
CERIAS Tech Report 2016-4
Packet Filter Performance Monitor (Anti-DDoS Algorithm for Hybrid Topologies)

 by Ibrahim M. Waziri, Jr.
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Graduate School Form
30 Updated ����������

PURDUE UNIVERSITY

GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

IBRAHIM M. WAZIRI, JR. By

Entitled

PACKET FILTER PERFORMANCE MONITOR (ANTI-DDOS ALGORITHM FOR HYBRID TOPOLOGIES)

Doctor of Philosophy For the degree of

Is approved by the final examining committee:

VICTOR RASKIN SAMUEL S. WAGSTAFF, JR.
Co-chair

JULIA M. TAYLOR
 Co-chair

J. ERIC DIETZ

BAIJIAN YANG

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

VICTOR RASKIN Approved by Major Professor(s):

EUGENE. H. SPAFFORD 7/19/2016Approved by:
Head of the Departmental Graduate Program Date

PACKET FILTER PERFORMANCE MONITOR

(ANTI-DDOS ALGORITHM FOR HYBRID TOPOLOGIES)

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Ibrahim M. Waziri, Jr.

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2016

Purdue University

West Lafayette, Indiana

ii

To my Dad

&

Younger Brother - Mohammed Waziri

(May his soul continue to Rest in Peace - Amen.)

iii

ACKNOWLEDGMENTS

I would like to express my immense gratitude to my advisors: Prof. Victor Raskin

and Prof. Julia Taylor for their time, constant guidance, moral support, and invalu

able comments throughout my PhD. I am honored to have the opportunity to know

and learn from such great and highly respected experts. I would also like to express

my appreciation and gratitude to my committee members: Prof. J. Eric Dietz, Prof.

Baijian Yang, and Prof. Samuel S. Wagsta↵, Jr for their invaluable support, time,

and help. Without their guidance, my PhD would never have been possible.

I am grateful to my parents for their tireless support and unwavering encourage

ment, especially my dad, who I look up to no matter how tall I grow. I owe him

everything I am and have. Without my father, my dreams would never have become

a reality. And for that I just want to say, thank you, dad!

My sincere appreciation goes out to Purdue CERIAS members, the Professors

who took the time to teach me, the sta↵ for their guidance, and my friends for taking

me along on this incredible journey.

Lastly, I would like to thank the Purdue Graduate School, especially my supervisor

Don Brier in the IMA ofce for providing me with an assistantship that funded my

PhD studies.

Thank you all.

Ibrahim Waziri, Jr.

iv

TABLE OF CONTENTS

Page

LIST OF FIGURES . vii

LIST OF TABLES . viii

ABBREVIATIONS . ix

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Motivation . 2

1.1.1 Challenges with Traditional Packet Filter Architectures . . . 2

1.1.2 Challenges with Virtual Packet Filter Architectures 4

1.1.3 Challenges with Hybrid Packet Filters Architectures 5

1.2 Problem Statement . 5

1.3 Contribution and Overview . 6

1.4 Dissertation Road-map . 7

1.5 Dissertation Limitations . 8

2 RELATED WORK . 10

2.1 Introduction . 10

2.2 Firewall Architectural/Implementation Security 11

2.3 Network Security/Function Virtualization 17

2.4 Cyber Threats Implementation . 21

2.5 Commercial DDoS Defense Architectures 29

2.5.1 Mitigation Approach . 30

2.5.2 Mitigation Techniques . 31

2.5.3 Drawbacks of Commercial Solutions 33

2.5.4 Prevention & Response . 34

2.6 Flooding Mitigation . 35

v

Page

2.7 Chapter Summary . 42

3 TRADITIONAL ARCHITECTURE PERFORMANCE TEST 44

3.1 Introduction . 44

3.2 Problem Statement . 47

3.3 Traditional Architecture Overview 48

3.4 Implementation & Configuration Setting 49

3.5 Implementing the Traditional Test 55

3.6 Evaluation & Analysis . 59

3.6.1 Downtime & Recovery Period Analysis 59

3.7 Defined Thresholds . 61

3.8 Chapter Summary . 62

4 VIRTUALIZED ARCHITECTURE PERFORMANCE TEST 63

4.1 Introduction . 63

4.1.1 Virtualized Environments 64

4.1.2 Network Functions Virtualization 65

4.2 Problem Statement . 67

4.3 Virtual Architecture Overview . 68

4.4 Implementation & Configuration Settings 69

4.4.1 HTTP GET Flood Request 71

4.5 Evaluation & Analysis . 77

4.5.1 Downtime & Recovery Period Analysis 78

4.6 Chapter Summary . 79

5 PERFORMANCE MONITOR . 80

5.1 Background . 80

5.2 Performance Monitor Design . 81

5.3 Implementation & Deployment . 81

5.3.1 API Implementation . 81

5.3.2 MySQL Database Implementation 84

vi

Page

5.3.3 AES Implementation using PyCrypto 85

5.4 Performance Analysis . 85

5.4.1 Filtering Service Transfer . 87

5.4.2 Performance Comparison . 87

5.4.3 Thresholds & Heuristic Rules/SLA 88

5.5 Chapter Summary . 90

6 CONCLUSION . 91

6.1 Connecting the Dots: Justifying the Problem Statement 91

6.2 Summary . 92

6.3 Recommendations & Future Work 93

LIST OF REFERENCES . 94

A FIREWALL ACL CONFIGURATIONS 103

A.1 Hardware Firewall . 103

A.2 Virtual Firewall . 104

A.3 Complete Architecture . 107

VITA . 110

vii

LIST OF FIGURES

Figure Page

2.1 DoS & DDoS Attack Types . 25

2.2 Classification of DoS attacks . 25

2.3 DDoS Peak Attack Size Year after Year 28

2.4 HTTP GET & POST Flood Attack . 30

2.5 Commercial-Based DDoS Mitigation Technique 32

3.1 Traditional Environment Architecture 49

3.2 JMeter configuration Settings . 56

3.3 HTTP GET Flood Request . 58

3.4 The Traditional Architecture Results 59

3.5 Recovery & Downtime Periods . 60

3.6 CPU Usage over Time . 60

4.1 Traditional vs. Virtualized Environments. 65

4.2 Virtual Environment Architecture . 69

4.3 Virtual Architecture Results . 77

4.4 Virtual Downtime & Recovery Time Analysis 78

5.1 Performance Monitor Architecture . 82

5.2 API Call Process . 84

5.3 Performance Monitor/Migration Decision Flow 86

5.4 Comparative Performance Analysis . 88

A.1 Complete Architecture I . 108

A.2 Complete Architecture II . 109

viii

LIST OF TABLES

Table Page

3.1 Access Control List of Traditional Packet Filter 51

3.2 Hardware Server Resource . 52

3.3 JMeter Configuration Components . 53

3.4 JMeter Configuration/Test Parameters 53

3.5 Time Period Analysis . 60

3.6 Packet Transmission Analysis . 61

3.7 Memory Utilization Analysis - 8GB . 61

3.8 CPU Utilization & Time Required Analysis 61

3.9 Traditional Packet Filter: Newly Defined Threshold 62

4.1 Configuring HOIC for Virtual Load Testing 70

4.2 Virtual Resources Usage - 8GB . 77

4.3 Time Period Analysis for Virtual Packet Filter 78

5.1 Comparative Analysis of Performance Results 87

ix

ABBREVIATIONS

ACL Access Control List

AES Advanced Encryption Standard

AFM Aggregation Flow Management

API Application Program Interface

APT Advanced Persistent Threat

AS Autonomous Systems

CAPEX Capital Expenditure

CBF Confidence Based Filtering

CFU Cloud Fusion Unit

CIA Confidentiality Integrity Availability

DDoS Distributed Denial of Service

DES Data Encryption Standard

EC Elastic Computing

FPGA Field Programmable Gate Array

FTA Fault Tree Analysis

HTTP Hypertext Transfer Protocol

IaaS Infrastructure as a Service

ICMP Internet Control Message Protocol

IPS Intrusion Prevention System

IS Information Security

LAN Local Area Network

LISP Locator ID Separation Protocol

MAC Message Authentication Code

NAT Network Address Translation

x

NFV Network Function Virtualization

NIST National Institutes of Standards and Technology

NTP Network Time Protocol

OPEX Operation Expenditure

OS Operating System

PaaS Platform as a Service

SaaS Software as a Service

SDK Software Development Kit

SDN Software Defined Network

SLA Service Level Agreement

SMLI Stateful Multi-Large Inspection

SOS Secure Overlay Services

SSDP Simple Service Discovery Protocol

SSL Secure Socket Layer

SVA Security Virtual Appliance

TCP Transmission Control Protocol

UDP User Datagram Protocol

VM Virtual Machine

VMM Virtual Machine Monitor

VPN Virtual Private Network

WWW World Wide Web

xi

ABSTRACT

Ibrahim M. Waziri, Jr. Ph.D., Purdue University, August 2016. Packet Filter Perfor
mance Monitor (Anti-DDoS Algorithm for Hybrid Topologies). Major Professors:
Victor Raskin & Julia Taylor.

DDoS attacks are increasingly becoming a major problem. According to Arbor

Networks, the largest DDoS attack reported by a respondent in 2015 was 500 Gbps.

Hacker News stated that the largest DDoS attack as of March 2016 was over 600

Gbps, and the attack targeted the entire BBC website.

With this increasing frequency and threat, and the average DDoS attack duration

at about 16 hours, we know for certain that DDoS attacks will not be going away any

time soon. Commercial companies are not e↵ectively providing mitigation techniques

against these attacks, considering that major corporations face the same challenges.

Current security appliances are not strong enough to handle the overwhelming trafc

that accompanies current DDoS attacks. There is also a limited research on solutions

to mitigate DDoS attacks. Therefore, there is a need for a means of mitigating DDoS

attacks in order to minimize downtime. One possible solution is for organizations to

implement their own architectures that are meant to mitigate DDoS attacks.

In this dissertation, we presented and implemented an architecture that utilizes

an activity monitor to change the states of firewalls based on their performance in

a hybrid network1. Both firewalls are connected inline. The monitor is mirrored to

monitor the firewall states. The monitor reroutes trafc when one of the firewalls

becomes overwhelmed due to a HTTP DDoS flooding attack. The monitor connects

to the API of both firewalls. The communication between the firewalls and monitor

is encrypted using AES, based on PyCrypto python implementation.

1A hybrid network is a network comprised of both hardware and virtual firewalls

xii

This dissertation is structured in three parts. The first part found the weakness

of the hardware firewall and determined its threshold based on spike and endurance

tests2 . This was achieved by flooding the hardware firewall with HTTP packets until

the firewall became overwhelmed and unresponsive. The second part implements the

same test as the first, but targeted towards the virtual firewall. The same parameters,

test factors, and determinants were used; however a di↵erent load tester was utilized.

The final part was the implementation and design of the firewall performance monitor.

The main goal of the dissertation is to minimize downtime when network firewalls

are overwhelmed as a result of a DDoS attack.

2Memory & CPU Utilization were used as determinants

1

1. INTRODUCTION

Individuals and organizations store data either in their individual computers or orga

nization servers. Networking allow users to share data with just a click. The internet

has revolutionized the communication world; it is a medium for data dissemination

and a means for collaboration and interaction between individuals via their comput

ers, irrespective of geographical location. To ensure connectivity and ease of access

to information, two ways of storing information are in place: 1) using a physically

accessible storage device or; 2) using a cloud service that connects remotely by using

the network.

One feature of networking is its capability to give access to the users connected

to that network. Without security measures in place, there would be no control

over access to information on a network. Now that the internet connects every elec

tronic device to a single global network, ensuring data security has become a tremen

dous challenge. Distributed Denial of Service (DDoS), Advanced Persistent Threats

(APTs), and other forms of attack are continuously increasing, according to Fortune

Magazine (Gandel, 2015) Cyber attacks cost companies $400 billion annually. An

other report from CNN Money estimates that the average US firm spends at least $15

million a year on cyber crime (Grifths, 2015). Current protection mechanisms are

inadequate to address the evolving cyber threats (Grifths, 2015). Advancements in

our defense mechanisms cannot manage the current rate at which new cyber threats

arise (Grifths, 2015).

Di↵erent appliances and defense methods are used to protect and ensure data

security within a network. However, as technology advances, so does the mechanisms

used to protect that particular technology. In networking and cloud computing we

incorporate traditional and virtual systems, which results in a hybrid network topol

ogy (Buyya, Broberg, & Goscinski, 2010). For corporations and individuals to better

2

secure data and information in a network, they need to implement di↵erent security

measures. One of the most integral aspect of network security implementation is the

deployment of a firewall (S. Ioannidis, Keromytis, Bellovin, & Smith, 2000).

Given the traditional and virtual network environments utilized by organizations,

the need arises for firewalls that protect both traditional and virtual environments.

It is a common practice to have a hardware firewall dedicated to the traditional net

work, and a virtual firewall dedicated to the virtual network. The problem with

this implementation is the fact that di↵erent types of attacks can be implemented

within di↵erent network environments. If an attack is targeted towards a traditional

network, the virtual network gets a↵ected, and vice-versa. For example, if a DDoS

attack targeted towards a dedicated traditional network firewall (hardware) is suc

cessful, the firewall becomes non-responsive, therefore making the virtual network

non-responsive.

1.1 Motivation

In this section, we discuss why both hardware and virtual firewalls fail under

DDoS attacks in hybrid architectures. This is the reason that motivates us to build

a performance monitor that monitors the state of the firewalls.

1.1.1 Challenges with Traditional Packet Filter Architectures

Traditional (Hardware) firewall appliances are closed boxes that connect to the ex

ternal network on one interface(s), and the internal network on the other interface(s).

Hardware firewalls have minimal operating systems, which makes them fast in terms

of processing capabilities. Optimal performance of hardware firewalls is dependent

upon the firewall’s resources, which include the CPU and Memory availability (Ken

ney, 1996; Zalenski, 2002). Because of these factors, for a hardware firewall to function

as expected, it is required to have enough resources to process instructions (Panko,

2010).

3

Denial of service attacks clogs up available resources (CPU, Memory, etc.) on a

target system, thereby overwhelming the system. Overwhelming a system causes it

to crash, reboot, or generally refuse any assistance to legitimate clients. DoS attack

are exceptionally basic; surely, pretty much every server will undoubtedly experience

such an attack sooner or later (Douligeris & Mitrokotsa, 2004). In a situation where

the attack is facilitated crosswise over numerous hijacked systems (zombies) by an

attacker (master), the attack is referred to as DDoS (Carl, Kesidis, Brooks, & Rai,

2006; Douligeris & Mitrokotsa, 2004). DDoS threats come in many varieties, some

of which target the underlying server infrastructure. Others exploit vulnerabilities

in applications and communication protocols. Unlike other kinds of cyber attacks

which are typically launched to establish a long-term foothold and hijack sensitive

information, denial of service assaults do not attempt to breach the security perimeter.

Rather, they attempt to make services, websites, and servers unavailable to legitimate

users. In some cases, however, DoS is also used as a smokescreen for other malicious

activities, and to dismantle security appliances (e.g., web application firewalls).

A successful DDoS attack is a highly noticeable event that impacts the entire

online user base (Mirkovic & Reiher, 2004). This makes a DDoS attack a popu

lar weapon of choice for hacktivists, cyber vandals, extortionists, and anyone else

looking to make a point or champion a cause (Douligeris & Mitrokotsa, 2004). DoS

assaults often last for days, weeks, or even months at a time, which makes them ex

tremely destructive to any network. DDoS can cause loss of revenues, erode consumer

trust, force businesses to spend fortunes in compensations, and cause users to su↵er

long-term reputation damage (Kenney, 1996; Mirkovic & Reiher, 2004; Thomas &

Stoddard, 2011).

Since the optimal operation of hardware firewalls is dependent on the firewall’s

available resources (Kenney, 1996). And DDoS are known to target and exhaust

resources. This makes hardware firewalls, among other devices, an attack target

(Byers, Rubin, & Kormann, 2004).

4

1.1.2 Challenges with Virtual Packet Filter Architectures

Network function virtualization (NFV) is a strategy to virtualize the network

functions carried out by proprietary dedicated hardware. NFV decreases the quantity

of proprietary hardware required to execute and run network services1 . NFV allows

network operators to integrate middle-boxes in virtual machines (VM) and put those

VMs at subjective areas in the network (Anwer, Benson, Feamster, & Levin, 2015;

ESTI, n.d.).

Network Function Virtualization (NFV) has drawn noteworthy consideration from

both industry and the scholarly world with a vital movement within telecommunica

tion service sector. By decoupling network functions (NFs) from the physical devices

from which they run, NFV can possibly result in significant reduction in operating

costs (OPEX) and capital costs (CAPEX), and to encourage the deployment of new

services with expanded agility and faster time-to-value (Mijumbi et al., 2015). NFV is

still in its earliest stages and there is a chance and opportunity for research groups to

create new models, frameworks, and applications, and to assess choices and trade-o↵s

in creating advance technologies for its optimized deployment.

NFV’s have their own security issues, which include hyperthreats and hypercalls,

as explained in (Shropshire, 2015). However, in this dissertation, we only focus on

security issues that arise from DDoS attacks. Considering that middle-boxes are

hardware appliances, they are expensive, hard to oversee, and their usefulness is hard

or difcult to change. NFV has alleviated all these problems, with its flexibility (Mar

tins et al., 2014). Because virtualized network functions are deployed on dedicated

servers, which are hardware appliances, there is a need to secure the server appliances

used to virtualize NFs. One tool that is being used to secure such server appliance

perimeters is a hardware firewall.

1TechTarget - NFV defined

5

1.1.3 Challenges with Hybrid Packet Filters Architectures

A hybrid packet filter topology is required for a particular network architecture.

Traditional (hardware) firewall secures the NFV server’s perimeter, and the virtual

ized firewall secures other virtualized network functions. One packet filter inherits

the problem of another packet filter (Buyya et al., 2010; Cheswick, Bellovin, & Rubin,

2003; Cisco, 2014).

Attacks that exhaust resources (such as DDoS) which are targeted towards the

hardware firewalls used to secure the virtualized network functions server results in

network downtime, and inaccessibility of anything connected inline beyond the firewall

(Kenney, 1996; Martins et al., 2014). If the hardware firewall is down, the server that

NFs runs on automatically becomes unavailable, and hence the unavailability of data

and network downtime.

1.2 Problem Statement

This dissertation aims to enhance packet filter performance in hybrid networks

and to minimize network downtime caused by DDoS attacks in hybrid packet filter

topologies. This is achieved by monitoring the CPU and memory utilization of dif

ferent firewalls. To ensure that, we claim the following: it is possible to implement an

architecture that mitigates DDoS attacks, minimizes network downtime, and transfers

packet filtering service between firewalls in a hybrid network topology. We formulate

and validate the following hypotheses.

•	 It is possible to mitigate DDoS attacks on packet filters without dropping legit

imate packets.

•	 It is possible to migrate packet filtering services interchangeably between fire-

walls in a hybrid packet filtering network when one firewall becomes over

whelmed.

6

•	 It is possible to develop a monitoring tool that monitors the CPU and Memory

states of firewalls and minimizes network downtime during a DDoS attack on a

network.

1.3 Contribution and Overview

The main contribution of this dissertation is to avoid network downtime as a result

of firewall failures during a DDoS attack in a hybrid network. To ensure that, we

implement a number of tests on the Traditional, Virtual, and Hybrid architectures

and also develop an algorithm used to validate the hypothesis mentioned above. We

provide here a brief overview of tests and algorithms:

1.	 Spike Performance Test

To find the threshold of the firewalls (both hardware and virtual), we carried

out a spike test that verifies the firewall’s stability amid a burst of simultaneous

concurrent or network connections to changing time periods and degrees of traf

fic load. This happens as a result of an attack that overwhelms the device (such

as a DDoS attack). We implemented a HTTP flooding attack and monitored

CPU Utilization during this test.

2.	 Endurance Performance Test

Similar to the spike performance test, we carried out an endurance test. This

was implemented to discover whether the firewalls can withstand the necessary

processing loads for a long period of time. During the endurance test, we

implemented a HTTP flooding attack, and monitored the memory utilization

of the firewalls.

3.	 Performance Monitoring/Packet Filtering Transfer Algorithm

In light of the outcomes of our tests, we developed an algorithm that moni

tors the states of the firewalls based on performance. The algorithm invokes

instructions when a newly defined threshold is reached. The algorithm also

7

transfers packet filtering services between the firewalls when one of the firewalls

is overwhelmed. This results in more network up-time in the event of an at

tack, and also ensures that the firewall does not become non-responsive when

overwhelmed.

