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Abstract. Security of embedded devices today is a critical requirement 
for the Internet of Things (IoT) as these devices will access sensitive in­
formation such as social security numbers and health records. This makes 
these devices a lucrative target for attacks exploiting vulnerabilities to 
inject malicious code or reuse existing code to alter the execution of 
their software. Existing defense techniques have major drawbacks such 
as requiring source code or symbolic debugging information, and high 
overhead, limiting their applicability. In this paper we propose a novel 
defense technique, DisARM, that protects against both code-injection 
and code-reuse based buffer overflow attacks by breaking the ability for 
attackers to manipulate the return address of a function. Our approach 
operates on arbitrary executable binaries and thus does not require com­
piler support. In addition it does not require user interactions and can 
thus be automatically applied. Our experimental results show that our 
approach incurs low overhead and significantly increases the level of se­
curity against both code-injection and code-reuse based attacks. 

Keywords: Internet of things, return oriented programming, control 
flow integrity, security, malware, embedded systems 

1 Introduction 
Recently, everything from refrigerators to sprinkler systems has evolved into 
smart devices that are pervasively connected to the Internet and powered by 
embedded processors. These devices are known collectively as the Internet of 
Things (IoT). Due to their positioning they have the potential to become more 
prominent in everyday lives than mobile phones. Cisco’s Internet Business Solu­
tions Group estimated 12.5 billion connected devices in existence globally as of 
2010 with that number doubling to 25 billion by 2015 [15]. However, whereas on 
one side of the IoT will make possible many novel applications, such as in smart 
and connected health, on the other side IoT may increase the risk of data privacy 
breaches and cyber security attacks. A recent study by HP about the most pop­
ular devices in some of the most common IoT niches reveal an alarmingly high 
average number of vulnerabilities per device [14]. On average, 25 vulnerabilities 
were found per device. For example 80% of devices failed to require passwords 
of sufficient complexity and length, 70% did not encrypt communications to 
the Internet and local networks, and 60% contained vulnerable user interfaces 
and/or vulnerable firmware [14]. Several attacks have already been reported in 
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the past on several other embedded systems such as the ones deployed in cars 
[47, 44, 10] and sensor networks [33]. We can expect similar attacks to be carried 
out against IoT embedded devices. Securing embedded devices is thus a critical 
fundamental step in securing the IoT. 

In this paper, we focus on two forms of attacks that exploit buffer over­
flows on IoT embedded devices, namely code-injection and code reuse attacks. 
These attacks form a substantial portion of all security attacks due to the fact 
that buffer overflow vulnerabilities are so common and easy to exploit. Original 
buffer overflow exploits involved the injection of malicious code [2]. This allows 
the attacker to subvert the execution of the target program and take control. 
However, the wide adoption of the W ⊕ X protection technique by which all 
writable addresses are non-executable and vice-versa has rendered code injec­
tion attacks ineffective. By contrast, recent code-reuse attacks, such as return-
oriented programming (ROP) [39], do not require code injection. These attacks 
allow an attacker to easily modify the execution path of the target program by 
reusing existing executable code that primarily exists in the application binary 
and shared libraries such as libc. In code-reuse, the attacker identifies small 
sequences of instructions, called gadgets, that end in a ret instruction. By 
carefully placing a sequence of return addresses on the stack, the attacker can use 
these gadgets to perform arbitrary computation. ROP attacks have continued 
to evolve to utilize gadgets that end in both jmp or call instructions [9]. 

Since code-reuse based attacks rely on detailed knowledge about the location 
of code in the executable and libraries, the intuitive solution is to randomize 
process memory images. Address obfuscation [4] and ASLR [36] are two well-
known randomization techniques against such attacks. However, they suffer from 
the major drawback of small randomization spaces and have been shown to 
be vulnerable on 32-bit architectures [43, 41]. In considering a new protection 
technique, we start with two observations. First, the main shortcoming of earlier 
randomization-based approaches is insufficient entropy, thus making brute-force 
attacks feasible. Second, the critical step of a buffer overflow attack is to overwrite 
the return address in order to manipulate the value of the program counter ( PC). 

