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ABSTRACT 

Ibrahim M. Waziri, Jr. Ph.D., Purdue University, August 2016. Packet Filter Perfor
mance Monitor (Anti-DDoS Algorithm for Hybrid Topologies). Major Professors: 
Victor Raskin & Julia Taylor. 

DDoS attacks are increasingly becoming a major problem. According to Arbor 

Networks, the largest DDoS attack reported by a respondent in 2015 was 500 Gbps. 

Hacker News stated that the largest DDoS attack as of March 2016 was over 600 

Gbps, and the attack targeted the entire BBC website. 

With this increasing frequency and threat, and the average DDoS attack duration 

at about 16 hours, we know for certain that DDoS attacks will not be going away any

time soon. Commercial companies are not e↵ectively providing mitigation techniques 

against these attacks, considering that major corporations face the same challenges. 

Current security appliances are not strong enough to handle the overwhelming trafc 

that accompanies current DDoS attacks. There is also a limited research on solutions 

to mitigate DDoS attacks. Therefore, there is a need for a means of mitigating DDoS 

attacks in order to minimize downtime. One possible solution is for organizations to 

implement their own architectures that are meant to mitigate DDoS attacks. 

In this dissertation, we presented and implemented an architecture that utilizes 

an activity monitor to change the states of firewalls based on their performance in 

a hybrid network1. Both  firewalls  are  connected  inline. The  monitor  is  mirrored  to  

monitor the firewall states. The monitor reroutes trafc when one of the firewalls 

becomes overwhelmed due to a HTTP DDoS flooding attack. The monitor connects 

to the API of both firewalls. The communication between the firewalls and monitor 

is encrypted using AES, based on PyCrypto python implementation. 

1A hybrid network is a network comprised of both hardware and virtual firewalls 
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This dissertation is structured in three parts. The first part found the weakness 

of the hardware firewall and determined its threshold based on spike and endurance 

tests2 . This was achieved by flooding the hardware firewall with HTTP packets until 

the firewall became overwhelmed and unresponsive. The second part implements the 

same test as the first, but targeted towards the virtual firewall. The same parameters, 

test factors, and determinants were used; however a di↵erent load tester was utilized. 

The final part was the implementation and design of the firewall performance monitor. 

The main goal of the dissertation is to minimize downtime when network firewalls 

are overwhelmed as a result of a DDoS attack. 

2Memory & CPU Utilization were used as determinants 
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1. INTRODUCTION 

Individuals and organizations store data either in their individual computers or orga

nization servers. Networking allow users to share data with just a click. The internet 

has revolutionized the communication world; it is a medium for data dissemination 

and a means for collaboration and interaction between individuals via their comput

ers, irrespective of geographical location. To ensure connectivity and ease of access 

to information, two ways of storing information are in place: 1) using a physically 

accessible storage device or; 2) using a cloud service that connects remotely by using 

the network. 

One feature of networking is its capability to give access to the users connected 

to that network. Without security measures in place, there would be no control 

over access to information on a network. Now that the internet connects every elec

tronic device to a single global network, ensuring data security has become a tremen

dous challenge. Distributed Denial of Service (DDoS), Advanced Persistent Threats 

(APTs), and other forms of attack are continuously increasing, according to Fortune 

Magazine (Gandel, 2015) Cyber attacks cost companies $400 billion annually. An

other report from CNN Money estimates that the average US firm spends at least $15 

million a year on cyber crime (Grifths, 2015). Current protection mechanisms are 

inadequate to address the evolving cyber threats (Grifths, 2015). Advancements in 

our defense mechanisms cannot manage the current rate at which new cyber threats 

arise (Grifths, 2015). 

Di↵erent appliances and defense methods are used to protect and ensure data 

security within a network. However, as technology advances, so does the mechanisms 

used to protect that particular technology. In networking and cloud computing we 

incorporate traditional and virtual systems, which results in a hybrid network topol

ogy (Buyya, Broberg, & Goscinski, 2010). For corporations and individuals to better 



2 

secure data and information in a network, they need to implement di↵erent security 

measures. One of the most integral aspect of network security implementation is the 

deployment of a firewall (S. Ioannidis, Keromytis, Bellovin, & Smith, 2000). 

Given the traditional and virtual network environments utilized by organizations, 

the need arises for firewalls that protect both traditional and virtual environments. 

It is a common practice to have a hardware firewall dedicated to the traditional net

work, and a virtual firewall dedicated to the virtual network. The problem with 

this implementation is the fact that di↵erent types of attacks can be implemented 

within di↵erent network environments. If an attack is targeted towards a traditional 

network, the virtual network gets a↵ected, and vice-versa. For example, if a DDoS 

attack targeted towards a dedicated traditional network firewall (hardware) is suc

cessful, the firewall becomes non-responsive, therefore making the virtual network 

non-responsive. 

1.1 Motivation 

In this section, we discuss why both hardware and virtual firewalls fail under 

DDoS attacks in hybrid architectures. This is the reason that motivates us to build 

a performance  monitor that monitors the  state of the  firewalls.  

1.1.1 Challenges with Traditional Packet Filter Architectures 

Traditional (Hardware) firewall appliances are closed boxes that connect to the ex

ternal network on one interface(s), and the internal network on the other interface(s). 

Hardware firewalls have minimal operating systems, which makes them fast in terms 

of processing capabilities. Optimal performance of hardware firewalls is dependent 

upon the firewall’s resources, which include the CPU and Memory availability (Ken

ney, 1996; Zalenski, 2002). Because of these factors, for a hardware firewall to function 

as expected, it is required to have enough resources to process instructions (Panko, 

2010). 
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Denial of service attacks clogs up available resources (CPU, Memory, etc.) on a 

target system, thereby overwhelming the system. Overwhelming a system causes it 

to crash, reboot, or generally refuse any assistance to legitimate clients. DoS attack 

are exceptionally basic; surely, pretty much every server will undoubtedly experience 

such an attack sooner or later (Douligeris & Mitrokotsa, 2004). In a situation where 

the attack is facilitated crosswise over numerous hijacked systems (zombies) by an 

attacker (master), the attack is referred to as DDoS (Carl, Kesidis, Brooks, & Rai, 

2006; Douligeris & Mitrokotsa, 2004). DDoS threats come in many varieties, some 

of which target the underlying server infrastructure. Others exploit vulnerabilities 

in applications and communication protocols. Unlike other kinds of cyber attacks 

which are typically launched to establish a long-term foothold and hijack sensitive 

information, denial of service assaults do not attempt to breach the security perimeter. 

Rather, they attempt to make services, websites, and servers unavailable to legitimate 

users. In some cases, however, DoS is also used as a smokescreen for other malicious 

activities, and to dismantle security appliances (e.g., web application firewalls). 

A successful  DDoS  attack  is a highly  noticeable event  that  impacts the entire  

online user base (Mirkovic & Reiher, 2004). This makes a DDoS attack a popu

lar weapon of choice for hacktivists, cyber vandals, extortionists, and anyone else 

looking to make a point or champion a cause (Douligeris & Mitrokotsa, 2004). DoS 

assaults often last for days, weeks, or even months at a time, which makes them ex

tremely destructive to any network. DDoS can cause loss of revenues, erode consumer 

trust, force businesses to spend fortunes in compensations, and cause users to su↵er 

long-term reputation damage (Kenney, 1996; Mirkovic & Reiher, 2004; Thomas & 

Stoddard, 2011). 

Since the optimal operation of hardware firewalls is dependent on the firewall’s 

available resources (Kenney, 1996). And DDoS are known to target and exhaust 

resources. This makes hardware firewalls, among other devices, an attack target 

(Byers, Rubin, & Kormann, 2004). 
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1.1.2 Challenges with Virtual Packet Filter Architectures 

Network function virtualization (NFV) is a strategy to virtualize the network 

functions carried out by proprietary dedicated hardware. NFV decreases the quantity 

of proprietary hardware required to execute and run network services1 . NFV allows 

network operators to integrate middle-boxes in virtual machines (VM) and put those 

VMs at subjective areas in the network (Anwer, Benson, Feamster, & Levin, 2015; 

ESTI, n.d.). 

Network Function Virtualization (NFV) has drawn noteworthy consideration from 

both industry and the scholarly world with a vital movement within telecommunica

tion service sector. By decoupling network functions (NFs) from the physical devices 

from which they run, NFV can possibly result in significant reduction in operating 

costs (OPEX) and capital costs (CAPEX), and to encourage the deployment of new 

services with expanded agility and faster time-to-value (Mijumbi et al., 2015). NFV is 

still in its earliest stages and there is a chance and opportunity for research groups to 

create new models, frameworks, and applications, and to assess choices and trade-o↵s 

in creating advance technologies for its optimized deployment. 

NFV’s have their own security issues, which include hyperthreats and hypercalls, 

as explained in (Shropshire, 2015). However, in this dissertation, we only focus on 

security issues that arise from DDoS attacks. Considering that middle-boxes are 

hardware appliances, they are expensive, hard to oversee, and their usefulness is hard 

or difcult to change. NFV has alleviated all these problems, with its flexibility (Mar

tins et al., 2014). Because virtualized network functions are deployed on dedicated 

servers, which are hardware appliances, there is a need to secure the server appliances 

used to virtualize NFs. One tool that is being used to secure such server appliance 

perimeters is a hardware firewall. 

1TechTarget - NFV defined 
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1.1.3 Challenges with Hybrid Packet Filters Architectures 

A hybrid  packet  filter  topology  is required  for  a particular  network  architecture.  

Traditional (hardware) firewall secures the NFV server’s perimeter, and the virtual

ized firewall secures other virtualized network functions. One packet filter inherits 

the problem of another packet filter (Buyya et al., 2010; Cheswick, Bellovin, & Rubin, 

2003; Cisco, 2014). 

Attacks that exhaust resources (such as DDoS) which are targeted towards the 

hardware firewalls used to secure the virtualized network functions server results in 

network downtime, and inaccessibility of anything connected inline beyond the firewall 

(Kenney, 1996; Martins et al., 2014). If the hardware firewall is down, the server that 

NFs runs on automatically becomes unavailable, and hence the unavailability of data 

and network downtime. 

1.2 Problem Statement 

This dissertation aims to enhance packet filter performance in hybrid networks 

and to minimize network downtime caused by DDoS attacks in hybrid packet filter 

topologies. This is achieved by monitoring the CPU and memory utilization of dif

ferent firewalls. To ensure that, we claim the following: it is possible to implement an 

architecture that mitigates DDoS attacks, minimizes network downtime, and transfers 

packet filtering service between firewalls in a hybrid network topology. We formulate 

and validate the following hypotheses. 

•	 It is possible to mitigate DDoS attacks on packet filters without dropping legit

imate packets. 

•	 It is possible to migrate packet filtering services interchangeably between fire-

walls in a hybrid packet filtering network when one firewall becomes over

whelmed. 
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•	 It is possible to develop a monitoring tool that monitors the CPU and Memory 

states of firewalls and minimizes network downtime during a DDoS attack on a 

network. 

1.3 Contribution and Overview 

The main contribution of this dissertation is to avoid network downtime as a result 

of firewall failures during a DDoS attack in a hybrid network. To ensure that, we 

implement a number of tests on the Traditional, Virtual, and Hybrid architectures 

and also develop an algorithm used to validate the hypothesis mentioned above. We 

provide here a brief overview of tests and algorithms: 

1.	 Spike Performance Test 

To find the threshold of the firewalls (both hardware and virtual), we carried 

out a spike test that verifies the firewall’s stability amid a burst of simultaneous 

concurrent or network connections to changing time periods and degrees of traf

fic load. This happens as a result of an attack that overwhelms the device (such 

as a DDoS attack). We implemented a HTTP flooding attack and monitored 

CPU Utilization during this test. 

2.	 Endurance Performance Test 

Similar to the spike performance test, we carried out an endurance test. This 

was implemented to discover whether the firewalls can withstand the necessary 

processing loads for a long period of time. During the endurance test, we 

implemented a HTTP flooding attack, and monitored the memory utilization 

of the firewalls. 

3.	 Performance Monitoring/Packet Filtering Transfer Algorithm 

In light of the outcomes of our tests, we developed an algorithm that moni

tors the states of the firewalls based on performance. The algorithm invokes 

instructions when a newly defined threshold is reached. The algorithm also 
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transfers packet filtering services between the firewalls when one of the firewalls 

is overwhelmed. This results in more network up-time in the event of an at

tack, and also ensures that the firewall does not become non-responsive when 

overwhelmed. 

1.4 Dissertation Road-map 

This work introduces a new security architectural monitor used in hybrid networks. 

The monitor works by transferring packet filtering services from one firewall to the 

other when the network is under DDoS attack. The communication between the 

monitor and the firewalls occurs through the firewall’s API. AES encryption algorithm 

is used to ensure that all communication is secured. 

In chapter 2, we review literature and research focused on network architectural 

security, NFV’s, cyber threats (including DDoS attacks), and proposals for how DDoS 

attacks can be mitigated. We then examined commercial DDoS mitigation solutions 

that prevent and respond to flooding attacks. We finished the chapter by discussing 

the disadvantages of using commercial DDoS mitigation providers, and how they do 

not provide a substantive solution to DDoS attacks. 

Chapter 3 discusses the traditional packet filter architecture. The chapter begins 

with an introduction to firewalls, and discusses how hardware firewalls di↵er from 

virtual firewalls. We then explained the problem statement and how we set up the 

traditional architecture. We concluded the chapter by presenting the results of our 

test. 

Chapter 4 discusses the virtual packet filter architecture. We started by explaining 

NFVs and current issues with virtualization. We highlight the problem statement and 

explained our test parameters and results for the virtual architecture. 

In chapter 5, we presented the packet filtering monitor/algorithm. We explained 

the monitor’s design, how the monitor works, and evaluate the monitor’s performance. 
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We concluded by summarizing our findings and proposing areas of future study in 

Chapter 6. 

1.5 Dissertation Limitations 

To the best of our knowledge, no existing research explains how monitoring firewall 

performance is used to mitigate DDoS attacks. This study focused only on Layer 7 

application level DDoS attacks, primarily based on HTTP trafc. HTTP trafc is the 

protocol utilized for communication between a client and a web server (Cisco, 2014; 

Dieter, 1999). All tests were conducted in a controlled, monitored environment. The 

virtualized firewall and the web server run on a dedicated server with configurations 

that are explained in later chapters. This work focus on internal threats, with the 

assumption that an intruder has gained access to the network. The process of gaining 

access to networks is beyond the scope of this study. The network is configured 

in IPv4 instead of IPv6 because IPv4 is the most generally utilized version of the 

Internet Protocol (Bade & Vanduhe, n.d.) and IPv6 features (e.g. larger address 

space, optimized DHCP, IPSec, optimized mobility feature (Bade & Vanduhe, n.d.)) 

are beyond the scope of this dissertation. 

The test focuses on mitigating the application layer DDoS attacks, which are 

volumetric HTTP floods generated using di↵erent load and stress testing tools. The 

HTTP floods targets firewalls not other network devices. This study is not limited to 

specific vendors. The choice of devices used are solely based on availability, and the 

same process can be applied to any other vendor devices. This dissertation focuses 

on accessing a web server in which trafc must pass through two checkpoints (the 

firewalls) before reaching its destination. 

Lastly, this dissertation does not attempt to provide a guide for malicious activity. 

We presented the report in an ethical manner, such that a reader cannot gain knowl

edge of how to implement DDoS attacks. However, if this dissertation provides any 
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hint that an adversary decides to implement or exploit, it is the sole responsibility of 

the adversary and neither that of the author nor committee members. 
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2. RELATED WORK 

2.1 Introduction 

As of July 2015, the internet has connected an estimated of 1.03 billion hosts 

worldwide (ISC, 2015). The internet is an assembly of di↵erent networks accessible by 

dissimilar users in di↵erent ways. That means that users can access information using 

the internet regardless of national and geographical boundaries. This convenience and 

ease of accessibility to information, however, comes with security issues. These issues 

include, theft and tampering information. These issues make all information online 

vulnerable to unauthorized access and usage. 

One of the most important aspects of technology is whether it favors o↵ense or 

defense (R. Anderson, 2001). The difculties of developing secure systems using a 

penetrate-and-patch methodology have been familiar to the security community since 

the Anderson report in the early 1970’s (J. P. Anderson, 1972). 

Within recent years we have seen an expansion in the widespread adoption of com

mercial security technologies by governmental, military and commercial organizations, 

due to their convenience, and ease of use. With increasing reliance on third-party se

curity resources, also comes an increasing vulnerability to information meant to be 

protected (J. M. Anderson, 2003; Venter & Elo↵, 2003). Although security threats 

can range from psychological operations (social engineering) to physical attacks on 

computers, one aspect of Information Security that most concerns computer users is 

defending information against disruption or disabling the computerized functions and 

resources that support an organization’s operations (Jajodia, Ammann, & McCollum, 

1999). 

