
CERIAS Tech Report 2015-01
The Weakness of WinRAR Encrypted Archives to Compression Side-channel Attacks

 by Kristine Arthur-Durett
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

THE WEAKNESS OF WINRAR ENCRYPTED ARCHIVES

TO COMPRESSION SIDE-CHANNEL ATTACKS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Kristine Arthur-Durett

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

December 2014

Purdue University

West Lafayette, Indiana

ii

I would like to dedicate this work to my husband, James, and our children Maeke’a

and Henry for their love, patience and support.

iii

ACKNOWLEDGMENTS

I would first like to express my gratitude to the members of my committee for

providing me with guidance throughout the process of developing my thesis. In

particular, I would like to thank Dr. Eugene Spafford for introducing me to the

problem within and providing me with resources to begin my research. I extend

warm thanks to Dr. Melissa Dark for introducing me to the field of Information

Security and providing support and advice throughout my time in the program. I

would like to thank Dr. Samuel Wagstaff for his insightful recommendations as well

as providing me with the foundational knowledge that I needed. I would also like to

extend acknowledgement of Special Agent Michael Alford’s contributions in providing

information regarding practical issues and current methods in the problem space.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . viii

1 INTRODUCTION . 1

1.1 Related Work . 2

2 WINRAR . 6

2.1 WinRAR v5.0 . 6

2.2 WinRAR encryption . 7

2.3 WinRAR compression . 8

2.3.1 LZSS . 8

2.3.2 PPMII . 9

2.3.3 Intel IA-32 . 9

2.3.4 Delta encoding . 10

3 METHODS . 11

3.1 Compression ratios . 11

3.2 File detection . 12

3.3 Man-in-the-Middle attack . 15

3.3.1 RAR5 file header . 17

4 RESULTS . 19

4.1 Compression ratios . 19

4.2 File detection . 21

4.2.1 Appearance of substrings . 22

4.2.2 Difference of ratios . 23

4.2.3 Man-in-the-Middle . 24

v

Page

5 SUMMARY . 28

5.0.4 Discussion . 28

5.0.5 Countermeasures . 31

5.0.6 Conclusion and open questions 31

REFERENCES . 33

A Compression Corpa . 36

B RAR file header . 38

vi

LIST OF TABLES

Table	 Page

3.1	 Sample of compression ratio data. 13

3.2	 Number of repetitions of text strings of indicated length. 14

4.1	 Descriptive statistics for compression ratio data 20

4.2	 ANOVA table for comparing compression ratios of different file types . 20

4.3	 Tukey’s comparison of treatment means 21

4.4	 95% Confidence Intervals for different file type compression ratios . . . 21

4.5	 SAS output of correlation between size and appearance of substrings where

the file is present . 22

4.6	 SAS output of correlation between size and appearance of substrings where

the file is not present . 22

4.7	 Hypothesis testing results for different levels of α 24

A.1	 Details of compression testing files . 36

B.1	 RAR file header fields . 38

vii

LIST OF FIGURES

Figure	 Page

3.1	 A RAR5 archive with packed size and compression information highlighted 18

4.1	 Box Plot of the distributions of different file types. 19

4.2	 The original alice29.rar archive with the compression method circled and

the total file size inside the rectangle 24

4.3	 The modified alice29-prime.rar with the compression method circled and

the total file size inside the rectangle 25

viii

ABSTRACT

Arthur-Durett, Kristine MS, Purdue University, December 2014. The weakness of
WinRAR encrypted archives to compression side-channel attacks. Major Professor:
Eugene Spafford.

This paper explores the security of WinRAR encrypted archives. Previous works

concerning potential attacks against encrypted archives are studied and evaluated for

practical implementation. These attacks include passive actions examining the effects

of compression ratios of archives and the files contained, the study of temporary ar­

tifacts and active man-in-the-middle attacks on communication between individuals.

An extensive overview of the WinRAR software and the functions implemented within

it is presented to aid in understanding the intricacies of attacks against archives.

Several attacks are chosen from the literature to execute on WinRAR v5.10. Select

file types are identified through the examination of compression ratios. The appear­

ance of a file in an archive is determined through both the appearance of substrings

in the known area of an archive and the comparison of compression ratios.

Finally, the author outlines a revised version of an attack that takes advantage

of the independence between the compression and encryption algorithms. While a

previous version of this attack only succeeded in removing the encryption from an

archive, the revised version is capable of fully recovering an original document from

a encrypted compressed archive. The advantages and shortcomings of these attacks

are discussed and some countermeasures are briefly mentioned.

1

1. INTRODUCTION

Malware droppers are Trojans used as container files to deliver files onto a destination

host computer [1]. In the field of digital forensics, a dropper may be implemented

to obscure data relevant to a crime. Additionally, individuals can use compressed

archives in corporate espionage cases where large amounts of data is removed from

a system. Compression software such as WinZip and WinRAR are popular choices

for concealing incriminating information. Both software packages offer encryption in

addition to data compression, which makes them ideal for these purposes.

The use of compression and encryption creates an issue for forensic investigators

who may need to access archived files for valuable information. Password search

attacks and dictionary attacks are commonly used methods to gain access to an

archived file. With some software packages, such as WinZip versions prior to 9.0,

the encryption function is weak to these attacks [2]. However, for passwords with

length longer than six characters, WinRAR appears secure [3]. Attacks against the

encryption itself, such as related-key attacks introduced by Biryukov et al, exist [4,5].

In an effort to provide knowledge about an archive’s content to investigators,

this paper will explore alternative attacks against the WinRAR software. These

include examination of side-channels and exploitation of the interaction between the

compression and encryption functions. While recovering the full contents of an archive

may not be possible with these attacks, the intention is to reveal information about

the contents. This may provide the knowledge that an investigator needs or assist in

determining whether password cracking efforts are worthwhile on an archive.

2

1.1 Related Work

Attacks against the encryption of an archive are a natural starting point to con­

sider. The goal of attacks against the Advanced Encryption Standard (AES) is to

recover the key used in the algorithm. The key can then be used to decrypt the

contents of an encrypted file or message. There are a variety of methods, such as

Meet-in-the-Middle, differential or related-key attacks, that have been introduced to

discover the secret key.

Meet-in-the-Middle attacks require pairs of plaintexts and their corresponding

ciphertexts. The attacker will attempt to decrypt the ciphertext while simultaneously

encrypting the plaintext with the hope of finding a key that will cause these operations

to converge. Demirci and Selçuk provide an outline to a Meet-in-the-Middle attack

on 8-round AES-256 [6]. This attack is shown to have complexity of 2200 .

Another class of attacks are a form of differential analysis called impossible differ­

entials. In contrast to the original differential attacks which look for characteristics

that hold true with a high probability, impossible differentials look for extremely

low-probability differentials. Once identified, these characteristics can be used to re­

cover the key. Lu and Dunkelman introduce an impossible differential attacks that is

effective on 8-round AES with a complexity of 2229.7 [7].