Our protection technique, referred to as DisARM, introduces a validation 
technique upon any interaction with the PC, (i.e. ret, call, or jmp instruc­
tion). Our validation technique consists of inserting a static check statement 
before any critical instruction to verify that the program is in the correct state. 
This invalidates the ability for an attacker to redirect the execution of the target 
program. By utilizing a hashmap of target addresses XORed with the correct 
PC values a constant time look up is performed upon our constructed hashmap 
to validate that the program is in the correct state. Upon a failed validation 
attempt we force the program to exit, thus stopping an attack. Our protection 
technique has several advantages. First it stops both forms of buffer overflow 
attacks with minimal overhead. Second it can be applied to any ELF binary 
without requiring the source code of an application. Finally it offers an alterna­
tive to approaches that dynamically monitor critical data sections such as return 
addresses. 



We are not the only researchers to investigate binary modifications for buffer 
overflow attack mitigation. As discussed in section 2.3, the other approaches 
suffer from one or more of the following limitations. First, none of the proposed 
defense techniques is able to mitigate both code injection and ROP based at­
tacks. Second, some of the existing defenses require source code access or other 
additional information that is generally not available. Third, the overhead of 
DisARM is constant when compared to the dynamic techniques that incur over­
head throughout the execution of the target application. DisARM addresses 
these limitations and provides a strong and efficient defense techniques against 
buffer overflow attacks. 

As with any defense technique, there are always costs that must be consid­
ered. In our proposed defense technique, there is a one time overhead when ap­
plying DisARM to the target binary and a runtime overhead during the process 
execution. We have evaluated the time to apply DisARM to compiled binaries 
on a selection of commonly used applications and Linux coreutils, showing 
that the performance penalty for DisARM is reasonable in the average case. 
Our work demonstrates that, although DisARM imposes certain performance 
costs, its success in thwarting buffer overflow attacks makes DisARM a feasible 
approach for embedded systems that prioritize execution integrity over optimal 
performance. 

The remainder of this paper is structured as follows. We start by surveying 
buffer overflow attack and proposed defenses in Section 2. In Section 3, we intro­
duce the target platform for DisARM and describe our approach in more detail. 
Section 4 discusses the implementation details of DisARM. Section 5 shows the 
results from various experiments performed to evaluate our approach. Finally 
we conclude in Section 7. 

2 Background and Related Work 
In this section we start with a brief summary of attacks based on buffer overflows 
and existing defense techniques, and then introduce our target platform. 

2.1 Code Injection 
Code injection attacks are one of the first publicized exploits utilizing a vulner­
able buffer. This form of exploit allows the execution of arbitrary code under 
the attacker’s control, potentially allowing the attacker to seize control of an 
entire program or even an entire system (through exploitation of vulnerable tar­
gets with elevated privileges). In order to accomplish this, an attacker injects 
malicious code into a vulnerable target and then redirects the execution to the 
injected code [2]. In order to perform such form of attack, several prerequisites 
must be met. First, the targeted program must have a memory corruption vul­
nerability. Second, there must be a writable and executable region of memory. 
Third there must be a way to redirect the processor to execute the injected code. 
The first and third requirements are generally met through a buffer overflow that 
allows the attacker to push arbitrary code onto the stack and then overwrite the 
stack return address to redirect to control the attack payload. The second re­
quirement requires finding an area of memory that can both be written to and 



executed. The processor then begins to execute the attack payload, granting the 
attacker control of the current thread. 

2.2 Code Reuse 

Return oriented programming (ROP) is a technique that evolved from buffer 
overflow attacks. As discussed in Section 2.1 previous attacks depended on the 
presence of an executable stack. However the adoption of W ⊕ X (also known 
as Data Execution Prevention – DEP) under which a memory page is either 
writable or executable, but not both at the same time, has made such attacks 
ineffective. Code reuse attacks [39] bypass DEP protection. Instead of executing 
injected code, attackers identify small sequences of instructions, called gadgets, 
that end in a ret instruction. By carefully constructing a sequence of addresses 
on the software stack, an attacker can manipulate the ret instruction to jump 
to any gadget to perform arbitrary computations. Code reuse techniques work in 
both word-aligned architectures like RISC [8] and unaligned CISC architectures 
[39]. These techniques have been shown to be able to perform privilege esca­
lation in Android [17], create rootkits [29], and even inject code into Harvard 
architectures [23]. Additionally the same technique has been used to manipulate 
other instructions, such as jmp, and their variants [9, 13, 6]. 

