
CERIAS Tech Report 2015-14
A Secure Communication Protocol for Drones and Smart Objects

 by Jongho Won, Seung-Hyun Seo, Elisa Bertino
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

A Secure Communication Protocol for Drones and Smart
Objects

Jongho Won Seung-Hyun Seo Elisa Bertino
Department of Computer Department of Computer Cyber Center

Science Science Purdue University, IN, USA
Purdue University, IN, USA Purdue University, IN, USA bertino@purdue.edu
won12@purdue.edu seosh77@gmail.com

ABSTRACT
In many envisioned drone-based applications, drones will
communicate with many different smart objects, such as sen­
sors and embedded devices. Securing such communications
requires an effective and efficient encryption key establish­
ment protocol. However, the design of such a protocol must
take into account constrained resources of smart objects and
the mobility of drones. In this paper, a secure communica­
tion protocol between drones and smart objects is presented.
To support the required security functions, such as authenti­
cated key agreement, non-repudiation, and user revocation,
we propose an efficient Certificateless Signcryption Tag Key
Encapsulation Mechanism (eCLSC-TKEM). eCLSC-TKEM
reduces the time required to establish a shared key between
a drone and a smart object by minimizing the computational
overhead at the smart object. Also, our protocol improves
drone’s efficiency by utilizing dual channels which allows
many smart objects to concurrently execute eCLSC-TKEM.
We evaluate our protocol on commercially available devices,
namely AR.Drone2.0 and TelosB, by using a parking man­
agement testbed. Our experimental results show that our
protocol is much more efficient than other protocols.

Categories and Subject Descriptors
C.2.2 [Compute-Communication Networks]: Network
Protocols; E.3 [Data Encryption]: Public key cryptosys­
tems

General Terms
Security, Design

Keywords
Certificateless Signcryption; Drone Communications

1. INTRODUCTION
Over recent years, drones are increasingly being used not

only for military tasks, but also for civilian tasks, such as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita­
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re­
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS’15, April 14–17, 2015, Singapore..
Copyright c© 2015 ACM 978-1-4503-3245-3/15/04 ...$15.00.
http://dx.doi.org/10.1145/2714576.2714616.

environment and traffic monitoring, delivery services, and
aerial surveys. An Australian textbook rental startup com­
pany, Zookal, has already started using drones to deliver
books. Amazon will soon start a new delivery method, Ama­
zon Prime Air, which would offer 30-minute deliveries using
drone-like octocopters. Also, some research projects [22,
29] have adopted drones as mobile collectors for monitor­
ing applications based on wireless sensor networks (WSNs).
For example, on-ground sensors can be deployed in farms
to monitor the conditions of soil and drones can period­
ically collect information from these sensors and perform
in-network processing of this information. In such context,
drones can also be used for communicating with the on-
ground sensors in order to send the sensors re-configuration
instructions, such as instructing the sensors to change the
sampling rates.

In many current and foreseen applications involving drones,
including the Internet of Things (IoT), security is an impor­
tant requirement. Drones, as many computing devices, are
vulnerable to malicious attacks such as impersonation, ma­
nipulation and interception. Moreover, since drones may
move around in unattended hostile areas with collected sen­
sor data, they are vulnerable to physical capture. It is thus
critical to address security requirements, such as authenti­
cation, non-repudiation, confidentiality and integrity, and
securing communications between drones and other devices
(referred to as smart objects in what follows), such as on-
ground sensors. An important security building block is
represented by cryptography which in turn requires a key
management scheme. However, implementing a key man­
agement scheme suitable for WSNs that involve both smart
objects and drones is quite challenging because of (1) the
mobility and limited flight time of drones and (2) the con­
strained resources of smart objects.

Most encryption key management schemes proposed for
WSNs adopt a symmetric-key-based approach instead of
an asymmetric-key-based approach in order to address the
limited energy and processing capability of sensors [6, 8].
However, the symmetric-key-based approach suffers from
high communication overhead and requires large amounts
of memory space to store the shared pairwise keys. Also
such approach is not scalable, not resilient against compro­
mises, and unable to support adequate node mobility. Public
key cryptography (PKC) is relatively more expensive than
symmetric key encryption in terms of computational costs,
but recent improvements in the implementation of elliptic
curve cryptography (ECC) [13] have demonstrated the prac­
tical applicability of PKC to WSNs. In order to enhance

249

http://dx.doi.org/10.1145/2714576.2714616
mailto:permissions@acm.org
mailto:seosh77@gmail.com
mailto:won12@purdue.edu
mailto:bertino@purdue.edu

scalability and flexibility, asymmetric key based approaches
that use ECC and identity-based PKC have been proposed
for WSNs [15, 27, 7]. However, ECC-based schemes with
certificates [27] and pairing operation-based ID-PKC [15,
7] schemes, when directly applied to WSNs, suffer from
certificate management overhead and computational over­
head from pairing operations, respectively. Moreover, since
drones, unlike sensors, are likely to record a wide range of
information, they can become a target for physical capture.
We thus need an approach to minimize information leakage
in the event that a drone is captured by attackers.

To address security and efficiency requirements for com­
munications between drones and smart objects, we present
the efficient Certificate-less Signcryption Tag Key Encapsu­
lation Mechanism (eCLSC-TKEM) which supports authen­
ticated key agreement and non-repudiation. The key feature
of eCLSC-TKEM is to combine one-way key agreement and
digital signatures into one efficient algorithm. Since eCLSC-
TKEM is based on certificateless PKC (CL-PKC), it inher­
its the advantages of CL-PKC such as the elimination of
the overhead resulting from the certificate management and
the key escrow problem. eCLSC-TKEM supports user re­
vocation by adopting Boneh et al.’s revocation technique [5]
which adds a valid time period to the partial private keys
that are issued. After the time period expires, new private
keys are generated. Therefore, if a drone is captured, infor­
mation leakage is limited to the time period during which
the private keys were valid. To improve efficiency, eCLSC-
TKEM minimizes the computational overhead at the smart
object. The entire system efficiency highly depends on the
computation time required by the smart object rather than
the drone since a smart object is equipped with a low speed
processor, while the drone has a PC-like processor. The
contributions of our paper are summarized as follows.

•	 An efficient Certificateless Signcryption Tag Key Encap­
sulation Mechanism (eCLSC-TKEM) is proposed. The
formal security model and a security proof are provided.
Based on eCLSC-TKEM, a secure communication pro­
tocol for drone applications is presented. Our protocol
is the most energy-efficient protocol supporting sharing
of symmetric encryption keys for secure communications
and non-repudiation.

•	 The dual channel strategy is introduced to concurrently
perform eCLSC-TKEM with many smart objects at the
same time, and thus to save the drone’s energy.

•	 A secure communication protocol for the real drone ap­
plication, i.e., smart parking management, has been im­
plemented. The performance of eCLSC-TKEM has been
evaluated in a testbed consisting of the commercially avail­
able devices AR.Drone2.0 and TelosB.

The remainder of this paper is organized as follows: In
Section 2, we briefly discuss related work and requirements
for drone-related communication protocols. In Section 3, we
introduce our eCLSC-TKEM and dual channel strategy. In
Section 4, we describe the design of our protocol through an
example application. Then, the performance of our protocol
is evaluated in Section 5. In Section 6, the security model
and proof of eCLSC-TKEM are presented. Then, we outline
conclusions and future works in Section 7.

2. BACKGROUND
2.1 Mobile data collectors in WSN

Several approaches [22, 25, 4, 29, 23, 18] have been pro­
posed for using mobile data collectors in WSNs because
of their advantages over traditional static WSNs such as
connectivity, cost, reliability and energy efficiency. How­
ever, the use of mobile collectors introduces new security
risks because mobile collectors are privileged nodes storing
collected data and are exposed to physical capture. Zhou
et al. [29] analyzed the security impact of mobile collector
compromises and proposed a key pre-distribution scheme
for group-based sensor networks. Song et al. [23] proposed
a privilege-dependent pairwise key establishment scheme.
This scheme revokes the privileges of a compromised mo­
bile collector immediately after its compromise is detected.
Rasheed et al. [18] proposed a secure data collection mech­
anism based on hash chains under the assumption that a
mobile collector moves along a predetermined path. In this
protocol, once a mobile collector is authenticated, a cluster
head transfers aggregated data to the mobile collector. Al­
though these protocols deal with the compromise of mobile
collectors, their scalability is limited since they are based on
symmetric key pre-distribution. Our protocol addresses the
scalability problem by taking advantage of an asymmetric-
key approach, while minimizing the computational overhead
at the sensors.

To save the energy of sensor nodes or to extend the contact
time between sensor nodes and mobile collectors, previous
approaches [19, 28] adopted multiple radios/channels. How­
ever, these approaches did not consider the impact of slow
public key operations at resource-constraint sensor nodes on
mobile collectors.

