
CERIAS Tech Report 2015-15
DisARM: Mitigating Buffer Overflow Attacks on Embedded Devices

 by Javid Habibi, Ajay Panicker, Aditi Gupta, and Elisa Bertino
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

DisARM: Mitigating Buffer Overflow Attacks on

Embedded Devices

Javid Habibi, Ajay Panicker, Aditi Gupta, and Elisa Bertino
{jhabibi, apanicke, aditi, bertino}@purdue.edu

Purdue University, West Lafayette IN 47907

Abstract. Security of embedded devices today is a critical requirement
for the Internet of Things (IoT) as these devices will access sensitive in­
formation such as social security numbers and health records. This makes
these devices a lucrative target for attacks exploiting vulnerabilities to
inject malicious code or reuse existing code to alter the execution of
their software. Existing defense techniques have major drawbacks such
as requiring source code or symbolic debugging information, and high
overhead, limiting their applicability. In this paper we propose a novel
defense technique, DisARM, that protects against both code-injection
and code-reuse based buffer overflow attacks by breaking the ability for
attackers to manipulate the return address of a function. Our approach
operates on arbitrary executable binaries and thus does not require com­
piler support. In addition it does not require user interactions and can
thus be automatically applied. Our experimental results show that our
approach incurs low overhead and significantly increases the level of se­
curity against both code-injection and code-reuse based attacks.

Keywords: Internet of things, return oriented programming, control
flow integrity, security, malware, embedded systems

1 Introduction
Recently, everything from refrigerators to sprinkler systems has evolved into
smart devices that are pervasively connected to the Internet and powered by
embedded processors. These devices are known collectively as the Internet of
Things (IoT). Due to their positioning they have the potential to become more
prominent in everyday lives than mobile phones. Cisco’s Internet Business Solu­
tions Group estimated 12.5 billion connected devices in existence globally as of
2010 with that number doubling to 25 billion by 2015 [15]. However, whereas on
one side of the IoT will make possible many novel applications, such as in smart
and connected health, on the other side IoT may increase the risk of data privacy
breaches and cyber security attacks. A recent study by HP about the most pop­
ular devices in some of the most common IoT niches reveal an alarmingly high
average number of vulnerabilities per device [14]. On average, 25 vulnerabilities
were found per device. For example 80% of devices failed to require passwords
of sufficient complexity and length, 70% did not encrypt communications to
the Internet and local networks, and 60% contained vulnerable user interfaces
and/or vulnerable firmware [14]. Several attacks have already been reported in

mailto:bertino}@purdue.edu

the past on several other embedded systems such as the ones deployed in cars
[47, 44, 10] and sensor networks [33]. We can expect similar attacks to be carried
out against IoT embedded devices. Securing embedded devices is thus a critical
fundamental step in securing the IoT.

In this paper, we focus on two forms of attacks that exploit buffer over­
flows on IoT embedded devices, namely code-injection and code reuse attacks.
These attacks form a substantial portion of all security attacks due to the fact
that buffer overflow vulnerabilities are so common and easy to exploit. Original
buffer overflow exploits involved the injection of malicious code [2]. This allows
the attacker to subvert the execution of the target program and take control.
However, the wide adoption of the W ⊕ X protection technique by which all
writable addresses are non-executable and vice-versa has rendered code injec­
tion attacks ineffective. By contrast, recent code-reuse attacks, such as return-
oriented programming (ROP) [39], do not require code injection. These attacks
allow an attacker to easily modify the execution path of the target program by
reusing existing executable code that primarily exists in the application binary
and shared libraries such as libc. In code-reuse, the attacker identifies small
sequences of instructions, called gadgets, that end in a ret instruction. By
carefully placing a sequence of return addresses on the stack, the attacker can use
these gadgets to perform arbitrary computation. ROP attacks have continued
to evolve to utilize gadgets that end in both jmp or call instructions [9].

Since code-reuse based attacks rely on detailed knowledge about the location
of code in the executable and libraries, the intuitive solution is to randomize
process memory images. Address obfuscation [4] and ASLR [36] are two well-
known randomization techniques against such attacks. However, they suffer from
the major drawback of small randomization spaces and have been shown to
be vulnerable on 32-bit architectures [43, 41]. In considering a new protection
technique, we start with two observations. First, the main shortcoming of earlier
randomization-based approaches is insufficient entropy, thus making brute-force
attacks feasible. Second, the critical step of a buffer overflow attack is to overwrite
the return address in order to manipulate the value of the program counter (PC).

Our protection technique, referred to as DisARM, introduces a validation
technique upon any interaction with the PC, (i.e. ret, call, or jmp instruc­
tion). Our validation technique consists of inserting a static check statement
before any critical instruction to verify that the program is in the correct state.
This invalidates the ability for an attacker to redirect the execution of the target
program. By utilizing a hashmap of target addresses XORed with the correct
PC values a constant time look up is performed upon our constructed hashmap
to validate that the program is in the correct state. Upon a failed validation
attempt we force the program to exit, thus stopping an attack. Our protection
technique has several advantages. First it stops both forms of buffer overflow
attacks with minimal overhead. Second it can be applied to any ELF binary
without requiring the source code of an application. Finally it offers an alterna­
tive to approaches that dynamically monitor critical data sections such as return
addresses.