2.3 Defense Techniques 

Several defense techniques for mitigating buffer overflow attacks have been pro­
posed. As mentioned before, DEP is the most widely used. However there are a 
lot of ARM based microcontrollers that do not support DEP as this protection 
technique was only introduced in ARMv6 and newer architectures [3]. 

Address obfuscation [4] and ASLR [36] are two well-known defense tech­
niques against ROP attacks. However, they suffer from small randomization and 
have been shown to be vulnerable on 32-bit architectures [41, 40]. Instruction 
set randomization (ISR) [31], another well known defense technique, has also 
been shown to have similar limitations [43]. Several fine grained randomization 
techniques have been proposed as a defense against code-reuse attacks such as 
ILR [27], In-place randomization [35], STIR [45], Marlin [26], XIFER [20], Li­
brando [28], Code Shredding [42], ASR [25], Genesis [46], nop-insertion [24] and 
Bhatkar et al. [5]. Though these defenses have low overhead, they are consider­
ably more invasive in that they require extensive program restructuring which 
often lead to instability in larger binaries. Also those techniques are not able to 
account for different optimization levels of binaries and are unable to protect 
against code-injection based attacks. 

Compiler based solutions that create code without return instructions have 
also been proposed [34, 32]. However those solutions are unable to handle ROP 
variants such as jump oriented programming [6] attacks. Another mitigation 
tactic for code reuse attacks is to detect and terminate the attack as it oc­
curs. Examples of these include DROP [11], DynIMA [18], CCFIR [49], CFL [7], 
ROPdefender [19], [12] and [50]. The dynamic monitoring approach used by 
these techniques make them unsuitable for our target platform where the pro­
cessor is limited in comparison to its x86 variants. 



Lastly there have been techniques proposed to reinforce the control flow on 
ARM. Two most notable utilities are MoCFI [16] and control-flow restrictor [37]. 
However these techniques are both unsuitable for our application. While they are 
able to reinforce the control flow integrity of a target application, the overhead 
incurred by the verification is far too great. Within MoCFI, the CPU overhead 
of the verification grows in relation to the number of jumps as it must tra­
verse the binary graph that is included within the binary after MoCFI has been 
applied [16]. Pewny takes a different approach by integrating itself within the 
compiler eliminating the need for disassembly and construction of a control flow 
graph but the verification process is very long [37]. For each valid target of 1 
to n, a comparison is made at the end of the function before the final jump in­
struction. This incurs a large CPU overhead within recursive functions or loops 
making at worst up to n function calls. As discussed later DisARM, addresses 
these issues through the usage of a hashmap. 

2.4 Challenges in securing embedded devices 
In most x86 based defenses it is acceptable to introduce performance overhead 
of a factor of 2x [19, 11, 18]. This however is not the case with embedded devices 
since these devices have low power and very limited resources available. These 
limited resources include CPU cycles, memory and code size. These were the 
factors considered in the design of DisARM. 

With respect to the limited cycles available, the modifications done to the 
target binary cannot require too much computation. The reason is that different 
embedded systems have strict deadlines that must be met and typically operate 
at very high CPU and memory usage already. Therefore any defense implemen­
tation cannot have a large performance impact due to possible interrupts or 
deadlines that must be met in the protected applications. 

x86 vs ARM The x86 architecture’s calling convention is set up to mainly use 
two instructions, one to call a function and one to return from it. The call 
and ret assembly instructions are the instructions that control the flow for an 
application. In addition, there are jump instructions that allow the execution 
to jump to an address stored in a register. The ARM architecture has many 
differences in the way in which the flow is controlled. The ARM architecture 
does not have call or ret instructions but it has something similar. The ARM 
assembly includes the use of a linking register, lr, that is updated when a 
function is called with the branch and link instruction bl. This works exactly 
like a call instruction, with the difference that the return address is stored into 
the lr register, instead of being pushed onto the stack as in x86. It is thus up 
to the programmer or compiler to make sure that the value is not lost. 