Finally, Biryukov introduces several variations of related-key attacks against AES­

256 with considerable improvements in time complexity [4, 5, 8]. In the related-key

model, the attacker uses several keys with a known relation between them. When

these keys are used in the encryption function, the attacker is able to trace character­

istics of the function induced by the relationship. From this, the key can be recovered.

Biryukov et al present a practical attack that is capable of recovering the key for a

9-round version of AES-256 in only 239 time [4]. Biryukov also presents a related-key

attack that works in conjunction with a boomerang attack to recover the key from

full 14-round AES-256 in 299.5 time [5].

3

It is important to note that none of the attacks outlined above provide a practical

method for attacking WinRAR archives. The majority of the attacks do not work on

the full 14 rounds of AES-256, which limits their usefulness. The time complexities are

also an issue. The majority of the attacks are simply too computationally expensive

to implement.

Beyond attacks on the key space of a WinRAR archive, there are alternative

methods to gain information about the contents of an archive or the activities of

the owner. These include exploitation of the independence between compression and

encryption, the examination of compression ratios and artifacts in temporary folders.

Each potential attack is discussed in detail below.

In their paper, Yeo and Phan discuss several attacks based on previous work by

Kohno [9, 10]. The first attack involving manipulating the interaction between the

compression and encryption algorithm is of particular interest. The attack is as fol­

lows. Two individuals, Alice and Bob, share an encrypted compressed archive. A

malicious individual, Eve, intercepts the archive in transit and modifies the indicated

compression method in the RAR archive’s file header. When Bob attempts to decrypt

and decompress the modified archive using his secret password, he obtains a com­

pressed version of the original file. The compressed version looks like a corrupted

file to Bob, who was expecting to obtain the plaintext of the original file after using

his password. Bob then sends the decrypted compressed file he obtained back to

Alice to discover the source of the confusion. Eve intercepts once again to obtain the

decrypted compressed file, which can be used to reconstruct the original.

This attack relies on the ability of the adversary to intercept communications

between Alice and Bob to obtain the required files. However, it is not uncommon for

individuals to email files back and forth with little regard to eavesdropping. Therefore

it is sufficient to show that this attack holds with the assumption that the necessary

files are acquired through other means. Yeo and Phan have verified this attack on

WinRAR v3.42 and v2.9. One issue is the fact that in v3.42 only half of the file

contents are recoverable due to verification on the length of the file. The effectiveness

4

of this attack on later versions of WinRAR as well as the newest file format remains

to be seen.

File compression provides side-channels that leaks information about an archive’s

contents, even when encryption is applied. Polimirova-Nikolova showed that the

initial size and extension of an archived object relates to the size of the archive

itself [11]. Kelsey explores various attacks via the compression side-channel to leak

information about the plaintext within an archive [12]. These findings imply that

through the passive observation of compression ratios, it is possible to identify file

types within the archive. Compression ratios can be viewed through two methods in

WinRAR archives. The Info button in the WinRAR graphical interface can provide

information on the overall compression ratio for an archive. Further details, including

information for individual files contained within an archive, can be found by inspecting

the file header. Further research into the ratios that WinRAR yields as well as the

effect of multiple file types within an archive is needed to evaluate the effectiveness

of this attack.

Less passive attacks allows for the possibility of string detection. Given a set of

encrypted compressed messages, it is possible to determine whether an uncompressed

plaintext string, S, appears in the set. This attack requires the encrypted compressed

versions of S appended to the original messages. It may not be feasible to obtain

these messages. However, an alternative attack involving the correlation between

appearances of substrings of S within a known file from an archive may be feasible [12].

Finally, examination of a computer’s memory is another method discussed in the

literature. This can yield information about the archive and its contents. Both Ji-

Zhong and Maartmann-Moe note that cryptographic keys may be found in virtual

memory [13,14]. There is also evidence that WinRAR stores information in areas such

as the windows registry, log files, or temp files [15, 16]. A difficulty with identifying

cryptographic keys in this method is the fact that in session-based encryption such

as WinRAR, the keys are short-lived. When the session is closed, the key is wiped

from memory. Maartmann-Moe’s experiments were unable to retrieve information

5

on cryptographic keys from memory. The short time window that this attack must

take place in presents further difficulties and leaves this attack impractical for most

implementations.

WinRAR leaves behind artifacts that provide information on the user’s activities

in the archive. Fellows showed that v3.x releases of WinRAR leave artifacts in temp

folders that show changes to the archive and files that the user viewed through Win-

RAR [15]. While exploring the collection of artifacts, Gupta and Mehtre also found

that with normal use, information can be found in windows registry, the AppData

folder, and Temporary folders. However, this can be avoided by the use of a portable

version of the software [16].

6

2. WINRAR

WinRAR is capable of supporting all popular compression formats, including .rar and

.zip files [17]. The software uses the Advanced Encryption Standard (AES) to encrypt

archives. WinRAR 5.0 and higher supports AES-256 while earlier versions use AES­

128. Users specify a password to encrypt the archive in question. The AES key is

then derived from the given password implementing Password-Based Key Derivation

Function 2 (PBKDF2) [18].

The compression and encryption functions in WinRAR are independent of each

other. Files are first compressed then encrypted when added to an archive [9]. The

user may further specify one of two encryption modes to apply to the archive. First,

the user may encrypt only the file data. This allows information such as file names

to be viewed in plaintext. The second mode encrypts both file data and header

information, including file names, sizes, and other attributes [19].

2.1 WinRAR v5.0

As of September 2013, WinRAR introduced the new RAR5 archiving format. Sev­

eral important changes, which will be discussed below, are implemented in the newest

version. It is important to note that RAR5 files are not compatible with versions of

WinRAR prior to 5.0. During this transition to a new format, the older RAR format

is currently the default archive format.

Versions 5.0 and above introduce new features to the compression algorithm [18].

The maximum dictionary size has been increased to 1GB. The default size is now

32MB. This gives a higher compression ratio with a sacrifice to speed when compared

to the earlier versions. In addition to the general compression algorithms, Intel IA-32

executable and delta compression algorithms are now implemented. Some older algo­

7

rithms such as RAR 4.x test, audio, true color and itanium are no longer supported.

Theses changes increase the efficiency of the software when handling modern data

types.

Changes in the encryption algorithm and related features offers stronger infor­

mation security. The encryption algorithm now uses 256-bit AES in place of the

previous 128-bit AES. To derive the key for AES-256, WinRAR now implements the

key derivation function PBKDF2 using HMAC-SHA1. To circumvent the discovery of

encrypted information through system memory, the password verification method now

allows for the detection of wrong passwords without unpacking the encrypted file. Ad­

ditionally, the file checksums are now modified with a propriety password-dependent

algorithm. According to Rarlabs, it is now “impossible” to guess the contents of a

file by comparing it with the typical CRC32 and BLAKE2 values [18]. Users can use

a 256-bit length BLAKE2 hash in lieu of the default CRC32 file checksum.

