
CERIAS Tech Report 2014-6
Risk-Aware Virtual Resource Management for Access Control-Based Cloud Datacenters

 by Abdulrahman Almutairi, Arif Ghafoor
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086



1 

RISK-AWARE VIRTUAL RESOURCE
 
MANAGEMENT FOR ACCESS
 

CONTROL-BASED CLOUD DATACENTERS
 
Abdulrahman Almutairi, Member, IEEE, and Arif Ghafoor, Fellow, IEEE
 

Abstract 

Multitenancy and virtualization features of cloud computing enhance resource utilization and lower the cloud 
provider total cost of hosting customers data for big data applications. However, the cloud computing has many 
security challenges that are exacerbated by virtual resource sharing. In particular, sharing of resources among 
potentially untrusted tenants can result in an increased risk of information leakage due to vulnerability of virtual 
resources causing side channel attacks or VM escape. For the big data applications, an access control policy such 
as RBAC can be used to control the data sharing among cloud customers. However, an unintelligent cloud resources 
management mechanism can significantly increase the risk of data leakage among roles. The goal of this paper 
is to develop efficient risk-aware virtual resource assignment mechanisms for Cloud’s multitenant environment. The 
objective is to minimize of risk of information leakage due to Cloud virtual resources vulnerability. Such an assignment 
problem is shown to be NP-Complete. We present several scheduling heuristics including a scalable solution and 
compare their relative performance. 

Index Terms 
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+ 

1 BACKGRAOUND: VULNERABILITY AND DATA LEAKAGE IN MULTITENAT COULD DATACEN­
TER 

THE cloud computing Platform-as-a-Service (PaaS) paradigm provides the application developers a platform 
to deploy big data applications in the Cloud. Some of these applications can be found in the areas of health-

care, e-government, science, and businesses [1]. The PaaS cloud providers can host the customer datastore on-
premises and outsource the computation using virtual resources from multiple IaaS cloud providers as shown 
in Figure 1(b). The virtual resources can be hosted by multitenant public cloud providers such as Amazon 
EC2. The sheer size of big data poses serious security challenges for these applications. The backend datastore 
can use an access control mechanism to isolate and enforce a controlled sharing of data [2]. However, when 
the data is brought from backend datastore to application logic, it can be leaked through the virtual resource 
vulnerabilities. In a multitenat environment, untrusted tenants can exploit these vulnerabilities which can lead 
to an increased risk of data leakage. In this research we focus on the virtual resources vulnerabilities that can 
cause data leakage such as side channel attacks and virtual machine escape [3] [4]. These problems draw the 
attention to design secure virtual resources isolation e.g. Trusted Virtual Domain [5], secure hypervisor [6], 
and Chinese Wall policies [7]. However, the isolation could be improved at the cost of lowering the resource 
utilization. We propose an intelligent virtual resource allocation techniques that assign resources to cloud 
customer data centric applications. These techniques have low complexity and try to minimize the imposed 
risk. We assume a role-based access control (RBAC) [8] mechanism is used for the datacenter protection. 
However, the approach is generic and can be applied to any security policy including the discretionary access 
control or mandatory access control. 

In [9] we have proposed a distributed access control architecture for Cloud virtual resources. A key com­
ponent of this architecture is the Virtual Resource Manager (VRM) which allocates virtual resources to cloud 
customers based on an access control policy that is enforced by Access Control Module (ACM) as shown 
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(b) Virtual resource management mechanism. 

Fig. 1. The virtual resource management architecture 

in Figure 1(a). In general, these resources are allocated to satisfy some SLA requirements for each cloud 
customer and to minimize the cost of provisioning for the PaaS cloud providers. As notice in Figure 1(b), 
VRM consists of workload estimation, resource vulnerability estimation, and resource assignment components. 
The workload estimation component estimates the sharing of data among different roles of the RBAC policy. 
The resource vulnerability estimation component of VRM uses security analysis tools [10] to estimate the 
virtual resource vulnerability. Subsequently, this component can be used to characterize the virtual resource 
to different vulnerability security measurement named as. High, Medium and Low. The resource assignment 
component uses the workload and vulnerability estimations to assign the virtual resources to cloud customers 
applications with a goal to minimize the total risk of data leakage. In following sections we describe this goal 
and provide a detailed design of all these components. 