We are not the only researchers to investigate binary modifications for buffer
overflow attack mitigation. As discussed in section 2.3, the other approaches
suffer from one or more of the following limitations. First, none of the proposed
defense techniques is able to mitigate both code injection and ROP based at­
tacks. Second, some of the existing defenses require source code access or other
additional information that is generally not available. Third, the overhead of
DisARM is constant when compared to the dynamic techniques that incur over­
head throughout the execution of the target application. DisARM addresses
these limitations and provides a strong and efficient defense techniques against
buffer overflow attacks.

As with any defense technique, there are always costs that must be consid­
ered. In our proposed defense technique, there is a one time overhead when ap­
plying DisARM to the target binary and a runtime overhead during the process
execution. We have evaluated the time to apply DisARM to compiled binaries
on a selection of commonly used applications and Linux coreutils, showing
that the performance penalty for DisARM is reasonable in the average case.
Our work demonstrates that, although DisARM imposes certain performance
costs, its success in thwarting buffer overflow attacks makes DisARM a feasible
approach for embedded systems that prioritize execution integrity over optimal
performance.

The remainder of this paper is structured as follows. We start by surveying
buffer overflow attack and proposed defenses in Section 2. In Section 3, we intro­
duce the target platform for DisARM and describe our approach in more detail.
Section 4 discusses the implementation details of DisARM. Section 5 shows the
results from various experiments performed to evaluate our approach. Finally
we conclude in Section 7.

2 Background and Related Work
In this section we start with a brief summary of attacks based on buffer overflows
and existing defense techniques, and then introduce our target platform.

2.1 Code Injection
Code injection attacks are one of the first publicized exploits utilizing a vulner­
able buffer. This form of exploit allows the execution of arbitrary code under
the attacker’s control, potentially allowing the attacker to seize control of an
entire program or even an entire system (through exploitation of vulnerable tar­
gets with elevated privileges). In order to accomplish this, an attacker injects
malicious code into a vulnerable target and then redirects the execution to the
injected code [2]. In order to perform such form of attack, several prerequisites
must be met. First, the targeted program must have a memory corruption vul­
nerability. Second, there must be a writable and executable region of memory.
Third there must be a way to redirect the processor to execute the injected code.
The first and third requirements are generally met through a buffer overflow that
allows the attacker to push arbitrary code onto the stack and then overwrite the
stack return address to redirect to control the attack payload. The second re­
quirement requires finding an area of memory that can both be written to and

executed. The processor then begins to execute the attack payload, granting the
attacker control of the current thread.

2.2 Code Reuse

Return oriented programming (ROP) is a technique that evolved from buffer
overflow attacks. As discussed in Section 2.1 previous attacks depended on the
presence of an executable stack. However the adoption of W ⊕ X (also known
as Data Execution Prevention – DEP) under which a memory page is either
writable or executable, but not both at the same time, has made such attacks
ineffective. Code reuse attacks [39] bypass DEP protection. Instead of executing
injected code, attackers identify small sequences of instructions, called gadgets,
that end in a ret instruction. By carefully constructing a sequence of addresses
on the software stack, an attacker can manipulate the ret instruction to jump
to any gadget to perform arbitrary computations. Code reuse techniques work in
both word-aligned architectures like RISC [8] and unaligned CISC architectures
[39]. These techniques have been shown to be able to perform privilege esca­
lation in Android [17], create rootkits [29], and even inject code into Harvard
architectures [23]. Additionally the same technique has been used to manipulate
other instructions, such as jmp, and their variants [9, 13, 6].

2.3 Defense Techniques

Several defense techniques for mitigating buffer overflow attacks have been pro­
posed. As mentioned before, DEP is the most widely used. However there are a
lot of ARM based microcontrollers that do not support DEP as this protection
technique was only introduced in ARMv6 and newer architectures [3].

Address obfuscation [4] and ASLR [36] are two well-known defense tech­
niques against ROP attacks. However, they suffer from small randomization and
have been shown to be vulnerable on 32-bit architectures [41, 40]. Instruction
set randomization (ISR) [31], another well known defense technique, has also
been shown to have similar limitations [43]. Several fine grained randomization
techniques have been proposed as a defense against code-reuse attacks such as
ILR [27], In-place randomization [35], STIR [45], Marlin [26], XIFER [20], Li­
brando [28], Code Shredding [42], ASR [25], Genesis [46], nop-insertion [24] and
Bhatkar et al. [5]. Though these defenses have low overhead, they are consider­
ably more invasive in that they require extensive program restructuring which
often lead to instability in larger binaries. Also those techniques are not able to
account for different optimization levels of binaries and are unable to protect
against code-injection based attacks.

Compiler based solutions that create code without return instructions have
also been proposed [34, 32]. However those solutions are unable to handle ROP
variants such as jump oriented programming [6] attacks. Another mitigation
tactic for code reuse attacks is to detect and terminate the attack as it oc­
curs. Examples of these include DROP [11], DynIMA [18], CCFIR [49], CFL [7],
ROPdefender [19], [12] and [50]. The dynamic monitoring approach used by
these techniques make them unsuitable for our target platform where the pro­
cessor is limited in comparison to its x86 variants.

Lastly there have been techniques proposed to reinforce the control flow on
ARM. Two most notable utilities are MoCFI [16] and control-flow restrictor [37].
However these techniques are both unsuitable for our application. While they are
able to reinforce the control flow integrity of a target application, the overhead
incurred by the verification is far too great. Within MoCFI, the CPU overhead
of the verification grows in relation to the number of jumps as it must tra­
verse the binary graph that is included within the binary after MoCFI has been
applied [16]. Pewny takes a different approach by integrating itself within the
compiler eliminating the need for disassembly and construction of a control flow
graph but the verification process is very long [37]. For each valid target of 1
to n, a comparison is made at the end of the function before the final jump in­
struction. This incurs a large CPU overhead within recursive functions or loops
making at worst up to n function calls. As discussed later DisARM, addresses
these issues through the usage of a hashmap.

