
CERIAS Tech Report 2015-2
ErsatzPasswords Ending Password Cracking

 by Mohammed H. Almeshekah, Christopher N. Gutierrez, Mikhail J. Atallah and Eugene H. Spafford
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

1

ErsatzPasswords – Ending Password

Cracking

Mohammed H. Almeshekah, Christopher N. Gutierrez,

Mikhail J. Atallah and Eugene H. Spafford

February 13, 2015

Abstract

In this work we present a simple, yet effective and practical, scheme to improve
the security of stored password hashes rendering their cracking detectable and
insuperable at the same time. We utilize a machine-dependent function, such as
a physically unclonable function (PUF) or a hardware security module (HSM)
at the authentication server. The scheme can be easily integrated with legacy
systems without the need of any additional servers, changing the structure of
the hashed password file or any client modifications. When using the scheme the
structure of the hashed passwords file, etc/shadow or etc/master.passwd, will
appear no different than in the traditional scheme.1 However, when an attacker
exfiltrates the hashed passwords file and tries to crack it, the only passwords
he will get are the ersatzpasswords — the “fake passwords”. When an attempt
to login using these ersatzpasswords is detected an alarm will be triggered in
the system that someone attempted to crack the password file. Even with an
adversary who knows the scheme, cracking cannot be launched without physical
access to the authentication server. The scheme also includes a secure backup
mechanism in the event of a failure of the hardware dependent function. We
discuss our implementation and provide some discussion in comparison to the
traditional authentication scheme.

Introduction

Passwords are the most dominant form of online authentication and likely to
remain so for a while despite their weaknesses. It thus behooves us to seek to
protect them as much as possible. Within authentication servers, passwords
are usually stored in a salted hashed format to prevent easy pre-image recovery.
Nevertheless, an adversary who steals the list of hashed passwords can use brute-
force to find a password p with a hash value H(p) that equals the value stored
for a given user. Later, the adversary can use p to impersonate the user at the
authentication server.

1

There are a number of threats that come with the use of passwords. These
threats fall into three main categories; technical, procedural and human related
– these will be discussed in more detail in the following section. There have
been a number of high-profile thefts of user passwords files in recent years. For
example, Evernote reported the leakage of the hashed passwords for more than
50 million users [12]. Other attacks against Yahoo!, RockYou, LinkedIn and
eHarmony has been reported [11] [26]. Furthermore, password cracking is often
a precursor to more significant attacks as illustrated in [16].

The contribution of our work can be summarized in two main points: (i) we
eliminate the possibility of any offline password cracking without physical access
to the target’s machine, (ii) when using this scheme the passwords’ hashes file
will appear no different than a traditional file and if an attacker uses traditional
cracking tools to recover users’ passwords he will “discover” fake passwords that
will trigger an alarm when used. We refer to these fake passwords as ”ersatz­
passwords”. There are somewhat similar schemes that have been proposed in
the literature such as “Honeywords” [13] and “Failwords” [17]. However, our
mechanism has the following unique advantages (i) eliminating the requirement
of any additional server/components, (ii) never presenting the real user creden­
tials to the attackers and, (iii) making password cracking impossible without
physical access to the targeted machine. The scheme runs internally in the
server without requiring any changes to the user interfaces, clients and/or ex­
periences. A more detailed discussion of related literature is presented in the
next section.

One additional contribution our scheme provides is that it imposes risks to
any adversary who obtains a file of leaked usernames and passwords, causing
mistrust within the market for such files, and rendering their use risky for many
parties. This is because the unique property of our scheme of having the user-
name and password file look identical to the file generated by the traditional
authentication scheme. This property benefits not only the early adopters of
the scheme, but the overall security of other (non-adopting) systems. This
is one of the distinguishing features of using ersatzpassword in comparison to
Honeywords [13], PolyPasswordHasher [5], SAuth [15] and others.

2 Background

2.1 Passwords

There have been many high profile incidents involving the leak of hashed pass­
words files [10]. Users are still using poor passwords, even with the existence of
passwords policies that try to guide users towards choosing more secure pass­
words. This can be seen in the analysis of more than 70 million users’ passwords
[3]. Bonneau et al. presented an extensive comparative analysis of many au­
thentication schemes replacing passwords [4]. However, passwords will remain
in use for many users because of their convenience, ease of use, and ease of
deployment.

2

2.2 Password-Related Threats

The convenient and versatile use of passwords comes with its own challenges.
We define password-related threats as the attacks adversaries can launch to
retrieve one or more valid passwords of current legitimate users of the systems.
These host-based1 threats can be grouped into three main categories.

Technical Threats

There are two sub-categories of technical threats associated with the use of
passwords; server-side and client-side. Any piece of malware and/or key logger
that can be installed at the user’s machine to exfiltrate the user’s password is a
threat to any password-based authentication system. At the server side, adver­
saries can obtain the file of stored password information and then impersonate
the system user using the stolen passwords. Strong host security is needed to
protect the client and server systems, but there are multiple opportunities for
an attacker to capture a copy of the stored password information.

