
CERIAS Tech Report 2016-6
Computational Environment for Modeling

 and Analysing Network Traffic Behaviour using the Divide and Recombine Framework
 by Ashrith Barthur

Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Graduate School Form
30 Updated 12/26/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
 Head of the Departmental Graduate Program Date

Ashrith Barthur

COMPUTATIONAL ENVIRONMENT FOR MODELING AND ANALYSING
NETWORK TRAFFIC BEHAVIOUR USING THE DIVIDE AND RECOMBINE FRAMEWORK

Doctor of Philosophy

William S. Cleveland
Chair

J. Eric Dietz

Bowei Xi

Eugene H. Spafford

William S. Cleveland

Eugene H. Spafford 10/4/2016

COMPUTATIONAL ENVIRONMENT FOR MODELING AND ANALYSING

NETWORK TRAFFIC BEHAVIOUR USING THE DIVIDE AND RECOMBINE

FRAMEWORK

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Ashrith Barthur

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2016

Purdue University

West Lafayette, Indiana

ii

“When mountain-climbing is made too easy, the spiritual effect the mountain

exercises vanishes into the air.”

— D.T. Suzuki, The Training of the Zen Buddhist Monk

iii

Dedicated to life-experience, the greatest Guru.

And every being that has been a part of this experience.

iv

ACKNOWLEDGMENTS

The work of the scientific research community has been foundational in my

research study, therefore my foremost acknowledgement goes to them.

I will always be indebted to three people: Dr. Victor Raskin, Dr. Gita

Ramaswamy, and Dr. Sonny Ramaswamy; who very meticulously channeled my

curiosity and love for research towards academic research.

My time in West Lafayette would be uneventful if not for my friends and

fellows members of the tea club: Arnab, Venkatesh (Nathan), Himanshu, Parijath,

Shekar, Saumitra, and Sambit. The extended discussions in the field of physics,

politics, religion, tea, etc. have shaped my work and personality. I will always be

grateful for making all-nighters exciting, and Indiana winters inspiring.

I am beholden to my friends Preeti and Sarath; who have supported me

through tough times with knowledge and advice.

Due regards to my cousins, Sitaram and Rupali, who have been my support

structure for the last nine years.

My thesis and, by extension, my research would not be done if not for the

support of Saptarshi and Yotam. Their expert proof reading capabilities kept the

draft versions to a minimum, and their advice made the thesis wholesome.

Adam, Doug, Keith, and Mike, thank you for putting up with the most

unusual requests. Eleventh hour poster printing, CAT6 cable crimping, migrating

tera-bytes of data across campus, and simulating a Botnet should definitely classify

as unusual.

It would be fair to say that without John Gerth’s support I would probably

not have access to interesting datasets. I will always be grateful to him for

providing me effective advice on code and algorithm design.

v

I owe much of my success with thesis completion to Marlene Walls. Her

assistance with the administrative maze has been immeasurable. Her lasting advice

on perfection reminds me of a quote by Margaret Atwood, “If I waited for

perfection... I would never write a word.”

Akhila, Ma, and Pa, thank you for your patience. This is as much yours as it

is mine.

I would like to thank my thesis committee for their unyielding support and

insightful comments. Dr. Xi, thank you for the challenges, I would have learnt little

if not for them. Dr. Dietz, thank you for reminding me that milestones matter as

much as the end result. Dr. Spafford, I will always remember that the right

question matters, sometimes much more than the answer itself.

Finally, I would like to thank my advisor, Dr. William S. Cleveland. His

commitment to guide students is unwavering and unmatched. His dedication to

research is one-of-a-kind. As I look back at my time at Purdue, I realise that I have

naturally absorbed his philosophy of data analysis and data visualization. I am

eternally grateful to him, for his guidance and advice; and his strive for perfection.

vi

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xi

CHAPTER 1. INTRODUCTION . 1

CHAPTER 2. SPAMHAUS . 3

2.1 Malicious Host Classification . 4

2.2 Block Lists . 4

2.2.1 Block List Family Classification 4

2.2.2 Sub-classification of Block List Families 5

2.2.3 Block List Family by IP Address 5

2.2.3.1 Spamhaus Block List (SBL) 5

2.2.3.2 Spamhaus Block List Composite Snowshoe Spam (CSS) 5

2.2.3.3 Exploit Block List (XBL) 6

2.2.3.4 Policy Block List (PBL) 6

2.2.4 Block List Family by DNS Address 7

2.2.4.1 Domain Block List (DBL) - Spamming Domains . . 7

2.2.4.2 Domain Block List (DBL) - Spam Redirection . . . 7

2.2.5 Spamhaus Block Listing Period 8

2.2.6 Spamhaus Response Design 8

2.3 Spamhaus Data . 9

2.4 Spamhaus Data Collection . 10

2.4.1 Spamhaus Data Processing Tools 10

2.4.2 Spamhaus Data Processing 12

2.5 Spamhaus Analytical Cluster . 13

2.6 Spamhaus Dataset Variable Selection 15

2.6.1 OSI Data Link Layer, Ethernet Protocol Fields 15

2.6.2 OSI Network Layer, IP Protocol Fields 15

2.6.3 OSI Transport Layer, UDP Protocol Fields 17

2.6.4 OSI Application Layer, DNS Protocol Fields 17

2.6.5 Question, Answer, Authoritative, and Additional Sections . 20

2.6.6 Time Stamp . 21

2.7 Packet Data Collection and Dataset Optimization 21

2.8 Data Structure Design . 22

vii

Page

CHAPTER 3. DIVIDE & RECOMBINE FRAMEWORK 27

3.1 Division Procedures . 29

3.1.1 Conditioning Variable Division by Time 29

3.1.2 Conditioning Variable Division by Queried Host 30

3.1.3 Conditioning Variable Division by Blacklisted Queried Host 31

3.1.4 Replicate Division . 31

3.2 Recombination Procedures . 32

3.2.1 Statistic Recombination . 32

3.2.2 Visual Recombination . 32

3.2.3 Analytic Recombination . 34

3.3 D&R Computational Environment 34

3.3.1 R Interactive Front-End . 35

3.3.2 Tessera (RHIPE) . 35

3.3.3 Hadoop . 36

3.4 D&R Environment Implementation 37

CHAPTER 4. SPAMHAUS DATA - GENERIC ANALYSIS 39

4.1 Generic Query Analysis . 40

4.2 Blacklisted Host Query Analysis . 42

CHAPTER 5. SPAMHAUS MARKED POINT PROCESS ANALYSIS . . . 49

5.1 Representative Sample Analysis . 49

5.1.1 On-Off Event Analysis with Representative Sample 51

5.2 Queried Host On-Off Event Interval Analysis 53

5.2.1 On-Off and Query Relation Analysis 54

5.2.2 On-Off and Query Relation Analysis - Spam Queries Only . 57

5.3 Event Run Analysis . 59

5.3.1 On Event Run Analysis . 59

5.3.2 Fixed Sized Query Run Analysis 62

CHAPTER 6. CONCLUSION . 66

CHAPTER 7. SPAMHAUS COLLECTION SUMMARY STATISTICS . . . 69

7.1 Spamhaus Collection Summary Statistics - 6 Weeks 69

7.2 Spamhaus Collection Summary Statistics - 31 Weeks 70

LIST OF REFERENCES . 71

VITA . 74

viii

LIST OF TABLES

Table	 Page

2.1	 Spamhaus Collection Summary Statistics (Barthur, Ashrith and Cleveland,

William S. and Gerth, John, 2014) . 26

7.1	 Spamhaus Collection Summary Statistics (Barthur, Ashrith and Cleveland,

William S. and Gerth, John, 2014) . 69

7.2	 Spamhaus Collection Summary Statistics (Barthur, Ashrith and Cleveland,

William S. and Gerth, John, 2015) . 70

ix

LIST OF FIGURES

Figure	 Page

2.1 Querying Spamhaus server . 9

2.2 Spamhaus server response . 9

2.3 Ethernet Frame Header (Postel, Jon, 1984) 16

2.4 IP Packet Header (Postel, Jon, 1981) 16

2.5 UDP Datagram Header (Postel, Jon, 1980) 18

2.6 DNS Header (Mockapetris, Paul, 1987) 19

3.1 D&R Framework (TesseraIO Research Group, 2015) 28

3.2 Quantile-quantile plot of blacklist query counts 33

3.3 D&R components . 35

4.1 Quantile - quantile plot of log2 number of queries by querying hosts . 40

4.2	 Quantile - quantile plot of log2 number of queries of queried hosts . . 41

4.3	 Quantile - quantile plot of log2 number of queries of querying hosts . . 43

4.4	 Quantile - quantile plot of log2 number of blacklisted queries of querying

hosts . 44

4.5	 Normal Quantile - quantile plot of logit2 blacklist query fractions . . . 45

4.6	 Uniform Quantile - quantile plot of logit2 blacklist query fractions . . 46

4.7	 Quantile - quantile plot of log2 number of queries per second 47

4.8	 Quantile - quantile plot of log2 number of blacklist queries per second 48

5.1	 Normalized query time vs. number of events 50

5.2	 Event Duration vs. Event Number . 51

5.3	 Uniform Quantile Plot of Off Event Duration 52

5.4	 Uniform Quantile Plot of On Event Duration 52

5.5	 Normal Quantile Plot of Off Event Duration 52

5.6	 Normal Quantile Plot of On Event Duration 52

x

Figure	 Page

5.7	 Quantile - quantile plot of log2 number of most queried hosts 54

5.8	 Log2 On-Off intervals per day vs. Log2 number of queries per day . . 55

5.9	 Quantile - quantile plot of slope of linear robust regression 56

5.10 Log2 On-Off intervals per day vs. Log2 number of queries per day for

spam only . 57

5.11 Quantile - quantile plot of slope of linear robust regression for spam only 58

5.12 Quantile-quantile plot of log2 number of queries in an On event run . 60

5.13 Empirical Probability vs. Estimated Model Probability 61

5.14 Quantile - quantile plot of estimated model probability 61

5.15 Number of Blacklist Queries vs. Run Index Number 62

5.16 Quantile - quantile plot of blacklist queries in 256 query intervals . . . 63

5.17 Fraction of Blacklist and Binomial Distribution vs.	 Number of Blacklisted

queries in an Interval of size 256 . 64

5.18 Fraction of Blacklist and Binomial Distribution vs.	 Number of Blacklisted

queries in an Interval of size 128 . 64

5.19 Fraction of Blacklist and Binomial Distribution vs.	 Number of Blacklisted

queries in an Interval of size 64 . 64

5.20 Fraction of Blacklist and Binomial Distribution vs.	 Number of Blacklisted

queries in an Interval of size 32 . 64

5.21 Fraction of Blacklist and Binomial Distribution vs.	 Number of Blacklisted

queries in an Interval of size 16 . 65

xi

ABSTRACT

Barthur, Ashrith Ph.D., Purdue University, December 2016. Computational
Environment for Modeling and Analysing Network Traffic Behaviour Using the
Divide and Recombine Framework. Major Professor: William S. Cleveland.

There are two essential goals of this research. The first goal is to design and

construct a computational environment that is used for studying large and complex

datasets in the cybersecurity domain. The second goal is to analyse the Spamhaus

blacklist query dataset which includes uncovering the properties of blacklisted hosts

and understanding the nature of blacklisted hosts over time.

The analytical environment enables deep analysis of very large and complex

datasets by exploiting the divide and recombine framework. The capability to

analyse data in depth enables one to go beyond just summary statistics in research.

This deep analysis is at the highest level of granularity without any compromise on

the size of the data.

The environment is also, fully capable of processing the raw data into a data

structure suited for analysis.

Spamhaus is an organisation that identifies malicious hosts on the Internet.

Information about malicious hosts are stored in a distributed database by

Spamhaus and served through the DNS protocol query-response. Spamhaus and

other malicious-host-blacklisting organisations have replaced smaller malicious host

databases curated independently by multiple organisations for their internal needs.

Spamhaus services are popular due to their free access, exhaustive information,

historical information, simple DNS based implementation, and reliability. The

malicious host information obtained from these databases are used in the first step

of weeding out potentially harmful hosts on the internet.

xii

During the course of this research work a detailed packet-level analysis was

carried out on the Spamhaus blacklist data. It was observed that the

query-responses displayed some peculiar behaviours. These anomalies were studied

and modeled, and identified to be showing definite patterns. These patterns are

empirical proof of a systemic or statistical phenomenon.

