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ABSTRACT 

Modelo-Howard, Gaspar Ph.D., Purdue University, May 2013. Secure Configuration 
of Intrusion Detection Sensors for Dynamic Enterprise-Class Distributed Systems. 
Major Professor: Saurabh Bagchi. 

To secure todays computer systems, it is critical to have different intrusion de­

tection sensors embedded in them. The complexity of distributed computer systems 

makes it difficult to determine the appropriate choice and placement of these detec­

tors because there are many possible sensors that can be chosen, each sensor can be 

placed in several possible places in the distributed system, and overlaps exist between 

functionalities of the different detectors. For our work, we first describe a method 

to evaluate the effect a detector configuration has on the accuracy and precision of 

determining the systems security goals. The method is based on a Bayesian network 

model, obtained from an attack graph representation of the target distributed sys­

tem that needs to be protected. We use Bayesian inference to solve the problem of 

determining the likelihood that an attack goal has been achieved, given a certain set 

of detector alerts. Based on the observations, we implement a dynamic programming 

algorithm for determining the optimal detector settings in a large-scale distributed 

system and compare it against a greedy algorithm, previously developed. 

In the work described above, we take a (static) snapshot of the distributed system 

to determine the configuration of detectors. But distributed systems are dynamic in 

nature and current attacks usually involve multiple steps, called multi-stage attacks, 

due to attackers usually taking multiple actions to compromise a critical asset for 

the victim. Current sensors are not capable of analyzing multi-stage attacks. For 

the second part of our work, we present a distributed detection framework based 

on a probabilistic reasoning engine that communicates to detection sensors and can 



xiii 

achieve two goals: (1) protect a critical asset by detecting multi-stage attacks and 

(2) tune sensors according to the changing environment of the distributed system, 

which includes changes to the protected system as well as changing nature of attacks 

against it. 

Each node in the Bayesian Network model represents a detection signature to an 

attack step or vulnerability. We extend our model by developing a system called 

pSigene, for the automatic generation of generalized signatures. It follows a four-step 

process based on a biclustering algorithm to group attack samples we collect from 

multiple sources, and logistic regression model to generate the signatures. We imple­

mented our system using the popular open-source Bro Intrusion Detection System 

and tested it for the prevalent class of Structured Query Language injection attacks. 

We obtain True and False Positive Rates of over 86% and 0.03%, respectively, which 

are very competitive to existing signature sets. 



1 

1. INTRODUCTION 

1.1 Motivation 

Intrusion Detection Systems (IDS) play an important role in the cybersecurity 

strategy of many organizations, to protect their distributed computing systems. The 

host and network activity experienced in these systems calls for continuous monitor­

ing, and this role is usually satisfied by an IDS with one or more detection sensors. 

Today’s distributed systems exhibit a very dynamic and complex nature as its com­

ponents are incessantly modified, interconnected or replaced and the topology of the 

underlying network keeps changing. From a security perspective, it is impossible then 

to assume under this scenario that all security risks can be completely eliminated or 

that no errors will occur. Additionally, the system’s components are not perfect and 

carry vulnerabilities and other security problems that eventually are exploited by ma­

licious users. A sound, complete cybersecurity strategy must then include mechanisms 

to detect when security breaches happen. That is the main role of an IDS. 

The complexity and dynamism found nowadays in distributed systems creates a 

conundrum for IDS designers and operators: how to configure and operate an IDS 

to effectively detect when bad things happen in a computing scenario that keeps 

changing and is composed from multiple components? Under this scenario, it is 

difficult to determine the appropriate choice and placement of the intrusion detections 

sensors because there are many possible sensors that can be chosen, each sensor can be 

placed in several possible places in the distributed system, and overlaps exist between 

functionalities of the different detection sensors. 

In this thesis, we set out to provide mechanisms to help security professionals to 

design, configure, and operate an IDS for a distributed system in a dynamic environ­

ment. We develop techniques that evaluate the proposed or current configuration of 
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a intrusion detection system, which require numerous, distributed sensors. For each 

of these components to effectively contribute, the IDS should continuously evaluate 

the sensors and reconfigure itself, based on the changes to the monitored distributed 

system. If the sensors are not properly managed, their contribution will decrease 

over time, jeopardizing the effectiveness of the IDS and ultimately, compromising the 

security of the distributed system. 

An advantage to having multiple, distributed sensors in an IDS is the possibility 

to correlate the alerts generated by these sensors, in order to ultimately make more 

accurate detections than when using a single detection sensor. We present an alert 

correlation technique based on attacks graphs and Bayesian inference by using the 

probabilistic graphical model known as Bayesian network. It turns out that efficient 

alert correlation is very environment specific as the value of a particular set of alerts to 

help determine if an intrusion is happening, highly increases based on the location of 

the corresponding sensors and the ability of the alerts to describe a possible intrusion 

scenario. 

The problem of dealing with complex and dynamic distributed systems makes it 

necessary to consider the automation of many tasks to manage intrusion detection 

systems. An IDS increasingly produces alerts that make it impossible for humans to 

respond effectively and in a timely manner. It is then necessary to develop algorithms 

that can scale to promptly determine if an intrusion has occurred and to allow for 

the reconfiguration of the IDS when changes happen. 

The detection method used by an IDS is a critical aspect when determining its 

efficiency and performance. A 0-1 attitude by IDS developers when selecting the 

detection method to use, has made users question the merits of the detection systems. 

IDS are commonly divided into two groups, according to the detection method used: 

anomaly- and misuse-based detection. The former creates a profile of the normal (non­

malicious) behavior observed in the monitored system while the latter uses signatures 

of attacks to detect malicious activity. Both methods present limitations and as we 

present in this thesis, the detection efficiency of an IDS can be improved by mixing 
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both methods, producing signatures that represent generalized versions of malicious 

behavior. 

Our work is motivated by the experience of designing and operating the open-

source Bro IDS for NEEShub, a distributed system which is part of a National Science 

Foundation-sponsored Center at Purdue University. The system serves content and 

simulation tools for an engineering domain for thousands of users. While managing 

the Bro IDS, we experienced the growing complexity and dynamism of the system 

and served well as a reminder of the need to produce techniques for alert correlation, 

to use multiple sensors, and to automate to managing of the IDS and its sensors. 

1.2 Outline 

Here we briefly summarize the contents of the chapters presented in this work. 

In Chapter 2, we present a method to evaluate the effect a detector configu­

ration has on the accuracy and precision of determining the systems security goals. 

The method is based on a Bayesian network model, obtained from an attack graph 

representation of the target distributed system that needs to be protected. We use 

Bayesian inference to solve the problem of determining the likelihood that an attack 

goal has been achieved, given a certain set of detector alerts. 

We explore two methods to determine the configuration of intrusion detection 

sensors in a distributed system. First, a greedy algorithm is introduced and tested 

against two electronic commerce scenarios. Then, we present a dynamic programming 

algorithm for determining the optimal detector settings in a large-scale distributed 

system and compare it against the previously developed greedy algorithm. We also 

report the results of five experiments, measuring the Bayesian networks behavior in 

the context of two real-world distributed systems undergoing attacks. Results show 

the dynamic programming algorithm outperforms the Greedy algorithm in terms 

of the benefit provided by the set of detectors picked. The dynamic programming 
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solution also has the desirable property that we can trade off the running time with 

how close the solution is to the optimal. 

In the work described in the previous chapter, we take a (static) snapshot of the 

distributed system to determine the configuration of detectors. But distributed sys­

tems are dynamic in nature and current attacks usually involve multiple steps, called 

multi-stage attacks, due to attackers usually taking multiple actions to compromise 

a critical asset for the victim. Current sensors are not capable of analyzing multi­

stage attacks. In Chapter 3, we introduce a distributed detection framework based 

on a probabilistic reasoning engine that communicates to detection sensors and can 

achieve two goals: (1) protect a critical asset by detecting multi-stage attacks and 

(2) tune sensors according to the changing environment of the distributed system, 

which includes changes to the protected system as well as changing nature of attacks 

against it. 

The Bayesian Network model described in the previous chapters, represents every 

vulnerability found in the monitored distributed system as a node. That is, the 

exact vulnerability is represented as a node in the Bayesian Network. To extend 

the detection capability of the model, a node can be generalized so it represents a 

group of similar vulnerabilities, not only a single one. To achieve this, in Chapter 

4 we present a system, called pSigene, for the automatic generation of intrusion 

signatures by mining the vast amount of public data available on attacks. Each 

signature represents then a group of similar vulnerabilities. The system follows a 

four-step process to generate the signatures, by first crawling attack samples from 

multiple public cybersecurity web portals. Then, a feature set is created from existing 

detection signatures to model the samples, which are then grouped using a biclustering 

algorithm which also gives the distinctive features of each cluster. In the last step, 

the system automatically creates a set of signatures using regular expressions, one 

for each cluster. We tested our architecture for the prevalent class of SQL injection 

attacks and found our signatures to have a True and False Positive Rates of over 86% 

and 0.03%, respectively and compared our findings to other SQL injection signature 
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sets from popular IDS and web application firewalls. Results show our system to be 

very competitive to existing signature sets. 

Finally, Chapter 5 presents our future plans and work. 

1.3 Published Work 

Part of this thesis have been published: 

• Gaspar Modelo-Howard, Jevin Sweval, and Saurabh Bagchi: 

Secure Configuration of Intrusion Detection Sensors for Changing Enterprise 

Systems. In: Proc. of the 7th ICST Conference on Security and Privacy 

for Communication Networks (SecureComm’11). London, United Kingdom, 

September 2011. 

• Gaspar Modelo-Howard, Saurabh Bagchi, and Guy Lebanon: 

Approximation Algorithms for Determining Placement of Intrusion Detectors in 

a Distributed System. CERIAS Technical Report 2011-01, Purdue University. 

• Gaspar Modelo-Howard, Saurabh Bagchi, and Guy Lebanon: 

Determining Placement of Intrusion Detectors for a Distributed Application 

through Bayesian Network Modeling. In: Proc. of the 11th International Sym­

posium on Recent Advances in Intrusion Detection (RAID’08). Boston, MA, 

September 2008. 
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2. DETERMINING PLACEMENT OF INTRUSION 

DETECTORS FOR A DISTRIBUTED APPLICATION 

THROUGH BAYESIAN NETWORK MODELING 

2.1 Introduction 

It is critical to provide intrusion detection to secure today’s distributed computer 

systems. The overall intrusion detection strategy involves placing multiple detectors 

at different points of the system. Examples of specific locations are network ingress 

or combination points, specific hosts executing parts of the distributed system, or 

embedded in specific applications that form part of the distributed system. At the 

current time, the placement of the detectors and the choice of the detectors are more 

an art than a science, relying on expert knowledge of the system administrator. 

The choice of the detector configuration has substantial impact on the accuracy 

and precision of the overall detection process. There are many choices to consider, 

including the placement of detectors, their false positive (FP) and false negative (FN) 

rates, and other detector properties. This results in a large exploration space which 

is currently explored using ad-hoc techniques. This chapter presents an important 

step in constructing a principled framework to investigate this exploration space. 

At first glance it may seem that increasing the number of detectors is always a 

good strategy. However, this is not the case and an extreme design choice of a de­

tector at every possible network point, host, and application may not be ideal. First, 

there is the economic cost of acquiring, configuring, and maintaining the detectors. 

