
CERIAS Tech Report 2016-10
Security Techniques for Sensor Systems and the Internet of Things

 by Daniele Midi
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Graduate School Form
30 Updated 12/26/2015

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:
Head of the Departmental Graduate Program Date

Daniele Midi

Security Techniques for Sensor Systems and IoT

Doctor of Philosophy

Elisa Bertino Cristina Nita-Rotaru
Chair

Sonia Fahmy

Mathias Payer

Dongyan Xu

Elisa Bertino

Sunil Prabhakar / William J. Gorman 9/12/2016

SECURITY TECHNIQUES FOR SENSOR SYSTEMS

AND THE INTERNET OF THINGS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Daniele Midi

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2016

Purdue University

West Lafayette, Indiana

�
�
�
�

�
�
�
�

�

�

�
�

�
�
�

�

�
�

�
�

ProQuest Number:10194344

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest 10194344

Published by ProQuest LLC (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.

This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABSTRACT . xii

1 Introduction . 1

1.1 Security Lifecycle Phases and Developed Techniques 3

1.2 Overall Functional Framework . 8

2	 nesCheck: Static Analysis and Dynamic

Instrumentation for nesC Memory Safety 11

2.1 Adversarial Model . 14

2.2 Background . 14

2.2.1 Memory Safety Vulnerabilities 14

2.2.2 TinyOS . 15

2.3 The nesCheck Approach . 16

2.3.1 Static Analysis . 16

2.3.2 Dynamic Instrumentation 23

2.3.3 Running Example . 25

2.4 Implementation . 27

2.5 Evaluation . 28

2.5.1 Type Inference . 30

2.5.2 Code Size and Performance Overhead 30

2.5.3 Memory Overhead . 32

2.5.4 Checks Reduction . 33

2.5.5 Energy Overhead . 34

2.5.6 Fault Injection . 36

2.5.7 Naive vs. Optimized Approach 38

2.6 Limitations . 38

2.7 Proof of Safety . 40

2.8 Related Work . 44

2.9 Summary . 46

3 Strategic Allocation of Security Resources for IoT 48

3.1 Threat Model . 50

3.2 Security Model and Definitions . 50

3.2.1 Basic Concepts and Notation 51

iii

Page
3.2.2 Definition of Secure Network 54

3.3 Players’ Strategy . 56

3.3.1 Defender’s Strategy . 56

3.3.2 Attacker’s Strategy . 57

3.4 Computing the Defender’s Strategy 58

3.4.1 Computing Node’s Criticality 58

3.4.2 Overview of the Pareto Analysis 59

3.4.3 First Step: Pareto Analysis for the Defender 60

3.4.4 Linear Constraints for the Pareto Analysis 62

3.4.5 Second Step: Best Defender Strategy 65

3.5 Examples of Real Case Scenarios 66

3.6 Experimental Results . 69

3.6.1 Settings . 70

3.6.2 Results Analysis . 70

3.7 Scalabililty . 72

3.8 Security Analysis . 73

3.9 Further Uses and Implementations 74

3.10 Related Work . 75

3.11 Summary . 77

4	 Kalis: A System for Knowledge-driven Adaptable Intrusion Detection for

the Internet of Things . 79

4.1 Background . 81

4.1.1 IoT . 81

4.1.2 Intrusion Detection Systems 83

4.2 Knowledge-driven Intrusion Detection 84

4.2.1 Conceptual Model . 85

4.2.2 Taxonomies . 87

4.3 Design of Kalis . 90

4.3.1 Design Requirements . 90

4.3.2 Architecture . 91

4.4 Implementation . 98

4.5 Evaluation . 101

4.5.1 Experimental Setup . 101

4.5.2 Benefits of the Knowledge-Driven Approach 102

4.5.3 Reactivity to Environment Changes 104

4.5.4 Knowledge Sharing . 105

4.6 Related Work . 105

4.7 Summary . 107

5 Router-Based Defense against IoT-based Botnets 109

5.1 Background . 111

5.1.1 Threat Model . 111

iv

Page

5.1.2 Botnets . 112

5.1.3 Defense Platform . 113

5.1.4 Virus Total . 114

5.2 Related Work . 115

5.3 Attack . 116

5.3.1 Challenges in IoT Attack Design 116

5.3.2 Advantages in IoT Attack Design 117

5.4 Heimdall Defense Technique . 120

5.4.1 Challenges . 120

5.4.2 Advantages . 121

5.4.3 Heimdall Architecture . 122

5.4.4 Implementation Details . 125

5.5 Evaluation . 126

5.6 Security Analysis . 131

5.7 Summary . 133

6 Fine-Grained Analysis of Packet Losses in WSNs 135

6.1 Adversarial Model . 137

6.2 Background . 138

6.3 Network Profiling Management . 139

6.3.1 Link Profiling . 139

6.3.2 Neighborhood Profiling . 141

6.3.3 Profile Updates and Current Health Profile 142

6.3.4 Adding, Removing, or Relocating Nodes 144

6.4 Diagnosis . 145

6.4.1 Analysis Startup and Evidence Collection 146

6.4.2 Profile Comparison . 148

6.4.3 Threshold Values Determination 150

6.4.4 Majority Voting and Investigation Results 152

6.5 Colluding Investigating Nodes . 156

6.6 Locating Interference Sources . 159

6.6.1 Design Choices for Localization 159

6.6.2 Localization Approach . 162

6.6.3 Weight Function . 162

6.7 Experimental Analysis . 163

6.7.1 Experimental Setup . 163

6.7.2 FGA Testing on Different Attack Scenarios 165

6.8 Security Analysis . 174

6.9 Related Work . 177

6.10 Summary . 180

7 Statistically-enhanced Fine-Grained Diagnosis of Packet Losses 181

7.1 System Model . 182

v

Page
7.1.1 WSN Metrics Formalization 182

7.2 A New Profiling Technique . 183

7.2.1 Motivations . 183

7.2.2 Rationale . 185

7.3 Evaluation Results . 187

7.4 Summary . 190

8	 A System for Response and Prevention of Security Incidents in Wireless

Sensor Networks . 191

8.1 Background and System Model . 194

8.1.1 Case Studies . 194

8.1.2 Network Model . 195

8.1.3 Threat Model . 196

8.1.4 Intrusion Detection System (IDS) 197

8.1.5 State Information and Notation 197

8.2 Architecture Overview . 198

8.3 Diagnosis and Filtering of Adverse Events 199

8.4 The Response Policy Language and Engine 202

8.4.1 Policy Language . 202

8.4.2 Policy Matching and Response Selection 204

8.4.3 Response Computation and Optimization 209

8.4.4 Execution of a Response Action 211

8.4.5 Response Feedback . 214

8.5 Redundant and Conflicting Actions 214

8.5.1 Conflicting Actions Analysis 215

8.5.2 Redundancy Motivating Scenario 215

8.5.3 2-hop Knowledge . 217

8.5.4 Connectivity Advantage . 218

8.5.5 Proofs of Action . 220

8.6 Implementation and Configuration 222

8.7 Simulation Results . 224

8.7.1 Simulation Setup . 224

8.7.2 Performance Metrics . 225

8.7.3 Grid Network Experiments 226

8.8 Testbed Evaluation . 241

8.8.1 Experimental Setup . 241

8.8.2 Kinesis Performance . 242

8.9 Security Analysis . 244

8.10 Discussion . 246

8.11 Related Work . 247

8.12 Summary . 250

9 Future Research Directions . 251

vi

Page

10 Conclusions . 253

REFERENCES . 256

VITA . 273

vii

LIST OF TABLES

Table	 Page

2.1	 TinyOS standard applications used as benchmark for nesCheck’s evalua­
tion. 29

2.2	 Grammar used in the formal proof of safety. 41

3.1	 Main statistics of the topologies used in the experiments, and packet de­
livery rate provided by each strategy. V is the set of nodes, E is the set

of edges, S is the set of source nodes, and L is the set of locations. . . . 68

4.1	 Taxonomy of IoT attacks by target. 88

4.2	 Performance comparison for Kalis vs. a traditional IDS approach across

all experimental scenarios (averages). 104

8.1	 Response policy language . 202

8.2	 Response policy example . 204

8.3	 Taxonomy of response actions . 204

8.4	 Possible impacts of WSN anomalies and attacks 207

8.5	 Analysis of potentially conflicting response actions 216

8.6	 Considered response policies . 225

8.7	 Aggregated energy cost of the WSN without and with Kinesis + IDS . 234

8.8	 Response policy for diagnosis scenarios 237

8.9	 Testbed performance of Kinesis on SF attack 243

8.10 Testbed performance of Kinesis on sinkhole 243

viii

LIST OF FIGURES

Figure	 Page

1.1	 The overall functional framework integrating the techniques developed in

this dissertation. 9

2.1	 The complete nesCheck pipeline, with lighter blocks being existing steps

of the nesC compiler toolchain, and darker blocks the newly introduced

ones. 17

2.2	 Comparison of bounds metadata in nesCheck vs. the traditional approach. 21

2.3	 Explicit metadata variables. 22

2.4	 Representative example for the stress-intensive microbenchmark. 26

2.5	 Pointer classification results for the TinyOS sample apps benchmark. . 31

2.6	 Code size and performance overhead for the instrumented TinyOS apps,

including TOSSIM. 32

2.7	 Metadata table entry lookups vs. actual metadata table entries required

by the instrumentation. 34

2.8	 RAM occupation of uninstrumented programs and memory overhead of

nesCheck (all in bytes). 35

2.9	 Checks added and checks skipped in the instrumented TinyOS sample

apps benchmark. 36

2.10 Fault injection results on TinyOS benchmark. 37

2.11 Naive vs. optimized instrumentation on TinyOS benchmark. 39

3.1	 An example network. 54

3.2	 An example of Pareto curve. 61

3.3	 Basic constraints. 63

3.4	 Linear program for computing the minimum energy consumption. 64

3.5	 Linear program for computing the minimum cost. 65

3.6	 Linear program for computing the minimum risk. 66

ix

Figure	 Page

3.7	 Performance of the strategies for each of the cases listed in Table 3.1. Even

in an attack-free simulation, the PDR is never 100% due to the packet drop

caused by natural physical phenomena and network operations. 68

3.8	 How the time grows w.r.t the problem size for 5 different network scenarios.

Numbers are the network nodes. 73

4.1	 A common home automation scenario, depicting the different patterns of

IoT communication. 82

4.2	 ICMP Flood attack vs. Smurf attack. 86

4.3	 Taxonomy of relationships between IoT network/device features and at­
tacks. Dots and crosses indicate the possibility and impossibility, respec­
tively, of an attack in presence of a specific feature; circles indicate that

the appropriate detection technique for the attack depends on the specific

feature. 89

4.4	 The high-level architecture of Kalis. 92

4.5	 An example of knowledge base with heterogeneous knowggets, each show­
ing label, value, creator field, and entity field. 94

4.6	 Key-value pair representation of the Knowledge Base in the implementa­
tion of Kalis. 94

4.7	 Grammar for Kalis configuration files. 96

4.8	 Example of Kalis configuration files. 96

4.9	 Effectiveness comparison for Kalis vs. a traditional IDS approach across

all experimental scenarios (averages). 104

5.1	 Example architecture of a C&C botnet 113

5.2	 Example architecture of a P2P botnet 114

5.3	 Device taxonomy of surveyed IoT devices 120

5.4	 Functional profile completeness . 128

5.5	 Nominal profile completeness . 130

5.6	 Heimdall latency . 131

6.1	 Profiling steps performed at initial network setup. 141

6.2	 FGA event-driven algorithm. 147

6.3	 Profile comparison algorithm at Node n being an neighbor node investi­
gating for packet drops observed at node nbad. 150

x

Figure	 Page

6.4	 Vi and �i representing node i ’s location and neighborhood profile delta. 161

6.5	 Comparison of accuracy with different functions for the weight in the

weighted centroid of finite points formula for the localization of inter­
ference sources (smaller is better). 163

6.6	 Snapshot of the network portion closest to the BS. 165

6.7	 Comparison of link profiles for nodes 2, 3, 4, 5, 6 and 7 with and with­
out interference near node 3. ”I” denotes initial profiles values, and ”C”

denotes current profile values in the presence of interference. 166

6.8	 Actual vs. computed location of an interference source with respect to

sensor nodes, in feet. 170

6.9	 Accuracy of computed vs. actual location (in feet) of different interference

source positions. 170

6.10 Accuracy of the detection in presence of power manipulations using dif­
ferent values for α. 171

6.11 Relationship between initial profiling duration and profile accuracy. . . 173

6.12 Comparison of FGA accuracy in experiments 3, 4, and 5. 174

7.1	 Theoretical (Theor.) and experimental (Sim.) probability of detection of

the proposed method for several values of SNR and different false alarm

probabilities exploiting: a) the RSSI variance; b) the LQI variance. Sim­
ulation (dotted lines); theory (solid lines). 187

7.2	 Theoretical ROC curves for several values of SNR exploiting: a) the RSSI

variance; b) the LQI variance. 189

8.1	 Attack graph . 196

8.2	 Overview of the Kinesis architecture 198

8.3	 Overview of diagnosis and filtering pipeline prototype design 200

8.4	 Security state diagram of a monitored node 209

8.5	 Example of an action precedence graph 210

8.6	 A segment of the attacker’s neighborhood 216

8.7	 Kinesis performance for data loss of rate 0.1 in grid networks of various

sizes and for various attack rates in a 10 × 10 grid network. 227

8.8	 Kinesis performance for selective forwarding (SF) attacks in grid networks

of various sizes . 229

xi

Figure Page

8.9 Kinesis performance for sinkhole attack 229

8.10 Kinesis performance for data loss+data alteration incidents with various

rates in a 10 × 10 grid network . 232

8.11 Kinesis performance for sinkhole + SF attacks in grid networks of various

sizes . 232

8.12 Kinesis performance for data loss for various % of attackers at rate 0.1 in

a 10 × 10 grid network. 233

8.13 Coefficient configuration for action timer 235

8.14 Node placement in an indoor 6 × 6 grid WSN 236

8.15 Benefits of the fine-grained analysis on response effectiveness 237

8.16 Comparison of the original and alternative daemons selection technique

with respect to average number of actions per incident with varying num­
ber of nodes . 238

8.17 Evaluation of the proof of action overhead 240

8.18 Evaluation of the scalability of Kinesis in a large-scale WSN with increas­
ing attack rate. 241

8.19 Testbed performance of Kinesis for data loss incidents of various rates in

a 6 × 6 grid WSN. 242

xii

ABSTRACT

Midi, Daniele PhD, Purdue University, December 2016. Security Techniques for Sen­
sor Systems and the Internet of Things. Major Professor: Elisa Bertino.

Sensor systems are becoming pervasive in many domains, and are recently being

generalized by the Internet of Things (IoT). This wide deployment, however, presents

significant security issues.

We develop security techniques for sensor systems and IoT, addressing all security

management phases. Prior to deployment, the nodes need to be hardened. We de­

velop nesCheck, a novel approach that combines static analysis and dynamic checking

to efficiently enforce memory safety on TinyOS applications. As security guarantees

come at a cost, determining which resources to protect becomes important. Our solu­

tion, OptAll, leverages game-theoretic techniques to determine the optimal allocation

of security resources in IoT networks, taking into account fixed and variable costs,

criticality of different portions of the network, and risk metrics related to a specified

security goal.

Monitoring IoT devices and sensors during operation is necessary to detect inci­

dents. We design Kalis, a knowledge-driven intrusion detection technique for IoT that

does not target a single protocol or application, and adapts the detection strategy to

the network features. As the scale of IoT makes the devices good targets for botnets,

we design Heimdall, a whitelist-based anomaly detection technique for detecting and

protecting against IoT-based denial of service attacks.

Once our monitoring tools detect an attack, determining its actual cause is crucial

to an effective reaction. We design a fine-grained analysis tool for sensor networks

that leverages resident packet parameters to determine whether a packet loss attack

is node- or link-related and, in the second case, locate the attack source. Moreover,

xiii

we design a statistical model for determining optimal system thresholds by exploiting

packet parameters variances.

With our techniques’ diagnosis information, we develop Kinesis, a security incident

response system for sensor networks designed to recover from attacks without signif­

icant interruption, dynamically selecting response actions while being lightweight in

communication and energy overhead.

1

1 INTRODUCTION

In the current data-driven world, sensors and sensor networks are becoming pervasive

in a large number of application domains. Their small size, low cost, and limited need

for resources are among the main factors of their widespread use. At home, smart

thermostats and intelligent refrigerators reduce energy consumption and increase user

comfort. In manufacturing, autonomous controllers operate and monitor complex

production pipelines. In agriculture, large-scale networks of small sensors collect

information about the environment and enable “precision” agriculture.

More recently, the notion of pervasive sensing and computing has been generalized

by the Internet of Things (IoT). IoT merges the benefits of smart embedded systems

with the power of connected Internet-based services, computation, and management.

Different categories of IoT devices are emerging, with capabilities ranging from auto­

matic data acquisition, to control, to networking [1]. It is thus clear that in the near

future, as well as in the longer term, we will increasingly see a pervasive deployment

of different types of computing devices connected by different communication mech­

anisms. Mckinsey & Company estimates the economic impact of IoT by 2025 will

range from $2.7 to $6.2 trillion dollars [2]. In addition, Gartner 2015 forecast states

that by the year 2020 we will see 20.8 billion IoT devices installed [3].

However, with the widespread use of sensor systems and IoT, security must be­

come a first-class citizen [4–7]. Most applications – e.g., mission-critical tasks, in­

dustrial control or medical monitoring – have stringent requirements with respect

to end-to-end system reliability, trustworthy data delivery, and service availability.

Sensor systems and IoT devices are often resource-constrained, communicate via an

unreliable wireless medium, operate in unattended environments, and usually lack

any tamper-proof packaging. These conditions make the network nodes vulnerable

to operational failures. Moreover, the insecure and vulnerable nature of sensor envi­

2

ronments make them vulnerable to attacks that falsify context, modify access rights,

and, in general, disrupt the system operation [8]. Malicious attacks can have a wide

range of consequences, from the malfunctioning of smart city sensors and controllers,

to a hospital patient receiving the wrong treatment in a smart healthcare scenario.

Several attacks to embedded devices, sensor systems and IoT have been recently re­

ported [9–12]. Successful remote hacks on critical life devices, such as insulin pumps

and pacemakers, by exploiting their insecure wireless communications [13] raise also

critical safety issues on the use of interconnected sensors and actuators. A recent

study by HP about the most popular devices in some of the most common IoT niches

revealed an alarmingly high average number of vulnerabilities per device [14]. On av­

erage, 25 vulnerabilities were found per device. For example, 80% of devices failed to

require passwords of sufficient complexity and length, 70% did not encrypt local and

world traffic communications, and 60% contained vulnerable user interfaces and/or

vulnerable firmware [14].

IoT networks can differ from each other for several aspects, such as topology,

mobility, size, degree of heterogeneity, location, communication modality, and so on.

However, they also have some common characteristics, namely the use of devices

with low computational power and low energy consumption. They are also prone to

physical attacks and eavesdropping, since they are often unattended and typically

communicate via wireless channels.

Our work, presented in this dissertation, aims at developing security techniques for

sensor systems and the IoT. It is important to note that even though security for IoT

is a much less mature area than security for sensor networks, many existing security

techniques developed for sensor networks can be directly applied to the more general

setting of IoT. However, other security techniques need significant extensions because

of the heterogeneity of communication mechanisms, platforms, configurations, and

specific security requirements, which opens an extremely wide attack surface, while

at the same time increases the difficulty of deploying all-encompassing security solu­

tions. Moreover, unlike wireless sensor networks (WSNs), IoT devices are susceptible

3

not only to attacks from other devices in the network, but also from more powerful

attackers from the untrusted Internet.

The design of our security techniques is based on a security lifecycle consisting of

four phases: Prepare and Prevent; Monitor and Detect; Diagnose and Understand;

React, Recover, and Fix. Each phase is addressed by our work with one or more

projects, and this dissertation presents the research results achieved in each of those

projects. We design all of our techniques to be able to work in concert, addressing the

different aspects of the security lifecycle of sensor systems and IoT, and our results

show that each one is effective in fulfilling its role in the overall security enforcement

scenario.

Thesis Statement. The intrinsic characteristics of the sensor and IoT domain

expand the attack surface of computer and communication systems. Existing security

techniques need to be analyzed, extended, and modified in order to efficiently and ef­

fectively achieve security across heterogeneous and constrained scenarios, throughout

all the four phases of hardening, monitoring, diagnosing, and recovering.

In the remainder of this introduction, we present the four identified security life-

cycle phases and the approaches we developed to address them, as well as present

the overall vision of how all the techniques work together to achieve the end goal of

security for sensor systems and IoT.

1.1 Security Lifecycle Phases and Developed Techniques

Prepare and Prevent. The first step in securing a system consists of harden­

ing the system itself before its deployment, as well as deploying measures to prevent

attacks. For both sensor systems and IoT, this includes leveraging techniques able

to protect the software installed on the devices from unintentional bugs and vulner­

abilities that an attacker could exploit. In Chapter 2, we present nesCheck [15], a

4

novel approach that combines static analysis and dynamic checking in order to effi­

ciently enforce memory safety on existing embedded software, without requiring any

source modification. nesCheck targets TinyOS, one of the most popular embedded

operating systems. We tailor our approach to leverage the peculiar characteristics of

sensor systems, which make existing memory safety solutions not suitable but which

offer interesting opportunities for new, highly efficient techniques. nesCheck ana­

lyzes the source code, identifies the conservative set of vulnerable pointer variables,

finds static memory bugs, and instruments the code with the appropriate dynamic

runtime checks. We implemented a prototype of nesCheck extending the existing

TinyOS compiler toolchain with custom tools built on the LLVM compiler suite. Ex­

tensive evaluation, on stress-intensive programs as well as standard TinyOS applica­

tions, proves that nesCheck effectively enforces memory protection, while minimizing

the number of dynamic runtime checks required and thus the performance impact.

nesCheck reduces the attack surface for malicious adversaries, as well as protects the

availability and integrity of the system from unintentional bugs. Therefore, it is a

fundamental building block in our security efforts for sensor systems and IoT, by also

protecting our other security software systems – discussed later in this dissertation

– from attackers. As compared to existing work [16–18], nesCheck is specifically de­

signed for the constraints, challenges, and advantages of embedded devices, does not

require source code modifications or annotations, and leverages more extensive static

analysis techniques to conservatively minimize the performance overhead.

As an additional step when deploying security measures in a sensor and IoT net­

work, deciding the best placement for the various security resources plays an im­

portant role. Different portions of the network and different devices have different

levels of importance in achieving the overall security goals. Protections such as that

offered by nesCheck come at a cost, and determining the optimal allocation plan for

security measures must take into account the available security resources and their

capabilities, their fixed cost, and runtime energy consumption, how critical differ­

ent areas of the network are, as well as the risk associated with successful attacks

5

on them. We design and implement OptAll [19], a game-theory-based method to

compute the optimal security resource allocation plan through a Pareto optimization

problem. We present OptAll in Chapter 3 of this dissertation. Prior approaches in

this domain targeted homogeneous, traditional computing deployments [20, 21], or a

single specific attack [22–24], and are focused on improving performance [25]. To the

best of our knowledge, OptAll is the first work to address the problem of finding the

optimal security resource allocation plan for IoT networks, taking into account fixed

and variable costs, criticality, and risk. Our evaluation on several network topologies

– both grid-based and random – shows that OptAll is able to determine the most effi­

cient and effective allocation plan for security resources with respect to any specified

security goal.

Monitor and Detect. During their operation, IoT devices and sensors must

be continuously monitored in order to detect anomalies, attacks, and operational

failures. While much research has been carried out in the last decade on Intrusion

Detection Systems (IDSes), very few solutions are targeted to sensor systems and

IoT. These approaches have several drawbacks, such as requiring invasive software

modifications to the devices’ firmware, being limited to only a single device or group

of devices, not supporting interoperation, and delegating security to the individual

manufacturers [26–29]. Moreover, the simple adaptation of existing IDSes, designed

for traditional computing systems and networks, is not viable, since widely-adopted

approaches – such as full network scanning – are not viable for the IoT. Several

characteristics of IoT, however, can be leveraged to design an IDS well fit for this

domain. For example, while the communication protocols and mediums are very

heterogeneous, they are mostly standardized, enabling effective use of promiscuous

overhearing and watchdog-based mechanisms. Moreover, most devices and IoT net­

work have specific features (e.g., single-hop vs. multi-hop topology, mobility, ...) that

can help in ruling out attacks, removing ambiguity, and improving detection accuracy.

We thus first investigate the relationships between IoT network features and related

6

attacks, and then design and develop Kalis [30], a self-adapting, knowledge-driven

IDS for IoT able to detect attacks in real time across IoT systems running differ­

ent communication protocols and with different security goals. Kalis autonomously

collects knowledge about the features of the monitored network, and leverages such

knowledge to dynamically configure the most effective set of detection techniques.

Chapter 4 of this dissertation presents this system. To the best of our knowledge,

Kalis is the first comprehensive approach to intrusion detection for IoT that does not

target an individual protocol or application, and adapts the detection strategy to the

specific network features.

While Kalis is able to defend against threats to the IoT network and its devices,

another challenging type of attack is represented by distributed denial of service

(DDoS) attacks via botnets. The large amount of IoT devices and sensors that are

expected to be deployed in the near future makes the IoT an ideal vector for DDoS

attacks via botnets. Chapter 5 of this dissertation presents our work on this topic.

We analyzed the actual attack power that small IoT devices have when used as part

of a botnet. Our results show that they have a very high potential for a DDoS attack.

We thus design and develop Heimdall [31], a whitelist-based anomaly detection tech­

nique tailored to IoT devices. Our technique operates on routers acting as gateways

and is effective in identifying and blocking DDoS attacks by IoT botnets. Existing

approaches target traditional computing networks rather than IoT systems, and lever­

age communication patterns [32] or artificial immune system-based techniques [33,34]

to determine normal behaviors. Heimdall explicitly targets IoT botnets, and its con­

tributions include leveraging the IoT intrinsic characteristics to design simpler but

more accurate techniques to perform anomaly detection tasks.

Diagnose and Understand. In the security lifecycle, once an attack has been

detected, it is critical to perform a diagnosis of the attack to determine the actual

cause of the attack. Such diagnosis is crucial in order to properly respond to the

attack. Packet losses in sensor networks are a particularly relevant class of attacks

7

and can be caused by either attacks affecting the nodes – e.g., selective forwarding

or blackhole attacks – or attacks focusing on the wireless links – the introduction of

interference in the wireless medium, when wireless networks are used for communi­

cation. Chapter 6 of this dissertation presents the design and implementation of our

fine-grained analysis (FGA) tool for WSNs [35], a fully distributed, event-driven so­

lution that leverages resident packet parameters such as RSSI and LQI to determine

the most likely cause of a packet loss event and, in case of interference, even to accu­

rately locate the source of jamming. Real-world testbed experiments show that our

FGA tool is effective in differentiating between the various attacks that may affect

nodes and links. Related approaches mostly focus on detecting packet losses rather

than the important topic of the cause of the loss [36–39]. Moreover, our FGA tool

relies on a smaller set of network parameters and focuses on differentiating node- and

link-related attacks rather than natural losses and malicious discardings [40, 41].

The accuracy of the FGA tool relies on the correct choice of some system parame­

ters and thresholds, and empirically-determined values might not always be optimal.

Moreover, the choice of a single threshold value for the entire network, can be suitable

for some neighborhoods but not appropriate for others. Therefore, we designed an

approach that builds a statistical model for determining optimal system thresholds by

exploiting the variances of RSSI and LQI [42]. This statistical approach also has the

advantage of allowing an individual threshold for each link. In Chapter 7 we present

such a model, together with its validation through extensive MATLAB simulations

based on real sensor data, showing that our model is accurate and its system param­

eters lead to an optimally-accurate fine-grained analysis of the underlying causes of

packet losses.

React, Recover and Fix. The applications running on sensor systems and

IoT often impose stringent requirements on data reliability and service availability,

due to the deployment of sensor networks in various critical infrastructures. Given

the failure- and attack-prone nature of sensor networks, enabling them to continu­

8

ously provide their services as well as to effectively recover from attacks is a crucial

requirement. The accurate diagnosis information provided by our previously intro­

duced solutions allow one to undertake more effective response actions. Chapter 8

presents Kinesis [43], a security incident response system for WSNs designed to keep

the network functional despite anomalies or attacks and to recover from attacks with­

out significant interruption. Kinesis is quick and effective in responding to incidents,

distributed in nature, dynamic in selecting response actions based on the context,

and lightweight in terms of response policy specification and communication and en­

ergy overhead. A per-node single timer-based distributed strategy to select the most

effective response executor in a neighborhood makes the system simple and scalable,

while achieving load balancing and redundant action optimization. The contributions

over related systems include a wide range of response actions that go beyond simply

rerouting data or isolating the misbehaving node [29, 44], no need for a centralized

node to manage reputations and choose response agents [45], and a lightweight ar­

chitecture designed for constrained systems [46]. Extensive simulations and testbed

experiments show that Kinesis successfully counteracts anomalies/attacks and be­

haves consistently under various attack scenarios and rates.

1.2 Overall Functional Framework

With the integration of the techniques we developed, we envision an overall func­

tional framework that provides security to sensor systems and IoT systems in concert

throughout all the four phases of security lifecycle (see Figure 1.1.)

The use of OptAll guides the initial phase of security planning. It provides an

optimal allocation plan for the provisioning of the other security techniques we de­

veloped. For a set of nodes in the network, the memory safety guarantees provided

by nesCheck is crucial in maintaining the network functional. Choosing strategically

which nodes to protect can guarantee an optimal trade-off between performance,

cost, and security. The deployment of Heimdall on the IoT gateway ensures that

9

Figure 1.1. The overall functional framework integrating the tech­
niques developed in this dissertation.

the local devices are more protected against enrollment in botnets, and prevents any

compromised local device from partaking in DDoS attacks towards remote targets.

The knowledge about these prevention and hardening mechanisms is an essential in­

put information to Kalis, our IDS, and OptAll can once again guide the decision of

the exact locations in which to deploy the IDS nodes. Kalis continuously monitors

the network and collects dynamic knowledge about the features of the monitored

network and entities, always selecting the best set of detection techniques out of its

extensive library. Once an attack or anomaly has been detected, Kalis notifies Kinesis

to take the most appropriate response action(s) to react with respect to the overall

chosen security goal. In cases of ambiguity on the potential attack(s) detected, our

Fine-Grained Analysis tool can investigate further into the incident in order to al­

low a more informed decision by Kinesis on the response action to take. Since the

monitoring and reaction are continuous and in real-time, the security enforcement

10

can maintain the network and its devices functional in face of subsequent security

incidents and disruptions.

11

2 NESCHECK: STATIC ANALYSIS AND DYNAMIC

INSTRUMENTATION FOR NESC MEMORY SAFETY

In the overall scenario of the security lifecycle we target, the first step towards pro­

tecting the deployment of a sensor system is that of hardening the system to shrink

the attack surface and prevent incidents. With the deployment of WSNs for sensitive,

real-time applications, availability and integrity are of paramount importance. More­

over, as WSN nodes often manage confidential information – such as private keys

and aggregated data – confidentiality and integrity also become key requirements.

However, the distributed and concurrent nature of WSN applications, together with

the intrinsic type and memory unsafety of C/C++, make it hard to achieve these

security goals.

TinyOS [47] is an open source operating system designed for low-power wireless

embedded systems, such as WSN motes and smart meters [48]. TinyOS programs

consist of separate software components statically linked through interfaces. Common

components include routing and packet radio communication, sensor measurements,

and storage. The language used to program TinyOS applications is nesC, a dialect

of the C language optimized for the resource constraints of low-power embedded

devices [49]. Because of the strict constraints in terms of memory, storage, and

energy, neither TinyOS nor the underlying hardware provide any memory protection

or virtual memory mechanism between processes or kernel and user-space. Moreover,

the nesC language makes it easy to write memory-unsafe code, inheriting all the type

and memory safety problems of C.

Memory corruption in the software running on a single node may allow an at­

tacker to take over the node, read private data, or even disseminate incorrect data

and degrade the entire network. Note that embedded platforms do not have code

injection protection or ASLR, so a holistic defense like memory safety becomes even

12

more important. More critically, since all the nodes run the same software im­

age, an attacker may exploit a single vulnerability to take control of every node

in the network. Concrete examples of such devastating attacks have been shown for

Harvard-architecture-based sensor nodes such as the MicaZ motes [50], as well as Von

Neumann-architecture-based ones such as the popular TelosB motes [51]. In these

attacks, a well-crafted network packet sent to a vulnerable node can take control

of the node and propagate as a self-replicating worm to the entire network through

multi-hop communications [52–56]. All of these critical attacks would be prevented

by the enforcement of memory safety.

Existing memory safety techniques do not apply to embedded systems, nesC, or

TinyOS, as they are designed for general-purpose systems. Embedded systems fun­

damentally differ from regular computing systems. While general purpose systems

provide plenty of ROM, memory and an MMU, on embedded systems, memory is

scarce (but dedicated) and there is usually no MMU or even distinction between

kernel-space and user-space. For example, widespread sensor motes like the Memsic

TelosB [57] only provide 10kB of RAM and 48kB of program flash memory; previ­

ously proposed memory safety approaches result in significantly bigger code size and

more intensive memory usage. Moreover, the performance degradation that many

existing solutions impose is not acceptable for energy-constrained, real-time WSNs

applications. In fact, solutions such as CCured reported slowdowns ranging from 20%

to 200% [16]. Given the resource constraints, straightforward porting of common im­

plementations for memory protection techniques to embedded systems is infeasible.

A tailored solution for memory and type safety for TinyOS applications is therefore

needed.

For TinyOS applications, the code for applications, libraries, and operating system

is entirely available at compile time. This allows to effectively employ whole-program

static analysis and dynamic checking instrumentation to ensure memory safety. More­

over, by statically identifying and removing unnecessary checks for memory accesses

that will never result in memory errors, it is possible to achieve a low performance

13

overhead. Based on such considerations, we design nesCheck, a novel scheme that

tailors static analysis, type inference, and dynamic instrumentation techniques to

embedded applications to enforce memory safety on existing nesC programs. The

goal of nesCheck is to protect embedded software against memory vulnerabilities with

negligible overhead and without requiring any source code modification. nesCheck

statically analyzes the source code, identifies the potentially dangerous pointer vari­

ables, automatically infers the minimum set of dynamic runtime checks needed to

enforce memory safety based on pointer access flow, and instruments the code appro­

priately.

nesCheck is novel in bringing memory safety to embedded devices by adapting

instrumentation-based approaches to the challenges and advantages of the embed­

ded world, where whole-program analysis is feasible but memory and performance

overhead are major concerns.

To evaluate our approach, we implement nesCheck as a combined static analysis/­

dynamic checker on top of the LLVM compiler framework. The static analysis infers

types and removes as many checks as possible while the dynamic checker enforces

safety. We then integrate our checker into the existing nesC toolchain. We evaluate

nesCheck on standard TinyOS application benchmarks, and show that it effectively

enforces memory safety on WSN applications, while minimizing the runtime perfor­

mance overhead (0.84% on energy, 5.3% on code size, up to 8.4% on performance,

and 16.7% on RAM). These benchmarks are the standard benchmarks for evaluating

WSN and present realistic usage scenarios for embedded systems.

The contributions of our work are:

•	 Design of an inter-procedural whole-program static analysis mechanism, based

on type tracking and pointer usage, and without the need for programmer an­

notations;

14

•	 Design of dynamic instrumentation for efficient memory safety enforcement on

highly constrained embedded platforms, without MMU or kernel/user space

separation;

•	 Evaluation of the efficiency and effectiveness of our approach through an full

implementation prototype.

2.1 Adversarial Model

We assume that the attacker can inject and intercept arbitrary packets in the

network. We also assume that the application has memory vulnerabilities known to

the attacker. She will exploit them to take control of a node by means of code injec­

tion/reuse attacks (following the intrinsics of the underlying hardware), compromising

the integrity, availability, and confidentiality of the node.

Physical attacks targeting the nodes, in which the adversary tampers with the

hardware of a mote and/or directly reprograms the node with malicious firmware,

are out of the scope of nesCheck.

2.2 Background

2.2.1 Memory Safety Vulnerabilities

The root cause of all memory safety vulnerabilities is the dereferencing of invalid

pointers. There are two main categories of memory safety vulnerabilities: spatial

memory safety vulnerabilities, resulting from pointers pointing to addresses outside

the bounds of the allocated memory area, and temporal memory safety vulnerabili­

ties, resulting from the usage of pointers after the corresponding memory areas are

deallocated (e.g. use-after-free errors).

Our current prototype of nesCheck targets spatial memory safety, but can be

extended to enforce temporal safety as well, by lock and key mechanisms [58]. How­

ever, as memory in well-developed WSN applications is allocated statically instead of

15

dynamically, temporal safety errors are not an important issue for applications that

comply with the development guidelines for TinyOS. This includes all the applica­

tions that ship with the standard distribution of TinyOS, as well as most larger-scale

WSN applications. Examples of the memory vulnerabilities that nesCheck protects

against are out-of-bounds accesses to pointers on the stack and heap, uninitialized

uses, and null dereferencing.

2.2.2 TinyOS

nesC. nesC is an event-driven dialect of C. Its additional features include the con­

cept that programs are built out of components, statically linked through interfaces.

Dynamic allocation. In the early versions of TinyOS, dynamic memory allo­

cation was not allowed. This constraint, partially relaxed in recent releases, is still

highly discouraged, as the lack of memory protection and separation can easily lead

to involuntary stack smashing when the heap grows into the stack [59]. Specialized

components (e.g. TinyAlloc), were introduced to provide support for dynamic allo­

cation, but behind the scenes they are however still simply managing a large chunk of

pre-allocated memory. Disabling dynamic allocation has the advantage, from a mem­

ory safety standpoint, that most needed information is available at compile-time, and

little is left for dynamic detection.

Compilation and execution model. The standard TinyOS compilation pipeli­

ne is composed of several steps. First, the nesC code is processed and all the required

components, including the operating system, are linked together. Under this model,

all code, libraries, and OS components are statically known at compile time. The

resulting single nesC code is cross-compiled to C code, in turn compiled natively into

a binary image for the specific target platform. Such single binary image – containing

both user code and OS code – runs as a single executable, assuming complete control

over the hardware at all times. The memory address space is shared among all

components, both user and system code. For this reason, the official development

16

guidelines for TinyOS recommend to (i) keep the state of the various components

private, (ii) communicate only through exposed interfaces, and (iii) avoid transferring

pointers between different pieces of code. All these characteristics of the TinyOS

compilation and execution model make it a particularly good fit for static analysis.

2.3 The nesCheck Approach

Figure 2.1 shows the architecture of the final pipeline for nesCheck, and our main

memory safety goals are listed below. nesCheck performs both static bug detection –

for memory accesses that will always result in a violation regardless of the execution

path – and runtime bug catching – for memory accesses that could potentially lead

to memory corruptions, depending on the execution flow.

Bugs: (Static) Find all statically provable memory bugs and report them as errors;

Vulnerabilities: (Static) Find all potentially unsafe memory accesses, determine

and exclude those that will never result in a memory corruption (in a conservative

way), and report the remaining ones as warnings;

Checks: (Dynamic) Instrument all remaining vulnerable locations with dynamic

runtime checks, and catch all memory errors at runtime.

2.3.1 Static Analysis

nesCheck uses static analysis in order to enforce an extended type system on

the pointer variables, and subsequently compute and propagate metadata for the

vulnerable pointers. Our approach uses an inter-procedural whole-program analysis

technique, carried out on the Static Single Assignment (SSA) form [60] representation

of the code. In SSA form, each variable is written to at most once, introducing a fresh

variable every time the value is updated with a destructive assignment operation.

While the code is in SSA form, the heap remains in non-SSA form, meaning that the

same memory location can be written to multiple times through the same and different

pointers. Therefore, even though in SSA form each variable is only assigned once, a

17

Figure 2.1. The complete nesCheck pipeline, with lighter blocks being
existing steps of the nesC compiler toolchain, and darker blocks the
newly introduced ones.

new value is assigned with a store operation to a memory location previously loaded

with a load operation, making it possible to connect together different instructions

operating on the same logical variable.

Extended Type System and Type Inference

In order to provide type safety, identify the potentially dangerous memory ac­

cesses, and avoid dynamic checks on the provably safe operations, it is necessary to

understand the role played by the various pointers in the code and their interrelations.

We thus enforce a type system inspired by CCured [16], that categorizes pointers ac­

cording to their usage into different classes with specific characteristics. The pointer

types that we consider are the following: (i) Safe pointer to τ : it can only be null

or point to a value of type τ . At runtime, it may only need a null-pointer check. (ii)

Sequence pointer to τ : like a Safe pointer, it can be null or point to a value of

type τ . However, a Sequence pointer can also be interpreted as an integer, and be

18

ALGORITHM 1: nesCheck’s type inference algorithm

foreach declaration of pointer variable p do
classify(p, SAFE);

foreach instruction I using pointer p do
r ← result of(I);
if I performs pointer arithmetic then

classify(p, SEQ);

classify(r, SAFE);

if I casts p to incompatible type then
classify(p, DYN);
classify(r, DYN);

manipulated via pointer arithmetic. At runtime, it may need a null-pointer check,

as well as a bounds check if cast to a safe pointer of base type τ . (iii) Dynamic

pointer: it is a pointer that cannot be statically typed. At runtime, it may need

null-pointer, bounds, and dynamic type checks.

The type inference engine gathers information from the source code to classify

pointer declarations according to the extended type system. The engine focuses on all

locations in which pointer variables are used and classifies them, in a fixpoint iteration,

by analyzing their usage. Our type inference algorithm is shown in Algorithm 1.

The type inference algorithm uses 3 rules:

1

2

All pointers are classified as Safe upon their declaration.

Safe pointers subsequently used in pointer arithmetic are re-classified as a Se­

quence.

3 Safe or Sequence pointers interpreted with different types in different locations

are re-classified as a Dynamic. This includes casting between different levels of

indirection (e.g., int** to int*), and between different root types (e.g., int*

to void*).

19

nesCheck’s type inference engine effectively enforces a total ordering Dynamic -
Sequence - Safe on pointer types, so the type of a pointer is updated only if the

new type is more restrictive. For example, in the following code portion:

1 int *arr , *p, n;

2 arr = malloc (5 * sizeof(int));

3 n = (int)arr;

4 p = arr [3];

the pointer *arr is classified as Safe upon declaration. When casted from int* to

int, *arr is reclassified as Dynamic since Dynamic - Safe holds according to the

total ordering. However, when used in pointer arithmetic, the type of *arr is not

changed as the total ordering constraint Sequence - Dynamic is not satisfied.

Note that no extra rules are necessary for some non-obvious cases, often because

the analysis runs on SSA form. For instance, indirect calls (e.g., callbacks or function

pointers) are classified as Dynamic by nesCheck’s type inference because of the use

of void* pointers. Another case includes pointers to pointers, or pointers to structs

containing pointers. If the inner type is classified as Dynamic, the outer type must be

classified as Dynamic as well. A concrete example of this is int * q1 * q2, where

q1 and q2 are pointer kinds. If q2 is Dynamic, the q1 should also be Dynamic. The

three rules presented suffice in correctly classifying these pointers, since an access

to that pointer as a whole will result in two subsequent load instructions, that will

propagate the Dynamic classification between the different levels of indirection.

After the type inference completes, all the pointers are classified. The rules guar­

antee that the final assignments are a conservative over-approximation, potentially

classifying non-Dynamic pointers as Dynamic pointers, but never the opposite. This

fundamental property ensures the correctness of the memory safety enforcement. The

subsequent optimizations will compensate the potential performance degradation of

conservative classification.

20

Type Inference Validation. To explicitly validate the accuracy of nesCheck’s

type inference engine, we walk through one example, picking the code originally

presented in the CCured paper [16]:

1 int **a;

2 int i;

3 int acc;

4 int **p;

5 int *e;

6 acc = 0;

7 for (i =0; i <100; i++) {

8 p = a + i;

9 e = *p;

10 while ((int) e % 2 == 0)

11 e = *(int**)e;

12 acc += ((int)e >> 1);

13 }

The program sums an array of “boxed integers”, a data type with double inter­

pretation: when odd, its 31 most significant bits can be interpreted as an integer,

otherwise it represents the pointer to another boxed integer.

The expected behavior of the type inference engine is to classify **a as Sequence –

since it is used in pointer arithmetic at line 8 – and *e as Dynamic – since it is casted

and used with different types at different locations (i.e., as pointer at line 11 and as

integer at line 12). All the other pointers should be classified as Safe. It is possible

to verify that, according to our type inference algorithm, the correct classification

of **a as Sequence pointer is achieved by the application of Rule 2 , while *e is

correctly classified as Dynamic thanks to Rule 3 applied at line 12. All the other

pointers are classified as Safe upon their declaration, by Rule 1 , and never change

their classification.

21

Figure 2.2. Comparison of bounds metadata in nesCheck vs. the
traditional approach.

Through this example and others constructed specifically to exercise unusual

pointer usages, we verify that nesCheck correctly classifies all of the pointer types

according to our extended type system.

Metadata Computation and Propagation

The metadata maintained by nesCheck for each pointer contains information

about the memory area to which such pointer points. Differently from the tra­

ditional tracking of base b and bound e for each pointer, nesCheck’s metadata

includes the size of the areas towards both lower and higher memory addresses

(denoted with sl and sh, respectively), with respect to the current address stored

in the pointer variable. Figure 2.2 shows a graphical comparison of our meta­

data structure and the more traditional one. As an example, let int* p be a

pointer to an array of 5 integers, and assume int* p1 = &p[2]. The metadata

for p will be (sl = 0, sh = 5 · sizeof(int)), while the metadata for p1 will be

(sh = (5 − 2) · sizeof(int), sl = (5 − 2 − 1) · sizeof(int)). This construction can

simplify bounds checking by using only one check instead of two whenever it is pos­

sible to infer the “direction” of a memory access: for example, in a common scenario

such as a monotonically increasing (or decreasing) loop, the compiler can safely infer

the direction and remove one check.

22

Figure 2.3. Explicit metadata variables.

nesCheck computes the metadata information for each pointer with different

strategies, depending on the specific pointer. For static allocations, such as arrays of

fixed size or pointers to structs, nesCheck directly computes the size of the allocated

memory. While dynamic memory allocation is discouraged in TinyOS, nesCheck sup­

ports it for completeness. For dynamically allocated memory, the size is computed

and updated by keeping track of the parameters of calls to functions such as malloc(),

realloc(), calloc(), and free().

In cases where a local pointer can point to different memory areas depending on

dynamic control flow conditions, nesCheck generates and injects an explicit variable to

hold the metadata for this pointer, depending on the control flow paths. Figure 2.3

shows a concrete example of this scenario – with the original source code on the

left and the instrumented one on the right – where function f() performs different

allocations for pointer *p depending on the value of the function parameter a. Explicit

metadata variables are needed for pointers accessed in basic blocks different than the

one they were defined in1 . In Figure 2.3, the different basic blocks are highlighted as

1Detecting this behavior is possible as the heap is in non-SSA form. nesCheck is thus capable of con­
necting the same logical variable at the different locations (i.e., variable declaration and assignments
in disjoint branches).

23

separate, numbered solid boxes. *p is declared in block 1, but is initialized in block

2 or 3, and accessed in block 4.

Metadata Table

A Metadata Table associates specific memory addresses with their metadata in­

formation. Efficient data structures, e.g. hashmaps, often use large virtual address

spaces [17]. Embedded devices do not have a virtual memory management mech­

anism, however all the pointers that will need an entry in the Metadata Table are

known at compile time, so nesCheck optimizes its data structure by using a dense,

array-based Binary Search Tree. Moreover, for code that follows TinyOS’s design

guidelines and therefore does not make use of dynamic memory allocation, this data

structure can be entirely preallocated for a statically-defined size.

We decouple metadata from the pointers – compared to fat pointers used in prior

work [16,61–65] – in order to achieve a uniform memory representation for all pointers.

Moreover, since the search tree is, on average, very small with respect to the total

number of pointers, keeping it separate allows nesCheck to choose the optimal data

structure.

2.3.2 Dynamic Instrumentation

Dynamic checks can detect all memory errors since they have full runtime view

and dynamic information when they are executed. In nesCheck, the metadata for each

pointer is set to zero upon declaration, then always kept up-to-date with the actual

offsets of the pointer in its memory area. This design allows a single inexpensive

bounds check to be effective not only against out-of-bounds memory accesses, but

also all other memory errors, such as null/uninitialized pointer dereferences or use­

after-free errors.

Every time a dynamic check is necessary, the respective memory access instruction

is instrumented to be preceded by a bounds check. A failed check will terminate the

24

execution and reboot the node, preventing memory corruptions. With no memory

separation nor difference between kernel-land and user-land, continuing the software

execution after a memory error can have unpredictable, arbitrarily bad outcomes.

Rebooting is the only safe fault-handling action to prevent further memory corruption

and potential compromising of the entire network on such constrained platforms.

The attacker could try to exploit the same vulnerability again, and achieve at best a

Denial of Service. Compared to probabilistic defenses, the attacker will never succeed

against memory safety. In a debugging scenario, it would be possible to extend our

prototype to send an error report message to the base station, including more details

about the code location that caused the error. Our current prototype supports the

explicit printing of details about the error location on screen when the code is run in

a simulator (more about the TinyOS simulator in Section 2.5).

Optimizations

Frequent updates and lookups in the table incur high performance overhead.

nesCheck optimizes by adding instrumentation to more directly propagate the meta­

data.

Functions taking pointers as parameters: A pointer appearing as a param­

eter in a function will assume different values for different callers of the function.

Consequently, the pointer will also inherit different metadata properties depending

on the pointer that is passed as actual parameter at every different call site. nesCheck

enhances the signature of all the functions that have pointer parameters to include

additional parameters for the metadata2 . As an example, a function with a signature

such as void f(int* p) is enhanced to void f(int* p, metadata pmeta), where

metadata is the type of the data structure holding nesCheck’s metadata information.

Finally, the pointer parameter is associated with the metadata parameter as its own

metadata.
2Variadic functions are still supported by updates and lookups in the metadata table.

25

Functions returning pointers: If a function returns a pointer, metadata prop­

agation must also be enabled through the return value. nesCheck enhances the sig­

natures of such functions and their return instructions, from a single value to a

structure containing the original returned value plus its attached metadata. Thus,

the sample function signature int* f() will be instrumented into {int*, metadata}

f(). All the return instructions will consequently be transformed from return p;

into return {p, pmeta};, where pmeta is the metadata information for pointer p.

Lastly, all call sites for this function must be instrumented to take into account the

change in return type, unpack the two pieces of data from the structure (i.e., the

pointer and its metadata) and associate one to the other.

2.3.3 Running Example

In this section, we present the working of the core components of nesCheck on a

program example (shown in Figure 2.4) that is small – for ease of detailed discussion

and manual analysis of expected behaviors – but stress-intensive in the number of

advanced features and memory error corner-cases included. We include casting of

pointer types to and from integers, index-based access of memory areas, usage of

pointers with incompatible types depending on specified conditions, and dynamic

memory allocation as well, even if discouraged by TinyOS, to ensure the correctness

of nesCheck even in face of wrong programming styles.

While the analysis and instrumentation of the program in nesCheck is carried out

sequentially one entire function at a time, here we follow the execution flow for a more

effective presentation. First of all, nesCheck rewrites the signatures for testMT aux

to {foo t*, meta t} testMT aux(int* p, meta t pmeta), and instruments in

a similar way testMetadataTable and assignLoop.

In main(), nesCheck infers the size for the metadata of *arr to be 5 integers,

from the parameter of malloc(). The subsequent call to testMetadataTable() is

26

1 typedef struct foo {
2 int a;
3 int* bar;
4 } foo_t;
5 foo_t myfoo;
6
7 foo_t* testMT_aux(int* p) {
8 foo_t* f = &myfoo;
9 f->bar = p;
10 return f;
11 }
12 void testMetadataTable(int* p) {
13 foo_t* f = testMT_aux(p);
14 (f ->bar)[2] = 13;
15 }
16 void assignLoop(int* p) {
17 int i;
18 for (i = 0; i < 4; i++)
19 *(p + i) = i;
20 }
21 void testDynamicAliasing(int n) {
22 int* p;
23 int a[4];
24 int b[12];
25 if (n < 1) p = a;
26 else p = b;
27 assignLoop (&(p[1]));
28 }
29 int main() {
30 int* arr = malloc (5 * sizeof(int));
31 testMetadataTable(arr);
32 testDynamicAliasing (0);
33 }

Figure 2.4. Representative example for the stress-intensive microbenchmark.

then updated for its new signature (adding as second parameter the metadata for

*arr), avoiding the need for metadata table accesses.

The testMetadataTable function leverages the support function testMT aux for

obtaining a pointer to struct foo t, using the characteristic TinyOS pattern of

global variables in place of dynamic allocation. The field f->bar is aliased to *p, and

27

this time the metadata propagation required metadata table accesses, as the pointer

is in a struct. The execution resumes in the testMetadataTable function. The

storing of a numerical value inside the array member of the struct foo t bla at

line 14 is actually translated by Clang into a sequence of GetElementPtr statements.

Whenever necessary, such instructions are instrumented by dynamic runtime checks

and metadata table lookups.

Following the execution, the function testDynamicallyAliasing, conceived to

stress-test common dynamic aliasing scenarios, is first instrumented with explicit

metadata variables, as presented in Section 2.3.1. Then, assignLoop() tries to assign

numeric values to the first 4 cells of the array, resulting in an out-of-bounds memory

violation. However, an injected dynamic runtime check at line 19 will catch the out­

of-bounds access to the 4th element of the array, and the execution will be diverted

into a trap function.

2.4 Implementation

The implementation of nesCheck leverages the existing TinyOS compiler toolchain

and extends it with custom components built on Clang [66] and optimization passes

from the LLVM suite [67]. The technologies used are highlighted next to each pipeline

block in Figure 2.1.

The nesC source code is initially processed by ncc, the nesC compiler, that links

the different nesC components together through their interfaces and translates the

result to a single C source code file. The C source thes is transformed into the

LLVM Intermediate Representation (IR) language. Such IR is a well-specified code

representation offering an abstraction layer between the source programming language

used (nesC/C) and the actual target platform code. Then, the IR is passed to our

nesCheck Static Analyzer, based on an LLVM target-independent Optimization Pass.

The nesCheck Analysis State Manager component maintains the analysis state

throughout the different steps, and propagates information between the various com­

28

ponents. Most of the metadata is kept in memory by the Analysis State Manager,

and looked up and injected only when needed for the appropriate instrumentation.

As a last step, the minimal set of required runtime checks for the memory-

manipulating instructions is computed, and the code is instrumented accordingly.

The LLVM IR uses, in general, two separate instructions for pointer dereferencing:

a GetElementPtr instruction to calculate the memory address of the location to be

accessed, and a Load or Store instruction to actually access this memory location

and, respectively, place the resulting value in a variable or store a value into the

location. nesCheck’s instrumentation adds a bounds check conditional branch before

the GetElementPtr instruction, and a trap function to be invoked whenever the run­

time check fails, to terminate the execution and reboot the node, preventing memory

corruptions.