1

CHAPTER 1. INTRODUCTION

Domain Name System or DNS is a vital protocol for the operation of the

internet. DNS makes it easy for users to connect to services across the internet

using “domain names,” which are made up of names, numbers, words, and phrases

which can be easily recalled by users.

DNS is a large, distributed database across the internet. It maps an easily

recallable domain name to IP address - which is the actual identifier needed to reach

a host and its service. However, IP addresses are difficult to remember due to their

complicated structure. This problem is solved by DNS which maps IP addresses to

easily recallable domain names.

DNS is also used for purposes other than domain name translation; these

include:

1.	 DNSSEC is a certification service that runs on DNS. It verifies the identity of

a host using certificates.

2.	 DNS is used to blackhole known malicious domain requests, thus containing

software infections.

3.	 DNS is used as a communication protocol to provide information about

malicious hosts.

DNS serves the users of the internet in multiple ways, thus making it a vital

protocol for the operation of the internet.

In this research, Spamhaus query blacklist information is studied. This

blacklist information contains the identities of malicious hosts. The information is

provided as part of a query response process; interested hosts query Spamhaus

servers requesting records of malicious activities of specific hosts. This service is

2

studied in depth to identify peculiar behaviours. These behaviours are studied and

modeled to understand the underlying phenomenon.

Spamhaus is the largest malicious host information provider on the internet.

The data for the analysis of this thesis work is collected at the Spamhaus mirror

server installed at the Department of Computer Science at Stanford University. Raw

DNS data which contain information about malicious hosts, are collected as queries

and responses. These query and response transactions occur between querying hosts

and the Spamhaus server. The data is prepared by removing corrupt and incomplete

records for an accurate analysis. The refined data is reconstructed into a carefully

defined data structure that is robust and enables different types of data analyses.

The analytical environment for deep, complex analysis in cybersecurity is

constantly evolving. A large part of this evolution can be attributed to past

research. The past research includes:

1. SSH based key stroke analysis

2. SSH based inside host detection

3. ICMP ping trace study

4. Root DNS query response study

This analytical environment contains a comprehensive toolset for analysing

packets of different network protocols. It uses R as its analytical language, Hadoop

as its data store and processing engine, and Tessera (formerly known as RHIPE) as

its analytical framework. The environment is named BoHD - Built on HaDoop and

has been implemented at the Center for Education and Research in Information

Assurance and Security (CERIAS) at Purdue University.

3

CHAPTER 2. SPAMHAUS

Spamhaus is an organisation that provides malicious host information to a

requesting entity - host or user. The information provided is a detailed host

malicious activity report, and is structured and stored on a distributed

infrastructure. Both the request for information and the information itself are

transmitted between the requesting host and Spamhaus servers by encapsulating

them in the DNS protocol query-response packet. All this information is served

from the largest, distributed DNS server infrastructure in the world (The Spamhaus

Project Limited, 2014).

The malicious host information service provided by Spamhaus and similar

operators is known as a DNS Block List (DNSBL).

DNSBL services from Spamhaus and other providers have replaced the

similar but smaller databases curated independently by multiple organisations for

their internal needs. These services are also popular due to their free access,

exhaustive information, historical information, simple DNS based implementation,

and reliability. The malicious host information obtained from these databases are

used in the first step of weeding out potentially harmful hosts on the internet.

The DNSBL service has replaced a previously existing BGP-based network

route black holing approach known as Route Block List, or RBL, which proved less

effective (Levine, John, 2010). In particular, the RBL mechanism was inexact as it

prevented all communication with the autonomous system (AS) of a malicious host,

even when the AS had other non-malicious hosts in it (Vixie, Paul, 2000). In

DNSBL, by contrast, blacklist information is transferred over the DNS protocol.

Using this information requesting hosts block each malicious host individually,

without affecting the communication with other non-malicious hosts. The ability to

4

selectively block a malicious host makes DNSBL the preferred method to prevent

spam.

2.1 Malicious Host Classification

Hosts in the Spamhaus database are classified as listed and unlisted hosts.

Hosts, that are recorded in the Spamhaus database for their malicious activities are

classified as listed hosts. While hosts that do not have any record of their malicious

activities in the Spamhaus database are classified as unlisted.

2.2 Block Lists

A listed host in the Spamhaus database will be further classified based on its

malicious activities.

A host in the Spamhaus database, whether listed or unlisted is identified by

its IP address or domain name. Spamhaus uses these two unique identifiers in order

to classify hosts.

2.2.1 Block List Family Classification

IP addresses and domain addresses are associated differently with end hosts.

Studying Spamhaus responses requires Spamhaus query-responses and their

corresponding host IP or domain addresses. IP addresses are associated with an end

host for a certain period of time. While, domain addresses, could be associated with

a single end host for a given period of time, or multiple end hosts at the same time

(Brisco, Thomas, 1995). Therefore, the data is separated into two different families

by the unique identifiers - IP and domain addresses.

This research focuses only on the host family identified by IP addresses.

5

2.2.2 Sub-classification of Block List Families

The listed hosts in the IP and domain address families are further classified

into classes, where each class identifies a specific malicious behaviour. A host could

be listed across multiple classes within a family.

2.2.3 Block List Family by IP Address

The block list family by IP address is divided into four different classes.

They are:

2.2.3.1 Spamhaus Block List (SBL)

Spamhaus Block List is the primary class of malicious behaviour identified

by Spamhaus.

The Spamhaus Block List is a database of IP addresses. These IP addresses

are associated with hosts which are considered responsible for spam, and Spamhaus

recommends the querying host to not accept any email from these hosts (Spamhaus,

2016e). This information helps email servers weed out unsolicited, potentially

harmful email. SBL, identifies large scale commercial spam operations, spam gangs,

and spam organisations. It records spam-friendly internet service providers (ISP),

and IP blocks and botnets that are used for spamming. This also includes DNS and

email services that support spam.

2.2.3.2 Spamhaus Block List Composite Snowshoe Spam (CSS)

Composite Snowshoe Spam identifies IP addresses of commercial spamming

operations that use multiple techniques to keep a light spamming footprint and

avoid detection by spam sensors.

CSS detection is targeted at spam operators who typically use a smaller

block of IP addresses distributed across multiple IP blocks. They send emails using

6

legitimate-looking domain names generated by using domain generated algorithms.

They do not operate as a bulk spammer and send out small number of spam mails

to avoid any spam sensor triggers.

Spam operators use small sets of hosts and IP address blocks that are served

by a small pool of domain names in a round-robin fashion to send spam. They use a

common mail template to send out spam. These spam messages have nothing in

common with the domain names that are mailing them.

2.2.3.3 Exploit Block List (XBL)

The XBL is similar to SBL. It is a database that enlists the IP addresses of

hosts that have been compromised, and are infected with exploits. These exploits

enable the compromised hosts to be used for nefarious purposes, such as, open

proxies, built-in spamming engines, email address harvesting, and for further

propagating the exploits by finding and infecting newer hosts (Spamhaus, 2016a).

The XBL gets its data from many different sources, primarily from the Composite

Block List (CBL) that is managed by www.abuseat.org (Spamhaus, 2016a).

2.2.3.4 Policy Block List (PBL)

PBL identifies end-host IP address ranges which serve as mail transfer agents

(MTA) and send out unauthenticated messages.

Sending out unauthenticated email is treated as non-compliance with ISP’s

acceptable usage policy and hence identified as a policy violation. End hosts that

violate the acceptable usage policy are recorded in the PBL (Spamhaus, 2016d).

Some ISPs collaborate with Spamhaus and proactively contribute to the PBL by

adding end host IP addresses in their own networks which violate terms of

acceptable usage. There are also ISP networks on the internet that do not

self-police. In these situations, Spamhaus identifies and records the IP addresses of

www.abuseat.org

7

policy violators by observing spam, botnet and unauthenticated mail traffic from

these networks (Spamhaus, 2016d).

Differentiating between violations identified by ISPs and Spamhaus is key to

studying Spamhaus’s response behaviour in detail. Policy violations are therefore

further divided into two subclasses, violations identified by ISPs and those identified

by Spamhaus.

2.2.4 Block List Family by DNS Address

The block list family by DNS address is divided into two classes. They are:

2.2.4.1 Domain Block List (DBL) - Spamming Domains

The DBL is a database of domain addresses responsible for spamming. These

domain addresses are linked to spamming payloads or could be used as a spamming

domains. The domains could also belong to spamming gangs, or commercial

spamming operations and be hosting viruses, trojans and worms, etc. that help

exploit hosts (Spamhaus, 2016b).

Malicious domains listed in the DBL are used in multiple ways. For example,

domains might be used to send out emails or be embedded in the body of a spam

message, thus exploiting an end-user by click baiting.

2.2.4.2 Domain Block List (DBL) - Spam Redirection

Spam redirector domains are legitimate but compromised domains that are

used to redirect an innocent user or host to a phishing, malware or spamming

website (Spamhaus, 2016c).

Spam redirector domains are exploited due to a vulnerability in their web

hosting, or internet-facing software. Using this exploit the host is repurposed to

redirect every visitor to a malicious website.

8

2.2.5 Spamhaus Block Listing Period

Malicious hosts are listed on Spamhaus databases for various intervals of

time. While the IP address of a spamming host is listed for at least six months, IP

address blocks of organised spammers could be listed for several years. Spammers

who are detected by CSS are listed for shorter periods - 2 to 3 days, primarily due

to their transient behaviour (Spamhaus, 2016f).

The DBL in which malicious domain addresses are listed is recreated every

sixty seconds. This is done to accommodate domain churns (Spamhaus, 2016c).

2.2.6 Spamhaus Response Design

The DNSBL uses DNS protocol for transferring information between clients

and servers. All the information passed to clients are encoded as DNS messages.

A DNSBL reply with an A record (address record) is a confirmation that the

queried IP address exists in the database. If the DNSBL replies with a

NXDOMAIN, or non-existent domain, then the queried IP address does not exist in

the database.

The DNSBL uses 127.0.0.0/8 IP addresses to encode block list responses.

This IP address block is chosen so that any client that misinterprets these IP

addresses as connectable IP address connects only to the local host and does not

generate any network traffic (Levine, John, 2010; Krochmal and Cheshire, 2015).

Figure 2.6.5 illustrates a typical query to a Spamhaus server. Here, the client

is querying the Spamhaus server for information about a host with the IP address

127.0.0.2 using the dig tool. The queried IP address, 127.0.0.2 is reversed and

appended to the Spamhaus server’s domain address - sbl.spamhaus.org. 1 2 3

1127.0.0.2 is not an IP address of a real host on the internet and is used by clients to test
connectivity to the Spamhaus server.

2The -t flag in the dig tool specifics the type of response requested by the client, and here the client

requests for an IP address.

3The flag +short keeps the Spamhaus response short.

http:sbl.spamhaus.org

9

$ dig -t A 2.0.0.127.sbl.spamhaus.org +short

Figure 2.1.: Querying Spamhaus server

Figure 2.6.5 is the Spamhaus response for the query in figure 2.6.5. Here,

Spamhaus has identified the queried host as malicious and has replied with

127.0.0.2, which is the encoded message from DNSBL for any host found in the

spam block list.

127.0.0.2

Figure 2.2.: Spamhaus server response

2.3 Spamhaus Data

The Spamhaus query-response data forms the basis of this research study. It

is a collection of client queries and their associated Spamhaus server responses. The

queries contain IP addresses of hosts suspected to be malicious. Spamming,

distributing malware, and violating ISP policies are activities that are considered

malicious by Spamhaus.

The response from Spamhaus informs the querying host if the queried host

IP address is listed in the block list. If the response is encoded as an 127.0.0.0/8

IP address then the queried host is listed in the block list and identified as malicious

(Krochmal and Cheshire, 2015). If the response is empty with the response code as

NXDOMAIN, then the IP address is unlisted in the block list.

http:A2.0.0.127.sbl.spamhaus.org

10

Every queried host IP address has a corresponding state - listed (malicious)

or unlisted (non-malicious/unidentified). By collecting the Spamhaus data for

around nine months the changes in the state of a host are studied.

The collected dataset builds relations between the querying and queried

hosts across the collection time using the state of the queried hosts. This provides

an insight into querying behaviour and the malicious behaviour of hosts.

2.4 Spamhaus Data Collection

The Spamhaus data was collected at the Department of Computer Science at

Stanford University. It was collected at the department’s gateway by selectively

capturing only UDP DNS traffic packets that were sent to and from the Spamhaus

mirror situated in the department’s network.

