | 1.6141                                | 33.4118                     | 0.0363                   |
| hash       | hash          | 162                         | 680         | 4.1975                         | 1.6000                                | 38.1176                     | 0.0360                   |
| 1          | L             | 75                          | 673         | 8.9733                         | 1.5835                                | 17.6471                     | 0.0357                   |
| dword      | dword         | 60                          | 661         | 11.0167                        | 1.5553                                | 14.1176                     | 0.0350                   |
| phishing   | Phishing      | 127                         | 660         | 5.1969                         | 1.5529                                | 29.8824                     | 0.0350                   |
| stuxnet    | stuxnet       | 30                          | 658         | 21.9333                        | 1.5482                                | 7.0588                      | 0.0349                   |
| tlp        | TLP           | 31                          | 657         | 21.1935                        | 1.5459                                | 7.2941                      | 0.0348                   |
| р          | Р             | 88                          | 643         | 7.3068                         | 1.5129                                | 20.7059                     | 0.0341                   |
| july       | July          | 152                         | 636         | 4.1842                         | 1.4965                                | 35.7647                     | 0.0337                   |
| kaspersky  | Kaspersky     | 112                         | 635         | 5.6696                         | 1.4941                                | 26.3529                     | 0.0336                   |
| symantec   | Symantec      | 88                          | 635         | 7.2159                         | 1.4941                                | 20.7059                     | 0.0336                   |
| compile    | compiled      | 125                         | 618         | 4.9440                         | 1.4541                                | 29.4118                     | 0.0327                   |
| encryption | encryption    | 168                         | 618         | 3.6786                         | 1.4541                                | 39.5294                     | 0.0327                   |
| blog       | blog          | 201                         | 603         | 3.0000                         | 1.4188                                | 47.2941                     | 0.0319                   |
| m          | М             | 85                          | 591         | 6.9529                         | 1.3906                                | 20.0000                     | 0.0313                   |
| fireeye    | FireEye       | 79                          | 582         | 7.3671                         | 1.3694                                | 18.5882                     | 0.0308                   |
| copyright  | Copyright     | 113                         | 580         | 5.1327                         | 1.3647                                | 26.5882                     | 0.0307                   |
| rights     | RIGHTS        | 183                         | 571         | 3.1202                         | 1.3435                                | 43.0588                     | 0.0302                   |
| google     | Google        | 152                         | 563         | 3.7039                         | 1.3247                                | 35.7647                     | 0.0298                   |
| xor        | XOR           | 132                         | 559         | 4.2348                         | 1.3153                                | 31.0588                     | 0.0296                   |

| Lemma                      | Original Word              | Documents<br>Appeared<br>In | Appearances | Appearances<br>per<br>Document | Appearances<br>per Corpus<br>Document | % of<br>Corpus<br>Documents | % of<br>Corpus<br>Tokens |
|----------------------------|----------------------------|-----------------------------|-------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------|
| X                          | Х                          | 127                         | 558         | 4.3937                         | 1.3129                                | 29.8824                     | 0.0296                   |
| pdf                        | PDF                        | 141                         | 549         | 3.8936                         | 1.2918                                | 33.1765                     | 0.0291                   |
| proxy                      | proxy                      | 132                         | 549         | 4.1591                         | 1.2918                                | 31.0588                     | 0.0291                   |
| february                   | February                   | 129                         | 543         | 4.2093                         | 1.2776                                | 30.3529                     | 0.0288                   |
| u                          | U                          | 94                          | 542         | 5.7660                         | 1.2753                                | 22.1176                     | 0.0287                   |
| website                    | websites                   | 127                         | 536         | 4.2205                         | 1.2612                                | 29.8824                     | 0.0284                   |
| apt1                       | APT1                       | 13                          | 519         | 39.9231                        | 1.2212                                | 3.0588                      | 0.0275                   |
| registrant                 | registrant                 | 67                          | 517         | 7.7164                         | 1.2165                                | 15.7647                     | 0.0274                   |
| intelreports@kaspersky.com | intelreports@kaspersky.com | 22                          | 508         | 23.0909                        | 1.1953                                | 5.1765                      | 0.0269                   |
| module                     | modules                    | 100                         | 508         | 5.0800                         | 1.1953                                | 23.5294                     | 0.0269                   |
| g                          | G                          | 85                          | 504         | 5.9294                         | 1.1859                                | 20.0000                     | 0.0267                   |
| april                      | April                      | 138                         | 499         | 3.6159                         | 1.1741                                | 32.4706                     | 0.0264                   |
| h                          | h                          | 93                          | 496         | 5.3333                         | 1.1671                                | 21.8824                     | 0.0263                   |
| november                   | November                   | 153                         | 496         | 3.2418                         | 1.1671                                | 36.0000                     | 0.0263                   |
| plugx                      | PlugX                      | 48                          | 495         | 10.3125                        | 1.1647                                | 11.2941                     | 0.0262                   |
| cnc                        | CnC                        | 44                          | 491         | 11.1591                        | 1.1553                                | 10.3529                     | 0.0260                   |
| russia                     | Russia                     | 87                          | 491         | 5.6437                         | 1.1553                                | 20.4706                     | 0.0260                   |
| folder                     | folder                     | 147                         | 486         | 3.3061                         | 1.1435                                | 34.5882                     | 0.0257                   |
| dn                         | DNS                        | 132                         | 485         | 3.6742                         | 1.1412                                | 31.0588                     | 0.0257                   |
| contents                   | contents                   | 198                         | 477         | 2.4091                         | 1.1224                                | 46.5882                     | 0.0253                   |
| system32                   | System32                   | 112                         | 469         | 4.1875                         | 1.1035                                | 26.3529                     | 0.0248                   |
| byte                       | byte                       | 104                         | 466         | 4.4808                         | 1.0965                                | 24.4706                     | 0.0247                   |
| offset                     | offset                     | 88                          | 466         | 5.2955                         | 1.0965                                | 20.7059                     | 0.0247                   |
| utc                        | UTC                        | 59                          | 466         | 7.8983                         | 1.0965                                | 13.8824                     | 0.0247                   |
| india                      | India                      | 80                          | 463         | 5.7875                         | 1.0894                                | 18.8235                     | 0.0245                   |
| june                       | June                       | 157                         | 458         | 2.9172                         | 1.0776                                | 36.9412                     | 0.0243                   |
| explorer                   | Explorer                   | 147                         | 456         | 3.1020                         | 1.0729                                | 34.5882                     | 0.0242                   |
| august                     | August                     | 151                         | 449         | 2.9735                         | 1.0565                                | 35.5294                     | 0.0238                   |
| fake                       | fake                       | 116                         | 449         | 3.8707                         | 1.0565                                | 27.2941                     | 0.0238                   |
| credentials                | credentials                | 148                         | 448         | 3.0270                         | 1.0541                                | 34.8235                     | 0.0237                   |

| Lemma         | Original Word   | Documents<br>Appeared<br>In | Appearances | Appearances<br>per<br>Document | Appearances<br>per Corpus<br>Document | % of<br>Corpus<br>Documents | % of<br>Corpus<br>Tokens |
|---------------|-----------------|-----------------------------|-------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------|
| algorithm     | algorithm       | 124                         | 446         | 3.5968                         | 1.0494                                | 29.1765                     | 0.0236                   |
| crowdstrike   | CrowdStrike     | 32                          | 445         | 13.9063                        | 1.0471                                | 7.5294                      | 0.0236                   |
| eax           | eax             | 26                          | 444         | 17.0769                        | 1.0447                                | 6.1176                      | 0.0235                   |
| january       | January         | 142                         | 442         | 3.1127                         | 1.0400                                | 33.4118                     | 0.0234                   |
| loader        | Loader          | 77                          | 435         | 5.6494                         | 1.0235                                | 18.1176                     | 0.0230                   |
| tcp           | ТСР             | 115                         | 434         | 3.7739                         | 1.0212                                | 27.0588                     | 0.0230                   |
| certificate   | certificate     | 80                          | 425         | 5.3125                         | 1.0000                                | 18.8235                     | 0.0225                   |
| mov           | mov             | 26                          | 416         | 16.0000                        | 0.9788                                | 6.1176                      | 0.0220                   |
| adversary     | adversary       | 70                          | 415         | 5.9286                         | 0.9765                                | 16.4706                     | 0.0220                   |
| header        | header          | 117                         | 415         | 3.5470                         | 0.9765                                | 27.5294                     | 0.0220                   |
| У             | Y               | 70                          | 415         | 5.9286                         | 0.9765                                | 16.4706                     | 0.0220                   |
| tiger         | TIGeR           | 13                          | 413         | 31.7692                        | 0.9718                                | 3.0588                      | 0.0219                   |
| sha256        | SHA256          | 49                          | 412         | 8.4082                         | 0.9694                                | 11.5294                     | 0.0218                   |
| pe            | PE              | 115                         | 410         | 3.5652                         | 0.9647                                | 27.0588                     | 0.0217                   |
| rsa           | rsa             | 54                          | 407         | 7.5370                         | 0.9576                                | 12.7059                     | 0.0216                   |
| nt            | NT              | 107                         | 405         | 3.7850                         | 0.9529                                | 25.1765                     | 0.0215                   |
| java          | java            | 70                          | 404         | 5.7714                         | 0.9506                                | 16.4706                     | 0.0214                   |
| php           | php             | 75                          | 404         | 5.3867                         | 0.9506                                | 17.6471                     | 0.0214                   |
| october       | October         | 149                         | 403         | 2.7047                         | 0.9482                                | 35.0588                     | 0.0213                   |
| u.s.          | U.S.            | 98                          | 403         | 4.1122                         | 0.9482                                | 23.0588                     | 0.0213                   |
| duqu          | Duqu            | 19                          | 401         | 21.1053                        | 0.9435                                | 4.4706                      | 0.0212                   |
| info          | Info            | 128                         | 401         | 3.1328                         | 0.9435                                | 30.1176                     | 0.0212                   |
| zero-day      | Zero-Day        | 82                          | 399         | 4.8659                         | 0.9388                                | 19.2941                     | 0.0211                   |
| compile       | COMPILE         | 79                          | 397         | 5.0253                         | 0.9341                                | 18.5882                     | 0.0210                   |
| located       | located         | 171                         | 396         | 2.3158                         | 0.9318                                | 40.2353                     | 0.0210                   |
| buffer        | buffer          | 74                          | 395         | 5.3378                         | 0.9294                                | 17.4118                     | 0.0209                   |
| ff            | FF              | 35                          | 394         | 11.2571                        | 0.9271                                | 8.2353                      | 0.0209                   |
| vulnerability | vulnerabilities | 135                         | 393         | 2.9111                         | 0.9247                                | 31.7647                     | 0.0208                   |
| botnet        | botnet          | 56                          | 387         | 6.9107                         | 0.9106                                | 13.1765                     | 0.0205                   |
| packet        | packet          | 72                          | 387         | 5.3750                         | 0.9106                                | 16.9412                     | 0.0205                   |