The risk of data leakage depends on the access control policy and virtual resources vulnerability. The risk is 
defined in ISO 27005 as ”The potential that a given threat will exploit vulnerability of an asset or group of assets and 
thereby cause harm to the organization”. Based on this definition we can formulate the risk due to data leakage 
for an application in a datacenter as 

Risk = Assets × V ulnerability × Threat (1) 

In this paper we assume the assets of a role (cloud customer) is the number of the data objects that it has 
access to and which are stored in PaaS . The vulnerability is the probability of data leakage as a results of 
virtual resources vulnerability. To capture the worst case scenario for the risk assessment, we assume that the 
threat is equal to one for all roles (cloud customers). In other words, due to resource vulnerability, each cloud 
customer poses a threat in term of accessing the data objects of other customers and vice versa. 

The summery of research presented in this paper is as follows. First, we propose a workload approximation 
model based on a given RBAC policy and characterization of cloud datacenter. Second, based on this charac­
terization, we present a risk­aware assignment problem. Finally, we present assignment heuristics for virtual 
resources allocation and compare their performance. 

2 ROLE­BASED ACCESS CONTROL POLICY MODEL FOR ACM
An RBAC access control policy for a datacenter defines permissions to access data objects for its roles [8]. 
Such assignment is formally defined as follow. 

Definition 2.1: Given an RBAC policy P for a big datacenter with R is the set of roles and with O being 
the set of data objects, the permission­to­role assignment PA can be represented as a directed bipartite graph 
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G(V, E), where V = R ∪ O s.t. R ∩ O = φ. The edges eij ∈ E in G represents the existence of role-to-permission 
assignment (ri × oj ) ∈ PA in the RBAC policy P , where ri ∈ R and oj ∈ O. 

The out-degree of a role vertex represents the cardinality of the role and the in-degree of a data object 
vertex represents the degree of sharing of that object among roles. In Figure 2(a), an RBAC policy with |R| = 4 
and |O| = 20 is represented as bipartite graph model. We can notice that the cardinality of role r1 is out­
degree(r1) = 11. Also, the degree of sharing of data object o20 is in-degree(o20) = 4. 

The resource assignment component of VRM requires the cardinality of shared data objects among roles, as 
discussed later in Section 6. For big datacenters, computation of these cardinalities from the bipartite graph 
is a daunting task. We propose an alternative representation of RBAC by accumulating all data objects that 
are accessed by the same roles into a set of common partitions. The cardinalities of these partitions represent 
a spectral representation model of RBAC policy, called W . This model has two advantages over the bipartite 
graph model. First, it can be used to characterize an RBAC policy in terms of its datacenter sensitivity using a 
single parameter. Based on the degree of sharing among roles, the datacenter sensitivity can be high, medium, 
or low as elaborated later in Section 4. In addition, the spectral model allows resource assignment based on 
a given percentage of datacenter. Varying this percentage can lead to variable complexity of the assignment 
algorithm. The spectral model of RBAC is formally defined as follow. 

Definition 2.2: (RBAC spectral model). Given a bipartite graph representation of RBAC policy G(V, E), let 
P (R) be the power set of R excluding the null set φ. The spectral representation of RBAC is the vector W , 
indexed by P (R) and lexicographically ordered. Formally, let p ∈ P (R), then wp ∈ W is defined as follows: 
wp =| {∀rj ∈ p, and ∀tk ∈ T, ∃ejk ∈ E(G)} | 

We map bipartite graph to W by assigning each data object to a single partition representing all the roles 
accessing this data object and not a subset of these roles. It can be noticed that the resulting partitions are 
independent in the sense that there are no common objects among them. The cardinalities of these partitions 
are represented as wp ∈ W . In essence, W can be viewed as a lattice (i.e. binary n-cube) with n levels, where n 
is the number of roles and each wp ∈ W is a vertex in the lattice. For example nodes at level one of the lattice 
represent the size of partitions corresponding to unshared data objects belonging to individual roles. The level 
two nodes represent the cardinalities of data partitions that are accessed by two roles in R. Similarly, the nodes 
at level n contains data objects shared by all the roles. The nodes of W can be indexed using some role IDs, 
as shown in Figure 2(b). It can be observed that indices of W vector are subsets of P (R) and its elements are ) 
the cardinalities of partitions that can be accessed by all the roles in these subsets. Note, equals to ∀wp∈W wp 

the total size of datacenter. In following we present an example of mapping bipartite graph to spectral model. 
Example 2.1: In Figure 2(a) , an access control policy with |R| = 4 and |O| = 20 is shown as a bipartite 

graph. The spectra model is shown as lattice in Figure 2(b). Notice that w{1,4} = |{o9, o10}| = 2 because o9 and 
o10 are accessed by both r1 and r4. 

