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ABSTRACT 

Fernando, Ruchith Udayanga Ph.D., Purdue University, August 2014. Privacy in 
Social Messaging and Identity Management. Major Professor: Bharat Bhargava. 

Messaging systems, where a user maintains a set of contacts and broadcasts mes­

sages to them, are very common. In a situation where a user only sends messages 

directly to a set of online contacts, a contact might miss a message if it is not avail­

able to receive it directly from the user. This work addresses the problem of a trusted 

contact’s obtaining a message that it missed, from other trusted contacts of the user, 

while maintaining the anonymity of all participating contacts. A protocol is presented 

to facilitate this communication. An experimental framework is developed to evaluate 

various possible configurations of the entities involved. 

The techniques developed to address the above problem are extended to address 

the problem of a user’s authenticating with a service provider while ensuring that mul­

tiple sessions are unlinkable. The proposed approach achieves this by setting up an 

authenticated secure channel between the user and the service provider. Information 

exchanged for the setup of this secure channel is unique over multiple authentications. 

The proposed protocol is further enhanced to accommodate service provider policies 

that use credentials with relationship constraints among them. In such cases, the ser­

vice provider will not be able to analyze and identify sets of users who authenticate 

with different credential subsets. The proposed credential revocation scheme allows 

an identity provider to revoke user credentials without compromising user privacy, 

even while relying on a public channel. Moreover, these protocols do not require the 

identity provider to remain online during authentication and revocation. Finally, de­

tails on how to adapt the proposed identity management system to privately manage 

healthcare records is presented as an application of the proposed system. 
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1 INTRODUCTION 

While most of the web applications on the Internet interface with the user in a tradi­

tional client-server model, user privacy always remains as one of the non-functional 

requirements. User personal information is consumed by all such services. For exam­

ple, when an individual attempts to sign up for a social networking application the 

service provider obtains his/her name and date of birth. Furthermore, when a user 

accesses these services via a mobile device, the service provider captures the sensor 

data related to user’s location and other behavioral aspects. All of this information 

collected about users leads to profiling using novel machine learning techniques and 

can be used to infer more intimate personal information [1] [2] [3]. 

Service providers make the users agree to a terms of service or an end user license 

agreement when they sign up for their services. Moreover, agreements are drafted 

in such a way that allows the service providers to change those terms at will. Most 

importantly, as ignored by most users [4], the terms include clauses that specify how 

the user information may be used by the service provider. There are two types of user 

information collected by service providers. The first type is direct identity information 

that is obtained directly from the user. These may be collected at the point of 

registration or generated while using the service (E.g. images, written text). The 

second type of user information is derived information, such as the users’ behavioral 

aspects as to how the users interact with the service. A service provider may share 

user information with other service providers. It is not possible for a user to foresee 

how his/her information may be exploited in any way in the future. Therefore, it is 

impossible to clearly determine what other disclosures are possible with information 

that is leaked at any point. 

The number of attacks on web applications has increased [5] [6]. There are various 

insider and external attacks on online services. An insider attack may be as simple 
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as a disgruntled employee stealing a database of user information and disclosing it 

publicly or selling it to another party. External attacks are cases where an attacker 

or a group of attackers maliciously access service provider infrastructure to obtain 

user information or disrupt normal operation of services. These types of attacks are 

carried out by exploiting various vulnerabilities in service infrastructure and even 

using social engineering attacks on employees of the service [7]. Attacks continuously 

mounted on various web applications by organized groups, such as ”Anonymous” [8], 

are good examples of external attacks on online services. 

Another issue, due to the current architecture of the web applications, is the 

susceptibility of these services to censorship by various authorities. Government can 

sensor information available on the web. Service providers have mechanisms in place 

that allow an authority to dispute some user content (E.g. images, video) , enabling 

the service provider to remove that content even if the user is well within his/her 

rights to use the content in question in a manner he/she wishes. In many cases, the 

access to the Internet is controlled by the government which has control over the 

Internet service providers [9] [10] [11]. 

It is important to understand the legal obligations of service providers. Even if the 

service providers promise complete privacy to users and to never use their personal 

information for anything other than the explicit needs of the service provided, the 

service providers have to abide by the law. For example, consider a web based email 

service. The contents of users’ emails are stored in databases of the service provider. 

Currently in the United States, under the 1986 Electronic Communications Privacy 

Act, a party will only require a warrant to access emails of a user if those emails are 

less than six months old. All emails prior to six months, at any point, stored by the 

service provider can be released, without a warrant, to an investigator. Such a policy 

is a threat to user privacy. 

Under these circumstances, one of the best practices when using the Web would 

be to have no expectations of privacy at all. In this context, the user would be 

aware of the fact that any information that he/she generates or provides would be 
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public information at some point. This however is not practical. In searching for an

answer to these privacy issues, it is interesting to note the concept of ”FreedomBox”

by Eben Moglen [12], a professor of law and legal history at Columbia University.

According to Wikipedia ”The FreedomBox is an affordable personal server which

runs only free software, with a focus on anonymous and secure communication”. This

concept attempts to bring the service implementation closer to the user, where the

user will have more control on usage of his/her information.

� � � � � � � � �

� �

Figure 1.1. Concept of a personal server that hosts all applications

With this concept, the usage information of the service is confined to the bound­

aries of the user who is given significant control over how information is used. It is

however interesting to note that users will still have to communicate over the un­

trusted Internet. For example, a user may be required to authenticate with another

user. In such a situation, it is important to transfer identity information over the

Internet in a privacy preserving manner. This research work explores privacy in so­

cial messaging in this model and develops a set of protocols. Moreover, this work

utilizes those techniques to develop a set of authentication protocols to address a set

of privacy issues in identity management.
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1.1 Privacy in Social Messaging 

One of the main use cases of online social networking platforms is the exchange of 

messages between users and their contacts. Social networks proved critical in several 

of the uprisings that had major political significance in the world. The problem of 

messaging addressed here is closely related to such scenarios. 

There were several instances in the past where an authority was able to limit the 

propagation of information by disrupting access to the Internet, which prevented users 

from using popular social media applications [9] [10] [11]. In addressing this concern, 

the following requirements were identified for a messaging system that ensures user 

privacy and anonymity. A user in this system will have a set of personal contacts, 

who may not be known by each other, that wish to maintain their association with 

this particular user anonymous. This is equivalent to a whistleblower maintaining 

a list of journalist contacts, or a spy agency which has a set of spies all around the 

world. In both these cases all journalist and spies have no intention of revealing their 

associations. In this setup the main user needs to directly communicate a message 

securely only to his/her contacts. It is important to note that the user may only 

be able to propagate the message directly to only a subset of his/her contacts and 

may loose the ability to communicate any further. In such circumstance, the set of 

contacts who did not receive the message directly need to obtain the message via a 

public communications infrastructure. 

In addressing this problem, a novel approach is proposed in which those users 

awaiting the message posts request to a public channel. The other contacts responds 

to these requests with the guarantee that by participating in this message exchange, 

no third party will be able to infer their identity or association with any party. A 

modification to the hierarchical identity based encryption [13] was used to achieve this. 

This scheme further allows the list of trusted contacts to be dynamic. Revocation 

of a contact is performed solely using public information that does not leak identity 

information about any of the participants. 
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1.2 Privacy in Identity Management 

Digital identity management is the management of users’ digital identity attributes 

for authentication and authorization purposes. There has been a significant amount of 

work towards ensuring user privacy in identity management. One of the foundations 

of this work is the laws of identity [14]. Windows CardSpace [15] by Microsoft and 

OpenID [16] are some of the most notable efforts that were based on the ideas of 

an identity metasystem proposed by the laws of identity. However, these platforms 

suffered from various privacy drawbacks. For example, implementations of these 

systems did not allow users to prove mere possession of a identity attributes without 

the potential of being profiled. There has been considerable research carried out [17], 

[18] in addressing some of these privacy concerns. These systems support features such 

as authentication using multiple attributes and authentication using attributes from 

different identity providers. Here an approach is proposed to solve these problems 

with new privacy features. 

The proposed identity management system allows users to obtain certified cre­

dentials from various identity providers. Additionally, those users will be able to use 

those certified credentials for authentication and authorization purposes with service 

providers with the guarantees of unlinkability of transaction. Furthermore, users will 

be able to use credentials to efficiently satisfy complex authentication and autho­

rization policies set by a service provider with the same level of privacy guarantees. 

Users will be able to mix and match credentials from different identity providers. The 

service providers are guaranteed that a user will not be able to collude with another 

to satisfy a service provider policy that involves multiple credentials. 
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1.3 Thesis Statement 

The thesis statement is expressed in two main points: 

•	 It is possible to propagate messages from a user to his/her trusted peers via 

a subset of the peers who have access to those messages, while maintaining 

anonymity of all participating peers. 

•	 It is possible to establish an unlinkable authenticated secure channel between a 

user and a service provider without an online trusted third party, while adhering 

to service provider policies that contain identity claim relationships. 
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2 PRIVATE ANONYMOUS MESSAGING 

2.1 Introduction 

Social media services such as weblogs, online social networks and microblogging 

applications are being used to broadcast opinions. These services are susceptible to 

censorship and suppression by various authorities. Such control is feasible due to 

the current architecture of these services where they primarily adopt a client-server 

model. In the client-server model, services are hosted remotely and users contribute 

content these services but do not have direct control over this data. Any entity that 

can control the server that maintains data of such a service, also has complete control 

over the data. 

It is interesting to explore possible approaches that can maintain the power of 

social media while being able to resist control by third parties. One such approach is 

discussed here. 

Figure 2.1. A peer and her contacts
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Consider a peer­to­peer setup, where the peers are only connected to other peers

who they personally trust. These are called contacts of a peer. A peer distributes

a message to its contacts, (called an update) and all of the peers are expected to

receive this update. A peer may directly communicate the message when a contact

is available online. When there is only a subset of contacts available to the peer

to directly communicate with, the peer sends any updates to one or more of those

contacts. The set of contacts that need to obtain any missed updates of the peer, need

to obtain these updates from contacts that already have the updates. This is necessary

because, when those contact are available, the peer may not be available to directly

connect with them and obtain updates. These updates must be obtained without

revealing any identity information of any of the contacts. A novel cryptographic

approach is presented here as the solution to this problem.

Figure 2.2. Contacts without the presence of the peer

Section 2.2 defines the problem and the requirements that need to be satisfied.

Section 2.4 outlines the underlying techniques used in the proposed solution. The

details of the proposed protocols are described in Section 2.5 followed by a detailed

security analysis of the protocols. Section 2.7 presents the implementation details of

the proposed cryptographic primitives.
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2.2 Problem Definition 

A peer in this system is a user who has a set of other peers registered with it 

as contacts. This peer registration is bi-directional. In other words, when peer A 

becomes a contact of peer B, peer B becomes a contact of peer A. 

A peer intends to send messages to all its contacts. All of these messages are to 

be delivered to its contacts at that point of time. This is similar to the notion of 

microblogging (e.g., Twitter). Such a message is identified as an update. 

Denote the peer generating an update as P and its contacts as the set C = {CPi } 

where i ∈ {1, ..., n} where n is the number of contacts of P . 

The problem of a contact obtaining an update that it missed anonymously is 

defined as follows: 

•	 A peer P should be able to send its update MP only to those contacts who are 

available online at the point of time it sends the update using direct connections 

to those peers. Denote the set of online contacts as C+ ⊆ C where |C+| ≥ 1. 

•	 Those other contacts of P who were off-line at when P sent MP should be able 

to obtain MP when they are available online. Denote these contacts as C− . 

C− ⊂ C. 

•	 Any CPi ∈ C− will be able to publish a query requesting an update of P . This 

is called an update request and is denoted by QP . 

•	 Any CPi ∈ C+ will be able to publish a response to a QP . This response 

is denoted by SP , and an eavesdropper with polynomially bounded resources 

should not be able to compute the original MP using SP . 

•	 The contact who provides SP should not be able to learn who generated QP . 

•	 The contact who generates QP and receives the corresponding SP should be 

able to extract MP but should not be able to learn who generated SP . 
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•	 Only a member of C should be able to obtain the plaintext MP using this 

protocol. 

•	 When the composition of C changes to new set of peers C ' with the removal of 

one or more contacts, P should be able to update private configuration of the 

members of C ' with the issue of a public message. 

•	 After such an update those peers in the set C − C ' should not be able to obtain 

an update of P . 

For example let Alice be P . Alice has four contacts: Bob, Charlie, David and 

Nancy, out of which only Bob gets the update MP . Therefore: C = {Bob, Charlie, 

David, Nancy}, C+ = {Bob} and C− = {Charlie, David, Nancy}. 

Note that a peer only trusts and has knowledge of its immediate contacts and is 

not aware of connections among those peers and their contacts. There are practical 

implementations of the notion of friend-only networks such as Freenet/Darknet [19] 

and GNUnet [20]. Furthermore, it is possible to rely on a public channel which does 

not maintain any information about clients that connect to it to publish messages. A 

client may connect to the public channel using onion routing [21] [22] to prevent any 

local eavesdroppers from identifying communications between clients and the channel. 

2.3 Related Work 

One can come up with a solution to this specific problem using public-key infras­

tructure. In this case, each user in this systems will be assigned a key pair, and P will 

be able to encrypt a message to all those contacts and publish each ciphertext. The 

users may retrieve these messages at will. This approach however is not attractive 

when P has a large number of contacts, due to computation, bandwidth, or timing 

issues. In such a scenario, it may be advantageous to push a single message to a 

contact using a technique as the one proposed here. 
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Another approach to this problem would be to use an anonymous proxy/group 

signature scheme [23]. In such schemes, all contacts become a proxy of P , and when 

they need an update message, they generate an ephemeral public key, sign as a proxy, 

and publish that as a request. Any contact can verify that the request is coming 

from a user within the group that belongs to P . This fact itself poses a problem 

for anonymity and privacy. This is where a third party having access to the public 

parameters of the signature scheme will be able to analyze request information per 

user. Furthermore, it is important to note that the signature scheme will have to 

be reset in the case of a change to the membership of the group of contacts, which 

may require the user to contact each contact directly using a private channel. In 

the solution proposed in this work, there is no requirement for a private channel and 

causal relationships between updating group membership, and message propagation 

actions can be established. 