Many of the threats to Information Security share common characteristics (Peltier, 

2005). We are going to discuss some of the threats known today, but it is worthwhile 
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mentioning that these threats do not represent a complete list of Information security 

threats; considering new forms of attacks are discovered everyday. As it relates to 

this dissertation; Information Security threats can be categorized as follows: External 

and Internal. 

•	 External Threats - This is the hacker threat, whether it is a single person, or 

a nation state.  This  type of threat comes from external sources,  someone not  

connected to the network implements the attack. This types of attack includes 

DDoS attack (Spears, 2006). 

•	 Internal Threats - This is a type of threat that happens inside the network. 

Internal threats do not only apply to malicious actives. User error and ignorance 

play a large role in trusted individuals putting networks and systems at risk to 

outside agents. Firewalls, intrusion detection systems, and other boundary 

defense mechanisms are ine↵ective when circumvented by insiders. 

2.2 Firewall Architectural/Implementation Security 

Everyday new research is being conducted within the security field. Network se

curity is among the top research theme in information technology. Z. Yang, Qiao, 

Liu, Yang, and Wan (2010) focused on a collaborative trust model of firewall-through 

based on cloud computing. In this research, existing trust models and firewall inno

vation were studied. The researchers implemented a methodology using cloud com

puting that assess dynamic setting and presents the meaning of risk sign in firewalls. 

The model has three advantages: there are distinctive security strategies for vari

ous domains, the model considers the exchange setting, the verifiable information of 

entity dynamically impacts the estimation of trust worth. Finally, the trust model 

is synchronous with the firewall and does not break the firewall’s local control poli

cies. To confirm the dependability and accuracy of the proposed trust model, a test 

is done. The test result demonstrates that the trust model is robust and surpasses 
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ordinary trust models in di↵erent areas, because it e↵ectively control unauthorized 

access within cloud computing environment. 

Moyer and Schultz (1996) presents an orderly approach for firewall penetration 

testing that advances the perspective that firewall testing ought to look at not just 

the capability of a firewall to stop attack from outside threats, but also the resistance 

of the whole system that the firewall ensure against external threats. As a result, 

therefore, testing should take an orderly approach to guarantee that it is complete, 

and to decrease the risk of threats and/or interference to the system and its hosts. 

This study introduced a requirement for an efcient approach to guide firewall testing. 

Network firewalls, routers and switches utilize a rule database to choose which 

packet will be permitted into and out of a network. By filtering packets, the fire-

wall, routers and switches can enhance security and execution. Be that as it may, 

as the extent of the rule list builds, it gets hard to keep up and validate the rules 

(Hazelhurst, Attar, & Sinnappan, 2000). Hazelhurst (2000) studied an algorithm for 

analyzing firewall and router access lists. The algorithm is another representation of 

rule list, and also a presentation of how Boolean expression can be utilized to analyze 

rule sets. Eronen and Zitting (2001) presented an expert system for analyzing firewall 

rules that looks into the problem of analyzing firewall configurations, using a tool that 

comprehends Cisco access lists, it is actualized utilizing Eclipse, (a constraint logic 

programming language). The study utilizes logic statements to express information 

about networking, firewalls, and basic configuration mistakes. Configuring network 

devices (especially from di↵erent vendors) to work in unison can be difcult. Notwith

standing reverse-engineering or figuring out of existing setup is hard. To overcome 

some of these difculties, Mayer, Wool, and Ziskind (2000) studied a firewall analysis 

algorithm that composed and actualized a novel firewall analysis tool. The tool per

mits the administrator to e↵ectively find and test the global firewall policy (either an 

implemented policy or an arranged one). The tool utilizes an insignificant depiction of 

the network topology, and specifically parses the di↵erent vendor-particular low-level 

configuration list. It interfaces with the client through a query-and-answer session, 
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which is done at a higher point of abstraction. A common question the apparatus 

can answer is “from which machines can our DMZ be accessed, and with which im

plementations?” The tool compliments existing vulnerability examination tools, as it 

can be utilized before a policy is implemented. It works on a more justifiable level of 

abstraction, and it manages all firewalls simultaneously (Mayer et al., 2000). 

Firewalls and routers must perform packet classifications at high speeds to produc

tively execute their capacities, for example, firewalls and di↵serv. Arrangement can 

be found on a self-assertive number of fields in the packet header. Rapidly classifying 

an arbitrary number of fields is known to be hard, and has a poor scenario complexity. 

Qiu, Varghese, and Suri (2001) analyzes two fundamental approaches; backtracking 

search and set pruning attempts. The researchers propose several new techniques to 

assist and enhance the two fundamental approaches, including: backtracking search 

using small memory utilization, a novel compression algorithm, pipe-lining the in

quiry, and trading-o↵ easily amongst backtracking and set pruning. The research 

quantifies the performance gains for every approach utilizing actual databases. The 

study demonstrates that on actual firewall databases, the schemes with the advance

ments are ideal in time and capacity. 

Guillen, Sossa, and Estupiñán (2012) demonstrates how performance results be

tween closed and open source routing approaches are vital parameters for network 

architects. The study breaks down execution in convergence time, throughput and de

lay between routing approaches in view of virtual software router (VSR) and routing 

approaches in view of proprietary hardware routers (PHR). The outcome demon

strates that VSR have better convergence times compared to hardware routers and 

the throughput performance is better on PHR. Waziri Jr, Mirzoev, and Shropshire 

(2014) looked into the comparison of control and hardware based filtering architec

tures in order to identify the most e↵ective architecture, a control test with no firewall 

was conducted, followed by a hardware based packet filtering architecture. The study 

used HTTP packets generated by a load testing tool. The results focused mainly on 

endurance and the spike tests for the two architectures. 
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Sheth and Thakker (2011) did a comparative research that evaluates di↵erent 

types of firewall operation, the operational conditions and performance results of 

shortcomings in firewall operations. Moreover, the study analyzes reported issues 

with existing firewalls. Detailed analysis and correlation is done in terms of cost, 

security, operational ease, and execution of open source packet filter (PF) firewall, 

checkpoint SPLAT, and Cisco ASA in a testing environment with laboratory gener

ated monitored and controlled trafc. Di↵erent throughputs and connection statistics 

were utilized as benchmark for performance comparison. The outcomes showed that 

Cisco ASA outperforms other firewalls in terms of performance. Checkpoint SPLAT 

and OpenBSD PF likewise gives sensibly competitive performances. 

Conventional firewalls depend on topology restrictions and controlled network to 

implement trafc filtering. Firewalls can’t filter unidentified packets, so all clients on 

the internal side are trusted. While this model has functioned admirably for little to 

medium size networks, networking advancements, for example, expanded availability, 

higher line speeds, extranets, and working from home undermine and make access 

control out of date. To address the issue of traditional firewalls, the idea of distributed 

firewalls has been proposed. In this plan, security policy is still centrally defined, 

however implementation is left to the individual endpoints. IPSec might be utilized 

to convey credentials that express parts of the overall network policy. On the other 

hand, the credentials might be obtained through out-of-band means. S. Ioannidis et 

al. (2000) presents the implementation and design of a distributed firewall based on 

KeyNote trust management system and OpenBSD1 to specify, distribute and resolve 

policy. 

Firewalls are important tools for securing private networks. Be that as it may, by 

just deploying firewalls, administrators are a long way from securing their networks. 

Bad configurations results in breaches and network vulnerabilities. Specifically, con

flicting filtering rules leads to blocking legitimate trafc or allowing undesirable pack

ets. Abbes, Bouhoula, and Rusinowitch (2008) shows another characterization strat

1An open source UNIX operating system 
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egy to recognize conflicting access rules inside a firewall. The technique forms an 

arrangement of filtering rules that have a variable number of fields. A field has a 

scope of values, represented by an internal or variable length bit string that may 

cross with relating field scope of di↵erent rules. Keeping in mind the end goal is to 

recognize overlaps, the study sorted out the states of each filtering rule in a manner 

that can rapidly isolate colliding rules. 

Lihua, Jianning, and Zhendong (2006) presents a static analysis tool for firewall 

modeling and analysis by regarding firewall configurations as important programs. 

The tool applies static analysis methods to check misconfiguration, for example, vi

olation of policies, irregularities, and inefciencies in individual firewalls and among 

distributed firewalls. Firewalls performs typical model checking of the firewall designs 

for all conceivable IP packets along every single conceivable data paths. Typical model 

checking is both sound and complete due to the limited way of firewall configurations. 

The tool is actualized by modeling firewall rules utilizing binary decision diagrams 

which have been utilized e↵ectively as part of the hardware verification and model 

checking. The tool is utilized to reveal several real misconfiguration in networks, some 

of which have been confirmed and amended by network administrators. 

Chomsiri and Pornavalai (2006) proposes a strategy to analyze the firewall rule-set 

or policy using relational algebra and a raining 2D-Box model. Rules analysis can 

find every one of the abnormalities in the firewall rule-set in the way that is typi

cally utilized by numerous firewall devices, like, Cisco Access Control List, Iptables, 

IPchains, or Check Point Firewall-1. While the current analyzing strategies consider 

the peculiarities between any two rules in the firewall rule-set, researchers consider 

more than two rules together in the meantime to find the abnormality. In this way, 

it is conceivable to find the hidden anomalies in the firewall rule-set. Analysis re

sults can be utilized with the proposed rules-combination technique displayed in the 

research to minimize the firewall rule without changing the policy. At the end, the 

research developed an application based on the proposed analyzing strategy. The 
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application could help administrators examine and adjust a complex firewall policy 

with fewer mistakes. 

Until recently, the causes of decreased e↵ectiveness and restricted usage of new 

security frameworks have been the inadequate execution of hardware that executes 

access control, difcult analysis, and a configuration that conforms to corporate se

curity policy requirements. Without the utilization of specific solutions that permit 

e↵ective functioning of data security systems and their coordination with other net

work applications, a secured corporate network infrastructure is impossible to achieve. 

Zaborovsky and Titov (2009) issue is considered from three points of view: the deci

sion of the distributed hardware platform to enhance firewall performance; the por

trayal of security approach by method for an organization-based access control mode; 

and automating the process of firewall rules formation taking into account high-level 

depiction of access policy requirements. 

Kayssi, Harik, Ferzli, and Fawaz (2000) presents a firewall plan for IP networks 

utilizing a field-programmable gate array (FPGA). The FPGA actualizes, accepts, or 

denies rules of the firewall. A hardware-based firewall o↵ers the benefit of speed rate 

over a software firewall, notwithstanding direct interfacing with network devices, for 

example, an Ethernet. The research indicates how the rules are translated to VHDL 

and then implemented in hardware, and how the hardware is used to filter network 

trafc in a packet-by-packet method, or based on connecting information, with speeds 

of more than 500,000 packets per second (Kayssi et al., 2000). 

Golnabi, Min, Khan, and Al-Shaer (2006) shows an arrangement of techniques 

and algorithms to examine and oversee firewall policy rules: (1) data mining tech

niques to deduce e↵ective firewall policy rules by mining the trafc log based on its 

frequency; (2) filtering-rule speculation to decrease the quantity of approach rules 

by generalization: and (3) a procedure to recognize any obsolete rule and a set of 

couple predominant rules, to create another arrangement of efcient firewall policy 

rules. Anomaly detection based on mining uncovered numerous hidden abnormalities 

by analyzing the firewall policy rules, bringing about two new sorts of anomalies. As 
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a result  of these systems,  network security administrators can consequently review  

and update the rules. 

From every one of these studies, we understand how a firewall is the e↵ective 

innovation of today’s network security defense; we also understood how maintaining 

firewall rules is complex, error-prone, expensive and ine↵ective for large networks. 

These firewall rules are generally custom-designed and handwritten; as a result, they 

are in consistent need of tuning and approval, because of the dynamic way of network 

trafc, constant changing network environment, and its market demands. 

2.3 Network Security/Function Virtualization 

Networks are deployed to make computers more accessible to the outside world. 

Making computers more accessible to the outside world is a mixed blessing (Dieter, 

1999). More interactions are possible, but so are unwelcome interactions. One may 

therefore wish to control how users are able to connect to a network system, how 

users on the network access data, and how data is protected when it travels through 

the network. 

Networks are the communication infrastructure of data transmission between 

nodes in a distributed system. Data meant to be sent by an application in one node 

has to be prepared for transport, transmitted as a sequence of electronic or optical 

signals, reassembled, and presented to an application program at the receiver’s end. 

Network protocols have to find a route from sender to receiver; they have to deal 

with the loss or corruption of data, and also with the loss of connection. It is a good 

practice to address these concerns one at a time with a layered architecture, applica

tion protocols at the top, and protocols that physically transmit bits of information 

to the bottom. 

Network management protocols provide the necessary support so that the data 

generated by other protocols are efciently delivered to the intended recipients. Man

agement protocols, for example, may check the availability of intermediate nodes 
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between sender and receiver, find optimal connections, or resolve logical network ad

dresses to physical addresses. Other protocols are used to remotely configure network 

nodes, the software running on these nodes are becoming more and more complex. 

Hence, network security increasingly relies on securing management protocols and 

nodes in the network. The fact that network nodes are located in protected sites is 

no longer a guarantee for security (Dieter, 1999). 

“Network security refers to any activity designed to protect a network, specifically, 

these activities protect the usability, reliability, integrity and safety of a network and 

data. E↵ective network security targets a variety of threats and stops them from 

entering or spreading on a network” (Cisco, 2014). 

Regardless of whether a company is on the Internet or not, security measures must 

be applied to the network. These security measures may be as simple as requiring 

users to regularly change their passwords or may involve using the network operating 

system and third-party utilities to restrict access and enforce policies (Blacharski, 

1998). 

Issues in Security 

Since the advent of computers and networking, di↵erent forms of cyber attacks 

have been in place. Common attack techniques are classified: Some attackers gain 

system knowledge or personal information, such as, spying and phishing. Others 

meddle with system designated functions, for example, virus infections, worms and 

Trojans. Also, others exhaust the system resources rendering rendering services un

available. This can be brought about by denial of service (DoS) attack. Di↵erent 

types of network interruptions also exist, for example, land attacks, smurf attacks, 

password stealing, social engineering, use of viruses and worms, bugs & indirect ac

cesses, verification & protocol failures, information leakage, bot-nets, eavesdropping, 

data modification, spoofing, snifng, software & hardware misuse, TCP hijacking, 
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teardrop attacks and so on (Bhavya, 2008). For the purpose of this study, we are 

going to focus only on the DoS form of attack. 

Considerable research has been completed lately towards virtualization and cloud 

security. With server combination and desktop virtualization, essentially more ac

tivity stays inside the data center racks, prompting blind spots in network security 

appliances. Current network security devices, designed in view of scale-up standards, 

can’t keep pace with the expanded bandwidth dispensed to the servers, and the ex

panding volume of threats at all layers of the network stack. Likewise, high versatile 

workloads and expanding intelligence in the virtual and hypervisor layer makes it pro

gressively hard for static network devices to interlock with dynamic policy changes 

and on-the-fly re-purposing of resources to serve di↵erent workloads, applications, or 

clients. 

The researchers Basak, Toshniwal, Maskalik, and Sequeira (2010) highlights an

other pattern in the industry to virtualize network security devices inside security 

virtual appliances (SVA’s), which can then be placed on hosts, and other distributed 

security function for network flows across the cluster. The methodology replaces sin

gle choke-point based physical security devices like firewalls. IP address management, 

flow monitoring, and data leakage are monitored using a distributed virtual counter

parts running on slices of x86, integrated with compute workloads, with the capacity 

to take advantage of trafc going through all virtual machines. Cloud computing 

can convey both software and hardware as on-demand assets and services over the 

internet (Huang & Yang, 2010). Without a doubt, one of the noteworthy concerns in 

cloud computing is security. 

Wu, Ding, Winer, and Yao (2010) focused on security of virtual networks in vir

tualized environments. The research presents an outline of security issues in virtual 

machines. The issues that exist in a virtual network are additionally being discussed 

and analyzed based on Xen platform. The outcome displays an inventive virtual net

work structure planned to control the intercommunication among virtual machines 

incorporated to physical machines with higher security. With distributed systems 
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becoming more prevalent in modern computing, there is a need to scale exponen

tially with their use and integration. Up to this point, the x86 architecture does not 

allowed traditional trap-and-emulate virtualization. x86 virtual machine monitors 

have rather utilized parallel interpretation of the guest kernel code. Be that as it 

may, both intel and AMD have now introduced architectural extensions to support 

classical virtualization. The research “comparison of software and hardware methods 

for x86 virtualization” compares a current software VMM and another VMM intended 

for emerging hardware support. Surprisingly, the hardware VMM frequently shows 

lower performance than the software VMM. 

