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Abstract. Wireless Sensor Networks (WSNs) have been substituting 
for human senses to make human lives better by monitoring the environ­
ment and providing intelligence. Collected sensor data are used to make 
decisions as a human does. Therefore, providing trustworthy sensor data 
is crucial to make correct decisions. However, faulty sensors can give in­
correct information. In addition, since sensors are usually deployed in 
unattended areas and can be compromised, cryptographic approaches 
are insufficient. To address this problem, we propose a distance-based 
trustworthiness assessment scheme. In our scheme, a centralized trust 
assessment module outputs an absolute trust score of each sensed value 
and the trust score of each sensor. The trust scores of sensed values are 
calculated based on the differences of sensed values provided by a sensor 
and its neighbors and the physical distances from the neighbors. Our 
simulation results show that our scheme outputs practical and accurate 
trust scores in a realistic environment where the sensed values of interest 
gradually change over the monitored areas. 

Keywords: Trustworthiness assessment in wireless sensor networks, sen­
sor trust assessment, sensor trust management 

1 Introduction 

Along with the advance in sensors, network technologies and embedded devices, 
sensor nodes in Wireless Sensor Networks (WSNs) have now become tiny and 
inexpensive. In the near future, WSNs will behave as a digital skin providing 
a virtual sense for physical environments. Collected sensed data can be utilized 
for many critical tasks ranging from military tasks to civilian tasks such as 
surveillance, fire detection, industrial facility monitoring and soil monitoring for 
precision agriculture. In such applications, hundreds to thousands of tiny sensor 
nodes are densely deployed and large amounts of sensed data are collected. The 
collected sensed data are then used to make critical decisions. 

However, since sensors are usually made with cheap hardware and deployed 
in unattended hostile areas, they are exposed to the risks of being compromised 
by attackers. Once sensor nodes are compromised, they may endanger the sys­
tem by injecting malicious false data. In addition, as pointed out in [5], in real 
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2 Distance-based Trustworthiness Assessment for Sensors in WSNs 

applications, lots of incorrect sensed data are reported by faulty sensors. There­
fore, providing indications about the trustworthiness of collected data to data 
users is crucial in order for these users to make correct decisions. 

Approaches to score sensors or sensed data based on reputation or trust 
management schemes have been proposed. Such approaches can be categorized 
into two approaches: distributed and centralized approaches. In the distributed 
approaches [9, 7, 5], each sensor has its own trust management module which 
evaluates the trust scores of its neighbors. On the other hand, centralized ap­
proaches [6] assess the trustworthiness of all sensors using the collected sensed 
data from the system perspective. Since WSNs are self-organized and cooper­
atively operated in a distributed manner for networking or data aggregation, 
many schemes have focused on how each sensor node builds trust scores about 
its neighbors. For example, each sensor counts selfish routing misbehavior of its 
neighbors or compares its sensed value with the sensed values of its neighbors. 
Then, each sensor node establishes the trust scores of neighbors from its own 
point of view. While a distributed approach is best suited for local decisions such 
as routing and data aggregation, a centralized approach is required in order to 
make decisions from the perspective of system operations. For example, by us­
ing the trust scores about sensors, system administrators can execute corrective 
follow-up actions such as replacing faulty or abnormal sensors, i.e. sensors with 
low trust scores, with new sensors. In this paper, we focus on the centralized 
approach. 

Although previous approaches provide effective methodologies for trustwor­
thiness assessment of sensors in WSNs, none of them have taken into account 
the physical distances among each pair of sensors for calculating their trust 
scores. In this work, we focus on the fact that the closer two sensors are, the 
more consistent their sensed values are. A centralized trust assessment module 
then compute absolute trust scores of sensors based on their sensed values and 
their physical distances. The simulation results show that our trustworthiness 
assessment scheme provides practical and accurate trust scores in realistic envi­
ronments where the sensed values of interest gradually change over the monitored 
areas. 

The rest of the paper is organized as follows. Section 2 discusses related 
work and Section 3 introduces some motivating examples. Section 4 presents 
our distance-based trustworthiness assessment scheme. Section 5 reports the 
simulation results and Section 6 outlines conclusions and future work. 