Whenever nesCheck can statically determine that any execution of the instruction

being instrumented will result in a failure of the check – i.e., the condition can be

statically determined to be always false – the user is alerted that a constant memory

bug is present, providing her with insights useful to inspect and fix the bug.

The rest of the pipeline, after the instrumentation, resumes the original TinyOS

compilation toolchain, having the instrumented code go through the gcc compiler to

obtain the final native binary for the desired target platform.

2.5 Evaluation

The TinyOS development platform ships with several sample applications, such

as radio communication, sensing, and hardware interaction. As done by most other

TinyOS research works [18, 68–71], we use these applications as benchmark suite for

evaluating nesCheck. Table 2.1 provides details on each program in our benchmark

suite. We first use these applications as-is to evaluate the performance overhead.

Then, we evaluate the overall effectiveness of nesCheck by randomly injecting memory

29

Table 2.1.

TinyOS standard applications used as benchmark for nesCheck’s evaluation.

Application LOC Description
BaseStation 5684 Simple Active Message bridge between the serial

and radio links.
Blink 5505 Blinks the 3 LEDs on the mote.
MultihopOscilloscope

Null

Oscilloscope

Powerup

RadioCountToLeds

11728

4261

6868

4306

6751

Data collection: samples default sensor, broad­
casts a message every few readings.
An empty skeleton application, useful to test the
build environment functionality.
Data collection: radio broadcasts a message every
10 readings of default sensor.
Turns on red LED on powerup, to test deploy of
app on hardware mote.
Broadcasts a 4Hz counter and displays every re­
ceived counter on the LEDs.

RadioSenseToLeds 6808 Broadcasts default sensor readings, displays every
received counter on the LEDs.

Sense 5699 Periodically samples the default sensor and dis­
plays the bottom bits on the LEDs.

bugs in the benchmark applications and verifying that all of them are caught statically

or at runtime.

We evaluate nesCheck on several static metrics – such as the number of pointer

variables, their inferred type classification, and the number of dynamic check instru­

mentations – and dynamic metrics – such as the overhead of nesCheck in terms of

program size, memory, execution performance, and energy consumption.

To evaluate performance, we compiled the applications for TOSSIM [71], a dis­

crete event simulator, de facto-standard tool for TinyOS WSNs. TOSSIM simulates

the behavior of TinyOS accurately down to a very low level and precisely times in­

terrupts. This allowed us to perform the evaluation in a controlled environment,

through repeatable experiments, and to increase the number of runs for each exper­

iment, while still maintaining a realistic distributed embedded software execution.

30

Each of the evaluation results has been obtained by averaging 25 independent runs

of each test.

2.5.1 Type Inference

The results in Figure 2.5 show that, on average, 81% of the variables are classified

as Safe, 13% as Sequence, and 6% as Dynamic. A large number of dynamic runtime

checks can thus already be skipped as immediate consequence of the type system

inference. Note that, since the analysis is conservative, some pointers classified as

dynamic might not be so; however, as shown in the performance evaluation afterwards,

this does not degrade the efficiency of our approach.

The average total number of analyzed variables, across all the TinyOS sample

applications in the benchmark, is 3, 633, a small number that further supports our

design choice of whole-program static analysis.

2.5.2 Code Size and Performance Overhead

We investigate the overhead of nesCheck’s instrumentation in terms of code size

and performance, and the results are shown in Figure 2.6. The programs in the

benchmark total to 57, 610 lines of code. The size overhead is measured in additional

bytes the memory-safe executable produced by nesCheck vs. the uninstrumented one,

both including the code for the TOSSIM simulator infrastructure. The code size of the

uninstrumented programs averages at 228, 761 bytes, and the instrumentation adds

only 12, 201 bytes (5.3%) of overhead on average. This result shows that nesCheck

is suitable for the instrumentation of programs to be deployed even on devices very

constrained in ROM.

We also measure the performance overhead of nesCheck through the TOSSIM

simulator for TinyOS. This tool is used by a simulation driver program by repeatedly

asking it to execute the next event from the simulation queue. The duration of each

event and the total number of events depend on the complexity of the computation

31

2793

2239

6240

1801

3216

1808

3126

3112

2239

2953

439

380

915

313

502

315

491

493

383

470

215

191

259

185

222

185

222

222

191

210

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

BaseStation

Blink

MultihopOscilloscope

Null

Oscilloscope

Powerup

RadioCountToLeds

RadioSenseToLeds

Sense

Average

 Safe Seq Dyn

Figure 2.5. Pointer classification results for the TinyOS sample apps benchmark.

to be executed. Therefore, we measure the overhead of nesCheck’s instrumentation

by fixing the total simulation time to 30 real seconds, running the simulation of the

original and instrumented applications, and then measuring the number of simulated

seconds actually executed. In three cases (BaseStation, Null and PowerUp), since

the applications are merely sample “skeleton” programs to guide developers, no real

events were happening after the initial program startup. Therefore, for those pro­

grams the reported overhead is 0, and we do not consider them in our averages for

the performance overhead. For all the other applications that continuously have pro­

cessed events, we observe that TOSSIM is able to execute more simulated seconds

(in the span of 30 real seconds) for simpler programs than for more complex ones.

For example, the simple Blink program is executed for 120185.86 simulated seconds,

http:120185.86

32

5.21%

4.56%

7.40%

5.59%

4.53%

5.56%

4.62%

4.59%

4.45%

5.33%

0.00%

8.39%

0.47%

0.00%

0.90%

0.00%

1.17%

0.82%

5.14%

6.25%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9%

BaseStation

Blink

MultihopOscilloscope

Null

Oscilloscope

Powerup

RadioCountToLeds

RadioSenseToLeds

Sense

Average

Code Size Overhead Performance Overhead

Figure 2.6. Code size and performance overhead for the instrumented
TinyOS apps, including TOSSIM.

while the more complex RadioSenseToLeds program only reaches 6878.08 simulated

seconds (both uninstrumented). In fact, this confirms the intuition that fewer events

can be processed in the same time span when the computation of each event is more

complex. On average, nesCheck introduces a performance overhead of 6.2%. We note

that the maximum overhead (incurred by the Blink application) is still quite low, at

8.4%. We believe that this overhead is acceptable for WSN applications.

2.5.3 Memory Overhead

As discussed in Section 2.3.1, some of the pointers require entries in a separated

metadata table. We thus measure the impact of this additional data on the memory

33

of the embedded devices. Figures 2.7 and 2.8 present our results on the memory over­

head of nesCheck for the TinyOS applications benchmark. In particular, Figure 2.7

shows the number of metadata lookups added to the code and the number of actual

metadata table entries required for each application. On average, nesCheck added

only 90 metadata table entry lookup instrumentation points during the instrumen­

tation. Given the SSA form, there is a direct relationship between the number of

memory accesses and the number of analyzed variables; therefore, we compare the

number of metadata lookups with the total number of variables analyzed by nesCheck,

and see that it amounts to just 2%. When only comparing to the Dynamic pointers,

it amounts to 41%, which still represents a significant memory saving. Many of such

lookups, furthermore, refer to the same logical variable, and thus point to the same

entry in the metadata table. Thus, in fact, only 32 distinct entries are needed on

average in the metadata table, constituting approximately 1/3 of the total lookup

instrumentations for each program.

With these collected metrics, we measure the effective RAM overhead of nesCheck

for each application by comparing the RAM occupation of the uninstrumented pro­

gram – as reported by the nesC toolchain when compiling for the TelosB motes

platform [57] – with the size of the metadata table in the instrumented version –

representing the effective memory overhead. Figure 2.8 presents both these metrics

side by side for ease of presentation. The numbers vary greatly for the different ap­

plications, as the number of metadata table entries is completely dependent on the

data structures used by each program. However, the average overhead is 16%, and

in all cases the total memory requirement remains significantly below the 10kb RAM

limit of the TelosB platform chosen for this experiment.

2.5.4 Checks Reduction

As part of our experimental analysis, we collected statistics about the number of

runtime checks added to the programs during the instrumentation, together with the

34

80

66

193

38

111

38

111

111

66

90.44

30

22

124

6

27

6

25

25

26

32.33

0 20 40 60 80 100 120 140 160 180 200

BaseStation

Blink

MultihopOscilloscope

Null

Oscilloscope

Powerup

RadioCountToLeds

RadioSenseToLeds

Sense

Average

Metadata lookups Entries

Figure 2.7. Metadata table entry lookups vs. actual metadata table
entries required by the instrumentation.

checks that are removed as part of nesCheck’s check reduction. As shown in Fig­

ure 2.9, the complete analysis and instrumentation of nesCheck for all the TinyOS

applications overall reduces, on average, the required checks by 20% of the total po­

tentially vulnerable locations, greatly reducing the performance overhead in enforcing

memory safety. For the whole benchmark suite, an average of 452 checks are added,

and 110 are skipped.

2.5.5 Energy Overhead

The power consumption for the various operations – such as computation, radio

communication, standby or sleep – varies across the different sensor mote hardware

35

1818

56

3650

6

490

6

356

456

132

774.44

120

88

496

24

108

24

100

100

104

129.33

0 200 400 600 800 1000 1200 1400 1600 1800 2000

BaseStation

Blink

MultihopOscilloscope

Null

Oscilloscope

Powerup

RadioCountToLeds

RadioSenseToLeds

Sense

Average

Original RAM Overhead

Figure 2.8. RAM occupation of uninstrumented programs and mem­
ory overhead of nesCheck (all in bytes).

platforms. However, on all platforms, the majority of the power consumption is always

caused by wireless transmission and reception, as well as the transitions between the

on and off states of the radio. Shnayder et al., for example, quantitatively measure

that, in many cases, active CPU cycles in WSN applications are very small, and have

negligible effect on total power consumption [72]. The instrumentation of nesCheck

in TinyOS programs does not introduce any additional radio communication, while

instead adding some runtime computation for the dynamic checks. Therefore, the

energy overhead is, intuitively, proportional to the performance overhead that we

measured in our experiments in Section 2.5.2 by a factor of CPU energy consumption.

36

369

273

1451

139

490

143

465

463

279

452.44

83

49

397

30

134

30

112

107

49

110.11

BaseStation

Blink

MultihopOscilloscope

Null

Oscilloscope

Powerup

RadioCountToLeds

RadioSenseToLeds

Sense

Average

Checks Added Checks Skipped

Figure 2.9. Checks added and checks skipped in the instrumented
TinyOS sample apps benchmark.

Since measuring the energy consumption directly on the motes’ hardware is diffi­

cult [73], to quantify this metric we leverage the energy model proposed by Polastre

et al. [74]. We refer to the MicaZ motes hardware platform datasheet [75] (being the

platform simulated by TOSSIM), and multiply the battery voltage by current draw

and time. With those calculations, the energy overhead for nesCheck amounts on

average to 0.84%, a negligible quantity that supports our analytical expectations.

2.5.6 Fault Injection

To evaluate the effectiveness of nesCheck in preventing all memory errors, we

randomly injected memory vulnerabilities and bugs in the TinyOS applications. We

37

19.3%

19.1%

17.9%

21.2%

25.8%

22.2%

21.2%

23.3%

24.3%

21.6%

44.1%

40.6%

40.8%

42.4%

25.0%

44.9%

28.6%

26.0%

33.8%

36.8%

36.6%

40.3%

41.4%

36.5%

49.2%

32.9%

50.1%

50.7%

41.9%

41.5%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

BaseStation

Blink

MultihopOscilloscope

Null

Oscilloscope

Powerup

RadioCountToLeds

RadioSenseToLeds

Sense

Average

Static bugs Not Executed Executed and Caught Executed and Not Caught

Figure 2.10. Fault injection results on TinyOS benchmark.

injected 500 random faults in each applications in the TinyOS benchmark, for a total

of 4, 500 faults. In particular, each time we selected one random memory access,

altered its indices to produce a memory error, and included an extra printing in­

struction to mark the moment when that fault is executed; we then instrumented the

application and executed it. We expected nesCheck to correctly find the fault, either

statically or at runtime, and prevent the out-of-bounds access.

Figure 2.10 shows our results. On average, 22% of the injected faults were stati­

cally caught at compile time. 37% of the faults were injected in areas of the code that

were not executed at runtime. For the injected faults that were executed at runtime

(41% on average), 100% were correctly caught by the dynamic checks placed by the

nesCheck’s instrumentation, i.e., no fault was executed and went uncaught.

38

2.5.7 Naive vs. Optimized Approach

While a direct comparison of nesCheck with traditional techniques such as Soft-

Bound or CCured is infeasible due to (i) constraints of embedded systems, and (ii)

the missing implementation of SoftBound or CCured for embedded systems, we mea­

sure the performance benefits of nesCheck’s check reduction to get an estimate of the

improvement over those traditional techniques. We run nesCheck with (“optimized”)

and without (“naive”) check reduction optimizations, and run it on all the applica­

tions in the benchmark (excluding those that did not yield events in our performance

overhead evaluation in Section 2.5.2). Figure 2.11 shows a comparison of the overhead

of the naive and optimized executions of the instrumented programs. We observe an

overhead reduction of 41.13% on average, showing how nesCheck’s check reduction

effectively leads to significant performance improvements.

2.6 Limitations

Currently, a sensor node instrumented with nesCheck is rebooted when a dy­

namic check fails. Since this might not always be the best, in the future, we plan

to work on more advanced, programmer-guided recovery mechanisms, with the goal

of maintaining the network as functional as possible even in the presence of memory

errors.

More powerful computing platforms (e.g., Raspberry PI) are becoming increas­

ingly available. However, they are impractical for common WSN application pur­

poses, with significantly higher cost, energy requirements, and size, as compared to

low-power WSN nodes. The latter have the advantages of being cheap, easily replace­

able, deployable in bulk, and in need of little energy. Even when such more advanced

devices will become sufficiently cost-effective for large deployments, efficiency would

still remain a critical concern for memory safety techniques, as the number and scale

of applications deployed on them would consequently increase as well. We plan to

work in this direction to investigate how nesCheck can be ported to more power­

39

10.88%

3.56%

2.78%

2.90%

1.54%

7.04%

8.39%

0.47%

0.90%

1.17%

0.82%

5.14%

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12%

Blink

MultihopOscilloscope

Oscilloscope

RadioCountToLeds

RadioSenseToLeds

Sense

Naïve nesCheck

Figure 2.11. Naive vs. optimized instrumentation on TinyOS benchmark.

ful platforms, and leverage the additional capabilities of these platforms to further

improve performance.

The current prototype of nesCheck enforces spatial memory safety. Our approach

could, however, be extended to also enforce temporal memory safety. Note that most

WSN applications do not use dynamic memory allocation, and are therefore fully

protected by spatial safety alone. Nevertheless, we plan to extend our implementation

of nesCheck to explicitly address temporal safety, and design mechanisms tailored for

embedded platforms to enforce it.

Lastly, the scalability of the system, and further overhead reduction, are of great

importance. We plan to investigate whether the integration of Bounded Model Check­

ing techniques [76] in nesCheck helps in that direction, as it would enable the use of

40

formal verification techniques for proving the safety of seemingly dangerous memory

accesses, therefore further reducing the overhead. Note that there are several issues

that make formal verification on embedded software hard. Several patterns – such as

direct communication with hardware registries for sensing, network packets, frequent

interrupts, or the use of bit fields – cause the search space for formal verification to

quickly explode. Dynamic checks are able to cope with these patterns, at the price

of performance.

2.7 Proof of Safety

In this section, we sketch a formal proof of memory safety for nesCheck. First,

we give an intuition of the rules for type inference. Then, we follow the general

structure of the proof of SoftBound [77], while focusing on the features relevant for

nesCheck. We tackle the complexity of the nesC language by focusing the proof on

an abstract subset of nesC that captures most of the fundamental primitives. Due to

space limitation, we keep the formalism, operational semantics tractation and proof

short, while still remaining sound in showing safety.

The syntax we use models programs in their processed IR form, already reduced

to atomic data types (int and pointers) and simple operations. Table 2.2 shows the

grammar we consider for our proof. We use RHS and LHS to denote left-hand side

and right-hand side, respectively. Note that, while most WSN applications do not

use dynamic memory allocation, we include it in our formal grammar for the sake

of generality. In our simplified operational semantics, we consider an environment

E that models the stack with a map S from variable names to addresses and types,

models the type inference with a map Γ from variable names to pointer categories,

and models the heap with a partial map M from addresses to values.

Using some and none to denote presence or absence of a value, we model nesC’s

memory access primitives as follows: (i) read M l: if l is an allocated memory

location, return some, otherwise return none; (ii) write M l v: if l is an allocated

41

Table 2.2.

Grammar used in the formal proof of safety.

Atomic Types t ::= int | p*
Pointer Types p ::= t | s | void
Struct Types s ::= struct{f ; f}
Struct Fields f ::= (id:a)

LHS Expressions lhs ::= x | *lhs | lhs.id | lhs->id
RHS Expressions rhs ::= val | rhs+rhs | lhs | &lhs

| (a)rhs | sizeof(p)
| malloc(rhs)

Commands c ::= c ; c | lhs = rhs

memory location, set the content to the value v; (iii) malloc M s: if M has an

available region of size s, allocate and return it, otherwise fail.

The normal C operational semantics processes assignments by writing the result of

the expression in the RHS operand to the address calculated from the LHS operand.

For this proof, we extend the traditional operational semantics of C by including

new outcomes for operations (that include memory errors) and tracking of pointers

metadata. A result r can therefore be: (i) v(sl,sh), a value v with the attached metadata

for the size of the memory region towards the lower (sl) and higher (sh) memory

addresses (see Section 2.3.1); (ii) a memory address l; (iii) Success; (iv) MemoryError

if a bounds check failed; (v) MemoryExhaustion if M did not have enough free memory

upon a malloc operation.

Using the above definitions, we formalize nesCheck’s operational semantics with

four classes of rules. First, the rules for type inference and propagation. Second, the

(E, lhs) ⇒l r : a rule specifies how LHS expressions are evaluated (no changes to the

environment). Third, the (E, rhs) ⇒r (E
/, r : a) rule specifies how RHS expressions

are evaluated (potential changes to the environment; if successful, r is v(sl,sh)). Lastly,

(E, c) ⇒c (E
/, r : a) is the rule to execute commands (r must be a success or failure

result). Here we omit rules straightforwardly representing standard C semantics, and

just show the rules most relevant for nesCheck’s semantics.

42

Type Inference. We present some of the rules for type inference, that formalize

the rules presented in Section 2.3.1. For example, pointer arithmetic on a Safe or

Sequence pointer causes the result to be of Sequence kind, while casting a Safe or

Sequence pointer to an incompatible type3 results in a Dynamic pointer:
Γ(x) = τ

τ ∈ {Safe, Seq, Dyn}

Types

Γ f x : τ

Γ f e1 : τ Γ f e1 : τ
τ ∈ {Safe, Seq} τ = Dyn
Γ f e2 : int Γ f e2 : int

ArithT1 ArithT2
Γ f e1 + e2 : Seq Γ f e1 + e2 : Dyn

(E, x) ⇒l l : t
incompatible(t, t/)

IllegCast
Γ f (t/)x : Dyn

No memory access to Safe pointers is subject to dynamic bounds checks; con­

versely, all memory accesses to Dynamic pointers are instrumented with runtime

checks. For a memory access to a Sequence pointer, if nesCheck can statically deter­

mine that it will never result in an out of bounds operation, it will not be instrumented

with a dynamic check. We therefore define a predicate safe(∗p) that is true (T) iff

the memory access ∗p does not require bounds checks, false (⊥) otherwise: ⎧

T if Γ f p : Safe ∨
⎪⎪⎪⎪⎪⎨

safe(∗p) = (Γ f p : Seq ∧ ∗p not out of bounds)⎪⎪⎪⎪⎪⎩⊥ otherwise

nesCheck declares a memory access as never out of bounds only if the in-memory

metadata propagated up to that access statically indicates the safety of the operation.

The formal proof of CCured [16] shows it is safe to leave memory accesses uninstru­

mented, and the same proof also applies in our case to statically-provable Sequence

pointers accesses.

3In Section 2.3.1, we define two types as “incompatible” when, for example, they have different levels
of indirection or have same level of indirection but different root types.

43

Dynamic Bounds Checks. The bounds checking operational rules are very

similar to those of SoftBound, so we will omit most of them for brevity. We present

here the rules for the evaluation of a pointer dereference operation, both in case of

success:
(E, lhs) ⇒l l : t∗

read (E.M) l = some v(sl,sh)
safe(l) ∨ (sl ≥ 0 ∧ sh ≥ sizeof(t))

DerefSuccess
(E, ∗lhs) ⇒l v : t

and in the case of memory error (failed bounds check):

(E, lhs) ⇒l l : t∗

read (E.M) l = some v(sl,sh)

sl < 0 ∨ sh < sizeof(t)

DerefFail

(E, ∗lhs) ⇒l MemoryError : t

Other rules, such as those for type casts and pointer arithmetic, need to ensure

that metadata information is propagated correctly:

(E, ptr) ⇒r (E
/, l(sl,sh) : p∗)

(E /, val) ⇒r (E
//, off(sl',sh') : int)

l/ = l + off ∗ sizeof(p)

sl/ = sl + off ∗ sizeof(p)

sh/ = sh − off ∗ sizeof(p)

PtrArithm
(E, ptr + val) ⇒r (E

/, l/ : p∗)(sl',sh')

(E, rhs) ⇒r (E
/, v(sl,sh) : t)

t/ = int
TypeCast

(E, (t/)rhs) ⇒r (E
/, v(sl,sh) : t/)

For the formal rule for integer-to-pointer cast, we follow SoftBound’s approach of

zeroing out the metadata to avoid potentially undefined behaviors:

(E, rhs) ⇒r (E
/, v(sl,sh) : t)

t = int

(sl/, sh/) = (0, 0)

TypeCastIntToPtr
(E, (t/)rhs) ⇒r (E

/, v(sl',sh') : t/)

With this support infrastructure of rules in place, we note that the operational

rules for values that are valid at runtime and need runtime bounds checks are fully

equivalent to their corresponding rules in SoftBound’s formal model [17]. Therefore,

44

they satisfy the same safety invariants and ensure memory safety for those values, as

proven for SoftBound (in Theorems 4.1 and 4.2, and Corollary 4.1 in [17]).

While adding bounds checks to every memory access is surely sound, as shown

by the proof in SoftBound, by combining the latter with the proof in CCured we im­

prove the performance overhead by removing unnecessary checks while still remaining

sound. Thus, given the operational semantics rules above, every memory access in

nesCheck is either safe at runtime – resulting in a correct access – or causes the ap­

plication to stop – due to a detected memory error. Therefore, the nesC applications

analyzed and instrumented by nesCheck fulfill the set memory safety goals.

2.8 Related Work

Memory safety is an ongoing research topic [78]. Attacks to WSN software

through memory vulnerabilities have been widely investigated. Against common be­

lief that Harvard-architecture devices would prevent code injection attacks, Francillon

et al. [50] showed a detailed exploit for code injection without size limitation through

carefully crafted network packets. Giannetsos et al. carried out a similar study [51],

targeting Von Neumann-architecture devices. These two works cover most common

architectures for WSNs, able to exploit, for example, both MicaZ and TelosB motes.

From the defense point of view, research work has typically taken three different

directions: runtime protection, formal analysis and symbolic execution. nesCheck

uses an approach that enhances the runtime protection class of mechanisms with

static analysis techniques. Note that all related work mostly focuses on either spatial

or temporal safety, since addressing both in a same technique is too complex.

Runtime protection. Necula et al. introduce an extended type system for

CCured [16]. CCured uses pointer classification as a static analysis technique to infer

safe pointers that do not need bounds checks; however, it instruments all non-safe

pointers in the code with runtime checks, potentially generating many unnecessary

checks. nesCheck overcomes this issue by leveraging more extensive static analysis

45

techniques to conservatively detect whether some of the sequence pointers can be left

unchecked too, as well as detecting statically-recognizable memory violations.

SoftBound [17] is a compile-time approach that instruments C code to enforce

spatial memory safety by (i) keeping track of the properties of each the pointed

memory area, and (ii) wrapping each memory access instruction with a bounds check.

This approach was designed for desktop system and not embedded devices. While

nesCheck too leverages dynamic runtime checking to enforce memory safety, it tailors

and optimizes this approach to the specific characteristics of nesC applications in

order to improve performance.

Compared to the notable solutions just discussed, as well as other traditional

ones, nesCheck works for embedded software, being designed specifically for their

constraints, challenges, and advantages.

One of the most relevant approaches for memory protection in WSN applications

– and TinyOS in particular – is Safe TinyOS [18]. Cooprider et al. investigate

issues related to the implementation of memory protection for TinyOS programs by

formalizing the problem and the requirements, and developing optimizations that

make runtime checks more viable under the strict performance constraints of WSN

software. Safe TinyOS relies on the Deputy source-to-source compiler [79] to infer

necessary information for the code instrumentation4 . Safe TinyOS, however, puts

much of the analysis burden on the programmers, requiring them to either annotate

the code with specific type definitions and safety guidelines, or to declare entire

components as “trusted” and therefore skipped by the tool. nesCheck, on the other

hand, automates the entire process, with no need for source code modifications. Also,

nesCheck reduces the potential runtime overhead by removing unnecessary checks

before the instrumentation.

Formal analysis. Bucur et al. [68] propose a source-to-source transformation tool

to make TinyOS code processable by the CBMC [80] bounded model checking [76]

proving tool. The well-known limitations of formal verification, in particular the

4The Deputy project, however, is no longer maintained.

46

search space explosion, are inherited by this approach too. Even though Bucur et

al. propose several optimizations to reduce the complexity to be handled, large-scale

applications can still suffer by long times for analysis and potential undecidability if

the state becomes too big to be handled.

Symbolic execution. Sasnauskas et al. [70] build an approach on top of the

Klee symbolic execution framework to debug TinyOS applications before deployment.

Just like for the formal analysis-based approaches, the bottlenecks for these designs

are: (i) the need for a good model definition of the application to be tested, and

(ii) the rapid explosion of the search state. If either part of the design results in

a non-complete coverage of every possible vulnerability, then not all the bugs can

be effectively identified. Conversely, since nesCheck leverages runtime checks for all

the memory accesses that cannot be statically proven as safe, in a conservative way,

nesCheck is guaranteed to always catch all the potential vulnerabilities and prevent

memory corruption.

Hardware. Not belonging to any of the three categories of defense research

directions, Francillon et al. [52] propose a hardware modification to split the stack

in a control flow stack and a data stack. While this is an interesting idea, it would

require hardware manufacturers to change the platform (an economically burdensome

path unlikely to be pursuable). nesCheck’s software-only approach does not require

changes to the hardware platform, nor to the source code.

2.9 Summary

This chapter presented nesCheck, a novel approach that combines whole-program

static analysis and dynamic checking techniques to efficiently enforce memory safety

on nesC programs, without requiring any source modification. Among the contri­

butions of this work, we design an inter-procedural whole-program static analysis

mechanism – based on type tracking and pointer usage and without the need for pro­

grammer annotations – and a dynamic instrumentation technique for efficient mem­

47

ory safety enforcement on highly constrained embedded platforms, without MMU or

kernel/user space separation.

Even with efficient techniques, memory protection comes with a performance cost.

Therefore, it is important to strategically plan which devices it is more critical to

protect, as well as allocate any additional security resource accordingly. We address

this problem in the work presented in the next chapter.

48

3 STRATEGIC ALLOCATION OF SECURITY RESOURCES FOR IOT

The technique presented in the previous chapter provided hardening to the individ­

ual sensor nodes from the point of view of memory safety. It is however critical that

an effective security infrastructure be adopted throughout the whole network, con­

sidering the available security resources and existing protection level of each node.

An important requirement for such an infrastructure is to carefully address resource

efficiency, due to constrained resources. Its cost would in fact outweigh the low cost

of IoT technologies. From these observations it follows that, besides effectiveness,

efficiency is a main goal driving the design of an IoT security infrastructure. Effi­

ciency, as well as effectiveness, depends on the choice of the security resources (IDS,

special hardware, additional devices, etc), and how they are allocated in the system

of interest. Among all possible resource allocation plans, some are more efficient – as

they require a lower amount of energy consumption and/or entail a cheaper cost in

terms of additional equipment, while other plans are more effective – because harder

to be evaded by the attackers. In the work presented in this chapter, we focus on the

problem of effectively and efficiently securing IoT networks, and propose a method to

compute a resource allocation plan as a Pareto-optimal solution. We start from the

assumption that, for each available security resource, we can estimate its installation

cost and its average energy consumption at operating speed. We can thus estimate

the efficiency of an allocation plan, based on the total energy consumption of the

security infrastructure and the costs of its components. To measure the effectiveness

of an allocation plan we use two metrics, namely risk and criticality. The former

is defined as the maximum number of network nodes that are no longer protected

when an attacker succeeds in taking down at least one security resource. The lat­

ter is a measure of how critical certain nodes are for the correct operation of the

network. We identify a set of heuristics for computing the criticality value of each

49

node of the IoT network of interest. We model the interaction between attacker and

defender as a Stackelberg leadership model in which the leader (the defender) moves

before the follower (the attacker) [81]. We show how to compute a Pareto-optimal

defender strategy (resource allocation plan) in two steps. First, among all possible

allocation plans, we compute the subset of the Pareto-optimal plans, as the solutions

of a three-objective optimization problem, which minimize (i) the total energy con­

sumption, (ii) the installation cost, and (iii) the maximum criticality. In the second

step, we select the plan, among those identified in the previous step, which minimizes

the risk – as the solution of a single-objective optimization problem. The resulting

defender strategy is efficiency-optimal because entails the lowest energy consump­

tion and the cheapest installation cost, while its effectiveness lies in the fact that

the number of security resources an attacker needs to take down is maximized – and

consequently, the probability of a successful attack is reduced. We have implemented

our algorithms and tested them with different network topologies. Our results show

that the proposed algorithm provides security infrastructure options for IoT networks

that represent different combinations of energy consumption, cost, and probability of

successful attacks.

The framework provides the following main features:

•	 the formalization of a process that is critical and often done in an ad-hoc manner

by administrators;

•	 a method for computing the best defender strategy, that gives to security man­

agers the possibility to choose the resource allocation plan that best fits their

efficiency and effectiveness requirements;

•	 the formulation of the defender’s problem as a linear optimization problem;

•	 a heuristic for the formalization of the equations that define the IoT scenario

and the security goals;

• measures to formalize efficiency and effectiveness of the defender strategy.

50

3.1 Threat Model

While our approach is independent from the actual attack, we assume that the

attacker can take any of the steps commonly used to carry out attacks, such as phys­

ically tampering with the network nodes, capturing and reprogramming legitimate

nodes and security resources, and adding malicious entities to the network to over­

hear data communications, inject false data and control traffic, intercept and drop

data packets, introduce interference, claim multiple identities, and more. We further

assume that the attacker must compromise at least one security resource to carry

out an attack, is aware of the defense strategy, and smartly targets the most critical

security resource.

3.2 Security Model and Definitions

The goal of the defender is to secure the network. To do so, the defender needs

to choose a set of security resources among the available ones, and decide where

to deploy them in the network area for securing all the network nodes. Due to

the heterogeneity of IoT systems, there are different kinds of security resources the

defender may have to use. Intrusion detection systems [26] as well as attack prevention

systems [82] can be installed on network nodes to, respectively, detect ongoing, and

prevent future attacks; physical tools, like directional antennas and highly sensitive

transceivers [83, 84] can be installed on watchdogs nodes, thus enabling these nodes

to better control other nodes [85]; nodes with tamper resistant hardware can replace

normal network nodes in order to strengthen the network [86]; nodes with specialized

hardware can be used to implement specific security techniques [87, 88]; additional

nodes can be deployed at specific locations in the network with the sole purpose of

executing security tasks [85].

51

3.2.1 Basic Concepts and Notation

Here we introduce the basic concepts and notations that help us to formalize the

IoT environment and the security requisites for the defender.

Definition 3.2.1 (security resource) A security resource is a tuple

sr = (c, e, t, loc), where:

•	 c is the cost;

•	 e is the energy consumption;

•	 t is the resource’s type;

•	 loc is the location.1

Definition 3.2.2 (network) A network is an undirected graph N = (V, E), where:

•	 V = {(e, loc, cr) : e is the node energy consumption, loc is the node location,

and cr is the criticality value} is the set of network nodes;

•	 E = {{v1, v2} : v1 is in the communication range of v2, and vice versa, and

v1, v2 ∈ V } is the set of links.

We define a network as an undirected graph given the physical-based topology

(inferred by the communication range of network nodes), different from the routing-

based topology (always a sub-graph of the physical one), regardless of routing protocol

and direction of the links. The notation v.x and sr.y denotes attributes x of node v

and y of resource sr. Given a network N and a set of security resources R, we define:

•	 a resource allocation plan AP for N as a subset of R, AP ⊆ R;

• AP as the set of all possible resource allocation plans for N ;

1The attribute loc in Definition 3.2.1 helps us to simplify the formalization of the linear programs
we show hereafter. The basic idea is the following: given that in the network area there are many

∗locations where a security resource can be placed, for each resource sr we assume to have sr1, . . . srn
∗resources, one for each location where sr can be located.

52

•	 the criticality of a network node n ∈ N as the measure of its relevance for the

correct function of the network;

•	 function crit : R×AP × N → N as the criticality associated with a security re­

source sr; given an allocation plan AP ∈ AP and a network N , crit(sr, AP, N)

returns the maximum criticality value over the set of nodes of N that are not

any longer protected if sr stops working and no other security resource sr/ ∈ AP

covers them;

•	 function risk : R × AP × N → N as the risk associated with a resource sr;

given an allocation plan AP ∈ AP and a network N , risk(sr, AP, N) returns

the number of nodes of N that are not any longer protected if sr stops working

and no other security resource sr/ ∈ AP covers them.

•	 the function Neighbors : V → 2V ,

such that Neighbors(v) = {v/ : {v, v/} ∈ E};

•	 the function Edges : V → 2E ,

such that Edges(v) = {{v, v/} : v/ ∈ Neighbors(v)};

•	 the set of locations as L = LV ∪ LA , where LV is the set of locations taken

by each v ∈ V , and LA is the set of all other available locations in the network

area;

•	 the function Res : 2L → 2R, such that, given a set of locations X, Res(X) =

{sr : sr.loc ∈ X}, i.e., the resources that can be placed on locations of X;

•	 the domain of a security resource sr as the set of locations that are in the action

range of sr, i.e., the portion of network area covered by sr;

•	 the function Dom : R → 2L, such that Dom(sr) returns the set of locations

that belong to the domain of sr;

•	 T = {sr.t : sr ∈ R} as the set of security resources types.

53

Example 1 Figure 3.1 shows a network with 7 nodes protected by two security re­

sources sr1 and sr2. The main square which contains the network represents the

network area. Security resources can be deployed in the locations of the network area,

represented by internals dotted squares. The dashed circles denote the action range of

the security resources. The number associated to each node denotes both the critical­

ity value and the node id. If one of the two security resources stops working, the set

of nodes left without protection is S1 = {1, 4, 5} for sr1, and S2 = {2, 3, 6} for sr2.

The node with maximum criticality in S1 is node 5, while in S2 is node 6. The crit­

icality and risk values of the two security resources, thus, are: crit(sr1, AP, N) = 5,

crit(sr2, AP, N) = 6, and risk(sr1, AP, N) = risk(sr2, AP, N) = |S1 |= |S2 |= 3, with

AP = {sr1, sr2}. Furthermore, we have that:

•	 Neighbors(1) = {4, 7}, Neighbors(2) = {3, 7}, . . .;

•	 Edges(1)={{1, 4}, {1, 7}}, Edges(2)={{2, 7}, {2, 3}}, . . .;

• L = {(x1, x2) : x1, x2 ∈ {A, B, C, D, E, F, G}};

•	 LV = {(B, B), (B, D), (D, B), (D, D), (D, F), . . .};

•	 LA = L \LV ;

•	 Res((C, C)) = {sr1}, Res((E, E)) = {sr2},

Res((C, C), (E, E)) = {sr1, sr2};

•	 Dom(sr1) = {(x1, x2) : x1, x2 ∈ {B, C, D}},

Dom(sr2) = {(x1, x2) : x1, x2 ∈ {D, E, F }}.

The idea behind the notion of risk lies in the fact that the minimization of the

maximum risk restricts the operating range of the attacker, in case (s)he manages

to compromise a security resource. Thus, (s)he probably will need to compromise

more than one resource in order to carry out the attack. For instance, during a sybil

attack [89] on a wireless sensor network, a malicious node presents multiple identities

54

Figure 3.1. An example network.

to other nodes. The attack is much more effective when those identities belong to

real nodes of the network. Thus, the attacker needs to compromise a certain number

of nodes, from which to steal the identity, before the one from which to start the

attack. However, if the defender strategy is well designed, the attacker will probably

have to damage more than one security resource in order to steal a sufficient number

of identities, therefore delaying the attack and increasing the risk of being detected.

Other types of attacks, instead, need just to compromise one node. This is the case

of the black hole attack [89], in which the compromised node drops all the incoming

packets. A black hole is much more effective when the attacker chooses to compromise

a critical node, such as one with a high incoming traffic rate. In this case, a defender

strategy must provide stronger coverage for the most critical nodes, i.e., those that

are more relevant for the correct function of the network. An attacker will thus be

forced to compromise more than one resource in order to compromise the most critical

nodes.

3.2.2 Definition of Secure Network

A formal definition of secure network that matches the techniques adopted by the

security systems is crucial, since it gives the guidelines for the formalization of the

linear constraints we will use in the Pareto analysis. We can classify security systems

55

into two main categories: detection and prevention systems. Those categories corre­

spond to two different security policies: (i) node/link monitoring, and (ii) node/link

hardening. As an example of link monitoring we mention the IoT IDS by Raza et

al. [26], which checks the link quality for the detection of network layer and routing

attacks, and the Liteworp system [90] that uses guard nodes as a countermeasure

for wormhole attacks in WSNs. We would like also to mention Dataguard [91] as an

example of node monitoring based on a code attestation technique to check the pres­

ence of malicious code in the memory of network nodes. Titan [86] is an example of

a security architecture for hardening tiny devices with a hardware-assisted dynamic

root of trust. The encryption key management scheme by Eschenauer et al. [92], to

harden links among nodes neighbors, is an example of link hardening. According to

those two security policies, we derive the definition of secure network.

Definition 3.2.3 (secure link) A link {v,v’} is secure if at least one of the follow­

ing conditions holds:

(σ) both nodes v and v’ are in the communication range of the same watchdog;

(γ) both nodes v and v’ can establish a secure communication channel.

Definition 3.2.4 (secure node) A node v is secure if at least one of the following

conditions holds:

(α) v is tamper resistant;

(β) every link that involves v is secure.

In condition (α) the term tamper resistant means that the node is equipped with

a security tool that makes it inaccessible to attackers wishing to compromise it. In

other words, Definition 3.2.4 states that the correct functioning of a node can be guar­

anteed by avoiding malicious code injection, or by monitoring/strengthening the links

connecting to the other nodes. In Definition 3.2.3, a watchdog [29] is a security re­

source that monitors network nodes behavior. Past approaches to intrusion detection

56

use watchdogs for overhearing in/out-coming traffic of neighbors nodes, performing

code attestation, checking the signal strength, etc. Conditions (α) and (γ) capture

the policy adopted by prevention systems (node/link hardening), while conditions (β)

and (σ) the policy adopted by detection systems (node/link monitoring).

We can now define a network N = (V, E) as secure if each node v ∈ V is secure,

according to Definition 3.2.4.

3.3 Players’ Strategy

In this section, we define the concept of “strategy” for the defender and the at­

tacker. Their interaction is modeled as a Stackelberg game [81]. In such a game the

defender plays the leader and makes the first move by installing a security infras­

tructure AP . The attacker plays the follower by trying to compromise one or more

security resources sr ∈ AP , so that the attack can be carried out on the nodes that

are no longer protected by the damaged security resources.

3.3.1 Defender’s Strategy

The defender strategy consists of a security resource allocation plan. Given that

each security resource entails an installation cost and some energy consumption, the

best resource allocation plan for the defender is the one that provides a reasonable

balance between efficiency, in terms of energy consumption and cost, and effectiveness,

in terms of maximum risk and maximum criticality. The best plan is computed in two

steps. In the first step we perform a Pareto analysis which solves the optimization

problem defined by the following equation:

min {ec(AP), tc(AP), max crit(sr, AP, N)} (3.1)
AP ∈AP sr∈AP

where ec(AP) and tc(AP) denote the total energy consumption and the total cost of

the allocation plan AP , respectively, and maxsr∈AP crit(sr, AP, N) is the maximum

57

criticality value over the set of nodes of N that are no longer protected when one

resource in AP stops working. The Pareto analysis consists in computing a set of

Pareto points p = (ec, tc, cr), that we refer to as Pareto curve. Each point corre­

sponds to a set of allocation plans, i.e., all the plans (strategies) that have an energy

consumption, a total cost, and a maximum criticality equal to the values of ec, tc and

cr, respectively. Then, we choose the point p+ whose values best fit our efficiency

and criticality requirements. In the second step we compute the best allocation plan

(best defender strategy), by solving the optimization problem defined by the following

equation:

min { max risk(sr, AP, N)} (3.2)
AP ∈AP + sr∈AP

where AP + ⊆ AP is the set of allocation plans that entail an energy consumption,

a cost, and a maximum criticality as the values of the Pareto point p+ chosen in the

previous step; and maxsr∈AP risk(sr, AP, N) is the maximum number of nodes of N

that remain unprotected when a security resource in AP stops working.

3.3.2 Attacker’s Strategy

We assume that an attacker needs to compromise at least one security resource in

order to carry out an attack. In fact, whatever is the attack, an attacker always needs

to first open a breach in the security, before attacking the system. We address the

worst case attacker, that is the one who knows the defenders strategy AP , and plays

her/his best strategy, i.e., chooses to compromise the security resource that maximizes

the risk (i.e., leaves unprotected the maximum number of nodes), the criticality (i.e.,

leaves unprotected the most critical nodes), or a combination of both. An attacker

strategy is represented by a security resource sr ∈ AP . The best attacker strategy is

defined as follows:

sr ∗ = max α · risk(sr, AP, N) + β · crit(sr, AP, N), α + β = 1 (3.3)
sr∈AP

58

3.4 Computing the Defender’s Strategy

In this section we first introduce a heuristic for computing node’s criticality, then

we briefly survey the concept of Pareto analysis. Finally we describe the two steps

for computing the optimal defender strategy.

3.4.1 Computing Node’s Criticality

Computing the criticality of each node is a key aspect of our approach. The

more accurately we identify the “relevance” of each node for the correct function

of the network, the better the defender strategy works. Due to the heterogeneous

nature of IoT devices and IoT networks, it is not possible to design a general method

for computing nodes criticality which work well for all IoT scenarios. Rather, we

encourage network administrators to follow an ad-hoc approach for each specific case.

However, we propose a two-steps approach to determine criticality, that we believe

can be adopted for the majority of the existent IoT scenarios. The first step assigns a

criticality value to each node based on the rate of their in/out-going traffic. Nodes that

are more fundamental for the correct propagation of data will have higher criticality.

The criticality values are then normalized across all the nodes. This information

can be automatically collected by means of actual traffic analysis – if the network

has already been deployed – or through simulations of data communications on the

topology and chosen protocol – if the network is still in its design stage. In the second

step the network administrators can tune any criticality value by either (i) overriding

the computed value with a new, custom one, or (ii) by specifying “multipliers” for

specific areas of the network, to be applied to all the nodes located in that area. The

second step is not required. However our two-step approach helps in characterizing

the network in the best possible way by leveraging the administrator’s knowledge of

the intrinsics of the network and its functionality, while still automating most of the

activities for characterizing the node criticality.

59

Our two-steps approach is well suited to many IoT scenarios. First of all, the

correct transmission of data is often at the core of the security goal. In these cases

the first step of our approach properly addresses the needs to distinguish nodes basing

on their in/out-going traffic rate. Second, many IoT networks are designed with a

hierarchical structure, thus some nodes need to be considered at a different level of

criticality with respect to the other ones. Is the case of cluster-heads in cluster-based

network topologies, that are responsible of the correct functioning of nodes belonging

to their cluster. Or else, in a home IoT environment it is often the case that external

attackers launch attacks trough the router linking the IoT network with the Internet.

In such cases it is mandatory to assign the highest criticality value to the router,

which represent an access point for intruders.

3.4.2 Overview of the Pareto Analysis

Pareto analysis [93] is a classic optimization method used in situations in which

there are multiple competing objectives that must somehow be satisfied simulta­

neously. The basic idea behind Pareto optimization of three competing objective

functions φ1, φ2 and φ3 subject to a set C of constraints is as follows. Suppose that
/ / /σ = (x1, x2, x3) and σ/ = (x1, x2, x3) are two different solutions (resource allocation

plans) and suppose that φ1, φ2 and φ3 are minimization problems. We say that σ

dominates σ/, denoted σ [σ/, iff:

/ / / / / /(x1 ≤ x ∧ x2 ≤ x ∧ x3 ≤ x3) ∧ (x1 < x ∨ x2 < x ∨ x3 < x3)1 2 1 2

A solution σ is said to be Pareto optimal w.r.t. a set of minimization problems Φ,

and constraints C if and only if there is no solution σ/ = σ such that σ/ [σ. We use

Pareto analysis to solve the optimization problem defined by Equation 3.1 in order

to find a compromise strategy. The main point of this method is the computation of

the Pareto curve (see [93]).

60

3.4.3	 First Step: Pareto Analysis for the Defender

To perform our Pareto analysis, let

P = {(ec(AP), tc(AP), max crit(sr, AP, N))|AP ∈ AP}
sr∈AP

be the set of all possible values for our three objectives.

Definition 3.4.1 (Pareto curve) The Pareto curve PC for the three-objective op­

timization problem defined by Equation 3.1 is the set {(a, b, c) | (a, b, c) ∈ P and

�(a/, b/, c/) such that (a/, b/, c/) [(a, b, c)}.

ALGORITHM 2:

Function(ComputePC (minCR,maxCR)) X = ∅;
for cr = minCR − 1, . . . , maxCR do

tc ← getT C(∞, cr);
while (tc = null) do

ec ← getEC(tc, cr);
X ← X ∪ (ec, tc, cr);
tc ← getT C(ec, cr);

return Pareto-optimal points in X;

where:

getEC(tc, cr) = min ec(AP)
AP ∈ AP

tc(AP) ≤ tc

maxsr∈AP crit(sr, AP, N) ≤ cr

getT C(ec, cr) = min tc(AP)
AP ∈ AP

ec(AP) < ec

maxsr∈AP crit(sr, AP, N) ≤ cr

Algorithm 1 computes the Pareto curve of the three-objective optimization prob­

lem defined by Equation 3.1. More specifically, by fixing each possible value of criti­

cality cr (Line 3), the algorithm computes the set X of points p = (ec, tc, cr) (Lines

4-9), where ec and tc are the total energy consumption and the total cost, respectively.

The first step is to compute the minimum total cost without considering the energy

consumption (Line 4). This optimization is performed by the function getTC, and the

61

Figure 3.2. An example of Pareto curve.

value is assigned to the variable tc. Then, given tc and cr, function getEC computes

the minimum total energy consumption ec (Line 6), and the point (ec, tc, cr) is added

to X (Line 7). Now the algorithm computes a different value of tc (Line 8). This

value is obtained by the function getTC, which minimizes the total cost by imposing

that the total energy consumption is strictly less than the one previously computed.

If such value exists, the algorithm continues to generate more points by iterating in

the while loop, otherwise it exits. Finally, in Line 11 the algorithm returns all Pareto

(non-dominated) points of X. Notice that in Line 3, we start to enumerate the values

of cr from minCR − 1, so that, as no node exists with cr < minCR, the plan being

calculated with cr = minCR − 1 provides risk = 0, i.e., each network node is covered

by at least two security resources. For allocation plans with cr = 0 it is not necessary

to perform the second optimization step, since we already know that the risk will be

also equal to 0. Figure 3.2 shows an example of Pareto curve, computed for the Pareto

analysis of one of the topologies used for our experiments, and discussed in Section

3.6. It can be noticed that no point (ec, c, cr) of the curve is dominated, according to

the definition in Section 3.4.2.

62

3.4.4 Linear Constraints for the Pareto Analysis

We formalize the set of basic constraints as follows.

Variables

•	 x1, . . . , x|R|; if resource sri belongs to AP , then xi = 1, otherwise xi = 0;

•	 z11, . . . , zr|L||R|1; if location loci ∈ Dom(srj) and srj ∈ AP , then zij = 1, other­

wise zij = 0;

•	 q1, . . . , q|V |; if loci ∈ LV belongs to the domain of no more then one security

resource, then qi = 1, otherwise qi = 0;

•	 l1, . . . , l|E|; if link ei is secure, then li = 1, otherwise li = 0.

All variables are binary. The set of basic constraints is shown in Figure 3.3.

Constraint 3.4 says that no more than one security resource can be placed on the same

location.2 Constraint 3.5 says that variable zij is assigned value 1 if srj ∈ AP and

loci ∈ Dom(srj). Constraints 3.6 and 3.7 capture the fact that, if a location loci ∈ LV

is guarded by no more than one security resource, then qi = 1, otherwise qi = 0. Here,

M is a constant big enough to satisfy the constraints for all values of qi and the lhs of

the equation (any integer greater than R). Variables qi are used to compute the risk

and the criticality associated with each resource sr ∈ AP . Constraint 3.8 captures

the definition of secure node, according to which a node is secure if conditions (α) or
(β) of Definition 3.2.4 hold, i.e., expressions	 xj or ci, respectively, srj ∈Res(vi.loc):srj ∈T1

equal 1. The value of variable ci is computed by constraints 3.9 and 3.10, and it has

value equal to 1 if all links belonging to Edges(vi) are secure, otherwise it is equal

to 0. The definition of secure link is captured by Constraint(s) 3.11, according to

which a link is secure (lk = 1) if conditions (σ) or (γ) of Definition 3.2.3 hold, i.e.,

variables ak or bk equal 1. The values of these variables are computed by Constraints

2Constraint 3.4 does not bear any loss of generality since a security resource can implement more
than one security function.

63

∀locj ∈ L (3.4)sri∈Res(locj) xi ≤ 1,

zij = xj , ∀srj ∈ R, ∀loci ∈ Dom(srj) (3.5)

· (1 − qi), ∀loci ∈ LV (3.6)srj :loci∈Dom(srj) zij ≤ qi + M

∀loci ∈ LV (3.7)srj :loci∈Dom(srj) zij ≥ 2 − qi,

xj + ci ≥ 1, ∀vi ∈ V (3.8)srj ∈Res(vi.loc):srj .t∈Tα

lk < ci + |Neighbors(vi)|, ∀vi ∈ V (3.9)ek∈Edges(vi)

lk ≥ ci · |Neighbors(vi)|, ∀vi ∈ V (3.10)ek ∈Edges(vi)

lk ≥ ak, lk ≥ bk, lk ≤ ak + bk, ∀ek ∈ E (3.11)

srj :{v.loc,v ' .loc}∈Dom(srj)∧srj .t∈Tσ
dkj ≥ ak, ∀{v, v/}k ∈ E (3.12)

ak ≥ dkj , ∀{v, v/}k ∈ E, ∀srj : {v.loc, v/.loc} ∈ Dom(srj) ∧ srj .t ∈ Tσ

(3.13)

loci∈{v.loc,v ' .loc} zij ≥ 2dkj ,
(3.14)∀{v, v/}k ∈ E, ∀srj : {v.loc, v/.loc} ∈ Dom(srj) ∧ srj .t ∈ Tσ

loci∈{v.loc,v ' .loc} zij < dkj + 2,
(3.15)∀{v, v/}k ∈ E, ∀srj : {v.loc, v/.loc} ∈ Dom(srj) ∧ srj .t ∈ Tσ

loci∈{v.loc,v ' .loc} zij ≥ 2bk,
(3.16)∀{v, v/}k ∈ E, ∀srj : {v.loc, v/.loc} ∈ Dom(srj) ∧ srj .t ∈ Tγ

loci∈{v.loc,v ' .loc} zij < bk + 2,
(3.17)∀{v, v/}k ∈ E, ∀srj : {v.loc, v/.loc} ∈ Dom(srj) ∧ srj .t ∈ Tγ

zij + qi ≤ 1, ∀loci ∈ LV , ∀srj ∈ R : srj .t ∈ Tα ∧ srj .loc = loci (3.18)

∀loci ∈ L (3.19)srj :loci∈Dom(srj) zij ≥ 1,

Figure 3.3. Basic constraints.

3.12-3.15 and 3.16-3.17, respectively. Constraint 3.18 says that for tamper resistant

nodes the variable qi is forced to 0, i.e., it does not affect the risk and criticality

values of the allocation plan is being computed. Finally, Constraint 3.19 says that

each location has to belong to the domain of at least one security resource in AP .

This last constraint is fundamental because it addresses the dynamic characteristic of

IoT networks. In an IoT environment, as new devices can enter and leave the network

http:3.16-3.17
http:3.12-3.15

�

�

64

getEC(tc, cr) = minimize sri.e · xi
sri∈R

subject to: basic constraints, and

sri.c · xi ≤ tc (3.20)
sri∈R

vi.cr · qi ≤ cr ∀vi ∈ V (3.21)

Figure 3.4. Linear program for computing the minimum energy consumption.

area, it is important to monitor all locations where any new device can move over time.

When this happens, we are sure to have at least one security resource monitoring its

location. We emphasize that the concept of dynamic topology we refer to is different

from the concept of mobility. In our network model it is expected that the nodes

are static, and that the topology changes due to the (dis)appearance of nodes. For

mobile device scenarios a different approach to resource allocation should be adopted.

In Constraints 3.8 and 3.14-3.18 the symbols Tα, Tσ and Tγ are subset of T , the set of

security resource types. In particular, Tα is the set of types of security resources that

make a node tamper resistant, Tσ is the set of types of security resources that behave

as watchdogs, and Tγ is the set of types of security resources that make a node able

to establish a security communication channel with its neighbors. In Section 3.5 we

implement the proposed method for two real-case IoT scenarios where we show how

to compute such sets.

The basic constraints shown in Figure 3.3 capture the dependencies between the

variables in the integer linear programs shown in Figures 3.4, 3.5 and 3.6. The

objective function of the formulation in Figure 3.4 says that we want to minimize the

total energy consumption of the security infrastructure. Constraint 3.20 says that the

total cost must be lower or equal to tc, and Constraint 3.21 says that the criticality

value of the nodes protected by no more than one security resource, must not exceed

cr. The objective function of the linear program in Figure 3.5 minimizes the total

http:3.14-3.18

�

�

65

getT C(ec, cr) = minimize sri.c · xi
sri∈R

subject to: basic constraints, and

sri.e · xi < ec (3.22)
sri∈R

vi.cr · qi ≤ cr ∀vi ∈ V (3.23)

Figure 3.5. Linear program for computing the minimum cost.

cost of the set of security resources. Constraint 3.22 imposes that the total energy

consumption be strictly less than ec, while Constraint 3.23 is equal to Constraint

3.21.