| Lemma          | Original Word  | Documents<br>Appeared<br>In | Appearances | Appearances<br>per<br>Document | Appearances<br>per Corpus<br>Document | % of<br>Corpus<br>Documents | % of<br>Corpus<br>Tokens |
|----------------|----------------|-----------------------------|-------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------|
| states         | States         | 150                         | 387         | 2.5800                         | 0.9106                                | 35.2941                     | 0.0205                   |
| encode         | encoded        | 146                         | 385         | 2.6370                         | 0.9059                                | 34.3529                     | 0.0204                   |
| shellcode      | shellcode      | 82                          | 385         | 4.6951                         | 0.9059                                | 19.2941                     | 0.0204                   |
| september      | September      | 139                         | 384         | 2.7626                         | 0.9035                                | 32.7059                     | 0.0203                   |
| adobe          | Adobe          | 109                         | 375         | 3.4404                         | 0.8824                                | 25.6471                     | 0.0199                   |
| attribution    | Attribution    | 104                         | 373         | 3.5865                         | 0.8776                                | 24.4706                     | 0.0198                   |
| appdata        | APPDATA        | 75                          | 370         | 4.9333                         | 0.8706                                | 17.6471                     | 0.0196                   |
| ukraine        | Ukraine        | 47                          | 369         | 7.8511                         | 0.8682                                | 11.0588                     | 0.0195                   |
| int            | int            | 46                          | 367         | 7.9783                         | 0.8635                                | 10.8235                     | 0.0194                   |
| api            | API            | 98                          | 361         | 3.6837                         | 0.8494                                | 23.0588                     | 0.0191                   |
| plugin         | plugin         | 68                          | 361         | 5.3088                         | 0.8494                                | 16.0000                     | 0.0191                   |
| currentversion | CurrentVersion | 114                         | 360         | 3.1579                         | 0.8471                                | 26.8235                     | 0.0191                   |
| mcafee         | McAfee         | 58                          | 357         | 6.1552                         | 0.8400                                | 13.6471                     | 0.0189                   |
| persistence    | persistence    | 135                         | 351         | 2.6000                         | 0.8259                                | 31.7647                     | 0.0186                   |
| installer      | installer      | 75                          | 347         | 4.6267                         | 0.8165                                | 17.6471                     | 0.0184                   |
| spear          | spear          | 100                         | 347         | 3.4700                         | 0.8165                                | 23.5294                     | 0.0184                   |
| iran           | Iran           | 55                          | 345         | 6.2727                         | 0.8118                                | 12.9412                     | 0.0183                   |
| accord         | according      | 147                         | 343         | 2.3333                         | 0.8071                                | 34.5882                     | 0.0182                   |
| default        | default        | 131                         | 343         | 2.6183                         | 0.8071                                | 30.8235                     | 0.0182                   |
| parameter      | Parameters     | 115                         | 341         | 2.9652                         | 0.8024                                | 27.0588                     | 0.0181                   |
| targeting      | targeting      | 116                         | 341         | 2.9397                         | 0.8024                                | 27.2941                     | 0.0181                   |
| december       | December       | 126                         | 340         | 2.6984                         | 0.8000                                | 29.6471                     | 0.0180                   |
| embedded       | embedded       | 135                         | 340         | 2.5185                         | 0.8000                                | 31.7647                     | 0.0180                   |
| download       | downloaded     | 152                         | 339         | 2.2303                         | 0.7976                                | 35.7647                     | 0.0180                   |
| encrypt        | encrypted      | 144                         | 336         | 2.3333                         | 0.7906                                | 33.8824                     | 0.0178                   |
| html           | HTML           | 127                         | 336         | 2.6457                         | 0.7906                                | 29.8824                     | 0.0178                   |
| hacking        | Hacking        | 104                         | 334         | 3.2115                         | 0.7859                                | 24.4706                     | 0.0177                   |
| upload         | upload         | 128                         | 332         | 2.5938                         | 0.7812                                | 30.1176                     | 0.0176                   |
| browser        | browser        | 116                         | 331         | 2.8534                         | 0.7788                                | 27.2941                     | 0.0175                   |
| inc.           | Inc            | 93                          | 329         | 3.5376                         | 0.7741                                | 21.8824                     | 0.0174                   |

| Lemma        | Original Word | Documents<br>Appeared<br>In | Appearances | Appearances<br>per<br>Document | Appearances<br>per Corpus<br>Document | % of<br>Corpus<br>Documents | % of<br>Corpus<br>Tokens |
|--------------|---------------|-----------------------------|-------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------|
| panda        | Panda         | 35                          | 328         | 9.3714                         | 0.7718                                | 8.2353                      | 0.0174                   |
| tibetan      | Tibetan       | 36                          | 328         | 9.1111                         | 0.7718                                | 8.4706                      | 0.0174                   |
| delete       | delete        | 124                         | 327         | 2.6371                         | 0.7694                                | 29.1765                     | 0.0173                   |
| clr          | CLR           | 33                          | 326         | 9.8788                         | 0.7671                                | 7.7647                      | 0.0173                   |
| hash         | HASHES        | 128                         | 325         | 2.5391                         | 0.7647                                | 30.1176                     | 0.0172                   |
| attachment   | attachment    | 116                         | 324         | 2.7931                         | 0.7624                                | 27.2941                     | 0.0172                   |
| node         | node          | 32                          | 322         | 10.0625                        | 0.7576                                | 7.5294                      | 0.0171                   |
| OS           | OS            | 101                         | 321         | 3.1782                         | 0.7553                                | 23.7647                     | 0.0170                   |
| username     | username      | 94                          | 321         | 3.4149                         | 0.7553                                | 22.1176                     | 0.0170                   |
| antivirus    | AntiVirus     | 122                         | 319         | 2.6148                         | 0.7506                                | 28.7059                     | 0.0169                   |
| bot          | bot           | 53                          | 319         | 6.0189                         | 0.7506                                | 12.4706                     | 0.0169                   |
| downloader   | Downloader    | 62                          | 319         | 5.1452                         | 0.7506                                | 14.5882                     | 0.0169                   |
| V            | V             | 77                          | 315         | 4.0909                         | 0.7412                                | 18.1176                     | 0.0167                   |
| e.g.         | e.g.          | 103                         | 314         | 3.0485                         | 0.7388                                | 24.2353                     | 0.0166                   |
| identifier   | identifier    | 85                          | 313         | 3.6824                         | 0.7365                                | 20.0000                     | 0.0166                   |
| services     | Services      | 117                         | 312         | 2.6667                         | 0.7341                                | 27.5294                     | 0.0165                   |
| persistent   | persistent    | 144                         | 310         | 2.1528                         | 0.7294                                | 33.8824                     | 0.0164                   |
| screenshot   | screenshot    | 106                         | 310         | 2.9245                         | 0.7294                                | 24.9412                     | 0.0164                   |
| inc.         | Inc.          | 62                          | 305         | 4.9194                         | 0.7176                                | 14.5882                     | 0.0162                   |
| blackenergy  | BlackEnergy   | 17                          | 301         | 17.7059                        | 0.7082                                | 4.0000                      | 0.0159                   |
| hong         | Hong          | 64                          | 300         | 4.6875                         | 0.7059                                | 15.0588                     | 0.0159                   |
| hxxp         | hxxp          | 53                          | 300         | 5.6604                         | 0.7059                                | 12.4706                     | 0.0159                   |
| parameter    | parameter     | 94                          | 299         | 3.1809                         | 0.7035                                | 22.1176                     | 0.0158                   |
| http/1       | HTTP/1        | 80                          | 295         | 3.6875                         | 0.6941                                | 18.8235                     | 0.0156                   |
| twitter      | Twitter       | 73                          | 294         | 4.0274                         | 0.6918                                | 17.1765                     | 0.0156                   |
| sav          | SAV           | 5                           | 293         | 58.6000                        | 0.6894                                | 1.1765                      | 0.0155                   |
| kong         | Kong          | 65                          | 292         | 4.4923                         | 0.6871                                | 15.2941                     | 0.0155                   |
| packrat      | Packrat       | 2                           | 292         | 146.0000                       | 0.6871                                | 0.4706                      | 0.0155                   |
| exploitation | exploitation  | 113                         | 291         | 2.5752                         | 0.6847                                | 26.5882                     | 0.0154                   |
| keylogger    | keylogger     | 77                          | 291         | 3.7792                         | 0.6847                                | 18.1176                     | 0.0154                   |

| Lemma          | Original Word  | Documents<br>Appeared<br>In | Appearances | Appearances<br>per<br>Document | Appearances<br>per Corpus<br>Document | % of<br>Corpus<br>Documents | % of<br>Corpus<br>Tokens |
|----------------|----------------|-----------------------------|-------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------|
| 8b             | 8b             | 23                          | 289         | 12.5652                        | 0.6800                                | 5.4118                      | 0.0153                   |
| blockbuster    | BLOCKBUSTER    | 6                           | 288         | 48.0000                        | 0.6776                                | 1.4118                      | 0.0153                   |
| desktop        | desktop        | 97                          | 288         | 2.9691                         | 0.6776                                | 22.8235                     | 0.0153                   |
| backdoor       | backdoors      | 69                          | 287         | 4.1594                         | 0.6753                                | 16.2353                     | 0.0152                   |
| naikon         | NAIKON         | 9                           | 287         | 31.8889                        | 0.6753                                | 2.1176                      | 0.0152                   |
| taiwan         | Taiwan         | 79                          | 287         | 3.6329                         | 0.6753                                | 18.5882                     | 0.0152                   |
| hacker         | hackers        | 72                          | 285         | 3.9583                         | 0.6706                                | 16.9412                     | 0.0151                   |
| ghOst          | gh0st          | 36                          | 284         | 7.8889                         | 0.6682                                | 8.4706                      | 0.0150                   |
| hklm           | HKLM           | 60                          | 284         | 4.7333                         | 0.6682                                | 14.1176                     | 0.0150                   |
| startup        | Startup        | 103                         | 284         | 2.7573                         | 0.6682                                | 24.2353                     | 0.0150                   |
| archive        | archive        | 95                          | 283         | 2.9789                         | 0.6659                                | 22.3529                     | 0.0150                   |
| kernel         | kernel         | 62                          | 280         | 4.5161                         | 0.6588                                | 14.5882                     | 0.0148                   |
| plugin         | plugins        | 55                          | 280         | 5.0909                         | 0.6588                                | 12.9412                     | 0.0148                   |
| apus           | API            | 80                          | 279         | 3.4875                         | 0.6565                                | 18.8235                     | 0.0148                   |
| registration   | REGISTRATION   | 93                          | 276         | 2.9677                         | 0.6494                                | 21.8824                     | 0.0146                   |
| timer          | Timer          | 13                          | 276         | 21.2308                        | 0.6494                                | 3.0588                      | 0.0146                   |
| backspace      | BACKSPACE      | 7                           | 274         | 39.1429                        | 0.6447                                | 1.6471                      | 0.0145                   |
| doc            | DOC            | 90                          | 274         | 3.0444                         | 0.6447                                | 21.1765                     | 0.0145                   |
| earlier        | earlier        | 152                         | 274         | 1.8026                         | 0.6447                                | 35.7647                     | 0.0145                   |
| vector         | Vector         | 121                         | 274         | 2.2645                         | 0.6447                                | 28.4706                     | 0.0145                   |
| x00            | x00            | 25                          | 274         | 10.9600                        | 0.6447                                | 5.8824                      | 0.0145                   |
| latest         | latest         | 144                         | 273         | 1.8958                         | 0.6424                                | 33.8824                     | 0.0145                   |
| base64         | Base64         | 95                          | 272         | 2.8632                         | 0.6400                                | 22.3529                     | 0.0144                   |
| k              | K              | 65                          | 271         | 4.1692                         | 0.6376                                | 15.2941                     | 0.0144                   |
| sha1           | SHA1           | 70                          | 271         | 3.8714                         | 0.6376                                | 16.4706                     | 0.0144                   |
| aurora         | AURORA         | 27                          | 270         | 10.0000                        | 0.6353                                | 6.3529                      | 0.0143                   |
| spear-phishing | spear-phishing | 88                          | 268         | 3.0455                         | 0.6306                                | 20.7059                     | 0.0142                   |
| de             | de             | 76                          | 267         | 3.5132                         | 0.6282                                | 17.8824                     | 0.0141                   |
| hostname       | hostname       | 75                          | 267         | 3.5600                         | 0.6282                                | 17.6471                     | 0.0141                   |
| networks       | Networks       | 67                          | 267         | 3.9851                         | 0.6282                                | 15.7647                     | 0.0141                   |