Broadcast Encryption [24] [25] is a technique that allows distribution of encrypted 

content to a set of subscribers. Multicast encryption [26], is another method for 

ensuring that only a set of entities in the network can decrypt a message. Privacy 

requirement in these schemes is that external parties are not able to decipher the 

messages. Specific requirement for anonymity between the nodes of the network is 

not addressed in these schemes. 

Yi Lu et. al. [27] proposed a system that attempts to hide the association between 

the identity of a user and the data that user is interested in. Here a user relies on 

a proxy to obtain data from a supplier. This system relies on the trust of the proxy 

not to reveal the identities of the parties involved. 

Instant messaging (IM) platforms, such as Internet Relay Chat [28], rely on a 

central server for a participant to connect and communicate. Also, there are other 

pseudo-peer-to-peer or hybrid systems, such as Skype [29]. All of these applications 

require users to provide identifiers when using these services and their usage can be 

monitored by the service provider. Also, due to recent service outage incidents, it is 

evident that these services are susceptible to be taken down by a motivated party. 



12 

There are efforts to make social networking more distributed without relying on 

a single centralized entity such as Google Plus or Facebook. One such effort is the 

Diaspora project [30]. This application allows users to setup their own installation 

of the social networking platform or join any of the existing installations. However, 

this still poses several problems since almost any attack that may be mounted on a 

centralized service provider may be mounted on any or those individual installations 

of the service. The proposed social messaging solution, only requires a public chan­

nel, and the information that is posted to this public channel will not leak identity 

information nor message data. 

2.4 Preliminary Notions 

A set of modifications to hierarchical identity based encryption scheme proposed 

by Boneh et. al. [13] is proposed in this work. The next section provides the necessary 

background about this scheme. 

2.4.1 Hierarchical Identity Based Encryption 

Identity based encryption, first proposed by Shamir [31], is a public key encryption 

scheme where the identity of an entity is used as the public key. The first complete 

solution for this was presented by Boneh et.al. [32]. Any party who intends to send a 

message to another will simply use a set of public parameters of a trusted authority 

along with the identity of the recipient to encrypt using this scheme. The recipi­

ent of the ciphertext will be able to obtain the corresponding private key from the 

third party (who executes private key generation algorithm for a given identity after 

authenticating the requester) and decrypt the ciphertext to obtain the plain text. 

This idea of identity based encryption was extended to a hierarchy of identities by 

Horwitz et. al. [33] and Boneh et. al. [13]. These schemes allow a hierarchy of users. 

At each level the private key is used as an input to the key generation algorithm, along 

with the global parameters defined by the root, to generate private keys for users of 
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the next lower level. The Hierarchical Identity Based Encryption(HIBE) system by 

Boneh et. al. [13] is defined as follows: 

Let e : G × G → G1 be a bilinear map where G is a group of prime order p. An 

identity is defined as ID = (I1, ..., Ik) ∈ (Z∗ 
p)

k where k is the depth of the hierarchy 

in which the ID belongs. 

There are four algorithms: Setup, KeyGen, Encrypt and Decrypt. l is the allowed 

maximum depth of the hierarchy. 

• Setup(l) generates the public parameters and the master key as follows: 

– Select a generator g ∈ G and a random value α ∈ Zp 

– Set g1 = gα 

– Pick random values g2, g3, h1, ..., hl ∈ G 

– params = (g, g1, g2, g3, h1, ..., hl) 

– master-key = g2 
α 

• KeyGen(dIDk−1 , ID) generates the private key of the given kth level ID using 

a k − 1 level private key (k ≤ l).
 

First suppose the k − 1 level private key was generated using the master key :
 

– Select a random value r ∈ Zp 

–	 Output dIDk−1 = (a0, a1, bk, ..., bl) = 

I1 
r rr(g2 

α · (h1 · · · hk−1 
Ik−1 · g3) , gr, hk , ..., hl ) 

Now the kth level private key: 

– Select a random value t ∈ Zp 

– Output dIDk = 

Ik I1 Ik	 t t(a0 · bk · (h1 · · · hk · g3) 
t 
, a1 · gt, hk+1 , ..., hl ) 
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•	 Encrypt(params, ID, M) encrypts a message M ∈ G1 using the public key 

ID = (I1, ..., Ik) : 

–	 Select a random value s ∈ Zp 

–	 Output CT = (A, B, C) = 

I1 Ik(e(g1, g2)
s · M, gs , (h1 · · · hk · g3) 

s 
) 

•	 Decrypt(dID, CT ) decrypts a given ciphertext of the above form (A, B, C) with 

the private key of the form (a0, a1, bk, ..., bl). 

(A · e(a1, C))/(e(B, a0)) = M 

2.5 Proposed Solution 

A peer first registers a set of contacts and transmits an update directly to a subset 

of those contacts. The proposed set of protocols, allows a contact of a peer to request 

an update of from another contact. This request is made using a public channel that 

is monitored by other contacts of the peer. Another contact who has the update will 

generate a response and submit it as a response to the request. The original contact 

who posted the request will be able to process this response and obtain the update of 

the peer. In a situation where the peer removes a contact from his/her list of contacts, 

the re-key protocol updates the remaining peers’ private information. This process 

ensures that the removed contact will not be able to obtain any further updates of 

the peer. 

The details of setting up the parameters of a peer, registering contacts, contacts 

generating update requests to be processed by other contacts, update response to such 

a request and reset keys of a peer and how contacts update themselves, is discussed 

in this section. 
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2.5.1 Peer Setup 

A peer, P , will setup parameters similar to a two level HIBE system parameters. 

This will generate generates the public parameters and the master key of the peer as 

follows: 

• Select generators g, g2, h1 ∈ G and a random value α ∈ Zp 

• Set g1 = gα 

• Pick random values g3, h2 ∈ G. 

• params = (g, g1, g2, g3, h1, h2) 

• master-key = g2 
α 

2.5.2 Registering a Contact 

When a peer P registers a CPi it will create a new random first level iden­

tifier Iri1 
∈ Zp and corresponding private key (dIri 

). The private key and the 

identifier will be communicated to CPi using a secure channel. dIri 
is of the form 

α Iri1 
ri

(g2 · (h1 · g3) , gri , h2 
ri ), where the value ri ∈ G is randomly chosen. 

• CPi keeps both Iri1 
and dIri 

private along with the public parameters of P 

• P stores the tuple (Iri1 
, ri)

1 

2.5.3 A Contact Requesting an Update 

When P sends an update message, it may send the update directly to available 

contacts by encrypting the message using their corresponding identifiers. The inter­

esting case is when a contact, CPreq , needs to obtain the latest update of P and P is 

no longer available online. In such a situation, as highlighted by in the requirements, 

1This is used to update contact parameters in the case of a re-key. 
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will be able to generate a request for P ’s update, Qp. This is generated as CPreq 

follows: 

Suppose the identifier assigned to CPreq by P is Ir1 

•	 Select a random value Ir2 ∈ Zp 

Ir1 Ir2•	 Set IDreq = h1 · h2 

•	 Update Request to be published: 

QP = (P ID, IDreq), here PID is an identifier string of P known to all P ’s 

contacts. 

CPreq publishes (P ID, IDreq) and any of P ’s other contacts will be able to respond 

to this request. This request information can be made publicly available using a 

common medium. The steps of creating the response are described next. 

2.5.4 Encryption and Update Response 

When a contact of P observes the tuple (P ID, IDreq) and decides to serve this 

request it will first encrypt the latest update message MP from P using the following 

modified encryption function (Encrypt ' ) and P ’s public parameters paramsP . 

Encrypt ' (paramsP , IDreq,MP ) : 

•	 Select a random value s ∈ Zp 

•	 CTresp = (e(g1, g2)
s · M, gs , (IDreq · g3)s) = (A, B, C) 

The contact publishes the tuple (P ID, IDreq, CTresp) as the response SP . 

2.5.5 Decryption of the Update 

The contact that generated the update request will obtain the response from the 

public channel. Now it can generate the corresponding private key using the first 

level private key it possesses, using Ir2 (used to generate IDreq) as the second level 

identifier. Suppose the first level private key is dIr1 
= (a0, a1, b2), then: 
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• Private key for IDreq : dIDreq 

Ir2 Ir1 
tIr2= (a0 · b2 · (h1 · h2 · g3) , a1 · gt) 

= (a0 
' , a1 

' ) 

• Finally, to obtain MP the contact decrypts CTresp = (A, B, C) : 

(A · e(a1 
' , C))/(e(B, a0 

' )) = MP 

2.5.6 Peer Re-key 

The set of contacts at a peer C can change in two ways: 

• When a new contact joins. 

• When an existing contact is removed. 

When a new contact (CP ! ) joins, the peer P can carry out new contact registration, 

and this does not require any changes to the parameters. The new contact will be 

able to request updates of the peer from its other contacts in the set (C − CP ! ). 

However, when P needs to remove a contact CP ! from the list of contacts, it has to 

update its parameters. At this point, the peer will have to update the remaining set 

of contacts with the new parameters. Due to this change in parameters, the contacts’ 

private keys must be updated as well. In the approach presented here, a peer can 

generate information that the set (C − CP ! ) can use to reconfigure their private keys. 

Importantly, this re-key information can be delivered via a public channel without 

compromising private keys of the contacts. 

In peer setup, the generated configuration is of the form params = (g, g1, g2, 

g3, h1, h2) and master-key = g2 
α where g1 = gα and α ∈ Zp is random. In the case of 

re-key a peer : 

• Generates a new random value α ' ∈ Zp 

α!• Sets master-key = g2 
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• Set g1 = gα
! 

With this change, P will have to update the private keys of the contacts. Note 

that in the contact registration process, P stored the tuple (Iri , r) for each contact, 

CPi . 

To update contacts, first generate a random value u ∈ Zp, initialize a list (id ' i, Ai), 

and for each contact CPi ∈ C: 

•	 Generate the first component of the private keys of the contacts as g2 
α! · 

Iri 
ri

(h1 · g3) = Ai. This r value is from the stored (Iri , r). 

• Add (uIri , Ai) to the (id ' i, Ai) list.
 

Finally, the complete re-key information to be published is as follows:
 

(P ID, g1, u, [(id ' 1, A1), ..., (id ' n, An)]) ,
 

where n = |C|. Note that, the value id ' i is the identifier of CPi blinded using u where 

id ' i = uIri . 

When a contact CPi ∈ C obtains this information it will do the following : 

•	 Update P ’s public parameters by replacing the g1 value with received value. 

•	 Retrieve its identifier issued by P (Iri ) and compute id ' = uIri 

•	 Obtain the updated first component of its private key from the list
 

[(id ' 1, A1), ..., (id ' n, An)] using id ' .
 

After these steps, CPi will use the new parameters and the new private key to 

encrypt and decrypt updates. 

2.6 Security Evaluation 

This section discusses of security and privacy features for each of the protocol 

steps presented in the previous section. 
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2.6.1 Update Request 

A contact of peer P generates a random identifier for any other party to use in 

encryption of an update message (which is included in the update request QP ). As 

described in Section 2.5.3, this request takes the form : 

Ir1 Ir2IDreq = h1 · h2 

Here h1 and h2 are public values but Ir1 and Ir2 values are only known to the 

contact who generates the request. Note that IDreq takes the form of a Pedersen 

commitment value [34], where it unconditionally hides the Ir1 and h2 values. 

Theorem 2.6.1 Given the value IDreq = h1 
Ir1 · h2 

Ir2 , where h1 is a generator of a 

group G of prime order p. Ir1 , Ir2 ∈ Zp and h2 ∈ G. IDreq hides the values Ir1 and 

Ir2 . 

Proof Let IDreq 
' = h1 

x1 h2 
x2 mod p 

Note that since h1 is a generator, ∃a ∈ Zp where, h2 = h1 
a . 

(x1+a(x2))⇒ IDreq = h1 
x1 h1 

a(x2 ) mod p = h1 mod p 

Due to the hardness discrete logarithm problem, it is infeasible to compute the 

value (x1 + a(x2)) such that, IDreq 
' = IDreq. 

Using brute force approach, if an attacker arrives at a value y, such that IDreq 
' = 

h1 
y = IDreq : 

y (x1+a(x2))⇒ h1 mod p = h1 mod p 

⇒ y mod (p − 1) = (x1 + a(x2)) mod (p − 1) 

Therefore, for any value of x2 there exists a value x1. Therefore, IDreq hides the 

values Ir1 and Ir2 . 

Therefore, it is possible to publish the IDreq value in the public cannel without 

revealing Ir1 and Ir2 . 
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2.6.2 Update response 

A contact of P responds to a QP with a response SP , which is of the form 

(P, IDreq, CTresp). Here CTresp is standard HIBE encryption of MP using the identity 

Ir1 , Ir2 . This value is secure due to the security assurances provided by the standard 

HIBE scheme [13]. Hence any other party other than the contact who generated 

IDreq will not be able to learn any information about P ’s update, MP . 

Furthermore, note that the contact who generates the response does not attach 

any identifiable information about him/her self to the response. Therefore this pro­

cess does not leak any information regarding who generated SP to the contact who 

generated QP . 

2.6.3 Re-key 

When a peer, P , removes a contact and re-keys the system, the information pub­

lished is of the following form: 

(P, g1, u, [(id ' 1, A1), ..., (id ' n, An)]) 

Here g1 = gα
! 
is a component of the public parameters of P in the standard HIBE 

scheme. It is computationally hard to obtain the α ' due to the hardness of the discrete 

logarithm problem. 

A similar argument can be made about the blinded identity values in the map 

of Ai values. Here the u value is raised to the power of the first level identity of 

the contact (Iri1 
). Since the identity values are only known to those corresponding 

contacts, to an eavesdropper, this is a table of random values and Ai values. 

α! riIri1Finally, the Ai values are of the form g2 · (h1 · g3) . Here the Iri1 
value is 

private between the peer, P , and contact, CPi , whereas ri and α ' is private to P . 

Furthermore, based on the same argument as in the case of update request, the Ai 

value does not disclose any information about ri or α ' . Moreover, no one other than 

P will be able to compute the other two components of the private key issued to CPi . 
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Therefore, the tuple, (id ' i, Ai), does not compromise the private key information or 

the identity of the contact. 

After removing a contact and re-keying the parameters of a peer, the removed 

contact will still be able to issue a request for an update. Even if a current contact of 

the peer responds to such a request, the removed contact will not be able to decrypt 

and obtain the message due to the use of the new parameters. 