2.4 Challenges in securing embedded devices
In most x86 based defenses it is acceptable to introduce performance overhead
of a factor of 2x [19, 11, 18]. This however is not the case with embedded devices
since these devices have low power and very limited resources available. These
limited resources include CPU cycles, memory and code size. These were the
factors considered in the design of DisARM.

With respect to the limited cycles available, the modifications done to the
target binary cannot require too much computation. The reason is that different
embedded systems have strict deadlines that must be met and typically operate
at very high CPU and memory usage already. Therefore any defense implemen­
tation cannot have a large performance impact due to possible interrupts or
deadlines that must be met in the protected applications.

x86 vs ARM The x86 architecture’s calling convention is set up to mainly use
two instructions, one to call a function and one to return from it. The call
and ret assembly instructions are the instructions that control the flow for an
application. In addition, there are jump instructions that allow the execution
to jump to an address stored in a register. The ARM architecture has many
differences in the way in which the flow is controlled. The ARM architecture
does not have call or ret instructions but it has something similar. The ARM
assembly includes the use of a linking register, lr, that is updated when a
function is called with the branch and link instruction bl. This works exactly
like a call instruction, with the difference that the return address is stored into
the lr register, instead of being pushed onto the stack as in x86. It is thus up
to the programmer or compiler to make sure that the value is not lost.

Within the strategy that the ARM architecture utilizes there is a special case
to highlight. If the function being utilized does not have any further function
calls, it will not ever have an lr register update. In order then for these functions
to ‘return’, they branch on the value stored in lr by executing the instruction bx
lr. This implies that the value in lr has not changed since the beginning of the
function. Due to this, even if there were a vulnerability within such a function,
the attacker would not be able to redirect the control since the lr register is

never pushed onto the stack. However this is not the case for extended nested
function calling for which the compiler has to push lr onto the stack in order
to preserve the return address. Through the combination of pushing lr onto
the stack and branching, we get the same effect as a call in x86.

In order to return from a function, the ARM processor pops the value of
the lr register that is on the stack into either the lr register or the PC. Once
such action is executed, the program will start to execute the instruction at the
address referenced by the old value of the lr register which is the address from
where the function was called from. By contrast in x86 the ret instruction both
pops off the stack the address to which the execution has to jump and jumps
to such address. Such characteristic of ARM simplifies our defense techniques.
Within DisARM we only need to look for and verify any instruction that pops
values into the lr register or the PC as these are the entry points into the
execution flow of the program.

3 DisARM Defense Technique

We now describe our DisARM defense technique to mitigate buffer overflow
based attacks targeting the Raspberry Pi platform. DisARM uses a fine-grained
analysis of the binary to find all critical interactions that manipulate the hard­
ware PC and verifies any change to the PC before the change is applied. For each
such critical instruction, we insert a verification block immediately before the
critical instruction in order to evaluate whether the target address is valid with
respect to the current instruction the program is executing. If the target address
fails the verification, the program is forced to exit (see Figure 2). Our technique
prevents the attacker from successfully utilizing an overwritten return address
to begin a buffer overflow attack. We now introduce our basic assumptions for
a buffer overflow attack scenario and then present the details of DisARM.

3.1 Enabling Factors and Attack Assumptions

Based on our survey of buffer overflow based attacks and defenses, we have
identified distinct characteristics and requirements for a successful exploit. The
fundamental assumption and enabling factor such attacks is as follows:

The attacker is able to modify the return address of the exploited function.
That is, if an attacker overflows a buffer, the attacker is able to force the exe­
cution to return to a different address than intended and either inject or reuse
existing code.

Given this we assume that the vulnerable application must have a buffer
overflow or heap overflow vulnerability that can be leveraged by the attacker
to inject an exploit payload. Such payload may either contain native machine
code to be executed or a string of gadget addresses previously identified by the
attacker. The attacker is assumed to have access to the target binary that has
undergone DisARM processing. The attacker is also assumed to be aware of the
functionality of DisARM. Our approach protects against both remote and local
exploits as long as the attacker is not able to modify the target binary while
being executed.

Fig. 1: Example of a critical instruction	 Fig. 2: Example execution of a Dis­
ARM’d binary

3.2 Target Platform
The platform targeted in these attacks is the single board computer Raspberry
Pi. This is a popular example of an embedded platform and a prime example of
the hardware used in IoT devices. Raspberry Pi is based on an ARM11 32-bit
RISC processor clocked at 700 MHz which implements the ARMv6k architecture.
The ARM11 microprocessor is a Von Neumann Architecture processor. In this
architecture, a processor has one physical signal and storage for instructions and
data. This allows the processor to load instructions or read/write values from the
same section of memory. This is a critical factor in allowing code injection based
attacks. In addition, the program space in ARM is 32-bit word aligned with fixed
instruction length. Thus, within DisARM we do not have to handle unintended
instruction sets from jumping amidst of a variable length instruction. For the
purpose of DisARM we look at the ARM instruction set and not the Thumb or
Thumb2 instruction set that ARM processors are also compatible with.

