
CERIAS Tech Report 2014-7
Planning and Integrating Deception into Computer Security Defenses

 by Mohammed H. Almeshekah and Eugene H. Spafford
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Planning and Integrating Deception into Computer

Security Defenses∗

Mohammed H. Almeshekah Eugene H. Spafford
CERIAS CERIAS

Purdue University Purdue University

West Lafayette, IN 47907-2086 West Lafayette, IN 47907-2086

malmeshe@purdue.edu spaf@purdue.edu

ABSTRACT
Deceptive techniques played a prominent role in many hu
man conflicts throughout history. Digital conflicts are no
different as the use of deception has found its way to com
puting since at least the 1980s. However, many computer
defenses that uses deception were ad-hoc attempts to incor
porate deceptive elements in them. In this paper, we present
a model that can be used to plan and integrate deception
in computer security defenses. We present an overview of
why deception fundamentally works and what are the essen
tial principles in using such techniques. We investigate the
unique advantages deception-based mechanisms bring to tra
ditional computer security defenses. Furthermore, we show
how our model can be used to incorporate deception to many
part of computer systems and discuss how we can use such
techniques effectively. A successful deception should present
plausible alternative(s) to the truth and these should be de
signed to exploit specific adversaries’ biases. We investigate
these biases and discuss how can they be used by presenting
a number of examples.

Categories and Subject Descriptors
H.1.2 [User/Machine Systems]: Software Psychology; K.6.5
[Management of Computing and Information Sys
tems]: Security and Protection—Unauthorized access (e.g.,
hacking, phreaking)

General Terms
Security, Human Factors

Keywords
Deception, Biases, Computer Security

1. INTRODUCTION
∗ This is the submitted version to appear at the New Security
Paradigm Workshop (NSPW’14). The final version can be
obtained from the workshop webpage at www.nspw.org

Deception has been in use for many millennia, perhaps for
as long as life existed on planet earth. Plants, animals and
insects have been using deceptive techniques as a mean for
defense and survival. Humans are no exception to the use
of deception. Illusionists use it to entertain us, con artists
to cheat us, and military strategists to defend us. Digital
realms are no different from the ”real world” as deception
has found its way into computerized systems. Two of the
earliest documented uses of deceptive techniques for com
puter security are in the work of Cliff Stoll in his book “The
Cuckoo’s Egg” [41] and the work of Spafford in his own lab
[38]. Later, in the early 2000s, “honeypots” were introduced
which employ deception for many applications [39].

In computer defenses, a broad range of deception techniques
have been used for more than three decades [1]. Many de
fensive technologies have incorporated some use of deceptive
techniques, such as honeypots. A proliferation of honey-
prefixed methods was seen in the first decade of 2000s. We
have argued for the case of using deception in computer
defenses in [1] showing how such techniques fit within the
bigger picture of information security, as depicted in 1.

As human beings, we are not good at detecting deception. In
39 different studies by Vrij, he found that the mean accuracy
rate for college students to detect deception was only 57%,
which is almost as poor as random choice [46]. This rate
is slightly worse with law enforcement officers who scored a
mean accuracy rate of 54% [46]. Whaley clearly stated in his
seminal book “Stratagem: Deception and Surprise in War”,
which is the largest open source empirical analysis of the
use of deception in conflicts, that ”Indeed, this is a general
finding of my study – that is, the deceiver is almost always
successful regardless of the sophistication of his victim in the
same art” [49].

Reginald Jones, the British scientific military intelligence
scholar, concisely articulated the relationship between se
curity and deception. He referred to security as a “negative
activity, in that you are trying to stop the flow of clues to an
opponent” and it needs its other counterpart, namely decep
tion, to have a competitive advantage in a conflict [26]. He
refers to deception as the “positive counterpart to security”
that provides false clues to be fed to the opponents.

Offensively, many current common attacks use deceptive
techniques as a cornerstone of their success. For example,
phishing attacks always use two-level deceptive techniques.

http:www.nspw.org
mailto:spaf@purdue.edu
mailto:malmeshe@purdue.edu

Figure 1: The Relationship between Deception and
Other Computer Defense

They deceive users into clicking on links that appear to be
coming from legitimate sources, which take them to the sec
ond level of deception where they will be presented with
legitimate-looking websites luring them to give their creden
tials. The “Nigerian 419” scams are another example of how
users are deceived into providing sensitive information with
the hope of receiving a fortune later.

Despite the use of deception in computing, both offensively
and defensively, little formal work has been done in investi
gating the concept of deception itself: how it works and why
it is successful. In addition, to the best of our knowledge,
there is no model detailing how deception can be planned
and integrated into computer security defenses. This paper
is intended to address these questions and discuss related
issues that are worthy of future investigation and further
research.

2. DECEPTION
A perception [that is not true] that is intentionally induced
by actions of other entities is a deception [48]. One of the
most widely accepted definitions of computer-security de
ception is the one by Yuill [52]:

Computer Deception is “Planned actions taken
to mislead attackers and to thereby cause them to
take (or not take) specific actions that aid computer-
security defenses”.

We adapt this definition and add “confusion” as one of goals
of using deceit (the expression of things that are not true)
in computer system protection, as we will discuss later.

2.1 Deception Components
Bell and Whaley argue that deception always involves two
steps; dissimulation, hiding the real, and simulation, show
ing the false [2]. They argue that these two concepts are
“interdependent” and always work in tandem. Deception
must involve these two together, even if only implicitly [2].
The act of hiding and showing can be applied on the (i)
nature, (ii) existence and/or (iii) the value of targeted infor
mation, as we will discuss later in this paper. The authors
also offered a taxonomy of deceptive techniques where they

distinguished among three ways of dissimulating — masking,
repackaging, and dazzling — and three ways of simulating
— mimicking, inventing, and decoying. A brief discussion
of each one of those is given below. Later in this paper, we
show how each one of these methods can be used in com
puting.

