
CERIAS Tech Report 2015-11
Using Deception to Enhance Security: A Taxonomy, Model, and Novel Uses

 by Mohammed H. Almeshekah
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

USING DECEPTION TO ENHANCE SECURITY:

A TAXONOMY, MODEL, AND NOVEL USES

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Mohammed H. Almeshekah

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2015

Purdue University

West Lafayette, Indiana

ii

In dedication to my mother, Aljoharh, who has given up so much to make me into

who I am; to my wife, Asma, who taught me the meaning of sacrifice; and to my

sons, Abdullah and Feras, who provided me the extra motivation to finish my PhD.

iii

ACKNOWLEDGMENTS

I would like to express my heartfelt thanks to my advisors, Prof. Eugene H. Spaf­

ford and Prof. Mikhal J. Atallah, for their time, guidance, and invaluable comments

throughout the whole span of this dissertation work. I am honored to have the op­

portunity to learn from such renowned scientists and highly respected mentors. They

taught me the skills that would guide me in my career for years to come. I am forever

indebted to them and aspire to follow in their footsteps. I would also like to express

my deepest appreciation to my committee members, Prof. Samuel Wagstaff and Prof.

Matt Bishop, for their invaluable advice and help. Without their insights and hard

questions, this dissertation would not have been possible.

I am also extremely grateful for my beloved wife, Asma, for her continuous encour­

agement and unwavering support. She provided light when the rigors of intellectual

pursuit were casting a shadow. I would not have finished this dissertation without her

by my side. She has sacrificed beyond what I wished for and has done so with love.

Also, I am grateful for my parents for their unwavering support and unforgettable

endorsement, especially to my dearest mom. She is the pillar I stand by during hard

times and I owe her my life for her constant love and encouragement.

Special thanks are also due to Northrop Grumman and Saudi Arabian Cultural

Mission for supporting me throughout my PhD. Finally, I take this opportunity to

record my sincere thanks to all the faculty, staff, and friends at the Computer Sci­

ence Department and CERIAS; they provided me with one of the best academic

environment during my PhD.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABBREVIATIONS . xi

ABSTRACT . xii

1 Introduction . 1

1.1 Motivation and Overview . 1

1.1.1 Thesis Statement . 2

1.1.2 Dissertation Overview . 3

1.2 Terminology . 4

1.3 Dissertation Organization and Contribution 5

2 A Taxonomy of Computer Systems’ Defenses 8

2.1 The Four Categories of Protection Mechanisms 10

2.1.1 Denial and Isolation . 12

2.1.2 Degradation and Obfuscation 13

2.1.3 Negative Information and Deception 13

2.1.4 Attribution and Counter-Operations 16

2.2 Fitting the Pieces Together – Cyber Kill-Chain Model 17

2.2.1 The Role of Deception . 17

2.3 Chapter Summary . 19

3 Deception . 21

3.1 General Definition of Deception . 21

3.2 Deception and the Truth – A Taxonomy 22

3.2.1 Simulation and Dissimulation – Bell and Whaley 22

3.2.2 Linguistic Case Theory . 24

3.3 Deception Maxims . 25

3.3.1 Truth/Reality . 25

3.3.2 Deceit . 26

3.3.3 Denial, Misdirection and Confusion 26

3.4 Deception and Biases . 26

3.4.1 Personal Biases . 28

3.4.2 Cultural Biases . 28

3.4.3 Organizational Biases . 30

v

Page
3.4.4 Cognitive Biases . 30

3.5 The Use of Deception in War, Military and Conflicts 31

3.6 General Use of Deception in Computing 32

3.6.1 In Human-to-Human Digital Interaction 32

3.6.2 In Human Computer Interaction (HCI) 32

3.6.3 In Robotics and Human Robot Interaction (HRI) 34

3.6.4 In Computer-to-Computer Interaction 35

3.7 The Use of Deception to Enhance Security 36

3.7.1 Honeypots . 37

3.7.2 Honey–* Tools . 39

3.7.3 Incorporating Deception into Other Security Defenses 40

3.8 Deception Operations and Tactics 43

3.9 Chapter Summary . 44

4 A Framework for Using Deception to Enhance Security 45

4.1 Definition . 46

4.2 Limitations of Isolated Use of Deception 46

4.3 The Role of Deception . 47

4.3.1 Advantages of Using Deception in Computer Defenses 48

4.4 Related Work of Modeling the Use of Deception in Security 50

4.5 A Framework for Integrating Deception-Based Defenses 51

4.5.1 Planning Deception . 52

4.5.2 Implementing and Integrating Deception 62

4.5.3 Monitoring and Evaluating the Use of Deception 62

4.6 Deception and Related Concepts 63

4.6.1 Kerckhoff’s Principle and Deception 63

4.6.2 Deception and Hacking Back 65

4.6.3 Deception and Consistency 65

4.6.4 Deception and Abstraction 66

4.7 Applying the Framework . 66

4.7.1 To Previous Uses of Deception 66

4.7.2 To the Work in This Dissertation – A Case Study 70

4.8 Chapter Summary . 73

5 Deceptive Covert Channel . 74

5.1 Background . 75

5.1.1 Authentication Schemes . 75

5.1.2 Use of Smartphones . 77

5.1.3 Use of Deception and Covert Channels 77

5.2 Creating a Deceptive Covert Channel 78

5.2.1 Threat Model . 79

5.2.2 Scheme’s Setup . 80

5.2.3 Logging In . 81

vi

Page
5.2.4 Creating Deceit and Covert Communication 85

5.3 Enhancements . 86

5.4 Security Analysis . 87

5.5 Comparison with Other Schemes 89

5.6 Chapter Summary . 92

6 Deceptive Passwords — ErsatzPasswords 93

6.1 Background . 94

6.1.1 Passwords . 94

6.1.2 Password-Related Threats 94

6.1.3 Injecting Deceit . 96

6.2 Technical Specification . 97

6.2.1 Background . 97

6.2.2 One-time Initialization . 99

6.2.3 Login . 101

6.2.4 Password Administration . 102

6.3 ErsatzPasswords – The Use of Deception 104

6.3.1 ErsatzPasswords Generation 105

6.3.2 ErsatzPasswords Properties 108

6.4 Implementation and Analysis . 111

6.4.1 Implementation Details . 111

6.4.2 Analysis . 112

6.5 Chapter Summary . 118

7 Deceptiver — A Centralized Deceptive Server 120

7.1 Background . 121

7.2 Overview . 122

7.3 Deceptiver Design . 123

7.3.1 Deceptive Responses . 124

7.3.2 Centralized Deception . 130

7.4 Implementation and Deployment 130

7.4.1 Apache Server Hook . 131

7.5 Security Discussion . 132

7.6 Performance Analysis . 134

7.7 Chapter Summary . 136

8 Conclusions . 137

8.1 Summary . 137

8.2 Future Work . 138

LIST OF REFERENCES . 141

A Deceptiver Implementation . 153

A.1 Deceptiver Command Line Inputs 153

vii

VITA . 155

viii

LIST OF TABLES

Table	 Page

2.1 Mapping Security Mechanisms to the Kill-Chain Model 18

4.1	 Using the Deception Framework to Secure Web Applications 72

5.1	 Schemes Comparison . 90

6.1	 Number of Instructions for Creating a New User Under the new pam unix

Module . 115

7.1	 Comparing the Performance of Apache With ModSecurity and Deceptiver 134

ix

LIST OF FIGURES

Figure	 Page

1.1	 Computer Systems Components Where Deception is Applied in the Dis­
sertation . 3

1.2	 Using Deception to Enhance Security – Dissertation Overview 4

2.1	 Taxonomy of Information Protection Mechanisms 9

2.2	 Plotting the Taxonomy Over Multiple Scales 11

3.1	 Deception and Perception . 22

3.2	 Deception Target Biases . 27

4.1	 Framework to Incorporate Deception in Computer Security Defenses . . 52

4.2	 Computer Systems Components Where Deception Can Be Integrated With 55

4.3	 Creating Deceit . 60

4.4	 System Components Used to Create Deceit in Rowe’s Work 67

4.5	 System Components Used to Create Deceit in Bowen et al. Work . . . 69

4.6	 Web Application Case Study . 70

4.7	 Web Application Generic Threats . 71

4.8	 Web Application Deception-Based Defenses 73

5.1	 Man-in-the-Middle (MitM) vs. Man-in-the-Browser (MitB) 75

5.2	 Protocol Run . 82

5.3	 Sending a Covert Message . 84

6.1	 Distribution of Password Update Latency in the Ersatzpassword Scheme 113

6.2	 Distribution of Password Update Latency in the Original pam unix . . 113

6.3	 Comparison of Password Update Latency Between Ersatzpassword and

Original pam unix . 114

6.4	 Comparison of Real and Decoy Password Authentication in the Ersatz-

password Scheme . 114

6.5	 Distribution of User Authentication Latency in the Ersatzpassword scheme 116

x

Figure	 Page

6.6	 Distribution of Detecting the Use of an Ersazpassword to Authentication 117

6.7	 Distribution of User Authentication Latency in the Original pam unix . 117

6.8	 Comparison of Password Authentication Latency Between Ersatzpassword

and the Original pam unix . 118

7.1	 Deceptiver’s Overall Design . 124

7.2	 An Example of a Deceptiver Trap in .htaccess 125

7.3	 An Example of a Deceptiver Trap – Response Meta Data 127

7.4	 Users Categories in Deceptiver . 128

7.5	 Admin Section of Deceptiver . 131

7.6	 Intercepting All Requests Inside Apache 132

7.7	 Hooking Deceptiver with Apache . 132

xi

ABBREVIATIONS

A Accumulation Function

APT Advanced Persistent Threats

DBIR Verizon’s Data Breach Investigation Report

DEP Data Execution Prevention

DNS Domain Name System

DTK Cohen’s Deception Toolkit

H Hash Function

HCI Human Computer Interaction

HIDS Host Intrusion Detection System

HIPS Host Intrusion Prevention System

HMAC Keyed-Hash Message Authentication Code

HRI Human-Robot Interaction

HSM Hardware Security Module

IDS Intrusion Detection System

IPS Intrusion Prevention System

NAT Network Address Translation

OWASP The Open Web Application Security Project

RBAC Rule-Based Access Control

SQL Structured Query Language

VPN Virtual Private Network

WAF Web Application Firewall

XSRF Cross-Site Request Forgery

XSS Cross-Site Scripting

xii

ABSTRACT

Almeshekah, Mohammed H. PhD, Purdue University, August 2015. Using Deception
to Enhance Security: A Taxonomy, Model, and Novel Uses. Major Professors:
Eugene H. Spafford and Mikhail J. Atallah.

As the convergence between our physical and digital worlds continue at a rapid

pace, securing our digital information is vital to our prosperity. Most current typi­

cal computer systems are unwittingly helpful to attackers through their predictable

responses. In everyday security, deception plays a prominent role in our lives and

digital security is no different. The use of deception has been a cornerstone technique

in many successful computer breaches. Phishing, social engineering, and drive-by­

downloads are some prime examples. The work in this dissertation is structured to

enhance the security of computer systems by using means of deception and deceit.

Deception-based security mechanisms focus on altering adversaries’ perception of

computer systems in a way that can confuse them and waste their time and resources.

These techniques exploit adversaries’ biases and present them with a plausible alter­

native to the truth bringing a number of unique advantages to computer security.

In addition, deception has been widely used in many areas of computing for decades

and security is no different. However, deception has only been used haphazardly in

computer security.

In this dissertation we present a framework where deception can be planned and in­

tegrated into computer defenses. We posit how the well-known Kerckhoffs’s principle

has been misinterpreted to drive the security community away from deception-based

mechanisms. We present two schemes that employ deception to protect users’ pass­

words during transmission and at rest when they are stored on a computer server.

Moreover, we designed and built a centralized deceptive server that can be hooked to

xiii

internet-facing servers giving them the ability to return deceptive responses. These

three schemes are designed, implemented, and analyzed for their security and perfor­

mance.

The use of deception in security, and in computing in general, shows some fruitful

results. This dissertation discusses some of the unique advantages of such mechanisms

and presents a framework to show how they can be integrated into computer defenses.

Also, it provides three practical schemes that employ deception in their design to

address some existing security challenges. We postulate that the use of deception can

effectively enhance the effectiveness of current security defenses and present novel

ways to address many security challenges.

1

1 INTRODUCTION

1.1 Motivation and Overview

Most data is digitized and stored in organizations’ servers, making them a valuable

target. Advanced persistent threats (APT), corporate espionage, and other forms of

attacks are continuously increasing. Companies reported 142 million unsuccessful

attacks in the first half of 2013, as reported by Fortinet [158]. In addition, a recent

Verizon Data Breach Investigation Report (DBIR) points out that currently deployed

protection mechanisms are not adequate to address current threats [158]. The report

states that 66% of the breaches took months or years to discover, rising from 56%

in 2012. Furthermore, 84% of these attacks only took hours or less to infiltrate

computer systems [158]. Moreover, the report states that only 5% of these breaches

were detected using traditional intrusion detection systems (IDSs) while 69% were

detected by external parties [158].

These numbers are only discussing attacks that were discovered. Because only

5% of the attacks are discovered using traditional security tools, it is likely that the

reality is significantly worse as there are unreported and undiscovered attacks. These

findings show that the status quo of organizations’ security posture is not enough to

address current threats.

Within computer systems, software and protocols have been written for decades

with an intent of providing useful feedback to every interaction. The original design

of these systems is structured to ease the process of error detection and correction by

informing the user about the exact reason why an interaction failed. This behavior

enhances the efforts of malfeasors by giving them information that helps them to

understand why their attack was not successful, refine their attacks and tools, and

2

then re-attack. As a result, these systems are helpful to attackers and guide them

throughout their attack.

1.1.1 Thesis Statement

The use of deception to enhance the security of computer systems has occurred

since at least the 1980s. However, many computer defenses that use deception were

ad-hoc attempts to incorporate deceptive elements in their design. We hypothesize

that

“It is possible to develop a framework where the act of deceit is incorpo­

rated in the design of software to give system defenders an edge in the

conflict, increase the information obtained from a compromise attempt,

and increase the entropy of leaked information of targeted systems during

such an event. By using this framework, it is possible to augment a com­

puter system with a set of deception techniques to enhance its security by

achieving the goals of the aforementioned framework.”

To validate this hypothesis, we present a framework that can be used to plan and

integrate deception in computer security defenses. In addition, we discuss three novel

security defenses based on deception to enhance the security of computer systems.

We show how to use deceit to enhance the security of computer systems. The main

focus is to investigate methods of using deception to increase the entropy of infor­

mation leaked to the adversary about our systems and the information gained by

the adversary from its compromise attempts. Counter-deception, counter-attacking,

legal, and ethical issues of using deception are considered out-of-scope of this work,

despite their importance.

3

1.1.2 Dissertation Overview

The work in this dissertation discusses the unique advantages deception-based

security mechanisms can bring. In section 1.3, we give a detailed discussion of the

contribution of each chapter in the dissertation. During our work, we developed

a framework to plan and integrate deception into computer security defenses. We

discuss the different system components where deception can be applied – these com­

ponents are discussed in detail in section 4.5.1. The work in this dissertation applies

deception to three components as depicted in figure 1.1.

Figure 1.1.: Computer Systems Components Where Deception is Applied in the
Dissertation

To enhance the security of users’ credentials and passwords, we describe apply­

ing deception to a system’s administrative internal data and a system’s decisions in

chapter 5 and 6. As illustrated in figure 1.2, we introduce a deceptive covert communi­

cation channel in authentication protocols to enhance passwords’ security and reduce

their exposure. This communication channel eliminates the need to send users’ pass­

word in the clear or to type them in the client. In addition, we raise stored passwords’

security at the server side by implementing the Ersatzpasswords scheme. This scheme

eliminates the possibility of cracking users’ passwords, without physical access to the

server’s hardware, while returning fake – i.e. ersatz – passwords to adversaries when

4

they attempt to crack stored password files. Moreover, the ersatzpassword scheme

gives servers the ability to apply deception to a system’s decisions when adversaries

login using the cracked fake passwords. We discuss the details of these deceptive

techniques in chapters 5 and 6.

Figure 1.2.: Using Deception to Enhance Security – Dissertation Overview

Often, attackers use system responses to calibrate their attack during the recon­

naissance stage. We apply deception to system responses to enhance the overall

security of such systems. We build a deceptive server, which we refer to as Decep­

tiver, that tightly integrates with real production public-facing servers and alters their

replies to deceive adversaries, as depicted in figure 1.2. Deceptiver works as a cen­

tralized server that can be hooked to public-facing servers to alter their responses by

injecting deceit. The design and implementation of this deceptive server is discussed

in detail in chapter 7.

1.2 Terminology

Adversary Attribution — learn some information about computer adversaries that

can ultimately lead to their identification.

5

Covert Channel — the covert channel term was introduced by Lampson in 1973

and defined as “channels not intended for information transfer at all” [89]. The

covert channel we are introducing in chapter 5 is designed to “not carry information”

as perceived by the adversary.

Cyber Kill-Chain — is an intelligence-driven security model introduced by Lock-

heed Martin [80].

Deceptiver — a deceptive internal server that is hooked to public-facing servers

to give them the ability to send deceptive responses.

Ersatzpasswords — fake passwords that are returned when an adversary tries to

crack the hashed passwords file using general tools such as John the Ripper1 .

Honeyaccount — fake account in a computer system.

OODA — the OODA loop (for Observe, Orient, Decide, and Act) is a cyclic

process model, proposed by John Boyd, by which an entity reacts to an event [20]. The

victory in any tactical conflict requires executing this loop faster than the opponent.

1.3 Dissertation Organization and Contribution

This dissertation contains most of the ideas published in a number of papers and

technical reports. Below is a description of the original work in this dissertation that

was developed as part of my research.

In chapter 2, we discuss a novel taxonomy of information protection mechanisms.

The original work was published in a paper that appeared at the 9th International

Conference on Cyber Warfare & Security conference (ICCWS’14) [6]. We present four

major categories of security controls, the objectives of each category, and investigate

the inter-relationships among different categories. In addition, we examine how our

taxonomy maps to different scales within organizations. Finally, we investigate how

the proposed categories interplay with each other to enhance the security of computer

systems. We also map these categories to the cyber kill-chain framework.

1http://www.openwall.com/john/

6

Chapter 3 discusses the concept of deception. We present a discussion of deception

definition and maxims. In addition, we highlight the role of biases in the success of

any deceptive component. We discuss the different categories of biases and give a

number of examples on how they can be exploited to present a plausible alternative

of the truth. We also present an overview of the use of deception in military conflicts,

digital life, computing in general, and in security. We discuss how deception has been

used in HCI, HRI, robotics, and other areas of computing. Additionally, we present

an analysis of the previous work in using deception to raise the security of computer

systems. We conclude the chapter by discussing the principles of deception operations

and tactics. Part of the discussion in this chapter appeared in a paper at the New

Security Paradigm Workshop NSPW’14 [5].

In chapter 4 we discuss the role of deception in security – protecting or compromis­

ing computer systems. We examine some of the unique advantages deception-based

security defenses have over traditional tools. We posit how Kerchoff’s principle has

been misinterpreted to drive the community away from deception-based security. In

addition, we present a discussion on how deception can be modeled and argue that

deception is not the same as hacking back. In addition, we investigate how decep­

tive techniques can be planned and integrated into computer security defenses. We

develop a framework that can be used to achieve such a goal along with assessing

the additional risks and monitoring these controls. We discuss the different system’s

components where deception can be applied and analyze the methods that can be

used to create a plausible deception-based security defense. Additionally, we map

two previous uses of deception against our framework and show how it does capture

all the elements in their design. We conclude this chapter by presenting a case study

where our framework is used to enhance the security of a web application. The con­

tribution in this chapter has been published at New Security Paradigms Workshop

(NSPW’14) [5] and in the International Journal of Cyber Warfare and Terrorism

(IJCWT) [7].

7

Chapters 5, 6, and 7 present three deception-based security mechanisms we de­

veloped. In each chapter we present a brief discussion of the security problem we

are trying to solve, discuss our solution in detail, and finally present an investigation

of the security and performance of each scheme. Chapter 5 shows how the use of a

deceptive covert channel can enhance the security of authentication protocols. Er­

satzpassword scheme in chapter 6 presents a solution to the problem of passwords

storage and cracking. Finally, in chapter 7 we discuss our deceptive server (Decep­

tiver) that can be hooked to public-facing servers giving them the ability to respond

with deceptive responses. The contribution in chapter 5 appeared at the International

Conference on ICT Systems Security and Privacy Protection (IFIP SEC’15) [4].

In chapter 8 we present a summary of the contribution of this dissertation and

possible directions for future research.

8

2 A TAXONOMY OF COMPUTER SYSTEMS’ DEFENSES

Achieving security cannot be done with a single, silver-bullet solution; instead, effec­

tive security involves a collection of mechanisms that work together to balance the

cost of securing our systems with the possible damage caused by security compro­

mises, and drive the success rate of attackers to the lowest possible level. In Figure

2.1, we present a taxonomy of protection mechanisms commonly used in computer

systems. The diagram shows four major categories of protection mechanisms and

illustrates how they intersect achieving multiple goals.

The main motivation of this approach is to show the range of security controls that

an organization can deploy, the objectives of each category, and how these mechanisms

interact with each other to achieve better overall security. In this chapter, we discuss

some of the interesting relationships among these categories and examine how this can

be exploited to link isolated security controls. To fit all the pieces of our taxonomy

together, for a holistic and practical approach to security, we map our taxonomy to

the cyber kill-chain model introduced by Lockheed Martin in [80]. We develop and

expand some of the stages of the cyber kill-chain model and show that we can have

more effective security controls at each stage.

The rationale behind having these intersecting categories is that a single layer

of security is not adequate to protect organizations, so multi-level security controls

are needed [141]. This model follows a natural chronological progression of security

defender goals when interacting with an attacker. First, we would like to deny unau­

thorized access and isolate our information systems from untrusted agents. However,

if adversaries succeed in penetrating these security controls, we should have degra­

dation and obfuscation mechanisms in place to slow their lateral movement in pene­

trating our internal systems. At the same time, these tools makes the extraction of

information from penetrated systems more challenging.

9

Figure 2.1.: Taxonomy of Information Protection Mechanisms

Often, even if we slow attackers down and obfuscate stored information, advanced

adversaries may explore our systems undetected. This motivates the need for a third

category of security controls that involves using means of deceit and negative infor­

10

mation. These techniques are designed to lead attackers astray and augment our

systems with decoys to detect stealthy adversaries. Furthermore, this deceitful infor­

mation wastes attackers’ time and adds risk during their infiltration. The final group

of mechanisms in our taxonomy is used to gain information about the attackers and

give us the ability to have counter-operations. Booby-trapped software is one example

of counter-operations that can be employed.

To show how our taxonomy can be applied at different levels and granularity

within computer systems, we plot these four categories across five levels of scale. We

use figure 2.2 to depict this. These five levels are

•	 Data items; this includes files and objects.

•	 Databases; which are collections of data items creating larger, coherent objects.

•	 Systems; this refers to individual systems within our organization. For example,

end-points and servers fall into this category.

•	 Networks; which are a network of systems connected together with communi­

cation equipment such as switches and routers.

•	 Enterprises; which refers to the highest level of abstraction in the digital realm.

This abstraction also includes parts that deal with users and human actors.

2.1 The Four Categories of Protection Mechanisms

Securing a system is an economic activity and organizations have to strike the

right balance between cost and benefits. Our taxonomy provides a holistic overview

of security controls, with an understanding of the goals of each group and how they

interact with each other. This empowers decision makers on what and which security

controls they should deploy. In the four sections that follow we discuss each one of

the four categories, illustrating their goals and providing some practical examples.

11

Figure 2.2.: Plotting the Taxonomy Over Multiple Scales

12

2.1.1 Denial and Isolation

The first, and most common, mechanism used to protect information systems is to

deny all access, execution, and manipulation of our systems and data unless explicitly

allowed. This gives us the ability to create a boundary around our systems isolating

them from the outside. This group covers a wide variety of security controls that

can be sub-grouped into three major categories: (i) controls installed around the

perimeter, such as firewalls; (ii) within our internal systems, such as access control;

and (iii) at the end-points, such as anti-virus and intrusion prevention.

We give several examples of mechanisms in the upper-most oval of figure 2.1.

Security controls in this category are designed to achieve two main goals:

•	 Prevent unauthorized access to information stored in our systems.

•	 Hide the existence and/or the nature of our systems and/or the data stored in

them.

Such mechanisms can be applied at all scales within our information systems as

presented in figure 2.2. At the enterprise level, we employ security controls such

as firewalls and access control systems. More advanced mechanisms such as having

unique system architecture and advanced intrusion prevention systems can be used.

At the network level technologies such as network address translation (NAT) and

virtual private networks (VPNs) are used to isolate and hide parts of our systems

denying unauthorized access to them. Denial mechanisms can also be applied at the

systems level. Tools such as data execution prevention (DEP) [123] and patching

security vulnerabilities are commonly used. More sophisticated mechanisms such as

dynamic instruction sets can be used to obfuscate the instruction set a computer can

execute and, therefore, prevent any unauthorized programs from running [172]. At

the database and data item granularity level, mechanisms such as encryption can be

used.

13

2.1.2 Degradation and Obfuscation

When adversaries overcome the first line of defense, we have three general classes

of objectives: detect them, slow them down, and disguise and/or hide our data.

Many security mechanisms are used to address these issues. Security controls in this

category are designed to achieve the following goals:

•	 Slow down the attackers.

•	 Prevent and significantly reduce the probability that an adversary can recover

sensitive data.

•	 Obfuscate the value/nature of our systems and/or the data stored in them.

•	 Create noise around valuable information to reduce its utility.

At the data item level, mechanisms such as k-anonymity [148] and plausibly de­

niable search [108] have been used to degrade the information obtained – directly

and indirectly – from users’ data. At the systems’ level, slowing down the response

of system calls when detecting anomalies has been proposed to degrade adversaries’

infiltration speed [77]. At the network level, tarpits are used to throttle the spread

of malware and spam within organizations [53]. We note that there is a shortage of

these techniques to employ at the top level in our hierarchy – the enterprise level.

2.1.3 Negative Information and Deception

Despite all the controls organizations have in place, attackers might infiltrate

information systems and operate without being detected or slowed. In addition,

persistent adversaries might infiltrate the system and passively observe for a while to

avoid being detected and/or slowed when moving on to their targets. As a result, the

next layer of defense is needed to augment our systems with negative and deceptive

information to lead attackers astray. We may also significantly enhance organizational

intrusion detection capabilities by deploying deception-based detection methods.

14

Negative information alters the way computer systems are perceived, which in­

cludes the use of deception [166]. However, deception alters such perception in a way

that is advantageous to system defenders. Deceptive techniques are an integral part

of human behavior. As an example, deception is widely used in sports; teams attempt

to deceive the other team into believing they are following a particular plan so as to

influence their course of action. Use of cosmetics may also be viewed as a form of

mild deception. We use lies in conversation to hide mild lapses in etiquette. In cyber

security, deception and decoy-based mechanisms have been used in security for more

than two decades in technologies such as honeypots and honeytokens. We present a

survey of the use of deception in computing and in security in sections 3.5, 3.6, and

3.7.

Deception-based techniques are increasingly gaining interest within the informa­

tion security community [5, 7, 66, 74]. Security controls in this category are designed

to achieve four main goals.

•	 Lead the attackers astray and waste their time and resources, giving defenders

an edge in the OODA loop [20].

•	 Add decoys to our system to detect data leakage and intrusions, enhancing the

understanding of the attackers’ goals and tools.

•	 Add doubt to the data obtained by the adversary.

•	 Increase the risk of attacking our computer systems.

We discuss the advantages of using deception-based security defenses further in

section 4.3.1.

When attackers infiltrate the system and successfully overcome traditional de­

tection and degradation mechanisms we would like to have the ability to not only

obfuscate our data, but also lead the attackers astray by deceiving them and drawing

their attention to other pieces of data that are false or intentionally misleading. Fur­

thermore, exhausting attackers and causing frustration is also a successful defensive

15

outcome. Planting fake keys and using schemes such as endless files [142] can achieve

this. These files look small on the organization servers but when downloaded to be ex-

filtrated will exhaust the adversaries’ bandwidth and raise some alarms. We provide

a survey of previously used deception-based defenses in section 3.7. With carefully

designed deceiving information we can even cause damage at the adversaries’ servers.

A traditional, successful, deception technique can be learned from the well-known

story of the Farewell Dossier during the cold war where the CIA provided modified

hardware and software designs to a Soviet spy ring [169]. When the Soviets used

these products thinking they were legitimate, it resulted in a major disaster affecting

a trans-Siberian pipeline.

A relationship can be observed between the first category and deception, especially

in the concept of hiding. By definition, both denial and deception can involve hiding

things from adversaries. However, in this dissertation we consider the purpose of

hiding as an important distinguisher. If we hide things to alter the way adversaries

perceive targeted systems, this is considered deception, otherwise, we refer to it as

denial.

Another relationship can be observed between the last group of protection tech­

niques, namely attribution, and deception techniques. Deception-based mechanisms

are an effective way to lure attackers to expose themselves and their objectives when

we detect them accessing things and conducting unusual activities. Other tools, such

as anomaly-based IDS have similar goals, but the advantage deception-based tools

have is that there is a clear line between normal user activities and abnormal ones.