The packets were collected by a customized version of TCPDump (John

Gerth, 2011; TCPDump Working Group, 2014b); captured packets were stored in

their native, binary format in pcap files (TCPDump Working Group, 2014a). Each

pcap file was limited to 1 million packets, thus ensuring easy file handling and

distribution. These files were then compressed and moved to an analytical cluster at

the Center for Education and Research in Information Assurance and Security

(CERIAS) at Purdue University for further processing.

2.4.1 Spamhaus Data Processing Tools

A set of tools streamline the Spamhaus data processing. Three applications,

and a custom library together form this set of tools.

The Perl DNS packet processing program is the first that was developed to

process Spamhaus data. This program can be used to process Spamhaus and other

generic DNS traffic. It is designed to handle the extensibility of a DNS packet using

resource records (RR) (Mockapetris, Paul, 1987).

11

Datasets that are extendible are worrisome due to their variable size. The

Perl program handles this concern by identifying and marking logical break points

in the data.

For example, resource record (RR) is the data structure used in DNS to

provide responses. A sample DNS packet could have N number of Answer resource

records4 and M number of Authoritative resource records5. This variability in size

creates confusion when designing an analytical data structure for the DNS packet.

To accommodate this variability, the Perl code recognises that each section -

Query6, Answer, Authoritative, and Additional7 always exist in a DNS packet but

have a variable number of resource records in them, including times when sections

have no resource records. The program recognises and outputs these four sections as

separate subsections of data with each section having fixed sized resource records.

The Python dpkt packet processing library is adopted for processing

Spamhaus DNS packets. This library is customized to support a higher number of

decimal spaces in the timestamp; thereby providing an improved level of accuracy

for analysis.

The DNS packet processing program is built upon the customized dpkt

packet library (Barthur, Ashrith, 2014), which decapsulates the raw packet. The

decapsulation process separates out the ethernet, IP, UDP and the DNS layers in

the packet and extracts specific fields from these layers. For example, the requesting

host IP address from the IP layer. Further, the program extracts these fields,

converts them from a binary encoding to text, and writes them out to files which

are used for reading into the R programming framework.

4Answer section in a DNS packet contains the actual DNS answer to the query while other sections
would contain the query, the authorized server and additional server information(Mockapetris, Paul,
1987).This could be an IP address, mail server domain, etc. The Spamhaus response is contained in
the answer section of the DNS packet.
5Authoritative section in a DNS packet contains information about the server that is replying to the
query - the server that is authorized to reply to queries.
6Query section in a DNS packet contains a copy of the original query sent to the DNS server.
7The additional section contains any additional information, IP addresses, domain addresses, etc.
that support the data in the answer section.

12

The DNS layer decapsulation breaks down the entire DNS packet and

exposes the entire DNS layer - DNS header, question, answer, authoritative, and

additional sections. After multiple iterations of the data structure specific fields are

identified as being useful for analysis and are extracted from different DNS sections.

The Python decapsulation extracts specific fields from the DNS packet,

writes them as text, and saves them as text output files.

The R program processes the text files in a distributed way. The program

runs on the deep analysis and complex data platform Tessera, formerly known as

RHIPE 8 (Guha et al., 2012a).

Chunks of the text files are read into the Tessera environment and processed

into R objects which are then stored on the HDFS 9 .

New fields that identify the blacklist state and the type of blacklist are

created in the R objects using the information from the text files.

2.4.2 Spamhaus Data Processing

The Spamhaus data collection process spans nine months and the size of the

data is about 1.02 TB. Storing, transferring, processing and storing the processed

data has required detailed planning and execution.

Raw binary files were moved from Stanford University to CERIAS, Purdue

University as nightly scp10 jobs.

The raw data is stored on BoHD11, - a twenty node Tessera cluster at

CERIAS, Purdue University.

The Python DNS packet processing program runs in parallel on each of the

nodes and processes the raw pcap binaries into text files. Each processed text file is

8In the Tessera environment data is divided into small size objects. Each object is passed to a task
which is part of a larger job. R operations are applied on these data chunks in a distributed manner,
and the results are combined in the end. The data is then written back to the HDFS.
9Hadoop Distributed File System (Shvachko et al., 2010)
10scp is an abbreviation for secure copy, it is a method of copying files across different computers
using the ssh, secure shell protocol.
11BoHD, is an abbreviation for Built on HaDoop

13

the output of a single pcap binary file, and contains 1 million Spamhaus DNS

query-responses.

A bash wrapper script, feeds the pcap binaries to the Python DNS packet

processing program and receives the output text files. It then transfers and stores

the text files on the HDFS. The files are stored in a directory hierarchy. The raw

data is divided into nine folders by month. Each month folder is further divided into

folders by the weeks in that month with week folder containing all the text files that

belong to that specific week.

The R processing program based on the Tessera package12 reads the text files

from each week, processes them in R, and saves them as a dataframe13 in a Hadoop

SequenceFile14. The SequenceFiles for each week are stored in that specific week’s

directory.

The raw DNS packet data is collected in time order. Both the Python DNS

processing program, and the R processing program retain the time order while

processing the raw DNS packet data into text files and R data frame objects. The

time order is critical for a time-based DNS query-response analysis.

2.5 Spamhaus Analytical Cluster

The Spamhaus analytical cluster, also known as BoHD1516, was designed and

implemented at CERIAS, Purdue University.

The cluster has 20 enterprise grade nodes, each node has two Intel Xeon

CPUs, each CPU has two cores, and each core has two threads. Each node also has

32GB of memory, and 2X 1TB of persistent disk storage space. The entire cluster is

12Tessera is both a platform and a package, the package is the library that enables R code to be
written in the map-reduce paradigm and run on the Tessera platform.
13A data frame is a packagedd set of variables that have similar properties of matrices and lists. It
is the most frequently used data structure in R (Hornik, 2016).
14SequenceFile is a flat file consisting of binary key/value pairs. It is extensively used in MapReduce
as input/output formats (Apache Hadoop, 2009)
15BoHD stands for Built on HaDoop.
16The cluster was built using a CERIAS resource grant.

14

connected by a 2 X 1GBps bound link, providing increased network bandwidth

under normal operations and redundancy for link failure.

Each one TB disk drive is partitioned three ways. One partition each is

dedicated for /boot17 , /18, and HDFS. The first two partitions: /boot and / of size

255MB and 32GB, respectively, are set up with RAID 1 19 configuration across the

two one TB disks. While the /boot is set up on a raw RAID 1 configured partition,

the / partition is setup on a LVM - logical volume 20that sits on top of the raw

RAID 1 configured partition. The remaining raw disk space on each of the 1TB disk

is allocated to the HDFS.

Each node on the cluster runs a lean version of Ubuntu 10.0421. Each node

also has Cloudera Hadoop, the Tessera package and framework that enables deep

analysis of large complex data, R programming language and supporting tools and

libraries.

The cluster is configured with 1 node as the namenode22 and jobtracker23. A

second node is configured as a secondary namenode24. 19 nodes are setup as task

trackers that are allocated tasks from the jobtracker. They perform R computations

utilizing Tessera and MapReduce framework. Out of the 19 nodes 18 of them are

also setup as datanodes25 and contribute to the HDFS where raw, and processed

Spamhaus data is stored (Barthur, Ashrith and Crabill, Doug and Tong, Xiaosu,

2015).

17The /boot partition is used by the bootloader, which loads the operating system.
18"/" is known as the root partition of a Linux-based machine, it is the start of the directory
structure.
19RAID - Random Array of Independent Disks, is a data redundancy mechanism using multiple
disks. In RAID 1, data on a disk is exactly replicated on one or more disks.
20LVM, or logical volume, is a virtual volume that fuses discontinuous raw partitions and presents

it as a single continuous volume to the operating system.

21Ubuntu is an operating system using the Linux kernel.

22Namenode is the main node in Hadoop, it manages ephemeral and persistent data across the

cluster.

23Jobtracker manages, job chunking and task allocation across worker nodes.

24The secondary namenode keeps a copy of namenode’s data table. This table contains information

about each data block and its location on the HDFS.

25Datanodes are managed by the namenode. They store chunks of data as a member of the HDFS.

They also provide data to R computations on the same node, or to other nodes in the cluster.

15

2.6 Spamhaus Dataset Variable Selection

Together, the Spamhaus query and response form a “transaction”.

Independently, but as part of a transaction, they are called sub-transactions.

The variable and data design identifies fields in each sub-transaction that

add value to the analysis. It brings these fields together to form a comprehensive

data structure for the Spamhaus query-response study. In this design process,

multiple fields that add little or no analytical value are eliminated; data collection

and storage processes are modified to remove redundancy; data structures are

optimized to be insightful and exhaustive.

The Spamhaus data collection process captures the raw packet. This enables

access to all the OSI layers in the Spamhaus DNS packet. Fields of value are added

to the final dataset from each of these layers.

2.6.1 OSI Data Link Layer, Ethernet Protocol Fields

A Spamhaus query26 and its respective response pass through multiple nodes

that communicate using protocols from layers above the OSI - Data Link Layer, e.g.

Internet Protocol. Therefore the query and response are constantly repacked in new

ethernet frames. The ethernet frame header contains source and destination MAC

addresses, VLAN tags, and a type identifier as seen in figure 2.3. These fields

provide no information about the query, querying host, or the response and are

therefore omitted from the analysis data structure.

2.6.2 OSI Network Layer, IP Protocol Fields

Encapsulated in the ethernet frame is an IP packet, figure 2.4. The IP

header has many fields, but only two fields - source address and destination address,

provide the IP addresses of the querying host and the Spamhaus server.

26A Spamhaus query is sent from the querying client to the Spamhaus server.

16

+-+

| Source MAC Address |

+-

| Destination MAC Address |

+-+

| 802.1Q Tag | Eth Type |

+-+

Figure 2.3.: Ethernet Frame Header (Postel, Jon, 1984)

+-+

|Version| IHL |Type of Service| Total Length |

+-+

| Identification |Flags| Fragment Offset |

+-+

| Time to Live | Protocol | Header Checksum |

+-+

| Source Address |

+-+

| Destination Address |

+-+

| Options | Padding |

+-+

Figure 2.4.: IP Packet Header (Postel, Jon, 1981)

The source and the destination addresses are reversed in the query and

response IP packets. Additionally, Spamhaus server has a constant, publicly

17

published IP address. Therefore, to build a comprehensive data structure it is

sufficient if the querying IP header from the query or the response is captured.

2.6.3 OSI Transport Layer, UDP Protocol Fields

The UDP datagram header contains four fields - source port, destination

port, length (data length), and checksum, as seen in figure 2.5. The two fields that

are valuable are the source and the destination ports. The UDP data length provides

no information about the query-response as the Spamhaus DNS query-response has

a very rigid format. Similarly, the UDP checksum too has no analytical value.

Similar to the IP packet, the source and destination ports are reversed in the

query and response UDP datagrams. While, the port number used by the querying

host could vary, the Spamhaus server port number is constant and set to 53.

Therefore, collecting querying host port number from the query or response

datagrams would be efficient.

The query host port number is used to identify unique queries along with the

querying host IP address. But as the dataset is focused on analysing query host

behaviour and contains the actual queries, it does not need the port number to

uniquely identify queries. Therefore the entire UDP header is excluded from the

dataset.

2.6.4 OSI Application Layer, DNS Protocol Fields

The DNS Protocol data is the data present in the UDP datagram. It

provides a structure for the Spamhaus query-response.

The Spamhaus query-response is standardized and therefore there are many

fields in the DNS protocol that provide no information about the query or the

querying host. As these fields are not essential they are ignored from the analytical

dataset.

18

+--------+--------+--------+--------+

| Source | Destination |

| Port | Port |

+--------+--------+--------+--------+

| | |

| Length | Checksum |

+--------+--------+--------+--------+

| |

| data octets ... |

+-----------------------------------+

Figure 2.5.: UDP Datagram Header (Postel, Jon, 1980)

The DNS protocol can be divided into two main parts, the DNS header and

the DNS resource records (RR27).

The ID field, which is short for transaction identifier, helps in uniquely

identifying a DNS query and its associated response, but as the entire DNS query is

captured this identifier field is unnecessary and therefore ignored (Mockapetris,

Paul, 1987).

The QR - query/response field is a flag that differentiates a response from a

query. This flag is set to 1 in response and 0 in query. But as a query and its

associated response can be identified by other means, e.g. source and destination IP

addresses, this field is not needed (Mockapetris, Paul, 1987).