3.3 Critical Instructions
Since DisARM reinforces the execution path of a given binary by inserting a
verification block before a critical instruction, we must first define what is a
critical instruction. A critical instruction is one that takes input from the stack
and leads to an update to the PC. In the ARM architecture critical instructions
are all the instructions of the form pop {...,pc} or pop {...,lr}, which
are instructions that remove the next X values off the top of the stack and
immediately set the PC to the last of these values (in the pop pc case) or later set
the PC to the value popped bx lr. No other instructions need to be monitored
as discussed in Section 2.4 because of the fact that the ARM architecture is a
RISC architecture. An example of a piece of code containing a critical instruction
is shown in Figure 3. The code in figure 3 is a code snippet from Apache with
a pop instruction that updates the values of both registers r4 and pc before
the conclusion of the varbuf cleanup function.

3.4 Preprocessing Phase
As mentioned above, DisARM operates at the instruction granularity to rein­
force the control flow of the target application. This requires us to identify the

critical instructions, within the user defined functions, that require verification.
In the preprocessing phase, the ELF binary is thus parsed to extract the critical
instructions and their location.

3.5 Hashmap Construction Phase
Once the instructions and their locations have been identified, a key is calculated
from the target address ⊕ PC value. Since the number of keys per binary is
static, the most efficient solution is to use a hash function that minimizes the
number of collisions. The straight-forward solution would be to use a crypto­
graphic hash function but as discussed in section 2.4, CPU cycles are limited.
This would not allow for the calculation of a cryptographic hash within every
verification block. Instead, due to the nature of the data set, we utilize a mini­
mum perfect hash function (MPHF). The algorithm we use in the generation of
a minimum perfect hash is as follows:

1. Given key	 K and square array S of dimension t, place each key in S at
location (x,y), where x = K / t, y = K mod t.

2. Sort each row in	 S in descending order according to the number of elements
it contains.

3. Slide each row within	 S of an amount A such that no column has more than
one entry. Record the shift amount in an array R.

4. Collapse S into a linear array C.

Thus the hash function uses t and the displacement A calculated in step 3
to locate K such that index = R[x] + y and H(K) = C[index]. For example,
if we were to validate the key 15, x = 2 (15 / 6 by integer division) and y = 3
(15 mod 6). Then the index of the key would be at location index = 8 + 3 = 11
(R[2] + 3). As it stands C[11] does in fact equal the key value of 15.

By using the MPHF we can construct a hashmap resulting in the mini­
mum number of collisions over the set of keys storing the target addresses to
be validated within the verification blocks. Upon completion of the hashmap
generation, the offset array R and hashmap array C are then appended to the
binary in the .disarm section.

3.6 PC Lock Phase
After constructing the hashmap, we must lock down each instruction that up­
dates the PC from the stack. To do this we insert our verification block before
each critical instruction. By doing this, the relative offsets between instructions
are changed and this may affect branch instructions. The reason is that the
original destination address for branch instructions is a relative address. Thus,
when verification blocks are inserted during the PC lock phase, the targets of
these branch instructions are no longer valid and must be corrected to point to
the desired location. This is achieved by performing offset patching as discussed
next.

3.7 Patching Phase
Upon completion of the PC lock phase, the target binary needs to be patched
in multiple areas. Due to the additions made in the .text section for the

Fig. 3: Verification Block Assembly	 Fig. 4: Example of MPHF construction
process over a sample set of keys

verification blocks and the addition of data for the hashmap in the .disarm
section, the ELF header needs to patched in addition to all branch and load
instructions within the .text section that have been shifted during the PC
Lock Phase. Within the ELF header, both the program header and the section
header table need to be patched to account for their new locations.

After completing the ELF patching, each relative load and branch instruction
offset by the modifications needs to be patched to point to the proper location.
This is achieved by performing patching as the DisARMed binary is generated.
During this process, we utilize the information gathered earlier during the Pre­
processing Phase such as the original target location of load and branch. With
this information and the number of verification blocks installed, we can calculate
the new relative offsets for each branch/load instruction to properly patch the
binary. This is discussed in more detail in section 4.4

4 Implementation Details
We have implemented a DisARM prototype that can operate on any C based
ELF binary without requiring its source code. The implementation was done for
32-bit ARMv6 architecture on a system running the Raspbian operating system
[22]. The implementation of DisARM involved two major components. The first
component consists of preprocessing and constructing the hashmap. The second
component deals with applying the verification blocks to the PC and patching
the binary. We discuss the details of DisARM implementation below.

4.1 Preprocessing
Before we can reinforce the binary, we need to identify the critical instructions
and every instruction that will be affected by the installation of the verification

blocks. This includes locating all load, relative jump branches, function calls,
returns and relative load instructions as these will all needed to be patched. In
addition, while parsing the binary, to find these instructions we track the number
and location of each critical instruction. To accomplish this we utilized a java
based elf parsing library [48]. This library allows us to read in the entire ELF
binary and represent it objectually, thus allowing us to easily update the right
sections of the file. However this library does not have all the functionality that
we were looking for. In its stock form it treated the .text section as a block
of bytes. We extended this library to also parse each individual instruction byte
by byte in order to identify all the information needed for the patching phase.

4.2 Hashmap Construction Phase
In this stage, the hashmap to be utilized in the verification blocks is constructed.
The first step is to take each PC value and target address of a critical instruction
found, XOR their values to generate a key for that pair, and add them to the key
list. After generating all keys that will be used in the hashmap, we can construct
the MPHF as described by the algorithm in section 3.5. Once both the MPHF
and the hashmap are generated, the two arrays (offset array R and flattened
hashmap C) are appended to the binary within their own section.