This is because legitimate users are not supposed to access implanted fake infor­

mation. This difference significantly enhances the effectiveness of deception-based

security controls and reduces the number of false-positives, as well as the size of the

system’s log file.

16

2.1.4 Attribution and Counter-Operations

Sun Tzu, the Chinese military strategist, once wrote;

“if you know your enemies and know yourself, you will not be imperiled in

a hundred battles; if you do not know your enemies but do know yourself,

you will win one and lose one” [156].

This brilliantly summarizes the current security state of many organizations around

the world. We need to know the attackers, attribute them and understand their

objectives. Security controls in this last category are designed to achieve three main

goals:

• Attribute the adversaries.

• Cause damage to attackers.

• Increase overall risk in attacking our systems.

One of the traditional ways of learning about adversaries is analyzing the logs gen­

erated by our systems. However, one of the main challenges that has been hindering

the adaptation of such mechanisms – intended for attributing adversaries – is mixing

those mechanisms with counter-attacking and “hacking back”. This misconception is

discussed further in section 4.6.2. We argue that attribution can be achieved using a

wide variety of mechanisms without having to address the ethical and political issues

surrounding counter-attacking.

We argue that intelligently planting deceptive information within our informa­

tion systems can help us both in attributing some adversaries and detecting leakage.

Steganographic watermarking data can also serve as a means of detecting leakage and

possibly providing attribution of sources. In chapter 6, we present a scheme of inte­

grating deceptive information in password files to enhance their security and detect

their leakage.

17

2.2 Fitting the Pieces Together – Cyber Kill-Chain Model

Employing techniques from all four categories provides a more effective approach

than only using one or two. Additionally, security is an economic activity and dis­

tributing budget at multiple layers may provide a better return on investment than

more focused spending.

The cyber kill-chain introduced by Lockheed Martin researchers advocates for an

intelligence-driven security model [80]. The main premise behind this model is that

for attackers to be successful they need to go through all these steps in the chain in

sequence. Breaking the chain at any step will break the attack and the earlier that

we break it the better we prevent the attackers from attacking our systems.

The deployment of the cyber kill-chain was seen as fruitful for Lockheed when

they were able to detect an intruder who successfully logged into their system using

the SecurID vulnerability [76]. To show how all the protection categories discussed

above can fit together in protecting organizations we map them against the cyber

kill-chain model summarized in table 2.1.

2.2.1 The Role of Deception

The consensus is that we would like to be at least one step ahead of adversaries

when they attack our systems. We argue that by intelligently incorporating deceit

in our security models we can start achieving that. This is because the further we

enhance our abilities to detect adversaries the further ahead of them we position our­

selves. We discuss the advantages of deception-based security mechanisms in further

detail in section 4.3.1.

If we take an example of external network probing, if we simply detect an attack

and identify a set of IP addresses and domain names as “bad,” we do not achieve

much; these can be easily changed and adversaries will become more careful not to

raise an alarm the next time they probe our systems. However, if we go one more

step and attribute them by characteristics that are more difficult to change we can

18

T
ab

le
 2
.1
:
M
ap

p
in
g
S
ec
u
ri
ty

 M
ec
h
an

is
m
s
to

 t
h
e
K
il
l-
C
h
ai
n

 M
o
d
el

D
e
n
ia
l
&

 I
so

la
ti
o
n

D
eg

ra
d
a
ti
o
n

&

O
b
fu

sc
a
ti
o
n

D
ec
e
p
ti
o
n

&

N
eg

a
­

ti
v
e

 I
n
fo
rm

a
ti
o
n

A
tt
ri
b
u
ti
o
n

&

C
o
u
n
te
r
O
p
e
ra

ti
o
n
s

R
ec
o
n
n
a
is
sa

n
ce

F
ir
ew

al
ls
,

A
rc
h
it
ec
­

tu
ra
l

U
n
iq
u
en
es
s,

N
A
T

A
n
ti
-

fi
n
ge
rp
ri
n
ti
n
g

A
rt
ifi
ci
al

p
or
ts
,

F
ak
e

S
it
es

A
u
d
it

 L
og
s
A
n
al
y
si
s

W
ea

p
o
n
iz
a
ti
o
n

&
 D

e
li
v
e
ry

In
-l
in
e

F
il
te
rs
,

IP
S
,

T
ar
p
it
,
ID

S

A
rt
ifi
ci
al

ca
ll

b
ac
k
,

S
ti
ck
y

 H
on

ey
p
ot
s

E
x
p
lo
it
a
ti
o
n

&

In

st
a
ll
a
ti
o
n

D
y
n
am

ic

In
st
ru
ct
io
n

S
et
,

A
d
ap

ti
ve

sy
s.

ca
ll
s,

 H
IP

S
,
P
at
ch
in
g,

D
E
P
,
“c
h
ro
ot

 j
ai
l”

C
re
at
e
ar
ti
fi
ci
al

 e
x
p
lo
it
a­

ti
on

 r
es
p
on

se

C
o
m
m
a
n
d

&

C
o
n
tr
o
l
(o

p
e
ra

­
ti
o
n
)

H
on

ey
p
ot

L
a
te
ra

l
M

o
v
e
­

m
e
n
t
&

 P
e
rs
is
­

te
n
ce

V
P
N
,
A
cc
es
s
C
on

tr
ol
,

R
B
A
C

E
n
cr
y
p
ti
on

,
S
el
f-

E
n
cr
y
p
ti
on

H
on

ey
A
cc
ou

n
ts
,
H
on

ey
-

F
il
es

S
ta
g
in

g
 &

 E
x
fi
l­

tr
a
ti
o
n

S
te
n
og
ra
p
h
y

H
on

ey
to
ke
n
s,

E
n
d
le
ss

fi
le
s,

 F
ak
e
K
ey
s

B
ea
co
n
in
g,

C
ou

n
te
r-

A
tt
ac
k
in
g,

B
o
ob

y

T
ra
p
p
ed

 S
of
tw

ar
e

19

cause them greater difficulty for their future attacks. For example, if we are able to

deceive attackers in manners that allow us to gather more information about them –

distinguishing them based on their fixed artifacts (such as distinctive protocol headers,

known tools, and/or behavior and traits) – we have a better position for defense. The

design of the deceptive server “Deceptiver” in chapter 7 is structured to achieve such

goals.

The cyber kill-chain model is a good framework to demonstrate the effectiveness

of incorporating deception at multiple levels in the chain. With the same underlying

principle of the kill-chain – early detection of adversaries – we argue that the earlier

we detect adversaries, the better we are at deceiving them and learning more about

their methods and techniques. We postulate that full intelligence cannot be gathered

without using some means of deception techniques.

As Sun Tzu noted, the better we know our enemies the better we can defend

against them. By using means of deception we can continuously learn about attackers

at different phases of the kill-chain and enhance our capabilities of detecting them

and reducing their abilities to attack us. This negative correlation is an interesting

relationship between our ability to detect attackers and their ability to probe our

resources.

2.3 Chapter Summary

In this chapter we discussed how different categories of information protection

relate and interact. This taxonomy gives us a holistic view of how to protect computer

systems. We discussed the four categories in our taxonomy, their goals and gave a

number of examples from currently deployed tools. We analyzed how the intelligence-

driven security model – cyber kill-chain – can be used to plan and deploy security

tools. We concluded the chapter by highlighting the role of deception and negative

information in enhancing the security of computer systems. This discussion is a

20

preface to the next two chapters that investigate the concept of deception and how it

can be used to enhance the security of computer systems.

21

3 DECEPTION

Deception has been in use for many millennia, perhaps for nearly as long as life

has existed on planet Earth. Plants, animals, and insects have been using deceptive

techniques as a means for defense and survival. Humans are no exception to the use

of deception. Illusionists use it to entertain us, con artists to cheat us, and military

strategists to attack and defend us. Digital realms are no different from the “real

world” as deception has found its way into computerized systems. In this chapter,

we give an overview of the concept of deception and some of the major areas where

deception has been used. We primarily focus on areas where deception has been used

in conflicts between different parties.

As human beings, we are not good at detecting deception. In 39 different studies

by Vrij, he found that the mean accuracy rate for college students to detect deception

was 57%, which is almost as poor as random choice (i.e., 50%) [162]. This rate is

slightly worse with law enforcement officers, who scored a mean accuracy rate of

54% [162]. Whaley clearly states in his seminal book “Stratagem: Deception and

Surprise in War,” which is the largest open source empirical analysis of the use of

deception in conflicts, that “indeed, this is a general finding of my study – that is,

the deceiver is almost always successful regardless of the sophistication of his victim

in the same art.” [171].

3.1 General Definition of Deception

A misperception that is “intentionally induced by actions of other entities” is

a deception [170]. It is important to note that deception is targeted at altering

perceptions to gain an advantage as illustrated in figure 3.1 – adapted from [170].

22

Figure 3.1.: Deception and Perception

3.2 Deception and the Truth – A Taxonomy

3.2.1 Simulation and Dissimulation – Bell and Whaley

Bell and Whaley argue that deception always involves two steps: dissimulation,

hiding the real, and simulation, showing the false [11]. Deception must involve these

two together, even if only implicitly. The act of hiding and showing can applied

to the (i) nature, (ii) existence and/or (iii) the value of targeted information. The

authors also offered a taxonomy of deceptive techniques where they distinguished

among three ways of dissimulating — masking, repackaging, and dazzling — and

three ways of simulating — mimicking, inventing, and decoying. A brief discussion of

each one of those is given below. Additionally, later in section 4.5.1 we discuss how

to create deceptive security techniques using this taxonomy.

Dunnigan and Nofi propose another taxonomy in [51]. Their taxonomy has the

following groups: concealment, camouflage, false and planted information, lies, dis­

plays, ruses, demonstrations, feints, and insights. We found that each one of these

23

categories either has a direct mapping to one of Bell and Whaley’s categories or is an

example of one of them.

Masking

The obvious act of any deceptive technique is to hide the real by masking it such

that it can remain undetected. A traditional example can be seen in behavior of

the chameleon where it changes its color to blend with the background deceiving

any predator and masking itself as if it does not exist. As we discussed earlier in

section 2.1.3, hiding is only considered deception if it is an act of deceit, otherwise it

is considered denial.

Repackaging

Fully masking something as if it does not exist can be challenging. In some cases,

it might be much easier to “repackage” that thing as something else. The repackaging

can go both ways by making something dangerous appear as harmless or vice versa.

Moreover, repackaging can make something important look totally irrelevant, thus

driving attention away from it. A traditional example of this can be seen in the

behavior of the “mantis” insects where they repackage themselves as sticks to avoid

bird predators.

Dazzling

This is considered to be the weakest form of dissimulation, where we simply confuse

the targeted objects with others. When an object cannot be masked or repackaged,

we use dazzling to dissimulate it. One prime example of using this in technology is

injecting traffic to reduce the exposure of traffic analysis attacks [60].

24

Mimicking

When we hide the real we necessarily show the false, even if only implicitly by

showing “nothing.” The first method of simulation techniques is to show the false, by

mimicking something true, to gain an advantage. As an example, when the mantis

insects hide, by mimicking a stick, they are also luring prey close enough to be seized.

Inventing

Mimicking requires the item to look like something else, however, when this is

not so easy to achieve, invention can be used instead. When inventing we create a

new reality instead of mimicking the existence of another one. Rubber tanks are one

prime example of inventing a reality [170].

Decoying

Decoying is one of the most commonly used simulation techniques to deceive. In

decoying, the deceiver simply tells a common truth but then resort to something

different, and often less predictable. This is common in many sports where a team

might formulate their position to give the impression that they are defending, but

then they play an offensive play.

3.2.2 Linguistic Case Theory

Rowe used linguistic case theory to provide a taxonomy for the use of deception

in cyber space [129]. He argues that every deceptive action can be categorized by an

“associated semantic and case(s).” Adopting the list of semantic cases by Copeck et

al. [38] with additional relationships from AI, Rowe suggested a taxonomy of deception

consisting of 32 semantic cases grouped in seven categories: spatial cases, time cases,

participant cases, causality cases, quality cases, essence cases, and speech-act cases.

25

This taxonomy can be useful when brainstorming possible deceptive techniques to be

used in defending computer systems.

3.3 Deception Maxims

Bennett and Waltz discussed four deception maxims that are core to any inves­

tigation of the user of deception; namely truth, denial, deceit, and misdirection [12].

In this section we discuss the relationships among these principles adding a fifth one

that is equally as important; namely confusion.

3.3.1 Truth/Reality

Truth is the accurate perception of everything about the observed. Deception is

an active act directed at manipulating such perception. For deception to succeed,

there must be an accurate perception that we are trying to manipulate [12]. Truth

should constitute most of the information that is perceived by an adversary. Mitchell

and Thompson highlight this principle by stating that “all deception works within the

context of honesty” [98]. Handel provides four rules of what truth should be presented

to the target [71]:

1. The deceiver should supply the target with correct low-grade information; i.e.

“chicken-feed.”

2. Correct information that is already known by the opponent should always be

presented to the target.

3. The deceiver should often pass correct information to the target when he can

control its arrival time to be after it is of any use.

4. The deceiver might need to sacrifice some important information such that he

can lure the target into believing some deceit that would have not been believed

otherwise.

26

Handel summarizes his discussion with this quote “The more one has a reputa­

tion of honesty – the easier it is to lie convincingly. Even more concisely, honest

people/states can deceive the best” [71].

3.3.2 Deceit

“All deception requires deceit” as said by Bennett and Waltz [12]. In other words,

all deception requires the deceiver to intentionally lie about something to the target.

Everyone lies in their daily lives. Ford cites some studies showing that 90% of Amer­

icans admitted that they lie about their feelings, income, sex lives, accomplishments,

life, and age [57].

There is a fundamental difference between simple lies and deception. The former

focuses on only one side of the communicated message; namely the liar [43]. The

latter adds to that the other side of the message, namely the receiver, and how this

lie affects his perception and/or actions [43].

3.3.3 Denial, Misdirection and Confusion

There are three general way to manipulate a target’s perception of truth and

deceit with respect to deception. We can deny the target access to the truth and

show him the deceit instead. When we cannot stop the truth from being observed we

can misdirect the target’s focus to the deceit. When we cannot influence the target’s

focus, we can confuse the target by presenting him with the truth and one or more

plausible deceits.

3.4 Deception and Biases

In cognitive psychology a bias refers to

“An inclination to judge others or interpret situations based on a personal

and oftentimes unreasonable point of view” [12]

27

Biases are a cornerstone component to the success of any deception-based mech­

anisms. The target of the deception needs to be presented with a plausible “deceit”

to successfully deceive and/or confuse him. If the target perceives this deceit to be

non-plausible she is more inclined to reject it instead of believing it, or at least raise

her suspicions about the possibility of currently being deceived. A successful decep­

tion should exploit a bias in the attackers’ perception and provide them with one or

more plausible alternative information other than the truth.

Thompson et al. discuss four major groups of biases any analysts need to be aware

of: personal biases, cultural biases, organizational biases, and cognitive biases [151]. It

can be seen in figure 3.2 that the more specific the bias being exploited in a deceptive

security tool is, the less such a tool can be generalized, For example, exploiting a

number of personal biases, specific to an attacker, might not be easily generalized

to other adversaries who attack your system. However, the more specific the choice

of bias enhances the effectiveness of the deceptive component. This is true partly

because cognitive biases are well-known and adversaries might intentionally guard

themselves with an additional layer of explicit reasoning to minimize their effects in

manipulating their perceptions. In the following paragraphs we discuss each one of

these classes of biases.

Figure 3.2.: Deception Target Biases

28

3.4.1 Personal Biases

Personal biases are those biases that originate from either first-hand experiences

or personal traits, as discussed by Jervis in [82]. These biases can be helpful in design­

ing deceptive components/operation; however, they are (i) harder to obtain as they

require specific knowledge of potential attackers and (ii) they make deceptive com­

ponents less applicable to a wider range of attackers while becoming more powerful

against specific attackers. Personal biases have been exploited in traditional decep­

tion operations in war, such as exploiting the arrogance of Hitler’s administration in

World War II as part of Operation Fortitude [12].

3.4.2 Cultural Biases

Hofstede refers to cultural biases as the “software of the mind” [78]. They rep­

resent the mental and cognitive ways of thinking, perception, and action by humans

belonging to these cultures. In a study conducted by Guss and Dorner, they found

that cultures influenced the subjects’ perception, strategy development and decision

choices, even though all those subjects were presented with the same data [68]. Hofst­

ede discusses six main dimensions of cultures and assigns quantitative values to those

dimensions for each culture in his website (geerte-hofstede.com). Also, he associates

different behavior that correlates with his measurements. Theses dimensions are:

1.	 Power Distance Index (PDI) — PDI is a measure of the expectation and

acceptance that “power is distributed unequally.” Hofstede found that cultures

with high PDI tend to have a sense of loyalty, show of strength, and preference to

in-group-person. This feature can be exploited by a deception planner focusing

on the attacker’s sense of pride to reveal himself, knowing that the attack is

originating from a high PDI culture with a show-of-strength property.

29

2.	 Individualism versus Collectivism (IVC) — A collectivist society values

the “betterment of a group” at the expense of the individual. Hofstede found

that most cultures are collectivist, i.e. with low IVC index.

3.	 Masculine versus Feminine (MVF) — A masculine culture is a culture

where “emotional gender roles are clearly distinct.” For example, an attacker

coming from a masculine culture is more likely to discredit information and

warnings written by or addressed to a female. In this case, this bias can be

exploited to influence attackers’ behaviors.

4.	 Uncertainty Avoidance Cultures (UAI) — This measures the cultural re­

sponse to the unknown or the unexpected. High UAI means that this culture

has a fairly structured response to uncertainty making the attackers’ anticipa­

tion of deception and confusion a much easier task.

5.	 Long-Term Orientation versus Short-Term Orientation (LTO vs. STO)

— STO cultures usually seek immediate gratification. For example, the defender

may sacrifice information of lesser importance to deceive an attacker into think­

ing that such information is of importance, in support of an over-arching goal

of protecting the most important information.

6.	 Indulgence versus Restraint (IVR) — This dimension characterizes cul­

tures on their norms of how they choose activities for leisure time and happi­

ness.

Wirtz and Godson summarize the importance of accounting for cultures while de­

signing deception in the following quote; “To be successful the deceiver must recognize

the target’s perceptual context to know what (false) pictures of the world will appear

plausible” [65].

30

3.4.3 Organizational Biases

Organizational biases are of importance when designing deception for an target

within a heavily structured environment [12]. In such organizations there are many

keepers who have the job of analyzing information and deciding what is to be passed

to higher levels of analysts. This is one example of how organizational biases can be

used. These biases can be exploited causing important information to be marked as

less important while causing deceit to be passed to higher levels. One example of

organizational biases is uneven distribution of information led to uneven perception

and failure to anticipate the Pearl Harbor attack in 1941 by the United States [12].

3.4.4 Cognitive Biases

Cognitive biases are common among all humans across all cultures, personalities,

and organizations. They represent the “innate ways human beings perceive, recall,

and process information” [12]. These biases have long been studied by many re­

searchers around the world in many disciplines (particularly in cognitive psychology);

they are of importance to deception design as well as computing.

Tversky and Kahneman proposed three general heuristics our minds seem to use

to reduce a complex task to a simpler judgment decision – especially under con­

ditions of uncertainty – thus leading to some predictable biases [153]. These are:

representativesness, availability, and anchoring and adjustment. They defined the

representativeness heuristic as a “heuristic to evaluate the probability of an event by

the degree to which it is (i) similar in essential properties to its parent population;

and (ii) reflects the salient features of the process by which it is generated” [153]. The

availability heuristic is another bias that assess the likelihood of an uncertain event

by the ease with which someone can bring it to mind. Finally, the anchoring/adjust­

ment heuristic is a bias that causes us to make estimations closer to the initial values

we have been provided with than is otherwise warranted.

31

Solman presented a discussion of two reasoning systems postulated to be common

in humans: associative (system 1) and rule-based (system 2) [140]. System 1 is

usually automatic and heuristic-based, and is usually governed by habits. System

2 is usually more logical with rules and principles. Both systems are theorized to

work simultaneously in the human brain; deception targets System 1 to achieve more

desirable reactions.

In 1994, Tversky and Koehler argued that people do not subjectively attach proba­

bility judgments to events; instead they attach probabilities to the description of these

events [154]. That is, two different descriptions of the same event often lead people to

assign different probabilities to their likelihood. Moreover, the authors postulate that

the more explicit and detailed the description of the event is, the higher the prob­

ability people assign to it. In addition, they found that unpacking the description

of the event into several disjoint components increases the probability people attach

to it. Their work provides an explanation for the errors often found in probability

assessments associated with the “conjunction fallacy” [155]. Tversky and Kahneman

found that people usually would give a higher probability to the conjunction of two

events, e.g. P(X and Y), than a single event, e.g. P(X) or P(Y). They showed that

humans are usually more inclined to believe a detailed story with explicit details over

a short compact one.

3.5 The Use of Deception in War, Military and Conflicts

Deception has long been used as a prime tool within the intelligence community

and historically in war. The Greek’s Trojan horse illustrates the age of such tech­

niques. The Chinese military strategist Sun Tzu states that “All warfare is based on

deception” [156]. The Joint Publication (JP) 3-13.4 defines military deception as [25];

“Actions executed to deliberately mislead adversary military decision mak­

ers as to friendly military capabilities, intentions, and operations, thereby

32

causing the adversary to take specific actions (or inactions) that will con­

tribute to the accomplishment of the friendly mission.”

Earlier in this chapter, we discussed many example of deceptive techniques used by

living creatures and existing in nature. Gerwehr and Glenn give a detailed discussion

of the use of deception in military applications [64]. Latimer, in his book “Deception

in War” [90], provides an extensive discussion of the use of deception in war and

military conflicts. Additionally, Brown discusses the deception operation in the D-

Day invasion in his book “Bodyguard of Lies” [22].

3.6 General Use of Deception in Computing

3.6.1 In Human-to-Human Digital Interaction

Jeff Hancock studies the act of deception by normal users in the digital age [70].

His studies focus on users’ behavior investigating why and how they lie in the digital

world. He developed a number of algorithms to distinguish between fake and true

user’s generated content. In addition, he examined people’s online behaviors and the

fake information they post about themselves and others.

Galanxhi and Nah studied the behavior of deceivers and truth-tellers in cyberspace

[61]. They investigated whether the use of avatars influences one’s perception of the

truthfulness of the other communicating partner. Their research mainly focuses on the

communication aspects of such behavior. They primarily investigate how deception

happens in such environments and explore the features that enable such behavior.

3.6.2 In Human Computer Interaction (HCI)

Most of the research on the use of deception in HCI focuses on the user of malev­

olent deception, often referred to as dark patterns1 [1,37]. This goes inline with many

design guidelines that asserts that a good design should not lie to users [134]. In

1http://darkpatterns.org/

33

addition, Conti and Sobiesk characterized user interfaces that trick – mislead or de­

ceive the user – as malicious [37]. They discuss a number of examples of how such

techniques can be used to lie to users and spoof their content. They examined the

affect of using such techniques on increasing user frustration.

Nevertheless, Adar et al. make a distinction between malevolent and benevolent

deception [1]. They argue that the latter often is a helpful technique in improving

users’ experiences in HCI. The authors also discussed how regular users employ de­

ception to avoid unwanted interruptions. For example, using tools that auto-respond

to your contacts and make you appear online at random times are deceptive tech­

niques. Moreover, Adar and his group contend that the use of deception in HCI often

helps users rather than harm them [1]. They examined the use of deception in HCI

arguing that such techniques are often used to: (i) create users’ delight (e.g. by pro­

viding the user control over the system or hinting to the existence of some features),

or (ii) mask computer failures. Often such techniques help system designers to direct

users into acting in predictable ways. They argue that the common gap between the

user’s desire from a computer system and the reality of such system motivates and

enables the use of deception to cover it. They divide this gap into the following four

categories.

• A gap between the user’s metal model and the underlying system’s model.

This is one of the most common gaps in HCI where deceptive techniques are used

to bridge the gap between users’ and systems’ models. Such a gap can occur

because of performance and failure issues, to hide uncertainties, to guarantee a

certain level of pleasure and entertainment, or to increase the level of comfort

and credibility [1]. An example can be be seen in the early phone call routing

systems, 1ESS. In such systems, when a failure occurred in connecting two

users the system connected the caller to a random number instead of dropping

the call. This technique was used to deceive the user into believing that they

misdialed the number instead of experiencing a system failure [1]. A more

recent example is deployed by Netflix in their recommendation system. Their

34

system will use the general “popular movies” recommender engine when their

personalized recommender fails [31]. The user is not aware of this switch and

would continue to interact with the system as if the viewed recommendations

are based on her personal preferences

• Where the needs of an individual must be balanced with the needs of a group.

An example of such interface design can been seen in password failed authen­

tication responses. Clearly, it is more useful for the user to tell her exactly if

the typo was in the username or the password, instead of asking her to type

them both again. However, the security of the whole system is raised by not

explicitly specifying which part of the credentials is wrong. In this case, it is

a recommended security practice to “lie” to users and tell them to type both

credentials again raising the cost of brute-forcing other accounts’ passwords.

• When a person must be protected from oneself.

When a user deletes a file or drags it to the trash, the file is not immediately

deleted. In the physical world, the town of Dusseldorf has a fake bus stop set

next to a senior care center to catch Alzheimer patients who sneak out of the

center [120]. They wait at the bus stop instead of wandering around and getting

lost.

• When trying to meet conflicting design goals.

It is important to note that there is a fundamental difference between deception

and abstraction. Often, the line between the two is fuzzy. We discuss this further, in

section 4.6.4, where we make a clear distinction between deception and abstraction.

3.6.3 In Robotics and Human Robot Interaction (HRI)

The application of deception in robotics has been used to improve the user’s

experiences or add additional features [102, 139, 157, 163]. Such behavior adds value

35

to those machines, for example, calming patients or helping them to overcome their

self-imposed limits. In addition, deploying deceptive behavior in robots bring a set

of advantages to their use in the military domain.

Camouflage and motion camouflage are widely used deceptive techniques that

have found their way into robotics. Researchers at Harvard university developed a

“soft” robot that is capable of changing the color of its body to match the surrounding

environment [102]. Motion camouflage, which is used by dragonflies, is a deceptive

behavior where the creature follows an indirect trajectory to appear stationary while

approaching its target. Rano discusses the use of such techniques in robots for stealth

approaching [121].

Wagner and Arkin used interdependence theory [150] – which is a psychological

theory stating that interacting parties adjust their behavior in response to their per­

ception of social situations of reward and costs – to develop algorithms to be used

by robots to decide when and how to deceive [163]. Shim and Arkin adopted the

deceptive behavior used by squirrels in robots for resource allocation [139].

Within HRI deception has been used to instrument robots’ behavior to enhance

users’ experiences. In a study by Vazquez et al., they showed an increase in engage­

ment and enjoyment in a multi-player robotic game in the presence of a deceptive

robot referee [157]. Brewer et al. used deception in physical therapy robotic sys­

tems [21]. They presented rehabilitating patients with deceptive visual feedback on

the amount of force they are currently exerting. By making patients perceive a force

level lower than what they are really exerting, they will add additional force exceeding

their self-imposed mental limits.

3.6.4 In Computer-to-Computer Interaction

DeRosis et al. provide an extensive examination of such techniques in [45]. The

authors challenge the “sincerity principle” and discuss a number of scenarios where

computers should deliberately “lie.” In situations such as bargaining and personal

36

assistance, software agents may “lie” in the short-term for optimal longer-term goals.

Christian and Young discussed in their work how agents can strategically “lie” to

achieve optimal goals [30].

3.7 The Use of Deception to Enhance Security

Throughout history, deception has evolved to find its natural place in our societies

and eventually our technical systems. Deception and decoy-based mechanisms have

been used in security for more than two decades in mechanisms such as honeypots

and honeytokens. An early example of how deception was used to attribute and

study attackers can be seen in the work of Cheswick in his well-known paper “An

Evening with Berferd” [28]. He discusses how he interacted with an attacker in real

time providing him with fabricated responses. Two of the earliest documented uses

of deceptive techniques for computer security are in the work of Cliff Stoll in his

book “The Cuckoo’s Egg” [146] and the work of Spafford in his own lab [142]. The

Deception Toolkit (DTK)2, developed by Fred Cohen 1997 was one of the first publicly

available tools to use deception for the purpose of computer defenses.

In late 1990s, “honeypots” – “a component that provides its value by being at­

tacked by an adversary” i.e. deceiving the attacker to interact with them – have

been used in computer security. In 2003, Spitzner published his book on “Honeypots”

discussing how they can be used to enhance computer defenses [143]. Following on

the idea of honeypots, a proliferation of “honey-*” prefixed tools have been proposed.

We discuss the honey technologies in detail later in this section. With the release

of Tripwire, Kim and Spafford suggested the use of planted files that should not be

accessed by normal users, with interesting names or locations and serving as bait that

will trigger an alarm if they are accessed by intruders [85].

Offensively, many current, common attacks use deceptive techniques as a corner­

stone of their success. For example, phishing attacks often use two-level deceptive

http://www.all.net/dtk/ 2

37

techniques; they deceive users into clicking on links that appear to be coming from le­

gitimate sources, which take them to the second level of deception where they will be

presented with legitimate-looking websites luring them to give their credentials. The

“Nigerian 419” scams are another example of how users are deceived into providing

sensitive information with the hope of receiving a fortune later.