Adams and Agesen (2006) conducted a study of software and hardware techniques 

for x86 virtualization and studied architectural level events such as page table over

hauls, context switches, and I/O; the study discovered their cost incomprehensibly 

distinctive among native software VMM, and hardware VMM execution. The re

search results demonstrates that the hardware support neglects to give a recognizable 

performance advantages for two primary reasons. First, it o↵ers no support for MMU 

virtualization; second, it neglects to exist with existing software techniques for MMU 

virtualization. The study looks ahead to developing methods for addressing the MMU 

virtualization issue with regards to hardware-assisted virtualization. 

Manohar (2013) surveyed virtualization techniques, types of hypervisors, and 

building private clouds with virtualization. It additionally examines the security 

of cloud computing and introduced the optical network as an access network and 

its devices in the data centers as energy efcient centers. Virtualization assumes a 

noteworthy part in helping organizations reduce cost, and in the mean time guaran

tees enhanced productivity, better utilization, and adaptability of existing hardware. 

Reuben (2007) presents a literature on di↵erent security issues inside virtualization 

technologies. The study mainly focuses on open security vulnerabilities that virtual

ization conveys to the cyber environment. The study focused on security issues that 

are unique for virtual machines and security threats that are common to all virtu
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alization technologies available in the market. The study finishes up with a several 

discourse of a few security vulnerabilities in the virtualized environment. 

2.4 Cyber Threats Implementation 

Distributed Denial of Service attack (DDoS) is a noticeable threat to cloud and 

virtualized environments. Traditional defense approaches cannot be easily applied 

to the cloud environment because of their moderately low proficiency and large data 

space. Thus, (Dou, Chen, & Chen, 2013) exhibited a Confidence-Based Filtering 

strategy (CBF). The research method is deployed in two periods; the non-attack 

period, and the attack period. More specifically, legitimate packets are gathered amid 

the non-attack period for extracting attribute pairs to produce a nominal profile. The 

CBF technique is advanced by computing the score of a specific packet amid the attack 

time frame to decide whether to discard it. In conclusion, extensive simulations are 

conducted to assess the feasibility of the CBF method. The outcome demonstrates 

that CBF has a high scoring speed, small storage requirement and an acceptable 

filtering precision, making it suitable for real-time filtering in cloud environment. 

Negi, Mishra, and Gupta (2013) proposes an enhanced CBF approach featuring 

a modification to the confidence-based filtering technique researched for  the cloud  

computing environment. It took into account connection designs that mitigate DDoS 

attacks in the cloud. The modification presents additional bandwidth and tries to 

increase the processing speed of victim’s server. 

Farahmandian et al. (2013) reviewed and compared the existing methods used to 

mitigate DDoS attacks on cloud computing. SYN flooding attacks are an example 

of Distributed Denial of Service (DDoS) attack. Early detection is desirable however 

traditional passive detection strategies are done in the early stages because of their 

dependence on passive snifng an attacking signature. Xiao, Chen, He, and Sha 

(2005) captures attacking signatures utilizing an active probing scheme that obtains 

the delay of routers by sending packets containing a unique Time-to-Live set for the 
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IP headers. The aftere↵ects of the test are utilized to perform SYN flooding detection, 

which is reliable and has minimal overhead. This methodology is more independent 

than di↵erent techniques that require the participation of network devices. Di↵erent 

tests demonstrate that this delay probing approach accurately recognizes half-open 

connections caused by SYN flooding attacks from those emerging from di↵erent causes 

at an early stage. The researchers Lonea, Popescu, and Tianfield (2013) focused on 

detecting DDoS attack in cloud computing environments. The proposed solution is to 

consolidate the evidence obtained from Intrusion Detection Systems (IDS) deployed in 

the virtual machines of the cloud systems with a data fusion methodology on the front 

end. In particular, when the attack appears, the VM-based IDS will yield alarms, 

which will be stored in the MySQL database set inside the Cloud Fusion Unit (CFU) 

of the front end server. The research propose a quantitative solution for analyzing 

alerts generated by the IDSs, utilizing the Dempsters Combination Theory (DST) 

operations in 3-valued rationale and Fault Tree Analysis (FTA) for the mentioned 

flooding attacks. At the last step, the solution utilizes the Dempsters combination 

rule to fuse evidence from multiple independent sources. 

On the topic of DDoS detection, H. Wang, Zhang, and Shin (2002) proposes a 

simple and vigorous mechanism for detecting SYN flooding attacks. Rather than 

monitoring trafc flow at the front (like firewall or proxy) of a server, they identify 

the SYN flooding attacks of LEAF routers that connects end hosts to the Inter

net. The ease of the detection mechanism lies in the stateless and low computation 

overhead, which makes the detection mechanism itself immune to flooding attacks. 

The detection mechanism depends on the protocol behavior of TCP SYN-FIN (RST) 

pairs, and is an instance of successive change point detection. To make the detection 

mechanism insensitive to site and access pattern, a non-parametric cumulative sum 

method is applied, thus, making the detection component for the most part relevant 

and its deployment much less demanding. The efciency of this detection component 

is validated by trace-driven simulations. The evaluation results show that the detec

tion mechanism has short detection precision. Because of its closeness to the flood
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ing sources, the component not only sets alarm upon detection of continuous SYN 

flooding attacks, additionally it uncovers the location of the flooding sources without 

resorting to expensive IP trace-back. There have been numerous proposals to shield 

against SYN flooding, and some require notable TCP changes. A few arrangements 

that endeavor to determine the TCP shortcoming are now publicly available. Ric

ciulli, Lincoln, and Kakkar (1999) subjectively analyzes these arrangements of TCP 

SYN flooding defense. The study refines the analysis of the random drop approach 

and drives a straightforward and general approach to enhance its performance. At 

last, the study presents (through both analytical and packet-level simulations) the 

efcacy of the random drop approach in a variety of operating conditions. 

TCP-based flooding attacks are a typical type of Distributed Denial of Service 

(DDoS) attacks that abuse network resources and can result in serious threats to 

the Internet (Chen & Yeung, 2006). Incorporating IP spoofing-random, subnet, and 

fixed varieties makes it harder to shield against attacks. Subnet-spoofing is the most 

troublesome type of DDoS to counteract. Chen and Yeung (2006) proposed a simple 

and efcient method to detect and protect against TCP SYN flooding attacks under 

various IP spoofing types, including subnet spoofing. The method makes use of a 

capacity efcient data structure and change-point detection method to distinguish 

complete three-way TCP handshakes from incomplete ones. Simulation experiments 

reliably demonstrate that the strategy is both productive and compelling in protecting 

against TCP-based flooding attacks under various IP spoofing types. 

Shin, Kim, and Jang (2005) proposes D-SAT: detecting SYN flooding attack by 

two-stage statistical approach. A basic and robust way to detect SYN flooding attacks 

is by monitoring the network activity. Rather than dealing with all ongoing trafc 

on the network, D-SAT only monitors SYN count and the proportion between SYN 

and other TCP packets. D-SAT identifies SYN flooding and discovers victims more 

precisely in its second stage. To make the recognition mechanism and detection more 

easy, D-SAT utilizes a cumulative sum methodology in statistical process control. It 

makes the recognition mechanism more applicable and easier to implement. D-SAT 
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additionally uses AFM (Aggregation Flow Management) to identify victims quickly 

and precisely. The trace-driven simulation results shows that D-SAT system is reliable 

and easy to deploy and D-SAT also demonstrate that it recognizes SYN flooding 

precisely and finds attack within a short detection time. 

Denial of Service 

A denial of service (DoS) attack  is an attack  that clogs up  so  much  resources  

(CPU, Memory etc) from the target system. This usually causes the system to crash, 

reboot, or generally deny any services to legitimate clients. DoS attacks are extremely 

normal; to be certain, every server can undoubtedly experience such an attack at any 

given time. In a situation where the attack is coordinated across many hijacked 

system (zombies) by a single attacker (master), the attack is referred to as DDoS 

(Carl et al., 2006). DDoS threats come in many varieties, some of which target the 

underlying server infrastructure. Others exploit vulnerabilities in applications and 

communication protocols. Unlike other kind of cyberattacks, DDoS are typically 

launched to establish a long-term foothold and hijack sensitive information. Denial 

of service assaults do not attempt to breach your security perimeter. Rather, they 

attempt to make your services, website, and servers unavailable to legitimate users. In 

some cases, however, DoS is also used as a smokescreen for other malicious activities, 

or to take down security appliances (e.g., web application firewalls). 

Classification of Denial of Service 

DoS attacks can be classified into five categories (Douligeris & Mitrokotsa, 2004). 

These categories are: Network Device level, OS level, Application level, Data Flood, 

and Protocol Feature attack. 
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Fig. 2.1. DoS & DDoS Attack Types 

Fig. 2.2. Classification of DoS attacks 

Network Layer Attacks - Layer 3 DoS 

A DoS  attack  at  the network  level  is caused  either  by  exploiting  a  bug,  software  

vulnerability, or exhausting the hardware resources of the network device (Waziri Jr 

& Shropshire,  2015).  
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Layer 3 attacks utilize specialized packets designed to cause resource intensive 

processing, slow response on target devices, or the disruption of TCP state informa

tion. These attacks influence issues in Layer 3 protocols and devices in order to cause 

significant disruption with much less attacker bandwidth than a volumetric attack. 

It is moderately simple; nonetheless, one needs to filter most Layer 3 attacks as they 

can be filtered with simple signatures and usually consume much less bandwidth than 

a pure volumetric attack (Waziri Jr & Shropshire, 2015). 

Attack vectors in this category include UDP flood, SYN flood, NTP amplifica

tion, DNS amplification, and more. Any of these can be used to prevent access to 

servers, while also causing severe operational damages, such as account suspension 

and massive overage charges. 

DDoS attacks are almost always high-trafc events, commonly measured in giga

bits per second (Gbps) or packets per second (Pps). A large network layer assault 

can exceed 600 Gbps 2; however,  20  to  40  Gbps  are  enough  to  completely  shut  down  

most network infrastructures. 

Application Layer Attacks - Layer 7 DoS 

DoS attacks at this level attempt to make a machine or service out of order either 

by exploiting particular bugs in network applications that are running on the target 

host or by utilizing such applications to deplete the resources of the victim. An 

example of this is the finger-bomb. 

Layer 7 attacks exploit application layer commands that cause slow processing 

or crashes with the goal of disrupting the service of a targeted application. Layer 7 

attacks normally target HTTP; either HTTP request that cause the web application 

to perform resource exhaustive processing or vulnerability in unpatched versions of 

the web servers. These attacks are considerably more hard to profile and filter at the 

network, and frequently require changes to web applications themselves. Basic Layer 

2Arbor Network Report 2015 
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7 attacks include Slowlirs, R-U-Dead-Yet, and XDoS (zadjmool, 2013). Among other 

attack vectors in this category includes HTTP floods, slow attacks (e.g., Slowloris or 

RUDY), and DNS query flood attacks. 

The size of application layer attacks is normally measured in request per second 

(Rps), with no more than 50 to 100 Rps required to exhaust most average sized 

websites (Davidowicz, 1999). In this dissertation, we implemented this type of attack. 

Motivation & Causes 

The purposes of DDoS attacks vary. A small percentage (on the positive side) of 

them can be accidental, caused by a badly configured system or as a demonstration 

to potential customers of DDoS protection solutions. However, on the negative side; 

there is often a personal intention behind the majority of these attacks. Some can 

be used as a diversion for attackers who want to try and steal information from 

certain systems, or for financial market manipulation or even fame, because hackers 

might want to boast that they managed to successfully attack a well known target or 

competitor. Moreover, online gaming, gambling, and social network related reasons 

are also motives behind such attacks. One of the biggest motivations behind DDoS 

attacks is “hacktivism”. Hacktivism is mainly driven by political and ideological 

disputes. 

Severity 

The biggest attack reported by a respondent in 2015 was 500 Gbps, with di↵erent 

respondents reporting attacks of 450 Gbps, 425 Gbps, and 337 Gbps. This proceeds 

with the pattern of significant development in the top-end size of DDoS attacks year

after-year. In 2014, 20 percent of respondents reported attacks of more than 50 Gbps. 

Interestingly in 2015 about one-fourth of the same respondents report attack sizes of 

more than 100 Gbps, stressing the scale of the DDoS problem. Clients remain the 

main focus in more than 66% of DDoS attacks. Once more, the extent of respondents 
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seeing attacks focusing on cloud-based service has increased from 19% in 2013, to 

29% in 2014, and to 33% in 2015. 

Fig. 2.3. DDoS Peak Attack Size Year after Year 

Attackers have proceeded with the 2014 pattern of utilizing reflection/amplification 

strategies to exploit vulnerabilities in NTP, SSDP, and di↵erent protocols. Numerous 

respondents reported events at 200+ Gbps. This continues the trend of significant 

growth in the top-end size of DDoS attacks yearly. 

Implementation 

For DoS attacks to be implemented, an attack needs to be perpetrated towards the 

target. Depending on the type of victim, there are di↵erent forms of DoS attacks. For 

ethical reasons, this dissertation does not provide a guide on how to implement DoS 

attacks; however we presented the di↵erent forms of attacks as follows (Mirkovic & 

Reiher, 2004): UDP Flood, ICMP (Ping) Flood, SYN Flood, Ping of Death, Slowloris, 

NTP Amplification, HTTP Flood, etc. 
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HTTP Flood Attack 

HTTP Flooding is an application layer attack. It overwhelms a target web server 

with a substantial amount of HTTP requests (Byers et al., 2004; Estevez-Tapiador, 

Garćıa-Teodoro, & Dı́az-Verdejo, 2005), slowing or completely disrupting the regular 

web server trafc (Das, Sharma, & Bhattacharyya, 2011). In this dissertation, we 

implement a HTTP Flood attack. During this attack, an attacker exploits the HTTP 

GET or POST request sent when a HTTP client, like a web browser, talks to an 

application or server. 

The attacker uses a botnet to send the victim’s server a large amount of GET (pic

tures or scripts) or POST (file or forms) request with the expectation of overwhelming 

its resources and capabilities. The victims web server gets inundated, attempting to 

answer every request from the botnet, which drives it to allocate its maximum re

sources to handle the trafc. This prevents legitimate requests from reaching the 

server, causing a denial of service. 

2.5 Commercial DDoS Defense Architectures 

As a result of the various DDoS targets, types of attacks and severity, it is neces

sary to have methods to mitigate these attacks and help secure the availability of crit

ical services. Nowadays, there are di↵erent popular commercial mitigation/protection 

providers that attempt to accomplish the problem posed by DDoS attacks. However, 

most commercial providers do not successfully achieve their stated goals. Commercial 

mitigation providers can provide a high detection success rate, but they tend to be 

very costly depending on the size of the attack trafc; also, they tend to have is

sues with clients regarding trafc being routed to the providers, which violates client 

privacy. 
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Fig. 2.4. HTTP GET & POST Flood Attack 

2.5.1 Mitigation Approach 

Discarding trafc altogether is not considered a mitigation practice, considering 

that legitimate trafc can also be dismissed. An Access Control List of firewalls is a 

choice for protection; however, this is only successful in filtering already known attacks 

by examining the protocols used. DDoS attacks are becoming more sophisticated, 

using valid protocols, and rendering the filtering process unsuccessful when it comes 



31 

to SYN, SYN/ACK, and others forms of DDoS attacks. Another way of using routers 

as a form of protection is to use Unicast Reverse Path Forwarding (uRPF), which 

can be used to block IP addresses outside of the target’s subnet. Nonetheless, if an 

attacker utilizes spoofed IP addresses from the same subnet, little to nothing can be 

done. Also, legitimate end-user trafc is blocked and the DDoS attack succeeds. 

According to Cisco, another popular opinion is that firewalls and Intrusion Detec

tion Systems (IDS) are inadequate forms of protection against DDoS attacks (Cisco, 

2004). Firewalls are used inline and attackers target their low session handling abil

ities. Usually, they do not filter spoofed trafc and they can also be used to reject 

trafc from certain protocols. However, the attacking side can still use valid protocols 

during a DDoS attack. The same applies to IDS; they can provide excellent detection 

for Application Layer attacks but not against valid protocols. Moreover, as the term 

suggests, IDSs only function as a detection mechanism. 

2.5.2 Mitigation Techniques 

Contrary to privacy issues, commercial solutions have a high success rate in mit

igation. Such companies o↵er di↵erent types of plans according to clients’ needs 

and budgets. Services such as prevention, monitoring and trafc handling can be 

provided. There are mainly two di↵erent types of trafc handling correlated to the 

layers of attack; Layer 3/4 and Layer 7 solutions (Incapsula, 2014). 

Layer 3/4 mitigation techniques are based on Border Gateway Protocol (BGP) 

IP address range swings. The target of the DDoS attack can decide to stop announc

ing their IP address range to the global Internet; in turn, that particular company 

announces it for them, so that they receive all of the trafc intended for the client, 

whether it is malicious or not. This operates in a distributed model with data cen

ters across the world; trafc is then washed as it goes through special purpose built 

appliances to filter illegitimate trafc out with the use of specific algorithms. Once 
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the trafc is washed it is rerouted back to the client (On-Ramping) over a Generic 

Routing Encapsulation (GRE) tunnel. 