Finally, the RAR5 format has improved the recovery of broken archives. The new

implementation is now based on Reed-Solomon error correction codes [18]. If the

recovery record is at least 5% of the original file size, the correction scheme pro­

vides much higher resistance. This allows the software to detect larger deletions and

insertions to an archive. Further details can be found in [20].

2.2 WinRAR encryption

WinRAR has used AES encryption beginning with the release of version 3.00 [21].

AES was introduced by the National Institute of Standards and Technology (NIST)

in 2001 [22]. It is a symmetric block cipher based on the Rijdael cipher developed by

Joan Daemen and Vincent Rijmen.

AES-128 uses a 128-bit length key and consists of 10 rounds while AES-256 has a

key length of 256 bits and goes through 14 rounds. Each AES round consists of four

transformations [22]:

SubBytes This is a non-linear byte substitution using a substitution table.

8

ShiftRows The final three rows of the state are cyclically left shifted.

MixColumns Each column is multiplied modulo x4 + 1 to mix the bytes.

AddRoundKey The final transformation is an XOR of the state with the round

key.

The final round omits the MixColumns transformation.

The AES algorithm requires a cryptographic key. In a password protected archive,

a key can be generated from the password using a key derivation function (KDF).

KDFs take as input the password, salt, and the desired length of the master key.

These are then used in a pseudorandom function for a fixed number of interations.

In WinRAR, the salt is stored as an option field in the file header and the key length

depends on the file version. WinRAR uses PBKDF2, which implements HMAC with

SHA-1 as the pseudorandom function [23].

2.3 WinRAR compression

WinRAR uses a proprietary compression implementatiom developed by Eugene

Roshal [17]. This implementation includes several well-known compression algorithms

such as: Lempel-Ziv-Storer-Szymanski (LZSS), PPM with Information Inheritance

(PPMII), Intel IA-32 and delta encoding. These methods will be discussed in detail

below.

2.3.1 LZSS

LZSS is the primary compression method for WinRAR. It is a lossless data com­

pression algorithm derived from LZ77 [24]. LZSS is a dictionary coding technique

that utilizes previously seen text as a dictionary. A string of symbols, S, is replaced

by pointers to substrings of S in the dictionary along with the length of the substring.

The pointers are original if they point to a substring of the original source. Similarly,

9

a compressed pointer references the compressed representation [24]. The references

can be either left- or right- pointing and the scheme allows for recursion.

Storer and Szymanski’s scheme addresses a flaw in the original LZ77 algorithm.

LZ77 would occasionally generate a reference longer than the target string, resulting

in poor compression. To correct this, LZSS omits references that are longer than a

specific point. This scheme also uses one-bit flags to indicate whether the following

string of data is the original source or a reference.

2.3.2 PPMII

PPMII was integrated into WinRAR as of version 2.9 to further reduce com­

pression ratios [21]. PPMII was developed by Dmitry Shkarin as an improvement

to the Prediction by Partial Matching model [25, 26]. Broadly, the nth symbol of a

string is predicted based on the previous n − 1 symbols. The compression of a string

is defined by code conditional probability distributions and based on the following

assumption [25]:

The larger the common (initial) part of contexts s, the larger (on the

average) the closeness of their conditional probability distributions.

This notes that the greater number of common characters two strings have, the

greater the probability of predicting the nth symbol. This is desirable as a higher

probability requires fewer bits to encode. To efficiently store the contexts, an M −ary

tree is utilized. This is particularly efficient if a text consists of large numbers of short

strings.

2.3.3 Intel IA-32

Intel IA-32 is a compression scheme introduced in response to the observation that

database processing correlates with the hardware constraints of storage I/O [27]. It

provides lightweight compression and decompression using single instruction, multiple

10

data (SIMD) commands to optimize database queries. Data is compressed quickly by

reducing the the dynamic range of data. This is accomplished by applying a mask,

packed shift, and finally stitching the data together.

2.3.4 Delta encoding

This is the second new technique introduced to optimize compression performace

in the newest version. Delta encoding encompasses several techniques that stores data

as the difference between successive samples [28]. This is an alternative to directly

storing the samples themselves. Generally, the first value in the encoded file is equal

to the first value in the original data. The subsequent values are equal to the difference

between the current and previous value in the input. That is, for an encoded value

yn with original inputs xn:

yn = xn − xn−1 (2.1)

This approach is best suited when the values in the original file have only small

changes between adjacent symbols. It is therefore ideal for file representation of a

signal, but performs poorly with text files and executable code.

11

3. METHODS

This section provides detailed descriptions of the experiments taken to determine

information leakage through the compression side-channel. These experiments include

an examination of compression ratios for file type and string detection as well as

a man-in-the-middle attack exploiting the independence between the compression

and encryption algorithms. The experiments were chosen based on their focus on

the compression side-channel and the practicality of implementing the attacks with

limited knowledge of an archive’s contents. Unless otherwise indicated, experiments

are performed using WinRAR v5.10

3.1 Compression ratios

This experiment is based on work by Kelsey and Polmirova-Nickolova [11, 12]. It

is run to test the hypothesis:

Hypothesis 1 The compression of different file types under RAR and RAR5 archives

will produce distinct compression ratios.

If this hypothesis holds true, an attacker can make an educated guess as to the

contents of an encrypted archived file. This knowledge is useful for identifying file

type even when a user applies obfuscating measure such as renaming a file. The

information needed to calculate the compression ratio can be obtained by inspecting

the file header. Once this information is obtained, the compression ratio can be

calculated as shown in Equation 3.1.

The files used in this test are retrieved from the Canterbury Corpus and Maximum

Compression benchmark [29,30]. The files included in these collections are selected to

give compression results typical of commonly used files. In particular, the Canterbury

12

Corpus is the main benchmark to test compression algorithms. Details describing the

contents of the collections can be found in Appendix A.

The files are categorized into four types as outlined in the Maximum Compression

collection: text, executable, graphic, and other. Text file formats include plain text

files in English. Executables are Windows executable files such as .exe extensions.

Graphic files are various image file types. Other types include any files not included

under the other categories such as Microsoft Office documents, Adobe PDF or help

files. The corpa include only two graphic files of .jpeg and .bmp types. To increase

sample size and provide a wider range of file formats under the graphic file type,

additional .png and .gif formats are included.

All files in the collection were compressed with and without encryption using both

RAR and RAR5 file types. For testing purposes, the password “P4ssw0rd” was used for

all encrypted archives. The compression ratio, c, for each archive with packed archive

size x and unpacked size y is calculated as follows:

x
c = (3.1)

y

The experiment is set up as a Block design with the file types as treatments

and encryption and archive format as blocks. This allows the compression ratio of

file types to be compared while controlling the variation due to different methods.