In many of these cases, attackers focus on deceiving users as they are usually the

most vulnerable component. Kevin Mitnick showed a number of examples in his book,

“The Art of Deception” [99], of how he used social engineering, i.e., deceptive skills

to gain access to many computer systems. Trojan horses, which are more than 30

years old, are a prime example of how deception has been used to infiltrate systems.

Phishing, Cross-site Scripting (XSS) [161], and Cross-site Request Forgery (XSRF)

[10] are some examples of using deception. Despite more than a decade of research by

both the academic and private sectors, these problems are causing more damage every

year. XSS and XSRF have remained on the OWASP’s top 10 list since the first time

they were added in 2007 [112]. The effectiveness of offensive deception techniques

should motivate security researchers to think of positive applications for deception in

security defenses.

3.7.1 Honeypots

Honeypots have been used in multiple security applications such as detecting and

stopping spam3 and analyzing malware [42]. In addition, honeypots have been used

to secure databases [56]. They are starting to find their way into mobile environments

[106] where some interesting results have been reported [164].

Honeypots in the literature come in two different types: server honeypot and

client honeypot. The server honeypot is a computer system that contains no valuable

information and is designed to appear vulnerable for the goal of enticing attackers

to access them. Client honeypots are more active. These are vulnerable user agents

http://www.projecthoneypot.org 3

38

that troll many servers actively trying to get compromised [137]. When such incidents

happen, the client honeypots report the servers that are infecting users’ clients. Hon­

eypots have been used in computing in four main areas as we discuss in the following

paragraphs.

Detection. Honeypots provide an additional advantage over traditional detection

mechanisms such as Intrusion Detection Systems (IDS) and anomaly detection. First,

they generate less logging data as they are not intended to be used as part of normal

operations and thus any interaction with them is illicit. Second, the rate of false

positive is low as no one should interact with them for normal operations. Angnostakis

et al. propose an advanced honeypot-based detection architecture in the use of shadow

honeypots [9]. In their scheme they position Anomaly Detection Sensors (ADSs) in

front of the real system where a decision is made as whether to send the request

to a shadow machine or to the normal machine. The scheme attempts to integrate

honeypots with real systems by seamlessly diverting suspicious traffic to the shadow

system for further investigation. Finally, honeypots are also helpful in detecting

industry-wide attacks and outbreaks, e.g. the case of the Slammer worm as discussed

in [100].

Prevention. Honeypots are used in prevention where they assist in slowing down

the attackers and/or deterring them. Sticky honeypots are one example of machines

that utilize unused IP address space and interact with attackers probing the network

to slow them down [96]. In addition, Cohen argues that using his Deception ToolKit

(DTK) we can deter attackers by confusing them and introducing risk on their side

[33]. However, we are not aware of any studies that investigated those claims.

Beyond the notion of enticement and traps used in honeypots, deception has been

studied from other perspectives. For example, Rowe et al. present a novel way of

using honeypots for deterrence [131]. They protect systems by making them look

like a honeypot and therefore deter attackers from accessing them. Their observation

39

stemmed from the developments of anti-honeypots techniques that employ advanced

methods to detect if the current system is a honeypot [79].

Response. One of the advantages of using honeypots is that they are totally inde­

pendent systems that can be disconnected and analyzed after a successful attack on

them without hindering the functionality of the production systems. This simplifies

the task of forensic analysts as they can preserve the attacked state of the system and

extensively analyze what went wrong.

Research. Honeypots are heavily used in analyzing and researching new families

of malware. The honeynet project4 is an “international non-profit security research

organization, dedicated to investigating the latest attacks and developing open source

security tools to improve Internet security.” For example, the HoneyComb system

uses honeypots to create unique attack signatures [88]. Other more specific tools

such as dionaea5 are designed to capture a copy of computer malware for further

study. Furthermore, honeypots help in inferring and understanding some widespread

attacks such as Distributed Denial of Service (DDoS) [101].

3.7.2 Honey–* Tools

The prefix “honey-*” has been used to refer to a wide range of techniques that

incorporate the act of deceit in them. The basic idea behind the use of the prefix

word “honey” in these techniques is that they need to entice attackers to interact

with them, i.e. fall for the bait — the “honey.” When such an interaction occurs the

value of these methods is realized.

The term honeytokens has been proposed by Spitzner [144] to refer to honeypots

but at a smaller granularity. Stoll used a number of files with enticing names and

distributed them in the targeted computer systems, acting as a beaconing mechanism

4www.honeynet.org
5http://dionaea.carnivore.it/

40

when they are accessed, to track down Markus Hess [146]. Yuill et al. coined the

term honeyfiles to refer to these files [176]. HoneyGen was also used to refer to tools

that are used to generate honeytokens [14].

3.7.3 Incorporating Deception into Other Security Defenses

There have been a number of interesting proposals to use deceit for enhancing

the security of computer systems beyond the traditional notion of honeypots. In this

section we give an overview of some of these schemes.

Passwords and Credentials Protection

Li and Schmitz proposed a framework to address phishing by using deception

and honeypot-like techniques [94]. The authors propose a framework that introduces

the concept of fake credential, referred to as a phoneytoken, and a number of client

honeypots, referred to as phoneybots. The main idea in their framework is that when

phishing is detected a number of phoneytokens will be sent to the phishing site. If

phishing is detected by a spamtrap, a real user will have to submit a phoneytoken,

however, if the detected phishing is using pharming or malware attacks, a phoneybot

will submit the phoneytoken. Banks can monitor these phoneytokens and then follow

the money trail when phishers are detected stealing money.

BogusBiter is a similar scheme proposed by Yue and Wang in [174]. The authors

develop a client add-on to the user’s browser that intercepts username/password sub­

missions when users override a phishing warning. Instead of stopping the submission

they submit additional (N − 1) username/password pairs generated based on the

user’s credentials. The scheme also works with savvy users who obey the warnings

where the add-on submits a large number of randomly generated credentials to the

phishing website. The scheme also requires the installation of a server side component

that analyzes a username/passwords submission and triggers a silent alarm when a

“Bogus” credential has been submitted.

41

Most recently, a scheme named Honeywords was proposed by Jules and Rivest

to confuse attackers when they crack a stolen hashed password file [84] by hiding

the real password among a list of “fake” ones. Their scheme augmenting password

databases with an additional (N − 1) fake credentials [84]. If the DB is stolen and

cracked, attackers are faced with N different passwords to choose from where only

one of them is the correct one. However, if they use any of the fake ones the system

triggers an alarm alerting system administrators that the DB has been cracked.

Kontaxis et al. proposed a similar scheme in [87]. Their proposal relies on the

fact that users need to supply a voucher obtained from a vouching server along with

their username/password, which is an extra step they introduce in their scheme. The

vouching request must originate from the target server. They also add (N − 1) decoy

passwords to the credentials DB. Unlike Honeyword, these password actually log the

user in and their main goal is to address the issue of a user using the same passwords

with the target and vouching servers.

Moreover, Zhao and Mannan used deceptive techniques to limit the effectiveness

of automated online password guessing [177]. They provide “fake” sessions to an

adversary who is launching automated attacks while real users will detect the au­

thentication outcome implicitly from the presented user data.

Defaming Botnets

Ormerod et al. proposed a scheme that inject deceptive fake information to current

botnet zombies for two main goals: dilute the real stolen information and trace end-

users of botnet’s stolen information when they use this fake information [111]. Similar

to the honeywords proposal above, this fake information signals an alarm that a

“stolen” credentials/credit card/identity is currently being used.

42

Obfuscation and Anti-Reconnaissance

Murphy et al. investigated the efficacy of using a host-based operating system

(OS) obfuscation as an integral part of Air Force computer defenses [107]. The

observation that motivated their study is that identifying the target’s OS is a key

component in any computer attack. Successfully masking this information can give

computer defenders an advantage. They used the OSfuscate tool [40], by Crenshaw,

and concluded that it is effective in continuously obfuscating the host OS. They

recommend deploying this technique as part of Air Force computer defenses. However,

a challenge to deploying these methods can arise from the need to use administrative

tools that rely on accurately fingerprinting the OSs of managed computer systems to

undergo regular maintenance and patching operations.

Active Defense

Crane et al. discuss the use of “Booby Trapping Software” — an active security

defense mechanism for code-reuse attacks where deceptive techniques are used [39].

In additiona, Cohen and Koike presented a set of experiments where they successfully

induced skilled red-team attackers to attack the targeted system in a particular se­

quence [35]. The main goal was to mimic physical attack tactics where such techniques

can be used to drive prey into kill-zones by influencing their decisions, by means of

deception techniques, taking a specific path desired by the defenders. This was part

of a larger set of experiments where they used different deceptive mechanisms against

red-team attackers [36].

Trassare takes a different approach of using deception and presents a technique to

deceive attackers, who attack DoD networks by giving them a fake internal network

topology of the defender’s choice [152]. He presents a prototype implementation

showing positive results.

Rowe et al. used a “testbed” for automated defensive deception planning for

cyber-attacks [132]. Their approach was to make a complete system available for

43

attackers to understand and plan deceptive operations for other systems. They re­

ported interesting findings of attackers’ behavior that can be used to design effective

deceptive computer defenses.

Supply-Chain Protection

Spiegel published a report showing how the NSA intercepts equipment shipped

by Cisco and installs eavesdropping implants in it. To address this problem, Cisco

announced that they will help their customers by using some deceptive techniques to

mislead NSA. They offered to ship customer equipment to a fake address making it

harder for the NSA to target and contaminate their supply chain [114].

3.8 Deception Operations and Tactics

Deception has long been used as an effective operational tactic in warfare and

military conflicts. Fowler and Nesbitt highlight six rules for a successful deception

operation [58].

1.	 Expectedness. A successful deception should cause the enemy to believe what

he expects. The deceptive act should be designed to look no different than the

normal expected act, while the real act should be the surprising one.

2.	 Timely Feedback. A successful deception operation should involve a continu­

ous and timely feedback of the adversary’s reaction to the deceptive information.

This is crucially important as the targeted system could be vulnerable if attack­

ers successfully avoid the deceptive operation or conduct a counter-deception

operation.

3.	 Integration. The deception operation must be tightly integrated with the

real operation. In other words, real and deceptive plans must work together

supplementing each other’s activities.

44

4.	 Suppression. A deception plan must not only provide believable activities for

the deception operation, but also hide any activity of the real operation.

5.	 Realism. The realism of any deception operation is a function of two important

factors; the adversary’s capabilities of observing responses and the time available

to analyze these responses. As an example, deceiving a drone attack with fake

tanks requires a different level of realism than deceiving an attacking army with

tanks on the borders of another country.

6.	 Creativity. A successful deception operation should be imaginative and cre­

ative.

Rowe and Rothstein used these rules and applied them to the case of cyberwar

in [133]. It can be seen that many of these rules highlight a number of limitations

of current deception-based defenses. As an example, honeypots violate the third rule

of integration as they are, in the default case, a standalone system(s) that are only

useful if the attackers decide to interact with them.

3.9 Chapter Summary

In this chapter, we discussed the concept of deception and how it has been used.

We illustrated some of the well-known taxonomies of deceptive techniques; we adapt

these techniques in next chapter to show how they can be used to enhance computers’

security. We gave an overview of deception maxims and concepts. We presented an

investigation of the role of biases in ensuring the success of any deceptive technique.

After that, we then gave an overview of the use of deception in military conflicts and

computing. We discussed how deception has been widely used to enhance the utility

of technology and improve users’ experiences. Additionally, we gave an overview of

the previous uses of deception in computer security. We discussed the well-known

example of using honeypots to aid computer security. We concluded the chapter by

discussing some of the most important principles in deception operations and tactics.

45

4 A FRAMEWORK FOR USING DECEPTION TO ENHANCE SECURITY

In everyday security, deception plays a prominent role in our lives. We leave lights on

to deter thieves and deceive them by pretending that someone is inside. To automate

such deceptive behavior, we might even have a timer that switches the light on and

off. Through history, deception has evolved to find its natural place in our societies

and eventually our technical systems. Deception and decoy-based mechanisms have

been used in security for more than two decades in techniques such as honeypots and

honeytokens, as discussed in the previous chapter. Nevertheless, little work has been

done in incorporating deception beyond such traditional concepts.

Deception-based techniques provide significant advantages over traditional secu­

rity controls. Currently, most security tools are responsive measures to attackers’

probes to previously known vulnerabilities. Whenever an attack surfaces, it is hit

hard with all preventative mechanisms at the defender’s disposal. Eventually, per­

sistent attackers find a vulnerability that leads to a successful infiltration by evading

the way tools detect probes or by finding new unknown vulnerabilities. This security

posture is partially driven by the assumption that “hacking-back” is unethical, while

there is a difference between the act of “attacking back” and the act of deceiving

attackers, which is further discussed in section 4.6.2. With such behavior, attackers

progressively learn about systems’ defensive capabilities with their continuous prob­

ing. As a result, average computer systems are guiding their adversaries in how to

successfully infiltrate their own defenses. Meanwhile, targeted systems learn nothing

about these attempts, other than a panic in the security team. In fact, in many cases

multiple attempts that originate from the same entity are not successfully correlated.

There is a fundamental difference in how deception-based mechanisms work in

contrast to traditional security controls. The latter usually focuses on attackers’

actions — detecting or preventing them — while the former focuses on attackers’

46

perceptions — manipulating them and therefore inducing adversaries to take action­

s/inactions in ways that are advantageous to targeted systems; traditional security

controls position themselves in response to attackers’ actions while deception-based

tools are positioned in prospect of such actions. Later, in section 4.3.1, we discuss

some of the unique advantages deception-based security defenses bring.

4.1 Definition

One of the most widely accepted definitions of computer-security deception is

the one by Yuill [175]; Computer Deception is “Planned actions taken to mislead

attackers and to thereby cause them to take (or not take) specific actions that aid

computer-security defenses.” We adapt this definition and add “confusion” as one

of goals of using deceit (the expression of things that are not true) in computer

system protection, as we will discuss later in section 4.6.3. Therefore, the definition

of defensive computer deception we will use throughout this dissertation is

“Planned actions taken to mislead and/or confuse attackers and to thereby

cause them to take (or not take) specific actions that aid computer-security

defenses”

4.2 Limitations of Isolated Use of Deception

Honeypot-based tools are a valuable technique used for the detection, prevention,

and response to cyber attacks as we discussed in section 3.7.1. Nevertheless, those

techniques suffer from the following major limitations:

•	 As the prefix honey-* indicates, for such techniques to become useful, the ad­

versary needs to interact with them. Attackers and malware are increasingly

becoming sophisticated and their ability to avoid honeypots is increasing [27].

•	 Assuming we manage to lure the attacker into our honeypot, we need to be

able to continuously deceive them that they are in the real system. Chen et

47

al. study such a challenge and show that some malware, such as polymorphic

malware, not only detects honeypots, but also changes its behavior to deceive

the honeypot itself [27]. In this situation, attackers are in a position where

they have the ability to conduct counter-deception activities by behaving in a

manner that is different than how would they do in a real environment.

•	 To learn about attackers’ objectives and attribute them, we need them to in­

teract with the honeypot systems. However, with a high-interaction honeypot

there is a risk that attackers might exploit the honeypot itself and use it as

a pivot point to compromise other, more sensitive, parts of the organization’s

internal systems. Of course, with correct separation and DMZs we can alleviate

the damage, but many organizations consider the risk intolerable and simply

avoid using such tools.

•	 As honeypots are totally “fake systems” many tools currently exist to identify

whether the current system is a honeypot or not [27, 79]. This fundamental

limitation is intrinsic in their design.

4.3 The Role of Deception

Most of the previous deception techniques work in isolation and independently of

other parts of information systems. This design decision has been partly driven by

the security risks associated with honeypots. We argue that intelligently augmenting

our systems with interacting deception-based techniques can significantly enhance our

security and gives us the ability to achieve deception in depth.

If we examine table 2.1, we can see that we can apply deception at every stage of

the cyber kill-chain, allowing us to break the chain and possibly attribute attackers.

At the reconnaissance stage we can lure adversaries by creating a site and having

honey-activities that mimic a real-world organization. As an example, an organization

can subscribe with a number of cloud service providers and have honey activities in

place while monitoring any activities that signal external interest. Another example

48

to address the problem of spear-phishing, we can create a number of fake personas

and disseminate their information online while monitoring their contact details to

detect any probing activities; some commercial security firms currently do this.

4.3.1 Advantages of Using Deception in Computer Defenses

Reginald Jones, the British scientific military intelligence scholar, concisely artic­

ulated the relationship between security and deception. He referred to security as a

“negative activity, in that you are trying to stop the flow of clues to an opponent” and

it needs its other counterpart, namely deception, to have a competitive advantage in

a conflict [83]. He refers to deception as the “positive counterpart to security” that

provides false clues to be fed to the opponents.

By intelligently using deceptive techniques systems defenders can mislead and/or

confuse attackers enhancing their defensive capabilities over time. By exploiting at­

tackers’ unquestioned trust of computer system responses, system defenders can gain

an edge and position themselves a step ahead of compromise attempts. In general,

deception-based security defenses bring the following unique advantages to computer

systems:

1.	 Increases the entropy of leaked information about targeted systems during com­

promise attempts.

When a computer system is targeted, the focus is usually only on protecting and

defending it. With deception, extra defensive measures can be taken by feed­

ing attackers false information that will, in addition to defending the targeted

system, cause intruders to make wrong actions/inactions and draw incorrect

conclusions. With the increased spread of APT attacks and government/corpo­

rate espionage threats such techniques can be effective.

When we inject false information we cause some confusion for the adversaries

even if they have already obtained some sensitive information; the injection of

negative information can degrade and devalue the correct information obtained

49

by adversaries. Heckman and her team, from MITRE, conducted an experiment

between a red and a blue team using deception techniques, where they reported

interesting results [74]. They developed a tool, referred to as “Blackjack,” that

dynamically copies an internal state of a production server – after removing

sensitive information and injecting deceit – and then directs adversaries to that

instance [74]. Even after the red team successfully attacked and infiltrated

the blue systems and obtained sensitive information, the blue team injected

some false information in their system that led the red team to devalue the

information they had obtained, believing that the new values were correct.

2. Increases the information obtained from compromise attempts.

Many security controls are designed to create a boundary around computer

systems automatically stopping any illicit access attempts. This is becoming

increasingly challenging as such boundaries are increasingly blurring partly as

a result of recent trends such as “consumerization”1 [73]. Moreover, because of

the low cost on the adversaries’ side, and the existence of many automated ex­

ploitation tools, attackers can continuously probe computer systems until they

find a vulnerability to infiltrate undetected. During this process, systems de­

fenders learn nothing about the intruders’ targets. Ironically, this makes the

task of defending a computer system harder after every unsuccessful attack.

We conjecture that incorporating deception-based techniques can enhance our

understanding of compromise attempts using the illicit probing activity as op­

portunity to enhance our understanding of the threats and, therefore, better

protect our systems over time.

3. Give defenders an edge in the OODA loop.

The OODA loop (for Observe, Orient, Decide, and Act) is a cyclic process

model, proposed by John Boyd, by which an entity reacts to an event [20]. The

1This term is widely used to refer to enterprises’ employees bringing their own digital devises and
using them to access the companies’ resources.

50

victory in any tactical conflict requires executing this loop in a manner that

is faster than the opponent. The act of defending a computer system against

persistent attacks can be viewed as an OODA loop race between the attacker

and the defender. The winner of this conflict is the entity that executes this

loop faster. One critical advantage of deception-based defenses is that they

give defenders an edge in such a race as they actively feed adversaries deceptive

information that affects their OODA loop, more specifically the “observe” and

“orient” stages of the loop. Furthermore, slowing the adversary’s process gives

defenders more time to decide and act. This is especially crucial in the situation

of surprise, which is a common theme in digital attacks.

4. Increases the risk of attacking computer systems from the adversaries’ side.

Many current security controls focus on preventing the actions associated with

illicit attempts to access computer systems. As a result, intruders are using this

accurate negative feedback as an indication that their attempts have been de­

tected. Subsequently, they withdraw and use other, more stealthy, methods of

infiltration. Incorporating deceit in the design of computer systems introduces

a new possibility that adversaries need to account for; namely that they have

been detected and currently deceived. This new possibility can deter attackers

who are not willing to take the risk of being deceived, and further analyzed. In

addition, such technique gives systems’ defenders the ability to use intruders’

infiltration attempts to their advantage by actively feeding them false informa­

tion.

4.4 Related Work of Modeling the Use of Deception in Security

Cohen et al. was one of the first to develop a model for using deception in computer

defenses [34]. They provided a general overview of human and computer deception.

Their work was motivated by the deception toolkit (DTK), discussed in section 3.7,

and discusses how a system can be designed to deceive attackers.

51

Game theory has been used to study some deception-based techniques. Carroll

and Grosu presented an analysis of using deception for network security modeling the

problem as a signaling game [24]. They modeled the interaction between the defender

and the attacker where defenders can deploy a honeypot or a normal system; or they

can camouflage any of the two. The authors developed an equilibrium of defenders

action. In addition, Garg and Grosu analyzed the deception of honeynets using game

theory to provide defenders the best strategy in deploying deception [62].

Rowe modeled attackers interaction with a computer system and discussed how

can we plan a deceptive “resource denial” response effectively [130]. Such responses

are designed to waste adversaries’ time and resources while alerting systems’ defenders

of potential attacks.

4.5 A Framework for Integrating Deception-Based Defenses

In this section, we present a framework that can be used to plan and integrate

deception in computer security defenses. Many computer defenses that use deception

were ad-hoc attempts to incorporate deceptive elements in their design. We show

how our framework can be used to incorporate deception in many parts of a computer

system and discuss how we can use such techniques effectively. A successful deception

should present plausible alternative(s) to the truth and these should be designed to

exploit specific adversaries’ biases, as discussed in section 3.4.

The framework discussed in this section is based on the general deception model

discussed by Bell and Whaley in [11]. There are three general phases of any deceptive

component; namely planning, implementing and integrating, and finally monitoring

and evaluating. In the following sections we discuss each one of those phases in more

detail. The framework is depicted in figure 4.1.

52

Figure 4.1.: Framework to Incorporate Deception in Computer Security Defenses

4.5.1 Planning Deception

There are six essential steps to planning a successful deception-based defensive

component. The first, and often neglected, step is specifying exactly the strategic

goals the defender wants to achieve. Simply augmenting a computer system with

honey-like components, such as honeypots and honeyfiles, gives us a false sense that

we are using deception to lie to adversaries. It is essential to detail exactly what are

the goals of using any deception-based mechanisms. As an example, it is significantly

different to set up a honeypot for the purpose of simply capturing malware than

having a honeypot to closely monitor APT-like attacks.

After specifying the strategic goals of the deception process, we need to specify –

in the second step of the framework – how the target (attacker) should react to the

deception. This determination is critical to the long-term success of any deceptive

53

process. For example the work of Zhao and Mannan, discussed in section 3.7.3, deceive

attackers launching online guessing attacks into believing that they have found a

correct username and password. The strategic goal of this deception process is to

direct an attacker to a “fake” account thus wasting their resources and monitoring

their activities to learn about their objectives. It is crucial to analyze how the target

should react after the successful “fake” login. The obvious reaction is that the attacker

would continue to laterally move in the target system, attempting further compromise.

However, an alternative response is that the attacker ceases the guessing attack and

reports to its command and control that a successful username/password pair has

been found. In consideration of the second alternative we might need to maintain

the username/password pair of the fake account and keep that account information

consistent for future targeting.

Moreover, part of this second step is to specify how we desire an attacker to react

such that we may try to influence his perception and thus lead him to the desired

reaction. Continuing with the example in the previous paragraph, if we want the

attacker to login again so we have more time to monitor and setup a fake account,

we might cause an artificial network disconnection that will cause the target to login

again.

Adversaries’ Biases

Deception-based defenses are useful tools that have been shown to be effective in

many human conflicts. Their effectiveness relies on the fact that they are designed

to exploit specific biases in how people think, making them appear to be plausible

but false alternatives to the hidden truth, as discussed in section 3.4. These mecha­

nisms give defenders the ability to learn more about their attackers, reduce indirect

information leakages in their systems, and provide an advantage with regard to their

defenses.

54

Step 3 of planning deception is to understand the attackers’ biases. As discussed

in section 3.4, biases are a cornerstone component to the success of any deception-

based mechanisms. The deceiver needs to present a plausible deceit to successfully

deceive and/or confuse an adversary. If attackers decide that such information is not

plausible they are more inclined to reject it, or at least raise their suspicions about the

possibility of currently being deceived. When the defender determines the strategic

goal of the deception and the desired reactions by the target, he needs to investigate

the attacker’s biases to decide how best to influence the attacker’s perception to

achieve the desired reactions.

One example of using biases in developing some deceptive computer defenses is

using the “confirmation bias” to lead adversaries astray and waste their time and

resources. Confirmation bias is defined as “the seeking or interpreting of evidence in

ways that are partial to existing beliefs, expectations, or a hypothesis in hand” [110].

A computer defender can use this bias in responding to a known adversarial probing

of the system’s perimeter. Traditional security defenses are intended to detect and

prevent such activity, by simply dropping such requests or actively responding with an

explicit denial. Taking this a step further by exploiting some pre-existing expectation,

i.e. the confirmation bias, we might provide a response that the system is being taken

down for some regular maintenance or as a result of some unexpected failure. With

such a response, the defender manages to prevent illicit activity, provide a pause to

consider next steps for the defender, and perhaps waste the adversary’s time as they

wait or investigate other alternatives to continue their attacks.

Cultural biases play an important role in designing deceptive responses, as dis­

cussed in section 3.4.2. For example, some studies found relationships between

the type of computer attacks and the culture/country from which the attack orig­

inated [135].

In computing, the conjunction fallacy bias, discussed in section 3.4.4, can be

exploited by presenting the deception story as a conjunction of multiple detailed

components. For example, if deceivers want to misinform an attacker probing their

55

system by creating an artificial network failure, instead of simply blocking these

attempts, it is better to give a longer story. A message that says “Sorry the network

is down for some scheduled network maintenance. Please come back in three hours”

is more plausible than simply saying “The network is down” and thus more likely to

be believed.

Creating the Deception Story

After analyzing attackers’ biases the deceiver needs to decide exactly what com­

ponents to simulate/dissimulate; namely step 4 of the framework in figure 4.1.

In figure 4.2 we provide an overview of the different system components where

deception can be applied, exploiting the attacker’s biases to achieve the desired reac­

tion. Overall, deceit can be injected into the functionality and/or state of our systems.

We give a discussion of each one of these categories below and present some examples.

Figure 4.2.: Computer Systems Components Where Deception Can Be Integrated
With

System’s Decisions. We can apply deception to the different decisions any com­

puter system makes. As an example, Zhao and Mannan work, discussed in section

3.7.3, apply deception at the system’s authentication decision where they deceive

adversaries by giving them access to “fake” accounts in the cases of online guessing

56

attacks. Another system’s decision we can use concerns firewalls. Traditionally, we

add firewall rules that prevent specific IP addresses from interacting with our sys­

tems after detecting that they are sources of some attacks. We consider this another

form of data leakage in accordance with the discussion of Zhao and Mannan in [177].

Therefore, we can augment firewalls by applying deception to their decisions by pre­

senting adversaries with plausible responses other than simply denying access. We

discuss this further in the design of the deceptive server “Deceptiver” in chapter 7.

System’s Software and Services. Reconnaissance is the first stage of any attack

on any computing system, as identified in the kill-chain model [80]. Providing fake

systems and services has been the main focus of honeypot-based mechanisms. Hon­

eypots, discussed in section 3.7.1, are intended to provide attackers with a number

of fake systems running fake services. Moreover, we can use deception to mask the

identities of our current existing software/services. The work of Murphy et al., dis­

cussed in section 3.7.3, recommended the use of operating system obfuscation tools

for Air Force computer defenses [107].

System’s Internal and Public Data. A honeyfile, discussed in section 3.7.2, is

an example of injecting deceit into the system’s internal data. It can be applied to the

raw data in computer systems, e.g., files and directories, or to the administrative data

that are used to make decisions and/or monitor the system’s activities. An example

applying deception to the administrative data can be seen in the honeywords proposal,

discussed in section 3.7.3. Deceit can also be injected into the public data about our

systems. Wang et al. made the case of disseminating public data about some “fake”

personnel for the purpose of catching attacks such as spear phishing [165]. Cliff Stoll

did this during the story of his book [146]. In addition, we note that this category also

includes offline stored data such as back-ups that can be used as a focus of deception.

In chapter 6, we present a scheme that applies deception to system’s administrative

data to enhance the security of users’ credentials.

57

System’s Activity. Different activities within a system are considered as one

source of information leakage. For example, traffic flow analysis has long been studied

as a means for attackers to deduce information [60]. Additionally, a system’s activity

has been used as a means of distinguishing between a “fake” and a real system [27].

We can intelligently inject some data about activities into our system to influence

attackers’ perception and, therefore, their reactions.