Layer 7 mitigation techniques also function in a distributed model. By having 

multiple data centers at di↵erent Internet Exchanges, clients can point the DNS entry 

of their websites to these companies who, in return, handle the requests where each 

packet is inspected. Based on the signatures, illegitimate trafc can be detected and 

discarded. Next, legitimate trafc is sent back to end-user browsers based on their 

geographical location. 

Fig. 2.5. Commercial-Based DDoS Mitigation Technique 

Due to the immense amount of available bandwidth, both legitimate and malicious 

trafc is accepted. The trafc is then washed using algorithms to examine which 

packet protocols are used. The DDoS trafc is discarded and the legitimate trafc is 

sent to the Critical Service Infrastructure and returned to the end-users. 
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2.5.3 Drawbacks of Commercial Solutions 

Few commercial mitigation techniques prove to be efcient; many are imperfect, 

and also depending on the customer, they can be quite expensive (Verisign, 2014a). 

First and foremost, the algorithms used to monitor trafc are not flawless, which 

means that along with DDoS trafc, sometimes legitimate trafc is discarded. These 

mitigation solutions o↵er DDoS detection and contact the client when they detect a 

significant rise in their trafc to ask if they should take measures (Agarwal, Dawson, 

& Tryfonas, 2003). Up to thirty minutes can pass after the detection has provided 

results and the BCP swing of the IP range has taken place, during which the victim 

is under attack and unable to react (Verisign, 2014b). 

Application Layer solutions have a di↵erent disadvantage. Because of their dis

tributed model which can have a replica of the client’s web service in any of their 

data centers, it is rather unsafe to use for services that implement SSL due to the fact 

that the Private Keys need to be shared. For small customers, this might not be an 

issue; however, when customers are financial and governmental organization, privacy 

issues are far more consequential. Recently a solution to this problem was developed 

(CloudFlare, n.d.) which tries to provide a mitigation solution without sharing Pri

vate Keys. Nevertheless, the matter of privacy still remains when bringing a third 

party into the equation. End-users of critical services trust that their financial and 

private data is handled by an entity that is stable and impermeable. 

Lastly, these companies o↵er contracts based on bandwidth. If a customer, for ex

ample, chooses for contract of mitigating attacks of up to 40 Gbps and it is attacked 

by a larger DDoS attack than the terms of the contract, the prices of mitigation 

increase excessively. According to security firm Imperva, sixty percent of US com

panies experienced DDoS attacks during 2013. DDoS mitigation solutions can cost 

from $5,000 to over $100,000 US dollars per hour (Incapsula, n.d.). Furthermore, 

these figures do not include possible damages to credibility and customer satisfac
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tion. The consequences of a DDoS attack can thus be disastrous for any organization 

or company. 

2.5.4 Prevention & Response 

The primary line of defense is to ensure DDoS doesn’t take place. Hosts must 

be securely shielded from substantial and expert attack implants. There are in fact 

known signatures and filtering methods to recognize these attacks. Another method 

is monitoring network trafc for known attack messages sent amongst attackers and 

masters. On the active side, cyber-informants and cyber-spies can be used to intercept 

attack plans. For instance, Gibson clearly showed how he e↵ectively spied on attack 

plans within a group of agents (Gibson, 2001). 

This line of defense alone is clearly deficient. There are always don’t care users and 

careless clients who leave their devices vulnerable to DDoS agent implants. Internet 

Service Providers (ISPs) and enterprise networks do not have motive to monitor for 

attack packets. Besides, spying on attack plans, such as the one presented in (Gibson, 

2001) requires an in-depth knowledge of specific methods of launching DDoS attacks, 

which may also be changed later on, to avoid spying (Chang, 2002). 

Attack source traceback and identification is normally an after-the-fact response 

to a DDoS attack. IP traceback refers to the problem, as well as the solution, of the 

actual source of any packet sent across the Internet without relying on the source 

information from the packet. There are mostly two approaches to deal with the IP 

traceback issue. One is for routers to record information about packets for later trace-

back request (Snoeren et al., 2001). Another is for routers to send extra information 

about the packets to the packet destinations via either the packets (Savage, Wetherall, 

Karlin, & Anderson, 2000) or another channel, such as ICMP messages. 

However, it is in-feasible to utilize IP traceback to stop a continuous DDoS attack. 

First, current IP traceback solutions are not always able to trace packet origins (e.g., 

those behind firewalls and network address translators). Additionally, IP traceback is 
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ine↵ective towards reflector attacks in which the attack packets originate from legiti

mate sources. Regardless of the fact that the attack sources can be e↵ectively traced, 

preventing them from sending attack packets is another troublesome task, particu

larly when they are scattered in di↵erent autonomous systems (AS). Nevertheless, IP 

traceback could be very useful in recognizing the attacker and collecting evidence for 

post-attack law enforcement (Chang, 2002). 

2.6 Flooding Mitigation 

A Distributed  Denial  of Service (DDoS)  attack  utilizing  Botnets  became widely  

used in the Internet because of its efciency and easy implementation. Zahid, Belmekki, 

and Mezrioui (2012) presents a new architecture for detecting DDoS/Brute forcing 

attack and destroying the botnet behind. The architecture stops DDoS attacks based 

on Botnet command and control and identifies the botmaster machine. The archi

tecture is composed of DDoS attacks detection agents, spies and central agents that 

coordinate with each other during the attack trace-back process. The trace-back 

procedure depends on hacking techniques in order to infiltrate the Botnet and get in

formation about the attacker and the bots utilized. The architecture is intended for 

Internet Service Providers (Zahid et al., 2012). Botnets are the predominant mech

anisms for facilitating the distributed denial of service (DDoS) attacks on computer 

networks or applications. To date, Botnet-based DDoS attacks on the application 

layer are the latest and most problematic trend in network security threats. Botnet

based DDoS attacks in the application layer limit resources, shorten revenue, and 

yield client dissatisfaction. 

DDoS attacks are among the most troublesome problems to resolve online, espe

cially when the target is a Web Server. Alomari, Manickam, Gupta, Karuppayah, 

and Alfaris (2012) introduces a thorough research of Botnet-based DDoS attacks on 

application layers, particularly on the web server and decreased incidents of such at

tacks. Botnet-based DDoS attack incidents and significant revenue losses were also 
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described. The study provides a better comprehension of the problem, current solu

tion space, and future research scope to safeguard against such attacks. 

These days, we are witnessing a significant increment in distributed denial-of

service (DDoS) attacks that flood victims from di↵erent sources. Intrusion detection 

and filtering are required mechanisms to combat against these attacks and properly 

secure networks. Nonetheless, the current detection technique for DDoS attacks works 

in isolation. Saad, Nait-Abdesselam, and Serhrouchni (2008) proposed a productive 

and collaborative architecture that takes into consideration the placement and co

operation of defense techniques to properly address major security challenges. The 

utilization of content-based, distributed hash-table algorithm allows improved scala

bility and load balancing of an entire system. The architecture has been executed on 

ISA entities using table protocol with a promising performance. 

Harris, Koniko↵, and Petersen (2013) gives a survey of the DDoS landscape and 

analyzes the application of the kill-chain concept to the DDoS threat. Utilizing the 

concept of detect, deny, disrupt, degrade and destroy. The paper investigates ways 

that this chain can be disrupted. An outline of the emerging DDoS threat is provided 

and considerations are o↵ered for extra technology and research with the potential to 

significantly reduce the current DDoS threat. 

Xuan, Chellappan, Wang, and Wang (2004) analyzed the secure overlay services 

architecture under intelligent DDoS attacks. They proposed a secure overlay service 

architecture to provide reliable communication amongst customers and a target un

der DDoS attacks. The SOS architecture utilizes an arrangement of overlay nodes 

arranged in three hierarchical layers that control access to the target. Even though 

the architecture is novel and functions admirably under basic over-flooding based 

attacks, it is observed to be vulnerable under more intelligent attacks. The architec

ture works by introducing more layering flexibility to the original architecture. To 

understand the impacts of the amount of layers, neighbors per node and the node 

distribution per layer under these two attack models, two intelligent DDoS attack 

models are defined and an analytical methodology was developed. The result clearly 
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shows that performance is indeed sensitive to the design features that interact with 

each other to impact overall system performance. 

Keromytis, Misra, and Rubenstein (2004) proposes a design called secure overlay 

services (SOS) that proactively prevents denial of service (DoS) attacks, targeted to

wards supporting emergency services or similar communications. The design utilizes 

a combination of secure overlay tunneling,  routing via  hashing and filtering.  It min

imize the likelihood of successful attacks by: 1. performing intensive filtering near 

the protected network edges and pushing the attack point perimeter into the core 

network, where routers can deal with the volume of attack trafc; and 2. introducing 

randomness and anonymity into the forwarding architecture, making it difcult for an 

attacker to target nodes along the way to a particular SOS-protected network. Uti

lizing basic analytical models, the research evaluates the possibility that an attacker 

can e↵ectively launch a DoS attack against an SOS protected network. The analysis 

shows that such an architecture reduces the probability of a successful attack to a 

minimal probability. The performance measurements using a prototype implementa

tion shows an increment in end-to-end latency by a factor of two for the general case, 

and an average recovery time of less than 10 seconds. 

Beitollahi and Deconinck (2012) analyzed well-known countermeasures against 

distributed denial of service attacks. The study provided an in-depth analysis of each 

DDoS countermeasure and explained the strengths and challenges of each technique. 

The paper designed a countermeasure against the defense mechanism from the attack

ers perspective. The study is assumed to help potential victims choose appropriate 

countermeasures against DDoS attacks based on the methodology presented, as well 

as the requirements they need to deploy the techniques. 

Tariq, Malik, Abdulrazak, and Hong (2011) researched the packet flood attack 

and presented a collaborative peer to peer defense mechanism for DDoS attacks. The 

proposed solution identifies the attack at the victim edge router and sends alert mes

sages to its neighboring nodes which permits them to proactively defend themselves. 

Simulation results demonstrate the efciency of the solution, with less false positives 
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at the victim edge router and less damage to the network due to the proactive defense 

approach. 

Tupakula and Varadharajan (2003) studied counteracting DDoS attacks in multi

ple ISP domains using routing arbiter architecture. They focus on preventing DDoS 

attacks in multiple ISP domains. Other methods used cluster analysis. K. Lee, Kim, 

Kwon, Han, and Kim (2008) proposes a strategy for proactive detection of DDoS 

attack by exploiting its architecture; the selection of handlers, agents, communica

tion, compromise, and attack. They proposed DDoS attack detection method using 

cluster analysis. The study investigated the strategies of DDoS attack and then chose 

variables based on these features. After that, a cluster analysis for proactive detec

tion of the attack was performed. The researchers experimented with a 2000 DARPA 

Intrusion Detection Scenario Specific Data Set in order to assess their methodology. 

The outcomes shows that each phase of the attack scenario is well partitioned and 

can detect precursors of a DDoS attack as well as the attack itself. 

Garg and Chawla (2011) used data mining instead of cluster analysis. Garg and 

Chawla (2011) present various significant areas where data mining techniques seem to 

be a strong approach for detecting and preventing DDoS. Douligeris and Mitrokotsa 

(2004) presents a simple approach to handling DDoS problems by creating a clas

sification of DDoS attacks and DDoS mechanisms. Each attack and defense system 

category are described and the advantages and disadvantages of each proposed scheme 

are outlined. The objective of the paper is to introduce some order into the current at

tack and defense mechanisms, so that a better understanding of DDoS attacks can be 

achieved; also advanced and more e↵ective algorithms and procedures to combat these 

attacks may be created. Koutepas, Stamatelopoulos, and Maglaris (2004) introduces 

Distributed management architecture for cooperative detection and reaction to DDoS 

attacks. Koutepas et al. (2004) proposes a cooperative intrusion detection framework 

focused on mitigating DDoS attack by introducing distributed overlay early-warning 

network. The objective is to minimize detection and reaction times and automate 

response, involving as many networks as possible along the attack path, which can 
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then be detected locally without trace-back procedures. The fundamental building 

block is the cooperative anti-DDoS entity and a modular software system deployed 

in each participating network domain that supports secure message exchanges and 

local responses tailored to individual site policies. The study explains the operation 

and deployment of prototype, provides a survey of the approaches against DDoS and 

compares the approaches to related work. 

Pushback is a tool for mitigating distributed denial of service (DDoS) attacks. 

DDoS attacks are treated as a congested-control problem, but because most conges

tions are caused by malicious hosts not obeying traditional end-to-end congestion 

control, the issue must be taken care of by routers. Functionality is added to each 

router to detect and preferentially drop packets that most likely are attributed with 

an attack. Upstream routers are likewise configured to drop such packets (henceforth 

the term pushback) in order to transfer legitimate trafc. J. Ioannidis and Bellovin 

(2002) presents an architecture for pushback, its execution under FreeBSD, and sug

gestions for how such a system can be implemented in routers (J. Ioannidis & Bellovin, 

2002). Ando, Miwa, Kadobayashi, and Shinoda (2008) presents a load balancing sys

tem for mitigating DDoS attacks using live migration of virtual machines. Ando et 

al. (2008) applies virtual machine monitor to modify the virtualized operating sys

tem, and afterward outlines the detailed countermeasure for DoS attacks utilizing live 

migration. 

Honeypot is a trap used to communicate with potential attackers to divert, detect, 

or prevent such attacks and guarantee uninterrupted availability of service. Desh

pande (2015) prevented distributed denial of service attacks using virtualized honey-

pots. Deshpande (2015) gives insight into the issues introduced by distributed denial 

of service attacks, current solutions that use honeypots, and how a mesh of virtualized 

honeypots can be used to mitigate distributed denial of service attacks. Srivatsa, Iyen

gar, Yin, and Liu (2008) mitigated application-level denial of service attacks in web 

server using a client-transparent approach. Srivatsa et al. (2008) proposes handling 

DoS attacks by using a twofold approach. First, the researcher performs admission 
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control to limit the amount of concurrent clients served by the online service, invisi

ble to unauthorized clients by hiding the port number on which the service accepts 

incoming request. Second, admission control carries out a congestion control which 

allows admitted clients to allocate more resources to other approved clients. Conges

tion control is achieved by setting a client’s priority level in response to the client’s 

requests in a way that incorporates application-level semantics. The article displays 

a detailed assessment of the proposed arrangement utilizing two sample applications,  

Apache HTTPD and the TPCW benchmark (running on Apache Tomcat and IBM 

DB2). The study demonstrates that the proposed solution results in low performance 

overhead and is resilient to DoS attacks. 

The need to keep an attacker unmindful of attack mitigation e↵orts is a very 

important component of protection against denial of services (DoS) and distributed 

denial of services (DDoS) attacks, because it helps to dissuade attackers from changing 

their attack patterns. DDoS protection can be achieved in two parts. The first is a 

fake server that provides a service function or receives attack trafc as a substitute 

for a legitimate server. The second is a decoy network that restricts attack trafc to 

the peripherals of a network, or reroutes attack activity to fake servers. 

Okada, Hazeyama, and Kadobayashi (2014) proposes the use of a two-stage map 

table expansion Locator/ID Separation Protocol (LISP) to understand the fake net

work. It explains and showed how LISP can be used to deploy an oblivious DDoS 

mitigation mechanism by adding an extension to the LISP Map Server. Together 

with fake servers, this approach can end DDoS activity on the ingress end of a LISP-

enabled network. At last, the paper verified the e↵ectiveness of the proposed mecha

nism through simulated DDoS attacks on a simple network topology. The test results 

demonstrate that the mechanism could be deployed within a few seconds, and the 

attack trafc can be terminated without incurring overhead on the MapServer. 

Shameli-Sendi, Pourzandi, Fekih-Ahmed, and Cheriet (2015) uses taxonomy of 

distributed denial of service mitigation approaches for cloud computing to concentrate 

on how to mitigate DDoS attacks. It presents a new taxonomy of DDoS mitigation, 
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then discusses the principle elements of existing DDoS mitigation approaches and 

clarifies their functionalities in the cloud environment. Afterwards, it indicates how 

the current DDoS systems fit into the network topology of the cloud. Finally, the 

survey paper presented some of these DDoS mechanisms in detail, and compares their 

behavior in the cloud. The goal is to show how these characteristics bring an original 

perspective into existing DDoS mechanisms, and give researchers new experiences 

into how to mitigate DDoS attacks in cloud computing. Bhardwaj, Subrahmanyam, 

Avasthi, and Sastry (2015) proposes three tier network architecture to mitigate DDoS 

attacks on hybrid cloud environments. They use a multi-tiered network design based 

on hybrid cloud solution that has premise solution acceptable to the organization’s 

IT security and operations team, as well as public cloud infrastructure capable of 

handling large sized DDoS attacks targeted towards hybrid cloud servers. 