With Masking the deceiver focuses on hiding the real by
masking it such that it can not be detected. However, fully
masking something to make it appear nonexistent can be
challenging in many cases; this leads us to the use of repack
aging. In repackaging the goal is to hide something to make
it look like something else. If this also turns out to be chal
lenging we can use the techniques of dazzling, which is the
weakest form of dissimulation, where we confuse the tar
geted objects with others making it difficult to distinguish
the truth from the deceit.

When simulating, we can mimic something that is true and
present it as the false. As an example, when a mantis insect
hides by mimicking a stick appearance, it is also luring prey
close enough to be seized. The challenge with mimicking is
the need to present something that looks like something else
already existing. When this is not possible we move to the
second method of simulating; namely inventing. Finally,
when we cannot even invent things, we can decoy the target
to attract his attention away from the most valuable parts
to lesser important components.

Dunnigan and Nofi propose another taxonomy in [13]. Their
taxonomy has the following deception groups: concealment,
camouflage, false and planted information, lies, displays,
ruses, demonstrations, feints, and insights. We found that
each one of these categories either has a direct mapping to
one of the Bell and Whaley categories above or is an example
of one of these categories.

2.2 Deception Maxims
Bennett and Waltz discussed four deception maxims that
are core to any investigation of the user of deception; namely
truth, denial, deceit and misdirection [3]. In this section we
discuss the relationships among these principles adding a
fifth one that is equally as important; namely confusion.

Truth is the accurate perception of everything around the
observed. Deception is an active act directed at manipulat
ing such perception. For deception to succeed there must be
an accurate perception that we are trying to manipulate [3].
Truth should constitute most of the information that is per
ceived by the adversary. Mitchell and Thompson articulate
this principle stating that “All deception works within the
context of honesty” [31]. Handel in [18] provide four rules of
what truth should be presented to the target:

1.	 The deceiver should supply the target with correct low-
grade information; i.e. “chicken-feed”.

2.	 Correct information that is already known by the op
ponent should always be presented to target.

3.	 The deceiver should often pass correct information to
the target when he can control its arrival time to be
after it is of any use.

4.	 The deceiver might need to sacrifice some important
information such that he can lure the target into be
lieving some deceit that would have not been believed
otherwise.

Handel summarizes his discussion with this quote “The more
one has a reputation of honesty – the easier it is to lie con
vincingly. Even more concisely: honest people/states can
deceive the best” [18].

Deceit. “All deception requires deceit” as said by Bennett
and Waltz [3]. In other words, all deception requires the
deceiver to intentionally lie about something to the target.
Everyone lies in their daily lives. Ford cites some stud
ies showing that 90% of Americans admitted that they lie
about their feelings, income, sex, accomplishments, life and
age [14]. There is a fundamental difference between simple
lies and deception. The former focuses on only one side of
the communicated message; namely the liar [12]. The latter
adds to that the other side on the message, namely the re
ceiver, and how this lie affects his perception and/or actions
[12].

Denial, Misdirection and Confusion. There are three
general way to manipulate a target’s perception of truth and
deceit with respect to deception. We can deny the target
access to the truth and show him the deceit. When we
cannot stop the truth from being observed we can misdirect
the target’s focus to the deceit. When we cannot influence
the target’s focus, we can confuse the target by presenting
him with the truth and one or more plausible deceits.

3. DECEPTION-BASED DEFENSES
3.1	 Background
An early example of how deception was used to attribute
and study attackers can be seen in the work of Cheswick
in his well-known paper “An Evening with Berferd” [8]. He
discussed how he interacted with an attacker in real time
providing him with fabricated responses. The Deception
Toolkit (DTK)1, develop by Fred Cohen 1997 was one of the
first publicly available tools to use deception for the purpose
of computing defenses.

In 2003, Spitzner published his book on “honeypots” dis
cussing how they can be used to enhance computer defenses
[39]. Following on the idea of honeypots, “a component that
provides its value by being attacked by an adversary” i.e. de
ceiving the attacker to interact with them, a proliferation of
“honey-*” prefixed tools have been proposed. Honeytokens
have been proposed by Spitzner [40] to refer to honeypots
but at a smaller granularity. Kim and Spafford suggested
the use of planted files, with interesting names, in the early
version of Tripwire that should not be accessed by normal
users, but will sound an alarm if they are accessed by in
truders [28]. Later, Yuill et al coined the term honeyfiles
for those files [51]. HoneyGen was also used to refer to
tools that are used to generate honeytokens [4]. Most re
cently, a scheme named honeywords was proposed by Jules
and Rivest to confuse attackers when they crack a stolen
hashed password file [27].

1	 http://www.all.net/dtk/

Beyond the notion of “enticement” and traps used in hon
eypots, deception has been studied from other perspectives.
For example, Cohen argues that using his Deception ToolKit
(DTK), someone can deter attackers by confusing them and
introducing risk on their side [10]. Rowe et al present a novel
way of using honeypots for deterrence [35]. They enhanced
the security of critical systems by making them look like
a honeypot and therefore detered attackers from accessing
them. Their approach stemmed from the development of
anti-honeypot techniques that employ advanced methods to
detect if the current system is a honeypot [23].

Moreover, a number of interesting uses of deception have
been proposed to enhance the overall security of computer
systems. Li and Schmitz proposed a framework to address
phishing by using deceptive techniques [29]. The main idea
in their framework is that when phishing is detected a num
ber of“phoneytokens”will be sent to the phishing site. Banks
can monitor these phoneytokens and then follow the money
trail when phishers are detected stealing money. BogusBiter
is a similar scheme proposed by Yue and Wang in [50]. The
authors develop a client side add-on to the user’s browser
that intercepts username/password submissions when users
override a phishing warning. Instead of stopping the submis
sion they submit an additional (N − 1) username/password
pairs based on the user’s credentials. The scheme also re
quires the installation of a server-side component that an
alyzes username/password submissions and triggers a silent
alarm when a“Bogus”credential has been submitted. Ormerod
et al proposed a scheme that injects deceptive “fake” infor
mation to current botnet zombies for two main goals; dilute
the “real” stolen information and trace end-users of a bot
net’s stolen information when it uses this “fake” information
[33].