3 DATACENTER WORKLOAD ESTIMATION FOR RBAC POLICY 

As W is used for our RBAC policy, we need to specify the cardinality of each of its elements. For a big 
datacenter specifying the exact value of these cardinalities is a challenging problem. One practical approach 
is to use the cardinality estimation techniques [11]. For example, in the transactional workload model, we can 
use the selectivity estimation of query processing a big datacenter to get the size estimation of a given query 
[11] whereby query (or a collection of queries) can represent a role. In case role mining is used to design an 
RBAC policy, the role mining techniques such as multi-assignment clustering [12] can provide an estimate 
of W . In this paper we assume the access of data objects in a datacenter can follow a Zipfian distribution, 
an assumption which is supported by in Yahoo’s cloud benchmark [13]. According to this distribution, some 
objects are shared by a large number of roles (queries) while most of the objects are shared among a fewer 
number of roles (queries). The Zipfian distribution is given as follows: 

α−s 

f(α; s, N) = (2))N 
i−s 

i=1 

Where: 
N : the maximum rank
 
α : the selected rank
 
s : scalar parameter to control the shape of distribution 

According to this distribution if scalar parameter s = 1, then the probability that data object is assigned to 
a single role (belongs to rank α = 1) doubles the probability that data object is assigned to two roles (belongs 
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(a) RBAC permission assignment. 
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(b) Spectral lattice representation. 

Fig. 2. Example of RBAC representation. 

to rank � = 2). As the scalar parameter s increases the value of Zipfian density function for the rank one of 
the distribution becomes higher. Accordingly, the number of data objects assigned only to a individual role 
becomes larger as shown in Figure 3. Note, the value of s should be greater than or equal to 1. 

For the evaluation of the proposed heuristics in Section 7 , we propose a two­step algorithm (Algorithm 1) 
for generating RBAC­based workload using Zipfian distribution. In the first step, data objects are classified 
into n buckets where each bucket represents the number of total data objects assigned to a lattice level of 
Figure 2(b). For example, data objects in bucket one are exclusively accessed by only one role. On the other 
hand, data objects in bucket l n are shared by all the roles. The number of data objects in each bucket follows 
Zipfian distribution. In the second step, we assign data objects of bucket i to randomly selected partitions at ��

nlevel i of the lattice. Note, the number of partitions at level i is . The following of the Zipfian distribution in i
the assignment of data objects to buckets and subsequently to partitions ensures that the two­steps algorithm 
generates a heterogenenous workload. 

4 CHARACTERIZING SENSITIVITY OF DATACENTER USING SPECTRAL MODEL

Based on the statistical property of access control workload as discussed in pervious section, we propose a data 
sensitivity based classification of cloud datacenters. The sensitivity classification is dependent on the level of 
sharing of data objects among the roles. In particular, we define the sensitivity of a datacenter as the average 
degree of sharing among its data objects. For example in Figure 2, the datacenter average degree of sharing 
equals to 10 × 1+4× 2+8× 3+2× 4 = 2�5. In case the degree of sharing on average is low, we term the datacenter to 20
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Algorithm 1: Workload generation algorrithm 
Input: Number of data objects | O| , number of roles n, constants. 
Output: spectral representation of RBAC W . 

1. Let B = { B1� ����Bn } bucket array; 
2. foreach i = 1� ����mathcal | O | do
3. � = zipf(n,s); 
4. B� = B� + 1; 

5. foreach i = 1� ���� n do
6. 

7. 

8. 

9. 

10. 

foreach j = 1� ����Bi do��
� = zipf( n

i
,s);  

map � to random partition in level i call it p� ;  
wp� = wp� +1;  

add wp� to W
11. return W
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Fig. 3. data objects distribution for High, Medium, and Low sensitive datacenters 

have a high sensitivty. On the contrary, if extensive sharing of data objects among roles is present, we term 
this datacenter to have a low sensitivity. The medium sensitivity class falls in the middle. It can be notice 
the sharing of data objects and classification of a datacenter can be modeled using the Zipfian distribution. 
The key parameter to characterize the sensitivity of datacenter is the scalar parameter s of Zipfian density 
function shown in equation 2. As shown in Figure 3, the smaller the value of s the more data objects are 
uniformly distributed in the W vector of the spectral model of RBAC. In the following example, we illustrate 
how Zipfian parameter s can be used to classify the sensitivity of datacenter. 