Detectors need tuning to achieve their best performance and to meet the targeted 

needs of the application (specifically in terms of the balance between false positive 

and false negative rates). Second, a large number of imperfect detectors means a 

large number of alert streams in benign conditions that could overwhelm the manual 
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Fig. 2.1. Attack graph model for a sample web server. There are three 
starting vertices, representing three vulnerabilities found in different ser­
vices of the server from where the attacker can elevate the privileges in 
order to reach the final goal of compromising the password file. 

or automated response process. Third, detectors impose a performance penalty on 

the distributed system as they typically share bandwidth and computational cycles 

with the application. Fourth, system owners may have varying security goals such as 

requiring high sensitivity or ensuring less tolerance for false positive alerts. 

In this chapter we address the problem of determining where (and how many) 

to place detectors in a distributed system, based on situation-specific security and 

performance goals. We also show that this is an intractable problem. The security 

goals are determined by requiring a certain trade-off between the true positive (TP) 

– true negative (TN) detection rates. 

Our proposed solution starts with attack graphs, as shown in Figure 2.1, which are 

a popular representation for multi-stage attacks [1]. Attack graphs are a graphical 

representation of the different ways multi-stage attacks can be launched against a 

specific system. The nodes depict successful intermediate attack goals with the end 

nodes representing the ultimate attack goal. The edges represent the notion that 

some attack goals serve as stepping stones to other attack goals and therefore have to 

be achieved first. The nodes can be represented at different levels of abstraction; thus 

the attack graph representation can bypass the criticism that detailed attack methods 

and steps need to be known a priori to be represented (which is almost never the case 

for reasonably complex systems). Research in the area of attack graphs has included 

automation techniques to generate these graphs [3], [2], to analyze them [4], [5], and 

to reason about the completeness of these graphs [4]. 
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We model the probabilistic relations between attack steps and detectors using 

the statistical formalism of Bayesian networks. Bayesian networks are particularly 

appealing in this setting since they enable computationally efficient inference for un­

observed nodes (such as attack goals) based on observed nodes (detector alerts.) The 

important question that Bayesian inference can answer for us is, given a set of detec­

tor alerts, what is the likelihood or probability that an attack goal has been achieved. 

A particularly important advantage is that Bayesian network can be relatively easily 

created from an attack graph structure which is often assumed to be provided. 

We formulate two Bayesian inference algorithms, implementing a greedy approach 

for one and dynamic programming for the other, to systematically determine the 

accuracy and precision a specific detector configuration has. We then proceed to 

choose the detector placement that gives the highest value of a situation-specific 

utility function. We show the Greedy algorithm has an approximation ratio of 1
2 . The 

dynamic programming solution falls in the algorithm category of the fully polynomial 

time approximation scheme (FPTAS) and has the desirable property that we can 

trade off the running time with how close the solution is to the optimal. 

We demonstrate our proposed framework in the context of two specific systems, 

a distributed E-commerce system and a Voice-over-IP (VoIP) system, and compared 

both algorithms. We experiment with varying the quality of the detectors, the level of 

knowledge of attack paths, and different thresholds set by the system administrator 

for determining whether an attack goal was reached. Our experiments indicate that 

the value of a detector in terms of determining an attack step degrades exponentially 

with its distance from the attack site. 

The rest of this document is organized as follows. Section 2.2 presents the re­

lated work and section 2.3 introduces the attack graph model and provides a brief 

presentation of inference in Bayesian networks. Section 2.4 describes the model and 

algorithms used to determine an appropriate location for detectors. Section 2.5 pro­

vides a description of the distributed systems used in our experiments. Sections 2.6 

and 2.7 present a complete description of the experiments along with their motiva­
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tions to help determine the location of the intrusion detectors. Finally, section 2.8 

concludes the chapter and discusses future work. 

2.2 Related Work 

Bayesian networks have been used in intrusion detection to perform classification 

of events. Kruegel et al. [6] proposed the usage of Bayesian networks to reduce the 

number of false alarms. Bayesian networks are used to improve the aggregation of 

different model outputs and allow integration of additional information. The ex­

perimental results show an improvement in the accuracy of detections, compared to 

threshold-based schemes. Ben Amor et al. [7] studied the use of naive Bayes in in­

trusion detection, which included a performance comparison with decision trees. Due 

to similar performance and simpler structure, naive Bayes is an attractive alternative 

for intrusion detection. Other researchers have also used naive Bayesian inference for 

classifying intrusion events [8]. 

To the best of our knowledge, the problem of determining an appropriate location 

for detectors has not been systematically explored by the intrusion detection commu­

nity. However, analogous problems have been studied to some extent in the physical 

security and the sensor network fields. 

Jones et al. [9] developed a Markov Decision Process (MDP) model of how an 

intruder might try to penetrate the various barriers designed to protect a physical 

facility. The model output includes the probability of a successful intrusion and the 

most likely paths for success. These paths provide a basis to determine the location 

of new barriers to deter a future intrusion. 

In the case of sensor networks, the placement problem has been studied to identify 

multiple phenomena such as determining location of an intrusion [10], contamination 

source [11], [12], and atmospheric conditions [13]. Anjum et al. [10] determined which 

nodes should act as intrusion detectors in order to provide detection capabilities in 

a hierarchical sensor network. The adversary is trying to send malicious traffic to 
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a destination node (say, the base node). In their model, only some nodes called 

tamper-resistant nodes are capable of executing a signature-based intrusion detection 

algorithm and these nodes cannot be compromised by an adversary. Since these nodes 

are expensive, the goal is to minimize the number of such nodes and the authors 

provide a distributed approximate algorithm for this based on minimum cut-set and 

minimum dominating set. The solution is applicable to a specific kind of topology, 

widely used in sensor networks, namely clusters with a cluster head in each cluster 

capable of communicating with the nodes at the higher layer of the network hierarchy. 

In [11], the sensor placement problem is studied to detect the contamination of 

air or water supplies from a single source. The goal is to detect that contamination 

has happened and the source of the contamination, under the constraints that the 

number of sensors and the time for detection are limited. The authors show that 

the problem with sensor constraint or time constraint are both NP-hard and they 

come up with approximation algorithms. They also solve the problem exactly for 

two specific cases, the uniform clique and rooted trees. A significant contribution of 

this work is the time efficient method of calculating the sensor placement. However, 

several simplifying assumptions are made—sensing is perfect and no sensor failure 

(either natural or malicious) occurs, there is a single contaminating source, and the 

flow is stable. 

Krause et al. [13] also point out the intractability of the placement problem and 

present a polynomial-time algorithm to provide near-optimal placement which incurs 

low communication cost between the sensors. The approximation algorithm exploits 

two properties of this problem: submodularity, formalizing the intuition that adding 

a node to a small deployment can help more than adding a node to a large deploy­

ment; and locality, under which nodes that are far from each other provide almost 

independent information. In our current work, we also experienced the locality prop­

erty of the placement problem. The proposed solution learns a probabilistic model 

(based on Gaussian processes) of the underlying phenomenon (variation of tempera­
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ture, light, and precipitation) and for the expected communication cost between any 

two locations from a small, short-term initial deployment. 

In [12], the authors present an approach for determining the location in an indoor 

environment based on which sensors cover the location. The key idea is to ensure 

that each resolvable position is covered by a unique set of sensors, which then serves 

as its signature. They make use of identifying code theory to reduce the number of 

active sensors required by the system and yet provide unique localization for each 

position. The algorithm also considers robustness, in terms of the number of sensor 

failures that can be corrected, and provides solutions in harsh environments, such as 

presence of noise and changes in the structural topology. The objective for deploying 

sensors here is quite different from our current work. 

For all the previous work on placement of detectors, the authors are looking to 

detect events of interest, which propagate using some well-defined models, such as, 

through the cluster head en route to a base node. Some of the work (such as [13]) is 

focused on detecting natural events, that do not have a malicious motive in avoiding 

detection. In our case, we deal with malicious adversaries who have an active goal of 

trying to bypass the security of the system. The adversaries’ methods of attacking 

the system do not follow a well-known model making our problem challenging. As an 

example of how our solution handles this, we use noise in our BN model to emulate 

the lack of an accurate attack model. 

There are some similarities between the work done in alert correlation and ours, 

primarily the interest to reduce the number of alerts to be analyzed from an intrusion. 

Approaches such as [14] have proposed modeling attack scenarios to correlate alerts 

and identify causal relationships among the alerts. Our work aims to closely integrate 

the vulnerability analysis into the placement process, whereas the alert correlation 

proposals have not suggested such importance. 

The idea of using Bayes theorem for detector placement is suggested in [15]. No 

formal definition is given, but several metrics such as accuracy, sensitivity, and speci­

ficity are presented to help an administrator make informed choices about placing 
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detectors in a distributed system. These metrics are associated to different areas or 

sub-networks of the system to help in the decision process. 

Many studies have been done on developing performance metrics for the evaluation 

of intrusion detection systems (IDS), which have influenced our choice of metrics here. 

Axelsson [16] showed the applicability of estimation theory in the intrusion detection 

field and presented the Bayesian detection rate as a metric for the performance of 

an IDS. His observation that the base rate, and not only the false alarm rate, is an 

important factor on the Bayesian detection rate, was included in our work by using 

low base rates as part of probability values in the Bayesian network. The MAFTIA 

Project [17] proposed precision and recall to effectively determine when a vulnerability 

was exploited in the system. A difference from our approach is that they expand the 

metrics to consider a set of IDSes and not only a single detector. The idea of using 

ROC curves to measure performance of intrusion detectors has been explored many 

times, most recently in [18], [19]. 

Extensive work has been done for many years with attack graphs. Recent work 

has concentrated on the problems of generating attack graphs for large networks and 

automating the process to describe and analyze vulnerabilities and system compo­

nents to create the graphs. The NetSPA system [2] uses a breath-first technique to 

generate a graph that grows almost linearly with the size of the distributed system. 

Ou et al. [3] proposed a graph building algorithm using a formal logical technique 

that allows to create graphs of polynomial size to the network being analyzed. 

2.3 Background 

2.3.1 Attack Graphs 

An attack graph is a representation of the different methods by which a distributed 

system can be compromised. It represents the intermediate attack goals for a hypo­

thetical adversary leading up to some high level attack goals. The attack goal may be 

in terms of violating one or more of confidentiality, integrity, or availability of a com­
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ponent in the system. It is particularly suitable for representing multi-stage attacks, 

in which a successful attack step (or steps) is used to achieve success in a subsequent 

attack step. An edge will connect the antecedent (or precondition) stage to the con­

sequent (or postcondition) stage. To be accurate, this discussion reflects the notion 

of one kind of attack graph, called the exploit-dependency attack graph [2], [4], [3], 

but this is by far the most common type and considering the other subclass will not 

be discussed further in this chapter. 

Recent advances in attack graph generation have been able to create graphs for 

systems of up to hundreds and thousands of hosts [2], [3]. 

For our detector-location framework, exploit-dependency attack graphs are used 

as the base graph from which we build the Bayesian network. For the rest of this 

chapter, the vertex representing an exploit in the distributed system will be called an 

attack step. 

2.3.2 Inference in Bayesian Networks 

Bayesian networks [20] provide a convenient framework for modeling the relation­

ship between attack steps and detector alerts. Using Bayesian networks we can infer 

which unobserved attack steps have been achieved based on the observed detector 

alerts. 

Formally, a Bayesian network is a joint probabilistic model for n random variables 

(x1, . . . , xn) based on a directed acyclic graph G = (V, E) where V is a set of nodes 

corresponding to the variables V = (x1, . . . , xn) and E ⊆ V xV contains directed 

edges connecting some of these nodes in an acyclic manner. Instead of weights, the 

graph edges are described by conditional probabilities of nodes given their parents 

that are used to construct a joint distribution P (V ) or P (x1, . . . , xn). 