2.6.4 Peer Unlinkability 

An update request is defined as QP = (P ID, IDreq), where PID is an identifier 

string of P . PID is known to all P ’s contacts. 

An observer of the public channel, used here for communication, may clearly gain 

information because the value PID is available as plain text. This can be avoided by 

blinding the PID value in the update request as follows: 

• Define PID ∈ Zp 

• Select a generator gr ∈ G 

• QP = (gr
PID, gr, IDreq) 

This optimization however, forces the users of this scheme to compute the grPID 

value for each of their contacts to identify an update request that they can serve. 

This process may be an expensive operation in a situation where the user has a large 

set of contacts. This optimization is also applicable in the other cases of the scheme 

where PID is used. 

2.6.5 Event Causality 

In solving the problem of propagating a message to a set of contacts, one may 

argue that the user can simply encrypt a message and publish that message for any 
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party to access. However, the method proposed here has several important advantages 

over this approach. 

First, it is important to note that the set of trusted contacts may change at any 

time. If the message is encrypted once and published in a public channel, then all 

users who have access to valid keys at the point of generation of the ciphertext will 

be able to access the message. However, with the proposed approach, the message is 

communicated to one user at a time. At each point any user will be able to receive the 

message if and only if he/she is in the list of authorized users. This can be enforced 

using a public channel which assigns a sequence number to each published message. 

Using this channel one can establish a happens-before relationship between actions. 

Therefore, this channel will be useful in enforcing the processing of re-key information 

before processing any further messages. Using this approach a user may guarantee 

that his/her messages will not be propagated to a party that he/she no longer trusts. 

Figure 2.3 shows an example of a situation where a peer initially has 9 contacts. 

First the peer sends an update to contact 1, who is the only contact available at 

that point. Next, contact 2 is available online and requests the latest update, which 

he/she receives from contact 1. The peer decides to remove contacts 6 and 8 from the 

list of trusted contacts and publishes re-key information. All contacts process this 

information. Finally, contacts 6 and 8 are available, and they may attempt to request 

updates of the peer. Even if the other contacts respond with valid responses, 6 and 

8 will not be able to receive the correct plaintext update value. Due to the above 

change in the public parameters, the ciphertext values in the responses are generated 

using new parameters. Therefore, decryption attempts of the removed contacts fail 

to produce the plaintext. 

2.6.6 Protection Against Malicious Peers 

So far, the protocols presented here expect all contacts of a peer to redistribute 

the update messages to requests correctly. In other words, contacts respond with 
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Figure 2.3. Example of contact revocation action during update propagation

the same message that they received. With this assumption, a contact has no mech­

anism to verify whether the peer generated the message the contact received. This

assumption can be relaxed with a minor alteration of the protocols.

The peer, as he/she generates the system parameters, generates a public­private

key pair. Let kPpr denote the private key and kPpu denote the public key. kPpu is

provided to each contact along with the system parameters during the contact setup

protocol.

The peer signs each update, M , it sends out using kPpr to generate �P�M . Each

contact verifies �P�M using kPpu and the update M . Suppose a malicious party at­

tempts to generate an update M�, and claim that it was from the peer. Since this

party is not able to generate a valid �P�M�, none of the contacts will accept M�.
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2.6.7 Lifecycle of an Update Request 

When a contact submits a request to the public channel, online contacts of the 

peer will respond to the request. The number of contacts who responds to the request 

can be limited using an approach that attaches an expiration time to the request along 

with a mechanism for the contact to close the request. 

Automatic Expiration of Update Requests 

The public channel attaches a timestamp to an update request based on the time 

it received the update request. Any entity can query the public channel and receive a 

set of active requests. The public channel responds with a set of unexpired requests. 

Each of these is considered an active request. The expiration time window is set by 

the administrator of the public channel, and this value in known to all parties. 

The update response is of the form (P ID, IDreq, CTresp). The public channel 

attaches this response to the request based on the IDreq value. Each contact who 

responds to a particular request stores the IDreq value. These stored values are used 

to avoid the same request being served twice. 

Update Requests Closed by a Requester 

When a contact generates a request, it will generate a key pair (kreqpu and kreqpr ) 

of a signature scheme. Note that, a new key pair must be used for each request. 

The public key, kreqpu , is added to the update request. The contact submits the 

value (P ID, IDreq, kreqpu ) to the public channel. At the point, where the contact 

is satisfied with received responses, he/she can send a request close message to the 

public channel. This message should be signed using the kreqpr value. 

The public channel verifies the signature value using kreqpu , which was posted 

along with the relevant update request. If the signature verification is successful, the 

request is marked as closed. When the public channel is queried for pending update 
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requests, it will exclude those closed requests from the list of requests included in the 

response. If a malicious user attempts to close an update request, that user will not 

be able to provide a valid signature on the request close message. Therefore, such an 

attempt will fail. 

Both automatic expiration of an update request and closing of requests by the 

requester minimizes the burden on the contacts to generate responses. 

2.6.8 Verification of Response Generators 

The protocol presented here allows any participant to respond to a request sub­

mitted to the public channel. Therefore, even a party who is not a valid member of 

the peer may respond. Since such a party will not have the update message and a 

valid signature from the peer, this response can be discarded. However, note that the 

requester still has to decrypt the response before verifying the original signature. The 

possibility of a non-contact of a peer responding to a request can be blocked with the 

following addition to the protocol. 

•	 As a response to QP = (P ID, IDreq) a contact submits an intent to respond of 
Irespr1 

Irespr2 .the form RP = (IDreq, IDresp), where IDresp = h1 · h2 The Irespr1 

value is the identifier assigned to the contact by the peer and Iresp ∈ Zp is a 
r2 

random value. 

•	 The requester generates a random value v ∈ G1 and computes
 

ctv = Encrypt ' (paramsP , IDresp, v)
 

•	 The value (IDresp, ctv) is submitted to the public channel. 

•	 The contact who submitted RP decrypts ctv to obtain v. 

•	 Response to the original request, SP , is created as defined in Section 2.5.4 and 

v is invluded in the message published: (P ID, IDreq, v) 



26 

•	 The requester inspects the public channel for response messages with the value 

v and decrypts the response. 

Since only a valid contact of the peer can recover v from ctv value, the requester 

is guaranteed that the response was generated by such a party. 

2.7 Implementation 

The proposed scheme was implemented in Java as a library using Java Pairing 

Based Cryptography [35] library. This work is available under LGPL at “anon­

encrypt” project hosted in Google Code [36]. Unit tests were developed to ensure 

the correctness of each functionality. These unit tests are integrated into the build 

script of the library. A framework of peers and a public channel was developed 

to simulate and experiment with the proposed protocols. Also, a proof of concept 

application was developed to demonstrate features of the library and the proposed 

protocols. 

2.7.1 Library 

The basic functionality of generating a new set of parameters, generation of pri­

vate keys for the peer, generation of temporary private keys for a contact, generation 

of a request, encryption and decryption of a message, and generation and processing 

of re-key information was developed as a library. Each value that needs to be trans­

mitted from one entity to another is encapsulated as an object. These objects include 

a method (serializeJSON()) to generate and output JSON [37] representations of 

themselves and a constructor to parse such JSON representations to initialize. All 

classes of the library are contained in the org.ruchith.ae.base package. 



27 

Parameter Generator 

The org.ruchith.ae.base.AEP arameterGenerator class generates a new set of 

parameters as defined in Section 2.5.1. This outputs an instance of the org.ruchith.ae. 

base.AEP arameters class. This AEP arameters object can be serialized as JSON 

to be published. 

Peer Key Generator 

A peer application uses the org.ruchith.ae.base.RootKeyGen class to create pri­

vate keys for contacts. The genKey() method generates an instance of the org.ruchith. 

ae.base.AEP rivateKey class. A serialized format of an AEP rivateKey object and 

an AEP arameters object are sent to a contact at the point of registration. 

Contact Key Generator 

The org.ruchith.ae.base.ContactKeyGen class provides the functionality required 

by a contact. This class is initialized using a contact private key and parmeters issued 

by a peer. The method getT mpP ubKey() allows a contact to generate a fresh request 

value to publish. The getT mpP ubKey() method generates the corresponding private 

key to decrypt a reponse. 

Cipher Implementation 

The encryption and decryption functions are implemented in the org.ruchith.ae. 

base.Encrypt and org.ruchith.ae.base.Decrypt classes. A plain text element (∈ G1) 

is represented as an it.unisa.dia.gas.jpbc.Element object. The doEncrypt() method 

of the Encrypt class encrypts such an element using a given request value. This 

encryption operation outputs an instance of org.ruchith.ae.base.AECipherT ext. The 

ciphertext is serialized into JSON to be published. The doDecrypt() method of 

the Encrypt class will instantiate an AECipherT ext instance using the serialized 

http:org.ruchith.ae
http:org.ruchith.ae
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ciphertext and decrypts it using the given private key. In practice, the ciphertext 

here will be the encryption of the key used to encrypt the payload with a symmetric 

key encryption algorithm. 

Text Encoder 

It is important to note that the cipher implementation works on elements of the 

group G1. Therefore, the following encode and decode functionality is required to be 

able to encrypt arbitrary sequences of bits. 

encode : {0, 1} ∗ → {G1}∗ 

decode : {G1}∗ → {0, 1} ∗ 

The org.ruchith.ae.base.T extEncoder class supports both these functionality and 

is initialized with the public parameters. The encode() method returns an array of 

elements ∈ G1 given a byte array and the decode() method returns a byte array, given 

an array of elements. 

Re-key 

The functionality required to revoke a contact and re-key a peer is provided in 

the org.ruchith.ae.base.ReKey class. This is initialized with the current parame­

ters and update() function creates a new master key and the new g1 value. The 

getP ublicInfo() method generates an instance of an org.ruchith.ae.base. 

ReKeyInformation class using a map of (Iri , r) values of the contacts. This infor­

mation is serialized and published into a public channel. 

2.7.2 Proof of Concept Application 

The proof of concept application was developed using the above library. This 

application uses a database with one table to hold all information of a contact, such 
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as contact’s parameters, private key assigned to the peer by the contact, and common 

name for the contact. Apache Derby [38] was used as the database management 

system. The database instance is maintained in a configuration directory (called .ae) 

located in the user’s home directory. 

Figure 2.4. A screenshot of the demo application 

2.7.3 Experiment Framework 

A framework of peers and a public channel was developed to perform a set of 

experiments with the proposed protocols. The public channel exposes a set of opera­

tions for a peer to use. The peer application is designed to accept a set of commands 

to perform required actions and uses the public channel for communication. 

Public Channel 

The public channel was developed as a node.js web application. This application 

exposes a set of operation end points. These operations are invoked by the peer 

application to send and receive messages and read the status of the public channel. 

Table 2.1 lists these operations. 
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Table 2.1.
 
Operations of the public channel
 

Operation Description 

add message Adds a given message to an ordered list. 

get all messages after Returns all public messages starting from the given 

index. 

add direct message Adds a message to a list reserved for a peer. A 

peer uses this operation to send a message directly 

to a contact. 

get all direct messages Returns the list of direct messages sent to a peer. 

The name of the peer is the name of the invoker 

of the operation. 

set message index of peer Sets a value given by the caller as its current up­

date number. 

get message index of peer Returns the current update number of a peer. This 

is used as the trigger for a contact to request the 

latest update of a peer. 
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Figure 2.5. Sample output of public channel messages

Format of Public Messages

Each public message contains a type attribute. A public message can be either

a “data request,” “data response,” or “data request confirmation.” An example of

these three are shown in Figure 2.5. A “data request” message contains the name of

the peer, and the base64 encoded IDreq value, whereas a “data response” message
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additionally contains the ciphertext value. A “data request confirmation” message is 

only sent when a peer receives a valid message as an indication to close the request. 

The public channel sets a time-to-live value for each of these messages. Each 

message is initially marked as live and is assigned a timestamp value. These messages 

are marked as expired, after the difference of the current time and timestamp on the 

message, exceeds the time-to-live value. Peers only process those messages that are 

marked as live. 

Peer 

The peer application is also designed as a nodejs web service. This application 

requires two arguments, the name of the peer and a port number. The application 

listens on the given port number and exposes two operations, stop and action. The 

stop operation immediately kills the process. The action operation carries out either 

the registration of a contact, sending a direct message, or removing a contact based on 

incoming instructions. The peer application was designed to be able to craft scripts 

for experimentation using Unix tools. Specifically, curl is used to invoke actions 

on each peer. Figure 2.6 shows an example script to start a main peer, Alice, and 

contacts, Bob, Charlie and David. In this experiment Alice sends an update message 

to Bob, removes Charlie and sends a new update message to Bob. Only Bob and 

David finally receives the latest message as expected. Timing delays between each 

event are added using the sleep command. 

The peer application includes three independent threads that interact with the 

public channel. First thread obtains any available direct messages intended for the 

peer. The second reads the message count of each contact and makes necessary 

requests for updates. The third thread processes any new public messages. Timing 

of each of these threads is configurable, in terms of the interval of time each of them 

waits between runs. 



33 

Experiments 

Two main experiments were carried out to evaluate correct operation of the main 

protocol features. 

The correct operation of response to an update request is evaluated using one main 

peer with two contacts. The main peer sends a direct message to one contact and up­

dates the public channel with the message count. The contact who did not receive the 

direct message notices that there’s a new message from the main peer and publishes 

a new “data request” message. The contact responds to this message by publishing a 

“data response” message. The contact who published the original request can decrypt 

the response and output the original message. Finally, a “data request confirmation” 

message is sent to the public channel to close the request. Figure 2.5 shows the 

messages in the public channel at the end of this experiment. 

