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ABSTRACT 
In many envisioned drone-based applications, drones will 
communicate with many different smart objects, such as sen­
sors and embedded devices. Securing such communications 
requires an effective and efficient encryption key establish­
ment protocol. However, the design of such a protocol must 
take into account constrained resources of smart objects and 
the mobility of drones. In this paper, a secure communica­
tion protocol between drones and smart objects is presented. 
To support the required security functions, such as authenti­
cated key agreement, non-repudiation, and user revocation, 
we propose an efficient Certificateless Signcryption Tag Key 
Encapsulation Mechanism (eCLSC-TKEM). eCLSC-TKEM 
reduces the time required to establish a shared key between 
a drone and a smart object by minimizing the computational 
overhead at the smart object. Also, our protocol improves 
drone’s efficiency by utilizing dual channels which allows 
many smart objects to concurrently execute eCLSC-TKEM. 
We evaluate our protocol on commercially available devices, 
namely AR.Drone2.0 and TelosB, by using a parking man­
agement testbed. Our experimental results show that our 
protocol is much more efficient than other protocols. 

Categories and Subject Descriptors 
C.2.2 [Compute-Communication Networks]: Network 
Protocols; E.3 [Data Encryption]: Public key cryptosys­
tems 

General Terms 
Security, Design 

Keywords 
Certificateless Signcryption; Drone Communications 

1. INTRODUCTION 
Over recent years, drones are increasingly being used not 

only for military tasks, but also for civilian tasks, such as 
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environment and traffic monitoring, delivery services, and 
aerial surveys. An Australian textbook rental startup com­
pany, Zookal, has already started using drones to deliver 
books. Amazon will soon start a new delivery method, Ama­
zon Prime Air, which would offer 30-minute deliveries using 
drone-like octocopters. Also, some research projects [22, 
29] have adopted drones as mobile collectors for monitor­
ing applications based on wireless sensor networks (WSNs). 
For example, on-ground sensors can be deployed in farms 
to monitor the conditions of soil and drones can period­
ically collect information from these sensors and perform 
in-network processing of this information. In such context, 
drones can also be used for communicating with the on-
ground sensors in order to send the sensors re-configuration 
instructions, such as instructing the sensors to change the 
sampling rates. 

In many current and foreseen applications involving drones, 
including the Internet of Things (IoT), security is an impor­
tant requirement. Drones, as many computing devices, are 
vulnerable to malicious attacks such as impersonation, ma­
nipulation and interception. Moreover, since drones may 
move around in unattended hostile areas with collected sen­
sor data, they are vulnerable to physical capture. It is thus 
critical to address security requirements, such as authenti­
cation, non-repudiation, confidentiality and integrity, and 
securing communications between drones and other devices 
(referred to as smart objects in what follows), such as on-
ground sensors. An important security building block is 
represented by cryptography which in turn requires a key 
management scheme. However, implementing a key man­
agement scheme suitable for WSNs that involve both smart 
objects and drones is quite challenging because of (1) the 
mobility and limited flight time of drones and (2) the con­
strained resources of smart objects. 

Most encryption key management schemes proposed for 
WSNs adopt a symmetric-key-based approach instead of 
an asymmetric-key-based approach in order to address the 
limited energy and processing capability of sensors [6, 8]. 
However, the symmetric-key-based approach suffers from 
high communication overhead and requires large amounts 
of memory space to store the shared pairwise keys. Also 
such approach is not scalable, not resilient against compro­
mises, and unable to support adequate node mobility. Public 
key cryptography (PKC) is relatively more expensive than 
symmetric key encryption in terms of computational costs, 
but recent improvements in the implementation of elliptic 
curve cryptography (ECC) [13] have demonstrated the prac­
tical applicability of PKC to WSNs. In order to enhance 
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scalability and flexibility, asymmetric key based approaches 
that use ECC and identity-based PKC have been proposed 
for WSNs [15, 27, 7]. However, ECC-based schemes with 
certificates [27] and pairing operation-based ID-PKC [15, 
7] schemes, when directly applied to WSNs, suffer from 
certificate management overhead and computational over­
head from pairing operations, respectively. Moreover, since 
drones, unlike sensors, are likely to record a wide range of 
information, they can become a target for physical capture. 
We thus need an approach to minimize information leakage 
in the event that a drone is captured by attackers. 

To address security and efficiency requirements for com­
munications between drones and smart objects, we present 
the efficient Certificate-less Signcryption Tag Key Encapsu­
lation Mechanism (eCLSC-TKEM) which supports authen­
ticated key agreement and non-repudiation. The key feature 
of eCLSC-TKEM is to combine one-way key agreement and 
digital signatures into one efficient algorithm. Since eCLSC-
TKEM is based on certificateless PKC (CL-PKC), it inher­
its the advantages of CL-PKC such as the elimination of 
the overhead resulting from the certificate management and 
the key escrow problem. eCLSC-TKEM supports user re­
vocation by adopting Boneh et al.’s revocation technique [5] 
which adds a valid time period to the partial private keys 
that are issued. After the time period expires, new private 
keys are generated. Therefore, if a drone is captured, infor­
mation leakage is limited to the time period during which 
the private keys were valid. To improve efficiency, eCLSC-
TKEM minimizes the computational overhead at the smart 
object. The entire system efficiency highly depends on the 
computation time required by the smart object rather than 
the drone since a smart object is equipped with a low speed 
processor, while the drone has a PC-like processor. The 
contributions of our paper are summarized as follows. 

•	 An efficient Certificateless Signcryption Tag Key Encap­
sulation Mechanism (eCLSC-TKEM) is proposed. The 
formal security model and a security proof are provided. 
Based on eCLSC-TKEM, a secure communication pro­
tocol for drone applications is presented. Our protocol 
is the most energy-efficient protocol supporting sharing 
of symmetric encryption keys for secure communications 
and non-repudiation. 

•	 The dual channel strategy is introduced to concurrently 
perform eCLSC-TKEM with many smart objects at the 
same time, and thus to save the drone’s energy. 

•	 A secure communication protocol for the real drone ap­
plication, i.e., smart parking management, has been im­
plemented. The performance of eCLSC-TKEM has been 
evaluated in a testbed consisting of the commercially avail­
able devices AR.Drone2.0 and TelosB. 

The remainder of this paper is organized as follows: In 
Section 2, we briefly discuss related work and requirements 
for drone-related communication protocols. In Section 3, we 
introduce our eCLSC-TKEM and dual channel strategy. In 
Section 4, we describe the design of our protocol through an 
example application. Then, the performance of our protocol 
is evaluated in Section 5. In Section 6, the security model 
and proof of eCLSC-TKEM are presented. Then, we outline 
conclusions and future works in Section 7. 

2. BACKGROUND 
2.1 Mobile data collectors in WSN 

Several approaches [22, 25, 4, 29, 23, 18] have been pro­
posed for using mobile data collectors in WSNs because 
of their advantages over traditional static WSNs such as 
connectivity, cost, reliability and energy efficiency. How­
ever, the use of mobile collectors introduces new security 
risks because mobile collectors are privileged nodes storing 
collected data and are exposed to physical capture. Zhou 
et al. [29] analyzed the security impact of mobile collector 
compromises and proposed a key pre-distribution scheme 
for group-based sensor networks. Song et al. [23] proposed 
a privilege-dependent pairwise key establishment scheme. 
This scheme revokes the privileges of a compromised mo­
bile collector immediately after its compromise is detected. 
Rasheed et al. [18] proposed a secure data collection mech­
anism based on hash chains under the assumption that a 
mobile collector moves along a predetermined path. In this 
protocol, once a mobile collector is authenticated, a cluster 
head transfers aggregated data to the mobile collector. Al­
though these protocols deal with the compromise of mobile 
collectors, their scalability is limited since they are based on 
symmetric key pre-distribution. Our protocol addresses the 
scalability problem by taking advantage of an asymmetric-
key approach, while minimizing the computational overhead 
at the sensors. 

To save the energy of sensor nodes or to extend the contact 
time between sensor nodes and mobile collectors, previous 
approaches [19, 28] adopted multiple radios/channels. How­
ever, these approaches did not consider the impact of slow 
public key operations at resource-constraint sensor nodes on 
mobile collectors. 

2.2 CLSC-TKEM and CL-AKA 
The authenticated key agreement (AKA) scheme is one 

of the most fundamental cryptographic mechanisms. It sup­
ports user authentication and generates shared secret keys 
between two parties over an insecure network. Traditional 
PKC-based AKA has the overhead of certificate manage­
ment, whereas ID-PKC based AKA has the key escrow prob­
lem. To solve those issues, Al-Riyami et al. introduced cer­
tificateless public key cryptography (CL-PKC) [3]. Then, 
several certificateless authenticated key agreement (CL-AKA) 
protocols were built based on bilinear pairings. However, 
since the computational costs required for pairing opera­
tions are much higher than those for standard operations, 
such as EC point multiplication, it is hard to implement 
pairing-based applications on resource-constrained devices. 
Several pairing-free CL-AKA protocols [10, 9, 26, 24] have 
thus been proposed. However, most of those protocols were 
proved to be insecure and only two of them still remain 
secure: Sun’s CL-AKA [24] and Yang’s CL-AKA [26]. Re­
cently, Li et al. [12] proposed a certificateless signcryption 
tag KEM (CLSC-TKEM) protocol. CLSC-TKEM supports 
not only practical authenticated key agreement but also des­
ignated verifier signature. Later, Selvi et al. [20] showed a 
security weakness in Li et al.’s CLSC-TKEM and presented 
an improved CLSC-TKEM. Since both CLSC-TKEM proto­
cols [12, 20] rely on bilinear pairing operations, they are not 
suitable for resource-constrained devices. Recently, Seo et 
al. [21] proposed a pairing-free CLSC-TKEM protocol that 
does not use bilinear pairing operations. However, none of 
the existing CL-AKA and CLSC-TKEM protocols addresses 
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Table 1: Comparison of protocols 

Protocol 
Computational overhead on 
a smart object (on-line) 

Security functionality 
Key agreement User authentication Non-repudiation User revocation 

Yang’s CL-AKA [26] 9EM + 1V (8EM + 1V) yes yes no no 
Sun’s CL-AKA [24] 6EM (5EM) yes yes no no 
CLSC-TKEM [21] 5EM (3EM) yes yes yes no 
eCLSC-TKEM 4EM (2EM) yes yes yes yes 

EM: EC point multiplication, V: signature verification. ‘On-line’ means the computational overhead except ephemeral public key 
generations such as U and V generation in our protocol. The ‘On-line’ overhead is more meaningful than the entire overhead since 
ephemeral public keys can be generated in advance before a key agreement protocol starts. 

user revocation which means that if drones are captured, the 
attacker will have full access not only to the information al­
ready collected and recorded in the drone, but also to future 
information to be collected by the drone. 