A computer system needs to save an “authenticator” for every user during
user enrollment that is used to verify the identity claim during the login phase.
Current computer systems store a salted cryptographic hash (H) of the pass­
word along with the username. In a system with n users, we have the pairs
(u1, H(p1)), (u2, H(p2)), ... , (un, H(pn)), where ui is the username of user i and

2pi is the password of user i. An attacker who steals this list can launch an
offline attack to recover the hashed passwords using some dictionary and repli­
cating the hashing algorithm used. Many tools already exist to automate an
attack, such as John the Ripper3 . There have been many attempts to address
this challenge, usually falling into one of three major approaches; (i) signifi­
cantly increasing the resources needed to match a password, (ii) strengthening
user passwords to make their recovery process unlikely as they will be unlikely
to be found in a dictionary, and (iii) instrumenting passwords files with fake
decoy passwords triggering an alarm when used indicating that the password
file has been attacked.

The development of password hashing algorithms from crypt to bcrypt,
scrypt, and others is mainly driven by the goal of increasing the resources needed
to crack the users’ passwords. The introduction of private salts [14] was also
intended to increase the work required for cracking the password files. In addi­
tion, increasing the number of rounds these algorithms apply to a password is
a parallel approach to increasing the work factor.

Cappos and Torres proposed “PolyPasswordHasher” [5] as a scheme to pro­
tect passwords from offline dictionary attacks. Their scheme additionally pro­
tects passwords with a secret share obtained using Shamir Secret Sharing scheme
[21]. The secret is saved in memory and used to verify passwords. One of the

1We are ignoring network snooping and other such remote mechanisms as our attention is
directed only at securing host-based password databases.

2Salts, as an additional item in many systems, are described later.
3http://www.openwall.com/john/

3

limitations of their scheme is that it requires additional fields in the password
file specifying which share to use. Also, if an attacker obtains a single access to
the system memory they can steal the secret.

Deception has been used to address the threats associated with cracking
password files. One approach is to inject fake accounts with passwords into the
password file. Another approach is to place decoy password files in the system
luring the attackers to access them believing they are the real files. Schemes
such as Honeywords [13] are intended to confuse the attacker by presenting him
with many passwords associated with a single username, where all of them are
fake except one.

Procedural Threats

Password-recovery procedures associated with password-based authentication
systems are sometime exploited to override current user passwords [20].

User-Centric Threats

Threats such as phishing, shoulder-surfing, password re-use, and others can be
used to undermine the security of password-based authentication systems. Our
approach does not address these issues, but can be used in conjunction with well-
established approaches to minimize these risks. For instance, a filter applied at
password enrollment can prevent password reuse.

2.3 Injecting Deceit

Deception has been used in computing since at least the 1980s [24, 22]. The
prefix “honey” has been used to refer to a wide range of techniques that in­
corporate the act of deceit. The fundamental idea behind the use of the word
“honey” is for those techniques to work they need to entice attackers to interact
with them, i.e., fall for the bait: “honey.” The term honeytokens was proposed
by Spitzner [23] to refer to honeypots but at a smaller granularity. Yuill et al
used the term honeyfiles to refer to files that have enticing names distributed in
the system that act as a beaconing mechanism when accessed [29]. HoneyGen
was also used to refer to tools that are used to generate honeytokens [1].

The use of deceit has been used to address some of the limitations associated
with the use of passwords. Yue and Wang proposed a scheme named BogusBiter
that shows when users fall for phishing by submitting fake, i.e. deceitful creden­
tials, [28]. Rivest and Jules also proposed augmenting the password database in
Unix with negative information such that cracked password files can be detected
[13]. Bojinov et al. proposed Kamouflage, a scheme that is intended to protect
the list of passwords used by a user and saved locally by a password manager
[2]. Their scheme hides the real list with a a set of “fake” lists. Kontaxis et
al. proposed an authentication scheme (SAuth) that requires each user’s login
attempt to be vouched by another service provider where an attacker cannot
impersonate a user by simply obtaining the password for one web site [15]. They

4

use deception in their scheme as a way to address the common behavior of pass­
words reuse across multiple service providers. We use deceitful passwords in our
scheme, referred to as ersatzpasswords. We discuss this in further details in the
next section.

3 Technical Specification

3.1 Background

A number of cryptographic functions have been used in computer systems to
protect passwords, including crypt, bcrypt, and scrypt. As discussed earlier,
part of the motivation to develop additional algorithms is to make the cracking
process of stolen password hashes files a resource-intensive process. Our scheme
works with any of these underlying functions; we will denote the function used
as (H). In later discussion we will use bcrypt to give a concrete example, but
without any loss of generality.

Throughout this section we will assume the following format of the stored
password file. For each user (i) in the system we have the following triplet, at
a minimum, (ui, si, αi) saved in the password file:

• Username (ui).

• Multibyte (multi character) public salt (si).

• The hash of the user’s password pi as αi = H(pilsi).

In addition, we will use a hardware-specific function denoted as (HDF). This
can be implemented as a physically unclonable function (PUF) [25], a hardware
security module (HSM) [18] with a unique key, or any other mechanism of
equivalent general functionality.