2.2 CLSC-TKEM and CL-AKA
The authenticated key agreement (AKA) scheme is one

of the most fundamental cryptographic mechanisms. It sup­
ports user authentication and generates shared secret keys
between two parties over an insecure network. Traditional
PKC-based AKA has the overhead of certificate manage­
ment, whereas ID-PKC based AKA has the key escrow prob­
lem. To solve those issues, Al-Riyami et al. introduced cer­
tificateless public key cryptography (CL-PKC) [3]. Then,
several certificateless authenticated key agreement (CL-AKA)
protocols were built based on bilinear pairings. However,
since the computational costs required for pairing opera­
tions are much higher than those for standard operations,
such as EC point multiplication, it is hard to implement
pairing-based applications on resource-constrained devices.
Several pairing-free CL-AKA protocols [10, 9, 26, 24] have
thus been proposed. However, most of those protocols were
proved to be insecure and only two of them still remain
secure: Sun’s CL-AKA [24] and Yang’s CL-AKA [26]. Re­
cently, Li et al. [12] proposed a certificateless signcryption
tag KEM (CLSC-TKEM) protocol. CLSC-TKEM supports
not only practical authenticated key agreement but also des­
ignated verifier signature. Later, Selvi et al. [20] showed a
security weakness in Li et al.’s CLSC-TKEM and presented
an improved CLSC-TKEM. Since both CLSC-TKEM proto­
cols [12, 20] rely on bilinear pairing operations, they are not
suitable for resource-constrained devices. Recently, Seo et
al. [21] proposed a pairing-free CLSC-TKEM protocol that
does not use bilinear pairing operations. However, none of
the existing CL-AKA and CLSC-TKEM protocols addresses

250

Table 1: Comparison of protocols

Protocol
Computational overhead on
a smart object (on-line)

Security functionality
Key agreement User authentication Non-repudiation User revocation

Yang’s CL-AKA [26] 9EM + 1V (8EM + 1V) yes yes no no
Sun’s CL-AKA [24] 6EM (5EM) yes yes no no
CLSC-TKEM [21] 5EM (3EM) yes yes yes no
eCLSC-TKEM 4EM (2EM) yes yes yes yes

EM: EC point multiplication, V: signature verification. ‘On-line’ means the computational overhead except ephemeral public key
generations such as U and V generation in our protocol. The ‘On-line’ overhead is more meaningful than the entire overhead since
ephemeral public keys can be generated in advance before a key agreement protocol starts.

user revocation which means that if drones are captured, the
attacker will have full access not only to the information al­
ready collected and recorded in the drone, but also to future
information to be collected by the drone.

In order to minimize information leakage in case of physi­
cal capture of drones, eCLSC-KTEM utilizes Boneh et al.’s
revocation technique [5]. The key generation center (KGC)
in eCLSC-TKEM adds time constraint to its partial pri­
vate keys. In other words, partial private keys issued in
eCLSC-TKEM are only valid for specified time periods. Af­
ter the time period ends, new private keys will be gener­
ated. By adding this time constraint, we limit information
leakage. To revoke a compromised drone, the KGC stops
issuing partial private/public keys, including a valid time
component, to the drone. Our approach prevents unautho­
rized users from being able to generate full private/public
keys for future time periods. Although eCLSC-TKEM does
not completely eliminate the risk of information leakage in
case of physical capture, it limits the amount of compro­
mised information to the information acquired during the
last time period right before the revocation took place. Ta­
ble 1 summarizes the comparison between eCLSC-TKEM
and existing pairing-free CL-AKA and CLSC-TKEM.

2.3	 Requirements for secure drone communi­
cations

The requirements for a communication protocol between
drones and smart objects are summarized in terms of secu­
rity and efficiency as follows.
•	 Security First, authenticated key establishment should

be supported for confidentiality and user authentication.
Second, it should be possible to verify the integrity of data
and support non-repudiation. Third, information leakage
should be minimized in the event that a drone is captured
and its secret key is exposed. Finally, different access
rights to smart objects should be supported for drones.
Only authenticated/authorized drones should have access
to smart objects’ internal data according to their rights.

•	 Efficiency Since drones and smart objects are battery-
powered, energy efficiency as well as security is a critical
issue. Therefore, protocol executions should be completed
as soon as possible to save energy. A drone usually has
PC-like processing speed while a smart object has sensor-
like processing speed. It is thus critical that protocols im­
pose minimal computational overhead on smart objects.
In addition, a drone may communicate with many smart
objects at the same time. Therefore, the protocol should
support concurrent cryptographic operations.

3. BUILDING BLOCKS
In this section, eCLSC-TKEM and the dual channel strat­

egy are presented as major building blocks for our secure
drone communication protocol.

3.1	 eCLSC-TKEM
Unlike existing protocols, eCLCS-TKEM satisfies all the

security requirements such as authenticated key agreement,
non-repudiation and user revocation with the minimum com­
putational overhead at smart objects (see Table 1). Note
that the CL-AKA protocols [26, 24] satisfy only the first re­
quirement. To support non-repudiation, the CL-AKA pro­
tocols must be extended with a signature scheme. Although
CLSC-TKEM satisfies the first and second requirements, it
does not support user revocation or multiple access rights.
eCLSC-TKEM is a 8-tuple: (SetUp, SetSecretValue, Par­
tialPrivateKeyExtract, SetPrivateKey, SetPublicKey, Symmet­
ricKeyGen, Encapsulation Decapsulation). The description of
each probabilistic polynomial time algorithm is as follows.

1) SetUp: This algorithm is run by the KGC to generate
the system parameters params and a master secret key msk,
given a security parameter k as input. KGC takes a security
parameter k ∈ Z+ as input, and returns two system param­
eters: Ω and the KGC’s master private key msk. Given k,
the KGC performs the following steps:

•	 Chooses a k-bit prime q and determine the tuple {Fq , E/Fq ,
Gq , P }, where the point P is the generator of Gq.
•	 Chooses the master key x ∈ Z∗

q uniformly at random and
computes the system public key Ppub = xP .
•	 Chooses cryptographic hash functions H0 : {0, 1} ∗ × G2

q ×
{0, 1} ∗ → Zq

∗ ∗, H1 : Gq
3 × {0, 1} ∗ × Gq → {0, 1}n , H2 :

Gq ×{0, 1} ∗ × Gq ×{0, 1} ∗ × Gq ×{0, 1} ∗ × Gq → Z∗
q , and

H3 : Gq ×{0, 1} ∗ × Gq ×{0, 1} ∗ × Gq ×{0, 1} ∗ × Gq → Zq
∗ .

Here, n is the key length of a DEM.
•	 Publishes Ω = {Fq , E/Fq , Gq , P, Ppub, H0, H1, H2, H3} as

the system’s parameter and keeps the master key x secret.

2) SetSecretValue: This algorithm is run by each entity to
generate a secret value and the corresponding public value
for oneself. The entity A with an identity IDA chooses
xA ∈ Z∗

q uniformly at random as its secret value and gener­
ates the corresponding public key as PA = xAP .

3) PartialPrivateKeyExtract: The KGC runs this algorithm
to generate the partial private key of a user. It takes the
KGC’s master secret key, the id of the user IDA, the per­
mitted time period tA and the system parameter as inputs.
It returns the partial private key of the entity. In order to
obtain the partial private key, the entity A sends (IDA, PA)
to the KGC. The KGC then executes the following steps:

• Chooses rA ∈ Z∗
q and computes RA = rAP .

• Computes dA = rA + xH0(IDA, RA, PA, tA) mod q.

The partial private key of the entity A is dA. The en­
tity can validate its private key by checking whether dAP =
RA + H0(IDA, RA, PA, tA)Ppub holds.

251

4) SetPrivateKey: This algorithm is run by each entity to
generate the full private key. The entity A takes the pair
skA = (dA, xA) as its full private key.

5) SetPublicKey: This algorithm is run by each entity to
generate the full public key. The entity A takes the pair
pkA = (PA, RA) as its full public key.

6) SymmetricKeyGen: This algorithm is run by the sender
A to obtain the symmetric key K and an internal state infor­
mation ω, which is not known to the receiver B. Given the
sender (entity A)’s identity IDA, the full public key pkA,
the full private key skA, the receiver (entity B)’s identity
IDB , the time interval tB and the full public key pkB as
inputs, the sender executes this symmetric key generation
algorithm to obtain the symmetric key K as follows:

• Chooses lA, sA ∈ Z∗
q and computes U = lAP , V = sAP .

•	 Computes Y = RB + H0(IDB , RB , PB , tB) · Ppub + PB ,
T = sA ·Y (= sA ·(H0(IDB , RB , PB , tB)·Ppub +RB +PB))
and K = H1(Y, V, T, IDB , PB).
•	 Outputs K and the intermediate information ω = (lA, sA,

U, V, T, IDA, pkA, skA, IDB , pkB , tB).

7) Encapsulation: This algorithm is executed by the sender
A to obtain the encapsulation ϕ. It takes ω corresponding
to K and an arbitrary tag τ as inputs. Given a state infor­
mation ω and an arbitrary tag τ , the sender A obtains the
encapsulation ϕ by performing the following steps:

•	 Computes H = H2(U, τ, T, IDA, PA, IDB , PB),
H I = H3(U, τ, T, IDA, PA, IDB , PB) and W = dA + lA ·
H + xA · H I

• Outputs ϕ = (U, V, W).

8) Decapsulation: This algorithm is executed by the receiver
B to obtain the key K encapsulated in ϕ. Given the encap­
sulation ϕ, a tag τ , the sender’s identity IDA, full public
key pkA, the time interval tA the receiver’s identity IDB ,
the full public key pkB and the full private key skB , the key
K is computed as follows:

•	 Computes Y = (dB +xB) ·P (= (rB +xH0(IDB , RB , PB ,
tB) + xB) · P = RB + H0(IDB , RB , PB , tB) · Ppub + PB),
T = (dB + xB) · V (= (dB + xB) · sAP = sA · Y).
•	 Computes H = H2(U, τ, T, IDA, PA, IDB , PB) and H I =

H3(U, τ, T, IDA, PA, IDB , PB).
• If W ·P = RA +H0(IDA, RA, PA, tA)·Ppub +H ·U +H I ·PA,

outputs K = H1(Y, V, T, IDB , PB).