In order to minimize information leakage in case of physi­
cal capture of drones, eCLSC-KTEM utilizes Boneh et al.’s 
revocation technique [5]. The key generation center (KGC) 
in eCLSC-TKEM adds time constraint to its partial pri­
vate keys. In other words, partial private keys issued in 
eCLSC-TKEM are only valid for specified time periods. Af­
ter the time period ends, new private keys will be gener­
ated. By adding this time constraint, we limit information 
leakage. To revoke a compromised drone, the KGC stops 
issuing partial private/public keys, including a valid time 
component, to the drone. Our approach prevents unautho­
rized users from being able to generate full private/public 
keys for future time periods. Although eCLSC-TKEM does 
not completely eliminate the risk of information leakage in 
case of physical capture, it limits the amount of compro­
mised information to the information acquired during the 
last time period right before the revocation took place. Ta­
ble 1 summarizes the comparison between eCLSC-TKEM 
and existing pairing-free CL-AKA and CLSC-TKEM. 

2.3	 Requirements for secure drone communi­
cations 

The requirements for a communication protocol between 
drones and smart objects are summarized in terms of secu­
rity and efficiency as follows. 
•	 Security First, authenticated key establishment should 

be supported for confidentiality and user authentication. 
Second, it should be possible to verify the integrity of data 
and support non-repudiation. Third, information leakage 
should be minimized in the event that a drone is captured 
and its secret key is exposed. Finally, different access 
rights to smart objects should be supported for drones. 
Only authenticated/authorized drones should have access 
to smart objects’ internal data according to their rights. 

•	 Efficiency Since drones and smart objects are battery-
powered, energy efficiency as well as security is a critical 
issue. Therefore, protocol executions should be completed 
as soon as possible to save energy. A drone usually has 
PC-like processing speed while a smart object has sensor-
like processing speed. It is thus critical that protocols im­
pose minimal computational overhead on smart objects. 
In addition, a drone may communicate with many smart 
objects at the same time. Therefore, the protocol should 
support concurrent cryptographic operations. 

3. BUILDING BLOCKS 
In this section, eCLSC-TKEM and the dual channel strat­

egy are presented as major building blocks for our secure 
drone communication protocol. 

3.1	 eCLSC-TKEM 
Unlike existing protocols, eCLCS-TKEM satisfies all the 

security requirements such as authenticated key agreement, 
non-repudiation and user revocation with the minimum com­
putational overhead at smart objects (see Table 1). Note 
that the CL-AKA protocols [26, 24] satisfy only the first re­
quirement. To support non-repudiation, the CL-AKA pro­
tocols must be extended with a signature scheme. Although 
CLSC-TKEM satisfies the first and second requirements, it 
does not support user revocation or multiple access rights. 
eCLSC-TKEM is a 8-tuple: (SetUp, SetSecretValue, Par­
tialPrivateKeyExtract, SetPrivateKey, SetPublicKey, Symmet­
ricKeyGen, Encapsulation Decapsulation). The description of 
each probabilistic polynomial time algorithm is as follows. 

1) SetUp: This algorithm is run by the KGC to generate 
the system parameters params and a master secret key msk, 
given a security parameter k as input. KGC takes a security 
parameter k ∈ Z+ as input, and returns two system param­
eters: Ω and the KGC’s master private key msk. Given k, 
the KGC performs the following steps: 

•	 Chooses a k-bit prime q and determine the tuple {Fq , E/Fq , 
Gq , P }, where the point P is the generator of Gq. 
•	 Chooses the master key x ∈ Z∗ 

q uniformly at random and 
computes the system public key Ppub = xP . 
•	 Chooses cryptographic hash functions H0 : {0, 1} ∗ × G2 

q × 
{0, 1} ∗ → Zq 

∗ ∗, H1 : Gq 
3 × {0, 1} ∗ × Gq → {0, 1}n , H2 : 

Gq ×{0, 1} ∗ × Gq ×{0, 1} ∗ × Gq ×{0, 1} ∗ × Gq → Z∗ 
q , and 

H3 : Gq ×{0, 1} ∗ × Gq ×{0, 1} ∗ × Gq ×{0, 1} ∗ × Gq → Zq 
∗ . 

Here, n is the key length of a DEM. 
•	 Publishes Ω = {Fq , E/Fq , Gq , P, Ppub, H0, H1, H2, H3} as 

the system’s parameter and keeps the master key x secret. 

2) SetSecretValue: This algorithm is run by each entity to 
generate a secret value and the corresponding public value 
for oneself. The entity A with an identity IDA chooses 
xA ∈ Z∗ 

q uniformly at random as its secret value and gener­
ates the corresponding public key as PA = xAP . 

3) PartialPrivateKeyExtract: The KGC runs this algorithm 
to generate the partial private key of a user. It takes the 
KGC’s master secret key, the id of the user IDA, the per­
mitted time period tA and the system parameter as inputs. 
It returns the partial private key of the entity. In order to 
obtain the partial private key, the entity A sends (IDA, PA) 
to the KGC. The KGC then executes the following steps: 

• Chooses rA ∈ Z∗ 
q and computes RA = rAP . 

• Computes dA = rA + xH0(IDA, RA, PA, tA) mod q. 

The partial private key of the entity A is dA. The en­
tity can validate its private key by checking whether dAP = 
RA + H0(IDA, RA, PA, tA)Ppub holds. 
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4) SetPrivateKey: This algorithm is run by each entity to 
generate the full private key. The entity A takes the pair 
skA = (dA, xA) as its full private key. 

5) SetPublicKey: This algorithm is run by each entity to 
generate the full public key. The entity A takes the pair 
pkA = (PA, RA) as its full public key. 

6) SymmetricKeyGen: This algorithm is run by the sender 
A to obtain the symmetric key K and an internal state infor­
mation ω, which is not known to the receiver B. Given the 
sender (entity A)’s identity IDA, the full public key pkA, 
the full private key skA, the receiver (entity B)’s identity 
IDB , the time interval tB and the full public key pkB as 
inputs, the sender executes this symmetric key generation 
algorithm to obtain the symmetric key K as follows: 

• Chooses lA, sA ∈ Z∗ 
q and computes U = lAP , V = sAP . 

•	 Computes Y = RB + H0(IDB , RB , PB , tB ) · Ppub + PB , 
T = sA ·Y (= sA ·(H0(IDB , RB , PB , tB )·Ppub +RB +PB )) 
and K = H1(Y, V, T, IDB , PB ). 
•	 Outputs K and the intermediate information ω = (lA, sA, 

U, V, T, IDA, pkA, skA, IDB , pkB , tB ). 

7) Encapsulation: This algorithm is executed by the sender 
A to obtain the encapsulation ϕ. It takes ω corresponding 
to K and an arbitrary tag τ as inputs. Given a state infor­
mation ω and an arbitrary tag τ , the sender A obtains the 
encapsulation ϕ by performing the following steps: 

•	 Computes H = H2(U, τ, T, IDA, PA, IDB , PB ), 
H I = H3(U, τ, T, IDA, PA, IDB , PB ) and W = dA + lA · 
H + xA · H I 

• Outputs ϕ = (U, V, W ). 

8) Decapsulation: This algorithm is executed by the receiver 
B to obtain the key K encapsulated in ϕ. Given the encap­
sulation ϕ, a tag τ , the sender’s identity IDA, full public 
key pkA, the time interval tA the receiver’s identity IDB , 
the full public key pkB and the full private key skB , the key 
K is computed as follows: 

•	 Computes Y = (dB +xB ) ·P (= (rB +xH0(IDB , RB , PB , 
tB ) + xB ) · P = RB + H0(IDB , RB , PB , tB ) · Ppub + PB ), 
T = (dB + xB ) · V (= (dB + xB ) · sAP = sA · Y ). 
•	 Computes H = H2(U, τ, T, IDA, PA, IDB , PB ) and H I = 

H3(U, τ, T, IDA, PA, IDB , PB ). 
• If W ·P = RA +H0(IDA, RA, PA, tA)·Ppub +H ·U +H I ·PA, 

outputs K = H1(Y, V, T, IDB , PB ).
 
Otherwise, outputs an invalid encapsulation error. The
 
correctness of the above equation is as follows:
 
W · P = (dA + lA · H + xA · H I) · P
 

= dA · P + lA · P · H + xA · P · H I 

= (rA + xH0(IDA, RA, PA, tA)) · P + U · H + H I · PA 

= RA + H0(IDA, RA, PA, tA) · Ppub + H · U + H I · PA 

3.2	 Dual Channel Strategy for Concurrency
using LPL 

Since smart objects and drones are battery-powered, their 
energy should be efficiently used. Our protocol utilizes dual 
channels and low power listening (LPL) [1]. The asyn­
chronous duty cycling technique, known as LPL, is one of 
most promising power-saving techniques for WSNs and re­
sults in higher performance than synchronous duty cycling 
techniques in terms of energy and throughput [17]. 