More recently, Zhao and Mannan use some deceptive tech
niques to limit the effectiveness of automated online pass
word guessing [53]. They provide “fake” sessions to an ad
versary who is launching automated attacks while real users
will detect the authentication outcome implicitly from the
presented user data. In addition, Crane et al discuss the use
of “Booby Trapping Software” — an active security defense
mechanism for code-reuse attacks where deceptive techniques
are used [11].

3.2	 Advantages of Incorporating Deception in
Computer Defenses

There is a fundamental difference between how deception-
based mechanisms work in contrast to traditional security
controls. The latter usually focuses on attackers’ actions —
detecting or preventing them — while the former focuses on
attackers’ perceptions — manipulating them and therefore
inducing intruders to take actions/inactions in ways that
are advantageous to targeted systems. In other words, tra
ditional security controls position themselves in response to
attackers’ actions while deception-based tools are positioned
in anticipation of such actions.

Deception-based techniques provide significant advantages
over traditional security controls. Currently, most defensive
measures are playing “whack-a-mole” games with attack
ers. Whenever an attack surfaces, it is hit hard with pre
ventive mechanisms. Eventually, persistent attackers find

http://www.all.net/dtk

a vulnerability that leads to a successful infiltration. This
security posture is partially driven by the unquestioned as
sumption that “hacking-back” is unethical, while there is
a difference between the act of “attacking back” and the
act of deceiving attackers. With such behavior, attack
ers progressively learn about systems’ defensive capabilities,
with their continuous probing. Meanwhile, targeted systems
learn nothing about these attempts, other than possibly in
ducing anxiety in the defenders. Many cases of multiple
attempts that originate from the same entity are not suc
cessfully correlated.

We argue that, by intelligently using deceptive techniques,
systems defenders can mislead and/or confuse attackers, thus
enhancing defensive capabilities over time. By exploiting at
tackers’ unquestioned trust of computer systems’ responses
system defenders can gain an edge and position themselves
a step ahead of compromise attempts. In the face of in
creasing incidence of stealthy ”advanced persistent threats”
(APTs), deceptive techniques can enhance the overall secu
rity of computer systems.

Deception brings the following unique advantages to infor
mation system defenders:

1.	 Increases the entropy of leaked information about
targeted systems during compromise attempts.
When computer systems are targeted, the focus is usu
ally only on protecting and defending them. With
deception, extra defensive measures can be taken by
feeding attackers false information that will, in addi
tion to defending targeted systems, cause intruders to
take wrong actions/inactions and/or draw incorrect
conclusions. With the increased spread of stealthy
attacks and government/corporate espionage threats
these techniques can be valuable.

2.	 Increases the information obtained from com
promise attempts. Many security controls are in
tended to create a boundary around computer systems
that automatically stop any unauthorized access at
tempts. This is problematic as such boundaries are in
creasingly blurring, partly as a result of recent trends
such as “consumerization”2 [19]. Moreover, because of
the low cost on the adversaries’ side, and the existence
of many automated exploitation tools, attackers can
continuously probe computer systems until they find
a vulnerability. During this process, system defend
ers learn nothing about the intruders’ targets. Ironi
cally, this makes the task of defending a computer sys
tem potentially more difficult after every unsuccessful
attack. We conjecture that incorporating deception-
based techniques can enhance our understanding of
compromise attempts involving probing activities and
therefore better protect our systems over time.

3.	 Give defenders an edge in the OODA loop race.
The OODA loop (for Observe, Orient, Decide and Act)
is a cyclic process model, proposed by John Boyd, by
which an entity reacts to an event[5]. The victory in

2This term is widely used to refer to enterprises’ employees
bringing their own digital devices and using them to access
the companies’ resources, e.g., BYOD.

any tactical conflict requires executing this loop in a
manner that is faster than your opponent. The act
of defending a computer system against persistent at
tacks can be viewed as an OODA loop race between
the attacker and the defender. The winner of this con
flict is the entity that executes this loop faster. One
critical advantage of deception-based defenses is that
they give defenders an edge in such a race as they ac
tively feed adversaries deceptive information that af
fects their OODA loop, more specifically the ”observe”
and ”orient” stages of the loop. Furthermore, slowing
the adversary’s process gives defenders more time to
decide and act. This is especially crucial in the situ
ation of surprise, which is a common theme in digital
attacks, because of lack of space and travel limitations.

3.3 Kerckhoff’s Principle and Deception
Deception always involves two basic steps, hiding the real
and showing the false, as we discussed earlier. This, at first
glance, contradicts the widely believed mischaracterization
of Kerckhoff’s principle: “no security through obscurity.” A
more correct English translation of Kerckhoff’s principle is
the one provided by Petitcolas in [34] “The system must not
require secrecy and can be stolen by the enemy without caus
ing trouble”. The principle was original stated with respect
to cryptographic algorithms — not systems.

The misinterpretation has led many security practitioners
to believe that any “obscurity” is ineffective, which is not
the case. Hiding a system from an attacker or having a se
cret password does increase the work factor for the attacker
— until the deception is detected and defeated. So long as
the security does not materially depend on the ”obscurity,”
the addition of misdirection and deceit provides a defen
sive advantage. It is therefore valuable for a designer to
include such mechanisms in a comprehensive defense, with
the knowledge that such mechanisms should not be viewed
as primary defenses.

In any system design there are three levels of viewing a sys
tem’s behavior and responses to service requests:

•	 Truthful. In such systems, the processes will always
respond to any input with full “honesty.” That is, the
system’s responses are always “trusted” and fully rep
resent the internal state of the system. For example,
when the user requests a network port, the system re
sponds with either a real port number or denies the
request giving the specific reason of such denial.

•	 Deceptive (naively). In such systems, the processes
attempt to deceive the interacting user by crafting an
artificial response. However, if the user knows the de
ceptive behavior, e.g. by analyzing the previous de
ceptive responses used by the system, the deceptive
act becomes useless and will only alert the user that
the system is trying to deceive her. For example, the
system can designate a specific port that is used for
deceptive purposes. When an attacker asks for a port,
without carrying the appropriate permissions, this de
ceptive port is sent back.