Analysis of Variance (ANOVA) is then employed to test the existence of a statistical

difference between treatments. These tests are carried out at the α = 5% significance

level.

3.2 File detection

The file detection experiments are inspired by the String Presence Detection at­

tacks outlined by Kelsey [12]. This experiment will test the following two hypotheses:

Hypothesis 2a Given an uncompressed plaintext string S and a known file from

an encrypted archive, an attacker can determine whether S appears frequently

within the archive.

13

Table 3.1.

Sample of compression ratio data.

File Type RAR, no RAR5, no RAR, pass- RAR5, pass-

password password word word

Text .247 .247 .247 .248

Executable .356 .356 .356 .356

Other .490 .491 .490 .491

Hypothesis 2b Given an encrypted archive, the compression ratio of the archive

and the contained files are correlated.

Suppose that an adversary wants to discover whether a particular file is present

in an encrypted compressed archive. He chooses a string, S, that he knows to occur

frequently within the file. If Hypothesis 2a holds true, frequent appearances of

a string S from a file imply that the file is likely contained within the archive. If

Hypothesis 2b holds true, the correlation between the desired file and the archive

can suggest whether the file is present.

Kelsey presents a partial known input attack as follows [12]:

1. Given a string, S, and a known part of a set of messages, the attacker looks for

appearances of substrings of S in the known part of the message.

2. The appearance of substrings of S is correlated with the compressed length of

the message.

3. The attacker determines whether S appears frequently in the message.

The file FP.log is the file to be detected for this experiment. It contains many

repetitive strings, which makes it ideal to use for detection. From this file, the fol­

lowing string is chosen:

compatible; MSIE 5.0; Windows 98

14

This string appears 9288 times throughout FP.log. This is an extremely high rate

of occurrence for a string of this length. Examination of other text files in the com­

pression corpa shows that repetitions of strings of length greater than five is rare.

Table 3.2 provides the greatest number of repetitions for strings of various lengths for

typical text files in the corpa.

Table 3.2.
Number of repetitions of text strings of indicated length.

File 8-word 7-word 6-word 5-word

alice29 4 4 6 19

asyoulik 6 7 17 22

fields 4 4 4 4

grammar 2 2 2 4

lcet 5 7 10 10

plarbn 2 3 3 4

xargs 0 2 2 4

Nine other text files of varying sizes and contents were selected from the collection.

The ten files were then used to construct 120 encrypted archives each containing three

files. In each archive, one file is assumed to be known. The appearances of substrings

of S are then counted for each known file. The number of substring appearances is

then compared to the compressed archive length using linear regression to determine

if a correlation exists.

For the second half of the experiment, the compression ratio for the encrypted

archive is compared with the compression ratio of the file in question. The two-tailed

t-test is used to determine whether the archive’s compression ratio is equal to the

file’s compression ratio. The following formula is used to calculate the t-value:

x̄− µ0
t = √ (3.2)

s/ n

15

Where x̄ is the average archive compression ratio, µ0 is the file compression ratio,

s is the sample standard deviation and n is the sample size. The t-critical value, tα,df ,

can be calculated using statistical software for comparison. If the calculated t-value

is less than the critical value, then the null hypothesis of x̄ = µ0 can be said to hold

true.

3.3 Man-in-the-Middle attack

This attack exploits the independence between the encryption and compression

algorithms. It was first introduced by Kohno as an attack against WinZip and later

verified by Yeo and Phan [10], [9]. Assume that two users, Alice and Bob, wish to

send a secret message in an encrypted compressed archive. Eve is a third individual

who wants to discover the content of the secret archive. The attack as outline by Yeo

and Phan proceeds as follows:

1. Alice compresses and encrypts Secret.txt into Secret.rar using compression

method 1 and shares the archive with Bob.

2. Eve intercepts Secret.rar and modifies the indicated compression method in

the file header to compression method 2. She sends this modified archive, say

Secret-prime.rar, on to Bob.

3. Bob, unaware of Eve’s actions, attempts to decompress Secret-prime.rar with

his secret password. This results in an incomprehensible file, Corrupted-Secret.txt.

He sends Corrupted-Secret.txt to Alice in an attempt to understand what is

wrong.

4. Eve	 again intercepts communication to obtain Corrupted-Secret.txt. She

then re-compresses Corrupted-Secret.txt using compression method 2 to ob­

tain Unencrypted-Secret.rar.

5. Finally, Eve modifies the compression method in Unencrypted-Secret.rar to

method 1. She then decompresses the archive to recover the original Secret.txt.

16

This attacks requires modification of the archive’s file header. This can be ac­

complished with a hex editor. For the purposes of this paper, the author used HxD

HexEditor to test the attack [31]. This is an opensource hex editor that provides

several useful features such as built-in calculation of CRC32.

When carrying out this attack, the original authors noted that there may be

an issue in Step 3 when Bob attempts to decompress the modified file. WinRAR

will return an error that the CRC check failed and the decompressed file will be

automatically deleted. The authors suggest using an unerase utility such as Norton’s

Unerase Utility to recover the lost file. However, this can be prevented using a built-in

feature of WinRAR. When indicating the file path to extract the archive into, the user

can simply check the ”Keep broken files” option under miscellaneous. The user will

still receive an error, but the extracted file will be saved where indicated. An internet

search shows that CRC checksum errors are common when extracting archives and

this is a frequently used method.

There are two important notes involving the modification of the compression

method. First, the compression may be changed to any of six possible methods.

However, modifying the method without altering the packed and total file sizes will

result in some loss of file contents. It is also difficult to accurately predict the cor­

rect compression ratio of various methods. To circumvent this issue, the compression

method is set to 0x30, which indicates no compression. The total file size is then

modified to equal the packed file size which requires no extra calculations on the part

of the attacker.

Secondly, the choice of no compression is important to preserving the contents of

the original file. In Step 2, Bob must enter his secret password in order for WinRAR

to proceed with decryption and decompression of the file. WinRAR first decrypts

the contents of the archive before attempting decompression. Recall that Eve has

modified the file header within the archive to indicate that there is no compression

on the file. This results in WinRAR outputting the exact contents contained in

the archive. The file that is obtained from this step is the version of the original

17

Secret.txt compressed using compression method 1. Due to the compression, the

file appears incomprehensible to Bob, who was expecting a decompressed file. This

Corrupted-Secret.txt is all that is needed for Eve to reconstruct Secret.txt.

Eve’s choice of the compression method in Step 4 is significant to the success of the

attack. Adding Corrupted-Secret.txt to a WinRAR archive using no compression

ensures that the archive contains a copy of the original file under compression method

1. If another method is applied, the archive will contain two layers of compression on

the file and subsequent attempts at decompression will result in Corrupt-Secret.txt

as opposed to the desired Secret.txt. Eve can obtain the original text by modifying

the compression method field in the header to compression method 1. When the

archive is unpacked, WinRAR will then use compression method 1, which matches

the compression on Corrupted-Secret.txt and the file will successfully be recovered.