Our goal to enhance the security of the storage of passwords in 3 ways: (i)
require the process of computing the hash of the password to require access
to a hardware dependent function, thereby thwarting offline cracking of stolen
password files, (ii) when an adversary attempts to crack the password file he
will be presented with a fake password that can trigger an alarm at the server
when used, and (iii) maintain the same appearance and format of the password
file while implementing the new scheme. The final property is essential to the
success of the deceptive process of injecting “fake” passwords. Unlike the Honey-
word scheme, which mixes real passwords with fake ones, our scheme eliminates
the ability of an adversary to obtain the real password (without physical access
to the targeted machine during the cracking process) and seamlessly presents a
fake password during an offline cracking process.

3.2 One-time Initialization

The initialization steps in our scheme are performed in two stages; system-
side initialization and user-specific initialization. The former makes all the

5

users’ saved, hashed, passwords machine-dependent – applying the hardware-
dependent function as follows. The hardware-dependent function, HDF is ap­
plied to each stored password hash αi and is then fed to the same hashing
function, H, with the original salt, si. After that, the output is stored in the
password file replacing the old stored value. This system-wide initialization will
have each user password stored in the file as the following

βi = H(HDF(αi)lsi)

If an adversary obtains this file and tries to crack any user passwords, the
probability that he will get any apparent match is negligible, even if a user
password is from a standard dictionary. The cracking software will be searching

'its dictionary for a password equal to pi = HDF(αi) and when hashed will give
βi. An adversary with knowledge of the scheme cannot distinguish between
a password file that was computed using our scheme or using the traditional
scheme. Even under a stronger assumption, where the adversary knows that the
file has been computed using the new scheme, the attacker gains no advantage as
he cannot crack the user passwords without access to hardware used to compute
the function HDF. In the case where the attacker is an insider, any extensive
use of the HDF can be easily noticed with a clear spike in API usage.

To incorporate the additional deceptive alarm component into our scheme
— returning an “ersatzpassword” when the adversary attempts cracking the
password file — we need to involve each user in a seamless fashion during any
normal user authentication. This process requires the user to enter her pass­
word, which is a natural step during any authentication, (because the password
is not actually stored or recoverable) and can be done during the first login
process after the system wide initialization.

When the user attempts the first login after the initialization of our system,
the password is checked using the original hash function to see if it matches.
If so, the scheme will recompute the stored password value βi as follows. The
hardware-dependent function will be applied to the actual password pi and
then an ersatzpassword (p ∗) will be chosen – we will discuss the use, choice
and characteristics of ersatzpassword later in this paper. A new user-specific
salt is then selected, to be used when computing the function H, to satisfy the

' ∗following property; [si = HDF(pi) ⊕ p]. The scheme will take the first
128-bits of the result, assuming we are using a function H such as bcrypt that
uses 128-bit salts, as the new salt overwriting the existing salt si.

We note that the ersatzpassword password length can be, at maximum, as
long as the salt. In the current implementation of the bcrypt function, widely
adopted to implement the hash function H, the salt is 128-bit long. This gives
us an ersatzpassword of up to 16 characters long. This does not impact the
plausibility feature of the ersatzpassword, which will be discussed below. In the
largest user passwords study analyzing more than 70 million real user passwords,
Bonneau reports that users tend to use passwords with 6-8 characters [3]. If
the ersatzpassword is shorter than the salt, the above computation will result
in having the salt include some of the output of the HDF function. This does

6

not affect the security of the system as such output does not leak any useful
information about the real password even to someone who has knowledge of the
scheme and the length of the ersatzpassword p∗.

To compute the stored value β our scheme calculates the following:

' βi = H[(HDF(pi) ⊕ si
') l si]

If the output of the HDF is longer than the salt, we address this as follows.
We divide this output into chucks of length equal to the salt length. After
that, we XOR these chunks together and then XOR the result with the salt

' si . Finally, this becomes the input to the hash function H along with the
concatenated salt.

The stored value in the password file will be in the same format used in
traditional schemes. When an adversary tries to crack the users’ passwords

' file, he will try to find a password pi that when hashed using H will give
βi. In our scheme, we compute beta in a format equivalent to the traditional

∗password storage where the password is p ∗, i.e. β = H(p l si '). As a result,
an attacker who is launching a dictionary attack against a stolen passwords

∗file will likely find a result identifying p as the user password, which is the
ersatzpassword injected in the system. When the adversary uses this password
to login, an internal alarm will be triggered alerting the administrator that
someone exfiltrated and attempted to crack the user passwords file.

3.3 Login

There are three main cases of login in our scheme: successful login, when the
user enters the correct user/password pair; malicious login, when the adversary
uses an ersatzpassword; and error login, when the username/password pair does
not match anything. In this section we discuss how to evaluate the login request,
in the presented order, and determine a login decision.

When the user i wants to login she presents the username and password p̄
to the authentication server. The system identifies the username record and
obtains the stored value βi and the salt si associated with it. The scheme
computes

' βi = H[(HDF(p̄) ⊕ si) l si]
' and checks whether βi equals βi, and if so the user is successfully authenticated.