Otherwise, outputs an invalid encapsulation error. The

correctness of the above equation is as follows:

W · P = (dA + lA · H + xA · H I) · P

= dA · P + lA · P · H + xA · P · H I

= (rA + xH0(IDA, RA, PA, tA)) · P + U · H + H I · PA

= RA + H0(IDA, RA, PA, tA) · Ppub + H · U + H I · PA

3.2	 Dual Channel Strategy for Concurrency
using LPL

Since smart objects and drones are battery-powered, their
energy should be efficiently used. Our protocol utilizes dual
channels and low power listening (LPL) [1]. The asyn­
chronous duty cycling technique, known as LPL, is one of
most promising power-saving techniques for WSNs and re­
sults in higher performance than synchronous duty cycling
techniques in terms of energy and throughput [17].

Each smart object has one radio and changes its channel
according to its situations, while drones are equipped with
two radios, i.e., the wake-up radio and the data radio. As
depicted in Fig. 1, a smart object periodically turns a ra­
dio transceiver on (wake-up) and off (sleep) on the wake-up
channel to save its energy. Through the wake-up radio, a
mobile drone continuously broadcasts wake-up signals in­
cluding its ID and public keys. When a smart object wakes
up, it quickly checks whether the wake-up channel is busy.
If the wake-up channel is idle, the smart object can save
energy by sleeping again until the next wake-up time. If a
mobile drone broadcasting the wake-up signals approaches
some smart objects, the wake-up channel becomes busy. If
the smart objects listen the wake-up signals, they stay awake
and receive a whole wake-up signal. Then, each smart ob­
ject concurrently initiates SymmetricKeyGen and Encapsula­
tion and switches the channel from the wake-up channel to
the data channel. The Encapsulation output is transmitted
to the drones using the data channel. These concurrent exe­
cutions of eCLSC-TKEM in smart objects can save drone’s
energy. If a drone has only one radio, it might require precise
time synchronization with smart objects to make schedules
or perform eCLSC-TKEM with each smart object one by
one, which results in a waste of its limited flight time.

4.	 SECURE COMMUNICATION PROTOCOL
FOR DRONES

In this section, we illustrate the design of our protocols in
the context of a smart parking management application.

4.1	 Smart parking management
Today’s parking management is a manual, labor-intensive

process. Parking enforcement officers must periodically pa­
trol on-street parking areas and check cars one by one to
identify cars that are parked over time . By utilizing drones
and sensors, parking management can be more efficient and
cost effective. Cars might attach an independent device
equipped with a GPS and a radio transceiver. For example,
an university can issue those independent devices to regis­
tered car owners as parking permits for parking management
on its campus. Then, a drone would patrol time limited
parking areas and collect information from every parked car.
Information includes the identity and location of the car, the
type of parking permit and the current time. By collecting
this information at certain time intervals, drones can detect
if a car is parked at an invalid zone or has been parked at
the same spot for longer than the time limit.

In this scenario, since privacy-sensitive information is in­
volved, only authorized drones should be allowed to collect
this information. More importantly, since the information is
used to fine drivers who parked their cars illegally, a protocol
must support non-repudiation and integrity of the collected
information.

4.2	 Registration
We assume that every car is equipped with a smart object

which includes a low-speed CPU, a small memory, a GPS
sensor and a radio transceiver. The smart object (A) gener­
ates its own secret value (xA) and corresponding public key
(PA) by executing the SetSecretValue algorithm. For each
smart object, the KGC generates a partial private/public
key pair (dA, RA) by executing the PartialPrivateKeyExtract
algorithm and transfers it to the smart object through a se­

252

Smart
object (A)

Smart object wakes up for a short
time and checks if the channel is
busy. If not, sleep (turn off radio)

If wake-up channel is busy,
smart objects stay awake
and receive packet M1.

Wake up interval

Drone (B)
(Data
Channel)

M1

M1

Smart objects switch the
channel from wake-up
channel to data channel.

M2

M2

… M1 M1 M1 M1 M1

M2 M2

M1 M1 M1 M1

Drone B Continuously broadcasts M1 in the wake-up
channel. If drone B enters smart objects’
communication range, smart objects can receive M1.

After smart objects send M2, they sleep again and
switch back the channel from data channel to
wake-up channel. Smart objects perform LPL.

Wake up interval

time Drone (B)
(Wake-up
Channel)

Smart
object (A’)

Wake up interval

Wake up interval

Wake up interval

M1 M1 M1 M1 …

K ß SymKeyGen
τ ß ENCK(message)
W ß Encapsulation

K ß SymKeyGen
τ ß ENCK(message)
W ß Encapsulation

K ß Decapsulation
message ß DECK(τ)
Drone B sends success or failure.

Figure 1: Solid-line square: packet transmission, dash-line square: listen or packet reception. M1 = {IDB , PB ,
RB , tB }, M2 = {IDA, PA, RA, tA, U, V, W, τ}, Decapsulation result (success/failure) transmissions are omitted.

cure channel. Note that the partial private key is only valid
for a certain period of time, for example one year, since a
permitted time period is included in tA of the PartialPri­
vateKeyExtract algorithm. Thus, a car owner should peri­
odically renew the partial private/public key. We assume
that a drone stays in a secure place when it is off duty. The
drone (B) generates its secret value (xB) and corresponding
public key (PB) by executing the SetSecretValue algorithm.
Before the drone goes out to patrol, it requests a partial pri­
vate/public key (dB , RB) from the KGC. The partial private
key is only valid for the maximum flight time, for example
30 minutes; this time period is inserted into tB of Partial-
PrivateKeyExtract algorithm. Therefore, in the event that
the drone is compromised, the information leakage is lim­
ited to this time period. Similarly, access rights granted to
the drone are also inserted in tB .

4.3 Key establishment using dual channels
Fig. 1 illustrates the flow of our protocol. A smart object

(A) runs LPL in the wake-up channel and tries to detect
wake-up signals from a drone. The drone (B) continuously
broadcasts wake-up signals (M1) in the wake-up channel
while moving, so that smart objects can detect M 1 when
they awake. M 1 contains the drone’s ID (IDB), the public
keys (PB , RB) and the permitted time period/access right
(tB). If a smart object wakes up and receives M1, it stops
LPL and generates a symmetric key (K) by performing Sym­
metricKeyGen. Then, using K, the smart object generates a
ciphertext (τ) by encrypting messages, such as permit type,
location information (loc) and current time (ct). After the
smart object generates W by executing the Encapsulation al­
gorithm, it switches the channel from the wake-up channel
to the data channel and sends M2 to B. Since τ is signed
by A as part of the Encapsulation, A cannot repudiate τ af­
terward. M2 contains the ID of the smart object (IDA),
the public keys (PA, RA), the permitted time period (tA),
ephemeral public keys (U, V), the result value of Encapsula­
tion (W), and the ciphertext (τ).
If the drone receives M2, it executes Decapsulation. If the

validation process is successful, the drone (B) generates K
and decrypts τ using K. Right after obtaining loc and ct
from τ , B compares loc and ct with its own current location
(locI) and current time (ctI), respectively. Then, based on
the comparison outcome, it may perform additional actions.

For example, if |loc − locI| > 10m or ct − ctI > 5 mins, B
might take actions such as taking a picture of the car or
sending a message to a human manager. Finally, B sends
the decapsulation result to A. If the result is successful,
both the drone (B) and the smart object (A) can use K to
exchange encrypted messages.

5. EXPERIMENTS
To evaluate our protocol, we implemented not only our

protocol, but also the CL-AKA [26, 24] and CLSC-TKEM [21]
protocols on the commercially available devices AR.Drone2.0 [2]
and TelosB sensors.

5.1 Experiment Setup
5.1.1 Drone
AR.Drone2.0 [2] is a quad-copter equipped with front and

ground cameras and a Wi-Fi (2.4GHz). It has a 1GHz 32­
bit ARM cortex A8 CPU and a 1Gbit DDR2 RAM. The
main board of the AR.Drone2.0 runs the BusyBox based
GNU/Linux distribution with 2.6.32 kernel. After the drone
is booted, it works as a Wi-Fi access point. The drone can
be controlled from smartphones or laptops by sending UDP
control commands through the Wi-Fi. As ECC library, we
adopted the micro-ecc [14] optimized for the ARM proces­
sor. To compile our code, we used a 32-bit Linux machine
since our code had to be cross-compiled for the 32-bit ARM
architecture. Then, we transferred the compiled code to
AR.Drone2.0 using FTP and executed it by Telnet.

For the wake-up radio and the data radio, two TelosBs
were connected to the drone using USB-to-serial interfaces
(see Fig. 2). The data radio is connected to an external
USB-to-serial interface which is located nearby the battery
connector. The wake-up radio is connected to a pin connec­
tor on the main board. TelosB is equipped with a CC2420
IEEE 802.15.4 radio transceiver which works at the 2.4GHz
ISM band. To avoid interferences between the Wi-Fi and
the IEEE 802.15.4 radios, the channel 6 was selected as the
Wi-Fi channel and the channel 11 and 26 were selected as
the wake-up channel and the data channel, respectively.

5.1.2 Smart object
We used a TelosB equipped with an extremely low speed

CPU (TIMSP430 F1161) as a smart object in order to show
that our protocol works well even with low speed devices.