The correct operation of removing a contact was tested using the script shown in 

Figure 2.6. In this experiment, Alice, the main peer initially has two contacts, Bob 

and Charlie. Alice removes Charlie and then sends a new message. Bob updates his 

private key and his copy of public parameters of Alice. Charlie attempts to request 

this message and receives a response encrypted with the new parameters. Charlie 

decrypts and outputs the received response, which is not equal to the message Alice 

sent. In fact, the output takes the form of a set of random bytes that are not ASCII. It 

was also observed that Charlie still can respond to other user’s requests with incorrect 

messages. The protocol modifications presented in Section 2.6.8, to verify the contact 

that responds, were motivated by this behaviour. 
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#Start the main peer Alice 

node app.js 8001 Alice & 

#Wait for startup 

sleep 1 

#Add two contacts 

curl "http :// localhost :8001/ action?action =add_contact&name =Bob " 

curl "http :// localhost :8001/ action?action =add_contact&name =Charlie " 

#Send a message to Bob 

curl "http :// localhost :8001/ action?action =direct_message&to =Bob&message =MEET_AT_2" 

#Start Bob and add Alice as a contact 

node app.js 8002 Bob &
 

sleep 1
 

curl "http :// localhost :8002/ action?action =add_contact&name =Alice "
 

#Start Charlie and add Alice as a contact 

node app.js 8003 Charlie &
 

sleep 1
 

curl "http :// localhost :8003/ action?action =add_contact&name =Alice "
 

sleep 2
 

#Alice: Remove Charlie 

curl "http :// localhost :8001/ action?action =remove_contact&contact =Charlie " 

sleep 1 

#Alice: Send new update to Bob 

curl "http :// localhost :8001/ action?action =direct_message&to =Bob&message =MEET_AT_5" 

sleep 1 

#Alice: Add David 

curl "http :// localhost :8001/ action?action =add_contact&name =David " 

sleep 1 

#Start David 

node app.js 8004 David &
 

sleep 1
 

curl "http :// localhost :8004/ action?action =add_contact&name =Alice "
 

Figure 2.6. Example shell script to start an interact with a set of peers
 

http://localhost:8004/action?action
http://localhost:8001/action?action
http://localhost:8001/action?action
http://localhost:8001/action?action
http://localhost:8003/action?action
http://localhost:8002/action?action
http://localhost:8001/action?action
http://localhost:8001/action?action
http://localhost:8001/action?action
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3 PRIVACY IN IDENTITY MANAGEMENT 

3.1 Introduction 

As the Web introduced personalized services to users, it was essential to iden­

tify the user and learn some identity attributes of that user. This requirement was 

addressed by developers in an application-centric manner where each application im­

plemented its own solution. 

One of the most popular methods used requires the user to sign up by providing 

a set of information about himself/herself along with a user name and a password. 

Although, such a mechanism is very simple to implement and convenient for the users, 

there are numerous issues with this approach. First, most of the users use the same 

password across most of the services they use. This is problematic because if one 

system is breached by an attacker, that attacker will be able to access all those other 

services where the user used the same password. It is true that there are techniques to 

prevent an attacker from obtaining user passwords even if the system was breached. 

However, there are reports of attacks – such as the case with LinkedIn [39] – where it 

was evident that there are services which still may store plaintext passwords of users, 

or even employ incorrect implementations of the password protection techniques. 

There are reports of various attacks targeting online service infrastructure every 

day. Most of these attacks utilize vulnerabilities that exist in the service software 

to gain access to back-end systems where the attackers may obtain databases of 

user information. Since there are numerous applications that obtain a user’s identity 

attributes – such as name, date of birth, address, credit card details – the attackers 

who obtain this information will be able to perform identity theft. Note that the 

service providers may be held liable for protecting users’ personal information. The 
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service provider may also be forced to give away such information to authorities. This 

could be detrimental when it comes to users’ goodwill towards the service provider. 

Therefore, it is clear that storing personal identity information at various services 

is extremely dangerous. In analyzing this problem, it is important to understand 

the need of the service providers to obtain these identity attributes. For example, in 

most cases identity attributes, such as the date of birth, are required to prove that the 

user meets certain age restrictions every time the user procures the service. Another 

example is the use of address information to provide various location-sensitive ser­

vices, which may not require the exact address but only more coarse-grained location 

information (e.g. for a weather alerting system). Therefore, it is evident that if there 

is a way to prove certain statements about a user’s identity (or identity claims) to a 

service provider, it may not need to store identity attributes to derive these identity 

claims. 

Social engineering attacks are successfully mounted on users to gain access to 

user credentials. One of the most common forms of such an attack is the phishing 

attack [40]. During a phishing attack, the attacker sends an email that captures the 

attention of the user of the target application. Such an email is crafted to make the 

contents appear to have the same look-and-feel as the target application. This email 

usually contains a hyperlink for the user to log into the target application. The link 

takes the user to the attacker’s web application. At this point, a user who is concerned 

about some notice in the phishing email, enters the credentials and attempts to log 

into the application. Upon submission of this information, the attacker captures the 

login credentials and redirects the user to the actual application that the user intended 

to access. Rise of these types of threats call for novel techniques to protect the user 

against such attacks. 

There were several interesting attempts by industry to address most of these issues. 

One such instance is Microsoft Passport system in which the Microsoft Corporation 

set up a service that users may sign up and provide their information. Other services 

can be registered with the Passport system to accept passport authentication. Users 
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were redirected to the Passport web application to login first before they are allowed 

into the intended service’s web application. However, due to the presence of only 

one authority to manage identity attributes of a user, this effort was not successful. 

This motivated further efforts and one breakthrough was the Laws of Identity [14] 

and the concept of Identity Metasystem [41]. The laws of identity discuss important 

aspects such as user control and consent, minimal disclosure of identity, bi-directional 

authentication of parties involved (where the users are assured that they are interact­

ing with the intended party), as well as consistent and intuitive user experience for 

managing identities. The identity metasystem idea claims that there needs to be an 

interoperable system of systems where there are three main classes of systems. These 

are “identity providers,” “relying parties” and “subjects”. An identity provider is an 

authority that asserts various statements about the subject. These statements are 

called claims. A subject is any entity to which the claims apply. A relying party is an 

entity such as a service provider who intends to obtain user identity claim information 

for authentication or authorization. 

Windows CardSpace was the first step towards realizing the concept of an identity 

metasystem. This was defined as an open specification and relied on the standard 

WS-* specification stack [42] [43] [44] [45] [46]. WS-* stack is a set of XML-based 

protocols that are independent of the communication protocols with multiple inter­

operable implementations. It was expected that due to the use of open standards, 

it would make it easier for the industry to adapt this technology. In CardSpace, 

an identity provider which manages identity claims in CardSpace verifies user’s in­

formation and is responsible for storing this information. Furthermore, the identity 

provider can issue tokens (using the Security Assertion Markup Language [47]) with 

certified claims about a user’s identity. These tokens are only meant for a particular 

relying party and are encrypted using that party’s public key. The user interacts 

with this system via a user interface that remains the same when interacting with 

all relying parties. The requirement for users to authenticate and remain unlinkable 

when using CardSpace was identified by Steuer et al. [48]. This proposed the use of 
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Figure 3.1. Bob authenticating multiple times with Alice using his credentials 

a cryptographic commitment as the value of a claim to be included in the token is­

sued by the identity provider. The main contribution to remove linkability of a user’s 

transactions is a mechanism to generate a unique commitment value that depends 

on the previous commitment value used. Using this technique, the user is able to 

generate two authentication requests that cannot be linked to each other. However, 

it should be noted that this system still required the identity provider to be available 

online during the complete message exchange. 

This work identifies a set of requirements that further strengthens the user against 

leaking his/her identity information and proposes a novel technique to solve these 

issues. 

3.2 Problem 

3.2.1 Overview 

Consider the following scenario. Alice runs a coffee shop, which provides a free 

Internet access to members of law enforcement. Bob is a police officer who presents 

his credentials and uses the service. 

If Bob uses traditional credentials, his interaction with Alice will pose several 

privacy issues. In the case where Bob uses the same identity information to authenti­

cate himself with Alice multiple times, Alice can track Bob’s usage patterns. In other 

words, Bob’s subsequent transactions with Alice become linkable. Furthermore, if 

the credentials provided by Bob to Alice include other information about Bob, such 
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Figure 3.2. Charlie authenticating multiple times with Alice using his credentials 

as his name and date of birth, then this will leak more information other than the 

fact that he is a member of law enforcement. 

Suppose that Alice decides to extend the service to other members of the com­

munity. She now allows college students who are 18 or older to use the free Internet 

service. In this situation, Charlie, a college student, may have to provide not only 

his university ID but also his drivers license (proving his age) to obtain free Internet 

access. This potentially allows Alice to collect more information about Charlie than 

she should be able to. 

The three main requirements to meet in these scenarios are: 

•	 Any party with valid claims issued by a party trusted by Alice should be able 

to authenticate with Alice’s service. 

•	 Each successful authentication with Alice’s service should be unlinkable with 

each other. 

•	 Alice should not be able to obtain any information other than what is specified 

as required claims. 

These high level requirements are formally defined in Section 3.2.2. 

3.2.2 Problem Definition 

A user needs to prove one or more identity claims to a service provider. These 

identity claims are expected to be issued by an identity provider that is trusted by the 



40

service provider. Furthermore, the relying party may require identity claims issued by

several different identity providers. Also, the user should not be able to collude with

another user who possesses a subset of identity claims satisfying a relying party’s

policy. The scheme should not expect a trusted identity provider to be available

online at the time when a user attempts to authenticate with a service provider.

Figure 3.3. Typical setup of an identity management system

Case 1: Single Claim

�  Identity provider issues a credential with an identity claim to a user.

�  Service provider’s policy requires the user to prove the possession of an identity

claim issued by a particular identity provider in order to access the service.

�  User must be able to prove the ownership of a claim issued by the identity

provider to the service provider multiple times without the risk of exposing any

uniquely identifiable information.

Case 2: Multiple Claims

�  Identity provider issues a credential with a set of identity claims to a user.

�  Service provider’s policy requires the user to prove the possession of a set of

identity claims issued by particular identity providers in order to access the

service. (This policy may specify any combination of theseclaims with AND

and OR conditions.)
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•	 Service provider should not be able to learn a subset of claims used by a user in 

a situation where the user decides between two or more options of the identity 

claim sets. 

•	 User must be able to prove the ownership of claims issued by the identity 

providers to the service provider multiple times without the risk of exposing 

any uniquely identifiable information. 

•	 The user cannot collude with another user. 

3.3 Related Work 

The identity management system proposed by Camenisch and Lysyanskaya [18] 

describes how a user can obtain credentials from an identity provider and use those 

credentials with unlinkability using zero-knowledge proofs. In addition to unlink­

ablity, this scheme carries properties of one-show credentials, non-transferability and 

anonymity revocation. Belenkiy et al. [49] introduced the use of non-interactive proofs 

using P-signatures, where the user obtains a signature on a commitment of a message 

and generates a non-interactive zero-knowledge-proof-of-knowledge of the signature. 

This scheme requires the user to rely on multiple parties to register pseudonyms with 

to achieve unlinkability. The scheme proposed by Bhargav-Spantzel et al. [17] uses 

a technique based on aggregate signatures on commitments that are then used for 

aggregate zero-knowledge proof-of-knowledge protocols to present identity attributes 

to service providers. This scheme requires an online registrar of identity attributes 

that is equivalent to an online identity manager and allows the presentation of multi­

ple identity attributes to a service provider in a single run of a zero-knowledge-proof 

protocol. Alpar and Hoepman [50] present the use of attribute-based credentials to 

set up an authenticated secure channel. An authenticated user is identified to the 

extent of the provided identity attribute proofs. Garman et al. [51] describe an ap­

proach based on techniques adapted from digital currencies where the user generates 

the credentials without the need for a trusted credential issuer. 
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In schemes that rely on signature based anonymous credentials, the user, or an 

application running on behalf of the user, selects a set of claims/credentials to be 

proven with a service provider based on the service provider’s policy. Such schemes 

have the potential to allow a service provider to carry out statistical analysis as it 

relates to complex service provider policies. For example, a service provider may 

require a user to prove possession of either one of two sets of claims (SET1 OR 

SET2). The user’s first step is to select which set of claims to use. This allows the 

service provider to arrive at statistical conclusions about the user population, which 

may compromise user privacy. The solution presented in this paper addresses this 

issue, assuring that the service provider learns no information above the required 

minimum about the set of claims used by a user in satisfying its policy. Camenisch 

et al. [52] also address handling such OR relationships using zero-knowledge proofs, 

which require two commitments and four linear relationship proofs by the user. The 

protocol proposed in this paper, allows the user to setup an authenticated secure 

channel with a service provider, with the user having to produce only a single request 

value as proposed in Section 3.4.4. Furthermore, the user can use a single request 

value to initiate an authenticated secure channel in the case of a service provider 

policy with AND conditions. 

The problem of unlinkability in presenting identity claims using the Windows 

CardSpace platform was addressed by Steuer et al. [48]. This solution however, still 

requires the presence of an online identity manager and can handle a service provider 

policy only in the form of a simple set of required identity claims. Bhargava et al. [53] 

also extend Windows CardSpace to support zero-knowledge-proof-of-knowledge of 

identity attributes, but they do not address the problem of unlinkability. 

Angin et al. [54] proposed an entity-centric approach for identity management in 

cloud computing using the concept of an active bundle (self-protecting data) [55] [56]. 

Identity attributes of a user are packaged in an active bundle, which includes a virtual 

machine (VM) that is executed in a trusted environment. At the point of execution 
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the VM determines the required set of identity information according to the associated 

policies. 

Mobile devices maintain user identity attributes. Therefore a number of papers 

attempt to address the problems of identity attributes being maliciously leaked [57] 

[58]. However, the problems addressed in this work do not include identity attribute 

leakage due to malware or identity inferences using machine learning techniques [2] [3]. 

Protocols presented in this work allow a user to setup an authenticated secure 

channel with a service provider using identity claim instances issued by a trusted 

identity provider. The user generates an authentication request that does not disclose 

any identity information. This request value is used by the service provider to generate 

an encrypted response. The service provider is assured that the user is only able to 

decrypt the response only if he/she possesses claim instances required according to 

the service provider policy. This two-step interaction hides identity claim choices 

made by the user, from the service provider. 

3.4 Solution 

The solution consists of the following algorithms and protocols: 

•	 Generate a claim (GenClaim)
 

Identity provider carries out GenClaim to setup a claim definition.
 

•	 Issue a claim (IssueClaim) 

This is a protocol used by the identity provider to issue a claim instance to a 

user. 

•	 Authenticate with a single claim. 

This is a protocol carried out between a user and a service provider, in which 

the user who possesses a claim instance sets up an authenticated secure channel 

with the service provider. 
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•	 Authenticate with multiple claims 

This is a protocol carried out between a user and a service provider, in which the 

user sets up an authenticated secure channel with the service provider, under 

the constraints of a policy using multiple claims. 

•	 Claim revocation
 

Identity provider can revoke a claim definition or an issued claim.
 