Within the strategy that the ARM architecture utilizes there is a special case 
to highlight. If the function being utilized does not have any further function 
calls, it will not ever have an lr register update. In order then for these functions 
to ‘return’, they branch on the value stored in lr by executing the instruction bx 
lr. This implies that the value in lr has not changed since the beginning of the 
function. Due to this, even if there were a vulnerability within such a function, 
the attacker would not be able to redirect the control since the lr register is 



never pushed onto the stack. However this is not the case for extended nested 
function calling for which the compiler has to push lr onto the stack in order 
to preserve the return address. Through the combination of pushing lr onto 
the stack and branching, we get the same effect as a call in x86. 

In order to return from a function, the ARM processor pops the value of 
the lr register that is on the stack into either the lr register or the PC. Once 
such action is executed, the program will start to execute the instruction at the 
address referenced by the old value of the lr register which is the address from 
where the function was called from. By contrast in x86 the ret instruction both 
pops off the stack the address to which the execution has to jump and jumps 
to such address. Such characteristic of ARM simplifies our defense techniques. 
Within DisARM we only need to look for and verify any instruction that pops 
values into the lr register or the PC as these are the entry points into the 
execution flow of the program. 

3 DisARM Defense Technique 

We now describe our DisARM defense technique to mitigate buffer overflow 
based attacks targeting the Raspberry Pi platform. DisARM uses a fine-grained 
analysis of the binary to find all critical interactions that manipulate the hard­
ware PC and verifies any change to the PC before the change is applied. For each 
such critical instruction, we insert a verification block immediately before the 
critical instruction in order to evaluate whether the target address is valid with 
respect to the current instruction the program is executing. If the target address 
fails the verification, the program is forced to exit (see Figure 2). Our technique 
prevents the attacker from successfully utilizing an overwritten return address 
to begin a buffer overflow attack. We now introduce our basic assumptions for 
a buffer overflow attack scenario and then present the details of DisARM. 

3.1 Enabling Factors and Attack Assumptions 

Based on our survey of buffer overflow based attacks and defenses, we have 
identified distinct characteristics and requirements for a successful exploit. The 
fundamental assumption and enabling factor such attacks is as follows: 

The attacker is able to modify the return address of the exploited function. 
That is, if an attacker overflows a buffer, the attacker is able to force the exe­
cution to return to a different address than intended and either inject or reuse 
existing code. 

Given this we assume that the vulnerable application must have a buffer 
overflow or heap overflow vulnerability that can be leveraged by the attacker 
to inject an exploit payload. Such payload may either contain native machine 
code to be executed or a string of gadget addresses previously identified by the 
attacker. The attacker is assumed to have access to the target binary that has 
undergone DisARM processing. The attacker is also assumed to be aware of the 
functionality of DisARM. Our approach protects against both remote and local 
exploits as long as the attacker is not able to modify the target binary while 
being executed. 



Fig. 1: Example of a critical instruction	 Fig. 2: Example execution of a Dis­
ARM’d binary 

3.2 Target Platform 
The platform targeted in these attacks is the single board computer Raspberry 
Pi. This is a popular example of an embedded platform and a prime example of 
the hardware used in IoT devices. Raspberry Pi is based on an ARM11 32-bit 
RISC processor clocked at 700 MHz which implements the ARMv6k architecture. 
The ARM11 microprocessor is a Von Neumann Architecture processor. In this 
architecture, a processor has one physical signal and storage for instructions and 
data. This allows the processor to load instructions or read/write values from the 
same section of memory. This is a critical factor in allowing code injection based 
attacks. In addition, the program space in ARM is 32-bit word aligned with fixed 
instruction length. Thus, within DisARM we do not have to handle unintended 
instruction sets from jumping amidst of a variable length instruction. For the 
purpose of DisARM we look at the ARM instruction set and not the Thumb or 
Thumb2 instruction set that ARM processors are also compatible with. 