253

USB D-
USB D+

USB Ground

USB Vcc +5V

Wake-up radio Data radio

Figure 2: Dual radios attached on AR.Drone2.0

5 m

s1 s2 s3
…

80 m

s16 s17

Start
point

30 m

Figure 3: Network topology

93.6	

49.7	
 45.5	

35.3	

102.0	

54.4	

46.7	

36.2	

137.2	

71.4	

58.8	

44.6	

0	

50	

100	

150	

Yang's	
 CL-­‐AKA	
 Sun's	
 CL-­‐AKA	
 CLSC-­‐TKEM	
 eCLSC-­‐TKEM	

co
m
pl
e'

on
	
 '
m
e	

(s
ec
)	
 secp128r1	

secp160r1	

secp192r1	

Figure 4: Impact of key bit size

Although the maximum communication range of CC2420 is
approximately 100m when the RF power is set to 0dBm,
we set the RF power to -7dBm to save power and its com­
munication range became roughly 30m. TelosB is operated
by TinyOS 2.0 which is an open-source operating system
designed for low-power devices. We used the LPL function­
alities in TinyOS 2.0. In addition, TinyECC [13] was used
as the basic ECC operations of our protocol.

5.1.3 Network topology
Fig. 3 illustrates network topology which mimics the sce­

nario of the smart parking management. 17 smart objects
are deployed at 5m intervals in a line and a drone starts
from the starting point which is 30m apart from s1 at an
altitude of 10m. The mission of the drone is to collect mes­
sages from all smart objects. and the mission completion
time of the drone was measured. The drone proceeds from
the start point to s17. If the drone reaches a smart object
(sx), but is unable to finish the data collection task with sx,
the drone waits until the collection is completed.

5.2 Experimental results

5.2.1 Impact of key bit size
Fig. 4 shows the mission completion time of four proto­

cols with different ECC key bit sizes when the system adopts
5sec wake-up interval and dual channels. When secp160r1 is
used, the mission completion time of our protocol is 36.2sec
which is 1.3, 1.5 and 2.8 times faster than Seo’s CLSC­
TKEM, Sun’s CL-AKA and Yang’s CL-AKA, respectively.
The completion time of each protocol increases as the key
bit size increases. However, the difference between a 128­
bit key and a 160-bit key is much smaller than the differ­
ence between a 160-bit key and a 192-bit key, which implies

Table 2: Comparison of the on-line computation
time of a smart object (unit: second)

Protocol secp128r1 secp160r1 secp192r1
Yang’s CL-AKA [26] 32.84 36.22 50.43
Sun’s CL-AKA [24] 15.10 16.98 23.84
CLSC-TKEM [21] 13.37 13.87 18.77
eCLSC-TKEM 9.25 9.61 13.03

0	

20	

40	

60	

80	

100	

120	

140	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	

co
m
pl
e'

on
	
 '
m
e	

(s
ec
)	

Wake-­‐up	
 interval	
 of	
 a	
 smart	
 object	
 (sec)	

Yang's	
 CL-­‐AKA	
 Sun's	
 CL-­‐AKA	

CLSC-­‐TKEM	
 eCLSC-­‐TKEM	

Figure 5: Impact of interval between wake-ups

that a 160-bit key may be a reasonable choice since it pro­
vides better security than a 128-bit key with a very small
time increase. These results are confirmed by Table 2 which
compares the computation time measurements of each pro­
tocol on a smart object with different ECC curves. The
computation time at a smart object in our protocol is 1.4,
1.8 and 3.8 times faster than Seo’s CLSC-TKEM, Sun’s CL­
AKA and Yang’s CL-AKA, respectively, when secp160r1 is
used. Note that in our protocol the smart object is required
to compute only two EC point multiplications after it starts
communicating with the drone (online), while the other pro­
tocols require more than two EC point multiplications (see
Table 1). These results are similar to the completion time
results since the overall performance highly depends on the
computation time at the smart object.

5.2.2 Impact of interval between wake-ups
We analyzed the impact of the wake-up interval of smart

objects when the system adopts secp160r1 and dual chan­
nels. As shown in Fig. 5, our protocol, compared to CLSC­
TKEM and Sun’s CL-AKA, has a similar completion time
with longer intervals between wake-ups, thus saving energy
in smart objects. Specifically, the mission completion time
of our protocol is 46.8sec when the wake-up interval is 9sec.
However, in CLSC-TKEM, the wake-up interval that achieves
a similar mission completion time, i.e., 46.7sec, is 5sec. In
Sun’s protocol, the wake-up interval that achieves the simi­
lar mission completion time, i.e., 46.2sec, is 1sec. As a result,
by using our protocol a smart object can save energy 1.8 and
9 times more than when using the CLSC-TKEM and Sun’s
CL-AKA, respectively, if the mission completion times of
three protocols are equally set.

5.2.3 Impact of drone’s altitude
Since our protocol is efficient, a drone using our protocol

does not require a long contact time with smart objects and
thus complete the mission faster than others even at a higher
altitude. For example, based on experiments we have car­
ried out, the time required by eCLSC-TKEM to complete a
mission at an altitude of 20m was 47sec, whereas the time
required by CLSC-TKEM at an altitude of 5m was 49sec. 1

1secp160r1 and 5sec wake-up interval are used. These de­
tailed results are not included in the paper for lack of space.

254

208.5	
 213.8	

269.6	

35.3	
 36.2	
 44.6	

0	

50	

100	

150	

200	

250	

300	

128r1	
 160r1	
 192r1	

co
m
pl
e'

on
	
 '
m
e	

(s
ec
)	
 One	
 channel	
 Dual	
 channels	

Figure 6: Impact of the dual channel strategy

5.2.4 Impact of dual channel strategy
Finally, Fig. 6 shows the impact of the dual channel strat­

egy on the system when the wake-up interval is 5sec. For the
key establishment scheme, eCLSC-TKEM is utilized. The
drone completes the mission approximately 6 times faster
than when only one channel is used. If the dual channel
strategy is adopted, the drone can take advantage of inde­
pendent dual channels. The drone can continuously broad­
cast the wake-up signals on the wake-up channel while, at
the same time, it can exchange eCLSC-TKEM output with
smart objects on the data channel. The experiment results
shown in Fig. 6 refer to the case in which 3 or 4 smart ob­
jects are in the communication range of the drone (see also
Fig.5). The results show that all the smart objects in the
range are able to concurrently initiate the execution of the
eCLSC-TKEM protocol once they receive the wakeup sig­
nal. However, if only one channel is used, the drone must
perform eCLSC-TKEM with smart objects one by one. In
the one-channel system, the drone broadcasts the wake-up
signals. Once a smart object receives the wake-up signal, it
sends an acknowledge to the drone. Then, the drone must
stop broadcasting the wake-up signals to receive the eCLSC-
TKEM output from the smart object. If the whole process of
eCLSC-TKEM with the smart object is successfully finished,
the drone starts broadcasting the wake-up signals again to
wake up another smart object. Since each smart object takes
much longer time for the execution of the eCLSC-TKEM
protocol than the drone, the drone must wait wasting its lim­
ited flight time doing nothing. As a result, the dual channel
strategy is essential for efficient and secure communication
protocols that support many different security functions.

6. SECURITY ANALYSIS
6.1 Security Model of eCLSC-TKEM

An efficient certificateless signcryption tag KEM must con­
sider three types of adversaries: AI , AII and AIII . AI

represents a dishonest user who can replace other user’s pub­
lic keys but has no knowledge about the master secret key
of the KGC. AII represents a malicious KGC which has
knowledge of the KGC’s master secret key. However, AII is
unable to replace the users’ public keys. AIII represents a
previously functional user, whose partial private/public keys
have been revoked by the KGC. AIII cannot replace other
users’ public keys. Except for the consideration of AIII , the
security model of eCLSC-TKEM is similar to that of CLSC­
TKEM [20, 12]. eCLSC-TKEM must satisfy confidential­
ity, that is, indistinguishability against an adaptive chosen
ciphertext and identity attacks (IND-CCA2), and unforge­
ability, that is, existential unforgeability against adaptive
chosen messages and identity attacks (EUF-CMA). In order
to describe the security model of eCLSC-TKEM, we consider
the two formal games IND-eCLSC-TKEM-CCA2 game and
EUF-eCLSC-TKEM-CMA game.

1) IND-eCLSC-TKEM-CCA2 Game: The adversary
A can be either AI , AII or AIII . The challenger C should
keep a history of query-answers while interacting with adver­
saries. C runs the SetUp() algorithm to generate the public
parameters params and the master private key msk respec­
tively. If A is either AI or AIII , C gives params to A while
keeping msk secret. If A is AII , C gives both params and
msk to A.
Phase I: A may perform a polynomially bounded number
of the following queries in an adaptive fashion.
•	 Extract-Secret-Value queries: C runs SetSecretValue

to get xU with identity IDU , and then returns it to AI .
In the case of AIII , C runs SetSecretValue before the chal­
lenge time period and returns xU to AIII . The adversary
AI or AIII cannot query any identity for which the cor­
responding public key has been replaced. AII is excluded
in this query.
•	 Extract-Partial-Private-Key queries: In the case of
A ∈ {AI , AII }, these can be made for all identities except
for the target identity. If A is AIII , these can be made
for any identity before the challenge time period. C runs
PartialPrivateKeyExtract to obtain the partial private key
dU and the permitted time period tU . Then C sends dU

and tU to A.
•	 Request-Public-Key queries: In the case of A ∈ {AI ,
AII }, C runs SetPublicKey to get the full public key pkU

and then returns it to AI . If A is AIII , C runs SetPublicKey
to get the full public key pkU and returns it to AIII be­
fore the challenge time period.
•	 Public-Key-Replacement queries: AI may replace

the public key pkU corresponding to the user identity IDU

with any value pkI of AI ’s choice. AII and AIII are
excluded in this query.