Miao, Yu, and Jain (2014) highlights a few novel elements and advancement pat

tern among DDoS attacks: 1) Large-scale. These attacks have the volume of up to 

hundred gigabits per second against a single cloud service. 2) Diverse attacks. The 

attacks range from network-layer (e.g. SYN surge, UDP surge) to application-layer 

(e.g. HTTP GET, SQL infusion) with varied characteristics for volume, number of 

connections, and packet header signature (e.g., TCP flag, port). 3) Fast ramp-up 

rate. The attack trafc ramps up quickly and influences the target cloud service 

usually within a minute. In response to these challenges, the attack detection and 

mitigation system needs to: 1) have adequate capacity to handle attack volume: 2) 

support the detection of diverse range of attacks: and 3) have accurate and quick 

attack detection with low damage to legitimate trafc. 

To identify attacks, cloud operators usually use commercial hardware devices, 

such as Firewalls, IDS and DDoS-protection tools in the network. There are three 

issues with these hardware boxes. First, these hardware devices cannot address over

whelming attacks in cloud scale. For instance, Firewall and IDS look at the states 

and detailed signature of packets. They cannot handle attacks with high volume. 

DDoS-protection appliances verify only significant trafc at the network-layer; they 
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can address larger attack volumes, but are not capable of handling virtual scale at

tacks of hundred of gigabits per second trafc. Second, these hardware boxes present 

unfavorable cost and capacity trade-o↵s. For example, the DDoS-protection appliance 

typically costs up to a million dollars per box annually. Third, since these devices 

run vendor specific software, they limit how operators can configure them to handle 

the increasing diversity of attacks. 

There are commercial attack mitigation services (CloudFlare, Prolexic etc.,) that 

redirect web service and enterprise trafc through a dedicate high-capacity network 

for attacks detection and mitigation. However, most clients do not want their trafc 

to be re-routed considering the private concerns (Miao et al., 2014). 

To address this issue, one paper proposes another paradigm for attack-prevention

as-a-service that uses commodity VMs for attack detection and mitigation. It in

troduces the NIMBUS service, which combines the elasticity of cloud computing 

resources with the algorithm found in software-defined networks (SDN). NIMBUS 

scales resource usage with trafc requests, to handle diverse attack efciently and 

without the exposure of private clients trafc (Miao et al., 2014). 

2.7 Chapter Summary 

Indispensable research and studies have been conducted regarding the Information 

Security field as a whole. Everyday new threats and defense mechanisms evolve, and 

research is being conducted to understand the problems and provide solutions. In 

this chapter, we reviewed several studies relating to this dissertation. The purpose 

of this related literature is to understand the current state of the problem we are 

trying to solve. To the best of our knowledge, research has yet to address the issue 

of network downtime as a result of firewall failures. However, a number of studies 

that addresses DoS attacks, network security and firewall configurations have been 

conducted. Based on these studies, we decided to implement the proposed study. 
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We also explained how commercial DDoS mitigation solutions are sophisticated 

techniques; but, depending on the attack and the target, they may not always be 

sufcient. One major draw-back of commercial-based solutions is the fact that they 

are also susceptible to attack. Attackers are finding ways to infiltrate DDoS mitigation 

companies. Once an attacker bypasses these commercial companies, it becomes much 

easier to gain access to a network. Also there is an issue of having third parties monitor 

network trafc; therefore, we conclude that the best DDoS mitigation technique is 

for an innovative solution. 



44 

3. TRADITIONAL ARCHITECTURE PERFORMANCE 

TEST 

3.1 Introduction 

The Internet is an exciting and informative place to browse and explore. It is 

the great frontier and grandiose achievement of mankind. In reality, the World Wide 

Web is merely a collection of routers and servers that make up the largest wide-area 

network (WAN) in recorded history. The collection of networking gears provides mail 

servers, websites, and other information storage and retrieval systems which are all 

connected to the Internet and accessible to every person connected. It has even been 

said that the Internet contains the collective institutional knowledge of mankind. 

The rapid expansion of the internet has provided tremendous opportunities to 

access an unparalleled amount of data. An organization connects to the internet to 

gain access to information and to share information with the public; once a company 

connects its private network to the internet, that organizations private information 

becomes vulnerable to hackers. When private networks are connected to the internet, 

the risk are great. However, using some security measures, one can share public 

information and still protect private information. One of these measures is to install 

a firewall between the  private  network and  the internet (Blacharski, 1998).  

A firewall is a security device that sits on the edge of your Internet connection 

and functions as an Internet Border Security Ofcer. It constantly monitors all in

coming and outgoing connection trafc (Ierace, Urrutia, & Bassett, 2005; Thomas & 

Stoddard, 2011). 

The use of firewalls is no longer confined to servers, websites, or commercial com

panies. Even if you simply dial your ISP or use PPP (Point-to-Point protocol) to surf 

the internet, you simply cannot do so without a firewall. 
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In other words, a firewall acts as a shield to protect your system from untrusted, 

non-reliable systems connected to the Internet. Conceptually, it drives from the 

firewalls-barriers made of fire-resistant material-used in vehicles. A firewall on your 

PC, however, listens to all ports on your system for any attempts defined by set 

of rules. To phrase it more technically; a firewall is a piece of software, hardware, 

or both that allows only selected packets to pass from the internet to your private 

network or system. There are di↵erent types of firewalls and firewall generations. For 

the purpose of this dissertation, we focus on Hardware and Virtual based firewalls 

that belong to the Third Generation of firewalls. 

Firewall Appliances (Hardware-Based) 

These are firewalls that come hardened in a box. These types of firewalls provide 

services from a host attached to the internal network using a separate router. In this 

architecture, packet filtering provides the primary security, preventing people from 

going around proxy servers to make direct connections. 

Host Firewalls (Virtual-Based) 

These are firewalls that are installed on hosts themselves. These firewalls are 

installed just like an OS. They are mostly installed on servers. They are normally 

used in conjunction with other firewalls. 

Third Generation Firewalls - SMLI 

Stateful Multi-Layer Inspection (SMLI) represents a third generation of firewall 

technology. This new class of firewall can be applied internally and externally, over 

di↵erent protocol boundaries, and with numerous advanced functions. SMLI is similar 

to the application gateway model; it examines all seven layers of the OSI model. 

Instead of relying on a proxy, SMLI relies on a trafc screening algorithm optimized 
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for high throughput. Each packet is examined and compared against known states 

of friendly packets. SMLI examines the entire packet (both address and application 

data). Because SMLI does not use a proxy, it overcomes the performance problems 

of the application gateway model. 

The SMLI solution enables all applications to run natively over the firewall, be

cause no proxies or modifications are necessary. The user also does not face additional 

passwords or validation procedures, so the solution is transparent to the end user 

(Blacharski, 1998). 

Access Controls 

All information that flows across the Internet uses TCP/IP. In turn, this infor

mation is sent in small pieces known as packets. In the early days of the internet, 

filtering based on packets was common; in many cases, routers in many networks still 

use packet filtering. The methods used to configure and deploy packet filters on Cisco 

ASA and routers is known as an access control list (ACL). There are two main types 

of ACLs: the standard ACL, which filters based on IP address, and extended ACLs, 

which look further into packet headers (Thomas & Stoddard, 2011). An access list 

is essentially a list of conditions that categorize packets. They can be really helpful 

when you need to exercise control over network trafc. An access list is the tool of 

choice for decision making in packet filtering (Waziri Jr, 2014). 

One of the most common and easy to understand uses of the access list is filtering 

unwanted packets when implementing security policies. Access to the internet brings 

corporations the advantage of widespread access to share information. However, it 

also brings the risk of attack and unauthorized access. Access control is a critical 

part of security policy that must be implemented in the firewall (Panko, 2010). 

Access control policy specifies what and who can enter or exit the corporate net

work. To maintain access control, the security administrator must have a clear picture 

of all services and applications available. Earlier packet filtering routers could not 
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do this task because they were unaware of applications. Second generation firewalls, 

or application proxies, are application-aware, but consume a great deal of overhead. 

Later technologies use stateful inspection and other advanced techniques build on this 

application-layer awareness, while providing faster support for new services. Access 

control should not only address what can pass into the network, but should also allow 

the security admin to be able to the specify rules for what time each user can access 

which service. The two main types of access lists are as follows: 

Standard Access Lists 

This uses just the source IP address in an IP packet as the condition test. All 

choices depend on the source IP address. This implies standard access lists essentially 

allow or deny a whole suite of protocols. They don’t recognize the numerous types of 

IP packets, for example, Web, Telnet, UDP, etc. 

Extended Access Lists 

Extended access lists can assess other fields in the layer 3 and 4 headers of an 

IP packet. They can evaluate source and destination IP addresses, the protocol field 

in the Network layer header, and the port number at the Transport layer header. 

This gives extended access lists the capacity to make more in-depth inspection and 

granular decisions when controlling trafc. More in-depth description about standard 

and extended access lists is available in Cisco books. 

3.2 Problem Statement 

Information security professionals find themselves working against misconceptions 

and popular opinions formed from incomplete data, for example, the possibility that 

internal network security can be secured simply by deploying a firewall. A firewall 

is a perimeter defense and it is not designed to combat the threat within. First and 
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Second Generation firewalls do not secure against malicious code issues like viruses 

and Trojan horses (Garfinkel, Spa↵ord, & Schwartz, 2003; NSTISSC, 2000; Smith, 

2015), although some are capable of scanning for telltale signs. Configuring packet-

filtering rules has a tendency to be a complicated process, in the course of which errors 

can easily occur leading to holes in the defense. In addition, testing the configured 

rules has a tendency to be lengthy and a difcult process due to the shortcomings of 

current testing tools. Ordinary packet-filtering routers cannot enforce some security 

policies simply because the necessary information is unavailable. 

Configuring a firewall can be troublesome when the goal is to guarantee maximum 

security and functionality. Fortunately, most decent firewalls now come with a rea

sonable defaults access list. Some say you only need a hardware firewall. The issue is 

that no firewall can prevent legitimate trafc from any source (wanted or unwanted). 

This is potentially particularly problematic if you have file or print sharing enabled, 

considering attackers out there are testing all the time for this exploitable back door 

into a computer system. 

Because of the known issues with firewalls, which is not having the ability to 

configure access control that would mitigate DDoS at the same time allow legitimate 

trafc to pass through. Firewalls are prone to DDoS attacks. From our literature 

review, we know that firewall performance depends on its available resources. DDoS 

attack exhaust available resources from its target. We decided to find a way to miti

gate DDoS attacks that target firewalls. First, we started by testing the performance 

of a hardware firewall to see how much it can endure. 

A paper  on  this work  has been  published  in  the proceedings of IEEE SouthEastCon  

2015 (Waziri Jr & Shropshire, 2015). 

3.3 Traditional Architecture Overview 

The traditional test architecture utilizes one firewall, as shown in Figure 3.1. The 

aim of this test was to find the endurance and spike results of a hardware firewall. A 
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specialized load testing tool (JMeter) was configured in a master/slave configuration. 

The load testing tool was used to implement a HTTP flooding attack. The attack 

was implemented by generating heavy HTTP trafc which targets a web server. The 

hardware firewall sits inline between the attacker system and the web server, making 

all trafc pass through the firewall. Using the ACL1 shown in Table 3.1, HTTP trafc 

is allowed access, and hence the firewall doesn’t block any HTTP trafc. This is done 

to allow access to the web-server, considering that DDoS attacks are implemented 

using legitimate trafc. 

Fig. 3.1. Traditional Environment Architecture 

3.4 Implementation & Configuration Setting 

To set up the test-bed used in the traditional architecture, we used the following 

technologies and configurations: 

Internet Protocol Version 

We used the Internet Protocol version 4 (IPv4) to set up the IP addresses of 

all devices in the environment. The reason behind the choice of IPv4 and not the 
1See Appendix A1 
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newer IPv6 is because IPv4 is the most widely used Internet Protocol (Gupta, 2010). 

That makes IPv4 more relevant to our study than IPv6. Also previous studies have 

shown that TCP-Flood, UDP-Flood, and ICMP-Flood types of DDoS attacks are the 

only types of attacks that change behavior between IPv4 and IPv6 and not HTTP-

Flood (X. Yang, Ma, & Shi, 2007). The major di↵erence between IPv6 and IPv4 are 

Optimized DHCP, IPSec, Larger address space, and Optimized mobility feature (Bade 

& Vanduhe, n.d.; Baker, Iturralde, Le Faucheur, & Davie, 2001; Nikander, Gurtov, & 

Henderson, 2010). We configured the architecture using a static IP address because 

it eliminates the plug and play networking provided by DHCP, thereby ensuring more 

security (Sitaraman, Mann, Dos Santos, Lou, & Bhasham, 2002). For a complete list 

of all the IP addresses used refer to Appendix A. 

Application Protocol 

We used Hypertext Transfer Protocol (HTTP) to flood the devices; it is the only 

legitimate protocol allowed in our Access Control configuration. We used HTTP 

because it is the protocol used to communicate between a client and a web-server 

(Casilari, Gonzblez, & Sandoval, 2001). A client submits a HTTP request message 

to the server, and the server respond with resources such as HTML files and other 

contents (Mah, 1997). Because we are using HTTP, we decided to implement a 

HTTP-Flood DDoS attack. 

Packet Filters Access Control 

For the hardware firewall in the traditional architecture, we blocked incoming 

trafc on eth0, the outside Ethernet port. We allowed only ICMP, HTTP, and TCP 

Port 80, because ICMP is used to Ping the network (Deering, 1991). HTTP is used 

to communicate with the web server (Mah, 1997) and TCP port 80 is the endpoint 

used to communicate HTTP used in WWW (Cole, 2011). Table 3.1 shows the access 
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Table 3.1 
Access Control List of Traditional Packet Filter 

Command List 

Allow 

Allow 

Allow 

Config# access-list 110 permit TCP any eq 80 host 10.10.10.0/24 

Config# access-list 110 permit ICMP any any 

Config# access-list 110 permit HTTP any any 

Deny Config# access-list 110 deny udp any any eq 520 

Deny Config# access-list 110 deny ip any host X.X.X.X 

Deny Config# access-list 110 deny ospf any any 

Deny Config# access-list 110 deny host X.X.X.X 

Deny Config# access-list 110 deny tcp any any eq 21 

Deny Config# access-list 110 deny tcp any any eq 22 

Deny Config# access-list 110 deny tcp any any eq 25 

Deny Config# access-list 110 deny tcp any any eq 110 

Deny Config# access-list 110 deny tcp any any eq 143 

Deny Config# access-list 110 deny udp any any eq 135 

Deny Config# access-list 110 deny tcp any any eq 445 

Deny Config# access-list 110 deny tcp any any eq 1434 

Deny Config# access-list 110 deny tcp any any eq 4444 

Deny Config# access-list 110 deny tcp any any eq 4899 

Deny Config# access-list 110 deny udp any any eq 135 

Config 

Apply 

access-group 110 in interface ’outside’ 

’outside’ inbound trafc on eth0/0 

control list applied to the inbound Ethernet port of the firewall. A complete list of 

denied and allowed access lists can be found in the Appendix. 
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Table 3.2
 
Hardware Server Resource
 

Resource Availability 

RAM 

CPU 

Storage 

32GB 

Intel Quad Core 4.66GHz 

2TB 

Deployed Hypervisor 

A web server is the final destination of our HTTP-Flood attack. The web server 

runs as a virtual machine in a virtualized environment. And for every virtualized 

environment to run virtual machines, there must be a hypervisor that is being used 

to create and runs the virtual machine (ESXi, n.d.). In this dissertation we used a 

VMWare ESXi hypervisor. The hypervisor run on a dedicated hardware server with 

the configuration shown in Table 3.2. 

Load Tester - JMeter 

A load tester (JMeter) was used to generate the HTTP-Flood attack. We used a 

fully-featured web application test suite that can simulate a variety of real-life user 

behavior. Using the load tester, we were able to generate approx 3,250 request per 

second of HTTP trafc. The configuration used in the load tester can be found in 

Table 3.3 and 3.4. A full installation guide can be found in (JMeter, n.d.). 

The configuration was composed of a sequence of set-up components (No. of 

Threads, Ramp-Up, and Loop Count) that determines how the load test will be 

simulated. Table 3.4 shows the configuration components and parameters used to 

generate the HTTP request packets. 
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Table 3.3
 
JMeter Configuration Components
 

No. of Threads(users) No. of users JMeter will attempt to simulate. 

Ramp-Up (in secs) Duration of time JMeter will take to distribute the start of thread 

Loop Count No. of times to execute the test. 

HTTP Request Defaults 

We added a HTTP Request Defaults. The HTTP Request Defaults configuration 

element is used to set default values for HTTP Request in our test plan. This is 

useful because we want to send multiple HTTP requests to the server as part of our 

test. In the HTTP Request Defaults, under the Web Server section. We added the 

IP address of the web server 10.10.10.80. Figure 3.3 shows the HTTP flood request 

packets. 