There are three main tasks associated with Bayesian networks. The first is infer­

ring values of variables corresponding to nodes that are unobserved given values of 

variables corresponding to observed nodes. In our context this corresponds to predict­
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ing whether an attack step has been achieved based on detector alerts. The second 

task is learning the conditional probabilities in the model based on available data 

which in our context corresponds to estimating the reliability of the detectors and 

the probabilistic relations between different attack steps. The third task is learning 

the structure of the network based on available data. All three tasks have been ex­

tensively studied in the machine learning literature and, despite their difficulty in the 

general case, may be accomplished relatively easily in the case of a Bayesian network. 

We focus in this chapter mainly on the first task. For the second task, to es­

timate the conditional probabilities, we can use characterization of the quality of 

detectors [21] and the perceived difficulty of achieving an attack step, say through 

risk assessment. We consider the fact that the estimate is unlikely to be perfectly 

accurate and provide experiments to characterize the loss in performance due to im­

perfections. For the third task, we rely on extensive prior work on attack graph 

generation and provide a mapping from the attack graph to the Bayesian network. 

In our Bayesian network, the network contains nodes of two different types V = � 
Va Vb. The first set of nodes Va corresponds to binary variables indicating whether 

specific attack steps in the attack graph occurred or not. The second set of nodes Vb 

corresponds to binary variables indicating whether a specific detector issued an alert. 

The first set of nodes representing attack steps are typically unobserved while the 

second set of nodes corresponding to alerts are observed and constitute the evidence. 

The Bayesian network defines a joint distribution P (V ) = P (Va, Vb) which can be 

used to compute the marginal probability of the unobserved values P (Va) and the 

conditional probability P (Va|Vb) = P (Va, Vb)/P (Vb) of the unobserved values given 

the observed values. The conditional probability P (Va|Vb) can be used to infer the 

likely values of the unobserved attack steps given the evidence from the detectors. 

Comparing the value of the conditional P (Va|Vb) with the marginal P (Va) reflects the 

gain in information about estimating successful attack steps given the current set of 

detectors. Alternatively, we may estimate the suitability of the detectors by comput­



15 

ing classification error rate, precision, recall and Receiver Operating Characteristic 

(ROC) curve associated with the prediction of Va based on Vb. 

Fig. 2.2. Simple Bayesian network with two types of nodes: an observed 
node (u) and an unobserved node (v). The observed node correspond to 
the detector alert in our framework and its conditional probability table 
includes the true positive (α) and false positive (β). 

Note that the analysis above is based on emulation done prior to deployment with 

attacks injected through the vulnerability analysis tools, a plethora of which exist in 

the commercial and research domains, including integrated infrastructures combining 

multiple tools. 

Some attack steps have one or more detectors that specifically measure whether an 

attack step has been achieved while other attack steps do not have such detectors. We 

create an edge in the Bayesian network between nodes representing attack steps and 

nodes representing the corresponding detector alerts. Consider a specific pair of nodes 

v ∈ Va, u ∈ Vb representing an attack step and a corresponding detector alert. The 

conditional probability P (v|u) determines the values P (v = 1|u = 0), P (v = 0|u = 

1), P (v = 0|u = 0), P (v = 1|u = 1). These probabilities representing false negative, 

false positive, and correct behavior (last two) can be obtained from an evaluation of 

the detectors quality. 
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2.4 System Design 

2.4.1 Framework Description 

Our framework uses a Bayesian network to represent the causal relationships be­

tween attack steps and also between attack steps and detectors. Such relationships 

are expressed quantitatively, using conditional probabilities. To produce the Bayesian 

network1, an attack graph is used as input. The structure of the attack graph maps 

exactly to the structure of the Bayesian network. Each node in the Bayesian network 

can be in one of two states. Each attack stage node can either be achieved or not by 

the attacker. Each detector node can be in one of two states: alarm generated state 

or not. The leaf nodes correspond to the starting stages of the attack, which do not 

need any precondition, and the end nodes correspond to end goals for an adversary. 

Typically, there are multiple leaf nodes and multiple end nodes. 

The Bayesian network requires that the sets of vertices and directed edges form a 

directed acyclic graph (DAG). This property is also found in attack graphs. The idea 

is that the attacker follows a monotonic path, in which an attack step does not have 

to be revisited after moving to a subsequent attack step. This assumption can be 

considered reasonable in many scenarios according to experiences from real systems. 

A Bayesian network quantifies the causal relation that is implied by an edge in 

an attack graph. In the cases when an attack step has a parent, determined by 

the existence of an edge coming to this child vertex from another attack step, a 

conditional probability table is attached to the child vertex. As such, the probability 

values for each state of the child are conditioned by the state(s) of the parent(s). In 

these cases, the conditional probability is defined as the probability of a packet from 

an attacker that already achieved the parent attack step, achieving the child attack 

step. All values associated to the child are included in a conditional probability table 

(CPT). As an example, all values for node u in Figure 2.2 are conditioned on the 

1Henceforth, when we refer to a node, we mean a node in the Bayesian network, as opposed to a 
node in the attack graph. The clarifying phrase is thus implied. 
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Fig. 2.3. A block diagram of the framework to determine placement of 
intrusion detectors. The dotted lines indicate a future component, con­
troller, not included currently in the framework. It would provide for a 
feedback mechanism to adjust location of detectors. 

possible states of its parent, node v. In conclusion, we are assuming that the path 

taken by the attacker is fully probabilistic. The attacker is following a strategy to 

maximize the probability of success, to reach the security goal. To achieve it, the 

attacker is well informed about the vulnerabilities associated to a component of the 

distributed system and how to exploit it. The fact that an attack graph is generated 

from databases of vulnerabilities support this assumption. 

The CPTs have been estimated for the Bayesian networks created. Input values 

are a mixture of estimates based on testing specific elements of the system, like using 

a certain detector such as IPTables [22] or Snort [23], and subjective estimates, using 

judgment of a system administrator. From the perspective of the expert (administra­

tor), the probability values reflect the difficulty of reaching a higher level attack goal, 

having achieved some lower level attack goal. 

A potential problem when building the Bayesian network is to obtain a good 

source for the values used in the CPTs of all nodes. The question is then how to 

deal with possible imperfect knowledge when building Bayesian networks. We took 

two approaches to deal with this issue: (1) use data from past work and industry 
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sources and (2) evaluate and measure in our experiments the impact such imperfect 

knowledge might have. 

For the purposes of the experiments explained in sections 2.6 and 2.7, we have 

chosen the junction tree algorithm [?] to do inference, the task of estimating proba­

bilities given a Bayesian network and the observations or evidence. There are many 

different algorithms that could be chosen, making different tradeoffs between speed, 

complexity, and accuracy. Still, the junction tree engine is a general-purpose inference 

algorithm well suited for our experiments since it works under our scenario: allows 

discrete nodes, as we have defined our two-states nodes, in direct acyclic graphs such 

as Bayesian networks, and does exact inference. This last characteristic refers to the 

algorithm computing the posterior probability distribution for all nodes in network, 

given some evidence. 

2.4.2 Greedy Algorithm 

We present here an algorithm to achieve an optimal choice and placement of 

detectors. It takes as input (i) a Bayesian network with all attack vertices, their 

corresponding CPTs and the host impacted by the attack vertex; (ii) a set of detectors, 

the possible attack vertices each detector can be associated with, and the CPTs for 

each detector with respect to all applicable attack vertices. 

The DETECTOR-PLACEMENT algorithm (2.1) starts by sorting all combina­

tions of detectors and their associated attack vertices according to their benefit to the 

overall system (line 1). The system benefit is calculated by the BENEFIT function 

(2.2). This specific design considers only the end nodes in the BN , corresponding to 

the ultimate attack goals. Other nodes that are of value to the system owner may also 

be considered. Note that a greedy decision is made in the Benefit calculation each 

detector is considered singly. From the sorted list, (detector, attack vertex) combi­

nations are added in order, until the overall system cost due to detection is exceeded 

(line 7). Note that we use a costBenefit table (line 4 of Benefit function), which is 
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Algorithm 2.1 DETECTOR-PLACEMENT (BN, D)
 
Input: (i) Bayesian network BN = (V, CP T (V ), H(V )) where V is the set of at­

tack vertices, CPT (V ) is the set of conditional probability tables associated with 

the attack vertices, and H(V ) is the set of hosts affected if the attack vertex is 

achieved. 

(ii) Set of detectors D = (di, V (di), CPT [i][j]) where di is the ith detec­

tor, V (di) is the set of attack vertices that the detector di can be attached to 

(i.e., the detector can possibly detect those attack goals being achieved), and 

CPT [i][j] ∀j ∈ V (di) is the CPT tables associated with detector i and attack 

vertex j. 

Output:	 Set of tuples θ = (di, πi) where di is the ith detector selected and πi is the 

set of attack vertices that it is attached to. 

systemCost = 0 

1: sort all (di, aj ), aj ∈ V (di), ∀i by Benefit(di, aj ). Sorted list = L 

2: length(L) = N 

3: for i = 1N do 

4: systemCost = systemCost + Cost(di, aj ) 

5: /* Cost(di, aj ) can be in terms of economic cost, cost due 

6: to false alarms and missed alarms, etc. */ 

7: if systemCost > threshold τ then 

8: break 

9: end if 

10: if di ∈ Θ then 

11: add aj to πi ∈ Θ 

12: else 

13: add di, πi = aj to Θ 

14: end if 

15:	 end for 
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likely specified for each attack vertex at the finest level of granularity. One may also 

specify it for each host or each subnet in the system. 

The worst-case complexity of this algorithm is O(dv B(v, CP T (v)) + dv log(dv)+ 

dv), where d is the number of detectors and v is the number of attack vertices. 

B(v, CP T (v)) is the cost of Bayesian inference on a BN with v nodes and CPT (v) 

defining the edges. The first term is due to calling Bayesian inference with up to d 

times v terms. The second term is the sorting cost and the third term is the cost of 

going through the for loop dv times. In practice, each detector will be applicable to 

only a constant number of attack vertices and therefore the dv terms can be replaced 

by a constant times d, which will be only d considering order statistics. 

The reader would have observed that the presented algorithm is greedy-choice of 

detectors is done according to a pre-computed order, in a linear sweep through the 

sorted list L (the for loop starting in line 3). This is not guaranteed to provide an 

optimal solution. For example, detectors d2 and d3 taken together may provide greater 

benefit even though detector d1 being ranked higher would have been considered first 

in the DETECTOR-PLACEMENT algorithm. This is due to the observation that 

the problem of optimal detector choice and placement can be mapped to the 0 − 1 

knapsack problem which is known to be NP-hard. The mapping is obvious consider 

D × A (D: Detectors and A: Attack vertices). We have to include as many of these 

tuples so as to maximize the benefit without the cost exceeding , the system cost of 

detection. 