2 Related Work 

The self-organizing nature of WSNs calls for distributed trust management 
schemes [9, 7, 5]. Zhang et al. [9] propose a trust-based framework for secure 
data aggregation. The trustworthiness of each sensor in one cluster is evaluated 
by using an information theoretic metrics under the assumption that multiple 
nodes in one cluster sense the mean of the physical environment parameter of in­
terest independently. Probst et al. [7] present a trust establishment scheme based 
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3 Distance-based Trustworthiness Assessment for Sensors in WSNs 

on computing statistical trust and a confidence interval around the trust based 
on direct and indirect experiences of neighbor’s behavior. Ganeriwal et al. [5] 
propose a framework by which each sensor node maintains reputation metrics 
for neighbors. Using an outlier detection algorithm, the actions of neighbors are 
classified as either cooperative or noncooperative and then the classification re­
sults are given as input to a beta reputation system for the trust representation 
of neighbors. Notice that such distributed schemes require additional memory 
and computational resources for sensors. Furthermore, using them for already 
deployed WSNs is difficult since they require software updates all sensor nodes. 

Lim et al. [6] proposed a centralized scheme which evaluates the trust score 
of values and nodes based on the sensed values and their provenance. The trust 
score of a sensed value and the trust score of a sensor node periodically evolve 
according to a cyclic framework by affecting each other. The scheme assumes 
that the set of sensed values which are affected by an event can be determined. 
Also, it assumes that the set of sensed values are equally affected by the event. 
Based on these assumptions, the scheme calculates the mean (µ) and standard 
deviation (σ) of all sensed values which are affected by the same event. Using µ 
and σ, the distribution is modeled as a normal distribution N (µ, σ). Then, each 
sensed value is scored based on the distribution. That is, the closer the sensed 
value provided by a sensor is to the mean, the higher trust score is assigned to 
the sensor. However, in ordinary monitoring applications, this approach has four 
problems. First, defining an event may be impossible in many applications or 
contexts. Second, determining the set of sensed values which are affected by an 
event is difficult. Third, even if we can identify an event and sensors affected by 
the event, the event does not equally affect all these sensors. Fourth, the scheme 
assigns relative trust scores to sensors since the scores are calculated based on 
the distribution. That is, even though all sensors are working well, low trust 
scores may be assigned to some sensors. These problems are discussed in detail 
in Section 3. 

Unlike [6], in this paper, we do not consider the provenance of a sensed value. 
In [6], when a sensed value passes through intermediate sensor nodes, the trust 
score of the sensed value is dominated by the worst node with the smallest trust 
score since a malicious intermediate node may change the sensed value passing 
the node. However, this assumption is too conservative since, as discussed in 
[5], abnormal sensed values can be generated due to other reasons such as a 
low voltage level, a faulty sensor module or abnormal natural phenomenon. We 
believe that compromised nodes can be detected by distributed schemes [5, 8]1 . 

None of the previous approaches take into account the correlation between 
sensed values and their physical distances in the computation of the trust scores. 
The physical distances between sensors are known by the system administrator 
since location information of sensors as well as their sensed values are important 
factors to be considered for decisions. 

1	 Notice that distributed schemes are compatible with centralized schemes to make 
the system more robust. 
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3 Motivating Examples 

The typical applications of WSNs monitor large areas with hundreds or thou­
sands of sensors. In these applications, the sensed values reported by sensors at 
a specific area may be very different from the sensed values reported by sensors 
at a different area. For instance, consider the situation where sensors monitor 
temperature in a forest reserve as shown in Fig. 1. At night all sensors may 
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Fig. 1. An illustration of WSNs monitoring temperature 

provide similar temperature values. However, in the daytime, the temperature 
values may differ according to the presence of direct sunlight or the angle be­
tween the sun’s rays and the surface. Assume that sensor A and B are normal, 
but sensor C is abnormal. Sensor A and sensor B give a temperature of 30◦C 
while most of sensors, except sensor C, give a temperature of under 30◦C. In this 
situation, we cannot determine the set of sensors which are affected by an event. 
If possible, the sensors may not be equally influenced by the event. Nonetheless, 
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Cluster 3 Cluster 3 

Fig. 2. The topology of sensors in the Intel lab 
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if we define this kind of situation (without a specific event) as an ‘event’ and 
utilize the normal distribution-based approach [6], the event will include the en­
tire sensed values. As a result, low trust scores will be assigned to sensor A and 
B even if the values they provide are correct. Their trust scores may increase at 
night since all sensors may provide similar temperature values and trust scores 
are periodically re-assessed. However, the trust scores of sensor A and B will 
eventually become low throughout the cyclic procedure if temperature values at 
sensor A and B are higher than others in every daytime since such bad effects 
are accumulated. 