If the authentication fails, the scheme checks whether the password presented
is the ersatzpassword. This is done by computing

'' βi = H[p̄ l si]

and checking whether this equals βi. If they are equal, this indicates that
someone is trying to impersonate the user after cracking the passwords file and
an internal alarm is triggered.

If the two values are not equal, this can be treated as an erroneous login.
The system’s policy for erroneous login can then be applied.

7

3.4 Password Administration

3.4.1 Password Change

The user’s password change requests can be treated exactly as a new password.
The only difference from traditional password schemes is that our approach
mandates the generation of a new salt that satisfies the property discussed
above, the XOR operation between the salt and the output of applying HDF on
the password gives an ersatzpassword.

3.4.2 Backup

One of the major factors that hinders the use of hardware-dependent functions
is the fact that the system catastrophically fails in the rare case where the
hardware associated with the HDF fails or is no longer available. Thus, we
outline a secure backup feature that can be used to recover the system in such a
failure scenario. This process utilizes public-key encryption and is initialized by
generating a suitably strong public/private key pair. The private key is never
used in normal operation and can be stored in a secure vault offline. It is only
needed in the recovery process. The public key is used during the system wide
initialization process and during the process of password change.

When the system is initialized to adopt the new authentication scheme, all
the current username ui, password hash αi and salt si triplets are encrypted
using the public key and stored as a backup. In addition, whenever a user

' changes her password, the new value αi (the new hash value resulting from
the new password using the traditional hash) is computed and the new triple
overwrites or is appended to the backup log, along with the ui and si values. As
a result, the backup file with have the following list (ui, si, αi), for every user i
in the system, encrypted under the public key.

If a recovery is needed after failure, the private key is fetched and used to
recover the log file, which is then used to restore a traditional version of the
password file. That file can be instantiated on new hardware, with a new HDF,
and users can be forced to reset their passwords — leading to transition to our
new scheme as they do so.

It worth noting that decrypting the backup file using means of brute-force
should not be practical. Even if the adversary, hypothetically, manages to re­
cover the information in the backup file the resultant password security is at
least as strong as the currently deployed schemes. The cost in storage and
computation to build the recovery log is minimal.

3.4.3 Previous Passwords Storage

It is common for many authentication server to store previously used users’
passwords to prevent users from recycling them [9]. This can put users at risk
when such files are compromised. Although users are not using these passwords
to login, they can be used to impersonate users at other websites. If systems

8

need to store these passwords nevertheless, our scheme provides an additional
advantage over traditional methods of securely storing these passwords.

As our scheme saves the user passwords in a machine-dependent format,
using the function HDF, we can have some assurance that this password cannot
be cracked offline without physical access to the target machine. Later, when
attempting to store the previous passwords used in the system, we can save the
passwords using the HDF function.

3.4.4 Fail-Safe Procedure

We finally point out that in addition to the backup mechanism discussed above
to recover the system in the rare case of HDF function failure, our scheme comes
with an intrinsic fail-safe procedure. In this case, we can use the traditional
authentication method to check the passwords, comparing H(pi | si) with the
stored value βi, where the effective user password becomes the ersatzpasswords.

4 ErsatzPasswords – The Use of Deception

The scheme presented in this paper provides the guarantee that stored users
passwords cannot be cracked without physical access to the hardware-dependent
function (HDF). With the increased complexity of computer systems and tar­
geted attacks computer systems are still vulnerable to security compromise and
the list of stored passwords can be stolen. In addition, the latest Verizon Data
Breach Investigation Report (DBIR) shows that about 50% of attacks thwarting
authentication mechanisms take months or longer to be discovered. Even worse,
88% of these attacks are discovered by external parties. Integrating deceptive
passwords in the design of our scheme addresses these two issues.

When attackers obtain the stolen credentials passwords and apply the crack­
ing process, we could design our scheme to negatively respond to this activity as
in [7]. This allows an attacker, who obtains this file, to notice such behavior and
simply look for other vulnerabilities to exploit. Instead, the scheme is designed
to present an attacker with plausible deceptive passwords leading him to be­
lieve that he successfully cracked the passwords file. When a login is attempted
using the deceptive passwords, system defenders will be immediately alerted to
two facts: (i) that the login credentials database was leaked; and (ii) that an
attacker is currently trying to impersonate the system’s users to gain access.
This design enables system defenders to use internal controls for detecting cre­
dentials’ database leakages, and for alerting them of an ongoing attack before
it succeeds.

4.1 ErsatzPasswords Generation

The process of generating an ersatzpassword for each user account can be formal­
ized as follows. Let Gen(ui, pi) be the function that takes the user’s username
and password and outputs the selected ersatzpassword. This function should

9

provide two essential properties; plausibility and non-deducibility. The former
ensures that an ersatzpassword generated by Gen() is plausible to an adver­
sary as a real user password. The latter provides the guarantee that even when
an adversary knows the scheme, he cannot deduce any information from the
ersatzpassword about the real user password. We define these two properties
more formally later in the paper. We want this function to be randomized and
to give us an ersatzpassword every time we use it. Of course, the generated
ersatzpassword should have the properties discussed later in this paper. We
present below several constructions of how to realize this function and discuss
the advantages and disadvantages of each construction.