4.3 PC Lock phase
Upon completion of the hashmap construction phase, we must install the ver­
ification blocks at the critical instructions to reinforce the program flow of the
target binary. Each critical instruction is read in ascending order and wrapped
in the verification block, as shown in figure 5. Each verification block utilizes
multiple constants that are used during its execution. These include the MPHF
t value, the location of the offset table, and the location of the hashmap. During
this phase we also track how many verification blocks there were previous to the
currently installed block as this information is utilized in the patching phase.

The challenge in this phase was designing and constructing a verification
block that does not depend on any external resources aside from the global
hashmap and offset table in order to perform that validation. To accomplish
this, we followed the same methodology that GCC compiler uses during com­
pilation. Each constant used within the verification block is appended to the
end of the verification block after the final branch. This way they are available
as immediate values that can be loaded into registers during the execution of a
verification block. In addition since each verification block is going to be the pri­
mary source of runtime overhead, it had to be minimized. To accomplish this we
replaced the expensive division operations with multiplications using magic num­
ber constants that provided the same functionality while also hand-optimizing
the entire verification process. This reduced the verification block size down to
25 instructions for a combined total of 34 cycles of execution.

4.4 Patching phase
In this stage all patching is performed in the same pass when the DisARMed
binary is written. This is done by using the information available from the pre­
processing stage. As we process the new binary, whenever a load, relative jump

branches, function calls, return or relative load instruction is encountered, we
compare the instruction’s location within the new binary to the previous binary.
If there is a difference due to the installation of a verification block, we generate
a patch that will then point the specified instruction to the correct location.
However there is a special case with relative load as a relative load instruction
and an instruction loading a constant into a register have the exact same sig­
nature. To distinguish between these instructions, we analyze the value being
‘loaded’ into the specified register. If the value is within the program space then
the instruction is a relative load and it needs to be patched.

Upon completing the patching for all instructions identified by the prepro­
cessing stage, we must patch the ELF header. The reason is that due to the
installation of the verification blocks, the .text section has grown which offsets
all subsequent sections (.fini, .data, .rodata etc etc...). In addition, we need
to insert an additional entry in the program header of the ELF file to recognize
the new .disarm section we include. This section contains the hashmap and
offset table, generated by the hashmap construction phase (see section 4.2).
Finally, a patch is applied within the ELF header to the location of start as
its location may have shifted during the installation of verification blocks in the
.text section.

5 Evaluation
We now describe various experiments that we performed to evaluate the Dis-
ARM technique. These experiments test the effectiveness of DisARM and also
the performance overhead incurred due to the PC verification. These experi­
ments were performed on a Raspberry Pi Model B+ with 512MB of RAM. This
Raspberry Pi Model had W ⊕ X and ASLR enabled during our experiments. We
used coreutils binaries, some commonly used application binaries (see figure
6) and byte-unixbench [1] benchmarks to conduct various experiments. In addi­
tion to measuring the overhead of instrumenting binaries to apply the DisARM
technique, we utilized a Windows 8.1 Machine with an i7 processor and 8GB of
RAM. To launch attacks against DisARM-protected binaries, we use ROPgadget
(v5.3) [30], an attack tool that automatically creates exploit payload for ROP
attacks by searching for gadgets in an application’s executable section.

5.1 Effectiveness
First, we tested the effectiveness of DisARM using a test application that has
a buffer overflow vulnerability. The application, elf-ARM-ls is a test binary
as part of the ROPgagdet test binaries. We used ROPgadget on this target
application and found 1392 unique gadgets. These were sufficient to craft a
code exploit payload. When this exploit payload was provided as an input to
the unprotected binary, and we were able to redirect the execution. Next, we
applied DisARM to this application to lock down the PC and ran the ROPgadget
again to find the new locations of the gadgets. We then executed the DisARM­
binary with the new payload and it failed. This highlights the crucial factor of
buffer overflow attacks that require them to successfully manipulate the PC by
overwriting return addresses.

Fig. 5: Target Applications used in the evaluation of DisARM

5.2 DisARM utility overhead
When an application is being deployed to an IoT device, DisARM identifies all
critical instructions for verification blocks to be installed, and every instruction
that will be affected by the installation of the verification blocks that is used
later in the patching phase. This computation is unique to each binary. The
next phase involves generating the hashmap from all the critical instructions
found and the installation of the verification blocks. The last phase involves
patching all instructions that were affected by this instrumentation. DisARM
processing cost is the combined overhead of all four phases. We measure DisARM
processing overhead on the same set of binaries (see figure 6) used throughout
the evaluation.

Our first evaluation of DisARM was to measure the execution overhead of
applying it to each test application. We noticed that there was a direct correla­
tion to the number of verification blocks being installed within the application
and the total runtime of DisARM. Our average runtime was 193.5 seconds over
our sample applications. This is due to the fact that we tested on multiple large
binaries that had 3000+ verification blocks installed such as Perl, and Python.
However the median execution time 5.23 seconds. This is quite reasonable as
the larger the target application, the more processing is required for DisARM to
reinforce the control flow. Notice that this overhead is incurred only once. Since
DisARM modifies the binary so that each critical instruction is secured, it does
not need to be run before every execution of the application.