This attack is tested using both WinRAR v5.0 and v3.42 for verification. The

RAR filetype is tested on both WinRAR v3.42 and v5.10 while the new RAR5 format

is tested only on version 5.10. Due to differences in file format, the modification

of the file header is slightly difference between versions. Information discussing the

identification of header information for RAR file types is outlined in Appendix B.

Deeper discussion of the RAR5 format is in the following section.

3.3.1 RAR5 file header

New to the RAR5 format is the use of variable integers as data types in the header

information. Previous versions of WinRAR use unsigned integer values. Variable

length quantities allow for the storage of larger values. It also adds slightly more

work for an adversary to modify the file header. However, this should not be relied

on to increase the security of the archive.

In a variable integer, the lowest 7 bits of each byte contain the integer data while

the highest bit is a continuation flag. 1 indicates that further bytes are present in the

18

sequence while 0 indicates the final byte. RAR5 has a maximum of 10 bytes used to

represent an integer [32].

To convert the decimal numbers to a variable length quantity, the following steps

must be done:

1. Represent the decimal value in binary notation.

2. Beginning with the least significant bit, divide the binary	 number into into

groups of 7 digits. If a group has fewer than 7 bits available, pad with 0.

3. Append 0 to the beginning of the lowest 7 bits to indicate the end of the integer.

Append 1 to the other groups of 7.

Fig. 3.1. A RAR5 archive with packed size and compression information highlighted

It is most convenient to modify the total file size field first. The total and packed

file sizes can be obtained through the ”info” option in WinRAR. Convert both sizes

to variable length quantities as outlined above and replace the total file size field with

the appropriate integer.

Next, the two bytes containing compression information can be located relative to

the Host OS field. According to the WinRAR technote [32], the compression method

immediately precedes the Host OS field. First, convert the original bytes to binary.

Bits 8-10 define the compression method. In decimal form, 0 indicates no compression

while 5 is best compression. Modify the bits as necessary. Convert the binary number

back to hexadecimal and replace the fields as necessary.

19

4. RESULTS

In this section, the results of the experiments described in the previous section are

discussed.

4.1 Compression ratios

The first input for the experiment allows each file to be considered a separate

treatment. The compression and password options are then considered blocks, of

which there are four total. The files are divided into four groups: Text, Executable,

Graphics and Other. These are encoded as treatments 1, 2, 3 and 4, respectively.

To balance the experiment, four files for each type are randomly selected and each

file is tested in every block. An ANOVA test is run to compare the means of the

four treatments at a significance level of α = .05. A box-plot and basic descriptive

statistics of the data follow in Figure 4.1 and Table 4.1.

Fig. 4.1. Box Plot of the distributions of different file types.

20

Table 4.1.

Descriptive statistics for compression ratio data

Treatmente N Obs Mean Std Dev Minimum Maximum

1 16 0.3244542 0.0637309 0.2470714 0.4163709

2 16 0.3561775 0.0856055 0.2768610 0.4914785

3 16 0.8181292 0.3235247 0.2754676 1.0009069

4 16 0.3092772 0.3171904 0.0360954 0.8311475

Notice in Figure 4.1, the plots of the treatment means overlap. This suggests

that they are not necessarily distinct. To determine whether there exists a significant

difference between file types, hypothesis testing on H0: The treatment means are equal

is conducted using Analysis of Variance. SAS provides the ANOVA table in Table 4.2.

The P-value of < 0.0001 is less than the stated significance value. Therefore, there is

statistical evidence to reject H0 and the conclusion is that there exists a difference in

compression ratios of different file types.

Table 4.2.

ANOVA table for comparing compression ratios of different file types

Source DF Type III SS Mean Square F-Value P-value

trt 3 2.87792404 0.95930801 16.82 <.0001

blk 3 0.00000060 0.00000020 0.00 1.0000

To formally test the difference between means, Tukey’s comparison for treatment

means is implemented. All possible pairs from the data are tested, which make

Tukey’s comparison most appropriate. Means with the same letter are not considered

significantly different. As illustrated in Table 4.3, treatments 2, 4 and 1 are not

significantly different. These treatment types correspond to text, executable and

21

other data files respectively. Graphics are noted to have a mean significantly higher

than other file types.

Table 4.3.
Tukey’s comparison of treatment means

Tukey Grouping Mean N trt

A 0.81813 16 3

B 0.35618 16 2

B 0.32445 16 4

B 0.30928 16 1

Finally, Table 4.4 provides 95% confidence intervals for the different file type

ratios. These intervals have a 95% chance of containing the true population mean.

Investigators with a known compression ratio falling within one of these intervals can

assume that the files contained in the archive are of the indicated file type.

Table 4.4.
95% Confidence Intervals for different file type compression ratios

File Type Mean 95% Confidence Interval

Text

Executable

Graphic

Other

0.32445

0.35618

0.81813

0.30928

0.29049

0.31056

0.64574

0.14026

0.35841

0.40179

0.99052

0.47830

4.2 File detection

Two experiments are run in this section. The first tests whether the appearance

of substrings in the known part of an archive correlates with the compressed length

22

of the archive. The second experiment tests whether the compression ratio of the

archive is correlated with the compression ratio of a file in question.

4.2.1 Appearance of substrings

The archives are constructed as described in Section 3.2. The goal is to identify

archives that contain FP.log through the appearance of substrings of a string S in a

known file. Archives containing FP.log are sorted from the collection. Appearance of

substrings are counted for each archive. Linear regression is then applied to determine

the correlation between the number of appearances and the compressed size of the

archive.

Table 4.5.
SAS output of correlation between size and appearance of substrings
where the file is present

Root MSE 495032 R-Square 0.2520

Dependent Mean 1293068 Adj R-Sq 0.1273

Coeff Var 38.28347

Table 4.6.
SAS output of correlation between size and appearance of substrings
where the file is not present

Root MSE 317309 R-Square 0.1396

Dependent Mean 109798 Adj R-Sq 0.0614

Coeff Var 288.99243

Tables 4.5 and 4.6 show the SAS output for the correlation values. The model uses

multiple linear regression, so the Adj R-sq is the most appropriate statistic. Notice

that R2 = 0.1273 and R2 = 0.0614. This implies that the correlation is present notpresent

23

stronger for archives that do contain the file in question. This supports the hypothesis

that an attacker can determine whether a string S appears frequently within an

archive.

4.2.2 Difference of ratios

The same collection of archives utilized in Section 4.2.1 are examined again. For

this experiment, the compression ratios of FP.log and the full archive are compared

to discover if there is a difference in their average. For this experiment, it is not

necessary to have a known file from the archive. The two-tailed t-test as shown in

Equation 3.2 is implemented. All necessary statistical computations were performed

using SAS statistical software.