3.4.5 Second Step: Best Defender Strategy

Once we have computed the Pareto curve PC, we can choose the point p+ =

(ec+, tc+, cr+) ∈ PC closest to our requirements of energy consumption, cost, and

criticality. p+ identifies the set AP + of different allocation plans that have an energy

consumption equal to ec+, a cost equal to tc+, and a criticality value equal to cr+ .

Among all plans in AP + we choose the one which minimizes the risk, i.e., the max­

imum number of unprotected nodes an attacker can exploit after compromising one

security resource. To do that, we solve the optimization problem defined by Equation

3.2, and formalized as shown in Figure 3.6. The intuition behind constraint 3.24 is

that instead of bounding the risk associated with each security resource sr ∈ AP

on the right-hand side of this constraint, we set it to an unknown value h and then

require the objective function to minimize h. Here, M is a constant big enough to

ensure the satisfaction of the equation for all values of qi and xj (any integer greater

than |V |). Constraints 3.25, 3.26 and 3.27 impose that the allocation plan must be

66

getR(ec, tc, cr) = minimize h

subject to: basic constraints, and

(
�

qi) − (1 − xj) · M ≤ h ∀srj ∈ R (3.24)
loci∈{Dom(srj)∩LV } �

sri.e · xi ≤ ec (3.25)
sri∈R �

sri.c · xi ≤ tc (3.26)
sri∈R

vi.cr · qi ≤ cr ∀vi ∈ V (3.27)

h ≥ 0 (3.28)

Figure 3.6. Linear program for computing the minimum risk.

computed so to have an energy consumption, a cost and a criticality value not greater

than ec, tc and cr, respectively.

3.5 Examples of Real Case Scenarios

In this section we show how to implement the proposed approach for two real case

IoT scenarios. The cases we address here are: (1) a wireless sensor network exposed

to several kinds of attacks; and (2) a domestic IoT environment exposed to jamming

attacks [89], according to which an adversary conducts radio interference on the links,

in order to partially or entirely disrupt a node’s signal.

Case 1. To make sure to counteract different kinds of attacks, the defender

should secure both nodes and links. Suppose that the available security tools are:

an intrusion detection system (IDS), a highly sensitive transceiver (HST)3, and a

tamper resistant sensor node (TRN). The defender can use tamper resistant sensor

nodes in place of normal nodes (node hardening), in order to prevent the attacker

from having free access to node’s memory, and install an IDS on (additional) sensor

3A HST increases the device’s communication range, so it can interact with more network nodes.

67

nodes for detecting and stopping ongoing attacks (link/node monitoring). Overall,

the defender has available 6 types of security resources as a combination of a set of

security tools and a (additional) sensor node:

1.	 an IDS installed on a network node;

2.	 an IDS installed on a network node equipped with a HST;

3.	 a TRN to put in place of a network node;

4.	 an IDS installed on a TRN to put in place of a network node;

5.	 an IDS installed on an additional node to deploy in the network area;

6.	 an IDS installed on an additional node equipped with a HST to deploy in the

network area;

The defender assigns to the nodes a criticality value based on the amount of their

in/out-going traffic. For this scenario we have that: T = {1, 2, . . . 6}; for each security

resource sr such that sr.t ∈ T / = {1, 2, 3, 4}, sr.loc ∈ LV ; for each security resource

sr such that sr.t ∈ T // = {5, 6}, sr.loc ∈ LA; R = T / × LV ∪ T // × LA; Tα = {3, 4},

Tσ = {1, 2, 4, 5, 6} and Tγ = ∅.

Case 2. In the majority of cases a jammer is an attacker that uses its own

device for disrupting nodes signal. The defender thus chooses to adopt the link

monitoring technique to detect the attack. The IoT devices used in this scenario

are not user-programmable; thus, the defender can only adopt additional devices for

security purposes (security resources of type 5 and 6 of the list of Case 1). The node’s

criticality is assigned customly. For this scenario we have that: T = {5, 6}; for each

security resource sr, sr.loc ∈ LA; R = T × LA; Tα = Tγ = ∅, Tσ = T . Notice

that here the defender is only adopting the link monitoring technique, which formally

means that conditions (α) and (γ) are false, while conditions (β) and (σ) are true.

In the linear programming formulation this is formalized as Tα = Tγ = ∅ which, in

Constraints 3.8, forces xj to be 0, and ci to be 1 ((α) = false srj ∈Res(vi.loc):srj .t∈Tα

68

Table 3.1.
Main statistics of the topologies used in the experiments, and packet
delivery rate provided by each strategy. V is the set of nodes, E is the
set of edges, S is the set of source nodes, and L is the set of locations.

Topology |V|, |E|, |S|, |L| APc

(min cost)

APec

(min energy c.)

APcr

(min crit.)

AP ∗

(best strategy)

1 - grid 10 × 10 100, 342, 10, 400 (76, 21, 10, 6)
68.1%

(56, 45, 10, 20)
0.6%

(96, 24, 1,
87%

6) (96, 24, 1, 4)
91.1%

2 - grid 10 × 5 50, 157, 7, 200 (52, 13, 2, 4)
81.1%

(32, 27, 7, 12)
53.5%

(51, 17, 1,
95.6%

4) (51, 17, 1, 3)
95.7%

3 - grid 5 × 5 25, 72, 5, 100 (28, 7, 5, 4)
19.1.6%

(18, 13, 5, 7)
13.4%

(32, 8, 1,
92.8%

3) (32, 8, 1, 2)
99.1%

4 - random 63, 147, 8, 390 (76, 21, 8, 5)
57.4%

(51, 38, 8, 9)
41%

(84, 27, 2,
84.8%

4) (84, 27, 2, 2)
95.6%

5 - random 62, 135, 7, 395 (84, 21, 6, 5)
47.3%

(47, 43, 6, 10)
79%

(80, 24, 1,
89.4%

6) (80, 24, 1, 3)
97.3%

6 - random 24, 38, 5, 183 (40, 16, 5, 3)
62.3%

(29, 24, 3, 4)
53.7%

(34, 23, 1,
79.1%

3) (34, 23, 1, 2)
90.6%

7 - random 14, 28, 4, 93 (20, 5, 4, 2)
47.9%

(14, 16, 2, 1)
54.7%

(18, 15, 1,
96.3%

1) (18, 15, 1, 1)
96.3%

8 - random 13, 21, 4, 86 (19, 9, 4, 4)
57%

(14, 14, 2, 2)
91%

(24, 10, 1,
93.6%

3) (24, 10, 1, 2)
96%

9 - random 11, 17, 3, 83 (20, 5, 1, 3)
99.9%

(11, 9, 4, 6)
58.5%

(20, 5, 1,
99.9%

3) (20, 5, 1, 3)
99.9%

Figure 3.7. Performance of the strategies for each of the cases listed in
Table 3.1. Even in an attack-free simulation, the PDR is never 100% due
to the packet drop caused by natural physical phenomena and network
operations.

and (β) = true, respectively); and in Constraints 3.11, 3.12, 3.13, 3.16 and 3.17,

forces ak to be 1 and bk to be 0 ((σ) = true and (γ) = false, respectively).

In both cases, for each security resource, the values of cost c, energy consumption

ec and communication range d, depend on the set of adopted tools, and whether

an additional node is deployed. For instance, a security resource of type 5, has

69

c = cIDS + cnode, ec = ecIDS + ecnode, d = dnode; whereas a security resource of type 2

has c = cHST + cIDS, ec = ecHST + ecIDS + ecnode, d = dHST . 4

We assume that the network topology is already known to the security adminis­

trator. There are various methods for network topology discovery and we refer the

reader to past work [94, 95]. We do not cover such methods in this chapter because

of space constraints. Concerning the security resource features, these can be eas­

ily determined from their data sheet, where average energy consumption, cost and

communication range are usually provided.

3.6 Experimental Results

In this section, we present the experimental results of our proposed framework

when applied to the attack scenario described in Case 1 of Section 3.5. The goal is

to demonstrate the importance of accounting for effectiveness metrics in the design

process of a security infrastructure, besides efficiency. We show how the effectiveness

of the best defender strategy is higher compared to any other strategy. We applied

our technique to 9 different network topologies, whose main characteristics are re­

ported in Table 3.1. For each topology, we computed four different strategies: (i)

the one which entails the minimum cost APc, (ii) the one which entails the minimum

energy consumption APec, (iii) the one which provides a reasonable balance between

cost, energy consumption and criticality (c ∗ , ec ∗ , cr ∗), namely APcr, and (iv) the best

defender strategy AP ∗ (the one which entails the minimum risk, given (c ∗ , ec ∗ , cr ∗)).

We simulated a selective forwarding attack, and measured the packet delivery rate

(PDR) of the network for the four strategies.

4For resources of type 2, the cost does not depend on the cost of the node, since this already belongs
to the network, but the same principle does not apply for the energy consumption, since together a
security tool and a sensor node become a single thing.

70

3.6.1 Settings

We implemented our framework in Java and used IBM ILOG CPLEX 12.5 to

solve the ILPs. All computations were run on an Intel Core i7-5600U CPU clocked at

2.59GHz, running Windows 8.1 64bit, with 2GB RAM available for each experiment.

To evaluate the effectiveness of the different allocation plans, we implemented the

various topologies in TinyOS [47], and carried out 10 independent simulations of 500

seconds each in the TOSSIM simulator [71]. We computed nodes criticality as integer
values, ranging from minCR = 1 to maxCR = I |V |l. Its computation was based

on the amount of data packets DP passing through a node during an attack-free

simulation of 500 seconds. More precisely, we normalized the DP value of each node

according to a scale from minCR to maxCR. Then, we assigned to source nodes the

maximum value plus one, in order to assign to these nodes the maximum degree of

security. The set of security resources R is as described in Section 3.5. We assigned

a value for cost c, average energy consumption ec and communication range d, as

follows:

• network node: cn = 2, ecn = 2, dn = 2.

• IDS: cIDS = 1, ecIDS = 2;

• TRN: cT RN = 7, ecT RN = 3;

• HST: cHST = 5, ecHST = 3, dHST = 5.

The values above were assigned so as to reflect real relative differences of cost,

energy consumption, and communication range between them. Overall, we believe

these values to be realistic for our experimental purposes.

3.6.2 Results Analysis

We simulated a selective forwarding attack [89] (with 50% probability of dropping

packets) for 500 seconds, over the nodes no longer protected when the security resource

71

that maximizes the risk is removed from the defense strategy. Table 3.1 shows the

simulation results for each strategy and network topology. We report cost c, energy

consumption ec, maximum criticality cr and maximum risk r provided by the strategy,

in the form (c, ec, cr, r), and the PDR of the network under attack. Figure 3.7 shows

a comparison of the performances for each set of strategies, together with the PDR

of an attack-free scenario.

First of all, we note that the most efficient strategies APc and APec are not the

most effective; in fact, due to the higher value of cr and r, they provide a lower

PDR with respect to APcr and AP ∗ , i.e., the strategies computed by taking into

account effectiveness metrics too. Furthermore, we observe that the PDR is inversely

proportional to the risk and criticality values, since the more relevant and numerous

the unprotected nodes are, the more the lost data packets are. In more detail, in

Case 1 APcr and AP ∗ provide the same criticality, but AP ∗ entails a lower risk and,

as a consequence, a higher PDR. In Case 2, we observe that APc and APcr provide

the same risk, but APc entails a lower PDR since its criticality is higher. In Case 7,

we have that APcr and AP ∗ are exactly the same, because the set of strategies with

cr = 1 has cardinality 1, i.e., there exist only one strategy and, consequently, it is

also the best one. In Case 9, we have that the cheapest strategy APc is also the best

strategy for cr = 1. Furthermore, notice that we always chose an APcr with criticality

greater than 0, which implies a risk greater than 0, and then be able to provide a

more meaningful comparison of the strategies. If we had chosen APcr always with

cr = 0, the risk would have also been 0, and AP ∗ would have always been exactly the

same of APcr. Overall, we note that the quality of a strategy usually increases with

the introduction of effectiveness metrics in the computation process. Hence, for all

the cases (apart case 9), APcr results in a higher PDR than APc and APec, and the

best strategy AP ∗ – the one computed by taking also into account the risk besides

efficiency and criticality – is even better than APcr. We conclude that our approach

provides a high qualitative defender strategy, for which the minimum cost is used,

and that consumes the minimum amount of energy.

72

3.7 Scalabililty

We now report some preliminary results about our current analysis on large scale

network scenarios. For space reasons we do not show all details, but we briefly survey

the method.

For large scale networks, the problem could require a large amount of time to

be solved. The time Algorithm 2 takes for computing the Pareto curve depends on

many factors: the size (number of variables) of the problem, the characteristics of

the security resources, the number of solutions (resource allocation plans) found by

the algorithm, the adopted ILP solver (for our implementation we used CPLEX [96]),

the implementation of the framework and the computational power of the machine

used for running it. The size of the problem is computed as: |R| + 2|V | + 4|E| +

|Dom(sr)|, where |R| is the number of x variables, 2|V | is the number of qsr∈R

and c variables, 4|E| is the number of l, a, b and d variables, and |Dom(sr)|sr∈R

is the number of z variables. We conducted a scalability analysis on a set of five

different network scenarios, that differ from each other for topology, set of security

resources, and ratio between locations and network nodes. Figure 3.8 shows how

the time grows w.r.t. the size of the problem. For all scenarios the set of security

resources is that described in Case 1 of Section 3.5, except for random2 and grid3

where the communication range of the HST is reduced by 20%. The ratio L/V is 4.5,

except for scenarios grid2 and grid3 where it is 2.25. We based this analysis on two

different topologies, grid and random, that are those used in most of the real world

cases.

In order to address scalability, we use an approach organized into three steps: (i)

we divide the network area into smaller sub-areas by using a clustering algorithm;

(ii) we solve in parallel the sub-problems of security configuration; and (iii) we merge

the results obtained for each sub-area. We have carried out an initial assessment of

this approach and found that, on average, the defender strategies consume +9.11%

of energy, costs +6, 83%, but reduces the risk by −8.96% of |V |, w.r.t. the strategies

73

1,0E-01

1,0E+00

1,0E+01

1,0E+02

1,0E+03

1,0E+04

0,0E+00 1,0E+04 2,0E+04 3,0E+04 4,0E+04 5,0E+04 6,0E+04 7,0E+04 8,0E+04

ti
m

e
 (

m
in

)

size (#variables)

random1

random2

grid1

grid2

grid3

35

51

62

70

84

89

33

35

51

58

74

49

81

100

121

64
81

100

121

144

169

36

49

64

81

100

Figure 3.8. How the time grows w.r.t the problem size for 5 different
network scenarios. Numbers are the network nodes.

obtained without the preliminary clustering step. For large instances our three steps

approach provides solutions with low overhead w.r.t the optimal ones, and due to the

use of parallel computing technique, in an amount of time equivalent to that needed

for a small instance.

3.8 Security Analysis

Robustness of the Security Allocation. The robustness of the final allocated

security configuration depends on the robustness of the security resources chosen and

employed by the network administrator. Nevertheless, our approach always provides

the best security resource allocation, focusing on the optimal trade-off between re­

dundancy and cost minimization.

Attacker with a Different Strategy. We assume an attacker carrying out the at­

tack that is the worst case attack for the defender, i.e., targeting the security resource

that maximizes risk, criticality, or both. In case of an attacker behaving differently

than the worst-case scenario (therefore, in some sense, less smartly), the allocation

provided by our approach will clearly be able to provide an even higher security than

that estimated at the time of the computation of the plan.

74

Attacks on Several Different Security Resources. No defender strategy is able

of protecting the network against an attacker able to compromise all security re­

sources. The strategy that best addresses such a situation is the one that delays the

attack as much as possible, by maximizing the number of security tools the attacker

needs to compromise for launching the attack. This way, the defender can hope that

the attacker will bail out because the “pre-attack” process is much too long or compli­

cated, or that (s)he will be caught while trying to compromise the security tools. The

most effective to implement such strategy is to deploy a highly redundant security

infrastructure, in order to make any attack very hard to be carried out. However,

this solution is not efficient in terms of energy consumption, and can also be quite

expensive for large-scale networks. Our approach, instead, provides the most effec­

tive solution among the most efficient ones. While this scenario is out of scope for

our work, it would be nevertheless easy to add additional redundancy on top of the

optimal plan computed, in particular around the areas of the network deemed more

important by the administrator.

3.9 Further Uses and Implementations

Our method computes the best defender strategies based on four objectives, that

are energy consumption, cost, and criticality, mutually optimized in a first phase (see

Section 3.4.3), and risk, minimized in a second phase (see Section 3.4.5). We chose

to split the optimization process in those two phases for three main reasons. First, a

Pareto analysis with more than three competing goals may require much more time,

or alternatively, a much higher computing power in order to be performed. Second,

a Pareto analysis involving less then three competing goals provides a much smaller

set of solutions, thus limiting the administrator’s decisional power. The reason is

that the definition of dominated point becomes less restrictive when the number of

dimensions decreases (see Section 3.4.2). Finally the choice to optimize criticality in

the first phase in place of risk is mainly a matter of convenience, since the range of

75

criticality values is always much smaller than the range of risk values (risk ∈ [0, |V]]),

and thus it is faster to enumerate (see Line 3 of Algorithm 2). However, there are

cases in which one or more of the four objectives do not matter for a particular

IoT scenario. For instance, in a home environment is often the case that the energy

consumption is not a metric of interest since in such small areas the electrical power

is always available. Or else, in a one-hop WSN where all nodes perform the same

sensing task, there is no criticality. Therefore the second phase is not required as

the risk can be evaluated concurrently with the other two objectives, or alternatively,

the first phase can be converted in a two-objective optimization process. The cost

might be not relevant for small-scale networks and can thus be discarded from the

analysis. Furthermore, to restrict the set of solutions of interest, and thus to speed

up the optimization process, one can impose bounds on the objectives values. For all

this cases it is easy to adapt our framework.

A further use of the proposed method is in the performance assessment of security

tools. For a given attack different detection/prevention techniques might exist for

which efficiency and effectiveness depend on some feature of the network of interest,

such as topology, mobility, routing protocol, etc. A security administrator may want

to perform a simulation to determine which IDS/IPS provides the best performance

in her(his) specific case. Our framework can also be used in research as an evaluation

tool for the comparison of new security techniques with existing ones.

3.10 Related Work

The problem of finding efficient security solutions with the help of game theory

and Pareto analysis has been extensively considered in the domain of computer net­

works [20, 21, 25]. Other work focuses on securing the physical layer from eavesdrop­

ping and jamming attacks. In such previous approaches, players include attackers,

non malicious users, and the layer itself (with its access control policy). These games

are largely based on performance indexes of the physical layer, and the main goal is to

76

optimize these performance indexes. Approaches in [22,23] use game-theory to study

jamming attacks, while the approach in [24] uses Stackelberg games [81] to model

the interaction between defender and eavesdroppers. We like also to mention [97,98]

as typical examples of game theory and Pareto analysis applied to IoT scenarios.

The approach in [97] investigates sensor networks in which an attacker can physically

capture, replicate the nodes, and deploy sensors into a network, and then proceed to

take over the network. A multi-player game is formalized in order to model the non­

cooperative strategic behavior between the attackers and the network. The approach

in [98] is based on a node clustering algorithm, with effective tax-based sub-carrier

allocation tailored to wireless mesh networks with QoS support. Here, Pareto analy­

sis is used for the optimal resource management. Solutions proposed in the context

of IoT have focused on efficiency, due to the small “size” of network components, in

terms of CPU, memory, and energy budget. Zhou and Chao [99] propose a media-

aware security framework for facilitating IoT applications, and provide a design rule

and strategy to achieve a good trade-off between system’s flexibility and efficiency.

Raza et al. [100] propose an IPsec extension of 6LoWPAN, and show that IPsec is a

feasible option for securing the IoT in terms of packet size, energy consumption, mem­

ory usage, and processing time. Many approaches have been proposed for computing

the criticality of graph nodes. Recent approaches target the distributed evaluation

and placement of the nodes most critical to network robustness, thus assessing node

centrality in a distributed way [101]. Marsden [102] shows empirical evidence that

localized centrality measures calculated for one-hop radius neighborhood are highly

correlated to the global centrality measure. Kermarrec et al. [103] propose a new

centrality measure, called second order centrality, defined in terms of the standard

deviation of the time between visits of a perpetual random walk to each node. Arul­

selvan et al. [104] propose critical nodes to be detected as those whose deletion results

in the minimum pairwise connectivity among the remaining nodes. These techniques

are useful when the IoT-based system is not deployed yet, but we can still determine

77

its actual network topology and estimate the nodes criticality with the help of graph

theory or, as alternative, simulation tools [71].

To the best of our knowledge, the problem of finding the optimal security resource

allocation plan for IoT networks has never been investigated. Past work on IoT secu­

rity focuses on protection mechanisms against specific attacks [22,23,85], investigates

ISO/OSI layer-related security problems [105], or proposes architectures for intru­

sion detection, attack prevention, or recovery systems [26, 82]. To assure the correct

function of IoT networks even under attack, one may need to deploy many such se­

curity mechanisms. Therefore, a formal methodology for allocating such mechanisms

is needed. To this end, this work proposes a method capable to function for all the

different security techniques adopted by the systems cited above.

3.11 Summary

In this chapter, we presented a game-theoretic model to answer the following

question: In an IoT scenario, given a set of security resources and a set of attacks

to protect against, which resources should a security manager choose, and how should

(s)he allocate them in the network in order to ensure protection with the minimum

cost, the minimum energy consumption, and a certain degree of robustness against at­

tacks? We provide a method for computing the best defender strategy, corresponding

to the resource allocation plan that best fits efficiency and effectiveness requirements.

With the mutually competing goals of efficiency and effectiveness, we formulate the

problem as a Pareto optimization, show how to formulate the defender’s problem as a

linear optimization problem, and suggest a number of measures to formalize efficiency

and effectiveness aspects of the defender’s strategy. Our experimental results prove

that our method provides the best defender strategy compared to other strategies

that do not take into account (all) effectiveness measures, but efficiency only.

The knowledge about the security resources deployed and their placement provided

by OptAll can be useful to perform more effective monitoring of the now-deployed

78

network. In the next chapter, we present our system for detecting attacks in the

network that was designed specifically to make the best use of such knowledge.

79

4 KALIS: A SYSTEM FOR KNOWLEDGE-DRIVEN ADAPTABLE

INTRUSION DETECTION FOR THE INTERNET OF THINGS

Following the hardening of the devices and the deployment of network nodes and secu­

rity resources, according to a strategically-designed allocation, it is crucial to perform

continuous monitoring to detect attacks and anomalies. Cryptographic techniques

for the IoT [106–110] help in ensuring confidentiality and authenticity of in-network

traffic; however such techniques are not able to protect against all attacks. There­

fore, it is critical to re-design fundamental security tools for the specific IoT settings.

One such tool is represented by Intrusion Detection Systems (IDS). IDSes are vital

to maintain the IoT functional. Detecting an undergoing attack is the first line of

defense for such always-on systems; however, most devices lack logging and report­

ing mechanisms present instead in enterprise security products [111]. Moreover, an

accurate diagnosis is critical for an effective response action.

Different approaches can be taken when designing an IDS for the IoT; however

limited research has been carried out on this topic. Most current solutions aim at

deploying a custom IDS on each device or group of devices [26, 112]. This approach

has the major drawback of being “too local”, meaning that each IDS will only have

local view of the security situation and insufficient information. Moreover, it does

not account for the interoperation of separate IoT devices or groups of devices. Last,

it delegates security to the manufacturers of the individual devices. On the other

hand, while a more global solution can protect from attacks at a more general level, a

preset standalone IDS would not be flexible enough against the complex and heteroge­

neous IoT ecosystem. Also, simply adapting an existing IDS, designed for traditional

computing systems and networks, is not a viable solution. Approaches such as full

network scanning to look for threats – used by the widely adopted products such as

80

SNORT [113] – would not be a good choice for IoT [114] since most emerging IoT

standards are shifting to IPv6 [115].

There are, however, several characteristics of IoT that can be leveraged to design

an IDS well fit for IoT. First, while heterogeneous, most IoT devices communicate

and operate on standard mediums and protocols (such as IEEE 802.15.4 [116], WiFi

or Bluetooth for mediums, and ZigBee [117] or 6LoWPAN [118] for protocols). There­

fore, as long as a device is able to communicate by using several of these mediums

and protocols, effective techniques such as promiscuous overhearing and watchdog-

based mechanisms [119, 120] can be deployed. If such a device were able to host a

modularly-designed IDS, new detection capabilities could be added as soon as new

communication interfaces are available. Moreover, when simply observing events that

may be symptoms of security incidents, specific network features can help in ruling out

particular attacks, removing ambiguity, improving accuracy, and increasing detection

performance. We leverage these observations in the design of our system.

In this work, we first analyze the different attack scenarios that make IoT a unique

domain, and investigate the relationship between different network and devices fea­

tures and related attacks. Then, we propose Kalis1, a self-adapting, knowledge-driven

IDS for IoT able to detect several attacks in real time across IoT systems running dif­

ferent communication protocols and with different security goals. Kalis autonomously

collects knowledge about the features of the monitored network and entities, and

leverages such knowledge to dynamically configure the most effective set of detection

techniques. To the best of our knowledge, Kalis is the first comprehensive approach to

intrusion detection for IoT that does not target an individual protocol or application,

and adapts the detection strategy to the specific network features.

To minimize the impact on performance and to support IoT devices to which new

software cannot be added, Kalis can be deployed as a standalone tool on a separate,

external device, providing “security-in-a-box”. In that setting, Kalis does not require

changes to existing IoT software and has no performance impact on the applications

1Kalis is acronym of Knowledge-driven adaptable lightweight intrusion detection system, but is also
a traditional double-edged Filipino sword.

81

running on the IoT devices. Kalis can be easily extended for new emerging protocol

standards and can leverage a customizable library of intrusion detection techniques.

Last, it provides a knowledge sharing mechanism that enables collaborative incident

detection, and can act as a data source for multi-source security information and

event management (SIEM) systems [121].

The contributions of this work are the following:

•	 the introduction of an IoT attack taxonomy and extensive analysis of the rela­

tionship between potential attacks and network/device features;

•	 the conceptual modeling of a knowledge-driven intrusion detection approach,

and its application in the design of a self-configuring, knowledge-driven IDS for

the IoT;

•	 the development and evaluation of a complete IDS prototype, with modules

covering a wide range of network features and attacks.

4.1 Background

In this section, we provide an overview of the IoT paradigm and its characteristics,

and we introduce some common characteristics of IDSes.

4.1.1 IoT

The IoT paradigm has several characteristics that make it a unique and challeng­

ing domain for security measure design. First, the wide range of hardware used for

consumer and enterprise IoT devices results in a diverse set of computing capabilities

as well as in terms of communication mediums utilized. Second, while traditional

computer networks – for which common IDS techniques have been developed – run

mostly on top of the TCP/UDP and IP protocols, the IoT depends on a much more

diverse set of communication protocols. In some cases, a same device needs to commu­

nicate through multiple protocols and interfaces at the same time in order to perform

82

Figure 4.1. A common home automation scenario, depicting the dif­
ferent patterns of IoT communication.

its tasks. In this regard, the communication patterns in IoT are also various. Device­

to-device communication among different IoT devices (also referred to as “things”) –

often from different manufacturers – is almost always carried out over the Internet,

through cloud services designed specifically for device interoperability. At the same

time, though, groups of devices collaborating for a common task – usually from the

same manufacturer and part of the same product – form a “master-slaves” structure

that we refer to as hub-to-subs ; in this case, a more powerful device coordinates,

controls, and communicates with several more constrained devices through wireless

protocols that are more constrained in power or bandwidth, such as IEEE 802.15.4

or Bluetooth.

Consider for example a common home automation scenario (see Figure 4.1) com­

posed of a smart lighting system and a smart thermostat, all controlled via a smart­

83

phone. The smart lighting system typically consists of a IoT device serving as hub

and connected to the Internet through the router, and a set of wireless-enabled light

bulbs powered by more constrained microprocessors. When the command of turning

on a light is issued from the smartphone, it hits the Cloud services, reaches the hub

device through the Internet, and is then propagated locally via a ZigBee-like protocol

to the actual light bulb. Conversely, interoperability between separate systems is

not usually achieved via local communication. When the smart thermostat becomes

aware that the user has arrived home, it can set the correct temperature and also

require the smart lighting system to turn on the lights. Even though both devices are

in the same household, such communication is typically achieved with the thermostat

pushing a command to its own cloud service, then having the cloud services of the two

systems communicating, and finally having the smart lighting system’s cloud service

propagating the command to the hub device.

4.1.2 Intrusion Detection Systems

Most IDSes have a common structure: a data gathering module that collects data

possibly containing evidence of an attack, an analysis module that processes such data

to detect attacks, and a reporting mechanism to report attacks. The main differences

in design choices for IDSes lie in [122]:

• Data source: host-based, network-based, hybrid

• Detection methods: signature-based, anomaly-based

• Time of detection: online, offline

• Architecture: centralized, distributed

• Environment: wired/wireless/ad-hoc network, ...

Network-based IDSes perform their tasks by externally analyzing network traffic,

whereas host-based IDSes require small pieces of software, called agents, to run on

the monitored devices themselves.

84

Traditionally, intrusion detection techniques can be broadly classified into either

signature-based and anomaly-based. Signature-based approaches observe the moni­

tored network and attempt to match a pattern of events or data to known attack

signatures; such approaches are generally simpler to develop but cannot detect at­

tacks for which the signature is unavailable. Conversely, anomaly-based techniques

monitor network traffic and compare it against an established “normal” baseline –

which can be dynamically learned by the system or statically set by the administra­

tor – to detect anomalous behaviors. Such approaches are more versatile, as they

can detect unknown attacks, but they are harder to implement and more inaccurate,

potentially yielding high false positive rates [123].

4.2 Knowledge-driven Intrusion Detection

IDSes typically leverage a library of several detection techniques. Activating all

those detecting techniques guarantees a good coverage against potential attacks, but

easily leads to inaccuracy and wasted resources. Consider the situation of attacks that

share similar symptoms: to a passive external observer – which is the case for network-

based IDSes – such attacks will be indistinguishable. Moreover, processing network

events and traffic through all the detection techniques requires an unnecessarily high

amount of system resources, and can even introduce delays in the attack reaction.

We observe, however, that some features of the monitored network and entities

allow one to rule out specific attacks and anomalies; for example, a selective for­

warding attack cannot be carried out in a single-hop network. Collecting knowledge

about the network’s features thus enables the selection of the optimal set of detection

techniques. Such knowledge acquisition can be carried out autonomously by the IDS,

thus avoiding the need for providing the IDS with predetermined information about

the features of the network. Doing so also removes the configuration burden from

the user, often not expert in IoT or network security especially in domestic settings,

where IoT is witnessing a wide adoption. Moreover, since IoT is a dynamic environ­

85

ment, a particular configuration of the IDS that is optimal at a certain point in time

might not be optimal anymore later on. Supporting continued security enforcement

even in face of environment changes is critical.

4.2.1 Conceptual Model

We develop a conceptual model of our knowledge-driven intrusion detection ap­

proach. For that purpose, we now define several key concepts:

•	 Observation: a piece of information gathered by observing the available events

(e.g., the used communication protocols, a special forwarding field in intercepted

packets, a change in signal strength from a node, ...);

•	 Feature: an intrinsic characteristic of the monitored entities and networks

(e.g., multihop vs. singlehop network, mobile vs. static network, powerful vs.

constrained devices, ...);

•	 Symptom: a particular case of observation that could be associated with a

potential security incident (e.g., data losses or inconsistencies, change in traffic

frequency, packet duplication or alteration, packet dropping, ...);

•	 Detection Technique: the detection technique for a known security incident,

attack or anomaly, carried out purposefully or not, that should trigger a conse­

quent repair mechanism, such as an alert to the user or an automatic response

action (e.g., selective forwarding attack, replication attack, Sybil attack, inter­

ference, poor link quality, ...).

With these concepts in place, our knowledge-driven intrusion detection approach

follows this conceptual process: using Observation O, the system can discover a Fea­

ture F of the monitored entities and network. Given the knowledge about F , the

system can effectively determine which one(s) of Detection Technique {D1, D2, ...Dn}

to activate. When only the right detection techniques are active, they will process

86

Figure 4.2. ICMP Flood attack vs. Smurf attack.

the available information to identify symptom(s) S, and detect the security incidents

happening, improving the accuracy of the system.

Working Example

To illustrate our model, we now walk through a concrete example. We consider

two possible attacks: ICMP Flood attack and Smurf attack (see Figure 4.2). In the

ICMP Flood attack, a single attacker node sends many ICMP Echo Reply messages

to the victim, using several different identities as sender. In the Smurf attack, the

attacker sends ICMP Echo Request messages to several neighbors of the victim using

the victim’s identity as sender; those neighbors will therefore respond with ICMP Echo

Reply messages directed to the victim. To an external observer, these two attacks

show the same symptoms, that is, a high amount of ICMP Echo Reply messages sent

to a victim node. However, the Smurf attack is not possible under single-hop network,

and this knowledge can be leveraged to achieve an accurate detection.

87

Consider the attack and the topology shown in the left-hand side of Figure 4.2.

Node 5 will carry out an ICMP Flood attack on victim node V . Our knowledge-driven

model can then be instantiated for this example as follows: observing the traffic,

the system can reconstruct the portion of topology in the monitored network, and

determine that it is a single-hop network. Given that knowledge, the system activates

the detection technique for ICMP Flood attacks and not that for Smurf attacks. Upon

the detection of an unusually high amount of ICMP Echo Reply messages to the node,

the only active module will unambiguously detect the undergoing ICMP Flood attack.

4.2.2 Taxonomies

In order for the knowledge-driven model to be effectively employed, it is necessary

to formalize and categorize the threats in IoT. We thus propose two taxonomies that

look at IoT security threats from different points of view.

Attack Patterns: Taxonomy By Target

In the complex IoT ecosystem, different entities have different capabilities and

potential to cause security incidents. We propose a classification and nomenclature

from the point of view of attack patterns, considering the source and the destination

of each pattern. Table 4.1 summarizes our taxonomy, reporting the attack sources

on the rows and the targets on the columns. Figure 4.1 can be used as reference,

together with Table 4.1, for a visual interpretation of these attack patterns.

Smart routers2 are becoming an increasingly available commercial product, and fit

well in the IoT ecosystem; therefore, we choose to include them in the categorization

not only as target of attacks, but also as potential source of attacks. An interesting

aspect of our attack patterns classification is that some source-target pairs are not

possible. For example, a sub would not typically be able to attack a router or an

2We use the term “router” to indicate both routers and gateways, as they are the same for our
purposes.

88

Table 4.1.
Taxonomy of IoT attacks by target.

TARGET

Internet
Hub Sub Router

Service
S
O
U
R
C
E

Denial of Internet
Service

Denial of Hub
Service

Sub ­

Router ­

Remote

Denial of

Thing

Control

Denial of

Thing

-

Control

Denial of

Thing

-

Denial of

Thing

Denial of

Thing

-

-

Denial of

Routing

-

Denial of

Routing

Internet service directly, as it lacks the communication hardware necessary to reach

them.

Attacks aimed at Internet services are usually in the traditional form of Denial of

Service (DoS) attacks. Recent news have in fact reported the use of IoT devices for

botnet attacks [12]. Moreover, we coin the general term “Denial of Thing” (DoT) to

denote an attack aimed at disrupting the functionality of a thing. Some sub-types

of DoT attacks are considered in our taxonomy. For example, attacks targeting an

IoT hub are typically aimed at denying the execution of some functions of that hub,

including the control of all its dependent subs, if any. Therefore, we refer to such

attack as a “Control DoT”. Last, we use the term “Denial of Routing” for all attack

patterns that target IoT routers. Such attacks will typically aim at blocking the

normal functionality of all the IoT devices on the local network. Note that attacks

from the Internet to a local smart router – possible but still far-fetched – cannot be

addressed by any local solution, and are therefore out of the scope of our work.

89

Figure 4.3. Taxonomy of relationships between IoT network/device
features and attacks. Dots and crosses indicate the possibility and
impossibility, respectively, of an attack in presence of a specific fea­
ture; circles indicate that the appropriate detection technique for the
attack depends on the specific feature.

Leveraging Knowledge: Taxonomy By Features

The effective development of a knowledge-driven intrusion detection model re­

quires also a clear understanding of the relationships between monitored network/en­

tity features and security incidents. Therefore, we propose a taxonomy for the most

common features and attacks in the IoT. Figure 4.3 shows our classification, with dots

and crosses indicating the possibility and impossibility, respectively, for an attack to

happen in presence of a specific feature, and circles indicating instances in which the

appropriate detection technique for an attack depends on the specific feature.

Note that in many cases the detection technique for a specific attack depends on

the characteristics of the network of interest; for instance, for attacks such as sybil,

sinkhole, etc., the detection techniques for single-hop networks are significantly differ­

ent from those adopted for multi-hop networks. Thus, for such attacks, it is important

that all and only the appropriate detection techniques are activated depending on the

knowledge about the various network features.

90

Also note that the IoT is unique in being susceptible to a range of attacks that span

those proper of constrained WSN nodes as well as those more proper of traditional

computer networks. For this reason, our taxonomy includes a very wide set of features

to accommodate all potential attacks (even though it is not possible to be exhaustive

in the actual instantiation of this classification.). Doing so, it becomes easier to

build a comprehensive library of detection techniques that can work well with our

knowledge-driven approach. Lastly, note that we include as features also the presence

of prevention techniques; for example, cryptographic techniques deployed on some of

the monitored devices make the latter immune to attacks such as data alteration.

4.3 Design of Kalis

In this section, we introduce the requirements that have driven the design of

Kalis, and then provide a detailed presentation of the event-driven architecture and

the components of Kalis.

4.3.1 Design Requirements

The design of an IDS for a domain as complex as the IoT must fulfill several

important design requirements. Following are the ones we considered in the design

of Kalis.

•	 Asynchronous and Event-driven. Since the IDS has to capture and analyze

big amounts of traffic for several possible threats across many data sources and

protocols, the IDS should be completely asynchronous and event-driven.

•	 No software changes. As IoT software is often proprietary, closed-source,

and heterogeneous, it is not realistic for an IDS to require changes to the source

code of application software. Rather, the IDS should be able to monitor network

and devices as an external entity through overhearing and environment sensing.

91

•	 Multi-medium and Multi-protocol. Different IoT devices, applications and

products leverage different communication mediums and protocols. Moreover,

all of the attack patterns discussed in our taxonomy by target need to be con­

sidered. Also, an IDS for the IoT should be able to comply with several such

standards, as well as be extensible so to be able to support new technologies or

protocol standards that emerge.

•	 No performance overhead. IoT applications have a wide range of purposes

characterized by different requirements in terms of Quality of Service (QoS).

Therefore, an IDS should have no impact on the performance of the devices’

applications.

•	 Collaborative. Interoperation is one of the core characteristics of the IoT

paradigm. Moreover, a single point of view is not always sufficient for acquiring

knowledge about the environment and detecting security incidents. Thus, an

IDS should enable knowledge sharing, as well as collaborative detection tech­

niques.

4.3.2 Architecture

In this section, we discuss the architecture and all the individual components of

Kalis (see Figure 4.4).

With respect to the different design choices of IDSes discussed in Section 4.1.2,

Kalis is a network-based, hybrid signature/anomaly-based, hybrid centralized/distri­

buted, online IDS that adapts to different environments.

Communication System

The Communication System acts as interface with the external world. Special­

ized subcomponents take care of interacting with traffic on different protocols. In our

current design we include ZigBee/XBee/6LoWPAN (on IEEE 802.15.4), WiFi (on

92

Figure 4.4. The high-level architecture of Kalis.

IEEE 802.11), and Bluetooth traffic, but the design makes it easy to extend to fu­

ture standards. The Communication System overhears all traffic on all the supported

interfaces, satisfying the breadth requirement of considering all attack patterns dis­

cussed in our taxonomy by target.

Data Store

All traffic from all sources is managed and stored in the Data Store component.

The Data Store listens for events from the Communication System on newly captured

packets, manages a history of recent traffic for modules to access, and logs all traffic

on disk, if required by the user. In order to appropriately utilize memory, only a

sliding window of configurable size of the most recent packets is kept in memory.

Logs from disk can also be replayed for traffic analysis by the network administrator

in case security incidents are detected. The Data Store abstracts the traffic sources

by replaying traffic transparently to the detection modules, which will perform their

tasks as if operating on live traffic.

Knowledge Base and Collective Knowledge Management

A key component to Kalis is the Knowledge Base. It stores all the available

information about the features of the monitored entities and networks in a unique,

93

centralized place, as well as it provides this information to all the parties that require

it, such as various Detection Modules and the Module Manager. In Kalis, we refer to

an individual piece of knowledge as knowgget (i.e. “knowledge nugget”).

Knowledge Modeling. The pieces of knowledge representing features managed

by the Knowledge Base in Kalis can vary significantly with respect to the type of

data that they are represented by. For example, the knowledge about a portion of

the network being multi-hop can be modeled as a boolean data type, but the knowl­

edge about the total number of nodes monitored by the IDS has to be represented

by an integer. For this reason, we choose to keep the model as agnostic and generic

as possible, and we model each knowgget as a label, describing the information rep­

resented, and its associated value of any type. Additionally, each knowgget has a

“creator” field – representing the Kalis node that created it (useful for knowledge

sharing, as discussed later in this section) – and an optional “entity” field – in case it

is specific to an individual monitored entity (e.g., the detected signal strength for a

monitored sensor node). Moreover, some knowggets may also in turn be composed by

several different pieces of data; consider for example the knowledge about the current

traffic frequency (as packets per second), having several sub-pieces of information for

each different packet type, such as TCP SYN, TCP ACK or TinyOS CTP. We refer

to these as multilevel knowggets. In this case, the label of a multilevel knowggets is

not associated with a single value, but with a group of other knowggets, in a tree­

like structure. Last, Kalis does not know in advance all the knowggets that will be

collected, and new modules may want to store new, previously unknown knowggets.

Therefore, the set of labels is not fixed, and is dynamically managed as a multi-level

map data structure. Figure 4.5 shows an example of Knowledge Base containing some

knowggets about the monitored network.

Formally, a knowgget k is defined as the tuple k = (l, v, c, e), where l is the label,

v is either a primitive value or a set of knowggets (for multilevel knowggets), c is the

identifier for the Kalis node creator of k, and e is the entity related to k (or null if

none).

94

Figure 4.5. An example of knowledge base with heterogeneous
knowggets, each showing label, value, creator field, and entity field.

KnowledgeBase {

"K1$Multihop" = "true",

"K1$MonitoredNodes" = "8",

"K1$SignalStrength@SensorA" = "-67",

"K2$SignalStrength@SensorA" = "-84",

"K1$TrafficFrequency.TCPSYN" = "0.037",

"K1$TrafficFrequency.TCPACK" = "0.090"

}

Figure 4.6. Key-value pair representation of the Knowledge Base in
the implementation of Kalis.

Collective Knowledge. The collected knowledge represents the view of the net­

work portions surrounding the Kalis node and, therefore, the latter’s specific point

of view. In most cases, this knowledge is exactly what is needed to efficiently and

effectively perform intrusion detection in that portion of the network. For example,

while other parts of the network might have a multi-hop topology, this is not relevant

and potentially harmful to an accurate detection as compared to the knowledge that

the local area – for which this Kalis node is responsible – is single-hop. In some cases,

however, sharing knowledge among different Kalis nodes can enable the detection and

discovery of global features useful for intrusion detection. As an example, being aware

that other Kalis nodes are noticing changes in signal strength for specific monitored

95

entities can enable the local Kalis node to correlate such changes with those experi­

enced locally and detect mobility in the network. For this reason, we provide as part

of Kalis a mechanism for collective knowledge management. Such mechanism allows

sharing and synchronization of selected pieces of information across all Kalis nodes.

To enable this mechanism, a module inserting a knowgget of collective interest into

the Knowledge Base can simply mark the knowgget as “collective”. The Knowledge

Base will then take care of automatically communicating significant changes in that

knowgget to the other Kalis nodes for storage in their Knowledge Bases, making sure

to mark the appropriate identity in the “creator” field, which reports which Kalis

node originally generated and shared the knowgget. Note that this mechanism does

not provide a way for a Kalis node to overwrite or alter knowledge in another Kalis

node. When a Kalis node, say T1, receives a new or updated collective knowgget k

from a different Kalis node, say T2, the Knowledge Base of T1 will check to see if

the label and creator of k matches any existing knowgget in the Knowledge Base.

Therefore, T1 can only update those knowggets in T2 that were originally generated

by itself.

Static Knowledge. Kalis also provides the user with the possibility of specifying

initial or static knowggets about the IoT network. For example, if the network does

not have mobility and will always remain so, it makes sense for the user to simply

provide Kalis with this information, as it can be leveraged for example to avoid

trying to detect mobility in the network, and to improve the detection accuracy as

well. For this purpose, the Knowledge Base optionally loads a configuration file from

the file system, providing initial settings and a-priori available knowggets. Figure 4.7

shows the (JSON-inspired) grammar for the language used in the specification of

configuration files, and Figure 4.8 shows an example of configuration file to activate

by default two modules (passing parameters to one of them), and to insert in the

Knowledge Base the a-priori knowledge that the network is static. Note that in this

case the knowggets might specify an “entity” field, but not a “creator” field, as they

will be assigned the local Kalis node’s identifier as such.

96

(config) ::= (modules) (knowggets)
(modules) ::= ‘modules = {’ (module-list) ‘}’
(module-list) ::= (module-def) ‘,’ (module-list)

| (module-def)
(module-def) ::= (module-name) [‘(’ (param-list) ‘)’]
(param-list) ::= (key-value-pair) ‘,’ (param-list)

| (key-value-pair)
(knowggets) ::= ‘knowggets = {’ (knowgget-list) ‘}’
(knowgget-list) ::= (key-value-pair) ‘,’ (knowgget-list)

| (key-value-pair)
(key-value-pair) ::= (key) ‘=’ (value)

Figure 4.7. Grammar for Kalis configuration files.

modules = {
TopologyDetectionModule,
TrafficStatsModule (

activationThresh=1,
detectionThresh=2

)
}
knowggets = {

mobility = false
}

Figure 4.8. Example of Kalis configuration files.

Modules

Kalis is designed to be fully flexible and extensible. For this reason, any network

feature-specific or attack-specific functionality is implemented as independent mod­

ule. The Module Manager component takes care of coordinating all the modules,

activating/deactivating them when necessary, depending on changes in the Knowl­

edge Base, routing new packet events to all the interested parties, and collecting

alerts about detected incidents. Each module is capable, given a particular instance

97

of the Knowledge Base, to determine whether its services are required and, therefore,

whether it should be active at that particular point in time.

Kalis includes two different types of modules: Sensing modules and Detection

modules.

Sensing Modules. Sensing modules are the core of the autonomous knowledge-

discovery mechanisms of Kalis. We include in our prototype a few basic sensing mod­

ules, including a Topology Discovery module, a Traffic Statistics Collection module,

and a Mobility Awareness module. The first uses the captured traffic to reconstruct

the local topology and differentiate between multi-hop and single-hop networks, the

second continuously collects statistics about the traffic load, differentiated for each

type of packet (e.g., ZigBee data, ZigBee routing, TCP SYN, TCP ACK, ...), and

the third leverages the signal strength to dynamically detect whether the network is

static or mobile. We provide more details on the implementation of these modules in

Section 4.4. Whenever a sensing module finds a relevant change in network features

– such as the discovery that a portion of the monitored network is multi-hop – it will

store this new knowgget into the Knowledge Base. The Knowledge Base will in turn

notify the Module Manager that recent changes to the available knowledge might

require revisiting which modules are activated or deactivated.

Detection Modules. Detection modules are actually responsible for analyzing

the captured traffic – together with the available knowggets – and detect anomalies

and security incidents. Each module is specialized for a specific attack, but some

techniques might be able to be generalized to detect attacks with similar symptoms

but different severity or root causes – e.g. selective forwarding attack vs. blackhole

attack. As discussed in Section 4.1.2, intrusion detection techniques in general are

either signature-based or anomaly-based, and IDSes often operate in only one of the

two fashions; however, the large amount of data and knowledge made available by

Kalis makes it possible to have a library including detection modules of both kinds,

increasing the accuracy in detecting well-known attacks while at the same time being

able to react to unknown security incidents as well. In our prototype, we include

98

several basic detection modules for common attacks, as selective forwarding, SYN

flow, ICMP flood, replication, and more.

4.4 Implementation

Development Environment. We implement Kalis using Java on an Odroid

xu3 development board. In order to interact with the IEEE 802.15.4 traffic for our

prototype, we leverage a TelosB [57] wireless sensor mote with a custom TinyOS [47]

application as bridge. Moreover, we integrate into Kalis the tcpdump utility – which

internally uses the libpcap library – in order to promiscuously monitor all WiFi traf­

fic. Our implementation makes use of Java Reflection in various parts of the system.

For example, when the configuration file is parsed and a module is specified to be

activated, the corresponding class is dynamically instantiated by name. If the con­

figuration file specifies some parameters for that module, Kalis looks for properties

in the instantiated module object whose names match the specified parameters, and

sets them to the provided values. This implementation makes the entire core of Kalis

agnostic of the specific classes that implement the modules, thus making it possible

to add new modules without the need to recompile the entire system as long as those

modules implement the required interfaces.

Event-driven Architecture. To fulfill the design requirement of being event-

driven and asynchronous, all the components in Kalis (see Figure 4.4) run indepen­

dently. For example, when a new packet is captured on any protocol, all the interested

parties are asynchronously notified of the new packet event, and can independently

and concurrently process the new information. In the same way, when any of the de­

tection modules detects a potential security incident, it raises a detection event that

is then routed to all the subscribed parties. This also allows Kalis to interoperate

with cloud-based monitoring dashboards, automated response systems, and real-time

user notification mechanisms.

99

Knowledge Representation. To implement our Knowledge Base, we choose to

model each knowgget as a key-value pair, in which both the key and the value are

represented as strings. When querying the knowledge base, the modules can either

retrieve the raw value and parse it independently, or specify what is the data type

they expect in return for a given key and the knowledge base will attempt to parse

the string as that data type. We choose an encoding of the key that allows for fast

queries. Given a knowgget k = (label, value, creator, entity), Kalis encodes it as a

key "creator$label@entity" and a value "value". Looking up local (or collective)

knowggets only requires searching for the prefix matching (or not matching) the

identifier of the local Kalis node. Instead, looking up knowggets related to a specific

entity only requires searching for keys with a suffix matching the identifier of the

entity of interest. Last, finding a single specific knowgget is done by matching the

key exactly. This model also allows Kalis to uniformly represent multilevel knowggets

by flattening the hierarchy of labels in dot notation; that is, the sub-information of

the “TrafficFrequency” knowgget about TCP SYN packets created by Kalis node T1

is represented as an individual knowgget with key "T1$TrafficFrequency.TCPSYN".

Figure 4.6 shows an example of how the Knowledge Base in Figure 4.5 is represented

in our implementation of Kalis.

Collective Knowledge Synchronization. The implementation of the synchro­

nization mechanisms for collective knowledge relies on a few building blocks. First,

the discovery of peer Kalis nodes is carried out by means of periodical beaconing on

the local network. Each Kalis node will listen for advertisement broadcast packets

from other Kalis nodes, and add newly-discovered nodes to a peer list. This is a

commonly used discovery-through-advertisement pattern that is effective especially

for local networks with a moderate number of peers (reasonable assumption for an

ideal deployment of Kalis). All communications among the nodes are encrypted, and

only enable a one-way communication (in each direction) between pairs of nodes,

without the need for interaction beyond the acceptance of incoming new or updated

collective knowggets. Our current prototype uses WiFi as communication medium,

100

but the technique could be adapted to any other medium supported by the hardware.

For example, an extension to our prototype could use mainly WiFi but with fallback

on Bluetooth in case of connectivity issues through the local WiFi router.

Sensing Modules. As part of our prototype, we include several sensing mod­

ules. The Topology Discovery module detects multi-hop and single-hop topology by

analyzing the captured traffic. The features used for this analysis include the com­

munication medium used (IEEE 802.15.4 or WiFi), the detection of known protocols

(such as RPL in 6LoWPAN or Collection Tree Protocol in TinyOS), the inclusion of

specific forwarding/next-hop headers in packets, and more. The range of character­

istics that are leveraged to understand the topology of the network can be extended

when new protocols or mediums are standardized for the IoT. The Traffic Statistics

Collection module maintains detailed statistics about the frequency of the various

types of traffic overheard in the network, both on a global and per-monitored-device

level. In our implementation, we consider several different types of traffic, includ­

ing TCP SYN, TCP ACK, ICMP Requests, ICMP Responses, ZigBee plain packets,

Collection Tree Protocol packets, and more. For each traffic type, the module keeps

track of the number of packets per unit of time (configurable but set to 5 seconds by

default); the frequency of each type of traffic is recorded both globally for the whole

network, and for each individual monitored device (to support an accurate detection

of targeted DoS-like attacks and subsequent potential response actions.) The Mobil­

ity Awareness module uses a simple approach that detects mobility when any node’s

signal strength changes more than a certain threshold. More complex techniques

could also be employed, but are out-of-scope for this work.

Dynamic Detection Module Configuration. We implement the dynamic ac­

tivation and deactivation of detection modules based on the changes in the Knowledge

Base via a publish-subscribe mechanism, for best efficiency. Each detection module

can subscribe to changes on one or more knowggets by key, and is automatically no­

tified; the modules will therefore notify the Module Manager when their services are

no longer required, according to the latest knowledge.

101

4.5 Evaluation

In our experiments, we evaluate (a) the breadth of the IDS coverage over het­

erogeneous networks, devices and protocols, (b) the benefits of the knowledge-driven

approach on the detection accuracy in terms of false positives and detection rate, as

well as resource consumption, (c) the reactivity of the IDS in the dynamic discov­

ery of a changing environment, and (d) the benefits of the collaborative knowledge

mechanisms.

4.5.1 Experimental Setup

We evaluate Kalis by placing the IDS node near a network of heterogeneous,

real-world IoT devices. Our setup includes a small WSN of 6 TelosB nodes, a Nest

Thermostat, an August SmartLock, a Lifx smart lightbulb, an Arlo security system,

and an Amazon Dash Button. All the WSN nodes are programmed with a TinyOS

application that sends a data message every 3 seconds towards a node acting as

base station, using the Collection Tree Protocol (CTP) [124]. Concerning the WSN

traffic, the Kalis node is placed near the middle portion of the WSN, able to overhear

intermediate hops of data packets. Since compromising commodity IoT devices –

especially to carry out various controlled attacks in a repeatable way – is very difficult,

we choose to record and replay actual traces of network traffic from these devices,

enhanced with additional packets representing symptoms of such attacks. For each

attack scenario, we run the systems on 50 symptom instances, representing the ground

truth for detection. We believe that this setup truthfully represents the complexity

of the IoT ecosystem, including both multi-hop and single-hop networks, different

protocols on different mediums (CTP on IEEE 802.15.4, TCP/IP on WiFi), and very

different devices in terms of computational power and functionality. Furthermore,

to simulate potential response actions upon an IDS detection, we program as simple

countermeasure the temporary revocation from the network of any node identified as

suspect by the IDS.