Table 3.4
 
JMeter Configuration/Test Parameters
 

No. of Threads (users) 32500. 

Ramp-Up (in secs) 10. 

Loop Count 250 

Generated Packet 3,250/sec. 

Web Server 

We used an Apache HTTP Server, because it is the most popular web server 

(Project, n.d.). We installed and configured the web server inside a Ubuntu Linux 

distribution. We configured the Apache web server by placing directives in plain text 

http:10.10.10.80
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configuration files. These directives are separated between the following files and 

directories. The directives are: 

1.	 apache2.conf : the main Apache2 configuration file. Contains settings that are 

global to Apache2. 

2.	 httpd.conf : historically the main Apache2 configuration file, named after the 

HTTPd daemon. The file no longer exists. In older versions of Ubuntu the file 

might be present but empty, as all configuration options have been moved to 

the directories mentioned below. 

3.	 conf-available: this directory contains available configuration files. All files 

that were previously in /etc/apache2/conf.d should be moved to /etc/apache2/conf

available. 

4.	 conf-enabled: holds symlinks to the files in /etc/apache2/conf-available. When 

a configuration file is symlinked, it will be enabled the next time apache2 is 

restarted. 

5.	 envvars: file where Apache2 environment variables are set. 

6.	 mods-available: this  directory  contains  configuration  files  to  load  modules  

and configure them. Not all modules have specific configuration files, however. 

7.	 mods-enabled: holds symlinks to the files in /etc/apache2/mods-available. 

When a module configuration file is symlinked, it will be enabled the next time 

apache2 is restarted. 

8.	 ports.conf : houses the directives that determine which TCP ports Apache2 is 

listening. 

9.	 sites-available: this directory has configuration files for Apache2 Virtual Hosts. 

Virtual Hosts allow Apache2 to be configured for multiple sites that have sep

arate configurations. 



55
 

10.	 sites-enabled: similar to mods-enabled, sites-enabled contains symlinks to the
 

/etc/apache2/sites-available directory. Similarly when a configuration file in
 

sites-available is symlinked, the site configured will be active once Apache2 is
 

restarted.
 

11.	 magic: instructions  for  determining  MIME  type  based  on  the  first  few  bytes  of 
  

a file. 
  

We installed the Apache web server inside a Ubuntu Linux distribution using this 

command: 

sudo apt-get install apache2
 

And we configured the web server using these commands: 

sudo /etc/init.d/apache2 start #start webserver
 

sudo /update-rc.d apache defaults #runs webserver from autostart
 

gksu gedit /etc/apache2/sites-available/site1 #this enable the .htaccess file
 

sudo /etc/init.d/apache2 restart #this restarts apache
 

3.5 Implementing the Traditional Test 

In order to implement the test, the hardware firewall was configured to allow 

HTTP trafc, and the load testing tool (Jmeter) - an open source application, which 

is a 100% pure Java application designed to load test functional behavior - measures 

performance and test web applications2 used to generate HTTP trafc. The trafc 

was targeted towards the firewall, and configured in a master/slave configuration. 

Three computers were serving as Masters and 59 as slave. The “Number of Threads” 

(threads are used to simulate concurrent connections to your server application) is set 

to 32500. Each thread will execute the test plan in its entirety, completely indepen

dently of other test threads. The “Ramp-Up Period” (ramp-up period tells JMeter 

2http://jmeter.apache.org/ 

http:2http://jmeter.apache.org
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how long to take to “ramp-up” to the full number of threads chosen. If 10 threads are 

used, and the ramp-up period is 100 seconds; JMeter will take 100 seconds to get all 

10 threads up and running). Figure 3.2 depicts the load tester configuration settings. 

Fig. 3.2. JMeter configuration Settings 

For the attack to be implemented, the load tester (JMeter) connects to our Apache 

web server, and establishes a TCP connection using a three-way handshake: 

JMeter sends a SYN packet to Apache web server.
 

Apache web server sends a SYN ACK packet to JMeter.
 

JMeter sends an ACK packet to Apache web server.
 

HTTP Flood involves opening up a valid TCP connection with Apache Web server, 

and then sending a request. 

Immediately after the TCP connection is opened between JMeter and Apache web 

server, allowing free communication between the two, JMeter starts sending HTTP 

GET requests to the Apache web server using the default parser. 

org.apache.jmeter.protocol.http.parser.LargeBasedHtmlParser.
 

Part of HTTP-GET Flood request sent by JMeter was captured using Wireshark: 
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The HTTP GET Flood legitimately downloads a picture (pic1.jpg) from the 

Apache Web server’s index page. It establishes a full session and actually receives all 

the data from the web page. Because our traditional firewall sits inline between the 

load tester (client) and the web server, the firewall has to process every GET request 

that passes through. Approximately 3,250 request were sent per second, ultimately 

over flooding the firewall because it couldn’t process every request sent. Figure 3.3 

shows JMeter sending the HTTP request packets. 

Fig. 3.3. HTTP GET Flood Request 
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3.6 Evaluation & Analysis 

As shown in Figure 3.4, the traditional test which uses real HTTP trafc generated 

from the load tester configured in Master/Slave on 62 computers. The packet drop 

was at 76.5%, the CPU Utilization was at 67%, and the memory utilization at 81%. 

This is the level at which the hardware firewall became non-responsive, the hardware 

firewall was maxed out, which results in its failure with a downtime of about 30 

seconds, and about 56 seconds recovery time, as shown in Table 3.5. As the attack 

load increases, the CPU usage of the hardware firewall increases. Table 3.8 shows the 

CPU utilization based on the time required. In addition to the CPU utilization, the 

memory utilization also reaches a maximum of 81%. The packet drop was high based 

on the received and transmitted packets, as shown in Table 3.6. 

Fig. 3.4. The Traditional Architecture Results 

3.6.1 Downtime & Recovery Period Analysis 

Table 3.5 shows the downtime and recovery time of the hardware packet filter 

following its failure. The hardware firewall was non-responsive for about 30 seconds 

before it became responsive. It took about 56 seconds to recover to its working state. 
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The recovery period followed the test (HTTP flood attack) suspension. Part of the 

longer duration in the recovery period was as a result of the boot sequence. 

Fig. 3.5. Recovery & Downtime Periods 

Fig. 3.6. CPU Usage over Time
 

Table 3.5
 
Time Period Analysis
 

Action Time (secs) 

Downtime 30 

Recovery Time 56 
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Table 3.6 
Packet Transmission Analysis 

Flow Direction Outside - eth0 Inside - eth1 

Received 

Transmitted 

39357350 

10256915 

11877268 

25143799 

Table 3.7
 
Memory Utilization Analysis - 8GB
 

Usage in % 

Free Memory 19% 

Used Memory 81% 

Table 3.8
 
CPU Utilization & Time Required Analysis
 

Time (secs) CPU Usage 

300secs 17% 

60secs 49% 

5secs 67% 

3.7 Defined Thresholds 

Due to the fact that the hardware firewall fails under heavy trafc as presented, we 

decided to define new set of thresholds, di↵erent than those set by the firewall vendor. 

When these thresholds are reached, the device is rendered incapable of performing as 

required; hence, an action must be taken to avoid failure. The newly defined threshold 

based on the results collected are presented in Table 3.9. 
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Table 3.9 
Traditional Packet Filter: Newly Defined Threshold 

Packet Drop � 10% 

Memory Utilization � 80% 

CPU Utilization � 65% 

3.8 Chapter Summary 

This chapter highlights our test-bed implementation, and hardware firewall out

comes. From the result, we defined new thresholds to be used in subsequent chapter. 
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4. VIRTUALIZED ARCHITECTURE PERFORMANCE 

TEST 

4.1 Introduction 

Cloud computing represents one of the most significant shifts in information tech

nology we are likely to see in our lifetimes. Customers are both excited and nervous 

about the prospects of Cloud Computing. They are excited by the opportunities to 

reduce capital costs, divest infrastructure management, and focus on core competen

cies. Most of all, they are excited by the agility o↵ered by the on-demand provisioning 

of computing and the ability to align information technology with business strategies 

and needs more readily. However, customers are also very concerned about the risks 

of Cloud Computing if it is not properly secured. And the loss of direct control over 

systems for which they are nonetheless accountable. 

Security controls in cloud computing are, for the most part, no di↵erent than se

curity controls in any IT environment. However, because of the cloud service models, 

operational models, and the technologies used to enable cloud services, cloud com

puting may present di↵erent risks than traditional IT solutions to an organization. 

Some of the security threats to cloud computing outlined by Cloud Security Al

liance (CSA) are: Abuse and nefarious use of Cloud computing, Insecure API’s, 

Malicious Insider, Shared Technology Vulnerabilities, Data Loss/Leakage, Account, 

Service & Trafc Hijacking, Unknown risk profile & Hypercall Threats (Alliance, 

2011). NIST defined Cloud Computing as: 

“A model for enabling ubiquitous, convenient, on-demand network access to a shared 

pool of configurable computing resources (e.g. networks, servers, storage, 

applications, and services) that can be rapidly provisioned and released with minimal 

management e↵ort or service provider interaction” (Mell  & Grance, 2011).  
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In a nutshell, cloud computing is a way of separating an application from the 

operating system and hardware. The Cloud Security Alliance (CSA) defined cloud 

computing as: 

“an evolving term that describes the development of many existing technologies and 

approaches to computing into something di↵erent. Cloud separates application and 

information resources from the underlying infrastructure, and mechanisms used to 

deliver them” (Alliance, 2011). 

4.1.1 Virtualized Environments 

Cloud Computing services are usually backed by large-scale data centers composed 

of thousands of computers. Such data centers are built to serve many users and 

host many disparate applications. For this purpose, hardware virtualization can be 

considered as a perfect fit to overcome most operational issues of data center building 

maintenance (Buyya et al., 2010). Virtualization allows running multiple operating 

systems and software stacks on a single physical platform. Figure 4.1 shows a software 

layer, the hypervisor also known as a virtual machine monitor (VMM), which mediates 

access to the physical hardware, presenting each guest operating system (VM) a set 

of virtual platform interfaces. 

Virtualization has been a key enabling technology for the evolution of cloud com

puting in its current form (Irvine, Robin, et al., 2000; Popek & Goldberg, 1974). In 

particular, a hardware virtualization has enabled IaaS providers to efciently use the 

available hardware resources in order to provide computing and storage services to 

their clients. 

Type I VMM 

Type I VMM, also known as a bare-metal, runs on a bare machine. It is an 

operating system with virtualization mechanisms. A type I VMM runs directly on 
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Fig. 4.1. Traditional vs. Virtualized Environments. 

the machine hardware. It is an operating system or kernel that has mechanisms 

to support virtual machines. It performs scheduling and resources allocation for all 

virtual machines in the system and requires drivers for hardware peripherals. 

4.1.2 Network Functions Virtualization 

Network function virtualization is an initiative to virtualize network services be

ing carried out by proprietary, dedicated hardware. NFV decreases the proprietary 

hardware needed to launch and operate network services 1 . NFV allows network oper

ators to instantiate middleboxes in virtual machines and place those VMs at arbitrary 

locations in the network (ESTI, n.d.). Current approaches to NFV still treat middle-

boxes as monolithic entities, and do not explore how the constituent components of 

a middlebox might be decomposed into smaller modules (Anwer et al., 2015). 

Because of the various partners with clashing objectives and strategies, changes to 

the current network designs are presently constrained to basic incremental additions; 

deployment of any new radically di↵erent technology is next to impossible. To bat

tle o↵ this solidification, network virtualization has been portrayed as a diversifying 

1TechTarget - NFV defined 
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attribute to the future inner-networking paradigm. By introducing a plurality of het

erogenous network architectures cohabiting on a shared physical substrate, network 

virtualization promotes innovations and diversified applications. A paper surveyed 

the existing technologies and wide-array of past and state-of-the-art projects on net

work virtualization followed by a discussion of major changes in the area (Chowdhury 

& Boutaba,  2010).  

Network function virtualization (NFV) has drawn significant attention from both 

industry and academia as an important shift in telecommunication service provision

ing. By decoupling network functions (NFs) from the physical devices on which they 

run, NFV has the potential to lead to significant reductions in operating expenses 

(OPEX) and capital expenses (CAPEX) that facilitate the deployment of new ser

vices with increased agility and faster time-to-value. The NFV paradigm is still in 

its infancy and there is a large spectrum of opportunities for the research community 

to develop new architectures, systems, and applications, to evaluate alternatives and 

trade-o↵s in developing technologies for its successful deployment. After discussing 

NFV and its relationship with complementary fields of software-defined networking 

(SDN) and cloud computing. A study surveyed the state-of-the-art NFV, and iden

tify promising research directions in the area. The study also presents an overview 

of key NFV projects, standardization e↵orts, early implementations, use cases, and 

commercial products (Mijumbi et al., 2015). 

Middlebox hardware appliances are known to come with a number of problems, 

such as being costly, difcult to manage, and inflexible in their functionality. NFV 

has alleviated all such problems and due to NFV’s flexibility, several platforms are 

in place. A group of researchers introduced ClickOS a high performance, virtual

ized software middlebox platform. ClickOS virtual machines are small (5MB), boot 

quickly (20 milliseconds), add little delay (45 microseconds), and over one hundred 

hosts can concurrently run while saturating a 10Gb pipe on a commodity server. The 

study implements a wide range of middleboxes, including a firewall, a carrier-grade 

NAT, and a load balancer to show that ClickOS can handle packets in the millions per 
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second (Martins et al., 2014). Others presented EmPOWER, an experiment test-bed 

which aims at o↵ering an open platform on top of which novel concepts can be tested 

at scale (Riggio, Rasheed, & Granelli, 2013). 

Another article presents the analysis, design, and first implementation of the rout

ing function in a virtualized manner. Considering the current co-existence of IPv4 and 

IPv6 and the possibilities brought into the arena by OpenFlow-enabled infrastruc

tures, the article describes the design of the virtualized routing protocol, its enabled 

simple management and signaling messages overhead avoidance in the control plane 

level, and the di↵erent scenarios considered to validate the virtualized function. In 

essence, the study describes the first implementation of the functional NFV concept 

through the virtualization of the routing function over an OpenFlow network. The 

di↵erent scenarios validated in the article are used to demonstrate the applicability 

of the NFV-powered implementation proposed into actual production environments 

(Batalle, Ferrer Riera, Escalona, & Garcia-Espin, 2013). Another study presents 

a measurement to  characterize  the impact of  virtualization on the  networking  per

formance of the Amazon Elastic Cloud Computing (EC2) data center. The study 

measures the processor sharing, packet delay, TCP/UDP throughput, and packet 

loss among Amazon EC2 virtual machines. The results show that although the data 

center network is lightly utilized, virtualization can still cause significant throughput 

instability and abnormal delay variations. The study concludes with the implications 

of its findings on several classes of applications (G. Wang & Ng, 2010). 

4.2 Problem Statement 

The study proves that virtualization can result in overhead due to decreased per

formance (Sahoo, Mohapatra, & Lath, 2010). This happens because performance is 

often being compromised due to flexibility. Virtual machines have the capability of 

sharing resources through resource management (Beloglazov & Buyya, 2010). This 

works when one virtual machine borrows resources from another idle virtual machine. 
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This resource sharing capability of virtual machines comes with security issues when 

a running virtual machine borrows all of the available resources, making idle virtual 

machines completely disengage without the capability of running. Other associated 

problems identified with resource sharing are hypercall and hyperthreats. The run

ning virtual machine keeps on requesting resources until there is none available. Hence 

all other functions are rendered ine↵ective (Shropshire, 2015). However, with these 

known issues, multiple studies prove that when network functions are virtualized, 

they perform better than traditional hardware devices (Guillen et al., 2012; Qiu et 

al., 2001; Sheth & Thakker, 2011; Waziri Jr et al., 2014; Waziri Jr & Shropshire, 

2015). 

Single point of failure (SPOF) is always an issue. Even though virtual machines 

are decoupled from the hardware, VM’s are still dependent on the hardware running 

the hypervisor (server). Failure in the hardware automatically results in a failure of 

all virtual machines (Menascé, 2005; Pfa↵ et al., 2009; Sahoo et al., 2010). 

In this dissertation, we tested both hardware and virtual firewalls; we also found 

that virtual packet filters to be more reliable under stress. However, because a hard

ware firewall is used to protect the underlying hardware (server) used by the hyper-

visor, whatever a↵ects the traditional firewall a↵ects the virtualized environment. To 

find the threshold of the virtual firewall, we implemented the same test carried out 

on the traditional firewall, using a di↵erent load testing tool. 

4.3 Virtual Architecture Overview 

Similar to the traditional architecture, the aim of the virtual test was to find the 

weakness and limitations of the virtual firewall. The virtual firewall was installed 

as a VM in a virtualized environment and connected inline prior to the web server. 