Example 4.1: For datacenter with T = 0�5 × 106 data objects, suppose we have three RBAC policies (P1� P2� P3)
each with n = 30 roles. Figure 3 shows histogram of object across the spectral lattice. Depending on the Zipfian 
distribution, three classes of datacenters, namely; High sensitive (HSD), Medium sensitive (MSD), and Low 
sensitive (LSD), can be identified with respect to policies P1, P2, and P3. For example, HSD can has a large 
value of s (s � 2) since the sharing of data objects among P1 roles is very small. On other hand, the LSD has 
a small value of s (1�5 > s � 1) depicting the case of extensive sharing of data objects among roles of policy 
P3. The MSD has the value of swhich falls in the middle (2 > s � 1�5 ). Note, the number of data objects at 
level one in HSD is double the number of data objects at level one in LSD. 

Note, the size of spectral representation vector, W , increases exponentially with the number of role; since 
| W | = 2n�1. For large datacenter, generating the total workload (i.e. capturing the cardinalities of all elements 
in W) substantially increases the complexity of the virtual resources assignment for the given RBAC. Therefore, 
we propose an approximation strategy for workload characterization. The strategy is based on considering a 
smaller percentage of total size of datacenter. Let such percentage be denoted as D. In particular, D identifies 
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the cutoff level k in the lattice of P (R) which can be used for developing low complexity heuristic for VRM. 
The following lemma describes the process of determining this cutoff k. 

Lemma 4.1: Given W (spectral representation of RBAC), s (scalar parameter of Zipfian distribution), and D 
(the percentage of data considered), the cutoff level k in the lattice P (R) is defined as 

Dk = min0≤k≤nHk,s ≥ × Hn,s100 
Where:)k 

i−s is kthHk,s = generalized harmonic number.i=1 
Proof: Given the Zipfain density function f(k, s, n), we find minimum k such that: 

k Df(k, s, n) ≥i=1 100 
k i−s D≥i=1 Hn,s 100

)))k 
i−s D≥ × Hn,si=1 100 

DHk,s ≥ × Hn,s100 
For a given D of a datacenter the spectral vector W needs to be truncated accordingly as detailed in Lemma 

4.1. The truncated vector, denoted as W ', is defined as follow. 
Definition 4.1: (Truncated spectral vectorW '): We define W ' to consist of all the partitions of W starting from 

level one up to and including the cutoff level k. The vector W ' is formally defined as: 
W ' = {wp|(wp ∈ W) ∧ |p| ≤ k}
Note, different sensitivity classes of datacenter yield different cutoff levels for the same percentage D. Accord­
ingly, the size of W ' varies. The example below illustrates how the D and the sensitivity classes can affect the 
value of k. 

Example 4.2: For W of Example 4.1, for D = 70%; the cutoff (k) is 2 for HSD and for LSD the cutoff is 8. 
For D = 95% the cutoff for MSD is 18 as compared to 9 and 24 for HSD and LSD, respectively. 

In Section 8 we provide a trade off between the accuracy of risk assessment based on the total workload, 
represented by W , vs. approximate workload, represented by W '. 

5 HETEROGENEOUS VIRTUAL RESOURCE VULNERABILITY CHARACTERIZATION 

For risk-aware resource assignment, in addition to workload characterization with respect to RBAC policy, 
the VRM also estimates the software vulnerability for a virtual resource e.g. virtual machine (VM) in our case. 
The estimator uses the security configuration of VMs to qualitatively classify VMs into multiple classes. The 
classification is based on the Common Vulnerability Scoring System (CVSS) metric scores. CVSS score uses 
an interval scale of 0-10 to measure the severity of vulnerabilities [14], [15]. To represent the probability of 
data leakage we convert the 0-10 scale to a scale from zero to one. Based on CVSS scores, we assume four 
discrete classes of VMs, namely highly secure, medium secure, low secure, and unscecure VMs. Although, we 
select four classes to model the vulnerability with respect to heterogenous virtual resources, our solution can 
be generalized to an arbitrary number of heterogeneous classes. 