System’s Weaknesses. Adversaries probe computer systems trying to discover

and then exploit any weakness (vulnerability). Often, these adversaries come prepared

with a list of possible vulnerabilities and then try to use them until they discover

something that works. Traditional security mechanisms aid adversaries by quickly and

promptly responding back to any attempt to exploit fixed, i.e. patched, vulnerabilities

with a denial response. This response leaks information that these vulnerabilities are

known and fixed. When we inject deceit into this aspect of our systems we can

misinform adversaries by confusing them – by not giving them a definitive answer

whether the exploit has succeeded – or by deceiving them by making it appear as if

the vulnerability has been exploited.

System’s Damage Assessment. This relates to the previous component; how­

ever, the focus here is to make the attacker perceive that the damage caused is more

or less than the real damage. We may want the adversary to believe that he has

caused more damage than what has happened so as to either stop the attack or cause

the attacker to become less aggressive. This is especially important in the context of

the OODA loop discussed earlier in section 4.3.1. We might want the adversary to

believe that he has caused less damage if we want to learn more about the attacker

by prompting a more aggressive attack.

System’s Performance. Influencing the attacker’s perception of system’s perfor­

mance may put the deceiver at an advantageous position. This has been seen in

the use of sticky honeypots and tarpits, discussed in section 3.7.1, that are intended

58

to slow the adversary’s probing activity. Also, tarpits have been used to throttle

the spread of network malware. In a related fashion, Somayaji et al. proposed a

method to deal with intrusions by slowing the operating system response to a series

of anomalous system calls [77].

System’s Configurations. Knowledge of the configuration of the defender’s sys­

tems and networks is often of great importance to the success of the adversary’s

attack. In the lateral movement phase of the kill-chain adversarial model, attackers

need to know how and where to move to act on their targets. In the red-teaming

experiment by Cohen and Koike, discussed in section 3.7.3, they deceived adversaries

to attack the targeted system in a particular sequence from a networking perspective.

After deciding which components to simulate/dissimulate, we can apply one of

Bell and Whaley’s techniques discussed earlier. We give an example of how each one

of these techniques can be used in the following paragraphs.

•	 Using Masking – This has been used offensively where attackers hide potentially

damaging scripts in the background of the page by matching the text color with

the background color. When we apply hiding to software and services, we can

hide the fact that we are running some specific services when we detect a probing

activity. For example, when we receive an SSH connection request from a known

bad IP address we can mask our SSHd demon and respond as if the service is

not working or as if it is encountering an error.

•	 Using Repackaging – In several cases it might be easier to “repackage” data as

something else. In computing, repackaging has long been used to attack com­

puter users. The infamous cross-site scripting (XSS) attack uses this technique

where an attacker masks a dangerous post as harmless to steal the user’s cookies

when they view such post. Another example can be seen in the cross-site request

forgery (XSRF) attacks where an adversary deceives a user into visiting some

innocuous looking web pages that silently instruct the user’s browser to engage

in some unwanted activities. In addition, repackaging techniques are used by

59

botnet Trojans that repackage themselves as anti-virus software to deceive users

into installing them so an attacker can take control of their machines. From the

defensive standpoint, a repackaging act can be seen in HoneyFiles, discussed in

section 3.7.2, that repackage themselves as normal files while acting internally

as silent alarms to system administrators when accessed.

•	 Using Dazzling – This is considered to be the weakest form of dissimulation,

where we confuse the targeted objects with others. An example of using dazzling

can be seen in the “honeywords” proposal, discussed in section 3.7.3. The

scheme confuses each user’s hashed password with an extra (N − 1) hashes

of other, similar, passwords dazzling an attacker who obtains the credentials

database.

•	 Using Mimicking – In computing, phishing attacks are a traditional example of

an unwanted deceiving login page mimicking a real website login. An attacker

takes advantage of users by deceiving them into giving up their credentials

by appearing as the real site. From a defensive perspective, we can apply

mimicking to software and services by making our system mimic the responses

of a different system, e.g., respond as if we are running a version of Windows

XP while we are running Windows 7. This will waste attackers’ resources in

trying to exploit our Windows 7 machine thinking it is Windows XP, as well as

increase the opportunity for discovery. This is seen in the work of Murphy et

al. in operating system obfuscation discussed in section 3.7.3.

•	 Using Inventing – Mimicking requires the results to look like something else;

when this is not easy to achieve invention can be used instead. This technique

has seen the most research in the application of deception to computer security

defenses. Honeypots, discussed in section 3.7.1, are one prominent example of

inventing a number of nodes in an organizations with the goal of deceiving an

attacker that they are real systems.

60

•	 Using Decoying – This technique is used to attract adversaries’ attention away

from the most valuable parts of a computer system. Honeypots are used, in some

cases, to deceive attackers by showing that these systems are more vulnerable

than other parts of the organization and therefore capture attackers’ attention.

This can be seen in the work of Carroll and Grosu [24].

Figure 4.3.: Creating Deceit

After deciding which deceptive technique to use we need to analyze the patterns

attackers perceive and then apply one or more of those techniques to achieve the

desired reactions.

Deceit is an active manipulation of reality. We argue that reality can be manip­

ulated in one of three general ways, as depicted in figure 4.3-a. We can manufacture

reality, alter reality, and/or hide reality. This can be applied to any one of the

components we discussed in the previous section.

In addition, reality manipulation is not only to be applied to the existence of

the data in our systems — it can be applied to two other features of the data. As

represented in figure 4.3-b, we can manipulate the reality with respect to the existence

of data, nature of the data, and/or value of the data. The existence of the data can be

manipulated not only for the present but also when the data has been created. This

can be achieved for example with the manipulation of time stamps. With regard

to the nature of the data, we can manipulate the size of the data, such as in the

example of endless files, discussed in section 2.1.3, when and why the data has been

61

created. The value of the data can also be manipulated. For example, log files

are usually considered important data that adversaries try to delete to cover their

tracks. Making a file appear as a log file will increase its value from the adversary’s

perspective.

At this step, it is crucial to specify exactly when the deception process should

be activated. It is usually important that legitimate users’ activity should not be

hindered by the deceptive components. Optimally, the deception should only be

activated in the case of malicious interactions. However, we recognize that this may

not always be possible as the lines between legitimate and malicious activities might

be blurry. We argue that there are many defensive measures that can apply some

deceptive techniques in place of the traditional denial-based defenses that can make

these tradeoffs.

Feedback Channels and Risks

Deception-based defenses are not a single one-time defensive measure, as is the

case with many advanced computer defenses. It is essential to monitor these defenses,

and more importantly measure the impact they have on attackers’ perceptions and

actions. This is step 5 in the deception framework. We recognize that if an attacker

detects that he is being deceived, he can use this to his advantage to make a counter-

deception reaction. To successfully monitor such activities we need to clearly identity

the deception channels that can and should be used to monitor and measure any

adversary’s perceptions and actions.

In the sixth and final step before implementation and integration, we need to

consider that deception may introduce some new risks for which organizations need

to account. For example, the fact that adversaries can launch a counter-deception

operation is a new risk that needs to be analyzed. In addition, an analysis needs to

done on the effects of deception on normal users’ activities. The defender needs to ac­

62

curately identify potential risks associated with the use of such deceptive components

and ensure that residual risks are accepted and well identified.

4.5.2 Implementing and Integrating Deception

Many deception-based mechanisms are implemented as a separate disjoint com­

ponent from real production systems, as in the honeypot example. With the ad­

vancement of many detection techniques used by adversaries and malware, attackers

can detect whether they are in real system or a “fake” system [27], and then change

behavior accordingly, as we discussed in section 4.2. A successful deception operation

needs to be integrated with the real operation. The honeywords proposal, discussed

in section 3.7.3, is an example of this tight integration as there is no obvious way to

distinguish between a real and a “fake” password.

4.5.3 Monitoring and Evaluating the Use of Deception

Identifying and monitoring the feedback channels is critical to the success of any

deception operation/component. Hesketh discussed three general categories of signals

that can be used to know whether a deception was successful or not [75]:

1. The target acts in the wrong time and/or place.

2. The target acts in a way that is wasteful of his resources.

3. The target delays acting or stop acting at all.

Defenders need to monitor all the feedback channels identified in step 5 of the

framework. We note that there are usually three general outputs from the use of any

deceptive components. The adversary might (i) believe it, where the defender usually

sees one of the three signs of a successful deception highlighted above, (ii) suspect

it or (iii) disbelieve it. When an attacker suspects that a deceptive component is

being used, we should make the decision whether to increase the level of deception or

63

stop the deceptive component to avoid exposure. Often deception can be enhanced by

presenting more (and perhaps, true) information that makes the deception story more

plausible. This can be included as a feedback loop in the framework. This observation

should be analyzed by the defender to review his analysis of the attacker’s biases, (i.e.,

step 3), and the methodology used to create the deceit (i.e., step 4). Furthermore,

the deceiver might employ multiple levels of deception based on the interaction with

the attacker during the attack.

When an attacker disbelieves the presented deceit we need to have an active mon­

itoring and a detailed plan of action. This should be part the sixth step of planning

in our framework where risks are assessed. In addition, during our discussions with

security practitioners many have indicated that some attackers often act aggressively

when they realize that they have been deceived. This can be one of the signals that

is used during the monitoring stage to measure attackers’ reaction of the deceptive

component. In addition, this behavior can be used as one of the biases to be exploited

by other deceptive mechanisms that may focus on deceiving the attacker about the

system’s damage assessment, as discussed in section 4.5.1.

4.6 Deception and Related Concepts

4.6.1 Kerckhoff’s Principle and Deception

Deception always involves two basic steps, hiding the real and showing the false,

as we discussed earlier. This, at first glance, contradicts the widely believed misinter­

pretation of Kerckhoff’s principle; “no security through obscurity.” A more correct

English translation of Kerckhoff’s principle is the one provided by Petitcolas in [117];

“The system must not require secrecy and can be stolen by the enemy

without causing trouble.”

The misinterpretation leads some security practitioners to believe that any “ob­

scurity” is ineffective, while this is not the case. Hiding a system from an attacker or

64

having a secret password does increase the work factor for the attacker — until the

deception is detected and defeated. So long as the security does not materially de­

pend on the obscurity, the addition of misdirection and deceit provides an advantage.

It is therefore valuable for a designer to include such mechanisms in a comprehensive

defense, with the knowledge that such mechanisms should not be viewed as primary

defenses.

In any system design there are three levels of viewing a system’s behavior and

responses to service requests:

•	 Truthful. In such systems, the processes will always respond to any input with

full “honesty.” In other words, the system’s responses are always “trusted” and

accurately represent the internal state of the machine. For example, when the

user asks for a particular network port, a truthful system responds with either a

real port number or denies the request giving the specific reason of such denial.

•	 Naively Deceptive. In such systems, the processes attempt to deceive the inter­

acting user by crafting an artificial response. However, if the user knows the

deceptive behavior, e.g. by analyzing the previous deceptive response used by

the system, the deception act becomes useless and will only alert the user that

the system is trying to deceive her. For example, the system can designate a

specific port that is used for deceptive purposes. When the attacker asks for a

port, without carrying the appropriate permissions, this deceptive port is sent

back.

•	 Intelligently Deceptive. In this case, the systems “deceptive behavior” is in­

distinguishable from the normal behavior even if the user has previously inter­

acted with the system. For example, an intelligently-deceptive system responds

to unauthorized port listening requests the same as a normal allowed request.

However, extra actions are taken to monitor the port, alert the system adminis­

trators, and/or sandbox the listening process to limit the damage if the process

downloads malicious content.

65

The mechanisms discussed in chapters 5, 6, and 7 are designed to be intelli­

gently deceptive. In other words, an adversary who know the design details of

these security controls, i.e. read this dissertation, will not be able to easily dis­

tinguish between real and fake information without expending extra time and

computation.

4.6.2 Deception and Hacking Back

These two terms are orthogonal to each other, however, they are often mixed

together driving the security community away from the use of deceptive techniques, as

discussed earlier. Hacking back is an activity that involves the use of many techniques,

and deception can be one of those techniques. The confusion between the two terms

is partially driven by the abundant use of deception in war and military conflicts to

launch offensive attacks. Moreover, the extensive use of deception by adversaries,

and the negative connotations associated with it, contributed to the creation of the

mental model that using deception is equal to hacking back.

4.6.3 Deception and Consistency

Most of the work in using deception is designed to provide plausible and consistent

alternatives to the truth to adversaries. Neagoe and Bishop argue that deception can

still be achieved without maintaining consistency [109]. Moreover, they postulate

that inconsistency is favorable in some scenarios. When inconsistent deception is

used, the goal of deception focuses of “discombobulate and disorient” – i.e. confuse

– adversaries [109]. This wastes attackers time where they try to reason about the

system’s behavior and decide which perception reflects the reality of the computer

system. This is why we added “confusion” in the definition of deception in computer

security in section 4.1.

We argue that inconsistency can be an integral part of any deceptive-based tech­

niques. Maintaining a fully consistent “fake” image of a sophisticated computer

66

system may not be an easy task especially when considering that there are many

ways to access the sought after data. If the sole goal of security administrators is

to confuse the attacker, then the extra cost associated with implementing consistent

deception is not needed. In addition, inconsistent deception can be used as a tactic

when realizing that the consistent “fake” image can no longer be maintained.

4.6.4 Deception and Abstraction

It is crucial to distinguish between the act of deceit and abstraction. Although

the line is fuzzy, Adar et al. suggests a simple test to distinguish between the two [1].

In abstraction, unlike deception, the user’s behavior will remain largely unchanged

if the user knows the real truth. In addition, we point out that deception always

requires the act of simulation and dissimulation as discussed in section 3.1. However,

abstraction only involves simulation, where we try to show a simpler version of the

reality, but we do not actively dissimulate the truth.

Finally, another fundamental difference between deception and abstraction is the

difference in their ultimate goals. Abstraction aids humans interacting with com­

puters to make them better reason about these systems and their behavior. This

is usually achieved by hiding complexities and suggesting useful analogies. In con­

trast, deception’s goal is to corrupt such reasoning and influence humans perception

to reach false conclusions about the systems they are interacting with.

4.7 Applying the Framework

4.7.1 To Previous Uses of Deception

In this section, we apply our framework to some of previous uses deception to

enhance security. We discuss how the framework captures the design and implemen­

tation of those tools. Moreover, we highlight some of the missing components in the

design that are identified by the framework.

67

Rowe developed a deceptive security tool that sends deceptive responses when it

detects a real attack. We will take his work discussed in [128] and [127] and apply

it to the framework discussed in this chapter. Rowe points out that the goal of his

proposed deceptive tool is to “waste the attacker’s resources while permitting time

to organize a better defense,” which is the first step in our framework. In addition,

his goal is to consistently deceive attackers while interacting with the security tool.

To achieve this goal, he implicitly discusses exploiting the expectedness bias – i.e.

attackers expect computers to tell the truth. Rowe did not explicitly discuss how he

desires the adversary to react to his system other than simply believing, omitting the

second step of the framework. We argue that not explicitly discussing adversaries’

desired reaction leads the design of such tools to not realize their goals. When we do

not explicitly specify what we consider success when an adversary interacts with the

deceptive security tools, it becomes harder to quantify their value or how they can

be integrated effectively with other security mechanisms.

Matching the fourth step of the framework, Rowe presents how this tool is going to

create the deceit. Figure 4.4 shows the different system components where deception

has been applied. In all of those, the tool manufactures a reality and presents to the

adversary. Rowe explains in detail how deceit is created in each one of these examples

in [128].

Figure 4.4.: System Components Used to Create Deceit in Rowe’s Work

68

After the creation of deceit, we found that Rowe did not explicitly discuss the

feedback channels that should be monitored to observe the attacker’s reaction. He

implicitly touches on this concept when investigating the plausibility of the created

deceit and how to maintain it. Moreover, his work does not discuss the additional

risks that could be introduced by the use of such tools, if any, and possible counter

measures.

Rowe examines how to integrate this security tool into a computer system. He uses

a Bayesian belief update model to estimate the attacker’s belief and alter the system’s

behavior. He generates a Markov graph by running a predicative-calculus planning

specification hundreds of times using some probabilistic estimations obtained from a

number of questionnaires. The system moves to different states based on the input

received at every stage.

Another example we will discuss in this section to apply our framework is the

work of Bowen et al. to mitigate the insider threat [19]. They integrated a decoy

documents distributor and a mechanism to monitor whether the insider accessed the

decoys with behavioral based host-based sensors. The authors clearly stated that

the goal is to “confuse and confound attackers.” After that, Bowen’s group points

out that their design would lead an adversary to react by expending more effort into

distinguishing between the real and fake information. Even though they discussed

how they desire the adversary to react, there was no discussion of other possible

ways an attacker might react. This missing part of the second part of our framework

causes the designer of deceptive defenses to focus on what they desire and possibly

eliminate other undesired reactions by the adversary which could lead to additional

risks. Additionally, the researchers present no discussion of any biases their tool is

exploiting to make the deceit believable.

Figure 4.5 illustrates the two system components Bowen et al. applied deception

to in their work [19]. They embedded honeytokens, discussed in 3.7.2, in the tar­

geted system and these are internal administrative information. In addition, they

distributed a number of beacons that alert a remote server when accessed and mark­

69

ers in every file to distinguish between real and fake file by host-base sensors. These

two deceptive techniques apply deception to the raw internal data. To create the

deceit, Bowen and his group manufacture reality, in the case of honeytokens, and

alter reality, in the case of the beacons and documents markers.

Figure 4.5.: System Components Used to Create Deceit in Bowen et al. Work

Bowen et al. system monitors the deceptive components they have in place in

two ways: a beacon calling back to their SONAR server, or using the host-based

sensor. The only side-effect they discuss is the issue of false positives and how to go

about reducing them. In addition, the researchers discuss generically how they would

integrate their controls with an existing computer system. However, they defer the

details to future research. Finally, Bowen and his group do not investigate the case

where the adversary suspects the use of deception. It could be argued that because

their goal is to require an adversary to expend more time in discerning the deceit

from the truth, there is no need to consider a suspecting attacker as a separate case.

In this section, we discussed how our framework captures all the details on two

previous work of deception; namely the work of Rowe [128] and Bowen et al. [19].

We showed that every part of the design of these two tools can be captured in using

our framework. More importantly, we point out to some of the omitted steps in the

design of these two security control that were highlighted in our framework. We show

70

that the functionality of these tools could be improved if all steps in the framework

were addressed explicitly.

4.7.2 To the Work in This Dissertation – A Case Study

In this section we present a case study of a web application to show how we can

use the framework presented in this chapter and the tools in the next three chapters

to enhance its security. In our discussion, we are assuming that this web application is

developed to provide customers with a peer-to-peer payment service. Each customer

has an account and she needs to login using her username and password whenever

she needs to use the service.

As in common web applications, traditional security controls are used to ensure

their security. In our case study, we use a firewall that only allows SSL/TLS con­

nections to port 443. This firewall is configured to block all known bad requests

using common blacklists. In addition, customers need to login to their accounts be­

fore making any requests. Each customer has a unique username and a password.

Locally, at the application server, all user’s passwords are salted and hashed. The

overall structure of the web application and its security is depicted in figure 4.6.

Figure 4.6.: Web Application Case Study

Despite all these protection mechanisms, customers occasionally receive phishing

emails asking them to urgently login to the service or they risk loosing their account

71

balances. Additionally, support emails posted publicly on the public webpages are

often used by adversaries. Support teams often receive malicious attachments, deliv­

ered through a spear phishing email, as a mean to compromise internal servers. In

addition, operators are suspect that they are targeted by some advanced attacks to

steal users’ credentials, similar to the ones that compromised other companies [63].

All these threats are illustrated in figure 4.7.

Figure 4.7.: Web Application Generic Threats

Using the framework discussed in this section, we will plan and integrate a number

of deceptive security mechanisms to enhance the security of this web application.

Table 4.1 summaries the result of using the framework discussed earlier in this chapter.

The overall design of augmenting the deception-based defenses with the web ap­

plication is illustrated in figure 4.8. The covert deceptive communication channel,

discussed in chapter 5, is used to both limit the exposure of users’ passwords and

communicate the user’s context during authentication, e.g. whether the user is log­

ging in as a response to an email solicitation. Ersatzpasswords, presented in chapter

6, are deployed to detect password files compromise. In addition, the scheme elimi­

nates the possibility of password cracking without physical access to the application’s

server. Finally, Deceptiver (discussed in chapter 7) is used to disseminate deceptive

email addresses to catch any malware received as part of targeted attacks. Moreover,

deceptive responses will be sent when an adversary tries to probe the web application

instead of simply blocking those attempts.

72

Table 4.1: Using the Deception Framework to Secure Web Applications

Strategic
goal

Reducing pass­
words exposure

Detecting password
files compromise

Limiting informa­
tion leakage

How should Cannot obtain Acting on the Act on the fake in-
an adver­ the password in- cracked passwords, formation that was
sary react formation during

authentication
an adversary would
reveal himself

obtained from in­
teracting with the
application

Exploited
Biases

Expectedness Confirmation bias Personal Bias –
servers do not lie

Simulation
and Dissim­
ulation

System Decisions Internal Administra­
tive Data

Public Data and
System Responses

Risks and
countermea­
sure

Deducability of
real password
from the users’
submission

Deducability of real
passwords from pass­
word files

False positives
or conflicting
information

Integration Use one-time
codes as authen­
tication token
carrying context

Change the way we
store passwords and
eliminate the possi­
bility of passwords
cracking

Augment internet-
facing servers
with deceptive
responses

Deceptive
Channel –
Chapter 5

Ersatzpasswords –
Chapter 6

Deceptiver –
Chapter 7

73

Figure 4.8.: Web Application Deception-Based Defenses

Throughout the next three chapters, we discuss the design of each one of those

three deceptive defenses. We discuss the threat, or threats, the proposed defensive

mechanism is designed to address. In addition, we present a security analysis of the

presented solution.

4.8 Chapter Summary

In everyday security, we often use deception, and computer security is no differ­

ent. In this chapter, we presented a discussion of the major limitations of previous

work. After that, we examined the major advantages deception-based security tools

have in comparison to traditional security mechanisms. Moreover, we presented a

novel framework for planning and integrating deception into computing defenses. We

discussed how a defender should monitor and evaluate the success of any such mech­

anisms. In addition, we provided some details of how defenders should integrate

deception into their computer security defenses, and how they can create plausible

alternatives to reality, thus misinforming the attackers and wasting their resources.

Finally, we discussed a case study of how the framework can be used and give a brief

overview of the relationships with the next three chapters.

74

5 DECEPTIVE COVERT CHANNEL

A recent American Banking Association (ABA) reported 62% of customers named

online banking as their preferred banking method, a substantial rise from 36% in

2010 [8]. At the same time, phishing has been an increasing threat — rising at an

alarming rate despite all the security mechanisms banks have in place [160]. Criminals

have been stealing money by means of exploiting the ubiquity of online banking. It is

estimated that the Zeus trojan alone resulted in $70 million dollars stolen from bank

accounts [124]. Many of the currently deployed two factor authentication schemes by

banks remain vulnerable to a number of attacks [97]. Zeus managed to bypass two

factor authentication schemes employed by banks [124]. Adham et al. presented a

prototype of a browser add-on that, even with two factor authentication, can suc­

cessfully manipulate banking transactions on-the-fly [2]. There is clearly a need to

improve the currently deployed schemes and address their shortcomings.

In this chapter we show how deception can be used to enhance the security of

passwords and authentication protocols. We introduce a deceptive covert channel that

conveys security information to the server, limits the exposure of users’ passwords,

and reduces the probability of them falling for phishing attacks. We start the chapter

by presenting an overview of the problem we are trying to solve and discussing some

of the relevant work in this area. After that, we present the details of our scheme with

an examination of its security. We then compare our scheme to previous proposals

that attempt to address the problem. We conclude the chapter by discussing some

possible enhancements of our scheme.

75

5.1 Background

5.1.1 Authentication Schemes

In this chapter we are concerned with two general classifications of attacks against

client-server communication: man-in-the-middle (MitM) attacks and man-in-the­

browser (MitB) attacks, as depicted in figure 5.1. In the former attack, the adversary

places herself in the communication channel between the user’s computer and the

server. End-to-end encryption schemes, such as SSL/TLS and IPSec, are intended

to address this so that the adversary cannot observe or alter the data in the commu­

nication channel. Attackers overcome this protection by forcing the user to have an

end-to-end encrypted channel with them instead of the real server, which is the case

in phishing attacks. In the latter attack, MitB, the attacker places herself between

the user and his computer by altering the interface (browser) and manipulates the

information displayed to the user in real-time. In this case even if the user employs

an end-to-end encryption scheme, such as SSL/TLS, the attacker accesses the infor­

mation when it is decrypted and can actively modify it before it is shown to the

user.

Figure 5.1.: Man-in-the-Middle (MitM) vs. Man-in-the-Browser (MitB)

Adham et al. identified three main authentication schemes built on the tradi­

tional username and password in the area of online banking [2]. These schemes are

one-time password (OTP), partial transaction authentication, and full transaction

authentication. They have shown that OTP schemes such as HMAC-Based One-time

76

Password (HOTP) [103] or Time-based One-time Password (TOTP) [104] are not se­

cure against active man-in-the-middle attacks (MitM) or man-in-the-browser (MitB)

attacks [2]. The former can be orchestrated using an active phishing attack, in which

the adversary immediately uses the stolen credentials to impersonate the user to the

bank, while the latter can be seen, as an example, in the Zeus trojan [15].

To address the problem of active MitB attacks, banks started to use transaction

authentication [2,49]. The Chip Authentication Program (CAP) introduced by many

banks requires a piece of dedicated hardware, and its protocol has a number of vul­

nerabilities [49]. A number of these hardware devices degrade the full transaction

authentication to only part of the transaction, as a consequence of usability chal­

lenges [2]. CrontoSign [50] is a full-transaction authentication scheme that utilizes a

smartphone to verify the information. The scheme requires a new phone registration

process that stores information on the phone, which makes the user vulnerable if her

phone is compromised or stolen. In addition, it ties the user to a specific phone, hin­

dering the usability of the scheme if the user does not have this particular phone at

transaction time. Moreover, this scheme only deals with transaction authentication,

and does not focus on providing enhanced user authentication.

Full transaction authentication gives a bank the ability to ask the user to confirm

her banking transaction to detect if MitB attacks are taking place and modifying

the transaction on-the-fly. It is an essential step to enhance the security of online

banking, as pointed out by Adham et al. [2]. The scheme we present in this chapter

achieves such goals without the need for additional hardware, as in CAP [49] or

hPIN/hTAN [93], or for a long term secret stored in the user’s smartphone. It also

has the other features mentioned earlier, of covertly conveying information to the

bank and supporting deceiving the adversary (honeyaccounts).

77

5.1.2 Use of Smartphones

Clarke et al. were the first to suggest the use of a camera-based device when

connecting from untrusted computers [32]. While they did not explicitly discuss

the use of QR codes, their paper is considered seminal in this approach of en­

hancing authentication. A number of follow-on proposals presented other camera-

based schemes, using smartphones and other devices to improve authentication (see,

e.g., [72, 91,92,95,105,145]).

Each one of these schemes suffers from one or more of the following shortcom­

ings: (i) requiring an extra piece of hardware; (ii) storage of long-term secret on the

smartphone; (iii) requiring a new registration process for associating the user’s bank

account with a particular smartphone; (iv) requiring the smartphone to have (net­

work or cellular) connectivity to carry out the authentication process. The scheme

we present in this chapter does not suffer from any of these shortcomings.

5.1.3 Use of Deception and Covert Channels

As we discussed in chapter 4 the use of deception has shown a number of promising

results in aiding computer defenses. We incorporate deceptive elements in our scheme

in two ways: (i) an active MitM will be deceived such that it is forwarding the covert

messages back-and-forth that send an alarm to the service provider, (ii) we introduce

honeyaccounts in our scheme to dismantle an attack before it takes place, and to

gather information about the attacker’s goals, objectives, and resources.

The covert channel term was introduced by Lampson in 1973 and defined as

“channels not intended for information transfer at all” [89]. Such a channel has

been extensively studied as a security vulnerability that undermines the security of a

system and leaks out private information. The covert channel we are introducing in

this scheme is observed to “not carry information” by the adversary and is created by

design to enhance the overall security of the system. In this work we are overloading

the term, although we see the functionality as similar.

78

Our method introduces the use of covert deceptive messages between the user

and/or her client and the service provider. One of the choices of covert message

is that the user is logging in as a response to an email; we discuss how this can be

achieved in the next section. If the bank has no record of a recent communication, that

response may trigger an enhanced defense, such as enabling read-only access. This

would directly address many forms of phishing. Other messages can be automatically

embedded by the user’s client, such as the use of a public network.

Honeyaccounts are fake bank accounts that banks can use to lure attackers and

deceive them into believing that they have successfully broken into the user’s account

at the bank. They provide an effective mechanism to monitor attackers’ activities –

to learn who is targeting a certain bank, and learn the other accounts being used to

launder users’ stolen funds. This information is usually gathered by banks during the

forensic investigations following a money-theft episode (when it is too late to follow

the money trail). A user who covertly conveys to the bank her belief in the present

transaction offers some hope of dismantling the financial infrastructure of a large-scale

phishing campaign before it does real damage. We all experience situations where we

know that an email is a phishing attempt, yet many of us limit our reaction to not

falling prey to it — it would be nice to have an easy-to-use mechanism for conveying

our belief and thereby triggering the deception mechanisms of the bank. The covert

communication we propose can achieve this.