| Lemma          | Original Word  | Documents<br>Appeared<br>In | Appearances | Appearances<br>per<br>Document | Appearances<br>per Corpus<br>Document | % of<br>Corpus<br>Documents | % of<br>Corpus<br>Tokens |
|----------------|----------------|-----------------------------|-------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------|
| password       | passwords      | 103                         | 267         | 2.5922                         | 0.6282                                | 24.2353                     | 0.0141                   |
| gmt            | GMT            | 42                          | 266         | 6.3333                         | 0.6259                                | 9.8824                      | 0.0141                   |
| 6f             | 6f             | 23                          | 264         | 11.4783                        | 0.6212                                | 5.4118                      | 0.0140                   |
| regin          | Regin          | 13                          | 264         | 20.3077                        | 0.6212                                | 3.0588                      | 0.0140                   |
| additionally   | Additionally   | 119                         | 263         | 2.2101                         | 0.6188                                | 28.0000                     | 0.0139                   |
| poison         | Poison         | 45                          | 261         | 5.8000                         | 0.6141                                | 10.5882                     | 0.0138                   |
| decrypt        | decrypted      | 118                         | 260         | 2.2034                         | 0.6118                                | 27.7647                     | 0.0138                   |
| lazarus        | Lazarus        | 6                           | 260         | 43.3333                        | 0.6118                                | 1.4118                      | 0.0138                   |
| сс             | сс             | 44                          | 259         | 5.8864                         | 0.6094                                | 10.3529                     | 0.0137                   |
| theft          | Theft          | 93                          | 257         | 2.7634                         | 0.6047                                | 21.8824                     | 0.0136                   |
| binary         | binaries       | 101                         | 256         | 2.5347                         | 0.6024                                | 23.7647                     | 0.0136                   |
| inquire        | inquire        | 5                           | 256         | 51.2000                        | 0.6024                                | 1.1765                      | 0.0136                   |
| user-agent     | User-Agent     | 87                          | 256         | 2.9425                         | 0.6024                                | 20.4706                     | 0.0136                   |
| W              | W              | 74                          | 256         | 3.4595                         | 0.6024                                | 17.4118                     | 0.0136                   |
| Z              | Z              | 56                          | 255         | 4.5536                         | 0.6000                                | 13.1765                     | 0.0135                   |
| authentication | Authentication | 90                          | 253         | 2.8111                         | 0.5953                                | 21.1765                     | 0.0134                   |
| ivy            | Ivy            | 43                          | 253         | 5.8837                         | 0.5953                                | 10.1176                     | 0.0134                   |
| timeline       | timeline       | 94                          | 253         | 2.6915                         | 0.5953                                | 22.1176                     | 0.0134                   |
| ukrainian      | Ukrainian      | 21                          | 252         | 12.0000                        | 0.5929                                | 4.9412                      | 0.0133                   |
| compilation    | compilation    | 77                          | 251         | 3.2597                         | 0.5906                                | 18.1176                     | 0.0133                   |
| file           | file           | 33                          | 251         | 7.6061                         | 0.5906                                | 7.7647                      | 0.0133                   |
| ip             | IPs            | 98                          | 251         | 2.5612                         | 0.5906                                | 23.0588                     | 0.0133                   |
| miniduke       | MiniDuke       | 19                          | 251         | 13.2105                        | 0.5906                                | 4.4706                      | 0.0133                   |
| carbanak       | Carbanak       | 6                           | 250         | 41.6667                        | 0.5882                                | 1.4118                      | 0.0132                   |
| debug          | debug          | 77                          | 250         | 3.2468                         | 0.5882                                | 18.1176                     | 0.0132                   |
| interface      | interface      | 96                          | 249         | 2.5938                         | 0.5859                                | 22.5882                     | 0.0132                   |
| intrusion      | intrusion      | 93                          | 249         | 2.6774                         | 0.5859                                | 21.8824                     | 0.0132                   |
| attachment     | attachments    | 100                         | 248         | 2.4800                         | 0.5835                                | 23.5294                     | 0.0131                   |
| ca             | CA             | 88                          | 247         | 2.8068                         | 0.5812                                | 20.7059                     | 0.0131                   |
| char           | char           | 40                          | 247         | 6.1750                         | 0.5812                                | 9.4118                      | 0.0131                   |

| Lemma         | Original Word | Documents<br>Appeared<br>In | Appearances | Appearances<br>per<br>Document | Appearances<br>per Corpus<br>Document | % of<br>Corpus<br>Documents | % of<br>Corpus<br>Tokens |
|---------------|---------------|-----------------------------|-------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------|
| cybersecurity | cybersecurity | 66                          | 247         | 3.7424                         | 0.5812                                | 15.5294                     | 0.0131                   |
| virustotal    | VirusTotal    | 85                          | 246         | 2.8941                         | 0.5788                                | 20.0000                     | 0.0130                   |
| decryption    | decryption    | 87                          | 245         | 2.8161                         | 0.5765                                | 20.4706                     | 0.0130                   |
| decrypt       | decrypt       | 101                         | 243         | 2.4059                         | 0.5718                                | 23.7647                     | 0.0129                   |
| url           | URLs          | 80                          | 243         | 3.0375                         | 0.5718                                | 18.8235                     | 0.0129                   |
| 64-bit        | 64-bit        | 58                          | 242         | 4.1724                         | 0.5694                                | 13.6471                     | 0.0128                   |
| firewall      | Firewall      | 78                          | 239         | 3.0641                         | 0.5624                                | 18.3529                     | 0.0127                   |
| fidelis       | Fidelis       | 12                          | 238         | 19.8333                        | 0.5600                                | 2.8235                      | 0.0126                   |
| syrian        | Syrian        | 20                          | 237         | 11.8500                        | 0.5576                                | 4.7059                      | 0.0126                   |
| cozyduke      | CozyDuke      | 6                           | 236         | 39.3333                        | 0.5553                                | 1.4118                      | 0.0125                   |
| infect        | infect        | 107                         | 236         | 2.2056                         | 0.5553                                | 25.1765                     | 0.0125                   |
| mbr           | MBR           | 15                          | 236         | 15.7333                        | 0.5553                                | 3.5294                      | 0.0125                   |
| rootkit       | rootkit       | 51                          | 235         | 4.6078                         | 0.5529                                | 12.0000                     | 0.0124                   |
| compatible    | compatible    | 77                          | 234         | 3.0390                         | 0.5506                                | 18.1176                     | 0.0124                   |
| usa           | USA           | 64                          | 234         | 3.6563                         | 0.5506                                | 15.0588                     | 0.0124                   |
| windir        | WINDIR        | 34                          | 234         | 6.8824                         | 0.5506                                | 8.0000                      | 0.0124                   |
| msie          | MSIE          | 69                          | 233         | 3.3768                         | 0.5482                                | 16.2353                     | 0.0123                   |
| ebp           | ebp           | 20                          | 231         | 11.5500                        | 0.5435                                | 4.7059                      | 0.0122                   |
| timestamp     | timestamp     | 79                          | 230         | 2.9114                         | 0.5412                                | 18.5882                     | 0.0122                   |
| retrieve      | retrieved     | 59                          | 228         | 3.8644                         | 0.5365                                | 13.8824                     | 0.0121                   |
| ecx           | ecx           | 22                          | 227         | 10.3182                        | 0.5341                                | 5.1765                      | 0.0120                   |
| gen           | Gen           | 12                          | 227         | 18.9167                        | 0.5341                                | 2.8235                      | 0.0120                   |
| implant       | implant       | 48                          | 227         | 4.7292                         | 0.5341                                | 11.2941                     | 0.0120                   |
| n/a           | n/a           | 38                          | 227         | 5.9737                         | 0.5341                                | 8.9412                      | 0.0120                   |
| vpn           | VPN           | 53                          | 227         | 4.2830                         | 0.5341                                | 12.4706                     | 0.0120                   |
| rc4           | RC4           | 66                          | 226         | 3.4242                         | 0.5318                                | 15.5294                     | 0.0120                   |
| sha-256       | SHA-256       | 18                          | 225         | 12.5000                        | 0.5294                                | 4.2353                      | 0.0119                   |
| configure     | configured    | 97                          | 223         | 2.2990                         | 0.5247                                | 22.8235                     | 0.0118                   |
| asia          | Asia          | 88                          | 222         | 2.5227                         | 0.5224                                | 20.7059                     | 0.0118                   |
| certificate   | certificates  | 54                          | 222         | 4.1111                         | 0.5224                                | 12.7059                     | 0.0118                   |

| Lemma            | Original Word    | Documents<br>Appeared<br>In | Appearances | Appearances<br>per<br>Document | Appearances<br>per Corpus<br>Document | % of<br>Corpus<br>Documents | % of<br>Corpus<br>Tokens |
|------------------|------------------|-----------------------------|-------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------|
| mutex            | mutex            | 80                          | 222         | 2.7750                         | 0.5224                                | 18.8235                     | 0.0118                   |
| infect           | infected         | 101                         | 220         | 2.1782                         | 0.5176                                | 23.7647                     | 0.0117                   |
| download         | downloads        | 119                         | 219         | 1.8403                         | 0.5153                                | 28.0000                     | 0.0116                   |
| gif              | gif              | 26                          | 219         | 8.4231                         | 0.5153                                | 6.1176                      | 0.0116                   |
| cybercrime       | CybERCRImE       | 61                          | 218         | 3.5738                         | 0.5129                                | 14.3529                     | 0.0115                   |
| apt30            | APT30            | 4                           | 217         | 54.2500                        | 0.5106                                | 0.9412                      | 0.0115                   |
| inject           | injected         | 86                          | 217         | 2.5233                         | 0.5106                                | 20.2353                     | 0.0115                   |
| linux            | Linux            | 47                          | 217         | 4.6170                         | 0.5106                                | 11.0588                     | 0.0115                   |
| overview         | Overview         | 110                         | 217         | 1.9727                         | 0.5106                                | 25.8824                     | 0.0115                   |
| payload          | payloads         | 86                          | 217         | 2.5233                         | 0.5106                                | 20.2353                     | 0.0115                   |
| rar              | RAR              | 67                          | 217         | 3.2388                         | 0.5106                                | 15.7647                     | 0.0115                   |
| intel            | InTel            | 49                          | 216         | 4.4082                         | 0.5082                                | 11.5294                     | 0.0114                   |
| advisory         | advisory         | 31                          | 214         | 6.9032                         | 0.5035                                | 7.2941                      | 0.0113                   |
| 6c               | 6c               | 30                          | 213         | 7.1000                         | 0.5012                                | 7.0588                      | 0.0113                   |
| login            | login            | 103                         | 213         | 2.0680                         | 0.5012                                | 24.2353                     | 0.0113                   |
| av               | AV               | 73                          | 212         | 2.9041                         | 0.4988                                | 17.1765                     | 0.0112                   |
| injection        | injection        | 67                          | 212         | 3.1642                         | 0.4988                                | 15.7647                     | 0.0112                   |
| var              | VAR              | 22                          | 211         | 9.5909                         | 0.4965                                | 5.1765                      | 0.0112                   |
| fa               | fA               | 27                          | 210         | 7.7778                         | 0.4941                                | 6.3529                      | 0.0111                   |
| japan            | Japan            | 74                          | 209         | 2.8243                         | 0.4918                                | 17.4118                     | 0.0111                   |
| hardcoded        | hardcoded        | 87                          | 208         | 2.3908                         | 0.4894                                | 20.4706                     | 0.0110                   |
| threatconnect    | ThreatConnect    | 12                          | 207         | 17.2500                        | 0.4871                                | 2.8235                      | 0.0110                   |
| controller       | controller       | 36                          | 206         | 5.7222                         | 0.4847                                | 8.4706                      | 0.0109                   |
| reconnaissance   | reconnaissance   | 79                          | 206         | 2.6076                         | 0.4847                                | 18.5882                     | 0.0109                   |
| soft@hotmail.com | soft@hotmail.com | 1                           | 206         | 206.0000                       | 0.4847                                | 0.2353                      | 0.0109                   |
| destructive      | destructive      | 33                          | 205         | 6.2121                         | 0.4824                                | 7.7647                      | 0.0109                   |
| trademark        | trademarks       | 86                          | 205         | 2.3837                         | 0.4824                                | 20.2353                     | 0.0109                   |
| XXX              | XXX              | 15                          | 205         | 13.6667                        | 0.4824                                | 3.5294                      | 0.0109                   |
| config           | config           | 57                          | 204         | 3.5789                         | 0.4800                                | 13.4118                     | 0.0108                   |
| breach           | breach           | 69                          | 203         | 2.9420                         | 0.4776                                | 16.2353                     | 0.0108                   |