4.1.1 Total Password Replacement

When Gen() receives the user password it can generate the ersatzpassword us­
ing the following procedure. For every character in the user password, replace
it with a randomly chosen character from the same category (alphabetical with
alphabetical, a digit with a digit, and a special character with a special charac­
ter). After this replacement process, a cyclic shift is applied to the password by
a random number of positions to generate the ersatzpassword.

We note that this process reveals two properties of the real password to
an adversary when he views the ersatzpassword: the password’s length and its
character composition. In this case adversaries can use probabilistic context-free
replacement to significantly narrow down the space of possible user passwords
using knowledge of the ersatzpassword [27]. One of the potential ways to over­
come this is to randomly truncate or append some random characters to generate
the ersatzpassword.

4.1.2 List-Based

One of the most straightforward ways of generating the ersatzpassword using
Gen() is to randomly choose a word from an internal dictionary of candidates.
This realization of Gen() has two major limitations: the generation of ersatz-
password is not influenced by user-specific information and the existence of such
a list in the system can affect the stealthiness of the deceptive component (the
existence of the list is a sign that such a scheme is currently being used by
the system). The former limitation is not as significant because the attacker
never sees the “real” users’ passwords. The advantage of using such method is
the ability to have high degree of plausibility of the ersatzpasswords. We can
compile a list of the some of the previously leaked passwords used by real users
and use them as our ersatz passwords.

4.1.3 Grammar-Based Methods

Bojinov et. al propose a new method of generating plausible user passwords in
[2] extending the work of Ross et. al. in [19] and Weir in [27]. Their method
is similar to our total password replacement method, however they tokenize the

10

password representing distinct syntactic elements. For example, the password
“wtyy234ou*” has the following token sequence W1 = {wtyy}|D2 = {234}|W3 =
{ou} | S4 = {∗} | . When generating the ersatzpassword, each token will be
replaced with another token, of the same length, from a dictionary.

The main drawback of this method is that it leaks the type, number, and
length of tokens of the original password. We address this concern by enhancing
their implementation of Gen() as follows. After tokenizing the password, we
perform the following:

•	 We can randomly append or delete k tokens. For example, let say we add
token S5 to the above password.

•	 After that, we can randomly shuffle the order of these tokens. In the above
example, the shuffle can give us the following order W3 | S5 | D2 | S4 | W1.

•	 Finally, we randomly choose a word from a dictionary that matches each
token. The chosen token can have length that is different from the original
token. In our example, let’s say that W3 = “abc”, S5 = “!”, D2 =
“10”, S4 = “ + ” and W1 = “test”.

Using the grammar-based method with our modification can generate the
following ersatzpassword “abc!10+test”.

4.1.4 Using User Input

Our discussion so far assumes that the scheme can work without any inter­
action with the system users. However, we note that ersatzpassword can be
constructed with implicit or explicit user input. Many authentication servers
save previously used user passwords in the system preventing users from recy­
cling their old password when their current password expires. This implicit user
input, previously chosen user passwords, can be used as the ersatzpassword for
this user account. With explicit user input, the system can prompt the user to
enter another password during registration and use this as the ersatzpassword
password.

The main advantage of using implicit user input is ensuring a high degree of
plausibly, discussed later, of the ersatzpassword as this has been previously used
as a real password. However, this method suffers from two major disadvantages.
First, if an adversary cracks the password file and recovers the ersatzpassword,
this might put the user in danger as users are known to reuse passwords across
multiple sites [8]. Second, this has the potential of signaling a false alarm in the
case where the user forgets and uses his previous password to login.

Explicit user input requires some changes to the user interfaces. More impor­
tantly, users are likely to pay less attention, choosing very guessable passwords
and/or confusing the ersatz passwords with their real ones leading to the prob­
lem of false alarms. In addition, users may provide an additional, ersatzpassword
that is closely related to their real password, e.g. by appending a number or a
character to their real password to create the ersatzpassword.

A combination of several of these methods may be the best approach.

11

4.2 ErsatzPasswords Properties

Incorporating deception in this scheme actively feeds an adversary cracking a
stolen password file with some ersatzpasswords chosen to trigger internal alarms
when used. These passwords should have the following properties to ensure their
effectiveness.

4.2.1 Plausibility

When an adversary is cracking a password file, these words will present them­
selves as a successful outcome, i.e. when hashed along with the salt they will
match the stored hashed user password in the traditional way. For the effec­
tiveness of the scheme, these need to be plausible user passwords. Thus, some
dictionary and generation algorithms should be present to produce plausible er­
satzpasswords (so their generation is random subject to plausibility rather than
in absolute terms).

We can define a plausible generator function Gen() more formally as using
the following game:

∗•	 The adversary views many runs of the function p = Gen(u, p) where she
∗can choose the values of u and/or p (p is the ersatzpassword).

∗	 ∗•	 p ̄ = Gen(u, p̄) is computed and p ̄ and p̄ are presented to the adversary.