2.4.3 Cost–Benefit Analysis 

We address the problem of determining the number and placement of detectors as 

a cost-benefit exercise. The system benefit is calculated by the BENEFIT function 

shown below. This specific design considers only the end nodes in the BN, corre­

sponding to the ultimate attack goals. Other nodes that are of value to the system 

owner may also be considered in alternate designs. 
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Algorithm 2.2 BENEFIT (di, aj ) 

1:	 //This is to calculate the benefit from attaching detector di to attack vertex aj 

2:	 //F is the set of end attack vertices fk �M 
3:	 F ← k=1 fk 

4:	 for all fk ∈ F do 

5:	 perform Bayesian inference with di as the only detector in the network and 

connected to attack vertex aj 

6: calculate P recision(fk, di, aj ) 

7: calculate Recall(fk, di, aj)  	 j (1+β2 ) P recision(fk,di,aj )×(Recall(fk,di,aj )m di8: systemBenefit ← i=1 
 	 j 
βd
2 
i 
×P recision(fk,di,aj )+Recall(fk,di,aj ) 

9: 

10:	 end for 

11:	 return systemBenefit 
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The BENEFIT function is used to calculate the benefit from attaching a detec­

tor to an attack vertex in the Bayesian network. To evaluate the performance of a 

detector, the algorithm uses two popular measures from statistical classification, pre­

cision and recall. Precision is the fraction of true positives (TP) determined among 

all attacks flagged by the detection system. Recall is the fraction of TP determined 

among all real positives in the system. Then, the BENEFIT function combines both 

measures into a single measure, Fβ − measure [32], which is the weighted harmonic 

mean of precision and recall and a popular method to evaluate predictors. β is the 

ratio of recall over precision, defining the relative importance of one to the other. The 

resulting Fβ −measure constitutes the output of the BENEFIT function and is called 

the systemBenefit, provided from attaching the detector to the Bayesian network. 

The cost model for the system under analysis is defined by the following formula, 

corresponding to the expectation (in the probabilistic sense) of the cost: 

MM 
COST (di, aj ) = P robfk (TP ) × (costrespond) + P robfk (FP ) × (costrespond) 

k=1 j
+P robfk (FN) × (costnotrespond

We calculate the cumulative cost associated by selecting a detector, based on its 

different outcomes with respect to the end nodes: true positive (TP), false positive 

(FP), and false negative (FN). True negatives (TN) are not considered to compute the 

detector cost as we believe there should not be any penalty for correct classification 

of non-malicious traffic. The cost of positive (FP and TP) outcome is related to the 

response made by the detection system, whereas the FN cost depends on the damage 

produced by not detecting the attack. 

In our design, all probability values (TP, FP, and FN) are first computed by 

performing sampling on the Bayesian network, since there are no real data (logs) 

when the system starts and placement of detectors is calculated for the first time. 

After the initial configuration is done and the system has been monitored for some 

time, the detection system can be reconfigured by using the log files collected to 

compute new probability values. 
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2.4.4 FPTAS Algorithm 

The mapping of our DETECTOR-PLACEMENT problem to the 0-1 Knapsack 

problem allows us to utilize the existing algorithms for the popular NP-hard op­

timization problem. In particular, the Knapsack problem allows approximation to 

any required degree of the optimal solution by, as previously mentioned, using an 

algorithm classified as (FPTAS) since the algorithm is polynomial in the size of the 

instance n and the reciprocal of the error parameter f. An FPTAS is the best possi­

ble solution for an NP-hard optimization problem, assuming of course that P  = NP . 

The original FPTAS for the 0-1 Knapsack problem was given in [33]. 

A description of the FPTAS implemented for our experiments follows and is 

adapted from [34], [35]. The scheme is composed of two steps: first, the scaling 

of the benefit space to reduce the number of different benefit values to consider and 

second, running a pseudo polynomial time algorithm based on the dynamic program­

ming technique on the scaled benefit space. 

Step 1 - Scaling Step 

To obtain the FPTAS, the benefit space is scaled to reduce the number of different 

profit values and effectively bound the profits in n, the input size. By scaling with 

respect to the error parameter f, the algorithm produces a solution that is at least 

(1 − f) times the optimal value, in polynomial time with respect to both n and f. The 

algorithm is as follows: 

Algorithm 2.3 BENEFIT SPACE SCALING
 
1: Let B ← benefit of the most profitable object 

EB2: Given f > 0, let E = 
n 

3: n ← length[L] 

Step 2 - Dynamic Programming Step 

Let W be the maximum capacity of the knapsack. All n items under consideration 

are labeled i ∈ 1, . . . , k, . . . , n and each item has some weight wi and a scaled benefit 

value b�i. Then the Knapsack problem can be divided into sub-problems to find an 



�
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optimal solution for Sk; that is the solution for when items labeled from 1 to k have 

been considered, but not necessarily included, in the solution. Then, let B[k, w] be the 

maximum profit of Sk that has total weight w ≤ W . Then, the following recurrence 

allows to calculate all values for B[k, w]: 

⎧
 ⎨
 B[k − 1, w] ifwk > w 
B[k, w] = ⎩ maxB[k − 1, w], B[k − 1, w − wk] + bk else 

The first case of the recurrence is when an item k is excluded from the solution 

since if it were, the total weight would be greater than w, which is unacceptable. 

In the second case, item k can be in the solution since its weight (wk) is less than 

the maximum allowable weight(w). We choose to include item k if it gives a higher 

benefit than if we exclude it. In the formula, if the the second term is the maximum 

value, then we include item k, and we exclude it if the first term is the maximum. 

The final solution B[n, W ] then corresponds to the set Sn,W for which the benefit is 

maximized and the total cost is less or equal to W . j
The running time of FPTAS is given by O n2

E
B , and its design is based on the 

idea of trading accuracy for running time. The original benefit space of the 0-1 

Knapsack problem is mapped to a coarser one, by ignoring a certain number of least-

significant bits of benefit values, which depend on the error parameter f. The mapped 

coarser instance is solved optimally through an exhaustive search by using a dynamic 

programming-based algorithm. The intuition, then, is to allow the algorithm to run 

in polynomial time by properly scaling down the benefit space. This thus provides a 

trade-off between the accuracy and the running time. 

2.5 Experimental Systems 

We created three Bayesian networks for our experiments modeling two real systems 

and one synthetic network. These are a distributed electronic commerce (e-commerce) 

system, a Voice-over-IP (VoIP) network, and a synthetic generic Bayesian network 

that is larger than the other two. The Bayesian networks were manually created from 
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attack graphs that include several multi-step attacks for the vulnerabilities found in 

the software used for each system. These vulnerabilities are associated with specific 

versions of the particular software, and are taken from popular databases [24], [25]. 

An explanation for each Bayesian network follows. 

2.5.1 E-Commerce System 

The distributed e-commerce system used to build the first Bayesian network is 

a three tier architecture connected to the Internet and composed of an Apache web 

server, the Tomcat application server, and the MySQL database backend. All servers 

are running a Unix-based operating system. The web server sits in a de-militarized 

zone (DMZ) separated by a firewall from the other two servers, which are connected 

to a network not accessible from the Internet. All connections from the Internet 

and through servers are controlled by the firewall. Rules state that the web and 

application servers can communicate, as well as the web server can be reached from 

the Internet. The attack scenarios are designed with the assumption that the attacker 

is an external one and thus her starting point is the Internet. The goal for the attacker 

is to have access to the MySQL database (specifically access customer confidential 

data such as credit card information node 19 in the Bayesian network of Figure 2.4). 

A complete description of the Bayesian network used in the experiments is presented 

in Appendix A (Figures A.1 and A.2). 

As an example, an attack step would be a portscan on the application server (node 

10). This node has a child node, which represents a buffer overflow vulnerability 

present in the rpc.statd service running on the application server (node 12). The 

other attack steps in the network follow a similar logic and represent other phases of 

an attack to the distributed system. The system includes four detectors: IPtables, 

Snort, Libsafe, and a database IDS. As shown in Figure 2.4, each detector has a 

causal relationship to at least one attack step. 
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Fig. 2.4. Network diagram for the e-commerce system and its correspond­
ing Bayesian network. The white nodes are the attack steps and the gray 
nodes are the detectors. 

2.5.2 Voice-over-IP (VoIP) System 

The VoIP system used to build the second network has a few more components, 

making the resulting Bayesian network more complex. The system is divided into 

three zones: a DMZ for the servers accessible from the Internet, an internal network 

for local resources such as desktop computers, mail server and DNS server, and an 

internal network only for VoIP components. This separation of the internal network 

into two units follows the security guidelines for deploying a secure VoIP system [26]. 

The VoIP network includes a PBX/Proxy, voicemail server and software-based 

and hardware-based phones. A firewall provides all the rules to control the traffic 

between zones. The DNS and mail servers in the DMZ are the only accessible hosts 

from the Internet. The PBX server can route calls to the Internet or to a public-

switched telephone network (PSTN). The ultimate goal of this multi-stage attack is 

to eavesdrop on VoIP communication. There are 4 detectors: IPtables, and three 

network IDSs on the different subnets. 
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Fig. 2.5. VoIP system and its corresponding Bayesian network. 

A third synthetic Bayesian network was built to test our framework for exper­

iments where a larger network, than the other two, was required. This network is 

shown in Figure 2.7(a). 

2.6 Experiments for Greedy Algorithm 

The correct number, accuracy, and location of the detectors can provide an ad­

vantage to the systems owner when deploying an intrusion detection system. Several 

metrics have been developed for evaluation of intrusion detection systems. In our 

work, we concentrate on the precision and recall. Precision is the fraction of true 

positives determined among all attacks flagged by the detection system. Recall is 

the fraction of true positives determined among all real positives in the system. The 

notions of true positive, false positive, etc. are shown in Figure 2.6. We also plot the 

ROC curve which is a traditional method for characterizing detector performanceit 

is a plot of the true positive against the false positive. 

For the experiments we create a dataset of 50,000 samples or attacks, based on 

the respective Bayesian network. We use the Matlab Bayesian network toolbox [27] 
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Fig. 2.6. Parameters used for our experiments: True Positive (TP), False 
Positive (FP), True Negative (TN), False Negative (FN), precision, and 
recall. 

for our Bayesian inference and sample generation. Each sample consists of a set of 

binary values, for each attack vertex and each detector vertex. A one (zero) value 

for an attack vertex indicates that attack step was achieved (not achieved) and a one 

(zero) value for a detector vertex indicates the detector generated (did not generate) 

an alert. Separately, we perform inference on the Bayesian network to determine the 

conditional probability of different attack vertices. The probability is then converted 

to a binary determination whether the detection system flagged that particular attack 

step or not, using a threshold. This determination is then compared with reality, as 

given by the attack samples which leads to a determination of the systems accuracy. 

There are several experimental parameters which specific attack vertex is to be 

considered, the threshold, CPT values, etc. and their values (or variations) are 

mentioned in the appropriate experiment. The CPTs of each node in the network are 

manually configured according to the authors experience administering security for 

distributed systems and frequency of occurrences of attacks from references such as 

vulnerability databases, as mentioned earlier. 

2.6.1 Experiment 1: Distance from Detectors 

The objective of experiment 1 was to quantify for a system designer what is the 

gain in placing a detector close to a service where a security event may occur. Here 

we used the synthetic network since it provided a larger range of distances between 

attack steps and detector alerts. 
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The CPTs were fixed to manually determined values on each attack step. Detec­

tors were used as evidence, one at a time, on the Bayesian network and the respective 

conditional probability for each attack node was determined. The effect of the single 

detector on different attack vertices was studied, thereby varying the distance between 

the node and the detector. The output metric is the difference of two terms. The 

first term is the conditional probability that the attack step is achieved, conditioned 

on a specific detector firing. The second term is the probability that the attack step 

is achieved, without use of any detector evidence. The larger the difference is, the 

greater is the value of the information provided by the detector. In Figure 2.7(b), 

we show the effect due to detector corresponding to node 24 and in Figure 2.7(c), we 

consider all the detectors (again one at a time). The effect of all the detectors shows 

that the conclusions from node 24 are general. 
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Fig. 2.7. Results of experiment 1: Impact of distance to a set of attack 
steps. (a) Generic Bayesian network used. (b) Using node 24 as the 
detector (evidence), the line shows mean values for rate of change. (c) 
Comparison between different detectors as evidence, showing the mean 
rate of change for case. 