1.4 Dissertation Road-map

This work introduces a new security architectural monitor used in hybrid networks.

The monitor works by transferring packet filtering services from one firewall to the

other when the network is under DDoS attack. The communication between the

monitor and the firewalls occurs through the firewall’s API. AES encryption algorithm

is used to ensure that all communication is secured.

In chapter 2, we review literature and research focused on network architectural

security, NFV’s, cyber threats (including DDoS attacks), and proposals for how DDoS

attacks can be mitigated. We then examined commercial DDoS mitigation solutions

that prevent and respond to flooding attacks. We finished the chapter by discussing

the disadvantages of using commercial DDoS mitigation providers, and how they do

not provide a substantive solution to DDoS attacks.

Chapter 3 discusses the traditional packet filter architecture. The chapter begins

with an introduction to firewalls, and discusses how hardware firewalls di↵er from

virtual firewalls. We then explained the problem statement and how we set up the

traditional architecture. We concluded the chapter by presenting the results of our

test.

Chapter 4 discusses the virtual packet filter architecture. We started by explaining

NFVs and current issues with virtualization. We highlight the problem statement and

explained our test parameters and results for the virtual architecture.

In chapter 5, we presented the packet filtering monitor/algorithm. We explained

the monitor’s design, how the monitor works, and evaluate the monitor’s performance.

8

We concluded by summarizing our findings and proposing areas of future study in

Chapter 6.

1.5 Dissertation Limitations

To the best of our knowledge, no existing research explains how monitoring firewall

performance is used to mitigate DDoS attacks. This study focused only on Layer 7

application level DDoS attacks, primarily based on HTTP trafc. HTTP trafc is the

protocol utilized for communication between a client and a web server (Cisco, 2014;

Dieter, 1999). All tests were conducted in a controlled, monitored environment. The

virtualized firewall and the web server run on a dedicated server with configurations

that are explained in later chapters. This work focus on internal threats, with the

assumption that an intruder has gained access to the network. The process of gaining

access to networks is beyond the scope of this study. The network is configured

in IPv4 instead of IPv6 because IPv4 is the most generally utilized version of the

Internet Protocol (Bade & Vanduhe, n.d.) and IPv6 features (e.g. larger address

space, optimized DHCP, IPSec, optimized mobility feature (Bade & Vanduhe, n.d.))

are beyond the scope of this dissertation.

The test focuses on mitigating the application layer DDoS attacks, which are

volumetric HTTP floods generated using di↵erent load and stress testing tools. The

HTTP floods targets firewalls not other network devices. This study is not limited to

specific vendors. The choice of devices used are solely based on availability, and the

same process can be applied to any other vendor devices. This dissertation focuses

on accessing a web server in which trafc must pass through two checkpoints (the

firewalls) before reaching its destination.

Lastly, this dissertation does not attempt to provide a guide for malicious activity.

We presented the report in an ethical manner, such that a reader cannot gain knowl

edge of how to implement DDoS attacks. However, if this dissertation provides any

9

hint that an adversary decides to implement or exploit, it is the sole responsibility of

the adversary and neither that of the author nor committee members.

10

2. RELATED WORK

2.1 Introduction

As of July 2015, the internet has connected an estimated of 1.03 billion hosts

worldwide (ISC, 2015). The internet is an assembly of di↵erent networks accessible by

dissimilar users in di↵erent ways. That means that users can access information using

the internet regardless of national and geographical boundaries. This convenience and

ease of accessibility to information, however, comes with security issues. These issues

include, theft and tampering information. These issues make all information online

vulnerable to unauthorized access and usage.

One of the most important aspects of technology is whether it favors o↵ense or

defense (R. Anderson, 2001). The difculties of developing secure systems using a

penetrate-and-patch methodology have been familiar to the security community since

the Anderson report in the early 1970’s (J. P. Anderson, 1972).

Within recent years we have seen an expansion in the widespread adoption of com

mercial security technologies by governmental, military and commercial organizations,

due to their convenience, and ease of use. With increasing reliance on third-party se

curity resources, also comes an increasing vulnerability to information meant to be

protected (J. M. Anderson, 2003; Venter & Elo↵, 2003). Although security threats

can range from psychological operations (social engineering) to physical attacks on

computers, one aspect of Information Security that most concerns computer users is

defending information against disruption or disabling the computerized functions and

resources that support an organization’s operations (Jajodia, Ammann, & McCollum,

1999).

Many of the threats to Information Security share common characteristics (Peltier,

2005). We are going to discuss some of the threats known today, but it is worthwhile

11

mentioning that these threats do not represent a complete list of Information security

threats; considering new forms of attacks are discovered everyday. As it relates to

this dissertation; Information Security threats can be categorized as follows: External

and Internal.

•	 External Threats - This is the hacker threat, whether it is a single person, or

a nation state. This type of threat comes from external sources, someone not

connected to the network implements the attack. This types of attack includes

DDoS attack (Spears, 2006).

•	 Internal Threats - This is a type of threat that happens inside the network.

Internal threats do not only apply to malicious actives. User error and ignorance

play a large role in trusted individuals putting networks and systems at risk to

outside agents. Firewalls, intrusion detection systems, and other boundary

defense mechanisms are ine↵ective when circumvented by insiders.

2.2 Firewall Architectural/Implementation Security

Everyday new research is being conducted within the security field. Network se

curity is among the top research theme in information technology. Z. Yang, Qiao,

Liu, Yang, and Wan (2010) focused on a collaborative trust model of firewall-through

based on cloud computing. In this research, existing trust models and firewall inno

vation were studied. The researchers implemented a methodology using cloud com

puting that assess dynamic setting and presents the meaning of risk sign in firewalls.

The model has three advantages: there are distinctive security strategies for vari

ous domains, the model considers the exchange setting, the verifiable information of

entity dynamically impacts the estimation of trust worth. Finally, the trust model

is synchronous with the firewall and does not break the firewall’s local control poli

cies. To confirm the dependability and accuracy of the proposed trust model, a test

is done. The test result demonstrates that the trust model is robust and surpasses

12

ordinary trust models in di↵erent areas, because it e↵ectively control unauthorized

access within cloud computing environment.

Moyer and Schultz (1996) presents an orderly approach for firewall penetration

testing that advances the perspective that firewall testing ought to look at not just

the capability of a firewall to stop attack from outside threats, but also the resistance

of the whole system that the firewall ensure against external threats. As a result,

therefore, testing should take an orderly approach to guarantee that it is complete,

and to decrease the risk of threats and/or interference to the system and its hosts.

This study introduced a requirement for an efcient approach to guide firewall testing.

Network firewalls, routers and switches utilize a rule database to choose which

packet will be permitted into and out of a network. By filtering packets, the fire-

wall, routers and switches can enhance security and execution. Be that as it may,

as the extent of the rule list builds, it gets hard to keep up and validate the rules

(Hazelhurst, Attar, & Sinnappan, 2000). Hazelhurst (2000) studied an algorithm for

analyzing firewall and router access lists. The algorithm is another representation of

rule list, and also a presentation of how Boolean expression can be utilized to analyze

rule sets. Eronen and Zitting (2001) presented an expert system for analyzing firewall

rules that looks into the problem of analyzing firewall configurations, using a tool that

comprehends Cisco access lists, it is actualized utilizing Eclipse, (a constraint logic

programming language). The study utilizes logic statements to express information

about networking, firewalls, and basic configuration mistakes. Configuring network

devices (especially from di↵erent vendors) to work in unison can be difcult. Notwith

standing reverse-engineering or figuring out of existing setup is hard. To overcome

some of these difculties, Mayer, Wool, and Ziskind (2000) studied a firewall analysis

algorithm that composed and actualized a novel firewall analysis tool. The tool per

mits the administrator to e↵ectively find and test the global firewall policy (either an

implemented policy or an arranged one). The tool utilizes an insignificant depiction of

the network topology, and specifically parses the di↵erent vendor-particular low-level

configuration list. It interfaces with the client through a query-and-answer session,

13

which is done at a higher point of abstraction. A common question the apparatus

can answer is “from which machines can our DMZ be accessed, and with which im

plementations?” The tool compliments existing vulnerability examination tools, as it

can be utilized before a policy is implemented. It works on a more justifiable level of

abstraction, and it manages all firewalls simultaneously (Mayer et al., 2000).

Firewalls and routers must perform packet classifications at high speeds to produc

tively execute their capacities, for example, firewalls and di↵serv. Arrangement can

be found on a self-assertive number of fields in the packet header. Rapidly classifying

an arbitrary number of fields is known to be hard, and has a poor scenario complexity.

Qiu, Varghese, and Suri (2001) analyzes two fundamental approaches; backtracking

search and set pruning attempts. The researchers propose several new techniques to

assist and enhance the two fundamental approaches, including: backtracking search

using small memory utilization, a novel compression algorithm, pipe-lining the in

quiry, and trading-o↵ easily amongst backtracking and set pruning. The research

quantifies the performance gains for every approach utilizing actual databases. The

study demonstrates that on actual firewall databases, the schemes with the advance

ments are ideal in time and capacity.

Guillen, Sossa, and Estupiñán (2012) demonstrates how performance results be

tween closed and open source routing approaches are vital parameters for network

architects. The study breaks down execution in convergence time, throughput and de

lay between routing approaches in view of virtual software router (VSR) and routing

approaches in view of proprietary hardware routers (PHR). The outcome demon

strates that VSR have better convergence times compared to hardware routers and

the throughput performance is better on PHR. Waziri Jr, Mirzoev, and Shropshire

(2014) looked into the comparison of control and hardware based filtering architec

tures in order to identify the most e↵ective architecture, a control test with no firewall

was conducted, followed by a hardware based packet filtering architecture. The study

used HTTP packets generated by a load testing tool. The results focused mainly on

endurance and the spike tests for the two architectures.

14

Sheth and Thakker (2011) did a comparative research that evaluates di↵erent

types of firewall operation, the operational conditions and performance results of

shortcomings in firewall operations. Moreover, the study analyzes reported issues

with existing firewalls. Detailed analysis and correlation is done in terms of cost,

security, operational ease, and execution of open source packet filter (PF) firewall,

checkpoint SPLAT, and Cisco ASA in a testing environment with laboratory gener

ated monitored and controlled trafc. Di↵erent throughputs and connection statistics

were utilized as benchmark for performance comparison. The outcomes showed that

Cisco ASA outperforms other firewalls in terms of performance. Checkpoint SPLAT

and OpenBSD PF likewise gives sensibly competitive performances.

Conventional firewalls depend on topology restrictions and controlled network to

implement trafc filtering. Firewalls can’t filter unidentified packets, so all clients on

the internal side are trusted. While this model has functioned admirably for little to

medium size networks, networking advancements, for example, expanded availability,

higher line speeds, extranets, and working from home undermine and make access

control out of date. To address the issue of traditional firewalls, the idea of distributed

firewalls has been proposed. In this plan, security policy is still centrally defined,

however implementation is left to the individual endpoints. IPSec might be utilized

to convey credentials that express parts of the overall network policy. On the other

hand, the credentials might be obtained through out-of-band means. S. Ioannidis et

al. (2000) presents the implementation and design of a distributed firewall based on

KeyNote trust management system and OpenBSD1 to specify, distribute and resolve

policy.

Firewalls are important tools for securing private networks. Be that as it may, by

just deploying firewalls, administrators are a long way from securing their networks.

Bad configurations results in breaches and network vulnerabilities. Specifically, con

flicting filtering rules leads to blocking legitimate trafc or allowing undesirable pack

ets. Abbes, Bouhoula, and Rusinowitch (2008) shows another characterization strat

1An open source UNIX operating system

15

egy to recognize conflicting access rules inside a firewall. The technique forms an

arrangement of filtering rules that have a variable number of fields. A field has a

scope of values, represented by an internal or variable length bit string that may

cross with relating field scope of di↵erent rules. Keeping in mind the end goal is to

recognize overlaps, the study sorted out the states of each filtering rule in a manner

that can rapidly isolate colliding rules.

Lihua, Jianning, and Zhendong (2006) presents a static analysis tool for firewall

modeling and analysis by regarding firewall configurations as important programs.

The tool applies static analysis methods to check misconfiguration, for example, vi

olation of policies, irregularities, and inefciencies in individual firewalls and among

distributed firewalls. Firewalls performs typical model checking of the firewall designs

for all conceivable IP packets along every single conceivable data paths. Typical model

checking is both sound and complete due to the limited way of firewall configurations.

The tool is actualized by modeling firewall rules utilizing binary decision diagrams

which have been utilized e↵ectively as part of the hardware verification and model

checking. The tool is utilized to reveal several real misconfiguration in networks, some

of which have been confirmed and amended by network administrators.

Chomsiri and Pornavalai (2006) proposes a strategy to analyze the firewall rule-set

or policy using relational algebra and a raining 2D-Box model. Rules analysis can

find every one of the abnormalities in the firewall rule-set in the way that is typi

cally utilized by numerous firewall devices, like, Cisco Access Control List, Iptables,

IPchains, or Check Point Firewall-1. While the current analyzing strategies consider

the peculiarities between any two rules in the firewall rule-set, researchers consider

more than two rules together in the meantime to find the abnormality. In this way,

it is conceivable to find the hidden anomalies in the firewall rule-set. Analysis re

sults can be utilized with the proposed rules-combination technique displayed in the

research to minimize the firewall rule without changing the policy. At the end, the

research developed an application based on the proposed analyzing strategy. The

16

application could help administrators examine and adjust a complex firewall policy

with fewer mistakes.

Until recently, the causes of decreased e↵ectiveness and restricted usage of new

security frameworks have been the inadequate execution of hardware that executes

access control, difcult analysis, and a configuration that conforms to corporate se

curity policy requirements. Without the utilization of specific solutions that permit

e↵ective functioning of data security systems and their coordination with other net

work applications, a secured corporate network infrastructure is impossible to achieve.

Zaborovsky and Titov (2009) issue is considered from three points of view: the deci

sion of the distributed hardware platform to enhance firewall performance; the por

trayal of security approach by method for an organization-based access control mode;

and automating the process of firewall rules formation taking into account high-level

depiction of access policy requirements.

Kayssi, Harik, Ferzli, and Fawaz (2000) presents a firewall plan for IP networks

utilizing a field-programmable gate array (FPGA). The FPGA actualizes, accepts, or

denies rules of the firewall. A hardware-based firewall o↵ers the benefit of speed rate

over a software firewall, notwithstanding direct interfacing with network devices, for

example, an Ethernet. The research indicates how the rules are translated to VHDL

and then implemented in hardware, and how the hardware is used to filter network

trafc in a packet-by-packet method, or based on connecting information, with speeds

of more than 500,000 packets per second (Kayssi et al., 2000).

Golnabi, Min, Khan, and Al-Shaer (2006) shows an arrangement of techniques

and algorithms to examine and oversee firewall policy rules: (1) data mining tech

niques to deduce e↵ective firewall policy rules by mining the trafc log based on its

frequency; (2) filtering-rule speculation to decrease the quantity of approach rules

by generalization: and (3) a procedure to recognize any obsolete rule and a set of

couple predominant rules, to create another arrangement of efcient firewall policy

rules. Anomaly detection based on mining uncovered numerous hidden abnormalities

by analyzing the firewall policy rules, bringing about two new sorts of anomalies. As

17

a result of these systems, network security administrators can consequently review

and update the rules.

From every one of these studies, we understand how a firewall is the e↵ective

innovation of today’s network security defense; we also understood how maintaining

firewall rules is complex, error-prone, expensive and ine↵ective for large networks.

These firewall rules are generally custom-designed and handwritten; as a result, they

are in consistent need of tuning and approval, because of the dynamic way of network

trafc, constant changing network environment, and its market demands.

2.3 Network Security/Function Virtualization

Networks are deployed to make computers more accessible to the outside world.

Making computers more accessible to the outside world is a mixed blessing (Dieter,

1999). More interactions are possible, but so are unwelcome interactions. One may

therefore wish to control how users are able to connect to a network system, how

users on the network access data, and how data is protected when it travels through

the network.

Networks are the communication infrastructure of data transmission between

nodes in a distributed system. Data meant to be sent by an application in one node

has to be prepared for transport, transmitted as a sequence of electronic or optical

signals, reassembled, and presented to an application program at the receiver’s end.

Network protocols have to find a route from sender to receiver; they have to deal

with the loss or corruption of data, and also with the loss of connection. It is a good

practice to address these concerns one at a time with a layered architecture, applica

tion protocols at the top, and protocols that physically transmit bits of information

to the bottom.

Network management protocols provide the necessary support so that the data

generated by other protocols are efciently delivered to the intended recipients. Man

agement protocols, for example, may check the availability of intermediate nodes

18

between sender and receiver, find optimal connections, or resolve logical network ad

dresses to physical addresses. Other protocols are used to remotely configure network

nodes, the software running on these nodes are becoming more and more complex.

Hence, network security increasingly relies on securing management protocols and

nodes in the network. The fact that network nodes are located in protected sites is

no longer a guarantee for security (Dieter, 1999).

“Network security refers to any activity designed to protect a network, specifically,

these activities protect the usability, reliability, integrity and safety of a network and

data. E↵ective network security targets a variety of threats and stops them from

entering or spreading on a network” (Cisco, 2014).

Regardless of whether a company is on the Internet or not, security measures must

be applied to the network. These security measures may be as simple as requiring

users to regularly change their passwords or may involve using the network operating

system and third-party utilities to restrict access and enforce policies (Blacharski,

1998).

Issues in Security

Since the advent of computers and networking, di↵erent forms of cyber attacks

have been in place. Common attack techniques are classified: Some attackers gain

system knowledge or personal information, such as, spying and phishing. Others

meddle with system designated functions, for example, virus infections, worms and

Trojans. Also, others exhaust the system resources rendering rendering services un

available. This can be brought about by denial of service (DoS) attack. Di↵erent

types of network interruptions also exist, for example, land attacks, smurf attacks,

password stealing, social engineering, use of viruses and worms, bugs & indirect ac

cesses, verification & protocol failures, information leakage, bot-nets, eavesdropping,

data modification, spoofing, snifng, software & hardware misuse, TCP hijacking,

19

teardrop attacks and so on (Bhavya, 2008). For the purpose of this study, we are

going to focus only on the DoS form of attack.

Considerable research has been completed lately towards virtualization and cloud

security. With server combination and desktop virtualization, essentially more ac

tivity stays inside the data center racks, prompting blind spots in network security

appliances. Current network security devices, designed in view of scale-up standards,

can’t keep pace with the expanded bandwidth dispensed to the servers, and the ex

panding volume of threats at all layers of the network stack. Likewise, high versatile

workloads and expanding intelligence in the virtual and hypervisor layer makes it pro

gressively hard for static network devices to interlock with dynamic policy changes

and on-the-fly re-purposing of resources to serve di↵erent workloads, applications, or

clients.

The researchers Basak, Toshniwal, Maskalik, and Sequeira (2010) highlights an

other pattern in the industry to virtualize network security devices inside security

virtual appliances (SVA’s), which can then be placed on hosts, and other distributed

security function for network flows across the cluster. The methodology replaces sin

gle choke-point based physical security devices like firewalls. IP address management,

flow monitoring, and data leakage are monitored using a distributed virtual counter

parts running on slices of x86, integrated with compute workloads, with the capacity

to take advantage of trafc going through all virtual machines. Cloud computing

can convey both software and hardware as on-demand assets and services over the

internet (Huang & Yang, 2010). Without a doubt, one of the noteworthy concerns in

cloud computing is security.

Wu, Ding, Winer, and Yao (2010) focused on security of virtual networks in vir

tualized environments. The research presents an outline of security issues in virtual

machines. The issues that exist in a virtual network are additionally being discussed

and analyzed based on Xen platform. The outcome displays an inventive virtual net

work structure planned to control the intercommunication among virtual machines

incorporated to physical machines with higher security. With distributed systems

20

becoming more prevalent in modern computing, there is a need to scale exponen

tially with their use and integration. Up to this point, the x86 architecture does not

allowed traditional trap-and-emulate virtualization. x86 virtual machine monitors

have rather utilized parallel interpretation of the guest kernel code. Be that as it

may, both intel and AMD have now introduced architectural extensions to support

classical virtualization. The research “comparison of software and hardware methods

for x86 virtualization” compares a current software VMM and another VMM intended

for emerging hardware support. Surprisingly, the hardware VMM frequently shows

lower performance than the software VMM.