5.3 Efficiency
Due to the hashmap that DisARM utilizes in the verification process, as dis­
cussed in section 3, DisARMed binaries incur a runtime memory overhead. This
overhead is constant per binary due to the fact that each hashmap is unique to
the target application. We evaluated the memory efficiency of DisARM by tak­
ing 14 common applications (see figure 6), we expect to be widely used in IoT

Binary Original Memory
Usage

of Verification
Blocks

Additional Memory
Usage (KB)

% increase

Apache 3.6 MB 1287 19.11 0.518
Bash 2.7 MB 2766 63.88 2.310
sftp 332 KB 215 7.95 2.395
Git 524 KB 3983 87.04 16.611
Gzip 220 KB 156 7.34 3.336
Make 110 KB 346 10.37 9.427
Nano 852 KB 817 19.05 2.236
Tar 206 KB 891 17.64 8.563
Vim 1.2 MB 5836 148.03 12.047
Lighttpd 1.2 MB 369 17.32 1.410
Perl 2.8 MB 3509 470.41 16.407
Nginx 1.1 MB 1845 46.79 4.154
Python 3.2 MB 6270 368.87 11.257
Monkey 152 KB 650 18.58 12.224

Table 1: DisARM memory overhead

devices, and measured their idle memory usage. Unfortunately for some of the
target applications it was not possible to measure the idle memory usage since
the memory usage of the application directly correlated to size of its input. Our
results, reported in Table 2 show a maximum of 17%, median of 4.1% and an
average of 7% increase in memory at runtime. The reason is that, the size of the
hashmap directly correlates to how many functions there are within the appli­
cation and how often they are utilized. We found this overhead to be acceptable
as in most tested applications there was less then an average of 10% increase in
memory usage.

5.4 Code Size
In addition to the memory overhead, we measured the increase in code size of
these applications. The increases is due to the modifications we had made to
the applications in order to insert the verification blocks and hashmap. We thus
wanted to see if there were significant changes in code size. Our results, reported
in table 3 show that the code sizes do not significantly increase. As shown in
table 3 there is a maximum of 0.21% increase in code size with a median of
0.1% and an average of 0.13%. The reason is that DisARM does not require
any special compiler flags to be enabled on target binaries and can operate
at any optimization level thus taking advantage of all existing code reduction
techniques.

5.5 DisARM Runtime overhead
We measured the runtime overhead of DisARMed binaries to see if the applica­
tion of DisARM greatly affects the execution time of a binary. For this purpose
we use the byte-unixbench binaries. We used the benchmark scores of the stock

Binary Original Size
(MB)

DisARM Size
(MB)

% increase

Apache 1.5 1.66 0.10
Bash 2.5 2.86 0.14
sftp 0.30 0.34 0.10
Git 5.6 6.11 0.09
Gzip 0.261 0.28 0.09
Make 0.51 0.56 0.09
Nano 0.499 0.60 0.21
Tar 1.2 1.31 0.09
Vim 5.7 6.47 0.13
Lighttpd 0.631 0.67 0.09
Perl 1.5 1.87 0.56
Nginx 2.8 3.00 0.09
Python 6.7 7.37 0.15
Monkey 3.9 3.97 0.02

Table 2: DisARM Code Size

binaries as a baseline to compare with DisARMed benchmarks. We applied Dis-
ARM to each benchmark and took the average of scores from each run. We ob­
served that the benchmark scores were not greatly affected by the application of
DisARM to the binaries. The average score generated from the stock Unixbench
is 78.4 with a median of 78.8 as opposed to the DisARMed Unixbench which
has an average of 76.2 and a median of 76.4. The reason is that each verification
block installed consists of only 25 instructions which equates to an additional
34 cycles. This equates to an additional 48 nanoseconds of execution time per
function with the processor clocked at 700 MHz. These results support our initial
claim of minimal runtime overhead per DisARMed binary.

6 Conclusions and Future Work

In this paper, we proposed a verification technique to defend against buffer over­
flow attacks. This approach installs verification blocks at critical instructions pre­
venting the attacker from manipulating return addresses. We have implemented
a prototype of our approach and demonstrated that it is successful in defeat­
ing buffer overflow attacks crafted using automated attack tools. We have also
evaluated the effectiveness of our approach and showed that the effort to exploit
DisARM is significantly high. Based on the results of our analysis and imple­
mentation we argue that fine-grained verification is both feasible and practical
as a defense against these persistent buffer overflow based attack techniques. Fu­
ture work will evaluate the effectiveness of this strategy on CISC architectures,
such as x86, in addition to exploring techniques that would allow us to apply
DisARM to a binary that has been stripped of all symbol information making
the deployment of DisARM even more seamless.

Acknowledgement. The work reported in this paper has been par­
tially supported by the Purdue Cyber Center and the National Science
Foundation under grant CNS-1111512.

References

1.	 byte-unixbench: A Unix benchmark suite. http://code.google.com/p/
byte-unixbench/.

2.	 Aleph One. Smashing the stack for fun and profit. Phrack Magazine 49, 14
(November 1996).

3.	 ARM Holdings plc. ARM Architecture Reference Manual.
4.	 Bhatkar, E., Duvarney, D. C., and Sekar, R. Address obfuscation: an efficient

approach to combat a broad range of memory error exploits. In In Proc. of the
12th USENIX Security Symposium (2003), pp. 105–120.

5.	 Bhatkar, S., Sekar, R., and DuVarney, D. C. Efficient techniques for com­
prehensive protection from memory error exploits. In Proc. of the 14th conference
on USENIX Security Symposium - Volume 14 (2005), SSYM’05, pp. 17–17.