5.2 Creating a Deceptive Covert Channel

This section discusses the technical specifications of our scheme. We show how to

perform the initial setup at the server and seamlessly enroll users. We also discuss

how the covert channel can be deployed within the authentication scheme. At the end

of this section, we discuss some the potential enhancements that our scheme brings

that can be incorporated in future work.

79

5.2.1 Threat Model

There are many attacks against password-based authentication systems including

the following common attacks.

•	 Stolen Passwords. The security of password-based authentication systems fun­

damentally relies on the fact that each user’s password is only known to the

user alone. When an adversary obtains the user’s password he has the ability

to continuously impersonate the user to the server, without any of the two par­

ties noticing. Many attacks, such as phishing, keylogging, and shoulder-surfing

are centered on the goal of obtaining users’ passwords to gain unbounded access

to their accounts.

•	 Stolen Password Hashes File. An adversary who obtains the passwords hashes

file of many users can apply an offline cracking process (such as dictionary

attacks) to retrieve the users’ passwords from their hashes.

•	 Poor/Easily Guessable Passwords. When the user chooses an easily guessable

password, an adversary can easily guess it and impersonate the user to the

server.

•	 Repeated Password Use. A person may use the same passwords across multiple

systems where a compromise against one system undermines the security of all

other systems.

Our focus in this chapter is to address the first attack scenario. In addition, it

provides an improvement to address the problem of cracking passwords. However,

the Ersatzpassword scheme presented in chapter 6 provides a strong protection of

password cracking as we will discuss later.

80

5.2.2 Scheme’s Setup

As depicted in figure 5.2, there is no new registration required for bank customers,

and the bank can deploy the scheme either all at once, or progressively by selecting a

specific subset of their customers (in which case a user who prefers the old system can

easily be accommodated). In addition to a cryptographic one-way hash function H

and a cryptographic message authentication code such as HMAC, we use a one-way

accumulator function A whose output is to have the same number of bits as H (so

that the format of the bank server’s password file does not need to be modified – only

the nature of the bits stored changes).

As discussed by Fazio and Nicolosi, an accumulator function can be constructed

such that it behaves as a one-way function [55]. In addition to the usual one-way

property required of cryptographic hashes, a one-way accumulation of n items has

the properties that (i) the order of the accumulation does not matter (i.e., any two

permutations of the same n items give rise to the same result) [i.e. A(x1, x2) =

A(x2, x1)]; and (ii) given a new item/s and the accumulation of a previous item

A(x1), a new accumulation that includes the new item/s (as well as the old one)

can be efficiently obtained without needing to know the previous item (x1) which

equals A(x1, new items). To illustrate the second property using an example, if

we have the modular exponentiation of x1 (g
x1) and we want to compute the new

x2
1 x1∗x2accumulation including a new item x2, we compute this as gx = g . A real world

realization of such a function can be done by using a modular exponentiation where

the accumulation of x1 can be implemented as A(x1) = gx1 .

As the most common ways of implementing such an accumulator A function in­

volve modular exponentiation, it is typically the case that A(x, y) = A(x ∗ y) (where

arithmetic is modular). In that case the security of A hinges on the Computational

Diffie-Hellman assumption; that given A(x1) and A(x2) it is computationally in­

tractable to compute A(x1, x2) without knowing either x1 or x2. We give our presen­

tation assuming the existence of such an A, without going into any details of how it is

81

actually implemented; our scheme depends only on A’s one-way property, its above-

mentioned order-independence, and its above-mentioned incremental accumulation.

Recall that a user’s entry in a traditional password file contains h = H(passwd

|| salt) and salt, where the purpose of the salt bits is to make a wholesale dictionary

attack against all users harder (but it does not make it harder to attack an individual

user, because the salt is stored in-the-clear). To switch to the new system, the bank

simply replaces h with A(h). This can handle users who select to remain in the

traditional username/password authentication (in the obvious way). But replacing h

by A(h) is essential for users who select to switch to our proposed smartphone-based

scheme, which we describe next.

5.2.3 Logging In

As usual, the login starts with the user entering her username on the computer.

We assume that the smartphone has the needed app (which knows nothing about the

user or the bank).

•	 The bank verifies that the username exists and, if so, generates a nonce R.

Then it computes and sends the following information to the user’s browser,

encoded in a QR-code (recall that a QR code is an optically machine-readable

two-dimensional barcode).

–	 A(R).

–	 HMACkey(A(R)) where key = A(A(h), R) = A(h, R).

–	 The user’s salt.

•	 The user scans the QR code using the smartphone app and inputs his password

to the smartphone. The app computes hi = H(password || salt) and then

generates the HMAC key by computing A(A(R), hi) = A(R, hi) — the user’s

phone does not need a copy of R to make this computation. The HMAC is

recomputed locally and then the app verifies that the received HMAC matches

82

Figure 5.2.: Protocol Run

the HMAC it computed. If the local check succeeds (meaning the user entered

the correct password and h == hi) the user moves into the next step of the

protocol – phase 5. If the check fails there are two scenarios for what comes

next; a safe case (branch a), and a decoy case (branch b). With the safe case

the scheme continues to phase 5; in the fail case the scheme jumps to phase

6. Before sending the MitM/MitB to a honeyaccount, the app might ask the

user to type their password three time to make sure that the failuer is not a

83

result of a mistyped password. In the latter case, the app can simply skip the

covert messaging part if it detects a MitM/MitB impersonating the bank, and

either terminate or continue with a honeyaccount. In this case, the failure of

the HMAC verification can be treated as a special kind of covert message.

•	 In phase (5), the user is provided with the optional facility to covertly signal a

simple message to the server. This covert messaging mechanism enables differ­

ent behaviors from the current practice of “all-or-nothing” authentication and

access. We give users the ability to choose from a fixed set of possible messages

they could convey to the server; an example can be seen in figure 5.3. Giving

users the ability to convey their level of trust in the computing or network fa­

cilities being used, e.g., using a public or a friend’s computer, wireless network

at an airport, etc. Later in this section, we show how these messages can be

easily embedded in the code generated, in phase (6) of the scheme. Users can

use this same facility to covertly request a limited-access login (e.g., read-only),

in cases where they are following an email-solicited invitation to login to view

an “important message.” This covert message can alternatively be realized by

other means than the above, such as those proposed by Almeshekah et al. [3].

•	 In phase (6), a one-time code is generated by the smartphone by computing the

following accumulation;

y = A(A(R), h, msg1, .., msgi) = A(R, h, msg1, .., msgi)

The covert messages are conveyed by setting the bit of any covert message (of

the i possible messages) to one.

•	 In phase (7), the user types the generated code into the computer (copied from

the smartphone screen). To make the code readable we can use base64 encoding

and selecting the first n characters (the size of n is discussed later). Branch (a)

84

Figure 5.3.: Sending a Covert Message

of the previous phase, i.e. the existence of networking facility in the phone, will

be discussed shortly.

•	 When the bank receives the code, in phase (8), it will check the validity of the

code and whether a covert message has been signaled or not. It first accumulates

into A(h) the item R, if it matches the y sent by the user sent then the login

succeeds (and the user did not convey a message), if it does not match y then

the bank further accumulates (in turn) every possible covert message until the

result matches y (or, if none matches, the login fails). In the safe case, if the

bank receives a valid code with no message, phase (9) of the protocol is reached.

However, if a message is sent, there are two possible options depending on the

message:

1. Take policy-specified action as per to the message conveyed before reaching

phase (9). This can incorporate a variety of policies including the require­

ment of carrying out additional authentication measures or offer limited

85

access. This gives service providers the ability to implement risk-based

authentication and access control, and enforce a rich set of policies.

2. Redirect the authentication session to a honeyaccount and, optionally, no­

tifying the user of this access decision.

Length of code (y). As we will discuss below, the accumulator function is a one-

way function and its output can be viewed as a random sequence of bits. As a result,

the adversary succeeds if he can guess all the characters in this code. If we have 64

possible characters (including alphanumeric characters and symbols), the probability

of guessing a single character is 2−6 . If we set the length of y to 5, the probability of

guessing the code y is roughly equal to 2−30 .

In addition, as presented above, the calculation of y includes a random number

R. As a result, the adversary gains no advantage by learning any previous runs of

the protocol and the value of y as it is a one-way function of a number of variables

including a random variable.

5.2.4 Creating Deceit and Covert Communication

The introduction of covert channels in our scheme gives the user and app the

ability to convey a number of pre-determined messages without the knowledge of any

party positioning itself at any place in the communication channels. This can be done

by appending a number of bits to the input of the accumulation function in step (6).

To give an example, assume the protocol is designed to signal two different messages

to the server: (i) msg1 the user is accessing from a new wireless network, (ii) msg2 the

user selected read only access. When the app computes y in step (6) it can append two

bits to the hash output as the following; y = A(A(R), h(passwd||salt)||msg1||msg2)

where msg1 and msg2 are single bits that are set to 1 if the user want to signal this

message and 0 if the message is not being signaled.

The multitude of applications that can utilize such a mechanism is large and

it incorporates status communication as part of the authentication protocol. For

86

example, the bank can take extra precautions if the user is authenticating from a

new networking environment. As another example, the user can signal duress if he

has been threatened and forced to transfer money to other accounts. Duress can

be signaled covertly, for example, by measuring rapid changes in the phone’s built-

in accelerometer where the user can subtly shake his phone during login. Another

example to signal duress is when the user presses the physical volume buttons during

the authentication process.

5.3 Enhancements

Full-Transaction Authentication After the user logs in, the same steps can be

repeated for every sensitive transaction with two main differences: (i) instead of

sending the username, it is the transaction information that is sent, so that the QR

code will contain additional information about the transaction details along with the

HMAC and the user can verify those details on the app itself and make sure it is what

they really want; and (ii) the covert message part can be eliminated, only keeping

the part related to the failure of MAC checks. This part can be used, as we discussed

before, to lure attackers who are launching MitB attacks manipulating transactions

“on-the-fly.”

Phone Connectivity If the smartphone happens to have (optional) network con­

nectivity (step (a) in figure 5.2), it can spare the user the trouble of manually entering

the code displayed on its screen, and send it itself to the bank’s server (user sessions

can be uniquely identified by the server using the nonce R).

Storage of Insensitive Information The security of our scheme does not require

the long term storage of any information in the phone itself. Nevertheless, we can

benefit from storing information that can increase the utility of the covert communi­

cation. As an example, the app can store the name(s) of user’s home network(s) and

automatically send a covert message when the user is using a non-trusted network to

87

login. Such knowledge gives service providers the ability to deploy risk-based authen­

tication. For example, when the user is using an untrusted network to login, limited

control can be provided and an extra level of authentication can be enforced when

significant transactions are required.

5.4 Security Analysis

Within our scheme when the bank sends A(R), the only party that can successfully

respond with y is one who knows the password and gets the smartphone to compute

h = H(password||salt) and thus the code y that is conveyed back to the server. This is

true because an adversary who gets A(h) and A(R) is unable to compute y = A(h, R)

without knowing either R or h, neither of which is available to the attacker. Also

note that, if the credentials database at the bank is leaked, no one can impersonate

the user without cracking the passwords, as in traditional password schemes. One

minor advantage this scheme provides is that cracking is slower for the adversary

because of the introduction of the accumulation function A – it is significantly slower

to accumulate every password in the cracking dictionary than to simply hash it.

Central to the security of our scheme is the fact that the only information of use

to an adversary (the password) is entered on the cell phone and not on the client

computer being used to remotely access the bank. The cell phone has no permanent

record of any sensitive information. In addition, the bank’s server never contains

(even ephemerally) the user’s password in the clear, providing a measure of defense

against a snooping insider at the bank.

Finally, we point out that there are a number of additional security advantages of

entering the user’s password in a smartphone application instead of the browser:

•	 The use of Software Guards. Traditional password based-schemes ask the user

to enter her password in the browser running on the client operating system.

Current browsers are not self-protected, as identified in [26], and they are a

complex pieces of software that are exposed to many vulnerabilities. For that,

88

our scheme uses a specific phone application that can have intrinsic software

protection against tampering as illustrated in [26, 54].

•	 Automated Trust Decision. Adversaries using social-engineering attacks to lure

users to give up their credentials, such as in the case of phishing, exploit the

users’ decision-making process by presenting them with legitimate-looking web

pages. Our scheme aids users in making trust decision about the authenticity of

a web page mandating that the website provides a cryptographic proof of their

knowledge of a shared secret; namely the password. This process is done in

total transparency to the user and the user is only asked to capture the picture

of a QR code.

This cryptographic proof can be computed by the web server without the need

of explicitly storing the password value and, more importantly, without storing

any information on the user’s phone. This significantly increases the difficulty of

social engineering attacks, such as phishing, as it reverses the game – demanding

that the web site provides proof of authenticity before the user logs in.

•	 Smaller Chance for Shoulder-Surfing. Traditionally, users enter their passwords

using a large keyboard where shoulder surfing is an easy task for adversaries.

Asking the users to input their passwords on their phone increases the difficulty

of such activity.

It worth noting that if the user logs-in to the service provider using a phone

browser, our scheme cannot be directly used to scan the QR code as we discussed

above. However, the basic protocol and feature can still be applicable with only

a change in how the QR is input. This can be achieved by developing a browser

extension that can automatically detect a QR code in the webpage and button on the

corner of such codes to be clicked by users to launch the authentication app where

the QR is automatically read. Nevertheless, the advantages of separating the service

login, previously done on the computer, and the authentication process on the phone

are slightly degraded. If the phone browser is infected with a MitB trojan, it would be

89

easier to circumvent the security on the scheme as it can communicate directly with

the authentication app. However, we note that most security sensitive transactions on

a phone are done using dedicated apps that are hardened for a specific application. In

addition, the underlying principle of using a covert channel presented in this chapter

can be incorporated in these dedicated apps.

5.5 Comparison with Other Schemes

In table 5.1 we evaluate the different schemes using the following criteria.

Requirement of phone enrollment. Schemes such as CrontoSign and QRP [118]

require the user to register her phone with the bank, i.e. phone enrollment. Such

schemes store phone information, such as the IMEI number, and use it as part of their

protocol to achieve assurances about the user’s identity. One of the major issues of

tying the user’s identity to his phone is that the user may lose his phone, forget it or

run out of battery power. In these circumstances, the user wants to be able to use an

alternative phone to login to his account. If the user loses his phone he is vulnerable

to the threat of impersonation until he reports the incident to every bank he banks

with. In the case where he does not have his phone the usability of such a scheme

becomes an issue as the user cannot login to his account anymore. This could result

in lost business if the user moves to other banks that are supporting more usable

schemes.

Our approach addresses these concerns in two ways. First, we allow customers to

use many phones without degrading the security of the scheme or asking the user to

register all his phones. Second, we challenge the all-or-nothing assumption allowing

users to fall back to other authentication mechanisms dynamically, possibly setting

the privileges to only allow non-sensitive transactions.

90

Requirement of long-term secrets. Many of the previously proposed schemes

require the storage of long-term secret(s) either on the users’ phones or on another

piece of specialized hardware [93, 118, 145]. Our scheme is the first scheme that pro­

vides full transaction authentication and user authentication that resist MitB without

the need to store long-term secrets or require additional hardware.

Resisting MitB. A recent paradigm in banking Trojans is to bypass two factor

authentication by launching MitB attacks that change transaction information on-

the-fly. We compare the schemes in table 5.1 based on their resistance to MitB.

When our scheme is used to authenticate transactions, as discussed in section 5.3, a

MitB attack can be defeated. This is because the MitB needs to send the modified

transaction information to the bank, where an HMAC is created. However, when the

user verifies this information on his phone after scanning the QR-code he can see that

the transaction details have been changed. He can click on a button to say that the

details have been changed and a deceptive code can be generated. The MitB attacker

would end up in phase (10) where they will be deceived.

Table 5.1: Schemes Comparison

no no resists no no compatible
phone long- MitB special phone with exist-
enroll- term hard­ connec­ ing
ment secret ware tivity

Our Scheme , , , , , ,
CrontoSign [50] – – , , , –
QR-Tan [145] – – , , , –
hPin/hTan [93] N/A – , – N/A –
QRP [118] – – , , , –

Use of special hardware. Many proposals introduce a new piece of hardware to

the authentication scheme to achieve a higher level of assurance and to verify bank­

91

ing transactions, such as the CAP scheme [49]. There are two major disadvantages

with those approaches: cost and usability. As an illustrative example, Barclay’s Bank

in the UK equipped users with special full-transaction authentication hardware, but

ended up having to reduce the functionality to only partial transaction authentication

because of many customer complaints. This degradation led to a number of security

vulnerabilities [2].

Requiring phone connectivity. A number of schemes are intended to maximize

their usability by making the smartphone or the special hardware act on the users’

behalf. In all the mechanisms we examined this comes with the cost of either requir­

ing the phone to have network connectivity, which is not always possible, or requiring

a direct communication between the users’ computers and their smartphones, which

hinders usability. In our scheme we share the same goals and enhance the usability

of our scheme by giving users the ability to login even though they do not have any

connectivity in their phone and without having to connect their phones to their com­

puters.

Compatible with existing infrastructure. Banks perceive security as an eco­

nomic and risk reduction activity. Protocols that require radical changes to current

infrastructure usually do not get adopted because of the associated high cost. In

addition, the ability to dynamically fall back to traditional authentication methods is

a preferred property giving banks the ability to dynamically deploy their new scheme

and progressively enroll their users. This is why we use this as a comparison factor

with other schemes.

92

5.6 Chapter Summary

In this chapter, we have shown how deception can be used to enhance the se­

curity of passwords and authentication protocols. We presented an authentication

mechanism that has many attractive features, including compatibility with deployed

authentication infrastructure; flexible use of smartphones without requiring phone

registration or storage of permanent information in the phone; without any require­

ment of phone connectivity (i.e., using the phone as a computational device rather

than as a storage or communication device); resistance to many common forms of

attack; and a facility for user-friendly (pull-down menu on the cell phone app) covert

communication from the user to the bank. The covert communication in turn makes

possible different levels of access (instead of the traditional all-or-nothing), and the

use of deception (honeyaccounts) that makes it possible to dismantle a large-scale at­

tack infrastructure before it succeeds (rather than after the painful and slow forensics

that follow a successful phishing attack).

93

6 DECEPTIVE PASSWORDS — ERSATZPASSWORDS

Passwords are the most dominant form of online authentication and likely to remain

so for a while despite their weaknesses. It thus behooves us to protect them as much

as possible. Within authentication servers, passwords are usually stored in a salted

hashed format to prevent easy pre-image recovery. Nevertheless, an adversary who

steals the list of hashed passwords can use brute-force techniques to find a password

p with a hash value H(p) that equals the value stored for a given user. Later, the

adversary can use p to impersonate the user at the authentication server.

There are a number of threats that come with the use of passwords. These threats

fall into three main categories: technical, procedural, and human related – these will

be discussed in more detail in the following section. There have been a number of

high-profile thefts of user passwords files in recent years. For example, Evernote

reported the leakage of the hashed passwords for more than 50 million users [67].

Other attacks against Yahoo, RockYou, LinkedIn, and eHarmony has been reported

[63] [167]. Furthermore, password cracking is often a precursor to more significant

attacks as illustrated in [116].

In this section we show how deception can be used to protect stored passwords.

We present a scheme that eliminates the possibility of any offline password cracking

without physical access to the target’s machine. We designed the scheme such that

passwords’ hashes file will appear no different than a traditional file. However, we

incorporate “fake” passwords such that when an attacker uses traditional cracking

tools to recover users’ passwords he will “discover” these fake passwords. When such

passwords are used to login to the targeted systems, they will trigger an alarm. We

refer to these fake passwords as“ersatzpasswords.”

94

6.1 Background

6.1.1 Passwords

There have been many high profile incidents involving the leaking of hashed pass­

words files [47]. Users are still using poor passwords, even with the existence of pass­

word policies that try to guide users towards choosing more secure passwords. This

can be seen in the analysis of more than 70 million users’ passwords [17]. Bonneau

et al. presented an extensive comparative analysis of many authentication schemes

replacing passwords [18]. However, passwords will remain in use because of their

convenience, ease of use, and ease of deployment.

6.1.2 Password-Related Threats

The convenient and versatile use of passwords comes with its own challenges. We

define password-related threats as the attacks adversaries can launch to retrieve one

or more valid passwords of current legitimate users of the systems. These host-based1

threats can be grouped into three main categories.

Technical Threats

There are two sub-categories of technical threats associated with the use of pass­

words: server-side and client-side. Any piece of malware or key logger that can be

installed at the user’s machine to exfiltrate the user’s password is a threat to any

password-based authentication system. At the server side, adversaries can obtain

the file of stored password information and then impersonate the system user using

the stolen passwords. Strong host security is needed to protect the client and server

systems, but there are multiple opportunities for an attacker to capture a copy of the

stored password information.

1We are ignoring network snooping and other such remote mechanisms as our attention is directed
only at securing host-based password databases.

95

A computer system needs to save an “authenticator” for every user during user

enrollment that is used to verify the identity claim during the login phase. Current

computer systems store a salted cryptographic hash (H) of the password along with

the username. In a system with n users, we have the following pairs:

(u1, H(p1)), (u2, H(p2)), ... , (un, H(pn))

where ui is the username of user i and pi is the password of user i. 2 An attacker

who steals this list can launch an offline attack to recover the hashed passwords using

some dictionary and replicating the hashing algorithm used. Many tools already exist

to automate an attack, such as John the Ripper3 . There have been many attempts

to address this challenge, usually falling into one of three major approaches: (i)

significantly increasing the resources needed to match a password, (ii) strengthening

user passwords to make their recovery process unlikely as they will be unlikely to

be found in a dictionary, and (iii) instrumenting passwords files with fake decoy

passwords triggering an alarm when used indicating that the password file has been

attacked.

The development of password hashing algorithms from crypt to bcrypt, scrypt,

and others is mainly driven by the goal of increasing the resources needed to crack

the users’ passwords [115]. The introduction of private salts [86] was also intended

to increase the work required for cracking the password files. In addition, increasing

the number of rounds these algorithms apply to a password is a parallel approach to

increasing the work factor.

Cappos and Torres proposed “PolyPasswordHasher” [23] as a scheme to protect

passwords from offline dictionary attacks. Their scheme additionally protects pass­

words with a secret share obtained using the Shamir Secret Sharing scheme [138]. The

secret is saved in memory and used to verify passwords. One of the limitations of

their scheme is that it requires additional fields in the password file specifying which

2Salts, as an additional item in many systems, are described later.
3http://www.openwall.com/john/

96

share to use. Also, if an attacker obtains access to the system memory he can steal

the secret.

Deception has been used to address the threats associated with cracking password

files. One approach is to inject fake accounts with passwords into the password file.

Another approach is to place decoy password files in the system luring the attackers

to access them believing they are the real files. Schemes such as Honeywords [84] are

intended to confuse the attacker by presenting him with many passwords associated

with a single username, where all of them are fake except one.

Procedural Threats

Password-recovery procedures associated with password-based authentication sys­

tems are sometime exploited to override current user passwords [136].

User-Centric Threats

Threats such as phishing, shoulder-surfing, password re-use, and others can be

used to undermine the security of password-based authentication systems. Our ap­

proach does not address these issues.

6.1.3 Injecting Deceit

In chapter 4 we discussed some of the unique advantages deception-based mecha­

nisms. We use deception in the previous chapter to enhance passwords’ at the clients’

side and in transit. In this chapter we discuss how deception is used to enhance the

security of passwords at the server side.

Rivest and Jules proposed augmenting the password database in Unix with nega­

tive information such that cracked password files can be detected [84]. Their proposal

is similar to Rao’s proposal of using “Failwords” [122]. Bojinov et al. proposed Kam­

ouflage, a scheme that is intended to protect the list of passwords used by a user

97

and saved locally by a password manager [16]. Their scheme hides the real list with

a set of “fake” lists. Kontaxis et al. proposed an authentication scheme (SAuth)

that requires each user’s login attempt to be vouched for by another service provider,

so an attacker cannot impersonate a user by simply obtaining the password for one

web site [87]. They use deception in their scheme as a way to address the common

behavior of password reuse across multiple service providers.

Unlike previous proposals, our mechanism has the following advantages: (i) elim­

inating the requirement of any additional server/components, (ii) never presenting

the real user credentials to the attackers, and (iii) making password cracking impos­

sible without physical access to the targeted machine. The scheme runs internally

in the server without requiring any changes to the user interfaces, clients, and/or

experiences. A more detailed discussion of related literature is presented in the next

section.

One additional contribution our scheme provides is that it imposes risks to any

adversary who obtains a file of leaked usernames and passwords, causing mistrust

within the market for such files, and rendering their use risky for many parties. This

is because the unique property of our scheme of having the username and password

file look identical to the file generated by the traditional authentication scheme. This

property benefits not only the early adopters of the scheme, but the overall security

of other (non-adopting) systems. This is one of the distinguishing features of using

ersatzpassword in comparison to Honeywords [84], PolyPasswordHasher [23], SAuth

[87], and others.

6.2 Technical Specification

6.2.1 Background

A number of cryptographic functions have been used in computer systems to

protect passwords, including crypt, bcrypt, and scrypt. As discussed earlier, part

of the motivation to develop additional algorithms is to make the cracking process

98

of stolen password hashes files a resource-intensive process. Our scheme works with

any of these underlying functions; we will denote the function used as H. In later

discussion we will use bcrypt to give a concrete example, but without any loss of

generality.

Throughout this section we will assume the following format of the stored password

file. For each user (i) in the system we have the following triplet, at a minimum,

(ui, si, αi) saved in the password file:

• Username (ui).

• Multibyte (multi character) public salt (si).

• The hash of the user’s password pi as αi = H(pilsi).

In addition, we will use a hardware-specific function denoted as HDF. This can

be implemented as a physically unclonable function (PUF) [147], a hardware security

module (HSM) [59] with a unique key, or any other mechanism of equivalent general

functionality.

Our goal is to enhance the security of the storage of passwords in three ways:

(i) require the process of computing the hash of the password to require access to a

hardware dependent function, thereby thwarting offline cracking of stolen password

files, (ii) when an adversary attempts to crack the password file he will be presented

with a fake password that can trigger an alarm at the server when used, and (iii)

maintain the same appearance and format of the password file while implementing

the new scheme. The final property is essential to the success of the deceptive process

of injecting “fake” passwords. Unlike the Honeyword scheme, which mixes real pass­

words with fake ones, our scheme eliminates the ability of an adversary to obtain the

real password (without physical access to the targeted machine during the cracking

process) and seamlessly presents a fake password during an offline cracking process.

99

6.2.2 One-time Initialization

The initialization steps in our scheme are performed in two stages: system-side

initialization and user-specific initialization. The former makes all the users’ saved,

hashed, passwords machine-dependent – applying the hardware-dependent function

as follows. The hardware-dependent function HDF is applied to each stored password

hash αi and is then fed to the same hashing function, H, with the original salt, si.

After that, the output is stored in the password file replacing the old stored value.

This system-wide initialization will have each user password stored in the file as the

following

βi = H(HDF(αi)lsi)

If an adversary obtains this file and tries to crack any user passwords, the prob­

ability that he will get any apparent match is negligible, even if a user password is

from a standard dictionary. The cracking software will be searching its dictionary

for a password equal to pi i = HDF(αi) and when hashed will give βi. An adversary

with knowledge of the scheme cannot distinguish between a password file that was

computed using our scheme or using the traditional scheme. Even under a stronger

assumption, where the adversary knows that the file has been computed using the

new scheme, the attacker gains no advantage as he cannot crack the user passwords

without access to hardware used to compute the function HDF. In the case where

the attacker is an insider, any extensive use of the HDF can be easily noticed with a

clear spike in API usage.

To incorporate the additional deceptive alarm component into our scheme —

returning an “ersatzpassword” when the adversary attempts cracking the password

file — we need to involve each user in a seamless fashion during any normal user

authentication. This process requires the user to enter her password, which is a

natural step during any authentication (because the password is not actually stored

or recoverable), and can be done during the first login process after the system wide

initialization.

100

When the user attempts the first login after the initialization of our system, the

password is checked using the original hash function to see if it matches. If so,

the scheme will recompute the stored password value βi as follows. The hardware-

dependent function will be applied to the actual password pi and then an ersatz-

password (p ∗) will be chosen – we will discuss the use, choice, and characteristics

of ersatzpassword later in this chapter. A new user-specific salt is then selected,

to be used when computing the function H, to satisfy the following property; [

si
i = HDF(pi) ⊕ p ∗]. The scheme will take the first 128-bits of the result, as­

suming we are using a function H such as bcrypt that uses 128-bits salts, as the new

salt overwriting the existing salt si.

We note that the ersatzpassword password length can be, at maximum, as long

as the salt. In the current implementation of the bcrypt function, widely adopted to

implement the hash function H, the salt is 128-bits long. This gives us an ersatz-

password of up to 16 characters. This does not impact the plausibility feature of the

ersatzpassword, which will be discussed below. In the largest user passwords study

analyzing more than 70 million real user passwords, Bonneau reports that users tend

to use passwords with 6-8 characters [17]. If the ersatzpassword is shorter than the

salt, the above computation will result in having the salt include some of the output

of the HDF function. This does not affect the security of the system as such output

does not leak any useful information about the real password even to someone who

has knowledge of the scheme and the length of the ersatzpassword p∗.