However, in the case of the virtual test, a di↵erent load testing tool2 was used to 

generate the HTTP flood packets. The reason for using a di↵erent testing tool was 

2High Orbit Ion Cannon 
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the limitation of resources imposed by the virtual environment. Figure 4.2 depicts 

the virtual architecture. The ACL3 used in the virtual firewall is similar to that of 

the hardware firewall allowing HTTP trafc, ICMP, and TCP Port 80, while blocking 

all other incoming connections. 

Fig. 4.2. Virtual Environment Architecture 

4.4 Implementation & Configuration Settings 

Load Tester - HOIC 

We used HOIC as the HTTP Flood load tester. HOIC is an open source network 

stress testing and denial of service attack application written in BASIC. It is designed 

to attack as many as 256 URLs simultaneously Unlike the normal master/zombie 

architecture of DDoS attacks, HOIC works based on bandwidth availability. Using 

HOIC, we were able to generate HTTP trafc of approximately 1Gbps per thread. 

These were generated from 249 Cannons and 2 Threads. Table 4.1 shows our HOIC 

configuration settings and the resulting output per thread generated. 

3See Appendix A2 
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Table 4.1 
Configuring HOIC for Virtual Load Testing 

Target URL/IP 10.10.10.79 

Power HIGH. 

Booster GenericBoost.hoic 

Threads 2 

Cannons per Thread 249 

Output per Thread >1GB 

1.	 URL - The address of the Apache Web server 

2.	 Power - This sets the velocity. We set the power to ’HIGH’, making it 8 

request/sec for each thread. 

3.	 Booster - The script used to generate the HTTP Flood. We used the ’Gener

icBoost.hoic’ script. 

4.	 Threads - The number of users HOIC will attempt to simulate. 

Building a Test Plan - HOIC 

The test plan is composed of a sequence of the components presented above. The 

components determines how the trafc will be generated. We configured these details. 

Table 4.1 presents the configuration values for the virtual firewall load testing. 

Similar to the Traditional Test, the HTTP GET Flood we initiated is legitimately 

downloading a picture (pic1.jpg) from the Apache Web server, meaning it establishes 

a full  TCP session  and actually receives  all the  data  from the  web page because  

the virtual firewall sits inline between the load tester (client) and the web server. 

The firewall must process every GET request that passes through. More than 1GB 
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of trafc were generated per threat per session. We finally over-flooded the virtual 

firewall because it couldn’t process each an every request that was sent. 

From the settings configured, the HTTP packets that targeted the Apache web 

server were captured as: 

- - 72.192.214.223  - "GET /  HTTP/2" "10.10.10.79" 200  21124 
  

- - 72.192.214.223  - "GET /  HTTP/2" "10.10.10.79" 201  21124 
  

- - 72.192.214.223  - "GET /  HTTP/2" "10.10.10.79" 202  21124 
  

- - 72.192.214.223  - "GET /  HTTP/2" "10.10.10.79" 203  21124 
  

- - 72.192.214.223  - "GET /  HTTP/2" "10.10.10.79" 204  21124 
  

- - 72.192.214.223  - "GET /  HTTP/2" "10.10.10.79" 205  21124 
  

4.4.1 HTTP GET Flood Request 

HOIC request are not static; they randomly request from di↵erent sources, based 

on bandwidth. The HTTP Flood request is presented below: 

GET / HTTP/2
 

Accept: */*
 

Accept-Language: en
 

Referer: GenericBoost.hoic
 

User-Agent: HOIC/4.0 (CLR 1.1.4322)
 

If-Modified-Since: Fri, 10 Jun 2016 11:59:59 GMT
 

Host: 10.10.10.79
 

The request specifies “HTTP/2,” which is the successor of HTTP/1.1 that was 

standardized in 2015. HTTP/2 enables a more efcient use of network resources and 

a reduced perception of  latency  by  introducing  header  field compression and allowing  

multiple concurrent exchanges on the same connection (Belshe, Thomson, & Peon, 

2015). The host header can be analyzed using packet analysis tools, such as wireshark, 

which is beyond the scope of this dissertation. However, we can see the host address 

as “10.10.10.79.” 

http:10.10.10.79
http:10.10.10.79
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Virtual Packet Filter Access Control 

Similar to the traditional firewall, we blocked all incoming trafc on eth0 (the 

outside ethernet port) of the virtual firewall. We allowed ICMP, HTTP, and the 

TCP Port 80. This allows for end to end communication and pinging between the 

client and web-server, Below are the Access Control List applied to eth0: 

•	 Rule 1: 

Vyatta# set firewall name FWRULES-1 rule 1 action reject 

Vyatta# set firewall name FWRULES-1 rule 1 source address X.X.X.X 

Vyatta# set firewall name FWRULES-1 rule 1 protocol TCP 

•	 Rule 2: 

Config# set firewall name FWRULES-1 rule 2 action reject 

Config# set firewall name FWRULES-1 rule 2 source address X.X.X.X 

Config# set firewall name FWRULES-1 rule 2 protocol TCP 

•	 Rule 3:
 

Config# set firewall name FWRULES-1 rule 3 action reject
 

Config# set firewall name FWRULES-1 rule 3 protocol UDP
 

Config# set firewall name FWRULES-1 rule 3 destination port 520
 

•	 Rule 4: 

Config# set firewall name FWRULES-1 rule 4 action reject 

Config# set firewall name FWRULES-1 rule 4 source address X.X.X.X 

Config# set firewall name FWRULES-1 rule 4 protocol IP 

•	 Rule 5:
 

Config# set firewall name FWRULES-1 rule 5 action reject
 

Config# set firewall name FWRULES-1 rule 5 protocol OSPF
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•	 Rule 6: 

Config# set firewall name FWRULES-1 rule 6 action reject 

Config# set firewall name FWRULES-1 rule 6 source address X.X.X.X 

Config# set firewall name FWRULES-1 rule 6 protocol TCP 

•	 Rule 7: 

Config# set firewall name FWRULES-1 rule 7 action accept 

Config# set firewall name FWRULES-1 rule 7 protocol TCP 

Config# set firewall name FWRULES-1 rule 7 destination port 80 

•	 Rule 8: 

Config# set firewall name FWRULES-1 rule 8 action reject 

Config# set firewall name FWRULES-1 rule 8 protocol TCP 

Config# set firewall name FWRULES-1 rule 8 destination port 21 

•	 Rule 9: 

Config# set firewall name FWRULES-1 rule 9 action reject 

Config# set firewall name FWRULES-1 rule 9 protocol TCP 

Config# set firewall name FWRULES-1 rule 9 destination port 22 

•	 Rule 10: 

Config# set firewall name FWRULES-1 rule 10 action reject 

Config# set firewall name FWRULES-1 rule 10 protocol TCP 

Config# set firewall name FWRULES-1 rule 10 destination port 25 

•	 Rule 11: 

Config# set firewall name FWRULES-1 rule 11 action reject 

Config# set firewall name FWRULES-1 rule 11 protocol TCP 

Config# set firewall name FWRULES-1 rule 11 destination port 110 
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•	 Rule 12: 

Config# set firewall name FWRULES-1 rule 12 action reject 

Config# set firewall name FWRULES-1 rule 12 protocol TCP 

Config# set firewall name FWRULES-1 rule 12 destination port 143 

•	 Rule 13: 

Config# set firewall name FWRULES-1 rule 13 action reject 

Config# set firewall name FWRULES-1 rule 13 protocol UDP 

Config# set firewall name FWRULES-1 rule 13 destination port 135 

•	 Rule 14: 

Config# set firewall name FWRULES-1 rule 14 action reject 

Config# set firewall name FWRULES-1 rule 14 protocol TCP 

Config# set firewall name FWRULES-1 rule 14 destination port 445 

•	 Rule 15: 

Config# set firewall name FWRULES-1 rule 15 action reject 

Config# set firewall name FWRULES-1 rule 15 protocol TCP 

Config# set firewall name FWRULES-1 rule 15 destination port 1434 

•	 Rule 16: 

Config# set firewall name FWRULES-1 rule 16 action reject 

Config# set firewall name FWRULES-1 rule 16 protocol TCP 

Config# set firewall name FWRULES-1 rule 16 destination port 4444 

•	 Rule 17: 

Config# set firewall name FWRULES-1 rule 17 action reject 

Config# set firewall name FWRULES-1 rule 17 protocol TCP 

Config# set firewall name FWRULES-1 rule 17 destination port 4899 
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•	 Rule 18:
 

Config# set firewall name FWRULES-1 rule 18 action accept
 

Config# set firewall name FWRULES-1 rule 18 protocol ICMP
 

•	 Rule 19: 

Config# set firewall name FWRULES-1 rule 19 action accept 

Config# set firewall name FWRULES-1 rule 19 source address 10.10.10.0/24 

Config# set firewall name FWRULES-1 rule 19 protocol TCP 

•	 Rule 20: 

Config# set firewall name FWRULES-1 rule 20 action accept 

Config# set firewall name FWRULES-1 rule 20 protocol HTTP 

Config# set firewall name FWRULES-1 rule 20 destination address 10.10.10.79 

•	 Apply to interface and commit:
 

Config# set interfaces ethernet eth1 firewall in name FWRULES-1
 

Config# commit
 

•	 To show firewall rules:
 

Config# show firewall name FWRULES-1
 

•	 To show interface rules:
 

Config# show interfaces ethernet eth1 firewall
 

By default, the virtual firewall rules are not stateful. The firewall has a default 

drop rule that is active when a default action is not specified. To enable our stateful 

rules and ensure that incoming trafc on eth0 for our test session is allowed. We 

established these new commands: 

http:10.10.10.79
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firewall {
 

name clienttoserver {
 

default-action drop
 

rule 5 {
 

action accept
 

destination {
 

port 80
 

}
 

protocol tcp
 

state {
 

established enable
 

new enable
 

related enable
 

}
 

}
 

}
 

name servertoclient {
 

default-action drop
 

rule 5 {
 

action accept
 

state {
 

established enable
 

related enable
 

}
 

}
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4.5 Evaluation & Analysis 

The virtual firewall was still working at an optimum performance with 99% mem

ory utilization. The virtual firewall was responsive because of the resource sharing 

management capabilities of virtualized environments. We then continue to flood the 

virtual firewall with unlimited trafc generated from HOIC until the CPU Utilization 

reached 71%, at which point the virtual firewall eventually became non-responsive. 

Table 4.2 and Figure 4.3 show the virtual firewall resource usage during the attack 

before it failed. 

Table 4.2
 
Virtual Resources Usage - 8GB
 

Memory CPU - Hypervisor Monitored Packet Transferred 

Total 

Used (%) 

Free (%) 

8GB 

99.17% 

0.83% 

4.66GHz 

71% 

29% 

>250GB of Packets 

-

-

Fig. 4.3. Virtual Architecture Results 



78 

Table 4.3 
Time Period Analysis for Virtual Packet Filter 

Action Time (secs) 

Downtime 12 

Recovery Time 28 

From these results and previous studies, we see that the virtual firewall does a 

better job at responding to DDoS attacks than the traditional firewall, thereby making 

it a better choice when it comes to mitigating DDoS and transferring the hardware 

filtering services. 

Fig. 4.4. Virtual Downtime & Recovery Time Analysis 

4.5.1 Downtime & Recovery Period Analysis 

Table 4.3 shows the downtime and recovery time of the virtual firewall after it 

failed. The virtual firewall was non-responsive for about 12 seconds before it became 



79 

responsive. It took about 28 seconds to recover back to its working state. The 

recovery period was after the test was suspended. The recovery time for the virtual 

firewall was better than that of the hardware firewall because the hypervisor was 

responding; hence the virtual firewall doesn’t have to deal with hardware boot-up. 

4.6 Chapter Summary 

This chapter starts by explaining Network Function Virtualization and introduces 

the problems faced by virtualized architectures. We then highlight our virtual archi

tecture set-up, its implementation and configuration, and conclude by explaining the 

outcome of stressing the virtual firewall. 
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5. PERFORMANCE MONITOR 

5.1 Background 

Our performance monitor is not the first performance monitor, or even the first 

firewall performance monitor. But to the best of our knowledge it is the first to pro

vide a means of mitigating DDoS attacks by monitoring firewall performance. The 

paper visual firewall (C. P. Lee, Tros, Gibbs, Beyah, & Copeland, 2005) seeks to aid 

the configuration of firewalls and monitoring of networks by providing four simulta

neous views that display varying levels of detail and time scales as well as correctly 

visualizing firewall reactions to individual packets. The four implemented views are: 

Real-Time Trafc, Visual Signature, Statistics, and IDS Alarm. These views provide 

the levels of detail that system administrators need to properly monitor their sys

tems in passive or active manners. The paper visualized several attacks, and made 

sure that individuals unfamiliar with networking concepts can quickly distinguish 

between benign and malignant trafc patterns with minimal instruction. Another 

monitoring paper (Yuan & Mills, 2005) proposes a method for early detection. Using 

a few observation points,  the proposed method can monitor  the macroscopic e↵ect  

of DDoS flooding attacks and then inform more detailed detection systems when a 

DDoS attack possibly arises in transit or source networks. 

Others focused on packet monitoring in Cloud Environment to prevent DDoS 

attacks (Chouhan & Peddoju, 2013) using Hop Count Filtering. The approach of 

Hop Count Filtering provides a network independent and readily available solution 

to prevent DDoS attacks in Cloud environments. The method decreases the unavail

ability of cloud services to legitimate clients, reduce number of updates, and saves 

computation time. The approach is simulated in a CloudSim toolkit environment and 
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corresponding results are produced. Others monitored firewall trafc using Intrusion 

Detection Systems (Asarcıklı, 2005). 

However, none of these papers provided a mitigation solution to DDoS attacks 

targeting firewalls in traditional and virtual environments. Hence, the birth of our 

performance monitor as the first firewall monitor DDoS mitigation solution. 

5.2 Performance Monitor Design 

The performance monitor is mirrored to the hardware and virtual firewall. The 

monitor runs on a dedicated system as a virtual machine. Based on the results 

of both the traditional and virtual test, instructions were given. The monitor was 

coded in python and the threshold at which the firewalls can migrate packet filtering 

services was defined in the code. No GUI was used. The monitor connects with the 

firewalls through their respective API’s. The communication between the monitor 

and the firewalls is encrypted using AES. MySQL database was connected to store 

the heuristics based on the defined thresholds. Figure 5.1 shows how the monitor 

connects to the firewall. 

When either the traditional or virtual firewall becomes overwhelmed during the 

test, the monitor reroutes the trafc meant for the failed firewall to the other firewall, 

thereby allowing the overwhelmed firewall to resume to its working state, hence, 

downtime as a result of DDoS attack is minimized. 

5.3 Implementation & Deployment 

5.3.1 API Implementation 

Implementing the API connections for both firewalls is based on the guide provided 

by the firewall vendors1 . The typical request flow for the REST PUT/POST/DELETE 

API request are: 

1http://www.cisco.com & http://www.brocade.com/ 

http:http://www.brocade.com
http:1http://www.cisco.com
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Fig. 5.1. Performance Monitor Architecture 

•	 REST Client establishes SSL connection to the firewall 

•	 REST Client sends API request with basic authentication header to ASA. 

•	 Firewall server validates and processes clients request. 

•	 Firewall HTTP server opens the connection to REST Agent using a TCP chan

nel, and writes the HTTP request to the REST Agent. 

•	 Firewall HTTP server waits for REST Agent processs response. 

•	 REST Agent processes API request, picks the session/user info, and invokes 

CLI command requests to Admin handler listening on localhost port in Firewall. 

REST Agent includes the session/user info in the request. 

•	 Admin handler processes the CLI commands and collects the result output. 
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•	 Admin handler sends the response for the CLI commands request to REST 

Agent. 

•	 REST Agent prepares the response for REST API request and sends to the 

Firewall HTTP server. 

•	 Firewall HTTP server forwards the response to the client. Server doesn’t process 

the response received from the REST Agent process. 

Basic Authorization header must be added to every REST API request and au

thentication will be performed for every request. It is recommended to use Certificate 

Authority (CA) issued certificates on the firewalls, so that REST API clients can val

idate the server certificates of the firewalls during the SSL connection establishment. 