The results show that a detector can affect nodes inside a radius of up to three 

edges from the detector. The change in probability for a node within this radius, 

compared to one outside the radius, can be two times greater when the detector is 
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used as evidence. For all Bayesian networks tested, the results were consistent to the 

three edges radius observation. 

2.6.2 Experiment 2: Impact of Imperfect Knowledge 

The objective of experiment 2 was to determine the performance of the detection 

system in the face of attacks. In the first part of the experiment (Exp. 2a), the 

effect of the threshold, that is used in converting the conditional probability of an 

attack step into a binary determination, is studied. This corresponds to the practical 

situation that a system administrator has to make a binary decision based on the 

result of a probabilistic framework and there is no oracle at hand to help. For the 

second part of the experiment (Exp. 2b), the CPT values in the Bayesian network are 

perturbed by introducing variances of different magnitudes. This corresponds to the 

practical situation that the system administrator cannot accurately gauge the level 

of difficulty for the adversary to achieve attack goals. The impact of the imperfect 

knowledge is studied through a ROC curve. 

For Experiment 2a, precision and recall were plotted as a function of the threshold 

value. This was done for all the attack nodes in the Bayesian network and the results 

for a representative sample of six nodes are shown in Figure 2.8. We used threshold 

values from 0.5 to 0.95, since anything below 0.5 would imply the Bayesian network 

is useless in its predictive ability. 

Expectedly, as the threshold is increased, there are fewer false positives and the 

precision of the detection system improves. The opposite is true for the recall of the 

system since there are more false negatives. However, an illuminating observation is 

that the precision is relatively insensitive to the threshold variation while the recall 

has a sharp cutoff. Clearly, the desired threshold is to the left of the cutoff point. 

Therefore, this provides a scientific basis for an administrator to set the threshold for 

drawing conclusions from a Bayesian network representing the system. 
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Fig. 2.9. ROC curves for two attack steps in e-commerce Bayesian net­
work. Each curve corresponds to a different variance added to the CTP 
values. 
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In experiment 2b we introduced variance to the CPT values of all the attack 

nodes, mimicking different levels of imperfect knowledge an admin may have about 

the adversarys attack strategies. When generating the samples corresponding to 

the attacks, we used three variance values: 0.05, 0.15, and 0.25. Each value could 

be associated with a different level of knowledge from an administrator: expert, 

intermediate, and nave, respectively. For each variance value, ten batches of 1,000 

samples were generated and the detection results were averaged over all batches. 

In Figure 2.12, we show the ROC curves for nodes 1 and 6 of the e-commerce 

system, with all four detectors in place. Expectedly, as the variance increases, the 

performance suffers. However, the process of Bayesian inference shows an inherent 

resilience since the performance does not degrade significantly with the increase in 

variance. For node 1, several points are placed so close together that only one marker 

shows up. On the contrary, for node 6, multiple well spread out TP-FP value pairs 

are observed. We hypothesize that since node 1 is directly connected to the detector 

node 3, its influence over node 1 dominates that of all other detectors. Hence fewer 

number of sharp transitions are seen compared to node 6, which is more centrally 

placed with respect to multiple detectors. 
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Fig. 2.10. Impact of deviation from correct CPT values, for the (a) e-
commerce and (b) generic Bayesian networks. 
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Experiment 2c also looked at the impact of imperfect knowledge when defining 

the CPT values in the Bayesian network. Here we progressively changed the CPT 

values for several attack steps in order to determine how much we would deviate 

from the correct value. We used two values 0.6 and 0.8 for each CPT cell (only two 

are independent) giving rise to four possible CPT tables for each node. We plot the 

minimum and maximum conditional probabilities for a representative attack node 

for a given detector flagging. We change the number of CPTs that we perturb from 

the ideal values. Expectedly as the number of CPTs changed increases, the difference 

between the minimum and the maximum increases, but the range is within 0.03. Note 

that the point at the left end of the curve for zero CPTs changed gives the correct 

value. 

Both experiments indicate that the BN formalism is relatively robust to imperfect 

assumptions concerning the CPT values. This is an important fact since it is likely 

that the values determined by an experienced system administrator would still be 

somewhat imperfect. Overall, as long as the deviation of the assumed CPTs from the 

truth is not overwhelming, the network performance degrades gracefully. 

2.6.3 Experiment 3: Impact on Choice and Placement of Detectors 

The objective of experiment 3 was to determine the impact of selecting the detec­

tors and their corresponding locations. To achieve this, we ran experiments on the 

e-commerce and the VoIP Bayesian networks to determine a pair of detectors that 

would be most effective. This pair, called the optimal pair, is chosen according to the 

algorithm described in Section ??. The performance of the optimal pair is compared 

against additional pairs selected at random. We show the result using the ROC curve 

for the two ultimate attack goals, namely node 19 and node 21 in the e-commerce 

and the VoIP systems. 

To calculate the performance of each pair of detectors, we created 10,000 samples 

from each Bayesian network, corresponding to that many actual attacks. Then we 
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performed Bayesian inference and calculated the conditional probability of the attack 

step, given the pair of detectors. We determined the true positive rate and false 

positive rate by sweeping across threshold values. 
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Fig. 2.11. ROC curves for detection of attack steps, using pairs of detec­
tors, in the e-commerce network (left) and the VoIP network (right). 

Results show that the pair of detectors determined from the algorithm performs 

better than the other randomly selected pairs. Figure 2.11a shows the situation in 

which a single detector (d20) attached to two attack nodes (x19, x18) performs better 

than two detectors (d13 and d7, or d12 and d3). The placement of the detector d20 

affects the performance. This can be explained by the fact that node 18 is more 

highly connected in the attack graph and therefore attaching detector d20 to that 

node, rather than node 16, provides better predictive performance. 

There is a cost of adding detectors to a system, but there is also a cost of having a 

detector attached to more attack nodes, in terms of the bandwidth and computation. 

Thus adding further edges in the Bayesian network between a detector node and an 

attack node, even if feasible, may not be desirable. For the VoIP network, detector 

pair d22 and d18 performs best. This time two separate detectors outperform a single 

high quality detector (d18) connected to two nodes. 

Further details on all experiments performed, including all the probability values 

used for the Bayesian networks, are available at [28]. These are omitted here due 

to space constraints and the interested party is welcome to further read. All the 
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experiments validate the intuition behind our algorithm that the greedy choice of the 

detectors also gives good results when multiple detectors are considered together and 

over the entire Bayesian network. 

2.7 Experiments for FPTAS Algorithm 

The correct number, accuracy, and location of the detectors can provide an ad­

vantage to the system’s owner when deploying an intrusion detection system. Several 

metrics have been developed for evaluation of intrusion detection systems. In our 

work, as first presented in section 2.6, we concentrate on precision and recall. The 

notions of TP, FP, etc., are shown in Figure 2.6. We also plot the ROC curve which 

is a traditional method for characterizing detector performance – it is a plot of the 

true positive against the false positive. 

For the experiments, we create a dataset of 50,000 samples or attacks, based on the 

respective Bayesian network. We use the Bayesian network toolbox for Matlab [27] for 

our Bayesian inference and sample generation. Each sample consists of a set of binary 

values, for each attack vertex and each detector vertex. A one (zero) value for an 

attack vertex indicates that attack step was achieved (not achieved), and a one (zero) 

value for a detector vertex indicates the detector generated (did not generate) an alert. 

Separately, we perform inference on the Bayesian network to determine the conditional 

probability of different attack vertices. The probability is then converted to a binary 

determination – whether or not the detection system flagged that particular attack 

step, using a threshold. This determination is then compared with reality, as given 

by the attack samples which leads to a determination of the system’s accuracy. There 

are several experimental parameters – which specific attack vertex is to be considered, 

the threshold, CPT values, etc. – and their values (or variations) are mentioned in 

the appropriate experiment. The CPTs of each node in the network are manually 

configured according to the authors’ experience administering security for distributed 
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systems and frequency of occurrences of attacks from references such as vulnerability 

databases, as mentioned earlier. 

2.7.1 Experiment 4: Comparison between Greedy algorithm and FPTAS 

The objective of experiment 1 was to determine the performance of the FPTAS and 

compare it to the Greedy algorithm, using the Bayesian network for the e-commerce 

distributed system. The experiment was repeated for different capacity thresholds, 

representing cases for different numbers of detectors (1, 2, 3, or 4). For FPTAS, the 

algorithm used f = 0.01 since varying the parameter for different values, from 0.01 to 

0.30, produced no relevant change on the resulting set of detectors and the running 

time was similar to the one from Greedy. More information on the running times is 

provided at the end of this section. 

In all cases of the experiment, FPTAS performed better than Greedy algorithm in 

terms of achieving a higher benefit. FPTAS always first picked the (detector, location) 

pair (d20,a19) closer to the attack goal of interest and with the highest benefit, given 

the capacity constraint. Nevertheless, the selection of (detector, location) pairs was 

not accumulative as the capacity threshold was increased. As an example, when the 

threshold was set to 0.60 (representing the case for two detectors picked), FPTAS 

selected pairs (d20,a19) and (d3,a1) but when threshold was increased to 1.20 (three 

detectors), FPTAS selected (d20,a19), (d20,a17), and (d3,a2), removing (d3,a1) from 

the solution set. The reason for this situation is that as the capacity threshold is 

increased, it might include a detector with higher benefit and cost than one selected 

under the previous threshold considered. 

The performance of the Greedy algorithm was interesting as it always started 

selecting the (d3,a1) pair, regardless of the capacity threshold. This actually shows 

the drawback of the Greedy algorithm. It picks detectors that are accurate but are far 

from the ultimate attack goals that we are interested in. The case when the threshold 

was set to W = 0.51 (one detector) represented an example of a worst-case scenario 
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Table 2.1 
Comparison between Greedy algorithm and FPTAS for different cost val­
ues. 

Capacity 

(W=0.51) 

Capacity 

(W=0.60) 

Capacity 

(W=1.20) 

Capacity 

(W=1.50) 

Selections made 

by Greedy 

algorithm 

(d3, a1) (d3, a1) 

(d3, a2) 

(d3, a1) 

(d3, a2) 

(d20, a19) 

(d3, a1) 

(d3, a2) 

(d20, a19) 

Benefit 0.64 0.61 1.46 2.05 

Cost 0.12 0.42 0.88 1.27 

Selections made 

by FPTAS 

algorithm 

(f = 0.01) 

(d20, a19) (d20, a19) 

(d3, a1) 

(d20, a19) 

(d20, a17) 

(d2, a3) 

(d20, a19) 

(d20, a17) 

(d3, a1) 

(d7, a4) 

Benefit 0.91 1.57 1.49 2.21 

Cost 0.46 0.58 1.21 1,41 

since the ratio between the optimal selection and the greedy choice was 1
2 . Still, as the 

threshold was increased, the Greedy algorithm seemed to correct itself and provide a 

solution closer to the optimal set. For cases of W = 1.20 and W = 1.50, the Greedy 

algorithm had all but one of the (detector, location) pairs that are part of the solution 

set chosen by FPTAS. 

An interesting result is the cost associated to the detectors picked by the Greedy 

algorithm when compared to the choices made by FPTAS. In all our experiments, 

the selections made by Greedy had an overall lower cost and benefit than FPTAS. 

Although the cost value achieved by Greedy might be considered positive result, 

it is important to remember that our DETECTOR-PLACEMENT problem is an 

optimization problem where we try to maximize the benefit. 
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Fig. 2.12. ROC curves for detectors picked by Greedy (dashed line) and 
FPTAS (solid line) for different capacity values: (a) W = 0.51, (b) W = 
0.60, (c) W = 1.20 and (d) W = 1.50. 