102

4.5.2 Benefits of the Knowledge-Driven Approach

In our experiments, we compare our knowledge-driven approach to that of a tra­

ditional IDS. For total fairness with respect to the detection techniques, we emulate

a traditional IDS by running our system without Knowledge Base, and with all the

modules active at all times. We compare the systems on several metrics: (i) Detec­

tion Rate – number of adverse events detected out of all the adverse events in the

test scenario; (ii) Classification Accuracy – number of correctly classified attacks

out of all the detected attacks; (iii) Countermeasure effectiveness – how positive

a response action based on the detections of Kalis is for the overall network; (iv)

CPU usage; (v) RAM usage.

ICMP Flood attack on a single-hop network

The first scenario we use for the evaluation is that of an ICMP Flood attack on a

single-hop network (see Section 4.2.1). In this setting, the traditional IDS identifies

all the attacks (high detection rate); however it generates false positives as it is not

able to disambiguate the ICMP Flood attack from a Smurf attack.

With respect to countermeasures, the ICMP Flood detection module considers

as suspect all nodes within one hop from the victim, and attempts an approximate

disambiguation through a comparison of the signal strength with previous overheard

communications [125, 126]; conversely, the Smurf attack detection module considers

as suspect all nodes at a 2-hop distance from the victim, and also approximately

disambiguates the attacker through signal strength. We observe that, in this scenario,

Kalis revokes the correct attacking node, while the traditional IDS attempts to revoke

the only node two hops away from the victim, which in a simplistic graph exploration

is the victim node itself, therefore disconnecting the entire network.

103

Replication attack on static vs. mobile network

The replication attack is an application-independent attack unique to wireless

networks of constrained devices. In such attack, malicious devices are added to the

network as replicas of some legitimate node(s), allowing the adversary to steal sen­

sitive information, disrupt the routing, or inject false data in the network. Many

detection techniques exist for this attack; however each one is specific to a network

with certain characteristics, e.g. mobility [127]. In this experimental evaluation, we

provide two different detection modules for replication attacks, one suitable for static

networks, and the other for mobile networks. The network in this evaluation randomly

changes between a static and mobile behavior for the nodes over time. We repeat

the evaluation 100 times, each time carrying out 3 replication attacks (i.e., sending

data packets from 3 nodes that are replicas of legitimate nodes in the network). The

traditional IDS randomly selects one of the two modules for each of our experiment

runs, simulating closely a static module library configuration by the user that does

not adapt to the changes in network features. Kalis, instead, leverages the knowledge

provided by the Mobility Awareness module, and dynamically selects modules for

the current network mobility setting. We observe the detection rate and accuracy

of both Kalis and the traditional IDS approach and, as expected, while Kalis always

uses the right modules, the traditional IDS approach misses some attacks when the

active module is not the one suitable for the current mobility profile of the network.

Overall Results

Over the two different scenarios presented in Sections 4.5.2 and 4.5.2, we summa­

rize the results in Figure 4.9 for effectiveness metrics, and in Table 4.2 for performance

metrics. Kalis achieves 100% classification accuracy, since it always leverages the opti­

mal set of modules for detection based on the knowledge about the network’s features.

Due to the fact that the detection techniques used cannot always detect all attacks,

the detection rate is not perfect; however, this is independent from Kalis, and the

104

Figure 4.9. Effectiveness comparison for Kalis vs. a traditional IDS
approach across all experimental scenarios (averages).

Table 4.2.
Performance comparison for Kalis vs. a traditional IDS approach
across all experimental scenarios (averages).

Trad. IDS Kalis
CPU usage (%) 0.22% 0.19% (−16.00%)

RAM usage (kb) 23961.06 13978.62 (−41.66%)

comparison with the traditional IDS approach that uses the exact same detection tech­

niques still shows the benefits of Kalis. The results show that our prototype is very

lightweight in terms of CPU and RAM requirements, and that the knowledge-driven

approach of Kalis outperforms the traditional IDS on all the considered metrics.

4.5.3 Reactivity to Environment Changes

In order to evaluate the reactivity of Kalis, we start it with a configuration file

that does not activate any detection modules by default and does not contain any

a-priori knowgget. We then let Kalis monitor a ZigBee network in which one node is

programmed to carry out a series of selective forwarding attacks, and measure how

soon Kalis detects the first attack. The selective forwarding detection module only

http:13978.62
http:23961.06

105

activates upon discovering a multi-hop network; the Topology Discovery sensing mod­

ule is able to detect such feature from the first CTP packets intercepted. Therefore,

we verify that Kalis correctly detects 100% of the selecting forwarding attacks from

the very beginning of the communications, even with no detection modules initially

active.

4.5.4 Knowledge Sharing

We evaluate Kalis in a scenario in which collaborative knowledge sharing enables

the selection of the appropriate set of detection modules, improving the accuracy of

the system. In this scenario, two Kalis nodes are monitoring two different portions of

a ZigBee network. One node in each portion is malicious, namely nodes B1 and B2,

and they both collude in carrying out a wormhole attack. In such attack, B1 does

not correctly forward traffic, transmitting it instead directly to B2. The Kalis node

observing the behavior of B1 would, by itself, detect a blackhole attack, while the

Kalis node observing B2 would, without further information, consider it a source of

traffic. However, correlating the events between the two Kalis nodes, they are able

to correctly identify such attack as a wormhole.

4.6 Related Work

Extensive research has been carried out in the area of IDSes for traditional net­

works. Two popular open source IDSes are SNORT [113] and Bro [128]. Both IDes

rely on network information gathered using a packet sniffer, and detect attacks us­

ing signature matching over this information. Their signature-based schemes provide

good detection rates for specified, well-known attacks. However, the techniques used

in these traditional systems are not applicable to the IoT domain. For example, tech­

niques such as host scanning or port scanning would be ineffective on most emerging

IoT standards that use IPv6 as addressing scheme. Also, both SNORT and Bro only

work on traditional networks (wired and wireless), while Kalis supports a wide variety

106

of mediums and related protocols, and can be easily extended with the emergence of

new IoT standards. Several IDSes have been developed for WSN [129–133]; how­

ever, they suffer from one or more limitations with respect to IoT: inability to adapt,

applicability only to a single platform and protocol, small and specific range of de­

tection techniques, complete dependency on collaboration, reliance on the existence

of a central control point.

While much research has been carried out on intrusion detection for traditional

systems and WSNs, the work on IDSes specifically tailored to the IoT is still in an early

stage. One of the most relevant tool for intrusion detection in IoT is SVELTE [26].

SVELTE is both centralized (at the hub of an IoT system/group of devices) and

distributed (at each sub). It is composed of a module called 6Mapper, which recon­

structs the topology of the subs with respect to the hub, and an intrusion detection

module, which analyzes data and detects incidents. The IDS is complemented by a

mini firewall that filters undesirable incoming traffic from the Internet. In comparison

to Kalis, SVELTE (a) is host-based and therefore requires modifications to the IoT

devices’ software to deploy the IDS component, (b) targets a single IoT system (hub

and subs), (c) is primarily designed for devices communicating via the RPL protocol

(IPv6 Routing Protocol for Low-Power and Lossy Networks) [134] and cannot be ex­

panded to multiple heterogeneous protocols and mediums, (d) leverages an extensible

but predefined set of detection techniques, with no dynamic activation, (e) does not

adjust to environmental changes.

Liu et al. propose the application of Artificial Immune Systems to IoT ID-

Ses [112,135], mapping concepts between the two domains and presenting a detection

mechanism based on datagram signature analysis, with the possibility of sharing

vaccines among IDS nodes when a new attack signature is generated. While their

approach leverages genetic-like algorithms to generate detectors for unknown attacks,

it is unclear how to determine the ground truth about legitimate datagrams. More­

over, the administrator is still required to understand which attack a new detector

is capturing and supplement the attack library knowledge. While the self-adaptation

107

mechanisms of the authors’ systems aims at providing flexibility as in Kalis, their

attack detection mechanism is limited to string-matching. Last, different areas of the

network guarded by different Kalis nodes will all have access to the same library of

Detection Modules as with vaccines sharing, but Kalis will activate only the necessary

ones for the monitored network portion, improving efficiency and accuracy. Jun et al.

propose the use of Complex Event-Processing (CEP) techniques for intrusion detec­

tion in IoT [136]. In CEP, a stream of events is filtered through queries to select those

relevant for attack detection. Such work focuses on improving the IDS performance

online rather than offline. Our work leverages similar event-driven techniques, but

uses the Knowledge Base to avoid the processing of unnecessary rules.

Some research efforts have focused on developing a taxonomy of IoT threats.

Babar et al. [137] proposed a taxonomy of attacks based on the attacker goal, such as

Physical Threat, Communication Threat, Identity Management, and more. Mayzaud

et al. [138] instead proposed an extensive taxonomy of attack for RPL-based IoT net­

works, but focusing only on such routing protocol. In our proposed taxonomies, we

aim at classifying attacks from the high-level perspective of the specific attack and

communication pattern used, as well as finding relationships between the features of

the monitored devices/networks and the potential security issues, since these classi­

fications are more useful from the perspective of designing a comprehensive IDS for

the IoT.

4.7 Summary

In this chapter, we proposed two taxonomies, for IoT attack patterns, and for the

relationship between different network/device features and security threats. Then,

we presented the design and implementation of Kalis – to the best of our knowledge

the first comprehensive, self-adapting, knowledge-driven IDS for IoT, able to detect

attacks in real time across a wide range of protocols and security goals. The evaluation

108

of our complete prototype shows that our knowledge-driven approach makes Kalis

effective and efficient in detecting anomalies and attacks in IoT networks.

The scale of IoT devices and their exposure to the untrusted Internet make them

desirable for enrollment in botnets. Therefore, in complementation of the monitoring

performed by Kalis, we develop specific techniques to address this threat, presented

in the next chapter. Moreover, in some cases, the detection can still bear some

ambiguity with respect to the root cause of a security incident. However, an accurate

diagnosis is crucial to an effective recovery, and we address such problem with the

work presented in the upcoming chapters.

109

5 ROUTER-BASED DEFENSE AGAINST IOT-BASED BOTNETS

While monitoring the local sensor and IoT network through our IDS technique is

critical, such systems are exposed from threats coming from the untrusted Internet

as well. It is thus necessary to extend the monitoring also to the interactions that

such devices have with remote services. One of the biggest threats that the rapid

diffusion of IoT can enable, is that of botnets. The already mentioned large number

of devices, together with their insecurity and surprising computational power, make

IoT devices perfect tools to carry out powerful distributed denial of service (DDoS)

attacks. While the actual effectiveness of IoT devices in carrying out such attacks has

not yet been investigated, recent news show that attackers already have understood

and exploited their potential in real-world attacks [139].

Current defenses are not ready to counter such novel botnets. Techniques that

have proven effective against previous “conventional” botnets can be grouped in two

main categories: honey pots and anomaly detection. The former category includes

approaches that aim at purposefully exposing a vulnerable machine, hoping to get it

infected as part of the botnet, with the goal of infiltrating the botnet and take it down.

However, for botnets organized according to a peer-to-peer (P2P) structure, such

defenses are not very effective. In fact, the infiltration into a portion of the network

only results in the removal of a few attacking machines [140]. While extracting

information about the attacker’s network from a honey pot machine can be easily

achieved, for IoT devices it is rarely possible to access such information after the

infection, due to the lack, or extreme limitation, of user interfaces. Moreover, this

defense technique is reactionary, as it aims to shut a botnet down once it has exposed

itself, and cannot prevent an attack from taking place or the botnet from spreading.

The second category of defense mechanisms, anomaly detection, includes approaches

that build a model of “normal” behavior for an endpoint – usually by means of

110

statistical techniques – and then leverage such model to detect outliers that could

reveal undergoing attacks. Such approaches, however, are very complex to design

and tune, as they are meant to target general purpose machines whose activities are

hardly profilable in a complete manner, thus subjected to a large amount of false

positives. These considerations make it evident that previous defense techniques are

hardly applicable to this new threat, and a design for an effective defense is thus

needed.

In general, it is easy to understand that developing a “blanket defense” for IoT

devices against botnet infections is an unachievable goal. In fact, the fragmentation in

hardware platforms, operating systems, architectures, and proprietary firmware make

it impossible to develop a one-size-fits-all defense strategy. Moreover, even a single

vulnerability in one of these devices may easily vanish the entire defense work: an

attacker able to exploit that single vulnerability may be able to replace the firmware

of the device with malicious software, potentially spreading the infection to other

local IoT devices. For these reasons, a more effective defense strategy is to leverage

the connecting point of all the IoT devices, that is, the router that connects them to

the Internet.

In the work presented in this chapter, we focus on both attack and defense as­

pects of IoT botnets. First, we thoroughly investigate the attacking potential of a

botnet composed by IoT devices and construct a taxonomy based on our findings.

From the defense point of view, we address the shortcomings of existing mitigation

techniques and use such experience to tailor defense mechanisms to the peculiarities

of IoT devices. Specifically we propose Heimdall, a lightweight, whitelist-based policy

mechanism with dynamic profile learning capabilities designed for use on routers. We

implement a complete prototype and evaluate it, showing that uncompromised de­

vices see no disruption to their functionality while malicious traffic from compromised

devices is immediately blocked, all with negligible overhead.

To summarize, the contributions of our work are the following:

111

•	 The evaluation of the attack potential of hardware devices and construction of

a taxonomy of IoT devices;

•	 The design, implementation and evaluation of a centralized, lightweight defense

mechanism able to prevent IoT devices from being used as part of botnets, while

not disrupting their normal day-to-day functionality.

5.1 Background

In this section, we discuss the threat model that we address, a brief overview of

botnets, and a summary of the platform used.

5.1.1 Threat Model

We consider a standard network comprised of a router with both wireless and

hardwired connections to various IoT devices. Within such network, there may be

devices whom have a base station and have their own communication protocol to

their sub devices. An example of this is the Arlo home security system, from which a

single base station can connect to multiple wireless home security cameras. However,

these wireless cameras are not network bound to the router and invisible to the net­

work. Within this model, there are no devices that communicate among themselves

while also being bound to the router. This constraint is reinforced by the fact that

there currently is no established general communication protocol among IoT devices;

instead, each one of the device platforms interacts with each other via their public

cloud APIs. Thus, if an attacker wanted to attack a device, they would be required

to communicate with the victim through the gateway router. We assume the tradi­

tional network communication pattern in which a device willing to communicate to

a destination (e.g., a remote service) first resolves a domain name to an IP address

by means of a DNS query, and subsequently uses such IP address to communicate.

This pattern is common to IoT devices as well as traditional computing systems.

112

5.1.2 Botnets

A “botnet” is a network of compromised machines (bots) running malicious soft­

ware under a command and control (C&C) infrastructure. Usually, the controller of

the botnet compromises a series of systems using various techniques – such as Trojan

horses, worms, and viruses – to install a bot enabling remote control of the target

machines. These “zombie” machines are then remotely controlled by the attacker

(botmaster). Botnets with a large number of compromised machines have enormous

bandwidth and computing capability. Such networks are utilized by botmasters for

initiating various malicious activities, such as email spam, DDoS attacks, password

cracking, key logging, and, most recently, crypto currency mining [10]. Modern bots

can even automatically scan whole network ranges and propagate themselves using

known vulnerabilities and weak passwords on other machines. After a successful

invasion, a bot may use Trivial File Transfer Protocol (TFTP), File Transfer Pro­

tocol (FTP), or HyperText Transfer Protocol (HTTP) to transfer itself to the new

compromised host. The binary is then executed and tries to connect to the botnet.

Today, there are primarily two organizations to botnets, both with their own unique

advantages.

Centralized Botnet

In this approach, the botmaster distributes a command over the botnet via multi­

ple C&C servers in order to hide their own identity. Figure 5.1 shows the basic control

communication architecture of a typical C&C botnet (in reality, a centralized botnet

would have more than two C&C servers). Through the use of multiple C&C servers,

centralized botnets are difficult to shut down. This architecture is easy to construct

and efficient in distributing botmaster’s commands with low latency. However, it has

its major weakness in the C&C servers, as they are a single point of failure; shutting

down these servers would cause all the bots to lose connection with their botmaster.

113

Figure 5.1. Example architecture of a C&C botnet

P2P Botnet

P2P botnets are an architecture that evolved from the centralized botnet archi­

tecture. As discussed in the previous paragraph, centralized botnets depended upon

C&C servers for the botmaster to issue commands to all of the bots, making it very

easy for defenders to monitor and shutdown these servers by creating a decoy to join

a specified C&C channel. Thus, a natural strategy is to utilize a P2P control mech­

anism to circumvent defenses that aim at shutting down the C&C servers. Just like

P2P networks, which are resilient to dynamic churn (i.e., peers join and leave the

system at high rates) [141, 142], P2P botnet communication will not be disrupted

even when losing several bots. As seen in Figure 5.2, in a P2P botnet there is no

central server; bots are connected to each other, and act as both C&C server and

client. P2P botnets have shown advantages over traditional centralized botnets. As

the next generation of botnets, they are more robust and difficult to defend against.

5.1.3 Defense Platform

For the development, deployment and testing of our defense mechanism, we use

the Linksys WRT1900AC router [143] running OpenWRT Chaos Calmer [144]. The

114

Figure 5.2. Example architecture of a P2P botnet

Linksys WRT line of routers is a popular network solution used in various appli­

cations, and it is a prime example of routers that we would find as the gateway

between IoT devices and the Internet. We decided to use the OpenWRT firmware

over stock firmware, as OpenWRT allowed us to easily make modifications to the

router. OpenWRT is a popular open source Linux distribution, primarily used on

embedded devices to route network traffic. OpenWRT is optimized for size and ef­

ficiency, so to be small enough to fit into the limited storage and memory available

in home routers, while at the same time supporting a wide range of features with its

3500 optional packages [145]. Because of its many advantages, OpenWRT is used as

the basis of production firmware in consumer routers, such as those found on Asus

routers [146].

5.1.4 Virus Total

In addition to the utilization of the Linksys WRT1900AC router in the develop­

ment of the defense, we utilized a 3rd party security information aggregation service

called VirusTotal [147]. VirusTotal is a free online service that analyzes files and

URLs, enabling the identification of virus, worms, trojans, and many other forms of

malicious content detected by antivirus and scanners. VirusTotal acts as an informa­

115

tion aggregator, with data coming from over 60 different antivirus engines, website

scanners, file and URL analysis tools [148]. It is therefore an excellent validation

endpoint that Heimdall leverages in monitoring.

5.2 Related Work

The work presented in this chapter touches on several different research areas.

Among the defense techniques against botnets, two directions are particularly

interesting: the use of statistical analysis anomaly detection techniques – aimed at

blocking the attack from leafs to victims – and the infiltration in the structure of the

botnet through honeypots – aimed at identifying the root to kill the botnet.

In the anomaly detection area, a great number of big data/statistical approaches

have been proposed. Many of them focus on exploiting data mining techniques to

detect outliers. For the case of IoT, such techniques require special care as their

effectiveness rely entirely on the completeness and correctness of the “normal” profile.

In Heimdall, we generate independent profiles for each IoT device by leveraging the

correct Internet destinations needed for their functioning, and enforce those profiles

with different levels of strictness for best effectiveness.

In the scenarios in which autonomous devices are able to directly talk to each

other, Murynets et al. [32] investigated techniques for clustering devices based on

their communications. Therefore, the profiles built show normal, expected inter­

actions among devices, and use those to develop anomaly detection techniques for

cellular Machine-to-Machine (M2M) communications. In IoT application scenarios,

the manufacturers have in their best interest to use cloud services as intermediaries

for all device-to-device communications; therefore, the lack of direct communication,

while making the M2M-communication-based defenses not applicable, can actually

be used to our advantage in the design of the defense technique.

Liu et al. [33] proposed an anomaly detection model for IoT based on an artificial

immune system, which uses agents deployed at several gateways to collect statisti­

116

cal data and share those with a central service. In a related solution, Gonzales [34]

analyzes how artificial immune systems can benefit anomaly detection; various rep­

resentation schemes are investigated, and four different algorithms for the generation

of detectors are proposed.

One first interesting work about measuring and mitigating P2P-based botnets is by

Holz et al. [149]. They used the Storm worm as case study, and identified a three-phase

process for botnet response: first, the extraction of relevant botnet bootstrapping

information from a captured bot (such as the IP addresses of initial peers, and more);

second, the infiltration of the botnet to monitor it from the inside; third, exploiting

the publish-subscribe communication to take over the botnet and thus mitigate the

attack. The authors correctly discuss how P2P botnets are technically hard to tackle,

supporting our claim about the criticality of our motivations.

5.3 Attack

In this section, we discuss the challenges and advantages of IoT in terms of attack

and botnet design.

5.3.1 Challenges in IoT Attack Design

Despite the fact that embedded devices have grown significantly in capabilities

over the recent years, they still have many limitations. IoT devices suffer from the

same limitations, which creates unique challenges in the construction of IoT botnets.

In our analysis concerning how to construct a IoT botnet we identified a number of

critical challenges unique to IoT devices that we discuss in what follows.

Low Resources

As with all embedded systems, IoT devices have very limited resources available

for operation, including CPU cycles, memory, and available network bandwidth. Such

117

limitation is not an issue with respect their expected use, as IoT devices generally

do not generate much traffic and do not require massive computations to fulfill their

intended purpose. However, in a botnet that is not the case. Depending upon the

intended use of the botnet, limitations of specific resources are a major issue. For

example, limitations in the CPU cycles would be of primary concern if the purpose

of the botnet were to mine crypto currencies, whereas network bandwidth limitations

would be the main concern if the purpose were a DDoS attack.

Variety of Devices

IoT provides countless device, each specialized on different tasks. Each such device

has its own hardware platform and software implementation. This leads to many

different architectures and chipsets that need to be accounted for when crafting the

malware and attempting to hijack devices during the botnet construction. Such

variety vastly increases the difficulty in creating botnets, as no longer are attackers

able to focus on a single architecture with a single operating system. However, as

discussed next, this is also an advantage to the botnet, as the variety of devices

increases the difficulty in shutting it down.

5.3.2 Advantages in IoT Attack Design

While there are many disadvantages from utilizing IoT devices in the construction

of botnets, there are also many advantages, as we highlight below.

Variety & Number of Vulnerable Devices

It is estimated there will be over 20.8 billion IoT devices online by the year 2020,

while there already are about 4.9 billion connected devices in 2015 [150]. This means

that there will soon be an even larger number of devices for botmasters to target.

Previously, when developing defenses against botnets, a single architecture, namely

118

x86, was considered. This allowed researchers and vendors to deeply analyze the

specific strain of malware and how it worked in compromising its targets [151], to

then develop a blanket defense against it. However, with such large numbers of

devices and services, there is a much larger variety of devices to be targeted. This

allows future botmasters to construct a botnet with a high entropy in device types,

enabling them to construct a very robust network. Now, when a vendor patches a

vulnerability utilized by the botnet thus removing the botmasters malware, it will

only affect a small portion of the botnet, leaving the rest of the network unaffected.

Ease of exploitation

As the OWASP 2015 report highlights, IoT security is the worst of all domains.

The reason is that IoT is a conglomerate of technology that links network, application,

mobile, and cloud technologies together into a single ecosystem [152]. Such hetero­

geneity introduces multiple failure points all within a single application, making it an

ideal target for attackers. A report by HP describes vulnerabilities that have been

exploited, such as credentials being sent over clear text, network ports listening with

root shells without a password, private data leakage, and a range of web and mobile

vulnerabilities [14]. A second study by HP evaluated IoT home security systems and

found the following: 100% of systems were vulnerable to account harvesting via the

cloud interface allowing attackers to brute force credentials; 100% allowed weak pass­

word, such as 123456; 100% failed to implement account lockout defense; 90% lacked

a two-factor authentication option; 70% had security posture variance between their

cloud, web, and mobile interface; 70% had egregious issues with their software update

systems; 50% exhibited improperly implemented SSL/TLS encryption. In such study,

it was noted that one of the systems analyzed went as far as retrieving firmware via

FTP, allowing the capture of credentials that would give an attacker write access to

the update server [153]. This would be a botmaster’s dream case, allowing them to

quickly and effortlessly distribute their malware to every device utilizing that server

119

at once. As the list of issues found in these devices increases, it is trivial to conclude

that targeting IoT devices will be a unavoidable step in the evolution of botnets.

Diurnal Dynamics

As Dagon et al. pointed out [154], the online population of traditional botnets

has a clear “diurnal” dynamic, due to many users shutting down their computers

at night. In a specific time zone, the peak online population of a botnet could be

as much as four times the valley level online population. However, within the IoT

this is not the case. By definition, IoT devices are constantly online, which creates

a diurnal dynamic very helpful for a botmaster. Thus, when leveraging IoT devices,

a botmaster will no longer be restricted to certain time periods to launch optimal

DDoS attacks, or achieve optimal spread of new malware.

Device Taxonomy

As discussed previously, many different platforms and architectures enable IoT.

Out of those, we selected multiple exemplary devices from popular categories of con­

sumer IoT devices and classified them based on processor power and specificity of

the purpose they serve. Figure 5.3 shows the result of our classification, using a

scale from 0 to 100 for the varying degree of the measured metrics. We observe a

very clear pattern among the devices as the specificity of the devices increases. Low

specificity devices such as an Odroid or Raspberry Pi, which are examples of single

board computers, run a full Linux distribution on their respective platform, allowing

for users to rapidly develop various applications to run on them. These boards are

perfect examples of the hardware that would be found in real-world deployments. As

we move along the specificity scale, we see another grouping of low power platforms

such as Arduino, Photon, and Galileo boards. These are all examples of development

hardware which allows rapid prototyping of their respective IoT devices, while being

more limited. Following, the next grouping is of IoT devices that have their own

120

Figure 5.3. Device taxonomy of surveyed IoT devices

native app support, such as Amazon Echo, Moto 360, and the Samsung Family Hub

Fridge. These devices are examples of production IoT devices that not only serve

their specific purpose but also allow for additional user configurations and installa­

tion of applications. Last, we see the cluster of very specific devices that have no

built-in interface and are all interacted with via their respective apps. Devices within

this category are the most attractive to attackers, due to the fact that there is limited

user interaction with them but they have a wide range of processing power.

5.4 Heimdall Defense Technique

In this section, we discuss the challenges and advantages of IoT in terms of defense

technique design, and describe Heimdall, our proposed defense techniques.

5.4.1 Challenges

Designing a defense technique against IoT botnets is challenging. Our anomaly

detection-based approach, Heimdall, is based on a strategy that builds a profile of the

121

normal behavior of each device, and enforces a white-listing policy that only permits

actions compliant with such profile.

In the specific case of IoT devices, an appropriate profile should include the des­

tination servers that the device contacts under normal operation. However, the first

obstacle that becomes apparent by analyzing the traffic patterns on common con­

sumer devices is that their backend services are usually hosted on load-balanced,

public cloud infrastructures. Consequently, the IP address for a correct destination

server is bound to change frequently, and therefore an IP-based whitelisting approach

for the profiling and policy enforcement would result in disrupting the normal func­

tioning of the devices.

5.4.2 Advantages

Despite the challenges of designing defenses against IoT botnets, a careful con­

sideration of the specific behaviors of Io”T devices highlights specific features of IoT

devices that can be leveraged to design a lightweight yet effective defense.

Building a profile for anomaly detection for general purpose machines – such

as personal computers or workstations – is very hard because of all the different

behavioral patterns that they can present. Conversely, IoT devices usually perform

a well-defined, small range of operations. Thus, within Heimdall, such recurring,

static set of possible actions can be leveraged when determining the normal behavior

to be included in the profile. It is also important to notice that anomaly detection

techniques for IoT do not need complex statistical or probabilistic inference models

for building profiles and enforcing whitelist-based policies. Instead, a small whitelist

can be used in combination with a traffic validation service to obtain a very effective

and more accurate defense mechanism.

Moreover, the fact that the destination IP addresses for the devices’ network

communications often change for load-balancing actually leads to an advantage. In

fact, by monitoring the domain name system (DNS) queries issued by the devices,

122

one can obtain a human-readable set of valid server destinations to whitelist. This

opens the way for interesting scenarios. In fact, since this set of valid hostnames is

consistent across all the devices of the same kind (e.g. all the Nest thermostats will

reach out to frontdoor.nest.com), it would be possible to ship Heimdall to the end

users already including some partially-built profiles.

Lastly, when placing the defense mechanism on the gateway router that all IoT

devices in the local network use to reach the Internet, there is the possibility of miss­

ing potential device-to-device direct communications. In fact, some devices are able

to cooperate and exchange state and commands, as in the case of the August Smart

Lock and Nest integration. However, by analyzing the design choices of the vast ma­

jority of consumer IoT devices (and of all the devices in our evaluation testbed), any

communication between devices goes through cloud API services, and never directly

from a local device to another. This is a very reasonable and effective design choice

by the manufacturers, as it centralizes the communication specifications and enables

extensible interoperability, while at the same time reducing the attack surface.

5.4.3 Heimdall Architecture

Our approach is implemented as an event-driven defense algorithm – i.e., it is

triggered on-demand by external events generated by the IoT devices, such as a

new device joining the local network or the request by a device to send a packet to

the Internet – in order to improve performance and react to external triggers. We

now discuss the event-driven defense algorithm. The pseudocode for such algorithm is

shown in Algorithm 3. Note that dest d in the algorithm can be both a domain name

or an IP address, depending on the packet currently being analyzed (i.e., whether it

is a DNS query or a subsequent packet destined to the resolved IP address.)

Whitelist Manager. While Heimdall is active, the whitelist manager is in charge

of maintaining each connected IoT device’s whitelist. Upon detecting that a new

device is connected, a list is created for said device and populated with the device

http:frontdoor.nest.com

123

ALGORITHM 3: Overall event-driven Heimdall pseudocode

Function(WhitelistMgr.onTraffic (device D, dest d)) create empty WL D if not exists;
if d not in WL D then

if realTimeValidation then
if d not in DestCache then

DestCache.checkDest(d);

if d malicious in DestCache then
return REJECT;

add d to WL D;

return APPROVE;
Function(TrafficMgr.onTraffic (request req, device D, dest d)) if d in Blacklist then

drop(D, d);
return;

r = WhitelistManager.onTraffic(D, d);
if r == REJECT then

drop(D, d);
return;

let req from D go to d;

intercept response R (don’t let go to D yet);

if req is DNSQuery then

if r.IP != null then
if r.IP != R.IP then

r’ = WhitelistManager.onTraffic(D, R.IP);
if !r’ then

if !selfCorrection then
drop(D, d);
return;

rewriteReply(R, r.IP);

WhitelistMgr.associateForSession(r.IP, WL D.d);

release R;

Function(TrafficMgr.drop (device D, dest d)) send(D, ”Destination Unreachable”);

sendAlert(D, d);

Function(Auditor.audit ()) forall the entry in DestCache do

DestCache.checkDest(d);

Function(DestCache.checkDest (dest d)) r = queryVirusTotal(d);
if r benign then

remove from DestCache.malicious[];

add to DestCache.benign[];

else
if d in DestCache.benign[] then

remove from DestCache.benign[];
WhitelistManager.purgeFromAllWLs(d);
sendAlert(d);

add to DestCache.malicious[];

return r;

destinations as they are enumerated. The primary purpose of this is that, once a

destination is validated, any future validation is streamlined to minimize traffic delays.

While monitoring the communication of each device, the whitelist manager is also

auditing all whitelisted domains. Carrying out this continuous verification, Heimdall

http:WhitelistMgr.associateForSession(r.IP

124

can ensure that even if a destination within a whitelist becomes malicious after the

initial verification, it will be removed from all devices’ whitelists and added to the

global blacklist within a short time period. This will block all future communication

to or from that destination, such that, even if the device is compromised, it would

not be able to participate in the botnet. With the combination of validation at

enumeration time and continuous auditing of the whitelists, all entries in a devices

profile will then constitute all and only the legitimate destinations for the device’s

traffic.

Traffic Manager. During the execution of Heimdall, the traffic manager analyzes

each packet sent and its destination. This component is responsible for leveraging the

whitelist manager and validating that each destination for a specific device’s commu­

nication is legitimate. Upon each new communication, the traffic manager checks to

see if the destination is contained within the global blacklist or the device’s whitelist.

If the destination is within the blacklist, then the communication is instantly dropped,

otherwise it is allowed through. However, if the communication is a DNS request, the

traffic manager has the secondary duty of validating the DNS response as well. Upon

receiving the response from the DNS server for a specified request, the traffic man­

ager compares the DNS response against the report returned from VirusTotal. If it is

found that the destination IP addresses do not match, then there is a high probability

that a DNS poisoning attack is occurring against that device. The response packet is

then rewritten to contain the correct IP address from VirusTotal and then sent to the

device, preventing attackers from externally forcing a device to communicate with a

malicious destination whose domain was previously whitelisted.

Multitiered Policy Enforcement. Since each IoT device will have a different

set of requirements for its functionalities, Heimdall supports two different modes of

validation, namely maximum throughput and real-time validation. The maximum

throughput mode is a simplified validation where each destination is checked against

the global blacklist and if not found there automatically each destination is added to

the whitelist and then audited at a later time by the whitelist manager. This mode

125

incurs a constant overhead for each communication as at no point are transmissions

being held for validation before they are forwarded. On the other hand, the real-time

validation mode looks at every single communication and, if the destination is not

in the device’s whitelist, it is validated with VirusTotal. This is the strictest model,

since a domain known to be malicious would never be added to a whitelist. Under

both policy modes, however, the DNS requests are always validated, as they are the

entry point for all communications for any device.

5.4.4 Implementation Details

We implemented a prototype of Heimdall operating on the Linksys WRT1900AC

router. As highlighted in Section 5.1.3, this platform was chosen due to its support

from the OpenWRT project. With OpenWRT we were able to add new features to

the router by installing our defense tool at the gateway for connected IoT devices.

When a new device is connected to the router, Heimdall immediately isolates it

and begins analyzing the devices traffic. In order to implement this, we utilize the

IPTables [155] utility in combination with our custom proxy and the VirusTotal ser­

vice. We utilize IPTables to forward all traffic for each of the IoT devices through

our proxy running on the router. The proxy is thus able to analyze each outgoing

communication and DNS response, to validate the destinations accordingly by uti­

lizing VirusTotal services. Based on the input from the proxy, we query VirusTotal

upon encountering a new destination. By leveraging the 63 data points including

known trusted services such as BitDefender, Kaspersky, and Malwarebytes in the re­

port VirusTotal provides [148], Heimdall is able to judge whether the destination is

known to be malicious. If it is found that the destination is malicious, the domain

and IP address are added to the blacklist to prevent all further communication on

the network to that destination.

126

5.5 Evaluation

In the evaluation of our defense, we utilize five very popular IoT devices, namely

Nest Thermostat [156], August Smart Lock [157] with August Connect [158], Amazon

Dash Button [159], Arlo Home Security System [160], and Lifx smart bulb [161].

These devices were selected due to their features including a mobile application, user

account, cloud-based back-end, automated features, and inter-device integration. Our

evaluation consists of three parts. First, validating that there was no interrupted

service while Heimdall is active. Second, validating that the device could not reach a

known malicious destination. Finally, we evaluated the network overhead of Heimdall

when active on the router.

Attack Evaluation

Since it is not in the scope of this work to construct a botnet, we simulated com­

mon attacks to benchmark the capabilities of the different devices we were using. We

utilized the Hyenae Network Packet Generator Tool [162] to do this. Hyenae is a

flexible, platform-independent network packet generator. It allows users to reproduce

multiple DoS and DDoS scenarios such as TCP-SYN and ICMP-Echo flooding. For

the purpose of our experiments, we tested three distinct attack scenarios, namely

TCP-SYN, IMCP-Echo, and UDP flooding. For each attack, we limited it to one

million packets and monitored how long the execution took, to calculate the aver­

age Mbps each device was capable of. In order to evaluate the capabilities of the

Linux boards in a botnet attack scenario, we implemented a hybrid P2P botnet with

our boards and benchmarked their capabilities. To do this, we utilized the network

benchmark tool iperf, a platform-independent tool for performing network through­

put measurements [163]. For the purpose of our experiments, we tested both TCP

and UDP throughput between each board and the test server. For each result we

took the average of twenty-five benchmarks.

127

The Desktop averaged at more then 930 Mbps for TCP and over 800 Mbps for

UDP. This is due to the fact that modern machines are equipped with gigabit eth­

ernet connections that allow for very fast network connectivity, in addition to the

south bridge on the motherboard that offloads a majority of the computational re­

quirements for network communication. The next highest performing device was the

Odroid xu4. This board averaged 9̃19 Mbps for TCP communication and 5̃95 Mbps

of UDP traffic. This is very impressive due to the fact that the Odroid xu4’s network

connectivity is comparable to that of a full fledge x86 based desktop. Due to this an

attacker could easily replace a desktop with an IoT device utilizing similar hardware

such as the Odroid xu4. The next highest performing device was the Odroid c1. This

board averaged greater than 400 Mbps of both TCP and UDP communication. It

is interesting to note that this board – despite having limited processing and mem­

ory capabilities in comparison to the Odroid Xu3 – still out performed it. This is

due to the fact that the Odroid C1 has a dedicated network controller, the Realtek

RTL8211F [164], whereas the Odroid Xu3 utilizes the LAN9514, a shared LAN/USB

controller [165]. The third highest performing board was the Odroid Xu3 with op­

tional USB 3.0 gigabit adapter, averaging more than 405 Mbps for UDP traffic and

220 Mbps for TCP traffic. The fourth and fifth highest performing boards are the

Raspberry Pi 2 and Raspberry Pi, which maximized their fast ethernet connections.

Despite the deeply different range of resources, each one of these boards is actually

bottlenecked by the network hardware implementation. As these chips improve, we

can expect to see more lower-end IoT devices increase to more closely match that of

full x86 machines.

Based upon our experimental results we can now estimate how many IoT devices

would be required to build a botnet that would compete with its traditional x86 based

counterpart. Assuming that there is a botnet of size 100,000 x86 devices and with a

55% peak of its population online at maximum due to the diurnal dynamics of the

botnet. This botnet would achieve a peak of 49.5 Tbps, given that each device can

average 900 Mbps. To achieve this within an IoT domain we would then need 90,000

128

Figure 5.4. Functional profile completeness

IoT devices, assuming an average of 550 Mbps from each device. This may appear

as a massive number of devices but in comparison to the 20.8 billion new devices

expected to be online by 2020 it is only 0.00000432% of the population. In addition

in a domestic scenario where the internet connection of the devices is limited by the

provider it is worth noting that even the lowest performing board, the Raspberry

Pi, would match that of its x86 counterpart. Thus despite the limitations in the

network capabilities of these embedded devices a botmaster could easily construct a

very effective effective botnet.

Validation of Profile Health

We validated how quickly consumer devices would expose a complete enough be­

havior in terms of destinations reached. We went through the initial configuration

of each device within our lab, following the instructions provided to connect our ac­

counts to the respective devices and sync them with their cloud services. We captured

snapshots of the whitelists built by Heimdall – with no ongoing attacks – at 1 hour,

24 hours, and 1 week of normal execution for all devices. We define nominal com­

pleteness of a device’s whitelist as the completeness w.r.t. the entire set of possible

destinations that such device will ever attempt to communicate with. Conversely,

129

we define functional completeness of a device’s whitelist as the completeness w.r.t.

to the minimum set of destinations that need to be reachable for a device to carry

out its normal functionality. A functionally complete whitelist is a subset of the re­

lated nominally complete whitelist. This distinction is necessary because IoT devices

make heavy use of load balancing techniques in reaching their cloud servers. For

this reason, some devices might try to contact, at different times, different domain

names corresponding to various replicas of the same service. However, if traffic to­

wards one of those replica domain names is blocked, it is often the case that a device

will simply attempt another one as fallback, having therefore no interruption in the

regular functionality. Thereofre, while including all those replicas’ domain names

concurs to a better nominal completeness for a whitelist, the functional complete­

ness refers to collecting the minimum set of destinations that allows an uninterrupted

functioning of the device. We used the 1 hour, 24 hour, and 1 week traffic snapshots

to evaluate the nominal completeness and functional completeness of the whitelists

at those points in time. Throughout the whole week of testing, we observed that

Heimdall never interfered with legitimate execution, not preventing any correct ac­

tivity. Upon analyzing the network traffic during the experiment, we found that

not all the legitimate destinations were observed during the first hour, leading to

whitelists that were initially not 100% complete until later on, as seen in Figure 5.5.

This is due to the fact that some devices such as Arlo only attempted to enumerate

other domains used in load balancing after a few hours. For example, in the first

hour Arlo enumerated two separate domains vzweb07-prod.vz.netgear.com and

vzweb06-prod.vz.netgear.com. However over the course of the week it attempted to

enumerate vzweb01-prod.vz.netgear.com, vzweb04-prod.vz.netgear.com, and

vzweb05-prod.vz.netgear.com. Thanks to the dynamic learning of Heimdall, at no

point in time was the device functionality compromised. Thus, as seen in Figure 5.4

the functional profile reaches 100% completion in just over 3 mins. This means that

after 3 mins of the device communicating, Heimdall has learned all required domains

for the device to perform its tasks.

http:vzweb05-prod.vz.netgear.com
http:vzweb04-prod.vz.netgear.com
http:vzweb01-prod.vz.netgear.com
http:vzweb06-prod.vz.netgear.com
http:vzweb07-prod.vz.netgear.com

130

Figure 5.5. Nominal profile completeness

Validation of Blacklist construction

To test the enforcement phase, we used a Raspberry Pi 2 as a malicious device

to impersonate each of the five consumer IoT devices after the learning phase was

complete. In order to accomplish this we powered off the original device, disconnected

it from the network, and spoofed the Raspberry Pi 2 MAC address to mimic that

of the device. Upon connecting the Raspberry Pi 2 to the router, we proceeded to

have it ping multiple domains that we knew were not on the whitelist, which resulted

in those packets being blocked by the router. Next, we attempted to subvert the

whitelist by pinging the target IP address directly instead of using their respected

domain name. These attempts were again blocked as the IP addresses we targeted

were not included in the whitelist.

Heimdall Overhead Evaluation

Lastly, we validated the overhead of Heimdall in terms of latency introduced in the

network traffic. To benchmark it, we utilized the same Raspberry Pi 2. During this

time, we used the network ping utility to ping an allowed domain from each of the

devices. As seen in Figure 5.6, our results show less than 1% in overhead over 50 pings

with Heimdall active and without Heimdall active. Such close-to-ideal performance

131

Figure 5.6. Heimdall latency

is due to the fact that Heimdall leverages the existing low-latency features of the

iptables tool to enforce the profile, thus leveraging the existing optimizations and

network functionalities.

5.6 Security Analysis

In this section, we provide a discussion of the security of our approach, and how

a malicious attacker might try to bypass the defenses put in place by our work.

The goal of an attacker would be to bypass our whitelist-based defense mechanism.

The scenarios in which this can be attempted are as follows.

An already-compromised device joins the network, and the attacker tries to exploit

local device-to-device communication as a vehicle to spread the attack to other uncom­

promised devices on the local network. This is one of the most important scenarios, in

which the attacker tries to get the IPs of the C&C servers to be whitelisted for other

devices. As this is one of the most dangerous scenarios – given that the compromised

device inside the local network represents conceptually an insider threat – we devoted

special attention to it. There are two cases: (1) the malicious IPs are already black­

listed, or (2) the malicious destinations are seen by Heimdall for the first time. In

132

case (1), not only the compromised device will not be able to spread to other devices,

as they will be blocked from reaching those destinations, but it also would not be able

to reach such destinations itself. In case (2), at the first attempt to communication

to malicious destinations, the verification carried out by Heimdall will lead to their

blacklisting, then falling back on case (1). This covers all possibilities and ensures

that no insider attack can manipulate the process and compromised the device or

poison its whitelist.

The reliability of a destination changes over time. A destination initially allowed

might be discovered as malicious later on. The auditing process carried out peri­

odically by Heimdall takes care of refreshing all whitelists with the most up-to-date

security statuses for all destinations. This limits the attack window to a short period

of time, making it ineffective for DoS attacks.

A device’s firmware receives an update. In this situation, the range of valid des­

tinations for a device might change. Since Heimdall exercises a constant learning

on new destinations and subsequent validation of them, after a firmware update the

device will be able to attempt to contact new destinations and those (if valid) will

be added to its whitelist. If the firmware update compromises the devices, no new

malicious destinations can be reached anyway as they will be subject to the validation

process as any other initial destinations.

The attacker carries out a DNS poisoning attack affecting the local devices. This

could lead to a domain being verified as legitimate by Heimdall, but then being

resolved to a false, malicious IP address. Since Heimdall performs an extra validation

step to compare the publicly available DNS resolution with the DNS Reply from

the local DSN server, DSN poisoning attacks will not be able to circumvent the

system. In fact, the destination IP will eventually be blocked anyway before any

actual communication can take place.

A malicious device (or development prototype) communicates with hardcoded IP

address destinations, without DSN queries. In this case, Heimdall’s destination verifi­

cation process will still be able to verify the IP rather than the domain. The leveraged

133

information can include publicly available IP blacklists. If it is not yet known as mali­

cious or benign, the destination can be temporarily allowed and the periodic auditing

will block it as soon as the assessment changes, greatly limiting the attack possibilities

even in face of unknown, hardcoded IP destinations.

Even though the whitelist for a device is correct (i.e., it does not contain the IPs of

any botnet C&C server), the attacker tries to evade the detection. Unless the router is

compromised, this scenario is once again covered completely by the whitelisting-based

defense mechanism itself, and therefore the attacker’s attempt will not succeed.

The attacker compromises the router. Even though it is out of the scope of this

work, we also consider the scenario in which an attacker tampers with the router’s

firmware in an attempt to disable or alter Heimdall. This situation would require

the attacker to have physical access to the router in order to either re-flash a new

software image on it, or install or remove individual software modules installed on

it. For the use cases in which this might be a real threat – such as unattended

operation environments for routers in manufacturing or industrial scenarios – any

remote software attestation technique available in literature would be able to mitigate

this issue. In fact, the router’s firmware could be digitally signed, and a cloud service

could periodically perform attestation to verify that no tampering has occurred with

the router’s software.

From all the scenarios described above it is possible to see that Heimdall is thor­

ough and effective.

5.7 Summary

In this chapter, we investigated the effectiveness of an IoT device based botnet and

evaluated multiple Linux development boards to test their effectiveness in a DDoS

attack. We showed that constructing such a botnet is quite easy due to the number of

vulnerabilities identified in IoT devices. In addition, we proposed a defense technique,

Heimdall, that mitigates these attacks by restricting the devices to their respective

134

legitimate domains. We validated Heimdall’s approach and showed its effectiveness by

testing it on several real-world IoT devices. Based on the results of our analysis and

implementation of the defense, we argue that that whitelist-based anomaly detection

is a practical and low-overhead defense against IoT botnets.

After the monitoring tools deployed in a network detect an attack, it is paramount

for the system to quickly recover. However, an effective response relies on an accurate

diagnosis of the root cause of the occurred security incident. We address such problem

with the work presented in the next two chapters.

135

6 FINE-GRAINED ANALYSIS OF PACKET LOSSES IN WSNS

Once our monitoring techniques have detected an attack, determining its actual cause

is crucial to an effective response action. In fact, a key requirement for highly secure

network systems [166,167] is represented by situational awareness (SA). SA typically

refers to the gathering of a (possibly real-time) knowledge about relevant events hap­

pening in the network of interest. This enables an understanding of the impact of

events and defensive actions on the network security, both immediately and in the

near future. For wireless sensor networks (WSNs), packet loss is a class of events

particularly relevant for SA, as it may result in relevant information to be lost, as

well as undermine data quality solutions based on redundant data transmission [168].

However, just detecting the loss of data packets is not sufficient. Correctly diagnosing

the causes of such losses is also crucial. Packet losses may be the result of either com­

promised or misbehaving nodes, or of attacks focused on network links. Determining

the actual causes of packet loss attacks is vital in order to deploy effective responses

to attacks as well as recovery and debugging actions.

Selective forwarding and blackhole attacks are examples of node related attacks,

while interference is an example of a link related attack. Both these classes of attacks

can result in partial or total packet loss. However, even thought the causes of such

losses are different, current intrusion detection systems (IDSes) are typically only

able to detect the packet losses, but are unable to determine the actual causes of the

losses, whether node or link related [169–171]. Therefore, current IDSes need to be

enhanced with techniques able to carry out a correct diagnosis of the cause of packet

losses in the WSN of interest.

The work presented in this chapter addresses this need through the design and

implementation of an approach for a fine-grained analysis (FGA) of packet losses to

accurately diagnose their underlying causes. By analyzing all the links in the WSN

136

of interest, our approach is able to determine whether a packet loss attack is caused

by a malicious node or a link-related problem. Our FGA tool builds profiles for the

network links by leveraging packet resident parameters such as the received signal

strength indicator (RSSI), the link quality indicator (LQI), and the packet reception

rate (PRR). Upon the reporting of a packet loss by the IDS, these profiles support a

thorough analysis, in order to determine the actual cause of the loss. Moreover, for

packet losses caused by an interference on the links, our approach can estimate, with

good accuracy, the location of the source of such interference. This knowledge em­

powers network administrators and automated incident response systems (IRSes) [43]

to estimate the network regions affected by the interference – a crucial information,

for example, in determining the affected nodes and letting the unaffected sensors take

effective response actions, such as re-routing their data through links and nodes not

affected by the interference.

The design of our FGA tool has many advantages that make it ideal for asyn­

chronous systems such as WSNs. First, the analysis is event-driven and is carried

out simultaneously at every investigating node. Second, multiple investigations can

take place at the same time in cases when there is more than one misbehaving node

in different network locations. Third, the investigation is carried out in a stealthy

manner, giving no chances for the malicious node to interfere with the investiga­

tion results. Fourth, our approach is fully distributed, thus not relying on the base

station (BS) to coordinate or perform the analysis. Instead, it is carried out solely

by the direct neighbors of the faulty node or link. Lastly, our FGA tool has a low

overhead, and can be implemented as a layer in many WSN systems. Sensor nodes

have very limited computational and power resources. For this reason, to perform

the required analyses, our approach leverages resident parameters – such as RSSI

and LQI – that are available within every received packet. Therefore, unlike previous

approaches [172,173], our FGA tool does not require any additional node or resource.

Our FGA tool has various applications, from forensics investigations to real-time

response systems. As an example, forensic analysts may want to record the link mea­

137

surements for every packet in order to investigate and determine the nodes involved

in some suspicious data transfers. Additionally, real-time IRSes may leverage the ac­

curate analysis results of our FGA tool to enact better and more effective responses.

6.1 Adversarial Model

In this section, we introduce the assumptions that define the adversarial model.

We assume that the WSN consists of a large number of sensor nodes, and is fully

connected via multi-hop communications. We assume the network topology to be

designed so that every node has at least two disjoint paths to reach the BS. We

also assume that an IDS is deployed at each node so that each sensor is capable of

detecting packet loss attacks as well as data modifications [174–177].

The attacker has two ways of attacking the network:

•	 After the deployment, the nodes may be captured by the attacker, that will

then be able to access all the information stored in those nodes, as well as

reprogram them and control their actions. The attacker could therefore make

node refusing to forward some of the packets (Selective Forwarding attack) or

even all of them (Blackhole attack).

•	 The attacker may place a source of interference on the network surface, dis­

rupting the wireless communication links between the nodes. The attacker can

therefore cause the loss of some of the packets (Low Interference attack) or of

most of them (High Interference attack).

Compromising a node to actively drop packets and introducing interference in the

network are from a high level perspective, the two ways in which an attacker can

disrupt network communications through a packet loss attack. For this reason, our

adversarial model covers in fact many different attackers that aim at causing packet

losses, since their means will eventually fall in one of the those two attack categories.

Examples of other attacks that fall into such categories are the use of self-replicating

138

WSN worms that find vulnerabilities in the neighbors and propagate using packets as

attack vectors (a node-related attack), or the alteration of environmental condition of

a mote such as artificial exposure to very high or very low temperatures (a link-related

attack).

Each node whose IDS detects a packet loss attack will investigate upon the loss;

we assume the investigating nodes to be trustworthy and not to report false votes.

This assumption is particularly important for the Majority Voting algorithm adopted

as part of our approach. However, we will also present a variant of this algorithm able

to relax this constraint, and thus able to tolerate up to a certain number of colluding

investigating nodes.

We assume that multiple simultaneous attacks can be carried out at the same

time in different parts of the network. In fact, one of the strengths of our approach

is that multiple simultaneous investigations can be carried out.

6.2 Background

In this section, we introduce the basic parameters that are used in profiling the

links among nodes in a WSN. As hardware platform, we use the CC2420 radio chips

that are installed on the Telos nodes (see Section 6.7 for more details about the the

CC2420 radio chip). The CC2420 chip provides two useful metrics: the RSSI and

the LQI. It is important to note that our approach is not limited to the CC2420 radio

chip, but can work on any radio providing those measurements, such as any newer

radio based on the IEEE 802.15.4 standard.

The RSSI represents the signal power of the received packet and is measured in

dBm. Its value is calculated over 8 symbol periods and stored in the RSSI V AL

register of the CC2420 radio chip. Chipcon, the manufacturer of these radio chips,

has specified in the CC2420 datasheet that the signal power value is computed in

dBm as RSSI V AL + RSSI OF F SET , where RSSI OF F SET is about −45.

139

The RSSI value ranges between −50 and −100, with the higher value (less negative)

representing a stronger signal.

The LQI is a measure of the current quality of the received signal and can be

viewed as the chip error rate of the received signal. It is calculated over 8 bits

following the start frame delimiter (SFD). According to the CC2420 specification,

the measured LQI1 is actually the average correlation of each symbol obtained by

comparing the symbol that is supposed to be received and the symbol actually received

(signal + noise). Its value usually ranges between 50 and 110, with the higher values

representing better quality frames.

Finally, a third parameter used in our approach is the PRR, which is defined as

the ratio of the number of successfully received packets over the number of packets

sent between two neighbor nodes. A high PRR means a better link quality and a

healthy communication link.

6.3 Network Profiling Management

In this section, we explain how we use the RSSI, LQI, and PRR parameters to

profile each link between two neighbor nodes, and how we aggregate those individual

profiles to determine each node’s neighborhood profile.

6.3.1 Link Profiling

The purpose of link profiling is to provide a better understanding of the rela­

tionship between each node and its direct neighbors, which is a critical feature for

determining the causes of packet losses. At initial network setup, the BS gets to know

all the nodes by issuing a HELLO command and then requests each node, one at a

time, to start the Link Profiling process. Each node, in turn, broadcasts M dummy

messages, one every 10 milliseconds, to all its direct neighbors. The value of M must

1LQI values are generally calculated by a software converting their values to a range of 0 − 255. The
values are computed using the RSSI and the average correlation values. In this dissertation, we refer
to the LQI as the average correlation, that is, the value that CC2420 chip denotes as LQI.