The Opcode - operation code establishes the type of query present in the

DNS query packet (Mockapetris, Paul, 1987). This field can have five different

operation codes, but for the purposes of Spamhaus DNS blacklisting only the Query

27DNS resource records are data structures provided for DNS queries and response.

19

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ID |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

|QR| Opcode |AA|TC|RD|RA| Z | RCODE |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| QDCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ANCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| NSCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

| ARCOUNT |

+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Figure 2.6.: DNS Header (Mockapetris, Paul, 1987)

- standard query is used. As the analysis focusses only on a constant it does not

provide any additional information and is not included in the dataset.

The following are the five different operation codes present in DNS:

1. Standard Query (QUERY)

2. Inverse Query (IQUERY)

3. Server Status (STATUS)

4. Notification (NOTIFY)

5. Update (UPDATE)

The four fields, AA - authoritative answer, TC - truncation, RD - recursion

desired, RA recursion available provide no valuable information about the query or

the querying host, and therefore are excluded from the dataset.

20

The RCODE - response code field provides valuable information about the

query. This field has flags that identify correct and incorrect query formatting; the

value in this field differentiates address and domain queries; it also has a flag for

identifying server response failures. These response codes help differentiate between

accepted and rejected queries and the response code field is therefore included in the

dataset.

The QD, AN, AT, AD, fields provide the number of resource records available

in the question, answer, authoritative, and additional section. There counts add no

value to the query behaviour and are therefore ignored from the dataset.

2.6.5 Question, Answer, Authoritative, and Additional Sections

The query section in the DNS protocol exists in both, the query and

response. In fact, the query section is copied from the query to the response.

The query section of the Spamhaus query-response has three fields: QCLASS

- query class, QTYPE - query type, and QNAME - query name. Spamhaus

blacklists handle queries that belong to the Internet query class, and this study is

limited only to IP address type queries. Therefore both fields - query class and

query type - are constant and not included in the dataset.

The query name contains the IP address that is being queried and is

included in the dataset. This field is in the Spamhaus query format as described in

figures , and .

The answer, authoritative, and additional sections in the Spamhaus query

are empty and ignored.

Spamhaus responds to a blacklist query in the answer section of the

response. The other sections in the Spamhaus response have fields that are of no

analytical value and hence are not considered in the dataset.

The answer section in the Spamhaus response is structured as a resource

record. Each resource record contains six fields: NAME, TYPE, CLASS,

21

RLENGTH - record length, RDATA - record data, and TTL - time to live. Of these

six fields, the name field is a copy of the query name field from the query section.

The type field variable is limited to an A record as this study is limited to only IP

address queries. The class field, as in the query section, is limited to Internet. The

record length field contains the length of the record data. The time to live field is

the length of time the Spamhaus response is valid for, and is constant. These five

fields do not provide any direct response information and are therefore not included

in the dataset.

The record data contains the Spamhaus response in the form of an IP

address, in accordance to the RFC 1060 format (Reynolds and Postel, 1990). This

field is included in the dataset as it provides analytical value in studying

query-response.

2.6.6 Time Stamp

Timestamp is not a standard field in the entire query-response packet. It is a

variable that is provided by the packet collection framework - TCPDump and Pcap

library, and hence is available from the pcap binary files. This variable is important

to study query-response, querying, and queried host behaviour and is therefore

included in the dataset.

2.7 Packet Data Collection and Dataset Optimization

The comprehensive analysis of the Spamhaus DNS packet and its fields

highlight that all the fields present in the Spamhaus DNS query are either derivable,

or directly available, from the DNS response. Using this information the collection

process ignores the entire sub-transaction - Spamhaus DNS query packet, and only

collects the Spamhaus DNS response packet.

There are a total of four fields, source IP address from the IP packet,

response code from the DNS header, query name from the query section, and record

22

data28 from the answer section that are included in the dataset. Additionally,

timestamp provided by the packet collection process is also included in the dataset.

All these variables are extracted by the Python packet processing program and

passed to the R data processing program via text files. Four out of the five fields:

source IP address, response code, query name and timestamp, occur exactly once

per Spamhaus DNS response. The record data field might have multiple occurrences

in a single response. The text files accommodate this variability.

2.8 Data Structure Design

The data structure designed for analysis has undergone multiple rounds of

redesign and optimization. These changes were made for computational efficiency

and to eliminate fields that were analytically not important. Across these different

design iterations time has been a very important variable for the analysis. Ordering

query-responses by time provides a “sequence-of-events” view which is necessary to

observe a behavioural progression. And therefore the query-responses have always

been maintained in the time order.

The first iteration of the data structure design had a fixed number of

query-responses in a subset29 with time as the subset key.

Each subset is a dataframe with five columns - time stamp, source IP

address, response code, Spamhaus query, and Spamhaus response - answer(s).

When Spamhaus responds with multiple answers in a response, each answer is

stored in a separate, successive row in the subset - dataframe. These successive rows

have the same timestamp, source IP address, response code, and Spamhaus query,

but different answers.

Spamhaus answers are specific to the class of malicious behaviour. This also

includes hosts identified to be non-malicious and whitelisted. The answers identify:

28The record data is not a single field and could be multiple records.
29In the Tessera framework an subset is a R object which is identified by a unique key (MapReduce
Key) and contains a certain number of records, in this case query-response.

23

1. Spammers

2. Exploited hosts

3. ISP and Spamhaus policy violators

4. Whitelisted email servers

This design was computationally infeasible as the data structure lacked an

efficient way of providing summaries by host. Answers belonging to a single query

could not be clearly and accurately identified. For every analysis the response code

had to be translated.

A second iteration of the data structure design captured all answers of a

response in the same row. Host-based summaries were now possible.

Response code had be decoded into three different states: query format

error, no error, and non-existent domain.

In the second iteration, each response, along with all the answers, were

stored in a single row of the dataframe. This provided the much needed summaries

of, and insights into, query-responses. The RCODE was now pre-translated into

categories to easily identify query-responses. The Spamhaus answers in the response

were grouped into IP spam, IP exploit, IP policy violation, domain spam, IP email

whitelisting, and domain email whitelisting. A binary flag (1/0) represented a

specific state or value in these groups. For example, 0 represented blacklisted due to

generic spam, while 1 represented blacklisted due to Composite Snow Shoe (CSS)

spam. Although, this design was a definite improvement than its predecessor, it

lacked the ability to differentiate between no information sent, no information

available and other categories in the response groups. Therefore a third iteration of

the data design was done.

The third iteration expanded on all variables. Each field captured accurate

information in the dataset (Barthur, Ashrith and Cleveland, William S. and Gerth,

John, 2014). Below is the list of fields that were designed in the third iteration of

the data structure design:

24

1. Time stamp

2. Source IP address

3. IP address or domain queried

4. Query type (IP address, domain, or query error)

5. Response code

6. State of query-response (blacklisted, whitelisted, or no information)

7. IP address spam - indicates spamming hosts, generic spam detection.

8. IP address composite snow shoe (CSS) spam - spammers, using CSS detection.

9. IP address exploit - exploited hosts.

10. IP address ISP policy violation - ISP policy violators.

11. IP address Spamhaus policy violation - Spamhaus policy violators.

12. IP address individual mail whitelist - IP address whitelisted for sending

individual mails.

13. IP address transaction mail whitelist - whitelisted for sending transaction

mails.

14. Domain address spam - indicates spamming domains.

15. Domain address spam redirection - indicates redirectors to spamming and

phishing sites.

16. Domain address individual mail whitelist - domain whitelisted for sending

individual mails.

17. Domain address transaction mail whitelist - domain whitelisted for sending

transaction mails.

25

The third iteration of the data structure retains all the data from a response

in a single row, making it easy for computation.

Query type identifies IP address, domain, and ill formed queries. State of

query shows if the response contained blacklist, whitelist, or no information. Each

malicious behavioural class is independently identified with a binary flag. Although

this research study is limited to Spamhaus blacklist queries of the IP address type,

domain type queries are also stored for future study.

In total, there are 17 fields in each row that uniquely and exhaustively record

a Spamhaus blacklist query and response. Each row is part of the subset. A

previous research study (Li, Jianfu and Barthur, Ashrith and Cleveland, William S.,

2012; White, 2009), suggests that that subset size must be limited to 25% of the

Hadoop block size, therefore keeping the number of rows per subset to 6,000.

Optimization of the data structure needs to be verified periodically. This is

necessary to identify any loss of information or field redundancy.

Data summaries of the third data structure were observed after six weeks

worth of data was collected and processed. The summaries are shown in the

following table 2.1:

The number of whitelisted queries was the most noticeable summary in the

table. Out of 2.05 billion queries there were 15 queries requesting host whitelist

information. This number was the sum total of four different whitelisting classes -

IP address individual mail whitelist, IP address transaction mail whitelist, domain

address individual mail whitelist, and domain address transaction mail whitelist.

The whitelist fields were removed from the data structure as they provided no

analytical value. The new data structure had 13 fields after this optimization (?).

The final data structure is as follows:

1. Time stamp

2. Source IP address

3. IP address or domain queried

26

Category Statistic

Collection duration 6 weeks

All queries 2,051,268,078

IP address queries 1,679,915,476

IP address queries with blacklisted result 331,193,986

Domain name queries 370,958,042

Domain name queries with blacklist result 13,093,693

Queries with no available response 1,657,054,290

Whitelisted queries 15

Table 2.1: Spamhaus Collection Summary Statistics (Barthur, Ashrith and Cleveland,

William S. and Gerth, John, 2014)

4. Query type (IP address, domain, or query error)

5. Response code

6. State of query-response (blacklisted, whitelisted,or no information)

7. IP address spam - indicates spamming hosts, generic spam detection.

8. IP address composite snow shoe (CSS) spam - spammers, using CSS detection.

9. IP address exploit - exploited hosts.

10. IP address ISP policy violation - ISP policy violators.

11. IP address Spamhaus policy violation - Spamhaus policy violators.

12. Domain address spam - indicates spamming domains.

13. Domain address spam redirection - indicates redirectors to spamming and

phishing sites.

27

CHAPTER 3. DIVIDE & RECOMBINE FRAMEWORK

Divide and Recombine is a new statistical approach designed for the analysis

of large complex data. Here the data is divided into subsets and analytic methods

are applied to each subset. Each subset is the smallest data unit upon which

analytic methods are applied. The output of each analytic method on the subset are

combined together to form the final result.

Each analytic method is an independent computation. The computations

run in parallel without the need for interprocess communication, which makes them

embarrassingly parallel1 .

Using the D&R approach, an analyst applies statistical and visualization

methods as computations on subsets of data. Thereby running deep analysis on

large complex data.

The D&R approach is efficient and scalable. Virtually any size data can be

divided into subsets, analytic methods applied to them, and their results recombined

to form the final result (Guha et al., 2012b). The efficiency and scalability of the

D&R approach can be optimized by tuning certain computational factors.

Applying an analytic method - statistical, visualization, on a large dataset is

time consuming and impractical. The D&R approach solves this problem by

breaking down the process of applying a method and obtaining the result into three

separate computations. The first computation is an analytical means by which the

data is divided into subsets. The second computation takes advantage of the subsets

and applies analytic methods - statistical, and visualization, on these subsets in

parallel. The third computation applies another set of analytic methods on the

results of the subset computation and aggregates the results.

1Embarrassing parallel computations are independent in execution and do not need any interprocess
communication. Except may be for setting up the analysis and aggregating results (Messina et al.,

28

Figure 3.1.: D&R Framework (TesseraIO Research Group, 2015)

The D&R approach is illustrated in the figure 3.1.

The D&R approach is implemented in the D&R framework using R2 Tessera,

and Hadoop. The data is divided into subsets and stored on the HDFS3, this is the

division of data into subsets - R objects in the D&R framework. The Hadoop Map

process is the second computation that primarily applies R programming methods,

and other program language methods through APIs for R language on the data

subsets. The Hadoop Reduce process also applies R and other API-based methods

on the output of the Map computation. The Reduce computation further

aggregates the results of the applied methods and saves them back to the HDFS.

The Spamhaus DNS blacklisting data is analysed using the D&R approach

and framework. The data is divided into subsets in multiple ways, each assisting a

unique analytical thread. Each of these subset division encompasses a

1994)
2R is a statistical and a visualization programming language (R Core Team, 2016).
3HDFS - Hadoop Distributed File System, which is a virtual file system on which Hadoop stores its

29

comprehensive R data structure. These data structures are inherently designed to

work with R methods and functions. Functions outside the R programming

language are called using the R programming APIs or native system calls.