Adams and Agesen (2006) conducted a study of software and hardware techniques

for x86 virtualization and studied architectural level events such as page table over

hauls, context switches, and I/O; the study discovered their cost incomprehensibly

distinctive among native software VMM, and hardware VMM execution. The re

search results demonstrates that the hardware support neglects to give a recognizable

performance advantages for two primary reasons. First, it o↵ers no support for MMU

virtualization; second, it neglects to exist with existing software techniques for MMU

virtualization. The study looks ahead to developing methods for addressing the MMU

virtualization issue with regards to hardware-assisted virtualization.

Manohar (2013) surveyed virtualization techniques, types of hypervisors, and

building private clouds with virtualization. It additionally examines the security

of cloud computing and introduced the optical network as an access network and

its devices in the data centers as energy efcient centers. Virtualization assumes a

noteworthy part in helping organizations reduce cost, and in the mean time guaran

tees enhanced productivity, better utilization, and adaptability of existing hardware.

Reuben (2007) presents a literature on di↵erent security issues inside virtualization

technologies. The study mainly focuses on open security vulnerabilities that virtual

ization conveys to the cyber environment. The study focused on security issues that

are unique for virtual machines and security threats that are common to all virtu

21

alization technologies available in the market. The study finishes up with a several

discourse of a few security vulnerabilities in the virtualized environment.

2.4 Cyber Threats Implementation

Distributed Denial of Service attack (DDoS) is a noticeable threat to cloud and

virtualized environments. Traditional defense approaches cannot be easily applied

to the cloud environment because of their moderately low proficiency and large data

space. Thus, (Dou, Chen, & Chen, 2013) exhibited a Confidence-Based Filtering

strategy (CBF). The research method is deployed in two periods; the non-attack

period, and the attack period. More specifically, legitimate packets are gathered amid

the non-attack period for extracting attribute pairs to produce a nominal profile. The

CBF technique is advanced by computing the score of a specific packet amid the attack

time frame to decide whether to discard it. In conclusion, extensive simulations are

conducted to assess the feasibility of the CBF method. The outcome demonstrates

that CBF has a high scoring speed, small storage requirement and an acceptable

filtering precision, making it suitable for real-time filtering in cloud environment.

Negi, Mishra, and Gupta (2013) proposes an enhanced CBF approach featuring

a modification to the confidence-based filtering technique researched for the cloud

computing environment. It took into account connection designs that mitigate DDoS

attacks in the cloud. The modification presents additional bandwidth and tries to

increase the processing speed of victim’s server.

Farahmandian et al. (2013) reviewed and compared the existing methods used to

mitigate DDoS attacks on cloud computing. SYN flooding attacks are an example

of Distributed Denial of Service (DDoS) attack. Early detection is desirable however

traditional passive detection strategies are done in the early stages because of their

dependence on passive snifng an attacking signature. Xiao, Chen, He, and Sha

(2005) captures attacking signatures utilizing an active probing scheme that obtains

the delay of routers by sending packets containing a unique Time-to-Live set for the

22

IP headers. The aftere↵ects of the test are utilized to perform SYN flooding detection,

which is reliable and has minimal overhead. This methodology is more independent

than di↵erent techniques that require the participation of network devices. Di↵erent

tests demonstrate that this delay probing approach accurately recognizes half-open

connections caused by SYN flooding attacks from those emerging from di↵erent causes

at an early stage. The researchers Lonea, Popescu, and Tianfield (2013) focused on

detecting DDoS attack in cloud computing environments. The proposed solution is to

consolidate the evidence obtained from Intrusion Detection Systems (IDS) deployed in

the virtual machines of the cloud systems with a data fusion methodology on the front

end. In particular, when the attack appears, the VM-based IDS will yield alarms,

which will be stored in the MySQL database set inside the Cloud Fusion Unit (CFU)

of the front end server. The research propose a quantitative solution for analyzing

alerts generated by the IDSs, utilizing the Dempsters Combination Theory (DST)

operations in 3-valued rationale and Fault Tree Analysis (FTA) for the mentioned

flooding attacks. At the last step, the solution utilizes the Dempsters combination

rule to fuse evidence from multiple independent sources.

On the topic of DDoS detection, H. Wang, Zhang, and Shin (2002) proposes a

simple and vigorous mechanism for detecting SYN flooding attacks. Rather than

monitoring trafc flow at the front (like firewall or proxy) of a server, they identify

the SYN flooding attacks of LEAF routers that connects end hosts to the Inter

net. The ease of the detection mechanism lies in the stateless and low computation

overhead, which makes the detection mechanism itself immune to flooding attacks.

The detection mechanism depends on the protocol behavior of TCP SYN-FIN (RST)

pairs, and is an instance of successive change point detection. To make the detection

mechanism insensitive to site and access pattern, a non-parametric cumulative sum

method is applied, thus, making the detection component for the most part relevant

and its deployment much less demanding. The efciency of this detection component

is validated by trace-driven simulations. The evaluation results show that the detec

tion mechanism has short detection precision. Because of its closeness to the flood

23

ing sources, the component not only sets alarm upon detection of continuous SYN

flooding attacks, additionally it uncovers the location of the flooding sources without

resorting to expensive IP trace-back. There have been numerous proposals to shield

against SYN flooding, and some require notable TCP changes. A few arrangements

that endeavor to determine the TCP shortcoming are now publicly available. Ric

ciulli, Lincoln, and Kakkar (1999) subjectively analyzes these arrangements of TCP

SYN flooding defense. The study refines the analysis of the random drop approach

and drives a straightforward and general approach to enhance its performance. At

last, the study presents (through both analytical and packet-level simulations) the

efcacy of the random drop approach in a variety of operating conditions.

TCP-based flooding attacks are a typical type of Distributed Denial of Service

(DDoS) attacks that abuse network resources and can result in serious threats to

the Internet (Chen & Yeung, 2006). Incorporating IP spoofing-random, subnet, and

fixed varieties makes it harder to shield against attacks. Subnet-spoofing is the most

troublesome type of DDoS to counteract. Chen and Yeung (2006) proposed a simple

and efcient method to detect and protect against TCP SYN flooding attacks under

various IP spoofing types, including subnet spoofing. The method makes use of a

capacity efcient data structure and change-point detection method to distinguish

complete three-way TCP handshakes from incomplete ones. Simulation experiments

reliably demonstrate that the strategy is both productive and compelling in protecting

against TCP-based flooding attacks under various IP spoofing types.

Shin, Kim, and Jang (2005) proposes D-SAT: detecting SYN flooding attack by

two-stage statistical approach. A basic and robust way to detect SYN flooding attacks

is by monitoring the network activity. Rather than dealing with all ongoing trafc

on the network, D-SAT only monitors SYN count and the proportion between SYN

and other TCP packets. D-SAT identifies SYN flooding and discovers victims more

precisely in its second stage. To make the recognition mechanism and detection more

easy, D-SAT utilizes a cumulative sum methodology in statistical process control. It

makes the recognition mechanism more applicable and easier to implement. D-SAT

24

additionally uses AFM (Aggregation Flow Management) to identify victims quickly

and precisely. The trace-driven simulation results shows that D-SAT system is reliable

and easy to deploy and D-SAT also demonstrate that it recognizes SYN flooding

precisely and finds attack within a short detection time.

Denial of Service

A denial of service (DoS) attack is an attack that clogs up so much resources

(CPU, Memory etc) from the target system. This usually causes the system to crash,

reboot, or generally deny any services to legitimate clients. DoS attacks are extremely

normal; to be certain, every server can undoubtedly experience such an attack at any

given time. In a situation where the attack is coordinated across many hijacked

system (zombies) by a single attacker (master), the attack is referred to as DDoS

(Carl et al., 2006). DDoS threats come in many varieties, some of which target the

underlying server infrastructure. Others exploit vulnerabilities in applications and

communication protocols. Unlike other kind of cyberattacks, DDoS are typically

launched to establish a long-term foothold and hijack sensitive information. Denial

of service assaults do not attempt to breach your security perimeter. Rather, they

attempt to make your services, website, and servers unavailable to legitimate users. In

some cases, however, DoS is also used as a smokescreen for other malicious activities,

or to take down security appliances (e.g., web application firewalls).

Classification of Denial of Service

DoS attacks can be classified into five categories (Douligeris & Mitrokotsa, 2004).

These categories are: Network Device level, OS level, Application level, Data Flood,

and Protocol Feature attack.

25

Fig. 2.1. DoS & DDoS Attack Types

Fig. 2.2. Classification of DoS attacks

Network Layer Attacks - Layer 3 DoS

A DoS attack at the network level is caused either by exploiting a bug, software

vulnerability, or exhausting the hardware resources of the network device (Waziri Jr

& Shropshire, 2015).

26

Layer 3 attacks utilize specialized packets designed to cause resource intensive

processing, slow response on target devices, or the disruption of TCP state informa

tion. These attacks influence issues in Layer 3 protocols and devices in order to cause

significant disruption with much less attacker bandwidth than a volumetric attack.

It is moderately simple; nonetheless, one needs to filter most Layer 3 attacks as they

can be filtered with simple signatures and usually consume much less bandwidth than

a pure volumetric attack (Waziri Jr & Shropshire, 2015).

Attack vectors in this category include UDP flood, SYN flood, NTP amplifica

tion, DNS amplification, and more. Any of these can be used to prevent access to

servers, while also causing severe operational damages, such as account suspension

and massive overage charges.

DDoS attacks are almost always high-trafc events, commonly measured in giga

bits per second (Gbps) or packets per second (Pps). A large network layer assault

can exceed 600 Gbps 2; however, 20 to 40 Gbps are enough to completely shut down

most network infrastructures.

Application Layer Attacks - Layer 7 DoS

DoS attacks at this level attempt to make a machine or service out of order either

by exploiting particular bugs in network applications that are running on the target

host or by utilizing such applications to deplete the resources of the victim. An

example of this is the finger-bomb.

Layer 7 attacks exploit application layer commands that cause slow processing

or crashes with the goal of disrupting the service of a targeted application. Layer 7

attacks normally target HTTP; either HTTP request that cause the web application

to perform resource exhaustive processing or vulnerability in unpatched versions of

the web servers. These attacks are considerably more hard to profile and filter at the

network, and frequently require changes to web applications themselves. Basic Layer

2Arbor Network Report 2015

27

7 attacks include Slowlirs, R-U-Dead-Yet, and XDoS (zadjmool, 2013). Among other

attack vectors in this category includes HTTP floods, slow attacks (e.g., Slowloris or

RUDY), and DNS query flood attacks.

The size of application layer attacks is normally measured in request per second

(Rps), with no more than 50 to 100 Rps required to exhaust most average sized

websites (Davidowicz, 1999). In this dissertation, we implemented this type of attack.

Motivation & Causes

The purposes of DDoS attacks vary. A small percentage (on the positive side) of

them can be accidental, caused by a badly configured system or as a demonstration

to potential customers of DDoS protection solutions. However, on the negative side;

there is often a personal intention behind the majority of these attacks. Some can

be used as a diversion for attackers who want to try and steal information from

certain systems, or for financial market manipulation or even fame, because hackers

might want to boast that they managed to successfully attack a well known target or

competitor. Moreover, online gaming, gambling, and social network related reasons

are also motives behind such attacks. One of the biggest motivations behind DDoS

attacks is “hacktivism”. Hacktivism is mainly driven by political and ideological

disputes.

Severity

The biggest attack reported by a respondent in 2015 was 500 Gbps, with di↵erent

respondents reporting attacks of 450 Gbps, 425 Gbps, and 337 Gbps. This proceeds

with the pattern of significant development in the top-end size of DDoS attacks year

after-year. In 2014, 20 percent of respondents reported attacks of more than 50 Gbps.

Interestingly in 2015 about one-fourth of the same respondents report attack sizes of

more than 100 Gbps, stressing the scale of the DDoS problem. Clients remain the

main focus in more than 66% of DDoS attacks. Once more, the extent of respondents

28

seeing attacks focusing on cloud-based service has increased from 19% in 2013, to

29% in 2014, and to 33% in 2015.

Fig. 2.3. DDoS Peak Attack Size Year after Year

Attackers have proceeded with the 2014 pattern of utilizing reflection/amplification

strategies to exploit vulnerabilities in NTP, SSDP, and di↵erent protocols. Numerous

respondents reported events at 200+ Gbps. This continues the trend of significant

growth in the top-end size of DDoS attacks yearly.

Implementation

For DoS attacks to be implemented, an attack needs to be perpetrated towards the

target. Depending on the type of victim, there are di↵erent forms of DoS attacks. For

ethical reasons, this dissertation does not provide a guide on how to implement DoS

attacks; however we presented the di↵erent forms of attacks as follows (Mirkovic &

Reiher, 2004): UDP Flood, ICMP (Ping) Flood, SYN Flood, Ping of Death, Slowloris,

NTP Amplification, HTTP Flood, etc.

29

HTTP Flood Attack

HTTP Flooding is an application layer attack. It overwhelms a target web server

with a substantial amount of HTTP requests (Byers et al., 2004; Estevez-Tapiador,

Garćıa-Teodoro, & Dı́az-Verdejo, 2005), slowing or completely disrupting the regular

web server trafc (Das, Sharma, & Bhattacharyya, 2011). In this dissertation, we

implement a HTTP Flood attack. During this attack, an attacker exploits the HTTP

GET or POST request sent when a HTTP client, like a web browser, talks to an

application or server.

The attacker uses a botnet to send the victim’s server a large amount of GET (pic

tures or scripts) or POST (file or forms) request with the expectation of overwhelming

its resources and capabilities. The victims web server gets inundated, attempting to

answer every request from the botnet, which drives it to allocate its maximum re

sources to handle the trafc. This prevents legitimate requests from reaching the

server, causing a denial of service.

2.5 Commercial DDoS Defense Architectures

As a result of the various DDoS targets, types of attacks and severity, it is neces

sary to have methods to mitigate these attacks and help secure the availability of crit

ical services. Nowadays, there are di↵erent popular commercial mitigation/protection

providers that attempt to accomplish the problem posed by DDoS attacks. However,

most commercial providers do not successfully achieve their stated goals. Commercial

mitigation providers can provide a high detection success rate, but they tend to be

very costly depending on the size of the attack trafc; also, they tend to have is

sues with clients regarding trafc being routed to the providers, which violates client

privacy.

30

Fig. 2.4. HTTP GET & POST Flood Attack

2.5.1 Mitigation Approach

Discarding trafc altogether is not considered a mitigation practice, considering

that legitimate trafc can also be dismissed. An Access Control List of firewalls is a

choice for protection; however, this is only successful in filtering already known attacks

by examining the protocols used. DDoS attacks are becoming more sophisticated,

using valid protocols, and rendering the filtering process unsuccessful when it comes

31

to SYN, SYN/ACK, and others forms of DDoS attacks. Another way of using routers

as a form of protection is to use Unicast Reverse Path Forwarding (uRPF), which

can be used to block IP addresses outside of the target’s subnet. Nonetheless, if an

attacker utilizes spoofed IP addresses from the same subnet, little to nothing can be

done. Also, legitimate end-user trafc is blocked and the DDoS attack succeeds.

According to Cisco, another popular opinion is that firewalls and Intrusion Detec

tion Systems (IDS) are inadequate forms of protection against DDoS attacks (Cisco,

2004). Firewalls are used inline and attackers target their low session handling abil

ities. Usually, they do not filter spoofed trafc and they can also be used to reject

trafc from certain protocols. However, the attacking side can still use valid protocols

during a DDoS attack. The same applies to IDS; they can provide excellent detection

for Application Layer attacks but not against valid protocols. Moreover, as the term

suggests, IDSs only function as a detection mechanism.

2.5.2 Mitigation Techniques

Contrary to privacy issues, commercial solutions have a high success rate in mit

igation. Such companies o↵er di↵erent types of plans according to clients’ needs

and budgets. Services such as prevention, monitoring and trafc handling can be

provided. There are mainly two di↵erent types of trafc handling correlated to the

layers of attack; Layer 3/4 and Layer 7 solutions (Incapsula, 2014).

Layer 3/4 mitigation techniques are based on Border Gateway Protocol (BGP)

IP address range swings. The target of the DDoS attack can decide to stop announc

ing their IP address range to the global Internet; in turn, that particular company

announces it for them, so that they receive all of the trafc intended for the client,

whether it is malicious or not. This operates in a distributed model with data cen

ters across the world; trafc is then washed as it goes through special purpose built

appliances to filter illegitimate trafc out with the use of specific algorithms. Once

32

the trafc is washed it is rerouted back to the client (On-Ramping) over a Generic

Routing Encapsulation (GRE) tunnel.

Layer 7 mitigation techniques also function in a distributed model. By having

multiple data centers at di↵erent Internet Exchanges, clients can point the DNS entry

of their websites to these companies who, in return, handle the requests where each

packet is inspected. Based on the signatures, illegitimate trafc can be detected and

discarded. Next, legitimate trafc is sent back to end-user browsers based on their

geographical location.

Fig. 2.5. Commercial-Based DDoS Mitigation Technique

Due to the immense amount of available bandwidth, both legitimate and malicious

trafc is accepted. The trafc is then washed using algorithms to examine which

packet protocols are used. The DDoS trafc is discarded and the legitimate trafc is

sent to the Critical Service Infrastructure and returned to the end-users.

33

2.5.3 Drawbacks of Commercial Solutions

Few commercial mitigation techniques prove to be efcient; many are imperfect,

and also depending on the customer, they can be quite expensive (Verisign, 2014a).

First and foremost, the algorithms used to monitor trafc are not flawless, which

means that along with DDoS trafc, sometimes legitimate trafc is discarded. These

mitigation solutions o↵er DDoS detection and contact the client when they detect a

significant rise in their trafc to ask if they should take measures (Agarwal, Dawson,

& Tryfonas, 2003). Up to thirty minutes can pass after the detection has provided

results and the BCP swing of the IP range has taken place, during which the victim

is under attack and unable to react (Verisign, 2014b).

Application Layer solutions have a di↵erent disadvantage. Because of their dis

tributed model which can have a replica of the client’s web service in any of their

data centers, it is rather unsafe to use for services that implement SSL due to the fact

that the Private Keys need to be shared. For small customers, this might not be an

issue; however, when customers are financial and governmental organization, privacy

issues are far more consequential. Recently a solution to this problem was developed

(CloudFlare, n.d.) which tries to provide a mitigation solution without sharing Pri

vate Keys. Nevertheless, the matter of privacy still remains when bringing a third

party into the equation. End-users of critical services trust that their financial and

private data is handled by an entity that is stable and impermeable.

Lastly, these companies o↵er contracts based on bandwidth. If a customer, for ex

ample, chooses for contract of mitigating attacks of up to 40 Gbps and it is attacked

by a larger DDoS attack than the terms of the contract, the prices of mitigation

increase excessively. According to security firm Imperva, sixty percent of US com

panies experienced DDoS attacks during 2013. DDoS mitigation solutions can cost

from $5,000 to over $100,000 US dollars per hour (Incapsula, n.d.). Furthermore,

these figures do not include possible damages to credibility and customer satisfac

34

tion. The consequences of a DDoS attack can thus be disastrous for any organization

or company.

2.5.4 Prevention & Response

The primary line of defense is to ensure DDoS doesn’t take place. Hosts must

be securely shielded from substantial and expert attack implants. There are in fact

known signatures and filtering methods to recognize these attacks. Another method

is monitoring network trafc for known attack messages sent amongst attackers and

masters. On the active side, cyber-informants and cyber-spies can be used to intercept

attack plans. For instance, Gibson clearly showed how he e↵ectively spied on attack

plans within a group of agents (Gibson, 2001).

This line of defense alone is clearly deficient. There are always don’t care users and

careless clients who leave their devices vulnerable to DDoS agent implants. Internet

Service Providers (ISPs) and enterprise networks do not have motive to monitor for

attack packets. Besides, spying on attack plans, such as the one presented in (Gibson,

2001) requires an in-depth knowledge of specific methods of launching DDoS attacks,

which may also be changed later on, to avoid spying (Chang, 2002).

Attack source traceback and identification is normally an after-the-fact response

to a DDoS attack. IP traceback refers to the problem, as well as the solution, of the

actual source of any packet sent across the Internet without relying on the source

information from the packet. There are mostly two approaches to deal with the IP

traceback issue. One is for routers to record information about packets for later trace-

back request (Snoeren et al., 2001). Another is for routers to send extra information

about the packets to the packet destinations via either the packets (Savage, Wetherall,

Karlin, & Anderson, 2000) or another channel, such as ICMP messages.

However, it is in-feasible to utilize IP traceback to stop a continuous DDoS attack.