This phenomenon can be verified in a real test-bed experiment. We analyzed 
the data collected from 54 sensors deployed in the Intel Berkeley Research lab [1]. 
As shown in Fig. 2, we focused on 9 sensors in three different areas. Sensor 1, 
2 and 3 (cluster 1) are located in the center of the lab. Sensor 24, 25 and 26 
(cluster 2) are located at the corner of the lab and sensor 52, 53 and 54 (cluster 
3) are located in a conference room. Fig. 3(a) shows the temperature values of 

18	
  

20	
  

22	
  

24	
  

26	
  

28	
  

24030	
   24040	
   24050	
   24060	
  

°C
	
  

Epoch	
  

Sensor	
  24	
  
Sensor	
  25	
  
Sensor	
  26	
  
Sensor	
  1	
  
Sensor	
  2	
  
Sensor	
  3	
  
Sensor	
  52	
  
Sensor	
  53	
  
Sensor	
  54	
   18	
  

20	
  

22	
  

24	
  

26	
  

28	
  

24030	
   24040	
   24050	
   24060	
  

°C
	
  

Epoch	
  

Mean	
  +	
  SD	
  
Mean	
  
Mean	
  -­‐	
  SD	
  

(a) The temperature values of 9 sensors in (b) The mean and standard deviation of 
3 different areas temperature values from 54 sensors 

Fig. 3. Intel lab data from 9:13 AM to 9:32 AM 

the 9 sensors from 9:13 AM to 9:32 AM and Fig. 3(b) shows the mean value and 
standard deviation of temperature values generated by all sensors. The sensors in 
cluster 1 output temperature values near the mean while the sensors in cluster 2 
and 3 output temperature values far from the mean value. These differences are 
due to various factors such as heat from PCs, the positions of air-conditioners 
or heat from the sun. Such experimental results confirm two facts. First, even 
though there is no specific event, some sensors output higher/lower temperature 
values than the mean plus/minus the standard deviation. Therefore, sensors 
in cluster 2 and 3 will get low trust scores if the normal distribution-based 
approach [6] is utilized. Second, sensors which are close to each other produces 
similar outputs due to the heat diffusion process. Although we did not include 
the results of humidity due to the page limit, the same phenomena were observed. 

In this paper, we utilize the fact that the sensed value of a sensor is consistent 
with the sensed values of its neighbors. In Fig. 1, the trustworthiness of sensor 
A and sensor B is supported by their neighbors, while the trustworthiness of 
sensor C is not supported by its neighbors. 
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4 Distance-based Trustworthiness Assessment 

In this section, we present our distance-based trustworthiness assessment for 
sensors based on their sensed values and their physical distances. 

4.1 Overview of the Scheme 

Sensed values at a 
time t and location 

information 
Trust score calculation for 

each sensor value at a time t 
TSV(t)i for all 

sensors 

Trust score calculation for 
each sensor at a time t 

TSS(t)i for all 
sensors 

Trustworthiness assessment module Input Output 

(1) 

(2) 

Fig. 4. Overview of the trust score calculation procedure. T SV (t)i is the trust score of 
the sensed value generated by sensor i at a time t. TSS(t)i is the trust score of sensor 
i at a time t. 

Our trustworthiness assessment has two steps. In the first step, the trust score 
of each sensed value generated by sensor i at a time t, i.e., T SV (t)i, is calculated 
by using as input: all sensed values at a time t, sensor location information, and 
the previous trust scores. In the second step, the trust score of sensor i at a 
time t, i.e., T SS(t)i, is calculated using the previous trust score of sensor i, i.e., 
T SS(t − 1)i, and T SV (t)i. The trust scores of sensors evolve through this cyclic 
framework as time passes. The trust scores in our scheme range in the interval 
[0,1]. 