3.1 Division Procedures

D&R procedures can be divided into two parts, division and recombination.

Further, each part has multiple procedures within itself. In the following subsections

two division procedures are discussed: a division procedure adopted for the

Spamhaus DNS blacklist data, and another generic D&R divide procedure.

3.1.1 Conditioning Variable Division by Time

The Conditioning Variable Division divides the data on a key variable based

on which the data will be analysed. In the Spamhaus DNS blacklist the

foundational approach is to study the query-response by time. The Spamhaus DNS

blacklist data structure that follows is divided into fixed size subsets - R data frame

objects by the conditioning variable: time. Each subset is ordered by time, and

uniquely identified by the subset’s epoch. This is a between subset-variable BSV4 .

1. Time stamp

2. Source IP address

3. IP address or domain queried

4. Query type (IP address, domain, or query error)

5. Response code

6. State of query-response (blacklisted, whitelisted,or no information)

data.

4Between subset-variables are variables that have one value per subset (Guha et al., 2012b).

30

7. IP address spam - indicates spamming hosts, generic spam detection.

8. IP address composite snow shoe (CSS) spam - spammers, using CSS detection.

9. IP address exploit - exploited hosts.

10. IP address ISP policy violation - ISP policy violators.

11. IP address Spamhaus policy violation - Spamhaus policy violators.

12. Domain address spam - indicates spamming domains.

13. Domain address spam redirection - indicates redirectors to spamming and

phishing sites.

Each row in the subset represents a Spamhaus response packet. All the rows

in a subset are ordered, and are part of a time period starting with the subset’s

epoch. The timestamps in each time period along with the other twelve variables

form the within subset-variables WSV 5 .

The thirteen variables in the first conditional variable division by time can

be separated into raw variables obtained from the packet and derived variables.

Timestamp, source IP address, and response code are the raw variables from the

Spamhaus DNS packet. The remaining variables are derived from the Spamhaus

DNS query and response.

The first conditioning variable division subsets 13.17 billion Spamhaus DNS

blacklist responses which have been collected over a period of nine months.

3.1.2 Conditioning Variable Division by Queried Host

The new, time ordered Spamhaus DNS query subsets are further divided by

the queried hosts. This, second division is effective in studying Spamhaus DNS

query-responses by time and by queried hosts.

5Within subset-variables are variables that vary within a subset.(Guha et al., 2012b)

31

The analytical thread in this research work only looks at queried host IP

address and discounts the domain address queries. Fields that are not relevant to

the new dataset - domain address spam and domain address spam redirection - are

removed at this step.

The subsets are reorganised by time and queried hosts. The between

subset-variables in the new subset structure are the unique queried host IP address

and subset’s epoch. The rest of the variables in the dataset, including the

timestamps form the within subset-variables.

3.1.3 Conditioning Variable Division by Blacklisted Queried Host

The Spamhaus DNS response system replies to multiple queries at any given

time. A large part of this response includes not-blacklist responses for queried hosts.

A Spamhaus DNS response that is consistently not-blacklist provides no information

towards the blacklist behavioural analysis. Therefore, any query host that has not

been blacklisted in any of the five blacklist categories at least once in the data is

eliminated from the analysis. There are 207 million unique queried hosts before the

elimination process. Post elimination, there are 59 million unique queried hosts.

These hosts form the data in the conditioning variable division by blacklisted

queried host.

In this final data division the between subset-variables are the subset’s epoch

and queried hosts that have been blacklisted. The rest of the variables from the

second conditioning variable division are retained as the within subset variables.

This dataset forms the basis of the Spamhaus DNS blacklist analysis.

3.1.4 Replicate Division

The replicate division is adopted when multiple observations of a distinct

number of variables in the data need to be partitioned. Random-replicate (RR) is a

32

sub-procedure of the replicate division that uses a random sampling approach to

partition the data.

Near-exact-replicate (NER) is another sub-procedure of the replicate division

which breaks the observations into local neighbourhoods, with each neighbourhood

having an almost-equal number of observations in it. A representative point is

chosen from each of these neighbourhoods (Guha et al., 2012b).

3.2 Recombination Procedures

There are three different recombination procedures. Each has been used for

analysing and understanding the Spamhaus DNS blacklisting.

3.2.1 Statistic Recombination

The number of queries for each queried host is a good statistic that assists in

understanding the data. Therefore, a statistic recombination sub-procedure is

applied on the data to extract this information for further study.

The subsets are divided by queried hosts and epochs. The number of queries

with blacklist responses are calculated in each subset, and then they are

re-combined by queried hosts. Recombining a statistic across subsets is known as

statistic recombination.

The distribution of this statistic is studied in detail to understand focus

areas of the data. These focus areas would be cognostic in understanding Spamhaus

DNS blacklist behaviour.

3.2.2 Visual Recombination

The statistic recombination outputs the number of queries for 59 million

hosts - the number of hosts that have been blacklisted at least once. These counts

form the distribution of the blacklisted queries by queried hosts. A subset of this

33

data is obtained by sampling the distribution. The sampled data is a representative

dataset for the underlying blacklisted queried host population.

The sample data is visualized by a visualization recombination sub-procedure

using quantile plot visualization. The empirical quantiles are plotted against

quantiles of a mathematical distribution. These distributions are one among

uniform, normal, or gamma (Cleveland, 1993). The visualization recombination

method provides a mechanism for rigorous visualization, at detail, and at the finest

granularity (Guha et al., 2009).

Figure 3.2.: Quantile-quantile plot of blacklist query counts

Figure 3.2 illustrates the visual recombination using the quantile-quantile

plot. Here, on the Y axis the empirical blacklist query count quantiles are plotted

against the uniform distribution on the X axis.

34

3.2.3 Analytic Recombination

Analytic recombination is simply a continued analysis of the previously

divided or analysed data. Methods of analytic recombination are quite frequently

applied to datasets. Here an example of analytic recombination pertaining to the

Spamhaus DNS blacklist queries is seen.

The blacklist query count distribution reveals that the queries are distributed

over a wide range of values. However, for further analysis a representative sample of

the queried hosts along with their queries is needed.

The chosen number of samples is 500, equally spaced along the Spamhaus

DNS blacklist query count distribution, but on a log 2 scale. These values are

chosen from a range of values that best represent the data and provide adequate

data points for the analysis. 16 (24) queries are established as the minimum number

of queries required for the analysis. 18,000 (214.13) is chosen as the maximum

number of queries as it is representative of the 99.9th percentile of the Spamhaus

DNS blacklist query distribution. 500 values that are equally, or roughly equally6

spaced between 16 and 18,000 are chosen as the representative sample.

This sample data is an analytic recombination of the original Spamhaus DNS

blacklist query dataset. It is smaller in size compared to the original dataset and is

used to analyse queries of hosts as a Marked Point Process. Every query of every

500-sampled host is considered as an event in time. The event or mark represented

by each point might be different, for example, a blacklist or a not-blacklist.

3.3 D&R Computational Environment

D&R computational environment harnesses the capabilities of the R

programming environment and the parallel computing framework - Hadoop. The

environment is made up of three open source applications: R, Tessera (RHIPE), and

Hadoop as illustrated in figure 3.3.

6The space between 24 and 214.13 is equally divided into 500 points. Any point that does not have

35

Rhipe program
designed as a list.

R Interactive
Front-End

Hadoop
 FrameworkRHIPE

Figure 3.3.: D&R components

3.3.1 R Interactive Front-End

An analyst using the D&R computational environment interacts with the

D&R framework through the R interactive front end. Programs that exploit the

combined advantages of this environment are written in the R programming

language. This program is designed as an R-list and can be divided into two parts.

The first part is the actual R programming language code that implements the

D&R framework programmatically. The second is the set of configurations that are

required by R, Tessera (RHIPE) and Hadoop to run the D&R procedures

successfully.

3.3.2 Tessera (RHIPE)

Tessera is the interface that binds the D&R environment. It interfaces the R

interactive front-end with Hadoop. The analyst invokes the Hadoop framework

through Tessera. Tessera uses the program submitted by the analyst to create R

and Hadoop configuration files, and sets up the data for analysis.

a host with the exact number of queries is filled by the host with the closest number of queries.

36

Tessera implements the D&R framework using the MapReduce paradigm,

and allocates specific map and reduce tasks from the analyst’s program. It applies

the R functions across the dataset in an embarrassingly parallel fashion.

There are three different outputs from the D&R framework: the divided

subset data, the output of the functions applied on the subset in an embarrassingly

parallel fashion, and the recombination of results. To begin with, the divided

subsets and the recombination results are always written back to the HDFS. Output

of the function applied in an embarrassingly parallel fashion is written to the HDFS

as needed.

D&R exploits Hadoop effectively by using the MapReduce framework for its

operations. Hadoop is designed to run a finite number of tasks on a virtually

unlimited number of datasets. For this reason Hadoop schedules a set of tasks and

sends subsets to them until all the subsets have been processed. Contrary to the

familiar program execution where data is sent to the program, on Hadoop the task

is sent to the node where the data resides. This approach minimises inter-node

communication and speeds up the tasks and jobs.

3.3.3 Hadoop

Hadoop is another component of the D&R framework. It is a library and a

framework that implements scalable distributed processing of large datasets using a

cluster of heterogeneous, commodity computers. Each of these machines follow data

locale computing, thus making the framework efficient. The framework also

manages data and process redundancy (Bialecki et al., 2005).

The Hadoop framework is divided into two components, data storage and

management, and computation. The data storage and management part of Hadoop

is called Hadoop Distributed File System (HDFS). HDFS is a Java-based file system

that is designed to be distributed, scalable, and elastic across many storage nodes.

37

A primary feature of this file system is data redundancy, as Hadoop is usually run

on marginally reliable commodity hardware (Shvachko et al., 2010).

MapReduce is the computational aspect of Hadoop, which is an open source

implementation of Google MapReduce developed internally by Google (Dean and

Ghemawat, 2008). The MapReduce framework interprets the job and task

configurations, runs tasks on subsets by applying analytic methods on the subsets,

and recombines the results.

3.4 D&R Environment Implementation

The D&R framework is designed to be a robust analytical framework. The

versatility of D&R framework comes from its ability to run on multiple platforms.

Current day computational platforms can be broadly classified into

bare-metal 7 and virtual8 platforms.

The BoHD analytical cluster, built specifically for working on research

threads in cybersecurity, implements D&R on bare-metal machines. Implementing

and maintaining an analytical cluster on bare-metal machines is time-consuming due

to the limitations of installation and update automation. They are also expensive as

there is a high cost for procuring hardware. Bare-metal clusters can take up heavy

computing as all their hardware components can be maximized for performance.

Virtual machines have a low adaptation cost. Virtual machines are leased

out by Amazon AWS9, Google and Microsoft in units of time, and the cost per unit

time is low and affordable. Virtual machines also have a quick, automated

installation process, and do not need to be maintained. This keeps the time

required for platform preparation negligible. They are also highly scalable. Factors

like, low cost, negligible time investment and high scalability makes virtual

7Bare-metal platforms are a set of physical hardware components that can be used only when the
right operating system, file system, applications, and programs are installed on it.
8Virtual machines are computer systems emulated by software or a combination of software and
hardware.
9AWS stands for Amazon Web Services.

38

machines a very favourable platform for running large analytics, especially D&R.

Virtual machines do lack the computing “punch” of a hardware-rich, well designed

bare-metal cluster; but by scaling the number of virtual machines its computational

power can match that of a bare-metal cluster.

D&R has been implemented on three virtual machine platforms - Amazon

EC2, Vagrant, and Amazon EMR (Barthur, Ashrith and Hafen, Ryan, 2015;

Barthur, Ashrith and Hafen, Ryan, 2014; Hafen, Ryan and Barthur, Ashrith, 2014).

While, Amazon EC2 and Vagrant are purely virtual machine provisioning services,

Amazon EMR provides Elastic MapReduce10 along with bare-virtual machines.

10ElasticMapReduce is a Hadoop platform managed by Amazon and offered as a service.

39

CHAPTER 4. SPAMHAUS DATA - GENERIC ANALYSIS

A generic data analysis is critical for data-driven research. It helps

understand the distribution of the data, check the assumptions, and identify biases.

It also helps in charting an analytical path and identifying suitable models for the

data (Seltman, 2012).