•	 Deceptive (intelligently). In this case, the sys
tems’ “deceptive behavior” is indistinguishable from

Figure 2: Deception Incorporation Model

the normal behavior even if the user has previously
interacted with the system. For example, a system re
sponds to an unauthorized port request identically to
a normal allowed request. However, extra actions are
taken to monitor the port, alert the system administra
tors and/or sandbox the listening process to limit the
damage if the process downloads malicious content.

4.	 A MODEL FOR PLANNING AND INTE
GRATING DECEPTION IN COMPUTER
SECURITY DEFENSES

As discussed above there have been a number of interesting
uses and applications for deception in computer security de
fenses. However, to the best of our knowledge there has been
no discussion on how we can plan and integrate deception in
our computer defenses. Moreover, we are not aware of any
work that discuss why deception really works and what are
biases and weaknesses deception-based mechanisms should
exploit to influence the adversaries’ perceptions and actions.

In this section we present our model of planning and incorpo
rating deception into computer defenses and security. This
model is based on the general deception model discussed by
Bell and Whaley in [2]. There are three general phases of
any deceptive component; namely planning, implementing
and integrating, and finally monitoring and evaluating. In
the following section we discuss each one of those phases in
more details. The model is depicted in figure 2.

4.1 Planning Deception

Figure 3: Adversaries’ Biases

There are six essential steps to planning a successful deception-
based defense component. The first, and often neglected,
step is specifying exactly what are the strategic goals the
defender wants to achieve. Simply augmenting computer
systems with honey-like components, such as honeypots and
honeyfiles, will give us a false sense that we are using de
ception to lie to adversaries. It is essential to detail exactly
what are the goals of using any deception-based mechanisms.
To give an example, it is significantly different to set up a
honeypot for the purpose of simply capturing malware than
having a honeypot to closely monitor APT-like attacks.

After specifying the strategic target of the deception process,
we need to specify how the target should react to the decep
tive process. This determination is critical to the long-term
success of any deceptive process. To give an example, Zhao
and Mannan [53] deceive attackers launching online guess
ing attacks into believing that they have found a correct
username and password. The strategic goal of the deception
process is to direct an attacker to a “fake”account thus wast
ing their resources and monitoring their activities to learn
about their objectives. It is crucial to analyze how the tar
get should react after the successful “fake” login. The obvi
ous reaction is that the attacker would continue to laterally
move in the target system, attempting further compromise.
However, an alternative response is that the attacker cease
the guessing attack and report to its command and control
that a successful username/password pair has been found.
In consideration of the second reaction alternative we might
need to maintain the username/password pair of the fake
account and keep that account information consistent for
future targeting.

Part of this second step is to specify how we desire the target
to react so that we may try to influence his perception and
thus lead him to the desired reaction. Continuing with the
example in the previous paragraph, if we want the attacker
to login again so we have more time to monitor, we can cause
an artificial network disconnection that will force the target
to login again.

4.1.1 Adversaries’ Biases
A bias refers to

“an inclination to judge others or interpret situa

tions based on a personal and oftentimes unrea
sonable point of view” [3]

Biases are a cornerstone component to the success of any
deception-based mechanisms. As we discussed above, the
target of the deception needs to be presented with a plau
sible “deceit” to successfully deceive and/or confuse him. If
the target perceives this deceit to be non-plausible he is more
inclined to reject it instead of believing it, or at least raise
his suspicions about the possibility of currently being de
ceived. A successful deception should exploit a bias in the
attacker’s perception and provide him with alternative(s),
plausible information other than the truth. When the de
fender determines the strategic goal of his deception and the
desired reactions by the target he needs to investigate the at
tacker’s biases to decide how best to influence the attacker’s
perception to achieve the desired reactions.

Thompson et al discussed four major group of biases intelli
gence analysts need to be aware of; personal biases, cultural
biases, organizational biases and cognitive biases [42]. It can
be seen in figure 3 that the more specific biases that are ex
ploited the less general are the deceptive components, e.g.
personal biases that can be exploited for a specific target
might not apply to other adversaries who attack a system.
Alternatively, more specific choices of biases supports more
accurate deceptive components. This is because cognitive
biases are well-known and adversaries might intentionally
guard themselves with an additional layer of explicit rea
soning to minimize their effects in manipulating their per
ceptions. In the following paragraphs we will discuss each
one of these classes of biases and give a number of examples
of how can they be exploited to enhance computer security
using deception.

Personal Biases. Personal biases are those biases that orig
inated from either first-hand experiences and/or personal
traits, as discussed by Jervis in [25]. These biases can be
helpful in designing deceptive component/operation, how
ever, they are (i) harder to obtain and know as they re
quire specific knowledge of potential adversaries and (ii) they
make deceptive components less applicable to a wider range
of adversaries while becoming more powerful against specific
attackers. Personal biases have been used and exploited in
traditional deceptions in war, such as exploiting the arro
gance of Hitler’s administration in World War II as part of
Operation Fortitude [3].

Cultural Biases. Hofstede refers to cultural biases as the
“software of the mind” [22]. They represent the mental and
cognitive ways of thinking, perception, and action by hu
mans belonging to these cultures. In a study conducted
by Guss and Dorner, they found that cultures influenced
the subjects’ perception, strategy development and decision
choices, even though all the subjects were presented with the
same information [17]. Some studies found relationships be
tween the type of computer attacks and the culture/country
from which the attack originated [36]. Hofstede discuss six
main dimensions of cultures and provided some quantitative
values of these in (geerte-hofstede.com) where he associated

different behavior that correlates with his measurements.
Wirtz and Godson summarize the importance of account
ing for cultures while designing deception in the following
quote; “To be successful the deceiver must recognize the tar
get’s perceptual context to know what (false) pictures of the
world will appear plausible” [16].

Organizational Biases. Organizational biases are of im
portance when designing deception for an attacker within a
bureaucratic environment [3]. In such organizations there
are many keepers who have the job of analyzing information
and deciding what is to be passed to higher levels of ana
lysts. These biases can be valuable in understanding targets
for deception, exploiting their weaknesses to make impor
tant information marked as less important while any deceit
is passed to higher levels. The uneven distribution of infor
mation led to uneven perception and failure to anticipate
Pearl Harbor by the United States [3].