3.3 Critical Instructions 
Since DisARM reinforces the execution path of a given binary by inserting a 
verification block before a critical instruction, we must first define what is a 
critical instruction. A critical instruction is one that takes input from the stack 
and leads to an update to the PC. In the ARM architecture critical instructions 
are all the instructions of the form pop {...,pc} or pop {...,lr}, which 
are instructions that remove the next X values off the top of the stack and 
immediately set the PC to the last of these values (in the pop pc case) or later set 
the PC to the value popped bx lr. No other instructions need to be monitored 
as discussed in Section 2.4 because of the fact that the ARM architecture is a 
RISC architecture. An example of a piece of code containing a critical instruction 
is shown in Figure 3. The code in figure 3 is a code snippet from Apache with 
a pop instruction that updates the values of both registers r4 and pc before 
the conclusion of the varbuf cleanup function. 

3.4 Preprocessing Phase 
As mentioned above, DisARM operates at the instruction granularity to rein­
force the control flow of the target application. This requires us to identify the 



critical instructions, within the user defined functions, that require verification. 
In the preprocessing phase, the ELF binary is thus parsed to extract the critical 
instructions and their location. 

3.5 Hashmap Construction Phase 
Once the instructions and their locations have been identified, a key is calculated 
from the target address ⊕ PC value. Since the number of keys per binary is 
static, the most efficient solution is to use a hash function that minimizes the 
number of collisions. The straight-forward solution would be to use a crypto­
graphic hash function but as discussed in section 2.4, CPU cycles are limited. 
This would not allow for the calculation of a cryptographic hash within every 
verification block. Instead, due to the nature of the data set, we utilize a mini­
mum perfect hash function (MPHF). The algorithm we use in the generation of 
a minimum perfect hash is as follows: 

1. Given key	 K and square array S of dimension t, place each key in S at 
location (x,y), where x = K / t, y = K mod t. 

2. Sort each row in	 S in descending order according to the number of elements 
it contains. 

3. Slide each row within	 S of an amount A such that no column has more than 
one entry. Record the shift amount in an array R. 

4. Collapse S into a linear array C. 

Thus the hash function uses t and the displacement A calculated in step 3 
to locate K such that index = R[x] + y and H(K) = C[index]. For example, 
if we were to validate the key 15, x = 2 (15 / 6 by integer division) and y = 3 
(15 mod 6). Then the index of the key would be at location index = 8 + 3 = 11 
(R[2] + 3). As it stands C[11] does in fact equal the key value of 15. 

By using the MPHF we can construct a hashmap resulting in the mini­
mum number of collisions over the set of keys storing the target addresses to 
be validated within the verification blocks. Upon completion of the hashmap 
generation, the offset array R and hashmap array C are then appended to the 
binary in the .disarm section. 

3.6 PC Lock Phase 
After constructing the hashmap, we must lock down each instruction that up­
dates the PC from the stack. To do this we insert our verification block before 
each critical instruction. By doing this, the relative offsets between instructions 
are changed and this may affect branch instructions. The reason is that the 
original destination address for branch instructions is a relative address. Thus, 
when verification blocks are inserted during the PC lock phase, the targets of 
these branch instructions are no longer valid and must be corrected to point to 
the desired location. This is achieved by performing offset patching as discussed 
next. 

3.7 Patching Phase 
Upon completion of the PC lock phase, the target binary needs to be patched 
in multiple areas. Due to the additions made in the .text section for the 



Fig. 3: Verification Block Assembly	 Fig. 4: Example of MPHF construction 
process over a sample set of keys 

verification blocks and the addition of data for the hashmap in the .disarm 
section, the ELF header needs to patched in addition to all branch and load 
instructions within the .text section that have been shifted during the PC 
Lock Phase. Within the ELF header, both the program header and the section 
header table need to be patched to account for their new locations. 