U

•	 Symmetric Key Generation queries: In the case of
A ∈ {AI , AII }, A chooses a sender’s identity IDA and
a receiver’s identity IDB . C obtains the private key of
the sender, skA and tB from the corresponding “query­
answer” list. Then, C runs SymmetricKeyGen to obtain
the symmetric key K and an internal state information ω
by using IDA, IDB , skA, pkB and tB . It stores ω while
keeping the ω secret from the view of A. Finally, C sends
K to A. C may not obtain the sender’s secret value if the
associated public value of the sender A is replaced. In
this case, A is required to provide the secret value of A
to C. We do not allow queries where IDA = IDB . If A
is AIII , C runs the above operations for any time instant
before the challenge time period.
•	 Key Encapsulation queries: In the case of A ∈ {AI ,
AII }, A produces an arbitrary tag τ for sender A. C
checks whether there exists a corresponding ω value. If
ω has been previously stored, then C computes (ϕ) ←
Encapsulation(ω, τ), deletes ω and returns ϕ to A. Other­
wise, C returns ⊥ and terminates. In case that A is AIII ,
C runs the above operations for any time instant before
the challenge time period.
•	 Key Decapsulation queries: In the case of A ∈ {AI ,
AII }, A produces an encapsulation ϕ, a tag τ , the sender’s
identity IDA, the public key pkA, the receiver’s identity
IDB and the public key pkB . C obtains the receiver’s
private key skB and tA from the corresponding “query­
answer” list. C runs Decapsulation by using IDA, IDB ,
pkA, skB , tA, ϕ and τ . C may not be aware of the cor­
responding secret value if the associated public value of

255

IDB is replaced. In this case A must provide the se­
cret value of B to C. We do not allow the queries where
IDA = IDB . If A is AIII , C runs the above operations
for any time instant before the challenge time period.

Challenge: At the end of Phase I decided by A ∈ {AI , AII },
A generates a sender identity IDA∗ and a receiver identity
IDB∗ on which A wishes to be challenged. Here, IDB∗ must
not be queried to extract a skB∗ in Phase I. Also, in case
that A is AI , IDB∗ may not be equal to an identity for
which both the public key has been replaced and the partial
private key has been extracted. At the end of Phase I which
is decided by A ∈ {AIII }, AIII generates a sender identity
IDA∗ and a receiver identity IDB∗ on which AIII wishes to
be challenged for some instant tI such that tI > tA∗ (af-A∗ A∗

ter he has been revoked). In the revoked period, AIII has
access to no new information. Now, C computes (K1, ω ∗) ←
SymmetricKeyGen(params, IDA∗ , pkA∗ , skA∗ , IDB∗ , pkB∗ ,
tB∗) and chooses K0 ∈R K, where K is the key space of the
eCLSC-TKEM. The C chooses a bit δ ∈R {0, 1} and sends
Kδ to A. A generates an arbitrary tag τ ∗ and sends it to
C. C computes (ϕ ∗) ← Encapsulation(ω ∗ , τ ∗) and sends ϕ ∗

to A as a challenge encapsulation.

Phase II: In the case that A is AI or AII , A can perform
a polynomially bounded number of queries adaptively as in
Phase I. However, when A is AIII , the notable difference
is that A can perform a polynomially bounded number of
queries adaptively, before the beginning of the challenge pe­
riod as in Phase I. A may not make Extract-full-Private-Key
queries on IDB∗ . In AI , if the public key of IDB∗ has been
replaced before the challenge phase, AI may not extract the
partial private key for IDB∗ . Moreover, A may not make a
key decapsulation query on (Kδ , ϕ ∗) under IDA∗ and IDB∗ ,
unless the public key pkIDA∗ or pkIDB∗ has been replaced
after the challenge phase.
Guess: A outputs a bit δI and wins the game if δI = δ.

The advantage of A is defined as AdvIND−CCA2(A) = |2Pr[δI

= δ] − 1|, where Pr[δI = δ] denotes the probability that
δI = δ. A eCLSC-TKEM is IND-CCA2 secure if there is no
probabilistic polynomial-time adversary in the above games
with non-negligible advantage in the security parameter k.
The security of eCLSC-TKEM is based on the assumed
intractability of the one-sided gap Diffie-Hellman problem
(OGDH) [11].

2) EUF-eCLSC-TKEM-CMA Game: The Forger F
can be either FI , FII or FIII . The challenger C should
keep a history of the query-answers while interacting with
adversaries. C runs the SetUp() algorithm to generate the
public parameters params and the master private key msk
respectively. If F is either FI or FIII , C gives params to F
while keeping msk secret. If F is FII , C gives both params
and msk to F .

Training Phase: F may make a polynomially bounded
number of queries to random oracles Hi(0 ≤ i ≤ 3) at any
time and C responds as follows:
All the oracles and queries needed in the training phase
are identical to the queries allowed in Phase I of the IND­
eCLSC-TKEM-CCA2 game.

Forgery: At the end of the Training Phase which is decided
by F ∈ {FI , FII }, F produces an encapsulation \τ ∗ , ϕ ∗ , IDA∗

, IDB∗) on a arbitrary tag τ ∗ , where IDA∗ is the sender
identity and IDB∗ is the receiver identity. At the end of
the Training Phase decided by F = FIII , FIII generates
a sender identity IDA∗ and a receiver identity IDB∗ on
which FIII wishes to be challenged for some instant tA

I
∗

such that tI A∗ > tA∗ (after FIII has been revoked). Then,
F sends \τ ∗ , ϕ ∗ , IDA∗ , IDB∗) to C. If F is FI , during the
Training Phase, the partial private key for IDA∗ must not
be queried and the public key for IDA∗ must not be re­
placed simultaneously. If F is FII , the secret value xA∗

for IDA∗ must not be queried and the public key for IDA∗

must not be replaced, simultaneously. Moreover ϕ ∗ must
not be returned by the key encapsulation oracle on the input
(τ ∗ , ω ∗ , IDA∗ , IDB∗) during the Training Phase. If the out­
put of Decapsulation(params, IDA∗ , pkA∗ , tA∗ , IDB∗ , pkB∗ ,
skB∗ , ϕ ∗ , τ ∗) is valid, F ∈ {FI , FII } wins the game. If the
output of Decapsulation(params, IDA∗ , pkA∗ , tA

I
∗ , IDB∗ , pkB∗ ,

skB∗ , ϕ ∗ , τ ∗) is valid, F = FIII wins the game.

The advantage of F is defined as the probability with which
it wins the EUF-pCLSC-TKEM-CMA game. A eCLSC-
TKEM satisfies existential unforgeability against an adap­
tively chosen message attack (EUF-eCLSC-TKEM-CMA), if
no polynomially bounded forger F has non-negligible advan­
tage in the above EUF-eCLSC-TKEM-CMA game between
C and F

6.2 Security Proof
In this section, we provide the formal security proof for

the confidentiality and the existential unforgeability of our
eCLSC-TKEM. The security of our eCLSC-TKEM relies on
the hardness of the following problems.

Definition of OGDH For a group Gq with a generator
P and a fixed point Q, the one-sided gap Diffie-Hellman
problem (OGDH) [11] is defined as follows: for x, y ∈ Z ∗

q ,
given Q, R, compute xyP by accessing an one-sided decision
Diffie-Hellman (ODDH) Oracle, where Q = xP and R = yP .

Definition of ODDH For a group Gq with a generator P
and a fixed point Q, the one-sided decision Diffie-Hellman
oracle (ODDH) [11] is an oracle that for any RI, SI ∈ Gq

correctly answers the question: Is z I ≡ xy I (mod p), where
I I Ix, y , z ∈ Z ∗

q are integers such that Q = xP, RI = y P, SI =
Iz P ?

Definition of ECDLP The elliptic curve discrete log prob­
lem (ECDLP) is defined as follows: given a random instance
P, Q, find a number x ∈ Z ∗

q such that Q = xP .

Theorem 1. In the random oracle model, the eCLSC-TKEM
is IND-CCA2 secure under the assumption that the one-
sided gap Diffie-Hellman (OGDH) problem is intractable.
The Theorem 1 is proved based on Lemmas 1, 2 and 3. We
adopt the security proof techniques from [21]. The proof of
Lemma 3 is in the appendix, whereas the proofs of Lemmas
1 and 2 are omitted due to the space limitation.

Lemma 1. In the random oracle model, if there exists an
adversary AI against the IND-eCLSC-TKEM-CCA2-I secu­
rity of the eCLSC-TKEM with advantage a non-negligible δ,
then an algorithm C exists that solves the OGDH problem
with the following advantage ε

256

qppri
ε ≥ δ · (1 −)

qC · qH0

qsv 1 1 · (1 −) · () · ()
qC · qH0 qC · qH0 − qppri − qsv qH1

Here, qH0 , qH1 , qC , qppri and qsv are the maximum number
of queries that the PPT adversary may ask random oracles
H0 and H1, create (IDi), extract-partial-private-key queries
and extract-secret-value queries.

Lemma 2. In the random oracle model, if there exists an
adversary AII against the IND-eCLSC-TKEM-CCA2-II se­
curity of the eCLSC-TKEM with advantage a non-negligible
δ, then there exist an algorithm C that solves the OGDH
problem with the following advantage ε

qsv
ε ≥ δ · (1 −)

qC · qH0

qpkR 1 1 · (1 −) · () · ()
qC · qH0 qC · qH0 − qsv − qpkR qH1

Here, qH0 , qH1 , qC , qpkR and qsv are the maximum number
of queries that the PPT adversary may ask random oracles
H0 and H1, create (IDi), public-key-replacement queries
and extract-secret-value queries.