To compute the stored value β our scheme calculates the following;

βi = H[(HDF(pi) ⊕ si
i) l si

i]

If the output of the HDF is longer than the salt, we address this as follows. We

divide this output into chucks of length equal to the salt length. After that, we XOR

these chunks together and then XOR the result with the salt si i . Finally, this becomes

the input to the hash function H along with the concatenated salt.

101

The stored value in the password file will be in the same format used in traditional

schemes. When an adversary tries to crack the password file, he will try to find a

password pi i that when hashed using H will give βi. In our scheme, we compute beta in

a format equivalent to the traditional password storage where the password is p ∗, i.e.

β = H(p ∗ l si i). As a result, an attacker who is launching a dictionary attack against

a stolen password file will likely find a result identifying p ∗ as the user password,

which is the ersatzpassword injected in the system. When the adversary uses this

password to login, an internal alarm will be triggered alerting the administrator that

someone exfiltrated and attempted to crack the user password file.

6.2.3 Login

There are three main cases of login in our scheme: successful login, when the user

enters the correct user/password pair; malicious login, when the adversary uses an

ersatzpassword; and error login, when the username/password pair does not match

anything. In this section we discuss how to evaluate the login request, in the presented

order, and determine a login decision.

When the user i wants to login she presents the username and password p̄ to the

authentication server. The system identifies the username record and obtains the

stored value βi and the salt si associated with it. The scheme computes

βi
i = H[(HDF(p̄) ⊕ si) l si]

and checks whether βi
i equals βi, and if so the user is successfully authenticated.

If the authentication fails, the scheme checks whether the password presented is

the ersatzpassword. This is done by computing

βi
ii = H[p̄ l si]

102

and checking whether this equals βi. If they are equal, this indicates that someone is

trying to impersonate the user after cracking the password file and an internal alarm

is triggered.

If the two values are not equal, this can be treated as an erroneous login. The

system’s policy for erroneous login can then be applied.

6.2.4 Password Administration

Password Change

The user’s password change requests can be treated exactly as a new password.

The only difference from traditional password schemes is that our approach mandates

the generation of a new salt that satisfies the property discussed above, the XOR

operation between the salt and the output of applying HDF on the password gives

an ersatzpassword.

Backup

One of the major factors that hinders the use of hardware-dependent functions is

the fact that the system catastrophically fails in the rare case where the hardware

associated with the HDF fails or is no longer available. Thus, we outline a secure

backup feature that can be used to recover the system in such a failure scenario.

This process utilizes public-key encryption and is initialized by generating a suitably

strong public/private key pair. The private key is never used in normal operation

and can be stored in a secure vault offline. It is only needed in the recovery process.

The public key is used during the system wide initialization process and during the

process of password change.

When the system is initialized to adopt the new authentication scheme, all the

current username, password hash, and salt triplets (ui, αi, si) are encrypted using

the public key and stored as a backup. In addition, whenever a user changes her

103

password, the new value αi
i (the new hash value resulting from the new password

using the traditional hash) is computed and the new triple overwrites or is appended

to the backup log, along with the ui and si values. As a result, the backup file with

have the following list (ui, si, αi), for every user i in the system, encrypted under the

public key.

If a recovery is needed after failure, the private key is fetched and used to recover

the log file, which is then used to restore a traditional version of the password file.

That file can be instantiated on new hardware, with a new HDF, and users can be

forced to reset their passwords — leading to transition to our new scheme as they do

so.

It worth noting that decrypting the backup file using a brute-force attack should

not be practical. Even if the adversary, hypothetically, manages to recover the in­

formation in the backup file the resultant password security is at least as strong as

the currently deployed schemes. The cost in storage and computation to build the

recovery log is minimal.

Previous Passwords Storage

It is common for many authentication server to store previously used users’ pass­

words to prevent users from recycling them [46]. This can put users at risk when such

files are compromised. Although users are not using these passwords to login, they

can be used to impersonate users at other websites. If systems need to store these

passwords nevertheless, our scheme provides an additional advantage over traditional

methods of securely storing these passwords.

As our scheme saves the user passwords in a machine-dependent format, using

the function HDF, we can have some assurance that this password cannot be cracked

offline without physical access to the target machine. Later, when attempting to store

the previous passwords used in the system, we can save the passwords using the HDF

function.

104

Fail-Safe Procedure

We finally point out that in addition to the backup mechanism discussed above to

recover the system in the rare case of HDF function failure, our scheme comes with

an intrinsic fail-safe procedure. In this case, we can use the traditional authentication

method to check the passwords, comparing H(pi | si) with the stored value βi, where

the effective user password becomes the ersatzpasswords.

6.3 ErsatzPasswords – The Use of Deception

The scheme presented in this chapter provides the guarantee that stored users

passwords cannot be cracked without physical access to the hardware-dependent func­

tion (HDF). With the increased complexity of computer systems and targeted attacks

computer systems are still vulnerable to security compromise and the list of stored

passwords can be stolen. In addition, the latest Verizon Data Breach Investigation

Report (DBIR) shows that about 50% of attacks thwarting authentication mecha­

nisms take months or longer to be discovered. Even worse, 88% of these attacks are

discovered by external parties. Integrating deceptive passwords in the design of our

scheme addresses these two issues.

When attackers obtain the stolen credentials and apply the cracking process, we

can design our scheme to negatively respond to this activity as in [41]. This allows

an attacker, who obtains this file, to notice such behavior and simply look for other

vulnerabilities to exploit. Instead, the scheme is designed to present an attacker with

plausible deceptive passwords leading him to believe that he successfully cracked the

password file. When a login is attempted using the deceptive passwords, system

defenders will be immediately alerted to two facts: (i) that the login credentials

database was leaked; and (ii) that an attacker is currently trying to impersonate the

system’s users to gain access. This design enables system defenders to use internal

controls for detecting credentials’ database leakages, and for alerting them of an

ongoing attack before it succeeds.

105

6.3.1 ErsatzPasswords Generation

The process of generating an ersatzpassword for each user account can be for­

malized as follows. Let Gen(pi) be the function that takes the user’s password and

outputs the selected ersatzpassword. This function should provide two essential prop­

erties: plausibility and non-deducibility. The former ensures that an ersatzpassword

generated by Gen() is plausible to an adversary as a real user password. The latter

provides the guarantee that even when an adversary knows the scheme, he cannot

deduce any information from the ersatzpassword about the real user password. We

define these two properties more formally later in the chapter. We want this function

to be randomized and to give us an ersatzpassword every time we use it. Of course,

the generated ersatzpassword should have the properties discussed later in this chap­

ter. We present below several constructions of how to realize this function and discuss

the advantages and disadvantages of each construction.

Total Password Replacement

When Gen() receives the user’s password it can generate the ersatzpassword using

the following procedure. For every character in the user password, replace it with a

randomly chosen character from the same category (alphabetical with alphabetical,

a digit with a digit, and a special character with a special character). After this

replacement process, a cyclic shift is applied to the password by a random number of

positions to generate the ersatzpassword.

We note that this process reveals two properties of the real password to an ad­

versary when he views the ersatzpassword: the password’s length and its character

composition. In this case adversaries can use probabilistic context-free replacement

to significantly narrow down the space of possible user passwords using knowledge of

the ersatzpassword [168]. One of the potential ways to overcome this is to randomly

truncate or append some random characters to generate the ersatzpassword.

106

List-Based

One of the most straightforward ways of generating the ersatzpassword using

Gen() is to randomly choose a word from an internal dictionary of candidates. This

realization of Gen() has two major limitations: the generation of ersatzpassword is not

influenced by user-specific information and the existence of such a list in the system

can affect the stealthiness of the deceptive component (the existence of the list is a

sign that such a scheme is currently being used by the system). The former limitation

is not as significant because the attacker never sees the “real” users’ passwords. The

advantage of using such method is the ability to have a high degree of plausibility

of the ersatzpasswords. We can compile a list of the some of the previously leaked

passwords used by real users and use them as our ersatzpasswords.

Grammar-Based Methods

Bojinov et al. propose a new method of generating plausible user passwords

in [16] extending the work of Ross et al. in [126] and Weir in [168]. Their method is

similar to our total password replacement method, however they tokenize the password

representing distinct syntactic elements. For example, the password “wtyy234ou*”

has the following token sequence W1 = {wtyy} | D2 = {234} | W3 = {ou} | S4 = {∗} | .

When generating the ersatzpassword, each token will be replaced with another token,

of the same length, from a dictionary.

The main drawback of this method is that it leaks the type, number, and length

of tokens of the original password. We address this concern by enhancing their im­

plementation of Gen() as follows. After tokenizing the password, we perform the

following:

•	 We can randomly append or delete k tokens. For example, let say we add token

S5 to the above password.

107

•	 After that, we can randomly shuffle the order of these tokens. In the above

example, the shuffle can give us the following order W3 | S5 | D2 | S4 | W1.

•	 Finally, we randomly choose a word from a dictionary that matches each token.

The chosen token can have length that is different from the original token. In

our example, let’s say that W3 = “abc”, S5 = “!”, D2 = “10”, S4 = “ + ” and

W1 = “test”.

Using the grammar-based method with our modification can generate the following

ersatzpassword “abc!10+test.”

Using User Input

Our discussion so far assumes that the scheme can work without any interaction

with the users. However, we note that ersatzpassword can be constructed with im­

plicit or explicit user input. Many authentication servers save previously used user

passwords in the system preventing users from recycling their old password when their

current password expires. This implicit user input, previously chosen user passwords,

can be used as the ersatzpassword for this user account. With explicit user input, the

system can prompt the user to enter another password during registration and use

this as the ersatzpassword password.

The main advantage of using implicit user input is ensuring a high degree of

plausibly, discussed later, of the ersatzpassword as this has been previously used as a

real password. However, this method suffers from two major disadvantages. First, if

an adversary cracks the password file and recovers the ersatzpassword, this might put

the user in danger as users are known to reuse passwords across multiple sites [44].

Second, this has the potential of signaling a false alarm in the case where the user

forgets and uses his previous password to login.

Explicit user input requires some changes to the user interfaces. More importantly,

users are likely to pay less attention, choosing very guessable passwords and/or con­

fusing the ersatzpasswords with their real ones leading to the problem of false alarms.

108

In addition, users may provide an additional, ersatzpassword that is closely related to

their real password, e.g. by appending a number or a character to their real password

to create the ersatzpassword.

A combination of several of these methods may be the best approach.

6.3.2 ErsatzPasswords Properties

Incorporating deception in this scheme actively feeds an adversary cracking a

stolen password file with some ersatzpasswords chosen to trigger internal alarms when

used. These passwords should have the following properties to ensure their effective­

ness.

Plausibility

When an adversary is cracking a password file, these words will present themselves

as a successful outcome, i.e. when hashed along with the salt they will match the

stored hashed user password in the traditional way. For the effectiveness of the

scheme, these need to be plausible user passwords. Plausibility in critical in this

case because these passwords must appear as they have been chosen by users as

their login credentials. Thus, some dictionary and generation algorithms should be

present to produce plausible ersatzpasswords (so their generation is random subject

to plausibility rather than in absolute terms).

We can define a plausible generator function Gen() more formally by using the

following game:

•	 The adversary views many runs of the function p ∗ = Gen(p) along with their

associated usernames, where p ∗ is the ersatzpassword. The adversary can choose

the values of u and/or p.

•	 The adversary sends a username to Gen().

109

•	 Gen() selects a password p, either from the real user, existing user or public

password files, and computes the ersatzpassword p ∗ = Gen(p). Then Gen()

sends both p and p ∗ back without distinguishing them.

•	 The adversary outputs (1) if she thinks p∗ is the ersatzpassword and (0) other­

wise. The adversary wins if she distinguishes the ersatzpassword from the real

password with probability Pr.

We say that Gen() is a plausible function if the probability for adversarial success

is one-half — an adversary cannot do better than random guessing which of the

two passwords is the ersatzpassword. That is, Pr = 1/2 + t where t is increasingly

negligible as the number of trials increases.

Typo-Resilience

When the user is typing her real password, she may make a mistake by mistyping

some characters. The ersatzpassword associated with the account should have enough

edit distance from the actual password to ensure that an alarm is not triggered by

mistake. As the real user password is present when selecting which ersatzpassword

to use, the server can easily compute an edit distance to ensure that the user does

not mistype the ersatzpassword during the login process.

Non-Deducibility

It is essential for the ersatzpassword to not reveal any useful information about

the real user password. Even though we do not actively give adversaries the ersatz-

passwords, we store them with the same level of protection used to store current real

users’ passwords. We define the function Gen() to provide non-deducibility using the

following game:

•	 The adversary views many runs of the function p ∗ = Gen(p) where she can

choose the values of u and/or p (p ∗ is the ersatzpassword).

110

•	 The adversary chooses two passwords p1 and p2, and sends then to function

Gen().

•	 Gen() flips a coin and computes p ∗ = Gen(p1) if it gets heads or p ∗ = Gen(p2)

otherwise. p ∗ is then presented to the adversary.

•	 The adversary outputs (1) if she thinks p ∗ = Gen(p1) and (0) otherwise with

probability Pr.

We say that Gen() is a non-deducible function if the probability for adversary

success is half. — the adversary cannot do better than randomly guessing which

of the two passwords was used to generate p ∗ . That is, Pr = 1/2 + t where t is

increasingly negligible as the number of trials increases.

Policy Adherence

It is essential that ersatzpasswords adhere to any system-wide policy of how users’

password should appear. For example, some restrictions can be imposed on the length,

format, and composition of user passwords. An adversary who sees any password

violating the system’s policy can detect that this cannot be a real password as the

system would not have accepted it. In addition, some websites mandate that user

password cannot be dictionary words. In these cases, using a password list as the

method to generate ersatzpassword can be challenging as it is not trivial to come up

with a long list satisfying each server’s policy. In addition, any change to the policy

would require recomputing the list. However, the use of grammar-based approaches,

similar to the one illustrated above, can be much simpler as grammar can become

part of the input of the generator function Gen().

Crackable

Part of the plausibility aspect of our scheme is deciding whether all ersatzpass­

words should be crackable or not. Generally, this should not be the case. Many cur­

111

rent systems add more stringent requirements of password choice to high privileged

users. When they become easily crackable, this might increase adversary suspicion.

In addition, it would also look suspicious if all user passwords were crackable. It

might be wise to use some randomly-generated ersatzpasswords within a system to

enhance the scheme’s plausibility.

6.4 Implementation and Analysis

In this section, we describe the implementation details of the our system. A pre­

liminary evaluation is also presented followed by a discussion driven by the observed

results.

6.4.1 Implementation Details

We implemented the our scheme by modifying the authentication mechanism in an

FreeBSD operating system. The pam unix Pluggable Authentication Module (PAM),

which handles the user authentication process, is modified to incorporate our system.

The design decision is driven by the simplicity of PAM modules as well as the preser­

vation of expected behavior during user authentication. The effectiveness of the

deception relies on the fact that the user authentication system appears no different

than standard FreeBSD user authentication.

The system relies on two key components: the hardware dependent function HDF

and the ersatzpassword generation function Gen(). We used the basic Yubico Yu­

biHSM [173], a USB hardware security module, as our HDF. Specifically, HDF is a

HMAC-SHA1 with a fixed secret key (k) internally stored inside the HSM;

HDF(p) := HMAC-SHA1k(p)

For the ersatzpassword generation, Gen(), we implemented the List-Based approach

described in section 6.3.1. This choice was mainly driven by the fact that we can pre­

112

select ersatzpasswords and have more accurate measurements. The code can be easily

modified to choose any ersatzpassword generation algorithm. As a proof of concept,

we used a list of six-character dictionary words as our ersatzpasswords from [29]. A

password is selected from the dictionary of 15,788 and used as the ersatzpassword

during user account initialization.

6.4.2 Analysis

We analyze two authentication processes when comparing our implementation

of the new authentication scheme and the standard FreeBSD authentication. First,

we compare the latency for adding a new user into the system and the latency for

authenticating a valid user. Second, the storage of cryptographic hashes of the user’s

password must appear and behave as in a typical FreeBSD operating system. In

addition to maintaining the fidelity for accurate user authentication user password

hashes must also work with conventional password cracking tools such as John the

Ripper 4 to ensure the plausibility of the ersatzpasswords. We conducted our analysis

on a FreeBSD virtual machine with a single core clocked at 2.7 Ghz.

Password Update and Authentication Latency

To evaluate the performance of our authentication module, we compare the la­

tency with the standard pam unix module found in FreeBSD. Two measurements

are considered: the latency to update an existing password and the latency to au­

thenticate a user. The password is fixed to “password” for all experiments. Addi­

tionally, the authentication evaluation also considers the latency of using “ersatz”

for the ersatzpassword. The evaluation consists of running the pam chauthtok and

pam authenticate as found in passwd and login. Password update and authenti­

cation latencies are sampled 1000 times independently on an idle FreeBSD virtual

machine.
4http://www.openwall.com/john/

113

Figure 6.1.: Distribution of Password Update Latency in the Ersatzpassword Scheme

Figure 6.2.: Distribution of Password Update Latency in the Original pam unix

As shown in figures 6.1 and 6.2, the median latency time to update a user’s

password for our ersatz system is 287.3 ms while the latency on a standard FreeBSD

system is 8.8 ms. These results indicate that further optimization is needed to reduce

the latency for our module to match the expected behavior of the standard FreeBSD

pam unix module. However, this difference is unlikely to be noticed by a user and it

is a one-time cost.

A similar pattern is observed when comparing authentication latency. Figures

6.5, 6.6, and 6.7 illustrate the latencies in system response observed when providing a

114

Figure 6.3.: Comparison of Password Update Latency Between Ersatzpassword and
Original pam unix

valid password and an ersatzpassword in our system in comparison with the latency in

system response when providing a valid password in a conventional FreeBSD system.

Note that the latency difference compared between our system and the conventional

system are similar to the password update latency. The median system latency for

authentication in our system is 277.76 ms when providing the correct password and

281.95 ms when providing the ersatzpassword, as depicted in figure 6.4. The system’s

latency for authenticating a valid user on a standard FreeBSD system is 5.14 ms.

Figure 6.4.: Comparison of Real and Decoy Password Authentication in the
Ersatzpassword Scheme

115

We note that there are a number of reasons for the observed performance dif­

ference. The YubiHSM APIs are written in python and the implementation of our

scheme is written in C as a modified pam unix module. A call from C to Python has

an impact on the system performance. To validate our concern, we used pmcstat5

to profile our modified pam unix module. The results from pmcstat showed that the

largest bottleneck is found in the libpython2.7.so library. Specifically, the bottle­

neck is PyEval FrameEx which interprets and executes bytecodes from a given frame.

Another bottleneck is PyObject Malloc which is indirectly called when converting

a C string to a Python string. Such conversion is needed in our modified pam unix

module when initializing the YubiHSM and generating a salt or the hash.

Table 6.1: Number of Instructions for Creating a New User Under the new
pam unix Module

Step # of instructions Percentage
Initialize 77,737,691 68.47%

Generate Ersatz 6,816 0.006%
Create Salt 273,322 0.24%

Hash Password 28,551,342 25.5%
Close 5,325,039 4.75%

To investigate other potential bottlenecks, we used valgrind6 with the callgrind

toolset to compare the number of instructions executed in the ersatz pam unix module

and the standard freeBSD pam unix module. For each module, we looked at the

amount of time it takes to enroll a new user in the system. For the ersatz pam unix

module, this includes initializing and closing the YubiHSM module in addition to

generating an ersatzpassword, creating a salt value, and hashing. Table 6.1 contains

the number of instructions for each function needed to create a new user. Note that

initiating and closing the session with YubiHSM accounts for more than 70% of the

instructions. In comparison to the standard freeBSD pam unix module, creating a salt

takes 24,171 instructions and generating a password has takes 28,202,224 instructions.

5https://wiki.freebsd.org/PmcTools
6http://valgrind.org/

116

Generating a salt in the ersatz pam unix module takes roughly 10 times longer than in

the standard freeBSD pam unix module. The total number of instructions to enroll

a new user in the ersatz pam unix module takes about 4.96 times more than the

standard freeBSD pam unix module.

Figure 6.5.: Distribution of User Authentication Latency in the Ersatzpassword
scheme

We also investigated the I/O overhead for both modules with ktrace, which

enables kernel trace logging in freeBSD. In the ersatz pam unix module, about 280ms

are spent waiting for I/O, while in the pam unix module only 0.008ms is spent waiting

for I/O. These numbers indicate that the overhead to communicate with the YubiHSM

accounts for the largest bottleneck in our ersatz pam unix module.

The main reason for the performance deficiencies above is the fact that we are using

a basic HDF function, namely the YubiHSM, which is not optimized for performance.

A built-in device rather than a USB device should provide a speed improvement and

reduce the I/O overhead. We believe that a combination of optimizations might bring

the times close enough that it would not be obvious to an observer what might be in

use on the system. If that is not a consideration, the additional latency of the current,

unoptimized implementation would be clearly insignificant in normal operation.

It worth noting that the performance impact of using ersatzpasswords does not

have an impact on normal users’ experience. Despite the performance impact depicted

117

Figure 6.6.: Distribution of Detecting the Use of an Ersazpassword to
Authentication

Figure 6.7.: Distribution of User Authentication Latency in the Original pam unix

in figures 6.3 and 6.8, the user gets a response whether her credentials are accepted

or not within a fraction of a second – this is hardly noticeable by a human user. In

fact, often operating systems impose an artificial delay when the first login attempt

fails using the pam faildelay module.

118

Figure 6.8.: Comparison of Password Authentication Latency Between
Ersatzpassword and the Original pam unix

Crackable Ersatz Hashes

To demonstrate that the our scheme produces crackable hashes, we generated 1000

hashes with the real passwords of password1, password2, · · · , password1000 and

ersatzpasswords randomly selected from our list of six-character dictionary words. We

ran John the Ripper on all 1000 hashes created by our scheme to crack the generated

hashes. John the Ripper successfully cracked all 1000 hashes and retrieved all the

ersatzpasswords.

One interesting observation is that if two users select the same exact password

and if the ersatzpassword selected is less than the length of the salt, then some of the

bits in the salt are the same between both users. Such an anomaly would be unlikely

in a conventional master.passwd file and may raise suspicion of the deception. This

can be mitigated by properly generating ersatzpasswords to avoid such situations.

6.5 Chapter Summary

Passwords have been widely regarded as one of the weak points of securing any

digital system. They come with their inherent weaknesses in how they are chosen,

119

stored, memorized, and managed. In this chapter, we presented a scheme that address

the wide-spread threat of stealing hashed password files and cracking them offline to

impersonate user accounts to further infiltrate computer systems. Our scheme makes

it impossible for an adversary to recover user passwords from their hashed format

without physical access to the targeted machine. We show how we can instantaneously

protect any system with the involvement of its user. Furthermore, we discussed how

we can deceive an attacker who steals the hashed users’ password file by presenting

him with ersatzpasswords that work as “decoy” passwords that trigger an alarm when

used to access the system. We discussed how to generate these passwords and their

properties. Finally, we implemented our scheme discussing the design decisions and

the performance analysis. Our goal is with the deployment of our scheme, we can

end the possibility of cracking user passwords and, at the same time, detect any

exflitration and cracking attempt on users’ hashed password file.

120

7 DECEPTIVER — A CENTRALIZED DECEPTIVE SERVER

Reconnaissance is a cornerstone step for any successful cyber attack [80]. Current

systems are designed to respond truthfully to all request coming to public facing

network services. If the requester is identified to be malicious, our systems are also

designed to respond truthfully by responding with an error message or dropping the

request. Thus, these systems are designed to aid computer attacker through their

reconnaissance step where they gather information about our systems and determine

all the information our systems know about them.

The latest Verizon Data Breach Investigation Report (DBIR) identified web ap­

plication attacks as the most common incident in 2013 accounting for 35% of all

incidents [159]. Moreover, more than 90% of those attacks are being discovered by

external parties, making the matter worse for breached organizations. The report

also shows that more than 60% of web application attacks take minutes or less to

compromise the target, while more than 40% of these attacks take months to be dis­

covered. In addition, Gartner states that more than 70% of threats are at the web

application layer [48].

In this chapter we present a deceptive system, referred to as Deceptiver, that

gives public facing servers the ability to respond with deceptive responses. Deceptiver

maintains a consistent deceptive story across all public-facing servers connected to

it. It works as a centralized deceptive server behind all these processes. Each public-

facing server, e.g. WWW servers and FTP servers, connect to the Deceptiver server

through a server-specific hook that augments their responses with deceit.

121

7.1 Background

Most organizations use a number of internet-facing services to connect with their

customers and provide their services. By design, these services respond to all requests

unless the request’s identifier(s), e.g. IP address, are specifically blacklisted, in which

case usually the connection is silently dropped. However, internet-facing servers are

continuously being targeted as one of the entry points of compromise. Six of the

OWASP’s top 10 security risks are cause by the behavior of computer systems of

always responding faithfully to all requests [112].

Moreover, spiders scan websites collecting data that can be used as part of the

reconnaissance stage. Spammers harvest users’ emails and contact information to

target their inboxes with spam and/or fraud [119]. More advanced adversaries use this

information to craft a targeted attack such as spear phishing or socially engineering

their targets. Often this information is readily available from organizations’ public

web pages. Targeted attacks, such as spear phishing, are four times more likely to be

successful – according to [113] – and their success is a result of the public information

we make readily available in public pages.

Basic deception techniques have been used to address some of the challenges im­

posed by these risks. Honeybots have been used to monitor common attack vectors

and adding the origin of those attacks to a common blacklist database [119]. In ad­

dition, Anagnostakis et al. used “shadow honeypots” where they dynamically direct

suspected server’s traffic [9]. The shadow honeypot mimics the internal state of the

real production system. This loose coupling between the shadow honeypot and pro­

duction systems poses a number of challenges though. In the red-teaming experiment

by Heckman and her team, discussed in section 4.3, the red-team was able to detect

that they were interacting with the fake instance even with the use of the advanced

“Blackjack” tool. Another deceptive tool called Web Labyrinth was developed to

create a web structure to entrap and exhaust a web scanner [81].

122

There are a number of limitations to the previous proposals. They are mainly

passive systems and only activated when the adversary touches some resources they

are not supposed to. This is mainly the case with the Web Labyrinth tool. In addition,

the loose coupling between fake and real systems and the challenge of presenting a

plausible version of the truth hinders the effectiveness of using deception – as discussed

in the MITRE experiment discussed in section 4.3.

7.2 Overview

The main idea behind the Deceptiver is to apply deception at a higher logical view

of the protected systems. Traditional similar uses of deception, such as honeypots,

use deception by creating a fake image of production systems and trying to lure

adversaries to them. Such systems come at a high cost of maintenance in three ways.

First, to ensure the plausibility of these deceptive techniques, the fake image needs

to continuously reflect all the changes made in the real system. Second, fake systems

are yet another set of systems that need to be administered and updated. It is vital

that these systems are not used as an entry point to real systems because one might

pay less attention to their maintenance. Third, when injecting deceit the fake system

resources need to be individually changed.

Unlike the previous uses, Deceptiver applies deception to the resource either (i)

by responding with a new deceptive response which is created on-the-fly, or (ii) by

modifying systems resources on-the-fly before sending them to the adversary. In other

words, Deceptiver provides a deceptive “view” of the system resources in a consistent

manner. There is no need to create a duplicate of production systems to respond to

attackers with deceptive responses.

There are two categories of the deceptive responses created by Deceptiver. The

first category aids computer defenders whether the current requester is malicious or

not. In this category, deceit is injected in a way that does not change the resource.

Instead, deceit is injected to create “traps” that only users with malicious intent will

123

fall for. We discuss these further in section 7.3.1. The second category of responses

assume that the request has been determined as malicious and deceit is injected to

lead attackers astray, confuse them, attribute them, and/or waste their time and

resources. The request is determined to be malicious in one of two ways: (i) the

computer system determines that the request is malicious, e.g. blacklists, firewall

etc., or (ii) an adversary has fallen for the Deceptiver traps.

7.3	 Deceptiver Design

Deceptiver works as a server in a computer system providing centralized decisions

on how to augment internet-facing servers with deception. There are two main com­

ponents in the design: Deceptiver core and Deceptiver hooks. The core makes the

decision on how to respond to a particular request. It also provides a full history of

all the requests that are received by an Internet-facing server and whether deception

has been applied or not. The hooks translate the Deceptiver decision into application-

specific actions that can be realized by the servers. The overall design is depicted in

figure 7.1. The logical flow of requests goes through the following steps:

1. Requests arrive at a client server where the request meta-data, such as headers,

is parsed.

2. Deceptiver’s hooks intercept all the variables and passes them to the core where

a decision is made on how to respond. There are four general outcomes:

(a) Request is blocked and standard responses are returned.

(b) Request is blocked and deceptive responses are returned.

(c) Request is allowed to go through as usual.

(d) Request is	 allowed to go through. However, before the response is re­

turned, deceit is injected in the response.

As we discussed earlier, there are two general types of deceit that we can inject to

responses: creating traps to identify adversaries, or responding with fake information

124

Figure 7.1.: Deceptiver’s Overall Design

to give a plausible fake view of the system. We discuss these in more details in the

next section.

7.3.1 Deceptive Responses

Every time a request arrives at a server the Deceptiver core needs to make a

decision whether to inject deceit into the response. As discussed earlier, deceit can

be used as a mechanism to identify adversaries or as a mechanism to confuse them or

lead them astray. The former case is usually non-intrusive and does not affect normal

user interactions. Subtle deceitful data points are added to the response as traps to

detect adversaries. The latter category of responses is used to present a full or partial

fake view of the resource requested.