First, current IP traceback solutions are not always able to trace packet origins (e.g.,

those behind firewalls and network address translators). Additionally, IP traceback is

35

ine↵ective towards reflector attacks in which the attack packets originate from legiti

mate sources. Regardless of the fact that the attack sources can be e↵ectively traced,

preventing them from sending attack packets is another troublesome task, particu

larly when they are scattered in di↵erent autonomous systems (AS). Nevertheless, IP

traceback could be very useful in recognizing the attacker and collecting evidence for

post-attack law enforcement (Chang, 2002).

2.6 Flooding Mitigation

A Distributed Denial of Service (DDoS) attack utilizing Botnets became widely

used in the Internet because of its efciency and easy implementation. Zahid, Belmekki,

and Mezrioui (2012) presents a new architecture for detecting DDoS/Brute forcing

attack and destroying the botnet behind. The architecture stops DDoS attacks based

on Botnet command and control and identifies the botmaster machine. The archi

tecture is composed of DDoS attacks detection agents, spies and central agents that

coordinate with each other during the attack trace-back process. The trace-back

procedure depends on hacking techniques in order to infiltrate the Botnet and get in

formation about the attacker and the bots utilized. The architecture is intended for

Internet Service Providers (Zahid et al., 2012). Botnets are the predominant mech

anisms for facilitating the distributed denial of service (DDoS) attacks on computer

networks or applications. To date, Botnet-based DDoS attacks on the application

layer are the latest and most problematic trend in network security threats. Botnet

based DDoS attacks in the application layer limit resources, shorten revenue, and

yield client dissatisfaction.

DDoS attacks are among the most troublesome problems to resolve online, espe

cially when the target is a Web Server. Alomari, Manickam, Gupta, Karuppayah,

and Alfaris (2012) introduces a thorough research of Botnet-based DDoS attacks on

application layers, particularly on the web server and decreased incidents of such at

tacks. Botnet-based DDoS attack incidents and significant revenue losses were also

36

described. The study provides a better comprehension of the problem, current solu

tion space, and future research scope to safeguard against such attacks.

These days, we are witnessing a significant increment in distributed denial-of

service (DDoS) attacks that flood victims from di↵erent sources. Intrusion detection

and filtering are required mechanisms to combat against these attacks and properly

secure networks. Nonetheless, the current detection technique for DDoS attacks works

in isolation. Saad, Nait-Abdesselam, and Serhrouchni (2008) proposed a productive

and collaborative architecture that takes into consideration the placement and co

operation of defense techniques to properly address major security challenges. The

utilization of content-based, distributed hash-table algorithm allows improved scala

bility and load balancing of an entire system. The architecture has been executed on

ISA entities using table protocol with a promising performance.

Harris, Koniko↵, and Petersen (2013) gives a survey of the DDoS landscape and

analyzes the application of the kill-chain concept to the DDoS threat. Utilizing the

concept of detect, deny, disrupt, degrade and destroy. The paper investigates ways

that this chain can be disrupted. An outline of the emerging DDoS threat is provided

and considerations are o↵ered for extra technology and research with the potential to

significantly reduce the current DDoS threat.

Xuan, Chellappan, Wang, and Wang (2004) analyzed the secure overlay services

architecture under intelligent DDoS attacks. They proposed a secure overlay service

architecture to provide reliable communication amongst customers and a target un

der DDoS attacks. The SOS architecture utilizes an arrangement of overlay nodes

arranged in three hierarchical layers that control access to the target. Even though

the architecture is novel and functions admirably under basic over-flooding based

attacks, it is observed to be vulnerable under more intelligent attacks. The architec

ture works by introducing more layering flexibility to the original architecture. To

understand the impacts of the amount of layers, neighbors per node and the node

distribution per layer under these two attack models, two intelligent DDoS attack

models are defined and an analytical methodology was developed. The result clearly

37

shows that performance is indeed sensitive to the design features that interact with

each other to impact overall system performance.

Keromytis, Misra, and Rubenstein (2004) proposes a design called secure overlay

services (SOS) that proactively prevents denial of service (DoS) attacks, targeted to

wards supporting emergency services or similar communications. The design utilizes

a combination of secure overlay tunneling, routing via hashing and filtering. It min

imize the likelihood of successful attacks by: 1. performing intensive filtering near

the protected network edges and pushing the attack point perimeter into the core

network, where routers can deal with the volume of attack trafc; and 2. introducing

randomness and anonymity into the forwarding architecture, making it difcult for an

attacker to target nodes along the way to a particular SOS-protected network. Uti

lizing basic analytical models, the research evaluates the possibility that an attacker

can e↵ectively launch a DoS attack against an SOS protected network. The analysis

shows that such an architecture reduces the probability of a successful attack to a

minimal probability. The performance measurements using a prototype implementa

tion shows an increment in end-to-end latency by a factor of two for the general case,

and an average recovery time of less than 10 seconds.

Beitollahi and Deconinck (2012) analyzed well-known countermeasures against

distributed denial of service attacks. The study provided an in-depth analysis of each

DDoS countermeasure and explained the strengths and challenges of each technique.

The paper designed a countermeasure against the defense mechanism from the attack

ers perspective. The study is assumed to help potential victims choose appropriate

countermeasures against DDoS attacks based on the methodology presented, as well

as the requirements they need to deploy the techniques.

Tariq, Malik, Abdulrazak, and Hong (2011) researched the packet flood attack

and presented a collaborative peer to peer defense mechanism for DDoS attacks. The

proposed solution identifies the attack at the victim edge router and sends alert mes

sages to its neighboring nodes which permits them to proactively defend themselves.

Simulation results demonstrate the efciency of the solution, with less false positives

38

at the victim edge router and less damage to the network due to the proactive defense

approach.

Tupakula and Varadharajan (2003) studied counteracting DDoS attacks in multi

ple ISP domains using routing arbiter architecture. They focus on preventing DDoS

attacks in multiple ISP domains. Other methods used cluster analysis. K. Lee, Kim,

Kwon, Han, and Kim (2008) proposes a strategy for proactive detection of DDoS

attack by exploiting its architecture; the selection of handlers, agents, communica

tion, compromise, and attack. They proposed DDoS attack detection method using

cluster analysis. The study investigated the strategies of DDoS attack and then chose

variables based on these features. After that, a cluster analysis for proactive detec

tion of the attack was performed. The researchers experimented with a 2000 DARPA

Intrusion Detection Scenario Specific Data Set in order to assess their methodology.

The outcomes shows that each phase of the attack scenario is well partitioned and

can detect precursors of a DDoS attack as well as the attack itself.

Garg and Chawla (2011) used data mining instead of cluster analysis. Garg and

Chawla (2011) present various significant areas where data mining techniques seem to

be a strong approach for detecting and preventing DDoS. Douligeris and Mitrokotsa

(2004) presents a simple approach to handling DDoS problems by creating a clas

sification of DDoS attacks and DDoS mechanisms. Each attack and defense system

category are described and the advantages and disadvantages of each proposed scheme

are outlined. The objective of the paper is to introduce some order into the current at

tack and defense mechanisms, so that a better understanding of DDoS attacks can be

achieved; also advanced and more e↵ective algorithms and procedures to combat these

attacks may be created. Koutepas, Stamatelopoulos, and Maglaris (2004) introduces

Distributed management architecture for cooperative detection and reaction to DDoS

attacks. Koutepas et al. (2004) proposes a cooperative intrusion detection framework

focused on mitigating DDoS attack by introducing distributed overlay early-warning

network. The objective is to minimize detection and reaction times and automate

response, involving as many networks as possible along the attack path, which can

39

then be detected locally without trace-back procedures. The fundamental building

block is the cooperative anti-DDoS entity and a modular software system deployed

in each participating network domain that supports secure message exchanges and

local responses tailored to individual site policies. The study explains the operation

and deployment of prototype, provides a survey of the approaches against DDoS and

compares the approaches to related work.

Pushback is a tool for mitigating distributed denial of service (DDoS) attacks.

DDoS attacks are treated as a congested-control problem, but because most conges

tions are caused by malicious hosts not obeying traditional end-to-end congestion

control, the issue must be taken care of by routers. Functionality is added to each

router to detect and preferentially drop packets that most likely are attributed with

an attack. Upstream routers are likewise configured to drop such packets (henceforth

the term pushback) in order to transfer legitimate trafc. J. Ioannidis and Bellovin

(2002) presents an architecture for pushback, its execution under FreeBSD, and sug

gestions for how such a system can be implemented in routers (J. Ioannidis & Bellovin,

2002). Ando, Miwa, Kadobayashi, and Shinoda (2008) presents a load balancing sys

tem for mitigating DDoS attacks using live migration of virtual machines. Ando et

al. (2008) applies virtual machine monitor to modify the virtualized operating sys

tem, and afterward outlines the detailed countermeasure for DoS attacks utilizing live

migration.

Honeypot is a trap used to communicate with potential attackers to divert, detect,

or prevent such attacks and guarantee uninterrupted availability of service. Desh

pande (2015) prevented distributed denial of service attacks using virtualized honey-

pots. Deshpande (2015) gives insight into the issues introduced by distributed denial

of service attacks, current solutions that use honeypots, and how a mesh of virtualized

honeypots can be used to mitigate distributed denial of service attacks. Srivatsa, Iyen

gar, Yin, and Liu (2008) mitigated application-level denial of service attacks in web

server using a client-transparent approach. Srivatsa et al. (2008) proposes handling

DoS attacks by using a twofold approach. First, the researcher performs admission

40

control to limit the amount of concurrent clients served by the online service, invisi

ble to unauthorized clients by hiding the port number on which the service accepts

incoming request. Second, admission control carries out a congestion control which

allows admitted clients to allocate more resources to other approved clients. Conges

tion control is achieved by setting a client’s priority level in response to the client’s

requests in a way that incorporates application-level semantics. The article displays

a detailed assessment of the proposed arrangement utilizing two sample applications,

Apache HTTPD and the TPCW benchmark (running on Apache Tomcat and IBM

DB2). The study demonstrates that the proposed solution results in low performance

overhead and is resilient to DoS attacks.

The need to keep an attacker unmindful of attack mitigation e↵orts is a very

important component of protection against denial of services (DoS) and distributed

denial of services (DDoS) attacks, because it helps to dissuade attackers from changing

their attack patterns. DDoS protection can be achieved in two parts. The first is a

fake server that provides a service function or receives attack trafc as a substitute

for a legitimate server. The second is a decoy network that restricts attack trafc to

the peripherals of a network, or reroutes attack activity to fake servers.

Okada, Hazeyama, and Kadobayashi (2014) proposes the use of a two-stage map

table expansion Locator/ID Separation Protocol (LISP) to understand the fake net

work. It explains and showed how LISP can be used to deploy an oblivious DDoS

mitigation mechanism by adding an extension to the LISP Map Server. Together

with fake servers, this approach can end DDoS activity on the ingress end of a LISP-

enabled network. At last, the paper verified the e↵ectiveness of the proposed mecha

nism through simulated DDoS attacks on a simple network topology. The test results

demonstrate that the mechanism could be deployed within a few seconds, and the

attack trafc can be terminated without incurring overhead on the MapServer.

Shameli-Sendi, Pourzandi, Fekih-Ahmed, and Cheriet (2015) uses taxonomy of

distributed denial of service mitigation approaches for cloud computing to concentrate

on how to mitigate DDoS attacks. It presents a new taxonomy of DDoS mitigation,

41

then discusses the principle elements of existing DDoS mitigation approaches and

clarifies their functionalities in the cloud environment. Afterwards, it indicates how

the current DDoS systems fit into the network topology of the cloud. Finally, the

survey paper presented some of these DDoS mechanisms in detail, and compares their

behavior in the cloud. The goal is to show how these characteristics bring an original

perspective into existing DDoS mechanisms, and give researchers new experiences

into how to mitigate DDoS attacks in cloud computing. Bhardwaj, Subrahmanyam,

Avasthi, and Sastry (2015) proposes three tier network architecture to mitigate DDoS

attacks on hybrid cloud environments. They use a multi-tiered network design based

on hybrid cloud solution that has premise solution acceptable to the organization’s

IT security and operations team, as well as public cloud infrastructure capable of

handling large sized DDoS attacks targeted towards hybrid cloud servers.

Miao, Yu, and Jain (2014) highlights a few novel elements and advancement pat

tern among DDoS attacks: 1) Large-scale. These attacks have the volume of up to

hundred gigabits per second against a single cloud service. 2) Diverse attacks. The

attacks range from network-layer (e.g. SYN surge, UDP surge) to application-layer

(e.g. HTTP GET, SQL infusion) with varied characteristics for volume, number of

connections, and packet header signature (e.g., TCP flag, port). 3) Fast ramp-up

rate. The attack trafc ramps up quickly and influences the target cloud service

usually within a minute. In response to these challenges, the attack detection and

mitigation system needs to: 1) have adequate capacity to handle attack volume: 2)

support the detection of diverse range of attacks: and 3) have accurate and quick

attack detection with low damage to legitimate trafc.

To identify attacks, cloud operators usually use commercial hardware devices,

such as Firewalls, IDS and DDoS-protection tools in the network. There are three

issues with these hardware boxes. First, these hardware devices cannot address over

whelming attacks in cloud scale. For instance, Firewall and IDS look at the states

and detailed signature of packets. They cannot handle attacks with high volume.

DDoS-protection appliances verify only significant trafc at the network-layer; they

42

can address larger attack volumes, but are not capable of handling virtual scale at

tacks of hundred of gigabits per second trafc. Second, these hardware boxes present

unfavorable cost and capacity trade-o↵s. For example, the DDoS-protection appliance

typically costs up to a million dollars per box annually. Third, since these devices

run vendor specific software, they limit how operators can configure them to handle

the increasing diversity of attacks.

There are commercial attack mitigation services (CloudFlare, Prolexic etc.,) that

redirect web service and enterprise trafc through a dedicate high-capacity network

for attacks detection and mitigation. However, most clients do not want their trafc

to be re-routed considering the private concerns (Miao et al., 2014).

To address this issue, one paper proposes another paradigm for attack-prevention

as-a-service that uses commodity VMs for attack detection and mitigation. It in

troduces the NIMBUS service, which combines the elasticity of cloud computing

resources with the algorithm found in software-defined networks (SDN). NIMBUS

scales resource usage with trafc requests, to handle diverse attack efciently and

without the exposure of private clients trafc (Miao et al., 2014).

2.7 Chapter Summary

Indispensable research and studies have been conducted regarding the Information

Security field as a whole. Everyday new threats and defense mechanisms evolve, and

research is being conducted to understand the problems and provide solutions. In

this chapter, we reviewed several studies relating to this dissertation. The purpose

of this related literature is to understand the current state of the problem we are

trying to solve. To the best of our knowledge, research has yet to address the issue

of network downtime as a result of firewall failures. However, a number of studies

that addresses DoS attacks, network security and firewall configurations have been

conducted. Based on these studies, we decided to implement the proposed study.

43

We also explained how commercial DDoS mitigation solutions are sophisticated

techniques; but, depending on the attack and the target, they may not always be

sufcient. One major draw-back of commercial-based solutions is the fact that they

are also susceptible to attack. Attackers are finding ways to infiltrate DDoS mitigation

companies. Once an attacker bypasses these commercial companies, it becomes much

easier to gain access to a network. Also there is an issue of having third parties monitor

network trafc; therefore, we conclude that the best DDoS mitigation technique is

for an innovative solution.

44

3. TRADITIONAL ARCHITECTURE PERFORMANCE

TEST

3.1 Introduction

The Internet is an exciting and informative place to browse and explore. It is

the great frontier and grandiose achievement of mankind. In reality, the World Wide

Web is merely a collection of routers and servers that make up the largest wide-area

network (WAN) in recorded history. The collection of networking gears provides mail

servers, websites, and other information storage and retrieval systems which are all

connected to the Internet and accessible to every person connected. It has even been

said that the Internet contains the collective institutional knowledge of mankind.

The rapid expansion of the internet has provided tremendous opportunities to

access an unparalleled amount of data. An organization connects to the internet to

gain access to information and to share information with the public; once a company

connects its private network to the internet, that organizations private information

becomes vulnerable to hackers. When private networks are connected to the internet,

the risk are great. However, using some security measures, one can share public

information and still protect private information. One of these measures is to install

a firewall between the private network and the internet (Blacharski, 1998).

A firewall is a security device that sits on the edge of your Internet connection

and functions as an Internet Border Security Ofcer. It constantly monitors all in

coming and outgoing connection trafc (Ierace, Urrutia, & Bassett, 2005; Thomas &

Stoddard, 2011).

The use of firewalls is no longer confined to servers, websites, or commercial com

panies. Even if you simply dial your ISP or use PPP (Point-to-Point protocol) to surf

the internet, you simply cannot do so without a firewall.

45

In other words, a firewall acts as a shield to protect your system from untrusted,

non-reliable systems connected to the Internet. Conceptually, it drives from the

firewalls-barriers made of fire-resistant material-used in vehicles. A firewall on your

PC, however, listens to all ports on your system for any attempts defined by set

of rules. To phrase it more technically; a firewall is a piece of software, hardware,

or both that allows only selected packets to pass from the internet to your private

network or system. There are di↵erent types of firewalls and firewall generations. For

the purpose of this dissertation, we focus on Hardware and Virtual based firewalls

that belong to the Third Generation of firewalls.

Firewall Appliances (Hardware-Based)

These are firewalls that come hardened in a box. These types of firewalls provide

services from a host attached to the internal network using a separate router. In this

architecture, packet filtering provides the primary security, preventing people from

going around proxy servers to make direct connections.

Host Firewalls (Virtual-Based)

These are firewalls that are installed on hosts themselves. These firewalls are

installed just like an OS. They are mostly installed on servers. They are normally

used in conjunction with other firewalls.

Third Generation Firewalls - SMLI

Stateful Multi-Layer Inspection (SMLI) represents a third generation of firewall

technology. This new class of firewall can be applied internally and externally, over

di↵erent protocol boundaries, and with numerous advanced functions. SMLI is similar

to the application gateway model; it examines all seven layers of the OSI model.

Instead of relying on a proxy, SMLI relies on a trafc screening algorithm optimized

46

for high throughput. Each packet is examined and compared against known states

of friendly packets. SMLI examines the entire packet (both address and application

data). Because SMLI does not use a proxy, it overcomes the performance problems

of the application gateway model.

The SMLI solution enables all applications to run natively over the firewall, be

cause no proxies or modifications are necessary. The user also does not face additional

passwords or validation procedures, so the solution is transparent to the end user

(Blacharski, 1998).

Access Controls

All information that flows across the Internet uses TCP/IP. In turn, this infor

mation is sent in small pieces known as packets. In the early days of the internet,

filtering based on packets was common; in many cases, routers in many networks still

use packet filtering. The methods used to configure and deploy packet filters on Cisco

ASA and routers is known as an access control list (ACL). There are two main types

of ACLs: the standard ACL, which filters based on IP address, and extended ACLs,

which look further into packet headers (Thomas & Stoddard, 2011). An access list

is essentially a list of conditions that categorize packets. They can be really helpful

when you need to exercise control over network trafc. An access list is the tool of

choice for decision making in packet filtering (Waziri Jr, 2014).

One of the most common and easy to understand uses of the access list is filtering

unwanted packets when implementing security policies. Access to the internet brings

corporations the advantage of widespread access to share information. However, it

also brings the risk of attack and unauthorized access. Access control is a critical

part of security policy that must be implemented in the firewall (Panko, 2010).

Access control policy specifies what and who can enter or exit the corporate net

work. To maintain access control, the security administrator must have a clear picture

of all services and applications available. Earlier packet filtering routers could not

47

do this task because they were unaware of applications. Second generation firewalls,

or application proxies, are application-aware, but consume a great deal of overhead.

Later technologies use stateful inspection and other advanced techniques build on this

application-layer awareness, while providing faster support for new services. Access

control should not only address what can pass into the network, but should also allow

the security admin to be able to the specify rules for what time each user can access

which service. The two main types of access lists are as follows:

Standard Access Lists

This uses just the source IP address in an IP packet as the condition test. All

choices depend on the source IP address. This implies standard access lists essentially

allow or deny a whole suite of protocols. They don’t recognize the numerous types of

IP packets, for example, Web, Telnet, UDP, etc.

Extended Access Lists

Extended access lists can assess other fields in the layer 3 and 4 headers of an

IP packet. They can evaluate source and destination IP addresses, the protocol field

in the Network layer header, and the port number at the Transport layer header.

This gives extended access lists the capacity to make more in-depth inspection and

granular decisions when controlling trafc. More in-depth description about standard

and extended access lists is available in Cisco books.