The ROC curves shown in Figure 2.12 also represent the results from the exper­

iment. In (a) and (b), the Greedy algorithm starts picking detectors too far away 

from the attack goal such that it doesn’t have any (TPR,FPR) points, except for 

(0, 0) and (1, 1). We decided not to plot such lines because the performance of the 

detector(s) selected is no better than flipping a (fair) coin to determine if the attack 

goal has been achieved. 

FPTAS performs better than the Greedy algorithm by immediately picking the 

detector closest to the attack goal, in the case of cost = 0.51 (one detector). In this 

case, FPTAS picks detector d20, which is directly connected to the attack goal. In 

comparison, the Greedy algorithm starts by picking the detector farthest away from 

the attack goal. The reason for this is that such a detector has the highest benefit­
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to-cost ratio among all detectors. The problem is that this ratio does not reflect the 

actual performance of the detector for the attack goal. Such performance is shown in 

the corresponding ROC curve (one detector). 

In the case of cost = 0.60 (two detectors), The Greedy algorithm follows a similar 

pattern as the previous case, picking the remaining detector with highest benefit-to­

cost ratio. This detector is also far from the attack goal. In contrast, FPTAS picks 

a detector connected to an attack step, which is connected to attack goal a19, and 

increasing the overall True Positive Rate of the detection system. Nevertheless, the 

same addition also increases the false positive rate. 

For cases of cost = 1.20 (three detectors) and 1.50 (four detectors), the Greedy 

algorithm starts picking detectors closer to the attack goal that, as is shown in the 

corresponding ROC curves, perform relatively similar to the set of detectors selected 

by FPTAS. 

In conclusion, FPTAS starts by selecting the closest (best) detector for the attack 

goal, and as it adds more detectors improves (marginally) the TPR of the detection 

system but with a price (also increasing the FPR). The Greedy algorithm selects 

from a decreasingly sorted list of detectors, according to their benefit-to-cost ratio. 

These are two examples of the first experiment we performed with Bayesian networks, 

where we demonstrated that as distance increases between detector and attack goal, 

the detection capability decreases. 

We evaluated the running time for both algorithms by performing 100 execution 

runs for the Greedy algorithm and for each FPTAS with an error parameter (f) 

from 0.0001 to 1. Figure 2.13 summarizes the findings on the running time for both 

algorithms. It shows the results for FPTAS, for f from 0.0001 to 0.1 along with an 

exponential regression curve to fit the series of data points collected. In the case of the 

Greedy algorithm, we report a single value (represented by a straight line at 0.0523 

seconds) since it is unaffected by f. From the results, the Greedy algorithm ran faster 

than FPTAS, when the error parameter was less than 0.01. In our experiments, 

around that error value (0.01) they both showed similar running times. For the 
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Fig. 2.13. Execution time comparison between Greedy algorithm and 
FPTAS, for different values of the error parameter (f). In our experiments, 
values of f equal or larger than 0.01 allow FPTAS to run faster than 
Greedy. 
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Table 2.2
 
Sensitivity analysis to different low cost values and Capacity W = 0.90.
 

Low Greedy FPTAS (f = 0.01) 

0.1 (d3, a1) 

(d3, a2) 

(d13, a12) 

(d20, a19) 

(d20, a17) 

(d3, a2) 

0.2 (d3, a1) 

(d3, a2) 

(d20, a19) 

(d20, a17) 

0.3 (d20, a19) (d20, a19) 

Greedy algorithm it took on average 0.0523 seconds, while for FPTAS the average 

running time was 0.0499 seconds. We excluded from both algorithms the time taken 

to create the Bayesian network, the samples and to compute the probability values. 

All are necessary inputs for both algorithms and took 32.75 seconds on average to 

create and compute. 

2.7.2 Experiment 5: Sensitivity to Cost Value 

The objective of experiment 2 was to evaluate the impact of varying the quan­

titative value assigned to each cost category (low, medium, high). Three values 

were used for each category: low (0.10, 0.20, 0.30), medium (0.40, 0.50, 0.60) and high 

(0.70, 0.80, 0.90). The experiment was repeated on both algorithms, FPTAS and 

Greedy algorithm, using the Bayesian network for the e-commerce distributed system 

and for different knapsack capacities (0.51, 0.90, 1.20, 1.50, 2.00, 2.50, and 3.50). Such 

capacities correspond to the total resources available to the administrator to deploy 

and administer the detection system. For FPTAS, the algorithm used f = 0.01. 

Tables 2.2 and 2.3 summarize the results for the low and medium cost values 

under two capacity scenarios. Table 2.2 is for capacity of 0.90, which corresponds 
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to two detectors selected by both algorithms. Table 2.3 is for capacity of 2.0, which 

corresponds to five detectors selected. 

Table 2.3
 
Sensitivity analysis to different medium cost values and Capacity W =
 
2.00. 

Medium Greedy FPTAS (f = 0.01) 

0.4 (d3, a1) 

(d3, a2) 

(d20, a19) 

(d20, a17) 

(d7, a4) 

(d20, a19) 

(d20, a17) 

(d13, a12) 

(d3, a2) 

(d3, a1) 

0.5 (d3, a1) 

(d3, a2) 

(d20, a19) 

(d20, a17) 

(d13, a12) 

(d20, a19) 

(d20, a17) 

(d13, a12) 

(d3, a2) 

(d3, a1) 

0.6 (d3, a1) 

(d3, a2) 

(d20, a19) 

(d20, a17) 

(d13, a12) 

(d20, a19) 

(d20, a17) 

(d13, a12) 

(d3, a2) 

(d3, a1) 

Varying the quantitative value of a cost level seems to only slightly affect the 

outcome from the algorithms. In all cases, both algorithms are somehow consistent 

picking at least the first two or three (detector, attack node) pairs, while varying the 

quantitative value of the cost level. This is a positive result since the quantitative 

values are arbitrarily determined by the system administrator or person responsible 

for assessing the detection systems. 
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Comparing these results to the previous experiment, both the Greedy algorithm 

and FPTAS performed as they did in the previous experiment. In the case of Greedy 

algorithm, it keeps picking (d3, a1) before any other pair as this has the highest benefit­

to-cost ratio. The FPTAS algorithm starts by picking (d20, a19) as it shows the highest 

benefit for the knapsack capacity constraint, regardless of the different values used 

for each cost level. In the case when a (detector, attack node) pair is changed because 

a level value has been changed, this can be explained from the impact the pair has 

on the individual cost assigned to each pair. 

2.7.3 Experiment 6: ROC curves across Different Attack Graphs 

The goal of this experiment is to show the performance of each algorithm, Greedy 

and FPTAS, by picking a pair of detectors for different attack goals. All attack goals 

in the e-commerce Bayesian network were used to evaluate the performance of the 

algorithms. 

We decided to limit the size of the set of detectors picked to two, for each case and 

algorithm, since in our experience it is a reasonable number of detectors for a system 

administrator to use to defend a particular attack goal. Although such number would 

ultimately depend on several factors (for example: number of detectors available, the 

size of the network and its corresponding Bayesian network), we believe that the two-

detector scenario allows us to show the behavior of each algorithm for the different 

attack goals considered. 

Table 2.4 shows the detectors picked for each attack goal scenario and the corre­

sponding algorithm used to picked the pair of detectors. Also, a ROC curve is created 

by averaging the FPR and TPR from the different attack goal scenarios. 

The results from this experiment validate the observations from previous exper­

iments. The Greedy algorithm starts by picking the detectors showing the highest 

benefits regardless of its distance from the attack goal. Still, since all attack nodes 

are considered as goals, there are several cases where the Greedy algorithm will pick 
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detectors close to the goal and with high benefit values. Therefore, the ROC curve 

(dashed line) shown in Figure 2.14 performs just slightly worse than in the case of 

the FPTAS algorithm. Looking at the choices made by FPTAS, it consistently picks 

detectors with a high benefit and close to the attack goal considered. 

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

FPTAS
Greedy

Fig. 2.14. ROC curves for detectors picked by Greedy (dashed line) 
and FPTAS (solid line) across all different attack goals in E-Commerce 
Bayesian network. 

All the experiments validate the intuition that the algorithms can provide good 

results when multiple detectors are considered together and over the entire Bayesian 

network. The Greedy algorithm performed well under the scenarios considered, which 

we believe a good representation of the cases found in real-world systems. Still, as it is 

shown in Appendix B, there could be some scenarios for which the Greedy algorithm 

could produce results as low as half of the optimal solution. The FPTAS allows 

getting closer to the optimal solution as the algorithm is bounded by a polynomial in 

the size of the input and the reciprocal of the error parameter. In the experiments the 

FPTAS always selected a solution equal to or better than the Greedy algorithm, in 

terms of the benefit provided. As future work, we will test the algorithms under larger 

scenarios, which will determine the impact of the error parameter on the running time 

of the scheme. 
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2.8 Conclusions and Future Work 

Bayesian networks have proven to be useful tools in representing complex proba­

bility distributions, such as in our case of determining the likelihood that an attack 

goal has been achieved, given evidence from a set of detectors. By using attack graphs 

and Bayesian inference, we can quantify the overall detection performance in the sys­

tems by looking at different choices and placements of detectors and the detection 

parameter settings. We also quantified the information gain due to a detector as a 

function of its distance from the attack step. Also, the effectiveness of the Bayesian 

networks can be affected by imperfect knowledge when defining the conditional prob­

ability values. Nevertheless, the Bayesian network exhibits considerable resiliency 

to these factors, as our experiments showed. Finally, we compared the performance 

of Greedy and FPTAS algorithms to determine a set of detectors given an attack 

goal. FPTAS consistently outperformed Greedy, although the latter could be used in 

scenarios where time constraints exist. 

Future work will include looking at the scalability issues of Bayesian networks and 

its impact on determining the location for a set of detectors in a distributed system. 

The probability values acquisition problem can be handled by using techniques such 

as the recursive noisy-OR modeling [29] or using honeynets to monitor the behavior 

of attackers and compute the corresponding probability values. Experimentation is 

required to determine its benefits and limitations for our scenario. 
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3. SECURE CONFIGURATION OF INTRUSION 

DETECTION SENSORS FOR CHANGING ENTERPRISE 

SYSTEMS 

3.1 Introduction 

Current computer attacks against distributed systems involve multiple steps, thanks 

to attackers usually taking multiple actions to achieve their ultimate goal to compro­

mise a critical asset. Such attacks are called multi-stage attacks (MSA). As today’s 

enterprise systems are structured to protect their critical assets, such as, a mission-

critical service or private databases, by placing them inside the periphery, MSAs 

have gained prominence. Examples include the breach of a large payment processing 

firm [37] and the breaches published by the U.S. Department of Health & Human 

Services [38]. MSAs are characterized by progressively achieving intermediate attack 

steps and progressing using these as stepping stones to achieve the ultimate goal(s). 

Thus, prior to the critical asset being compromised, multiple components are com­

promised. Logically, therefore, to detect MSAs, it would be desirable to detect the 

security state of various components in an enterprise distributed system—the outward 

facing services as well as those placed inside the periphery. Further, the security state 

needs to be inferred from the alerts provided by intrusion detection sensors (hence­

forth, shortened as “sensors”) deployed in various parts of the system. 

In the context of MSAs against distributed systems, this is challenging because 

sensors are designed and deployed without consideration for assimilating inputs from 

multiple detectors to determine how an MSA is spreading through the protected 

system. Prior work has shown that it is possible to determine the choice and place­

ment of sensors in a systematic manner and at runtime, perform inferencing based 

on alerts from the sensors to determine the security state of the protected system 
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components [36]1 . In achieving this, the solutions have performed characterization of 

individual sensors prior to deployment, in terms of their capability to detect specific 

attack step goals. At runtime, inferencing has been performed on the basis of the 

evidence—the alerts from the sensors—to determine the unobservable variables—the 

security state of the different components of the protected system. The sensors may 

be either network-based sensors, which observe incoming or outgoing network traffic, 

or host-based sensors, which observe activities within a host. 