Most of the discussion will focus on the Deceptiver core and an example of one

of its hooks, namely the WWW server hook that we developed for Apache servers.

We might discuss some application specific example, but the general concept behind

them would still apply to any server.

It worth noting that the fake resources discussed in this chapter do not need to

physically exist in the production server. The Decetpiver Hooks can create those

125

on-the-fly and add them or append them to the real system responses. In section,

7.4 we discuss some of the possible implementations and designs of how this can be

achieved.

Deceptiver Traps

At the reconnaissance phase, adversaries usually interact with targeted servers to

find vulnerabilities and gauge all the relevant information. This is usually achieved

with an iterative process where an adversary alters the request to the server and

observes the response. Typical systems guide adversaries throughout this response by

responding truthfully to all requests. Deceptiver traps embed enticing, yet plausible,

fake variables that have no real function at the server. When such variables are

altered, manually by an adversary or automatically by automated tools, security

administrators are pro-actively alerted of the existence of an attack at its early stages.

Instead of simply blocking the malicious users, the second type of response, namely

Active Responses, are injected to confuse attackers and/or lead them astray.

Traps can be categorized into the following categories:

•	 Administrative Resources — Servers use a number of administrative files

that are used by administrators to configure the behavior of server and/or the

set of rules applied to responses. Example of those files in WWW servers are

the .htaccess and the robot.txt files. Deceit can be injecting in these files by

adding some rules that only adversaries would fall for. As an example, in the

.htaccess file, a fake password protected web page can be added as illustrated

in figure 7.2.

1 AuthType Basic
2 <Files ‘‘admin−access.html’’>
3 Require valid−user
4 </Files>

Figure 7.2.: An Example of a Deceptiver Trap in .htaccess

126

When the page admin-access.html is not linked to from any other page normal

users should not normally reach this page. Only malicious users who are looking

for holes or vulnerabilities in the server will attempt to access this page. When

access is attempted, Deceptiver can flag the user and active deceptive responses

can be used to feed the user fake information or obtain more information from

them.

As another example, Deceptiver can intercept all requests to access files in

FTP servers. When a malicious user asks for the etc/passwd file, the server

can respond back with a fake list of users. When someone tries to connect to

accounts associated with these users or browse their files, we can flag this user

as malicious.

•	 Isolated Resources — Servers can inject a number of isolated resources that

should not be accessed by normal users during their normal operations. As an

example, in WWW servers these can be a number of web pages that are not

linked with any other pages. Normal users would not be able to reach those

web pages by following links on the website.

•	 Response Meta or Hidden Data — Server responses send meta data. De­

ceptiver can inject some enticing, yet useless meta-data to the server response

and monitor how the user interacts with them. Normal user interactions are

not affected by such information. However, when such data is altered or used,

Deceptiver can flag such users.

For example, Deceptiver can append a number of URL variables that are entic­

ing to attackers, see figure 7.3. When the user attempts to change the variable

to debug=true, they can be flagged and an active deceptive response can be

returned. Hidden data can also be used as traps. Deceptiver can inject some

hidden form elements with some interesting names. When the user assigns some

data to those or alters the default data, they can also be flagged.

127

1 https://www.example.com/payment.php?debug=false

Figure 7.3.: An Example of a Deceptiver Trap – Response Meta Data

Such data can persist over multiple sessions where they get stored at the client

machine. For example, cookies are stored at the users’ machine and should

always be submitted “as is.” We can include some enticing, yet unusable,

variables in those cookies, such as admin=false, or create new cookies. When

these are altered or partially submitted the user can be flagged.

•	 Known Vulnerabilities or Violation of Policies — Often an attack uses

a preexisting vulnerability to gain some access or additional useful information

to launch subsequent attacks. In addition, malicious users usually try to cross

security boundaries to gain access to sensitive information. Deceptiver can

be used to design traps using known vulnerabilities, applying deception, when

those boundaries are crossed.

For example, Deceptiver can take advantage of a vulnerability such as Heart-

bleed [52] to its advantage. A group of researchers at University of Texas at

Dallas created decoy software that fixes the Heartbleed vulnerability but at

the same time sent some fake responses as though the Heartbleed vulnerability

is still unfixed [69]. This functionality can be incorporated in the design of

Deceptiver.

As another example, in FTP servers we can set up a fake view of files when

an adversary attempts to access a file to which they do not have permission.

This can be configured to problematically present the fake view to ensure its

plausibility.

128

Active Deceptive Responses

Most servers rely on a blacklist of known malicious users to deny attempts to

access their resources. However, it is becoming increasingly easier for adversaries

to change their attacks to evade such simple detection mechanisms. Deceptiver is

designed to utilize these blacklists, in addition to the use of its traps, discussed above,

and enhance the security of these servers by sending deceptive responses to those

adversaries to confuse them and/or lead them astray. Moreover, Deceptiver gives

security administrators the ability to use deception in the case where they are not

certain that the user is malicious or not.

Traditional security measures often treat most requests as benign unless they are

part of a firewall blacklist. Deceptiver distinguishes between three main categories of

users and treats them differently, namely benign, suspected, and malicious. In general,

Deceptiver traps help security administrators to distinguish benign users from the

others. If users interact with a trap, they transition into the suspected category, see

figure 7.4. Then, Deceptiver sends them some active deceptive responses, as we will

discuss in this section, and when adversaries respond to that they transition into the

malicious category of users.

Figure 7.4.: Users Categories in Deceptiver

129

In section 4.5.1, we discussed how deception can be applied to different parts of

a computer systems. The categories we illustrated in figure 4.2 also applies to how

can we apply deception to servers’ responses. Below we discuss how deception can be

applied to a number of these categories.

System Performance When Deceptiver detects a malicious interaction with con­

nected servers, it can apply deception to provide a fake view of servers’ performance.

One way to respond is to present adversaries a fake error message that the server is

down and currently under maintenance. This is an improvement over what current

firewalls do, where they either block the attack or drop the requests silently, in two

ways. An opportunistic adversary will pass over this server and go to the next server

in their list. The other advantage is that such a response will give security admin­

istrators more time to enhance their defenses and be proactive. Tailored honeypots

can be set up and live monitoring of the threat can be achieved. Traditional security

mechanisms would alert adversaries that their attack has been detected by our tools

and they need to be more stealthy and change their known blacklisted artifact next

time.

System Public Data One example of a malicious server request is data harvesting

bots that gather organizations’ public information as a precursor to their attack

campaign. Later, this data is used in a wider range of attacks including phishing,

spear phishing, scamming, and others. Often organizations blacklist these bots from

accessing all their public information, which simply requires them to change their

artifacts.

Deceptiver can apply deception to this public information by replacing organiza­

tion contact details on-the-fly by plausible fake ones. Furthermore, organizations can

monitor these emails to spot any advanced threats or targeted phishing attacks. In

addition, monitoring those accounts can help organizations recover from false posi­

tives if this is a priority.

130

System Software and Services As part of the reconnaissance stage, adversaries

gather as much information they can to tailor their attack to the targeted machines.

Often, servers respond with detailed information of the type and version of software

being used. Such behavior can be exploited be Deceptiver where we can mask the

identities of the software and services we are running. Crenshaw found this to be

useful to confuse attackers when obfuscating the identity of operating systems or­

ganizations’ servers are running [40]. Deceptiver can also pretend to be running a

number of fake services and monitor any requests that attempt to interact with them.

7.3.2 Centralized Deception

The main goal of the Deceptiver is to provide a centralized decision making for

the use of deception. It gives computer defenders a holistic centralized view of how

and when deception has been applied. It also gives an easy way to manage the use of

deception within computer systems. Unlike traditional uses of deception, such as the

use of honeypots, the design of Deceptiver gives security defenders a better control

over the deception being used with a server and across different servers.

It is worth noting that although the Deceptiver is designed to provide consistent

deception over many servers, it can be configured to confuse adversaries by showing

inconsistent deception. As discussed in section 4.6.3, inconsistency can be helpful

when our goal is to frustrate adversaries and confuse them. Also, inconsistent decep­

tion can be used as a tactic when an attacker suspects that deception is being used

to feed them false information.

7.4 Implementation and Deployment

Deceptiver is implemented in Python as a command line tool. It has two main

operation modes: administration and decision making. Security administrators can

use the administration part to set up and configure the deception server. When

131

the system admin launches Deceptiver with the admin option they can choose an

administrative action list as depicted in figure 7.5.

Figure 7.5.: Admin Section of Deceptiver

Deceptiver uses an internal SQL database to store all the deceptive rules and all

the connection information that was parsed to determine the action. The database

interaction in the code has been implemented using an Object Relational Mapper

(ORM) library called peewee1.

Inputs and outputs to Deceptiver are standardized and are application indepen­

dent. Individual server hooks prepare the request to Deceptiver and translate the

response into application specific instruction. Deceptiver receives all its input as

command line arguments. An explanation of each one of these inputs is presented in

appendix A.1.

7.4.1 Apache Server Hook

We implemented a hook for Deceptiver with the Apache web server. We used

the mod security Apache module, which is used to enforce Apache’s web application

firewall (WAF), to hook a communication script with Deceptiver [125]. We created

a Lua script that runs inside Apache and intercepts all requests coming to the server

after the headers are parsed as in figure 7.6. The script prepares the request and

sends it to Deceptiver. It also parses Deceptiver’s response and enforces it inside the

WAF. The overall design of the Apache integration is depicted in figure 7.7.

1http://www.peewee-orm.com/

132

1 SecRuleScript ’deceptiver.lua’ ’ id :1001,t :none,phase:2,pass,nolog, ctl :ruleRemoveById=9000’
2 SecAction ’id:9000,pass,nolog,phase:2,skipAfter,END OF RULES’

Figure 7.6.: Intercepting All Requests Inside Apache

Currently, Apache’s hook is implemented as an internal configuration, i.e., .conf,

file for Apache that is loaded when Apache starts. It is part of the production Apache

server configuration and runs seamlessly in the background. In addition, because of

the flexibility of Apache’s configuration, Deceptiver can be integrated with only part

of the server under a specific directory or only when a certain type or specific resource

is requested.

Figure 7.7.: Hooking Deceptiver with Apache

7.5 Security Discussion

Deceptiver is designed to centralize and manage the integration of deception with

organization’s servers. It works by intercepting server requests and responses and

injecting deceit to confuse adversaries and/or lead them astray. The main advantage

of using Deceptiver is that adversaries do not interact with it directly, as in the

133

case with honeypots. It does not run a copy of resources and lure adversaries to

interact with the fake system instead of the real one. This has been one of the

reasons that hindered the adoption of honeypot technologies because they come with

the risk that adversaries might use them as an entry point to the real organization’s

resources. Additionally, Deceptiver does not add another set of fake system for system

administrators to maintain and keep updated and patched — unlike traditional uses

of honeypots.

By design, Deceptiver does not maintain fake copies of targeted resource; instead

it injects deceit to the server’s response on-the-fly and, in some cases, omit real infor­

mation. This design increases the plausibility of Deceptiver responses in comparison

to traditional uses of deceptive response. This is true because real-time changes to

system resources are immediately reflected in the adversary’s view of the systems.

This comes without the extra cost of maintaining fake copies of those resources or the

need to update a separate fake image of the system. This design ensures that there is

no time lapse and real-time changes are reflected in Deceptiver responses. This time

lag needed to update the fake copies in traditional uses of deception is often used as

an indicator that deception is currently being used as a defense mechanism.

In addition, Deceptiver uses deceptive traps to reduce the number of false positives

and better distinguish between different levels of trust with respect to a system’s users.

These traps do not affect a normal user’s behavior and should be enticing enough for

some adversaries to fall for them hoping to find vulnerabilities in their targets.

It is worth pointing out that the current design of Deceptiver make it an attractive

target of an attack. An adversary who compromises Deceptiver would be able to view

the interactions of all connected Internet-facing servers. Even though Deceptiver is

not public-facing, it receives input from many servers that is potentially injected by

an adversary. It is crucial to sanitize all inputs forwarded to Deceptiver. In addition,

Deceptiver should be placed in a separate process space internally with strict API

that only accepts requests from known hooks. To address the allure of Deceptiver, we

can change the design of the server to move the decision making to the hooks instead

134

of the core. The role of the core would thus be simply to log interactions and connect

between different servers when needed.

7.6 Performance Analysis

To analyze the performance of Deceptiver and its integration with Apache, we

designed a number of experiments. We measured the performance difference between

running Apache with and without Deceptiver. To do so, we used the httperf tool2

to benchmark Apache’s performance in these two cases. More specifically, we used

autobench3 that works as a wrapper over httperf to automate the benchmarking

process. The performance results of our experiment are summarized in table 7.1.

A simultaneous number of requests were sent and the average response time was

recorded. The time was measured in milliseconds.

Table 7.1: Comparing the Performance of Apache With ModSecurity and Deceptiver

of Re- No Mod- Only Mod- ModSecurity ModSecurity
quests Security Security with CRS with Decep­

tiver
10 0.2 0.8 0.4 258.1
20 0.2 0.7 0.4 491
30 0.2 0.6 0.4 538.7
40 0.2 0.7 0.4 628.2
50 0.2 0.7 0.4 638.2
60 0.3 0.7 0.4 665.9
70 0.2 0.7 0.3 672
80 0.3 0.6 0.4 678.7
90 0.3 0.6 0.4 696.5
100 0.2 0.6 0.4 744.8

We noted a clear reduction in performance when using Deceptiver. To understand

the cause of such performance degradation, we measured the performance of four dif­

ferent configurations of Apache – with respect to content filtering using Apache’s

2http://www.hpl.hp.com/research/linux/httperf/
3http://www.xenoclast.org/autobench/

135

mod security modules. The first column in table 7.1 presents the performance of

running Apache without enabling the mod security module. The second column

shows the performance after enabling the module, with its default rules and con­

figurations; there was a negligible reduction in performance in this case. The third

column illustrates Apache’s average response time while enabling mod security and

enforcing OWASP’s ModSecurity Core Rule Set version 2.2.9 [149]. The fourth col­

umn illustrates Apache’s performance when Deceptiver is in use and mod security

is enabled to enforce Deceptiver rules. After viewing the results, we concluded that

simply enabling mod security is not the cause of the performance degrade and that

we need to analyze Deceptiver further to measure its performance.

We ran Unix’s utility function time4 with deceptiver.py as its input – this

the main file that executes Deceptiver’s logic – and we got 126ms of total exe­

cution time. To investigate this further we used the line profiler python pack­

age5 that gives us the run time for each line in the program. We found nine lines

of code in deceptiver.py that accounts for 99.2% of the total execution time of

deceptiver.py. All these lines are querying the Deceptiver database for rules and

actions to take. In addition, Deceptiver saves the request information in the database.

Optimizing database querying is crucial to enhance the performance of Deceptiver.

One way of improving the performance is to use a persistent database connection in­

stead of having to create and tear down the database connection for every query. This

can be achieved by the use of QuerySet API in python and optimizing the number

of database queries sent. In addition, standard database optimization techniques,

such as indexing, can be used to enhance the performance. Finally, Deceptiver can

asynchronously save the request information in the database after responding back

to Apache instead of blocking the response until the update is done.

In addition, it should be possible to eliminate the need of an SQL server to sig­

nificantly reduce the performance impact when using Deceptiver. Running all De­

ceptiver’s logic gives us an average response time of less than a millisecond – which

4http://man7.org/linux/man-pages/man1/time.1.html
5https://github.com/rkern/line_profiler

136

is similar to other running modes in table 7.1. Deceptiver uses an SQL server for

two main reasons; (i) find whether a rule exists to apply to the current request; and

(ii) save the current request information and the rules applied to it. As discussed

earlier, the former can be done in a non-blocking operation. In addition, we can save

such information by logging it in a file. The former goal can be achieved by having

an in-memory hash data structure that maps request information into the rule that

needs to be applied. This data structure can be initialized once during the start of

the server and kept in memory. The operation checking whether a rule exists for the

following request would be executed in a constant time and it will be a simple hashing

of the request variables and checking for a match. This should be an interesting task

to further extend the functionality of Deceptiver and enhance its performance.

7.7 Chapter Summary

In this chapter, we introduced a deceptive fake server referred to as Deceptiver.

The server hooks into a company’s servers and injects deceit creating a fake view of

an organization’s resources to confuse them and/or lead them astray. We discussed

the design of our deceptive server and how it can be attached to many servers within

an organization to provide a centralized deception.

The server provides two different categories of deceptive responses: deceptive traps

and active deceptive responses. The former focuses on detecting adversaries’ activities

in their reconnaissance stage where they monitor servers’ responses to their input.

Deceptiver creates some enticing, yet non-functional, traps for attackers. The latter

case of response focuses on presenting a fake, yet plausible view of systems resources.

We built a proof-of-concept implementation of Deceptiver and a hook to the

Apache server. We discussed the deployment and implementation details. In ad­

dition, we present a discussion of Deceptiver performance and how it can improved.

At the end of the chapter we gave a discussion of the security of our deceptive server.

137

8 CONCLUSIONS

8.1 Summary

In this dissertation we discussed the concept of deception and how it has been

an integral part of human activity throughout history. Deception is extensively doc­

umented in animal behavior (mainly as a defensive mechanism), human physical

security behavior, and in conflict and war. In computing, the discussion of using de­

ception as a defenses started in the 1980s. We gave a broad overview of the concept

of deception, highlighting its role in many areas of computing.

In addition, we presented a framework of how deception can be planned and inte­

grated into computer security defenses. Our framework provides a holistic overview

of the role of deception and how it can be applied. Within our model we present an

analysis of the role of adversary biases in the success of any deceptive technique. We

discuss how such biases can be exploited to enhance the security of computer systems.

Deception has been used haphazardly within computer defenses. We presented

a working definition of the use of deception in security and highlighted some of

the unique advantages deception-based mechanisms bring to computer defense. An

overview of the proliferation of honey-prefixed tools in the early 2000s, where many

deceptive techniques have been applied, is provided. Moreover, we analyzed two pre­

vious proposals to use deception as a defensive technique and mapped them against

our framework.

In the second part of the dissertation, we presented three computer security de­

fenses that use deceptive techniques in the core of their design. We show how we can

enhance the security of passwords at the client side and in transit using a deceptive

covert channel. After that, we discuss how the ersatzpasswords scheme can be used to

significantly address the challenge of stolen stored password files. We discuss how we

138

make passwords cracking insuperable without physical access to the victim’s servers.

Also, we show we can deceive adversaries by presenting them with fake passwords

when they attempt to crack stolen password files.

We concluded the dissertation by discussing the design of a centralized deceptive

server, referred to as Deceptiver, that employs deceptive techniques to Internet-facing

servers. We show how this design reduces the information leaked about protected

computer systems. We integrated our deceptive core with Apache’s web server and

discussed the design, implementation, and performance of our prototype.

8.2 Future Work

The use of deception has shown a number of interesting and promising results

in enhancing the security of computer systems. Previous attempts to use deceit

were mostly ad-hoc attempts to integrate deception into computer defense. Many

successful computer attacks rely on deceiving humans to infiltrate their targets and

exploit their biases. Our framework provides the first steps for a holistic view of

using deception as a defensive mechanism with consideration of how deception works,

where to apply it, and how it is evaluated and monitored.

One of the interesting areas for future work is a deeper understanding of how

to successfully use deception. Humans, and by extension the software they write,

have biases that should be understood and effectively exploited to have an effective

security mechanism. Researching and understanding these biases, including cogni­

tive, cultural, and organizational biases, is essential to the effective use of deceptive

techniques.

Another interesting area of future research is exploring when and how deception

can be applied. We discussed the cyber kill-chain model earlier in this dissertation

and pointed out that deception can be applied at any phase in the kill chain. The

original kill chain paper suggested that the earlier one stops an attacker the better.

We argue that the earlier one spots an attack and then uses deceit and misinformation

139

is better for defense. Security administrators would not only stop an attack, but also

lead attackers astray, wasting their time and resources, and learn about their motives

and targets. Investigating different deception-based defensive techniques that can be

applied at different stages of the kill-chain is one area of future research.

Moreover, it would be interesting to investigate how different deceptive mecha­

nisms can be used with different bad actors. It would be interesting to investigate how

different actors would react to different types of deception. Another area of future

research is examining the relationships between consistency and deception. Investi­

gating the properties of using inconsistent deception is an interesting area of further

research.

The area of counter-deception is another fruitful area of further research. Many of

the long-standing cyber attacks such as phishing, scams, and others employ deception

as a cornerstone in their design. Further understanding human biases in interacting

with such attack venues would give computer security experts better ways to alter

user behavior to enhance security. When security tools can identify the set of biases

being exploited by adversaries, they can give users more meaningful warnings and

better guide their behavior.

In this dissertation, we developed a high-level framework describing how decep­

tion can be planned and integrated. Modeling deception is an area that needs further

research. Game theoretical models, such as hypergames, can help computer security

defenders get a better understanding of the role of perception in computer attacks.

Hypergames model how multi-level misperceptions determine the final outcome of a

conflict [13]. Furthermore, more detailed frameworks would guide security adminis­

trators on how can they integrate deception in their defenses.

Within the three practical novel uses of deception there are a number of areas in

which our work can be further developed. It would be interesting to integrate our

deceptive covert channel with some two-factor authentication clients such as Google

Authenticator and analyze how that increases users’ security. In addition, a more

rigorous user study can be done to evaluate the usability of our scheme.

140

Ersatzpasswords deployment can be further extended in a number of ways. In our

implementation, we used a simple ersatzpasswords generation algorithm. It would be

interesting to see how other generation algorithms can be used and how they compare.

One especially important aspect is how to make them appear plausible when cracked

by an adversary. Further analysis of publicly leaked passwords can give us insights on

how the collective ersatzpasswords appear plausible. In addition, one of the issues we

discussed in our implementation analysis is performance. We used a primitive HSM

that plugs to a computer’s USB port. It would be interesting to see how performance

can be improved with dedicated HSMs or some PUFs.

We discussed aspects in the design and implementation of the Deceptiver server.

There are a number of ways in which Deceptiver can be enhanced. First, Deceptiver

can be integrated with more servers such as FTP servers. In addition, more deceptive

responses and traps can be added to Deceptiver. Second, it would also be interesting

to deploy Deceptiver and analyze real world results. This might reveal some patterns

that can further help refine the design and implementation of Deceptiver. Third, we

discussed how we can add inconsistent deception as a defensive technique. Investi­

gating how inconsistent deception can be used and applied is an interesting area of

further research. Finally, we identified a number of ways of improving Deceptiver’s

performance. Further analyzing and implementing ways to improve the performance

of Deceptiver is part of the future work.

LIST OF REFERENCES

141

LIST OF REFERENCES

[1] Eytan Adar, Desney S. Tan, and Jaime Teevan. Benevolent Deception in Human
Computer Interaction. In CHI 2013, pages 1863–1872, 2013.

[2] Manal Adham, Amir Azodi, Yvo Desmedt, and Ioannis Karaolis. How to Attack
Two-Factor Authentication Internet Banking. In Financial Cryptography, 2013.

[3] Mohammed H. Almeshekah, Mikhail J. Atallah, and Eugene H. Spafford. Back
Channels Can Be Useful! - Layering Authentication Channels to Provide Covert
Communication. In Security Protocols XXI, Lecture Notes in Computer Science,
pages 189–195. Springer, 2013.

[4] Mohammed H. Almeshekah, Mikhail J. Atallah, and Eugene H. Spafford. En­
hancing Passwords Security Using Deceptive Covert Communication. In Hannes
Federrath and Dieter Gollmann, editors, International Conference on ICT Sys­
tems Security and Privacy Protection (IFIP SEC’15), pages 159–173. Springer
International Publishing, Hamburg, Germany, 2015.

[5] Mohammed H. Almeshekah and Eugene H. Spafford. Planning and Integrat­
ing Deception into Computer Security Defenses. In New Security Paradigms
Workshop (NSPW’14), Victoria, BC, Canada, 2014.

[6] Mohammed H. Almeshekah and Eugene H. Spafford. The Case of Using Neg­
ative (Deceiving) Information in Data Protection. In 9th International Con­
ference on Cyber Warfare and Security ICCWS’14. Academic Conferences and
Publishing International, 2014.

[7] Mohammed H. Almeshekah and Eugene H. Spafford. Using Deceptive Informa­
tion in Computer Security Defenses. International Journal of Cyber Warfare
and Terrorism (IJCWT), 4(3):46–58, 2014.

[8] American Bankers Association (ABA). Popularity of Online Banking Explodes.
http://www.aba.com/Press/Pages/090811ConsumerPreferencesSurvey.
aspx, September 2011.

[9] Kostas	 G. Anagnostakis, Stelios Sidiroglou, Periklis Akritidis, Konstantinos
Xinidis, Evangelos Markatos, and Angelos D. Keromytis. Detecting Targeted
Attacks Using Shadow Honeypots. In Proceedings of the 14th USENIX Security
Symposium, 2005.

[10] Adam Barth, Collin Jackson, and John C. Mitchell. Robust Defenses for Cross-
Site Request Forgery. Proceedings of the 15th ACM Conference on Computer
and Communications Security (CCS’08), 2008.

[11] J. Bowyer	 Bell and Barton Whaley. Cheating and Deception. Transaction
Publishers New Brunswick, 1991.

142

[12] Michael Bennett and Edward Waltz. Counterdeception Principles and Applica­
tions for National Security. Artech House, 2007.

[13] Peter G. Bennett.	 Hypergames: Developing a Model of Conflict. Futures,
12(6):489–507, 1980.

[14] Maya Bercovitch, Meir Renford, Lior Hasson, Asaf Shabtai, Lior Rokach, and
Yuval Elovici. HoneyGen: An Automated Honeytokens Generator. In IEEE In­
ternational Conference on Intelligence and Security Informatics (ISI’11), pages
131–136. IEEE, 2011.

[15] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef, M. Debbabi,
and L. Wang. On the Analysis of the Zeus Botnet Crimeware Toolkit. In 8th
International Conference on Privacy, Security and Trust, pages 31–38, 2010.

[16] Hristo Bojinov, Elie Bursztein, Xavier Boyen, and Dan Boneh.	 Kamouflage:
Loss-Resistant Password Management. In Proceedings of the 15th European
Conference on Research in Computer Security, pages 286–302. Springer-Verlag,
2010.

[17] Joseph Bonneau. The Science of Guessing: Analyzing an Anonymized Corpus
of 70 Million Passwords. In IEEE Symposium on Security and Privacy, pages
538–552, 2012.

[18] Joseph Bonneau, Cormac Herley, Paul C. Van Oorschot, and Frank Stajano.
The Quest to Replace Passwords: A Framework for Comparative Evaluation of
Web Authentication Schemes. In IEEE Symposium on Security and Privacy,
pages 553–567, 2012.

[19] Brian M. Bowen, Malek Ben Salem, Shlomo Hershkop, Angelos D. Keromytis,
and Salvatore J. Stolfo. Designing Host and Network Sensors to Mitigate the
Insider Threat. IEEE Symposium on Security and Privacy, 7(6):22–29, 2009.

[20] John Boyd. The Essence of Winning and Losing.	 http://www.danford.net/
boyd/essence.htm, 1995.

[21] Bambi R. Brewer, Roberta L. Klatzky, and Yoky Matsuoka.	 Visual-Feedback
Distortion in a Robotic Rehabilitation Environment. Proceedings of the IEEE,
94(9):1739–1750, 2006.

[22] Anthony C. Brown. Bodyguard of Lies: The Extraordinary True Story Behind
D-Day. Lyons Press, 2007.

[23] Justin Cappos and Santiago Torres. PolyPasswordHasher: Protecting
Passwords In The Event Of A Password File Disclosure. http://
polypasswordhasher.github.io/PolyPasswordHasher/, 2014.

[24] Thomas E. Carroll and Daniel Grosu. A Game Theoretic Investigation of Decep­
tion in Network Security. Security and Communication Networks, 4(10):1162–
1172, 2011.

[25] Chairman of the USA Joint Chiefs of Staff. Joint Publication 3-13.4: Military
Deception, July 2006.

143

[26] Hoi Chang and Mikhail J. Atallah.	 Protecting Software Code by Guards. In
Security and privacy in Digital Rights Management, pages 160–175. Springer,
2002.

[27] Xu Chen, Jonathon Andersen, Zhuoqing Morley Mao, Michael Bailey, and Jose
Nazario. Towards an Understanding of Anti-Virtualization and Anti-Debugging
Behavior in Modern Malware. In IEEE International Conference on Dependable
Systems and Networks, pages 177–186. IEEE, 2008.

[28] Bill Cheswick. An Evening with Berferd in Which a Cracker is Lured, Endured,
and Studied. In Proceedings of Winter USENIX Conference, San Francisco,
1992.

[29] John Chew. Common Six-Letter Words. http://www.poslarchive.com/math/
scrabble/lists/common-6.html.

[30] David Christian and R. Michael Young. Strategic Deception in Agents. In
Proceedings of the Third International Joint Conference on Autonomous Agents
and Multiagent Systems, pages 218–226. IEEE Computer Society, 2004.

[31] John Ciancutti. Five Lessons We Have Learned Using AWS. http://techblog.
netflix.com/2010/12/5-lessons-weve-learned-using-aws.html, 2010.