For archives containing FP.log, the following values are found:

x̄ = 0.05629, s = 0.01879, n = 36, |t.025,35| = 2.03011

For archives that do not contain this file, the values are as follows:

x̄ = 0.28075, s = 0.05383, n = 84, |t.025,83| = 1.98896 The t-values for each list can

then be computed using µ0 = 0.04334.

0.05629 − 0.04334
tpresent = √ = 4.135 (4.1)

0.01879/ 36

0.28075 − 0.04334
tnotpresent = √ = 40.422 (4.2)

0.05383/ 84

Notice that the null hypothesis of x̄ = 0.04334 would be rejected in both cases

because the calculated t-values are both larger than their respective critical values.

This may be due to a poor choice in significance level. Other levels of α are shown

in Table 4.7. By increasing the confidence of the test, it is possible to differentiate

between archives that contain the file under investigation.

24

Table 4.7.
Hypothesis testing results for different levels of �

� t��35 t��83 File present conclusion File not present conclusion

.01 2.7238 2.6364 reject H0 reject H0

.001 3.5912 3.4116 reject H0 reject H0

.0001 4.3888 4.08569 fail to reject H0 reject H0

4.2.3 Man­in­the­Middle

The attack described in Section 3.3 is tested using WinRAR v3.42 and v5.10. The

file alice29.txt is used for testing in all cases. The attacks on RAR and RAR5 formats

are discussed seperately below.

RAR file format

The first step of the attack requires changing the compression method and total

file size in the file header. As discussed in Section 3.3, setting the compression method

to no compression, denoted by 0x30, provides the best results. Additionally, the total

file size is altered to equal the packed file size in the header. This step is illustrated

in Figures 4.2 and 4.3 below.

Fig. 4.2. The original alice29.rar archive with the compression
method circled and the total file size inside the rectangle

25

Fig. 4.3. The modified alice29-prime.rar with the compression
method circled and the total file size inside the rectangle

The decompression of alice29-prime.rar results in what looks like garbage text.

In reality, it is the unencrypted compressed version of the original file. The remaining

challenge is to reconstruct the original file given the corrupted text. The final step

of the attack outlined in [9] and [10] is to re-compress alice29-corrupted.txt using

compression method 0x30, restore the compression method and total file size to their

original values and decompress the archive.

The attack fails as outlined during the final step. Comparison of the file contents

with an unencrypted compressed version of the original file verify that the encryp­

tion has been removed. However, neither WinRAR v3.42 nor v5.10 is capable of

decompressing the resulting archive correctly.

In addition to the steps outlined in the original attack, the author made several

modifications to the final archive. The modifications were based on the following

observations.

1. There is now padding at the end of the file.

2. The encrypted packed archive size is larger than the unencrypted packed archive

size.

3. The RAR version needed to extract the file has changed.

To address these issues, supplementary modifications can be done. None of the

new changes require any additional knowledge on the part of the attacker. First, the

zero padding at the end of the file is deleted. The number of bytes in the padding

26

is then subtracted from the packed archive size in the file header. Next, the UNP VER

field is adjusted to reflect the same version as indicated in the original alice29.rar

archive. To reduce errors, the file and header CRC32 is recalculated using the built

in HxD function. The corresponding fields are also updated. With these changes, it

is possible to fully recover the original file.

RAR5 file format

The RAR5 format is tested in WinRAR v5.10 using the same test file and attack

outline. When implementing the attack, the new format requires further calculations

to modify the required fields. The variable length quantities for the packed archive size

and the compression method are calculated as described in Section 3.3.1. This section

illustrates the steps necessary to modify the compression method as an example to

readers.

In the encrypted compressed archive alice29.rar, the compression method is rep­

resented by the hexadecimal numerals 0x800B. This is represented in binary nota­

tion as 10000000 0001011. The final three digits in the binary string represent the

compression method used in the archive. Currently compression method 3, normal

compression, is selected. To move forward with the attack, compression method 0

will be applied by changing the digits to obtain the string 10000000 0000000. The

fourth digit indicates the dictionary size required to extract data. Since there is no

compression in the archive, this bit is not necessary. Finally, converting back to

hexadecimal produces a final value of 0x8000. This is used to replace the initial

compression method.

In contrast to the earlier file formats, the attack fails at this point. Despite changes

to the file header, the RAR5 format is capable of extracting the original contents with

no issue. The extraction does not result in CRC checksum errors as the previous

versions do. Without the extraction of corrupted contents, the attack is unable to

27

proceed. Subsequent attempts to sabotage the file header to force an error failed.

The fields altered included CRC32 fields, file flags, and attributes.

28

5. SUMMARY

The findings presented in Section 4 include several novel results. These will be dis­

cussed in detail followed by a brief suggestion of countermeasures to prevent infor­

mation leakage.

5.0.4 Discussion

In Section 4.1, statistical methods show that it is possible to distinguish different

file types based on an archive’s compression ratio. Therefore, the proposed Hypoth­

esis 1 holds true. It is important to notice that, as illustrated in Table 4.3, Text,

Executable and Other compression ratios are not distinct. However, graphic files con­

sistently compress at a ratio considerably higher than other file types. This is likely

due to the fact that many image formats implement some form of compression [33].

If the data in an archive has already been compressed, WinRAR’s algorithms can do

little to further reduce an archive’s size. This results in a packed file size very close

to the total file size.

This attack is most effective if an investigator is considering compression ratios to

assist in identifying whether an archive contains images. For example, in child pornog­

raphy cases a forensic investigator may need to identify archives with large amounts

of images. Compression ratio inspection provides a simple method of identification

for archives with these types of contents. The information necessary is very minimal

and can be found from any archive which makes this attack easy to implement in a

variety of situations. Table 4.4 provides some intervals to be used for identifying file

types. Generally, an archive with a compression ratio greater than .64 can reasonably

be assumed to contain images. The ability to identify file types within an archive

29

helps save valuable time and effort that could potentially be lost in attempting to

crack archives with irrelevant contents.

The appearance of substring experiment in Section 4.2.1 supported the hypothesis

that substrings in the known part of an archive correlate with the compressed size of

the archive. This correlation is likely due to the general compression scheme utilized

by WinRAR. If a file is present in an archive, the appearance of substrings will allow

both LZSS and PPMII compression schemes to work more efficiently. In turn, this

results in a lower packed size for the archive. This provided the most surprising

results of the experiments as the conclusions were not immediately obvious from the

raw data.

This attack does have several drawbacks. First, the file selected for examination

has an extremely high number of repeated strings as stated in Section 3.2. Unless an

investigator is looking for similarly structured files, such as log files, it is unlikely that

typical text will include similar levels of repetition. This would result in a weaker

effect on the overall compression size which may cause the correlation to become too

weak for detection. However, the appearance of substring attack is ideal to identify

files containing profile or bank account information that include many repeated fields.