140

be chosen according to the stability of the network and its topology. The RSSI and

LQI values can show high fluctuation in some networks; therefore a larger M will

result in a slower initial profiling process, but more accurate profiles.

Since link profiling occurs during initial network setup, we assume that at this

step there are no node or link related attacks, as such attacks can be easily detected

by network administrators during initial testing. Figure 6.1 summarizes the steps in

the link profiling.

When a node receives the dummy messages from its direct neighbor, it records

the RSSI, LQI and PRR values for that specific link that connects the node to the

sender. Afterwards, each node will create the specific profile of that link consisting of

the averaged RSSI and LQI values, together with the PRR, to form the link profile

triplet (AvgRRSI, AvgLQI, PRR) with each direct neighbor. Each link profile is

saved locally at each node. Since link profiles depend on the parameters carried by

received packets, our profiles are directional: the profile of the link between node n

and node n’ from the point of view of node n, denoted by n←n’, is different from the

profile of the link from the point of view of node n/, denoted as n’←n.

If M is the number of dummy messages broadcasted by every node, and Rn←n ' is

the set of messages from node n/ received by node n, then the components of the link

profile n←n’ are computed as follows:

M RSSI (Ri
')i=1 n←nAvgRSSIn←n ' =

|Rn←n ' |
M LQI (Ri

')i=1 n←nAvgLQIn←n ' =
|Rn←n ' |

|Rn←n ' |
P RRn←n ' =

M

The corresponding link profile n←n’ is represented as the following triplet:

n ← n/ = (AvgRSSIn←n ' , AvgLQIn←n ' , P RRn←n ')

141

Figure 6.1. Profiling steps performed at initial network setup.

The storage required at each node depends on the number of direct neighbors of

the node.

The initial Link Profiling process is vital for the FGA subsequent analyses. In

fact, the RSSI and LQI measurements are piggybacked in the individual packets

exchanged by the nodes, and the traffic load throughout the steady network might

be highly different, providing more data for the profiles at some nodes and very little

information at nodes where the traffic load is light. This would lead some of the

averaged link profiles to show high variance and less reliability for their use in the

analysis. Therefore, even though these profile will be updated over the lifetime of the

WSN (see Section 6.3.3), the initial Link Profiling process guarantees a consistent

base for the profiles to be built with comparable accuracy.

6.3.2 Neighborhood Profiling

We also define the profile of the neighborhood of each node by averaging all the

link profiles of the direct neighbors of the node. The neighborhood profile is critical

142

in cases of strong interference for localizing the source of the interference and getting

a better understanding on the areas of the network that are possibly affected, as

discussed in Section 6.6.

/Using the notation n ↔ n/ for a communication link between node n and n , we

define the set of the direct neighbors of a node n as:

D(n) ⊆ N = {n/ ∈ Ns.t.∃n ↔ n/}

By leveraging this definition, the components for the neighborhood profile of node n

are computed as follows:

/n ← nn ' ∈D(n) RSSI
AvgRSSIn =

|D(n)|
/n ← nn ' ∈D(n) LQI

AvgLQIn =
|D(n)|

/n ← nP RR n ' ∈D(n)
P RRn =

|D(n)|

and the corresponding neighborhood profile for node n, denoted P (n), is represented

as the following triplet:

P (n) = (AvgRSSIn, AvgLQIn, P RRn)

6.3.3 Profile Updates and Current Health Profile

During the normal lifetime of a node, its battery level will naturally lower. This

phenomenon will result in communications showing a link profile (RSSI and LQI)

for that node that is different from the one stored by all its direct neighbors. On

the long run, as soon as the difference between the new “organic” profile and the

original profile gets above the threshold for interference attacks, any packet drop will

immediately be diagnosed as a link-related attack, even if it is not.

143

ALGORITHM 4: Algorithm for updating the current health profile for a generic link
/n ← n

CHP [link] = initialP rofile[link];

lastUpdate[link] = timestamp();

on snooping packet p from Node n/ do

Pp = calculateProfileForPacket(p);
timeframe = timestamp() −lastUpdate[link];
if abs(Pp − CHP [link])/timeframe) ≤ RAT E then

CHP [link] = aggregate(CHP [link], Pp);
end

endon

In order to address this issue, the initial profile stored at a node A for one of its

direct neighbors B is periodically updated based on overheard packets. Such updated

profile represents the current health profile (CHP) of that neighbor B considering its

normal lifetime variations. The investigation and profile comparison phases will then

use this updated profile, denoted as CHP [n ← n/] as a reference to detect the cause

of a packet dropping attack.

An important consideration in this case is how often the profiles must be updated,

and which new values to consider for inclusion. Our algorithm only takes into account,

for profile updates, those new values that can be considered as a natural variation

due to battery decay. This constraint is necessary to prevent spurious values due to

actual interference attacks or high fluctuations of the network from influencing the

profiles and effectively “poisoning” them to carry out undetected attacks. A value is

considered healthy if and only if the speed and smoothness of its change with respect

to the current profile is gradual enough, i.e. is below a preset threshold rate. The

WSN administrator needs to determine the threshold for the rate at which the change

is organically gradual at startup, possibly with the help of automated tools. In fact,

this is a parameter completely dependent on the used motes, the power source for

each of them, and the power consumption of the application running on the nodes.

/The algorithm for updating the current health profile for a generic link n ← n

(denoted with “link” in the pseudocode) is shown in Algorithm 4.

144

At the beginning, the current health profile is set to the initial profile computed at

network startup. After that, while the WSN is operating, the current health profile is

periodically updated when a packet is snooped and its measurements are consistent

with the organic decay rate specified (denoted with “RATE” in the pseudocode in

Figure 4). The aggregation function simply incorporates the new value into the

averaged profile components, but could also be customized to specify a weight for the

new value into the CHP.

6.3.4 Adding, Removing, or Relocating Nodes

Our FGA tool is designed to perform the least possible changes in case of network

modifications. As sensor nodes have limited processing power and storage, we have

to ensure that our design can tolerate network changes, such as adding new nodes to

or removing nodes from the network, as well as relocating existing nodes.

When a new node is added, the occurring changes only partially affect the direct

neighbors of the introduced node. While the BS updates the network map, it requests

the new node to build its link profiles with its neighbor nodes. The new node will

also discover its direct neighbors and request them to profile their new common links.

At this point, each neighbor node will add one more link profile to its existing list of

profiles, and locally update its neighborhood profile as well.

In case a node has been removed, while the BS updates the network map, no

further immediate changes are needed at the nodes. In fact, for some time the direct

neighbors of the removed node will have one extra link profile recorded. Such extra

link progile does not have any negative impact on future analyses, unless storage

becomes an issue. As soon as a neighborhood re-profiling occurs during an inves­

tigation, each node will be able to determine which of the profiles it is storing are

about links to nodes that have been removed from the network – as such profiles will

not be updated during the re-profiling – and will therefore be able to remove from

the memory such non useful profiles. Whenever storage is a major concern, it is also

145

possible for the BS to directly notify the neighbors of a removed node about this

network change during its network map update. The neighbors will then proceed to

immediately remove the profile of the removed node, and therefore reclaim storage

right away.

The process of relocating a node capitalizes on the considerations already made

for addition and removal of a node. Moving a node from a position in the network

to another is decomposed by our system in two separate conceptual steps. First,

the node is removed from the network, using the procedure described in the previous

paragraph. Then, the node is added back to the network in its new position, following

the procedure described in this section for adding a node. The need for these two

separate steps stems from the fact that, since our profiling parameters (RSSI, LQI,

PRR) are affected by location, re-positioning a node requires re-building its link and

neighborhood profiles. As the BS updates its network map, the relocated node is

introduced to new neighbors where neighborhood profiling is requested.

6.4 Diagnosis

In this section, we show the analysis steps to differentiate between different types

of attacks that may cause packet losses. As introduced in Section 6.1, we assume

each node to be equipped with an IDS to detect packet losses as well as data mod­

ifications [174–177]. In our work, the IDS will trigger the FGA only when the IDS

detects that there is a packet drop attack that needs to be investigated upon.

Since our FGA approach focuses on differentiating between node-related and link-

related attacks, the detection of the attack itself – versus a non-malicious packet loss

– is delegated to the IDS. We believe that this approach provides our design with a

more clean separation of concerns, and let the FGA module focus on the diagnosis of

the attack, more than the detection of an attack versus a natural loss event. Either

way, we believe that a false positive, due to the IDS improperly detecting a packet

loss as an attack when it is not, will happen more rarely and with less persistence

146

than an active attacker dropping packets in the network by means of compromised

nodes or interference. For these reasons, we think that a sporadic false positive due

to a component out of the scope of the FGA such as the IDS, is way less detrimental

than many false negatives to the overall security of the WSN.

Purpose of the analysis: The purpose of the FGA is to differentiate between

the attacks that target the nodes from those that target the links. Through the

detected attack, we can conclude whether the cause of packet drops is node- or link-

related. For instance, Selective Forwarding attacks and Blackhole attacks are node-

related attacks that cause partial and total packet losses, respectively. However, Radio

Interference, or Jamming, attacks may also be responsible for packet losses as they

have a negative effect on the network links and regions depending on the interference

source location and strength2 . Basically, the existence of interference can affect the

RSSI and LQI values of received packets that passed through a noisy environment,

and can sometimes impair the signal quality of other packets to the point that they

become unreadable.

In the following subsections, we detail the various steps composing the analysis

process carried out by the FGA tool upon the detection of a packet loss.

6.4.1 Analysis Startup and Evidence Collection

Our analysis aims at understanding the components of each link profile together

with the neighborhood of each node, in order to better evaluate the cause of packet

losses. The basic idea is for the nodes whose IDS reported packet drops, to re-

profile their links with the suspicious node and compare them to the CHPs for those

links (generated during initial setup and periodically updated during the lifetime of

the sensor application). The link re-profiling algorithm is carried simultaneously by

several investigating nodes and without the knowledge of the suspicious node, in order

to avoid any misdirection with the investigation results.

2In this dissertation, we refer to the term interference for both intentional (jamming) and uninten­
tional disruption of signal communication between sensor nodes.

147

Figure 6.2. FGA event-driven algorithm.

Our FGA algorithm is event-driven, and thus ideal for asynchronous systems such

as WSNs. The triggering events and their respective actions are shown in Figure 6.2.

Basically, when the IDS of a node, say n, observes packet drop attacks at one of its

neighbor nodes, say nbad, it will activate the FGA tool of n in order to investigate the

cause of the packet drops observed at nbad.

In order to assess the current health status of the link with nbad, the investigating

nodes must collect new data evidence. The FGA tool of n therefore starts the Evidence

Collection phase, snooping packets sent by nbad and recording their corresponding

RSSI and LQI values in a re-profiling array Rnbad [] of size S. For every subsequent

notification by the IDS of n that another packet has been dropped by nbad, a value

of 0 is pushed into Rnbad []. This process is carried out in parallel at every node that

observes packet drops from nbad and is investigating accordingly.

148

While the FGA tool of a node is investigating, it also simultaneously carries out

an environmental evidence collection in order to better account for the surrounding

environment. In fact, the FGA tool records the RSSI and LQI measurements for every

snooped packet coming from other direct neighbors. Similarly to what is performed

for nbad, values coming from a neighbor, say n/, are pushed into the corresponding

re-profiling array Rn’[], up to S elements.

6.4.2 Profile Comparison

At the time, say TC, when one of the investigating nodes fills up its re-profiling

array Rnbad [], this node, say n, computes a Current Investigation Profile (CIP), rep­

resenting the most current health state of the link between itself and nbad, as follows.

First, all re-profiling arrays (for nbad as well as the other direct neighbors of n) are

aggregated similarly to what is done during the initial profiling, thus generating a

single profile for each link with a neighbor n/ from which some data was snooped

during the Evidence Collection phase:

S
i=1 RSSI (Rn’[i])

CIAvgRSSIn ' =
|S|

S
i=1 LQI (Rn’[i])

CIAvgLQIn ' =
|S|

nonzero (Rn’[])
CIP RRn ' =

S

CIPn ' = (CIAvgRSSIn ' , CIAvgLQIn ' , CIP RRn ')

Note that, since every packet loss originated by nbad detected during the Evidence

Collection pushes a 0 in the re-profiling array Rnbad [], the Packet Reception Rate for

/the link n ← n in this investigation on nbad is easily computed as the ratio between

the number of non-zero values in the array and the size S of the array.

� �

149

All the current profiles CIPn ' (including CIPnbad) are compared to the respective

CHPn ' to compute a series of deltas �n ' indicating the absolute change in profile for

each of these neighbor nodes, for the single components of RSSI and LQI:

�RSSI n '
= abs(RSSI(CIPn ') − RSSI(CHPn '))

�LQIn '
= abs(LQI(CIPn ') − LQI(CHPn '))

�n ' = �RSSI ' , �LQI ' n n

Once all the deltas are calculated, all the �n ' except �nbad are averaged into a

Neighborhood Current Investigating Delta NCID. Finally, the Current Investigation

Delta CID is computed as follows:

CID = α · �nbad + β · NCID

where α + β = 1 and α ≥ β.

The parameters α and β are customizable depending on how much weight the

environment should have in the final overall profile for that link. Including the envi­

ronment in the Profile Comparison makes it harder for a malicious node to fake an

interference by intentionally manipulating the transmission power, as discussed later

in the security analysis (see Section 6.8). However, it is easy to see that the effect of

the rest of the environment on the Investigation Profile can be removed by choosing

α = 1.0 and β = 0.0. Experiment 7 in Section 6.7 provides insights on appropriate

values for the two weights.

At this point, the node executes the Profile Comparison algorithm, a fundamental

building block in our analysis technique. Figure 6.3 shows a representation of the

decision flow for this algorithm. The algorithm compares CIP RRnbad against the

threshold (P RRthres) that differentiates between the cases of partial and total packet

losses. We denote the single RSSI and LQI components of the CID as �RSSI and

�LQI , respectively. Interfthres denotes the interference threshold representing the

150

Figure 6.3. Profile comparison algorithm at Node n being an neighbor
node investigating for packet drops observed at node nbad.

minimal difference in link profiles (RSSI, LQI) that can determine the existence of

interference. The value of Interfthres is determined by measuring the maximum

fluctuation occurred during the initial profiling of the network links.

When P RRcurr ≥ P RRthres, the profile comparison algorithm of each neighbor

node would only need to compare the link profiles that connect it with the node under

investigation. However, when P RRcurr < PRRthres, the profile comparison algorithm

of each neighbor node would need to re-profile all its links and compare the new

profiles with the originally captured link profiles.

6.4.3 Threshold Values Determination

The FGA Profile Comparison algorithm leverages two separate steps of thresh­

olding. How to determine the best thresholds is very different for the two levels.

The P RRthres value differentiates between what should be considered a total

packet loss from what is only a partial packet loss. As such, it is very application-

dependent. In fact, consider two different WSN applications, as one that collects

temperature samples from a crop and another that monitors the health status of a

151

hospital patient, both of which send out packets every 1 minute. In the first ap­

plication, only having, for example, 30% of the packets delivered correctly to the

base station could be slightly inaccurate but sufficient to plot the temperature trend

in that crop; the temperature will not change too quickly, and the application is not

overall mission-critical. On the other hand, in the second application, even losing just

10 − 20% of the packets (thus obtaining 80 − 90% of the packets delivered correctly

at the base station) can be extremely dangerous: the health status of the patient can

change very drastically in a short span of time, and the criticality of the WSN appli­

cation leads to defining even a small packet loss as total loss. For these reasons, the

two application might want to set their P RRthres values to 0.3 and 0.85, respectively,

and both choices would be perfectly legitimate and reasonable in light of their re­

quirements. Anyway, as part of our future work, we plan on investigating techniques

to support users in choosing a PRR threshold. A possibility involves verifying the

potential presence of redundancy mechanisms. For example, for mission-critical ap­

plications, data packets could be duplicated and simultaneously sent along multiple

disjoint routes to the BS; in this case, the PRR local to a link is a much less pressing

constraint given the redundancy. Moreover, measuring the overall WSN packet de­

livery success rate under normal conditions could provide a better understanding of

a tolerable packet loss rate that can still maintain network functionality.

Unlike the P RRthres threshold, the values of the Interfthres threshold are not

application-dependent, and are calculated from the measures collected during the

initial profiling. In fact, the rationale behind an optimal value for the Interfthres

is to minimize the misdetections (link-related attack diagnosed as node-related, and

viceversa) during the investigation. The RSSI and LQI values are subject to natu­

ral fluctuations, the strength of which is determined by the motes used and various

environmental factors. During the initial profiling, many sample RSSI and LQI val­

ues are collected. The optimal threshold to minimize misdetections is determined

by measuring the maximum fluctuation occurred during the initial profiling of the

network links, separately for the two dimensions of RSSI and LQI, excluding strong

152

outliers (i.e. values outside the 95th percentile). That maximum fluctuation effec­

tively establishes how much the RSSI and LQI can deviate from the initial profile

value without the presence of any attacker-induced interference, and correctly deliv­

ering the packet (i.e. not causing a packet loss). To consider a concrete example,

consider a node that collects some initial profiling packets for a specific link, and

calculates the initial profile for that link as the average of the values collected, say

RSSI = 78 and LQI = 105. However, assume that the RSSI and LQI values of the

collected packets range in [76, 82] and [104, 106], respectively. Then, it is easy to see

that legitimate values for those two dimensions can fluctuate up to 6 points for the

RSSI and 2 points for the LQI, without being the result of a malicious interference.

A value outside of these bounds, during a FGA, will indicate a divergence greater

than the natural one experienced during the initial profiling, and thus indicate an

interference attack. Therefore, the values for Interfthres can be calculated directly

based on the maximum fluctuation experienced by a node during the initial profiling.

6.4.4 Majority Voting and Investigation Results

When the first node to finish the evidence collection completes the Profile Com­

parison, it is ready to vote on what the most likely cause of packet drops at nbad is.

The resulting vote is broadcasted with a message with the following format:

(nbad, NodeIDs[], V ote, TC)

where NodeIDs[] is an array that initially contains the ID of the first voting node

but eventually will contain the IDs of all voting nodes.

Every other node that is still investigating on nbad, say n/, will stop recording

packets for this investigation on nbad at the time of receiving the first broadcasted

vote. Moreover, it will only consider those collected packets with timestamp less

than or equal to TC. This is necessary because up until the first vote is broadcasted,

the investigation was hidden to nbad, and only after TC the suspect node will become

153

aware of the undergoing FGA investigation. The suspect node may therefore attempt

to alter its sent packets to misdirect the investigation.

The majority voting algorithm is designed as a lightweight, simple Distributed

Agreement protocol. Every node initially computes its own vote according to the

evidence collected and the Profile Comparison algorithm already discussed (see Fig­

ure 6.3). Only nodes with enough packets recorded in Rnbad [] according to a preset

threshold will take part in the voting. Every node that computes its vote (its own

or aggregated) will broadcast the vote and start a timeout Tnbad . Any node that

receives a vote with the NodeIDs[] array including new node ID(s) will consider the

received vote as more updated and therefore will aggregate this with its own vote (if

not already included) and then broadcast such new aggregated vote. is reset Tnbad

every time a vote is broadcasted. All votes received from nbad are ignored and do not

reset Tnbad . When Tnbad expires at a node, the node considers the vote aggregation

complete, meaning that no more votes are circulating. In addition, every neighbor

node will have the most updated final vote result, with NodeIDs[] listing the IDs

of all the nodes that broadcasted this vote. Therefore, the appropriate action might

be taken depending on the policy put in place by the administrator. For example,

an automated Intrusion Response System [43] might take action, or the BS might be

notified of the determined attack.

Vote Aggregation. We first present the intuitions behind the vote aggregation

mechanism, and then we introduce a formal definition. At a high level, the vote

aggregation is based on the following rules:

•	 High Radio Interference: If at least one node votes for High Radio Interfer­

ence, the aggregated vote is high radio interference and therefore packet drops

at nbad are link related. A node would vote for High Radio Interference when

the RSSI and LQI values of its neighborhood profile are significantly affected

due to such strong interference.

154

•	 Low Radio Interference: If at least one node votes for Low Radio Interference

and none of the other nodes votes for High Radio Interference, the aggregated

vote is low radio interference and therefore packet drops at nbad are link related.

A node would vote for Low Radio Interference when the RSSI and LQI values of

the link profile with nbad are significantly affected, without significant changes

in the overall neighborhood profile.

•	 Selective Forwarding Attack: If at least one node votes for Selective For­

warding and none of the other nodes votes for any type of interference in the net­

work medium, the aggregated vote is selective forwarding and therefore packet

drops at nbad are node related. A node would vote for Selective Forwarding

when none of its received packets from nbad has any significant changes in their

RSSI and LQI values when compared with its original link profile connecting

both nodes.

•	 Blackhole Attack: If at least one node votes for Blackhole when none of other

investigating nodes votes for selective forwarding or any type of interference in

the network medium, the aggregated vote is blackhole and therefore packet

drops at nbad are node related. A node would vote for a blackhole attack when

none of its neighborhood link profiles are affected by interference nor any packets

have being forwarded from nbad.

Interference might affect different, close-by links with different strengths. For this

reason, initial votes by different nodes might be diverse. However, the node aggrega­

tion effectively places a total ordering on the votes, always considering a vote for a

link-related attack more reliable than a vote for a node-related attack. In fact, if some

nodes detect interference while some others do not, it is most likely that interference

is present, but not affecting the communications of some of the investigating nodes.

Either way, interference will still be the cause for the packet droppings and should

therefore be chosen as the correct final decision.

155

We now formalize such intuition for the vote aggregation mechanism. Let the

domain of votes be:

D = {HI IN, LO IN, SEL FWD,B HOLE}

such that each element represents High Radio Interference, Low Radio Interference,

Selective Forwarding and Blackhole, respectively. We define a total order relation

over D as follows:

HI IN - LO IN - SEL FWD - B HOLE

Given a set V of votes to be aggregated, the result is computed through the aggre­

gation function defined as follows:

aggr(V) = min(V)

Since the RSSI and LQI values may be subject to sampling bias that could al­

ter the voting result of a single node, we achieve better voting accuracy in network

topologies that allow each node to have at least two direct neighbors and more than

one disjoint path to reach the BS. This redundancy is typical in engineering a real-

world sensor network and therefore makes our voting results less diverse.

Communication Complexity and Optimizations. In the majority voting

algorithm just described, every time a node receives a new vote, it aggregates it to

its current local vote and immediately rebroadcasts it. The final, exact number of

messages sent by the investigating nodes depends on the specific topology of the

neighborhood where the majority voting algorithm is taking place, but it is easy to

see that, in the worst case, the algorithm has a communication complexity of O(n2)

in terms of messages exchanged among n investigating nodes. An optimization that

we developed as a performance enhancement of the FGA tool is able of reducing the

156

communication requirements of the majority voting algorithm. For this optimization,

the execution of the majority voting is locally divided into rounds (a notion common in

many distributed agreement protocols). The round will be determined exclusively by

the local timeout Tnbad , that will have a different use in this version of the algorithm.

When a new vote is received, it is aggregated with the current local vote, but it will

not be re-broadcasted right away. Instead, the investigating node will keep collecting

and aggregating all the votes it receives during the current round. Every time the

timeout fires, the execution will advance to the next round. If any new votes were

received in the previous round, the node will broadcast the latest aggregated vote in

its possession. If, instead, no new votes were received during the previous round, the

majority voting phase is considered completed and the node uses the final vote that

was computed, as in the old version of the majority voting. Even for this optimized

algorithm, the exact number of messages sent by the investigating nodes depends

on the specific topology of the neighborhood where the majority voting algorithm

is taking place. However, this time we can imagine that a new vote travels at least

one additional link per round, and at most one message is sent per node per round.

Therefore the algorithm has a communication complexity of O(l), where l is the

longest hop distance between two nodes participating to the investigation. Since the

worst case topology for this communication is a linear structure with all the nodes

linked in a chain, the longest hop distance for n nodes is n − 1 hops; therefore the

communication complexity worst case would be O(n).

6.5 Colluding Investigating Nodes

The majority voting algorithms presented so far are based on the adversarial model

presented in Section 6.1, that assumes the investigating nodes to be trustworthy and

not to report false votes. Under such assumptions, a single vote can change the final

outcome of the collective investigation. In fact, as already discussed and motivated,

the vote aggregation algorithm places a total ordering on the values in the domain

157

of possible attacks, and chooses the minimum value as the new aggregated vote.

Therefore, for example, a single vote for a link-related attack counts more than any

number of votes for a node-related attack, according to our adopted ordering.

We now relax our adversarial model to allow for colluding nodes among the in­

vestigating nodes. Under this model, the vote aggregation algorithm needs to be

revised, since allowing a single vote to potentially change the result might let a ma­

licious investigating node to easily subvert the final decision. We therefore present

an algorithm effective in scenarios where some investigating nodes might be colluding

with a malicious node and thus enacting Byzantine behaviors. For every investiga­

tion, the algorithm is able to tolerate up to f colluding investigating nodes, with the

total number of investigating nodes is at least f + 1.

For this algorithm, we use the notion of multiset as a data structure for a collection

of votes. Intuitively, a multiset is a set in which each element is associated with its

multiplicity. More formally, a finite multiset Θ over our vote domain D is a function

Θ : D → N

that is nonzero for finitely many v ∈ D. The cardinality of a multiset Θ is calculated

as v∈D Θ(v). The minimum of a non empty multiset Θ is computed as

min(Θ) = min {d ∈ D s.t.Θ(d) > 0}

Through this definition of minimum, we can introduce the function l(Θ) that defines

the multiset obtained by removing one occurrence of the smallest value in Θ as follows: ⎧ ⎨ Θ(v) − 1 if v = min(Θ)
l(Θ)(v) = ⎩ Θ(v) otherwise

158

With these definitions in place, we can proceed to describe the algorithm steps.

In this enhanced algorithm, every vote message is broadcasted with the following

format:

(nbad, V otes[])

where V otes[] is an array of individual votes, each specified as:

(NodeID, V ote, TC)

This means that every vote message can contain multiple votes proposed by different

investigating nodes, whose ID is specified in the NodeID field. When a node first

finishes the evidence collection phase and the subsequent Profile Comparison, its vote

will be the only one included in the vote message it broadcasts. Then, the algorithm

operates in rounds, like the optimized algorithm described in the previous section.

Every time a node receives a vote message, it merges the contained votes with the

ones it has already collected. Every node collects all the votes it receives during a

particular round r, and then broadcasts a vote message containing all the votes it has

collected so far in the following round r + 1.

The vote collection terminates when, in a particular round, no new votes are

received. At this point, all the votes collected so far are placed in the multiset. In

order to tolerate f colluding nodes that might try to skew the investigation result,

we intuitively need to remove some of the votes that could alter the final outcome.

For this, we reduce the multiset by applying the function l(Θ) iteratively f times,

thus removing the f lowest instances of votes in the multiset. At this point, the final

decision for a node given the votes that it has collected during the majority voting

phase and adjusted to tolerate colluding nodes is computed as:

decision = min(Θ)

This decision can be then, for example, communicated to the BS or reported to

the IRS, according to the policy put in place by the network administrators.

159

6.6 Locating Interference Sources

In critical (real-time) sensor applications, it is necessary to be able to anticipate

possible future attacks on the network. This is achieved by enriching the system

with learning techniques that can warn of possible attacks, based on previous faulty

scenarios. In cases when radio interference is causing packet losses, it is necessary to

locate the source of the interference in order to identify the network region (set of

nodes/links) that may be also affected by the noise source.

Locating the source of interference is necessary as it may assist in evaluating the

trust level of sensor readings. When interference is the cause of packet losses at a

certain node or link, its effect may also reach other regions where the IDS might

require further diagnosis. This could leave the whole network in an inconsistent state

for a longer period of time, spent between detection and analysis of the same cause.

Therefore it is necessary for the FGA tool to locate the source of interference and

inform the BS about the affected region as part of its analysis. Even though the FGA

tool is decentralized and does not rely on the BS for detecting the cause of packet

drops, it will however require the BS’s knowledge of the network map in locating the

source of interference.

6.6.1 Design Choices for Localization

Localization algorithms can be classified as centralized and distributed [178]. In

centralized approaches, all the localization data for all nodes are collected and pro­

cessed centrally – usually at the BS – with a global overview of the entire network. On

the other hand, distributed approaches use information from the node itself and the

direct neighbors. Therefore, centralized approaches lead to a more accurate localiza­

tion, but require more communications. Thus, whereas for this reason the distributed

approach is usually preferred for WSNs, our FGA approach benefits from a hybrid

approach that carries out part of the computation at the investigating nodes (such as

the collection of re-profiling samples and the computation of the deltas for localiza­

160

tions), while delegating to the BS the main computation. This strategy is particularly

appropriate for our work since the localization will need to be communicated to the

network administrator anyway in order for her to intervene.

In our work, as well as in the state-of-the-art approaches, the accuracy require­

ments for WSN localization approaches depend on many factors, including: the re­

quirements of the application itself, the dynamics of the monitored environment, cost

and energy consumption, the availability of additional supporting hardware, the re­

quired speed of the computational processing. The requirements that drive the design

decisions in our approach include: no need for any additional hardware, maximiza­

tion of the reuse of already-collected data, minimal processing for faster completion

of the localization, low energy consumption impact, enough accuracy to pinpoint the

area affected by interference and guarantee administrator intervention. To better

understand the rationale behind our design choices, it is important to formalize that

the goal of our interference localization is to give direction to in-network counter­

measures, either automated – by Intrusion Response Systems that can for example

re-route packets around the affected area – or manual – by a network administrator

that wants to physically find and remove the malicious source of interference. These

two goals, driven by the needs of real-world scenarios, drive the tradeoff between the

speed and simplicity of the algorithm, and an exact position localization. In realistic

scenarios, this justifies a potentially small inaccuracy – inherent in the signal strength

measurement in WSNs – in order to quickly respond to the attack and to preserve

energy.

In addition, our approach has three main advantages compared with traditional

signal strength-based localization approaches:

•	 In traditional RSSI-based localization techniques, a node A collects on-demand

some samples of signal strength received from a node B, which as we discuss in

this chapter may fluctuate quite a bit. In our approach, the link profiles that

each node records are the result of an accurate samples collection, are smoothed

161

Figure 6.4. Vi and �i representing node i ’s location and neighborhood profile delta.

out to account for the natural signal fluctuations, and are constantly kept up

to date during the network’s lifetime when energy is discharging.

•	 In such traditional techniques, node A then uses its own collected samples to

estimate the distance of B. In our approach, the information used for the local­

ization process comes from multiple investigating nodes, providing our approach

with redundancy and thus more robust and accurate. Moreover, the aggregation

of such data for the localization process is carried out at the BS, that having

more resources can afford to store additional information such as the complete,

detailed map of the WSN.

•	 The most crucial part of our technique is that, instead of trying to estimate the

distance from a node, the investigating nodes only report to the BS the relative

deltas in all their link profiles, that is, how affected by the interference these

links are. So, instead of measuring how strong the signal is, this is a measure

of how attenuated it is with respect to a normality profile built over time. The

BS, then, based on the map of the WSN, can use those deltas as weights to

each link in its search, and accurately localize source of interference.

162

6.6.2 Localization Approach

When the FGA tool determines that the cause of packet losses is an interference,

it attempts to locate the interference source in order to estimate the nodes and links

that may be possibly affected. The approach used for detecting the interference

source works as follows. Let nbad be the first node reported to the BS as affected

by interference. The BS then requires all the direct neighbors Nnbad of this node to

re-compute their current neighborhood profiles, as discussed in Section 6.3. Once the

new profiles are computed and compared to the original neighborhood profiles, each

node sends the BS the profile difference, denoted as �, for evaluation.

The technique used to locate the source of interference leverages the formula for

the calculation of the weighted centroid of finite points [179], defined as:

n Wi Vi · yi=1
n
i=1 Wi

where Wi is the weight at Node i computed as a function of �i, and Vyi is the vector

with the spatial coordinates (yx, yy, yz) of Node i according to the actual topology of

the network known by the BS. Figure 6.4 also shows the vectors that represent each

node’s location according to a given origin O and their corresponding �. The BS

will use these �is and Vyis, together with knowledge of the topology, to locate the

interference source.

6.6.3 Weight Function

As we already mentioned, the weight Wi used in the weighted centroid of finite

points formula for the localization of interference sources is computed as a function

of �i. Depending on the particular function chosen, the localization accuracy could

vary greatly. In order to determine the weight function that would guarantee the

best localization accuracy, we carried out an extensive analysis, applying different

weight functions to all the experimental data collected from our real-world testbed.

163

Figure 6.5 shows a comparison of the percentage error of some of the different weight

functions we used. As the results show, we determined that the function that guar­

antees the best accuracy in all our tests is the exponentiation function. Therefore,

this is the function of choice for our FGA localization algorithm, and is the function

used in the localization experiments described in Section 6.7.

Figure 6.5. Comparison of accuracy with different functions for the
weight in the weighted centroid of finite points formula for the local­
ization of interference sources (smaller is better).

6.7 Experimental Analysis

In this section, we report experimental results to assess the efficiency and accuracy

of our FGA tool. We first introduce our experimental setup, then we perform real-

world experiments to test our FGA tool on different attack scenarios.

6.7.1 Experimental Setup

Our setup consisted of 25 TelosB [180] wireless sensor motes using TinyOS 2.1,

which were placed at different locations. These motes operate at 2.4 GHz ISM band,

with an effective data rate of 256 kbps, a much higher rate than that of older radios.

164

For experimental purposes, we set up one sensor to act as a BS and created a server

Java program to interact with the BS through the USB port. All the other nodes

were programmed with the same code and waited for commands from the BS. Each

node was programmed to perform its analysis locally and independently.

We also built a simple routing system on top of the standard messaging layer

that offers point-to-point multi-hop direct communication. We applied concepts from

common Internet routing protocols so that every node is capable of automatically

building its own routing table and self-discovering/learning the best routes towards

any other node in the network. Thus, after a few initial packet exchanges, most of

the routes are automatically discovered and so is the whole network. Our improved

routing system reduces the nodes communication overhead by avoiding useless packet

transmissions. Through the BS, we used the multi-hop protocol to allow the adminis­

trator to send commands to all the nodes, as well as to single specific nodes, through

our Java program that was connected to the BS.

We also set up a special mote, the jammer, to act as the source of interference in

order to test the FGA accuracy in detecting and locating the noise [181]. This mote

was programmed to emit dummy packets every 5 msec. with an increasing counter

value. We avoided keeping the other mote radios busy with useless interrupts, while

maximizing the interference on the radio medium itself. This helped us to get a more

realistic representation of a real-world interference attack.

The accuracy of the FGA is related to the considered topology of the sensor

network. The minimum topology requirements would be for each node to have at

least two possible paths to reach the BS. This requires that every link has at least

one additional node watching it, forming a triangular structure for every hop towards

the BS. This requirement is basic for most real-world sensor networks, considering

that redundancy is always required by the engineering of every topology.

The testbed network topology for our experimental evaluation follows this struc­

ture, in which the links form many triangular shapes.

165

Figure 6.6 shows a snapshot of the topology of a portion of our network that is

the closest to the BS. Focusing on a portion of the network is effective in showing the

performance of the FGA tool, since investigations are always local to the neighborhood

of a detected packet loss. We performed experiments using this topology to compute

the corresponding profiles of each link. Then we used these profiles to detect the

causes of packet drops as detailed in Section 6.4.

Figure 6.6. Snapshot of the network portion closest to the BS.

6.7.2 FGA Testing on Different Attack Scenarios

We carried out our testing at different parts of the network to better evaluate its

efficiency, and we experimented all possible cases by placing the interference source

at different locations.

The results we present in this section come from 5 independent repetition of each

experiment in identical conditions.

Since only the direct neighbor nodes participate in the FGA of a suspect node, we

will refer to Figure 6.6 in our experiments for clarity of discussion, as attacks causing

packet losses will occur among these nodes.

166

Figure 6.7. Comparison of link profiles for nodes 2, 3, 4, 5, 6 and 7
with and without interference near node 3. ”I” denotes initial pro­
files values, and ”C” denotes current profile values in the presence of
interference.

Our experiments were divided into several scenarios:

Experiment 1: Building Profiles at Initial Network Setup: At initial net­

work setup, the BS requests every node to start building its initial profiles with its

direct neighbors, and save these profiles locally at every node. The time needed to

profile our 25 sensor nodes, which each sends 100 dummy messages to each other node

every 10 milliseconds, was a total of 25 sec., thus 1 sec. to profile each node links.

Figure 6.7 shows sample profile values we collected from Nodes 2, 3, 4, 5, 6 and 7

(see Figure 6.6).

Experiment 2: Interference Effect on Link Profiles: In order to test the

impact of interference on link profiles, we activated our interference mote and placed

it close to Node 3. We manually requested re-profiling to see the changes in the RSSI

and LQI values of the affected links, mainly around Node 3. Figure 6.7 shows the

corresponding profiles of these links. Notice the changes in the RSSI values with

no significant changes in the LQI values due to low radio interference we purposely

used. Also, since the LQI values that CC2420 radios report are independent from

the RSSI parameter, the link quality is stable once the signal strength is good enough.

167

Experiment 3: Selective Forwarding Attack: To test the FGA tool against

this attack, we configured our network so that Node 5 would send messages to the BS,

whereas Node 2 would be the intermediate node as chosen by the routing protocol.

Nodes 3, 4, 6 and 7 would be the direct neighbors of Node 2 and thus monitor its

behavior.

The intermediate Node 2 was programmed to simulate a selective forwarding attack

by dropping packets with 10% probability, and we made sure that there was no

interference within range. Our results show that when 20 packets were dropped by

Node 2, the IDSes of Nodes 3, 4, 6 and 7 successfully detected a packet drop attack

and triggered the FGA. In our experiment, Node 4 was the first to completely fill its

re-profiling array of 10 slots at time TC, compute, and broadcast its vote. Each of the

Nodes 3, 6 and 7 had already recorded the RSSI and LQI values of 9 received packets

from Node 2 at the time stamped in Node 4 ’s vote. The FGA tool of each node in

turn aggregates and broadcast its vote accordingly until all votes of the investigating

nodes are aggregated. The final vote aggregation reported a selective forwarding

attack.

Vote for node 3: (2, [3], SEL FWD,TC)

Vote for node 4: (2, [4], SEL FWD,TC)

Vote for node 6: (2, [6], SEL FWD,TC)

Vote for node 7: (2, [7], SEL FWD,TC)

Aggregated vote: (2, [3, 4, 6, 7], SEL FWD,TC)

Experiment 4: Low Interference Attack: We placed the interference mote

to carry out low interference near Node 2. The interference however was not strong

enough to isolate Node 2 completely. However, when 20 packets were dropped by

Node 2, the IDSes of Nodes 3, 4, 5, 6 and 7 detected a packet drop attack and

activated their FGA tool. Node 3 was the first to fill its re-profiling array slots and

send out its vote. Nodes 4 and 6 received the vote and stopped recording with 9/10

slots filled, while Node 5 and 7 stopped recording with 8/10 slots filled. Since our

168

threshold for accepting a node’s vote is to have at least 70% of its re-profiling array

slots filled, we considered the votes of all 5 investigating nodes. Even though Nodes

4 and 7 voted for “Selective Forwarding” as their recorded packets did not show any

significant influence of the existing interference, Nodes 3, 5, and 6 voted for “Low

Interference” which is the aggregated vote result according to the methodology we

presented in Section 6.4.

Vote for node 3: (2, [3], LO IN, TC)

Vote for node 4: (2, [4], SEL FWD,TC)

Vote for node 5: (2, [5], LO IN, TC)

Vote for node 6: (2, [6], LO IN, TC)

Vote for node 7: (2, [7], SEL FWD,TC)

Aggregated vote: (2, [3, 4, 5, 6, 7], LO IN, TC)

Experiment 5: Strong Interference Attack: This attack scenario was the

same as the previous attack scenario but we strengthened the interference to such

a point that Node 2 was completely isolated from the network. Nodes 3, 4, 6 and

7 carried out the analysis with Node 4 filling out its re-profiling array first and

broadcasting its vote. Nodes 6 and 7 received the vote and stopped recording with

7/10 slots filled, while Node 3 with only 5/10 slots filled. Since our threshold for

accepting a node’s vote is to have at least 70% of its re-profiling array slots filled, we

did not consider the vote of Node 3. Because of the applied strong interference, the

re-profiling arrays of Nodes 4, 6 and 7 contained 0’s and therefore had to re-profile

their links with their direct neighbors to perform the profile comparison algorithm.

Even though Node 6 was the only node to report ”High Radio Interference”, its vote

was dominant according to the methodology in Section 6.4.

Vote for node 4: (2, [4], B HOLE, TC)

Vote for node 6: (2, [6], HI IN, TC)

Vote for node 7: (2, [7], B HOLE, TC)

Aggregated vote: (2, [4, 6, 7], HI IN, TC)

169

Experiment 6: Locating the Source of Interference: In this experiment,

we applied the technique described in Section 6.6 to locate the source of interference

that was causing packet losses. We placed the interference source at different loca­

tions, mainly near Nodes 2, 3 and 4, to compute the accuracy of our location method.

Figure 6.8 shows the actual and estimated location of the interference source when

placed near Node 3. Once the BS receives the neighborhood profile difference, it can

locate the interference source using its precise/approximate coordinates of each node.

Figure 6.9 shows the accuracy of our method by comparing the actual location of the

interference source to the computed ones resulted from various interference locations.

We present three of the most relevant test cases for this experiment. In each of the

tests, the source of interference was placed in a different position (indicated as “Ac­

tual Position”), and we computed the error with respect to the “Estimated Position”

as the Euclidean distance of the two points. In Test 1 and Test 2, we placed the

source of interference quite close to two different nodes, respectively, while in Test

3 we placed it in the middle of a link. The particular weight function we use for

interference location, as discussed, is the exponentiation of the neighborhood profile

delta. Such function, while guaranteeing the lowest error among all the functions we

used, tends to “pull” the estimated position next to the nodes; this is the reason why

Test 3, while still proving very accurate, showed a higher error than the other two

tests.

Experiment 7: Power Manipulation: A smart malicious node might try to

misdirect the outcome of an investigation by manipulating its transmission power

after dropping a packet. By using the investigation profile for the malicious node

alone, the investigating nodes might detect a variation in the profiles greater than

the threshold for interference, and thus determine a link related attack instead of a

node related attack. We carried out an experiment to verify that the introduction of

the Environmental Evidence Collection, as well as its use in calculating the Current

Investigation Delta, can prevent such misdirection. We used the same topology as

170

Figure 6.8. Actual vs. computed location of an interference source
with respect to sensor nodes, in feet.

Figure 6.9. Accuracy of computed vs. actual location (in feet) of
different interference source positions.

the other experiments, instructing Node 2 to carry out a selective forwarding attack

and, immediately after, lowering its transmission power by 10dBm during the inves­

171

tigation by the neighboring nodes. We detected that this power manipulation caused,

on average, a variation of 9.25 in the RSSI component of the profile of nbad (Δnbad) at

the investigating nodes. Figure 6.10 shows how the computed Current Investigation

Delta varies at different investigating nodes depending on the values chosen for α and,

consequently, β. For ease of analysis, we present the results for the RSSI components

of every delta, as well as of the Interfthres, which for this experiment was set to

8.0 based on the fluctuation measured at network setup. The highlighted cells show

the occurrences of detection of interference instead of selective forwarding, indicating

that the misdirection by the attacker succeeded. The results show that a value of 0.8

for α already changes the outcome for 2 out of 3 nodes that would have decided for

an interference attack using the profile for nbad alone. With a value of α set to 0.7 or

lower, all the nodes correctly identify the attack despite the power manipulation.

Figure 6.10. Accuracy of the detection in presence of power manipu­
lations using different values for α.

172

Experiment 8: Tolerance to Colluding Investigating Nodes: In this ex­

periment, we tested the tolerance of our collusion-resistant majority voting algorithm

in presence of malicious investigating nodes, presented in Section 6.5.

We repeated the scenario described in Experiment 3, programming one of the

intermediate nodes to perform a selective forwarding attack. We also programmed

one of its neighbor to act as a colluding node during all the investigations, and thus

to broadcast fake votes.

At first, we did not use the collusion-resistance algorithm. Once the investigation

started, the nodes started broadcasting correctly their votes for “Selective Forward­

ing”. The colluding node, then, broadcasted its fake vote for “Low Interference”.

Since that vote, according to our total ordering, is less than the other votes circu­

lating, the other nodes chose it as a voting result and incorrectly reported a low

interference attack to the BS as the cause of the packet dropping. Therefore, the

collusion attack was successful.

We then repeated the same scenario but using our collusion-resistant majority

algorithm. This time, after all the votes were collected, they were placed into the

multiset and the “Low Interference” vote, being the lowest, was discarded. The in­

vestigation result was therefore correctly computed as a selective forwarding attack.

Thus, the collusion attack in this case was prevented, tolerating for the malicious

investigating node.

Experiment 9: Initial Profiling Stability for Sample count: In this ex­

periment, we evaluate how the duration of the initial profiling in terms of exchanged

dummy packets affects the obtained profile stability. We have carried out the ini­

tial profiling procedure, as already discussed in this work, by exchanging up to 1000

dummy packets (in each direction) between each pair of node in our testbed.

We characterize a profile by its mean, maximum and minimum values, which will

describe the value for the profile and the fluctuation. Moreover, we define a profile

173

as stable when any number of future samples does not change the mean, maximum

and minimum by more than 1.0.

Figure 6.11 shows the statistics for one of those links, focusing on the RSSI. On

the x axis there is the number of samples collected, while the y axis shows the signal

strength value for each packet. It is easy to see that after a sample size of 60, all the

three statistics do not change by more than 1.0, therefore we consider the profile as

stable.

Figure 6.11. Relationship between initial profiling duration and profile accuracy.

We carried out this same evaluation on all the links of our testbed, to determine

the necessary number of sample until the respective profile may be considered stable.

Overall, our results show that the minimum number of dummy packets necessary,

during the initial profiling, to obtain a stable link profile ranges between a minimum

of 26 and a maximum of 74, averaging at 43, and longer profiling times do not add

significant advantages.

Summary of Results: Figure 6.12 shows the accuracy of our FGA technique

with respect to the actual number of packet loss test cases we performed. Our FGA

technique was able to perform correct diagnoses in ∼ 90% of the cases when selective

forwarding was the cause of packet losses (Experiment 3), in ∼ 95% of the cases when

low interference was the cause (Experiment 4), and in ∼ 100% of the time when strong

174

interference was the cause of packet losses (Experiment 5). These results show the

accuracy of our FGA technique for sensor network applications.

Figure 6.12. Comparison of FGA accuracy in experiments 3, 4, and 5.

6.8 Security Analysis

In this section, we analyze the security of the FGA technique with respect to the

possible strategies that an adversary might use to hide the cause of packet drops.

The aim of our security analysis is to devise mitigations against such strategies and

discuss how likely they are to compromise the results of the FGA.

Transmission Power Manipulation. When a node is suspected to be mali­

ciously dropping packets, the FGA tool executes the re-profiling algorithm as de­

scribed in Section 6.4. However, an attacker may try to misdirect the FGA by using

a different power than the usual power to transmit the messages included in the re-

profiling process, which will make the neighbor nodes think the packet loss is caused

by link interference. However, our re-profiling procedure is hidden from the attacker

and thus the node under attack will not be able to differentiate between normal and

re-profiling traffic. Only after the FGA results (votes) are broadcasted, the attacker

might become aware that the re-profiling process has already been executed.

175

A smart attacking node might still, however, manipulate its sending power for the

packets following a node-related packet dropping attack. For this reason, the investi­

gating nodes also collect evidence about the environment (i.e. the rest of the traffic

coming from their neighbors) during the investigation, and this data is used in the

profile comparison to reduce the possibility of success of an attack with intentional

transmission power manipulation.

Organic Battery Decay vs. Interference. We now consider the scenario in

which an attacker tries to trick the FGA tool by very gradually and slowly introduc­

ing interference until the network becomes disrupted. The Profile Update algorithm

would detect this change as an organic battery decaying and not interference, thus

leaving the attack undetected. However, if the network administrator sets the thresh­

old rate for the change smoothness of accepted decaying (i.e. the threshold for the

rate at which the change is organically gradual) to a low, appropriate value, then the

attacker would only be able to produce as much interference as what the natural de­

caying of the overall network battery life is. Therefore, the attack would be effectively

harmless. The same considerations arise in the scenario in which a single node would

alter its power levels slowly enough to be considered physiological battery discharge.

Again, the attacker would only be able to decrease the level as slowly as the natural

decaying of the node’s battery, thus producing a very slow and effectively harmless

attack.

Strong Interference and Disruption of the FGA. When the WSN is under

a strong interference attack, if the attack covers an area larger than a single/few

nodes, it might disrupt communication for a whole node neighborhood. Therefore,

even assuming that some of the nodes in the neighborhood could start investigating,

the interference might prevent some of the FGA tool’s fundamentals steps, such as

the exchange of votes. If no interference-free node exists, and the entire network is

blocked out, then in this worst case the FGA tool would not be able to complete the

176

analysis but no recovery would be possible anyway. In any well-designed WSN, the BS

profiles the traffic over time and, in a case like this, it would notice a huge difference

in the traffic profile and immediately detect the attack. However, there will often be

a frontier around which the effect of the jammer is not strong enough. If, thus, such

a frontier exists (as it will in most of the cases, not having interference strong enough

to disrupt an entire WSN), the fully distributed FGA algorithm guarantees that the

nodes around that frontier will be able to investigate successfully.

Correctness of Initial Link Profiles. One possible interference source could

be a result of closely placed sensors that could disturb the network communication

signals. After a successful network initial setup, the existence of strong interference

among the sensors is easily detectable. However, very low interference could exist

that may affect the RSSI values but without causing any packet drops. The initial

link profiles are collected right after a successful network initial setup. Thus the RSSI

values collected may be affected by the existing interference. However, we claim that

those link profiles are still valid and correct as long as no packets drops have been

detected by the IDS during the initial collection process. Moreover, the existence of

a malicious node among the newly installed nodes is unlikely as we believe that each

node would be tested at initial setup, thus also validating the correctness of the FGA

initial profiles.

Reactive Jamming Attacks. In a reactive jamming attack, the jammer may

modify the Start-of-Frame Delimiter (SFD bytes) of some packets before sending

them, resulting in dropping packets at the destination node. As such packet modi­

fication does not increase �RSSI or �LQI , the FGA algorithm might think that the

destination node is malicious, but actually it is not. As packet modification is out

of the scope of this dissertation, we rely on the IDS to check if there is any packet

modification before the FGA tool starts carrying its re-profiling algorithm.

177

Simultaneous Different Attacks at Same Location. Our FGA approach

is able to carry out multiple simultaneous investigations about attacks in different

parts of the network. However, there could be extreme instances in which a fully

correct diagnosis would not be possible right away. In fact, in the case of multiple

attacks of different nature happening at the same time at the same node – i.e. when

a node-related and a link-related attacks occur jointly in the same location – the

interference attack would always affect the surrounding links in a way that can mask

attacks from compromised nodes. Out of the two attacks occurring simultaneously

at the same node, therefore, the FGA would be able to initially diagnose only the

interference attack, as the changes in the link profiles would hide the further attacks

by the compromised node. However, this would still lead the network administrator

to be able to diagnose and resolve the interference attack in that portion of the WSN.

Then, if the attacks from the compromised node are still happening, these would be

detected correctly by the FGA upon the immediately following packet loss event, and

would lead the administrator to completely eradicate the problem.

6.9 Related Work

Our work is related to previous research on two different topics: (1) the use of

forensic analysis techniques for investigating packet losses in WSNs, (2) the use of

RSSI/LQI for WSN performance and sensor localization.

Very few forensic analysis techniques have been proposed to investigate packet

losses occurring in networks. Yang et al. developed a detection scheme employing

neighboring nodes as witnesses that monitor their peers for possible misbehaving

nodes incorrectly forwarding packets [40]. The forensic analyzer by Ning et al. aims

at determining the cause of discarded packets and forwarding misbehaviors by means

of various network parameters (packet size, bit rate in use, node density, interference

level) and logs [41]. Our approach, in contrast, uses less network parameters and

fewer computations to determine the likely causes of packet losses. Moreover, our

178

approach differentiates between node and link related causes of packet drops, while

their approach focuses on differentiating between natural induced packet losses from

malicious discarding.

Several approaches have been proposed for detecting packet dropping attacks, but

few approaches identify the cause of packet drops through their impact on network

parameters, as we investigate with our FGA technique. Ramach et al. proposed

a generic architecture able to monitor many parameters in protocols, devices and

networks parameters [37]. On the same line, the diagnostic system introduced by Qiu

et al. leverages trace-driven simulations in order to diagnose performance problems

caused by various network adverse events, such as link congestion, packet dropping,

MAC misbehavior and external noise [36]. However, the evidence collected by both

these approaches aims at diagnosing performance issues, rather than determining the

most likely cause of packet losses. De Couto et al. designed an expected transmission

count metric to estimate the packet delivery ratio on links [38], similar to the ETT

metric that assigns weights to individual links based on the expected transmission

time of a packet over the link [39]. Although both the metrics assess the packet loss

rate, neither of them gives information about the cause of packet losses.

The RSSI and LQI metrics of the CC2420 have also been used for goals different

from ours. Zaruba et al. used RSSI readings for locating wireless nodes in an indoor

environment, requiring a single access point [182]. However, Parameswaran et al. [183]

determined that the sole RSSI metric is sufficient for localization algorithms, but they

were not always successful in getting very accurate measurements of node distances

due to the presence of factors such as interference. Zanca et al. [184] compared many

RSSI-based localization algorithms and showed that by just using RSSI, localization

may not be accurate with errors of few centimeters due to the presence of moving

people or obstacles. However, Srinivasan and Levis [185] argued that the combination

of RSSI and LQI measurements represents an effective indicator for localization, even

with the existence of obstacles or interference. Other uses of RSSI parameters were

proposed by Khan et al. for troubleshooting unresponsive sensor nodes. However,

179

their approach requires the use of external power-metering subsystems located next

to the nodes to collect their power consumption traces in case of future possible

failures [172].

In [186], Bocca et al. use RF sensor networks for real-time device-free localization,

by leveraging the change in RSSI of the various links to infer the targets locations.

Their technique is similar to the one in our proposed approach, even though more

geared towards real-time tracking of moving targets, and their 0.5 m average error

demonstrates how signal strength-based localization approaches can achieve a high

accuracy.

Chen et al. in [187] propose a signal strength-based localization algorithm for

WSNs by using dependable RSSI values, chosen with empirically defined thresholds.

While our approach is similar, and leads to comparable accuracy, we add the flexibility

of achieving the same level of dependability in RSSI values by smoothing down the

samples collected during link profiling. Therefore, in our approach there is no need

to pre-determine a dependability threshold for the samples.