In addition to probability of leakage within a virtual resource, the VRM also needs to consider the leakage 
across virtual resources ( VMs) within the same IaaS. VRM estimates the vulnerability of each IaaS cloud 
providers . Different remote cloud provider can deploy different security configuration and virtualization 
software (e.g. hypervisor) with varying level of vulnerabilities. Similar to the VMs classification, the VRM 
estimator also classifies the vulnerabilities of remote cloud providers into multiple classes. The vulnerability 
measurement within VMs are independent from the across VMs. For example, a highly secure cloud provider 
can host unsecure VMs. We assume that the probability of leakage between two VMs belonging to different 
remote Clouds is negligible. Subsequently, we convert these qualitative measures into probability of data 
leakage. We assume that probability of leakage within any VM is higher than probability of leakage across 
any two VMs. This is due to the fact that the size of trusted code base across VMs is generally smaller as 
compared to commercial OS used in a given VM . The trusted code base represents the software stack shared 
in the multitenant environment where within VM the shared software stack (e.g. OS and middleware) is larger 
as compared to shared software across VMs (e.g. the hypervisor). 

Definition 5.1: (The cloud virtual resources model). Given VM1, V M2, ..., V Mm as the suite of m virtual 
machines available to VRM , let dij represents the the probability of data leakage between VMi and VMj 

estimated using vulnerability estimation component as shown in Figure 1. Accordingly, the Cloud virtual 
resources can be modeled as a fully connected undirected graph H(V, E) where vertices V represent the set 
of VMs and the weights on the edges represent dij . 

6 RISK-AWARE RESOURCE ASSIGNMENT 

Based on the RBAC workload characterization and aforementioned virtual resource vulnerability model, we 
now formally define the risk-aware assignment problem (RAP) 
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Definition 6.1: (The risk-aware assignment problem (RAP)). Given the spectral representation W of RBAC 
policy and the adjacency matrix D the adjacency matrix representing the virtual resources probability of 
leakage (based on H(V, E)), the risk-aware assignment problem (RAP) is to minimize the total risk of data 
leakage by assigning access control roles to the virtual resources. 

The cost function of total risk is defined as follow: 

T hreati,j 

 n 
min Rt = min wp × T hreatp,j × max {dlq × Ijq × Ipl} 

wp∈W! j=1 
1≤l,q≤m

(3) 

Where: 
Ipq = Ijq ∀p ⊂ j)n 

q=1 Ijq = 1 ∀j ∈ R 

Ijq =

 
1 

0 

if rj is assigned to vmq 

Otherwise  
1 if rj ∈ wi.p 

=
0 Otherwise 

Theorem 6.1: RSP problem is NP-complete 
Proof: We construct a decision formulation of RASP problem as follow: ) )nFor a given C, is there such I that wp∈W! wp × j=1 T hreatp,j × max1≤l,q≤m{dlq × Ijq × Ipl} ≤ C 

First, given I and C we can check if the RASP decision problem satisfies the bound in polynomial time. 
Accordingly, the decision formulation of RASP is NP. Next, we show that decision RASP problem is NP-
complete, by shown that Travel Salesman Problem (TSP) can be reduce to RASP. We formulate the TSP as for 
a given set V with a distance metric d(a, b), a, b ∈ V , and a number C, is there such an ordering of elements )nof V : (v1, v2, . . . vn, v1) such that d(vi, vi+1) + d(vn, v1) ≤ C i=1 

Lets W is spectral representation of RBAC policy with n roles. For ∀wp ∈ W , we define wp as follows:  
1 if p = {ri, rj } and |ri − rj |mod n = 1 

wp =
0 Otherwise 

Assume L = {VM1, V M2, . . . , V Mn} = V ,then assume that assignment of wp to VMj as if theTSP visiting city 
vj . Therefore, if we find a optimal order of visits in TSP, we can find the optima assignment of partitions to 
VMs in RASP. 

7 ASSIGNMENT HEURISTICS 

In this section, we propose two heuristics for solving RAP which can be deployed by the resource assignment 
component in VRM in Figure 1(b). The first heuristic called Sharing-based Heuristic (SBH) uses a best fit greedy 
strategy. In SBH, each role is assigned to the best available VM, in terms of its probability of leakage, such 
that any increase in the total risk is kept at minimum. This heuristic has a high complexity since it finds the 
local optimal assignment at each step. Alternatively, we proposes a low complexity scalable heuristic, called 
Partition-based Heuristic (PBH) , that uses a top down clustering based approach. In each step, the PBH 
algorithm divides the roles based on the highest risk partition. Below we formally describe the algorithms 
and prove their complexities. We then provide a detailed simulation based performance evaluation of the 
algorithms. As mentioned earlier, due to the exponential complexity of W , both SBH and PBH use W '. Both 
heuristics use a two phases approach. In phase one, a heuristic optimizes the assignment based on partitions 
in W '. In phase two, all the remaining partitions (W −W ') are assigned automatically with their associated 
roles. 