After completing the ELF patching, each relative load and branch instruction 
offset by the modifications needs to be patched to point to the proper location. 
This is achieved by performing patching as the DisARMed binary is generated. 
During this process, we utilize the information gathered earlier during the Pre­
processing Phase such as the original target location of load and branch. With 
this information and the number of verification blocks installed, we can calculate 
the new relative offsets for each branch/load instruction to properly patch the 
binary. This is discussed in more detail in section 4.4 

4 Implementation Details 
We have implemented a DisARM prototype that can operate on any C based 
ELF binary without requiring its source code. The implementation was done for 
32-bit ARMv6 architecture on a system running the Raspbian operating system 
[22]. The implementation of DisARM involved two major components. The first 
component consists of preprocessing and constructing the hashmap. The second 
component deals with applying the verification blocks to the PC and patching 
the binary. We discuss the details of DisARM implementation below. 

4.1 Preprocessing 
Before we can reinforce the binary, we need to identify the critical instructions 
and every instruction that will be affected by the installation of the verification 



blocks. This includes locating all load, relative jump branches, function calls, 
returns and relative load instructions as these will all needed to be patched. In 
addition, while parsing the binary, to find these instructions we track the number 
and location of each critical instruction. To accomplish this we utilized a java 
based elf parsing library [48]. This library allows us to read in the entire ELF 
binary and represent it objectually, thus allowing us to easily update the right 
sections of the file. However this library does not have all the functionality that 
we were looking for. In its stock form it treated the .text section as a block 
of bytes. We extended this library to also parse each individual instruction byte 
by byte in order to identify all the information needed for the patching phase. 

4.2 Hashmap Construction Phase 
In this stage, the hashmap to be utilized in the verification blocks is constructed. 
The first step is to take each PC value and target address of a critical instruction 
found, XOR their values to generate a key for that pair, and add them to the key 
list. After generating all keys that will be used in the hashmap, we can construct 
the MPHF as described by the algorithm in section 3.5. Once both the MPHF 
and the hashmap are generated, the two arrays (offset array R and flattened 
hashmap C) are appended to the binary within their own section. 

4.3 PC Lock phase 
Upon completion of the hashmap construction phase, we must install the ver­
ification blocks at the critical instructions to reinforce the program flow of the 
target binary. Each critical instruction is read in ascending order and wrapped 
in the verification block, as shown in figure 5. Each verification block utilizes 
multiple constants that are used during its execution. These include the MPHF 
t value, the location of the offset table, and the location of the hashmap. During 
this phase we also track how many verification blocks there were previous to the 
currently installed block as this information is utilized in the patching phase. 

The challenge in this phase was designing and constructing a verification 
block that does not depend on any external resources aside from the global 
hashmap and offset table in order to perform that validation. To accomplish 
this, we followed the same methodology that GCC compiler uses during com­
pilation. Each constant used within the verification block is appended to the 
end of the verification block after the final branch. This way they are available 
as immediate values that can be loaded into registers during the execution of a 
verification block. In addition since each verification block is going to be the pri­
mary source of runtime overhead, it had to be minimized. To accomplish this we 
replaced the expensive division operations with multiplications using magic num­
ber constants that provided the same functionality while also hand-optimizing 
the entire verification process. This reduced the verification block size down to 
25 instructions for a combined total of 34 cycles of execution. 

4.4 Patching phase 
In this stage all patching is performed in the same pass when the DisARMed 
binary is written. This is done by using the information available from the pre­
processing stage. As we process the new binary, whenever a load, relative jump 



branches, function calls, return or relative load instruction is encountered, we 
compare the instruction’s location within the new binary to the previous binary. 
If there is a difference due to the installation of a verification block, we generate 
a patch that will then point the specified instruction to the correct location. 
However there is a special case with relative load as a relative load instruction 
and an instruction loading a constant into a register have the exact same sig­
nature. To distinguish between these instructions, we analyze the value being 
‘loaded’ into the specified register. If the value is within the program space then 
the instruction is a relative load and it needs to be patched. 