3.2 Problem Statement

Information security professionals find themselves working against misconceptions

and popular opinions formed from incomplete data, for example, the possibility that

internal network security can be secured simply by deploying a firewall. A firewall

is a perimeter defense and it is not designed to combat the threat within. First and

48

Second Generation firewalls do not secure against malicious code issues like viruses

and Trojan horses (Garfinkel, Spa↵ord, & Schwartz, 2003; NSTISSC, 2000; Smith,

2015), although some are capable of scanning for telltale signs. Configuring packet-

filtering rules has a tendency to be a complicated process, in the course of which errors

can easily occur leading to holes in the defense. In addition, testing the configured

rules has a tendency to be lengthy and a difcult process due to the shortcomings of

current testing tools. Ordinary packet-filtering routers cannot enforce some security

policies simply because the necessary information is unavailable.

Configuring a firewall can be troublesome when the goal is to guarantee maximum

security and functionality. Fortunately, most decent firewalls now come with a rea

sonable defaults access list. Some say you only need a hardware firewall. The issue is

that no firewall can prevent legitimate trafc from any source (wanted or unwanted).

This is potentially particularly problematic if you have file or print sharing enabled,

considering attackers out there are testing all the time for this exploitable back door

into a computer system.

Because of the known issues with firewalls, which is not having the ability to

configure access control that would mitigate DDoS at the same time allow legitimate

trafc to pass through. Firewalls are prone to DDoS attacks. From our literature

review, we know that firewall performance depends on its available resources. DDoS

attack exhaust available resources from its target. We decided to find a way to miti

gate DDoS attacks that target firewalls. First, we started by testing the performance

of a hardware firewall to see how much it can endure.

A paper on this work has been published in the proceedings of IEEE SouthEastCon

2015 (Waziri Jr & Shropshire, 2015).

3.3 Traditional Architecture Overview

The traditional test architecture utilizes one firewall, as shown in Figure 3.1. The

aim of this test was to find the endurance and spike results of a hardware firewall. A

49

specialized load testing tool (JMeter) was configured in a master/slave configuration.

The load testing tool was used to implement a HTTP flooding attack. The attack

was implemented by generating heavy HTTP trafc which targets a web server. The

hardware firewall sits inline between the attacker system and the web server, making

all trafc pass through the firewall. Using the ACL1 shown in Table 3.1, HTTP trafc

is allowed access, and hence the firewall doesn’t block any HTTP trafc. This is done

to allow access to the web-server, considering that DDoS attacks are implemented

using legitimate trafc.

Fig. 3.1. Traditional Environment Architecture

3.4 Implementation & Configuration Setting

To set up the test-bed used in the traditional architecture, we used the following

technologies and configurations:

Internet Protocol Version

We used the Internet Protocol version 4 (IPv4) to set up the IP addresses of

all devices in the environment. The reason behind the choice of IPv4 and not the
1See Appendix A1

50

newer IPv6 is because IPv4 is the most widely used Internet Protocol (Gupta, 2010).

That makes IPv4 more relevant to our study than IPv6. Also previous studies have

shown that TCP-Flood, UDP-Flood, and ICMP-Flood types of DDoS attacks are the

only types of attacks that change behavior between IPv4 and IPv6 and not HTTP-

Flood (X. Yang, Ma, & Shi, 2007). The major di↵erence between IPv6 and IPv4 are

Optimized DHCP, IPSec, Larger address space, and Optimized mobility feature (Bade

& Vanduhe, n.d.; Baker, Iturralde, Le Faucheur, & Davie, 2001; Nikander, Gurtov, &

Henderson, 2010). We configured the architecture using a static IP address because

it eliminates the plug and play networking provided by DHCP, thereby ensuring more

security (Sitaraman, Mann, Dos Santos, Lou, & Bhasham, 2002). For a complete list

of all the IP addresses used refer to Appendix A.

Application Protocol

We used Hypertext Transfer Protocol (HTTP) to flood the devices; it is the only

legitimate protocol allowed in our Access Control configuration. We used HTTP

because it is the protocol used to communicate between a client and a web-server

(Casilari, Gonzblez, & Sandoval, 2001). A client submits a HTTP request message

to the server, and the server respond with resources such as HTML files and other

contents (Mah, 1997). Because we are using HTTP, we decided to implement a

HTTP-Flood DDoS attack.

Packet Filters Access Control

For the hardware firewall in the traditional architecture, we blocked incoming

trafc on eth0, the outside Ethernet port. We allowed only ICMP, HTTP, and TCP

Port 80, because ICMP is used to Ping the network (Deering, 1991). HTTP is used

to communicate with the web server (Mah, 1997) and TCP port 80 is the endpoint

used to communicate HTTP used in WWW (Cole, 2011). Table 3.1 shows the access

51

Table 3.1
Access Control List of Traditional Packet Filter

Command List

Allow

Allow

Allow

Config# access-list 110 permit TCP any eq 80 host 10.10.10.0/24

Config# access-list 110 permit ICMP any any

Config# access-list 110 permit HTTP any any

Deny Config# access-list 110 deny udp any any eq 520

Deny Config# access-list 110 deny ip any host X.X.X.X

Deny Config# access-list 110 deny ospf any any

Deny Config# access-list 110 deny host X.X.X.X

Deny Config# access-list 110 deny tcp any any eq 21

Deny Config# access-list 110 deny tcp any any eq 22

Deny Config# access-list 110 deny tcp any any eq 25

Deny Config# access-list 110 deny tcp any any eq 110

Deny Config# access-list 110 deny tcp any any eq 143

Deny Config# access-list 110 deny udp any any eq 135

Deny Config# access-list 110 deny tcp any any eq 445

Deny Config# access-list 110 deny tcp any any eq 1434

Deny Config# access-list 110 deny tcp any any eq 4444

Deny Config# access-list 110 deny tcp any any eq 4899

Deny Config# access-list 110 deny udp any any eq 135

Config

Apply

access-group 110 in interface ’outside’

’outside’ inbound trafc on eth0/0

control list applied to the inbound Ethernet port of the firewall. A complete list of

denied and allowed access lists can be found in the Appendix.

52

Table 3.2

Hardware Server Resource

Resource Availability

RAM

CPU

Storage

32GB

Intel Quad Core 4.66GHz

2TB

Deployed Hypervisor

A web server is the final destination of our HTTP-Flood attack. The web server

runs as a virtual machine in a virtualized environment. And for every virtualized

environment to run virtual machines, there must be a hypervisor that is being used

to create and runs the virtual machine (ESXi, n.d.). In this dissertation we used a

VMWare ESXi hypervisor. The hypervisor run on a dedicated hardware server with

the configuration shown in Table 3.2.

Load Tester - JMeter

A load tester (JMeter) was used to generate the HTTP-Flood attack. We used a

fully-featured web application test suite that can simulate a variety of real-life user

behavior. Using the load tester, we were able to generate approx 3,250 request per

second of HTTP trafc. The configuration used in the load tester can be found in

Table 3.3 and 3.4. A full installation guide can be found in (JMeter, n.d.).

The configuration was composed of a sequence of set-up components (No. of

Threads, Ramp-Up, and Loop Count) that determines how the load test will be

simulated. Table 3.4 shows the configuration components and parameters used to

generate the HTTP request packets.

s.

53

Table 3.3

JMeter Configuration Components

No. of Threads(users) No. of users JMeter will attempt to simulate.

Ramp-Up (in secs) Duration of time JMeter will take to distribute the start of thread

Loop Count No. of times to execute the test.

HTTP Request Defaults

We added a HTTP Request Defaults. The HTTP Request Defaults configuration

element is used to set default values for HTTP Request in our test plan. This is

useful because we want to send multiple HTTP requests to the server as part of our

test. In the HTTP Request Defaults, under the Web Server section. We added the

IP address of the web server 10.10.10.80. Figure 3.3 shows the HTTP flood request

packets.

Table 3.4

JMeter Configuration/Test Parameters

No. of Threads (users) 32500.

Ramp-Up (in secs) 10.

Loop Count 250

Generated Packet 3,250/sec.

Web Server

We used an Apache HTTP Server, because it is the most popular web server

(Project, n.d.). We installed and configured the web server inside a Ubuntu Linux

distribution. We configured the Apache web server by placing directives in plain text

http:10.10.10.80

54

configuration files. These directives are separated between the following files and

directories. The directives are:

1.	 apache2.conf : the main Apache2 configuration file. Contains settings that are

global to Apache2.

2.	 httpd.conf : historically the main Apache2 configuration file, named after the

HTTPd daemon. The file no longer exists. In older versions of Ubuntu the file

might be present but empty, as all configuration options have been moved to

the directories mentioned below.

3.	 conf-available: this directory contains available configuration files. All files

that were previously in /etc/apache2/conf.d should be moved to /etc/apache2/conf

available.

4.	 conf-enabled: holds symlinks to the files in /etc/apache2/conf-available. When

a configuration file is symlinked, it will be enabled the next time apache2 is

restarted.

5.	 envvars: file where Apache2 environment variables are set.

6.	 mods-available: this directory contains configuration files to load modules

and configure them. Not all modules have specific configuration files, however.

7.	 mods-enabled: holds symlinks to the files in /etc/apache2/mods-available.

When a module configuration file is symlinked, it will be enabled the next time

apache2 is restarted.

8.	 ports.conf : houses the directives that determine which TCP ports Apache2 is

listening.

9.	 sites-available: this directory has configuration files for Apache2 Virtual Hosts.

Virtual Hosts allow Apache2 to be configured for multiple sites that have sep

arate configurations.

55

10.	 sites-enabled: similar to mods-enabled, sites-enabled contains symlinks to the

/etc/apache2/sites-available directory. Similarly when a configuration file in

sites-available is symlinked, the site configured will be active once Apache2 is

restarted.

11.	 magic: instructions for determining MIME type based on the first few bytes of

a file.

We installed the Apache web server inside a Ubuntu Linux distribution using this

command:

sudo apt-get install apache2

And we configured the web server using these commands:

sudo /etc/init.d/apache2 start #start webserver

sudo /update-rc.d apache defaults #runs webserver from autostart

gksu gedit /etc/apache2/sites-available/site1 #this enable the .htaccess file

sudo /etc/init.d/apache2 restart #this restarts apache

3.5 Implementing the Traditional Test

In order to implement the test, the hardware firewall was configured to allow

HTTP trafc, and the load testing tool (Jmeter) - an open source application, which

is a 100% pure Java application designed to load test functional behavior - measures

performance and test web applications2 used to generate HTTP trafc. The trafc

was targeted towards the firewall, and configured in a master/slave configuration.

Three computers were serving as Masters and 59 as slave. The “Number of Threads”

(threads are used to simulate concurrent connections to your server application) is set

to 32500. Each thread will execute the test plan in its entirety, completely indepen

dently of other test threads. The “Ramp-Up Period” (ramp-up period tells JMeter

2http://jmeter.apache.org/

http:2http://jmeter.apache.org

56

how long to take to “ramp-up” to the full number of threads chosen. If 10 threads are

used, and the ramp-up period is 100 seconds; JMeter will take 100 seconds to get all

10 threads up and running). Figure 3.2 depicts the load tester configuration settings.

Fig. 3.2. JMeter configuration Settings

For the attack to be implemented, the load tester (JMeter) connects to our Apache

web server, and establishes a TCP connection using a three-way handshake:

JMeter sends a SYN packet to Apache web server.

Apache web server sends a SYN ACK packet to JMeter.

JMeter sends an ACK packet to Apache web server.

HTTP Flood involves opening up a valid TCP connection with Apache Web server,

and then sending a request.

Immediately after the TCP connection is opened between JMeter and Apache web

server, allowing free communication between the two, JMeter starts sending HTTP

GET requests to the Apache web server using the default parser.

org.apache.jmeter.protocol.http.parser.LargeBasedHtmlParser.

Part of HTTP-GET Flood request sent by JMeter was captured using Wireshark:

57

1
0
.
1
0
.
1
0
.
2
2
:
4
2
7
2
8

 -
>

 1
0
.
1
0
.
1
0
.
8
0
:
8
0

 [
A
P
]

 G
E
T
/
H
T
T
P
/
2

 H
o
s
t
:
1
0
.
1
0
.
1
0
.
7
9

 i
n
d
e
x
.
p
h
p

1
0
.
1
0
.
1
0
.
2
2
:
4
0
9
6
2

 -
>

 1
0
.
1
0
.
1
0
.
8
0
:
8
0

 [
A
P
]

 G
E
T
/
H
T
T
P
/
2

 H
o
s
t
:
1
0
.
1
0
.
1
0
.
7
9

 i
n
d
e
x
.
p
h
p

1
0
.
1
0
.
1
0
.
2
2
:
5
1
4
8
6

 -
>

 1
0
.
1
0
.
1
0
.
8
0
:
8
0

 [
A
P
]

 G
E
T
/
H
T
T
P
/
2

 H
o
s
t
:
1
0
.
1
0
.
1
0
.
7
9

 i
n
d
e
x
.
p
h
p

1
0
.
1
0
.
1
0
.
2
2
:
5
5
3
0
0

 -
>

 1
0
.
1
0
.
1
0
.
8
0
:
8
0

 [
A
P
]

 G
E
T
/
H
T
T
P
/
2

 H
o
s
t
:
1
0
.
1
0
.
1
0
.
7
9

 i
n
d
e
x
.
p
h
p

1
0
.
1
0
.
1
0
.
2
2
:
5
6
3
9
6

 -
>

 1
0
.
1
0
.
1
0
.
8
0
:
8
0

 [
A
P
]

 G
E
T
/
H
T
T
P
/
2

 H
o
s
t
:
1
0
.
1
0
.
1
0
.
7
9

 i
n
d
e
x
.
p
h
p

58

The HTTP GET Flood legitimately downloads a picture (pic1.jpg) from the

Apache Web server’s index page. It establishes a full session and actually receives all

the data from the web page. Because our traditional firewall sits inline between the

load tester (client) and the web server, the firewall has to process every GET request

that passes through. Approximately 3,250 request were sent per second, ultimately

over flooding the firewall because it couldn’t process every request sent. Figure 3.3

shows JMeter sending the HTTP request packets.

Fig. 3.3. HTTP GET Flood Request

59

3.6 Evaluation & Analysis

As shown in Figure 3.4, the traditional test which uses real HTTP trafc generated

from the load tester configured in Master/Slave on 62 computers. The packet drop

was at 76.5%, the CPU Utilization was at 67%, and the memory utilization at 81%.

This is the level at which the hardware firewall became non-responsive, the hardware

firewall was maxed out, which results in its failure with a downtime of about 30

seconds, and about 56 seconds recovery time, as shown in Table 3.5. As the attack

load increases, the CPU usage of the hardware firewall increases. Table 3.8 shows the

CPU utilization based on the time required. In addition to the CPU utilization, the

memory utilization also reaches a maximum of 81%. The packet drop was high based

on the received and transmitted packets, as shown in Table 3.6.

Fig. 3.4. The Traditional Architecture Results

3.6.1 Downtime & Recovery Period Analysis

Table 3.5 shows the downtime and recovery time of the hardware packet filter

following its failure. The hardware firewall was non-responsive for about 30 seconds

before it became responsive. It took about 56 seconds to recover to its working state.

60

The recovery period followed the test (HTTP flood attack) suspension. Part of the

longer duration in the recovery period was as a result of the boot sequence.

Fig. 3.5. Recovery & Downtime Periods

Fig. 3.6. CPU Usage over Time

Table 3.5

Time Period Analysis

Action Time (secs)

Downtime 30

Recovery Time 56

61

Table 3.6
Packet Transmission Analysis

Flow Direction Outside - eth0 Inside - eth1

Received

Transmitted

39357350

10256915

11877268

25143799

Table 3.7

Memory Utilization Analysis - 8GB

Usage in %

Free Memory 19%

Used Memory 81%

Table 3.8

CPU Utilization & Time Required Analysis

Time (secs) CPU Usage

300secs 17%

60secs 49%

5secs 67%

3.7 Defined Thresholds

Due to the fact that the hardware firewall fails under heavy trafc as presented, we

decided to define new set of thresholds, di↵erent than those set by the firewall vendor.

When these thresholds are reached, the device is rendered incapable of performing as

required; hence, an action must be taken to avoid failure. The newly defined threshold

based on the results collected are presented in Table 3.9.

62

Table 3.9
Traditional Packet Filter: Newly Defined Threshold

Packet Drop � 10%

Memory Utilization � 80%

CPU Utilization � 65%

3.8 Chapter Summary

This chapter highlights our test-bed implementation, and hardware firewall out

comes. From the result, we defined new thresholds to be used in subsequent chapter.

63

4. VIRTUALIZED ARCHITECTURE PERFORMANCE

TEST

4.1 Introduction

Cloud computing represents one of the most significant shifts in information tech

nology we are likely to see in our lifetimes. Customers are both excited and nervous

about the prospects of Cloud Computing. They are excited by the opportunities to

reduce capital costs, divest infrastructure management, and focus on core competen

cies. Most of all, they are excited by the agility o↵ered by the on-demand provisioning

of computing and the ability to align information technology with business strategies

and needs more readily. However, customers are also very concerned about the risks

of Cloud Computing if it is not properly secured. And the loss of direct control over

systems for which they are nonetheless accountable.

Security controls in cloud computing are, for the most part, no di↵erent than se

curity controls in any IT environment. However, because of the cloud service models,

operational models, and the technologies used to enable cloud services, cloud com

puting may present di↵erent risks than traditional IT solutions to an organization.

Some of the security threats to cloud computing outlined by Cloud Security Al

liance (CSA) are: Abuse and nefarious use of Cloud computing, Insecure API’s,

Malicious Insider, Shared Technology Vulnerabilities, Data Loss/Leakage, Account,

Service & Trafc Hijacking, Unknown risk profile & Hypercall Threats (Alliance,

2011). NIST defined Cloud Computing as:

“A model for enabling ubiquitous, convenient, on-demand network access to a shared

pool of configurable computing resources (e.g. networks, servers, storage,

applications, and services) that can be rapidly provisioned and released with minimal

management e↵ort or service provider interaction” (Mell & Grance, 2011).

64

In a nutshell, cloud computing is a way of separating an application from the

operating system and hardware. The Cloud Security Alliance (CSA) defined cloud

computing as:

“an evolving term that describes the development of many existing technologies and

approaches to computing into something di↵erent. Cloud separates application and

information resources from the underlying infrastructure, and mechanisms used to

deliver them” (Alliance, 2011).

4.1.1 Virtualized Environments

Cloud Computing services are usually backed by large-scale data centers composed

of thousands of computers. Such data centers are built to serve many users and

host many disparate applications. For this purpose, hardware virtualization can be

considered as a perfect fit to overcome most operational issues of data center building

maintenance (Buyya et al., 2010). Virtualization allows running multiple operating

systems and software stacks on a single physical platform. Figure 4.1 shows a software

layer, the hypervisor also known as a virtual machine monitor (VMM), which mediates

access to the physical hardware, presenting each guest operating system (VM) a set

of virtual platform interfaces.

Virtualization has been a key enabling technology for the evolution of cloud com

puting in its current form (Irvine, Robin, et al., 2000; Popek & Goldberg, 1974). In

particular, a hardware virtualization has enabled IaaS providers to efciently use the

available hardware resources in order to provide computing and storage services to

their clients.

Type I VMM

Type I VMM, also known as a bare-metal, runs on a bare machine. It is an

operating system with virtualization mechanisms. A type I VMM runs directly on

65

Fig. 4.1. Traditional vs. Virtualized Environments.

the machine hardware. It is an operating system or kernel that has mechanisms

to support virtual machines. It performs scheduling and resources allocation for all

virtual machines in the system and requires drivers for hardware peripherals.

4.1.2 Network Functions Virtualization

Network function virtualization is an initiative to virtualize network services be

ing carried out by proprietary, dedicated hardware. NFV decreases the proprietary

hardware needed to launch and operate network services 1 . NFV allows network oper

ators to instantiate middleboxes in virtual machines and place those VMs at arbitrary

locations in the network (ESTI, n.d.). Current approaches to NFV still treat middle-

boxes as monolithic entities, and do not explore how the constituent components of

a middlebox might be decomposed into smaller modules (Anwer et al., 2015).

Because of the various partners with clashing objectives and strategies, changes to

the current network designs are presently constrained to basic incremental additions;

deployment of any new radically di↵erent technology is next to impossible. To bat

tle o↵ this solidification, network virtualization has been portrayed as a diversifying

1TechTarget - NFV defined

66

attribute to the future inner-networking paradigm. By introducing a plurality of het

erogenous network architectures cohabiting on a shared physical substrate, network

virtualization promotes innovations and diversified applications. A paper surveyed

the existing technologies and wide-array of past and state-of-the-art projects on net

work virtualization followed by a discussion of major changes in the area (Chowdhury

& Boutaba, 2010).