However, no existing solution has handled the various sources of dynamism that 

are to be expected in large-scale protected systems deployed in enterprise settings. 

The underlying protected system itself changes with time, with the addition or dele­

tion of hosts, ports, software applications, or changes in connectivity between hosts. 

A static solution is likely to miss new attacks possible in the changed configuration 

of the protected system as well as throw off false alarms for attack steps that are 

just not possible under the changed configuration. The nature of attacks may also 

change with time or the anticipated frequencies of attack paths may turn out to be not 

completely accurate based on attack traces observed at runtime. Existing solutions 

cannot update their ”beliefs” in an efficient manner and are therefore likely to be less 

accurate. Finally, when the compromise of a critical asset appears imminent, fast 

reconfiguration of existing sensors (such as, turning on some rules) may be needed to 

increase the certainty about the security state of the critical asset. Our contribution 

in this chapter is to show how the choice and placement of sensors can be updated 

through incremental processing when the above kinds of dynamism occur. 

The solution we propose in this chapter called Distributed Intrusion and Attack 

Detection System (DIADS) is to have a central inferencing engine, which has a model 

of MSAs as attack graphs. DIADS creates a Bayesian Network (BN) out of an attack 

graph and observable (or evidence) nodes in the attack graph are mapped from sensor 

alerts. It receives inputs from the sensors and performs inferencing to determine 

1In this chapter, we will refer to the distributed enterprise system that is being protected as the 
protected system and the set of sensors embedded in various components of the protected system as 
the sensor system. 
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Fig. 3.1. (a) Results from curve fitting the data points from the Snort ex­
periment. (b) General block diagram of the proposed DIADS. A wrapper 
(software) is used to allow communication from the sensors (circles la­
beled D1 to D4) and firewall to the reasoning engine and viceversa (only 
for sensors). 

whether a rechoosing or replacement of sensors is needed. Further, it can reconfigure 

existing sensors, by turning on or off rules or event definitions based on the changed 

circumstances. Thus, the inferencing engine has a two-way communication path with 

the sensors. DIADS determines changes to the protected system by parsing changes 

to firewall rules at network points as well as at individual hosts and updates the BN 

accordingly. If on the basis of current evidence, it determines that a critical asset 

(also synonymously referred to as a crown jewel) will imminently be compromised, it 

determines what further sensors close to the asset should be chosen, or equivalently, 

what further rules in an already active sensor should be turned on. 

One may think that a perfectly acceptable, and a much simpler, solution is to 

activate all the available sensors and turn on all the available rules at any sensor. 

Thus, there will be no reason to react to dynamic changes of the three types mentioned 

above. However, this will impose too high an overhead on the protected system 

in terms of the amount of computational resources that will be required and the 

frequency of false alerts that will be generated. For example, we determine empirically 

that for the popular Snort IDS [23] turning on the default set of rules will cause it to 

potentially take 85 seconds to match a single packet (corresponding to 9700 rules in 
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Figure 3.1). Therefore there is the motivation to dynamically reconfigure the sensors 

according to the activity observed in the network. 

To sum up, in this chapter we make the following contributions: 

1. We design a distributed intrusion detection system that can choose and place 

sensors in a distributed system to increase the certainty of knowledge about the 

security state of the critical assets in the system. 

2. We imbue our solution with the ability to evolve with changes to the protected 

system as well as the kinds of attacks seen in the system. 

3. Through domain-specific optimizations, we make our reasoning engine fast enough 

that it can perform reconfiguration of existing sensors while a multi-stage attack 

(MSA) is coursing through the protected system. 

We structure the remainder of this chapter as follows. In Section 4.5 we review 

previous work on distributed intrusion detection systems (DIDS), MSA, and proba­

bilistic approaches to intrusion detection. Section 3.3 states the problem studied and 

the threat model considered. Section 3.4 presents the proposed DIADS framework 

to detect MSAs and to reconfigure detection sensors, including a description of the 

different components and algorithms used. In Section 3.5 we provide a description 

of the experiments performed along with the results. Finally, Section 4.6 provides 

conclusions and future work. 

3.2 Related Work 

There has been previous work on developing and proposing DIDSs. Early exam­

ples of these systems are [39], [40], [41], and [42]. A starting point for DIDSs is the 

collaboration between Lawrence Livermore National Labs, U.S. Air Force and other 

organizations [39]. It represented the first attempt to physically distribute the detec­

tion mechanism, while centralizing the analysis phase in a single component, running 

a rule-based system. 
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Another distributed IDS is EMERALD [40]. It is a signature- and anomaly-based 

distributed IDS with statistical analysis capabilities (rule-based and Bayesian infer­

ence). The communication among sensors and monitors is structured in a hierarchy. 

NetSTAT [41] is a network-based IDS modeling intrusions as state transition diagrams 

and the target network as hypergraphs. By using both models, the system prioritizes 

which network events to monitor. AAFID [42] is a distributed framework based on 

software agents to collect and analyze data and used as a platform to develop intru­

sion detection techniques. An interesting policy-based proposal based on the popular 

Bro IDS [43] was presented in [44], using intrusion detection sensors in a distributed, 

collaborative manner. 

Unfortunately there has not been much discussion about DIDS in the last few 

years so the impact of more complex distributed systems on the detection capabilities 

of IDS as well as the evolution of MSAs has been somewhat neglected. Previous work 

has primarily concentrated on increasing the accuracy of IDSs by improving their 

true positive (TP) rate on single step attacks. Additionally, it does not consider the 

dynamic nature of the protected system, one of our focus areas. 

Previous work has considered MSAs [45], [46] but within a limited scope. [45] 

proposes an offline-method to correlate alerts using an attack graph, to improve de­

tection rate, while reducing false positive (FP) and false negative (FN) rates. It is 

a rule-based method and does not consider a probabilistic approach. [46] presents 

a formal conceptual model based on Interval Temporal Logic (ITL) to express the 

temporal properties of MSAs. 

A principal component for our framework is an attack graph, from which to create 

a corresponding Bayesian network. An example of previous work on using attack 

graphs for intrusion detection is found in [1]. Other works have previously focused 

on using attack graphs to evaluate (offline) the vulnerability state of the computer 

system [47]. 

Bayesian networks have been used for intrusion detection, examples include [36] 

and [48]. [36] models the potential attacks to a target network using a Bayesian 
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network to determine (off-line) a set of detectors to protect the network. [48] presents 

a method based on Dynamic Bayesian networks to include the temporal properties 

of attacks in a distributed system. 

Alert correlation is an area related to intrusion detection, that has received the 

attention of the research community. Schemes in this area can be classified under two 

basic groups: schemes that require patterns of actual attacks and/or alert interde­

pendencies, and schemes that do not. Members of the first group include [14], [49], 

and [50]. Our proposed framework, can be classified as part of the first group. The 

second group of correlation schemes works without any specific knowledge of attacks. 

Examples include [51], [52]. 

In [14], the authors present a formal framework for alert correlation that constructs 

attack graphs by correlating individual alerts on the basis of the prerequisites and con­

sequences manually associated to each alert. [49] presents techniques to learn attack 

strategies from correlated attack graphs. The basic idea is to compute how similar 

different attack graphs are by using error tolerant subgraph isomorphism detection. 

In [50] the authors built on the results from the previous two papers, integrating 

two alert correlation methods: correlation based on prerequisites and consequences of 

attacks and those based on similarity between alert attribute values. They used the 

results to hypothesize and reason about single attacks possibly missed by the IDSs. 

There are several similarities between their approach and ours. We both represent 

attack scenarios as graphs, assume attack steps are usually not isolated but rather 

part of an MSA. Still, there are also several differences between their alert correlation 

approach and ours. In a nutshell, our approach is adaptive, provides a larger visibility 

of the target network, follows a probabilistic model, and works online, while theirs is 

not. 
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3.3 Problem Statement and Threat Model 

In this chapter, we answer two fundamental questions: 

(1) How to update the configuration of sensors in an enterprise distributed system 

(i.e., one with many hosts and software applications and hence attack injection points) 

based on updated information that is obtained after the protected system and the 

sensor system have been deployed. 

(2) When the imminent threat to a critical asset(s) is high, how to reconfigure existing 

sensors (such as, by activating new rules) to increase confidence in the estimate of 

the security state of the critical asset(s). 

In terms of the model for the protected system, all the components fall target 

network under a single administrative domain and therefore, there is complete trust 

between the owners of the different assets. 

The profile of the attackers includes highly motivated individuals that might have 

an economical incentive to compromise the distributed system. Attackers follow a 

multi-step approach to compromise a resource or acquire data. It could start with 

some reconnaissance, followed by exploitation of different hosts or services in the 

target network. This description also fits the cases where attack sources are botnets 

and malware, that does not include human intervention. We do not address intruders 

who steal data by physically connecting to a host (for example, an insider’s attack 

using a USB memory stick). 

In our framework, one or more critical assets are identified in the protected sys­

tem by the system owner and become the main protection objective of our DIADS 

framework. Each critical asset is represented in the BN as a leaf node. An example of 

a critical asset is a database that contains personally identifiable information (PII). 

The above statement does not preclude having sensors that detect attacks at other 

assets (such as, at a network ingress point), but our inferencing uses such sensors to 

provide evidence of attacks leading up to a potential compromise of the critical assets. 

Also, our DIADS framework is not attempting to create better intrusion detection 
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sensors; rather it is seeking to use existing sensors intelligently to obtain a better 

estimate of the security state of critical assets in an enterprise distributed system. 

We consider only multi-stage attacks (MSAs) to distributed systems. An impor­

tant example is an MSA to a three-tier system (web / application logic / database) 

which might allow an attacker to launch HTTP-based attacks to ultimately reach the 

database and the information stored in it. 

3.4 DIADS Framework 

In this document we propose a distributed intrusion detection framework that 

includes two components: (1) a probabilistic reasoning engine and (2) a network of 

detection sensors to detect various stages of MSAs, as shown in Figure 3.1. The second 

component comprises off-the-shelf sensors, augmented with a standard wrapper that 

allows the sensor to send alerts to the reasoning engine and receive commands back 

from the reasoning engine. The architecture is able to alert intrusion events related to 

potential MSAs and determine if any critical asset has been compromised, or is under 

imminent likelihood of being compromised based on current evidence of the spread 

of the attack. It also allows for reconfiguration of sensors according to changes to the 

protected system that is being monitored by the DIADS. Through this architecture, 

the DIADS can reduce the number of false positives that it would report if it were 

independently considering each step of the MSA. A block diagram of the proposed 

architecture is shown in Figure 3.2. 

The reasoning engine represents different possible MSAs as a single Bayesian net­

work, which is updated according to events reported by the detection sensors and 

the changing network configuration. The probabilistic engine can also request more 

information from sensors when necessary. The reasoning engine can estimate the se­

curity state of the critical assets given partial information about multi-stage attacks 

and from imperfect or noisy sensors. 
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Fig. 3.2. Diagram of the proposed framework, providing details on the 
components of the reasoning engine. 
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Fig. 3.3. The framework uses four algorithms, three to update the rea­
soning engine and one to reconfigure the detection sensors. 