Cognitive Biases. Cognitive biases are common among all
humans across all different cultural, personal and organi
zational differences. They represent the “innate ways that
human beings perceive, recall, and process information [3].
These biases have long been studied by many researchers
around the world in many disciplines (particularly in cogni
tive psychology); they are of importance to deception design
as well as computing more generally.

Tversky and Kahneman proposed three general heuristics
our minds use to reduce a complex task to a simpler judg
ment decision, especially under condition of uncertainty, thus
leading to some predictable biases [43]. These are; repre
sentativesness, availability, and anchoring and adjustment.
They defined the representativeness heuristic as a “heuristic
to evaluate the probability of an event by the degree to which
it is (i) similar in essential properties to its parent popula
tion; and (ii) reflects the salient features of the process by
which it is generated” [43]. The availability heuristic is an
other bias that assess the likelihood of an uncertain event by
the ease with which someone can bring it to mind. Finally,
the anchoring heuristic is a bias that cause us to make es
timations closer to the initial values we have been provided
with than is otherwise warranted.

Solman presented a discussion on two reasoning systems pos
tulated to be common in humans: associative (system 1) and
rule-based (system 2) [37]. System 1 is usually automatic
and heuristic-based, and is usually governed by habits. Sys
tem 2 is usually more logical with rules and principles. Both
systems are theorized to work simultaneously in the human
brain; deception targets System 1 to achieve more desirable
reactions.

In 1994, Tversky and Koehler argued that people do not
subjectively attach probability judgments to events; instead
they attach probabilities to the description of these events
[45]. That is, two different descriptions of the same event of
ten lead people to assign different probabilities to their like
lihood. Moreover, the authors postulate that the more ex
plicit and detailed the description of the event is, the higher
the probability people assign to it. In addition, they found

http:geerte-hofstede.com

that unpacking the description of the event into several dis
joint components increases the probability people attach to
it. Their work provides an explanation to the errors often
found in probability assessments associated with the “con
junction fallacy” [44]. Tversky and Kahneman found that
people usually would give a higher probability to the con
junction of two events, e.g. P(X and Y), than a single event,
e.g. P(X) or P(Y). They showed that humans are usually
more inclined to believe a detailed story with explicit details
over a short compact one.

In computing, the bias in the conjunction fallacy can be
exploited by deceivers by presenting the deception story as a
conjunction of multiple detailed components. For example,
if a deceiver wants to misinform an attacker probing her
system by creating an artificial network failure, instead of
simply blocking these attempts, it is better to give a longer
story. A message that says “Sorry the network is down due
to some scheduled maintenance. Please visit us back in three
hours” is more plausible than simply saying ”The network is
down”.

4.1.2 Creating the Deception Story
After analyzing the target’s biases that can be exploited
to deceive them, the deceiver needs to decide exactly what
components to simulate/dissimulate; namely step 4 of the
model in figure 2.

In figure 4 we provide an overview of the different system
components where deception can be applied, exploiting the
target’s biases to achieve the desired reaction by the target.
Overall, deceit can be injected into the functionality and/or
state of our systems. We give a short discussion of each one
of these two categories below, outlining their subcategories
and presenting some examples.

System’s Decisions. We can apply deception to the differ
ent decisions any computer system makes. As an example,
Zhao and Mannan in [53] apply deception at the system’s
authentication decision where they discuss that negative au
thentication decisions leak some data and can be harmful.
They discuss a system where adversaries can be deceived by
giving them access to “fake” accounts in case of online guess
ing attacks. Another system’s decision we can use concerns
firewalls. Traditionally, we add firewall rules that prevent
specific IP address from interacting with our systems after
detecting that they are sources of some attacks against us.
We consider this another form of data leakage in accordance
with the discussion of Zhao and Mannan in [53]. We can
apply deception to such decisions by presenting adversaries
with other plausible responses than simply denying access.

System’s Software and Services. Reconnaissance is the
first stage of any attack on any computing system, as identi
fied in the kill-chain model [24]. Providing fake systems and
services has been the main focus of honeypot-based mecha
nisms. Honeypots are intended to provide attackers with a
number of fake systems running fake services. Moreover, we
can use deception to mask the identities our current existing
software/services. Murphy et al. studied the efficacy of us
ing operating system obfuscation and recommended the use

of these tools for the Air Force computer defenses [32].

System’s Internal and Public Data. A honeyfile [51] is an
example of injecting deceit into the system’s internal data.
It can be applied to the raw data in computer systems, e.g.,
files and directories. This can also be applied to administra
tive data that are used to make decisions and/or monitor the
system’s activities. An example of that can be seen in the
honeyword proposal [27]. Deceit can also be injected into the
public data about our systems. Wang et al. made the case
of disseminating public data about some “fake” personnel for
the purpose of catching attacks such as spear phishing [47].
In addition, we note that this category also includes offline
stored data such as back-ups that can be used as a focus of
deception.

System’s Activity. Different activities within the system
are considered as one source of information leakage. For ex
ample, traffic flow analysis has long been studied as a mean
for attackers to deduce information [15]. Additionally, a
system’s activity has been used as a means of distinguishing
between a “fake” and a real system [7]. We can intelligently
inject some data about activities into our system to influence
the attacker’s perception and, therefore, his reactions.

System’s Weaknesses. Adversaries probe computer systems
trying to discover and then exploit any weakness (vulnera
bility). Often, these adversaries come prepared with a list of
possible vulnerabilities and then try to use them until they
discover something that works. Traditional security mech
anisms aid adversaries by quickly and promptly responding
back to any attempt to exploit fixed, i.e. patched, vulner
abilities with a denial response. This response is leaking
information that these vulnerabilities have been known and
fixed. When we inject deceit into this aspect of our sys
tems we can misinform adversaries by confusing them, by
not giving them a definitive answer whether the exploit has
succeeded, or deceiving them by making it appear as if the
vulnerability has been exploited.