∗•	 The adversary outputs (1) if he believes p ̄ is the ersatzpassword with
probability Pr.

We say that Gen() is a plausible function if the probability for adversary
success is one-half. In other words, the adversary cannot do better than random
guessing which of the two passwords is the ersatzpassword. That is, Pr = 1/2+E
where E is negligible.

4.2.2 Typo-Resilience

When the user is typing her real password, she may make a mistake by mistyping
some characters. The ersatzpassword associated with the account should have
enough edit distance from the actual password to ensure that an alarm is not
triggered by mistake. As the real user password is present when selecting which
ersatzpassword to use, the server can easily compute an edit distance to ensure
that the user does not mistype the ersatzpassword during the login process.

4.2.3 Non-Deducibility

It is essential for the ersatzpassword to not reveal any useful information about
the real user password. Even though we do not actively give adversaries the
ersatzpasswords, we store them with the same level of protection used to store
current real users’ passwords. We define the function Gen() to provide non-
deducibility using the following game:

12

∗•	 The adversary views many runs of the function p = Gen(u, p) where she
∗can choose the values of u and/or p (p is the ersatzpassword).

•	 The adversary chooses two passwords p1 and p2, and send then to function
Gen().

∗•	 Gen() flips a coin and computes p = Gen(u, p1) if she gets heads or
∗	 ∗ p = Gen(u, p2) otherwise. p is then presented to the adversary.

∗•	 The adversary outputs (1) if she thinks p = Gen(u, p1) and (0) otherwise
with probability Pr.

We say that Gen() is a non-deducible function if the probability for adversary
success is half. In other words, the adversary cannot do better than random

∗guessing which of the two passwords was used to generate p . That is, Pr =
1/2 + E where E is negligible.

4.2.4 Policy Adherence

It is essential that ersatzpasswords adhere to any system-wide policy of how
users’ password should appear. For example, some restrictions can be imposed
on the length, format and composition of user passwords. An adversary who sees
any password violating the system’s policy can detect that this cannot be a real
password as the system would not have accepted it. In addition, some websites
mandate that user password cannot be dictionary words. In these cases, using
a password list as the method to generate ersatzpassword can be challenging
as it is not trivial to come up with a long list satisfying each server’s policy.
In addition, any change to the policy would require recomputing the list again.
However, the use of grammar-based approaches, similar to the one illustrated
above, can be much simpler as grammar can become part of the input of the
generator function Gen().

4.2.5 Crackable

Part of the plausibility aspect of our scheme deciding whether all ersatzpass­
words should be crackable or not. Generally, this should not be the case. Many
current systems add more stringent requirements of password choice to high
privileged users. When they become easily crackable, this might increase adver­
sary suspicion. In addition, it would also look suspicious if all user passwords
were crackable. It might be wise to use some randomly-generated ersatzpass­
words within a system to enhance the scheme’s plausibility.

Implementation and Analysis

In this section, we describe the implementation details of the proposed system.
A preliminary evaluation is also presented followed by a discussion driven by
the observed results.

13

5

5.1 Implementation Details

We implemented the proposed scheme by modifying the authentication mecha­
nism in an FreeBSD operating system. The pam unix Pluggable Authentication
Module (PAM), which handles the user authentication process, is modified to
incorporate the proposed system. The design decision is driven by the simplicity
of PAM modules as well as the preservation of expected behavior during user
authentication. The effectiveness of the deception relies on the fact that the
user authentication system appears no different than standard FreeBSD user
authentication.

The proposed system relies on two key components: the hardware dependent
function HDF and the ersatzpassword generation function Gen(). We used
the basic Yubico’s YubiHSM, a USB hardware security module, as our HDF.
Specifically, HDF is a HMAC-SHA1 with a fixed secret key (k) internally stored
inside the HSM:

HDF(p) := HMAC-SHA1k(p)

For the ersatzpassword generation, Gen(), we implemented the List-Based ap­
proach described in section 4.1.2. This choice was mainly driven by the fact that
we can pre-select ersatzpasswords and have more accurate measurements. The
code can be easily modified to choose any ersatzpassword generation algorithm.
As a proof of concept, we used a list of six-character dictionary words as our
ersatzpasswords from [6]. A password is selected from the dictionary of 15,788
and used as the ersatzpassword during user account initialization.

5.2 Analysis

We analyze two authentication processes when comparing our implementation of
the new authentication scheme and the standard FreeBSD authentication. First,
we compare the latency for adding a new user into the system and the latency
for authenticating a valid user. Second, the storage of cryptographic hashes of
the user’s password must appear and behave as in a typical FreeBSD operating
system. In addition to maintaining the fidelity for accurate user authentication
user password hashes must also work with conventional password cracking tools
such as John the Ripper 4 to ensure the plausibility of the ersatzpasswords. We
conducted our analysis on a FreeBSD virtual machine with a single core clocked
at 2.7 Ghz.

5.2.1 Password Update and Authentication Latency

To evaluate the performance of our authentication module, we compare the
latency with the standard pam unix module found in FreeBSD. Two measure­
ments are considered: the latency to update an existing password and the la­
tency to authenticate a user. The password is fixed to “password” for all exper­
iments. Additionally, the authentication evaluation also considers the latency
of using “ersatz” for the ersatzpassword. The evaluation consists of running the

4http://www.openwall.com/john/

14

(a) Distribution of password
update latency in our system.