Network function virtualization (NFV) has drawn significant attention from both

industry and academia as an important shift in telecommunication service provision

ing. By decoupling network functions (NFs) from the physical devices on which they

run, NFV has the potential to lead to significant reductions in operating expenses

(OPEX) and capital expenses (CAPEX) that facilitate the deployment of new ser

vices with increased agility and faster time-to-value. The NFV paradigm is still in

its infancy and there is a large spectrum of opportunities for the research community

to develop new architectures, systems, and applications, to evaluate alternatives and

trade-o↵s in developing technologies for its successful deployment. After discussing

NFV and its relationship with complementary fields of software-defined networking

(SDN) and cloud computing. A study surveyed the state-of-the-art NFV, and iden

tify promising research directions in the area. The study also presents an overview

of key NFV projects, standardization e↵orts, early implementations, use cases, and

commercial products (Mijumbi et al., 2015).

Middlebox hardware appliances are known to come with a number of problems,

such as being costly, difcult to manage, and inflexible in their functionality. NFV

has alleviated all such problems and due to NFV’s flexibility, several platforms are

in place. A group of researchers introduced ClickOS a high performance, virtual

ized software middlebox platform. ClickOS virtual machines are small (5MB), boot

quickly (20 milliseconds), add little delay (45 microseconds), and over one hundred

hosts can concurrently run while saturating a 10Gb pipe on a commodity server. The

study implements a wide range of middleboxes, including a firewall, a carrier-grade

NAT, and a load balancer to show that ClickOS can handle packets in the millions per

67

second (Martins et al., 2014). Others presented EmPOWER, an experiment test-bed

which aims at o↵ering an open platform on top of which novel concepts can be tested

at scale (Riggio, Rasheed, & Granelli, 2013).

Another article presents the analysis, design, and first implementation of the rout

ing function in a virtualized manner. Considering the current co-existence of IPv4 and

IPv6 and the possibilities brought into the arena by OpenFlow-enabled infrastruc

tures, the article describes the design of the virtualized routing protocol, its enabled

simple management and signaling messages overhead avoidance in the control plane

level, and the di↵erent scenarios considered to validate the virtualized function. In

essence, the study describes the first implementation of the functional NFV concept

through the virtualization of the routing function over an OpenFlow network. The

di↵erent scenarios validated in the article are used to demonstrate the applicability

of the NFV-powered implementation proposed into actual production environments

(Batalle, Ferrer Riera, Escalona, & Garcia-Espin, 2013). Another study presents

a measurement to characterize the impact of virtualization on the networking per

formance of the Amazon Elastic Cloud Computing (EC2) data center. The study

measures the processor sharing, packet delay, TCP/UDP throughput, and packet

loss among Amazon EC2 virtual machines. The results show that although the data

center network is lightly utilized, virtualization can still cause significant throughput

instability and abnormal delay variations. The study concludes with the implications

of its findings on several classes of applications (G. Wang & Ng, 2010).

4.2 Problem Statement

The study proves that virtualization can result in overhead due to decreased per

formance (Sahoo, Mohapatra, & Lath, 2010). This happens because performance is

often being compromised due to flexibility. Virtual machines have the capability of

sharing resources through resource management (Beloglazov & Buyya, 2010). This

works when one virtual machine borrows resources from another idle virtual machine.

68

This resource sharing capability of virtual machines comes with security issues when

a running virtual machine borrows all of the available resources, making idle virtual

machines completely disengage without the capability of running. Other associated

problems identified with resource sharing are hypercall and hyperthreats. The run

ning virtual machine keeps on requesting resources until there is none available. Hence

all other functions are rendered ine↵ective (Shropshire, 2015). However, with these

known issues, multiple studies prove that when network functions are virtualized,

they perform better than traditional hardware devices (Guillen et al., 2012; Qiu et

al., 2001; Sheth & Thakker, 2011; Waziri Jr et al., 2014; Waziri Jr & Shropshire,

2015).

Single point of failure (SPOF) is always an issue. Even though virtual machines

are decoupled from the hardware, VM’s are still dependent on the hardware running

the hypervisor (server). Failure in the hardware automatically results in a failure of

all virtual machines (Menascé, 2005; Pfa↵ et al., 2009; Sahoo et al., 2010).

In this dissertation, we tested both hardware and virtual firewalls; we also found

that virtual packet filters to be more reliable under stress. However, because a hard

ware firewall is used to protect the underlying hardware (server) used by the hyper-

visor, whatever a↵ects the traditional firewall a↵ects the virtualized environment. To

find the threshold of the virtual firewall, we implemented the same test carried out

on the traditional firewall, using a di↵erent load testing tool.

4.3 Virtual Architecture Overview

Similar to the traditional architecture, the aim of the virtual test was to find the

weakness and limitations of the virtual firewall. The virtual firewall was installed

as a VM in a virtualized environment and connected inline prior to the web server.

However, in the case of the virtual test, a di↵erent load testing tool2 was used to

generate the HTTP flood packets. The reason for using a di↵erent testing tool was

2High Orbit Ion Cannon

69

the limitation of resources imposed by the virtual environment. Figure 4.2 depicts

the virtual architecture. The ACL3 used in the virtual firewall is similar to that of

the hardware firewall allowing HTTP trafc, ICMP, and TCP Port 80, while blocking

all other incoming connections.

Fig. 4.2. Virtual Environment Architecture

4.4 Implementation & Configuration Settings

Load Tester - HOIC

We used HOIC as the HTTP Flood load tester. HOIC is an open source network

stress testing and denial of service attack application written in BASIC. It is designed

to attack as many as 256 URLs simultaneously Unlike the normal master/zombie

architecture of DDoS attacks, HOIC works based on bandwidth availability. Using

HOIC, we were able to generate HTTP trafc of approximately 1Gbps per thread.

These were generated from 249 Cannons and 2 Threads. Table 4.1 shows our HOIC

configuration settings and the resulting output per thread generated.

3See Appendix A2

70

Table 4.1
Configuring HOIC for Virtual Load Testing

Target URL/IP 10.10.10.79

Power HIGH.

Booster GenericBoost.hoic

Threads 2

Cannons per Thread 249

Output per Thread >1GB

1.	 URL - The address of the Apache Web server

2.	 Power - This sets the velocity. We set the power to ’HIGH’, making it 8

request/sec for each thread.

3.	 Booster - The script used to generate the HTTP Flood. We used the ’Gener

icBoost.hoic’ script.

4.	 Threads - The number of users HOIC will attempt to simulate.

Building a Test Plan - HOIC

The test plan is composed of a sequence of the components presented above. The

components determines how the trafc will be generated. We configured these details.

Table 4.1 presents the configuration values for the virtual firewall load testing.

Similar to the Traditional Test, the HTTP GET Flood we initiated is legitimately

downloading a picture (pic1.jpg) from the Apache Web server, meaning it establishes

a full TCP session and actually receives all the data from the web page because

the virtual firewall sits inline between the load tester (client) and the web server.

The firewall must process every GET request that passes through. More than 1GB

71

of trafc were generated per threat per session. We finally over-flooded the virtual

firewall because it couldn’t process each an every request that was sent.

From the settings configured, the HTTP packets that targeted the Apache web

server were captured as:

- - 72.192.214.223 - "GET / HTTP/2" "10.10.10.79" 200 21124

- - 72.192.214.223 - "GET / HTTP/2" "10.10.10.79" 201 21124

- - 72.192.214.223 - "GET / HTTP/2" "10.10.10.79" 202 21124

- - 72.192.214.223 - "GET / HTTP/2" "10.10.10.79" 203 21124

- - 72.192.214.223 - "GET / HTTP/2" "10.10.10.79" 204 21124

- - 72.192.214.223 - "GET / HTTP/2" "10.10.10.79" 205 21124

4.4.1 HTTP GET Flood Request

HOIC request are not static; they randomly request from di↵erent sources, based

on bandwidth. The HTTP Flood request is presented below:

GET / HTTP/2

Accept: */*

Accept-Language: en

Referer: GenericBoost.hoic

User-Agent: HOIC/4.0 (CLR 1.1.4322)

If-Modified-Since: Fri, 10 Jun 2016 11:59:59 GMT

Host: 10.10.10.79

The request specifies “HTTP/2,” which is the successor of HTTP/1.1 that was

standardized in 2015. HTTP/2 enables a more efcient use of network resources and

a reduced perception of latency by introducing header field compression and allowing

multiple concurrent exchanges on the same connection (Belshe, Thomson, & Peon,

2015). The host header can be analyzed using packet analysis tools, such as wireshark,

which is beyond the scope of this dissertation. However, we can see the host address

as “10.10.10.79.”

http:10.10.10.79
http:10.10.10.79

72

Virtual Packet Filter Access Control

Similar to the traditional firewall, we blocked all incoming trafc on eth0 (the

outside ethernet port) of the virtual firewall. We allowed ICMP, HTTP, and the

TCP Port 80. This allows for end to end communication and pinging between the

client and web-server, Below are the Access Control List applied to eth0:

•	 Rule 1:

Vyatta# set firewall name FWRULES-1 rule 1 action reject

Vyatta# set firewall name FWRULES-1 rule 1 source address X.X.X.X

Vyatta# set firewall name FWRULES-1 rule 1 protocol TCP

•	 Rule 2:

Config# set firewall name FWRULES-1 rule 2 action reject

Config# set firewall name FWRULES-1 rule 2 source address X.X.X.X

Config# set firewall name FWRULES-1 rule 2 protocol TCP

•	 Rule 3:

Config# set firewall name FWRULES-1 rule 3 action reject

Config# set firewall name FWRULES-1 rule 3 protocol UDP

Config# set firewall name FWRULES-1 rule 3 destination port 520

•	 Rule 4:

Config# set firewall name FWRULES-1 rule 4 action reject

Config# set firewall name FWRULES-1 rule 4 source address X.X.X.X

Config# set firewall name FWRULES-1 rule 4 protocol IP

•	 Rule 5:

Config# set firewall name FWRULES-1 rule 5 action reject

Config# set firewall name FWRULES-1 rule 5 protocol OSPF

73

•	 Rule 6:

Config# set firewall name FWRULES-1 rule 6 action reject

Config# set firewall name FWRULES-1 rule 6 source address X.X.X.X

Config# set firewall name FWRULES-1 rule 6 protocol TCP

•	 Rule 7:

Config# set firewall name FWRULES-1 rule 7 action accept

Config# set firewall name FWRULES-1 rule 7 protocol TCP

Config# set firewall name FWRULES-1 rule 7 destination port 80

•	 Rule 8:

Config# set firewall name FWRULES-1 rule 8 action reject

Config# set firewall name FWRULES-1 rule 8 protocol TCP

Config# set firewall name FWRULES-1 rule 8 destination port 21

•	 Rule 9:

Config# set firewall name FWRULES-1 rule 9 action reject

Config# set firewall name FWRULES-1 rule 9 protocol TCP

Config# set firewall name FWRULES-1 rule 9 destination port 22

•	 Rule 10:

Config# set firewall name FWRULES-1 rule 10 action reject

Config# set firewall name FWRULES-1 rule 10 protocol TCP

Config# set firewall name FWRULES-1 rule 10 destination port 25

•	 Rule 11:

Config# set firewall name FWRULES-1 rule 11 action reject

Config# set firewall name FWRULES-1 rule 11 protocol TCP

Config# set firewall name FWRULES-1 rule 11 destination port 110

74

•	 Rule 12:

Config# set firewall name FWRULES-1 rule 12 action reject

Config# set firewall name FWRULES-1 rule 12 protocol TCP

Config# set firewall name FWRULES-1 rule 12 destination port 143

•	 Rule 13:

Config# set firewall name FWRULES-1 rule 13 action reject

Config# set firewall name FWRULES-1 rule 13 protocol UDP

Config# set firewall name FWRULES-1 rule 13 destination port 135

•	 Rule 14:

Config# set firewall name FWRULES-1 rule 14 action reject

Config# set firewall name FWRULES-1 rule 14 protocol TCP

Config# set firewall name FWRULES-1 rule 14 destination port 445

•	 Rule 15:

Config# set firewall name FWRULES-1 rule 15 action reject

Config# set firewall name FWRULES-1 rule 15 protocol TCP

Config# set firewall name FWRULES-1 rule 15 destination port 1434

•	 Rule 16:

Config# set firewall name FWRULES-1 rule 16 action reject

Config# set firewall name FWRULES-1 rule 16 protocol TCP

Config# set firewall name FWRULES-1 rule 16 destination port 4444

•	 Rule 17:

Config# set firewall name FWRULES-1 rule 17 action reject

Config# set firewall name FWRULES-1 rule 17 protocol TCP

Config# set firewall name FWRULES-1 rule 17 destination port 4899

75

•	 Rule 18:

Config# set firewall name FWRULES-1 rule 18 action accept

Config# set firewall name FWRULES-1 rule 18 protocol ICMP

•	 Rule 19:

Config# set firewall name FWRULES-1 rule 19 action accept

Config# set firewall name FWRULES-1 rule 19 source address 10.10.10.0/24

Config# set firewall name FWRULES-1 rule 19 protocol TCP

•	 Rule 20:

Config# set firewall name FWRULES-1 rule 20 action accept

Config# set firewall name FWRULES-1 rule 20 protocol HTTP

Config# set firewall name FWRULES-1 rule 20 destination address 10.10.10.79

•	 Apply to interface and commit:

Config# set interfaces ethernet eth1 firewall in name FWRULES-1

Config# commit

•	 To show firewall rules:

Config# show firewall name FWRULES-1

•	 To show interface rules:

Config# show interfaces ethernet eth1 firewall

By default, the virtual firewall rules are not stateful. The firewall has a default

drop rule that is active when a default action is not specified. To enable our stateful

rules and ensure that incoming trafc on eth0 for our test session is allowed. We

established these new commands:

http:10.10.10.79

76

firewall {

name clienttoserver {

default-action drop

rule 5 {

action accept

destination {

port 80

}

protocol tcp

state {

established enable

new enable

related enable

}

}

}

name servertoclient {

default-action drop

rule 5 {

action accept

state {

established enable

related enable

}

}

77

4.5 Evaluation & Analysis

The virtual firewall was still working at an optimum performance with 99% mem

ory utilization. The virtual firewall was responsive because of the resource sharing

management capabilities of virtualized environments. We then continue to flood the

virtual firewall with unlimited trafc generated from HOIC until the CPU Utilization

reached 71%, at which point the virtual firewall eventually became non-responsive.

Table 4.2 and Figure 4.3 show the virtual firewall resource usage during the attack

before it failed.

Table 4.2

Virtual Resources Usage - 8GB

Memory CPU - Hypervisor Monitored Packet Transferred

Total

Used (%)

Free (%)

8GB

99.17%

0.83%

4.66GHz

71%

29%

>250GB of Packets

-

-

Fig. 4.3. Virtual Architecture Results

78

Table 4.3
Time Period Analysis for Virtual Packet Filter

Action Time (secs)

Downtime 12

Recovery Time 28

From these results and previous studies, we see that the virtual firewall does a

better job at responding to DDoS attacks than the traditional firewall, thereby making

it a better choice when it comes to mitigating DDoS and transferring the hardware

filtering services.

Fig. 4.4. Virtual Downtime & Recovery Time Analysis

4.5.1 Downtime & Recovery Period Analysis

Table 4.3 shows the downtime and recovery time of the virtual firewall after it

failed. The virtual firewall was non-responsive for about 12 seconds before it became

79

responsive. It took about 28 seconds to recover back to its working state. The

recovery period was after the test was suspended. The recovery time for the virtual

firewall was better than that of the hardware firewall because the hypervisor was

responding; hence the virtual firewall doesn’t have to deal with hardware boot-up.

4.6 Chapter Summary

This chapter starts by explaining Network Function Virtualization and introduces

the problems faced by virtualized architectures. We then highlight our virtual archi

tecture set-up, its implementation and configuration, and conclude by explaining the

outcome of stressing the virtual firewall.

80

5. PERFORMANCE MONITOR

5.1 Background

Our performance monitor is not the first performance monitor, or even the first

firewall performance monitor. But to the best of our knowledge it is the first to pro

vide a means of mitigating DDoS attacks by monitoring firewall performance. The

paper visual firewall (C. P. Lee, Tros, Gibbs, Beyah, & Copeland, 2005) seeks to aid

the configuration of firewalls and monitoring of networks by providing four simulta

neous views that display varying levels of detail and time scales as well as correctly

visualizing firewall reactions to individual packets. The four implemented views are:

Real-Time Trafc, Visual Signature, Statistics, and IDS Alarm. These views provide

the levels of detail that system administrators need to properly monitor their sys

tems in passive or active manners. The paper visualized several attacks, and made

sure that individuals unfamiliar with networking concepts can quickly distinguish

between benign and malignant trafc patterns with minimal instruction. Another

monitoring paper (Yuan & Mills, 2005) proposes a method for early detection. Using

a few observation points, the proposed method can monitor the macroscopic e↵ect

of DDoS flooding attacks and then inform more detailed detection systems when a

DDoS attack possibly arises in transit or source networks.

Others focused on packet monitoring in Cloud Environment to prevent DDoS

attacks (Chouhan & Peddoju, 2013) using Hop Count Filtering. The approach of

Hop Count Filtering provides a network independent and readily available solution

to prevent DDoS attacks in Cloud environments. The method decreases the unavail

ability of cloud services to legitimate clients, reduce number of updates, and saves

computation time. The approach is simulated in a CloudSim toolkit environment and

81

corresponding results are produced. Others monitored firewall trafc using Intrusion

Detection Systems (Asarcıklı, 2005).

However, none of these papers provided a mitigation solution to DDoS attacks

targeting firewalls in traditional and virtual environments. Hence, the birth of our

performance monitor as the first firewall monitor DDoS mitigation solution.

5.2 Performance Monitor Design

The performance monitor is mirrored to the hardware and virtual firewall. The

monitor runs on a dedicated system as a virtual machine. Based on the results

of both the traditional and virtual test, instructions were given. The monitor was

coded in python and the threshold at which the firewalls can migrate packet filtering

services was defined in the code. No GUI was used. The monitor connects with the

firewalls through their respective API’s. The communication between the monitor

and the firewalls is encrypted using AES. MySQL database was connected to store

the heuristics based on the defined thresholds. Figure 5.1 shows how the monitor

connects to the firewall.

When either the traditional or virtual firewall becomes overwhelmed during the

test, the monitor reroutes the trafc meant for the failed firewall to the other firewall,

thereby allowing the overwhelmed firewall to resume to its working state, hence,

downtime as a result of DDoS attack is minimized.

5.3 Implementation & Deployment

5.3.1 API Implementation

Implementing the API connections for both firewalls is based on the guide provided

by the firewall vendors1 . The typical request flow for the REST PUT/POST/DELETE

API request are:

1http://www.cisco.com & http://www.brocade.com/

http:http://www.brocade.com
http:1http://www.cisco.com

82

Fig. 5.1. Performance Monitor Architecture

•	 REST Client establishes SSL connection to the firewall

•	 REST Client sends API request with basic authentication header to ASA.

•	 Firewall server validates and processes clients request.

•	 Firewall HTTP server opens the connection to REST Agent using a TCP chan

nel, and writes the HTTP request to the REST Agent.

•	 Firewall HTTP server waits for REST Agent processs response.

•	 REST Agent processes API request, picks the session/user info, and invokes

CLI command requests to Admin handler listening on localhost port in Firewall.

REST Agent includes the session/user info in the request.

•	 Admin handler processes the CLI commands and collects the result output.

83

•	 Admin handler sends the response for the CLI commands request to REST

Agent.

•	 REST Agent prepares the response for REST API request and sends to the

Firewall HTTP server.

•	 Firewall HTTP server forwards the response to the client. Server doesn’t process

the response received from the REST Agent process.

Basic Authorization header must be added to every REST API request and au

thentication will be performed for every request. It is recommended to use Certificate

Authority (CA) issued certificates on the firewalls, so that REST API clients can val

idate the server certificates of the firewalls during the SSL connection establishment.