[32] Dwaine Clarke, Blaise Gassend, Thomas Kotwal, Matt Burnside, Marten Van
Dijk, Srinivas Devadas, and Ronald Rivest. The Untrusted Computer Problem
and Camera-Based Authentication. In Pervasive Computing, pages 114–124.
Springer, 2002.

[33] Fred Cohen. The Deception Toolkit. http://www.all.net/dtk/, 1998.

[34] Fred Cohen. A Framework for Deception.	 National Security Issues in Science,
Law, and Technology, page 123, 2007.

[35] Fred Cohen and Deanna Koike.	 Misleading Attackers with Deception. In Pro­
ceedings from the 5th annual IEEE SMC Information Assurance Workshop,
pages 30–37. IEEE, 2004.

[36] Fred	 Cohen, Irwin Marin, Jeanne Sappington, Corbin Stewart, and Eric
Thomas. Red Teaming Experiments with Deception Technologies. http:
//www.all.net/journal/deception/experiments/experiments.html, 2001.

[37] Gregory Conti and E. Sobiesk. Malicious Interface Design: Exploiting the User.
In Proceedings of the 19th International Conference on World Wide Web, pages
271–280, 2010.

[38] Terry Copeck, Sylvain Delisle, and Stan Szpakowicz.	 Parsing and Case Inter­
pretation in TANKA. In Proceedings of the 14th Conference on Computational
Linguistics, pages 1008–1012. Association for Computational Linguistics, 1992.

[39] Stephen Crane, Per	 Larsen, Stefan Brunthaler, and Michael Franz. Booby
Trapping Software. New Security Paradigms Workshop (NSPW’13), pages 95–
106, 2013.

[40] A. Crenshaw.	 OSfuscate: Change Your Windows OS TCP/IP Fingerprint to
Confuse P0f, NetworkMiner, Ettercap, Nmap and Other OS Detection Tools.
http://goo.gl/LRXMC8.

144

[41] Dan Cvrcek. Hardware Scrambling – No More Password Leaks.	 https://goo.
gl/AR4R4f.

[42] David Dagon, Xinzhou	 Qin, Guofei Gu, Wenke Lee, Julian Grizzard, John
Levine, and Henry Owen. Honeystat: Local Worm Detection using Honeypots.
In Recent Advances in Intrusion Detection, pages 39–58. Springer, 2004.

[43] Donald C. Daniel and Katherine L. Herbig. Propositions on Military Deception.
The Journal of Strategic Studies, 1(5):155–177, 1982.

[44] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng
Wang. The Tangled Web of Password Reuse. In The 2014 Network and Dis­
tributed System Security Symposium (NDSS’14), San Diego, CA, 2014.

[45] Fiorella De Rosis, Valeria Carofiglio, Giuseppe Grassano, and Cristiano Castel­
franchi. Can Computers Deliberately Deceive? A Simulation Tool and Its Appli­
cation to Turing’s Imitation Game. Computational Intelligence, 19(3):235–263,
2003.

[46] Defense Information Systems Agency (DISA). Application Security and Devel­
opment: Security Technical Implementation Guide (STIG). Technical report,
Department of Defense (DOD), 2013.

[47] Matthew DeLuca and Julianne Pepitone.	 eBay Warns Customers to Change
Passwords After Database Hacked. http://goo.gl/npvOCy.

[48] Jeremy D’Hoinne, Adam Hils, Greg Young, and Joseph Feiman. Magic Quad­
rant for Web Application Firewalls. Technical report, Gartner, Stamford, CT,
2014.

[49] Saar Drimer, Steven J Murdoch, and Ross Anderson. Optimised to Fail: Card
Readers for Online Banking. In Financial Cryptography and Data Security,
pages 184–200. Springer, 2009.

[50] Igor Drokov, Elena Punskaya, and Emmanuel Tahar. System and method for
dynamic multifactor authentication, January 27 2015. US Patent 8,943,548.

[51] James F. Dunnigan and Albert A. Nofi.	 Victory and Deceit: Deception and
Trickery at War. Writers Club Press, 2001.

[52] Zakir Durumeric, James Kasten, David Adrian, J. Alex Halderman, Michael
Bailey, Frank Li, Nicolas Weaver, Johanna Amann, Jethro Beekman, and Math­
ias Payer. The Matter of Heartbleed. In Proceedings of the 2014 Conference on
Internet Measurement Conference, pages 475–488. ACM, 2014.

[53] Tobias Eggendorfer. Combining the SMTP Tar Pit Simulator with White List­
ing. In Security and Management, pages 333–339, 2008.

[54] Paolo Falcarin, Christian Collberg, Mikhail Atallah, and Mariusz Jakubowski.
Software Protection. IEEE Software, 28(2):24–27, 2011.

[55] Nelly Fazio and Antonio Nicolosi.	 Cryptographic Accumulators: Definitions,
Constructions and Applications. Technical report, Computer Science Depart­
ment, New York University, 2002.

145

[56] C. Fiedler. Secure Your Database by Building HoneyPot Architecture Using a
SQL Database Firewall. http://goo.gl/yr55Cp.

[57] Charles Ford. Lies! Lies!! Lies!!!: The Psychology of Deceit. American Psychi­
atric Publishing, Inc., 1st edition, 1999.

[58] Charles A. Fowler and Robert F. Nesbit. Tactical Deception in Air-Land War­
fare. Journal of Electronic Defense, 18(6):37–45, 1995.

[59] Dirk Fox. Hardware Security Module (HSM). Datenschutz und Datensicherheit-
DuD, 33(9):564–564, 2009.

[60] Xinwen Fu.	 On Traffic Analysis Attacks and Countermeasures. PhD Disserta­
tion, Texas A & M University, 2005.

[61] Holtjona Galanxhi and Fiona	 Fui-Hoon Nah. Deception in Cyberspace: A
Comparison of Text-Only vs. Avatar-Supported Medium. International Journal
of Human-Computer Studies, 65(9):770–783, 2007.

[62] Nandan Garg and Daniel Grosu. Deception in Honeynets: A Game-Theoretic
Analysis. In Information Assurance and Security Workshop, pages 107–113.
IEEE, 2007.

[63] Chris Gaylord. LinkedIn, Last.fm, Now Yahoo? Don’t Ignore News of A Pass­
word Breach. http://goo.gl/obSJla.

[64] Scott Gerwehr and Russell W. Glenn.	 The Art of Darkness: Deception and
Urban Operations. Rand Corporation, 2000.

[65] Roy Godson and James Wirtz.	 Strategic Denial and Deception. Transaction
Publishers, 2002.

[66] Andy Greenberg.	 A Different Approach To Foiling Hackers? Let Them In,
Then Lie To Them. http://goo.gl/zuKtWx, April 2013.

[67] Doug Gross.	 50 Million Compromised in Evernote Hack. http://goo.gl/
HDCuux, March 2013.

[68] Dominik Gus and Dietrich Dorner.	 Cultural Difference in Dynamic Decision-
Making Strategies in a Non-lines, Time-delayed Task. Cognitive Systems Re­
search, 12(3-4):365–376, 2011.

[69] Kevin	 Hamlen. Cybersecurity Researchers Roll Out A New Heart-
bleed Solution. https://www.utdallas.edu/news/2014/4/14-29531_
Cybersecurity-Researchers-Roll-Out-A-New-Heartblee_story-wide.
html?WT.mc_id=NewsTwitter, 2014.

[70] Jeffrey T. Hancock. Digital Deception. Oxford Handbook of Internet Psychology,
pages 289–301, 2007.

[71] Michael Handel. War, Strategy and Intelligence. Routledge, London, UK, 1989.

[72] N. Harini and T. R. Padmanabhan. 2CAuth: A New Two Factor Authentication
Scheme Using QR-Code. International Journal of Engineering and Technology,
5(2):1087–1094, 2013.

146

[73] Malcolm Harkins.	 A New Security Architecture to Improve Business Agility.
In Managing Risk and Information Security, pages 87–102. Springer, 2013.

[74] Kristin Heckman. Active Cyber Network Defense with Denial and Deception.
http://goo.gl/Typwi4, March 2013.

[75] Roger Hesketh.	 Fortitude: The D-Day Deception Campaign. Overlook Hard­
cover, Woodstock, NY, 2000.

[76] Kelly Jackson Higgins. How Lockheed Martin’s ’Kill Chain’ Stopped SecurID
Attack. http://goo.gl/r9ctmG, 2013.

[77] Steven A. Hofmeyr, Stephanie Forrest, and Anil Somayaji.	 Intrusion Detection
Using Sequences of System Calls. Journal of Computer Security, 6(3):151–180,
1998.

[78] Geert Hofstede, Gert Hofstede, and Michael Minkov.	 Cultures and Organiza­
tions. McGraw-Hill, 3rd editio edition, 2010.

[79] Thorsten Holz and Frederic Raynal. Detecting Honeypots and Other Suspicious
Environments. In Information Assurance Workshop, pages 29–36. IEEE, 2005.

[80] Eric M. Hutchins, Michael J. Cloppert, and Rohan M. Amin. Intelligence-Driven
Computer Network Defense Informed by Analysis of Adversary Campaigns and
Intrusion Kill Chains. Leading Issues in Information Warfare & Security Re­
search, 1:80, 2011.

[81] Ben	 Jackson. Web Labyrinth. https://github.com/mayhemiclabs/
weblabyrinth, 2012.

[82] Robert Jervis. Deception and Misperception in International Politics. Princeton
University Press, 1976.

[83] Reginald Victor Jones.	 Reflections on Intelligence. William Heinemann Ltd,
London, 1989.

[84] Ari Juels and Ronald L. Rivest. Honeywords: Making Password-Cracking De­
tectable. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, pages 145–160. ACM, 2013.

[85] Gene H. Kim and Eugene H. Spafford.	 Experiences with Tripwire: Using In­
tegrity Checkers for Intrusion Detection. Technical report, Department of Com­
puter, Purdue University, West Lafayette, IN, 1994.

[86] Daniel V. Klein. Foiling the Cracker; A Survey of, and Improvements to Unix
Password Security. In 14th DoE Computer Security Group, May 1991.

[87] Georgios Kontaxis, Elias Athanasopoulos, Georgios Portokalidis, and Ange­
los D. Keromytis. SAuth: Protecting User Accounts From Password Database
Leaks. In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, pages 187–198. ACM, 2013.

[88] Christian Kreibich and Jon Crowcroft. Honeycomb: Creating Intrusion Detec­
tion Signatures using Honeypots. ACM SIGCOMM Computer Communication
Review, 34(1):51–56, 2004.

147

[89] Butler W. Lampson. A Note on the Confinement Problem. Communications of
the ACM, 16(10):613–615, 1973.

[90] Jon Latimer. Deception in War: Art Bluff Value Deceit Most Thrilling Episodes
Cunning mil hist from The Trojan. Penguin, 2003.

[91] Young Sil Lee, Nack Hyun Kim, Hyotaek Lim, HeungKuk Jo, and Hoon Jae Lee.
Online Banking Authentication System Using Mobile-OTP With QR-code. In
International Conference on Computer Sciences and Convergence Information
Technology (ICCIT), pages 644–648. IEEE, 2010.

[92] Youngsook Lee, Jeeyeon Kim, Woongryul Jeon, and Dongho Won.	 Design of
a Simple User Authentication Scheme Using QR-Code for Mobile Device. In
Information Technology Convergence, Secure and Trust Computing, and Data
Management, pages 241–247. Springer, 2012.

[93] Shujun Li, Ahmad Reza Sadeghi, Soren Heisrath, Roland Schmitz, and Ju­
naid Jameel Ahmad. hPIN/hTAN: A Lightweight and Low-Cost e-Banking
Solution Against Untrusted Computers. In Financial Cryptography and Data
Security, pages 235–249. Springer, 2012.

[94] Shujun Li and Roland Schmitz.	 A Novel Anti-Phishing Framework Based on
Honeypots. In eCrime Researchers Summit (eCRIME ’09), pages 1–13, Sept
2009.

[95] Kuan-Chieh Liao and Wei-Hsun Lee.	 A Novel User Authentication Scheme
Based on QR-code. Journal of Networks, 5(8):937–941, 2010.

[96] Tom	 Liston. LaBrea: “Sticky” Honeypot and IDS. http://labrea.
sourceforge.net/labrea-info.html, 2009.

[97] Michael Mimoso. Two-Factor Authentication No Cure-All for Twitter Security
Woes. http://goo.gl/mmEphG.

[98] Robert Mitchell and Nicholas Thompson.	 Deception: Perspectives on Human
and Nonhuman Deceit. State University of New York Press, 1985.

[99] Kevin D. Mitnick and William L. Simon.	 The Art of Deception: Controlling
the Human Element of Security. Wiley, 2003.

[100] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford,
and Nicholas Weaver. Inside the Slammer Worm. IEEE Security & Privacy,
1(4):33–39, 2003.

[101] David Moore, Colleen Shannon, Douglas J. Brown, Geoffrey M. Voelker, and
Stefan Savage. Inferring Internet Denial-of-Service Activity. ACM Transactions
on Computer Systems (TOCS), 24(2):115–139, 2006.

[102] S. A. Morin, R. F. Shepherd, S. W. Kwok, A. A. Stokes, A. Nemiroski, and G. M.
Whitesides. Camouflage and Display for Soft Machines. Science, 337(6096):828–
832, 2012.

[103] D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ranen. HOTP: An
HMAC-Based One-Time Password Algorithm (RFC 4226). Technical report,
IETF, 2005.

148

[104] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. TOTP: Time-Based One-Time
Password Algorithm (RFC 6238). Technical report, IETF, May 2011.

[105] Syamantak Mukhopadhyay and David Argles. An Anti-Phishing Mechanism for
Single Sign-On Based on QR-code. In International Conference on Information
Society (i-Society), pages 505–508. IEEE, 2011.

[106] Collin Mulliner, Steffen Liebergeld, and Matthias Lange.	 Poster: Honeydroid-
Creating a Smartphone Honeypot. In IEEE Symposium on Security and Pri­
vacy, 2011.

[107] Sherry B. Murphy, J. Todd McDonald, and Robert F. Mills.	 An Application
of Deception in Cyberspace: Operating System Obfuscation. In Proceedings of
the 5th International Conference on Information Warfare and Security (ICIW
2010), pages 241–249, 2010.

[108] Mummoorthy Murugesan and Chris Clifton. Providing Privacy through Plau­
sibly Deniable Search. In International Conference on Data Mining, 2009.

[109] Vicentiu Neagoe and Matt Bishop. Inconsistency in Deception for Defense. In
New Security Paradigms Workshop (NSPW’06), pages 31–38, 2006.

[110] Raymond S. Nickerson. Confirmation Bias: A Ubiquitous Phenomenon in Many
Guises. Review of General Psychology, 2(2):175–220, June 1998.

[111] Thomas Ormerod, Lingyu Wang, Mourad Debbabi, Amr Youssef, Hamad Bin­
salleeh, Amine Boukhtouta, and Prosenjit Sinha. Defaming Botnet Toolkits: A
Bottom-Up Approach to Mitigating the Threat. In 4th International Conference
on Emerging Security Information Systems and Technologies (SECURWARE),
pages 195–200. IEEE, 2010.

[112] Open Web Application Security Project (OWASP).	 OWASP Top 10. http:
//owasptop10.googlecode.com/files/OWASPTop10-2013.pdf, 2013.

[113] Bimal Parmar. Protecting Against Spear-Phishing.	 Computer Fraud and Secu­
rity, 2012(1):8–11, 2012.

[114] Darren	 Pauli. Cisco Posts Kit to Empty Houses to Dodge NSA Chop
Shops. http://www.theregister.co.uk/2015/03/18/want_to_dodge_nsa_
supply_chain_taps_ask_cisco_for_a_dead_drop/, 2015.

[115] C. Percival. Stronger Key Derivation Via Sequential Memory-Hard Functions.
http://www.bsdcan.org/2009/schedule/attachments/87_scrypt.pdf$\
delimiter"026E30F$nhttp://www.unixhowto.de/docs/87_scrypt.pdf,
2009.

[116] Nicole Perlroth.	 Hackers in China Attacked The Times for Last 4 Months.
http://goo.gl/L03TMK.

[117] Fabien Petitcolas. La Cryptographie Militaire. http://goo.gl/e5IOj1.

[118] David Pintor Maestre. QRP: An Improved Secure Authentication Method Using
QR Codes. Technical report, Universitat Oberta de Catalunya, 2012.

149

[119] Matthew B. Prince, Lee Holloway, Eric Langheinrich, Benjamin M. Dahl, and
Arthur M. Keller. Understanding How Spammers Steal Your E-Mail Address:
An Analysis of the First Six Months of Data from Project Honey Pot. In
Conference on Email and Anti-Spam (CEAS), 2005.

[120] Harry Quetteville. Fake Bus Stop Keeps Alzheimer’s Patients from Wandering
Off. http://goo.gl/MXs1Ys, 2008.

[121] Inaki Ranó. An Optimal Control Strategy for Two-Dimensional Motion Cam­
ouflage with Non-Holonimic Constraints. Biological Cybernetics, 106(4-5):261–
270, 2012.

[122] Shrisha Rao. Data and System Security with Failwords, January 20 2005. US
Patent App. 11/039,577.

[123] Ryan Riley, Xuxian Jiang, and Dongyan Xu.	 An Architectural Approach to
Preventing Code Injection Attacks. IEEE Transactions on Dependable and
Secure Computing, 7(4):351–365, 2010.

[124] Risk Analytics.	 70 Million Dollars Stolen From US Banks With Zeus Trojan.
http://goo.gl/VaFl3T.

[125] Ivan Ristic.	 ModSecurity Handbook: The Complete Guide to the Popular Open
Source Web Application Firewall. Feisty Duck Limited, 2nd edition edition,
2012.

[126] Blake Ross, Collin Jackson, Nick Miyake, Dan Boneh, and John C. Mitchell.
Stronger Password Authentication Using Browser Extensions. In Proceedings
of the 14th conference on USENIX Security Symposium, 2005.

[127] Neil Rowe.	 Counterplanning Deceptions to Foil Cyber-Attack Plans. In Infor­
mation Assurance Workshop, pages 203–210, 2003.

[128] Neil Rowe.	 Designing Good Deceptions in Defense of Information Systems.
In Proceedings of the Annual Computer Security Applications Conference (AC­
SAC), pages 418–427, 2004.

[129] Neil Rowe. A Taxonomy of Deception in Cyberspace. In International Confer­
ence in Information Warfare and Security. Monterey, California. Naval Post­
graduate School, 2006.

[130] Neil Rowe.	 Planning Cost-Effective Deceptive Resource Denial in Defense to
Cyber-Attacks. In Proceedings of the 2nd International Conference on Infor­
mation Warfare & Security, page 177. Academic Conferences Limited, 2007.

[131] Neil Rowe, E. John Custy, and Binh T. Duong.	 Defending Cyberspace with
Fake Honeypots. Journal of Computers, 2(2):25–36, 2007.

[132] Neil Rowe, Han Goh, Sze Lim, and Binh Duong. Experiments With a Testbed
for Automated Defensive Deception Planning for Cyber-Attacks. In Proceedings
of the 2nd International Conference on Information Warfare & Security, page
185. Academic Conferences Limited, 2007.

[133] Neil Rowe and Hy S. Rothstein. Two Taxonomies of Deception for Attacks on
Information Systems. Journal of Information Warfare, 2004.

150

[134] Richard Rubinstein and Harry Hersh. The Human Factor: Designing Computer
Systems for People. Morgan Kaufmann Publishers Inc., 1987.

[135] Charmaine Sample.	 Applicability of Cultural Markers in Computer Network
Attacks. In 12th European Conference on Information Warfare and Security,
pages 361–369, University of Jyvaskyla, Finland, 2013.

[136] Stuart Schechter, A. J. Bernheim Brush, and Serge Egelman.	 It’s No Secret
Measuring the Security and Reliability of Authentication via ’Secret’ Questions.
In IEEE Symposium on Security and Privacy, pages 375–390, 2009.

[137] Christian Seifert, Ian Welch, and Peter Komisarczuk. Honeyc: The Low Inter­
action Client Honeypot. Proceedings of the 2007 NZCSRCS, 2007.

[138] Adi Shamir. How to Share a Secret. Communications of the ACM, 22(11):612–
613, November 1979.

[139] Jaeeun Shim and Ronald C. Arkin.	 Biologically-Inspired Deceptive Behavior
for a Robot. In Lecture Notes in Computer Science, pages 401–411. Springer,
2012.

[140] S. A. Sloman. The Empirical Case for Two Systems of Reasoning. Psychological
Bulletin, 119(1):3–22, 1996.

[141] Meharouech Sourour, Bouhoula Adel, and Abbes Tarek. Ensuring Security-In-
Depth Based on Heterogeneous Network Security Technologies. International
Journal of Information Security, 8(4):233–246, 2009.

[142] Eugene H. Spafford. More than Passive Defense. http://goo.gl/5lwZup, 2011.

[143] Lance Spitzner. Honeypots: Tracking Hackers. Addison-Wesley Reading, 2003.

[144] Lance Spitzner. Honeytokens:	 The Other Honeypot. http://www.symantec.
com/connect/articles/honeytokens-other-honeypot, 2003.

[145] Guenther Starnberger, Lorenz Froihofer, and Karl M. Goeschka. QR-TAN: Se­
cure Mobile Transaction Authentication. In International Conference on Avail­
ability, Reliability and Security (ARES’09), pages 578–583. IEEE, 2009.

[146] Clifford P. Stoll.	 The Cuckoo’s Egg: Tracing a Spy Through the Maze of Com­
puter Espionage. Doubleday, 1989.

[147] G. Edward Suh and Srinivas Devadas. Physical Unclonable Functions for Device
Authentication and Secret Key Generation. In Proceedings of the 44th annual
Design Automation Conference, pages 9–14, 2007.

[148] Latanya Sweeney. K-Anonymity: A Model for Protecting Privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–
570, 2002.

[149] The Open	 Web Application Security Project (OWASP). ModSecurity Core
Rule Set (CRS) 2.2.9. https://www.owasp.org/index.php/Category:OWASP_
ModSecurity_Core_Rule_Set_Project, 2012.

[150] John Thibaut and Harold Kelley.	 Interpersonal Relations: A Theory of Inter­
dependence. John Wiley & Sons Inc, 1978.

151

[151] J. R. Thompson, R. Hopf-Wichel, and R. E. Geiselman.	 The Cognitive Bases
of Intelligence Analysis. Technical report, US Army Research Institute for the
Behavioral and Social Sciences, 1984.

[152] Samuel T. Trassare. A Technique for Presenting a Deceptive Dynamic Network
Topology. Technical report, Naval Postgraduate School, 2013.

[153] A. Tversky and Daniel Kahneman.	 Judgment Under Uncertainty: Heuristics
and Biases. Science, 185(4157):1124–31, September 1974.

[154] A. Tversky and D. Koehler. Support Theory: A Nonextensional Representation
of Subjective Probability. Psychological Review, 101(4):547, 1994.

[155] Amos Tversky and Daniel Kahneman.	 Extensional Versus Intuitive Reason­
ing: The Conjunction Fallacy in Probability Judgment. Psychological review,
90(4):293–315, 1983.

[156] Sun Tzu. The Art of War. Orange Publishing, 2013.

[157] Marynel Vazquez, Alexander May, Aaron Steinfeld, and Wei Hsuan Chen.	 A
Deceptive Robot Referee in AaMultiplayer Gaming Environment. In Proceed­
ings of the 2011 International Conference on Collaboration Technologies and
Systems (CTS’11), pages 204–211, 2011.

[158] Verizon. Threats on the Horizon – The Rise of the Advanced Persistent Threat.
http://goo.gl/ZnuJ9g.

[159] Verizon.	 Data Breach Investigations Report (DBIR’14). http://www.
verizonenterprise.com/DBIR/2014/, 2014.

[160] Verizon.	 Data Breach Investigations Report (DBIR’15). http://www.
verizonenterprise.com/DBIR/2015/, 2015.

[161] Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. Cross-Site Scripting Prevention with Dynamic
Data Tainting and Static Analysis. In The 2007 Network and Distributed System
Security Symposium (NDSS’07), 2007.

[162] Aldert Vrij.	 Detecting Lies and Deceit: Pitfalls and Opportunities. John Wiley
& Sons Inc, 2008.

[163] Alan R. Wagner and Ronald C. Arkin. Acting Deceptively: Providing Robots
With the Capacity for Deception. International Journal of Social Robotics,
3(1):5–26, 2011.

[164] Matthias	 Wählisch, André Vorbach, Christian Keil, Jochen Schönfelder,
Thomas C. Schmidt, and Jochen H. Schiller. Design, Implementation, and
Operation of a Mobile Honeypot. Technical report, Cornell University Library,
2013.

[165] Wei Wang, Jeffrey Bickford, Ilona Murynets, Ramesh Subbaraman, Andrea G.
Forte, and Gokul Singaraju. Detecting Targeted Attacks by Multilayer Decep­
tion. Journal of Cyber Security and Mobility, 2(2):175–199, 2013.

152

[166] Marc G. Weinberger, Chris T. Allen, and William R. Dillon. Negative Informa­
tion: Perspectives and Research Directions. Advances in Consumer Research,
8(1):398–404, 1981.

[167] Matt Weir, Sudhir Aggarwal, Michael Collins, and Henry Stern. Testing Metrics
for Password Creation Policies by Attacking Large Sets of Revealed Passwords.
In Proceedings of the 17th ACM conference on Computer and communications
security, pages 162–175. ACM, 2010.

[168] Matt Weir, Sudhir Aggarwal, Breno De Medeiros, and Bill Glodek. Password
Cracking Using Probabilistic Context-Free Grammars. In IEEE Symposium on
Security and Privacy, pages 391–405, 2009.

[169] Gus W. Weiss. The Farewell Dossier. https://goo.gl/llh2Xa, 2007.

[170] Barton Whaley. Toward a General Theory of Deception. The Journal of Strate­
gic Studies, 5(1):178–192, 1982.

[171] Barton Whaley.	 Stratagem: Deception and Surprise in War. Artech House
Information Warfare Library, 2007.

[172] Michael J. Wirthlin and Brad L. Hutchings. A Dynamic Instruction Set Com­
puter. In IEEE Symposium on FPGAs for Custom Computing Machines, pages
99–107. IEEE, 1995.

[173] YubiCo. YubiHSM Manual. Technical report, YubiCo, Palo Alto, CA, 2015.

[174] Chuan Yue and Haining Wang. BogusBiter: A Transparent Protection Against
Phishing Attacks. ACM Transactions on Internet Technology (TOIT), 10(2):6,
2010.

[175] James Joseph Yuill.	 Defensive Computer-Security Deception Operations: Pro­
cesses, Principles and Techniques. PhD Dissertation, North Carolina State
University, 2006.

[176] James Joseph Yuill, Mike Zappe, Dorothy Denning, and Fred Feer. Honeyfiles:
Deceptive Files for Intrusion Detection. In Information Assurance Workshop,
pages 116–122. IEEE, 2004.

[177] Lianying Zhao and Mohammad Mannan.	 Explicit Authentication Response
Considered Harmful. In New Security Paradigms Workshop (NSPW ’13), pages
77–86, New York, New York, USA, 2013. ACM Press.

APPENDIX

153

A DECEPTIVER IMPLEMENTATION

A.1 Deceptiver Command Line Inputs

The sever is invoked by executing python3 deceptiver.py (arguments). The

following list are the inputs to the server as command line arguments.

• ’-a’ or ’–admin’

Takes you to the administrative section of Deceptiver.

• ’-s’ or ’–server’

To provide the type of server initiating the Deceptiver. E.g., http, ftp, etc.

• ’–sd’ or ’–server-details’

To provide the server details such as version, name, etc.

• ’-p’ or ’–port’

The port the server is listening on.

• ’–uri’

To provide the server the requested resource URI.

• ’–ip’

To provide the IPv4 address of the client requesting access. The IP address must

be the in the format of x.x.x.x.

• ’–secure’

When this argument is included, it informs the Deceptiver that the connection

was made over a secure channel.

• ’-m’ or ’–malicious’

When this argument is included, it informs the Deceptiver that the server knows

that this client is malicious.

154

• When the server is an HTTP server, the following arguments can be used:

– ’–uagent’ or ’–user-agent’

HTTP’s user’s agent.

– ’–referrer’

HTTP’s referrer.

– ’–method’

HTTP’s method used.

The following arguments are always required ’-s’, ’–sd’, ’-p’, ’–uri’ and ’–ip’ and

the following arguments are required from HTTP servers ’–method’.

VITA

155

VITA

Mohammed H. Almeshekah has been working in the area of Information Security

for more than seven years. He holds a PhD in Computer Science from Purdue Uni­

versity, a Masters in Information Security from Royal Holloway, University of London

and a Bachelor in Computer Science from King Saud University. Broadly, his area

of interest is Information Security. Within security, he is interested in three main

areas: the use of deception in security, usable security, and authentication. His work

has appeared in a number international conferences and workshops; and has been

profiled by CIO, ACM TechNews, Kaspersky Labs and other international outlets in

more than four languages.

Previously, Mohammed worked on improving the security of the Chrome and

Firefox browsers working at both Google and Mozilla as a Security Engineer. In

addition, he won a number of awards including the ”Diamond Award” awarded by the

Center for Education and Research in Information Assurance and Security (CERIAS)

at Purdue; and a “Teaching Fellowship” awarded by Purdue’s Computer Science

Department.