(b) Distribution of password
update latency in FreeBSD.

Figure 1: Comparison of update latency in the modified and standard FreeBSD.

pam chauthtok and pam authenticate as found in passwd and login. Pass­
word update and authentication latencies are sampled 1000 times independently
on an idle FreeBSD virtual machine.

As shown in figure 1, the median latency time to update a user’s password
for the proposed ersatz system is 287.3 ms while the latency on a standard
FreeBSD system is 8.8 ms. These results indicate that further optimization is
needed to reduce the latency for the our module to match the expected behavior
of the standard FreeBSD pam unix module.

A similar pattern is observed when comparing authentication latency. Figure
2 illustrates the latencies in system response observed when providing a valid
password and an ersatzpassword in our system in comparison with the latency
in system response when providing a valid password in a conventional FreeBSD
system. Note that the latencies difference compared between our system and
the conventional system are similar to the password update latency. The median
system latency for authentication in our system is 277.76 ms when providing
the correct password and 281.95 ms when providing the ersatzpassword. The
system’s latency for authenticating a valid user on a standard FreeBSD system
is 5.14 ms.

We note that there are a number of reasons for the observed performance
difference. The YubiHSM APIs are written in python and the implementation
of our scheme is written in C as a modified pam unix module. A call from C
to Python has an impact on the system performance. To validate our concern,

15

6

5we used pmcstat to profile our modified pam unix module. The results from
pmcstat showed that the largest bottleneck is found in the libpython2.7.so
library. Specifically, the bottleneck is PyEval FrameEx which interprets and
executes bytecodes from a given frame. Another bottleneck is PyObject Malloc
which is indirectly called when converting a C string to a Python string. Such
conversion is needed in our modified pam unix module when initializing the
YubiHSM and generating a salt or the hash.

Another reason is that we are using a virtual machine and FreeBSD in that
environment does not have a direct access to the USB port to call the YubiHSM
APIs. A third reason for the performance difference may be the fact that we are
using a basic HDF function, namely the YubiHSM, which is not optimized for
performance. A built-in device rather than a USB device might also provide a
speed improvement. We believe that a combination of optimizations might bring
the times close enough that it would not be obvious to an observer what might
be in use on the system. If that is not a consideration, the additional latency
of the current, unoptimized implementation would be clearly insignificant in
normal operation.

5.2.2 Crackable Ersatz Hashes

To demonstrate that the our scheme produces crackable hashes, we gener­
ated 1000 hashes with the real passwords of password1, password2, · · · ,
password1000 and ersatzpasswords randomly selected from our list of six-character
dictionary words. We ran John the Ripper on all 1000 hashes created by our
scheme to crack the generated hashes. John the Ripper successfully cracked all
1000 hashes and retrieved all the ersatzpasswords.

One interesting observation is that if two users select the same exact pass­
word and if the ersatz password selected is less than the length of the salt, then
some of the bits in the salt are the same between both users. Such an anomaly
would be unlikely a conventional master.passwd file and may raise suspicion of
the deception. This can be mitigated by properly generating ersatzpasswords
to avoid such situations.

Conclusion

Passwords have been widely regarded as one of the weak points of securing
any digital system. They come with their inherent weaknesses in how they
are chosen, stored, memorized and managed. In this paper, we presented a
scheme that address the wide-spread threat of stealing hashed password files
and cracking them offline to impersonate user accounts to further infiltrate
computer systems. Our scheme makes it impossible for an adversary to recover
user passwords from their hashed format without physical access to the targeted
machine. We show how can we instantaneously protect any system with the
involvement of its user. Furthermore, we discussed how we can deceive an

5https://wiki.freebsd.org/PmcTools

16

(a) Distribution of user au­
thentication latency in our
system using a valid password.

(b) Distribution of user au­
thentication latency in our
system using an ersatzpass­
word.

(c) Distribution of user
authentication latency in
FreeBSD.

Figure 2: User authentication latency in modified and standard FreeBSD.

17

attacker who steals the hashed users’ passwords file by presenting him with
ersatzpasswords that work as “decoy” passwords that trigger an alarm when
used to access the system. We discussed how to generate these passwords and
their properties. Finally, we implemented our scheme discussing the design
decisions and the performance analysis. Our goal is with the deployment of our
scheme, we can end the possibility of cracking user passwords and, at the same
time, detect any exflitration and cracking attempt on users’ hashed password
file.

7 Acknowledgments

The authors would like to extends their thanks to Jeff Avery, Dan Trinkle and
Keith Watson for their time, discussion, and ideas they provided. Portions of
this work were supported by National Science Foundation Grants CPS-1329979,
Science and Technology Center CCF-0939370; by an NPRP grant from the
Qatar National Research Fund; NGCRC grant; and by sponsors of the Center for
Education and Research in Information Assurance and Security. The statements
made herein are solely the responsibility of the authors.