In [188], Bekcibasi et al. discuss the classification of factors that reduce RSSI

accuracy for localization purposes as environmental and device factors. The former

are related to the wireless communication channel itself, and include multipath, shad­

owing and interference. The latter are related to the devices radio chip and include,

for example, calibration errors. In our work, the discussed way of our approach for

building and updating the link profiles is able to account for both these categories

of inaccuracy factors: the initial profiling strengthens against environmental factors,

while the use of relative deltas for localization instead of absolute values protects

against device factors.

Some traditional localization approaches make use of anchors, nodes that will

measure the received signal strength from the target (often moving) and use it to

triangulate the position by intersecting the radiuses of multiple anchors. Bekcibasi et

al. propose in [188] to use groups of four anchors instead of three in order to improve

the localization accuracy. In our approach, all the investigating nodes effectively act

180

as anchors – adding even more redundancy to the measurements – but without the

burden of knowing their own exact location – which is delegated to the BS.

We originally proposed the FGA technique in [189]. In the current status of the

work, we enhance our technique by addressing some limitations of the original ap­

proach. A first limitation was that, over the execution life of a WSN, the use of a static

reference profile for the links is not able to account for the organic battery decay. In

our current work we address such limitation by the introduction of the Current Health

Profile to reduces the possibility of false positives. Sophisticated adversaries might in­

tentionally manipulate the transmission power in order to mask node-related attacks

as interference issues. By performing the Environmental Evidence Collection, the im­

proved FGA technique includes reference data that accounts for the surrounding links

in order to prevent those power manipulations from misdirecting the investigation. In

this work, the enhanced security provided by the improved FGA tool is investigated

in more depth, to analyze different adversarial scenarios such as colluding nodes or

strong interference preventing local investigations.

6.10 Summary

This chapter introduced our FGA technique for wireless sensor networks that uses

existing link parameters to investigate the cause of packet losses, whether it is related

to node attacks or to link interference attacks. Our technique has been implemented

in a tool that has been deployed on actual sensors. Experiments on these sensor nodes

have shown that our FGA technique is able to successfully differentiate the various

attacks and determine the most likely cause of packet losses. Also, in the case when

interference is the cause of packet losses, our FGA technique is able to locate the

interference source and to estimate its effect on other nodes and links.

Since determining the correct parameters to the diagnostic system can be a hard

task, in the next chapter we present a statistical model to enhance the FGA system

and assist in determining the necessary thresholds.

181

7 STATISTICALLY-ENHANCED FINE-GRAINED DIAGNOSIS OF PACKET

LOSSES

All the parameters for the FGA tool, such as its detection thresholds, can be cus­

tomized by the network administrator based on the requirements of their specific

WSN of interest. Incorrectly setting the parameters can impact the accuracy of the

analysis and, consequently, the correctness of the packet loss cause determination

in face of subtle attacks. While the parameter values identified in Chapter 6 were

evaluated to be effective, an automated guidance to the choice of optimal values

for such system parameters is of great importance. In fact, empirically-determined

values might not always be optimal. As a consequence, a higher number of false

alarms would be produced, reducing the accuracy of the tool. Moreover, such pre­

vious approach uses a single threshold for the whole WSN. While this is aimed at

reducing the workload for the network administrator, it can lead to an additional

increase in false alarms. In fact, in a large-scale WSN deployment, different parts of

the network might experience different normality conditions, and a single predefined

threshold might be suitable for a network portion but inadequate for another. Lastly,

the previous approach does not allow one to control the false alarm rate for each link.

This means that it is not possible to require a priori a desired maximum rate of false

detections. We therefore design an approach that builds and uses a statistical model

for the determination of the optimal system thresholds. By collecting and analyzing

samples from the initial deployment of the WSN system, our approach builds an ac­

curate statistical model of each link exploiting the variances of RSSI and LQI. Based

on such model, our approach is able to select the optimal threshold for each link in

the WSN. One of the advantages of our model is that it also allows the setting of

a different threshold for each link. Such task is manually unfeasible for a network

administrator, but can be effectively carried out in an automated way by our model.

182

Moreover, since each threshold is tuned according to an optimum criterion, we can

always choose a desired false alarm rate on a per-link basis and, if needed, exclude

from the network all the links that will not be able to reach satisfactory detections.

By means of extensive MATLAB simulation based on real sensor data, our experi­

mental evaluation shows that our model is accurate and leads to well-tailored system

parameters for an optimally-accurate fine-grained analysis of the underlying causes

of packet losses.

7.1 System Model

7.1.1 WSN Metrics Formalization

In this section, we provide a formal definition of well-known resident packet metrics

and aggregated value that we leverage for building our model. We refer to the TelosB

motes [57] as our hardware platform of choice. Such platform, specifically, uses a

CC2420 radio chip, but our approach can be applied to any of the newer radios

based on the IEEE 802.15.4 standard. In fact, these radio chips natively offer two

measurements for link quality estimation, namely RSSI and LQI. The RSSI represents

an estimate of the received signal power for a packet, and it is measured in dBm. Its

value is calculated over an 8-symbol period, long on average 128 s. The dynamic

range for the RSSI is between −50 and −100, with higher values (less negative)

representing a stronger signal. It is worth noting that, on the CC2420 chip, the

manufacturer specifies that the read RSSI value is stored in the RSSI VAL register of

the chip, with a fixed offset of −45 dBm. According to the specifications of the IEEE

802.11.4 standard, the RSSI value can be effectively used for both detecting noise

on a channel, and estimating the quality of an incoming packet upon its reception.

This property is leveraged by many protocols for optimal routing decisions [124],

and validated by several research efforts on the accuracy of the RSSI measurements

themselves [185, 190]. The LQI can be seen as the chip error rate of the received

signal and measures the signal reception quality. It is calculated over the 8 bits after

183

the start frame delimiter (SFD). The specifications of the CC2420 radio chip state

that the measured LQI is actually the average correlation of each symbol obtained

by comparing the symbol that is supposed to be received and the symbol actually

received (signal plus noise). LQI values range between 110 and 50, corresponding

respectively to maximum and minimum quality frames. Another important metric

for link quality estimation is the PRR. It is not a value natively computed by the

radio chip, but instead an aggregated metric for each individual link, computed as the

ratio between the number of packets successfully received and the number of packets

sent. Higher values of PRR indicate a better link quality and therefore a healthier

communication medium.

#successfullyreceivedpackets
P RR =

#sentpackets

7.2 A New Profiling Technique

In this section, we first discuss the motivations behind the new profiling approach,

and then show the rationale of our procedure.

7.2.1 Motivations

The profiling proposed by in Chapter 6 has proven to be very effective in discrim­

inating between a wireless network affected by a packet drop attack (either selective

forwarding or blackhole attack) or by low/high interference (i.e. noise). One of the

major drawbacks of this method is that the threshold is only one for the entire net­

work and, above all, the threshold is empirically evaluated (i.e. not tuned according

to an optimum criterion). Here, we move further by proposing a new profiling tech­

nique that, by exploiting the variances of the RSSI and LQI parameters, can define a

threshold for each link in the network. The problem is formulated as a conventional

binary hypothesis test, where the two hypotheses H0 and H1 correspond, respectively,

to the absence or presence of the attack of interest. We define as probability of false

184

alarm (PFA) the probability of our technique to declare the presence of the attack

when it is actually not present. Conversely, we define as probability of detection (PD)

the probability of our system to correctly identify the presence of the attack, when it is

actually performed. To limit the computational cost of the decision device, we choose

some one-dimensional testing variables that are compared to a pre-selected threshold

to efficiently perform the test. The optimal threshold for each link is tuned according

to an optimality criterion [191]. In particular, the constant false alarm rate (CFAR)

procedure, typically used to perform effective tests [192], is here exploited as such

an optimality criterion. The CFAR procedure refers to a common form of adaptive

algorithm used in telecommunications systems to discriminate between the presence

and absence of something (e.g. an unknown user in hidden communications), against

a background of noise and interference [193]. The CFAR criterion is executed, for

each link, according to the following two steps: first, the threshold is determined that

limits the false alarm probability at a given reduced value (i.e. the size of the test)

under the null hypothesis H0; then, the probability of detection, PD, (i.e. the power of

the test) is evaluated under the alternate hypothesis H1 for the threshold previously

determined. The main idea behind our procedure is that the variance of the received

signal (and hence the variance of the RSSI and LQI of the received packets) is lower

when the link is affected by a packet drop attack (H0 hypothesis), while it is higher in

the alternate H1 hypothesis (i.e. when the link is affected by low/high interference).

In fact, and as noted previously, packet drop attacks do not change the statistics of

the received signal in terms of RSSI and LQI. Conversely, the same consideration is

not any longer valid in the presence of channel noise. Therefore, we can select the

variances of the received RSSI and LQI as the one-dimensional testing variables to

compare with the optimal thresholds. Hence, our variance-based test can be effective

in discriminating between cases of a packet drop attacks by nodes and the presence

of low/high interference. In addition, since these considerations apply to each link

in the network, we can identify the most appropriate threshold and consequently the

detection performances for each network link.

185

7.2.2 Rationale

The rationale behind our method is the following. The Intrusion Detection System

(IDS) has declared the presence of an anomaly (i.e. some kind of attack) in the

network. This declaration is based on the observation of the PRR values. This allows

us to discriminate between the following two hypotheses:

• H0: the WSN is affected by a packet drop attack;

• H1: the WSN is affected by an interference attack.

The decision about the presence or absence of an interference attack in a certain link

of the WSN can be obtained by comparing the decision metric to the pre-selected

threshold. In the case of our interest, the decision metric (or decision variable) is

the variance of the RSSI and LQI of the received packets on that link. Let u(n),

i(n) and x(n) be the sequences (of N samples) representing, respectively, the (useful)

transmitted signal, the interference affecting the communication in the network, and

the received signal. Since node-related packet dropping attacks do not change the

signal statistics, the problem can be formulated as follows:

H0 : x(n) = u(n); H1 : x(n) = u(n) + i(n) (7.1)

Then, assuming that the signal and the interference are zero-mean, mutually in­

dependent random processes, the two hypotheses result in:

2 2 2 2 2H0 : = ; H1 : = + (7.2)x u x u i

where 2
u and 2

i are the variances of the useful signal and the interference respec­

tively, while 2
x is the variance of the received signal. The variance 2

x can be the variance

of either the received RSSI values or of the LQI values. For the sake of the compact­

ness, in what follows we refer only to the test in terms of RSSI variance. The same

considerations apply to the LQI case. Now, the estimation of the variance of the

�

�- �

186

received RSSI values is used as the testing variable for discriminating about the pres­

ence of a packet drop or interference attacks. The new testing variable is estimated

according to the following expression:

N

Ẑ =
1

x(n) − E[x]2 (7.3)
N

n=1

Then, considering a threshold η, the test is finally formulated as follows:

Packet drop attack: Z < hatη; Interference attack: Z >= hatη

This means that, if the testing variable is greater than the threshold value (η̂),

then the algorithm decides for the hypothesis H1 (i.e. interference attack), otherwise

the choice is for the hypothesis H0 (i.e. packet drop attack). Finally, the testing

variable in 7.2.2 is asymptotically (N → inf) Gaussian as a direct consequence of the

central limit theorem. Hence, the test threshold can be asymptotically tuned from

a straightforward evaluation of the Gaussian integral for a fixed probability of false

alarm, under the null-hypothesis [193]:

η = E[Ẑ] + 2 · var[Ẑ] · erf−1(1 − 2PFA) (7.4)

where E[Ẑ] and var[Ẑ] denote the expectation and variance of the testing variable,

respectively, while erf−1(·) is the well-known (inverse of the) complementary error

function. It has to be noted that the time-consuming threshold setting stage is usually

performed off-line (i.e. during the deployment of the network, when no attacks are

occurring). Then, the thresholds are pre-computed and stored on look-up tables for

several SNR values. Finally, the probability of detection PD is determined in the H1

hypothesis as:

⎛ ⎞
E[Ẑ] ⎠PD = 1/2 + 1/2 · erf ⎝−η + - (7.5)
2 · var[Ẑ]

187

7.3 Evaluation Results

In this section, we report experimental results validating our theoretical approach

and assessing the efficiency of the proposed profiling technique. The WSN setup

consists of 16 TelosB sensors placed in a 4x4 grid. These nodes use the CC2420 radio

chip, natively providing the RSSI and LQI measurements for each received packet.

In our experiments, we have collected a large amount of real sensors data under

two operating scenarios of interest. In the first scenario, the WSN works properly

without any interference (H0 hypothesis); in the second scenario, a sensor acting as a

jammer introduces different levels of interference in the WSN communications. The

interference varied from low, to medium and high values in order to collect data at

several signal-to-noise ratios (SNR) of practical interest. We have first estimated the

variance of the received RSSI and LQI parameters according to 7.2.2, and then tuned

the optimal theoretical threshold using 7.2.2.

It is important to mention that the number of testing variables, used to estimate

the mean and variance in 7.2.2, directly impacts on the threshold tuning. More testing

(a) RSSI variance (b) LQI variance

Figure 7.1. Theoretical (Theor.) and experimental (Sim.) probability
of detection of the proposed method for several values of SNR and
different false alarm probabilities exploiting: a) the RSSI variance; b)
the LQI variance. Simulation (dotted lines); theory (solid lines).

188

variables allow one to set a finer threshold corresponding to the PFA targets (according

to the CFAR procedure), while fewer testing variables result in a rougher threshold

setting with an actual PFA not according to the CFAR procedure. We thus decided

to work with 1000 testing variables, estimating the variance of the received RSSI/LQI

values over N = 1000 samples, since this value represents a reasonable trade-off be­

tween test performance and accuracy. Then, we have evaluated the performance of

our test for three different false alarm probabilities (i.e. PFA = 10−2 , PFA = 10−3 ,

and PFA = 10−4). We have evaluated PD both analytically, i.e. using 7.2.2, and ex­

perimentally. Figure 7.1 shows the performance of our profiling technique in terms of

the detection probability of an interference attack. In particular, Figure 7.1(a) refers

to the observations of the RSSI variance, while Figure 7.1(b) illustrates the case of

the LQI variance. The simulation results (dotted lines) well match the theoretical

ones (solid lines), thus validating the correctness of the mathematical analysis and

assumptions. As the SNR increases (from −5 dB to 15 dB, i.e. the attacker changes

the interference level from high to medium-low interference), the performance of the

proposed FGA technique decreases, as expected. In fact, if the level of the interfer­

ence by the attacker (or jammer) is too low, it becomes impossible for the sensor to

discriminate between interference and a packet drop attack. However, notice that

we are able to obtain a true detection (higher than 90%) in the presence of a low

interference (at about SNR = 3 − 4 dB), even at very low false alarm probability (i.e.

PF A = 10−4).

Finally, in order to fully assess the performance of our profiling method, we have

investigated how the detection and false alarm probabilities relate to each other.

The receiver operating characteristic (ROC) curve illustrates the performance of our

binary profiling method as its discrimination threshold is varied. The ROC curve

is created by plotting the detection probability against the false alarm probability

at various threshold settings. Ideally, all the ROC curves must be above the line

PD = PFA (bisector) and concave downward. Paradoxically, if they were not, a

randomized test would be better. The best performing detector presents the minimum

189

(a) RSSI variance (b) LQI variance

Figure 7.2. Theoretical ROC curves for several values of SNR exploit­
ing: a) the RSSI variance; b) the LQI variance.

distance from the ideal point (PD = 100% and PFA = 0%) in its ROC curve. An

effective operating point is just the point of the curve near such an optimum case.

Figure 7.2 shows the theoretical ROC curves, i.e. PD vs. PFA, of our profiling

technique for several values of the SNR. In particular, Figure 7.2(a) refers to using

the RSSI variance for the test, while Figure 7.2(b) refers to the use of the LQI variance-

based test. For the sake of the simplicity, only the theoretical curves are reported

in Figure 7.2, since the experimental data again perfectly overlap the theoretical

ones. It is interesting to note that our method is able to identify a true detection

(with a PD > 90%) even in the presence of an interference attack with a SNR of

7 dB, allowing the target PFA to increase from 10−4 to 10−2 . In other words, our

test needs to work with lower SNR values, to maintain the same level of detection,

thus decreasing the false alarm rate. As we can see from the previous graphs, larger

detection probabilities are achieved also in the presence of (low-power) interference

attacks, thus demonstrating the effectiveness of our test for fine-grained diagnosis of

packet losses in wireless sensor networks.

190

7.4 Summary

This chapter presented an approach that builds a statistical model for optimally-

accurate fine-grained analysis of the underlying causes of packet losses in WSNs,

whether node- or link-related. Our model exploits the variances of RSSI and LQI

to determine an individual, optimal detection threshold for each link. Unlike other

techniques such as Artificial Neural Networks (ANN) and Nave Bayes, our approach

is extremely fast and requires less computational resources, allowing implementing it

on the sensors. In addition, the proposed approach allows us to have control on the

PFA through the CFAR criterion. Extensive MATLAB simulations, based on real

sensor data, validated the accuracy of our model and the optimality of its system

parameters under the constant false alarm rate criterion.

With all the accurate diagnostic information on the detected security incidents,

it is possible to enact an effective recovery. However, automating such response is a

challenging task, and we address this issue in the work presented in the next chapter.

191

8 A SYSTEM FOR RESPONSE AND PREVENTION OF SECURITY

INCIDENTS IN WIRELESS SENSOR NETWORKS

It is vital that WSNs services be continuously provided even in face of anomalies or

attacks, and to effectively recover from attacks without significant interruption. De­

tection alone is not enough, but the monitoring and diagnostic techniques presented

in the previous chapters provide crucial information useful to quickly react to the

attacks, by taking actions that make the system able to continue its operations and

at the same time to block the attacks. We thus need response tools that would enable

automatic responses and recovery actions. The intrusion response systems developed

for other domains, such as database systems or distributed systems, cannot be di­

rectly used in WSNs due to significant differences in their operations, resources, and

communication. An effective intrusion response system tailored to the characteristics

of WSNs would need to fulfill the following requirements:

•	 Lightweight: The constrained resources of WSN nodes call for a system that

is lightweight in terms of both computational cost and resource usage. In par­

ticular, the response policies should be specified in a flexible but simple fashion,

so not to incur much overhead when selecting the appropriate response actions.

•	 Real-time: While the response system must be effective in ensuring that the

WSN operations are not interrupted by adverse events, it should at the same

time execute the most effective action for each anomaly or attack in a secure

fashion.

•	 Cooperative: To fulfill the two previous requirements, as well as make sure

that the response system itself is resilient to attacks, the intrusion response

system should have a fully distributed design. It should rely on local opera­

192

tions and cooperative strategies, instead of heavy interactions with a central

authority.

In this Chapter, we present Kinesis – the first systematic approach to a secu­

rity Incident Response and Prevention System (IRPS) for WSNs. The system is

lightweight, cooperative, and distributed. According to our design, each sensor in

the WSN is a watchdog monitor [29] and hosts both an IDS, and the Kinesis system.

Kinesis best works in static WSNs, which are a very common scenario for WSN appli­

cations (e.g., open-air deployments for agriculture domains, indoor deployments for

healthcare scenarios, ...). The Kinesis operations are based on a three-phase workflow:

•	 Detect. Through the IDS, the monitor observes neighbor behaviors, detects

suspicious incidents (anomaly/attack) in the neighborhood, and notifies Kinesis.

•	 Diagnose. While IDSes are generally capable of detecting anomalies and at­

tacks, they might not be aware of the root causes for such adverse events.

Therefore, in some instances further diagnosis is needed. This task is executed

by Kinesis in order to have a better understanding of the events in the network.

•	 Respond. Upon being notified of an incident, and after acquiring sufficient

knowledge about the occurred incident and the current security state of the

neighbors, Kinesis matches the appropriate response policy from the set of re­

sponse policies specified by the base station (BS). The system thus performs

the most appropriate response actions to pursue its security goal.

To support a flexible specification of response policies in Kinesis, we propose

a WSN-specific lightweight policy language based on the Event-Condition-Action

(ECA) paradigm [194]. In a response policy, a set of rules maps incidents and anoma­

lies to different response actions to be performed, based on security assessments of

the suspect node. A monitor estimates the security level of the suspect node based

on the (i) incident detection confidence, (ii) suspect’s behavior history, and (iii) inci­

dent impact on the WSN. This strategy helps in selecting the most effective response

193

action. We have surveyed the various attacks in WSNs and created a taxonomy of at­

tacks (Figure 8.1) and a comprehensive set of response actions (Table 8.3). However,

Kinesis can generate responses against an unknown attack based on the anomalous

behavior the attack manifests.

To trigger the response execution corresponding to an incident, Kinesis selects a

daemon node in a neighborhood via a self-organized competition among the neighbors.

The competition is controlled in a distributed fashion by a per-node action timer.

The node whose timer fires first wins the competition and executes the action. Most

of the actions involve a transmission which is overheard by the neighbors and then

allows the neighbors to stop their action timers and to refrain from taking redundant

actions. Thus, Kinesis does not require any message exchanges for the response action

synchronization and has no communication overhead. A node’s action timer value

is locally estimated based on: (i) neighborhood size, (ii) neighbor link qualities, (iii)

time since its last action. It reflects the effectiveness of a node in executing the action

and ensures load distribution among the neighbors.

The distributed nature of Kinesis also enhances security. When a node is com­

promised, other legitimate nodes in the neighborhood can continue with the Kinesis

functionalities. Kinesis is secure in terms of policy dissemination and storage since

the BS specifies the policies, converts them to a binary code and disseminates the

binary throughout the network with a secure dissemination protocol [195].

Following, we summarize our contributions:

(1) We build Kinesis, the first (to the best of our knowledge) IRPS for WSNs able

to continue the WSN services despite an attack or anomaly and to recover from the

attack eventually. We present the design and architecture of Kinesis, as well as a

prototype implementation in TinyOS.

(2) Considering the context and constraints of WSN, we propose a lightweight

policy language to express the response policies. It enables low-overhead mechanisms

for response policy specification and dynamic response based on the suspect and

incident context.

194

(3) We propose a distributed strategy to synchronize action executions in a neigh­

borhood without significant communication overhead. Using a single timer to manage

the action executions in a neighborhood supports minimization of redundant actions

and load distribution. This design enhances the simplicity and scalability of the

system.

(4) We propose an alternative daemon selection technique that allows network

administrators to trade memory and communication overhead reducing potentially

redundant and conflicting actions.

(5) We evaluate the performance of Kinesis through extensive TOSSIM simula­

tions. We run simulations for various application and network layer incidents involv­

ing single and concurrent/multiple attackers. The results demonstrate that Kinesis

always keeps data loss rate and transmission delays close to those of a typical attack

free WSN. Kinesis also achieves redundant action optimization, load balancing among

the neighbors, and energy efficiency.

(6) We port Kinesis to a real-world testbed of 37 TelosB motes and run experi­

ments for (i) data loss, (ii) selective forwarding, and (iii) sinkhole attacks. Kinesis

performance in the testbed are consistent to the simulation results.

8.1 Background and System Model

8.1.1 Case Studies

An important application of WSNs is intelligent surveillance for smart cities.

Many traditional surveillance systems employ continuous video recording via CCTV

cameras, with severe shortcomings in terms of excessive bandwidth, storage space,

and constant human monitoring. Instead, the increasing need for safety in public and

private areas is pushing the merge of physical and cyber worlds into smart surveillance

systems [196–199]. Real-world deployments of such systems employ wireless sensors

– able to detect movements, changes in temperature or light, vibrations, and more

195

– to activate the video recording, and independently and automatically alert a base

station about intrusions.

As a concrete case study, Libelium [200] – a company focused on IoT, Ma­

chine2Machine, and Smart Cities solutions – has deployed several WSNs for intelligent

surveillance and perimeter access control. Their sensors notify of intrusions over a

low-bandwidth medium in self-organizing topologies, and trigger video recording to

be streamed over a 3G network. As additional case study, SmartSantander [201] is

one of the first holistic attempts at smart cities in Europe, deployed in the city of

Santander, Spain. Among the various goals and solutions of this project, the add-on

European project EAR-IT [202] aims at using a WSN with sound detection to use

“intelligent acoustics” for detecting intrusions and danger situations, and notifying

the authorities.

In these intelligent surveillance deployments, an attacker might compromise sen­

sor nodes and/or tamper with the communications in order to drop the alert packets

about his intrusion and cover his tracks. This can be easily identified as a concrete

threat for several different kinds of facilities that employ intelligent surveillance sys­

tems, from corporate facilities, to government buildings, to homes. The employment

of Kinesis in all these scenarios would ensure a quick response to data losses in the

WSN. Moreover, as we show in our evaluation, the use of Kinesis in a WSN incurs

a very small performance overhead, which would ensure to maintain the original ap­

plication deployed on the nodes functional and responsive for this critical real-time

task.

8.1.2 Network Model

We consider a multi-hop WSN, consisting of a number of sensor nodes and a base

station (BS) that collects data from the network. A node is assumed to have more

than one neighbor node which can monitor its behaviors. The BS is secure and has a

secure mechanism to broadcast authentic messages and to disseminate code updates

196

Figure 8.1. Attack graph

in the network. Sensor nodes are stationary after deployment, but routing paths may

change over time, e.g., due to node failure. Once after the deployment, the BS assigns

each node u a unique nodeID and a cryptographic key Ku. Each node also shares a

pairwise key Ku,k with each neighbor k and a group key Kg with all the neighbors.

8.1.3 Threat Model

We consider the BS as trusted, but any other node may be malicious. We assume

a majority of honest nodes in a neighborhood. The WSN maintains the standard

layered architecture of protocol stack which enables typical as well as WSN specific

attacks to these layers. The attacks are directed to impair the following resources:

(i) network, (ii) control and data message, (iii) sensor device resources, e.g. memory,

power, etc. Below, we discuss these attacks with respect to the target resources.

Communication Network: Jamming disrupts a sub-network or even the entire

network. Attacks at the link layer include purposely introduced collisions, resource

exhaustion, and unfairness in medium access.

Messages: In a WSN, all the nodes act as routers. Hence, an attacker may spoof,

alter, or replay routing messages to disrupt network traffic through creating routing

loops, changing routes, attracting or repelling traffic from selected nodes, increasing

latency, etc. Examples include sinkhole, selective forwarding, blackhole, wormhole

197

attack. Additional attacks, like false data injection and delayed forwarding, may be

conducted to degrade data quality and utility.

Sensor Devices: To keep sensor networks economically viable, sensor devices

come without tamper-resistant packaging, which adds the risk of physical attacks,

e.g., physical capture, tampering, etc. An adversary can extract the secrets stored

on captured sensors’ chip and exploit software vulnerabilities. The adversary can

also clone the captured sensors and place them into network at chosen locations

(replication attack). Once these replicas gain the trust of others, they can launch a

variety of insider attacks. ID spoofing, e.g. Sybil attack, poses threat by enabling a

malicious node to present multiple false identities to the network.

8.1.4 Intrusion Detection System (IDS)

A number of IDSes [27–29] have been proposed for WSNs that cooperatively detect

intrusions. Due to the broadcast nature of wireless channels, overhearing is a natural

phenomenon in WSNs. Neighboring nodes overhear transmissions from each other,

even if they are not the intended recipients [203]. Utilizing this fact, Marti et al. [29]

introduce the watchdog mechanism by which a node identifies a misbehaving neighbor

node by observing the neighbor behaviors. Such a node is termed watchdog monitor

(a.k.a monitor). Each monitor observes its neighbors, collects audit data, and then

performs behavioral analysis for each of them to detect any suspicious activities. The

intrusions are cooperatively detected by the monitors based on their analyses, and a

set of pre-defined inference rules. The relationships between the symptoms used by

the IDSes and the various attacks are shown in Figure 8.1.

8.1.5 State Information and Notation

We now introduce the information used by Kinesis throughout its execution, to­

gether with some of the notation that we will use in the remainder of this Chapter.

198

Each node maintains a set of state information representing its current knowledge of

the network and its security level. Each node u maintains a list of its direct neighbors

neigh(u) and link quality information L(u, w) with each neighbor w ∈ neigh(u). Also,

u retains a per-neighbor sliding window wk of size W to record a history of neighbor

behavior observations, used by u to update the security estimation and state of the

neighbors.

8.2 Architecture Overview

In Kinesis, each monitor hosts a distributed IDS and the Kinesis system. Through

the IDS, a monitor observes neighbor behaviors, detects suspicious incidents in the

neighborhood, and notifies Kinesis for automated response action. However, as we see

in Section 8.4.2, Kinesis depends on the IDS only for the notifications on good/bad

behaviors which is the basic functionality of an IDS. Hence, the specific design of the

IDS is out of the scope of our work.

Figure 8.2. Overview of the Kinesis architecture

Figure 8.2 shows the architecture of Kinesis. The background process Neighbor

Observer, with the help of IDS observations, records recent behaviors for each moni­

tored neighbor and periodically updates the neighbor’s security status based on this

199

history. Upon detecting an incident, the IDS reports to Kinesis the possible anoma­

ly/attack, suspect node(s), and alert confidence for each reported anomaly/attack. A

Diagnosis and Filtering Agent serves as the first entry point for such reports. This

component, designed as an extensible pipeline, is responsible for ensuring an appro­

priate confidence in the IDS’s reports, as well as for further disambiguation of reports

concerning anomalies/attacks that may have similar symptoms but very different root

causes, as discussed more in details in Section 8.3. The Action Selector then performs

the security assessment of the suspect node based on the alert confidence, the suspect

behavior history, and the incident impact. Based on the security assessment, the ac­

tion(s) to be executed are selected dynamically from the response policy matched on

the incident. Because of our incident-based approach, Kinesis can handle unknown

attacks based on the anomalous behaviors they manifest.

Given a set of response action(s), the Executor triggers and executes the actions. A

monitor competes to be the next daemon (i.e. the one to take the response action) by

setting an action timer inversely proportional to its action effectiveness and takes the

action when the timer fires. Note that actions such as log and analyze are executed by

each node independently, whereas for actions like retransmit data, redundant actions

by the neighbors should be minimized. In the latter case, upon hearing an action taken

by a monitor, other monitors in the neighborhood stop their action timers to refrain

themselves from taking any further action for that incident. Any communication

related to response actions or with the BS is handled by the Communicator module.

8.3 Diagnosis and Filtering of Adverse Events

IDSes typically associate a confidence value with each incident reported, in order

to indicate the likelihood of its occurrence. Sometimes, however, the IDS might

not provide a built-in confidence value, or such value might be very low due to the

indecisiveness of the IDS about an incident. Moreover, traditionally IDS systems

are able to detect incidents such as packet drops or data modifications, but not

200

the underlying causes of such incidents. Reporting incidents to Kinesis with good

accuracy and a clear understanding of their root causes is critical to the selection of

an effective response action.

The Diagnosis and Filtering Agent component of Kinesis implements an extensible

filter pipeline (see Figure 8.3) that supports Kinesis in better diagnosing reported

incidents, raising the confidence level of the notified adverse event, and reducing the

number of possible root causes of such events. This way, when the notification reaches

the IRS, the system is able to carry out a significantly more informed, data-driven

decision, leading to a more effective action.

Figure 8.3. Overview of diagnosis and filtering pipeline prototype design

The first pipeline filter aims at back-filling the potentially missing confidence data

in the incident reports. The confidence value is useful in selecting a response action,

as it provides an estimate of the detection effectiveness of the IDS, as well as a

suggestion about the expected severity of the response action. However, if the IDS

does not provide a built-in confidence value, this first filter in the pipeline computes

the confidence value RC for the incident report as follows:

(i) For Anomalies, we consider RC = 1. This is reasonable since watchdog monitors

can correctly identify a failure or misbehaving event [29].

(ii) For Attacks, RC is computed as a false alarm rate based on the past performance

of the IDS about successfully detecting attacks. Thus, RC is computed as:

of true attacks
RC =

of attacks reported

Details of how Kinesis gets feedback about false alerts are discussed in Sec­

tion 8.4.5.

201

The second pipeline filter is the Fine-Grained Analysis (FGA) tool developed as

part of our previous work [189]. This filter is vital in understanding the root causes

that lead to an incident reported by the IDS. As an example, the IDS of a node

might detect a packet dropping event, but it might not know whether the packet

drop was caused by a compromised node performing a selecting forwarding attack,

or by the introduction of interference – natural or malicious – disrupting the wireless

transmissions. It is easy to see that, while both scenarios lead to packet loss, an

effective action against the former would be the revocation of the compromised node,

while an effective action against the latter would be the re-routing of traffic outside

of the interference-affected area. Therefore, reporting incidents to Kinesis with good

accuracy is critical to the selection of an effective response action. This strategy is

particularly useful when several attacks share the same symptoms as shown in Fig­

ure 8.1. The FGA tool is able to distinguish between node- and link-related incidents,

and can in the future be extended to discriminate among more kinds of incidents. The

tool profiles the normal conditions for each link with the neighbors by measuring the

link’s received signal strength indicator (RSSI), link quality indicator (LQI), and

the packet reception rate (PRR). The RSSI represents the signal strength between

two nodes, measured in negative dBm (typically ranging in [−100dBm, −45dBm]),

with higher values representing stronger signals; the LQI measures the quality of the

signal; the PRR is the packet reception rate. In ideal situations, high RSSI values

indicate a strong signal link and reveal better quality with high LQI and PRR val­

ues. However, the presence of interference induces noticeable changes in these values.

Our fine-grained analysis is driven to understand the components of each link profile

along with the neighborhood of each node. Initially after the network deployment,

the stable profile parameters (RSSInorm, LQInorm, P RRnorm) for each link are saved

at both the end-nodes. Upon the occurrence of an incident whose symptoms could be

attributed to both node- and link-related issues, the FGA tool compares the current

link profile with the stable parameters, and is able to determine the exact root cause

for the reported incident.

202

Table 8.1.

Response policy language

<rules> ::= ’Begin’ <rule-list> ’End’

<rule-list> ::= <rule> <rule-list> | <rule>

<rule> ::= ’on’ <incident> (<condition> <action-list>)+

<incident> ::= <anomaly> | <attack>

<anomaly> ::= data loss | data alteration | data replay | ...

<attack> ::= unknown | selective forwarding | jamming | ...

<condition> ::= <condition>*|’if’ <incident> ’then’

|’if’ severity(<suspect>,<incident>) <op> (<value>|<range>) ’then’
<op> ::= ’<’ | ’>’ | ’⇐’ | ’>=’ | ’==’ | ’ !=’ | ’IN’
<action-list> ::= <action>, <action-list> | <action>
<action> ::= <conservative-action> (<suspect>)*

|<moderate-action> (<suspect>)*
|<aggressive-action> (<suspect>)*

<aggressive-action> :: = revoke | reauthenticate | rekey | ...
<moderate-action> ::= retransmit data | trigger data authentication | ...
<conservative-action> ::= nop | analyze | alert | ...
<suspect> ::= <digit>+ | <literal> (<literal>*<digit>*)*
<range> ::= (’[’|’(’) <value>–<value> (’)’|’]’)
<value> ::= <digit> | <digit>+. <digit>+
<digit> ::= [’0’-’9’]
<literal> ::= [’A’-’Z”a’-’z’]

8.4 The Response Policy Language and Engine

In this section, we present the Kinesis policy language, and how Kinesis selects

and executes appropriate response actions to incidents and anomalies.

8.4.1 Policy Language

A response policy is defined on an incident and specifies actions for different

security estimations, based on various conditions on the incident and the suspect.

The response policies are specified as a set of rules, expressed with the grammar

in Table 8.1. The terms within quotes ’ ’ are static tokens and the italics represent

203

functions. The main construct of the language is <rule> which defines the response

policy corresponding to an attack or anomaly.

Through a detailed analysis of the various attacks in WSNs and corresponding

recovery actions, we have identified a comprehensive set of response actions, listed in

Table 8.3. The actions are categorized into three classes:

•	 Conservative: Low severity actions that may help a monitor in more precise

attack detection or in not executing erroneous responses, but cannot prevent or

recover from attacks.

•	 Moderate: Actions intended to preserve the WSN services under failures or

attacks.

•	 Aggressive: High severity responses executed to recover from an attack and to

prevent further malicious attempts. These actions may be executed by local

sensors or may require help from the BS to execute them.

Note that the policy language of Kinesis allows for the use of generic symptoms as

triggers, e.g. “data loss”, as well as anomalous behaviors detected by the IDS but

not identified as a specific attack, i.e. “unknown”. This lets Kinesis take action even

in face of attacks that were not entirely diagnosed or detected, but that still require

action to maintain the network functionality. The chain-like structure of our policies,

moreover, ensures that the rules will be checked sequentially, reacting to more specific

attacks when possible, and falling back onto general action rules as “safety nets” for

the WSN. While this might result in a less accurate response action to an unknown

attack, it ensures that some corrective measure is taken in all cases.

An example policy for data alteration incident is shown in Table 8.2. Here,

nodeID refers to the suspect node identifier.

204

Table 8.2.

Response policy example

on ’data alteration’
if severity(data alteration, nodeID) ⇐ 0.3
then retransmit data

if severity(data alteration, nodeID) IN (0.3,0.6]
then retransmit data, trigger route change

if severity(data alteration, nodeID) > 0.6
then revoke nodeID

Table 8.3.

Taxonomy of response actions

Actions Descriptions

CONSERVATIVE: Low Severity
nop No actions to take
log, analyze Record auxiliary information and analyze
alert Notify the suspect node(s) or other neigh­

bors/the BS about the misbehavior

MODERATE: Medium Severity
discard data Prevent forwarding false data
retransmit data Retransmits cached data
trigger reauthentication Re-authenticate the suspicious node
trigger route change Change route and notify others
trigger multipath routing Route data through multiple paths
suspend Temporarily block the suspect node

AGGRESSIVE: High Severity
revoke Black list/block the convicted node
re-program Re-program the malicious node
re-key Re-key the (sub) network
flood alerts Flood alert messages in the network

8.4.2 Policy Matching and Response Selection

Since response policies are defined specific to incidents, it is straightforward to

match the policy for an incident in Kinesis. However, the action to execute is selected

dynamically from the action set specified by the matched policy, based on the security

205

assessment of the suspect. This strategy ensures that Kinesis takes the most effective

action at any incident.

The security assessment of a node is quantified by a Security Index (SI). In Kine­

sis, a monitor continuously updates per-neighbor security state records based on its

observations of the neighbor behaviors. The SI of a neighbor is also updated on each

observation. If a neighbor shows legitimate behavior, its SI is updated based on the

behavior observations only. Otherwise, if an incident is reported (i.e. a misbehavior

is observed), SI is updated based on three factors:

(i) Incident Confidence:	 The confidence with which the incident is detected, de­

noted by a Confidence Index (CI).

(ii) Incident Impact: A numeric value of the impact of the incident on the WSN,

denoted by an Impact Index (II).

(iii) Neighbor behavior history: The continuous behavior observations and security

state of the neighbor, reflecting how much the monitor believes the suspect

node.

In what follows, we discuss how Kinesis computes these indices and then selects

the response action based on the SI.

Confidence Index (CI)

At the end of the Diagnosis and Filtering pipeline execution, the report of an

incident will always have a confidence value associated to it. We utilize it to select a

response action since it measures how effective the IDS is in detecting an incident and

how severe the response should be. The confidence value for the reported incident is

therefore used as value for the CI.

206

Impact Index (II)

The II estimates the overall impact of an anomaly/attack and implies the urgency

and severity of the response action. Despite extensive work on vulnerability scoring in

enterprise networks [204], little attention has been paid to WSNs. A few mathematical

risk models for WSNs have been proposed [205], but they do not provide a complete

framework considering the WSN specific practical concerns. In this work, we propose

a simple mechanism to estimate the impact of an incident.

Table 8.4 lists the consequences of incidents to the WSN services. Based on the

priority of the WSN, the BS assigns static scores to the impacts and configures the

nodes with the incident-impact mapping and impact scores. On receiving a report of

incident x, Kinesis computes the incident impact as:

n impactk[j] × rk[j]j=0 x
Ik(x) =	 n (8.1)

j=0 r
k[j]

where k is the type of impact, n is the total number of k-type impacts, impactkx is

an n-length array of k-type impacts for incident x where impactkx[j] = 1 means that

the incident has j-th impact, and rk is an array of impact scores associated with

the k-type impacts. Using Eq. 8.1, Kinesis computes the Data Impact (Id), Network

Impact (In), Node Impact (Is) of the incident and then the II as follows:

II(x) = βd × Id(x) + βn × In(x) + βs × Is(x)	 (8.2)

where, the coefficients βd, βn, βs ≥ 0 are real numbers such that βd + βn + βs = 1.

Note that if the network administrator does not change the WSN priorities, the Impact

Index es are static and need to be calculated only once after deployment.

207

Table 8.4.

Possible impacts of WSN anomalies and attacks

Data Impact	 Data delay
Data unavailability
Data alteration
Data falsification

Network Impact	 Network unavailability
Network disruption
Path unavailability

Node Impact	 Node unavailability
Node misbehavior
Node malfunction

Neighbor Behavior Observations

The neighbor behaviors help a monitor assess how vulnerable the neighbor is and

how likely it is that the neighbor is going to attack. Hence, we consider the behavior

observations of the suspect node while determining the severity of the response ac­

tion. Usually IDSes maintain the behavior history and trust scores [206]. However, to

conform with IDSes without such facilities, Kinesis includes a mechanism for record­

ing information about the neighbor behaviors and utilizing ing this information in

computing security score and state.

To justify the accuracy of the response action, we utilize the history of neighbor

behaviors rather than the latest single behavior. Kinesis maintains a per-neighbor

sliding window wk of size W to keep track of the neighbor’s most recent W behaviors.

When the IDS notifies about a behavior of neighbor k, Kinesis pushes out the oldest

behavior from wk and stores the recent one. We consider two types of behaviors:

•	 Service Behavior : How trustworthy a neighbor node is in providing WSN ser­

vices, e.g., in-time packet forwarding.

•	 IPRS Behavior : How efficient and honest the neighbor is in taking required and

desired actions.

208

Security Index and State Update

A monitor u computes the SI for each neighbor k ∈ neigh(u) on each behavior

observation for k and updates the security state accordingly. A node is estimated to

be in five possible states: (i) Fresh, (ii) Suspicious, (iii) Secure, (iv) Malicious, and (v)

Revoked. Figure 8.4 shows the security state transition diagram. After the network

deployment, a monitor assigns to all its neighbors the Fresh state with SI = 0.

For a pre-specified amount of time tf , a neighbor is considered to be in Fresh state

while its SI is updated based on behavior observations according to Eq. 8.3. The

significance of Fresh state is that a neighbor is given the benefit-of-doubt while being

in this state. Although the SI of a suspect node in Fresh state affects the response

selection, no aggressive action is taken against the node, i.e., the node is not revoked,

reprogrammed, etc. After a time tf , the neighbor moves to Suspicious or Secure state

based on its SI. A node in the Suspicious state moves to the Secure state if its SI

decreases due to legitimate behaviors. On the contrary, if a node in the Suspicious

state continues its anomalous behavior, its SI goes above a pre-defined threshold σ2

and the node moves to the Malicious state. When a neighbor moves to the Malicious

state, the monitor initiates an aggressive action against the node. A neighbor node

can also be revoked anytime due to the monitor’s own decision or action initiated by

neighboring monitors. In this case, the monitor enlists the suspect node as Revoked

and discards further request/data from the node.

We compute the SI of a neighbor k with two auxiliary functions f(x) and g(SI),

where f(x) computes the severity of an incident x and g(SI) returns a coefficient

based on the current SI and security state of k.

1 ; SI ≤ σ1 i.e k is Fresh/Secure

g(SI) = 1.5 ; σ1 ≤ SI ≤ σ2 i.e k is Suspicious

2 ; SI > σ2 i.e. k is Malicious

⎧⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎩

209

Fresh

Secure

Suspicious

time < tf
time > tf ʌ SI > σ1

tim
e > t

f ʌ SI < σ
1

Revoked

Malicious

σ1 < SI < σ2

Figure 8.4. Security state diagram of a monitored node

f(x) =

⎧ ⎪⎨ ⎪⎩

0 ; x is good behavior

min(CI × II(x) × g(SI), 1) ; otherwise

On each i-th behavior observation for neighbor k, its SI is computed by a monitor as

SI
 =

⎧ ⎪⎨ ⎪⎩

�i f(wk[j])j=1

i , if i ≤ W �W f(wk[j])−f(wk [0]))j=1

W , if i > W
(8.3)

8.4.3 Response Computation and Optimization

If the IDS reports a single incident corresponding to an incident, Kinesis computes

the SI, matches the response policy, and selects the SI based action(s) from the

matched policy. When multiple incidents are reported, we follow the same procedure

to select the action(s) for each reported incident and compute the final action set

as a union of these actions. However, each individual action set may be inclusive,

overlapping, inconsistent with respect to the other sets. Moreover, before considering

new action(s) for execution, we should also check inconsistencies with the on-line

actions. To resolve this issue for a limited resource system, we introduce the action

precedence graph.

210

discard datadiscard data

reauthenticate
data

reauthenticate
data

retransmit dataretransmit data

reprogramreprogram

revokerevoke

loglog

analyzeanalyze

trigger
authentication

trigger
authentication

Figure 8.5. Example of an action precedence graph

The Action precedence graph (APG) is a directed graph which describes the

precedence relationship between actions in terms of their effectiveness. In such graph,

(i) each node ai represents an action, (ii) an edge ai → aj denotes that the parent

action ai invalidates the child action aj , and (iii) a black edge ai ⇒ aj denotes that ai

and aj are contradictory actions and on conflict, ai is executed. Thus the execution

of action ai invalidates all of its successors, and aj not reachable by ai means that

they are independent actions. Two actions ai, aj conflict if one can reach the other

only through a path of black edges. An example APG is shown in Figure 8.5 where:

the reprogram action overrules all of its successors; {log, analyze} are independent of

each other; and {retransmit data, reauthenticate data, discard data} conflict. We

assume that the BS pre-configures the nodes with all possible response actions and

the precedence relationships between them.

By utilizing the APG, Algo. 5 computes the equivalence, independence, intersec­

tion, and coverage relationships between two action sets. To compute the optimized

action set from n different action sets {A1, A2, . . . , An} (each specific to an individ­

ual incident), Kinesis runs a recursive algorithm initialized with O1 = A1 and then

computing Oi = cors(Oi−1, Ai) for i = 2, 3, . . . , n.

211

ALGORITHM 5: : cors() - computation of optimized response set

Input: Response sets A = {ai}, B = {bi}
Output: Optimized response set O
if A = B then

O ← A ; // A is equivalent to B
else if ∀ai, ∃bj , bj → ai then

O ← B ; // B covers A
else if ∀ai, ∀bi, ai ⇒ bj or Vice-versa then

O ← A (or B) ; // A contradicts B
else if ∃ai, ∃bj , ai → bj then

O ← A ∪ (A\B) ; // A intersects B
else

O ← A ∪ B ; // A is independent to B
end

8.4.4 Execution of a Response Action

The response action executions are fully distributed. The low/medium severity

actions are executed by the monitors solely based on their own decisions. The high

severity actions against convicted nodes require consensus among the neighborhood

monitors. In the latter case, a selected monitor node (daemon) broadcasts a message

asking the decisions of other monitors, performs a majority voting on the collected

replies, and then executes the agreed upon action. Some aggressive actions, such

as reprogram or rekey, cannot be completed at the sensors. In such a scenario, the

daemon node notifies the BS with an authenticated report and the BS then performs

the action. In addition, even though some actions, like retransmit data, alert others,

can be executed upon a monitor’s own decision, they require interactions with other

nodes. In all these cases, a monitor has to initiate the action and take over all

the related responsibilities. Kinesis dynamically selects the most competent node as

the daemon to ensure the action effectiveness and to avoid the same node doing all

the work all the time.

�

212

Selection of the Daemon

A node is selected as the daemon via a self-organized competition among neigh­

boring monitors. The novelty of our scheme is that we do not need any message

exchange or special time synchronization among neighbors to manage the action ex­

ecutions. Each node in a neighborhood competes independently through a locally

managed back-off timer, called action timer. The timer value of a node u depends

on the action effectiveness, AE(u), of the node, which is estimated locally based on:

(i) neighborhood size, (ii) one-hop link qualities, and (iii) time since last action. In­

tuitively, if a node has more neighbors with good link qualities, it can interact with

more monitors and help minimize redundant actions. Again, if the node is idle for a

long time, it should take the action to ensure load distribution in the neighborhood.

Thus, the AE(u) is computed as follows:

AE(u) ∝ c1 · tl + c2 · L(u, k) (8.4)
k∈neigh(u)
k∈neigh(s)

Here, c1, c2 are real numbers, neigh(u), neigh(s) denote the neighbors of u and

the suspect node, respectively, L(u, k) is the link quality between u and the monitor

k, and tl is the time since last action by u. The higher the AE(u), the more effective

u’s action is. u joins the competition to be next daemon by setting the timer value

inversely proportional to AE(u). We add to this value a small random time r, in order

to ensure that, even when the action effectiveness values at two monitors are close –

that is, when the load balancing factor (i.e. time since last action) is the same in both

of them and the link qualities with the neighbors do not make a big difference – their

action timers still have different values. This additional small random factor helps in

making sure that the action timers of two monitors do not fire simultaneously, and

therefore only one monitor is selected as daemon.

213

1
ActionT imer(u) ∝ + r (8.5)

AE(u)

Thus, a node with better AE has lower back-off period and wins the daemon

selection competition. When the action involves a transmission and a neighbor k

overhears it, the node stops its running timer to avoid any redundant action for

the same incident and updates its tl and AE value. Kinesis could allow redundant

actions with a goal to enhance the system reliability. For example, suppose that

node u drops data packets and one of its monitors retransmits the dropped packets.

If another attacker v in the data flow path drops the retransmitted packets, then

redundant transmissions by multiple neighbors of u may help mitigate data loss.

However when v drops data, its neighboring monitors retransmit the data, which

invalidates the necessity of redundant actions by u’s neighbors. Our experimental

results also support the design of minimizing redundant actions as we see very low

data loss rate in the presence of multiple attackers. We investigate redundant actions

further in Section 8.5.

Consensus Among the Monitors

To execute high severity actions, the monitors consult with each other and decide

an action based on majority voting. After selecting a response action, the daemon

node broadcasts an authenticated status req msg in the neighborhood. The message

contains the (i) detected attack, (ii) the suspect node, (iii) the response decision, and

(iv) a Message Authentication Code (MAC) computed on the data using the group

key Kg.

Upon receiving the message, each neighboring monitor replies with an authenti­

cated status reply msg, containing the local response decision. The daemon node

computes and broadcasts again the majority voting result. Based on the voting de­

cision, the daemon may execute the agreed upon action or notify the BS with an

authenticated report to trigger the action. The neighboring monitors also observe

214

each other to check whether they abide by the voting decision and otherwise records

a bad behavior for the misbehaving node.

8.4.5 Response Feedback

The majority voting decision gives a feedback to the monitors about their accuracy

in terms of detecting an incident and selecting the actions. If the severity of the agreed

upon action is lower than the locally determined action at a node, it implies a false

alarm and decreases the confidence of the monitor. Every monitor node keeps the

records of its false alarms and updates its CI. Note that we do not consider false

negatives here. Response feedback may also help assess the effectiveness of the taken

action for an incident. However, we do not investigate this direction in this work.

8.5 Redundant and Conflicting Actions

The ability of Kinesis of taking a single action per incident, as it would be ideal,

mainly depends on the topology of the network, among other factors. As our ex­

perimental evaluation in Section 8.7.3 shows, occasionally, multiple monitors simul­

taneously undertake an action for the same incident. The concurrent execution of

more than one action for the same adverse event can impact the battery life of the

monitor nodes as well as, in extreme cases, lead to inconsistencies in the network if

the redundant actions performed are both of high severity and conflicting.

In scenarios in which the network administrator has control over the topology

of the WSN, he or she can adjust the placement of the nodes to address the issue

of redundant and conflicting actions. Under such scenarios, the techniques used by

Kinesis to select the daemons discussed so far are optimal with respect to the security

goal as well as the resource constraints of the nodes. However, to deal with cases in

which the network administrator does not have much control over the topology of the

network, we introduce a daemon selection technique that allows one to trade some

additional memory and communication overhead for energy saving and consistency

215

assurance in face of redundant and conflicting actions. It is worth noting that the

security goal of Kinesis remains anyway unchanged. The desired trade-off between the

efficiency of the various resources (memory, energy, communication channel), together

with the specific requirements of the individual WSN application, will let the network

administrator establish which daemon selection technique is more appropriate on a

per-case basis.

8.5.1 Conflicting Actions Analysis

First of all, we analyze all the actions supported by Kinesis in pairs, to determine

which pairs of actions conflict with each other. Formally, we define two actions as

conflicting if they obstruct each other in reaching the security goal of Kinesis, which

is to minimize data losses.

Table 8.5 summarizes the results of our analysis, with the ‘X’s marking conflicts.

For example, the actions discard data and retransmit data aim at opposite end

results. If the packet contains false data, then retransmitting it will propagate false

information throughout the network; conversely, if the data is true, discarding the

packet will not let valuable information reach the base station. So if the two actions

are performed concurrently by different monitor nodes, the conflict might make it

harder for Kinesis to reach its security goal. As shown in the table, however, there are

only 5 instances of conflicting actions. In the remainder of this section, we discuss how

the alternative daemon selection technique helps Kinesis in mitigating the potential

issues of redundant and conflicting actions.

8.5.2 Redundancy Motivating Scenario

To understand the reasons behind the phenomenon of redundant actions, consider

the network portion in Figure 8.6, with the edges denoting direct communication

between two nodes. Node 18 is an attacker node, while Nodes 7, 8, 9, 13, 14 and 29

are the monitors. When Node 18 drops a packet, all the monitors start their action

216

Table 8.5.

Analysis of potentially conflicting response actions

n
op

lo
g

al
er
t

d
is
ca
rd

d
at
a

re
tr
an

sm
it

d
at
a

re
au

th
en
ti
ca
te

ch
an

ge

ro
u
te

ro
u
te

m
u
lt
ip
at
h

su
sp
en
d

re
vo
ke

re
-p
ro
gr
am

re
-k
ey

fl
o
o
d

al
er
ts

nop -
log -

alert -
discard data - × ×

retransmit data × - ×
reauthenticate -
change route -

route multipath × -
suspend × - × ×
revoke × -

re-program × -
re-key -

flood alerts -

Figure 8.6. A segment of the attacker’s neighborhood

timers. In this topology, two different kinds of situations can lead to redundant

actions:

1.	 “Hidden Node”: When, for example, Node 7 wins the action timer competi­

tion, it retransmits the dropped data and Nodes 8 and 9 stop their timers upon

217

overhearing the action. However, Node 29 does not have a link to Node 7, thus

it is a “hidden node” with respect to the action taken by Node 7, and will also

take action when its timer fires. 1

2.	 Disconnected Neighborhood Portions: Nodes 13 and 14 have no direct

connections with any of the nodes 7, 8, 9, 29. Therefore, their portion of the

neighborhood of Node 18 is disconnected from the other portion. In this case, no

matter which node in one portion of the neighborhood of Node 18 takes action,

the other portion will never overhear the action. The only solution is therefore

introducing an action-reporting mechanism among the portions. Node 3, even

though not directly interested in the action since not directly connected to the

malicious Node 18, could relay the notification that an action has been taken

from one portion of the neighborhood to the other. In case of high-severity

actions, it would be very important to propagate the information about an

undertaken action to the rest of the interested neighbors.