6.	 Bletsch, T., Jiang, X., and Freeh, V. Jump-oriented programming: A new
class of code-reuse attack. Tech. Rep. TR-2010-8, North Carolina State University,
2010.

7.	 Bletsch, T., Jiang, X., and Freeh, V. Mitigating code-reuse attacks with
control-flow locking. In Proceedings of the 27th Annual Computer Security Appli­
cations Conference (New York, NY, USA, 2011), ACSAC ’11, ACM, pp. 353–362.

8.	 Buchanan, E., Roemer, R., Shacham, H., and Savage, S. When good instruc­
tions go bad: generalizing return-oriented programming to risc. In Proc. of the 15th
ACM conference on Computer and communications security (2008), pp. 27–38.

9.	 Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.-R., Shacham, H., and
Winandy, M. Return-oriented programming without returns. In Proc. of the 17th
ACM conference on Computer and communications security (2010), pp. 559–572.

10.	 Checkoway, S., McCoy, D., Kantor, B., Anderson, D., Shacham, H., Sav­
age, S., Koscher, K., Czeskis, A., Roesner, F., and Kohno, T. Compre­
hensive experimental analyses of automotive attack surfaces. In Proceedings of
the 20th USENIX Conference on Security (Berkeley, CA, USA, 2011), SEC’11,
USENIX Association, pp. 6–6.

11.	 Chen, P., Xiao, H., Shen, X., Yin, X., Mao, B., and Xie, L. DROP: Detecting
return-oriented programming malicious code. In Proc. of the 5th International
Conference on Information Systems Security (2009), pp. 163–177.

12.	 Chen, P., Xing, X., Han, H., Mao, B., and Xie, L. Efficient detection of
the return-oriented programming malicious code. In Proc. of the 6th international
conference on Information systems security (2010), pp. 140–155.

13.	 Chen, P., Xing, X., Mao, B., and Xie, L. Return-oriented rootkit without
returns (on the x86). In Proc. of the 12th international conference on Information
and communications security (2010), pp. 340–354.

14.	 Daniel Miessler. HP Study Reveals 70 Percent of Internet of
Things Devices Vulnerable to Attack. http://h30499.www3.hp.com/
t5/Fortify-Application-Security/HP-Study-Reveals-70-Percent-of/
/-Internet-of-Things-Devices/ba-p/6556284#.VH4faTHF9Zg, July 2014.

15.	 Dave Evans. The Internet of Things How the Next Evolution of the Internet
is Changing Everything. http://www.cisco.com/web/about/ac79/docs/innov/
IoT_IBSG_0411FINAL.pdf, April 2011.

http://www.cisco.com/web/about/ac79/docs/innov
http:http://h30499.www3.hp.com
http://code.google.com/p

16.	 Davi, L., Dmitrienko, A., Egele, M., Fischer, T., Holz, T., Hund, R.,
Nürnberger, S., and Sadeghi, A.-R. Mocfi: A framework to mitigate control-
flow attacks on smartphones. In NDSS (2012).

17.	 Davi, L., Dmitrienko, A., Sadeghi, A.-R., and Winandy, M. Privilege esca­
lation attacks on android. In Proc. of the 13th international conference on Infor­
mation security (2011), pp. 346–360.

18.	 Davi, L., Sadeghi, A.-R., and Winandy, M. Dynamic integrity measurement
and attestation: towards defense against return-oriented programming attacks. In
Proc. of the 2009 ACM workshop on Scalable trusted computing (2009), pp. 49–54.

19.	 Davi, L., Sadeghi, A.-R., and Winandy, M. ROPdefender: a detection tool to
defend against return-oriented programming attacks. In Proc. of the 6th ACM Sym­
posium on Information, Computer and Communications Security (2011), pp. 40–
51.

20. Davi, L. V., Dmitrienko, A., N¨ Gadgeurnberger, S., and Sadeghi, A.-R.
me if you can: Secure and efficient ad-hoc instruction-level randomization for x86
and arm. In Proceedings of the 8th ACM SIGSAC Symposium on Information,
Computer and Communications Security (New York, NY, USA, 2013), ASIA CCS
’13, ACM, pp. 299–310.

21.	 Debian. ElfUtils. https://packages.debian.org/sid/elfutils, 2014.
22.	 Debian Foundation. Raspbian. http://www.raspbian.org/.
23.	 Francillon, A., and Castelluccia, C. Code injection attacks on harvard­

architecture devices. In Proc. of the 15th ACM conference on Computer and com­
munications security (2008), pp. 15–26.

24.	 Franz, M., Brunthaler, S., Larsen, P., Homescu, A., and Neisius,
S. Profile-guided automated software diversity. In Proceedings of the 2013
IEEE/ACM International Symposium on Code Generation and Optimization
(CGO) (Washington, DC, USA, 2013), CGO ’13, IEEE Computer Society, pp. 1–
11.

25.	 Giuffrida, C., Kuijsten, A., and Tanenbaum, A. S. Enhanced operating
system security through efficient and fine-grained address space randomization.
In Proceedings of the 21st USENIX Conference on Security Symposium (Berkeley,
CA, USA, 2012), Security’12, USENIX Association, pp. 40–40.

26.	 Gupta, A., Habibi, J., Kirkpatrick, M., and Bertino, E. Marlin: Mitigating
code reuse attacks using code randomization. Dependable and Secure Computing,
IEEE Transactions on PP, 99 (2014), 1–1.