| Lemma             | Original Word     | Documents<br>Appeared<br>In | Appearances | Appearances<br>per<br>Document | Appearances<br>per Corpus<br>Document | % of<br>Corpus<br>Documents | % of<br>Corpus<br>Tokens |
|-------------------|-------------------|-----------------------------|-------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------|
| cyberespionage    | cyberespionage    | 27                          | 203         | 7.5185                         | 0.4776                                | 6.3529                      | 0.0108                   |
| ftp               | FTP               | 55                          | 203         | 3.6909                         | 0.4776                                | 12.9412                     | 0.0108                   |
| ic                | ICS               | 25                          | 202         | 8.0800                         | 0.4753                                | 5.8824                      | 0.0107                   |
| endpoint          | endpoint          | 62                          | 201         | 3.2419                         | 0.4729                                | 14.5882                     | 0.0106                   |
| solutions         | Solutions         | 30                          | 201         | 6.7000                         | 0.4729                                | 7.0588                      | 0.0106                   |
| usb               | USB               | 62                          | 201         | 3.2419                         | 0.4729                                | 14.5882                     | 0.0106                   |
| бе                | бе                | 24                          | 199         | 8.2917                         | 0.4682                                | 5.6471                      | 0.0105                   |
| currentcontrolset | CurrentControlSet | 46                          | 199         | 4.3261                         | 0.4682                                | 10.8235                     | 0.0105                   |
| ge                | Ge                | 8                           | 199         | 24.8750                        | 0.4682                                | 1.8824                      | 0.0105                   |
| j                 | J                 | 49                          | 199         | 4.0612                         | 0.4682                                | 11.5294                     | 0.0105                   |
| usage             | usage             | 99                          | 199         | 2.0101                         | 0.4682                                | 23.2941                     | 0.0105                   |
| beacon            | beacon            | 62                          | 198         | 3.1935                         | 0.4659                                | 14.5882                     | 0.0105                   |
| cmd.exe           | cmd.exe           | 59                          | 198         | 3.3559                         | 0.4659                                | 13.8824                     | 0.0105                   |
| upload            | uploaded          | 95                          | 198         | 2.0842                         | 0.4659                                | 22.3529                     | 0.0105                   |
| xfish             | xfish             | 1                           | 197         | 197.0000                       | 0.4635                                | 0.2353                      | 0.0104                   |
| 32-bit            | 32-bit            | 64                          | 196         | 3.0625                         | 0.4612                                | 15.0588                     | 0.0104                   |
| older             | older             | 91                          | 193         | 2.1209                         | 0.4541                                | 21.4118                     | 0.0102                   |
| operational       | operational       | 96                          | 193         | 2.0104                         | 0.4541                                | 22.5882                     | 0.0102                   |
| apt28             | APT28             | 10                          | 191         | 19.1000                        | 0.4494                                | 2.3529                      | 0.0101                   |
| hkcu              | HKCU              | 69                          | 191         | 2.7681                         | 0.4494                                | 16.2353                     | 0.0101                   |
| static            | static            | 81                          | 189         | 2.3333                         | 0.4447                                | 19.0588                     | 0.0100                   |
| android           | Android           | 39                          | 188         | 4.8205                         | 0.4424                                | 9.1765                      | 0.0100                   |
| cybercriminal     | cybercriminals    | 48                          | 188         | 3.9167                         | 0.4424                                | 11.2941                     | 0.0100                   |
| svchost.exe       | svchost.exe       | 71                          | 188         | 2.6479                         | 0.4424                                | 16.7059                     | 0.0100                   |
| warfare           | warfare           | 33                          | 188         | 5.6970                         | 0.4424                                | 7.7647                      | 0.0100                   |
| interestingly     | Interestingly     | 108                         | 187         | 1.7315                         | 0.4400                                | 25.4118                     | 0.0099                   |
| mandiant          | Mandiant          | 23                          | 187         | 8.1304                         | 0.4400                                | 5.4118                      | 0.0099                   |
| myanmar           | Myanmar           | 22                          | 187         | 8.5000                         | 0.4400                                | 5.1765                      | 0.0099                   |
| whois             | whois             | 60                          | 187         | 3.1167                         | 0.4400                                | 14.1176                     | 0.0099                   |
| facebook          | Facebook          | 72                          | 186         | 2.5833                         | 0.4376                                | 16.9412                     | 0.0099                   |

| Lemma        | Original Word | Documents<br>Appeared<br>In | Appearances | Appearances<br>per<br>Document | Appearances<br>per Corpus<br>Document | % of<br>Corpus<br>Documents | % of<br>Corpus<br>Tokens |
|--------------|---------------|-----------------------------|-------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------|
| ghostnet     | GhostNet      | 17                          | 185         | 10.8824                        | 0.4353                                | 4.0000                      | 0.0098                   |
| anti-virus   | anti-virus    | 64                          | 184         | 2.8750                         | 0.4329                                | 15.0588                     | 0.0097                   |
| georgia      | Georgia       | 22                          | 183         | 8.3182                         | 0.4306                                | 5.1765                      | 0.0097                   |
| callback     | callback      | 48                          | 182         | 3.7917                         | 0.4282                                | 11.2941                     | 0.0096                   |
| monitoring   | monitoring    | 89                          | 182         | 2.0449                         | 0.4282                                | 20.9412                     | 0.0096                   |
| mozilla/4    | Mozilla/4     | 62                          | 182         | 2.9355                         | 0.4282                                | 14.5882                     | 0.0096                   |
| obfuscation  | obfuscation   | 87                          | 182         | 2.0920                         | 0.4282                                | 20.4706                     | 0.0096                   |
| redacted     | Redacted      | 37                          | 182         | 4.9189                         | 0.4282                                | 8.7059                      | 0.0096                   |
| ae           | AES           | 29                          | 181         | 6.2414                         | 0.4259                                | 6.8235                      | 0.0096                   |
| chopper      | Chopper       | 7                           | 179         | 25.5714                        | 0.4212                                | 1.6471                      | 0.0095                   |
| query        | query         | 73                          | 179         | 2.4521                         | 0.4212                                | 17.1765                     | 0.0095                   |
| removable    | Removable     | 44                          | 179         | 4.0682                         | 0.4212                                | 10.3529                     | 0.0095                   |
| vector       | vectors       | 69                          | 179         | 2.5942                         | 0.4212                                | 16.2353                     | 0.0095                   |
| luxembourg   | Luxembourg    | 14                          | 178         | 12.7143                        | 0.4188                                | 3.2941                      | 0.0094                   |
| ssl          | SSL           | 60                          | 178         | 2.9667                         | 0.4188                                | 14.1176                     | 0.0094                   |
| 2e           | 2e            | 23                          | 177         | 7.6957                         | 0.4165                                | 5.4118                      | 0.0094                   |
| exfiltration | exfiltration  | 75                          | 177         | 2.3600                         | 0.4165                                | 17.6471                     | 0.0094                   |
| tg-3390      | TG-3390       | 2                           | 177         | 88.5000                        | 0.4165                                | 0.4706                      | 0.0094                   |
| TM           | TM            | 58                          | 177         | 3.0517                         | 0.4165                                | 13.6471                     | 0.0094                   |
| compress     | compressed    | 75                          | 176         | 2.3467                         | 0.4141                                | 17.6471                     | 0.0093                   |
| txt          | txt           | 51                          | 176         | 3.4510                         | 0.4141                                | 12.0000                     | 0.0093                   |
| circl        | CIRCL         | 6                           | 175         | 29.1667                        | 0.4118                                | 1.4118                      | 0.0093                   |
| cryptography | cryptography  | 28                          | 175         | 6.2500                         | 0.4118                                | 6.5882                      | 0.0093                   |
| handler      | handler       | 30                          | 175         | 5.8333                         | 0.4118                                | 7.0588                      | 0.0093                   |
| toolset      | toolset       | 43                          | 175         | 4.0698                         | 0.4118                                | 10.1176                     | 0.0093                   |
| turla        | Turla         | 21                          | 175         | 8.3333                         | 0.4118                                | 4.9412                      | 0.0093                   |
| backup       | backup        | 62                          | 174         | 2.8065                         | 0.4094                                | 14.5882                     | 0.0092                   |
| notable      | notable       | 70                          | 173         | 2.4714                         | 0.4071                                | 16.4706                     | 0.0092                   |
| alert        | alert         | 68                          | 172         | 2.5294                         | 0.4047                                | 16.0000                     | 0.0091                   |
| bypass       | Bypass        | 82                          | 172         | 2.0976                         | 0.4047                                | 19.2941                     | 0.0091                   |

| Lemma           | Original Word   | Documents<br>Appeared<br>In | Appearances | Appearances<br>per<br>Document | Appearances<br>per Corpus<br>Document | % of<br>Corpus<br>Documents | % of<br>Corpus<br>Tokens |
|-----------------|-----------------|-----------------------------|-------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------|
| c7              | C7              | 20                          | 172         | 8.6000                         | 0.4047                                | 4.7059                      | 0.0091                   |
| earliest        | earliest        | 58                          | 172         | 2.9655                         | 0.4047                                | 13.6471                     | 0.0091                   |
| javascript      | Javascript      | 52                          | 172         | 3.3077                         | 0.4047                                | 12.2353                     | 0.0091                   |
| serial          | Serial          | 75                          | 172         | 2.2933                         | 0.4047                                | 17.6471                     | 0.0091                   |
| incorporated    | Incorporated    | 29                          | 171         | 5.8966                         | 0.4024                                | 6.8235                      | 0.0091                   |
| mz              | MZ              | 31                          | 170         | 5.4839                         | 0.4000                                | 7.2941                      | 0.0090                   |
| ponmocup        | Ponmocup        | 1                           | 170         | 170.0000                       | 0.4000                                | 0.2353                      | 0.0090                   |
| delete          | deletes         | 78                          | 169         | 2.1667                         | 0.3976                                | 18.3529                     | 0.0090                   |
| edx             | edx             | 19                          | 169         | 8.8947                         | 0.3976                                | 4.4706                      | 0.0090                   |
| greenfor        | GreenFor        | 3                           | 169         | 56.3333                        | 0.3976                                | 0.7059                      | 0.0090                   |
| operations      | Operations      | 48                          | 169         | 3.5208                         | 0.3976                                | 11.2941                     | 0.0090                   |
| socket          | socket          | 49                          | 169         | 3.4490                         | 0.3976                                | 11.5294                     | 0.0090                   |
| www.fireeye.com | www.fireeye.com | 17                          | 169         | 9.9412                         | 0.3976                                | 4.0000                      | 0.0090                   |
| aspx            | aspx            | 40                          | 168         | 4.2000                         | 0.3953                                | 9.4118                      | 0.0089                   |
| delete          | deleted         | 75                          | 168         | 2.2400                         | 0.3953                                | 17.6471                     | 0.0089                   |
| iranian         | Iranian         | 30                          | 168         | 5.6000                         | 0.3953                                | 7.0588                      | 0.0089                   |
| admin           | admin           | 52                          | 167         | 3.2115                         | 0.3929                                | 12.2353                     | 0.0088                   |
| cn              | CN              | 43                          | 167         | 3.8837                         | 0.3929                                | 10.1176                     | 0.0088                   |
| embed           | Embedded        | 100                         | 167         | 1.6700                         | 0.3929                                | 23.5294                     | 0.0088                   |
| finfisher       | FinFisher       | 8                           | 167         | 20.8750                        | 0.3929                                | 1.8824                      | 0.0088                   |
| pivy            | PIVY            | 6                           | 167         | 27.8333                        | 0.3929                                | 1.4118                      | 0.0088                   |
| scanning        | scanning        | 69                          | 167         | 2.4203                         | 0.3929                                | 16.2353                     | 0.0088                   |
| 5a              | 5A              | 20                          | 166         | 8.3000                         | 0.3906                                | 4.7059                      | 0.0088                   |
| hacker          | hacker          | 58                          | 166         | 2.8621                         | 0.3906                                | 13.6471                     | 0.0088                   |
| ddo             | DDoS            | 38                          | 165         | 4.3421                         | 0.3882                                | 8.9412                      | 0.0087                   |
| executable      | executables     | 82                          | 165         | 2.0122                         | 0.3882                                | 19.2941                     | 0.0087                   |
| phish           | phishing        | 70                          | 165         | 2.3571                         | 0.3882                                | 16.4706                     | 0.0087                   |
| fakem           | FakeM           | 6                           | 164         | 27.3333                        | 0.3859                                | 1.4118                      | 0.0087                   |
| hangover        | Hangover        | 7                           | 164         | 23.4286                        | 0.3859                                | 1.6471                      | 0.0087                   |
| retrieve        | retrieve        | 72                          | 164         | 2.2778                         | 0.3859                                | 16.9412                     | 0.0087                   |