'Prior to presenting the heuristics, we approximate the size of W in term of cutoff k, by the following lemma. 
Lemma 7.1: |W ' | ≤ (n + 1)k 

Proof: s o)k n|W ' | = i=1 is o)k )∞≤i=1 
n
i i=0 n

i )∞ isince(n + 1)k = i=0 n
=⇒ |W ' | ≤ (n + 1)k 
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7.1 Sharing Based Heuristic (SBH) 
SBH follows the best fit approach where we initially select a role with the largest number of data objects. This 
role is assigned to a VM with the least probability of leakage. We then select the role that has the highest data 
sharing with the perviously assigned roles and allocate it to a VM such that any incremental in the total risk 
is kept at minimum. This step is repeated until all the roles are assigned. Notice, the first m roles assignments 
are made to distinct VMs as the probability of leakage across VMs is always less than probability of leakage 
within a VM. Therefore, the performance of SBH depends on the initial m role assignments. The remaining 
n − m roles are co-allocated with the already assigned roles such that the total increase in leakage risk is kept 
low. 

Formally the SBH is shown as Algorithm 2. In Lines 1-3, we perform the initial role assignment to a VM. 
The assigned roles are stored in list A. The unassigned roles are kept in the list F . C is a cost matrix that 
stores the cost of assignment of each unassigned role to each VM. In Lines 4-6 , each iteration of outer loop 
assigns a role from list F with the minimum value in C to a VM and updates the assignment matrix I which 
includes assignment of all the partitions so far. The inner loop updates the cost matrix C by removing the 
entry of last assigned role and updating the entry of C as a result of the new assignment. Finally, we return 
the assignment matrix at the end of algorithm. 

Lemma 7.2: The complexity of SBH is O(n2 × m × |W ' |) 
Proof: The complexity of computing Ci,j in the algorithm is n × |W ' |) since we need to find the sharing 

between role ri and all other roles in A. This cost computation needs to be repeated m times for each role in 
F . Therefore, the total complexity of SBH is O(n2 × m × |W ' |). 

Algorithm 2: SBH 
Input: A spectral representation of RBAC W I, vulnerability matrix D. 
Output: An assignment matrix I of roles to VMs. 

1. Find initial vm which is vmj with minimum djj ; 
2. Find initial Role which is ri with largest sensitive data pi; 
3. I(ri, vmj ) = 1; 
4. Let A = {ri} be the set of assigned roles; 
5. Let F = R − {ri} be the set of free roles; 
6. Let Ci,j be the risk of assign ri to vmj ; 
7. foreach ri ∈ F do 
8. 

9. 

10. 

11. 

12. 

13. 

foreach j = 1, . . . ,m do 
Compute Ci,j ; 

Let Ĉkl be minimum Ci,j ;
 
I(rk, vml) = 1;
 
A = A ∪ {rk};
 
F = F − {rk};
 

14. return I; 

7.2 Partition Based Heuristic (PBH): A Scalable Approach 

In this heuristic, a scalable top down clustering approach is used. Initially, all the roles are assumed to be in 
one cluster. We then find the highest attackable partition in W '. The attackability of partition is defined as the 
size of the partition multiplied by the number threats for that partition. The number of threats for a partition 
equals the total number of roles minus the partition’s level in the lattice of P (R). Note, as the size and number 
of threat increases the partition become more attackable. We begin with division of the root cluster and split 
it into two clusters. The first cluster contains the roles that are associated with highly attackable partition. The 
remaining roles are stored in the second cluster. By splitting the roles into two clusters based on the highly 
attackable partition, we eliminate the possibility of VM co-allocating the roles with highly attackable data 
objects with other roles that pose threats to them. The last step is repeated until the number of cluster equals 
the number of VMs. Subsequently, the cluster with highest policy risk is assigned to the least vulnerable VM. 
In essence, this greedy approach of dividing the roles based on the high attackable partition favors the m top 
attackable partitions over the rest of the partitions. 