The alternate daemon selection technique presented in this section provides a

solution to both scenarios, at the cost of additional memory and communication

overhead. At a high level, such solution is composed by two parts, the first addressing

the “hidden node” problem with an analysis of the connectivity between monitors for

any specific incident, and the second addressing the disconnected portions problem

with an automatic reporting mechanisms that still minimizes the communication

overhead.

8.5.3 2-hop Knowledge

At the base of any solution against redundant actions, there is the need for each

node to be more aware of the topology of its neighborhood, as well as the connectivity

of its other neighbors, in order to make better informed decisions. Each node, when

meeting its direct neighbors at network startup, also acquires the list of its neighbors.

1This kind of redundancy is not a sole problem of Kinesis, but of any overhearing-based solution.

218

That is, node u will store the list neigh(w) for each 1-hop neighbor w ∈ neigh(u).

This is defined as 2-hop knowledge. Every node therefore is aware of the topology of

its network up to 2 hops away. Given an incidence matrix M representation of the

graph of the entire wireless sensor network, a node u knows all and only columns v

for which M [u, v] = 1.

8.5.4 Connectivity Advantage

Let us assume a node u wants to start the action timer after its direct neighbor b

caused an adverse event – e.g. dropped a packet. Let us define the direct neighbors of

node u that are also direct neighbors of b as the local action set of u with respect to b,

denoted as LAS(u, b). Nodes in such set are the only nodes in the direct neighborhood

of u that will be setting an action timer for the adverse event caused by b.

LAS(u, b) = neigh(u) ∩ neigh(b) \ b

Each node, knowing its 2-hop neighbors, can determine how well each of its direct

neighbors is connected to the neighbors of the malicious node b. We define the ratio

of neighbors of b that a node v is directly connected to as connectivity ratio CR(v, b),

computed as:

CR(v, b) = |neigh(b) ∩ neigh(v)|/(|neigh(b) f 1)

In order to maximize the number of nodes that overhear an action undertaken and

thus minimize the number of redundant actions, our solution ensures that the node

that wins the action timer competition is the one connected to as many interested

nodes as possible. For this reason, we introduce the Connectivity Advantage Adv(u, b)

of node u over the nodes in the local action set of nodes u and b. Before providing a

formal definition, we informally introduce this concept. Intuitively, the Connectivity

Advantage parameter determines how well a node u is connected to the other neigh­

bors of a malicious node b, that are the monitors for every incident caused by the

219

latter. Since node u is taking part to the monitoring of node b, this implies that u

is a direct neighbor of b, and therefore knows the set of direct neighbors of node b –

whether they are directly connected to u or not – thanks to the 2-hop knowledge that

node b provided to node u at network startup. We formally define the Connectivity

Advantage of node u over the nodes in the local action set LAS(u, b) as a parame­

terized factor ranging between α and 1/α that will increase (or decrease) the action

2effectiveness of u .

When a node u has to set its action timer for an adverse event caused by a node

b, it needs to calculate its own Connectivity Advantage. Therefore, it calculates

the connectivity ratio CR for each one of the nodes in the local action set LAS(u, b),

including itself. Once all the connectivity ratios are calculated, the node can normalize

them in the [0, 1] range as normalized connectivity ratios NCR(u, b):

CR(u, b) − min CR(w, b)
w∈LAS(u,b)

NCR(u, b) =
max CR(w, b) − min CR(w, b)

wLAS(u,b) wLAS(u,b)

Node u will finally use its own NCR(u, b) value to determine its Connectivity Ad­

vantage as a value in the aforementioned range [α, 1/α] as:

Adv(u, b) = (1/α − α)(NCR(u, b)) + α

It is easy to see that a normalized connectivity ratio equal to 1 will result in a

Connectivity Advantage of 1/α, while vice versa a normalized connectivity ratio equal

to 0 will result in a Connectivity Advantage of α. Thus, this function fulfills the

requirements of increasing or decreasing the delay in the action timer depending on

the better or worse connectivity of a node to the direct neighbors of a malicious node,

in order to reach as many neighbors as possible with an action upon winning the

competition and therefore to limit redundant actions.

2Remember that a smaller value for the action timer means more chances to win the competition,
and therefore the best advantage will result in a factor of 1/α, while the worst will be a factor of α.

220

Based on Adv(u, b), the equations in this alternative technique for action effec­

tiveness and action timer at node u for an adverse event cause by its neighbor b are,

respectively, as:
1

AE(u) ∝ c1 · tl + c2 · (8.6)
Adv(u, b)

1
ActionT imer(u, b) ∝

AE(u)

Here, c1, c2 are real numbers, and tl is the time since last action by u.

It is evident that a node might not be directly connected to all the other nodes

in the local action set. This means that each node has only partial information

about such nodes, and this will affect the values that are calculated locally at each

node. This is a purposeful design choice that limits the information exchanged among

the nodes to a 2-hop knowledge in order to enable advanced calculations such as

the Connectivity Advantage, while limiting the memory and storage overhead of the

nodes. The algorithm is guaranteed to provide a local optimum that can be efficiently

computed without the need for interaction with the other nodes (apart from the initial

neighbor list exchange at network bootstrap).

8.5.5 Proofs of Action

Depending on the particular topology of the malicious node’s neighborhood, there

are cases in which favoring the node best connected to all the other neighbors of the

malicious node – by considering its Connectivity Advantage – cannot completely solve

the issue of redundant actions. This happens when no single node in the neighborhood

of interest is directly connected to all the others, or also in the more general case when

such neighborhood is divided in multiple, disconnected sub-portions. Here, some

nodes are said to be “hidden” with respect to the particular undertaken action(s). To

deal with such scenarios, the solution provided by Kinesis includes a mechanism for

automatic notification to the interested parties, via Proofs of Action.

221

While it is important to make sure that high-severity actions are reported to all

the interested nodes immediately – before more redundant and potentially conflict­

ing high-severity actions are undertaken by unaware nodes in a different part of the

neighborhood – for non-conflicting redundant actions, the main concern is the unnec­

essary consumption of energy. Since adding extra rounds of communication would

effectively defeat the purpose, Kinesis intelligently differentiates between these two

security goals and only activates the notification mechanism in case of high-severity

actions. In case of non-conflicting (i.e. low-severity) redundant actions, it is more

energy effective to simply let multiple actions coexist.

We now describe how this mechanism helps in reducing the number of redundant

actions. Let us analyze again the scenario of a node b causing an adverse event.

Several monitors will witness the event and will start their action timers (considering

also their Connectivity Advantage). Suppose that the timer of node v fires first, then

node v undertakes action A. All and only the direct neighbors of v will overhear that

action, and will stop their action timers. In order to solve the hidden node problem,

each one of these direct neighbors will then leverage the 2-hop knowledge in order

to check if any of its direct neighbor is hidden with respect to action A by node v,

proceeding as follows. Without loss of generality, let u be one such node. From the

point of view of u, the nodes that are hidden with respect to action A originated by

node v against the malicious node b are all those nodes w such that b is one of their

direct neighbors, but v is not. More formally, such hidden nodes compose the set

defined as follows:

hidden(v, b) = {w : b ∈ neigh(w) ∧ v /∈ neigh(w)}

If the set hidden(v) is not empty, and action A has potential conflicts with any other

action (as per Table 8.5), then node u will generate and broadcast an authenticated

proof of action to let the hidden nodes know about the action and prevent them from

undertaking redundant and potentially conflicting actions.

222

Since this algorithm is fully distributed, the information will keep propagating

hop by hop to all the interested nodes, i.e. those that witnessed the adverse event

but could not overhear the action taken and might attempt to start one on their

own. It is important to mention that the number of these nodes is always bounded

by the number of direct neighbors of the malicious node minus 1, and depending on

the topologies might be much lower than this upper bound.

Algorithm 6 shows the pseudocode for the solution provided by Kinesis for man­

aging redundant actions, composed of both the computation of the Connectivity Ad­

vantage, its use in setting the action timer upon the detection of an attack, and the

use of proofs of action to propagate information to the hidden nodes. The algorithm

has been optimized in order to only keep the bare minimum variables necessary for

the computation, thus lowering the memory requirements. For example, instead of

keeping in memory all the connectivity ratio values, it only computes in place the

minimum and maximum of their range in order to later on normalize only the value

for the node that is performing the calculation itself.

8.6 Implementation and Configuration

We implement Kinesis in TinyOS 2.x. We adapt the Skipjack encryption based

CBC-MAC implementation in TinySec [207] for TinyOS 2.x to compute a 4-byte

MAC while majority voting. The implementation is lightweight since it takes 0.38 ms

for Mica2 motes [207] and would take less time in the TelosB platform since TelosB

has higher processing capability than Mica2 mote.

According to the policy language defined in Section 8.4.1, policy rules are imple­

mented as switch-case based on incident. This strategy optimizes the implementa­

tion. Security state thresholds (σ1, σ2) are used to specify the severities in policies.

To compute σ1, σ2, we average over all the incident impacts, measure the SI with this

average impact for various attack rates, and select the values based on the tolerance

223

ALGORITHM 6: : Pseudocode for the solution against redundant actions (at node u)

on adverse event(b) do
my ae ← computeAE(); // omitted as trivial

my adv ← computeAdv(b);

setActionTimer(my ae, my adv);

endon

function computeCR(v, b) {

common ← (neigh(b) ∩ neigh(v)).size();

common / (neigh(b).size() - 1);

}

function computeCR(v, b) {

common ← (neigh(b) ∩ neigh(v)).size();

return common / (neigh(b).size() - 1);

}
function computeAdv(b) {

for v ∈ neigh(b) do
if v ∈ my neighbors then

conn ← computeCR(v, b);

if conn < min cr then min cr ← conn ;

if conn > max cr then max cr ← conn ;

end

end

my ncr ← (computeCR(self, b) - min cr) / (max cr - min cr);

my adv ← (1/alpha - alpha) * my ncr + alpha;

return my adv

}
on overhear proof of action(p) do

overhear action(p.timestamp, p.A, p.originator, p.malicious);
endon
on overhear action(timestamp, A, originator, malicious) do

cancelActionTimer();
if alreadySeen(timestamp, A, originator, malicious) ∨ ! isHighSeverity(A) then

return;
end
hidden ← ∅;

for w ∈ my neighbors do

if malicious ∈ neigh(w) ∧ originator ∈/ neigh(w) then

hidden ← hidden ∪ w;

end

end

if hidden = ∅ then

p ← generate proof of action(A, originator, malicious);

broadcast(p);

end
endon

224

to attack rates. The particular set of response actions used to specify the policies are

determined based on the security goals of the WSN application.

As Kinesis configuration, the WSN administrator configures the sensors with the

incident-impact mappings, impact scores, and the real coefficients. The data, network,

or node impacts of an incident do not vary across different WSNs, hence the incident-

impact mappings are static. On the contrary, how severely an incident affects the

WSN services may well depend on the network application. Thus, the impact scores

and β coefficients, used to compute the II, should be set by the administrator ac­

cording to the application requirements. However, we assume that these configuration

parameters are changed infrequently over the network lifetime.

8.7 Simulation Results

In this section, we present simulation results to show the performance of Kinesis

under various network settings.

8.7.1 Simulation Setup

For simulation, we use the TinyOS simulator TOSSIM. The network topologies are

generated with symmetric links. As a routing protocol, we use the standard Collection

Tree Protocol (CTP). In the experiments, we consider the following application and

network layer anomalies and attacks: (i) data loss, (ii) data alteration, (iii) selective

forwarding, and (iv) sinkhole attack. The policies considered for these incidents are

shown in Table 8.6. To detect incidents, we implement a simple watchdog monitor

based IDS in TinyOS 2.x.

To configure Kinesis, we assign equal weight to the real coefficients in Eq. 8.2, i.e.,

βd = 0.34, βn = 0.33, βs = 0.33. The size of the per-neighbor sliding window, W, is

set to 100. In Section 8.4.4, we have stated how we determine the values of σ1, σ2. A

data source periodically sends out data every 2 seconds. In each simulation run, the

225

results are averaged over 3, 000 data transmissions. Unless otherwise stated, we use

the above default values in all simulation runs.

Table 8.6.

Considered response policies

on ’data alteration’
if severity(data alteration, nodeID) IN (0,0.2] then retransmit data
if severity(data alteration, nodeID) IN (0.2,0.4]

then change route, retransmit data
if severity(data alteration, nodeID) > 0.4

then retransmit data, revoke nodeID

on ’data loss’
if severity(data loss, nodeID) IN (0,0.2] then retransmit data
if severity(data loss, nodeID) IN (0.2,0.4]

then change route, retransmit data
if severity(data loss, nodeID) > 0.4 then retransmit data, revoke nodeID

on ’selective forwarding’
retransmit data, revoke nodeID

on ’inconsistent etx’
if severity(inconsistent etx, nodeID) IN (0,0.4] then NOP
if severity(inconsistent etx, nodeID) > 0.4 then revoke nodeID

on ’sinkhole’
revoke nodeID

8.7.2 Performance Metrics

The metrics considered to evaluate Kinesis are:

1.	 Effectiveness: Since our goal is to minimize the impact of data, network, etc.

failure, we show the effectiveness of Kinesis from two aspects:

(a)	 Data Loss Rate at the BS : The frequency with which the BS experiences

the effect of an incident i.e. the rate of reception failures at the BS. In this

context, we compare the performance of our system with (i) an attack

free typical sensor environment, and (ii) an under-attack network

226

to show that Kinesis can get back the WSN into a normally operating

environment, even under anomalies or attacks.

(b)	 Average Data Transmission Delay : On average, the amount of time a

packet takes to reach the BS since its transmission by the source. Here,

we compare the performance of Kinesis with an attack free scenario.

2.	 Optimization of Redundant Actions: The average number of actions taken

per incident by the monitors in a neighborhood. We also measure the rate of

redundant actions per incident as a ratio of the number of monitors taking

response actions to the number of monitors that detected the incident. They

justify our action timer design based distributed scheme to trigger the response

actions.

3.	 Load Balance: How evenly the response action executions are distributed

in the neighborhood. This is indicated by the standard deviation among the

number of actions taken by the monitors in a neighborhood.

4.	 Energy Consumption: The sum of energy usage by all the nodes when Ki­

nesis along with an IDS is in operation.

8.7.3 Grid Network Experiments

We place 16 to 100 nodes in grid topologies of dimensions from 4 × 4 to 10 × 10,

respectively. The nodes are spaced 1.5 meter apart. For each network, a data source

and an attacker are randomly selected and the results are averaged over 10 runs. The

attack rate is set to 0.1. For concurrent attacks, we place a second attacker both in

the same and different neighborhood than the first one. Both attackers are equally

likely to make an attack.

227

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 20 30 40 50 60 70 80 90 100

D
at

a
lo

ss
 ra

te

Number of nodes

Ideal
data_loss

Kinesis + data_loss

(a) Data reception failure

rate at the BS

 0
 20
 40
 60
 80

 100
 120
 140

 20 30 40 50 60 70 80 90 100

D
el

ay
 (i

n
m

s)

Number of nodes

Ideal
Kinesis + data_loss

(b) Average data transmis­

sion delay

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0.1 0.2 0.3 0.4 0.5 0.6

D
at

a
lo

ss
 ra

te

Attack Rate

Ideal
data_loss

Kinesis + data_loss

(c) Data reception failure

rate at the BS

 0
 50

 100
 150
 200
 250
 300
 350

 0.1 0.2 0.3 0.4 0.5 0.6

D
el

ay
 (i

n
m

s)

Attack Rate

Ideal
Kinesis + data_loss

(d) Average data transmis­

sion delay

16 25 36 64 100
0

0.5

1

1.5

A
c
ti
o
n
s
 p

e
r

e
v
e
n
t

Number of nodes

(e) Average number of actions per

data loss incident

16 25 36 64 100
0

0.05

0.1

R
a
te

 o
f
re

d
u
n
d
a
n
t
a
c
ti
o
n
s

Number of nodes

(f) Rate of redundant actions per

data loss incident

16 25 36 64 100
0

1

2

3

4

5

6

7

8

9

S
td

.
d

e
v
.

o
f

n
u

m
b

e
r

o
f

a
c
ti
o

n
s

Number of nodes

(g) Load balance among neighbor

monitors

0.03 0.1 0.3 0.4 0.6
0

0.5

1

1.5

A
c
ti
o
n
s
 p

e
r

e
v
e
n
t

Packet drop rate

(h) Average number of actions per

data loss incident

0.03 0.1 0.3 0.4 0.6
0

2

4

6

8

10

12

14

S
td

.
d
e
v
.
o
f
n
u
m

b
e
r

o
f
a
c
ti
o
n
s

Packet drop rate

(i) Load balance among neighbor

monitors

Figure 8.7. Kinesis performance for data loss of rate 0.1 in grid
networks of various sizes and for various attack rates in a 10 × 10
grid network.

Single Attack

First, we show the performance of Kinesis in case of a single incident (anoma­

ly/attack) in the network.

data loss Incident: In this case, a node may be faulty or malicious and drops data

packets intermittently instead of forwarding them to the BS. Figure 8.7(a), 8.7(b),

8.7(e)-8.7(g) show the performance of Kinesis under data loss incidents in WSNs of

sizes from 16 to 100. As shown in Figure 8.7(a), Kinesis reduces the data loss rate of

a network under attack from [0.073, 0.103] to ∼ 0.002, which is similar to the natural

228

data loss rate (∼ 0.0018) in a network without attack. It proves the effectiveness of

Kinesis both in small and large networks.

Figure 8.7(b) shows the linearly increasing trend in average transmission latencies

with network sizes. However, the average latency Kinesis adds due to action execution

is almost invariant ([39.03, 41.607] ms) in different networks. The delay incurred by

Kinesis is mostly due to the action timer. According to Eq. (8.4.4) and (8.5), the

action timer value depends on the number of neighbors and the link qualities with

them. In the experiments, neighborhood sizes vary from 3 to 5 in different networks

and the link quality values lie in [0.8, 0.976]. The combined effect of neighborhood

size and link qualities makes the action timer values almost invariant in different

networks. Thus, the increasing trend in transmission delays is mainly due to the

increase in routing path length with network sizes.

Figure 8.7(e) shows that Kinesis is not always able to take a single action per

incident as in ideal case. Occasionally, it triggered as much as 1.4 actions per incident

on average. However the rate of redundant actions, as shown in Figure 8.7(f), is

bounded by 0.11. The small standard deviation ([1.93, 8.41]) in the number of actions

by neighboring monitors, as shown in Figure 8.7(g), indicates the high success of

Kinesis in load balancing.

To further analyze the scalability of Kinesis, we measure its performance under

various attack rates in a 100-node network and show in Figure 8.7(c), 8.7(d), 8.7(h),

8.7(i) how well Kinesis survives, even for very high attack rates. As expected and

consistent to earlier results, Kinesis counteracts the data loss attacks and gets the

network back to normal operating condition. Figure 8.7(c) shows that Kinesis reduces

the data loss rate of a network under attack from [0.02, 0.52] to ∼0.0001, which proves

its effectiveness and scalability, even under higher attack rates. Figure 8.7(d) reveals

the linearly increasing trend in average transmission latencies with higher rate attacks.

Even average latencies introduced by Kinesis with varying attack rates are negligible

([12,223] ms).

229

-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

 20 30 40 50 60 70 80 90 100

D
at

a
lo

ss
 ra

te

Number of nodes

Ideal
SF

Kinesis + SF

(a) Data reception failure rate at

the BS

 0
 20
 40
 60
 80

 100
 120

 20 30 40 50 60 70 80 90 100

D
el

ay
 (i

n
m

s)

Number of nodes

Ideal
Kinesis + data_loss

(b) Average data transmission de­

lay

 0
 20
 40
 60
 80

 100
 120
 140
 160

 500 1000 1500 2000 2500 3000 3500 4000

D
el

ay
 (i

n
m

s)

Number of packets

Ideal
Kinesis w/o revoke

Kinesis with revoke

(c) Avg. transmission delay over

packets

16 36 49 64 100
0

1

2

3

4

5

6

7

C
o

n
tr

o
l
p

a
c
k
e

ts
 p

e
r

re
v
o

k
e

Number of nodes

(d) Average number of

control message exchanges

in a neighborhood on re­

voke

16 36 49 64 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

A
c
ti
o

n
s
 p

e
r

e
v
e

n
t

Number of nodes

(e) Average number of ac­

tions per incident

16 36 49 64 100
0

0.05

0.1

0.15

0.2

0.25

R
a
te

 o
f
re

d
u
n
d
a
n
t
a
c
ti
o
n
s

Number of nodes

(f) Rate of redundant ac­

tions per incident

16 36 49 64 100
0

1

2

3

4

5

6

7

8

9

S
td

.
d

e
v
.

o
f

n
u

m
b

e
r

o
f

a
c
ti
o

n
s

Number of nodes

(g) Load balance between

neighbor monitors

Figure 8.8. Kinesis performance for selective forwarding (SF) attacks
in grid networks of various sizes

 0
 0.002
 0.004
 0.006
 0.008

 0.01
 0.012
 0.014
 0.016

 20 30 40 50 60 70 80 90 100

D
at

a
lo

ss
 ra

te

Number of nodes

Ideal
sinkhole

Kinesis + sinkhole

(a) Data reception failure rate at the

BS

 0
 10
 20
 30
 40
 50
 60
 70
 80

 20 30 40 50 60 70 80 90 100

D
el

ay
 (i

n
m

s)

Number of nodes

Ideal
Kinesis + sinkhole

(b) Average data transmission delay

Figure 8.9. Kinesis performance for sinkhole attack

Figure 8.7(h) shows that the average number of actions per incident is ∼1.5. The

action redundancy per incident is bounded by 0.16. However, both numbers are

almost invariant with respect to attack rates. This is because the number of actions

depends on the link quality among the neighbors and the differences in their action

timer values. Figure 8.7(i) shows a small standard deviation in the number of actions

230

taken by the neighbors, which indicates the effectiveness of the distributed scheme of

Kinesis in triggering action executions.

data alteration Attack: In this attack, a malicious node selectively modifies

the data value in a data packet before forwarding it to the BS. We run simulations for

data alteration attacks and find similar trends in the results as in data loss incidents.

Later on, we show the performance of Kinesis for concurrent incidents of data loss

+ data alteration, hence we do not report the graphs here.

selective forwarding Attack: In a selective forwarding attack, the monitor

nodes initially observe data loss by the attacker and hence retransmit the dropped

data. Once they detect a selective forwarding attack is occurring, the daemon issues

a state req msg to the neighborhood. The neighboring monitors reply with their

own action decision about the suspect in a status reply msg. Based on the majority

voting decision from the replies, the daemon possibly issues a revocation request to

the BS. The BS then disseminates a revoke command to the network, upon receiving

which all the nodes exclude the attacker from the routing path.

Figure 8.8 reports the performance of Kinesis under selective forwarding attacks

in networks of various sizes. In a selective forwarding attack, no matter whether the

attacker is revoked from the network or not, Kinesis retransmits the packet dropped

by the attacker. Hence, Kinesis reduces the data loss rate of a network under attack

to that of a network without attack. Figure 8.8(a) supports the claim by showing that

the natural data loss rate and the loss rate of a network under attack with Kinesis

enabled are almost equal.

Figure 8.8(b) shows an interesting and significantly different trend in transmis­

sion delays with Kinesis under selective forwarding attack. In this case, the average

transmission delays are much lower compared to that of data loss incidents and quite

close to the natural data transmission delays. To analyze the performance better, we

show the average transmission delays over time in Figure 8.8(c). Initially when the

monitors do not detect the selective forwarding attack yet but only observe data

losses, they retransmit dropped packets and thus add latencies to data transmissions.

231

After the revocation of the attacker at packet 1755, there is no attack and hence no

delay is incurred due to response execution.

Figure 8.8(d) shows the average number of control messages (state req msg + sta­

tus reply msg) exchanged in a neighborhood for majority voting. The state req msg

is of 27 bytes and state reply msg is of 35 bytes. The number of control messages

per majority voting is ≤6.2 packets. However, it is proportional to the neighborhood

size and thus does not vary with network sizes unless the number of neighbors varies.

Figure 8.8(e) - 8.8(g) show that the average number of actions, action redundancy

and load distribution measurements are consistent with the earlier experiments and

can be explained in a similar way.

For the selective forwarding attacks, the monitors always agreed on the decision

to revoke the suspect node. The average time to perform the majority voting and

execute the decided action is ∼ 96.4 ms, most of which is contributed by the action

timer value.

sinkhole Attack: To simulate this attack, we modify the CTP protocol to enable

the attacker advertising low cost routing path through it. Once the attacker attracts

all the data in the neighborhood, it drops data at a rate of 0.2.

In Kinesis, a monitor suspects a potential sinkhole attack upon hearing an incon­

sistent path cost advertisement, which results in an update of the SI for the suspect

but NOP as a response. During the subsequent packet drop observations, the mon­

itors retransmit the dropped data and eventually revoke the malicious node when

the attack is confirmed. Figure 8.9(a) shows that Kinesis reduces the data loss rate

to ∼ 0.0015. At the same time, it keeps the transmission delays closer to natural

latency, as shown in Figure 8.9(b), due to the quick revocation of the attacker node.

Note that the sinkhole attack often created routing loop causing as high as 3.5% data

loss. By revoking the attacker, Kinesis made the WSN stable again.

232

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.1 0.2 0.3 0.4 0.5 0.6

P
ac

k
et

 l
o

ss
 r

at
e

Packet drop rate

Ideal
With attack

Kinesis with attack

(a) Data reception failure rate at

BS

 0

 50

 100

 150

 200

 0.1 0.2 0.3 0.4 0.5 0.6

D
el

ay
 (

in
 m

s)

Packet drop rate

Ideal
Kinesis with attack

(b) Average data transmission de­

lay

0.02 0.06 0.1 0.2 0.4 0.6
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

A
c
ti
o

n
s
 p

e
r

e
v
e

n
t

Attack rate

(c) Average number of actions per in­

cident

Figure 8.10. Kinesis performance for data loss+data alteration in­
cidents with various rates in a 10 × 10 grid network

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 20 30 40 50 60 70 80 90 100

D
at

a
lo

ss
 ra

te

Number of nodes

Ideal
sinkhole+SF

Kinesis + sinkhole+SF

(a) Data reception failure

rate at the BS

 0
 20
 40
 60
 80

 100
 120

 20 30 40 50 60 70 80 90 100

D
el

ay
 (i

n
m

s)

Number of nodes

Ideal
Kinesis + sinkhole+SF

(b) Average data transmis­

sion delay

16 25 36 64 100
0

0.5

1

1.5

2

Ac
tio

ns
 p

er
 e

ve
nt

Number of nodes

(c) Average number of ac­

tions per incident

16 25 36 64 100
0

0.05

0.1

0.15

0.2

0.25

R
at

e
of

 re
du

nd
an

t a
ct

io
ns

Number of nodes

(d) Rate of redundant ac­

tions per incident

Figure 8.11. Kinesis performance for sinkhole + SF attacks in grid
networks of various sizes

Concurrent Attacks

In the concurrent attack experiments, we consider two cases, two simultaneous

but independent attackers, and two colluding attackers.

•	 In case of two concurrent but independent attackers, we consider an attacker

causing data loss and the other conducting data alteration at various rates in

a 10 × 10 grid WSN.

As we see in Figure 8.10, Kinesis shows behaviors consistent with the single

attack scenario, in all the aspects. Thus, Kinesis is effective under concurrent

and high rate attackers.

•	 Next, we consider two colluding attackers performing sinkhole and selective

forwarding (SF) attack. When the sinkhole attacker is revoked, routing path

233

changes enable data routing through the SF attacker which then drops data at

a rate of 0.5, and vice versa. Figure 8.11 shows how Kinesis performs in such

scenario. The irregularity occurring when the number of nodes is equal to 16 is

due to the temporary routing instability after revocations.

Varying the Number of Attackers

To further show the scalability of Kinesis, we present its performance in a multi-

attacker environment. Here, we consider data loss incidents and vary the number

of attackers from 2% to as high as 20% of the total nodes in a 100-node network.

Figure 8.12(a) shows that Kinesis still keeps the data loss rate lower than 0.009.

Due to Kinesis, the average transmission latencies vary within [122.33,189.46] ms, as

shown in Figure 8.12(b). The results are consistent to earlier results.

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 5 10 15 20

D
at

a
lo

ss
 ra

te

Percentage(%) of attackers

Ideal
data_loss

Kinesis + data_loss

 0

 50

 100

 150

 200

 5 10 15 20

D
el

ay
 (i

n
m

s)

Percentage(%) of attackers

Ideal
Kinesis + data_loss

(a) Data loss rate at the BS (b) Average data transmission delay

Figure 8.12. Kinesis performance for data loss for various % of at­
tackers at rate 0.1 in a 10 × 10 grid network.

Energy Consumption

We measure and compare the aggregated energy consumption of the WSN under

various incidents while Kinesis (as well as the IDS) is in operation and in an attack-

free scenario where Kinesis is not deployed (baseline). For energy measurement,

we consider MICAz platform and use PowerTOSSIM z [208] plugin. Due to the

http:122.33,189.46

234

scalability limit of PowerTOSSIMz, we consider a 6 × 6 grid WSN with one source

and one attacker.

In a Kinesis enabled system, overhearing does not incur overhead since it is in­

herent in WSNs. In TinyOS, the radio stack requires a node to receive and process

all the packets transmitted in a neighborhood to understand whether the packet is

destined to it or not. TinyOS also exposes the Receiver [209] interface that allows

one to perform actions upon overhearing a message in transit. Thus, the only energy

overhead imposed to the nodes is due to the IDS and Kinesis operations. The results

reported in Table 8.7 show that Kinesis system incurs only a maximum of 0.06%

energy overhead.

Table 8.7.

Aggregated energy cost of the WSN without and with Kinesis + IDS

—
Baseline

Kinesis
data loss SF sinkhole

Energy usage
(×107 mJ)

1.320488 1.320482 1.321356 1.320480

The vast majority of the energy consumption of a WSN node is due to radio com­

munications. Since in case of increasing attack rate – which for data loss events means

higher number of dropped packets – the communication rate does not consequently

increase, the energy consumption analysis results in Table 8.7 are representative of

any attack rate from the point of view of a single Kinesis-equipped node.

Action Timer Configuration

Action timer design is crucial in Kinesis and its configuration impacts the per­

formance with respect to redundant actions and load balance. Hence, we vary the

coefficient factors (c1, c2) in Eq. 8.4.4 and analyze the impact of timer values on

Kinesis performance. Since c1, c2 are weight coefficients, c1 + c2 should be bounded

to optimize the timer value. If c1 + c2 is too small, the action timer fires frequently

235

which increases the number of actions. If c1 + c2 is too big, the latency increases. In

our experiment, we fixed c1 + c2 to 8. Figure 8.13(a) shows that the optimum values

of (c1, c2) in terms of load balance are near (3,5). In Figure 8.13(b) the optimum

values are after (4.5, 3.5). To optimize both the action redundancy and load balance,

(c1, c2) should be selected onwards (4.5, 3.5).

(1,7) (2,6) (3,5) (4,4) (5,3) (6,2) (7,1)
0

20

40

Timer coefficients (c
1
,c

2
)

L
o
a
d
 b

a
la

n
c
e

200

400

600

T
im

e
r

v
a
lu

e
 (

in
 m

s)

Timer value

Load balance

(1,7) (2,6) (3,5) (4,4) (5,3) (6,2) (7,1)
0.1

0.12

0.14

0.16

0.18

Timer coefficients (c
1
,c

2
)

R
a
te

 o
f

re
d

u
n

d
a
n

c
t

a
c
ti

o
n

s

200

300

400

500

600

T
im

e
r

v
a
lu

e
 (

in
 m

s)

Timer value

Redundant actions

(a) Load balance vs. Action timer (b) Action redundancy vs. Action timer

Figure 8.13. Coefficient configuration for action timer

Benefits of Diagnosis

We analyze how the Diagnosis and Filtering pipeline enhances the capabilities of

Kinesis to take the most appropriate action for an adverse event by knowing the root

cause of the incident. To do so, we compare the performance of the network with

Kinesis under the two situations in which the diagnosis features of the architecture

are turned on and off. In particular, we analyze the scenario in which the IDS detects

the loss of data packets and notifies Kinesis; however, such packet loss is caused, in

turn, by selective forwarding attacks and by the introduction of interference/jamming

by an external node not part of the network. In our evaluation scenario, only one

attack at a time is active in the network; one malicious node is programmed to carry

out a Selective Forwarding attack discarding packets with 20% probability, and the

jamming attack is able to drop up to 30% of the traffic. The FGA tool part of the

diagnosis pipeline is able to differentiate between selective forwarding and interference

236

0 20 40 60 80 100 120 140 160
0

20

40

60

80

100

120

140

160

180

200

 2 3 4 5 6 7

 8 9 10 11 12 13

14 15 16 17 18 19

20 21 22 23 24 25

26 27 28 29 30 31

32 33 34 35 36 37

 1

X⌧ D ist a n c e (in c m)

Y
⌧

D
ist

an
c

e
(in

 c
m

)

Figure 8.14. Node placement in an indoor 6 × 6 grid WSN

with an average accuracy of 92.5% [189]. We consider a simplified response policy, as

shown in Table 8.8. Data loss is the general anomaly that the IDS reports to Kinesis;

the diagnosis pipeline is then responsible to further differentiate between selective

forwarding and interference attacks.

Figure 8.15 shows the results of our evaluation, plotting various measures of packet

losses and retransmission over the number of packets generated and sent. In Fig­

ure 8.15(a) we can see the result with respect to the selective forwarding attack.

With and without the presence of the FGA tool, there is no data loss at the BS,

thanks to the retransmissions of Kinesis. However, without the FGA tool, the attack

is not correctly identified and the malicious node is not revoked: this lets it continue

to drop packets and requires Kinesis to keep on retransmitting the dropped packets,

wasting resources. On the other hand, the accurate diagnosis by the FGA tool leads

237

Table 8.8.

Response policy for diagnosis scenarios

on ’data loss’
retransmit data

on ’interference’
if severity(interference) IN (0,0.2]

then retransmit data
if severity(interference) > 0.2

then retransmit data, trigger route change

on ’selective forwarding’
retransmit data, suspend nodeID

(a) Selective Forwarding attack (b) Interference attack

Figure 8.15. Benefits of the fine-grained analysis on response effectiveness

to an early revocation of the malicious node, and therefore the packet loss is halted

much earlier (around packet number 15).

Figure 8.15(b) shows the results for the interference attack. This time, the data

loss at the BS, even though very small, is non null. The reason is that some of the

retransmitted packets are still dropped because of the interference in the most affected

areas. Tthe plotted lines for “Retransmissions” in the figure denote an attempted

retransmission, but not necessarily a successful one; for this reason, the graph shows

a retransmission for each dropped packet, but a non-null data loss at the BS. When the

FGA tool provides Kinesis with an accurate root cause for the packet loss incidents,

Kinesis is able to trigger the most appropriate action, that is, re-routing the traffic

238

away from the affected area, and greatly limits the packet loss and the subsequent

retransmissions by the daemons.

We find therefore that, both under the selective forwarding attack and the inter­

ference attack, the accuracy of the diagnosis pipeline in detecting the root cause of an

incident greatly improves the effectiveness of the selected response actions, minimize

the retransmission and save resources, and reduce potential data losses.

Alternate Daemon Selection and Redundant Actions

We compare the original daemon selection technique with the the alternate dae­

mon selection technique presented in Section 8.5, to quantify how much the latter is

able to limit the number of redundant actions. In our evaluation scenario, we vary

the number of nodes in the network, and carry out a selective forwarding attack. We

measure the number of actions per incident that the monitors undertake.

Figure 8.16. Comparison of the original and alternative daemons se­
lection technique with respect to average number of actions per inci­
dent with varying number of nodes

Figure 8.16 shows the results of our evaluation. The alternate daemon selection

technique leveraging the connectivity advantage is consistently able to reduce the

number of actions per incident on all network sizes. In particular, the results average

to 1.18 actions/incident, which indicates that with this strategy Kinesis is almost

always able to carry out a single action per incident. These results confirm our

239

expectations that more information about the connectivity of the monitors in each

individual neighborhood leads to a better informed decision in the selection of the

daemon.

Proof of Action Overhead

In order to determine the communication overhead of Proofs of Action in terms of

number of additional packets sent, we set up an evaluation scenario that stress-tests

this feature by simulating exclusively actions that require proofs of actions (i.e. high

severity or potentially conflicting actions, as described in Section 8.5.5) for different

network sizes. For each number of nodes, we vary the nodes acting as data source

and suspect node, and present averaged results. Specifically, we measure the number

of proof of action packets sent per incident, as well as the coverage of the hidden

nodes that are reached by the proofs of action and therefore became aware of the

actions undertaken (thus avoiding starting conflicting actions). Figure 8.17 shows the

results of our evaluation. For every network size, always 100% of the hidden nodes

are reached. This result confirms the theoretical expectation that each hidden node

should eventually be reached, possibly after more than one hop. We also observe

that, on average, no more than about 3 packets need to be sent to reach all the

hidden nodes. Note that for attackers with a small neighborhood, this quantity might

include some redundant proof of actions sent by nodes at the opposite edges of the

neighborhood, while for attackers with bigger neighborhoods, this number is more

influenced by the number of propagation hops that a proof of action needs before

reaching all the hidden nodes. For an increasing network size, the average size of the

neighborhoods as well as the number of hidden nodes does not grow linearly, and

therefore the number of proof of action packets does not increase linearly either. As

an additional note, while this evaluation is a stress-test that triggers proofs of action

for every incident, in normal scenarios many of the actions undertaken by Kinesis

will not require this mechanism to be activated; the average number of additional

240

Figure 8.17. Evaluation of the proof of action overhead

packets over the lifetime of the WSN is therefore bound to be significantly low. We

can see, then, that the mechanism of proofs of action has a quite low overhead, while

still providing benefits in case of potentially conflicting actions.

Scalability

In the design of Kinesis, each node only maintains state about its direct neigh­

bors. Therefore, the absolute scale of the network does not affect the practicality

of the system; instead, the relevant scalability factor is the average neighborhood

size, which however is physically bound to reasonably small sizes and entirely inde­

pendent from the total scale of the WSN. Nevertheless, we evaluate the performance

of Kinesis in a large-scale WSN of 529 nodes (a grid of 23x23 nodes) carrying out

a selective forwarding attack with increasing attack rates (from 5% to 40%). Fig­

ure 8.18 shows the results. The baseline – with no attacks – is slightly lower than

in smaller-scale networks, as routing becomes more complicated due to loop-induced

queue overflows, mutual interference on multi-path duplications, no-ack drops, and

more [210]. Nevertheless, across all attack rates, Kinesis maintains the network func­

tional by guaranteeing a Packet Delivery Ratio comparable to that in absence of

attacks (averaging at 90.5%) even in case of a very large network.

241

Figure 8.18. Evaluation of the scalability of Kinesis in a large-scale
WSN with increasing attack rate.

8.8 Testbed Evaluation

We ported the Kinesis implementation to the TelosB platform and placed battery-

powered TelosB motes in an indoor environment. Our motes have a 8 MHz TI MSP430

microcontroller, 2.4 GHz radio, 10 KB RAM, and 48 KB ROM. We ran experiments

for data loss, selective forwarding, and sinkhole attacks and use the same metrics as

in simulation for performance evaluation. The results of the experiments are averaged

over 1500 packets.

8.8.1 Experimental Setup

We build a 6 × 6 grid WSN, consisting of 36 TelosB motes, in a 160 × 200 cm2

indoor environment. Figure 8.14 shows the coordinates of the network nodes, labeled

from 2 to 37. Node 10 is the source, which sends data every 1 second.

We controlled the transmission power of motes to ensure multi-hop communica­

tion. A special mote, labeled as node 1, is set to the root node. For performance

analysis, the root collects statistics on the number of data and action packets trans­

mitted, number of actions per incident, transmission delays and passes these data to

a laptop through serial forwarder.

242

8.8.2 Kinesis Performance

Below, we present the testbed performance of Kinesis for data loss, selective-

forwarding, and sinkhole incidents. For the first two incidents, we set node 16 as

the attacker.

data loss Incident: We evaluate the performance of Kinesis under various rates

of data loss incidents. Figure 8.19(a) shows that Kinesis reduces the data loss rate

of the WSN under attack from [0.1, 0.51] to ≤ 0.0015, similar to the natural data

loss rate. The average transmission delays when Kinesis is in operation vary within

[97.5, 260.4] ms, as shown in Figure 8.19(b). Kinesis triggers on average [1.28, 1.97]

actions per incident. Thus the testbed performance of Kinesis is consistent to that in

simulations and justifies the simulation results.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 0.1 0.2 0.3 0.4 0.5

D
at

a
lo

ss
 ra

te

Attack Rate

Ideal
data_loss

Kinesis + data_loss

(a) Data loss rate at the
BS

 0
 50

 100
 150
 200
 250
 300
 350

 0.1 0.2 0.3 0.4 0.5

D
el

ay
 (i

n
m

s)

Attack Rate

Ideal
Kinesis + data_loss

(b) Average data transmis­
sion delay

Figure 8.19. Testbed performance of Kinesis for data loss incidents
of various rates in a 6 × 6 grid WSN.

selective forwarding (SF) Attack: Table 8.9 summarizes the performance

of Kinesis under SF attack, where the attacker drops packets at a rate of 0.4 and

is revoked at packet 604. Hence there is no attack and Kinesis actions afterwards,

which keeps the average transmission delays much lower compared to that of data loss

incidents.

sinkhole Attack: We conduct two sets of sinkhole attack experiments, setting

two different nodes 21 and 22 as attackers. Once an attacker is able to attract

surrounding data packets, it drops data at a rate of 0.2. The performance results of

Kinesis are presented in Table 8.10.

243

Table 8.9.

Testbed performance of Kinesis on SF attack

Ideal SF Kinesis + SF
Data loss rate 0.0008 0.064 0.0008
Avg. transmission delay (ms) 32.89 N/A 61.11
Avg. actions per incident N/A N/A 1.6875

Table 8.10.

Testbed performance of Kinesis on sinkhole

Ideal sinkhole Kinesis + sinkhole
Exp 1 Exp 2 Exp 1 Exp 2 Exp 1 Exp 2

Data loss rate 0.011 0.086 0.015 0.20 0.011 0.086
Avg. transmis­
sion delay (ms)

71.17 113.03 N/A N/A 75.27 177.36

Avg. actions per
incident

N/A N/A N/A N/A 1 1.604

The results of experiment 1 are quite similar to simulation results. The attacker is

revoked at packet 158. It is to be noted that the sinkhole attack in this case created

routing loops due to low cost path advertisements by the attacker and thus resulted

in data loss. However, Kinesis took a quick response action to revoke the attacker,

which brought back the routing stability and helped keep the data loss rate minimal.

In experiment 2, we see comparatively higher data reception failure and trans­

mission delay at the BS. This is due to the routing instability created when Kinesis

revoked the attacker at packet 376. Consequently, some packets were lost while a few

others needed unusually longer time to reach the BS until a stable routing path was

re-established.

Energy Consumption: Due to the difficulty of measuring energy directly on the

sensor hardware [73], we adopt the energy model proposed by Polastre et al. [74] to

estimate the energy cost in testbed. The energy cost of a node is estimated as a sum

of energy usage due to sensing, transmission, and reception. The energy for a type of

operation is computed by multiplying the battery voltage with the current draw and

244

time spent (according to the TelosB datasheet) for the operation. The aggregated

energy cost of the WSN in case of baseline, Kinesis+data loss, Kinesis+SF are

4232.86, 4447.44, 4467.46 mJ, respectively. Thus, Kinesis (along with the IDS) incurs

a maximum of 5.5% energy overhead.

8.9 Security Analysis

In this section, we discuss various ways in which an attacker might try to cir­

cumvent the security mechanisms of Kinesis, and how our system deal with such

situations.

Majority Voting. A set of colluding attackers may mislead the majority voting

to decide on a wrong response action. If the attacker(s), replying with a low severity

action, can affect the voting decision to be an action of lower severity than those

reported by honest monitors, it also makes them detecting a false positive and lowering

the monitor confidence. These attacks, however, will not succeed as we assume a

majority of honest nodes in a neighborhood.

A solution to deal with such attacks on majority voting is to set higher weights on

the local decisions of more trustworthy nodes. An alternative approach is to use

complementary methods with Kinesis to detect such attacks. For example, we may

use our previous work on lightweight provenance techniques that enables the BS to

detect a data dropping attack and identify the misbehaving node, based on the data

provenance, i.e., the identities of the source and routing nodes that processed or

forwarded the data towards the BS [211]. In case a number of colluding attackers

falsely report an honest node as a data dropping attacker and ask the BS to take

aggressive action (e.g., revoke) against it, the BS will find an inconsistency between

the reports of the colluding attackers and the data provenance. The reason is that,

based on the provenance information, the BS will not be able to detect any data

dropping attacks by the honest node. The BS may then conclude about a highly

245

probable collusion attack and respond accordingly. As part of future work, we will

extend our current implementation by integrating such an approach.

Connectivity Advantage. The only drawback in the use of the Connectivity

Advantage for the setting of the action timer is the impact that it will have on load

balancing. In fact, it is easy to see that better connected nodes will typically win

more action timer competitions and thus perform more actions, resulting in a quicker

consumption of their energy. However, at the granularity level of neighborhoods,

limiting redundant actions as much as possible will concurrently save energy for other

nodes, thus balancing the global neighborhood energy consumption.

One may wonder whether a compromised node could collude with an attacker node

and pretend to be a badly connected neighbor (when exchanging the neighbor lists

at startup), therefore forcing the other nodes to always take action. This would push

more often the burden of taking actions on other nodes, thus affecting their battery

life. However, this attack is not a relevant threat. The reason is that, if a monitoring

node is compromised and it is colluding with the malicious node object of the action,

an identical energy-consumption threat would still happen in normal conditions if the

colluding node simply never took action (i.e. never let its action timer fire).

Colluding nodes. Kinesis is designed in such a way that it is not possible for

compromised nodes to collude with each other. For example, one such malicious node

might drop a data packet, and another node might pretend to take a response action

just to stop all the other monitors’ action timers, but not actually executing such

action. This scenario is not possible, since the action timer mechanism expects an

action to actually be undertaken in order to have the other timers stopped. In the

particular case of proofs of action, the collusion is still not possible, as we discuss

next.

Proofs of Action. We investigate the possibility that a compromised node, in

the attempt of colluding with an attacker node, might broadcast false proofs of action

to stop the other nodes’ action times. As we discuss here, the inherent mechanism

of proofs of action prevents this scenario from being fruitful for either the attacker or

246

the colluding node. First, each proof of action must be authenticated, leveraging the

cryptographic primitives already in use for the other operations in Kinesis. This will

always connect a particular proof of action to the node that generated it. Secondly,

while proofs of action are propagated hop-by-hop to all the possibly hidden nodes,

they are bound to eventually reach at least one of the action’s originator node. Such

node would be able to tell that, while the proof of action claims that the originator

node performed an action, this never happened. It will thus be able to immediately

treat such false proof of action as misbehavior and take action accordingly, by marking

the colluding node as malicious and potentially revoking it.

8.10 Discussion

In this section, we analyze the characteristics of Kinesis from various aspects and

discuss possible improvements.

False Positives. A false positive occurs if an attack is detected when there is

none. In Kinesis, when a monitor observes an anomalous activity by a neighbor

node, it does not immediately conclude that this is an attack. It continues to observe

the node while taking appropriate response action(s) (conservative or moderate) to

mitigate disruption to WSN services. Thus, as long as Kinesis can keep the WSN

functional (e.g., send data successfully to the BS) and minimize the disruption, our

security goal is achieved.

When the security estimation for the monitored node exceeds a threshold specified

in the matched response policy, the monitor may go for an aggressive action, requiring,

however, consensus among a minimum number of neighboring monitors. It is highly

unlikely that all of these monitors will detect a false attack.

2-hop Knowledge Overhead. From an analytical point of view, handling and

storing the additional information about 2-hop knowledge (see Section 8.5.3) results

in some memory overhead, strictly dependent on the topology. In the worst-case

scenario, where the topology is a fully connected graph of N nodes – and therefore each

247

node is connected to every other node – then a node will have to store N −1 IDs for the

neighbors of each one of its N −1 direct neighbors, resulting in (N −1)(N −1) = N2 +1

values. This theoretical upper bound, however, is relative to the very extreme fully-

connected topology described, which is very much unlikely to happen in any real WSN.

The lower bound, on the other hand, is that in which a node is either completely

isolated (therefore storing 0 IDs of 1-hop and 2-hop neighbors), or only has 1-hop

neighbors (e.g. a star topology with a node in the middle and all the others around,

therefore storing only N −1 IDs for direct neighbors). An average case, more plausible

for a common WSN scenario, could be a grid layout for the nodes. In such topology,

each node has at most 4 direct neighbors, therefore 4 · (4 − 1) = 12 IDs need to be

stored per node, which is a very acceptable overhead.

Jamming. An attacker may interrupt Kinesis operation by jamming a part of

the network and disabling data communication. We implemented a jamming attack

following the method described in [212]. This jamming attack, however, results in no

more than 20-30% data loss, which is the same as the data loss in data loss incidents.

As part of future work, we will implement stronger jammers able to block the channel

completely and will investigate whether Kinesis, in response, can send a top priority

message to the BS through the border nodes.

8.11 Related Work

We discuss the work related to Kinesis in following categories: intrusion detection

and/or response system for wireless networks, policy specification, daemon selection.

Intrusion Detection and Response System: A number of IDSes have been

proposed for wireless and mobile ad-hoc networks (MANET) and WSNs. The major­

ity of these IDSes just raise an alarm or take simple response actions without following

any systematic approach. In a pioneering work, Zhang et al. propose a distributed

and cooperative IDS for MANET [213]. Each mobile node runs a local IDS agent

248

that monitors local activities, detects intrusions, and may trigger responses. Neigh­

boring IDS agents cooperate in global intrusion detection when there is inconclusive

evidence. The architecture is similar to Kinesis but is more focused on intrusion

detection and does not provide a well-designed response framework. Marti et al.

propose a mechanism to improve throughput in MANETs in the presence of compro­

mised nodes [29]. They use a watchdog to identify misbehaving nodes and a trust

based routing path rating scheme to help routing protocols avoid these nodes. The

CONFIDANT protocol aims at detecting and isolating misbehaving nodes, thus mak­

ing it unattractive to deny cooperation [44]. Trust relationships and routing decision

are based on experienced, observed, or reported routing and forwarding behavior of

other nodes. The responses in these systems, however, are limited to rerouting data

or isolating the misbehaving node.

Ma et al. [45] propose a self adaptive IDS (SAID) for WSN, where three agents,

namely monitor, decision, and defense agents, cooperate to defend from intruders in

networks. However, the response system in SAID does not follow a systematic ap­

proach and the responses are only limited to revoking or suspending a node. Also,

the agents need to update a central knowledge base continuously to update the node

reputations and to choose response agents accordingly. Hsieh et al. [214] propose an

adaptive security design to secure cluster communication via neighbor node authenti­

cation, secure link establishment, and send alarms to the BS upon an intrusion. The

mechanism proposed by Younis et al. [46] adapts the security provision to the need

of the application and the trust of the nodes in the routing path. These mechanisms

heavily depend on cryptographic operations and the counterattack is limited to rout­

ing path rotation or raising alarms. Taddeo et al. [215] propose a self-adaptation

method of security mechanisms. They always start with the highest security level,

which may be unnecessary and costly for sensor nodes.

Asim et al. [216] propose an architecture that organizes the WSN nodes in a vir­

tual grid of cells. Each cell has a manager responsible for anomaly detection and

recovery. Their approach is not fully distributed and focuses on network failures and

249

energy related issues, rather than on malicious behaviors or attacks. MALADY is a

machine learning-based system that enables nodes to use gathered data to make real-

time decisions [217]. However, MALADY aims at the detection and learning process

rather than response to attacks. Mamun et al. [218] propose a policy based intrusion

detection and response system with a four level hierarchy architecture. Their intru­

sion response system has a general scope based on customizable policies. However,

their only responses are suspend or revocation of the suspect node, and are only ap­

plicable to the hierarchical architecture they consider. To the best of our knowledge,

Kinesis is the first complete system able to manage automated responses not only to

attacks, but also to anomalies with an aim to minimize disruption to WSN services

while natural error or an attack progresses.

Policy Specification: A number of policy languages have been proposed for

the specification of policies for quality-of-service management within a network [219],

privacy management for web users [220], access control in database systems [221],

etc. However, these languages serve specific purposes and do not consider the context

of WSNs or IRPSes, required to optimally express the response policies. Hence, the

resource constrained nature of sensor devices makes it challenging to utilize the typ­

ical policy languages used in general purpose networks, database systems, and other

domains. We propose a simple and lightweight policy language considering the IRPS

specific requirements for WSNs.

Daemon Selection: Leader election is a fundamental and well studied problem in

fault-tolerant distributed computing. Garcia-Molina [222] first proposed leader elec­

tion protocols for distributed systems to elect a coordinator node which reorganizes

the active nodes after a crash failure and helps them continue the desired tasks. In the

context of wired and wireless networks, leader election has a variety of applications,

such as key distribution, routing coordination, general control, etc. and a consider­

able number of leader election protocols [223] has been proposed over the years. In

a similar context, many clustering algorithms [224] have been proposed for WSNs

to group sensor nodes into clusters and to elect a leader for each cluster for cluster

250

management and data aggregation. However, these leader election protocols require

multiple rounds of group communication and often time synchronization among the

participants. In contrast, we propose a daemon selection mechanism that selects a

node for executing response action in a neighborhood via a self-organized competition

among the neighbors. Each node in a neighborhood competes independently using

a locally managed action timer. We do not need any time synchronization or

message exchanges among the neighbors.

8.12 Summary

In this chapter, we presented the first incident response and prevention system

for WSNs. The system reacts not only to the occurrence of attacks, but also upon

anomalous events, so that the WSN remains functional even if the attack progresses.

The system is dynamic – as it selects the response actions based on the suspect’s

security status – and distributed – since it does not require any central authority to

trigger the response actions. The simple yet flexible design of the response policies

makes the system extensible and thus able to handle new attacks. Kinesis is secure

with respect to policy dissemination, storage and execution. The experimental results

show that Kinesis achieves high effectiveness in terms of data rate and latency, low

redundancy in action executions, and, most importantly, scalability.

251

9 FUTURE RESEARCH DIRECTIONS

As continuation of the results achieved so far we plan to investigate further directions

with the goal of developing security techniques for sensor systems and IoT. Hereafter

we present some of these planned research projects.

Prevention through Memory Safety Enforcement on Embedded De­

vices. As future work, we will extend our implementation of nesCheck to explicitly

address temporal safety, and design mechanisms tailored for embedded platforms to

enforce it. Moreover, currently, the node is rebooted whenever a dynamic check fails.