System’s Damage Assessment. This relates to the pre
vious component; however, the focus here is to make the
attacker perceive that the damage he causes is more or less
than the real damage. We may want the adversary to believe
that he has caused more damage than what has happened so
as to either stop the attack or cause the attacker to become
less aggressive. This is especially important in the context
of the OODA loop discussed earlier. We might want the
adversary to believe that he has caused less damage if we
want to learn more about the attacker by prompting a more
aggressive attack.

System’s Performance. Influencing the attacker’s percep
tion of system’s performance may put the deceiver at an
advantageous position. This has been seen in the use of
sticky honeypots and tarpits [30] that are intended to slow
the adversary’s probing activity. Also, tarpits have been

Figure 4: Computer Systems Components that can be Used to Integrate Deception Into

used to throttle the spread of network malware. In a related
fashion, Somayaji et al. proposed a method to deal with in
trusions by slowing the operating system response to a series
of anomalous system calls [21].

System’s Configurations. Knowledge of the configuration
of the defender’s systems and networks is often of great im
portance to the success of the adversary’s attack. In the
lateral movement phase of the killchain adversarial model,
the attacker needs to know how and where to move to act on
the targets. In a redteaming experiment, Cohen and Koike
showed how they could induce adversaries to attack the tar
geted system in a particular sequence from a networking
perspective using deception [9].

After deciding which component to simulate/dissimulate, we
can apply one of Bell and Whaley’s techniques discussed ear
lier. We give an example of how each one of these techniques
can be used in the following paragraphs. We should point
out that, in any deception the act of simulation and dissim
ulation must be combined as we discussed earlier.

� Using Masking – This has been used offensively where
attackers hide potentially damaging scripts in the back
ground of the page by matching the text color with the
background color. Hiding is only considered deception
if it is an act of deceit, otherwise it is considered de
nial. When we apply hiding to software and services,
we can hide the fact that we are running some specific
services when we have detected a probing activity. For
example, when we receive an SSH connection request
from a known bad IP address we can mask our SSHd
demon and respond that the service is not working or
is encountering an error.

� Using Repackaging – In several cases it might be
easier to “repackage” data as something else. We can
apply repacking to a system’s internal raw data as in
the use of HoneyFiles [51]. These files are repackaged
as normal files while internally they act as silent alarms
to system administrators when accessed.

� Using Dazzling – This is considered to be the weak
est form of dissimulation, where we confuse the tar
geted objects with others. This can be used for a

system’s internal administrative data as in the recent
“honeywords” proposal by Rivest and Jules [27]. Their
scheme proposes confusing a users’s hashed password
with another (N � 1) hashes of other, similar, pass
words where they are dazzling the attacker who ob
tains the credentials database.

� Using Mimicking – When we hide the real we neces
sarily show the false, even if only implicitly by showing
“nothing.” The first method of simulation techniques
is to show the false while mimicking something true to
gain an advantage. In computing, phishing attacks are
a traditional example of evil deceiving act by mimick
ing a real website. The attackers can take advantage
of users by deceiving them into giving up their cre
dentials by appearing as a real site. From a defensive
perspective we can apply mimicking to software and
services by making our system mimic the responses of
a different system, e.g., respond as if a version of Win
dows XP while we are running Windows 7. This will
waste the attackers’ resource in trying to exploit our
Windows 7 machine thinking it is Windows XP, as well
as heighten the opportunity for discovery.

� Using Inventing – Mimicking requires the results
look like something else; when this is not easy to achieve
invention can be used instead. This deception tech
nique has seen the most research in the application
of deception to computer security defenses. Honey
pots are a prominent example of inventing a number
of nodes in an organizations with the goal of deceiving
the attacker that they are the real systems.

� Using Decoying – This technique is used to attract
adversaries’ attention away from the most valuable
parts of the computer system. Honeypots are used in
some cases to deceive attackers by showing that these
systems are more vulnerable than other parts of the or
ganization and therefore capture attackers’ attention.
This can be seen in the work of Carroll and Grosu in
[6].

After deciding which deceptive technique to use we need
to analyze the characteristics and patterns the attacker per
ceives and then apply one or more of the techniques above to
achieve the desired reactions. Deceit is an active manipula
tion of reality. We argue that reality can be manipulated in

Figure 5: Creating Deceit

one of three general ways, as depicted in figure 5-b. We can
manufacture reality, alter reality and/or hide reality. This
can be applied to any one of the components we discussed
in the previous section.

In addition, reality manipulation is not to only be applied
on the existence of the data in our systems; in fact is can
be applied to two other features of the data. As represented
in figure 5-a, we can manipulate the reality with respect to
the existence of data, nature of the data and/or value of
the data. The existence of the data can be manipulated not
just for the present but also when the data has been created.
This can be achieved for example with the manipulation of
time stamps. With regard to the nature of the data, we can
manipulate the size of the data, such as in the example of
Endless files in [38], when and why the data has been created
and so on. The value of the data can also be manipulated.
For example, log files are usually considered important data
that usually adversaries try to delete to cover the tracks.
Making a file appear as a log file will increase its value from
the adversary’s perspective.

At this step, it is crucial to specify exactly when should
the deception process be activated. It is vital that normal
legitimate user’s activity should not be hindered by the de
ceptive components. Optimally, the deception should only
be activated in the case of malicious interactions, however,
we recognize that this may not always be possible as the
lines between legitimate and malicious actives might be blur.
With that being said, we argue that there are many defen
sive measure that can apply some deceptive techniques in in
place of the traditional denial-based defenses.

4.1.3 Feedback Channels and Risks
Deception-based defenses are not a single one-time defensive
measure, as is the case with many advanced computer de
fenses. It is essential to monitor these defenses, and more
importantly measure the impact they have on any attack
ers’ perceptions and actions. We recognize that if an at
tacker detects that he is being deceived, he can use this to
his advantage to launch a counter-deception operation. To
successfully monitor such activities we need to clearly iden
tity the deception channels that can and should be used to
monitor and measure any adversary’s perceptions and ac
tions.