| Lemma                   | Original Word         | Documents<br>Appeared<br>In | Appearances | Appearances<br>per<br>Document | Appearances<br>per Corpus<br>Document | % of<br>Corpus<br>Documents | % of<br>Corpus<br>Tokens |
|-------------------------|-----------------------|-----------------------------|-------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------|
| 4d                      | 4d                    | 29                          | 163         | 5.6207                         | 0.3835                                | 6.8235                      | 0.0086                   |
| m                       | ms                    | 43                          | 163         | 3.7907                         | 0.3835                                | 10.1176                     | 0.0086                   |
| extract                 | extracted             | 100                         | 162         | 1.6200                         | 0.3812                                | 23.5294                     | 0.0086                   |
| jindiqiao@hotmail.com   | JinDiQIAO@hotmail.com | 1                           | 162         | 162.0000                       | 0.3812                                | 0.2353                      | 0.0086                   |
| shimrat                 | ShimRat               | 1                           | 162         | 162.0000                       | 0.3812                                | 0.2353                      | 0.0086                   |
| dec                     | dec                   | 53                          | 161         | 3.0377                         | 0.3788                                | 12.4706                     | 0.0085                   |
| embassy                 | embassy               | 31                          | 161         | 5.1935                         | 0.3788                                | 7.2941                      | 0.0085                   |
| arbor                   | Arbor                 | 17                          | 160         | 9.4118                         | 0.3765                                | 4.0000                      | 0.0085                   |
| zip                     | zip                   | 68                          | 160         | 2.3529                         | 0.3765                                | 16.0000                     | 0.0085                   |
| adversary               | adversaries           | 47                          | 159         | 3.3830                         | 0.3741                                | 11.0588                     | 0.0084                   |
| winnti                  | Winnti                | 5                           | 159         | 31.8000                        | 0.3741                                | 1.1765                      | 0.0084                   |
| content-type            | Content-Type          | 37                          | 158         | 4.2703                         | 0.3718                                | 8.7059                      | 0.0084                   |
| longer                  | longer                | 104                         | 158         | 1.5192                         | 0.3718                                | 24.4706                     | 0.0084                   |
| a1                      | a1                    | 32                          | 157         | 4.9063                         | 0.3694                                | 7.5294                      | 0.0083                   |
| obfuscate               | obfuscated            | 84                          | 157         | 1.8690                         | 0.3694                                | 19.7647                     | 0.0083                   |
| sandbox                 | sandbox               | 54                          | 157         | 2.9074                         | 0.3694                                | 12.7059                     | 0.0083                   |
| tools                   | Tools                 | 37                          | 157         | 4.2432                         | 0.3694                                | 8.7059                      | 0.0083                   |
| extract                 | extract               | 91                          | 156         | 1.7143                         | 0.3671                                | 21.4118                     | 0.0083                   |
| cyberattack             | cyberattack           | 22                          | 155         | 7.0455                         | 0.3647                                | 5.1765                      | 0.0082                   |
| feb                     | FEB                   | 42                          | 155         | 3.6905                         | 0.3647                                | 9.8824                      | 0.0082                   |
| larger                  | larger                | 94                          | 155         | 1.6489                         | 0.3647                                | 22.1176                     | 0.0082                   |
|                         | WWW.FIDELISSECURITY.C |                             |             |                                |                                       |                             |                          |
| www.fidelissecurity.com | OM                    | 8                           | 155         | 19.3750                        | 0.3647                                | 1.8824                      | 0.0082                   |
| crysys                  | CrySyS                | 9                           | 154         | 17.1111                        | 0.3624                                | 2.1176                      | 0.0082                   |
| europe                  | europe                | 78                          | 154         | 1.9744                         | 0.3624                                | 18.3529                     | 0.0082                   |
| kitten                  | Kitten                | 12                          | 154         | 12.8333                        | 0.3624                                | 2.8235                      | 0.0082                   |
| directory               | directories           | 77                          | 153         | 1.9870                         | 0.3600                                | 18.1176                     | 0.0081                   |
| ро                      | PoS                   | 19                          | 153         | 8.0526                         | 0.3600                                | 4.4706                      | 0.0081                   |
| sql                     | SQL                   | 50                          | 153         | 3.0600                         | 0.3600                                | 11.7647                     | 0.0081                   |
| tmp                     | tmp                   | 53                          | 153         | 2.8868                         | 0.3600                                | 12.4706                     | 0.0081                   |

| Lemma               | Original Word       | Documents<br>Appeared<br>In | Appearances | Appearances<br>per<br>Document | Appearances<br>per Corpus<br>Document | % of<br>Corpus<br>Documents | % of<br>Corpus<br>Tokens |
|---------------------|---------------------|-----------------------------|-------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------|
| troy                | Troy                | 7                           | 153         | 21.8571                        | 0.3600                                | 1.6471                      | 0.0081                   |
| pdb                 | PDB                 | 40                          | 152         | 3.8000                         | 0.3576                                | 9.4118                      | 0.0081                   |
| decode              | decoded             | 83                          | 151         | 1.8193                         | 0.3553                                | 19.5294                     | 0.0080                   |
| sophistication      | sophistication      | 62                          | 151         | 2.4355                         | 0.3553                                | 14.5882                     | 0.0080                   |
| command-and-control | Command-and-control | 81                          | 150         | 1.8519                         | 0.3529                                | 19.0588                     | 0.0079                   |
| germany             | GeRMANy             | 72                          | 150         | 2.0833                         | 0.3529                                | 16.9412                     | 0.0079                   |
| randomly            | randomly            | 66                          | 150         | 2.2727                         | 0.3529                                | 15.5294                     | 0.0079                   |
| tech                | TECH                | 37                          | 150         | 4.0541                         | 0.3529                                | 8.7059                      | 0.0079                   |
| unsigned            | unsigned            | 39                          | 150         | 3.8462                         | 0.3529                                | 9.1765                      | 0.0079                   |
| db                  | db                  | 37                          | 149         | 4.0270                         | 0.3506                                | 8.7059                      | 0.0079                   |
| indicators          | Indicators          | 89                          | 148         | 1.6629                         | 0.3482                                | 20.9412                     | 0.0078                   |
| institute           | institute           | 52                          | 148         | 2.8462                         | 0.3482                                | 12.2353                     | 0.0078                   |
| mac                 | MAC                 | 62                          | 148         | 2.3871                         | 0.3482                                | 14.5882                     | 0.0078                   |
| pitty               | PITTy               | 4                           | 148         | 37.0000                        | 0.3482                                | 0.9412                      | 0.0078                   |
| seconds             | seconds             | 62                          | 147         | 2.3710                         | 0.3459                                | 14.5882                     | 0.0078                   |
| worm                | Worm                | 39                          | 147         | 3.7692                         | 0.3459                                | 9.1765                      | 0.0078                   |
| 0x00                | 0x00                | 18                          | 146         | 8.1111                         | 0.3435                                | 4.2353                      | 0.0077                   |
| generic             | generic             | 74                          | 146         | 1.9730                         | 0.3435                                | 17.4118                     | 0.0077                   |
| lnk                 | lnk                 | 34                          | 146         | 4.2941                         | 0.3435                                | 8.0000                      | 0.0077                   |
| cve-2012-0158       | CVE-2012-0158       | 59                          | 145         | 2.4576                         | 0.3412                                | 13.8824                     | 0.0077                   |
| jan                 | Jan                 | 54                          | 145         | 2.6852                         | 0.3412                                | 12.7059                     | 0.0077                   |
| ptr                 | ptr                 | 23                          | 145         | 6.3043                         | 0.3412                                | 5.4118                      | 0.0077                   |
| rundll32.exe        | rundl132.exe        | 56                          | 145         | 2.5893                         | 0.3412                                | 13.1765                     | 0.0077                   |
| underground         | underground         | 41                          | 145         | 3.5366                         | 0.3412                                | 9.6471                      | 0.0077                   |
| xp                  | XP                  | 69                          | 145         | 2.1014                         | 0.3412                                | 16.2353                     | 0.0077                   |
| 7e                  | 7E                  | 13                          | 144         | 11.0769                        | 0.3388                                | 3.0588                      | 0.0076                   |
| overlap             | overlap             | 68                          | 144         | 2.1176                         | 0.3388                                | 16.0000                     | 0.0076                   |
| p.                  | p.                  | 22                          | 144         | 6.5455                         | 0.3388                                | 5.1765                      | 0.0076                   |
| x509v3              | X509v3              | 3                           | 144         | 48.0000                        | 0.3388                                | 0.7059                      | 0.0076                   |
| yahoo               | Yahoo               | 50                          | 144         | 2.8800                         | 0.3388                                | 11.7647                     | 0.0076                   |