3.4.1 Generate a Claim (GenClaim) 

An identity provider creates an identity claim by generating the following values. 

The claimkey value is maintained privately by the identity provider and the public 

component params are published along with the claim metadata. 

•	 Select generators g, g2, h1 ∈ G and a random value α ∈ Zp 

•	 Set g1 = gα 

•	 Pick random values g3, h2 ∈ G. 

•	 params = (g, g1, g2, g3, h1, h2) 

•	 claimkey = g2 
α 

Claim metadata includes the expiration timestamp and a description of the claim. 

For example, a set of identity claims published by an identity provider can be a table 

as shown in Table 3.1. This information is to be consumed by service providers who 

trust the identity provider to authenticate users that possess claims issued by that 

identity provider. 

3.4.2 Issue a Claim (IssueClaim) 

When a user needs a particular claim to be issued by an identity provider, the 

user first obtains the public parameters of the claim. As shown in Figure 3.4, the 
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Table 3.1.
 
Example set of claim public data published by an identity provider
 

Claim ID Public Component 

params Metadata 

student (g, g1, g2, g3, h1, h2)student 2020-12-31, ... 

faculty (g, g1, g2, g3, h1, h2)f aculty 2025-08-31, ... 

... ... ... 

claimi (g, g1, g2, g3, h1, h2)i timestampi, ... 

... ... ... 

claimn (g, g1, g2, g3, h1, h2)n timestampn, ... 
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user then generates and submits a request (req) of the following form to the identity 

provider: 

•	 User selects a random value IDclaim ∈ Zp 

IDclaim•	 Set req = h1 where h1 is extracted from the public component of the 

claim published by the identity provider 

•	 Send req to the identity provider 

The identity provider authenticates the user with a mechanism that is beyond the 

scope of this paper. For example, the identity provider may require that the user signs 

req with his/her public key certificate (which he/she used at the point of registering 

with the identity provider). Note that the req value can be forwarded to the identity 

provider over a public channel. 

Upon receiving the authenticated req from the user, the identity provider runs 

IssueClaim, defined as follows: 

•	 Select a random value r ∈ Zp 

•	 Output claim = (c0, c1, c2) = (claimkey · (req · g3)r , gr, h2 
r) 

Figure 3.4. Identity provider using the request value given by a user 
to issue a claim 
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The issued claim must be returned to the user over a secure channel. This is the 

only requirement for a closed channel for communication between parties involved in 

all protocols defined in this work. This is also a practical requirement to meet since 

the user authenticates with the identity provider, at which point they can set up a 

secure channel (for example, using SSL). Upon receiving the issued claim, the user 

stores the tuple < ClaimID, IDclaim, claim, paramsclaim >. 

3.4.3 Authenticate with a Claim 

Figure 3.5. User uses a claim to generate an AnonClaim to initiate 
an authenticated session with the service provider 

When a user needs to authenticate with a service provider who requires the user 

to possess a particular claim, the two parties carry out the following steps, as shown 

in Figure 3.5: 

• User selects a random value r ∈ Zp 

IDclaim r• Set AnonClaim = h1 · h2 , 

where h1, h2 ∈ paramsclaim 
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•	 Send AnonClaim to the service provider 

•	 Service provider generates a session key that is a symmetric encryption key 

•	 Service provider invokes Encrypt ' , generates ct and sends ct to the user. 

Encrypt ' is the modified HIBE Encrypt function proposed in Section 2.5.4 

•	 User invokes Extract to recover the session key 

Extract 

The Extract function is used by the user to obtain the session key. This function 

first generates the corresponding ephemeral private key using the value r and the 

claim instance issued to the user by the service provider. Then this private key is 

used to decrypt ct using the HIBE [13] Decrypt function. 

•	 keyr = (kr0 , kr1 ) = KeyGen(claim, r)
 

(kr0 , kr1 ) = (c0 · c2 
r · (h1 

IDclaim · h2 
r · g3) 

t 
, c1 · gt),
 

where random value t ∈ Zp
 

•	 Decrypt(keyr, ct) outputs session key 

Once the user extracts the session key, it may encrypt future communication of 

the current session with the service provider using the session key. Also, in cases 

when the service provider allows access to protected content for the authenticated 

user, it can optionally send that content encrypted using the session key along with 

the ct value. 

3.4.4 Authenticate with Multiple Claims 

The notion of a monotonic access tree, discussed by Bethencourt et al. [59], is 

used to address the case of multiple claims. A service provider requires a user to 
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authenticate with more than one claim, and the service provider’s policy may en­

force certain constraints on those claims as well. These constraints are AND and 

OR combinations of claims. This constitutes an access tree in which AND and OR 

constraints are defined as n − of − n and 1 − of − n threshold gates, respectively. 

The leaves contain a set of shares of an ephemeral key, which are encrypted using the 

user-provided AnonClaim values using params of each claim. Figure 3.6 shows an 

example of such an access tree. 

Figure 3.6. An example access structure and one possible technique 
to propagate the shares of a secret from the root node to the leaves 

The service provider returns the access tree with the encrypted leaves to the user. 

The access tree is decrypted by the users, and the ephemeral key is recovered to be 

used as a session key. The above process is formally defined as follows: 

The set of claims expected by the service provider is denoted by the set CSP = 

{c1, c2, · · · , ci, · · · , cn}, where ci = paramsclaimi . A user evaluates the policy of the 

service provider and identifies a subset of claims that the user is willing to disclose 

for authentication. This subset is denoted by CU = {c1, c2, · · · , cj , · · · , cm}, where 

m ≤ n. 

User U generates the set AnonClaims as follows: 

• Select a random number r ∈ Zp 
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IDc h2c
r•	 AnonClaimsU = (∀c ∈ CU : h1c ), where h1c, h2c ∈ c 

•	 Select random values r1, r2 ∈ Zp 

•	 AnonClaimsSP ! = (∀c ∈ CSP , c /∈ CU : h1c
r1 · h2c

r2 ), where h1c, h2c ∈ c 

•	 Set AnonClaims = AnonClaimsU ∪ AnonClaimsSP ! 

The set AnonClaims is sent as the authentication request to the service provider. 

The service provider invokes Encrypt '' to generate the encrypted session key. 

Encrypt '' 

Define an access tree T where the leaves are members of CSP . A session key is set 

as the value of the root node of T . The session key is split into shares at each inner 

node, which is either an AND or an OR node, based on a n − of − n or a 1 − of − n 

scheme. Shares si are assigned to leaves. These shares can be combined when moving 

up the tree structure via the threshold gates to reconstruct the session key. 

•	 ct = (∀c ∈ C, AnonClaimc ∈ AnonClaims :
 

ctc = Encrypt ' (AnonClaimc, c, si), T )
 

The service provider sends ct to the user. The user extracts the session key from 

ct using Extract '' , as described next. 

Extract '' 

•	 Keys = (∀c ∈ CU : KeyGen(claimc, r)), where claimc is a claim instance 

• ∀ctc ∈ ct, Keyc ∈ Keys : sc = Decrypt(Keyc, ctc) 

•	 Replace leaves of T with sc values 

•	 Reconstruct session key using the sc values and the threshold schemes applicable 

to each non-leaf node of T 
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Limiting the Number of AnonClaim values 

In the above setup the user is required to send the n AnonClaim values to satisfy 

the service provider’s policy. This can be changed to a single AnonClaim instance 

with a modification to the system as follows: 

•	 Identity management system is defined using a single group G of sufficiently 

large prime order p, and set h1, h2 ∈ G 

•	 The user sets the IDclaim value to be the same for all issued claims the user 

obtains 

With this setup, the user can simply make the initial authentication request using 
IDclaim h2 

rAnonClaim = h1 with random value r ∈ Zp. 

In response to the authentication request, the service provider sets up the access 

structure T , as defined in Encrypt '' , and returns to ther user: ct = ((∀c ∈ C : ctc = 

Encrypt ' (AnonClaim, c, si), T ). Extract '' is used to extract the session key from ct 

by the user. 

It is important to note that changing m AnonClaim values to a single AnonClaim 

instance is particularly practical when an enterprise sets up an internal identity man­

agement system where it is possible to enforce the constraint of the having same h1 

and h2 values of claim parameters. 

3.4.5 Issued Claim Revocation 

An important feature in any identity management system is revocation of issued 

credentials. In a typical identity management system, there is a unique identifier that 

can be used by the identity provider in setting up a list of revoked identities. Relying 

parties can block authentication attempts using such lists as blacklists. 

In the proposed system, there is no such unique identifier per issued claim. There­

fore, in the event that an identity provider revokes a claim issued for a user, it needs 

to regenerate the claim’s claimkey and public parameters. Since the issued claim 
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Table 3.2.
 
An example of how the c0 

' values are stored by an identity provider
 

User Claim req c0 
' 

Alice student reqAlicestudent c0 
' 
Alicestudent 

Alice adult reqAliceadult c0 
' 
Aliceadult 

Bob student reqBobstudent c0 
' 
Bobprof essor 

Charlie student reqCharliestudent c0 
' 
Charliestudent 

values are generated based on the public parameters, this further requires the iden­

tity provider to issue new claim instances for all valid users. The revoked user is not 

issued a new claim and will be unable to authenticate with relying parties, who use 

updated public parameters for the claim. 

Section 3.4.2 defined the value of a claim issued by the identity provider as: 

claim = (c0, c1, c2) = (claimkey · (req · g3)r , gr, h2 
r) 

Consider the first component of the above claim value: 

c0 = claimkey · (req · g3)r = claimkey · c0 
' 

An identity provider stores each c0 
' value of each claim that it issues. Table 2 

shows an example of how an identity provider may maintain this information. It 

is important to note that the identity provider is trusted to discard the value of r 

used to generate the claim1 . This relieves the identity provider from securing all c0 
' 

components. Furthermore, if an attacker obtains the set of stored c0 
' values, they will 

not be of any help to the attacker in compromising any particular user. This will be 

further discussed in Section 3.5. 
1Chapter 2 identified the possibility of regenerating and publishing only the first component of a 
contact key using the stored value r (which was used to generate the key). In contrast, this protocol 
does not require the issuer to store the value r. 
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Let requ denote the req value used by the user, u, running IssueClaim (as defined 

in Section 3.4.2), c0 
' 
u denote the corresponding c0 

' value, U denote all users with 

issued claim instances for a particular claim, and urevoke denote the owner of the 

claim being revoked. 

An identity provider performs the following steps to revoke an issued claim: 

•	 Select a random value α ' ∈ Zp 

•	 Set g1 
' = gα

! 

•	 claimkey ' = g2 
α! 

•	 Select random s ∈ Zp 

' •	 Generate the set of tuples C0 : (∀u ∈ U, u  )s, claimkey ' u >)= urevoke :< (requ ·c0 

The identity provider updates the published values of the claim’s public param­

eters, by replacing g1 with g1 
' , and publishes the set of tuples C0 along with s. All 

these values can be published in a manner where the service providers and users can 

access this information without any further communication with the identity provider. 

Furthermore, the identity provider may sign this information using a PKI private key 

for integrity protection. 

Any user that obtained a claim instance from the identity provider may update 

his/her claim’s c0 value with the following steps: 

•	 Obtain a copy of C0 and s value. 

IDclaim )s•	 Set x = (h1 

•	 Look up C0 with using x in order to obtain
 

< x, c0x >
 

•	 Replace the claim’s c0 with c0x 
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3.5 Security Evaluation 

This section discusses of security and privacy features for each of the solution 

steps presented in the previous section. Each step is examined closely to emphasize 

the importance of the security and privacy guarantees provided by the system. 

3.5.1 Claim Definition 

As described in Section 3.4.1, an identity provider creates a claim definition as an 

instance of the HIBE scheme with depth 2 [13]. The public parameters and metadata 

of the claim are made public. Importantly, the claimkey value, which is the master 

key of the scheme, is held secret by the identity provider. This is the only information 

the identity provider is required to secure with respect to a defined claim. 

3.5.2 Claim Issuance 

Claim issuance requires an exchange of messages between a user and an identity 

provider. A user initially sends req = h1 
IDclaim , where IDclaim is a random value. The 

req value can be sent to the identity provider in the clear. Due to the hardness of 

the discrete logarithm problem, an eavesdropper of the channel with computationally 

bounded resources, who obtain req, will not be able to recover the IDclaim value 

without a brute force attack. 

It is important to note that an identity provider authenticates a user before issuing 

an identity claim instance. This scheme does not enforce any specific authentication 

scheme between the identity provider and the user. 

The identity provider returns claim = (c0, c1, c2) = (claimkey · (req · g3)r , gr, h2 
r). 

Note that claim must be transmitted to the user over a secure channel, which prevents 

an eavesdropper from obtaining claim. The following PKI-based scheme can serve as 

the authentication scheme, which can ensure that claim is readable only by the user: 
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•	 The user has an asymmetric key pair (pub, priv) to be used for encryption and 

signing. 

•	 The identity provider registers the user along with any required metadata about 

the user and stores the user’s public key (pub) as a trusted user. 

•	 The user signs the req value with priv to generate σreq and sends (req, σreq, pub) 

to the identity provider. 

•	 The identity provider authenticates (req, σreq) by verifying σreq, and generates 

claim. 

•	 The identity provider encrypts claim using pub and returns the encrypted claim 

the user. This provides the assurance that only the authenticated user is able 

to decrypt the message and obtain claim. 

In the case when the user needs to be assured of the authenticity of the identity 

provider, both parties can use each others asymmetric key pairs to sign and encrypt 

communication. In practice, this may be trivially realized using a scheme such as 

SSL with mutual authentication. 

At the point of claim issuance, the identity provider is required to maintain the 

req and the c0 component of the issued claim instance for revocation purposes. It 

should also securely discard c1 and c2 components. In the case of an attack, where an 

attacker can obtain the list of c0s, that information will not yield any assistance in 

disrupting the use of issued claim instances. Due to the missing c1 and c2 components 

of the issued claims, an attacker will not be able to extract a session key during an 

authentication attempt with a service provider. Furthermore, if the attacker obtains 

req, the attacker will be able to create an AnonClaim value, which is of the form 

(req · h2 
r), to initiate the authentication with a service provider. However, due to the 

absence of a complete claim the attacker will not be able to recover the session key. 