Each smart object has one radio and changes its channel 
according to its situations, while drones are equipped with 
two radios, i.e., the wake-up radio and the data radio. As 
depicted in Fig. 1, a smart object periodically turns a ra­
dio transceiver on (wake-up) and off (sleep) on the wake-up 
channel to save its energy. Through the wake-up radio, a 
mobile drone continuously broadcasts wake-up signals in­
cluding its ID and public keys. When a smart object wakes 
up, it quickly checks whether the wake-up channel is busy. 
If the wake-up channel is idle, the smart object can save 
energy by sleeping again until the next wake-up time. If a 
mobile drone broadcasting the wake-up signals approaches 
some smart objects, the wake-up channel becomes busy. If 
the smart objects listen the wake-up signals, they stay awake 
and receive a whole wake-up signal. Then, each smart ob­
ject concurrently initiates SymmetricKeyGen and Encapsula­
tion and switches the channel from the wake-up channel to 
the data channel. The Encapsulation output is transmitted 
to the drones using the data channel. These concurrent exe­
cutions of eCLSC-TKEM in smart objects can save drone’s 
energy. If a drone has only one radio, it might require precise 
time synchronization with smart objects to make schedules 
or perform eCLSC-TKEM with each smart object one by 
one, which results in a waste of its limited flight time. 

4.	 SECURE COMMUNICATION PROTOCOL 
FOR DRONES 

In this section, we illustrate the design of our protocols in 
the context of a smart parking management application. 

4.1	 Smart parking management 
Today’s parking management is a manual, labor-intensive 

process. Parking enforcement officers must periodically pa­
trol on-street parking areas and check cars one by one to 
identify cars that are parked over time . By utilizing drones 
and sensors, parking management can be more efficient and 
cost effective. Cars might attach an independent device 
equipped with a GPS and a radio transceiver. For example, 
an university can issue those independent devices to regis­
tered car owners as parking permits for parking management 
on its campus. Then, a drone would patrol time limited 
parking areas and collect information from every parked car. 
Information includes the identity and location of the car, the 
type of parking permit and the current time. By collecting 
this information at certain time intervals, drones can detect 
if a car is parked at an invalid zone or has been parked at 
the same spot for longer than the time limit. 

In this scenario, since privacy-sensitive information is in­
volved, only authorized drones should be allowed to collect 
this information. More importantly, since the information is 
used to fine drivers who parked their cars illegally, a protocol 
must support non-repudiation and integrity of the collected 
information. 

4.2	 Registration 
We assume that every car is equipped with a smart object 

which includes a low-speed CPU, a small memory, a GPS 
sensor and a radio transceiver. The smart object (A) gener­
ates its own secret value (xA) and corresponding public key 
(PA) by executing the SetSecretValue algorithm. For each 
smart object, the KGC generates a partial private/public 
key pair (dA, RA) by executing the PartialPrivateKeyExtract 
algorithm and transfers it to the smart object through a se­
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Smart 
object (A) 

Smart object wakes up for a short 
time and checks if the channel is 
busy. If not, sleep (turn off radio) 

If wake-up channel is busy, 
smart objects stay awake 
and receive packet M1. 

Wake up interval 

Drone (B) 
(Data 
Channel) 

M1 

M1 

Smart objects switch the 
channel from wake-up 
channel to data channel. 

M2 

M2 

… M1 M1 M1 M1 M1 

M2 M2 

M1 M1 M1 M1 

Drone B Continuously broadcasts M1 in the wake-up 
channel. If drone B enters smart objects’ 
communication range, smart objects can receive M1. 

After smart objects send M2, they sleep again and 
switch back the channel from data channel to 
wake-up channel. Smart objects perform LPL. 

Wake up interval 

time Drone (B)  
(Wake-up 
Channel) 

Smart 
object (A’) 

Wake up interval 

Wake up interval 

Wake up interval 

M1 M1 M1 M1 … 

K ß SymKeyGen 
τ ß ENCK(message) 
W ß Encapsulation  

K ß SymKeyGen 
τ ß ENCK(message) 
W ß Encapsulation  

K ß Decapsulation 
message ß DECK(τ) 
Drone B sends success or failure. 

Figure 1: Solid-line square: packet transmission, dash-line square: listen or packet reception. M1 = {IDB , PB , 
RB , tB }, M2 = {IDA, PA, RA, tA, U, V, W, τ}, Decapsulation result (success/failure) transmissions are omitted. 

cure channel. Note that the partial private key is only valid 
for a certain period of time, for example one year, since a 
permitted time period is included in tA of the PartialPri­
vateKeyExtract algorithm. Thus, a car owner should peri­
odically renew the partial private/public key. We assume 
that a drone stays in a secure place when it is off duty. The 
drone (B) generates its secret value (xB ) and corresponding 
public key (PB ) by executing the SetSecretValue algorithm. 
Before the drone goes out to patrol, it requests a partial pri­
vate/public key (dB , RB ) from the KGC. The partial private 
key is only valid for the maximum flight time, for example 
30 minutes; this time period is inserted into tB of Partial-
PrivateKeyExtract algorithm. Therefore, in the event that 
the drone is compromised, the information leakage is lim­
ited to this time period. Similarly, access rights granted to 
the drone are also inserted in tB . 

4.3 Key establishment using dual channels 
Fig. 1 illustrates the flow of our protocol. A smart object 

(A) runs LPL in the wake-up channel and tries to detect 
wake-up signals from a drone. The drone (B) continuously 
broadcasts wake-up signals (M1) in the wake-up channel 
while moving, so that smart objects can detect M 1 when 
they awake. M 1 contains the drone’s ID (IDB ), the public 
keys (PB , RB ) and the permitted time period/access right 
(tB ). If a smart object wakes up and receives M1, it stops 
LPL and generates a symmetric key (K) by performing Sym­
metricKeyGen. Then, using K, the smart object generates a 
ciphertext (τ ) by encrypting messages, such as permit type, 
location information (loc) and current time (ct). After the 
smart object generates W by executing the Encapsulation al­
gorithm, it switches the channel from the wake-up channel 
to the data channel and sends M2 to B. Since τ is signed 
by A as part of the Encapsulation, A cannot repudiate τ af­
terward. M2 contains the ID of the smart object (IDA), 
the public keys (PA, RA), the permitted time period (tA), 
ephemeral public keys (U, V ), the result value of Encapsula­
tion (W ), and the ciphertext (τ). 
If the drone receives M2, it executes Decapsulation. If the 

validation process is successful, the drone (B) generates K 
and decrypts τ using K. Right after obtaining loc and ct 
from τ , B compares loc and ct with its own current location 
(locI) and current time (ctI), respectively. Then, based on 
the comparison outcome, it may perform additional actions. 

For example, if |loc − locI| > 10m or ct − ctI > 5 mins, B 
might take actions such as taking a picture of the car or 
sending a message to a human manager. Finally, B sends 
the decapsulation result to A. If the result is successful, 
both the drone (B) and the smart object (A) can use K to 
exchange encrypted messages. 

5. EXPERIMENTS 
To evaluate our protocol, we implemented not only our 

protocol, but also the CL-AKA [26, 24] and CLSC-TKEM [21] 
protocols on the commercially available devices AR.Drone2.0 [2] 
and TelosB sensors. 

5.1 Experiment Setup 
5.1.1 Drone 
AR.Drone2.0 [2] is a quad-copter equipped with front and 

ground cameras and a Wi-Fi (2.4GHz). It has a 1GHz 32­
bit ARM cortex A8 CPU and a 1Gbit DDR2 RAM. The 
main board of the AR.Drone2.0 runs the BusyBox based 
GNU/Linux distribution with 2.6.32 kernel. After the drone 
is booted, it works as a Wi-Fi access point. The drone can 
be controlled from smartphones or laptops by sending UDP 
control commands through the Wi-Fi. As ECC library, we 
adopted the micro-ecc [14] optimized for the ARM proces­
sor. To compile our code, we used a 32-bit Linux machine 
since our code had to be cross-compiled for the 32-bit ARM 
architecture. Then, we transferred the compiled code to 
AR.Drone2.0 using FTP and executed it by Telnet. 

For the wake-up radio and the data radio, two TelosBs 
were connected to the drone using USB-to-serial interfaces 
(see Fig. 2). The data radio is connected to an external 
USB-to-serial interface which is located nearby the battery 
connector. The wake-up radio is connected to a pin connec­
tor on the main board. TelosB is equipped with a CC2420 
IEEE 802.15.4 radio transceiver which works at the 2.4GHz 
ISM band. To avoid interferences between the Wi-Fi and 
the IEEE 802.15.4 radios, the channel 6 was selected as the 
Wi-Fi channel and the channel 11 and 26 were selected as 
the wake-up channel and the data channel, respectively. 

5.1.2 Smart object 
We used a TelosB equipped with an extremely low speed 

CPU (TIMSP430 F1161) as a smart object in order to show 
that our protocol works well even with low speed devices. 
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Figure 2: Dual radios attached on AR.Drone2.0 
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Figure 4: Impact of key bit size 

Although the maximum communication range of CC2420 is 
approximately 100m when the RF power is set to 0dBm, 
we set the RF power to -7dBm to save power and its com­
munication range became roughly 30m. TelosB is operated 
by TinyOS 2.0 which is an open-source operating system 
designed for low-power devices. We used the LPL function­
alities in TinyOS 2.0. In addition, TinyECC [13] was used 
as the basic ECC operations of our protocol. 