The process of how the monitors API communicates with our firewalls is presented 

in Figure 5.2 

The communication between the firewalls and the performance monitor is estab

lished using the firewall respective RESTAPI. REST stands for Representation State 

Transfer. It is a term coined by Roy Fielding in his dissertation (Fielding, 2000) to 

refer to a software architectural style. The REST architectural style describes six 

constraints: Uniform Interface, Stateless, Cache-able, Client-Server, Layered System, 

and Code on Demand. This constraint states that a REST API should be driven by 

nothing but hypermedia. This is how a web browser interacts with well-behaved web 

applications, where the browser transitions to di↵erent pages based on the selected 

hyperlinks and actions present in the pages. Since HTTP has been used to transfer 

information that is not hypertext, this constraint is often ignored by REST API de

signs. Instead of defining API in terms of hypermedia, some so-called REST APIs 

are modeled as a set of interfaces implemented by resources. Although this design 

supports the REST uniform interface constraint, it inevitably creates fixed resource 

names, types and hierarchies that violate the REST API design rules prescribed by 

Roy Fielding (Fielding, 2000). This kind of violations leads to an API that depends 

on the out-of-band information, instead of hypermedia, to drive the interactions be



84 

Fig. 5.2. API Call Process 

tween components (Li & Chou, 2011). To properly understand how RESTAPIs work 

is beyond the scope of this dissertation. 

5.3.2 MySQL Database Implementation 

To store the thresholds and heuristic conditions used to migrate packet filtering 

services between the firewalls, we used a MySQL database. To do that, we installed 

the MySQL driver, because python doesn’t come with MySQL; by default, it comes 

with SQLite. We installed the MySQL package. The implementation and use of 

MySQL is beyond the scope of this dissertation. However, the commands we used to 

install MySQL database in Ubuntu debian distros is: 
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sudo apt-get install python-mysqldb
 

After installation, we then used MySQL inside python like any other package. 

This is how we imported and connected MySQL to python: 

#!/usr/bin/python
 

import MySQLdb
 

db = MySQLdb.connect(host="localhost",
 

user="dissertation",
 

passwd="dissertation_password",
 

db="dissertation_db")
 

5.3.3 AES Implementation using PyCrypto 

In other to secure the RESTAPI connection between the firewalls and the per

formance monitor, an AES implementation of python using PyCrypto2 was used 

(Buchmann, 2013; Ferguson, Schneier, & Kohno, n.d.; Katz & Lindell, 2014; Lindell, 

2005; Schneier, 1997). This implementation is based on the guide provided in “A 

Working Introduction to Crypto using PyCrypto” (Isom, 2011). 

5.4 Performance Analysis 

The performance monitor was analyzed by integrating it into the firewalls, by con

ducting the same test, and flooding the firewalls with HTTP trafc. The performance 

monitor proved to be e↵ective after we surpassed the generated HTTP trafc that 

flooded the hardware firewall, and the firewall was still responsive. However, consid

ering that the virtual firewall has a better performance than the hardware firewall, 

the operation was smooth. The packet filtering process of the hardware firewall was 

transferred to the virtual firewall. The process by which the performance monitor 

makes decision is presented in Figure 5.3. 

2https://www.dlitz.net/software/pycrypto/api/2.6/ 
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Fig. 5.3. Performance Monitor/Migration Decision Flow 
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5.4.1 Filtering Service Transfer 

The monitor starts by checking the firewall states to see if there is an anomaly, then 

it proceeds to make decisions; if the firewall is overwhelmed, it checks its parameters 

and invokes the instructions that were defined, then transfers the filtering services. 

If the firewall is not overwhelmed; it applies the firewall’s access list and continues 

operation by proceeding to its designated destination. 

5.4.2 Performance Comparison 

Table 5.1 shows the performance results of the devices before and after using the 

monitor. The memory utilization of the hardware firewall considerably reduced from 

81% to 34% without the monitor. The CPU utilization reduced from 67% to 28%. 

Table 5.1
 
Comparative Analysis of Performance Results
 

Architecture Mem Utilization CPU Utilization Packet Drop 

Traditional 81% 67% 76.5% 

Virtual 99.17% 71% -

Traditional with PM* 34% 28% -

Virtual with PM* 98.2% 73.6% -

However, for the virtual firewall, the change was a minimal decrease. The per

formance of both Memory & CPU of the virtual device with the monitor connected 

decreased from 98.2% to 73.6% respectively, compared to 99.17% and 71% without 

the monitor. The performance decrease is as a result of the monitor being added 

to the topology. This shows a success; most importantly, downtime was avoided, 

considering none of the devices failed. 
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Fig. 5.4. Comparative Performance Analysis 

5.4.3 Thresholds & Heuristic Rules/SLA 

Based on the analysis and thresholds identified from both firewalls, we defined 

these heuristics and embedded them as part of the monitor’s instructions. These 

are the actions the performance monitor does whenever one of the set thresholds is 

reached. These rules can always be defined based on SLA if such topology were to 

be adopted. 

• For Hardware Instructions: 

- If Packet Drops is high,  then  migrate packet filtering service to virtual  

firewall, otherwise continue on hardware firewall. 
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- If CPU Utilization is high, then migrate packet filtering service to virtual 

firewall, otherwise continue on hardware firewall. 

- If Memory Utilization is high, then migrate packet filtering service to 

virtual firewall, otherwise continue on hardware firewall. 

- If none of the defined  heuristics is met,  then  continue packet filtering  

service on hardware firewall. 

•	 For Virtual Instructions: 

- If  Packet Drops is  high,  then  migrate  packet  filtering services  to hardware  

firewall otherwise continue on virtual firewall. 

- If CPU Utilization is high, then migrate packet filtering services to hard

ware firewall, otherwise continue on virtual firewall. 
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- If none of the defined  heuristics is met,  then  continue packet filtering  

services on hardware firewall. 

5.5 Chapter Summary 

In this chapter, we introduced a firewall performance monitor. The monitor con

nects to two firewalls and injects instructions when certain conditions are met. We 

discuss the design, implementation, deployment, and performance analysis. The per

formance monitor is not a specific method of DDoS mitigation, but a means for 

organizations to test their devices, by stressing them and finding the device thresh

old, then using those thresholds to create a heuristic that can be used to configure the 

monitor. We explain how the communication between the monitor and the devices 

is encrypted using AES by utilizing the PyCrypto implementation of python. We 

showed how the monitor stores data using the SQL database. 
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6. CONCLUSION 

6.1 Connecting the Dots: Justifying the Problem Statement 

This dissertation focused on carrying out di↵erent types of tests to obtain the 

results of the research objectives stated earlier. We implemented a monitor in a 

secured architecture with two firewalls from di↵erent platforms, one using a virtual-

based and the other a hardware-based. The monitor monitors the state of the firewalls 

and invoke certain instructions based on the firewalls state. Both the firewalls and 

monitor are designed to work together in order to provide an optimized packet filter 

architecture and minimize downtime when the firewalls become overwhelmed due to 

a distributed denial of service (DDoS) attacks. To achieve this, two di↵erent tests 

(spike and endurance) at three stages were conducted. A web-server was built to 

serve as the target of the HTTP trafc. 

First we implement and test the traditional environment which consists of the 

hardware firewall. We attacked the firewall using a HTTP flood DDoS attack to 

find the hardware firewall weakness and define its threshold. Second, we carried out 

the same test in the virtual environment, which consists of the virtual firewall. The 

second test was also aimed at finding the virtual firewalls weaknesses and limitations. 

That was achieved by flooding the firewall with a HTTP flood DDoS attack. The 

firewall’s threshold was determined at the end. The last phase was implementing the 

monitor that monitors the states of both firewalls. 

The monitor was designed to switch packet filtering between the firewalls when 

one of the firewalls reaches its threshold. Switching the packet filtering ensures that 

downtime is avoided within the network, allowing the firewall to return back to its 

stable state before the filtering processes resumes. The monitor monitors the firewall’s 

state based on the heuristic rules fed to it. Those heuristic rules and threshold can 
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be defined based on SLA. Each organization uses di↵erent vendors when it comes to 

network devices; hence, a standard threshold cannot be defined. Each device must 

go through the same process, then define the threshold. 

The threshold of each device was determined based on CPU Utilization and Mem

ory Utilization. 

6.2 Summary 

In this dissertation, we looked into how DDoS attacks result in network down

time, costing organizations billions of dollars. Ease of authorized availability and 

access to information is one of the core foundation of computer security. According 

to census.gov1, 97%  of  our  day-to-day  data, such  as  health  information, education  

information, etc. are all stored digitally, thereby making authorized access to such 

data of paramount importance. DDoS attacks cause network downtime, making it 

hard for authorized users to access to important data. We highlighted the main issues 

with DDoS attacks in earlier chapters. 

In addition, we test di↵erent network architectures and present a framework which 

could be used to mitigate DDoS attacks and provide more up-time for computer 

networks in chapters 3 and 4. 

In chapter 5, we presented a framework that is used to mitigate DDoS and provide 

more up-time in a network. We designed a tool (Firewall Performance Monitor) which 

listens to the performance of the network devices and then executes instructions when 

certain conditions are met. 

We concluded the dissertation by explaining the design and implementation of the 

firewall performance monitor. 

1Census Internet Statistics 
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6.3 Recommendations & Future Work 

The framework we presented provides one of the first non-commercial approaches 

to mitigating flooding attacks on firewalls and ensuring more network up-time. The 

use of the monitor has shown promising results in enhancing network security systems. 

Learning from this study, security administrators can optimize the performance 

of firewalls in a network by first evaluating CPU utilization, Memory Utilization, 

Packet Drops, and other available resources. Furthermore, security administrators 

can implement the same methods we presented to ensure maximum network avail

ability. Keeping in mind that the heuristics the monitor utilizes to make decisions is 

dependent on the thresholds defined by the network devices, security administrators 

can decide on each device threshold to meet its demands. The monitor’s heuristics 

can only be defined based on service level agreements. 

An interesting area of future research could focus on the monitor itself; considering 

it runs as a continuous script with infinite max loop. It would be interesting to see it 

developed as a software running with a simplified GUI, thereby making the heuristics 

definition more simplified. Having the monitor run in a closedbox would be another 

focus for future research; that would enhance control and limit access to the monitor’s 

source-code, thereby ensuring greater security. 

Another interesting area of future research is a broader application of same tech

nique presented in this study; The monitor should be deployed other network devices 

susceptible to DDoS attacks, and not just to network firewalls. It would be interesting 

to apply the same method to a larger network, to deploy on a large-scale, real world 

setting and analyze the results. With this approach, our monitor has the potential of 

being the cutting-edge in finding an innovative solution to DDoS attacks. 
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A. FIREWALL ACL CONFIGURATIONS 

Both firewalls are configured in transparent mode. Depending on the type of device 

used, a guide on how to configure the firewall can be obtained from the vendor. Below 

are the rules we used to configure the firewalls. We blocked all incoming trafc, and 

only allowed authorized trafc to pass through (X represents public IP addresses, and 

XX represents authorized IP addresses.). 

A.1 Hardware Firewall 

• Config# access-list 110 deny tcp any host X.X.X.X 

• Config# access-list 110 deny tcp any host X.X.X.X 

• Config# access-list 110 deny udp any any eq 520
 

• Config# access-list 110 deny ip any host X.X.X.X 

• Config# access-list 110 deny ospf any any 

• Config# access-list 110 deny host X.X.X.X 

• Config# access-list 110 deny tcp any any eq 21
 

• Config# access-list 110 deny tcp any any eq 22
 

• Config# access-list 110 deny tcp any any eq 25
 

• Config# access-list 110 deny tcp any any eq 110
 

• Config# access-list 110 deny tcp any any eq 143
 

• Config# access-list 110 deny udp any any eq 135
 

• Config# access-list 110 deny tcp any any eq 445
 

• Config# access-list 110 deny tcp any any eq 1434 
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• Config# access-list 110 deny tcp any any eq 4444 

• Config# access-list 110 deny tcp any any eq 4899 

• Config# access-list 110 permit icmp any any 

• Config# access-list 110 permit tcp any host XX.XX.XX.XX 

• Config# access-list 110 permit tcp any host XX.XX.XX.XX 

• Apply to inbound trafc on ethernet0/0 (outside interface) 

• Config# access-group 110 in interface outside 

A.2	 Virtual Firewall 

•	 Rule 1: 

Vyatta# set firewall name FWRULES-1 rule 1 action reject 

Vyatta# set firewall name FWRULES-1 rule 1 source address X.X.X.X 

Vyatta# set firewall name FWRULES-1 rule 1 protocol TCP 

•	 Rule 2: 

Config# set firewall name FWRULES-1 rule 2 action reject 

Config# set firewall name FWRULES-1 rule 2 source address X.X.X.X 

Config# set firewall name FWRULES-1 rule 2 protocol TCP 

•	 Rule 3: 

Config# set firewall name FWRULES-1 rule 3 action reject 

Config# set firewall name FWRULES-1 rule 3 protocol UDP 

Config# set firewall name FWRULES-1 rule 3 destination port 520 

•	 Rule 4: 

Config# set firewall name FWRULES-1 rule 4 action reject 

Config# set firewall name FWRULES-1 rule 4 source address X.X.X.X 

Config# set firewall name FWRULES-1 rule 4 protocol IP 

http:XX.XX.XX.XX
http:XX.XX.XX.XX
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•	 Rule 5: 

Config# set firewall name FWRULES-1 rule 5 action reject 

Config# set firewall name FWRULES-1 rule 5 protocol OSPF 

•	 Rule 6: 

Config# set firewall name FWRULES-1 rule 6 action reject 

Config# set firewall name FWRULES-1 rule 6 source address X.X.X.X 

Config# set firewall name FWRULES-1 rule 6 protocol TCP 

•	 Rule 7: 

Config# set firewall name FWRULES-1 rule 7 action accept 

Config# set firewall name FWRULES-1 rule 7 protocol TCP 

Config# set firewall name FWRULES-1 rule 7 destination port 80 

•	 Rule 8: 

Config# set firewall name FWRULES-1 rule 8 action reject 

Config# set firewall name FWRULES-1 rule 8 protocol TCP 

Config# set firewall name FWRULES-1 rule 8 destination port 21 

•	 Rule 9: 

Config# set firewall name FWRULES-1 rule 9 action reject 

Config# set firewall name FWRULES-1 rule 9 protocol TCP 

Config# set firewall name FWRULES-1 rule 9 destination port 22 

•	 Rule 10: 

Config# set firewall name FWRULES-1 rule 10 action reject 

Config# set firewall name FWRULES-1 rule 10 protocol TCP 

Config# set firewall name FWRULES-1 rule 10 destination port 25 

•	 Rule 11: 

Config# set firewall name FWRULES-1 rule 11 action reject 

Config# set firewall name FWRULES-1 rule 11 protocol TCP 

Config# set firewall name FWRULES-1 rule 11 destination port 110 
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•	 Rule 12: 

Config# set firewall name FWRULES-1 rule 12 action reject 

Config# set firewall name FWRULES-1 rule 12 protocol TCP 

Config# set firewall name FWRULES-1 rule 12 destination port 143 

•	 Rule 13: 

Config# set firewall name FWRULES-1 rule 13 action reject 

Config# set firewall name FWRULES-1 rule 13 protocol UDP 

Config# set firewall name FWRULES-1 rule 13 destination port 135 

•	 Rule 14: 

Config# set firewall name FWRULES-1 rule 14 action reject 

Config# set firewall name FWRULES-1 rule 14 protocol TCP 

Config# set firewall name FWRULES-1 rule 14 destination port 445 

•	 Rule 15: 

Config# set firewall name FWRULES-1 rule 15 action reject 

Config# set firewall name FWRULES-1 rule 15 protocol TCP 

Config# set firewall name FWRULES-1 rule 15 destination port 1434 

•	 Rule 16: 

Config# set firewall name FWRULES-1 rule 16 action reject 

Config# set firewall name FWRULES-1 rule 16 protocol TCP 

Config# set firewall name FWRULES-1 rule 16 destination port 4444 

•	 Rule 17: 

Config# set firewall name FWRULES-1 rule 17 action reject 

Config# set firewall name FWRULES-1 rule 17 protocol TCP 

Config# set firewall name FWRULES-1 rule 17 destination port 4899 

•	 Rule 18: 

Config# set firewall name FWRULES-1 rule 18 action accept 

Config# set firewall name FWRULES-1 rule 18 protocol ICMP 
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•	 Rule 19: 

Config# set firewall name FWRULES-1 rule 19 action accept 

Config# set firewall name FWRULES-1 rule 19 source address XX.XX.XX.XX 

Config# set firewall name FWRULES-1 rule 19 protocol TCP 

•	 Rule 20: 

Config# set firewall name FWRULES-1 rule 20 action accept 

Config# set firewall name FWRULES-1 rule 20 protocol TCP 

Config# set firewall name FWRULES-1 rule 20 destination address XX.XX.XX.XX 

•	 Apply to interface and commit:
 

Config# set interfaces ethernet eth1 firewall in name FWRULES-1
 

Config# commit
 

•	 To show firewall rules:
 

Config# show firewall name FWRULES-1
 

•	 To show rules on interface:
 

Config# show interfaces ethernet eth1 firewall
 

A.3	 Complete Architecture 

http:XX.XX.XX.XX
http:XX.XX.XX.XX
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Fig. A.1. Complete Architecture I 
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Fig. A.2. Complete Architecture II 
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