The process of how the monitors API communicates with our firewalls is presented

in Figure 5.2

The communication between the firewalls and the performance monitor is estab

lished using the firewall respective RESTAPI. REST stands for Representation State

Transfer. It is a term coined by Roy Fielding in his dissertation (Fielding, 2000) to

refer to a software architectural style. The REST architectural style describes six

constraints: Uniform Interface, Stateless, Cache-able, Client-Server, Layered System,

and Code on Demand. This constraint states that a REST API should be driven by

nothing but hypermedia. This is how a web browser interacts with well-behaved web

applications, where the browser transitions to di↵erent pages based on the selected

hyperlinks and actions present in the pages. Since HTTP has been used to transfer

information that is not hypertext, this constraint is often ignored by REST API de

signs. Instead of defining API in terms of hypermedia, some so-called REST APIs

are modeled as a set of interfaces implemented by resources. Although this design

supports the REST uniform interface constraint, it inevitably creates fixed resource

names, types and hierarchies that violate the REST API design rules prescribed by

Roy Fielding (Fielding, 2000). This kind of violations leads to an API that depends

on the out-of-band information, instead of hypermedia, to drive the interactions be

84

Fig. 5.2. API Call Process

tween components (Li & Chou, 2011). To properly understand how RESTAPIs work

is beyond the scope of this dissertation.

5.3.2 MySQL Database Implementation

To store the thresholds and heuristic conditions used to migrate packet filtering

services between the firewalls, we used a MySQL database. To do that, we installed

the MySQL driver, because python doesn’t come with MySQL; by default, it comes

with SQLite. We installed the MySQL package. The implementation and use of

MySQL is beyond the scope of this dissertation. However, the commands we used to

install MySQL database in Ubuntu debian distros is:

85

sudo apt-get install python-mysqldb

After installation, we then used MySQL inside python like any other package.

This is how we imported and connected MySQL to python:

#!/usr/bin/python

import MySQLdb

db = MySQLdb.connect(host="localhost",

user="dissertation",

passwd="dissertation_password",

db="dissertation_db")

5.3.3 AES Implementation using PyCrypto

In other to secure the RESTAPI connection between the firewalls and the per

formance monitor, an AES implementation of python using PyCrypto2 was used

(Buchmann, 2013; Ferguson, Schneier, & Kohno, n.d.; Katz & Lindell, 2014; Lindell,

2005; Schneier, 1997). This implementation is based on the guide provided in “A

Working Introduction to Crypto using PyCrypto” (Isom, 2011).

5.4 Performance Analysis

The performance monitor was analyzed by integrating it into the firewalls, by con

ducting the same test, and flooding the firewalls with HTTP trafc. The performance

monitor proved to be e↵ective after we surpassed the generated HTTP trafc that

flooded the hardware firewall, and the firewall was still responsive. However, consid

ering that the virtual firewall has a better performance than the hardware firewall,

the operation was smooth. The packet filtering process of the hardware firewall was

transferred to the virtual firewall. The process by which the performance monitor

makes decision is presented in Figure 5.3.

2https://www.dlitz.net/software/pycrypto/api/2.6/

86

Fig. 5.3. Performance Monitor/Migration Decision Flow

87

5.4.1 Filtering Service Transfer

The monitor starts by checking the firewall states to see if there is an anomaly, then

it proceeds to make decisions; if the firewall is overwhelmed, it checks its parameters

and invokes the instructions that were defined, then transfers the filtering services.

If the firewall is not overwhelmed; it applies the firewall’s access list and continues

operation by proceeding to its designated destination.

5.4.2 Performance Comparison

Table 5.1 shows the performance results of the devices before and after using the

monitor. The memory utilization of the hardware firewall considerably reduced from

81% to 34% without the monitor. The CPU utilization reduced from 67% to 28%.

Table 5.1

Comparative Analysis of Performance Results

Architecture Mem Utilization CPU Utilization Packet Drop

Traditional 81% 67% 76.5%

Virtual 99.17% 71% -

Traditional with PM* 34% 28% -

Virtual with PM* 98.2% 73.6% -

However, for the virtual firewall, the change was a minimal decrease. The per

formance of both Memory & CPU of the virtual device with the monitor connected

decreased from 98.2% to 73.6% respectively, compared to 99.17% and 71% without

the monitor. The performance decrease is as a result of the monitor being added

to the topology. This shows a success; most importantly, downtime was avoided,

considering none of the devices failed.

88

Fig. 5.4. Comparative Performance Analysis

5.4.3 Thresholds & Heuristic Rules/SLA

Based on the analysis and thresholds identified from both firewalls, we defined

these heuristics and embedded them as part of the monitor’s instructions. These

are the actions the performance monitor does whenever one of the set thresholds is

reached. These rules can always be defined based on SLA if such topology were to

be adopted.

• For Hardware Instructions:

- If Packet Drops is high, then migrate packet filtering service to virtual

firewall, otherwise continue on hardware firewall.

89

- If CPU Utilization is high, then migrate packet filtering service to virtual

firewall, otherwise continue on hardware firewall.

- If Memory Utilization is high, then migrate packet filtering service to

virtual firewall, otherwise continue on hardware firewall.

- If none of the defined heuristics is met, then continue packet filtering

service on hardware firewall.

•	 For Virtual Instructions:

- If Packet Drops is high, then migrate packet filtering services to hardware

firewall otherwise continue on virtual firewall.

- If CPU Utilization is high, then migrate packet filtering services to hard

ware firewall, otherwise continue on virtual firewall.

90

- If none of the defined heuristics is met, then continue packet filtering

services on hardware firewall.

5.5 Chapter Summary

In this chapter, we introduced a firewall performance monitor. The monitor con

nects to two firewalls and injects instructions when certain conditions are met. We

discuss the design, implementation, deployment, and performance analysis. The per

formance monitor is not a specific method of DDoS mitigation, but a means for

organizations to test their devices, by stressing them and finding the device thresh

old, then using those thresholds to create a heuristic that can be used to configure the

monitor. We explain how the communication between the monitor and the devices

is encrypted using AES by utilizing the PyCrypto implementation of python. We

showed how the monitor stores data using the SQL database.

91

6. CONCLUSION

6.1 Connecting the Dots: Justifying the Problem Statement

This dissertation focused on carrying out di↵erent types of tests to obtain the

results of the research objectives stated earlier. We implemented a monitor in a

secured architecture with two firewalls from di↵erent platforms, one using a virtual-

based and the other a hardware-based. The monitor monitors the state of the firewalls

and invoke certain instructions based on the firewalls state. Both the firewalls and

monitor are designed to work together in order to provide an optimized packet filter

architecture and minimize downtime when the firewalls become overwhelmed due to

a distributed denial of service (DDoS) attacks. To achieve this, two di↵erent tests

(spike and endurance) at three stages were conducted. A web-server was built to

serve as the target of the HTTP trafc.

First we implement and test the traditional environment which consists of the

hardware firewall. We attacked the firewall using a HTTP flood DDoS attack to

find the hardware firewall weakness and define its threshold. Second, we carried out

the same test in the virtual environment, which consists of the virtual firewall. The

second test was also aimed at finding the virtual firewalls weaknesses and limitations.

That was achieved by flooding the firewall with a HTTP flood DDoS attack. The

firewall’s threshold was determined at the end. The last phase was implementing the

monitor that monitors the states of both firewalls.

The monitor was designed to switch packet filtering between the firewalls when

one of the firewalls reaches its threshold. Switching the packet filtering ensures that

downtime is avoided within the network, allowing the firewall to return back to its

stable state before the filtering processes resumes. The monitor monitors the firewall’s

state based on the heuristic rules fed to it. Those heuristic rules and threshold can

92

be defined based on SLA. Each organization uses di↵erent vendors when it comes to

network devices; hence, a standard threshold cannot be defined. Each device must

go through the same process, then define the threshold.

The threshold of each device was determined based on CPU Utilization and Mem

ory Utilization.

6.2 Summary

In this dissertation, we looked into how DDoS attacks result in network down

time, costing organizations billions of dollars. Ease of authorized availability and

access to information is one of the core foundation of computer security. According

to census.gov1, 97% of our day-to-day data, such as health information, education

information, etc. are all stored digitally, thereby making authorized access to such

data of paramount importance. DDoS attacks cause network downtime, making it

hard for authorized users to access to important data. We highlighted the main issues

with DDoS attacks in earlier chapters.

In addition, we test di↵erent network architectures and present a framework which

could be used to mitigate DDoS attacks and provide more up-time for computer

networks in chapters 3 and 4.

In chapter 5, we presented a framework that is used to mitigate DDoS and provide

more up-time in a network. We designed a tool (Firewall Performance Monitor) which

listens to the performance of the network devices and then executes instructions when

certain conditions are met.

We concluded the dissertation by explaining the design and implementation of the

firewall performance monitor.

1Census Internet Statistics

93

6.3 Recommendations & Future Work

The framework we presented provides one of the first non-commercial approaches

to mitigating flooding attacks on firewalls and ensuring more network up-time. The

use of the monitor has shown promising results in enhancing network security systems.

Learning from this study, security administrators can optimize the performance

of firewalls in a network by first evaluating CPU utilization, Memory Utilization,

Packet Drops, and other available resources. Furthermore, security administrators

can implement the same methods we presented to ensure maximum network avail

ability. Keeping in mind that the heuristics the monitor utilizes to make decisions is

dependent on the thresholds defined by the network devices, security administrators

can decide on each device threshold to meet its demands. The monitor’s heuristics

can only be defined based on service level agreements.

An interesting area of future research could focus on the monitor itself; considering

it runs as a continuous script with infinite max loop. It would be interesting to see it

developed as a software running with a simplified GUI, thereby making the heuristics

definition more simplified. Having the monitor run in a closedbox would be another

focus for future research; that would enhance control and limit access to the monitor’s

source-code, thereby ensuring greater security.

Another interesting area of future research is a broader application of same tech

nique presented in this study; The monitor should be deployed other network devices

susceptible to DDoS attacks, and not just to network firewalls. It would be interesting

to apply the same method to a larger network, to deploy on a large-scale, real world

setting and analyze the results. With this approach, our monitor has the potential of

being the cutting-edge in finding an innovative solution to DDoS attacks.

LIST OF REFERENCES

94

LIST OF REFERENCES

Abbes, T., Bouhoula, A., & Rusinowitch, M. (2008). An inference system for detecting
firewall filtering rules anomalies. In Proceedings of the 2008 acm symposium
on applied computing (pp. 2122–2128).

Adams, K., & Agesen, O. (2006). A comparison of software and hardware techniques
for x86 virtualization. ACM Sigplan Notices , 41 (11), 2–13.

Agarwal, S., Dawson, T., & Tryfonas, C. (2003). Ddos mitigation via regional cleaning
centers (Tech. Rep.). Sprint ATL Research Report RR04-ATL-013177.

Alliance, C. (2011). Security guidance for critical areas of focus in cloud computing
v3. 0. Cloud Security Alliance.

Alomari, E., Manickam, S., Gupta, B., Karuppayah, S., & Alfaris, R. (2012). Botnet
based distributed denial of service (ddos) attacks on web servers: classification
and art. arXiv preprint arXiv:1208.0403 .

Anderson, J. M. (2003). Why we need a new definition of information security.
Computers & Security , 22 (4), 308–313.

Anderson, J. P. (1972). Computer security technology planning study. volume 2 (Tech.
Rep.). DTIC Document.

Anderson, R. (2001). Why information security is hard-an economic perspective. In
Computer security applications conference, 2001. acsac 2001. proceedings 17th
annual (pp. 358–365).

Ando, R., Miwa, S., Kadobayashi, Y., & Shinoda, Y. (2008). 4-2 a load balancing
system for mitigating ddos attacks using live migration of virtual machines.
Journal of the National Institute of Information and Communications Tech
nology , 55 (2/3), 27–32.

Anwer, B., Benson, T., Feamster, N., & Levin, D. (2015). Programming slick network
functions. In Proceedings of the 1st acm sigcomm symposium on software
defined networking research (p. 14).

Asarcıklı, Ş. (2005). Firewall monitoring using intrusion detection systems.

Bade, M. G., & Vanduhe, V. Z. (n.d.). Ipv6 vs ipv4.

Baker, F., Iturralde, C., Le Faucheur, F., & Davie, B. (2001). Aggregation of rsvp
for ipv4 and ipv6 reservations (Tech. Rep.).

Basak, D., Toshniwal, R., Maskalik, S., & Sequeira, A. (2010). Virtualizing net
working and security in the cloud. ACM SIGOPS Operating Systems Review ,
44 (4), 86–94.

95

Batalle, J., Ferrer Riera, J., Escalona, E., & Garcia-Espin, J. A. (2013). On the
implementation of nfv over an openflow infrastructure: routing function vir
tualization. In Future networks and services (sdn4fns), 2013 ieee sdn for (pp.
1–6).

Beitollahi, H., & Deconinck, G. (2012). Analyzing well-known countermeasures
against distributed denial of service attacks. Computer Communications ,
35 (11), 1312–1332.

Beloglazov, A., & Buyya, R. (2010). Energy efcient resource management in virtual
ized cloud data centers. In Proceedings of the 2010 10th ieee/acm international
conference on cluster, cloud and grid computing (pp. 826–831).

Belshe, M., Thomson, M., & Peon, R. (2015). Hypertext transfer protocol version 2
(http/2).

Bhardwaj, A., Subrahmanyam, G., Avasthi, V., & Sastry, H. (2015). Three tier
network architecture to mitigate ddos attacks on hybrid cloud environments.
arXiv preprint arXiv:1512.02005 .

Bhavya, D. (2008). Network security: History, importance, and future. University of
Florida Department of Electrical and Computer Engineering .

Blacharski, D. (1998). Network security in a mixed environment with cdrom. IDG
Books Worldwide, Inc.

Buchmann, J. (2013). Introduction to cryptography. Springer Science & Business
Media.

Buyya, R., Broberg, J., & Goscinski, A. M. (2010). Cloud computing: principles and
paradigms (Vol. 87). John Wiley & Sons.

Byers, S., Rubin, A. D., & Kormann, D. (2004). Defending against an internet-
based attack on the physical world. ACM Transactions on Internet Technology
(TOIT), 4 (3), 239–254.

Carl, G., Kesidis, G., Brooks, R. R., & Rai, S. (2006). Denial-of-service attack-
detection techniques. Internet Computing, IEEE , 10 (1), 82–89.

Casilari, E., Gonzblez, F., & Sandoval, F. (2001). Modeling of http trafc. Commu
nications Letters, IEEE , 5 (6), 272–274.

Chang, R. K. (2002). Defending against flooding-based distributed denial-of-service
attacks: a tutorial. Communications Magazine, IEEE , 40 (10), 42–51.

Chen, W., & Yeung, D.-Y. (2006). Defending against tcp syn flooding attacks un
der di↵erent types of ip spoofing. In Networking, international conference on
systems and international conference on mobile communications and learn
ing technologies, 2006. icn/icons/mcl 2006. international conference on (pp.
38–38).

Cheswick, W. R., Bellovin, S. M., & Rubin, A. D. (2003). Firewalls and internet
security: repelling the wily hacker. Addison-Wesley Longman Publishing Co.,
Inc.

96

Chomsiri, T., & Pornavalai, C. (2006). Firewall rules analysis. In Security and
management (pp. 213–219).

Chouhan, V., & Peddoju, S. K. (2013). Packet monitoring approach to prevent ddos
attack in cloud computing. International Journal of Computer Science and
Electrical Engineering (IJCSEE) ISSN (2315-4209).

Chowdhury, N. M. K., & Boutaba, R. (2010). A survey of network virtualization.
Computer Networks , 54 (5), 862–876.

Cisco. (2004). Cisco guard ddos mitigation appliances.
http://www.cisco.com/c/en/us/products/collateral/security/trafc-anomaly
-detector-xt-5600a/prod white paper0900aecd8011e927.pdf.

Cisco. (2014). What is network security? Cisco Website.

CloudFlare. (n.d.). Keyless ssl. https://www.cloudflare.com/keyless-ssl.

Cole, E. (2011). Network security bible (Vol. 768). John Wiley & Sons.

Das, D., Sharma, U., & Bhattacharyya, D. (2011). Detection of http flooding attacks
in multiple scenarios. In Proceedings of the 2011 international conference on
communication, computing & security (pp. 517–522).

Davidowicz, D. (1999). Domain name system (dns) security. Yahoo Geocities .

Deering, S. (1991). Icmp router discovery messages.

Deshpande, H. A. (2015). Honeymesh: Preventing distributed denial of service
attacks using virtualized honeypots. arXiv preprint arXiv:1508.05002 .

Dieter, G. (1999). Computer security. Chinchester ua.

Dou, W., Chen, Q., & Chen, J. (2013). A confidence-based filtering method for ddos
attack defense in cloud environment. Future Generation Computer Systems ,
29 (7), 1838–1850.

Douligeris, C., & Mitrokotsa, A. (2004). Ddos attacks and defense mechanisms:
classification and state-of-the-art. Computer Networks , 44 (5), 643–666.

Eronen, P., & Zitting, J. (2001). An expert system for analyzing firewall rules. In
Proceedings of the 6th nordic workshop on secure it systems (nordsec 2001)
(pp. 100–107).

Estevez-Tapiador, J. M., Garćıa-Teodoro, P., & Dı́az-Verdejo, J. E. (2005). Detection
of web-based attacks through markovian protocol parsing. In Computers and
communications, 2005. iscc 2005. proceedings. 10th ieee symposium on (pp.
457–462).

ESTI. (n.d.). Network function virtualization. http://www.etsi.org/technologies
clusters/technologies/nfv.

ESXi, V. (n.d.). Bare metal hypervisor.

http://www.etsi.org/technologies
https://www.cloudflare.com/keyless-ssl
http://www.cisco.com/c/en/us/products/collateral/security/trafc-anomaly

97

Farahmandian, S., Zamani, M., Akbarabadi, A., Moghimi, J., Zadeh, S. M. M., &
Farahmandian, S. (2013). A survey on methods to defend against ddos attack
in cloud computing. system, 6 (22), 26.

Ferguson, N., Schneier, B., & Kohno, T. (n.d.). Introduction to cryptography. Cryp
tography Engineering , 23–39.

Fielding, R. T. (2000). Architectural styles and the design of network-based soft
ware architectures. Unpublished doctoral dissertation, University of California,
Irvine.

Gandel, S. (2015). Lloyd’s ceo: Cyber attacks cost companies $400 billion every year.
http://fortune.com/2015/01/23/cyber-attack-insurance-lloyds/.

Garfinkel, S., Spa↵ord, G., & Schwartz, A. (2003). Practical unix and internet
security. ” O’Reilly Media, Inc.”.

Garg, K., & Chawla, R. (2011). Detection of ddos attacks using data mining. Inter
national Journal of Computing and Business Research (IJCBR), 2 (1).

Gibson, S. (2001). The strange tale of the denial of service attacks against grc. com.

Golnabi, K., Min, R. K., Khan, L., & Al-Shaer, E. (2006). Analysis of firewall policy
rules using data mining techniques. In Network operations and management
symposium, 2006. noms 2006. 10th ieee/ifip (pp. 305–315).

Grifths, J. (2015). Cybercrime costs the average u.s firm $15 million a year.
http://money.cnn.com/2015/10/08/technology/cybercrime-cost-business/.

Guillen, E., Sossa, A. M., & Estupiñán, E. P. (2012). Performance analysis over
software router vs. hardware router: A practical approach. In Proceedings of
the world congress on engineering and computer science (Vol. 2, pp. 24–26).

Gupta, M. (2010). Ipv4 vs. ipv6.

Harris, B., Koniko↵, E., & Petersen, P. (2013). Breaking the ddos attack chain.
Institute for Software Research.

Hazelhurst, S. (2000). Algorithms for analysing firewall and router access lists. arXiv
preprint cs/0008006 .

Hazelhurst, S., Attar, A., & Sinnappan, R. (2000). Algorithms for improving the de
pendability of firewall and filter rule lists. In Dependable systems and networks,
2000. dsn 2000. proceedings international conference on (pp. 576–585).

Huang, W., & Yang, J. (2010). New network security based on cloud computing.
In 2010 second international workshop on education technology and computer
science (pp. 604–609).

Ierace, N., Urrutia, C., & Bassett, R. (2005). Intrusion prevention systems. Ubiquity ,
2005 (June), 2–2.

Incapsula. (n.d.). The practical guide to choosing a ddos mitigation service.
https://www.imperva.com/docs/DSIncapsulaGuideToSelectingADDoSSolution.pdf.

https://www.imperva.com/docs/DSIncapsulaGuideToSelectingADDoSSolution.pdf
http://money.cnn.com/2015/10/08/technology/cybercrime-cost-business
http://fortune.com/2015/01/23/cyber-attack-insurance-lloyds

98

Incapsula. (2014). The top 10 ddos attack trends. https://www.imperva.com/docs/DS
Incapsula The Top 10 DDoS Attack Trends ebook.pdf.

Ioannidis, J., & Bellovin, S. M. (2002). Implementing pushback: Router-based defense
against ddos attacks.