4.2 Details of the Scheme 

In the first step, the trust score of a sensed value generated by sensor i, T SV (t)i, 
is derived by calculating the weighted mean (τ) of differences between the value 
of sensor i and the values of the i’s neighbors as follows: 

β n (v(t)i−v(t)j )×T SS(t−1)j 

1 j=0 dα 

T SV (t)i = , τ = i,j

β , (1) 1 + |τ |	 n TSS(t−1)j 

j=0 dα 
i,j 

where n is the number of neighbors of sensor i, v(t)i is a sensed value provided 
by sensor i at a time t and di,j is the distance between i and j. There are two 
weighting factors. One is the distance between sensor i and its neighbors and the 
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other is the trust score of sensor i’s neighbors. α (≥ 0) is a system parameter 
which controls the effect of di,j . The bigger α is, the larger the influence of 
neighbors which are close to i becomes. β (≥ 0) is also a system parameter which 
controls the effect of the previous trust score of the neighbor, i.e., T SS(t − 1)j . 
The bigger β is, the larger the influence of neighbors with high trust scores 
becomes. If α and β are 0, τ is just the mean of value differences regardless of 
di,j and T SS(t − 1)j , respectively. If the sensed value v(t)i is consistent with the 
sensed values of its neighbor, T SV (t)i becomes close to 1. Otherwise, T SV (t)i 
becomes close to 0. 

In the second step, to obtain the trust score of sensor i at a time t, i.e., 
T SS(t)i, the current trust score of the sensed value provided by sensor i, i.e., 
T SV (t)i, and the previously accumulated historic score T SS(t − 1)i are taken 
into account as follows: 

T SS(t)i = w × T SV (t)i + (1 − w) × T SS(t − 1)i, (0 ≤ w ≤ 1), (2) 

where constant w represents how fast the trust score of the sensor evolves as 
the cycle is repeated. The larger w is, the more important recent trust scores 
are. In other words, if w is large, the trust score of a sensor will evolve fast. In 
contrast, if w is small, the trust score of a sensor will evolve slowly. Fig. 5 shows 
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Fig. 5. Example scenario. Dashed lines represent neighbor relationships. 

an example scenario at a time t when α and β are both 1 and w is 0.5. Assume 
that the initial T SS(t)s of all sensors are 0.5 at the time t and the sensed values 
do not change throughout this example. Also, assume that sensor A and sensor 
B are normal, whereas sensor C is abnormal. At the time t, T SV (t)A, T SV (t)B 

and T SV (t)C are 0.58, 0.25 and 0.09, respectively. Sensor A provides the sensed 
value with the highest trust score since the sensed value is consistent with the 
sensed values of its neighbors, whereas sensor C provides the sensed value with 
the lowest trust score since the sensed value is not consistent with the sensed 
values of its neighbors. Notice that T SV (t)B is much lower than T SV (t)A even 
though T SV (t)B is also normal since one of its close neighbors, that is, sensor 
C provides the abnormal sensed value (35◦C). However, T SV (t + δ)B eventually 
becomes high as δ increases due to the following reason. T SS(t + δ)C becomes 
low as δ increases and thus, when T SV (t + δ)B is calculated, the sensed value of 
sensor C is taken into account to a slight extent (see Eq. 1). In this example, at 
the time t + 3, T SV (t + 3)A, T SV (t + 3)B and T SV (t + 3)C evolve to 0.58, 0.55 
and 0.09, respectively. The trust score of the sensed value provided by sensor B 
increases from 0.25 to 0.55, and thus the trust score of sensor B also increases. 
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4.3 Minimum Trust Score of a Normal Sensed Value 

Our trustworthiness assessment scheme generates absolute trust scores for sensed 
values. Under the assumption that a physical phenomenon gradually changes 
over a physical space, we can derive the minimum trust score of a sensed value 
T SVmin produced by a normal sensor at a time specific t. To obtain T SVmin, 
we consider the case in which a normal sensor i is located at the peak of a 
physical phenomenon as depicted at Fig. 6. For instance, imagine that a sensor 
is located at a heat source such as a heater. We assume that the monitoring value 

vmax
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e 
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st

0

U(r)

r R

Fig. 6. An illustration which shows that a normal sensor i is at the peak of the mon­
itoring values (r = 0). vmax is the highest value and r is the distance from the peak 
point. U(r, t) is a monotonic increasing function of r until r ≤ R at a time t. 