Secondly, a relatively large collection of archives was examined, which strength­

ened the power of the statistical process. A collection of this size may not be available

for study. Finally, the archives containing the file were known ahead of time. While

this experimental design is sufficient to show correlation, it is not practical to execute

on completely unknown data. For future testing, a Monte Carlo experiment may

provide more accurate results for modeling the relationship between substrings and

archive size.

Section 4.2.2 showed that, with sufficiently significant levels of α it is possible

to distinguish archives that contain a file from those that don’t. Adequate evidence

is given to show that Hypothesis 2b is valid. It should be noted that in this

experiment the ratios of archives containing the file have a significantly different

average than those that don’t. In the event that the averages are closer in value, the

30

author suggests that lower values of α will be capable of distinguishing between them.

This attack is ideal to use on files that are highly compressible as its compression ratio

will have a significant effect on that of the archive. The selection of files most suited

to this attack suffers from the same issues outlined for the appearance of substrings

attack.

Both the appearance of substrings and difference of ratios attacks can extend

their usefulness in exfiltration detection measures. For example, if numerous archives

are detected leaving an organization’s system, sensitive information such as client

data can be checked against the archives as outlined. This can provide a reasonable

perception of what information has been compromised.

Finally, experiments with the Man-in-the-Middle attack in Section 4.2.3 provided

suggestions for improvement. Despite claims that the original attack is capable of

obtaining the plain text of a file in an archive, it does not perform as suggested. Fol­

lowing the attack as outlined in the literature will result in the removal of encryption

from an archive. However, the compressed file is still unintelligible.

To remedy this, the author suggests some variation in the final step of the attack.

First, the files tend to accumulate extra padding at the end. This is simple to identify

as it consists of a string of hexadecimal values 0x00. The padding may be generated

from the loss of the password and salt after the encryption is removed. To avoid

conflict with the file size, the packed file size needs to be adjusted according to the

amount of padding removed. Secondly, WinRAR uses standard CRC32 checksums,

which can be computed with off the shelf software and applied in the relevant fields.

Finally, the unpacking version field should be updated to the value in the original

archive’s field to avoid compatibility issues. All of the extra information needed can

be discovered using the archives that an adversary has access to. These steps will

insure that the contents of an encrypted compressed archive can be revealed. The

attack has been verified on RAR archives using both WinRAR v3.42 and v5.10.

Despite the success of the revised implementation, RAR5 formatted archives remain

robust against the attack. This is possibly due to the enhanced archive recovery

31

capabilities in v5.x. The software is more capable of detecting and mitigating changes

to file information. Another potential pitfall in attacking the newest file format is the

new checksum algorithms. The CRC32 and BLAKE2 checksums are now password

dependent. Without knowing the password, it is not feasible to calculate the values

necessary in the final step of the attack. However, the older file format is the default

method for the newest version and remains very widely used. The attack introduced

in this paper is relevant to current information security needs.

5.0.5 Countermeasures

In response to the information discovered through the experiments, there are sug­

gestions to circumvent some of the attacks. Aside from the appearance of substrings

attack, all of the attacks rely on the assumption that the adversary is able to at least

view file header information. The default setting in WinRAR only encrypts a file’s

contents and the header information remains in plaintext. For this situation, the

assumption holds. However, users are able to select an option to encrypt file header

information along with the file contents. This would mask information such as total

and packed file size, compression method and any additional file attributes.

For further security of files, the author suggests using the RAR5 file format when

possible. It has the same weakness against the first three attacks as the older file

versions. However, it is resilient against the Man-in-the-middle attack. Thus, it

provides slightly improved security over previous versions.

5.0.6 Conclusion and open questions

This paper shows that knowledge of information in an encrypted archive can be

leaked via the study of compression properties. These attacks require less time and

computing resources than traditional attacks against the encryption of an archive. Is­

sues in an attack are addressed to create a successful method for recovering archived

files. This has been verified with two different versions of WinRAR but the effec­

32

tiveness with other compression software remains to be evaluated. There is also a

possibility of using this attack against an archive containing multiple files. All of the

presented methods are efficient for investigators to implement as a first line of query

to discover information about an unknown archive. These methods also highlight an

area that is lacking in security for the WinRAR software. It is a future challenge to

provide a good compression scheme with effectively implemented encryption.

Some open questions remain in relation to the string detection attacks. The effect

of string frequency in the appearance of substrings remains open for further investi­

gation. As discussed in Section 5.0.4, the attack is effective on highly compressible

files such as logs or databases. However, many text files do not have a high number of

repetitive strings. The length of the string may also influence the correlation with an

archive’s size. Further investigation into the effects of repetition and length remain

open.

The experimental design used emphasizes the use of statistics to conclude the

validity of a hypothesis. When conducting the literature review, very few papers im­

plemented rigorous statistical methods to reach conclusions. The meaning of data can

be counter-intuitive and it is possible to reach incorrect conclusions without proper

analysis. The author encourages future researchers to use experimental methods to

provide strong validity for information security research.

REFERENCES

33

REFERENCES

[1] Symantec.	 Trojan.Dropper Technical Details. [Online]. Avail­
able: http://www.symantec.com/security response/writeup.jsp?docid=2002­
082718-3007-99tabid=2

[2] WinZip. What	 can I do if I forget the encryption password for my zip file?
[Online]. Available: http://kb.winzip.com/kb/entry/79/

[3] J. Chen, J. Zhou, K. Pan, S. Lin, C. Zhao, and X. Li, “The security of key
derivation functions in WINRAR,” Journal of Computers, vol. 8, no. 9, pp.
2262–2268, 2013.

[4] A. Biryukov, O. Dunkelman, N. Keller, D. Khovratovich, and A. Shamir, “Key
recovery attacks of practical complexity on AES variants with up to 10 rounds,”
IACR eprint server, vol. 374, 2009.

[5] A. Biryukov and D. Khovratovich, “Related-key cryptanalysis of the full AES­
192 and AES-256,” in Advances in Cryptology–ASIACRYPT 2009. Springer,
2009, pp. 1–18.

[6] H. Demirci and A. A. Selçuk, “A meet-in-the-middle attack on 8-round AES,”
in Fast Software Encryption. Springer, 2008, pp. 116–126.

[7] J. Lu, O. Dunkelman, N. Keller, and J. Kim, “New impossible differential attacks
on AES,” in Progress in Cryptology-INDOCRYPT 2008. Springer, 2008, pp.
279–293.

[8] A. Biryukov, D. Khovratovich, and I. Nikolić, “Distinguisher and related-key at­
tack on the full AES-256,” in Advances in Cryptology-CRYPTO 2009. Springer,
2009, pp. 231–249.