| Lemma              | Original Word      | Documents<br>Appeared<br>In | Appearances | Appearances<br>per<br>Document | Appearances<br>per Corpus<br>Document | % of<br>Corpus<br>Documents | % of<br>Corpus<br>Tokens |
|--------------------|--------------------|-----------------------------|-------------|--------------------------------|---------------------------------------|-----------------------------|--------------------------|
| c++                | C++                | 53                          | 143         | 2.6981                         | 0.3365                                | 12.4706                     | 0.0076                   |
| emissary           | eMISSARy           | 5                           | 143         | 28.6000                        | 0.3365                                | 1.1765                      | 0.0076                   |
| exposureindicating | Exposureindicating | 1                           | 143         | 143.0000                       | 0.3365                                | 0.2353                      | 0.0076                   |
| handshake          | handshake          | 24                          | 143         | 5.9583                         | 0.3365                                | 5.6471                      | 0.0076                   |
| labs               | Labs               | 59                          | 142         | 2.4068                         | 0.3341                                | 13.8824                     | 0.0075                   |
| www.threatgeek.com | www.threatgeek.com | 7                           | 142         | 20.2857                        | 0.3341                                | 1.6471                      | 0.0075                   |
| lure               | Lure               | 56                          | 141         | 2.5179                         | 0.3318                                | 13.1765                     | 0.0075                   |
| means              | means              | 79                          | 141         | 1.7848                         | 0.3318                                | 18.5882                     | 0.0075                   |
| dukes              | Dukes              | 4                           | 140         | 35.0000                        | 0.3294                                | 0.9412                      | 0.0074                   |
| affairs            | Affairs            | 45                          | 139         | 3.0889                         | 0.3271                                | 10.5882                     | 0.0074                   |
| ch                 | Ch                 | 20                          | 139         | 6.9500                         | 0.3271                                | 4.7059                      | 0.0074                   |
| ltd.               | Ltd                | 31                          | 139         | 4.4839                         | 0.3271                                | 7.2941                      | 0.0074                   |
| georgian           | Georgian           | 9                           | 138         | 15.3333                        | 0.3247                                | 2.1176                      | 0.0073                   |
| newer              | newer              | 81                          | 138         | 1.7037                         | 0.3247                                | 19.0588                     | 0.0073                   |
| nov                | Nov                | 43                          | 138         | 3.2093                         | 0.3247                                | 10.1176                     | 0.0073                   |
| beijing            | Beijing            | 36                          | 137         | 3.8056                         | 0.3224                                | 8.4706                      | 0.0073                   |
| cve                | CVE                | 56                          | 137         | 2.4464                         | 0.3224                                | 13.1765                     | 0.0073                   |
| encrypt            | Encrypt            | 78                          | 137         | 1.7564                         | 0.3224                                | 18.3529                     | 0.0073                   |
| filename           | filenames          | 81                          | 137         | 1.6914                         | 0.3224                                | 19.0588                     | 0.0073                   |
| terracotta         | TERRACOTTA         | 1                           | 137         | 137.0000                       | 0.3224                                | 0.2353                      | 0.0073                   |
| tibet              | TIBeT              | 21                          | 137         | 6.5238                         | 0.3224                                | 4.9412                      | 0.0073                   |
| timestamp          | timestamps         | 48                          | 137         | 2.8542                         | 0.3224                                | 11.2941                     | 0.0073                   |
| www.crysys.hu      | www.crysys.hu      | 3                           | 137         | 45.6667                        | 0.3224                                | 0.7059                      | 0.0073                   |
| ee                 | ee                 | 25                          | 136         | 5.4400                         | 0.3200                                | 5.8824                      | 0.0072                   |
| fox-it             | fox-it             | 3                           | 136         | 45.3333                        | 0.3200                                | 0.7059                      | 0.0072                   |
| kunming            | Kunming            | 2                           | 136         | 68.0000                        | 0.3200                                | 0.4706                      | 0.0072                   |

## **APPENDIX C. SAMPLE OF THE ONTOLOGY**

This section contains a partial sample of the ontology in RDF/OWL format. The full ontology is available digitally.

```
<?xml version="1.0"?>
<rdf:RDF
xmlns="http://www.semanticweb.org/coreythomasholzer/ontolog
ies/apt#"
xml:base="http://www.semanticweb.org/coreythomasholzer/onto
logies/apt"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-
ns#"
    xmlns:owl="http://www.w3.org/2002/07/owl#"
   xmlns:xml="http://www.w3.org/XML/1998/namespace"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#"
    xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">
   <owl:Ontology
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt"/>
   <!--
11
   // Data properties
   11
-->
   <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Aliases -->
```

<owl:DatatypeProperty
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont</pre>

```
- -
```

<!--

ologies/apt#Aliases"/>

```
//
// Classes
//
```

<!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
# -->

<owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#"/>

<!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#APT -->

<owl:Class

rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#APT">

<owl:disjointWith

rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Protocol"/>

<rdfs:comment xml:lang="en">An advanced persistent threat (APT) is the name given to a network attack in which an unauthorized organization, also identified as an APT, gains access to a network and stays there undetected for a long period of time in order to execute a complex attack.</rdfs:comment>

</owl:Class>

```
<!--
```

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#APT Attack -->

```
<owl:Class
```

rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#APT Attack">

<rdfs:subClassOf

rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#APT"/>

<rdfs:comment>An advanced persistent threat (APT)
is a network attack in which an unauthorized person gains

```
access to a network and stays there undetected for a long
period of time. The intention of an APT attack is to steal
data rather than to cause damage to the network or
organization.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#APT Organization -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#APT Organization">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#APT"/>
        <rdfs:comment></rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Actions on Objective Phase -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Actions on Objective Phase">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Phases"/>
        <rdfs:comment xml:lang="en">During this phase the
APT is actively going after the data that they originally
identified as their target (Hutchins et al., 2011). The APT
uses previously installed software to determine the network
layout including, but not limited to, mapping the hosts of
networked drives, database servers, domain controllers,
PKI, etc. (Ask et al., 2013). The goal here is to footprint
the network and to establish a network account and elevate
the privileges for that account (Ask et al., 2013). During
this phase, the APT will also seek to compromise more hosts
in order to strengthen its foothold in the target network.
The extraction of the target data may also be accomplished
using custom encryption and/or tunneling within other
protocols to hide the data from security professionals
(Websense, 2011).</rdfs:comment>
    </owl:Class>
```

```
<!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Administrators -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Administrators">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Personnel"/>
        <rdfs:comment>Those who manage or administer
networks and servers.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Affiliates -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Affiliates">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Personnel"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Anti-Forensics -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Anti-Forensics">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Hardening Techniques"/>
        <rdfs:comment>Anti-forensic techniques try to
frustrate forensic investigators and their techniques to
analyze and understand malware. This can include refusing
to run when debugging mode is enabled, refusing to run when
running inside of a virtual machine, or deliberately
overwriting data.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Anti-Malware -->
```

```
<owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Anti-Malware">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Security and Protective Measures"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Anti-Spyware -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Anti-Spyware">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Security and Protective Measures"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Antivirus -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Antivirus">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Security and Protective Measures"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Backdoor -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Backdoor">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Malware"/>
    </owl:Class>
```

```
<!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Bank Accounts -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Bank Accounts">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Target Individuals"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#BotNet Managers -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#BotNet Managers">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Personnel"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Botnet -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Botnet">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Techniques and Tools"/>
        <rdfs:comment>a network of private computers
infected with malicious software and controlled as a group
without the owners' knowledge, e.g., to send spam
messages.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#C2 -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#C2">
```

118

<owl:equivalentClass</pre> rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Command-and-Control"/> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Techniques and Tools"/> <rdfs:comment>The centralized computer that issues commands to a botnet (zombie army) and receives reports back from the coopted computers.</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #C2 Server --> <owl:Class rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#C2 Server"> <owl:equivalentClass</pre> rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Command-and-Control"/> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Techniques and Tools"/> <rdfs:comment>The centralized computer that issues commands to a botnet (zombie army) and receives reports back from the coopted computers.</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #CA --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#CA"> <owl:equivalentClass</pre> rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Certification Authority"/> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Legitimate Applications"/> <rdfs:comment>In cryptography, a certificate authority or certification authority (CA) is an entity that issues digital certificates. A digital certificate certifies the ownership of a public key by the named subject of the certificate.</rdfs:comment>

</owl:Class>

<!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#CNC -->

```
<owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#CNC">
        <owl:equivalentClass</pre>
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Command-and-Control"/>
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Techniques and Tools"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Certificate Authority -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Certificate Authority">
        <owl:equivalentClass</pre>
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Certification Authority"/>
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Legitimate Applications"/>
        <rdfs:comment>In cryptography, a certificate
authority or certification authority (CA) is an entity that
issues digital certificates. A digital certificate
certifies the ownership of a public key by the named
subject of the certificate.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Certification Authority -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Certification Authority">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Legitimate Applications"/>
```

<rdfs:comment>In cryptography, a certificate authority or certification authority (CA) is an entity that issues digital certificates. A digital certificate certifies the ownership of a public key by the named subject of the certificate.</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Command-and-Control --> <owl:Class rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Command-and-Control"> <owl:equivalentClass rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#C&C"/> <owl:equivalentClass</pre> rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#C&C Server"/> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Techniques and Tools"/> <rdfs:comment>The centralized computer that issues commands to a botnet (zombie army) and receives reports back from the coopted computers.</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Command and Control Phase --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Command and Control Phase"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Phases"/> <rdfs:comment xml:lang="en">The Command and Control phase begins once the infected host beacons the C2 server (Hutchins et al., 2011). Attackers need to maintain access to the victim's network means that each communication with a compromised system (Auty, 2015). During this phase the APT will seek to obtain elevated privileges on the system and will install additional software to facilitate the attack (i.e., encryption) on compromised system and network (Ask et al., 2013). While the initial installation is

achieved by software designed to exploit a zero-day vulnerability, the additional software is likely to be commonly known software that may even be approved to operate on the network for legitimate activities (e.g., SSH, SecureFTP, etc.) (Ask et al., 2013).</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Common Vulnerabilities and Exposures --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Common Vulnerabilities and Exposures"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Security and Protective Measures"/> <rdfs:comment>CVE is a list of information security vulnerabilities and exposures that aims to provide common names for publicly known cyber security issues. The goal of CVE is to make it easier to share data across separate vulnerability capabilities (tools, repositories, and services) with this " common enumeration."</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Communication Pathway --> <owl:Class rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Communication Pathway"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Communications"/> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Communications --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont

ologies/apt#Communications">

122

```
<rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Components"/>
</owl:Class>
```

#### <!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Components -->

```
<owl:Class
```

rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Components">

```
<rdfs:subClassOf
```

rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#APT\_Attack"/>

</owl:Class>

#### <!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Compression\_Algorithm -->

```
<owl:Class
```

rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Compression\_Algorithm">

<rdfs:subClassOf

rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Techniques\_and\_Tools"/>

<rdfs:comment>Compression is a reduction in the
number of bits needed to represent data. Compressing data
can save storage capacity, speed file transfer, and
decrease costs for storage hardware and network
bandwidth.</rdfs:comment>

</owl:Class>

#### <!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Compression\_Program -->

#### <owl:Class

rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Compression\_Program">

#### <rdfs:subClassOf

rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Techniques\_and\_Tools"/>

<rdfs:comment>An application which employs one or more Compression Algorithms for the purpose of compressing files or directory structures.</rdfs:comment> </owl:Class>

### < ! - -

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Credit\_Cards -->

```
<owl:Class
```

rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Credit Cards">

```
<rdfs:subClassOf
```

rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Target\_Individuals"/>

```
</owl:Class>
```

#### <!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Criminal Services -->

```
<owl:Class
```

rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Criminal\_Services">

```
<rdfs:subClassOf
```

</own:cra

#### <!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#DDoS\_Attackers -->

```
<owl:Class
```

```
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#DDoS_Attackers">
```

```
<rdfs:subClassOf
```

rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Personnel"/>

<rdfs:comment>Responsible for managing the DDoS attacks that are part of the APT Campaign.</rdfs:comment> </owl:Class>

#### <!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Data\_Evaluators -->

<owl:Class

```
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Data_Evaluators">
```

<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Personnel"/> <rdfs:comment>Personnel who filter through data looking for the information that has value.</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Database Server --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Database Server"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Service"/> <rdfs:comment>Database server is the term used to refer to the back-end system of a database application using client/server architecture. The back-end, sometimes called a database server, performs tasks such as data analysis, storage, data manipulation, archiving, and other non-user specific tasks.</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Defensive Counter Measures --> <owl:Class rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Defensive Counter Measures"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Techniques and Tools"/> <rdfs:comment>Steps taken by APT Organizations to reduce the chance of detection</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Defensive Techniques --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Defensive Techniques">

<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Security and Protective Measures"/> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Defined Path --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Defined Path"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Indicators of Compromise"/> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Delivery Phase --> <owl:Class rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Delivery Phase"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Phases"/> <rdfs:comment xml:lang="en">In the Delivery phase, the APT transmits the weapon to the targeted system (Hutchins et al., 2011). Lockheed Martin identifies the most common delivery methods as email attachments, websites and removable media. In addition to those three, Ask, et.al. (Ask et al., 2013) identified social media as another means for launching at attack against an individual within the target organization. For the attack to move beyond this phase, the targeted individual most click on the link, attachment, or application for the attack to move into the next phase (Auty, 2015).</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Domain Name -->

<owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Domain Name">

```
<rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Indicators of Compromise"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Domain Name Server -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Domain Name Server">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Service"/>
        <rdfs:comment>Domain Name Servers (DNS) are the
Internet' s equivalent of a phone book. They maintain a
directory of domain names and translate them to Internet
Protocol (IP) addresses. This is necessary because,
although domain names are easy for people to remember,
computers or machines, access websites based on IP
addresses.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Downloader -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Downloader">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Malware"/>
        <rdfs:comment>An application that will download and
install other Trojans onto your computer.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Dropper -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Dropper">
```

```
<rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Malware"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Encryption Algorithm -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Encryption Algorithm">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Techniques and Tools"/>
        <rdfs:comment>What we all call Triple DES is EDE
(encrypt, decrypt, encrypt). The way that it works is that
you take three 56-bit keys, and encrypt with K1, decrypt
with K2 and encrypt with K3. There are two-key and three-
key versions. Think of the two-key version as merely one
where K1=K3. Note that if K1=K2=K3, then Triple DES is
really Single DES.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Encryption Program -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Encryption Program">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Techniques and Tools"/>
        <rdfs:comment>Programs designed to encrypt data at
rest (DAR) on a local machine or server.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Exploit Kit -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
```

ologies/apt#Exploit Kit">

```
<rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Malware"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Exploitation Phase -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Exploitation Phase">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Phases"/>
        <rdfs:comment xml:lang="en">Exploitation involves
compromising the host machine on the network. It is where
the weaponized tool is triggered (Hutchins et al., 2011).
The exploitation can be of a flaw in the operating system
or an individual application on the host (Ask et al., 2013;
Hutchins et al., 2011).</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#FTP -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#FTP">
        <owl:equivalentClass</pre>
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#File Transfer Protocol"/>
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#TCP"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Fences -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
```

```
ologies/apt#Fences">
```

```
<rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Personnel"/>
        <rdfs:comment>Converts stolen data into
monev</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#File Transfer Protocol -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#File Transfer Protocol">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Transmission Control Protocol"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Firewall -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Firewall">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Security and Protective Measures"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#For Profit Organization -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#For Profit Organization">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Target Organization"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Forensics Tools -->
```

```
<owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Forensics Tools">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Security and Protective Measures"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Funding -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Funding">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#APT Organization"/>
        <rdfs:comment>Sources of funding for conducting
criminal or espionage activities.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Government Agency or Department -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Government Agency or Department">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Target Organization"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#HTTP -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#HTTP">
        <owl:equivalentClass</pre>
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#HyperText Transfer Protocol"/>
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#TCP"/>
```

</owl:Class>

< ! - -

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#HTTPS -->

</owl:Class>

<!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Hardening\_Techniques -->

<owl:Class

rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Hardening\_Techniques">

<rdfs:subClassOf

rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Techniques\_and\_Tools"/>

<rdfs:comment>hardening is usually the process of securing a system or program by reducing its surface of vulnerability, which is larger when a system performs more functions</rdfs:comment>

</owl:Class>

# <!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#HyperText\_Transfer\_Protocol -->

```
<owl:Class
```

ontologies/apt#Transmission Control Protocol"/>

</owl:Class>

<!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #ICS --> <owl:Class rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#ICS"> <owl:equivalentClass</pre> rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Incident Command System"/> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Target Software"/> <rdfs:comment>The Incident Command System (ICS) is a standardized approach to the command, control, and coordination of emergency response[1] providing a common hierarchy within which responders from multiple agencies can be effective.</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #IOC --> <owl:Class rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#IOC"> <owl:equivalentClass</pre> rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Indicators of Compromise"/> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Security and Protective Measures"/> <rdfs:comment>IOC (indicator of compromise) - a list of threat data (e.g., strings defining file paths or registry keys) which can be used to detect a threat in the infrastructure using automated software-based analysis.</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #IP --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#IP">

```
<rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Indicators of Compromise"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Impersonated Software -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Impersonated Software">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Techniques and Tools"/>
        <rdfs:comment>Malicious software with a name
matching legitimate software on a computer.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Incident Command System -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Incident Command System">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Target Software"/>
        <rdfs:comment>The Incident Command System (ICS) is
a standardized approach to the command, control, and
coordination of emergency response[1] providing a common
hierarchy within which responders from multiple agencies
can be effective.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Indicators of Compromise -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Indicators of Compromise">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Security and Protective Measures"/>
```

<rdfs:comment xml:lang="en">IOC (indicator of compromise) - a list of threat data (e.g., strings defining file paths or registry keys) which can be used to detect a threat in the infrastructure using automated software-based analysis.</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Injection --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Injection"> <owl:equivalentClass</pre> rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Injection File"/> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Techniques and Tools"/> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Injection File --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Injection File"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Techniques and Tools"/> <rdfs:comment>This appears to be a legitimate document in one of many common file formats (DOC, PPT, XLS, PDF, etc.) which contains a payload of malicious code. When the document is opened the code is executed and the host computer is infected.</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Installation Phase --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Installation Phase">

<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Phases"/> <rdfs:comment>The next phase of the attack is the Installation phase. Installation refers to the installation of a Remote Administration Tool (RAT) or backdoor that the APT can use to gain control of the target's computer (Ask et al., 2013; Hutchins et al., 2011). Once the victim triggers the malicious code (e.g. by clicking the malicious link, opening the infected file, or visiting the compromised site, etc.) the code reaches back to its Command and Control (C2) server and provides the attacker with useful information about the target network's environment that could be useful in executing the later stages of the APT attack (Ask et al., 2013). Once installed the RAT can also lay dormant until the C2 server connects to it (Ask et al., 2013; Sikorski & Honig, 2012).</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Installer --> <owl:Class rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Installer"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Malware"/> <rdfs:comment xml:lang="en">A self-extracting, self-installing file that delivers a payload of malicious software to an unsuspecting user's computer.</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Installers --> <owl:Class rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Installers"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Legitimate Applications"/>

<rdfs:comment>Software designed to build installing applications for other programs.</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Intrusion Detection System --> <owl:Class rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Intrusion Detection System"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Security and Protective Measures"/> <rdfs:comment>Intrusion Detection System (IDS) is a type of security management system for computers and networks. An IDS gathers and analyzes information from various areas within a computer or a network to identify possible security breaches, which include both intrusions (attacks from outside the organization) and misuse (attacks from within the organization).</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Intrusion Prevention System --> <owl:Class rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Intrusion Prevention System"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Security and Protective Measures"/> <rdfs:comment>An Intrusion Prevention System (IPS) is a network security/threat prevention technology that examines network traffic flows to detect and prevent vulnerability exploits.</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Keylogger --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Keylogger">

```
<rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Malware"/>
        <rdfs:comment>A keylogger is a type of surveillance
software (considered to be either software or spyware) that
has the capability to record every keystroke you make to a
log file, usually encrypted. A keylogger recorder can
record instant messages, e-mail, and any information you
type at any time using your keyboard.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Legitimate Applications -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Legitimate Applications">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Techniques and Tools"/>
        <rdfs:comment>These are applications that are
developed for legimate and legal purposes.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Legitimate Business Partners -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Legitimate Business Partners">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#APT Organization"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Logic Bomb -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Logic Bomb">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Malware"/>
```

```
<rdfs:comment xml:lang="en">A logic bomb is
malicious code embedded within an application that executes
based on certain events. The logic bomb lies dormant until
that event occurs.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
\#MD5 Hash -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#MD5 Hash">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Indicators of Compromise"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#MUTEX -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#MUTEX">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Indicators of Compromise"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#MaaS -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#MaaS">
        <owl:equivalentClass</pre>
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Malware as a Service"/>
        <owl:equivalentClass</pre>
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#TaaS"/>
        <owl:equivalentClass</pre>
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Trojan as a Service"/>
```

```
<rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Malware"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Mail Server -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Mail Server">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Service"/>
        <rdfs:comment>A mail server (also known as a mail
transfer agent or MTA, a mail transport agent, a mail
router or an Internet mailer) is an application that
receives incoming e-mail from local users (people within
the same domain) and remote senders and forwards outgoing
e-mail for delivery.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Malicious Domain -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Malicious Domain">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Techniques and Tools"/>
        <rdfs:comment>Domains which are registered and
maintained to conduct malicious operations. Usually used to
impersonate legitimate sites but which are designed to
distribute malicious programs to unsuspecting
victims.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Malicious Host -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Malicious Host">
```

```
<rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Techniques and Tools"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Malicious IP -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Malicious IP">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Techniques and Tools"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Malware -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Malware">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Components"/>
        <rdfs:comment xml:lang="en">Malware refers to any
type of malicious software that tries to infect a computer
or mobile device.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Malware Analysis -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Malware Analysis">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Security and Protective Measures"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Malware Packers -->
```

```
<owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Malware Packers">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Personnel"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Malware Testers -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Malware Testers">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Personnel"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Malware as a Service -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Malware as a Service">
        <owl:equivalentClass</pre>
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#TaaS"/>
        <owl:equivalentClass</pre>
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Trojan as a Service"/>
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Malware"/>
        <rdfs:comment>Cybercriminals are increasingly
offering malware as a cloud-based on-demand service. ...
Rather than turning a profit just once by selling a
security exploit as a one-off, authors of malicious
software are now selling malware as a cloud-based
service.</rdfs:comment>
    </owl:Class>
```

<!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Manager --> <owl:Class rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Manager"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Personnel"/> <rdfs:comment>Runs the APT Organization and develops its infrastructure</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Metamorphic --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Metamorphic"> <owl:equivalentClass</pre> rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Polymorphic"/> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Malware"/> <rdfs:comment>This type of malware is constructed in such a manner that is can re-engineer or recode itself (Raj et al., 2014; Sikorski & amp; Honig, 2012). This recoding can take place each time it propagates or is distributed through a network. This type of malware hinders the use of signature-based protection tools (Raj et al., 2014).</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Money Flow Managers --> <owl:Class rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Money Flow Managers"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Personnel"/> </owl:Class>

<!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Motivation --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Motivation"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#APT Organization"/> <rdfs:comment>The Organization&apos;s motivation for conducting their APT attacks.</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Mules --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Mules"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Personnel"/> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #NFP --> <owl:Class rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#NFP"> <owl:equivalentClass</pre> rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Not for Profit"/> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Target Organization"/> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #NGO -->

<sup>144</sup> 

```
<owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#NGO">
        <owl:equivalentClass</pre>
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Non-Government Organization"/>
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Target Organization"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Non-Government Organization -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Non-Government Organization">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Target Organization"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Not for Profit -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Not for Profit">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Target Organization"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#OS Component -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#OS Component">
        <owl:equivalentClass</pre>
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Operating System Component"/>
```

```
<rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Operating System"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#OS Tool -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#OS Tool">
        <owl:equivalentClass</pre>
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Operating System Tool"/>
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Operating System"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
\#Obfuscation -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Obfuscation">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Hardening Techniques"/>
        <rdfs:comment>Obfuscation and its subset, packing,
are techniques used by malware developers to make static
analysis more difficult for the forensics experts (Brand et
al., 2010; Sikorski & amp; Honig, 2012). Obfuscation is a
means of hiding or disguising code (Sikorski & amp; Honig,
2012).</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#On-the-fly-Encryption -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
```

```
ologies/apt#On-the-fly-Encryption">
```