The Spamhaus dataset is collected for nine months. The data consists of

13.178 billion queries. These queries are divided into IP-address queries, accounting

for 10.615 billion and 2.561 billion domain-address queries, respectively. There are

982,293 unique querying hosts that send out these 13.178 billion queries. The IP

address queries consists of 207 million unique hosts1 and accounts for the 10.615

billion queries.

The IP and domain address categories of queries can be further divided into

queries with a blacklist response and queries without a response. There are 8.864

billion IP address queries, 2.476 billion domain address queries that have no

response, 1.168 billion IP address queries and, 81 million domain address queries

that have a blacklist result. The 1.168 billion queries that are blacklisted are for 59

million unique queried hosts.

Hosts can be blacklisted for multiple reasons, but for the purposes of analysis

they are simply identified as blacklisted or not-blacklisted. An IP address host is

considered blacklisted if it is listed in any one of the five IP address blacklist

categories: spam, composite snowshoe spam, exploit, ISP policy violation, and

Spamhaus policy violation. Similarly, a domain address is considered blacklisted if it

is listed in any one of the two domain address blacklist categories: malicious domain

and domain redirection.
1Unique hosts are classified by their IP addresses.

40

4.1 Generic Query Analysis

Generic data analysis consists of studying data represented by numerical and

visual statistics. One common visual representation of data distribution is through

quantile-quantile plots (qq-plots), which plot the quantiles of the data against a

theoretical quantile, e.g. Uniform quantile.

f−value

lo
g

nu
m

be
r o

f q
ue

rie
s

 b
y

qu
er

yi
ng

 h
os

ts
 (l

og
 b

as
e

2
(n

um
be

r +
1)

)

0

5

10

15

20

25

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.1.: Quantile - quantile plot of log2 number of queries by querying hosts

Figure 4.1 visually describes the distribution of the number of queries by

querying hosts. The number of queries by querying hosts vary between one to 16

41

million. Due to the wide data range, the number of queries are transformed to a

log2 scale and plotted on the Y-axis.

The distribution of the queries by querying hosts is visibly skewed. 70% of

the 982,293 querying hosts query only once over the nine month collection period.

f−value

lo
g

nu
m

be
r o

f q
ue

rie
s

 o
f q

ue
rie

d
ho

st
s

(lo
g

ba
se

 2
 (n

um
be

r +
1)

)

0

5

10

15

20

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.2.: Quantile - quantile plot of log2 number of queries of queried hosts

The distribution of the queries by queried hosts is visible in the qq-plot in

the figure 4.2. The data points in this plot are scaled down by a log2 transformation

for better interpretability, similar to qq-plot of queries by querying hosts. Here,

about 50% of the queried hosts, out of 207 million are queried less than five times

42

over the nine-month period. Similar to the distribution of the number of queries by

querying hosts, the distribution of the number of queries for queried hosts is skewed.

Compared to the query distribution by the querying hosts, the queried hosts show a

much more gradual drop in density with the increase in number of queries.

4.2 Blacklisted Host Query Analysis

The Spamhaus blacklist query analysis research focuses primarily on

studying only queries of hosts that are blacklisted, by time. The data for this study

is carefully curated by three subset divisions using the D&R framework and stored

in data structures optimised for the analysis.

A fundamental study that supports the blacklist query analysis is the general

study of the properties of the queries. The query distribution by querying and

queried hosts, blacklist query fractions and ratios, and query rates are properties

that help understand the data. They also help identify data that are most rich for

Analysis and help decide the focus area of study and the analysis process.

Figure 4.2 in the previous section visually describes the distribution of the

queries by queried hosts. It is seen that 50% of the hosts in this population have

less than five queries across nine months suggesting a limitation in data.

Statistically modeling blacklist queries by host requires a minimum number of data

points - queries per host. Therefore for all analyses of blacklist queries and

blacklisted queried hosts, 16 is considered the minimum number of queries.

Figure 4.3 is a qq-plot that describes the distribution of the queries by

queried hosts. This plot visually compares the quantiles of the number of queries by

queried hosts against the theoretical quantiles of a uniform distribution, on the Y

and X axes, respectively. The number of queries by queried host are plotted with a

log2 transformation.

This qq-plot of the distribution of the queries by queried host is censored. It

only considers hosts with 16 or more queries for analysis. It also shows a smoother

43

f−value

lo
g2

 n
um

be
r o

f q
ue

rie
s

(lo
g2

 n
)

5

10

15

20

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.3.: Quantile - quantile plot of log2 number of queries of querying hosts

cumulative distribution gradient when juxtaposed and compared with the plot in

figure 4.2. There is an inherent skewness in the data that is visible in the qq-plot.

The plot in figure 4.4 is a qq-plot of the distribution of the number of

blacklist queries by host. The number of blacklist queries by host varies from one to

approximately 500,000. The large range limits the visual perceptibility of the

distribution. Therefore, similar to the plot in figure 4.3 the data is transformed to a

log2 scale.

44

Figure 4.4.: Quantile - quantile plot of log2 number of blacklisted queries of querying

hosts

The blacklist query distribution has a tail unlike the distribution of all

queries by host. It is also dissimilar to distribution of the queries of hosts in figure

4.3 suggesting that all queries and blacklist queries show independence in behaviour.

The next set of qq-plots describe the distribution of the blacklist query

fraction.

The figures 4.5 and 4.6 visually describe the distribution of logit2 blacklist

query fraction against theoretical distributions, respectively. The distributions show

45

f−value

lo
g2

 b
la

ck
lis

t q
ue

ry
 ra

tio

−10

−5

0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.5.: Normal Quantile - quantile plot of logit2 blacklist query fractions

a long tail, with the probability density between 2-2.5 and 2-2, which is between 17%

to 25% of the queries by queried hosts that are blacklisted.

The qq-plot in the figure 4.7 characterises the distribution of the rate of

queries per second by host. The plot shows that the query rate varies from 2-20 to 25

and the distribution is gradual. This highlights that the queries and hosts collected

in this study are well defined across the spectrum of query rate.

The blacklist query rate distribution is characterised in the figure 4.8. The

qq-plot, similar to other distribution plots in this generic data analysis, uses a log2

46

f−value

lo
g2

 b
la

ck
lis

t q
ue

ry
 ra

tio

−10

−5

0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.6.: Uniform Quantile - quantile plot of logit2 blacklist query fractions

transformation to make the data more perceivable. The log2 transformation helps a

rather large data range - 2-23 to 220 queries per second. Much of the probability

distribution remains below 0 and between 2-20 and 2-5. These query rates are similar

to the observed all query rate. The range of the blacklist query rate is larger than

the range of the all query rate, suggesting that some blacklist queries occur in

bursts and in small-time intervals.

Properties like distributions, fractions, rates of queries, and hosts, are

diagnostic in nature. They help in identifying areas of data that are rich in

47

f−value

lo
g2

 q
ue

ry
 ra

te
 (l

og
2

no
.o

f.q
ue

rie
s/

se
c)

−20

−15

−10

−5

0

5

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.7.: Quantile - quantile plot of log2 number of queries per second

information. They also help in creating an analysis outline for the research study.

In the next chapter, Marked Point Process (MPP) is used to study the queries, and

hosts.

48

f−value

lo
g2

 b
la

ck
lis

t q
ue

ry
 ra

te
 (l

og
2

no
.o

f.q
ue

rie
s/

se
c)

−20

−10

0

10

20

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4.8.: Quantile - quantile plot of log2 number of blacklist queries per second

49

CHAPTER 5. SPAMHAUS MARKED POINT PROCESS ANALYSIS

A point process is a collection of random variables in a space. Each point in

the space represents an event. The points could be points in time, geo-spaces, or

any user defined space.

A marked point process is a point process where each event or point contains

information in addition to the time or location of the event. For example,

occurrence of earthquakes are identified as a point process by time and location.

The magnitude of the earthquakes is additional information, additional to time and

location of the occurrence (Schoenberg et al., 2002).

The Spamhaus blacklist query-response too are point processes in time -

random set of events occurring in a time space. They are further classified as

marked point processes as they carry additional information about - queried host,

querying host, blacklisting, not-blacklisting, and category of blacklisting.

5.1 Representative Sample Analysis

A marked point process analysis of the queries first requires a representative

sample of the data. The representative data must capture the distribution of the

actual population for the analysis to be credible. Therefore a representative sample

of the data by queried hosts needs to be constructed which represents the

population fairly.

The number of queries by queried hosts has an extremely large range,

starting from 24(chosen as the lower cut-off) to 222. 99.9th percentile of the actual

population is considered to be the upper limit of the representative sample, this

comes to about 18,000 queries. Hence, the new range for picking the representative

samples is between 16 and 18,000 queries. The data range is still fairly large,

50

therefore the samples are chosen on a log2 scale. 500 equally spaced unique values

of number of queries from 16 to 18,000 are selected, and for each of these values a

unique host that has the exact or proximate value of queries is chosen for the

representative sample.

Link to viewgraph

Figure 5.1.: Normalized query time vs. number of events

The first plot of the representative sample analysis is the normalized time

plot shown in figure 5.1.

The normalized time plot describes the relation between query events and

the time of their occurrence for each of the 500 representative hosts. The query time

range for each queried host is scaled down to 0 and 1, separately. And each

individual query event is scaled down to a value between 0 and 1 based on its query

time relative to the query time range and plotted as a point on the plot.

The normalized time plot in figure 5.1 has the normalized time on the Y axis

and a scaled down value of the event number on the X axis. All plots primarily

display a monotonic behaviour as successive query events occur at successive points

in time, thus preserving the order. It is difficult to observe the monotonic behaviour

on a few panels as the extreme values of query times distort the scale.

The plot identifies a blacklisted response as a red point on the plot and a

not-blacklisted response in black.

It is seem from the plots that similar kinds of responses: a set of blacklist or

not-blacklist, tend to occur together. The panel for each host shows that a set of

blacklist, and set of not-blacklist responses occur in intervals across the entire query

period.

The similar response intervals are visible across the representative data set.

The occurrence of these intervals is advantageous to the analysis, as now, instead of

51

individual queries the blacklist and not-blacklist intervals which are grouped

queries, can be studied. These intervals are classified as On and Off events. An on

event is a set of sequential responses that identify a host as blacklisted, and an off

event is a set of sequential responses identifying a host as not-blacklisted.

5.1.1 On-Off Event Analysis with Representative Sample

The on-off events aggregate queries across hosts. These events seem to occur

across the data very naturally. The phenomenon of similar-response queries is

telling, and crucial for all future analyses on the Spamhaus blacklist query-response

data.

Statistics, such as the duration of an event or the number of queries in an

event, are deeply informative. They help one understand the behaviour of the

queries-responses, and hosts.

Link to viewgraph

Figure 5.2.: Event Duration vs. Event Number

The figure 5.2 is a plot of the on-off event duration vs. the on-off event

numbers. The on-off event duration is plotted on a log2 scale.

The figure 5.2 shows the duration of the events. The plots are arranged in an

increasing order of the number of queries. Each panel represents a host out of the

500. The events range between 25 seconds to 210 seconds for majority of hosts.

With the increase in number of queries the event duration tends to stabilize between

28 seconds, and 210 seconds. Having a majority of the event durations around 28 -

210 suggests a strong tail behaviour. This can be confirmed by studying the

distribution plots.

52

Link to viewgraph

Figure 5.3.: Uniform Quantile Plot of Off Event Duration

Link to viewgraph

Figure 5.4.: Uniform Quantile Plot of On Event Duration

The figures 5.3 and 5.4 are uniform quantile plots that visually describe the

off and the on event distribution, respectively.

Similarly, the figures 5.5 and 5.6 are normal quantile plots that describe the

off and the on distributions.

Link to viewgraph

Figure 5.5.: Normal Quantile Plot of Off Event Duration

Link to viewgraph

Figure 5.6.: Normal Quantile Plot of On Event Duration

The qq-plots for distribution in figures 5.3, 5.4, 5.5 and 5.6 indicate a heavy

tailed behaviour of the event duration. This behaviour becomes more significant

with the increase in the number of queries.

53

The Spamhaus blacklist queries are studied as true random events and

represented as marked point process in a defined space. The observed heavy tail in

figure 5.2, 5.3, 5.4, 5.5 and 5.6 indicates a departure from true randomness. It

suggests a phenomenon, an induced behaviour in the events, thereby suggesting an

induced behaviour in the responses.

The marked point process analysis of the 500 equally spaced queried hosts

helps refine the Spamhaus blacklist queried host analysis. A significant outcome of

this analysis is the discovery and use of On and Off events to study query and host

behaviour leading to sound preliminary results.