27.	 Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., and Davidson, J. W. Ilr:
Where’d my gadgets go? In Proc. of the 2012 IEEE Symposium on Security and
Privacy (2012), pp. 571–585.

28.	 Homescu, A., Brunthaler, S., Larsen, P., and Franz, M. Librando: transpar­
ent code randomization for just-in-time compilers. In Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security (New York, NY,
USA, 2013), CCS ’13, ACM, pp. 993–1004.

29.	 Hund, R., Holz, T., and Freiling, F. C. Return-oriented rootkits: bypassing
kernel code integrity protection mechanisms. In Proc. of the 18th conference on
USENIX security symposium (2009), SSYM’09, pp. 383–398.

30.	 Jonathan Salwan. ROPgadget tool. http://shell-storm.org/project/
ROPgadget/.

31.	 Kc, G. S., Keromytis, A. D., and Prevelakis, V. Countering code-injection
attacks with instruction-set randomization. In Proceedings of the 10th ACM Con­
ference on Computer and Communications Security (New York, NY, USA, 2003),
CCS ’03, ACM, pp. 272–280.

http://shell-storm.org/project
http:http://www.raspbian.org
https://packages.debian.org/sid/elfutils

32.	 Li, J., Wang, Z., Jiang, X., Grace, M., and Bahram, S. Defeating return-
oriented rootkits with ”return-less” kernels. In Proc. of the 5th European conference
on Computer systems (2010), pp. 195–208.

33.	 Newsome, J., Shi, E., Song, D., and Perrig, A. The sybil attack in sensor
networks: Analysis & defenses. In Proceedings of the 3rd International Symposium
on Information Processing in Sensor Networks (New York, NY, USA, 2004), IPSN
’04, ACM, pp. 259–268.

34.	 Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., and Kirda, E. G-free:
defeating return-oriented programming through gadget-less binaries. In Proc. of
the 26th Annual Computer Security Applications Conference (2010), pp. 49–58.

35.	 Pappas, V., Polychronakis, M., and Keromytis, A. D. Smashing the gadgets:
Hindering return-oriented programming using in-place code randomization. In
Proceedings of the 2012 IEEE Symposium on Security and Privacy (Washington,
DC, USA, 2012), SP ’12, IEEE Computer Society, pp. 601–615.

36.	 PaX Team. PaX. http://pax.grsecurity.net/.
37.	 Pewny, J., and Holz, T. Control-flow restrictor: Compiler-based cfi for ios. In

Proceedings of the 29th Annual Computer Security Applications Conference (2013),
ACM, pp. 309–318.

38.	 Raspberry Pi Foundation. Raspberry Pi Hardware.
39.	 Roemer, R., Buchanan, E., Shacham, H., and Savage, S. Return-oriented

programming: Systems, languages, and applications. ACM Trans. Inf. Syst. Secur.
15, 1 (Mar. 2012), 2:1–2:34.

40.	 Roglia, G., Martignoni, L., Paleari, R., and Bruschi, D. Surgically return­
ing to randomized lib(c). In Computer Security Applications Conference, 2009.
ACSAC ’09. Annual (dec. 2009), pp. 60 –69.

41.	 Shacham, H., Page, M., Pfaff, B., Goh, E.-J., Modadugu, N., and Boneh,
D. On the effectiveness of address-space randomization. In Proc. of the 11th ACM
conference on Computer and communications security (2004), pp. 298–307.

42.	 Shioji, E., Kawakoya, Y., Iwamura, M., and Hariu, T. Code shredding: Byte-
granular randomization of program layout for detecting code-reuse attacks. In
Proceedings of the 28th Annual Computer Security Applications Conference (New
York, NY, USA, 2012), ACSAC ’12, ACM, pp. 309–318.

43.	 Sovarel, A. N., Evans, D., and Paul, N. Where’s the feeb? the effectiveness of
instruction set randomization. In Proc. of the 14th conference on USENIX Security
Symposium - Volume 14 (2005), pp. 10–10.

44.	 Verdult, R., Garcia, F. D., and Balasch, J. Gone in 360 seconds: Hijacking
with hitag2. In Proceedings of the 21st USENIX Conference on Security Symposium
(Berkeley, CA, USA, 2012), Security’12, USENIX Association, pp. 37–37.

45.	 Wartell, R., Mohan, V., Hamlen, K. W., and Lin, Z. Binary stirring: self-
randomizing instruction addresses of legacy x86 binary code. In Proceedings of the
2012 ACM conference on Computer and communications security (New York, NY,
USA, 2012), CCS ’12, ACM, pp. 157–168.

46.	 Williams, D., Hu, W., Davidson, J., Hiser, J., Knight, J., and Nguyen-
Tuong, A. Security through diversity: Leveraging virtual machine technology.
Security Privacy, IEEE 7, 1 (Jan 2009), 26–33.

47.	 Wright, A. Hacking cars. Commun. ACM 54, 11 (Nov. 2011), 18–19.
48.	 Xiao-Feng Li. ELF Parser. http://people.apache.org/~xli/.
49.	 Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, S., Song,

D., and Zou, W. Practical control flow integrity and randomization for binary
executables. In IEEE Symposium on Security and Privacy (2013), IEEE Computer
Society, pp. 559–573.

http://people.apache.org/~xli
http:http://pax.grsecurity.net

50.	 Zhang, M., and Sekar, R. Control flow integrity for cots binaries. In Proceedings
of the 22Nd USENIX Conference on Security (Berkeley, CA, USA, 2013), SEC’13,
USENIX Association, pp. 337–352.