5.1.3 Network topology 
Fig. 3 illustrates network topology which mimics the sce­

nario of the smart parking management. 17 smart objects 
are deployed at 5m intervals in a line and a drone starts 
from the starting point which is 30m apart from s1 at an 
altitude of 10m. The mission of the drone is to collect mes­
sages from all smart objects. and the mission completion 
time of the drone was measured. The drone proceeds from 
the start point to s17. If the drone reaches a smart object 
(sx), but is unable to finish the data collection task with sx, 
the drone waits until the collection is completed. 

5.2 Experimental results 

5.2.1 Impact of key bit size 
Fig. 4 shows the mission completion time of four proto­

cols with different ECC key bit sizes when the system adopts 
5sec wake-up interval and dual channels. When secp160r1 is 
used, the mission completion time of our protocol is 36.2sec 
which is 1.3, 1.5 and 2.8 times faster than Seo’s CLSC­
TKEM, Sun’s CL-AKA and Yang’s CL-AKA, respectively. 
The completion time of each protocol increases as the key 
bit size increases. However, the difference between a 128­
bit key and a 160-bit key is much smaller than the differ­
ence between a 160-bit key and a 192-bit key, which implies 

Table 2: Comparison of the on-line computation 
time of a smart object (unit: second) 

Protocol secp128r1 secp160r1 secp192r1 
Yang’s CL-AKA [26] 32.84 36.22 50.43 
Sun’s CL-AKA [24] 15.10 16.98 23.84 
CLSC-TKEM [21] 13.37 13.87 18.77 
eCLSC-TKEM 9.25 9.61 13.03 
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Figure 5: Impact of interval between wake-ups 

that a 160-bit key may be a reasonable choice since it pro­
vides better security than a 128-bit key with a very small 
time increase. These results are confirmed by Table 2 which 
compares the computation time measurements of each pro­
tocol on a smart object with different ECC curves. The 
computation time at a smart object in our protocol is 1.4, 
1.8 and 3.8 times faster than Seo’s CLSC-TKEM, Sun’s CL­
AKA and Yang’s CL-AKA, respectively, when secp160r1 is 
used. Note that in our protocol the smart object is required 
to compute only two EC point multiplications after it starts 
communicating with the drone (online), while the other pro­
tocols require more than two EC point multiplications (see 
Table 1). These results are similar to the completion time 
results since the overall performance highly depends on the 
computation time at the smart object. 

5.2.2 Impact of interval between wake-ups 
We analyzed the impact of the wake-up interval of smart 

objects when the system adopts secp160r1 and dual chan­
nels. As shown in Fig. 5, our protocol, compared to CLSC­
TKEM and Sun’s CL-AKA, has a similar completion time 
with longer intervals between wake-ups, thus saving energy 
in smart objects. Specifically, the mission completion time 
of our protocol is 46.8sec when the wake-up interval is 9sec. 
However, in CLSC-TKEM, the wake-up interval that achieves 
a similar mission completion time, i.e., 46.7sec, is 5sec. In 
Sun’s protocol, the wake-up interval that achieves the simi­
lar mission completion time, i.e., 46.2sec, is 1sec. As a result, 
by using our protocol a smart object can save energy 1.8 and 
9 times more than when using the CLSC-TKEM and Sun’s 
CL-AKA, respectively, if the mission completion times of 
three protocols are equally set. 

5.2.3 Impact of drone’s altitude 
Since our protocol is efficient, a drone using our protocol 

does not require a long contact time with smart objects and 
thus complete the mission faster than others even at a higher 
altitude. For example, based on experiments we have car­
ried out, the time required by eCLSC-TKEM to complete a 
mission at an altitude of 20m was 47sec, whereas the time 
required by CLSC-TKEM at an altitude of 5m was 49sec. 1 

1secp160r1 and 5sec wake-up interval are used. These de­
tailed results are not included in the paper for lack of space. 
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Figure 6: Impact of the dual channel strategy 

5.2.4 Impact of dual channel strategy 
Finally, Fig. 6 shows the impact of the dual channel strat­

egy on the system when the wake-up interval is 5sec. For the 
key establishment scheme, eCLSC-TKEM is utilized. The 
drone completes the mission approximately 6 times faster 
than when only one channel is used. If the dual channel 
strategy is adopted, the drone can take advantage of inde­
pendent dual channels. The drone can continuously broad­
cast the wake-up signals on the wake-up channel while, at 
the same time, it can exchange eCLSC-TKEM output with 
smart objects on the data channel. The experiment results 
shown in Fig. 6 refer to the case in which 3 or 4 smart ob­
jects are in the communication range of the drone (see also 
Fig.5). The results show that all the smart objects in the 
range are able to concurrently initiate the execution of the 
eCLSC-TKEM protocol once they receive the wakeup sig­
nal. However, if only one channel is used, the drone must 
perform eCLSC-TKEM with smart objects one by one. In 
the one-channel system, the drone broadcasts the wake-up 
signals. Once a smart object receives the wake-up signal, it 
sends an acknowledge to the drone. Then, the drone must 
stop broadcasting the wake-up signals to receive the eCLSC-
TKEM output from the smart object. If the whole process of 
eCLSC-TKEM with the smart object is successfully finished, 
the drone starts broadcasting the wake-up signals again to 
wake up another smart object. Since each smart object takes 
much longer time for the execution of the eCLSC-TKEM 
protocol than the drone, the drone must wait wasting its lim­
ited flight time doing nothing. As a result, the dual channel 
strategy is essential for efficient and secure communication 
protocols that support many different security functions. 

6. SECURITY ANALYSIS 
6.1 Security Model of eCLSC-TKEM 

An efficient certificateless signcryption tag KEM must con­
sider three types of adversaries: AI , AII and AIII . AI 

represents a dishonest user who can replace other user’s pub­
lic keys but has no knowledge about the master secret key 
of the KGC. AII represents a malicious KGC which has 
knowledge of the KGC’s master secret key. However, AII is 
unable to replace the users’ public keys. AIII represents a 
previously functional user, whose partial private/public keys 
have been revoked by the KGC. AIII cannot replace other 
users’ public keys. Except for the consideration of AIII , the 
security model of eCLSC-TKEM is similar to that of CLSC­
TKEM [20, 12]. eCLSC-TKEM must satisfy confidential­
ity, that is, indistinguishability against an adaptive chosen 
ciphertext and identity attacks (IND-CCA2), and unforge­
ability, that is, existential unforgeability against adaptive 
chosen messages and identity attacks (EUF-CMA). In order 
to describe the security model of eCLSC-TKEM, we consider 
the two formal games IND-eCLSC-TKEM-CCA2 game and 
EUF-eCLSC-TKEM-CMA game. 

1) IND-eCLSC-TKEM-CCA2 Game: The adversary 
A can be either AI , AII or AIII . The challenger C should 
keep a history of query-answers while interacting with adver­
saries. C runs the SetUp() algorithm to generate the public 
parameters params and the master private key msk respec­
tively. If A is either AI or AIII , C gives params to A while 
keeping msk secret. If A is AII , C gives both params and 
msk to A. 
Phase I: A may perform a polynomially bounded number 
of the following queries in an adaptive fashion. 
•	 Extract-Secret-Value queries: C runs SetSecretValue 

to get xU with identity IDU , and then returns it to AI . 
In the case of AIII , C runs SetSecretValue before the chal­
lenge time period and returns xU to AIII . The adversary 
AI or AIII cannot query any identity for which the cor­
responding public key has been replaced. AII is excluded 
in this query. 
•	 Extract-Partial-Private-Key queries: In the case of 
A ∈ {AI , AII }, these can be made for all identities except 
for the target identity. If A is AIII , these can be made 
for any identity before the challenge time period. C runs 
PartialPrivateKeyExtract to obtain the partial private key 
dU and the permitted time period tU . Then C sends dU 

and tU to A. 
•	 Request-Public-Key queries: In the case of A ∈ {AI , 
AII }, C runs SetPublicKey to get the full public key pkU 

and then returns it to AI . If A is AIII , C runs SetPublicKey 
to get the full public key pkU and returns it to AIII be­
fore the challenge time period. 
•	 Public-Key-Replacement queries: AI may replace 

the public key pkU corresponding to the user identity IDU 

with any value pkI of AI ’s choice. AII and AIII are 
excluded in this query. 

U 

•	 Symmetric Key Generation queries: In the case of 
A ∈ {AI , AII }, A chooses a sender’s identity IDA and 
a receiver’s identity IDB . C obtains the private key of 
the sender, skA and tB from the corresponding “query­
answer” list. Then, C runs SymmetricKeyGen to obtain 
the symmetric key K and an internal state information ω 
by using IDA, IDB , skA, pkB and tB . It stores ω while 
keeping the ω secret from the view of A. Finally, C sends 
K to A. C may not obtain the sender’s secret value if the 
associated public value of the sender A is replaced. In 
this case, A is required to provide the secret value of A 
to C. We do not allow queries where IDA = IDB . If A 
is AIII , C runs the above operations for any time instant 
before the challenge time period. 
•	 Key Encapsulation queries: In the case of A ∈ {AI , 
AII }, A produces an arbitrary tag τ for sender A. C 
checks whether there exists a corresponding ω value. If 
ω has been previously stored, then C computes (ϕ) ← 
Encapsulation(ω, τ), deletes ω and returns ϕ to A. Other­
wise, C returns ⊥ and terminates. In case that A is AIII , 
C runs the above operations for any time instant before 
the challenge time period. 
•	 Key Decapsulation queries: In the case of A ∈ {AI , 
AII }, A produces an encapsulation ϕ, a tag τ , the sender’s 
identity IDA, the public key pkA, the receiver’s identity 
IDB and the public key pkB . C obtains the receiver’s 
private key skB and tA from the corresponding “query­
answer” list. C runs Decapsulation by using IDA, IDB , 
pkA, skB , tA, ϕ and τ . C may not be aware of the cor­
responding secret value if the associated public value of 
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IDB is replaced. In this case A must provide the se­
cret value of B to C. We do not allow the queries where 
IDA = IDB . If A is AIII , C runs the above operations 
for any time instant before the challenge time period. 