The analysis also highlights the limitations of the 500 equally spaced queried

hosts representative dataset. While strong behavioural indications e.g. heavy tail,

was visible with hosts with large number of on and off events, the insights from

hosts with small number of events were limited and inconclusive.

5.2 Queried Host On-Off Event Interval Analysis

The marked point process analysis of the 500 equally spaced queried hosts

provides two specific guidances. One, the on-off event analysis becomes the central

focus of research and analysis. Two, the 500 equally spaced queried host dataset, a

representative dataset, gives way to a more focussed dataset of the 102 most queried

hosts, which will be used for analyses going forward.

In general, an analysis is designed to gather preliminary results from a

representative dataset and then gravitate towards a more focussed dataset for

deeper, compelling results.

The 102 most queried hosts dataset contains Spamhaus queries and

responses of a set of hosts who have been queried the most. The number of queries

for the most queried host ranges from 140,00 to 1,286,000. Figure 5.7 characterizes

the distribution of the number of queries for the most queried hosts. 85% percentile

54

of data is below 400,000 queries with the remaining 15% percentile making up the

larger values going up until 1,286,000.

f−value

lo
g2

 n
um

be
r o

f q
ue

rie
s

(lo
g2

 n
)

17
18

19
20

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.7.: Quantile - quantile plot of log2 number of most queried hosts

5.2.1 On-Off and Query Relation Analysis

The marked point process analysis of the 500 equally spaced queried hosts

highlights a relation between the On-Off events and the number of queries. This

55

relationship is further studied by using a more focus dataset - a set of 102 highly

queried hosts.

The analysis studies the relation between the events and the queries by

plotting the rate of events against the rate of queries for each of 102 highly queried

hosts. Further, the points on the plot are fitted with a regression model and the

coefficients of the regression model are used as a measure of fit. They are also used

for studying the relation between On-Off interval rate and query rate.

The On-Off interval rate and the query rate are calculated using the elapsed

time of queries for an individual host. This elapsed time is measured as the

difference between the time of the first query and time of the last query for a specific

host. The elapsed time is now divided into 100 equal time intervals. The number of

On-Off intervals and the number of queries in each part are computed and divided

by the length of the time interval, in seconds. The computation gives the On-Off

interval rate and the query occurrence rate which is then converted to rates per day.

The query rate and the corresponding On-Off interval rate are plotted on a

log2 scale, on the X and the Y axes, respectively. The relationship between the

On-Off Interval rate and the query rate can be seen in figure 5.8.

The points on the plot are fitted using a robust regression linear model to

account for any influential outliers. And the line of fit for the robust regression

linear model is drawn on the plot. The plot in figure 5.8 is ordered by the number of

queries.

Link to viewgraph

Figure 5.8.: Log2 On-Off intervals per day vs. Log2 number of queries per day

The plot in the figure 5.8 displays a log-linear relationship between the

On-Off interval rate and the query rate. An increase in the log2 query rate

56

corresponds to an increase in the log2 On-Off interval rate. The regression line

shows a good fit for the 102 hosts.

The relation between the On-Off interval rate and the query rate is studied

further by analysing the slope of the regression. Figure 5.9 demonstrates the

quantile-quantile distribution of the slopes of the linear robust regression.

f−value

sl
op

e
of

 li
ne

ar
 ro

bu
st

 re
gr

es
si

on

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.9.: Quantile - quantile plot of slope of linear robust regression

The quantile-quantile distribution plot of the slopes of the linear robust

regression highlights that a large number of the slope values, about 60% percentile

57

remain close to 1. This is a considerable number of values that show log-linear

relation between query rate and the On-Off interval rate.

5.2.2 On-Off and Query Relation Analysis - Spam Queries Only

The On-Off interval rate vs. the query rate analysis using the Spamhaus

blacklist data for the 102 highly queried hosts contains responses for five different

blacklisting types: spam, composite snow shoes spam, exploit, Spamhaus policy

violation, and ISP policy violation. Therefore, as a part of the On-Off and query

relation analysis, it is important to verify that the log-linear relation between the

On-Off interval rate and the query rate is a phenomenon of the underlying,

individual blacklisting categories and not just the aggregated blacklisting1.

The spam blacklisting is chosen as a candidate blacklist type to verify the

log-linear relation as it is the most popular blacklist service provided by Spamhaus.

The On-Off and query relation analysis on the aggregated blacklist data is

replicated on the spam only blacklist data.

The figure 5.10 characterizes the relation between On-Off interval rate and

the query rate for spam only, for each host.

Link to viewgraph

Figure 5.10.: Log2 On-Off intervals per day vs. Log2 number of queries per day

for spam only

In the On-Off interval rate and query rate relation for spam-only analysis,

the total number of queries remain the same as the On-Off interval rate and query

rate relation for aggregated blacklisting. The number of On-Off events vary because

1For the entire analysis blacklisting is an aggregated blacklisting of all types - spam, composite snow
shoes spam, exploit, Spamhaus policy violation, and ISP policy violation.

58

spam is the only blacklisting category considered for this analysis. This shift is

visible when comparing figures 5.10 and 5.8, as the X-axes between them remain the

same, but the Y-axes differ.

The plot in the figure 5.10 displays a log-linear relationship between the

On-Off interval rate and the query rate. This relationship is similar to the

relationship between On-Off interval rate and query rate in figure 5.8.

f−value

sl
op

e
of

 li
ne

ar
 ro

bu
st

 re
gr

es
si

on

0.0

0.5

1.0

1.5

2.0

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.11.: Quantile - quantile plot of slope of linear robust regression for spam

only

59

The figure 5.11 represents the distribution of the slopes of the linear robust

regression. About 80% percentile of the slope values are at 1. The distribution plot

along with the On-Off interval rate vs. query rate plot highlight the existence of a

log-linear relation between the On-Off interval rate and the query rate.

The On-Off interval rate and query rate relation analysis bring about a

visible relation between the On-Off events and number of queries. Further, this

relation is indicative of an underlying phenomenon of the Spamhaus blacklist

response, which seems to be an anomaly.

5.3 Event Run Analysis

The 102 most queried host dataset is fundamental to the On-Off interval and

query rate relation analyses. In both these analyses the queries are clustered into

sequentially identical blacklist and not-blacklist groups called On and Off events,

and the durations and rates of these events are studied. In the event run2 analysis,

the behaviour of queries that form an event run are studied.

5.3.1 On Event Run Analysis

The On event run analysis only studies the behaviour of queries in the On

event runs. Based on the observations of this analysis, it is further expanded into

fixed-sized query run analysis of all queries.

The On event run analysis utilized the 102 highest queried host dataset.

This data is first broken down into On and Off events by host. Each of the On and

Off events are separately aggregated by their run lengths3. The number of events by

each run length are counted and stored as a dataframe. The data is filtered to

remove all run lengths of Off events. Data of one host is excluded from the analysis

2A run refers specifically to the sequence of queries that form an On or Off event.
3A run length is the number of same-type queries - blacklist or not-blacklist, in an unbroken sequence.

60

as the host does not have the requisite number of events for the analysis, therefore

the dataset is now reduced to the 101 highest queried hosts.

Link to viewgraph

Figure 5.12.: Quantile-quantile plot of log2 number of queries in an On event run

Figure 5.12 describes the distribution of the On event run lengths by hosts.

The panels are ordered in an increasing order of events as shown in the strip label.

A log2 transformation is applied to the run lengths for better discernibility.

The plots in figure 5.12 highlight skewness in the data. The plots also

highlight that much of the distribution is populated with small sized event runs.

This shows that On events largely have small run lengths.

The observable skewness in the figure 5.12 prompts a further study of the

run length distribution. For this study the empirical probability of each run length

is calculated. The empirical probability of a run length is given by the number of

On events for a specific run length divided by the total number of On events for the

given host. Additionally, an overall estimated model probability is calculated by

dividing the number of blacklisted query-responses divided by the total number of

query-responses for a given host. These two variables are used to study the run

length distribution.

The plot in figure 5.13 characterizes the relation between the empirical

probability and estimated model probability for each host. The empirical

probability represented on the Y-axis is transformed with a negative log function

(-log2). The estimated model probability is also transformed with a negative log

function (-log2) and multiplied with the corresponding run length. The line x=y is

represented on each panel.

61

Link to viewgraph

Figure 5.13.: Empirical Probability vs. Estimated Model Probability

A few hosts shown in figure 5.13 do not display a log-linear relation between

the variables. Apart from those few that have a strong departure from a log-linear

relation, a majority of the hosts do show a strong log-linear relation.

f−value

Es
tim

at
ed

 M
od

el
 P

ro
ba

bi
lit

y

0.0

0.2

0.4

0.6

0.8

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5.14.: Quantile - quantile plot of estimated model probability

62

Figure 5.14 describes the distribution of the estimated model probability. It

is clearly observable that about 70% percentile of the values are between the value

of 0.4 and 0.6.

5.3.2 Fixed Sized Query Run Analysis

The On event run analysis studies the query-response blacklist behaviour by

utilizing the run lengths of On events. This is essentially an analysis of blacklist

queries by variable length. In the fixed-sized query run analysis the query-response

behaviour is analysed by partitioning the queries of a hosts into fixed-size runs.

Unlike the On event run analysis, this analysis includes blacklist and not-blacklist

query-responses; the fraction of the blacklist to the run length forms the

fundamental variable upon which the blacklist behaviour is modeled.

The 102 highest queried hosts are used as the dataset in the fixed sized query

run analysis. The queries-responses of each host up until the first blacklist response

are disregarded for this analysis. The rest of the query-responses are divided into

fixed-sized intervals of 256 query-responses in each interval. Two hosts do not meet

the minimum number of query-responses required for this analysis and are therefore

ignored for this analysis, thereby reducing the number of hosts that are analysed to

100.

Link to viewgraph

Figure 5.15.: Number of Blacklist Queries vs. Run Index Number

The figure 5.15 visually describes the variations in the number of blacklists

across the 256 fixed query intervals for each host. The plot is ordered by hosts with

increasing order of intervals.The number of intervals are identified in the strip label

of the plot.

63

The consistent variation in the number of blacklist query-responses is highly

visible in the plots. These variations can also be perceived with the progression of

time as the intervals in the figure 5.15 are in time order.

Link to viewgraph

Figure 5.16.: Quantile - quantile plot of blacklist queries in 256 query intervals

The variations in the number of blacklists by hosts indicate that the

query-response blacklisting could be a random process. To further investigate this,

quantile plots of the blacklists are plotted in the figure 5.16. The plots in this figure

are ordered by hosts, with increasing number of 256 query-response intervals. The

plot shows that most of the hosts display a tail in their distribution. The blacklist

query-response distribution across most hosts seems binomial in nature.

The binomial nature of the query-response is studied further by comparing

the blacklist query-response fractions for each interval to a binomial distribution.

The number of occurrences of each blacklist count in the 256 query-response

intervals are recorded. Each of these counts are further divided by the total number

of blacklist counts per host. Further, this data is used in the plots in figure 5.16.

An overall blacklist fraction for a host is calculated by the total number of

blacklist query-responses divided by the total number of queries. Using the overall

blacklist fraction, the binomial density is calculated for each visible count of

blacklist query-response for a given host.

The figure 5.17 visually describes the fractions of blacklist and binomial

distribution against the number of the blacklist query-response in an interval. Here,

the density of the binomial distribution is plotted on the Y axis and the

corresponding blacklist query-response size in that interval is plotted on the X axis.

Additionally, the plot is overlaid with the fraction of blacklist intervals on the Y

axis.

64

Link to viewgraph

Figure 5.17.: Fraction of Blacklist and Binomial Distribution vs. Number of

Blacklisted queries in an Interval of size 256

The plot in the figure 5.17 is used to visualize the distribution of the fraction

of blacklist. This plot shows that that data is fairly binomial in nature, but it is not

convincing. The fit is studied by changing the size of the interval.

Link to viewgraph

Figure 5.18.: Fraction of Blacklist and Binomial Distribution vs. Number of

Blacklisted queries in an Interval of size 128

Link to viewgraph

Figure 5.19.: Fraction of Blacklist and Binomial Distribution vs. Number of

Blacklisted queries in an Interval of size 64

Link to viewgraph

Figure 5.20.: Fraction of Blacklist and Binomial Distribution vs. Number of

Blacklisted queries in an Interval of size 32

65

Link to viewgraph

Figure 5.21.: Fraction of Blacklist and Binomial Distribution vs. Number of

Blacklisted queries in an Interval of size 16

The next set of plots in figures 5.18, 5.19, 5.20, and 5.21 are decreasing in

interval size - 128, 64, 32, and 16, respectively. These plots progressively show the

fit of the fraction of blacklist to a binomial distribution.