It should be noted that any entity can submit AnonClaim requests of the form 

h1 
x · h2 

y to a service provider. The service provider responds with an encrypted 
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session key value as well. This allows the possibility of a denial-of-service attack on 

the service provider. However, depending on the implementation, the service provider 

can employ mechanisms to throttle authentication requests to thwart such attacks. 

3.5.3 Authentication 

IDclaim rA user generates the AnonClaim = h1 · h2 value as the initial request 

to a service provider. An attacker who obtains this message will not be able to 

derive either IDclaim or r values. Note that AnonClaim takes the form of a Pedersen 

commitment value [34], where it unconditionally hides the IDclaim and h2 values. 

Therefore, it is possible to send this value to the service provider over a public channel. 

The ct value, as discussed in Section 3.4.3, is essentially a ciphertext of the HIBE 

scheme [13]. Therefore ct does not divulge any information to an eavesdropper with 

computationally bound resources. In essence, the authentication protocol with a 

service provider can safely take place over a public channel. 

Consider the case where the service provider may require a policy such as: 

ClaimSet1 OR ClaimSet2 

Based on the approach described in Section 3.4.4, the service provider sets up an 

access tree where the leaves are encrypted with different claims and the session key 

is hidden at the root. The user decides which set of claims to use to decrypt the 

leaves of the access structure to obtain the session key. Since this process occurs at 

the users site, the service provider will not learn which set of claims were used. 

3.5.4 Claim Revocation 

Section 3.4.5 proposed publication of a set of values updating current valid claim 

instances, upon revocation of claim instances. Table 3 shows an example of how this 

data is organized. 

As discussed in Section 3.5.2, the c0 component of claim can be made public 

and is useless without the c1 and c2 components. The“User” field does not list any 
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Table 3.3. 
An example of how the new set of c0 values and new public parameter 
component g1 are published by an identity provider 

g1, s 

User c0 

(reqAlice)
s c0Alice 

(reqBob)
s c0Bob 

(reqCharlie)
s c0Charlie 

identifiable information about a user who possesses a valid claim instance. This field 

contains user’s reqUser values blinded using a random value s, where (reqUser)
s = 

(IDclaim ·s)h1 . In the case when the req value is never exposed, an attacker will not 

be able to identify the user upon a claim revocation. This property holds true over 

multiple cycles of claim instance revocations as well. 

It should be noted that in the case when the req values is available to an attacker, 

the attacker will be able to identify the presence of the user’s updated claim com­

ponent in the revocation information. To eliminate this possibility, leading to the 

knowledge of the number of currently valid claims, the identity provider can option­

ally include bogus c0 values for revoked claims, or pad the total number of entries in 

the table. Additionally, to prevent an attacker from attempting to mount a denial of 

service attack by invalidating claim instances of users, claim revocation information 

is signed by the identity provider. 

As discussed earlier, depending on the implementation, users and an identity 

provider might use asymmetric keys for authentication and confidentiality of ex­

changed messages. In such a situation req values are not available to an eavesdropper. 

Finally, in the case in which an identity provider can be available online, it can 

carry out an authenticated secure exchange with the user to provide the new c0. In 

this scenario, the identity provider will only have to publish the new g1 with respect 

to the claim. Presence of a new g1 indicates that all users who own an issued claim 
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instance of the claim must obtain a new c0. A user sends the req to identity provider 

and the service provider encrypts the response, which includes the new c0, with the 

user’s public key. 

3.5.5 Collusion Resistance 

Section 3.4.4 presented the approach for supporting complex service provider poli­

cies based on multiple identity claims. The basic scheme requires the user to send a 

set of 
IDc h2c

rAnonClaimsU = (∀c ∈ CU : h1c ) 

values to the service provider. Since these AnonClaimsU values do not disclose any 

information about the ownership, it is impossible to avoid a situation where two users 

collude to obtain fraudulent authentication successfully. 

The setup described in Section 3.4.4, to limit the number of AnonClaim values, 

resolves this issue of collusion. The setup requires the user to obtain claim instances 

using the same IDclaim value, enforces the use of a single group G, and requires that 

h1, h2 ∈ G are constant. Due to this modification, IDclaim becomes the master key 

of the set of claims of the user. At this point, if a user is to collude with another, the 

user will have to give up the master key. 

A user initially generates a claim from an identity provider which is the root 

identity provider. An identity provider will ensure that the user uses the same req = 
IDclaimh1 value during issuance by verifying that the user has a claim issued by a 

parent identity provider by generating x = req · h2 
s where random value s ∈ Zp. The 

x value is used as an AnonClaim value to encrypt the new issue claim value. The 

value s is sent to the user along with the ciphertext of the newly issued claim. 

Moreover, a user may transfer an AnonClaim value and the corresponding key 

value to decrypt the encrypted session key, to another user. To avoid such a dele­

gation, the service provider may select a random value r ' ∈ Zp, set AnonClaim ' = 
rAnonClaim · h2 
! 
and use AnonClaim ' to encrypt the session key. The ciphertext 
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value and r ' are returned to the party attempting to authenticate. Now, this party 

must generate a new key using KeyGen(claim, (r + r ' )). This modification requires 

the possession of the claim value, which can only be carried out by the user who owns 

the claim. 

3.6 Implementation 

This section provides an overview of the developed proof of concept application. 

The complete source code is available as an opensource project [60]. The implemen­

tation is based on the Java Pairing Based Cryptography Library (jPBC) [35]. 

3.6.1 Identity Provider 

The identity provider was developed as a Java library. This includes the a database 

to store defined claims, user registration information, issued claim information, and 

revocation information. The high-level database schema is shown in Figure 3.7. 

Identity provider front-end implementation is written as a web application using 

the NodeJS/Express framework. This allows defining claims, creating user entries, 

issuing claims, and revoking issued claims. In addition, this has a set of JSON­

based2 REST interfaces for service provider and user interaction with the identity 

provider. The identity provider application is bootstrapped with a private key and 

the corresponding public key certificate. All public information published by the 

identity provider is signed with a private key. 

A user can be added to this system by providing his/her name and public key 

certificate. The public key is used to authenticate a user’s claim issuance requests 

and to encrypt issued claim instances. 

2JSON (JavaScript Object Notation) is a lightweight data-interchange format, which is easy for 
humans to read and write, and easy for machines to parse and generate [37]. 



60 

Figure 3.7. Design of the identity provider database. Text in bold 
indicates the primary keys of each entity. 

3.6.2 Identity Provider Client 

A user interacts with the identity provider using a client application, idptool. 

This allows a user to connect to the identity provider application using a URL. The 

user can obtain the list of available claim definitions, and request him/her a claim 

instance. Issued claim instances are stored in a claim wallet directory in the user’s 

home directory. Figure 3.8 shows an example usage of the idptool application. 

Figure 3.8. Example of idptool usage
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3.6.3 Service Provider and Clients 

The service provider is implemented as a node.js RESTful service. This exposes 

two authentication operations. The first authentication operation generates a chal­

lenge based on a student claim. The other generates a challenge based on two claims, 

student AND candidate. 

Each authentication operation encrypts a session key and returns the ciphertext 

to the client. In the two claim case, the session key is split into two components and 

encrypted using the two claims. A random element of the target group of the pairing 

function is used as a session key. This element is split by subtracting it using another 

random element. 

Two client scripts were implemented in JavaScript, which depends on the Java-

based implementation of the authentication library. Both use the claim wallet created 

by the idptool application to obtain claim instances. The first script invokes the 

authentication operation that uses a single claim and the other invokes the operation 

that relies on two claims. each client decrypt the ciphertext and extracts the session 

key. In the second case, the client decrypts the two ciphertext values related to the 

two claims and adds the results together to obtain the session key. 

For demonstration purposes, clients invoke another operation on the service by 

sending an HTTP POST request with the extracted session key as the payload. The 

service responds with “Access Granted” upon the receipt of a valid session key. If 

the session key is not valid, it responds with “Access Denied.” This implementation 

is evaluated with a the service hosted on an Amazon EC2 instance. 

3.6.4 Performance Evaluation 

A set of experiments was performed to evaluate the implementation. These exper­

iments were carried out using two systems: an Apple MacBook Pro (CPU: 2.3 GHz 

Intel Core i7, Memory: 16 GB 1600 MHz DDR3, Operating System: OS X 10.9.3, 

Java(TM) SE Runtime Environment-1.7.0 45) and an Amazon EC2 instance (model: 
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Table 3.4.
 
Claim definition creation time analysis
 

Time to Generate (ms) MacBook Pro Amazon EC2 

Claim Definition 14.58 17.56 

Digest 0.13 0.13 

Signature 0.98 1.28 

Storage 0.99 4.04 

m3.large, vCPU: 2 Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50GHz, Memory: 7.5 GB, 

Operating System: Ubuntu Linux, Java(TM) SE Runtime Environment-1.7.0 21). 

Both systems use SSD storage. 

Creation of Claim Definition 

Average time to create a claim definition was calcuated by averaging the creation of 

1000 claim definitions. The identity manager implentation creates a claim definition, 

a SHA-512 digest of it, signs the content, and stores it in a MySQL database. The 

average time to store on the Mac was 1ms and was 4ms on the EC2 instance. Time 

take to sign was 0.98ms on the Mac and 1.28ms on the EC2 instance. In both systems 

time taken to create the digest was negligible. The average time to create an identity 

claim definition was 14.58ms on the Mac and 17.56ms on the EC2 instance. Table 3.4 

summarises these results. 

Claim Issuance 

The average time required to issue a claim instance was analyzed using the two 

systems. As described in Section 3.4.2, the user first creates a req value, which is used 
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Table 3.5. 
Claim instance issue time analysis 

Time to Generate (ms) MacBook Pro Amazon EC2

Claim Issue Request 1.78 2.12

Claim Instance 8.33 13.14

by the identity provider to generate a claim instance. The performance analysis test

first bootstrapped the identity provider with 1000 users and created a single claim

definition. It then generated a req for each of the 1000 users and invoked the identity

manager implementation to create corresponding identity claim instances. Table 3.5

summarises the results.

Figure 3.9. Setup of Amazon EC2 remote invocation experiment

The identity provider client application, idptool, was evaluated using the identity

provider hosted at the Amazon EC2 server. The average time to obtain and store an

issued a claim from the remotely hosted identity provider was 315.38 ms.
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Authentication 

Using a setup as shown in Figure 3.9, the client application authenticated with 

the service provider hosted at the Amazon EC2 server. First, authenticating with 

a single claim required an average time of 294 ms. Next authenticating with two 

claims accounted for an average time of 330 ms. These results are averaged over 

100 interactions. Each interaction involves two invocations of the service provider to 

obtain a session key and present the extracted session key. 

It is important to identify the component of time required to invoke a simple 

authenticate operation without using the proposed scheme. Such analysis will allow 

isolation of the processing time required for all the additional functions performed 

when using the scheme. An additional authentication operation was added to the 

service provider implementation. This authentication operation creates a session key 

and returns it to the client application. The client application extracts the session 

key from the response and invokes the service provider using the session key as an 

argument. The service provider responds with “Access Granted” if the session key is 

valid. Total interaction times of this setup was evaluated over 100 interactions. The 

average time taken by this base case was 174.69 ms. 

This experiment was extended to obtain authentication times of up to 100 claims. 

A client would create a request with n claims and carry out the above authentication 

with a service provider, where n ranged from 1 to 100. In addition to the total 

time, times takes for request creation, authentication call, session key extraction 

and verification call, were recorded. During request creation, the client application 

creates the required AnonClaim values and their corresponding ephemeral private 

keys. The AnonClaim values are submitted to the service provider application in 

the authentication request. Service provider encrypts shares of a session key with 

these AnonClaim values using corresponding claims and returns the set of ciphertext 

values to the client application. The client application uses the ephemeral private 

keys to decrypt the ciphertext values and reconstructs the session key. Figure 3.10 
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shows the times taken to authenticate with each number of claims. The spikes in the 

authentication call durations can be attributed to random network delays. 

Figure 3.10. Stacked times to authenticate with a service provider 

In this experiment, the request creation includes creation of the private keys. 

This time needs to be spent during the protocol if multiple AnonClaim values were 

used. However, as discussed in Section 3.4.4, it is possible to reduce the number of 

AnonClaim values to one AnonClaim value. This technique was used to generate a 

single AnonClaim while the multiple ephemeral private keys required were created 

using a multithreaded approach. In this approach, the main client application thread 

carries out the authentication call while each ephemeral private key is being created 

by its own independent thread. The stacked times taken int his approach are shown 

in Figure 3.11. This result shows a clear reduction in the total times. 

Figure 3.12 compares the request creation times of the multiple AnonClaims ap­

proach with the single AnonClaim approach. This result clearly shows the efficiency 

of the single AnonClaim approach due to the possibility of concurrently computing 

the private keys. Moreover, it should be noted that, it is possible to carry out the 

encryption and decryption of the session key shares concurrently as well. 
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Figure 3.11. Stacked times to authenticate with a service provider 
using concurrent key derivation 

Figure 3.12. Comparison of key derivation times
 

These performance results show very low overhead due to the use of the proposed 

techniques compared to traditional means of authentication. Therefore, it is evident 

that the protocols proposed here are practical for the use in modern Web applications. 
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3.7 Integration with Service Compositions

In service oriented architecture (SOA), a service may compose of multiple services.

Figure 3.13 shows an example of a service that depends on a set of other services. Such

service compositions can utilize the proposed protocols using two different approaches.

First approach allows direct authentication of the user via the main service. Second

approach allows inner service providers to remain anonymous and use claims to prove

ability to process user information.

3.7.1 Direct User Authentication

Direct user authentication scenario allows each inner services to ensure that the

user owns all required claims according to each service policy.

Setup

The main service advertises the authentication policies of the services it immedi­

ately depends on. In other words, in the service invocation tree, the authentication

policy of a parent service is the union of its own and its children. Each service in­

cludes the public key certificate of an asymmetric key pair in its policy in addition to

the claim definitions.

Figure 3.13. A service composition with expected claims 
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Authentication 

To authenticate with such a scenario, a user generates a set of AnonClaim values. 