In the future, we will work on more advanced, programmer-guided recovery mecha­

nisms, with the goal of maintaining the network as functional as possible even in face

of memory errors. Lastly, the scalability of the system and further optimization on

the overhead are a main goal. We plan to integrate Bounded Model Checking tech­

niques into nesCheck to use advanced formal verification techniques for proving the

safety of some seemingly dangerous memory accesses, and therefore further reducing

the overhead.

Fine-Grained Diagnosis Techniques for Sensor Systems and IoT. As part

of future work, an interesting research issue is to learn and characterize the duration

of the interference to discriminate between a naturally occurring interference – such

as people walking – and attack-originated interference. Note that our goal for the

FGA tool is to provide information useful for response actions to prevent/minimize

data losses. Therefore, even when data losses are caused by natural causes, our FGA

can provide information useful to potentially reconfigure the network to reduce data

losses. For example, if interference due to people walking by is detected, the sensor

network could perhaps benefit from additional sensors deployed at different positions.

252

As further future directions, we plan to extend the FGA tool to cover additional

events and anomalies, such as different kinds of jamming. We also plan to investigate

the use of learning techniques so that our tool can learn from previous attacks and

anticipate future ones. Finally, automated intelligent tools might help the network

administrator in tweaking the various parameters offered by the FGA tool to tailor

it to the specific features of the WSN of interest.

Concerning the statistical model for FGA, we plan on further evaluating the effec­

tiveness of our approach on real testbeds, as well as comparing the system performance

with the performance of tools based using machine learning methods (e.g. neural net­

works or Naive Bayes classifiers). Moreover, we will investigate the potential of using

different PFA values for different links based on various criteria, such as distance or

expected QoS.

Mobility-aware Fine-Grained Analysis. The diagnosis techniques presented

in this dissertation with the FGA tools are effective in differentiating node- and link-

related incidents and, in case of interference, accurately locate the source of noise.

However, our technique assumes a static network of sensor nodes. While this is

true for many WSNs, several applications of sensor systems leverage mobile nodes

whose position changes over time. This includes, for example, critical scenarios for

military operation, drones, MANETs, and VANETs. For this reason, one of our

research work directions includes enhancing the design of our FGA approach to make

it applicable to mobile sensor systems. Our initial design for a mobility-aware FGA

approach leverages a 2-hop knowledge of a nodes neighbors in order to construct a set

of geometric constraints that can help in localizing the direct neighbors with respect

to a fixed system of coordinates. However, the non-linearity of some of the parameters

used in the design of the FGA such as the signal strength indicator makes this a

hard problem. We will continue working in this direction, as well as investigating

other potential alternative design to tackle this important problem.

253

10 CONCLUSIONS

Our research work aims at securing sensor systems and IoT through the development

of new security techniques, as well as the adaptation and enhancement of existing

ones.

We argue that the intrinsic characteristics of the sensor and IoT domain expand

the attack surface of computer and communication systems. Existing security tech­

niques need to be analyzed, extended and modified in order to efficiently and effec­

tively achieve security across heterogeneous and constrained scenarios, throughout all

the four phases of hardening, monitoring, diagnosing, and recovering. A thoughtful

leveraging of such domain characteristics enables an effective use of techniques that

are less suitable for traditional networks and systems, such as overhearing-based mon­

itoring, whitelist-based anomaly detection, or whole program analysis. The solutions

and results we presented in this dissertation substantiate our claim, and compose an

overall security framework able to ensure security for sensor systems and IoT.

Overall, we identified and addressed four security phases – namely “Prepare and

Prevent”, “Monitor and Detect”, “Diagnose and Understand”, “React, Recover and

Fix” – with various security solutions.

The initial hardening steps before the deployment of constrained devices must

address the security of the firmware in face of memory vulnerabilities. We designed

nesCheck, a novel whole program analysis-based approach that combines static anal­

ysis and dynamic checking to efficiently enforce memory safety on existing embedded

software, without requiring any source modification.

Since protections such as that offered by nesCheck come at a cost, determining

the optimal allocation plan for security measures becomes very important for real-

time, constrained systems. Therefore, we presented OptAll, a game-theory-based

method to compute the optimal security resource allocation plan through a Pareto

254

optimization problem, taking into account the available security resources and their

capabilities, their fixed cost, and runtime energy consumption, how critical different

areas of the network are, as well as the risk associated with successful attacks on

them.

The operation of IoT devices and sensors must be continuously monitored to de­

tect anomalies and attacks, but the heterogeneity of systems and protocols make it

a challenging task. On the other hand, knowledge about the features of the network

and entities, as well as about the security measures in place (provided by our solu­

tions in the Prepare and Prevent phase), can be leveraged to achieve a more accurate

detection. We thus first developed a taxonomy to better represent the relationships

between IoT network features and related attacks, and then designed and developed

Kalis, an overhearing-based, self-adapting, knowledge-driven IDS for IoT able to de­

tect attacks in real time across heterogeneous IoT systems.

While Kalis detects attacks to the IoT network, the exposure to the untrusted

Internet makes the devices desirable for botnets; accounting for the typical communi­

cation patterns of IoT, we designed a centralized router-based defense, Heimdall, that

prevents botnet DDoS attacks through a whitelist-based anomaly detection technique

tailored to IoT devices.

For the monitoring solutions we developed, it is critical to perform an accurate

diagnosis of the detected security incidents in order to provide effective response ac­

tions. For the important class of attacks of packet losses in sensor networks, we

developed a Fine-Grained Analysis (FGA) tool that leverages resident packet param­

eters to determine the incident’s root cause and, in case of interference, locates the

source of jamming.

As the accuracy of the FGA tool relies on the correct choice of some system

parameters, we extended this work with a statistical-based approach for determining

optimal system thresholds by exploiting the variances of RSSI and LQI.

The accurate diagnosis information provided by our previously introduced solu­

tions make it possible to take automatic, effective response actions to security inci­

255

dents in order to maintain the network functional. We therefore designed Kinesis, a

security incident response system for WSNs aimed at keeping the network functional

despite anomalies or attacks and to recover from attacks without significant inter­

ruption. Its overhearing-based distributed strategy makes the system efficient and

scalable, achieving load-balancing and redundant action optimization, while main­

taining a fully-distributed design.

As part of our research effort, all the developed solutions fit in an overall security

framework to employ them in concert and provide a holistic approach at securing

sensor systems and the IoT.

REFERENCES

256

REFERENCES

[1] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The internet of things: A
survey. Computer Networks, 54(15):2787–2805, 2010.

[2] James	 Manyika, Michael Chui, Jacques Bughin, Richard Dobbs, Peter Bis­
son, and Alex Marrs. Disruptive technologies: Advances that will transform
life, business, and the global economy. http://www.mckinsey.com/insights/
business_technology/disruptive_technologies, May 2013.

[3] Rob van der Meulen. Gartner says 6.4 billion connected “things” will be in use
in 2016, up 30 percent from 2015. http://www.gartner.com/newsroom/id/
3165317, November 2015.

[4] Yong Ho Hwang. IoT security & privacy: Threats and challenges. In Proceedings
of the 1st ACM Workshop on IoT Privacy, Trust, and Security, IoTPTS ’15,
page 1, New York, NY, USA, 2015. ACM.

[5] K. Zhao and L. Ge. A survey on the internet of things security.	 In Proceedings
of the 9th International Conference on Computational Intelligence and Security
(CIS), pages 663–667, December 2013.

[6] Zhi-Kai Zhang, Michael Cheng Yi Cho, Chia-Wei Wang, Chia-Wei Hsu, Chong-
Kuan Chen, and Shiuhpyng Shieh. IoT security: ongoing challenges and re­
search opportunities. In IEEE 7th International Conference on Service-Oriented
Computing and Applications (SOCA), pages 230–234. IEEE, 2014.

[7] M. U. Farooq, Muhammad Waseem, Anjum Khairi, and Sadia Mazhar.	 A
critical analysis on the security concerns of internet of things. International
Journal of Computer Applications, 111(7), 2015.

[8] JeongGil Ko, Chenyang Lu, M.B. Srivastava, J.A. Stankovic, A. Terzis, and
M. Welsh. Wireless sensor networks for healthcare. Proceedings of the IEEE,
98(11):1947–1960, 2010.

[9] Alex Wright. Hacking cars. Communications of the ACM, 54(11):18–19, Novem­
ber 2011.

[10] Sudhir K Bansal.	 Linux worm targets internet-enabled home appliances to
mine cryptocurrencies. http://thehackernews.com/2014/03/linux-worm­
targets-internet-enabled.html, 2014. Accessed: May 2016.

[11] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and
Tadayoshi Kohno. Comprehensive experimental analyses of automotive attack
surfaces. In Proceedings of the 20th USENIX Conference on Security, SEC’11,
page 6, Berkeley, CA, USA, 2011. USENIX Association.

http://thehackernews.com/2014/03/linux-worm
http://www.gartner.com/newsroom/id
http://www.mckinsey.com/insights

257

[12] Antone Gonsalves. New toolkit seeks routers, internet of things for DDoS bot-
net. http://www.csoonline.com/article/2687653/data-protection/new­
toolkit-seeks-/routers-internet-of-things-for-ddos-botnet.html,
2014. Accessed: May 2016.

[13] William Alexander. Barnaby Jack could hack your pacemaker and make your
heart explode. http://www.vice.com/en_ca/read/i-worked-out-how-to­
remotely-weaponise-a-pacemaker, June 2013.

[14] Daniel	 Miessler. HP study reveals 70 percent of internet of things de­
vices vulnerable to attack. http://h30499.www3.hp.com/t5/Fortify-
Application-Security/HP-Study-Reveals-70-Percent-of-Internet-of­
Things-Devices/ba-p/6556284#.VH4faTHF9Zg, July 2014.

[15] Daniele Midi, Mathias Payer, and Elisa Bertino.	 Static analysis and dynamic
instrumentation for nesC memory safety. under submission, 2017.

[16] George C Necula,	 Scott McPeak, and Westley Weimer. CCured: Type-safe
retrofitting of legacy code. ACM SIGPLAN Notices, 37(1):128–139, 2002.

[17] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic.
SoftBound: highly compatible and complete spatial memory safety for C. In
ACM Sigplan Notices, volume 44, pages 245–258. ACM, 2009.

[18] Nathan Cooprider, Will Archer, Eric Eide, David Gay, and John Regehr. Effi­
cient memory safety for TinyOS. In Proceedings of the 5th International Con­
ference on Embedded Networked Sensor Systems, pages 205–218. ACM, 2007.

[19] Antonino Rullo, Daniele Midi, Edoardo Serra, and Elisa Bertino. Strategic secu­
rity resource allocation for internet of things. In 2016 IEEE 36th International
Conference on Distributed Computing Systems (ICDCS), 2016.

[20] Edoardo Serra, Sushil Jajodia, Andrea Pugliese, Antonino Rullo, and VS Sub­
rahmanian. Pareto-optimal adversarial defense of enterprise systems. ACM
Transactions on Information and System Security (TISSEC), 2015.

[21] Rinku Dewri, Indrajit Ray, Nayot Poolsappasit, and Darrell Whitley.	 Optimal
security hardening on attack tree models of networks: a cost-benefit analysis.
International Journal of Information Security, 2012.

[22] Eitan Altman, Konstantin Avrachenkov, and Andrey Gamaev.	 Jamming in
wireless networks: The case of several jammers. In Proceedings of the 1st ICST
International Conference on Game Theory for Networks, 2009.

[23] Quanyan Zhu, Husheng Li, Zhu Han, and Tamer Basar.	 A stochastic game
model for jamming in multi-channel cognitive radio systems. In IEEE ICC,
2010.

[24] Zhu Han, Ninoslav Marina, Mérouane Debbah, and Are Hjørungnes. Physical
layer security game: How to date a girl with her boyfriend on the same table.
In Proceedings of the 1st ICST International Conference on Game Theory for
Networks, 2009.

[25] Nayot Poolsappasit, Rinku Dewri, and Indrajit Ray.	 Dynamic security risk
management using bayesian attack graphs. IEEE Transactions on Dependable
and Secure Computation, 2012.

http://h30499.www3.hp.com/t5/Fortify
http://www.vice.com/en_ca/read/i-worked-out-how-to
http://www.csoonline.com/article/2687653/data-protection/new

258

[26] Shahid Raza, Linus Wallgren, and Thiemo Voigt.	 SVELTE: Real-time intru­
sion detection in the internet of things. Ad Hoc Networks, 11(8):2661–2674,
November 2013.

[27] Ioannis Krontiris, Thanassis Giannetsos, and Tassos Dimitriou. LIDeA: A dis­
tributed lightweight intrusion detection architecture for sensor networks. In
International Conference on Security and Privacy in Communication Networks
(SecureComm), pages 20:1–20:10, 2008.

[28] Y. Ponomarchuk and Dae-Wha Seo. Intrusion detection based on traffic analysis
in wireless sensor networks. In Annual Wireless and Optical Communications
Conference, pages 1–7, 2010.

[29] Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker.	 Mitigating routing
misbehavior in mobile ad hoc networks. In International Conference on Mobile
Computing and Networking (MobiCom), pages 255–265, 2000.

[30] Daniele Midi, Antonino Rullo, Anand Mudgerikar, and Elisa Bertino. Kalis: A
system for knowledge-driven adaptable intrusion detection for the internet of
things. under submission, 2017.

[31] Daniele Midi, Anand Mudgerikar, Javid Habibi, and Elisa Bertino. Heimdall:
Mitigating the internet of insecure things. under submission, 2017.

[32] I. Murynets and R.P. Jover. Anomaly detection in cellular machine-to-machine
communications. In IEEE International Conference on Communications (ICC),
pages 2138–2143, June 2013.

[33] C. M. Liu, S. Y. Chen, Y. Zhang, R. Chen, and K. L. Guo. An IoT anomaly
detection model based on artificial immunity. Advanced Materials Research,
January 2012.

[34] Fabio Gonzalez. A study of artificial immune systems applied to anomaly de­
tection. University of Memphis Dissertations, 2003.

[35] Daniele Midi and Elisa Bertino. Node or link? fine-grained analysis of packet-
loss attacks in wireless sensor networks. ACM Transactions on Sensor Networks
(TOSN), 12(2):8, 2016.

[36] Lili Qiu, Paramvir Bahl, Ananth Rao, and Lidong Zhou.	 Troubleshooting
wireless mesh networks. ACM SIGCOMM Computer Communication Review,
36(5):17–28, 2006.

[37] Krishna N. Ramach, Elizabeth M. Belding-royer, and Kevin C. Almeroth. Da­
mon: A distributed architecture for monitoring multi-hop mobile networks. In
Proceedings of IEEE SECON, 2004.

[38] Douglas S. J. De Couto, Daniel Aguayo, John Bicket, and Robert Morris.	 A
high-throughput path metric for multi-hop wireless routing, 2003.

[39] Richard Draves, Jitendra Padhye, and Brian Zill. Routing in multi-radio, multi-
hop wireless mesh networks. In ACM MobiCom, pages 114–128. ACM Press,
2004.

259

[40] Sookhyun	 Yang, Sudarshan Vasudevan, and Jim Kurose. Witness based
witness-based detection of forwarding misbehaviors in wireless networks. In
UMass Computer Science Technical Report UM-CS-2009-001, 2009.

[41] Jianxia Ning, Shailendra Singh, Konstantinos Pelechrinis, Bin Liu, Srikanth V.
Krishnamurthy, and Ramesh Govindan. Forensic analysis of packet losses in
wireless networks. In ICNP, pages 1–10, 2012.

[42] Daniele	 Midi, Antonio Tedeschi, Francesco Benedetto, and Elisa Bertino.
Statistically-enhanced fine-grained diagnosis of packet losses. In Proceedings
of the 3rd International Conference on Future Internet of Things and Cloud
(FiCloud), pages 748–753. IEEE, 2015.

[43] Daniele Midi, Salmin Sultana, and Elisa Bertino.	 A system for response and
prevention of security incidents in wireless sensor networks. ACM Transactions
on Sensor Networks (TOSN), 2017.

[44] Sonja Buchegger and Jean-Yves Boudec.	 Performance analysis of the CON­
FIDANT protocol. In ACM International Symposium on Mobile Ad Hoc Net­
working (MobiHoc), pages 226–236, 2002.

[45] Jianqing Ma, Shiyong Zhang, Yiping Zhong, and Xiaowen Tong. SAID: A self-
adaptive intrusion detection system in wireless sensor networks. In International
Conference on Information Security Applications, pages 60–73, 2007.

[46] M. Younis, N. Krajewski, and O. Farrag.	 Adaptive security provision for in­
creased energy efficiency in wireless sensor networks. In IEEE Conference on
Local Computer Networks, pages 999–1005, 2009.

[47] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, and D. Culler. TinyOS: An operating system for
sensor networks. In Werner Weber, JanM. Rabaey, and Emile Aarts, editors,
Ambient Intelligence, pages 115–148. Springer Berlin Heidelberg, 2005.

[48] Philip Levis. Experiences from a decade of TinyOS development. In Proceedings
of the 10th USENIX Conference on Operating Systems Design and Implementa­
tion, OSDI’12, pages 207–220, Berkeley, CA, USA, 2012. USENIX Association.

[49] David Gay, Philip Levis, Robert von Behren, Matt Welsh, Eric Brewer, and
David Culler. The nesC language: A holistic approach to networked embedded
systems. In Proceedings of the ACM SIGPLAN 2003 Conference on Program­
ming Language Design and Implementation, PLDI ’03, pages 1–11, New York,
NY, USA, 2003. ACM.

[50] Aurélien Francillon and Claude Castelluccia. Code injection attacks on harvard­
architecture devices. In Proceedings of the 15th ACM Conference on Computer
and Communications Security, pages 15–26, New York, NY, USA, 2008. ACM.

[51] Thanassis Giannetsos, Tassos Dimitriou, Ioannis Krontiris, and Neeli R. Prasad.
Arbitrary code injection through self-propagating worms in Von Neumann ar­
chitecture devices. Computation Journal, 53(10):1576–1593, December 2010.

[52] Aurélien Francillon, Daniele Perito, and Claude Castelluccia. Defending em­
bedded systems against control flow attacks. In Proceedings of the 1st ACM
Workshop on Secure Execution of Untrusted Code, pages 19–26. ACM, 2009.

260

[53] Thanassis Giannetsos and Tassos Dimitriou. Spy-sense: Spyware tool for exe­
cuting stealthy exploits against sensor networks. In Proceedings of the 2Nd ACM
Workshop on Hot Topics on Wireless Network Security and Privacy, HotWiSec
’13, pages 7–12, New York, NY, USA, 2013. ACM.

[54] Travis Goodspeed. Stack overflow exploits for wireless sensor networks over
802.15.4. 2008.

[55] Bo Sun, D. Shrestha, Guanhua Yan, and Yang Xiao. Self-propagate mal-packets
in wireless sensor networks: Dynamics and defense implications. In Global
Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE, pages
1–5, November 2008.

[56] Yi Yang, Sencun Zhu, and Guohong Cao. Improving sensor network immunity
under worm attacks: a software diversity approach. In Proceedings of the 9th
ACM International symposium on Mobile Ad Hoc Networking and Computing,
pages 149–158. ACM, 2008.

[57] Memsic.	 TelosB datasheet. http://www.memsic.com/userfiles/files/
Datasheets/WSN/telosb_datasheet.pdf.

[58] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
CETS: Compiler enforced temporal safety for C. SIGPLAN Notices, 45(8):31–
40, August 2010.

[59] Robin Züger. Paging in TinyOS, 2006.

[60] Ron Cytron, Jeanne Ferrante, Barry K Rosen, Mark N Wegman, and F Kenneth
Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems
(TOPLAS), 13(4):451–490, 1991.

[61] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Ch­
eney, and Yanling Wang. Cyclone: A safe dialect of C. In Proceedings of the
General Track of the Annual Conference on USENIX Annual Technical Con­
ference, ATEC ’02, pages 275–288, Berkeley, CA, USA, 2002. USENIX Associ­
ation.

[62] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of
all pointer and array access errors. In Proceedings of the ACM SIGPLAN 1994
Conference on Programming Language Design and Implementation, PLDI ’94,
pages 290–301, New York, NY, USA, 1994. ACM.

[63] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. Hard­
bound: Architectural support for spatial safety of the C programming language.
In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XIII, pages 103–114,
New York, NY, USA, 2008. ACM.

[64] Harish Patil and Charles Fischer. Low-cost, concurrent checking of pointer and
array accesses in C programs. Software Practice and Expertise, 27(1):87–110,
January 1997.

http://www.memsic.com/userfiles/files

261

[65] Wei Xu,	 Daniel C. DuVarney, and R. Sekar. An efficient and backwards-
compatible transformation to ensure memory safety of C programs. In Proceed­
ings of the 12th ACM SIGSOFT Twelfth International Symposium on Foun­
dations of Software Engineering, SIGSOFT ’04/FSE-12, pages 117–126, New
York, NY, USA, 2004. ACM.

[66] Clang. Clang: A C language family frontend for LLVM.	 http://clang.llvm.
org/.

[67] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04), Palo Alto, Cali­
fornia, March 2004.

[68] Doina Bucur and Marta Z Kwiatkowska. Software verification for TinyOS. In
Proceedings of the 9th ACM/IEEE International Conference on Information
Processing in Sensor Networks, pages 400–401. ACM, 2010.

[69] Doina Bucur. Intelligible TinyOS sensor systems: Explanations for embedded
software. In Modeling and Using Context, pages 54–66. Springer, 2011.

´ [70] Raimondas Sasnauskas, Jó Agila Bitsch Link, Muhammad Hamad Alizai, and
Klaus Wehrle. Kleenet: automatic bug hunting in sensor network applications.
In Proceedings of the 6th ACM Conference on Embedded network sensor sys­
tems, pages 425–426. ACM, 2008.

[71] Philip Levis, Nelson Lee, Matt Welsh, and David Culler.	 TOSSIM: Accurate
and scalable simulation of entire TinyOS applications. In Proceedings of the 1st
International Conference on Embedded networked sensor systems, pages 126–
137. ACM, 2003.

[72] Victor Shnayder, Mark Hempstead, Bor-rong Chen, Geoff Werner Allen, and
Matt Welsh. Simulating the power consumption of large-scale sensor network
applications. In Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems, SenSys ’04, pages 188–200, New York, NY, USA,
2004. ACM.

[73] Vinaitheerthan Sundaram, Patrick Eugster, and Xiangyu Zhang. Prius: Generic
hybrid trace compression for wireless sensor networks. In International Confer­
ence on Embedded Networked Sensor Systems (SenSys), pages 183–196, 2012.

[74] Joseph Polastre, Jason Hill, and David Culler.	 Versatile low power media ac­
cess for wireless sensor networks. In International Conference on Embedded
Networked Sensor Systems (SenSys), pages 95–107, 2004.

[75] Memsic.	 MicaZ datasheet. http://www.memsic.com/userfiles/files/
Datasheets/WSN/micaz_datasheet-t.pdf.

[76] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. Springer, 1999.

[77] SoftBound website. http://www.cis.upenn.edu/acg/softbound/.

http://www.cis.upenn.edu/acg/softbound
http://www.memsic.com/userfiles/files
http://clang.llvm

262

[78] Laszlo Szekeres, Mathias Payer, Tao Wei, and Dawn Song. SoK: Eternal war in
memory. In Proceedings of the 2013 IEEE Symposium on Security and Privacy,
SP ’13, pages 48–62, Washington, DC, USA, 2013. IEEE Computer Society.

[79] Jeremy Condit, Matthew Harren, Zachary Anderson, David Gay, and George C
Necula. Dependent types for low-level programming. In Programming Lan­
guages and Systems, pages 520–535. Springer, 2007.

[80] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI­
C programs. In Tools and Algorithms for the Construction and Analysis of
Systems, pages 168–176. Springer, 2004.

[81] Heinrich von Stackelberg, Damien Bazin, Rowland Hill, and Lynn Urch. Market
Structure and Equilibrium. Springer, 2010.

[82] Rodrigo Roman, Cristina Alcaraz, Javier Lopez, and Nicolas Sklavos.	 Key
management systems for sensor networks in the context of the internet of things.
Computers & Electrical Engineering, 37(2):147–159, 2011.

[83] Lal C Godara.	 Application of antenna arrays to mobile communications:
Beam-forming and direction-of-arrival considerations. Proceedings of the IEEE,
85(8):1195–1245, 1997.

[84] Asis Nasipuri and Kai Li. A directionality based location discovery scheme for
wireless sensor networks. In Proceedings of 1st ACM International Workshop
on Wireless sensor networks and applications. ACM, 2002.

[85] Chanatip Tumrongwittayapak and Ruttikorn Varakulsiripunth. Detecting sink­
hole attack and selective forwarding attack in wireless sensor networks. In In­
formation, Communications and Signal Processing, 2009.

[86] Ferdinand	 Brasser, Brahim El Mahjoub, Ahmad Reza Sadeghi, Christian
Wachsmann, and Patrick Koeberl. TyTAN: Tiny trust anchor for tiny devices.
In DAC, pages 1–6. IEEE, 2015.

ˇ[87] Srdjan	 Capkun, Levente Buttyán, and Jean Pierre Hubaux. Sector: secure
tracking of node encounters in multi-hop wireless networks. In Proceedings of
1st ACM Workshop on Security of Ad Hoc and Sensor Networks, 2003.

[88] Yih Chun Hu, Adrian Perrig, and David B Johnson. Packet leashes: a defense
against wormhole attacks in wireless networks. In INFOCOM 2003. IEEE, 2003.

[89] Kalpana Sharma and MK Ghose.	 Wireless sensor networks: An overview on
its security threats. IJCA, Special Issue on Mobile Ad-hoc Networks MANETs,
pages 42–45, 2010.

[90] Issa Khalil, Saurabh Bagchi, and Ness B Shroff.	 LITEWORP: a lightweight
countermeasure for the wormhole attack in multihop wireless networks. In
Dependable Systems and Networks, pages 612–621. IEEE, 2005.

[91] Dazhi Zhang and Donggang Liu.	 DataGuard: Dynamic data attestation in
wireless sensor networks. In DSN, 2010. IEEE, 2010.

[92] Laurent Eschenauer and Virgil D Gligor.	 A key-management scheme for dis­
tributed sensor networks. In Proceedings of the 9th ACM Conference on Com­
puter and Communications Security, pages 41–47. ACM, 2002.

263

[93] Achille Messac, Amir Ismail-Yahaya, and Christopher A Mattson. The normal­
ized normal constraint method for generating the Pareto frontier. Structural
and multidisciplinary optimization, 25(2):86–98, 2003.

[94] Imad Jawhar, Nader Mohamed, and Liren Zhang. A distributed topology dis­
covery algorithm for linear sensor networks. In 1st IEEE International Confer­
ence on Communications in China (ICCC), pages 775–780. IEEE, 2012.

[95] Alireza A Nezhad, Dimitris Makrakis, and Ali Miri. Anonymous topology dis­
covery for multihop wireless sensor networks. In Proceedings of the 3rd ACM
Workshop on QoS and Security for Wireless and Mobile Networks, pages 78–85.
ACM, 2007.

[96] IBM ILOG. CPLEX 12.5, 2011.

[97] Quanyan Zhu, Linda Bushnell, and Tamer Basar.	 Game-theoretic analysis of
node capture and cloning attack with multiple attackers in wireless sensor net­
works. In CDC, pages 3404–3411. IEEE, 2012.

[98] Ho Ting Cheng and Weihua Zhuang. Pareto optimal resource management for
wireless mesh networks with qos assurance: joint node clustering and subcarrier
allocation. IEEE Transactions on Wireless Communications, 2009.

[99] Liang Zhou and Han Chieh Chao. Multimedia traffic security architecture for
the internet of things. IEEE Networking, 25(3):35–40, 2011.

[100] Shahid Raza, Simon Duquennoy, Joel Höglund, Utz Roedig, and Thiemo Voigt.
Secure communication for the internet of things: a comparison of link-layer
security and ipsec for 6lowpan. Security and Communication Networks, 2012.

[101] Thang N Dinh, Ying Xuan, My T Thai, EK Park, and Taieb Znati.	 On ap­
proximation of new optimization methods for assessing network vulnerability.
In Proceedings of IEEE INFOCOM, 2010.

[102] Peter V Marsden. Egocentric and sociocentric measures of network centrality.
Social Networks, 24(4):407–422, 2002.

[103] Anne Marie Kermarrec, Erwan Le Merrer, Bruno Sericola, and Gilles Trédan.
Second order centrality: Distributed assessment of nodes criticity in complex
networks. Computer Communications, 2011.

[104] Ashwin Arulselvan, Clayton W Commander, Lily Elefteriadou, and Panos M
Pardalos. Detecting critical nodes in sparse graphs. Computers & Operations
Research, 36(7), 2009.

[105] Devesh Jinwala, Dhiren Patel, and Kankar Dasgupta. FlexiSec: a configurable
link layer security architecture for wireless sensor networks. Journal of Infor­
mation Assurance and Security, 2012.

[106] Shahid Raza, Simon Duquennoy, Joel Hglund, Utz Roedig, and Thiemo Voigt.
Secure communication for the internet of things: a comparison of link-layer
security and IPsec for 6LoWPAN. Security and Communication Networks,
7(12):2654–2668, 2014.

264

[107] Thomas Kothmayr, Corinna Schmitt, Wen	 Hu, Michael Brünig, and Georg
Carle. DTLS based security and two-way authentication for the internet of
things. Ad Hoc Networks, 11(8):2710–2723, 2013.

[108] S. Raza, S. Duquennoy, T. Chung, D. Yazar, T. Voigt, and U. Roedig.	 Se­
curing communication in 6LoWPAN with compressed IPsec. In 2011 Interna­
tional Conference on Distributed Computing in Sensor Systems and Workshops
(DCOSS), pages 1–8, June 2011.

[109] Shahid Raza, Hossein Shafagh, Kasun Hewage, René Hummen, and Thiemo
Voigt. Lithe: Lightweight secure CoAP for the internet of things. IEEE Sensors
Journal, 13(10):3711–3720, 2013.

[110] Thomas Kothmayr, Wen Hu, Corinna Schmitt, Michael Bruenig, and Georg
Carle. Poster: Securing the internet of things with DTLS. In Proceedings of the
9th ACM Conference on Embedded Networked Sensor Systems, pages 345–346.
ACM, 2011.

[111] Alan	 Grau. Intrusion detection software lowers internet of things
risk. http://www.controleng.com/single-article/intrusion­
detection-software-lowers-internet-of-things-iot-risk/
e1ca58c3af94e41f26bc4836c21803f5.html, 2015. Accessed: May 2016.

[112] Cai Ming Liu, Run Chen, and Chao Chen.	 An artificial immune-based dis­
tributed intrusion detection model for the internet of things. In Advanced Re­
search on Material Engineering, Architectural Engineering and Informatization,
volume 366 of Advanced Materials Research, pages 165–168. Trans Tech Publi­
cations, January 2012.

[113] Martin Roesch et al.	 Snort: Lightweight intrusion detection for networks. In
LISA, volume 1, pages 229–238, 1999.

[114] The Security Ledger. IDS and the IoT: Snort creator marty roesch on securing
the internet of things. https://securityledger.com/2014/04/ids-and­
the-iot-snort-creator-marty-roesch-on-securing-the-internet-of­
things/.

[115] Zach Shelby and Carsten Bormann. 6LoWPAN: The wireless embedded Internet,
volume 43. John Wiley & Sons, 2011.

[116] IEEE. IEEE 802.15 WPAN Task Group 4 (TG4).	 http://www.ieee802.org/
15/pub/TG4.html.

[117] ZigBee Alliance and others. Zigbee specification, 2006.

[118] Jonathan Hui, David Culler, and Samita Chakrabarti.	 6LoWPAN: Incorpo­
rating IEEE 802.15.4 into the IP architecture. IPSO Alliance White Paper, 3,
2009.

[119] A. Mishra, K. Nadkarni, and A. Patcha. Intrusion detection in wireless ad hoc
networks. IEEE Wireless Communications, 11(1):48–60, February 2004.

[120] Yi-an Huang and Wenke Lee. A cooperative intrusion detection system for ad
hoc networks. In Proceedings of the 1st ACM Workshop on Security of Ad Hoc
and Sensor Networks, SASN ’03, pages 135–147, New York, NY, USA, 2003.
ACM.

http:http://www.ieee802.org
https://securityledger.com/2014/04/ids-and
http://www.controleng.com/single-article/intrusion

265

[121] David Miller, Shon Harris, Allen Harper, Stephen VanDyke, and Chris Blask.
Security information and event management (SIEM) implementation. McGraw
Hill Professional, 2010.

[122] Farzad Sabahi and Ali Movaghar. Intrusion detection: A survey. In Proceedings
of the 3rd International Conference on Systems and Networks Communications,
pages 23–26. IEEE, 2008.

[123] Pedro Garcia-Teodoro, J Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique
Vázquez. Anomaly-based network intrusion detection: Techniques, systems and
challenges. Computers & Security, 28(1):18–28, 2009.

[124] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David Moss, and Philip
Levis. Collection tree protocol. In Proceedings of the 7th ACM Conference on
Embedded Networked Sensor Systems, ACM SenSys, pages 1–14, 2009.

[125] Loh Chin Choong Desmond, Cho Chia Yuan, Tan Chung Pheng, and Ri Seng
Lee. Identifying unique devices through wireless fingerprinting. In Proceedings
of the 1st ACM Conference on Wireless Network Security, WiSec ’08, pages
46–55, New York, NY, USA, 2008. ACM.

[126] J. Wang, G. Yang, Y. Sun, and S. Chen. Sybil attack detection based on RSSI
for wireless sensor network. In International Conference on Wireless Communi­
cations, Networking and Mobile Computing, pages 2684–2687, September 2007.

[127] V Manjula and Dr C Chellappan. Replication attack mitigations for static and
mobile WSN. arXiv preprint arXiv:1103.3378, 2011.

[128] Vern Paxson, Scott Campbell, Jason Lee, et al. Bro intrusion detection system.
Technical report, Lawrence Berkeley National Laboratory, 2006.

[129] Rung-Ching Chen, Chia-Fen Hsieh, and Yung-Fa Huang.	 A new method for
intrusion detection on hierarchical wireless sensor networks. In Proceedings of
the 3rd International Conference on Ubiquitous Information Management and
Communication, ICUIMC ’09, pages 238–245, New York, NY, USA, 2009. ACM.

[130] M. Tiwari, K. V. Arya, R. Choudhari, and K. S. Choudhary. Designing intrusion
detection to detect black hole and selective forwarding attack in WSN based
on local information. In Proceedings of the 4th International Conference on
Computer Sciences and Convergence Information Technology, pages 824–828,
November 2009.

[131] K. Gerrigagoitia, R. Uribeetxeberria, U. Zurutuza, and I. Arenaza. Reputation-
based intrusion detection system for wireless sensor networks. In Complexity in
Engineering (COMPENG), 2012, pages 1–5, June 2012.

[132] B. Sun, L. Osborne, Y. Xiao, and S. Guizani. Intrusion detection techniques in
mobile ad hoc and wireless sensor networks. IEEE Wireless Communications,
14(5):56–63, October 2007.

[133] Nabil Ali Alrajeh, Shafiullah Khan, and Bilal Shams. Intrusion detection sys­
tems in wireless sensor networks: a review. International Journal of Distributed
Sensor Networks, 2013, 2013.

266

[134] T Winter, P Thubert, A Brandt, J Hui, R Kelsey, P Levis, K Pister, R Struik,
JP Vasseur, and R Alexander. RPL: IPv6 routing protocol for low-power and
lossy networks. RFC, 2012.

[135] C. Liu, J. Yang, R. Chen, Y. Zhang, and J. Zeng.	 Research on immunity-
based intrusion detection technology for the internet of things. In International
Conference on Natural Computation (ICNC), volume 1, pages 212–216, July
2011.

[136] C. Jun and C. Chi.	 Design of complex event-processing IDS in internet of
things. In 2014 Sixth International Conference on Measuring Technology and
Mechatronics Automation, pages 226–229, January 2014.

[137] Sachin Babar, Parikshit Mahalle, Antonietta Stango, Neeli Prasad, and Ramjee
Prasad. Proposed Security Model and Threat Taxonomy for the Internet of
Things, pages 420–429. Springer Berlin Heidelberg, Berlin, Heidelberg, 2010.

[138] Anthéa Mayzaud, Rémi Badonnel, and Isabelle Chrisment. A taxonomy of
attacks in RPL-based internet of things. International Journal of Network
Security, 2016.

[139] Antone Gonsalves. New toolkit seeks routers, internet of things for DDoS bot-
net. http://www.csoonline.com/article/2687653/data-protection/new­
toolkit-seeks-/routers-internet-of-things-for-ddos-botnet.html,
September 2014.

[140] Ping Wang, S. Sparks, and C.C. Zou. An advanced hybrid peer-to-peer botnet.
IEEE Transactions on Dependable and Secure Computing, 7(2):113–127, April
2010.

[141] Daniel Stutzbach and Reza Rejaie. Understanding churn in peer-to-peer net­
works. In Proceedings of the 6th ACM SIGCOMM Conference on Internet
Measurement, pages 189–202. ACM, 2006.

[142] Fabian Kuhn, Stefan Schmid, and Roger Wattenhofer.	 A self-repairing peer­
to-peer system resilient to dynamic adversarial churn. In Peer-to-Peer Systems
IV, pages 13–23. Springer, 2005.

[143] Linksys.	 Linksys wrt1900ac ac1900 dual-band smart WiFi wireless router.
http://www.linksys.com/us/p/P-WRT1900AC/.

[144] OpenWRT. https://openwrt.org/.

[145] OpenWRT Community.	 Opkg package manager. http://wiki.openwrt.org/
doc/techref/opkg.

[146] Asus. AsusWRT. http://www.asus.com/ASUSWRT/.

[147] VirusTotal Community. VirusTotal. www.virustotal.com.

[148] VirusTotal. Credits & acknowledgements.	 https://www.virustotal.com/en/
about/credits/.

https://www.virustotal.com/en
http:www.virustotal.com
http://www.asus.com/ASUSWRT
http:http://wiki.openwrt.org
http:https://openwrt.org
http://www.linksys.com/us/p/P-WRT1900AC
http://www.csoonline.com/article/2687653/data-protection/new

267

[149] Thorsten Holz, Moritz Steiner, Frederic Dahl, Ernst Biersack, and Felix Freil­
ing. Measurements and mitigation of peer-to-peer-based botnets: A case study
on storm worm. In Proceedings of the 1st Usenix Workshop on Large-Scale
Exploits and Emergent Threats, LEET’08, pages 9:1–9:9, Berkeley, CA, USA,
2008. USENIX Association.

[150] Janessa Rivera.	 Gartner says 4.9 billion connected “things” will be in use in
2015. http://www.gartner.com/newsroom/id/2905717, November 2014.

[151] Carlos Gañán, Orcun Cetin, and Michel van Eeten. An empirical analysis of
zeus c&c lifetime. In Proceedings of the 10th ACM Symposium on Information,
Computer and Communications Security, ASIA CCS ’15, pages 97–108, New
York, NY, USA, 2015. ACM.

[152] Daniel Miessler.	 Securing the internet of things: Mapping attack surface
areas using the OWASP IoT top 10. https://drive.google.com/file/d/
0B52IUvO0LP6OdW1HMjRpM3VVUVE/view.

[153] Hewlett-Packard. How safe are home security systems?	 http://www8.hp.com/
h20195/V2/GetPDF.aspx/4AA5-7342ENW.pdf, February 2015.

[154] David Dagon, Cliff Changchun Zou, and Wenke Lee. Modeling botnet propa­
gation using time zones. In NDSS, volume 6, pages 2–13, 2006.

[155] Netfilter Organization.	 The netfilter.org “iptables” project. http://www.
netfilter.org/projects/iptables/index.html.

[156] Nest Labs. Nest. https://nest.com/.

[157] August. August smart lock. http://august.com/.

[158] August.	 August smart connect. http://support.august.com/customer/
portal/articles/1878915-august-connect.

[159] Inc Amazon.com. Amazon dash button.	 https://www.amazon.com/b/?node=
10667898011&sort=date-desc-rank&lo=digital-text.

[160] Netgear. Arlo. https://www.arlo.com/en-us/.

[161] Inc LiFi Labs. Lifx. https://www.lifx.com/.

[162] Hyenae.	 Network packet generator tool. https://sourceforge.net/
projects/hyenae/. Accessed: Jan 2016.

[163] Iperf Community. What is iperf/iperf3. https://iperf.fr/.

[164] Hardkernal	 Company. Odroid-c1. http://www.hardkernel.com/main/
products/prdt_info.php?g_code=G141578608433&tab_idx=1.

[165] Hardkernal	 Company. Odroid-xu3. http://www.hardkernel.com/main/
products/prdt_info.php?g_code=G140448267127&tab_idx=1.

[166] C. Onwubiko.	 Functional requirements of situational awareness in computer
network security. In IEEE International Conference on Intelligence and Security
Informatics, pages 209–213, June 2009.

http://www.hardkernel.com/main
http://www.hardkernel.com/main
http:https://iperf.fr
http:https://sourceforge.net
http:https://www.lifx.com
https://www.arlo.com/en-us
https://www.amazon.com/b/?node
http:Amazon.com
http://support.august.com/customer
http:http://august.com
http:https://nest.com
http://www
http:netfilter.org
http:http://www8.hp.com
https://drive.google.com/file/d
http://www.gartner.com/newsroom/id/2905717

268

[167] Cyril Onwubiko and Thomas Owens.	 Situational Awareness in Computer Net­
work Defense: Principles, Methods and Applications. IGI Global, 2012.

[168] Hyo-Sang Lim, G. Ghinita, E. Bertino, and M. Kantarcioglu. A game-theoretic
approach for high-assurance of data trustworthiness in sensor networks. In
Proceedings of the IEEE 28th International Conference on Data Engineering
(ICDE), pages 1192–1203, April 2012.

[169] A.S.K. Pathan, Hyung-Woo Lee, and Choong Seon Hong. Security in wireless
sensor networks: issues and challenges. In The 8th International Conference on
Advanced Communication Technology (ICACT), volume 2, February 2006.

[170] Yong Wang, Garhan Attebury, and Byrav Ramamurthy.	 A survey of security
issues in wireless sensor networks. IEEE Communications Surveys Tutorials,
2006.

[171] Tanveer Zia and Albert Zomaya. Security issues in wireless sensor networks. In
Systems and Networks Communications, 2006. ICSNC’06. International Con­
ference on, pages 40–40. IEEE, 2006.

[172] Mohammad Maifi Hasan Khan, Hieu K. Le, Michael LeMay, Parya Moinzadeh,
Lili Wang, Yong Yang, Dong K. Noh, Tarek Abdelzaher, Carl A. Gunter, Jiawei
Han, and Xin Jin. Diagnostic powertracing for sensor node failure analysis. In
Proceedings of the 9th ACM/IEEE International Conference on Information
Processing in Sensor Networks, IPSN ’10, pages 117–128, New York, NY, USA,
2010. ACM.

[173] F. Mouton and H.S. Venter. A prototype for achieving digital forensic readiness
on wireless sensor networks. In AFRICON, 2011, pages 1–6, September 2011.

[174] Ioannis Krontiris, Tassos Dimitriou, and Felix C. Freiling.	 Towards intrusion
detection in wireless sensor networks. In Proceedings of the 13th European
Wireless Conference, 2007.

[175] Chih fan Hsin.	 A distributed monitoring mechanism for wireless sensor net­
works. In ACM Workshop on Wireless Security, pages 57–66. Spring, 2002.

[176] R. Roman, Jianying Zhou, and J. Lopez. Applying intrusion detection systems
to wireless sensor networks. In Proceedings of the 3rd IEEE Consumer Com­
munications and Networking Conference, volume 1, pages 640–644, January
2006.

[177] Salmin S, Gabriel G, E Bertino, and M Shehab. A lightweight secure provenance
scheme for wireless sensor networks. Intl. Conference on Parallel and Distributed
Systems, 2012.

[178] Qingjiang Shi, Chen He, Hongyang Chen, and Lingge Jiang. Distributed wire­
less sensor network localization via sequential greedy optimization algorithm.
IEEE Transactions on Signal Processing, 58(6):3328–3340, June 2010.

[179] Tom M Apostol and Mamikon A Mnatsakanian. Centroids constructed graph­
ically. Mathematics Magazine, pages 201–210, 2004.

[180] J. Polastre, R. Szewczyk, and D. Culler. Telos: Enabling ultra-low power wire­
less research. In 4th International Symposium on Information Processing in
Sensor Networks (IPSN), pages 364–369, April 2005.

269

[181] Carlo Alberto Boano, Zhitao He, Yafei Li, Thiemo Voigt, Marco Zuniga, and
Andreas Willig. Controllable radio interference for experimental and testing
purposes in wireless sensor networks. In Proceedings of the 4th IEEE Interna­
tional Workshop on Practical Issues in Building Sensor Network Applications
(SenseApp), 2009.

[182] G. V. Zàruba, M. Huber, F. A. Kamangar, and I. Chlamtac. Indoor location
tracking using RSSI readings from a single WiFi access point. Wireless Net­
works, 13(2):221–235, April 2007.

[183] A. Thottam Parameswaran, I. Husain M, and S. Upadhyaya. Is RSSI a reliable
parameter in sensor localization algorithms? An experimental study. 28th IEEE
SRDS F2DA Workshop, Sep 2009.

[184] Giovanni Zanca, Francesco Zorzi, Andrea Zanella, and Michele Zorzi.	 Exper­
imental comparison of RSSI-based localization algorithms for indoor wireless
sensor networks. In Proceedings of the Workshop on Real-world Wireless Sen­
sor Networks, REALWSN ’08, pages 1–5, New York, NY, USA, 2008. ACM.

[185] Kannan Srinivasan and Philip Levis. RSSI is under appreciated. In Proceedings
of the 3rd Workshop on Embedded Networked Sensors (EmNets), 2006.

[186] Maurizio Bocca, Ossi Kaltiokallio, Neal Patwari, and Suresh Venkatasubrama­
nian. Multiple target tracking with rf sensor networks. IEEE Transactions on
Mobile Computing, 13(8):1787–1800, 2014.

[187] Yeong-Sheng Chen, Tai-Lin Chin, and Yi-Chen Huang. Collaborative localiza­
tion in wireless sensor networks based on dependable RSSI. In 15th Interna­
tional Symposium on Wireless Personal Multimedia Communications (WPMC),
pages 341–347, September 2012.

[188] Ugur Bekcibasi and Mahmut Tenruh.	 Increasing RSSI localization accuracy
with distance reference anchor in wireless sensor networks. Acta Polytechnica
Hungarica, 11(8), 2014.

[189] Bilal Shebaro, Daniele Midi, and Elisa Bertino. Fine-grained analysis of packet
loss symptoms in wireless sensor networks. In Proceedings of IEEE SECON,
2014.

[190] Yin Chen and Andreas Terzis.	 On the mechanisms and effects of calibrating
RSSI measurements for 802.15.4 radios. In Proceedings of the 7th European
Conference on Wireless Sensor Networks, EWSN’10, pages 256–271, Berlin,
Heidelberg, 2010. Springer-Verlag.

[191] E. Moulines and K. Choukri.	 Time-domain procedures for testing that a
stationary time-series is gaussian. IEEE Transactions on Signal Processing,
44(8):2010–2025, August 1996.

[192] E. Guzzon, F. Benedetto, and G. Giunta. A new test for initial code acquisition
of correlated cells. IEEE Transactions on Vehicular Technology, 62(5):2349–
2358, June 2013.

[193] F. Benedetto, G. Giunta, E. Guzzon, and M. Renfors. Effective monitoring of
freeloading user in the presence of active user in cognitive radio networks. IEEE
Transactions on Vehicular Technology, 63(5):2443–2450, June 2014.

270

[194] Umeshwar Dayal.	 Active Database Systems: Triggers and Rules for Advanced
Database Processing. Morgan Kaufmann Publishers Inc., 1994.

[195] Sangwon Hyun, Peng Ning, An Liu, and Wenliang Du.	 Seluge: Secure and
DoS-resistant code dissemination in wireless sensor networks. In International
Conference on Information Processing in Sensor Networks (IPSN), pages 445–
456, 2008.

[196] S. Saha and S. Neogy.	 A case study on smart surveillance application sys­
tem using WSN and IP webcam. In Applications and Innovations in Mobile
Computing (AIMoC), 2014, 2014.

[197] Emad Felemban.	 Advanced border intrusion detection and surveillance using
wireless sensor network technology. International Journal of Communications,
Network and System Sciences, 6(5):251, 2013.

[198] Tian He, Sudha Krishnamurthy, John A Stankovic, Tarek Abdelzaher, Liqian
Luo, Radu Stoleru, Ting Yan, Lin Gu, Jonathan Hui, and Bruce Krogh. Energy-
efficient surveillance system using wireless sensor networks. In ACM Interna­
tional Conference on Mobile systems, applications, and services, 2004.

[199] Ertan Onur, Cem Ersoy, Hakan Deliç, and Lale Akarun. Surveillance wireless
sensor networks: deployment quality analysis. IEEE Networking, 21(6):48–53,
2007.

[200] Libelium. Official website. http://www.libelium.com/, Accessed: Apr 2016.

[201] Luis Sanchez, Luis Muoz, Jose Antonio Galache, Pablo Sotres, Juan R. Santana,
Veronica Gutierrez, Rajiv Ramdhany, Alex Gluhak, Srdjan Krco, Evangelos
Theodoridis, and Dennis Pfisterer. SmartSantander: IoT experimentation over
a smart city testbed. Computer Networks, 2014.

[202] C. Pham and P. Cousin. Streaming the sound of smart cities: Experimentations
on the SmartSantander test-bed. In IEEE GreenCom and IEEE International
Conference on Internet of Things and Cyber, Physical and Social Computing,
2013.

[203] K. Daabaj, M. Dixon, and T. Koziniec. Traffic eavesdropping based scheme to
deliver time-sensitive data in sensor networks. In IEEE International Perfor­
mance Computing and Communications Conference (IPCCC), pages 302–308,
2010.

[204] Peter Mell, Karen Scarfone, and Sasha Romanosky.	 CVSS: A Complete Guide
to the Common Vulnerability Scoring System Version 2.0, 2007.

[205] R. Falcon, A. Nayak, and R. Abielmona. An evolving risk management frame­
work for wireless sensor networks. In Conference on Computational Intelligence
for Measurement Systems and Applications, 2011.

[206] Ahmed Hasswa, Mohammad Zulkernine, and Hossam Hassanein. Routeguard:
An intrusion detection and response system for mobile ad hoc networks. In IEEE
International Conference on Wireless And Mobile Computing, Networking And
Communications (WiMob), pages 336–343, 2005.

http:http://www.libelium.com

271

[207] Chris Karlof, Naveen Sastry, and David Wagner.	 TinySec: A link layer secu­
rity architecture for wireless sensor networks. In International Conference on
Embedded Networked Sensor Systems (SenSys), pages 162–175, 2004.

´ [208] Enrico Perla, Art	 O Catháin, Ricardo Simon Carbajo, Meriel Huggard, and
Ciarán Mc Goldrick. PowerTOSSIM Z: Realistic energy modelling for wireless
sensor network environments. In Proceedings of the 3rd ACM Workshop on Per­
formance Monitoring and Measurement of Heterogeneous Wireless and Wired
Networks, PM2HW2N ’08, pages 35–42, New York, NY, USA, 2008. ACM.

[209] P.	 Levis. Collection. http://www.tinyos.net/tinyos-2.x/doc/html/
tep119.html.

[210] Wei Dong, Yunhao Liu, Yuan He, Tong Zhu, and Chun Chen.	 Measurement
and analysis on the packet delivery performance in a large-scale sensor network.
IEEE/ACM Transactions on Networking, 22(6):1952–1963, December 2014.

[211] S. Sultana, G. Ghinita, E. Bertino, and M. Shehab. A lightweight secure scheme
for detecting provenance forgery and packet drop attacks in wireless sensor
networks. IEEE Transactions on Dependable and Secure Computing (TDSC),
2014.

[212] Ayon Chakraborty and Preethi Banala.	 An experimental study of jamming
IEEE 802.15.4 compliant sensor networks (progress tracking). http://www.
cs.sunysb.edu/~aychakrabort/courses/cse570/.

[213] Yongguang Zhang and Wenke Lee. Intrusion detection in wireless ad-hoc net­
works. In International Conference on Mobile Computing and Networking (Mo­
biCom), pages 275–283, 2000.

[214] Meng-Yen Hsieh, Yueh-Min Huang, and Han-Chieh Chao. Adaptive security de­
sign with malicious node detection in cluster-based sensor networks. Computer
Communications, 30(11-12):2385–2400, 2007.

[215] AV. Taddeo, L. Micconi, and Alberto Ferrante. Gradual adaptation of security
for sensor networks. In IEEE International Symposium on a World of Wireless
Mobile and Multimedia Networks (WoWMoM), pages 1–9, 2010.

[216] Muhammad Asim, Hala Mokhtar, and Madjid Merabti. A self-managing fault
management mechanism for wireless sensor networks. CoRR, abs/1011.5072,
2010.

[217] Sudha Krishnamurthy,	 Geethapriya Thamilarasu, and Christian Bauckhage.
Malady: A machine learning-based autonomous decision-making system for
sensor networks. In International Conference on Computational Science and
Engineering, volume 2, pages 93–100, 2009.

[218] Mohammad Mamun, A. Kabir, Md. Hossen, and Razib Khan.	 Policy based
intrusion detection and response system in hierarchical wsn architecture. CoRR,
abs/1209.1678, 2012.

[219] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman.	 The
Ponder policy specification language. In International Workshop on Policies
for Distributed Systems and Networks (POLICY), pages 18–38, 2001.

http://www
http://www.tinyos.net/tinyos-2.x/doc/html

272

[220] W3C.	 A p3p preference exchange language 1.0 (appel1.0). http://www.w3.
org/TR/P3P-preferences/, 2002.

[221] OASIS. OASIS extensible access control markup language (XACML), 2005.

[222] H. Garcia-Molina. Elections in a distributed computing system.	 IEEE Trans­
actions on Computers, C-31(1):48–59, January 1982.

[223] Sudarshan Vasudevan, Jim Kurose, and Don Towsley.	 Design and analysis of
a leader election algorithm for mobile ad hoc networks. In IEEE International
Conference on Network Protocols (ICNP), pages 350–360, 2004.

[224] Ameer Abbasi and Mohamed Younis. A survey on clustering algorithms for wire­
less sensor networks. Computer Communications, 30(14-15):2826–2841, 2007.

http:http://www.w3

VITA

273

VITA

Daniele Midi

EDUCATION

•	 Doctor of Philosophy, September 2016

Purdue University

Computer Science

•	 Master of Science, February 2013

University of Roma Tre (Rome, Italy)

Computer Science Engineering, 110/110 summa cum laude

•	 Bachelor of Science, July 2010

University of Roma Tre (Rome, Italy)

Computer Science Engineering, 110/110 summa cum laude

TEACHING EXPERIENCE

•	 Teaching Assistant, Purdue University, CS 180 – Problem Solving and Object-

Oriented Programming – Spring 2015

•	 Teaching Assistant, Purdue University, CS 526 – Information Security – Spring

2015