The plot 5.21 shows the best fit of the fraction of blacklist, highlighting that

a smaller interval size of 16 is supportive of the fraction of blacklist distribution,

and is binomial in nature.

66

CHAPTER 6. CONCLUSION

The Spamhaus blacklist query-response analyses lead to a set of conclusions.

Although they are preliminary in nature, they are foundational for further research.

The queried host analysis focuses solely on how query-responses vary by

queried hosts. The foremost study of this analysis is the representative sample

analysis. The representative sample analysis provides the “first look” of the data

used for analysis.

The analysis helps in identifying and grouping the data as On and Off

events which are the cornerstones of this research. The heavy tailed behaviour of

the On and Off intervals helps recognise consistent, sub 1000 second On and Off

event time periods. The plots in the figures 5.2, 5.3, 5.4, 5.5, and 5.6 visually

identify the heavy tail and the consistent event intervals.

Any documented evidence of query-response behaviour or blacklist

algorithmic implementation that would explain the consistent On and Off interval

lengths are absent. Spamhaus has documentation on the lengths of time a host is

blacklisted for different categories of blacklisting. Spamming IP addresses are

blacklisted for six month periods (Spamhaus, 2016f). If the IP address belongs to

professional spammers, or has repeatedly shown malicious behaviour, then the IP

address gets blacklisted for years (Spamhaus, 2016f). The hosts that are identified

under Composite Snowshoes Spam (CSS) have a small blacklisting period of two to

three days due to their transient behaviour (Spamhaus, 2016f). The blacklisting

time periods adopted by Spamhaus are far from the observed On-Off event time

intervals. They are therefore the least likely candidates to explain the interval

behaviour.

Spamhaus rebuilds its blacklist databases to fix blacklist errors. As

Spamhaus uses the DNS protocol for communication the rebuilding of databases are

67

seen as DNS zone updates. Each zone, representing a specific blacklist category is

updated independently. The Spamhaus BlockList (SBL) - that identifies spamming

hosts is updated every 10 minutes (Spamhaus, 2016f). The Spamhaus eXploit

BlockList (XBL) and Spamhaus Policy BlockList (PBL) are updated every 15

minutes (Spamhaus, 2016a; Spamhaus, 2016d).

These zone update periods are remarkably close to the observed On-Off

interval time periods. Therefore, it can be speculated, that the consistent event

intervals are related to the Spamhaus zone updates. The periodic zone updates fix

blacklisting errors, and with speculation, it could be said that the hosts in the study

were blacklisted in error. But it is less likely that the entire representative sample

dataset was repeatedly blacklisted in error. These speculative assessments suggest

that the consistent interval behaviour to be an anomaly of the Spamhaus

blacklisting.

The 102 highest queried host sample dataset replaces the representative

sample as the dataset for analysis. This focused sample supports more intensive

On-Off event analysis.

The plot in figure 5.8 demonstrates the relationship between the On-Off event

interval rate and the query rate. The plot shows a perfectly log-linear relationship

between the On-Off event interval rate and the query rate. The log-linear

relationship conveys an increase in the event rate with an increase in the query rate.

The On-Off intervals merely represent sequential blacklist or not-blacklist

query-response chains. The blacklist or not-blacklist is of a host and not an

individual query. Therefore, theoretically the On-Off interval rate must be

independent of the queries rate. But empirically it is observed that there is a clear

correlation. This can be attributed to a phenomenon of queried host blacklisting

that is occurring faster than the data capture rate of the experiment.

The fixed-sized query-response analysis is an important analysis of the

queried host blacklist study. Here, query-responses for the highest queried hosts are

divided into fixed size intervals and blacklist fractions in each of these intervals are

68

studied. The plots in figure 5.16 reveal that the blacklist fraction distribution is

binomial in nature. The blacklist could be observed as a random process instead of

a deterministic, host-dependent event.

The fractions are analysed by plotting the blacklist fraction against the

binomial distribution for a host. This is shown in figure 5.17. The plots in this

figure show that the fractions are binomially distributed. A further variation in the

interval length from 256 to 128, 64, 32, and 16 reveals a better fit of the fraction to

a binomial distribution. The binomial fit for different interval lengths are shown in

the figures 5.18, 5.19, 5.20, and 5.21.

The binomial distribution of the blacklist fractions indicates an underlying

phenomenon by observation. This phenomenon is similar to a random process - ”a

query-response coin flip”. The blacklist fractions follow the probabilities of a coin

flip in multiple trials, very closely. The plots in figure 5.15 and the relationship

between the event rate and the query rate suggest a drift in the binomial nature of

the blacklist. Therefore the randomness might be systemic to the Spamhaus

blacklist itself or might be a statistical phenomenon. Future research in this space

might be able to throw more light in identifying this phenomenon.

The deep and complex analysis of the Spamhaus blacklist query dataset has

been possible due to the design of BoHD - an environmental designed for

cybersecurity that is capable of processing and analysing network packets. The

environment implements Tessera: the fundamental package for analysing large

complex datasets.

BoHD and Tessera have both been responsible for the deep analysis on the

Spamhaus data, as they enable an analyst to virtually analyse any size data by

seamlessly and transparently implementing statistic, visualization, and analytic

functions on the dataset.

The successful results of the Spamhaus blacklist dataset are testaments to

the strengths and capabilities of BoHD.

69

CHAPTER 7. SPAMHAUS COLLECTION SUMMARY STATISTICS

7.1 Spamhaus Collection Summary Statistics - 6 Weeks

Category Statistic

Collection duration 6 weeks

All queries 2,051,268,078

IP address queries 1,679,915,476

IP address queries with blacklisted result 331,193,986

Domain name queries 370,958,042

Domain name queries with blacklist result 13,093,693

Queries with no available response 1,657,054,290

Whitelisted queries 15

Table 7.1: Spamhaus Collection Summary Statistics (Barthur, Ashrith and Cleveland,

William S. and Gerth, John, 2014)

70

7.2 Spamhaus Collection Summary Statistics - 31 Weeks

Category Statistic

Collection duration 31 weeks

All queries 13,178,080,366

IP address queries 10,615,054,608

IP address queries with blacklist result 1,168,586,415

IP address queries with no available response 8,864,023,024

Domain name queries 2,561,462,755

Domain name queries with blacklist result 81,321,391

Domain name queries with no available response 2,476,098,548

Querying IP addresses 982,293

Queried IP addresses 207,081,108

Queried IP addresses with atleast one blacklist result 59,435,635

Table 7.2: Spamhaus Collection Summary Statistics (Barthur, Ashrith and Cleveland,

William S. and Gerth, John, 2015)

LIST OF REFERENCES

71

LIST OF REFERENCES

Apache Hadoop (2009). SequenceFile.

Barthur, Ashrith (2014). https://github.com/ashrith/dpkt.

Barthur, Ashrith and Cleveland, William S. and Gerth, John (2014). Divide &
Recombine for Big Data Analysis for Cybersecurity: Application on DNS
Blacklist Query Study. CERIAS,2014. Presented at the 15th Annual
Information Security Symposium.

Barthur, Ashrith and Cleveland, William S. and Gerth, John (2015). DNS Blacklist
Query Study - A Big Data Approach. CERIAS,2015. Presented at the 16th
Annual Information Security Symposium.

Barthur, Ashrith and Crabill, Doug and Tong, Xiaosu (2015). https://github.
com/tesseradata/docs-install-cluster.

Barthur, Ashrith and Hafen, Ryan (2014). https://github.com/tesseradata/
install-vagrant.

Barthur, Ashrith and Hafen, Ryan (2015). https://github.com/tesseradata/
install-whirr.

Bialecki, A., Cafarella, M., Cutting, D., and OMalley, O. (2005). Hadoop: a
framework for running applications on large clusters built of commodity
hardware. Wiki at http://lucene. apache. org/hadoop, 11.

Brisco, Thomas (1995). RFC 1794: DNS Support for Load Balancing.

Cleveland, W. (1993). Visualizing Data. At&T Bell Laboratories.

Dean, J. and Ghemawat, S. (2008). MapReduce: Simplified Data Processing on
Large Clusters. Commun. ACM, 51(1):107–113.

Guha, S., Hafen, R., Rounds, J., Xia, J., Li, J., Xi, B., and Cleveland, W. S.
(2012a). Large complex data: divide and recombine (d&r) with rhipe. Stat,
1(1):53–67.

Guha, S., Hafen, R., Rounds, J., Xia, J., Li, J., Xi, B., and Cleveland, W. S.
(2012b). Large complex data: divide and recombine (d&r) with rhipe. Stat,
1(1):53–67.

Guha, S., Hafen, R. P., Kidwell, P., and S.Cleveland, W. (2009). Visualization
Databases for the Analysis of Large Complex Datasets. Journal of Machine
Learning Research, 5:193–200.

https://github.com/ashrith/dpkt
https://github.com/tesseradata/docs-install-cluster
https://github.com/tesseradata/docs-install-cluster
https://github.com/tesseradata/install-vagrant
https://github.com/tesseradata/install-vagrant
https://github.com/tesseradata/install-whirr
https://github.com/tesseradata/install-whirr

72

Hafen, Ryan and Barthur, Ashrith (2014). https://github.com/tesseradata/
install-emr.

Hornik, K. (2016). R FAQ.

John Gerth (2011). Packet Collection Framework.

Krochmal, M. and Cheshire, S. (2015). Special-Use Domain Names. RFC 6761.

Levine, John (2010). RFC 5782: DNS Blacklists and Whitelists.

Li, Jianfu and Barthur, Ashrith and Cleveland, William S. (2012). Divide &
Recombine Logistic Regression Testing. Technical report, Department of
Statistics, Purdue University.

Messina, P. C., Williams, R. D., and Fox, G. C. (1994). Parallel computing works !,
chapter Independent Parallelism. Parallel processing scientific computing.
Morgan Kaufmann, San Francisco, CA.

Mockapetris, Paul (1987). RFC 1035: Domain Names-Implementation and
Specifications. (1035).

Postel, Jon (1980). RFC 768: User Datagram Protocol.

Postel, Jon (1981). RFC 791: Internet protocol.

Postel, Jon (1984). RFC 895: Transmission of IP Datagrams over Experimental
Ethernet Networks.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria.

Reynolds, J. and Postel, J. (1990). Assigned numbers. RFC 1060, Internet
Engineering Task Force.

Schoenberg, F. P., Brillinger, D. R., and Guttorp, P. (2002). Point processes,
spatial-temporal. Encyclopedia of environmetrics.

Seltman, H. J. (2012). Experimental design and analysis. Online at: http://www.
stat. cmu. edu/, hseltman/309/Book/Book. pdf.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R. (2010). The hadoop
distributed file system. In Proceedings of the 2010 IEEE 26th Symposium on
Mass Storage Systems and Technologies (MSST), MSST ’10, pages 1–10,
Washington, DC, USA. IEEE Computer Society.

Spamhaus (2016a). Exploits Block List.

Spamhaus (2016b). The Domain Block List.

Spamhaus (2016c). The Domain Block List.

Spamhaus (2016d). The Policy Block List.

Spamhaus (2016e). The Spamhaus Block List.

https://github.com/tesseradata/install-emr
https://github.com/tesseradata/install-emr

73

Spamhaus (2016f). The Spamhaus Block List.

TCPDump Working Group (2014a). LibPcap - Packet Collection Library.

TCPDump Working Group (2014b). TCPDump - Packet Collection Tool.

TesseraIO Research Group (2015). www.tessera.io.

The Spamhaus Project Limited (2014). www.spamhaus.org.

Vixie, Paul (2000). RBL Usage.

White, T. (2009). Hadoop: The Definitive Guide. O’Reilly, first edition edition.

www.tessera.io
www.spamhaus.org

VITA

74

VITA

Ashrith Barthur was born in Bangalore, in 1983. He earned a Bachelor of

Engineering in the field of Mechanical Engineering in 2005. After a two year stint

with The Royal Bank of Scotland and Infosys he worked towards his Master of

Science degree in Information Security at Northeastern University, Boston from

2007 to 2009. He is currently working as a Security Scientist at H2O.ai in

California. His research interests are modeling anomalous behaviour using massive

datasets and computer networking vulnerabilities. The area of his research interest

includes malicious behaviour in computer networks, and financial fraud.