Note that, the user may just present a single AnonClaim value in the case where 

all the services use claim definitions with the same h1 andh2 values, as proposed in 

Section 3.4.4. The user sends the AnonClaim value to the main service. For example, 

this is Service 1 in Figure 3.13. Each service propagates this AnonClaim value to 

its immediate child services. Upon receiving this value, each service selects a random 
rservicei .value rservicei and computes AnonClaimservicei = AnonClaim · h2 Then, each 

service generates a session key value ski and encrypts it using AnonClaimservicei to 

obtain cti = Encrypt ' (paramsclaim, AnonClaimservicei , ski). Values cti, rservicei along 

with service policy and service public key are returned to the caller. When a service 

receives such a response from a child service, it returns the values to the caller. This 

approach returns a set of cti, rservicei values to the user that invoked the main service. 

After receiving the response from the main service, the user generates the corre­

sponding private key values for each AnonClaimservicei value. These private keys are 

used to decrypt each cti value and obtain each session key value ski. In a situation 

where the user needs to carry out multiple requests with the service topology, he/she 

may use the public key value of each service to encrypt the corresponding session key. 

The service may be able to provide a response to an authenticated user without 

the need for multiple service calls. In such a scenario, the service may encrypt the 

response payload with the session key value. This encrypted payload will be included 

in the response to the user along with the encrypted session key. User will be able to 

decrypt the encrypted payload only if he/she owns claims according to that service 

policy. 

Note that, due to the use of the AnonClaimservicei values, each service ensures 

that is not possible for the owner of a claim to delegate a private key corresponding 

to an AnonClaim value. 
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3.7.2 Service Provider Capabilities 

The main service may have the option of selecting one of several services to out­

source operations. For example, an online vendor service may outsource credit card 

processing to one of many banks. A trusted authority will issue claims to these banks 

to certify that they are allowed to and are capable of processing credit card infor­

mation. “Allowed to process credit card information” is the identity claim in this 

example. 

The main service first contacts an inner service to obtain an AnonClaim value. 

This AnonClaim value is sent to the user at the start of a transaction. The user 

evaluates the AnonClaim value and claim definitions from the initial service and en­

crypts information with the AnonClaim value. These ciphertext values are provided 

to the main service which routes them to the inner service. A service can decrypt a 

particular ciphertext value, only if it own a claim issued by a trusted authority. Also, 

no other entity with the same capability will be able to decrypt the content as well. 
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4 CONSUMER ORIENTED PRIVACY PRESERVING ACCESS CONTROL 

FOR ELECTRONIC HEALTH RECORDS 

4.1 Introduction 

An investigation by the committee on Quality of Health Care in America, Institute 

of Medicine, performed in 1997 concluded that at least 44.000 and up to 98.000 

people die in the United States each year because of medication errors [61]. We 

infer that among the causes of these errors are conflicting treatments and incomplete 

information. Several countries are working towards implementing national systems 

for Health Information Exchange (HIE). Such systems shall share Electronic Health 

Records among healthcare providers and reduce medical errors. The Netherlands 

was among the pioneers in this subject, however; the project was ceased because of 

privacy concerns [62]. Other European countries such as UK and France have also 

ceased their projects, with the exception of Denmark [63]. The critical issue for the 

success of these projects is consumer privacy. 

HIEs have been provider-oriented with very little consumer involvement. HIEs 

share EHRs electronically between health care providers in accordance with nationally 

recognized standards [64]. These exchanges usually involve trusted third parties such 

as cloud services (aka EHR banks or HIE services) to facilitate EHRs’ storage, sharing 

and access. However, consumers (patients or their authorized representatives) have 

no visibility or control in these transactions. They are typically carried out without 

consumers knowledge or approval. HIEs are plagued by privacy issues arising due to 

the opaque data sharing of consumer EHRs. Consumer risks and harms arising due 

to opaque data sharing of EHRs are well documented [65]. 

This work explores the privacy issues related to the access control of patient 

information and their medical data managed by external service providers. Consider 
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a medical laboratory that uses a cloud based EHR bank to store test results. The 

EHR bank exposes a service to provide access to the data it stores. Patients and 

their representatives, physicians, and medical laboratories can use this service to 

access the data. While there are various means of securing the stored sensitive data 

and accessing it safely, it is important to investigate the possible privacy implications, 

due to knowledge that may be inferred using side channels based on access patterns. 

A patient consults Dr. A who prescribes a blood test. The patient visits a medical 

testing facility (lab) with Dr. As prescription and provides a blood sample for testing. 

Once the results are ready, the lab uploads these results to an EHR bank and notifies 

the doctor and the patient. Dr. A, using her credentials, obtains the test results using 

an HIE service exposed by the EHR bank. If this service employs traditional means of 

authentication, such as username-password pairs or public key infrastructure based 

authentication, which are linkable, the EHR bank can infer additional information 

about Dr. A. Furthermore, in the case where another physician Dr. B, a cancer 

specialist, accesses this information, the EHR bank will learn about Dr. Bs interest 

in this data. Using both physicians specialization, the EHR bank will be able to 

infer even more information. For instance, based on access patterns, the EHR bank 

will not only infer consumer information but will also be able to identify groups of 

physicians who collaborate frequently. Therefore, it is very important to provide 

means to limit the privacy implications. In order to provide visibility, the level of 

patient empowerment has to be enhanced in HIEs [66]. There is a strong need to 

add consumer mediation and control in HIE services to address privacy concerns [64]. 

This paper proposes an approach to nullify the effects of the use of distinguishable 

identities for authentication and authorization by a service. This approach enables 

consumers to establish and enforce individual privacy requirements by allowing a 

specific EHR (complete or partial) to be used in an HIE. 

It is also important to note that, the consumer, as the owner or guardian of 

her EHRs, should have visibility and control over how these records are accessed by 

various parties. Consumer preferences may change over time, for e.g., depending on 
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Figure 4.1. Medical information exchange setup

their health status so these features are essential for a trusted healthcare system.

Also, consumer controlled HIEs are necessary for a diverse society because people

have different privacy preferences. The techniques used for managing EHRs and

HIEs must provide dynamic and fine­grained access control with revocation ability.

They should be able to protect consumer privacy and the privacy of entities that

participate in HIE. We believe consumer mediation and control in HIEs will resolve

trust issues and privacy concerns in HIE services.

4.2 Motivation

Privacy preserving consumer centric EHR access is of utmost importance and has

many benefits, as follows:
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•	 Accurate identification, association and propagation of health data. 

Consumers are able to indicate any missing or mismatched information [66]. 

•	 Reduce provider liability during HIEs. Practitioners make decisions based 

on EHRs from an HIE. These EHRs may come from unknown providers which 

increases the malpractice liability. However, if consumers grant access to their 

digitally signed EHRs, the provider liability is reduced [66]. 

•	 Increased consumer satisfaction by reducing linkability and inferenc­

ing. Consumers may not want to make certain health conditions public, for e.g. 

a positive diagnosis of cancer. Allowing consumers to sequester and selectively 

disclose their information will improve consumer satisfaction [66]. 

•	 Reduced legal consequences/confusions. Law requires HIEs to filter cer­

tain information, for e.g. a positive diagnosis of AIDS, in order to protect 

consumer privacy. Moreover, inferencing based on other information, for e.g. 

prescriptions, consulting practitioners, pattern of specific medical tests etc., may 

still link consumers with the diagnosis. However, consumer approved sharing 

of EHRs is accepted by law [66]. 

•	 Improved visibility. EHR bank and HIE services are not government entities 

and are not required to explain how EHRs are shared (or sold). Consumers 

may be prone to economic losses due to the lack of transparency and account­

ability [66]. 

•	 Reduced healthcare costs. Consumers will be able to reuse existing EHRs 

such as test results leading to cost reductions. 

Table 4.1 presents the notations used for each entity in the scenarios addressed. 

L generates a new EHR about a particular U and sends this record to HIE to store. 

HIE is responsible for controlling access to this data. HIE has access to plain text 

data of EHR and can provide value added services on this data, such as rendering 
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Table 4.1.
 
Entities and notations
 

Entity Symbol 

Generator of health records L 

Consumer of health records D 

Patient/Owner of health records U 

Health Information Exchange Service HIE 

Electronic Health record EHR 

the EHR using a graphical user interface. The following are the security and privacy 

properties that need to be provided by the system: 

•	 U should be able to define (add/remove) who can access this information. 

•	 HIE should not be able to identify U and subsequent accesses of HIE by U 

must be unlinkable. 

•	 HIE should not be able to link multiple EHRs to any U. 

•	 HIE should not be able to analyze access of different roles of consumers based 

on their credentials. 

•	 Only Ds authorized to access an EHR should be able to access it. 

•	 Any D authorized to access an EHR should be able to access it without revealing 

any personal identifiable information. 

•	 All access to EHRs by all Ds should be unlinkable. 

4.3 Related Work 

Examples of commercial EHR services include Google Health [67] and Microsoft 

HealthVault [68]. Google Health initiative was unsuccessful and has been discontin­



75 

ued. Privacy issues leading to the lack of trust was one of the reasons it was not 

adopted by masses. Microsoft HealthVault has not completely matured yet. 

Protecting the confidentiality of the EHR while ensuring the usability of the sys­

tem and limiting the resistance of the system actors to the use of the system is deemed 

an important challenge. Several approaches and solutions have been proposed or im­

plemented. For instance, The Netherlands implemented a centralized national EHR 

system [69]. The system uses a passive confidentiality protection strategy: control 

and warn [70]. In this strategy, a monitoring system logs all accesses to EHR given 

that all care providers are able to access all patient data; while the warning system 

evaluates the compliance of each access with access rules that implement the law. 

Groot et al. found that the average unlawful accesses are about 9% from all requests 

by care providers [70]. 

Salih et Al. [71] proposed a distributed approach for protecting the confidentiality 

of EHR. The idea is to encapsulate the EHR data of each patient along with the 

access policies into an entity called active bundle [72] and to store the bundle in 

the repository of the primary heath care provider of the patient. The active bundle 

encompasses a virtual machine that enforces the policies and performs protection 

mechanisms, such as apoptosis. The health care provider can search for the active 

bundle, query it locally for requested information, and update it as needed. The 

bundle can also record a log of accesses and call the main repository if required. 

MyDataCan [73] supports the creation of consumer-controlled HIE services and 

helps consumers manage access to their EHRs [74] and [75]. It allows easy access 

to health data through apps and enables consumers to set goals and work towards 

improving their health. 

There are multiple ongoing pilot programs for EHR banks [76]. For instance, 

a project at Madigan Army Medical Center focused on connecting DoD and VA 

healthcare systems. 
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4.4 Preliminary Notions

Figure 4.2 shows the typical setup of an identity provider which issues credentials

to a user, who authenticates with a service provider using those credentials.

Figure 4.2. Entities of an identity management system

The identity management system defined in Chapter 3 defines the following oper­

ations:

� GenClaim

� IssueClaim

� Authenticate

� RevokeClaim

GenClaim

Let e : G × G � G1 be a bilinear map where G is a group of prime order p.

GenClaim generates a new claim as a set of parameters param = (g� g1� g2� g3� h1� h2)

and a key, claimkey = g2
�, where g is a generator of G and a random � �Zp, random

g2� g3� h1� h2 �G and g1 = g�. This is invoked by an identity provider to setup a new

identity claim definition. Identity claim instances are issued to user based on this
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definition. claimkey is kept private at the identity provider and param, e : G × G → 

G1 is published to be accessed by users and service providers along with a semantic 

description of the claim. 

4.4.1 IssueClaim 

Claim issuance starts with a user requesting a claim instance from the identity 

provider using a req value defined as: req = h1 
IDclaim , where IDclaim ← Zp. The 

identity provider outputs claim = (c0, c1, c2) = (claimkey · (req · g3)r , gr, h2 
r) and 

transmits claim to the user. This exchange is carried out over a secure channel 

between the user and the identity provider. 

4.4.2 Authenticate 

A service provider who wishes to authenticate a user with the possession of a 

claim issued by a particular identity provider will indicate such a requirement in its 
IDclaim rauthentication policy. To authenticate, a user sets AnonClaim = h1 · h2 , 

where r ← Zp. AnonClaim is sent to the service provider. The service provider 

generates a random sessionkey value and encrypts it using the Encrypt ' defined in 

Section 2.5.4: ct = Encrypt ' (param,AnonClaim, session key). The service provider 

returns ct value to the user and the user then invokes Extract(ct, param, claim) to 

obtain the session key. 

In the case where the users does not possess a valid claim instance, it will not be 

possible extract the session key hidden in the challenge sent by the service provider. 

Hence, the user will not be able to setup the authenticated secure channel. 

4.4.3 RevokeClaim 

In a situation where an issued claim is revoked, the identity provider generates a 

new α ' ← Zp and publishes the new public parameters along with a table of blinded 
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values that current set of users can use to update their claim values. The published

information does not compromise the security of the claim values held by any user.

4.5 Proposed Solution

As shown in Figure 4.1, the general workflow supported by this solution is as

follows1: Patient (U ) visits a physician and the physician (D) requests a test. U

visits a laboratory (L) with a prescription issued by D and L performs the test. L

submits the generated results (EHR) to the health information exchange (HIE ). U

grants access to D where HIE enforces rules set by U. Using the following set of steps

in creating and accessing each EHR instance will enforce all the privacy properties

identified in Section 4.2.

Figure 4.3. User setting up the claim definitions and issuing a read
claim to a doctor

4.5.1 Initial Setup

When D requests a test, U creates two claim definitions ClaimDefread and

ClaimDefowner using GenClaim as discussed in Section 4.4. These are to be as­

1Note that the solution is not limited to this example scenario used to establish the protocols.
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sociated with the EHR instance to be generated as a result of the test. D carries out

IssueClaim with U and obtains claimread based on ClaimDefread. Pread and Powner,

which are parameters of ClaimDefread and ClaimDefowner respectively, are given to

L. This workflow is shown in Figure 4.3.

As shown in Table 4.2, U stores the value (req · g3)r, used in calculation of c0 of

claimread, along with an identifier of D. These values are required when U needs to

revoke access to any D.

Table 4.2. 
Information stored for each user upon claim issuance 

Pread

Identity of D c0
� req

Dr. Alice (reqAlice · g3)r1 reqAlice

Dr. Bob (reqBob · g3)r2 reqBob

Nurse Nancy (reqNancy · g3)r3 reqNancy

Once the result (EHR) is ready, L sends EHR to HIE along with Pread and Powner.

HIE stores EHR and associates Pread and Powner with it.

Figure 4.4. Lab sending an electronic health record to a health infor­
mation exchange
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4.5.2 Access Results

Upon receipt of an EHR, HIE may advertise the value g from Pread. This g serves

as an identifier when interested parties attempts to access the EHR.