Challenge: At the end of Phase I decided by A ∈ {AI , AII }, 
A generates a sender identity IDA∗ and a receiver identity 
IDB∗ on which A wishes to be challenged. Here, IDB∗ must 
not be queried to extract a skB∗ in Phase I. Also, in case 
that A is AI , IDB∗ may not be equal to an identity for 
which both the public key has been replaced and the partial 
private key has been extracted. At the end of Phase I which 
is decided by A ∈ {AIII }, AIII generates a sender identity 
IDA∗ and a receiver identity IDB∗ on which AIII wishes to 
be challenged for some instant tI such that tI > tA∗ (af-A∗ A∗ 

ter he has been revoked). In the revoked period, AIII has 
access to no new information. Now, C computes (K1, ω ∗ ) ← 
SymmetricKeyGen(params, IDA∗ , pkA∗ , skA∗ , IDB∗ , pkB∗ , 
tB∗ ) and chooses K0 ∈R K, where K is the key space of the 
eCLSC-TKEM. The C chooses a bit δ ∈R {0, 1} and sends 
Kδ to A. A generates an arbitrary tag τ ∗ and sends it to 
C. C computes (ϕ ∗ ) ← Encapsulation(ω ∗ , τ ∗ ) and sends ϕ ∗ 

to A as a challenge encapsulation. 

Phase II: In the case that A is AI or AII , A can perform 
a polynomially bounded number of queries adaptively as in 
Phase I. However, when A is AIII , the notable difference 
is that A can perform a polynomially bounded number of 
queries adaptively, before the beginning of the challenge pe­
riod as in Phase I. A may not make Extract-full-Private-Key 
queries on IDB∗ . In AI , if the public key of IDB∗ has been 
replaced before the challenge phase, AI may not extract the 
partial private key for IDB∗ . Moreover, A may not make a 
key decapsulation query on (Kδ , ϕ ∗ ) under IDA∗ and IDB∗ , 
unless the public key pkIDA∗ or pkIDB∗ has been replaced 
after the challenge phase. 
Guess: A outputs a bit δI and wins the game if δI = δ. 

The advantage of A is defined as AdvIND−CCA2(A) = |2Pr[δI 

= δ] − 1|, where Pr[δI = δ] denotes the probability that 
δI = δ. A eCLSC-TKEM is IND-CCA2 secure if there is no 
probabilistic polynomial-time adversary in the above games 
with non-negligible advantage in the security parameter k. 
The security of eCLSC-TKEM is based on the assumed 
intractability of the one-sided gap Diffie-Hellman problem 
(OGDH) [11]. 

2) EUF-eCLSC-TKEM-CMA Game: The Forger F 
can be either FI , FII or FIII . The challenger C should 
keep a history of the query-answers while interacting with 
adversaries. C runs the SetUp() algorithm to generate the 
public parameters params and the master private key msk 
respectively. If F is either FI or FIII , C gives params to F 
while keeping msk secret. If F is FII , C gives both params 
and msk to F . 

Training Phase: F may make a polynomially bounded 
number of queries to random oracles Hi(0 ≤ i ≤ 3) at any 
time and C responds as follows: 
All the oracles and queries needed in the training phase 
are identical to the queries allowed in Phase I of the IND­
eCLSC-TKEM-CCA2 game. 

Forgery: At the end of the Training Phase which is decided 
by F ∈ {FI , FII }, F produces an encapsulation \τ ∗ , ϕ ∗ , IDA∗ 

, IDB∗ ) on a arbitrary tag τ ∗ , where IDA∗ is the sender 
identity and IDB∗ is the receiver identity. At the end of 
the Training Phase decided by F = FIII , FIII generates 
a sender identity IDA∗ and a receiver identity IDB∗ on 
which FIII wishes to be challenged for some instant tA

I 
∗ 

such that tI A∗ > tA∗ (after FIII has been revoked). Then, 
F sends \τ ∗ , ϕ ∗ , IDA∗ , IDB∗ ) to C. If F is FI , during the 
Training Phase, the partial private key for IDA∗ must not 
be queried and the public key for IDA∗ must not be re­
placed simultaneously. If F is FII , the secret value xA∗ 

for IDA∗ must not be queried and the public key for IDA∗ 

must not be replaced, simultaneously. Moreover ϕ ∗ must 
not be returned by the key encapsulation oracle on the input 
(τ ∗ , ω ∗ , IDA∗ , IDB∗ ) during the Training Phase. If the out­
put of Decapsulation(params, IDA∗ , pkA∗ , tA∗ , IDB∗ , pkB∗ , 
skB∗ , ϕ ∗ , τ ∗ ) is valid, F ∈ {FI , FII } wins the game. If the 
output of Decapsulation(params, IDA∗ , pkA∗ , tA

I 
∗ , IDB∗ , pkB∗ , 

skB∗ , ϕ ∗ , τ ∗ ) is valid, F = FIII wins the game. 

The advantage of F is defined as the probability with which 
it wins the EUF-pCLSC-TKEM-CMA game. A eCLSC-
TKEM satisfies existential unforgeability against an adap­
tively chosen message attack (EUF-eCLSC-TKEM-CMA), if 
no polynomially bounded forger F has non-negligible advan­
tage in the above EUF-eCLSC-TKEM-CMA game between 
C and F 

6.2 Security Proof 
In this section, we provide the formal security proof for 

the confidentiality and the existential unforgeability of our 
eCLSC-TKEM. The security of our eCLSC-TKEM relies on 
the hardness of the following problems. 

Definition of OGDH For a group Gq with a generator 
P and a fixed point Q, the one-sided gap Diffie-Hellman 
problem (OGDH) [11] is defined as follows: for x, y ∈ Z ∗ 

q , 
given Q, R, compute xyP by accessing an one-sided decision 
Diffie-Hellman (ODDH) Oracle, where Q = xP and R = yP . 

Definition of ODDH For a group Gq with a generator P 
and a fixed point Q, the one-sided decision Diffie-Hellman 
oracle (ODDH) [11] is an oracle that for any RI, SI ∈ Gq 

correctly answers the question: Is z I ≡ xy I (mod p), where 
I I Ix, y , z ∈ Z ∗ 

q are integers such that Q = xP, RI = y P, SI = 
Iz P ? 

Definition of ECDLP The elliptic curve discrete log prob­
lem (ECDLP) is defined as follows: given a random instance 
P, Q, find a number x ∈ Z ∗ 

q such that Q = xP . 

Theorem 1. In the random oracle model, the eCLSC-TKEM 
is IND-CCA2 secure under the assumption that the one-
sided gap Diffie-Hellman (OGDH) problem is intractable. 
The Theorem 1 is proved based on Lemmas 1, 2 and 3. We 
adopt the security proof techniques from [21]. The proof of 
Lemma 3 is in the appendix, whereas the proofs of Lemmas 
1 and 2 are omitted due to the space limitation. 

Lemma 1. In the random oracle model, if there exists an 
adversary AI against the IND-eCLSC-TKEM-CCA2-I secu­
rity of the eCLSC-TKEM with advantage a non-negligible δ, 
then an algorithm C exists that solves the OGDH problem 
with the following advantage ε 
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qppri 
ε ≥ δ · (1 − ) 

qC · qH0 

qsv 1 1 · (1 − ) · ( ) · ( ) 
qC · qH0 qC · qH0 − qppri − qsv qH1 

Here, qH0 , qH1 , qC , qppri and qsv are the maximum number 
of queries that the PPT adversary may ask random oracles 
H0 and H1, create (IDi), extract-partial-private-key queries 
and extract-secret-value queries. 

Lemma 2. In the random oracle model, if there exists an 
adversary AII against the IND-eCLSC-TKEM-CCA2-II se­
curity of the eCLSC-TKEM with advantage a non-negligible 
δ, then there exist an algorithm C that solves the OGDH 
problem with the following advantage ε 

qsv
ε ≥ δ · (1 − ) 

qC · qH0 

qpkR 1 1 · (1 − ) · ( ) · ( ) 
qC · qH0 qC · qH0 − qsv − qpkR qH1 

Here, qH0 , qH1 , qC , qpkR and qsv are the maximum number 
of queries that the PPT adversary may ask random oracles 
H0 and H1, create (IDi), public-key-replacement queries 
and extract-secret-value queries. 

Lemma 3. In the random oracle model, if there exists an 
adversary AIII against the IND-eCLSC-TKEM-CCA2-III 
security of the eCLSC-TKEM with advantage a non-negligible 
δ, then an algorithm C exists that solves the OGDH problem 
with the following advantage ε 

*t 1 1 1 
ε ≥ δ · (1 − ) · (1 − ) · ( ) · ( )

t q qC · qH0 − qppri − qsv qH1 

Here, qH0 , qH1 , qC , qppri and qsv are the maximum number 
of queries that the PPT adversary may ask random oracles 
H0 and H1, create (IDi), extract-partial-private-key queries 
and extract-secret-value queries. t denotes the total possible 

*time assuming that the time begins at 0. t is a valid time 
period of the target identity. 