<owl:equivalentClass</pre> rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Real-time Encryption"/> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Legitimate Applications"/> <rdfs:comment>On-the-fly encryption (OTFE), also known as real-time encryption and transparent encryption, is a method used by some disk encryption software. ... In general, every method in which data is transparently encrypted on write and decrypted on read can be called onthe-fly encryption.</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Operating System --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Operating System"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Target Software"/> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Operating System Component --> <owl:Class rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Operating System Component"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Operating System"/> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Operating System Tool --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont

```
ologies/apt#Operating System Tool">
```

```
<rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Operating System"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#POSMalware -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#POSMalware">
        <owl:equivalentClass</pre>
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Point of Sale Malware"/>
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Malware"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Packing -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Packing">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Hardening Techniques"/>
        <rdfs:comment>Obfuscation and its subset, packing,
are techniques used by malware developers to make static
analysis more difficult for the forensics experts (Brand et
al., 2010; Sikorski & amp; Honig, 2012). Obfuscation is a
means of hiding or disguising code (Sikorski & amp; Honig,
2012). Packing uses compression and a wrapping program as a
means of disguising the true purpose of program (Sikorski
& Honig, 2012). Even more challenging for analysts and
malware detection is recursive packaging which obfuscates
```

code in multiple layers of recursive compression (Egele et al., 2012).</red

</owl:Class>

<!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Password\_Recovery -->

```
<owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Password Recovery">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Legitimate Applications"/>
        <rdfs:comment>Password Recovery Software to help
recover lost and forgotten passwords</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Personally Identifiable Information -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Personally Identifiable Information">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Target Individuals"/>
        <rdfs:comment xml:lang="en">Personally Identifiable
Information (PII) is data that can be used to impersonate
someone or used to steal their identity and commit
fraudulent acts while pretending to be that
person.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Personnel -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Personnel">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#APT Organization"/>
        <rdfs:comment>The different skillsets of
individuals working for the group.</rdfs:comment>
    </owl:Class>
    <!--
```

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Phases -->

```
<owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Phases">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#APT Attack"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Phishing -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Phishing">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Techniques and Tools"/>
        <rdfs:comment>the activity of defrauding an online
account holder of financial information by posing as a
legitimate company.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Point of Sale Malware -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Point of Sale Malware">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Malware"/>
        <rdfs:comment xml:lang="en">A Point of Sale Malware
(POSMalware) is designed to attack and exploit POS
systems.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Polymorphic -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
```

```
ologies/apt#Polymorphic">
```

```
<rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Malware"/>
        <rdfs:comment>This type of malware is constructed
in such a manner that is can re-engineer or recode itself
(Raj et al., 2014; Sikorski & amp; Honig, 2012). This
recoding can take place each time it propagates or is
distributed through a network. This type of malware hinders
the use of signature-based protection tools (Raj et al.,
2014).</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Programmers -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Programmers">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Personnel"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Programming Language -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Programming Language">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Target Software"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Protectors -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Protectors">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Hardening Techniques"/>
```

151

<rdfs:comment>Obfuscation and its subset, packing, are techniques used by malware developers to make static analysis more difficult for the forensics experts (Brand et al., 2010; Sikorski & Honig, 2012). Packing uses compression and a wrapping program as a means of disguising the true purpose of program (Sikorski & Honig, 2012). Even more challenging for analysts and malware detection is recursive packaging which obfuscates code in multiple layers of recursive compression (Egele et al., 2012).

</owl:Class>

### <!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Protocol -->

# <owl:Class

rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Protocol">

<rdfs:comment xml:lang="en">A protocol defines rules and conventions for communication between network devices.</rdfs:comment>

</owl:Class>

### <!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Ransomware -->

#### <owl:Class</pre>

rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Ransomware">

## <rdfs:subClassOf

rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Malware"/>

### <!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Real-time\_Encryption -->

### <owl:Class

rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Real-time Encryption"> <rdfs:subClassOf

</owl:Class>

<!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Reconnaissance Phase -->

<owl:Class

rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Reconnaissance\_Phase">

<rdfs:subClassOf

rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Phases"/>

<rdfs:comment xml:lang="en">Reconnaissance is the selection and identification of the desired target. In this stage the APT is footprinting the target organization and collecting information including but not limited to names, positions, email addresses, physical locations, operating systems, etc. (Hutchins et al., 2011). Through this information gathering process the APT determines who has ownership of the desired information that they seek to steal (2013). The APT will determine which employee to compromise as well as a potential means for doing so.</rdfs:comment>

</owl:Class>

## <!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Recruiters -->

<owl:Class

rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Recruiters">

### <rdfs:subClassOf

rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Personnel"/>

<rdfs:comment>Find individuals with the talents
need to complete a specific task or develop a specific
component of the APT Attack.</rdfs:comment>

```
</owl:Class>
```

<!--

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Recursive Packaging -->

```
<owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Recursive Packaging">
```

```
<rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Hardening_Techniques"/>
```

<rdfs:comment>Obfuscation and its subset, packing, are techniques used by malware developers to make static analysis more difficult for the forensics experts (Brand et al., 2010; Sikorski & Honig, 2012). Obfuscation is a means of hiding or disguising code (Sikorski & Honig, 2012). Packing uses compression and a wrapping program as a means of disguising the true purpose of program (Sikorski & Honig, 2012). Even more challenging for analysts and malware detection is recursive packaging which obfuscates code in multiple layers of recursive compression (Egele et al., 2012).

</owl:Class>

```
<!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Registry Key -->
```

```
<!--
```

http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Remote Access Toolkit -->

```
<owl:Class
```

rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Remote\_Access\_Toolkit">

```
<owl:equivalentClass</pre>
```

```
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Remote_Access_Trojan"/>
```

```
<owl:equivalentClass</pre>
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Remote Administration Toolkit"/>
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Malware"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Remote Access Trojan -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Remote Access Trojan">
        <owl:equivalentClass</pre>
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Remote Administration Toolkit"/>
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Malware"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Remote Administration Toolkit -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Remote Administration Toolkit">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Malware"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Rootkit -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Rootkit">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Malware"/>
        <rdfs:comment xml:lang="en">A rootkit is the
combination of programs designed to infect your computer
```

```
without being detected. Your antivirus application
communicates with your operating system to identify
threats. However, rootkits breaks down this communication
process.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#SFTP -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#SFTP">
        <owl:equivalentClass</pre>
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Secure File Transfer Protocol"/>
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#TCP"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#SHA1 Hash -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#SHA1 Hash">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Indicators of Compromise"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
\#SHA256 Hash -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#SHA256 Hash">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Indicators of Compromise"/>
    </owl:Class>
```

```
<!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#SSH -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#SSH">
        <owl:equivalentClass</pre>
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Secure Shell Protocol"/>
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#TCP"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Secure File Transfer Protocol -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Secure File Transfer Protocol">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Transmission Control Protocol"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Secure HyperText Transfer Protocol -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Secure HyperText Transfer Protocol">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Transmission Control Protocol"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Secure Shell Protocol -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Secure Shell Protocol">
```

<rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Transmission Control Protocol"/> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Security Firm --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Security Firm"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Security and Protective Measures"/> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Security and Protective Measures --> <owl:Class rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Security and Protective Measures"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#APT Attack"/> <rdfs:comment xml:lang="en">Tools and techniques that cybersecurity professionals can use to protect networks and systems against various hacking attacks including elements of APT Attacks.</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Security as a Service --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Security as a Service"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Security and Protective Measures"/> <rdfs:comment xml:lang="en">Security-as-a-service (SaaS) is an outsourcing model for security management. Typically, Security as a Service involves applications such as anti-virus software delivered over the Internet but the

```
term can also refer to security management provided in-
house by an external organization.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Service -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Service">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Target Software"/>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Service Renters -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Service Renters">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Personnel"/>
        <rdfs:comment>A person who acts on the
organization' s behalf to secure
services.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Signed Certificate -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Signed Certificate">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Indicators of Compromise"/>
    </owl:Class>
    <!--
```

```
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Social Engineering -->
```

```
<owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Social Engineering">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Techniques and Tools"/>
        <rdfs:comment>Social engineering is an attack
vector that relies heavily on human interaction and often
involves tricking people into breaking normal security
procedures.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Social Engineers -->
    <owl:Class</pre>
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Social Engineers">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Personnel"/>
        <rdfs:comment>Individuals who specialize in
conducting social engineering campaigns</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Spam Distributors -->
    <owl:Class
rdf:about="http://www.semanticweb.org/coreythomasholzer/ont
ologies/apt#Spam Distributors">
        <rdfs:subClassOf
rdf:resource="http://www.semanticweb.org/coreythomasholzer/
ontologies/apt#Personnel"/>
        <rdfs:comment>Personnel who distribute spam
messages to targeted individuals or groups of
individuals.</rdfs:comment>
    </owl:Class>
    <!--
http://www.semanticweb.org/coreythomasholzer/ontologies/apt
#Spearphishing -->
```

<owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Spearphishing"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Phishing"/> <rdfs:comment>Spear phishing is an email that appears to be from an individual or business that you know. But it isn't. It's from the same criminal hackers who want your credit card and bank account numbers, passwords, and the financial information on your PC.</rdfs:comment> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Sponsor State --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Sponsor State"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#APT Organization"/> </owl:Class> <!-http://www.semanticweb.org/coreythomasholzer/ontologies/apt #Spyware --> <owl:Class</pre> rdf:about="http://www.semanticweb.org/coreythomasholzer/ont ologies/apt#Spyware"> <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/coreythomasholzer/ ontologies/apt#Malware"/> <rdfs:comment xml:lang="en">Spyware is installed on a machine without the user's awareness or consent. Spyware attempts to gather specific user information and send it to a third party.</rdfs:comment> </owl:Class>

# VITA

# Corey T. Holzer Graduate School, Purdue University

# Education

2009 - MS, Networking and Communications Management, Keller Graduate School of Management, Downers Grove, IL

2009 - MBA, Information Security Management, Keller Graduate School of Management, Downers Grove, IL

1994 - MA, Government and Politics, St. John's University, Jamaica NY

1992 - BA, Government and Politics, St. John's University, Jamaica NY

# **Military Education**

- 2009 Captain's Career Course (Signal), Fort Gordon, GA
- 2007 Basic Officer's Leader Course III, Fort Gordon, GA
- 2006 Basic Officer's Leader Course II, Fort Benning, GA
- 2006 Basic Officer's Leader Course I (Officer Candidate School), Fort Benning, GA

## Certifications

- 2016 Certified Ethical Hacking, EC Council
- 2014 Security+ ce, CompTIA
- 2014 Certified Information Systems Security Professional, (ISC)<sup>2</sup>

### **Publications**

Accepted - Employing Link Analysis for the Improvement of Threat Intelligence Regarding Advanced Persistent Threats, Holzer, Dietz, and Yang

# Presentations

2016 - Guest Speaker - CERIAS Security Seminar - The Application of Natural Language Processing to Open Source Intelligence for Ontology Development in the Advanced Persistent Threat Domain, Holzer

2016 - IEEE Homeland Security and Technology - The Ethics of Hacking Back, Holzer and Lerums

2016 - CERIAS Symposium - Using Link Analysis to Improve Advanced Persistent Threat Intelligence and Detection, Holzer

2015 - CERIAS Symposium - Assessing Risk and Cyber Resiliency, Holzer and Merritt

# **Military Experience**

2015-2016 - Student, US Army Student Detachment, West Lafayette, IN
2012-2014 - Network Branch Deputy Chief, Capabilities Development and Integration Directorate, Fort Sill, OK
2010-2012 - Company Commander, 507th Signal Company, Fort Wainwright, AK
2010 - Alaska Regional Network Operations and Security Center Officer-in-Charge, Joint Base Elmendorf-Richardson, AK
2008-2009 - Battalion Communications Officer-in-Charge, 2/320 FAR, Balad, Iraq and Fort Campbell, KY
2008 - Battalion Communications Officer-in-Charge, 1-101 STB, Tikrit, Iraq
2007-2008 - Signal Platoon Leader, C Company, Fort Campbell, KY and Tikrit, Iraq

# **Personal Awards**

Meritorious Service Medal Army Commendation Medal (3 Awards) Overseas Service Ribbon (2 Awards)

### **Work Experience**

2004-2006 - Systems Administrator, MCSP, Inc., Winter Haven, FL
2000-2004 - Manager of Internet Technologies, J. Walter Thompson, New York, NY
1997-2000 - Network Administrator, Organization Resources Counselors, New York, NY
1996-1997 - Helpdesk Technician, World Wrestling Federation, Stanford, CT
1992-1995 - PROFS Administrator, Donovan Data Systems, New York, NY