decreases from the peak value, i.e., vmax, according to a monotonic increasing 
function U(r, t). For instance, if U(r, t) is the heat equation, it is a parabolic 
partial differential equation describing the distribution of heat in a given region 
over time [4]. For this analysis, we assume that U(r, t) equally increases in any 
direction as r (≤ R) increases. R is the maximum distance within which sensors 
are considered as neighbors of sensor i. We also assume that sensors are evenly 
deployed and β is 0. We only consider sensors on the inside of the deployed area 
since sensors at the border of the area have fewer neighbors. Then, T SV (t)i is 
calculated as follows: 

1 
T SV (t)i = , (3)

1 + |τ '|  R U(r,t)×ρ×2πr dr
 R U(r,t) dr

τ ' 0 rα 0 rα−1 
= = , (4) R  Rρ×2πr 1 

0 r 0 rα dr α−1 dr 

where ρ is the density of sensors. If we set α to 1 and the maximum gradient of 
U(r, t) is γ (γ > 0) at a time t, then τ ' is less than or equal to γ×R as follows: 2  R  R

U(r, t)dr γ × rdr γ × R 
τ ' 0 0= ≤ = . (5) R  R 2dr dr

0 0 

2Therefore, T SV (t)i must be greater than or equal to .2+γR 

1 2 
T SV (t)i ≥ T SVmin = = (6) 

1 + γR 2 + γR 
2 
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For instance, if R is 70 (m) and γ is 0.05 (◦C/m), the minimum trust score of 
a normal value sensor should be greater than 0.36. Therefore, if the trust score 
of a sensed value is greater than 0.36, the sensed value can be considered as a 
trustworthy one. 

5 Simulation 

In this section, we present our performance evaluation through simulations. We 
first describe the simulation settings, and then present the simulation results. 

5.1 Simulation Setting 

We developed a simulator specialized for sensor trust assessment and focused the 
performance of our algorithm itself. Since the considered algorithms are purely 
based on sensor readings and their locations, we did not use general network 
simulators such as TOSSIM [3] and NS-2 [2]. 

For the simulations, 250 sensors are randomly deployed in a 400m×400m 
area. n IDs are assigned to the sensors from 0 to 249 as shown in Fig. 7. Sensors 
from 0 to 229 are normal, while sensors from 230 to 249 are abnormal. Each 
sensor reports 100 temperature values at a time t (0 ≤ t ≤ 99). Both α and 
β are set to 1 and w is set to 0.2. A temperature value of a normal sensor is 
sampled from the normal distribution with the mean of 25 and the standard 
deviation of 2, i.e., N (25, 2). 

The maximum neighbor range R is set to 70m, which means that the neigh­
bors of sensor i are the sensors within 70m of sensor i. Sensors at the center of 
the area have approximately 24 neighbors, while sensors at the corners have ap­
proximately 6 neighbors. If R is too small, the accuracy of trust scores becomes 
low since only a few neighbors might be taken into account to compute the trust 
score of a sensor. As R increases, the accuracy increases with the increased com­
putational cost. However, if R becomes larger than a certain level, the accuracy 
improvement becomes limited since distant neighbors scarcely affect the trust 
score of a sensor. 

A heat source is located at (300, 300) and the mean temperature of the peak 
point is set to 45◦C. From the peak point, the temperature linearly decreases with 
the gradient of 0.05 (◦C/m). If the distance from the peak point is greater than 
400m, the temperature does not decrease. Thus, in our simulation, T SVmin is 
0.36. We varied two parameters Δmean and Δsd for abnormal sensors. Δmean and 
Δsd are added to the mean and the standard deviation of the normal distribution 
of a normal sensor, respectively. That is, temperature values of an abnormal 
sensor are sampled from N (25 + Δmean, 2 + Δsd). 

Throughout the simulations, we compare two schemes: our scheme and the 
normal distribution-based scheme. The normal distribution-based scheme calcu­
lates the trust score of a sensed value based on the normal distribution which is 
modeled by using all sensed values at each time as in [6, 9]. 
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Fig. 7. Simulation topology 

5.2 Simulation Result 

First, we obtained the trust scores of sensors when all sensors are correctly 
working, i.e, δmean = 0 and δsd = 0. 