Finally, deception may introduce some new risks for which
organizations need to account. For example, the fact that
adversaries can launch a counter-deception operation is a

new risk that needs to be analyzed. In addition, an analysis
needs to done on the effects of deception on normal users’ ac
tivities. The defender needs to accurately identify potential
risks associated with the use of such deceptive components
and ensure that residual risks are accepted and well identi
fied.

4.2	 Implementing and Integrating Deception
Many deception-based mechanisms are implemented as a
separate disjoint component from the real production sys
tems, as in the honeypot example. With the advancement
of many detection techniques used by adversaries and mal-
ware, attackers can detect whether they are in real system or
a “fake” system [7], and then change behavior accordingly. A
successful deception operations needs to be integrated with
the real operation. The honeywords proposal is one of the
examples of this tight integration as there is no obvious way
to distinguish between a real and a “fake” password [27].

4.3	 Monitoring and Evaluating the Use of De
ception

As we discussed earlier, monitoring feedback-channels is a
vital step to the success of any deception operation/component.
Hesketh discussed three general categories of signals that can
be used to know whether a deception was successful or not
[20]:

1. The target acts in the wrong time and/or place.

2.	 The target acts in a way that is wasteful of his re
sources.

3. The target delays acting or stop acting at all.

Defenders need to monitor all the feedback channels identi
fied in step (5) of the model. We note that there are usually
three general outputs from the use of any deceptive compo
nents. The adversary might (i) believe it, where the defender
usually sees one of the three signs of a successful deception
above, (ii) suspect it or (iii) disbelieve it. When an attacker
suspects a deceptive component we should make the deci
sion whether to increase the level of deception or withdraw
the deceptive component to avoid exposure. Often decep
tion can be enhanced by presenting more, and probably, true
information that makes the deception story more plausible.
This can be used as a feedback loop in the model. This ob
servation should be analyzed by the defender to review his
analysis of the attacker’s biases, step (3), and the method
ology used to create the deceit in step (4). Furthermore,
the deceiver might have multiple levels of deception based
on the interaction with the attacker during the attack.

When an attacker disbelieves the presented deceit we need to
have active monitoring and a detailed plan of actions. This
should be part of step (6) of planning in our model where
risks are assessed. In addition, during discussions with many
security practitioners they pointed out that some attackers
often act aggressively when they realize that they have been
deceived. This can be one of the signals that is used during
the monitoring stage to measure the attackers’ perception to
the deceptive component. In addition, this behavior can be

used as one of the biases to exploit by other deceptive mech
anisms that may focus on deceiving the attacker about the
system’s damage assessment, as discussed in section 4.1.2
above.

5.	 CONCLUSIONS
Deception-based defenses are powerful tools that have been
shown to be effective in many human conflicts. Their effec
tiveness relies on the fact that they are designed to exploit
specific biases in how people think, making them appear to
be plausible false alternative to the hidden truth. These
mechanisms give defenders the ability to learn more about
the attackers, reduce indirect information leakages in their
systems and give them an advantageous step with regard to
their defenses.

In this paper, we presented a novel model to plan and inte
grate deception for defender to use as part of the their com
puter defenses. Also, we discussed how they can monitor
and evaluate the success of such mechanisms. In addition,
we explain how defenders integrate deception in their com
puter security defenses and how they can create plausible
alternatives to reality, thus misinforming the attackers and
wasting their resources.

6.	 ACKNOWLEDGMENTS
The authors would like to extends their thanks to Mikhail
Atallah, Joshua Corman, and George Kurtz for their time
and the valuable discussion and insightful ideas they pro
vided.

7.	 REFERENCES
[1] M. H. Almeshekah and E. H. Spafford. The Case of

Using Negative (Deceiving) Information in Data

Protection. Academic Conferences and Publishing

International, 2014.

[2] J. B. Bell and B. Whaley. Cheating and deception.

Transaction Publishers New Brunswick, 1991.

[3] M. Bennett and E. Waltz. Counterdeception Principles
and Applications for National Security. Artech House,
2007.

[4] M. Bercovitch, M. Renford, L. Hasson, A. Shabtai,
L. Rokach, and Y. Elovici. HoneyGen: An automated
honeytokens generator. In Intelligence and Security
Informatics (ISI), 2011 IEEE International
Conference on, pages 131–136. IEEE, 2011.

[5] J. Boyd. The Essence of Winning and Losing, 1995.
[6] T. E. Carroll and D. Grosu. A game theoretic

investigation of deception in network security. Security
and Communication Networks, 4(10):1162–1172, 2011.

[7] X. Chen, J. Andersen, Z. M. Mao, M. Bailey, and
J. Nazario. Towards an understanding of
anti-virtualization and anti-debugging behavior in
modern malware. In Dependable Systems and
Networks With FTCS and DCC, 2008. DSN 2008.
IEEE International Conference on, pages 177–186.
IEEE, 2008.

[8] B. Cheswick. An Evening with Berferd in which a

cracker is Lured, Endured, and Studied. In Proc.

Winter USENIX Conference, San Francisco, 1992.

[9] F. Cohen and D. Koike. Misleading attackers with
deception. In information assurance workshop, 2004.

Proceedings from the fifth annual IEEE SMC, pages
30–37. IEEE, 2004.

[10] F. Cohen and Others. The deception toolkit. Risks
Digest, 19, 1998.

[11] S. Crane, P. Larsen, S. Brunthaler, and M. Franz.
Booby trapping software. Proceedings of the 2013
workshop on New security paradigms workshop
NSPW ’13, pages 95–106, 2013.

[12] D. Daniel and K. Herbig. Propositions on military
deception. The Journal of Strategic Studies,
1(5):155–177, 1982.

[13] J. F. Dunnigan and A. A. Nofi. Victory and Deceit:
Deception and Trickery at War. Writers Club Press,
2001.

[14] C. Ford. Lies! Lies!! Lies!!!: The Psychology of
Deceit. American Psychiatric Publishing, Inc., 1st
edition, 1999.

[15] X. Fu. On Traffic Analysis Attacks and
Countermeasures. Phd thesis, Texas A & M
University, 2005.

[16] R. Godson and J. Wirtz. Strategic Denial and
Deception. Transaction Publishers, 2002.