Lemma 3. In the random oracle model, if there exists an
adversary AIII against the IND-eCLSC-TKEM-CCA2-III
security of the eCLSC-TKEM with advantage a non-negligible
δ, then an algorithm C exists that solves the OGDH problem
with the following advantage ε

*t 1 1 1
ε ≥ δ · (1 −) · (1 −) · () · ()

t q qC · qH0 − qppri − qsv qH1

Here, qH0 , qH1 , qC , qppri and qsv are the maximum number
of queries that the PPT adversary may ask random oracles
H0 and H1, create (IDi), extract-partial-private-key queries
and extract-secret-value queries. t denotes the total possible

*time assuming that the time begins at 0. t is a valid time
period of the target identity.

Theorem 2. In the random oracle model, the eCLSC-TKEM
is EUF-CMA secure under the assumption that the elliptic
curve discrete logarithm problem (ECDLP) is intractable.
Theorem 2 is proved based on Lemmas 4, 5 and 6. We adopt
the security proof techniques from [21]. The proof of Lemma
6 is in the appendix, whereas the proofs of Lemmas 4 and 5
are omitted due to the space limitation.

Lemma 4. In the random oracle model, if there exists a
forger FI against the EUF-eCLSC-TKEM-CMA-I security
of the eCLSC-TKEM with advantage a non-negligible δ, then
there exists an algorithm C that solves the ECDLP with the
following advantage ε

2 · qC qqH0 H2ε ≥ δ · qE · (1 −) · (1 −)
q q

q 2
1 1H3 qppri qsv · (1 −) · (1 +) · () · (1 −) · (1 −)

q q qC qH0 qH0

Here, qC , qE , qHi , qppri and qsv are the maximum number of
queries that the forger may make create (IDi) queries, key
encapsulation queries, random oracle queries to Hi (0 ≤ i ≤
3), extract-partial-private-key queries and extract-secret-value
queries.

Lemma 5. In the random oracle model, if there exists a
forger FII against the EUF-eCLSC-TKEM-CMA-II secu­
rity of the eCLSC-TKEM with advantage a non-negligible
δ, then there exists an algorithm C that solves the ECDLP
with the following advantage ε

2 2
qH0 · qC q qH2 H3ε ≥ δ · qE · (1 −) · (1 −) · (1 −)

q q q
1 1 qsv qpkR · (1 +) · () · (1 −) · (1 −)
q qC qH0 qH0

Here, qC , qE , qHi , qpkR and qsv are the maximum number of
queries that the forger may make create (IDi) queries, key
encapsulation queries, random oracle queries to Hi (0 ≤ i ≤
3), public key replacement queries and extract-secret-value
queries.

Lemma 6. In the random oracle model, if there exists a
forger FIII against the EUF-eCLSC-TKEM-CMA-III se­
curity of the eCLSC-TKEM with advantage a non-negligible
δ, then there exists an algorithm C that solves the ECDLP
with the following advantage ε

qH0 · qCε ≥ δ · qE · (1 −)
q

*q 2 q 2
1 1 tH2 H3· (1 −) · (1 −) · (1 +) · () · (1 −)

q q q qC t

Here, qC , qE and qHi are the maximum number of queries
that the forger may make create (IDi) queries, key encap­
sulation queries, random oracle queries to Hi (0 ≤ i ≤ 3). t
denotes the total possible time and assuming that the time

*begins at 0. t is a valid time period of target identity

7. CONCLUSIONS AND FUTURE WORKS
In this paper, a secure communication protocol between

drones and smart objects is presented. To satisfy security
and efficiency requirements, we propose the eCLSC-TKEM
with the dual channel strategy. Our protocol efficiently sup­
ports four security functions: key agreement, user authenti­
cation, non-repudiation, and user revocation. Our exper­
imental analysis carried in a smart parking management
testbed shows that our protocol is 1.3, 1.5 and 2.8 times
faster than other protocols, i.e., Seo’s CLSC-TKEM [21],
Sun’s CL-AKA [24] and Yang’s CL-AKA [26], respectively.
As future work, we plan to investigate how to mitigate the

O(N) key update overhead at the KGC (N is the number of
users). The overhead at the KGC can be dispersed by intro­
ducing intermediate entities between the KGC and drones.
The KGC issues a valid partial private key not to directly
drones but to the entity who is responsible for drones’ op­
erations. The entity can generate proxy partial private keys
for drones using its valid partial private key. The key idea of
the proxy partial private key might be similar to the proxy
certificate or the proxy signature.

Acknowledgments
The work reported in this paper has been partially sup­
ported by the Purdue Cyber Center and by the National
Science Foundation under grant CNS-1111512.

8. REFERENCES
[1] Low power listening, http://tinyos.stanford.edu/

tinyos-wiki/index.php/writing low-power applications.

257

http:http://tinyos.stanford.edu

[2] Parrot, http://ardrone2.parrot.com.
[3] S. Al-Riyami and K. Paterson. Certificateless public

key cryptography. In C.-S. Laih, editor, ASIACRYPT,
volume 2894 of LNCS, pages 452–473. Springer, 2003.

[4] G. Anastasi, M. Conti, E. Monaldi, and A. Passarella.
An adaptive data-transfer protocol for sensor networks
with data mules. In WoWMoM, pages 1–8, 2007.

[5] D. Boneh and M. K. Franklin. Identity-based

encryption from the weil pairing. In Proceedings of

CRYPTO ’01, pages 213–229. Springer, 2001.

[6] H. Chan, A. Perrig, and D. Song. Random key
predistribution schemes for sensor networks. In IEEE
Symposium on Security and Privacy, 2003.

[7] K. Chatterjee, A. De, and D. Gupta. An improved
id-based key management scheme in wireless sensor
network. In Advances in Swarm Intelligence, volume
7332 of LNCS, pages 351–359. Springer, 2012.

[8] W. Du, J. Deng, Y. S. Han, and P. K. Varshney. A

pairwise key pre-distribution scheme for wireless

sensor networks. In CCS ’03. Proceedings, 2003.

[9] M. Geng and F. Zhang. Provably secure certificateless
two-party authenticated key agreement protocol
without pairing. In CIS ’09, pages 208–212, 2009.

[10] D. He, J. Chen, and J. Hu. A pairing-free
certificateless authenticated key agreement protocol.
Int. Journal of Comm. Sys., pages 221–230, 2012.

[11] N. Koblitz and A. Menezes. Intractable problems in
cryptography. In Proc. 9th International Conf. Finite
Fields and Their Applications, 2010.

[12] F. Li, M. Shirase, and T. Takagi. Certificateless hybrid
signcryption. In Information Security Practice and
Experience, volume 5451 of LNCS. Springer, 2009.

[13] A. Liu and P. Ning. Tinyecc: A configurable library
for elliptic curve cryptography in wireless sensor
networks. In IPSN ’08, pages 245–256, April 2008.

[14] K. MacKay. https://github.com/kmackay/micro-ecc.
[15] S. M. Mizanur Rahman and K. El-Khatib. Private key

agreement and secure communication for
heterogeneous sensor networks. J. Parallel Distrib.
Comput., 70(8):858–870, Aug. 2010.

[16] D. Pointcheval and J. Stern. Security arguments for
digital signatures and blind signatures. JOURNAL OF
CRYPTOLOGY, 13:361–396, 2000.

[17] J. Polastre, J. Hill, and D. Culler. Versatile low power
media access for wireless sensor networks. In
Proceedings of the ACM SenSys ’04, 2004.

[18] A. Rasheed and R. Mahapatra. Secure data collection
scheme in wireless sensor network with mobile sink. In
IEEE NCA ’08, 2008.

[19] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and
M. Srivastava. Optimizing sensor networks in the
energy-latency-density design space. Mobile
Computing, IEEE Trans. on, 1(1):70–80, Jan 2002.

[20] S. Selvi, S. Vivek, and C. Rangan. Certificateless kem
and hybrid signcryption schemes revisited. In
Information Security, Practice and Experience, volume
6047 of LNCS, pages 294–307. Springer, 2010.

[21] S. Seo and E. Bertino. Elliptic curve cryptography
based certificateless hybrid signcryption scheme
without pairing, http://www.cerias.purdue.edu/apps
/reports and papers/view/4698. CERIAS report, ’13.

[22] R. Shah, S. Roy, S. Jain, and W. Brunette. Data
mules: modeling a three-tier architecture for sparse
sensor networks. In SNPA ’03, Proceedings, 2003.

[23] H. Song, S. Zhu, W. Zhang, and G. Cao. Least
privilege and privilege deprivation: Toward tolerating
mobile sink compromises in wireless sensor networks.
ACM Trans. Sen. Netw., 4(4):23:1–23:34, Sept. 2008.

[24] H. Sun, Q. Wen, H. Zhang, and Z. Jin. A novel
pairing-free certificateless authenticated key
agreement protocol with provable security. Frontiers
of Computer Science, 7(4):544–557, 2013.

[25] Y. Tirta, Z. Li, Y.-H. Lu, and S. Bagchi. Efficient
collection of sensor data in remote fields using mobile
collectors. In ICCCN ’04. Proceedings, 2004.

[26] G. Yang and C.-H. Tan. Strongly secure certificateless
key exchange without pairing. In ASIACCS, 2011.

[27] X. Zhang, J. He, and Q. Wei. Eddk: Energy-efficient
distributed deterministic key management for wireless
sensor networks. EURASIP Journal on Wireless
Communications and Networking, 2011.