[9] G. S.-W. Yeo and R. C.-W. Phan, “On the security of the WinRAR encryption
feature,” International Journal of Information Security, vol. 5, no. 2, pp. 115–
123, 2006.

[10] T. Kohno, “Attacking and repairing the WinZip encryption scheme,” in	 Pro­
ceedings of the 11th ACM conference on Computer and communications security.
ACM, 2004, pp. 72–81.

[11] D. Polimirova-Nickolova and E. Nickolov, “Examination of archived objects’ size
influence on the information security when compression methods are applied,”
in Third International Conference Information Research, Applications and Edu­
cation, 2005, p. 130.

[12] J. Kelsey, “Compression and information leakage of plaintext,” in Fast Software
Encryption. Springer, 2002, pp. 263–276.

http://kb.winzip.com/kb/entry/79
http://www.symantec.com/security

34

[13] L. Ji-Zhong, J. Lie-Hui, Y. Qing, and X. Yao-Bin, “Hybrid method to analyze
cryptography in software,” in Multimedia Information Networking and Security
(MINES), 2012 Fourth International Conference on. IEEE, 2012, pp. 930–933.

[14] C. Maartmann-Moe, S. E. Thorkildsen, and A. Årnes, “The persistence of mem­
ory: Forensic identification and extraction of cryptographic keys,” digital inves­
tigation, vol. 6, pp. S132–S140, 2009.

[15] G. Fellows, “WinRAR temporary folder artefacts,” Digital Investigation, vol. 7,
no. 1, pp. 9–13, 2010.

[16] D. Gupta and B. M. Mehtre, “Recent trends in collection of software forensics
artifacts: Issues and challenges,” in Security in Computing and Communications.
Springer, 2013, pp. 303–312.

[17] RarLab.	 WinRAR at a glance. [Online]. Available: http://www.win­
rar.com/website/index.php?id=features

[18]	 ——. WinRAR - what’s new in the latest version. [Online]. Available:
http://www.rarlab.com/rarnew.htm

[19] WinRAR, “User’s manual: Rar 5.10 console version,” 2014.

[20] J. S. Plank, K. M. Greenan, and E. L. Miller, “Screaming fast galois field arith­
metic using intel simd instructions.” in FAST, 2013, pp. 299–306.

[21] WinRAR, “What’s new in the latest version - version 3.00,” 2002.

[22] N. Standard, “Announcing the advanced encryption standard (AES),”	 Federal
Information Processing Standards Publication, vol. 197, 2001.

[23] M. S. Turan, E. B. Barker, W. E. Burr, and L. Chen, “SP 800-132. recommenda­
tion for password-based key derivation: Part 1: Storage applications,” National
Institute of Standards & Technology, Gaithersburg, MD, United States, Tech.
Rep., 2010.

[24] J. A. Storer and T. G. Szymanski, “Data compression via textual substitution,”
Journal of the ACM (JACM), vol. 29, no. 4, pp. 928–951, 1982.

[25] D. Shkarin, “Improving the efficiency of the ppm algorithm,” Problems of infor­
mation transmission, vol. 37, no. 3, pp. 226–235, 2001.

[26]	 ——, “PPM: One step to practicality,” in Data Compression Conference, 2002.
Proceedings. DCC 2002, 2002, pp. 202–211.

[27] R. Intel, “Intel 64 and IA–32 architectures optimization reference manual,” Intel
Corporation, May, 2012.

[28] S. W. Smith et al., “The scientist and engineer’s guide to digital signal process­
ing,” 1997.

[29] M.	 Powell. The Canterbury corpus. [Online]. Available:
http://corpus.canterbury.ac.nz/

http:http://corpus.canterbury.ac.nz
http://www.rarlab.com/rarnew.htm
http://www.win

35

[30] MaximumCompression.	 Lossless data compression soft­
ware benchmarks/comparisons. [Online]. Available:
http://www.maximumcompression.com/

[31] M. Hörz, “HxD–HexEditor,” http://mh-nexus.de/en/hxd/, 2002–2009.

[32] RarLab.	 Rar 5.0 archive format. [Online]. Available:
http://www.rarlab.com/technote.htm

[33] M. Prantl, “Image compression overview,” arPX.

[34] WinRAR, “RAR version 3.42 – technical information,” 2004).

http://www.rarlab.com/technote.htm
http://mh-nexus.de/en/hxd
http:http://www.maximumcompression.com

APPENDICES

36

A. COMPRESSION CORPA

The following is a description of the files included in the Canterbury Corpus [29] and

Maximum Compression [30] compression testing benchmarks.

Table A.1.: Details of compression testing files

File Name Description

alice29.txt English text of ”Alice in Wonderland”

asyoulik.txt English text of Shakespeare’s ”As You Like”

cp.html HTML source code

fields.c C source code

grammar.lsp LISP source code

kennedy.xls Microsoft Excel spreadsheet

lcet10.txt English text of Workshop on Electronic Texts proceedings

plrabn12.txt English text of ”Paradise Lost”

ptt5 CCITT test set

sum SPARC executable

xargs.1 GNU manual page

world95.txt English text of 1995 CIA World Fact Book

FP.txt Website traffic log file

english.txt Alphabetically sorted English word list

AcroRd32.exe Acrobat Reader 5.0 executable

MSO97.dll Microsoft Office 97 Dynamic Link Library

rafale.bmp Bitmap image

A10.jpg JPEG image

vcfiu.hlp Delphi First Impression OCX Help file

continued on next page

37

Table A.1.: continued

File Name Description

ohs.doc

FlashMX.pdf

tux.png

Nature.gif

Occupational Health and Safety Microsoft Word file

Macromedia Flash MX manual Adobe Acrobat file

PNG image

GIF image

38

B. RAR FILE HEADER

The information presented in this table is based on the WinRAR 3.42 technical note

[34].

Table B.1.: RAR file header fields

Field Length

HEAD CRC 2 bytes

HEAD TYPE 1 byte

HEAD FLAGS 2 bytes

HEAD SIZE 2 bytes

HEAD CRC 2 bytes

HEAD TYPE 1 byte

HEAD FLAGS 2 bytes

HEAD SIZE 2 bytes

RESERVED1 2 bytes

RESERVED2 4 bytes

HEAD CRC 2 bytes

HEAD TYPE 1 byte

HEAD FLAGS 2 bytes

HEAD SIZE 2 bytes

PACK SIZE 4 bytes

UNP SIZE 4 bytes

HOST OS 1 byte

FILE CRC 4 bytes

continued on next page

39

Table B.1.: continued

Field Length

FTIME

UNP VER

METHOD

NAME SIZE

ATTR

HIGH PACK SIZE

HIGH UNP SIZE

FILE NAME

SALT

EXT TIME

4 bytes

1 byte

1 byte

2 bytes

4 bytes

4 bytes

4 bytes

variable size

8 bytes

variable size