Ioannidis, S., Keromytis, A. D., Bellovin, S. M., & Smith, J. M. (2000). Implementing
a distributed firewall. In Proceedings of the 7th acm conference on computer
and communications security (pp. 190–199).

Irvine, C. E., Robin, J. S., et al. (2000). Analysis of the intel pentium’s ability to
support a secure virtual machine monitor..

ISC,	 I. S. C. (2015). Internet domain survey, july, 2015.
https://ftp.isc.org/www/survey/reports/current/.

Isom, K. (2011). A working introduction to crypto with pycrypto.

Jajodia, S., Ammann, P., & McCollum, C. D. (1999). Surviving information warfare
attacks. Computer , 32 (4), 57–63.

JMeter. (n.d.). Jmeter user guide: http://jmeter.apache.org/usermanual/testplan.html.

Katz, J., & Lindell, Y. (2014). Introduction to modern cryptography. CRC Press.

Kayssi, A., Harik, L., Ferzli, R., & Fawaz, M. (2000). Fpga-based internet protocol
firewall chip. In Electronics, circuits and systems, 2000. icecs 2000. the 7th
ieee international conference on (Vol. 1, pp. 316–319).

Kenney, M. (1996). Ping of death. Insecure. org .

Keromytis, A. D., Misra, V., & Rubenstein, D. (2004). Sos: An architecture for
mitigating ddos attacks. Selected Areas in Communications, IEEE Journal
on, 22 (1), 176–188.

Koutepas, G., Stamatelopoulos, F., & Maglaris, B. (2004). Distributed management
architecture for cooperative detection and reaction to ddos attacks. Journal
of Network and Systems Management , 12 (1), 73–94.

Lee, C. P., Tros, J., Gibbs, N., Beyah, R., & Copeland, J. A. (2005). Visual firewall:
real-time network security monitor. In Visualization for computer security,
2005.(vizsec 05). ieee workshop on (pp. 129–136).

Lee, K., Kim, J., Kwon, K. H., Han, Y., & Kim, S. (2008). Ddos attack detection
method using cluster analysis. Expert Systems with Applications , 34 (3), 1659–
1665.

Li, L., & Chou, W. (2011). Design and describe rest api without violating rest:
A petri net based approach. In Web services (icws), 2011 ieee international
conference on (pp. 508–515).

Lihua, Y., Jianning, M., & Zhendong, S. (2006). Fireman: A toolkit for firewall
modeling and analysis. In Proceedings of the 2006 ieee symposium on security
and privacy.

http://jmeter.apache.org/usermanual/testplan.html
https://ftp.isc.org/www/survey/reports/current
https://www.imperva.com/docs/DS

99

Lindell, Y. (2005). Introduction to cryptography. Lecture Notes, available at
http://www. cs. biu. ac. il/ lindell/89-656/Intro-to-crypto-89-656. pdf .

Lonea, A. M., Popescu, D. E., & Tianfield, H. (2013). Detecting ddos attacks in cloud
computing environment. International Journal of Computers Communications
& Control , 8 (1), 70–78.

Mah, B. A. (1997). An empirical model of http network trafc. In Infocom’97.
sixteenth annual joint conference of the ieee computer and communications
societies. driving the information revolution., proceedings ieee (Vol. 2, pp. 592–
600).

Manohar, N. (2013). A survey of virtualization techniques in cloud computing.
In Proceedings of international conference on vlsi, communication, advanced
devices, signals & systems and networking (vcasan-2013) (pp. 461–470).

Martins, J., Ahmed, M., Raiciu, C., Olteanu, V., Honda, M., Bifulco, R., & Huici, F.
(2014). Clickos and the art of network function virtualization. In Proceedings
of the 11th usenix conference on networked systems design and implementation
(pp. 459–473).

Mayer, A., Wool, A., & Ziskind, E. (2000). Fang: A firewall analysis engine. In
Security and privacy, 2000. s&p 2000. proceedings. 2000 ieee symposium on
(pp. 177–187).

Mell, P., & Grance, T. (2011). The nist definition of cloud computing.

Menascé, D. A. (2005). Virtualization: Concepts, applications, and performance
modeling. In Int. cmg conference (pp. 407–414).

Miao, R., Yu, M., & Jain, N. (2014). Nimbus: cloud-scale attack detection and
mitigation. In Acm sigcomm computer communication review (Vol. 44, pp.
121–122).

Mijumbi, R., Serrat, J., Gorricho, J.-L., Bouten, N., De Turck, F., & Boutaba, R.
(2015). Network function virtualization: State-of-the-art and research chal
lenges.

Mirkovic, J., & Reiher, P. (2004). A taxonomy of ddos attack and ddos defense
mechanisms. ACM SIGCOMM Computer Communication Review , 34 (2), 39–
53.

Moyer, P. R., & Schultz, E. E. (1996). A systematic methodology for firewall pene
tration testing. Network Security , 1996 (3), 11–18.

Negi, P., Mishra, A., & Gupta, B. (2013). Enhanced cbf packet filtering method
to detect ddos attack in cloud computing environment. arXiv preprint
arXiv:1304.7073 .

Nikander, P., Gurtov, A., & Henderson, T. R. (2010). Host identity protocol (hip):
Connectivity, mobility, multi-homing, security, and privacy over ipv4 and ipv6
networks. Communications Surveys & Tutorials, IEEE , 12 (2), 186–204.

NSTISSC. (2000). National information systems security (infosec) glossary. National
Security Telecommunications and Information Systems Security Committee
(NSTISSC).

http://www

100

Okada, K., Hazeyama, H., & Kadobayashi, Y. (2014). Oblivious ddos mitigation
with locator/id separation protocol. In Proceedings of the ninth international
conference on future internet technologies (p. 8).

Panko, R. (2010). Corporate computer and network security, 2/e. Pearson Education
India.

Peltier, T. R. (2005). Information security risk analysis. CRC press.

Pfa↵, B., Pettit, J., Amidon, K., Casado, M., Koponen, T., & Shenker, S. (2009).
Extending networking into the virtualization layer. In Hotnets.

Popek, G. J., & Goldberg, R. P. (1974). Formal requirements for virtualizable third
generation architectures. Communications of the ACM , 17 (7), 412–421.

Project, A. H. S. (n.d.). Apache website: https://httpd.apache.org/.

Qiu, L., Varghese, G., & Suri, S. (2001). Fast firewall implementations for software
and hardware-based routers. In Network protocols, 2001. ninth international
conference on (pp. 241–250).

Reuben, J. S. (2007). A survey on virtual machine security. Helsinki University of
Technology , 2 , 36.

Ricciulli, L., Lincoln, P., & Kakkar, P. (1999). Tcp syn flooding defense..

Riggio, R., Rasheed, T., & Granelli, F. (2013). Empower: A testbed for network
function virtualization research and experimentation. In Future networks and
services (sdn4fns), 2013 ieee sdn for (pp. 1–5).

Saad, R., Nait-Abdesselam, F., & Serhrouchni, A. (2008). A collaborative peer-to
peer architecture to defend against ddos attacks. In Local computer networks,
2008. lcn 2008. 33rd ieee conference on (pp. 427–434).

Sahoo, J., Mohapatra, S., & Lath, R. (2010). Virtualization: A survey on concepts,
taxonomy and associated security issues. In Computer and network technology
(iccnt), 2010 second international conference on (pp. 222–226).

Savage, S., Wetherall, D., Karlin, A., & Anderson, T. (2000). Practical network
support for ip traceback. In Acm sigcomm computer communication review
(Vol. 30, pp. 295–306).

Schneier, B. (1997). Applied cryptography, 1996. Cover and title pages , 125–147.

Shameli-Sendi, A., Pourzandi, M., Fekih-Ahmed, M., & Cheriet, M. (2015). Taxon
omy of distributed denial of service mitigation approaches for cloud computing.
Journal of Network and Computer Applications , 58 , 165–179.

Sheth, C., & Thakker, R. (2011). Performance evaluation and comparative analysis
of network firewalls. In Devices and communications (icdecom), 2011 interna
tional conference on (pp. 1–5).

Shin, S.-w., Kim, K.-y., & Jang, J.-s. (2005). D-sat: detecting syn flooding attack
by two-stage statistical approach. In Applications and the internet, 2005.
proceedings. the 2005 symposium on (pp. 430–436).

http:https://httpd.apache.org

101

Shropshire, J. (2015). Hyperthreats: Hypercall-based dos attacks. In Southeastcon
2015 (pp. 1–7).

Sitaraman, A., Mann, J. F., Dos Santos, M. A., Lou, S., & Bhasham, S. K. S. (2002,
July 30). Dynamic ip addressing and quality of service assurance. Google
Patents. (US Patent 6,427,174)

Smith, R. E. (2015). Elementary information security. Jones & Bartlett Publishers.

Snoeren, A. C., Partridge, C., Sanchez, L. A., Jones, C. E., Tchakountio, F., Kent,
S. T., & Strayer, W. T. (2001). Hash-based ip traceback. In Acm sigcomm
computer communication review (Vol. 31, pp. 3–14).

Spears, J. L. (2006). Defining information security. In 5th security conference, las
vegas, nevada, the information institute, washington dc, usa.

Srivatsa, M., Iyengar, A., Yin, J., & Liu, L. (2008). Mitigating application-level
denial of service attacks on web servers: A client-transparent approach. ACM
Transactions on the Web (TWEB), 2 (3), 15.

Tariq, U., Malik, Y., Abdulrazak, B., & Hong, M. (2011). Collaborative peer to peer
defense mechanism for ddos attacks. Procedia Computer Science, 5 , 157–164.

Thomas, T. M., & Stoddard, D. (2011). Network security first-step. Cisco Press.

Tupakula, U., & Varadharajan, V. (2003). Counteracting ddos attacks in multiple
isp domains using routing arbiter architecture. In Networks icon2003. the 11th
ieee international conference (pp. 455–460).

Venter, H., & Elo↵, J. H. (2003). A taxonomy for information security technologies.
Computers & Security , 22 (4), 299–307.

Verisign. (2014a). Ddos protection services overview,.
https://www.verisign.com/assets/datasheet-ddos
overview.pdf?inc=www.verisigninc.com.

Verisign. (2014b). Ddos protection services overview - what is ddos,. http://www.nl
ix.net/docs/verisign/faq-ddos-protection-services.pdf.

Wang, G., & Ng, T. E. (2010). The impact of virtualization on network performance
of amazon ec2 data center. In Infocom, 2010 proceedings ieee (pp. 1–9).

Wang, H., Zhang, D., & Shin, K. G. (2002). Detecting syn flooding attacks. In
Infocom 2002. twenty-first annual joint conference of the ieee computer and
communications societies. proceedings. ieee (Vol. 3, pp. 1530–1539).

Waziri Jr, I. (2014). A federated architecture for heuristics packet filtering in cloud
networks.

Waziri Jr, I., Mirzoev, T., & Shropshire, J. (2014). Comparison of control-and
hardware-based filtering architectures. International Journal of Engineering
Research & Innovation, 34.

Waziri Jr, I., & Shropshire, J. (2015). A heuristic migration logic between firewalls
in a federated cloud network. In Southeastcon 2015 (pp. 1–8).

http:http://www.nl
http:overview.pdf?inc=www.verisigninc.com
https://www.verisign.com/assets/datasheet-ddos

102

Wu, H., Ding, Y., Winer, C., & Yao, L. (2010). Network security for virtual ma
chine in cloud computing. In Computer sciences and convergence information
technology (iccit), 2010 5th international conference on (pp. 18–21).

Xiao, B., Chen, W., He, Y., & Sha, E. H. (2005). An active detecting method against
syn flooding attack. In Parallel and distributed systems, 2005. proceedings.
11th international conference on (Vol. 1, pp. 709–715).

Xuan, D., Chellappan, S., Wang, X., & Wang, S. (2004). Analyzing the secure overlay
services architecture under intelligent ddos attacks. In Distributed computing
systems, 2004. proceedings. 24th international conference on (pp. 408–417).

Yang,	 X., Ma, T., & Shi, Y. (2007). Typical dos/ddos threats under ipv6. In
Computing in the global information technology, 2007. iccgi 2007. international
multi-conference on (pp. 55–55).

Yang,	 Z., Qiao, L., Liu, C., Yang, C., & Wan, G. (2010). A collaborative trust
model of firewall-through based on cloud computing. In Computer supported
cooperative work in design (cscwd), 2010 14th international conference on (pp.
329–334).

Yuan, J., & Mills, K. (2005). Monitoring the macroscopic e↵ect of ddos flooding
attacks. Dependable and Secure Computing, IEEE Transactions on, 2 (4),
324–335.

Zaborovsky, V. S., & Titov, A. (2009). Specialized solutions for improvement of
firewall performance and conformity to security policy. In Security and man
agement (pp. 603–608).

zadjmool. (2013). A risk based approach to ddos protection. For Credit Unions and
Credit Union Service Organizations .

Zahid, M., Belmekki, A., & Mezrioui, A. (2012). A new architecture for detecting
ddos/brute forcing attack and destroying the botnet behind. In Multimedia
computing and systems (icmcs), 2012 international conference on (pp. 899–
903).

Zalenski, R. (2002). Firewall technologies. Potentials, IEEE , 21 (1), 24–29.

APPENDIX

103

A. FIREWALL ACL CONFIGURATIONS

Both firewalls are configured in transparent mode. Depending on the type of device

used, a guide on how to configure the firewall can be obtained from the vendor. Below

are the rules we used to configure the firewalls. We blocked all incoming trafc, and

only allowed authorized trafc to pass through (X represents public IP addresses, and

XX represents authorized IP addresses.).

A.1 Hardware Firewall

• Config# access-list 110 deny tcp any host X.X.X.X

• Config# access-list 110 deny tcp any host X.X.X.X

• Config# access-list 110 deny udp any any eq 520

• Config# access-list 110 deny ip any host X.X.X.X

• Config# access-list 110 deny ospf any any

• Config# access-list 110 deny host X.X.X.X

• Config# access-list 110 deny tcp any any eq 21

• Config# access-list 110 deny tcp any any eq 22

• Config# access-list 110 deny tcp any any eq 25

• Config# access-list 110 deny tcp any any eq 110

• Config# access-list 110 deny tcp any any eq 143

• Config# access-list 110 deny udp any any eq 135

• Config# access-list 110 deny tcp any any eq 445

• Config# access-list 110 deny tcp any any eq 1434

104

• Config# access-list 110 deny tcp any any eq 4444

• Config# access-list 110 deny tcp any any eq 4899

• Config# access-list 110 permit icmp any any

• Config# access-list 110 permit tcp any host XX.XX.XX.XX

• Config# access-list 110 permit tcp any host XX.XX.XX.XX

• Apply to inbound trafc on ethernet0/0 (outside interface)

• Config# access-group 110 in interface outside

A.2	 Virtual Firewall

•	 Rule 1:

Vyatta# set firewall name FWRULES-1 rule 1 action reject

Vyatta# set firewall name FWRULES-1 rule 1 source address X.X.X.X

Vyatta# set firewall name FWRULES-1 rule 1 protocol TCP

•	 Rule 2:

Config# set firewall name FWRULES-1 rule 2 action reject

Config# set firewall name FWRULES-1 rule 2 source address X.X.X.X

Config# set firewall name FWRULES-1 rule 2 protocol TCP

•	 Rule 3:

Config# set firewall name FWRULES-1 rule 3 action reject

Config# set firewall name FWRULES-1 rule 3 protocol UDP

Config# set firewall name FWRULES-1 rule 3 destination port 520

•	 Rule 4:

Config# set firewall name FWRULES-1 rule 4 action reject

Config# set firewall name FWRULES-1 rule 4 source address X.X.X.X

Config# set firewall name FWRULES-1 rule 4 protocol IP

http:XX.XX.XX.XX
http:XX.XX.XX.XX

105

•	 Rule 5:

Config# set firewall name FWRULES-1 rule 5 action reject

Config# set firewall name FWRULES-1 rule 5 protocol OSPF

•	 Rule 6:

Config# set firewall name FWRULES-1 rule 6 action reject

Config# set firewall name FWRULES-1 rule 6 source address X.X.X.X

Config# set firewall name FWRULES-1 rule 6 protocol TCP

•	 Rule 7:

Config# set firewall name FWRULES-1 rule 7 action accept

Config# set firewall name FWRULES-1 rule 7 protocol TCP

Config# set firewall name FWRULES-1 rule 7 destination port 80

•	 Rule 8:

Config# set firewall name FWRULES-1 rule 8 action reject

Config# set firewall name FWRULES-1 rule 8 protocol TCP

Config# set firewall name FWRULES-1 rule 8 destination port 21

•	 Rule 9:

Config# set firewall name FWRULES-1 rule 9 action reject

Config# set firewall name FWRULES-1 rule 9 protocol TCP

Config# set firewall name FWRULES-1 rule 9 destination port 22

•	 Rule 10:

Config# set firewall name FWRULES-1 rule 10 action reject

Config# set firewall name FWRULES-1 rule 10 protocol TCP

Config# set firewall name FWRULES-1 rule 10 destination port 25

•	 Rule 11:

Config# set firewall name FWRULES-1 rule 11 action reject

Config# set firewall name FWRULES-1 rule 11 protocol TCP

Config# set firewall name FWRULES-1 rule 11 destination port 110

106

•	 Rule 12:

Config# set firewall name FWRULES-1 rule 12 action reject

Config# set firewall name FWRULES-1 rule 12 protocol TCP

Config# set firewall name FWRULES-1 rule 12 destination port 143

•	 Rule 13:

Config# set firewall name FWRULES-1 rule 13 action reject

Config# set firewall name FWRULES-1 rule 13 protocol UDP

Config# set firewall name FWRULES-1 rule 13 destination port 135

•	 Rule 14:

Config# set firewall name FWRULES-1 rule 14 action reject

Config# set firewall name FWRULES-1 rule 14 protocol TCP

Config# set firewall name FWRULES-1 rule 14 destination port 445

•	 Rule 15:

Config# set firewall name FWRULES-1 rule 15 action reject

Config# set firewall name FWRULES-1 rule 15 protocol TCP

Config# set firewall name FWRULES-1 rule 15 destination port 1434

•	 Rule 16:

Config# set firewall name FWRULES-1 rule 16 action reject

Config# set firewall name FWRULES-1 rule 16 protocol TCP

Config# set firewall name FWRULES-1 rule 16 destination port 4444

•	 Rule 17:

Config# set firewall name FWRULES-1 rule 17 action reject

Config# set firewall name FWRULES-1 rule 17 protocol TCP

Config# set firewall name FWRULES-1 rule 17 destination port 4899

•	 Rule 18:

Config# set firewall name FWRULES-1 rule 18 action accept

Config# set firewall name FWRULES-1 rule 18 protocol ICMP

107

•	 Rule 19:

Config# set firewall name FWRULES-1 rule 19 action accept

Config# set firewall name FWRULES-1 rule 19 source address XX.XX.XX.XX

Config# set firewall name FWRULES-1 rule 19 protocol TCP

•	 Rule 20:

Config# set firewall name FWRULES-1 rule 20 action accept

Config# set firewall name FWRULES-1 rule 20 protocol TCP

Config# set firewall name FWRULES-1 rule 20 destination address XX.XX.XX.XX

•	 Apply to interface and commit:

Config# set interfaces ethernet eth1 firewall in name FWRULES-1

Config# commit

•	 To show firewall rules:

Config# show firewall name FWRULES-1

•	 To show rules on interface:

Config# show interfaces ethernet eth1 firewall

A.3	 Complete Architecture

http:XX.XX.XX.XX
http:XX.XX.XX.XX

108

Fig. A.1. Complete Architecture I

109

Fig. A.2. Complete Architecture II

VITA

110

VITA

Ibrahim Waziri, Jr. received his Ph.D. in Information Security from Purdue Uni

versity in August 2016. He received his Masters Degree in Applied Engineering (In

formation Technology) from Georgia Southern University and a Bachelors Degree

(WES Equivalent) in Electronics & Computers Engineering from Federal Polytech

nic Bauchi. Ibrahim’s research interests are in the area of Computer Networks and

Virtualization Security.

Ibrahim has worked as a research assistant on Network Security and Cloud Com

puting, as an IT specialist (Graduate Assistant) for Purdue University Graduate

School, and also as a teaching assistant for Network Security and Introduction to IT

classes. Ibrahim has worked with several organizations, including RSA-The Security

Division of EMC as a Cyber Anti-Fraud Analyst working on phishing attacks & mal-

ware analysis. In the summer of 2015, Ibrahim interned as a Cyber Security Analyst

for the US International Trade Commission. Detailed information and a complete

vita is available on his website at iiwaziri.com.

http:iiwaziri.com