Theorem 2. In the random oracle model, the eCLSC-TKEM 
is EUF-CMA secure under the assumption that the elliptic 
curve discrete logarithm problem (ECDLP) is intractable. 
Theorem 2 is proved based on Lemmas 4, 5 and 6. We adopt 
the security proof techniques from [21]. The proof of Lemma 
6 is in the appendix, whereas the proofs of Lemmas 4 and 5 
are omitted due to the space limitation. 

Lemma 4. In the random oracle model, if there exists a 
forger FI against the EUF-eCLSC-TKEM-CMA-I security 
of the eCLSC-TKEM with advantage a non-negligible δ, then 
there exists an algorithm C that solves the ECDLP with the 
following advantage ε 

2 · qC qqH0 H2ε ≥ δ · qE · (1 − ) · (1 − ) 
q q 

q 2 
1 1H3 qppri qsv · (1 − ) · (1 + ) · ( ) · (1 − ) · (1 − ) 

q q qC qH0 qH0 

Here, qC , qE , qHi , qppri and qsv are the maximum number of 
queries that the forger may make create (IDi) queries, key 
encapsulation queries, random oracle queries to Hi (0 ≤ i ≤ 
3), extract-partial-private-key queries and extract-secret-value 
queries. 

Lemma 5. In the random oracle model, if there exists a 
forger FII against the EUF-eCLSC-TKEM-CMA-II secu­
rity of the eCLSC-TKEM with advantage a non-negligible 
δ, then there exists an algorithm C that solves the ECDLP 
with the following advantage ε 

2 2 
qH0 · qC q qH2 H3ε ≥ δ · qE · (1 − ) · (1 − ) · (1 − ) 

q q q 
1 1 qsv qpkR · (1 + ) · ( ) · (1 − ) · (1 − ) 
q qC qH0 qH0 

Here, qC , qE , qHi , qpkR and qsv are the maximum number of 
queries that the forger may make create (IDi) queries, key 
encapsulation queries, random oracle queries to Hi (0 ≤ i ≤ 
3), public key replacement queries and extract-secret-value 
queries. 

Lemma 6. In the random oracle model, if there exists a 
forger FIII against the EUF-eCLSC-TKEM-CMA-III se­
curity of the eCLSC-TKEM with advantage a non-negligible 
δ, then there exists an algorithm C that solves the ECDLP 
with the following advantage ε 

qH0 · qCε ≥ δ · qE · (1 − ) 
q 

*q 2 q 2 
1 1 tH2 H3· (1 − ) · (1 − ) · (1 + ) · ( ) · (1 − ) 

q q q qC t 

Here, qC , qE and qHi are the maximum number of queries 
that the forger may make create (IDi) queries, key encap­
sulation queries, random oracle queries to Hi (0 ≤ i ≤ 3). t 
denotes the total possible time and assuming that the time 

*begins at 0. t is a valid time period of target identity 

7. CONCLUSIONS AND FUTURE WORKS 
In this paper, a secure communication protocol between 

drones and smart objects is presented. To satisfy security 
and efficiency requirements, we propose the eCLSC-TKEM 
with the dual channel strategy. Our protocol efficiently sup­
ports four security functions: key agreement, user authenti­
cation, non-repudiation, and user revocation. Our exper­
imental analysis carried in a smart parking management 
testbed shows that our protocol is 1.3, 1.5 and 2.8 times 
faster than other protocols, i.e., Seo’s CLSC-TKEM [21], 
Sun’s CL-AKA [24] and Yang’s CL-AKA [26], respectively. 
As future work, we plan to investigate how to mitigate the 

O(N) key update overhead at the KGC (N is the number of 
users). The overhead at the KGC can be dispersed by intro­
ducing intermediate entities between the KGC and drones. 
The KGC issues a valid partial private key not to directly 
drones but to the entity who is responsible for drones’ op­
erations. The entity can generate proxy partial private keys 
for drones using its valid partial private key. The key idea of 
the proxy partial private key might be similar to the proxy 
certificate or the proxy signature. 

Acknowledgments 
The work reported in this paper has been partially sup­
ported by the Purdue Cyber Center and by the National 
Science Foundation under grant CNS-1111512. 

8. REFERENCES 
[1] Low power listening, http://tinyos.stanford.edu/ 

tinyos-wiki/index.php/writing low-power applications. 

257

http:http://tinyos.stanford.edu


[2] Parrot, http://ardrone2.parrot.com. 
[3] S. Al-Riyami and K. Paterson. Certificateless public 

key cryptography. In C.-S. Laih, editor, ASIACRYPT, 
volume 2894 of LNCS, pages 452–473. Springer, 2003. 

[4] G. Anastasi, M. Conti, E. Monaldi, and A. Passarella. 
An adaptive data-transfer protocol for sensor networks 
with data mules. In WoWMoM, pages 1–8, 2007. 

[5] D. Boneh and M. K. Franklin. Identity-based
 
encryption from the weil pairing. In Proceedings of
 
CRYPTO ’01, pages 213–229. Springer, 2001.
 

[6] H. Chan, A. Perrig, and D. Song. Random key 
predistribution schemes for sensor networks. In IEEE 
Symposium on Security and Privacy, 2003. 

[7] K. Chatterjee, A. De, and D. Gupta. An improved 
id-based key management scheme in wireless sensor 
network. In Advances in Swarm Intelligence, volume 
7332 of LNCS, pages 351–359. Springer, 2012. 

[8] W. Du, J. Deng, Y. S. Han, and P. K. Varshney. A
 
pairwise key pre-distribution scheme for wireless
 
sensor networks. In CCS ’03. Proceedings, 2003.
 

[9] M. Geng and F. Zhang. Provably secure certificateless 
two-party authenticated key agreement protocol 
without pairing. In CIS ’09, pages 208–212, 2009. 

[10] D. He, J. Chen, and J. Hu. A pairing-free 
certificateless authenticated key agreement protocol. 
Int. Journal of Comm. Sys., pages 221–230, 2012. 

[11] N. Koblitz and A. Menezes. Intractable problems in 
cryptography. In Proc. 9th International Conf. Finite 
Fields and Their Applications, 2010. 

[12] F. Li, M. Shirase, and T. Takagi. Certificateless hybrid 
signcryption. In Information Security Practice and 
Experience, volume 5451 of LNCS. Springer, 2009. 

[13] A. Liu and P. Ning. Tinyecc: A configurable library 
for elliptic curve cryptography in wireless sensor 
networks. In IPSN ’08, pages 245–256, April 2008. 

[14] K. MacKay. https://github.com/kmackay/micro-ecc. 
[15] S. M. Mizanur Rahman and K. El-Khatib. Private key 

agreement and secure communication for 
heterogeneous sensor networks. J. Parallel Distrib. 
Comput., 70(8):858–870, Aug. 2010. 

[16] D. Pointcheval and J. Stern. Security arguments for 
digital signatures and blind signatures. JOURNAL OF 
CRYPTOLOGY, 13:361–396, 2000. 

[17] J. Polastre, J. Hill, and D. Culler. Versatile low power 
media access for wireless sensor networks. In 
Proceedings of the ACM SenSys ’04, 2004. 

[18] A. Rasheed and R. Mahapatra. Secure data collection 
scheme in wireless sensor network with mobile sink. In 
IEEE NCA ’08, 2008. 

[19] C. Schurgers, V. Tsiatsis, S. Ganeriwal, and 
M. Srivastava. Optimizing sensor networks in the 
energy-latency-density design space. Mobile 
Computing, IEEE Trans. on, 1(1):70–80, Jan 2002. 

[20] S. Selvi, S. Vivek, and C. Rangan. Certificateless kem 
and hybrid signcryption schemes revisited. In 
Information Security, Practice and Experience, volume 
6047 of LNCS, pages 294–307. Springer, 2010. 

[21] S. Seo and E. Bertino. Elliptic curve cryptography 
based certificateless hybrid signcryption scheme 
without pairing, http://www.cerias.purdue.edu/apps 
/reports and papers/view/4698. CERIAS report, ’13. 

[22] R. Shah, S. Roy, S. Jain, and W. Brunette. Data 
mules: modeling a three-tier architecture for sparse 
sensor networks. In SNPA ’03, Proceedings, 2003. 

[23] H. Song, S. Zhu, W. Zhang, and G. Cao. Least 
privilege and privilege deprivation: Toward tolerating 
mobile sink compromises in wireless sensor networks. 
ACM Trans. Sen. Netw., 4(4):23:1–23:34, Sept. 2008. 

[24] H. Sun, Q. Wen, H. Zhang, and Z. Jin. A novel 
pairing-free certificateless authenticated key 
agreement protocol with provable security. Frontiers 
of Computer Science, 7(4):544–557, 2013. 

[25] Y. Tirta, Z. Li, Y.-H. Lu, and S. Bagchi. Efficient 
collection of sensor data in remote fields using mobile 
collectors. In ICCCN ’04. Proceedings, 2004. 

[26] G. Yang and C.-H. Tan. Strongly secure certificateless 
key exchange without pairing. In ASIACCS, 2011. 

[27] X. Zhang, J. He, and Q. Wei. Eddk: Energy-efficient 
distributed deterministic key management for wireless 
sensor networks. EURASIP Journal on Wireless 
Communications and Networking, 2011. 

[28] W. Zhao, M. Ammar, and E. Zegura. A message 
ferrying approach for data delivery in sparse mobile ad 
hoc networks. In ACM MobiHoc, pages 187–198, 2004. 

[29] L. Zhou, J. Ni, and C. Ravishankar. Supporting secure 
communication and data collection in mobile sensor 
networks. In INFOCOM ’06. Proceedings, 2006. 