'Algorithm 3, formally represents the PBH heuristic. In Line 1-2, The W is sorted and saved in temporary 
vector P . The initial cluster list has one cluster which is the set of all roles. In Line 4- 11, we loop over P and 
divide a cluster into two new clusters if the partition p intersects with any cluster in C. We continue the loop 
in Line 4-11 until the number of clusters equal to number of VMs till we are done with all the partitions in 
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P . Then, we sort the VMs indexes in l and computes the policy based risk for each cluster. The policy based 
risk is the policy assets that are in threat before multiplying it with probability of leakage. The clusters are 
sorted and the roles of highest risk cluster assigned to VM with low probability of leakage, as illustrated in 
Line 15-17, The final assignment is stored in assignment matrix I. 

Lemma 7.3: The complexity of PBH is O(|W ' | × log |W ' | + n × |W ' |) 
'Proof: In PBH we need to sort W that gives the complexity of |W ' | × log |W| ' . Then to find the policy 

risk for a given cluster we need to compute the attackability for each partition in the cluster with complexity 
n × |W ' |). The assignment of cluster to VM can be computed in O(n × m) and m is always less than |W ' |. 

Algorithm 3: PBH 
Input: A spectral representation of RBAC W I, vulnerability matrix D. 
Output: An assignment matrix I of roles to VMs. 

1. Sort W I starting with largest wi to smallest wj ; 
2. Let P holds indexes of the sorted W I; 
3. Let C = {R} be the initial cluster; 
4. foreach pi ∈ P do 
5. foreach cj ∈ C do 
6. if pi ∩ cj  = φ then 
7. C = C − cj ; 
8. C = C ∪ (pi ∩ cj ); 
9. C = C ∪ {cj − pi}; 

10. if |C| ≥ m then 
11. break; 

12. Let L = {l1, . . . , lm} be the sorted VMs based on djj from smalls to largest; 
13. Compute the intra risk for each ci ∈ C; 
14. Let Ĉ be the sorted C based clusters risk. ; 
15. foreach i = 1, . . . ,m do 
16. foreach rk ∈ ĉi do 
17. I(rk, vmli ) = 1; 

18. return I; 

Note, due to the its subquadratic complexity in terms of number of role the PBH is a scalable heuristic.1 

7.3 Performance Evaluation Metrics for Resource Assignment 
We introduce two metrics to compare the performance of the proposed SBH and PBH. The formal definitions 
of these metrics are presented in this section and the experiment results are given in next section. The data 
leakage risk is the main metric that needs to be minimized. The risk metrics has two sub-metrics which we 
use to evaluate the proposed heuristics. The first risk metric is computed from the total workload which 
represents all the partitions in W . This risk metric represents the total risk and denoted as Rt. In other words 
Rt represents the potential risk for the full datacenter. The second sub-metric of risk is based on the all partition 

'of W and is used to study the performance of heuristics and compare their effectiveness. This sub metric is 
called partial risk Rp. Note, Rp is risk resulting from phase two of the proposed heuristics. Formally, the risk 
metrics are given as: 

Rt = Risk(wp) (4) 
wp∈W 

Rp = Risk(wp) (5) 
wp∈W! 

Note, the difference between total risk and partial risk represents an error introduce by the heuristic as a 
result of its lack of knowledge of all partitions. We define the relative error as follow . 

Definition 7.1: The relative error of an assignment algorithm is 
(Rt−Rp)E = = ( Rt − 1)Rp Rp 

1. http://en.wikipedia.org/wiki/Scalability 

http://en.wikipedia.org/wiki/Scalability
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8 PERFORMANCE EVALUATION 

We evaluate our heuristics and study their performance for different statistical workload approximation for 
RBAC and data sensitivity classification. Our workload generation algorithm uses the same statistical model 
used in Yahoo Cloud Serving Benchmark [13] where the selectivity of data objects is based on the Zipfian 
distribution. The datacenter sensitivity is carried with these aforementioned settings, named High sensitive 
(s = 2), Medium sensitive (s = 1.5), and Low sensitive (s = 1). Different data percentages (D) of datacenter 
are considered in our experiment which varies from 70% to 95% of total size of datacenter. which is assumed 
to be 500k of data objects. We simulate RBAC policies with 120, 150, and 200 roles. 