Fig. 8 shows the sorted trust scores of all sensors when the normal distribution-
based scheme is used. Even if there is no abnormal sensor, some sensors get low 
trust scores since the trust scores are relative. As a result, the administrator of 
the WSNs cannot distinguish whether there are abnormal sensors in the network 
or not. 

However, since our scheme outputs absolute trust scores (see Fig. 9). the 
administrator of the WSNs can distinguish whether there are abnormal sen­
sors in the network or not under the assumption he/she knows the minimum 
trust score. Notice that, in this scenario, 26 sensors have lower trust scores than 
T SVmin (=0.36) even though all sensors are normal due to the following rea­
sons. First, the sensors are not perfectly evenly-deployed and some sensors do 
not have enough neighbors. Second, the sensed values are generated with the 
standard deviation of 2. Thus, the overall trust scores are lowered. In real appli­
cations, T SVmin may be estimated at the time of the initial deployment when all 
sensors are working correctly. If the administrator successfully obtains T SVmin 

for his/her application, he/she can distinguish normal sensors from abnormal 
sensors and execute follow-up actions such as replacing sensors with trust scores 
under T SVmin with new sensors. 
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Fig. 11. Trust scores of sensors when the trust scores are calculated by the normal 
distribution-based scheme, Sorted by the ID (δmean = 5 and δsd = 0) 

Fig. 10 and Fig. 11 show the trust scores of the all sensors when our scheme 
and the normal distribution-based scheme are used, respectively; δmean is set to 
5 and δsd is set to 0. As shown in Fig. 10, when our scheme is utilized, the trust 
scores of the sensors from 230 to 249 are distinctly lower than the trust scores 
of the normal sensors. However, when the normal distribution-based scheme is 
used, sensors near the peak location get low trust scores since the sensed values 
provided by them are far from the mean, while sensors at the middle of the slope 
get higher trust scores than others since they are close to the mean. 
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Fig. 12. Comparison between our scheme and the normal distribution-based scheme 
when δmean varies from 0 to 20 

Fig. 12 shows the number of the abnormal sensors (sensors from 230 to 249) 
on the bottom 20 trust score sensor list when δmean varies from 0 to 20. When 
all sensors are correctly working, in our scheme, 2 abnormal sensors are included 
on the bottom 20 list. However, when δmean is only 4, our scheme includes 18 
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abnormal sensors on the list and when δmean is 6, all the 20 abnormal sensors are 
included on the list by our scheme. On the other hand, the normal distribution-
based scheme cannot include as many abnormal sensors on the bottom 20 list as 
our scheme does. When δmean reaches 20, the normal distribution-based scheme 
can include all the 20 abnormal sensors on the list. 
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Fig. 13. Comparison between our scheme and the normal distribution-based scheme 
when δsd varies from 0 to 20 

Fig. 13 shows the number of the abnormal sensors on the bottom 20 trust 
score sensor list when δsd varies from 0 to 20. Similarly to the prior result, our 
scheme includes more than 16 abnormal sensors on the list when δsd is larger 
than or equal to 4. However, the normal distribution-based scheme includes less 
than half of the abnormal sensors on the list. These results confirm that our 
distance-based trust assessment scheme outperforms the normal distribution-
based scheme in realistic scenarios where the sensed value of interest gradually 
changes according to the locations. 

6 Conclusion and Future Work 

In this paper, we propose a novel sensor trustworthiness assessment scheme using 
the distances between sensors. In the cyclic framework, the trust score of a sensed 
value is evaluated based on the fact the sensed values are correlated with their 
positions. In the first step, the trust score of a sensed value is calculated using 
the sensed values of its neighbors, their trust scores and the distances from the 
neighbors. Then, the trust score of a sensor evolves at each time by taking the 
new trust score of its sensed value into account. Our simulation results confirm 
that our trustworthiness assessment scheme provides practical and accurate trust 
scores of sensors in a realistic scenario. As future work, we plan to investigate 
extensions of our approach to reliably assess sensor trustworthiness in presence 

bertino
Cross-Out



of collusion attacks. We also plan to investigate how our approach needs to be 
extended/modified with dealing with different physical phenomena. 
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