[28] W. Zhao, M. Ammar, and E. Zegura. A message
ferrying approach for data delivery in sparse mobile ad
hoc networks. In ACM MobiHoc, pages 187–198, 2004.

[29] L. Zhou, J. Ni, and C. Ravishankar. Supporting secure
communication and data collection in mobile sensor
networks. In INFOCOM ’06. Proceedings, 2006.

APPENDIX
A. PROOF OF LEMMA 3

Suppose that there exists a Type III adversary AIII who
can break the IND-eCLSC-TKEM-CCA2-III security of the
eCLSC-TKEM with a non-negligible probability in polyno­
mial time. A challenger C is challenged with an instance
of the OGDH (One-sided Gap Diffie-Hellman) problem. C
can utilize AIII to compute the solution of the OGDH
instance by accessing a ODDH (One-sided Decision Diffie­
Hellman)oracle. C sets the master private/public key pair
as (x, Ppub = xP), where P is the generator of the group Gq

and the hash functions Hi(0 ≤ i ≤ 3) are treated as random
oracles. C sends the system parameters Ω = {Fq , E/Fq , Gq , P,
Ppub, H0, H1, H2, H3} to AIII . To maintain the consistency,
C maintains lists Li(0 ≤ i ≤ 3)). It also maintains a list of
issued private keys and public keys including valid time pe­
riod in Lk. C can simulate the challenger’s execution of each
phase of the formal Game. Let C select a random index j,
where 1 ≤ j ≤ qC and fix IDj as the target identity for the
challenge phase. Let’s that AIII was revoked at the time
interval beginning at t * .
Phase 1: AIII may make use of all random oracles Hi(0 ≤
i ≤ 3) at any time and C responds as follows:
Create(IDi): When AIII submits a Create(IDi) query to
C, C responds as follows: (1) If case 1 (IDi IDj) or case =

* Z ∗ 2 (IDi = IDj and tj < t), C picks ei, bi, xi ∈R q , then
sets H0(IDi, Ri, Pi, ti) = −ei, Ri = eiPpub + biP and com­
putes the public key as Pi = xiP . di = bi and it satisfies
the equation diP = Ri + H0(IDi, Ri, Pi, ti)Ppub. C inserts
\IDi, Ri, Pi, ti, −ei) into the list L0 and \IDi, di, xi, Ri, Pi, ti)
into the list Lk. (2) If IDi = IDj and tj > t * , C chooses
ej , xj ∈R Zq

∗ and sets H0(IDj , Rj , Pj , tj) = −ej , Pj = xj P ,
and Rj = ej Ppub − Pj + aP . Here, C does not know a.
C uses the aP given in the instance of the OGDH prob­
lem. C inserts \IDj , Rj , Pj , tj , −ej) into the list L0 and

258

http://www.cerias.purdue.edu/apps
https://github.com/kmackay/micro-ecc
http:http://ardrone2.parrot.com

\IDj , ⊥, xj , Rj , Pj , tj) into the list Lk.
H0 queries: When AIII submits a H0 query with IDi, C
searches the list L0. If there is a tuple \IDi, Ri, Pi, ti, −ei), C
responds with the previous value −ei. Otherwise, C chooses
ei ∈R Zq

∗ and returns −ei as the answer. Then, C inserts
\IDi, Ri, Pi, ti, −ei) into the list L0.
H1 queries: When AIII submits a H1 query with (Yi, Vi, Ti,
IDi, Pi), C checks whether the ODDH oracle returns 1 when
queried with (aP, Vi, Ti). If the ODDH oracle returns 1, C
outputs Ti and stop. Then C goes through the L1 with
entries \Yi, Vi, ∗, IDi, Pi, li), for different values of li, such
that the ODDH oracle returns 1 when queried on the tuple
(aP, Vi, Ti). Note that in this case IDi = IDj and tj > t * .
If such a tuple exists, it returns li and replaces the symbol
∗ with Ti. Otherwise, C chooses l ∈R {0, 1}n and updates
the L1, which is initially empty, with a tuple containing the
input and return values. C then returns l to AIII .
H2 queries: C checks whether \U, τ, T, IDA, PA, IDB , PB , hi)
exists in the L2. If it exists, C returns H = hi to AIII . Oth­
erwise, C chooses hi ∈R Zq

∗ , adds \U, τ, T, IDA, PA, IDB , PB , hi)
to the L2 and returns H = hi to AIII .
H3 queries: C checks whether \U, τ, T, IDA, PA, IDB , PB , h

I
i)

exists in the L3. If it exists, C returns H I = hI
i to AIII . Oth­

erwise, C chooses hI
i ∈R Zq

∗ , adds \U, τ, T, IDA, PA, IDB , PB , h
I
i)

to the L3 and returns H I = hI
i to AIII .

Extract-Partial-Private-Key queries: In order to re­
spond to the query for the partial private key of a user
with IDi, C performs the following steps: (1) If IDi =
IDj and tj > t * , C aborts the execution. (2) If case 1
(IDi = IDj) or case 2 (IDi = IDj and tj < t *), C retrieves
\IDi, di, xi, Ri, Pi, ti) from Lk, returns (di, Ri) which satis­
fies the equation diP = Ri + H0(IDi, Ri, Pi, ti)Ppub.
Extract-Secret-Value queries: AIII produces IDi to C
and requests a secret value of IDi. If case 1 (the public
key of IDi has not been replaced and IDi = IDj) or case
2 (the public key of IDi has not been replaced, IDi = IDj

and tj < t *), then C responds with xi by retrieving from
Lk. If AIII has already replaced the public key of IDi, C
does not provide the corresponding secret value to AIII . If
IDi = IDj and tj > t * , C aborts.
Request-Public-Key queries: AIII produces IDi to C
and requests a public key of IDi. C checks in the Lk for
\IDi, di, xi, Ri, Pi, ti). If it exists, C returns the correspond­
ing public key (Ri, Pi, ti). Otherwise, C recalls Create(IDi)
query to obtain (Ri, Pi, ti) and returns (Ri, Pi, ti).
Public-Key-Replacement queries: AIII chooses values
(Ri

I , P i
I, tI i) to replace the public key (Ri, Pi, ti) of IDi. C up­

dates the corresponding tuple in the Lk as \IDi, −, −, Ri
I , P i

I, tI i).
The current value of the user’s public key is used by C for
responses to any queries made by AIII .
Symmetric Key Generation queries: AIII produces
a sender’s IDA, public key (RA, PA, tA), the receiver’s IDB

and public key (RB , PB , tB) to C. For each query (IDA, IDB),
C proceeds as follows: (1) If case 1 (IDA = IDj) or case 2
(IDA = IDj and tj < t *), C computes skA correspond­
ing to IDA by executing the Extract-Partial-Private-Key and
Extract-Secret-Value algorithm. Then, C gets K and ω by
running the actual SymmetricKeyGen algorithm. C stores ω
and overwrite any previous value. C sends K to AIII . (2)
If IDA = IDj and tj > t * , C chooses r1, r2, ht, h

I
t ∈R Zq

∗

−1 −1and computes U = r1P − ht · aP + ht · Pt, V = r2P ,
Y = RB + H0(IDB , RB , PB , tB) · Ppub + PB , T = r2 · Y mod
q=r2 ·(H0(IDB , RB , PB , tB)Ppub +RB +PB) mod q and K =

H1(Y, V, T, IDB , PB), where RB and PB are obtained by
calling the Request-Public-Key query oracle on IDB . Note
that ω is ω = (r1, r2, ht, h

I
t, U, V, T, IDA, pkA, IDB , pkB).

(3) C goes through the L1 looking for an entry (Y, V, T, IDB ,
PB , k) for some k such that ODDH(PB , V, Y)=1. If such an
entry exists, it computes K ← l. Otherwise it uses a random
l and updates the L1 with (Y, V, ∗, IDB , PB , l). C stores ω
and sends K to AIII .
Key Encapsulation queries: AIII produces an arbitrary
tag τ , the sender’s IDA, public key (RA, PA, tA), the re­
ceiver’s IDB and public key (RB , PB , tB) and sends them
to C. The full private key of the sender skA = (dA, xA) is
obtained from the Lk. C checks whether a corresponding ω
value has been stored previously. (1) If ω does not exist,
C returns an invalid reply. (2) If case 1 (a corresponding ω
exists and IDA = IDj) or case 2 (a corresponding ω exists,
IDA = IDj and tj < t *), then C computes ϕ with ω and
τ by using the actual Encapsulation algorithm, and deletes
ω. (3) If a corresponding ω exists, IDA = IDj and tj > t * ,
then C computes ϕ by performing the following steps. Note
that ω is (r1, r2, hj , h

I
j , U, V, T, IDA, pkA, IDB , pkB) and C

does not know the private key corresponding to IDt. So C
should perform the encapsulation in a different way:

• H = hj and add \U, τ, T, IDA, PA, IDB , PB , hj) to L2.

• H I = hI and add \U, τ, T, IDA, PA, IDB , PB , hj
I) to L3.j

• Compute W = hj · r1 + hj
I · xA.

• Output ϕ = (U, V, W) as the encapsulation.