In our experiment, we implement four classes of VM vulnerability named; High secure (with probability 
of leakage di,i = 0.2), Medium secure (di,i = 0.45), Low secure (di,i = 0.6), and unsecured (di,i = 0.8). Based 
on the survey in [10], we assume that 1% of VMs are unsecured, 22% are highly secured, 46% are medium 
secured VMs, and 33% are low secured VMs. Accordingly, we classify the security of IaaS into three categories. 
The first category is the highly secure IaaS cloud provider which we assume the probability of data leakage 
among its VMs is extremely small (di,j = 0.001). The moderately secure IaaS cloud provider constitutes the 
second category which has di, j = 0.045. The last category is the low secure IaaS, with di,j = 0.1. 

In Table 1 we show the total risk Rt resulting from SBH assignment of 120 roles onto 40 VMs. Rt of the 
HSD is noted to be higher than the MSD, and LSD. This is because most of data objects in HSD are highly 
attackable does can increase the number of potential threats as compared to other type of datacenters. 

In general, we can notice that Rt decreases as the value of D increases from 70% to 90%. This decrease in 
Rt is because for the large value of D, the VRM has more knowledge about W . In other words, as (W −W ' ) 
gets smaller it causes a decrease in uncertainty in assignment decision. However in some cases Rt increases 
when the data percentage is increased from 90% to 95% as depicted in Low sensitivity column in Table 1. 
The reason is both heuristics try to minimize the partial risk Rp associated with W ', and in some cases such 
minimization can result an increase of Rt. 

TABLE 1
 
Rt for n = 120 and m = 40
 

Low Medium High 

SBH PBH SBH PBH SBH PBH 

70 3360231 3606591 2445374 2452659 1518554 2139564 
80 3291886 3522308 2244157 2401973 1465960 1512723 
90 3215064 3470285 2154764 2309507 1231830 1405526 
95 3344730 3470285 2217724 2302854 1224026 1406141 

TABLE 2
 
Rt for n = 150 and m = 50
 

Low Medium High 

SBH PBH SBH PBH SBH PBH 

70 4121669 4225904 2932017 3263288 1767732 2658996 
80 4078425 4196071 2785004 2828237 1756312 2234971 
90 4068345 4196071 2663637 2782716 1558556 1761015 
95 4038736 4201984 2647521 2782716 1468684 1692846 

TABLE 3
 
Rt for n = 200 and m = 70
 

Low Medium High 

SBH PBH SBH PBH SBH PBH 

70 5685296 5402101 3865387 4362990 2228901 3627837 
80 5562226 5352938 3686288 3613758 1973325 2837346 
90 5580674 5351282 3356819 3446952 1692089 2355639 
95 5475651 5350779 3355768 3446952 1754023 1970093 
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(a) Rp for SBH and PBH for n =150 . (b) Rp for SBH and PBH for n =200 . 

Fig. 4. SBH & PBH performance 

In Figures 5 we present the performance of SBH and PBH by computing the relative error E. The general 
behavior is that the relative error decreases as the D increases. The reason being that the cutoff level k increases 
proportionally with D resulting in a reduction of E. Further, we can notice that the relative error (E) is high 
for HSD as compared to LSD. The reason is that for HSD the cutoff k is smaller which results in ignoring data 

nobjects in some risky partitions among roles associated with level of the lattice in Figure 2(b). For the case 2
of PBH, E is high for HSD when D = 70%. This is due to the fact that the number of partitions that are highly 
attackable is few. Accordingly, PBH may not be an attractive choice for HDS with low value of D. However, 
as can be notice from Tables 1 and 2 the relative error for PBH with respect to SBH is within 10% for both 
LSD and MSD cases. Being a scalable algorithm PBH can therefore offer a viable choice for these cases. 

9 CONCLUSION

In this paper, we have presented a risk­aware cloud virtual resources assignment for big datacenter employing 
RBAC policy. We have defined a formal definition of spectral representation of access control policy and 
proposed statistical workload characterization and the data percentage approximation for cloud datacenters. 
We have proposed a sensitivity based characterization for large datacenter. The virtual resources vulnerability 
probability using CVSS score is presented to model the heterogeneity of cloud virtual resources security 
configurations. We have proposed two heuristics algorithms for scheduling to solve the assignment problem 
with simulation based performance evaluation. The key finding of our work is the PBH being a scalable 
algorithm can provide a viable heuristic for scheduling cloud resource for low sensitivity and medium 
sensitivity datacenters. However, for high sensitivity datacenter, SBH performance is relatively better in terms 
of reducing the overall risk. 
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(a) SBH relative error. (b) SBH relative error. 
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(c) SBH relative error. (d) PBH relative error. 
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(e) PBH relative error. (f) PBH relative error. 

Fig. 5. Relative Error 
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