APPENDIX 
A. PROOF OF LEMMA 3 

Suppose that there exists a Type III adversary AIII who 
can break the IND-eCLSC-TKEM-CCA2-III security of the 
eCLSC-TKEM with a non-negligible probability in polyno­
mial time. A challenger C is challenged with an instance 
of the OGDH (One-sided Gap Diffie-Hellman) problem. C 
can utilize AIII to compute the solution of the OGDH 
instance by accessing a ODDH (One-sided Decision Diffie­
Hellman)oracle. C sets the master private/public key pair 
as (x, Ppub = xP ), where P is the generator of the group Gq 

and the hash functions Hi(0 ≤ i ≤ 3) are treated as random 
oracles. C sends the system parameters Ω = {Fq , E/Fq , Gq , P, 
Ppub, H0, H1, H2, H3} to AIII . To maintain the consistency, 
C maintains lists Li(0 ≤ i ≤ 3)). It also maintains a list of 
issued private keys and public keys including valid time pe­
riod in Lk. C can simulate the challenger’s execution of each 
phase of the formal Game. Let C select a random index j, 
where 1 ≤ j ≤ qC and fix IDj as the target identity for the 
challenge phase. Let’s that AIII was revoked at the time 
interval beginning at t * . 
Phase 1: AIII may make use of all random oracles Hi(0 ≤ 
i ≤ 3) at any time and C responds as follows: 
Create(IDi): When AIII submits a Create(IDi) query to 
C, C responds as follows: (1) If case 1 (IDi  IDj ) or case = 

* Z ∗ 2 (IDi = IDj and tj < t ), C picks ei, bi, xi ∈R q , then 
sets H0(IDi, Ri, Pi, ti) = −ei, Ri = eiPpub + biP and com­
putes the public key as Pi = xiP . di = bi and it satisfies 
the equation diP = Ri + H0(IDi, Ri, Pi, ti)Ppub. C inserts 
\IDi, Ri, Pi, ti, −ei) into the list L0 and \IDi, di, xi, Ri, Pi, ti)
into the list Lk. (2) If IDi = IDj and tj > t * , C chooses 
ej , xj ∈R Zq 

∗ and sets H0(IDj , Rj , Pj , tj ) = −ej , Pj = xj P , 
and Rj = ej Ppub − Pj + aP . Here, C does not know a. 
C uses the aP given in the instance of the OGDH prob­
lem. C inserts \IDj , Rj , Pj , tj , −ej ) into the list L0 and 
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\IDj , ⊥, xj , Rj , Pj , tj ) into the list Lk. 
H0 queries: When AIII submits a H0 query with IDi, C 
searches the list L0. If there is a tuple \IDi, Ri, Pi, ti, −ei), C 
responds with the previous value −ei. Otherwise, C chooses 
ei ∈R Zq 

∗ and returns −ei as the answer. Then, C inserts 
\IDi, Ri, Pi, ti, −ei) into the list L0. 
H1 queries: When AIII submits a H1 query with (Yi, Vi, Ti, 
IDi, Pi), C checks whether the ODDH oracle returns 1 when 
queried with (aP, Vi, Ti). If the ODDH oracle returns 1, C 
outputs Ti and stop. Then C goes through the L1 with 
entries \Yi, Vi, ∗, IDi, Pi, li), for different values of li, such 
that the ODDH oracle returns 1 when queried on the tuple 
(aP, Vi, Ti). Note that in this case IDi = IDj and tj > t * . 
If such a tuple exists, it returns li and replaces the symbol 
∗ with Ti. Otherwise, C chooses l ∈R {0, 1}n and updates 
the L1, which is initially empty, with a tuple containing the 
input and return values. C then returns l to AIII . 
H2 queries: C checks whether \U, τ, T, IDA, PA, IDB , PB , hi)
exists in the L2. If it exists, C returns H = hi to AIII . Oth­
erwise, C chooses hi ∈R Zq 

∗ , adds \U, τ, T, IDA, PA, IDB , PB , hi)
to the L2 and returns H = hi to AIII . 
H3 queries: C checks whether \U, τ, T, IDA, PA, IDB , PB , h

I 
i)

exists in the L3. If it exists, C returns H I = hI 
i to AIII . Oth­

erwise, C chooses hI 
i ∈R Zq 

∗ , adds \U, τ, T, IDA, PA, IDB , PB , h
I 
i)

to the L3 and returns H I = hI 
i to AIII . 

Extract-Partial-Private-Key queries: In order to re­
spond to the query for the partial private key of a user 
with IDi, C performs the following steps: (1) If IDi = 
IDj and tj > t * , C aborts the execution. (2) If case 1 
(IDi = IDj ) or case 2 (IDi = IDj and tj < t * ), C retrieves 
\IDi, di, xi, Ri, Pi, ti) from Lk, returns (di, Ri) which satis­
fies the equation diP = Ri + H0(IDi, Ri, Pi, ti)Ppub. 
Extract-Secret-Value queries: AIII produces IDi to C 
and requests a secret value of IDi. If case 1 (the public 
key of IDi has not been replaced and IDi = IDj ) or case 
2 (the public key of IDi has not been replaced, IDi = IDj 

and tj < t * ), then C responds with xi by retrieving from 
Lk. If AIII has already replaced the public key of IDi, C 
does not provide the corresponding secret value to AIII . If 
IDi = IDj and tj > t * , C aborts. 
Request-Public-Key queries: AIII produces IDi to C 
and requests a public key of IDi. C checks in the Lk for 
\IDi, di, xi, Ri, Pi, ti). If it exists, C returns the correspond­
ing public key (Ri, Pi, ti). Otherwise, C recalls Create(IDi) 
query to obtain (Ri, Pi, ti) and returns (Ri, Pi, ti). 
Public-Key-Replacement queries: AIII chooses values 
(Ri

I , P i 
I, tI i) to replace the public key (Ri, Pi, ti) of IDi. C up­

dates the corresponding tuple in the Lk as \IDi, −, −, Ri
I , P i 

I, tI i). 
The current value of the user’s public key is used by C for 
responses to any queries made by AIII . 
Symmetric Key Generation queries: AIII produces 
a sender’s IDA, public key (RA, PA, tA), the receiver’s IDB 

and public key (RB , PB , tB ) to C. For each query (IDA, IDB ), 
C proceeds as follows: (1) If case 1 (IDA = IDj ) or case 2 
(IDA = IDj and tj < t * ), C computes skA correspond­
ing to IDA by executing the Extract-Partial-Private-Key and 
Extract-Secret-Value algorithm. Then, C gets K and ω by 
running the actual SymmetricKeyGen algorithm. C stores ω 
and overwrite any previous value. C sends K to AIII . (2) 
If IDA = IDj and tj > t * , C chooses r1, r2, ht, h

I 
t ∈R Zq 

∗ 

−1 −1and computes U = r1P − ht · aP + ht · Pt, V = r2P , 
Y = RB + H0(IDB , RB , PB , tB ) · Ppub + PB , T = r2 · Y mod 
q=r2 ·(H0(IDB , RB , PB , tB )Ppub +RB +PB ) mod q and K = 

H1(Y, V, T, IDB , PB ), where RB and PB are obtained by 
calling the Request-Public-Key query oracle on IDB . Note 
that ω is ω = (r1, r2, ht, h

I 
t, U, V, T, IDA, pkA, IDB , pkB ). 

(3) C goes through the L1 looking for an entry (Y, V, T, IDB , 
PB , k) for some k such that ODDH(PB , V, Y )=1. If such an 
entry exists, it computes K ← l. Otherwise it uses a random 
l and updates the L1 with (Y, V, ∗, IDB , PB , l). C stores ω 
and sends K to AIII . 
Key Encapsulation queries: AIII produces an arbitrary 
tag τ , the sender’s IDA, public key (RA, PA, tA), the re­
ceiver’s IDB and public key (RB , PB , tB ) and sends them 
to C. The full private key of the sender skA = (dA, xA) is 
obtained from the Lk. C checks whether a corresponding ω 
value has been stored previously. (1) If ω does not exist, 
C returns an invalid reply. (2) If case 1 (a corresponding ω 
exists and IDA = IDj ) or case 2 (a corresponding ω exists, 
IDA = IDj and tj < t * ), then C computes ϕ with ω and 
τ by using the actual Encapsulation algorithm, and deletes 
ω. (3) If a corresponding ω exists, IDA = IDj and tj > t * , 
then C computes ϕ by performing the following steps. Note 
that ω is (r1, r2, hj , h

I 
j , U, V, T, IDA, pkA, IDB , pkB ) and C 

does not know the private key corresponding to IDt. So C 
should perform the encapsulation in a different way: 

• H = hj and add \U, τ, T, IDA, PA, IDB , PB , hj ) to L2. 

• H I = hI and add \U, τ, T, IDA, PA, IDB , PB , hj 
I ) to L3.j 

• Compute W = hj · r1 + hj 
I · xA. 

• Output ϕ = (U, V, W ) as the encapsulation. 

We show that AIII can pass the verification of ϕ = (U, V, W ) 
to validate the encapsulation, because the equality W · P = 
RA + H0(IDA, RA, PA, tA) · Ppub + H · U + H I · PA holds as 
follows: RA + H0(IDA, RA, PA, tA) · Ppub + H · U + H I · PA 

= aP + ej Ppub − Pj + (−ej ) · Ppub + H · (r1P − hj 
−1 · aP + 

−1	 · r1P + hIhj · Pj ) + H I · PA = hj j · PA= W · P 
Key Decapsulation queries: AIII produces an encap­
sulation ϕ = (U, V, W ), a tag τ , the sender’s IDA, the 
public key (RA, PA, tA), the receiver’s IDB and the public 
key (RB , PB , tB ) to C. The full private key of the receiver 
skB = (dB , xB ) is obtained from the list Lk. (1) If case 1 
(IDB = IDj ) or case 2 (IDB = IDj and tj < t * ), then C 
computes the decapsulation of ϕ by using the actual Decap­
sulation algorithm. (2) If IDB = IDt and tj > t * , then the 
point cannot be computed. In order to return a consistent 
answer, C computes K from ϕ as follows: 

•	 Searches in the L2 and L3 for entries \U, τ, T, IDA, PA, IDB , 
PB , hj ) and \U, τ, T, IDA, PA, IDB , PB , h

I 
j ), respectively. 