We show that AIII can pass the verification of ϕ = (U, V, W)
to validate the encapsulation, because the equality W · P =
RA + H0(IDA, RA, PA, tA) · Ppub + H · U + H I · PA holds as
follows: RA + H0(IDA, RA, PA, tA) · Ppub + H · U + H I · PA

= aP + ej Ppub − Pj + (−ej) · Ppub + H · (r1P − hj
−1 · aP +

−1	 · r1P + hIhj · Pj) + H I · PA = hj j · PA= W · P
Key Decapsulation queries: AIII produces an encap­
sulation ϕ = (U, V, W), a tag τ , the sender’s IDA, the
public key (RA, PA, tA), the receiver’s IDB and the public
key (RB , PB , tB) to C. The full private key of the receiver
skB = (dB , xB) is obtained from the list Lk. (1) If case 1
(IDB = IDj) or case 2 (IDB = IDj and tj < t *), then C
computes the decapsulation of ϕ by using the actual Decap­
sulation algorithm. (2) If IDB = IDt and tj > t * , then the
point cannot be computed. In order to return a consistent
answer, C computes K from ϕ as follows:

•	 Searches in the L2 and L3 for entries \U, τ, T, IDA, PA, IDB ,
PB , hj) and \U, τ, T, IDA, PA, IDB , PB , h

I
j), respectively.

•	 If H = hj and H I = hI
j exist then C checks whether the

equality W · P = RA + H0(IDA, RA, PA, tA) · Ppub + H ·
U + H I · PA holds.

•	 If the above equality holds, the T is retrieved from the L2

and L3. Both the T values should be equal.

• C goes through L1 and looks for \Y, V, T, IDB , PB , l) such
that the ODDH oracle returns 1 when queried on the
(aP, V, T). If such entry exists, the corresponding K ← l
value is returned as the decapsulation of ϕ.

•	 If C reaches this point of execution, it puts the entry
\Y, V, ∗, IDB , PB , l) for a random l on the L1 and returns
K ← l. The ∗ denotes an unknown value. The identity
component with ∗ is a receiver IDB .

Challenge: At the end of Phase I, AIII sends a sender’s
IDA∗ and a receiver’s IDB∗ to C. Here, the partial private

259

key of the revoked receiver was not queried in Phase I. Let
I∗ ∗ ∗ the time t j ∈ (t j , t j + α). C aborts the game if case

1 (IDB∗ = IDj) or case 2 (IDB∗ = IDj and tI∗
j < t *).

Otherwise, C performs the following steps to compute the
challenge encapsulation ϕ ∗ : (1) Choose r ∈R Zq

∗ and com­
pute U ∗ = rP . (2) Set V ∗ = bP and choose T ∗ ∈R Gq .
Here, C does not know b. C uses the bP given in the in­
stance of the OGDH problem. (3) Choose K0 ∈R K, where
K is the key space of the eCLSC-TKEM. (4) Choose a
random hash value l ∗ and set K1 = l ∗ . (5) C chooses a
bit δ ∈R {0, 1} and sends Kδ to AIII . (6) AIII gen­

∗ Z∗ erates τ and sends it to C. (7) Choose hi, h
I ∈R q ,i

store \U ∗ , τ ∗ , T ∗ , IDA∗, PA∗, IDB∗, PB∗, hi) to the L2 and
\U ∗ , τ ∗ , T ∗ , IDA∗, PA∗, IDB∗, PB∗, h

I
i) to the L3. (8) Since

C knows the sender’s private key, C computes W ∗ = dA∗ +
r · hi + xA∗ · hI

i. (9) C returns ϕ ∗ = \U ∗ , V ∗ ,W ∗).
Phase II: AIII adaptively queries the oracles as in Phase
I. Besides it cannot query decapsulation on ϕ ∗ .
Guess: Since AIII can break the IND-eCLSC-TKEM-CCA2­
III security (which is assumed at the beginning of the proof),
AIII should have asked a H1 query with (Y ∗ , V ∗ , T ∗ , IDB∗ , PB∗)
as inputs. It is to be noted that T ∗ = b ·Y ∗ = b ·(−ej ·Ppub +
ej · Ppub − Pj + aP + PB∗) = ab · P , where Pj = PB∗ be­
cause of IDj = IDB∗. Therefore, if the L1 has qH1 queries
corresponding to the sender IDA∗ and receiver IDB∗ , one
of the T ∗ ’s among qH1 values stored in the list L1 is the
solution for the OGDH problem instance. C chooses one T
value uniformly at random from the qH1 values from the L1

and outputs it as the solution for the OGDH instance.
Analysis: C lets E1, E2 and E3 be the events in which C
aborts the IND-eCLSC-TKEM-CCA2-III game.
(1) E1: The AIII returns decapsulation for tI∗

j < t *). The
L

probability is Pr[E1] = t
t . t denotes the total possible time

and assuming that the time begins at 0.
(2) E2: An invalid public key replacement by AIII was not
detected. The probability is Pr[E2] = 1

q .
(3) E3: AIII does not choose the target identity IDj during
the challenge. The probability is Pr[E3] = 1− 1 .

qC ·qH0
−qppri−qsv

Thus, the probability that C does not abort the IND-eCLSC­
TKEM-CCA2-III game is

Pr[¬E1 ∧ ¬E2 ∧ ¬E3]

t * 1 1
= (1 −) · (1 −) · ()

t q qC · qH0 − qppri − qsv

The probability that C randomly chooses the T from L1

and T is the solution of OGDH problem is 1 . So, the
qH1

probability that C finds the OGDH instance is as follows:

t * 1 1 1
Pr[C] = δ · (1 −) · (1 −) · () · ()

t q qC · qH0 − qppri − qsv qH1

Therefore, the Pr[C] is non-negligible, because δ is non-
negligible. This contradicts the OGDH assumption.

B. PROOF OF LEMMA 6
A challenger C is challenged with an instance of the ECDLP.

To solve the ECDLP, given \P, bP) ∈ Gq , C must find b. Let
FIII be a forger who is able to break the EUF-eCLSC­
TKEM-CMA-III security of the eCLSC-TKEM. C can uti­
lize FIII to compute the solution b of the ECDLP instance
by playing the following interactive game with FIII . To
solve the ECDLP, C sets the master private/public key pair
as (x, Ppub = xP), where P is the generator of the group

Gq and the hash functions Hi(0 ≤ i ≤ 3) are treated as
random oracles. The C sends the system parameter Ω =
{Fq , E/Fq , Gq , P, Ppub, H0, H1, H2, H3} to FIII . In order to
avoid the inconsistency between the responses to the hash
queries, C maintains lists Li(0 ≤ i ≤ 3)). It also maintains
a list Lk to maintain the list of issued private keys and pub­
lic keys including the valid time period. C can simulate the
Challenger’s execution of each phase of the formal game.
Training Phase: FIII may make a series of polynomially
bounded number of queries to random oracles Hi(0 ≤ i ≤ 3)
at any time and C responds as follows: All the oracles and
queries needed in the training phase are identical to those of
the Create(IDi) queries, H0 queries, H1 queries, H2 queries,
H3 queries, Extract-Partial-Private-Key queries, Extract­
Secret-Value queries, Public-Key-Replacement queries, Sym­
metric Key Generation queries, Key Encapsulation queries
and Key Decapsulation queries in IND-pCLSC-TKEM-CCA2­
III game.
Forgery: Eventually, FIII returns a valid encapsulation
\τ, ϕ = (U, V, W), IDA, IDB) on a arbitrary tag τ , where
IDA is the sender identity and IDB is the receiver identity,
to C. If IDA = IDj and tI∗

j > t * , C aborts the execution
of this game. Otherwise, C searches the list L2 and outputs
another valid encapsulation \τ, ϕ ∗ = (U, V, W ∗), IDA, IDB)
with different h ∗

i such that h ∗
i = hi on the same τ as done in

forking lemma [16]. Thus, we can get W ·P = RA −ej ·Ppub +
hi · U + hi

I · PA and W ∗ · P = RA − ej · Ppub + h ∗
i · U + hi

I · PA.
Let U = bP . Then if we subtract these two equations, we
get following value.
W ∗ · P − W · P = h ∗

i · U − hi · U
⇒ (W ∗ − W)P = (h ∗

i − hi) · U
⇒ (W ∗ − W)P = (h ∗

i − hi) · bP
⇒ (W ∗ − W) · (h ∗

i − hi)
−1 = b

W ∗ −WTherefore, FIII solves the ECDLP as b = −hi
using the

h∗
i

algorithm C for given a random instance \P, bP) ∈ Gq .
Analysis: In order to assess the probability of success of
the challenger C. We assume that FIII can ask qC create
(IDi) queries, qE key-encapsulation queries and qHi random
oracle queries to Hi (0 ≤ i ≤ 3). We also assume that FIII /
never repeats Hi (0 ≤ i ≤ 3) a query with the same input.
(1) The success probability of the Create(IDi) query execu­

qH0
qH0

·qCtion is (1 −
q)qC ≥ 1 −

q .
(2) The success probability of the H2 query execution is

2

qH2 H2
(1 −
q)qH2 ≥ 1 −

q

q .
(3) The success probability of the H3 query execution/ is

qH3 H3(1 −
q)qH3 ≥ 1 −

q 2

q .
(4) The success probability of the key encapsulation query
execution is qE ≥ qE · (1 + 1).

(1− 1) q
q

(5) The probability of both IDi = IDj and tI∗
j > t * is

L

q
1
C
· (1 − t

t). t denotes the total possible time and assuming
that the time begins at 0.
Thus, the success probability that C can win the EUF-eCLSC­
TKEM-CMA-III game is

2 · qC qqH0 H2ε ≥ δ · qE · (1 −) · (1 −)
q q

2 * qH3 1 1 t · (1 −) · (1 +) · () · (1 −)
q q qC t

Therefore, the probability that C computes the solution of
ECDLP is non-negligible, because δ is non-negligible.

260