To obtain an EHR stored at HIE, D first sets up an authenticated secure channel

with HIE. As shown in Figure 4.5, D first generates a fresh AnonClaim instance, and

sends it to HIE along with g of Pread associated with the EHR.

Figure 4.5. Doctor authenticating with a health information exchange

Upon receipt of AnonClaim value and g the HIE generate a challenge (ct) value

using the following steps:

�  Generate ephemeral session�key value. This a key of any chosen symmetric

key encryption algorithm, such as AES.

�  Look up the Pread value using g and calculate ct value: 

ct = Encrypt�(Pread� AnonClaim� session�key). 

The ct value is sent to D who will invoke Extract(ct� param� claim) to obtain the

session�key value. This session�key is used to establish the secure channel between
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D and HIE. Note that, HIE can send the encrypted EHR value using session − key 

along with ct as well. 

4.5.3 Access Revocation 

In a situation where U decides to prevent any Di from accessing an EHR, U carries 

out the following steps: 

• Generate α ' ← Zp where p is the order of G in Pread. 

• Set new claimkey = g2 
α! 
. 

• Remove Di’s entry from the list of r values maintained (Eg. Table 4.2). 

• Calculate new c0 values for each remaining Ds using stored (req · g3)r of each 

D.
 

c0 = claimkey · (req · g3)r .
 

Each of these new c0 values are listed in a table associated with blinded identity 

values of D. Table 4.3 presents an example of such a table with updated c0 values. 

Table 4.3.
 
Example of published re-key information
 

Updated Pread, β 

Blinded Identity of D Updated c0 

(reqAlice)
β claimkey · (reqAlice · g3)r1 

(reqBob)
β claimkey · (reqBob · g3)r2 

(reqNancy)
β claimkey · (reqNancy · g3)r3 

U sets up an authenticated secure session as with HIE using Powner and sends 

the updated Pread along with the list of updated c0 values. HIE updates its records. 
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Note that, the g value of Pread did not change and this can still be used by a D to 

look up the information. A D can query HIE to obtain the latest Pread and the set 

of c0 values and update its claimkey value by updating the c0 value. 

4.5.4 HIE Access Policies 

It is important to note that the HIE may impose further constraints on the EHRs. 

These constraints may lead to potential compromise of consumer privacy. For exam­

ple, due to regulations, HIE may require all physicians who access this information, 

prove that they are licensed. Also, the same HIE may allow a nurse to access this 

information provided she is the head nurse. This policy may be expressed as : 

{(Doctor OR Head Nurse) AND ClaimDefread} 

OR 

ClaimDefowner 

Authentication scheme proposed in Chapter 3 can be used here to satisfy this policy, 

while preventing the HIE from inferring statistics about the usage of different groups 

of consumers. The secure channel establishment protocol remains the same as in 

Section 4.5.2 with the exception of the session − key being hidden at the root node 

of an access tree structure. The leaves of this access tree correspond to each claim 

required in the policy and the inner nodes represents the AND and OR conditions. 

The session−key is split and distributed down the access tree structure and the shares 

at the leaves are encrypted by the corresponding claims. U extracts the session−key 

by decrypting the leaves and combining key shares based on the access structure. The 

main advantage with this approach is that, HIE is not aware of the claims used by 

U to recover the session − key. 
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4.6 Evaluation 

This work proposes a system for providing authenticated access to sensitive health 

records. The owner of the information is given complete control over managing access. 

This section presents a discussion of the main features of the system. 

4.6.1 Privacy of Authentication Protocols 

One of the main features of the proposed system is preservation of privacy of those 

parties who access the records. U as the owner of the records provides the two sets of 

public parameters Pread and Powner to the generator of a record. This entity forwards 

the EHR along with Pread and Powner to HIE. With the assumption that, the EHR 

does not contain any identity information, and since Pread and Powner generated as 

defined in Section 4.4, the HIE is not able to associate any entity with the EHR. 

During authentication, a consumer of the EHR initially sends AnonClaimi value. 
IDclaimThis is of the form h1 · h2 

ri , which is similar to the construction of the Pedersen 

commitment [34]. Therefore each AnonClaimi value unconditionally hides IDclaim 

and ri values. 

When the HIE has an access policy such as ClaimSet1 OR ClaimSet2, HIE 

constructs an access structure as defined in Section 4.5.4. The consumer has the 

option to extract the session − key value stored at the root of the access structure 

by decrypting the leaves using either ClaimSet1 or ClaimSet2. It is very important 

that this decision is not visible to the HIE. This prevents the HIE from being able to 

determine the distribution of groups of consumers who access each EHR using either 

ClaimSet1 or ClaimSet2. 

4.6.2 Privacy of Access Revocation 

An owner publishes a partial component of a consumer’s private credentials during 

revocation. This is of the form c0i = claimkey ·(req · g3)r = g2 
α! ·Xi

r . Security of this 
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construction can also be argued based on the Pedersen commitment [34], where c0i 

unconditionally hides the r and α ' . Note that, an eavesdropper may obtain req during 

claim issue protocol. However, even if such an attacker can construct Xi = req · g3 

the above argument holds. 

The c0 values of each consumer is published as shown in Table 4.3. The key column 

of the table uses a value of the form reqβ where β ∈ Zp and req = h1 
IDclaim , where 

req is the value that the consumer initially sends the owner to obtain a credential. 

This initial exchange to obtain a claim occurs over a secure channel. Therefore, a 

party other that a consumer will not be able to query the re-key information table. 

Furthermore, an attacker who obtains multiple tables of re-key information will not 

be able to make any associations. 

4.6.3 Value Added Services 

A physician who possesses credentials to access several health records may unlock 

those records, group them, and sets up a session with the HIE, which provides a 

dashboard to carryout further analysis on those records. This will allow the HIE 

to identify a set of possibly related health records. This can also materialize, if the 

owner re-uses the same Pread to issue credentials to access multiple records. These 

situations may allow the HIE to possibly prompt another consumer who groups a 

subset of health records, which someone else might have grouped with additional 

records that he/she might find useful. Allowing such configurations may be safe with 

respect to owner/consumer privacy as long as the HIE does not learn any additional 

information about the owner or the consumers. 
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5 REVOCATION OF CIPHERTEXT POLICY ATTRIBUTE BASED 

ENCRYPTION KEYS 

Attribute based encryption (ABE) is a public key encryption scheme. ABE addresses 

the problem of encrypting data once, to be decrypted by a set of users who possess 

a set of attributes or credentials. Such a system allows a trusted third party to issue 

private keys to users with respect to attributes. A data owner may use the public key 

associated with these attributes to encrypt a message and publish it. This message 

can be now decrypted only by those users who have the private keys corresponding 

to the attributes of the public keys used to encrypt a message. 

Bethencourt et. al. [59] describe the ciphertext policy attribute based encryption 

(CP-ABE) scheme, which presents four main algorithms: Setup, Encrypt, KeyGen, 

and Decrypt. Setup creates a public key (PK) and a master key (MK). A user encrypts 

a message (M), using an access structure (T) that is based on a set of attributes, using 

Encrypt(PK, M, T). The party who owns MK executes KeyGen(MK, S) to output 

a secret key (SK). S denotes the set of attributes included in the secret key. A user 

who has a secret key, use Decrypt(CT, SK) to obtain M, where CT is the ciphertext 

output by Encrypt. 

Typically, Setup is carried out by a third party trusted by both data owners and 

users (e.g., a certificate authority). Such a trusted third party must be able to revoke 

a user’s secret key. After revocation, the owner of the secret key will not be able 

to decrypt any future messages encrypted using the public key associated with the 

attributes owned by him/her. 

This chapter presents an approach for the trusted third party to revoke a user who 

owns a CP-ABE secret key. This scheme does not rely on a private channel between 

the user and a trusted third party. This approach first resets the master key of the 
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scheme and then publishes a set of re-key information with components for each valid 

user. Furthermore, there is no requirement for this trusted third party to be online. 

5.1 Ciphertext Policy Attribute Based Encrytion Keys 

This section provides an overview of the keys used in the CP-ABE scheme. Setup 

algorithm generates a master key (MK) and public key (PK). The party that runs 

Setup keeps the master key secret and makes the public key is available publicly. This 

entity generates a set of secret keys and transmits them to each user. 

A public key of CP-ABE is generated as 

1/β αPK = G0, g, h = gβ , f = g , e(g, g)

where G0 is a bilinear group of prime order p, g is a generator of G0 and e : G0 ×G → 

G1 is a bilinear map. α and β are randomly choosen from Zp. 

The master key is 

MK = (β, gα) 

A secret key for a user is generated based on a set of attributes denoted by S. 

The owner of the master key runs KeyGen(MK, S), which first selects random values 

r ∈ Zp and rj ∈ Zp for each attribute j ∈ S and outputs 

(α+r)/β rSK = (D = g , ∀j ∈ S : {Dj = g · H(j)rj , D ' j = grj }) 

SK = (D, ∀j ∈ S : {Dj , D ' j }) 

H is a hash function defined as H : {0, 1}∗ → G0. 

Note that, the value D is the only component of the secret key that is related 

to the master key. Therefore, in a situation where the master key changes the only 

component of each secret key that is affected is D. Revocation scheme presented in 

Section 5.2 relies on this property of CP-ABE secret keys. 

5.2 Revocation 

The issuer, at the point of creating a secret key for a user, creates a random value 

r ∈ Z. This value will be stored at the issuer permanently along with an identifier of 
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the user. In addition to r, KeyGen requires the creation of a set of random rj ∈ Z 

values for each j ∈ S, where S is a set of attributes. Note that these values are not 

stored at the issuer. Table 5.1 shows an example of the values stored for Alice, Bob 

and Charlie. 

Table 5.1.
 
User key information stored at the issuer
 

User Random (r) 

Alice rAlice 

Bob rBob 

Charlie rCharlie 

Nancy rNancy 

Let the original set of users be denoted by U and let U ' be the set of users with the 

secret keys to be revoked. After revocation, the set (U − U ' ) will still be able to use 

their secret keys to decrypt content encrypted using the corresponding PK. However, 

the set of users in U ' will not be able to decrypt such content. Let user random(u) 

return the stored r value of a given user u. Following steps are taken to revoke keys 

of the users in U ' . 

• Generate new random values β ' ∈ Zp and α ' ∈ Zp 

• Let set RK = ∀ui ∈ (U − U ' ) : {(ui, Di
new)} 

new (α!+user random(u))/β! 
where, Di = g

' β! 1/β! • New public key: PK = G, g, h = g , f = g , e(g, g)α
! 

• Publish both PK ' and RK as re-key information 

Table 5.2 shows an example of re-key data of three users Alice, Bob and Charlie 

and the updated public key. 
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Table 5.2.
 
Re-key information to be published
 

User Dnew 

Alice DAlice 
new 

Bob DBob 
new 

Charlie DCharlie 
new 

P K ' 

When re-key information is available, owners of secret keys may update their 

secret keys using published data. Furthermore, all parties should replace PK with 

PK ' . Therefore, PK ' will be used to encrypt data. 

It is important to note that this scheme only allows revocation of a complete secret 

key. It does not allow revocation of attributes of an existing user. An issuer will be 

able to append additional attributes to the user by sending only components related 

to those attributes since the issuer stores the r value related each secret key. Note 

that, seret key takes the form, SK = (D, ∀j ∈ S : {Dj , D ' j }). To add a new attribute 

rsi to SK, the issuer computes Di = g ·H(j)ri , D ' i = gri , where random value ri ∈ Zp. 

The values Di and D ' i must be transmitted via a secure channel to the owner of SK. 

5.2.1 Security Evaluation 

During a revocation, the only information available to an eavesdropper are PK ' 

1/β! 
and RK. Since f = g any party can compute the value f · Di. This yields 

(α!+ri)g . Note that, α ' and all ri values are kept secret at the trusted third party. 

Therefore, due to the hardness of the discrete logarithm problem this does not leak 

any information about α ' or ri values. 

Furthermore, since Di
new is bound to a particular user due to the use of ri value 

that is specific to that user, no user will find any other user’s Di
new component useful. 
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6 SUMMARY 

This work initially addressed privacy issues of distributing messages in an anonymous 

social messaging scheme. In this scheme, one user has a set of contacts, and the 

contacts do not know each other. If one contact receives a message from the main user, 

he/she can redistribute this message to other contacts. Such redistribution occurs via 

a public channel and is based on requests from the contacts who need the message. 

During this message distribution, all parties should maintain their anonymity. A 

cryptographic protocol was presented to address this problem. A contact publishes a 

request to a public channel. Another contact responds to this request by encrypting 

a message with the proposed encryption scheme. The proposed protocol supports 

dynamic sets of user contacts. This is where a user may remove a contact from 

the trusted set of contacts. In such a situation, the remaining set of contacts is 

updated with new key material using the public channel. A detailed security analysis 

is presented to emphasize the privacy features provided by the protocol. As a proof 

of concept of the proposed functionality, the cryptographic primitives were developed 

as a library. This library was used to develop a demonstration application and an 

experimentation framework. 

Based on the encryption scheme proposed in the above work, a novel identity man­

agement system was created to address the privacy concerns of linkable authentication 

of users. This scheme can tolerate an offline identity provider, where the user can au­

thenticate with a service provider without any interaction with the identity provider. 

Furthermore, the issued claim instances can be used together to support complex au­

thentication policies of the service provider, while preventing collusion among users 

who own subsets of required claims. An innovative approach was employed to revoke 

a user’s credentials and update the set of authorized users using only public infor­

mation. A detailed analysis of security and privacy features of the proposed system 
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was presented, followed by implementation details of the proof of concept applica­

tion and performance evaluation. Results of the performance evaluation indicate the 

practicality of using the proposed authentication protocols in modern applications. 

A novel approach was proposed to allow the user to have full control over his/her 

electronic health care records, hosted at a health information exchange, while improv­

ing privacy of those parties who access the records. Protocols between the owner, gen­

erator of data, health information exchange and the consumers of the health records 

were presented. The privacy properties guaranteed by the protocols are unlikability 

of subsequent usage sessions of consumer interactions with the health records and 

the inability of the health information exchange to profile classes of consumers in the 

case of complex access policies. In addition to these privacy properties, proposed 

techniques allow the owner to manage fine-grained access to the health records. 
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