•	 If H = hj and H I = hI 
j exist then C checks whether the 

equality W · P = RA + H0(IDA, RA, PA, tA) · Ppub + H · 
U + H I · PA holds. 

•	 If the above equality holds, the T is retrieved from the L2 

and L3. Both the T values should be equal. 

• C goes through L1 and looks for \Y, V, T, IDB , PB , l) such 
that the ODDH oracle returns 1 when queried on the 
(aP, V, T ). If such entry exists, the corresponding K ← l 
value is returned as the decapsulation of ϕ. 

•	 If C reaches this point of execution, it puts the entry 
\Y, V, ∗, IDB , PB , l) for a random l on the L1 and returns 
K ← l. The ∗ denotes an unknown value. The identity 
component with ∗ is a receiver IDB . 

Challenge: At the end of Phase I, AIII sends a sender’s 
IDA∗ and a receiver’s IDB∗ to C. Here, the partial private 
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key of the revoked receiver was not queried in Phase I. Let 
I∗ ∗ ∗ the time t j ∈ (t j , t j + α). C aborts the game if case 

1 (IDB∗ = IDj ) or case 2 (IDB∗ = IDj and tI∗ 
j < t * ). 

Otherwise, C performs the following steps to compute the 
challenge encapsulation ϕ ∗ : (1) Choose r ∈R Zq 

∗ and com­
pute U ∗ = rP . (2) Set V ∗ = bP and choose T ∗ ∈R Gq . 
Here, C does not know b. C uses the bP given in the in­
stance of the OGDH problem. (3) Choose K0 ∈R K, where 
K is the key space of the eCLSC-TKEM. (4) Choose a 
random hash value l ∗ and set K1 = l ∗ . (5) C chooses a 
bit δ ∈R {0, 1} and sends Kδ to AIII . (6) AIII gen­

∗ Z∗ erates τ and sends it to C. (7) Choose hi, h
I ∈R q ,i 

store \U ∗ , τ ∗ , T ∗ , IDA∗, PA∗, IDB∗, PB∗, hi) to the L2 and 
\U ∗ , τ ∗ , T ∗ , IDA∗, PA∗, IDB∗, PB∗, h

I 
i) to the L3. (8) Since 

C knows the sender’s private key, C computes W ∗ = dA∗ + 
r · hi + xA∗ · hI 

i. (9) C returns ϕ ∗ = \U ∗ , V ∗ ,W ∗ ). 
Phase II: AIII adaptively queries the oracles as in Phase 
I. Besides it cannot query decapsulation on ϕ ∗ . 
Guess: Since AIII can break the IND-eCLSC-TKEM-CCA2­
III security (which is assumed at the beginning of the proof), 
AIII should have asked a H1 query with (Y ∗ , V ∗ , T ∗ , IDB∗ , PB∗ ) 
as inputs. It is to be noted that T ∗ = b ·Y ∗ = b ·(−ej ·Ppub + 
ej · Ppub − Pj + aP + PB∗ ) = ab · P , where Pj = PB∗ be­
cause of IDj = IDB∗. Therefore, if the L1 has qH1 queries 
corresponding to the sender IDA∗ and receiver IDB∗ , one 
of the T ∗ ’s among qH1 values stored in the list L1 is the 
solution for the OGDH problem instance. C chooses one T 
value uniformly at random from the qH1 values from the L1 

and outputs it as the solution for the OGDH instance. 
Analysis: C lets E1, E2 and E3 be the events in which C 
aborts the IND-eCLSC-TKEM-CCA2-III game. 
(1) E1: The AIII returns decapsulation for tI∗ 

j < t * ). The 
L

probability is Pr[E1] = t
t . t denotes the total possible time 

and assuming that the time begins at 0. 
(2) E2: An invalid public key replacement by AIII was not 
detected. The probability is Pr[E2] = 1 

q . 
(3) E3: AIII does not choose the target identity IDj during 
the challenge. The probability is Pr[E3] = 1− 1 . 

qC ·qH0 
−qppri−qsv 

Thus, the probability that C does not abort the IND-eCLSC­
TKEM-CCA2-III game is 

Pr[¬E1 ∧ ¬E2 ∧ ¬E3] 

t * 1 1 
= (1 − ) · (1 − ) · ( )

t q qC · qH0 − qppri − qsv 

The probability that C randomly chooses the T from L1 

and T is the solution of OGDH problem is 1 . So, the 
qH1 

probability that C finds the OGDH instance is as follows: 

t * 1 1 1 
Pr[C] = δ · (1 − ) · (1 − ) · ( ) · ( )

t q qC · qH0 − qppri − qsv qH1 

Therefore, the Pr[C] is non-negligible, because δ is non-
negligible. This contradicts the OGDH assumption. 

B. PROOF OF LEMMA 6 
A challenger C is challenged with an instance of the ECDLP. 

To solve the ECDLP, given \P, bP ) ∈ Gq , C must find b. Let 
FIII be a forger who is able to break the EUF-eCLSC­
TKEM-CMA-III security of the eCLSC-TKEM. C can uti­
lize FIII to compute the solution b of the ECDLP instance 
by playing the following interactive game with FIII . To 
solve the ECDLP, C sets the master private/public key pair 
as (x, Ppub = xP ), where P is the generator of the group 

Gq and the hash functions Hi(0 ≤ i ≤ 3) are treated as 
random oracles. The C sends the system parameter Ω = 
{Fq , E/Fq , Gq , P, Ppub, H0, H1, H2, H3} to FIII . In order to 
avoid the inconsistency between the responses to the hash 
queries, C maintains lists Li(0 ≤ i ≤ 3)). It also maintains 
a list Lk to maintain the list of issued private keys and pub­
lic keys including the valid time period. C can simulate the 
Challenger’s execution of each phase of the formal game. 
Training Phase: FIII may make a series of polynomially 
bounded number of queries to random oracles Hi(0 ≤ i ≤ 3) 
at any time and C responds as follows: All the oracles and 
queries needed in the training phase are identical to those of 
the Create(IDi) queries, H0 queries, H1 queries, H2 queries, 
H3 queries, Extract-Partial-Private-Key queries, Extract­
Secret-Value queries, Public-Key-Replacement queries, Sym­
metric Key Generation queries, Key Encapsulation queries 
and Key Decapsulation queries in IND-pCLSC-TKEM-CCA2­
III game. 
Forgery: Eventually, FIII returns a valid encapsulation 
\τ, ϕ = (U, V, W ), IDA, IDB ) on a arbitrary tag τ , where 
IDA is the sender identity and IDB is the receiver identity, 
to C. If IDA = IDj and tI∗ 

j > t * , C aborts the execution 
of this game. Otherwise, C searches the list L2 and outputs 
another valid encapsulation \τ, ϕ ∗ = (U, V, W ∗ ), IDA, IDB )
with different h ∗ 

i such that h ∗ 
i = hi on the same τ as done in 

forking lemma [16]. Thus, we can get W ·P = RA −ej ·Ppub + 
hi · U + hi 

I · PA and W ∗ · P = RA − ej · Ppub + h ∗ 
i · U + hi 

I · PA. 
Let U = bP . Then if we subtract these two equations, we 
get following value. 
W ∗ · P − W · P = h ∗ 

i · U − hi · U 
⇒ (W ∗ − W )P = (h ∗ 

i − hi) · U 
⇒ (W ∗ − W )P = (h ∗ 

i − hi) · bP 
⇒ (W ∗ − W ) · (h ∗ 

i − hi)
−1 = b 

W ∗ −WTherefore, FIII solves the ECDLP as b = −hi 
using the 

h∗ 
i 

algorithm C for given a random instance \P, bP ) ∈ Gq . 
Analysis: In order to assess the probability of success of 
the challenger C. We assume that FIII can ask qC create 
(IDi) queries, qE key-encapsulation queries and qHi random 
oracle queries to Hi (0 ≤ i ≤ 3). We also assume that FIII / 
never repeats Hi (0 ≤ i ≤ 3) a query with the same input. 
(1) The success probability of the Create(IDi) query execu­

qH0 
qH0 

·qCtion is (1 − 
q )qC ≥ 1 − 

q . 
(2) The success probability of the H2 query execution is 

2
 
qH2 H2
(1 − 
q )qH2 ≥ 1 − 

q

q . 
(3) The success probability of the H3 query execution/ is 

qH3 H3(1 − 
q )qH3 ≥ 1 − 

q 2 

q . 
(4) The success probability of the key encapsulation query 
execution is qE ≥ qE · (1 + 1 ).

(1− 1 ) q 
q 

(5) The probability of both IDi = IDj and tI∗ 
j > t * is 

L 

q
1 
C 
· (1 − t

t ). t denotes the total possible time and assuming 
that the time begins at 0. 
Thus, the success probability that C can win the EUF-eCLSC­
TKEM-CMA-III game is 

2 · qC qqH0 H2ε ≥ δ · qE · (1 − ) · (1 − ) 
q q 

2 * qH3 1 1 t · (1 − ) · (1 + ) · ( ) · (1 − ) 
q q qC t 

Therefore, the probability that C computes the solution of 
ECDLP is non-negligible, because δ is non-negligible. 
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