[17] D. Gus and D. Dorner. Cultural Difference in
Dynamic Decision-Making Strategies in a Non-lines,
Time-delayed Task. Cognitive Systems Research,
12(3-4):365–376, 2011.

[18] M. Handel. War, Strategy and Intelligence. Routledge,
London, UK, 1989.

[19] M. Harkins. A New Security Architecture to Improve
Business Agility. In Managing Risk and Information
Security, pages 87–102. Springer, 2013.

[20] R. Hesketh. Fortitude: The D-Day Deception
Campaign. Overlook Hardcover, Woodstock, NY, 2000.

[21] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion
detection using sequences of system calls. Journal of
computer security, 6(3):151–180, 1998.

[22] G. Hofstede, G. Hofstede, and M. Minkov. Cultures
and Organizations. McGraw-Hill, 3rd editio edition,
2010.

[23] T. Holz and F. Raynal. Detecting honeypots and other
suspicious environments. In Information Assurance
Workshop, 2005. IAW’05. Proceedings from the Sixth
Annual IEEE SMC, pages 29–36. IEEE, 2005.

[24] E. M. Hutchins, M. J. Cloppert, and R. M. Amin.
Intelligence-driven computer network defense informed
by analysis of adversary campaigns and intrusion kill
chains. Leading Issues in Information Warfare &
Security Research, 1:80, 2011.

[25] R. Jervis. Deception and Misperception in
International Politics. Princeton University Press,
1976.

[26] R. V. Jones. Reflections on intelligence. William
Heinemann Ltd, London, 1989.

[27] A. Juels and R. L. Rivest. Honeywords:	 making
password-cracking detectable. In Proceedings of the
2013 ACM SIGSAC conference on Computer &
communications security, pages 145–160. ACM, 2013.

[28] G. Kim and E. Spafford. Experiences with tripwire:
Using integrity checkers for intrusion detection.
Technical report, Purdue University, West Lafayette,
IN, 1994.

[29] S. Li and R. Schmitz. A novel anti-phishing framework
based on honeypots. IEEE, 2009.

[30] T. Liston. LaBrea:“Sticky” Honeypot and IDS, 2009.
[31] R. Mitchell and N. Thompson. Deception:

Perspectives on Human and Nonhuman Deceit. State
University of New York Press, 1985.

[32] S. B. Murphy, J. T. McDonald, and R. F. Mills. An
Application of Deception in Cyberspace: Operating
System Obfuscation. In Proceedings of the 5th
International Conference on Information Warfare and
Security (ICIW 2010), pages 241–249, 2010.

[33] T. Ormerod, L. Wang, M. Debbabi, A. Youssef,
H. Binsalleeh, A. Boukhtouta, and P. Sinha. Defaming
botnet toolkits: A bottom-up approach to mitigating
the threat. In Emerging Security Information Systems
and Technologies (SECURWARE), 2010 Fourth
International Conference on, pages 195–200. IEEE,
2010.

[34] F. Petitcolas. la cryptographie militaire.
[35] N. C. Rowe, E. J. Custy, and B. T. Duong. Defending

cyberspace with fake honeypots. Journal of
Computers, 2(2):25–36, 2007.

[36] C. Sample. Applicability of Cultural Markers in
Computer Network Attacks. In 12th European
Conference on Information Warfare and Security,
pages 361–369, University of Jyvaskyla, Finland, 2013.

[37] S. Sloman. The empirical case for two systems of
reasoning. Psychological bulletin, 119(1):3–22, 1996.

[38] E. Spafford. More than Passive Defense.
[39] L. Spitzner. Honeypots: tracking hackers, volume 1.

Addison-Wesley Reading, 2003.
[40] L. Spitzner. Honeytokens: The other honeypot, 2003.
[41] C. P. Stoll. The Cuckoo’s Egg: Tracing a Spy Through

the Maze of Computer Espionage, 1989.
[42] J. Thompson, R. Hopf-Wichel, and R. Geiselman. The

Cognitive Bases of Intelligence Analysis. U. S. ARMY
RESEARCH INSTITUTE FOR THE BEHAVIORAL
AND SOCIAL SCIENCES, 2:2–9, 1984.

[43] A. Tversky and D. Kahneman. Judgment under
Uncertainty: Heuristics and Biases. Science (New
York, N.Y.), 185(4157):1124–31, Sept. 1974.

[44] A. Tversky and D. Kahneman. Extensional versus
Intuitive Reasoning: The Conjunction Fallacy in
Probability Judgment. Psychological review,
90(4):293–315, 1983.

[45] A. Tversky and D. Koehler. Support theory:	 a
nonextensional representation of subjective
probability. Psychological Review, 101(4):547, 1994.

[46] A. Vrij. Detecting lies and deceit: pitfalls and
opportunities. Wiley Series in the Psychology of
Crime, Policing and Law. 2008.

[47] W. Wang, J. Bickford, I. Murynets, R. Subbaraman,
A. G. Forte, and G. Singaraju. Detecting Targeted
Attacks by Multilayer Deception. Journal of Cyber
Security and Mobility, 2:175–199.

[48] B. Whaley. Toward a general theory of deception. The
Journal of Strategic Studies, 5(1):178–192, 1982.

[49] B. Whaley. Stratagem: Deception and Surprise in
War, volume 11. Artech House Information Warfare
Library, 2007.

[50] C. Yue and H. Wang. BogusBiter: A transparent

protection against phishing attacks. ACM
Transactions on Internet Technology (TOIT), 10(2):6,
2010.

[51] J. Yuill, M. Zappe, D. Denning, and F. Feer.
Honeyfiles: deceptive files for intrusion detection. In
Information Assurance Workshop, 2004. Proceedings
from the Fifth Annual IEEE SMC, pages 116–122.
IEEE, 2004.

[52] J. J. Yuill. Defensive Computer-Security Deception
Operations: Processes, Principles and Techniques.
ProQuest, 2006.

[53] L. Zhao and M. Mannan. Explicit authentication
response considered harmful. Proceedings of the 2013
workshop on New security paradigms workshop
NSPW ’13, pages 77–86, 2013.