8 Availability

A fully implemented pam unix module can be obtained from https://github.
com/cngutierr/ErsatzPassword

References
[1]	 Bercovitch, M., Renford, M., Hasson, L., Shabtai, A., Rokach, L., and Elovici,

Y. HoneyGen: An automated honeytokens generator. In Intelligence and Security In­
formatics (ISI), 2011 IEEE International Conference on (2011), IEEE, pp. 131–136.

[2]	 Bojinov, Hristo and Bursztein, Elie and Boyen, Xavier and Boneh, D. Kamouflage
: Loss-Resistant Password Management. In Proceedings of the 15th European conference
on Research in computer security (2010), Springer-Verlag, pp. 286—-302.

[3]	 Bonneau, J. The science of guessing: Analyzing an anonymized corpus of 70 million
passwords. In Proceedings - IEEE Symposium on Security and Privacy (2012), pp. 538–
552.

[4]	 Bonneau, J., Herley, C., Van Oorschot, P. C., and Stajano, F. The quest to replace
passwords: A framework for comparative evaluation of web authentication schemes. In
Proceedings - IEEE Symposium on Security and Privacy (2012), pp. 553–567.

[5]	 Cappos, J., and Torres, S. PolyPasswordHasher: Protecting Passwords In The Event
Of A Password File Disclosure. Tech. rep., 2014.

[6]	 Chew, J. Common Six-Letter Words.

[7]	 Cvrcek, D. Hardware Scrambling - No More Password Leaks. Tech. rep., 2014.

[8]	 Das, A., Bonneau, J., Caesar, M., Borisov, N., and Wang, X. The Tangled Web
of Password Reuse. In NDSS ’14: The 2014 Network and Distributed System Security
Symposium (San Diego, CA, USA, 2014).

18

[9]	 Defense Information Systems Agency (DISA) for the Department of Defense
(DOD). Application security and development: Security technical implementation guide
(STIG). Tech. rep.

[10]	 DeLuca, M., and Pepitone, J. eBay Warns Customers to Change Passwords After
Database Hacked, 2014.

[11]	 Gaylord, C. LinkedIn, Last.fm, now Yahoo? Don’t ignore news of a password breach.

[12]	 Gross, D. 50 million compromised in Evernote hack, Mar. 2013.

[13]	 Juels, A., and Rivest, R. L. Honeywords: making password-cracking detectable. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications se­
curity (2013), ACM, pp. 145–160.

[14]	 Klein, D. V. Foiling the Cracker; A Survey of, and Improvements to Unix Password
Security. In 14th DoE Computer Security Group (May 1991).

[15]	 Kontaxis, G., Athanasopoulos, E., Portokalidis, G., and Keromytis, A. D. SAuth:
protecting user accounts from password database leaks. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security (2013), ACM, pp. 187–
198.

[16]	 Perlroth, N. Hackers in China Attacked The Times for Last 4 Months.

[17]	 Rao, S. Data and system security with failwords, 2005.

[18]	 Requirements, S. Hardware Security Module (HSM). Security (2009), 1–26.

[19]	 Ross, B., Jackson, C., Miyake, N., Boneh, D., and Mitchell, J. C. Stronger pass­
word authentication using browser extensions. In Proceedings of the 14th conference on
USENIX Security Symposium - Volume 14 (2005), p. 2.

[20]	 Schechter, S., Brush, A. J. B., and Egelman, S. It’s no secret Measuring the security
and reliability of authentication via ’secret’ questions. In Proceedings - IEEE Symposium
on Security and Privacy (2009), pp. 375–390.

[21]	 Shamir, A. How to share a secret. Commun. ACM 22, 11 (Nov. 1979), 612–613.

[22]	 Spafford, E. More than Passive Defense, 2011.

[23]	 Spitzner, L. Honeytokens: The other honeypot, 2003.

[24]	 Stoll, C. P. The Cuckoo’s Egg: Tracing a Spy Through the Maze of Computer Espi­
onage, 1989.

[25]	 Suh, G. E., and Devadas, S. Physical unclonable functions for device authentication and
secret key generation. In Proceedings - Design Automation Conference (2007), pp. 9–14.

[26]	 Weir, M., Aggarwal, S., Collins, M., and Stern, H. Testing metrics for password
creation policies by attacking large sets of revealed passwords. In Proceedings of the 17th
ACM conference on Computer and communications security (2010), ACM, pp. 162–175.

[27]	 Weir, M., Aggarwal, S., De Medeiros, B., and Glodek, B. Password cracking using
probabilistic context-free grammars. In Proceedings - IEEE Symposium on Security and
Privacy (2009), pp. 391–405.

[28]	 Yue, C., and Wang, H. BogusBiter: A transparent protection against phishing attacks.
ACM Transactions on Internet Technology (TOIT) 10, 2 (2010), 6.

[29]	 Yuill, J., Zappe, M., Denning, D., and Feer, F. Honeyfiles: deceptive files for intru­
sion detection. In Information Assurance Workshop, 2004. Proceedings from the Fifth
Annual IEEE SMC (2004), IEEE, pp. 116–122.

19