Upon completing the patching for all instructions identified by the prepro­
cessing stage, we must patch the ELF header. The reason is that due to the 
installation of the verification blocks, the .text section has grown which offsets 
all subsequent sections ( .fini, .data, .rodata etc etc...). In addition, we need 
to insert an additional entry in the program header of the ELF file to recognize 
the new .disarm section we include. This section contains the hashmap and 
offset table, generated by the hashmap construction phase (see section 4.2). 
Finally, a patch is applied within the ELF header to the location of start as 
its location may have shifted during the installation of verification blocks in the 
.text section. 

5 Evaluation 
We now describe various experiments that we performed to evaluate the Dis-
ARM technique. These experiments test the effectiveness of DisARM and also 
the performance overhead incurred due to the PC verification. These experi­
ments were performed on a Raspberry Pi Model B+ with 512MB of RAM. This 
Raspberry Pi Model had W ⊕ X and ASLR enabled during our experiments. We 
used coreutils binaries, some commonly used application binaries (see figure 
6) and byte-unixbench [1] benchmarks to conduct various experiments. In addi­
tion to measuring the overhead of instrumenting binaries to apply the DisARM 
technique, we utilized a Windows 8.1 Machine with an i7 processor and 8GB of 
RAM. To launch attacks against DisARM-protected binaries, we use ROPgadget 
(v5.3) [30], an attack tool that automatically creates exploit payload for ROP 
attacks by searching for gadgets in an application’s executable section. 

5.1 Effectiveness 
First, we tested the effectiveness of DisARM using a test application that has 
a buffer overflow vulnerability. The application, elf-ARM-ls is a test binary 
as part of the ROPgagdet test binaries. We used ROPgadget on this target 
application and found 1392 unique gadgets. These were sufficient to craft a 
code exploit payload. When this exploit payload was provided as an input to 
the unprotected binary, and we were able to redirect the execution. Next, we 
applied DisARM to this application to lock down the PC and ran the ROPgadget 
again to find the new locations of the gadgets. We then executed the DisARM­
binary with the new payload and it failed. This highlights the crucial factor of 
buffer overflow attacks that require them to successfully manipulate the PC by 
overwriting return addresses. 



Fig. 5: Target Applications used in the evaluation of DisARM 

5.2 DisARM utility overhead 
When an application is being deployed to an IoT device, DisARM identifies all 
critical instructions for verification blocks to be installed, and every instruction 
that will be affected by the installation of the verification blocks that is used 
later in the patching phase. This computation is unique to each binary. The 
next phase involves generating the hashmap from all the critical instructions 
found and the installation of the verification blocks. The last phase involves 
patching all instructions that were affected by this instrumentation. DisARM 
processing cost is the combined overhead of all four phases. We measure DisARM 
processing overhead on the same set of binaries (see figure 6) used throughout 
the evaluation. 

Our first evaluation of DisARM was to measure the execution overhead of 
applying it to each test application. We noticed that there was a direct correla­
tion to the number of verification blocks being installed within the application 
and the total runtime of DisARM. Our average runtime was 193.5 seconds over 
our sample applications. This is due to the fact that we tested on multiple large 
binaries that had 3000+ verification blocks installed such as Perl, and Python. 
However the median execution time 5.23 seconds. This is quite reasonable as 
the larger the target application, the more processing is required for DisARM to 
reinforce the control flow. Notice that this overhead is incurred only once. Since 
DisARM modifies the binary so that each critical instruction is secured, it does 
not need to be run before every execution of the application. 

5.3 Efficiency 
Due to the hashmap that DisARM utilizes in the verification process, as dis­
cussed in section 3, DisARMed binaries incur a runtime memory overhead. This 
overhead is constant per binary due to the fact that each hashmap is unique to 
the target application. We evaluated the memory efficiency of DisARM by tak­
ing 14 common applications (see figure 6), we expect to be widely used in IoT 



Binary Original Memory 
Usage 

# of Verification 
Blocks 

Additional Memory 
Usage (KB) 

% increase 

Apache 3.6 MB 1287 19.11 0.518 
Bash 2.7 MB 2766 63.88 2.310 
sftp 332 KB 215 7.95 2.395 
Git 524 KB 3983 87.04 16.611 
Gzip 220 KB 156 7.34 3.336 
Make 110 KB 346 10.37 9.427 
Nano 852 KB 817 19.05 2.236 
Tar 206 KB 891 17.64 8.563 
Vim 1.2 MB 5836 148.03 12.047 
Lighttpd 1.2 MB 369 17.32 1.410 
Perl 2.8 MB 3509 470.41 16.407 
Nginx 1.1 MB 1845 46.79 4.154 
Python 3.2 MB 6270 368.87 11.257 
Monkey 152 KB 650 18.58 12.224 

Table 1: DisARM memory overhead 

devices, and measured their idle memory usage. Unfortunately for some of the 
target applications it was not possible to measure the idle memory usage since 
the memory usage of the application directly correlated to size of its input. Our 
results, reported in Table 2 show a maximum of 17%, median of 4.1% and an 
average of 7% increase in memory at runtime. The reason is that, the size of the 
hashmap directly correlates to how many functions there are within the appli­
cation and how often they are utilized. We found this overhead to be acceptable 
as in most tested applications there was less then an average of 10% increase in 
memory usage. 

5.4 Code Size 
In addition to the memory overhead, we measured the increase in code size of 
these applications. The increases is due to the modifications we had made to 
the applications in order to insert the verification blocks and hashmap. We thus 
wanted to see if there were significant changes in code size. Our results, reported 
in table 3 show that the code sizes do not significantly increase. As shown in 
table 3 there is a maximum of 0.21% increase in code size with a median of 
0.1% and an average of 0.13%. The reason is that DisARM does not require 
any special compiler flags to be enabled on target binaries and can operate 
at any optimization level thus taking advantage of all existing code reduction 
techniques. 

5.5 DisARM Runtime overhead 
We measured the runtime overhead of DisARMed binaries to see if the applica­
tion of DisARM greatly affects the execution time of a binary. For this purpose 
we use the byte-unixbench binaries. We used the benchmark scores of the stock 



Binary Original Size 
(MB) 

DisARM Size 
(MB) 

% increase 

Apache 1.5 1.66 0.10 
Bash 2.5 2.86 0.14 
sftp 0.30 0.34 0.10 
Git 5.6 6.11 0.09 
Gzip 0.261 0.28 0.09 
Make 0.51 0.56 0.09 
Nano 0.499 0.60 0.21 
Tar 1.2 1.31 0.09 
Vim 5.7 6.47 0.13 
Lighttpd 0.631 0.67 0.09 
Perl 1.5 1.87 0.56 
Nginx 2.8 3.00 0.09 
Python 6.7 7.37 0.15 
Monkey 3.9 3.97 0.02 

Table 2: DisARM Code Size 

binaries as a baseline to compare with DisARMed benchmarks. We applied Dis-
ARM to each benchmark and took the average of scores from each run. We ob­
served that the benchmark scores were not greatly affected by the application of 
DisARM to the binaries. The average score generated from the stock Unixbench 
is 78.4 with a median of 78.8 as opposed to the DisARMed Unixbench which 
has an average of 76.2 and a median of 76.4. The reason is that each verification 
block installed consists of only 25 instructions which equates to an additional 
34 cycles. This equates to an additional 48 nanoseconds of execution time per 
function with the processor clocked at 700 MHz. These results support our initial 
claim of minimal runtime overhead per DisARMed binary. 

6 Conclusions and Future Work 

In this paper, we proposed a verification technique to defend against buffer over­
flow attacks. This approach installs verification blocks at critical instructions pre­
venting the attacker from manipulating return addresses. We have implemented 
a prototype of our approach and demonstrated that it is successful in defeat­
ing buffer overflow attacks crafted using automated attack tools. We have also 
evaluated the effectiveness of our approach and showed that the effort to exploit 
DisARM is significantly high. Based on the results of our analysis and imple­
mentation we argue that fine-grained verification is both feasible and practical 
as a defense against these persistent buffer overflow based attack techniques. Fu­
ture work will evaluate the effectiveness of this strategy on CISC architectures, 
such as x86, in addition to exploring techniques that would allow us to apply 
DisARM to a binary that has been stripped of all symbol information making 
the deployment of DisARM even more seamless. 
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