The reasoning engine also collects background information about the distributed 

system so the model can be updated. As a starting point, we should consider the 

network and policy configurations stored in a firewall. The firewall can be at a 

network ingress-egress point as well as at individual hosts. The firewall configuration 

indicates which components are allowed to communicate with which components and 

thus has an important determining effect on the structure of the attack graph, and 

consequently, on the structure of the BN. 

3.4.1 Probabilistic Reasoning Engine 

To build our reasoning engine, we use Bayesian Network (BN), which is a popular 

probabilistic graphical model. It is a macro-language, representing joint distributions 

compactly by using a set of local relationships between random variables and specified 

by a graph. A key point is that the missing edges in the graph imply the conditional 

independence between the corresponding nodes. BN captures the characteristic in 

real-world data of locality of influence, the idea that most variables are influenced by 

only a few others. [36] shows the implications of this. 
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Bayesian networks combine graph theory with statistical techniques to model MSA 

scenarios. In our framework, we use an attack graph to create the structure of the 

BN, a directed acyclical graph. Each node in the graph represents a vulnerability, 

more specifically, a 3-tuple: host × port × vulnerability existing in the target network. 

This means that the service running on that host and listening on that port has that 

vulnerability. The edges between nodes represent the direct precondition relationship 

between the attack steps. The BN also includes nodes to represent intrusion detection 

sensors. An edge A → D from an attack step node to a sensor node represents 

the possibility of the sensor detecting that attack step, with the CPT quantifying 

the accuracy and precision of the detection. Each node is parametrized by a set of 

probability values and represented as a conditional probability tables (CPT). Proposed 

in previous work [36] and also suggested by [48], the Bayesian network representation 

can unify the information available from multiple sensors, in order to determine if an 

MSA is occurring. 

There are several benefits of using Bayesian networks. First, it can be a more 

appropriate representation of reality than deterministic approaches, accounting for 

several sources of uncertainty—noisy sensors, unknown intentions of the adversary 

affecting the path of the MSA, and unknown difficulty of transitioning from one 

attack step node to the next. A potential drawback of probabilistic models is the 

combinatorial explosion faced when computing a joint probability distribution. In our 

work, we address this issue by using the Noisy-OR model [53] to represent the CPTs. 

Further details are provided in section 3.4.5. Our DIADS framework is composed 

of four algorithms, which are schematically shown in Figure 3.3. Pseudo-code for 

algorithms 1, 2, and 4 are provided in Appendix C. 

3.4.2 Algorithm 1: BN update to structure based on Firewall rule changes 

The algorithm produces a list of nodes and edges that should be added to (Va, Ea) 

or deleted from (Vd, Ed) the Bayesian network to represent changes to the protected 
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system. We use changes to firewall rules as a proxy for the changes to the protected 

system. The firewalls can be at a network ingress-egress point or at individual hosts 

in the system. 

The message passed from the Firewall to the reasoning engine has the follow­

ing structure: message = < number, srcIPaddr, destIPaddr, portnumber, action, 

ruletype > where number refers to the order of the rule in the firewall table. srcIP addr 

and destIP addr are the IP addresses for the source and destination of communica­

tion; portnumber is the TCP or UDP port number (16-bits in IPv4); action is one of 

three options: allow, deny or drop; and ruletype refers to the change made to the rule 

table: adding a new rule, modifying an existing rule or deleting an existing rule. For 

the purposes of our experiments, we only considered firewall rule tables composed of 

allow rules followed by a denyall rule. So effectively, the rule table creates a policy 

where allowed communication is explicitly defined and everything else not defined, is 

denied. 

The algorithm can be divided into four parts: how to select the nodes and edges 

to be added, if the rule has type add (lines 1 to 11); how to select the nodes and 

edges to be deleted, if the rule has type delete (lines 13 to 29); checking for the 

resulting changes to the BN to not introduce cycles and to confirm that the resulting 

nodes are part of a path to the nodes representing the critical assets (lines 31 to 

37); and finally, the converting the destIPaddr:port nodes into their corresponding 

address:port:vulnerability nodes in the BN. 

When a rule has type add or delete, the algorithm checks if the source and desti­

nation addresses are new to the BN or already exist. If a node exists, then the edges 

shared with its parents (line 4) or its children (line 7) should be included to the set 

of edges to add (Ea). Also, the edge explicitly defined by the rule is included in (Ea). 

If a node is new, then it should be added to the set of nodes to add (Va). A similar 

approach (but with opposite results) is used for case when a rule has type delete. 

The algorithm then checks the nodes and edges in the resulting BN by running 

Depth First Search (DFS) to determine if the nodes have a path to the critical assets. 
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If the nodes do not, then they are pruned. DFS also checks if the addition creates any 

cycles and if so, the back edges are deleted. The first is an important optimization 

focusing the attention of DIADS to the critical assets and limiting the growth of the 

BN. 

Finally, the algorithm transforms the nodes in the sets Va and Vd to nodes in 

the BN. It does this by doing a lookup in a matrix R that maps the host × port to 

the vulnerability. It acquires the raw data for this from the National Vulnerability 

Database (NVD) [25], a public repository of vulnerability management data. 
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(a) Firewall rule table (b) Bayesian network 

Fig. 3.4. Impact of changes to a firewall rule. A new rule (No.7) in 
the firewall table changes the topology of the Bayesian network. Two 
of the four new edges, shown as dashed lines, will be removed by the 
algorithm since they lead to a cycle. A BN node is actually host × port 
× vulnerability, but here for simplicity, we have a single vulnerability per 
service (i.e. per host × port). 

As an example, consider a distributed system connected to the Internet, with 

three computers: a web server (accessible from the Internet), a database server and 

a desktop computer. The database server and the desktop computer are connected 

to the same subnet, while the web server is connected to a separate subnet (DMZ). 

All computers are protected by a network-based firewall and the rule table is shown 
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Fig. 3.5. Example for algorithm 02: initialization of BN CPT. To add a 
new parent (C) to an existing node (A), we create the marginal probability 
Pr(C) from its CVSS (base metric) value and use it to update the new 
CPT of A. 

in Figure 3.4(a). A Bayesian network can be built from the table, as shown in Figure 

3.4(b). The critical asset is the database server and for simplicity purposes, we have 

assumed one existing vulnerability per host. 

If the rule any −− > FTP:21 allow is now added to the network firewall because 

a new FTP server has been deployed and connected to the DMZ network, the resulting 

Bayesian network is shown in Figure 3.4(b). A new node, Vuln FTP, is added and will 

have five edges. Four are inbound, created from the added rule and one outbound, 

from rule No. 1 in the table. The inbound edges from nodes Vuln Web and Vuln DB 

are not included in the final Bayesian network as they make the graph cyclical. 

3.4.3 Algorithm 2: Update of BN CPTs based on firewall changes 

Algorithm 2 produces a list of CPTs for the changed nodes, i.e., nodes for which 

there is an increase or reduction in the number of parents of the nodes, according to 

the output from Algorithm 1. To update the CPT, we use the base metric value of 

the CV SS score [54] of the node (corresponding to a vulnerability) to be added or 

removed and divide it by 10 to use it as its marginal probability value. Then if the 

resulting CPT is for an existing node, we take max(newP rob(vi) + Δ, oldP rob(vi)). 

Figure 3.5 shows an example of how we use the formula. 
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In figure 3.5, first a new parent node C is added to an existing node A in the 

BN. We take the base metric score (7) of the vulnerability corresponding to node C 

and divide it by 10. Then use the formula max(P rob(C) + Δ, oldP rob(A|previous 

evidence)) to create the new CPT. In our experiments, we use Δ = 0.05. Figure 3.5 

also shows the CPT when node C is later removed. The base metric score of the 

other parent node (B) is used to update the CPT. 

3.4.4 Algorithm 3: BN update of CPT based on incremental trace data 

The alerts received by the reasoning engine from the individual sensors are used 

to update the CPTs in the Bayesian network in an incremental manner. To achieve 

this, this algorithm uses the set of alerts received during a window of time and the 

matrix R, that maps the existing vulnerabilities in the system to their corresponding 

hosts and ports. The output of the algorithm is the set of CPTs with the updated 

values. 

The algorithm uses a popular and powerful model known as Noisy-OR [53] to 

represent each CPT. Noisy-OR allows us to specify the CPT of a node with n parents, 

using with n + 1 parameters as opposed to 2n for binary nodes. This prevents the 

exponential growth experienced by the CPT of a node when the number of parents 

(n) is large. The Noisy-OR model assumes that effect of each parent on the CPT of 

the edge to the child node (vi) is independent from that of the other parents and is 

sufficient to produce the effect (represented by the child node) in the absence of all 

other parents. An additional parent node is added to capture all other causes that 

were not modeled explicitly. The marginal probability of this node is 1 − p0. Then 

the CPT can be built with the following formula, where C represents a combination 

of the values for the parents of the child node: 

   1 − P rob(vi|A = T, Others = F) 
P rob(vi|C) = 1 − (1 − p0)

1 − p0
A=parent(vi)∈C
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3.4.5 Algorithm 4: Update choice of sensors based on runtime inference 

The final algorithm of our framework is used to reconfigure the detection sensors. 

This includes adding and removing sensors, as well as reconfiguring existing ones. 

The high level objective is to reduce the uncertainty of knowing if the critical asset 

has been achieved or not. The algorithm works by looking at the alerts received and 

uses them as evidence to compute the posterior probability of each Bayesian network 

node that corresponds to the critical asset. 

The first step of the algorithm (line 1) is to compute the posterior probability for 

the critical asset, given the evidence received from the currently enabled sensors in 

the system. If the value is larger than a threshold (determined by the system admin­

istrator), this is taken as indication that the critical asset is likely to be compromised 

and therefore greater certainty is needed in the determination of the security state. 

Therefore, the algorithm measures (lines 3 and 4) the impact of candidate sensors, 

which are close to the detected alerts and the critical asset. A radius can be set a 

priori in terms of the number of edges away from a particular node to determine the 

candidate set of sensors. Previous work [36] has shown that the effect of a sensor 

on a Bayesian network node fades beyond 2-3 hops and thus this restriction appears 

reasonable. 

The algorithm determines a new set of detectors by using the Fully Polynomial 

Time Approximation Scheme (FPTAS) presented in [55] for the problem of determin­

ing the placement of intrusion detection sensors. The same cost bound is maintained 

which will prevent the algorithm from blissfully adding new sensors. This problem 

has been mapped to the 0-1 Knapsack problem for which a dynamic programming 

solution (FPTAS) exists that runs in pseudo-polynomial time (running time scales up 

as the solution approaches the optimal). The algorithm finishes by comparing the set 

of current detectors with the new set. The delta between the sets indicates the set of 

detectors to be disabled or enabled, which is output by the algorithm. 
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Fig. 3.6. Connectivity graph for testing scenario, showing the TCP ports 
enabled for communication between different hosts. The shaded nodes 
represent the critical asset (databases) in the protected system. 

3.5 Experiments and Results 

3.5.1 Experimental Setup 

For our experiments, we used attacks against a real-world distributed system 

which is part of an NSF Center at our university and serves content and simulation 

tools for an engineering domain for thousands of users. The system includes fifteen 

hosts that include two environments, one for production and another for development 

of applications and staging prior to moving them to the production environment. 

Each environment includes a web server, an application server and a database server. 

A team of developers’ and consultants’ computers have access to subsets of both 

environments. Communication between all hosts is controlled by firewall rules at 

each host. The corresponding connectivity graph is shown in Figure 3.6. 

In our experiments, the database servers are the critical assets to protect. A 

strong motivation to pick the databases is their role to store critical information for 

the organization. We created a Bayesian Network (BN) from the distributed system 

by first generating a list of the vulnerabilities found by the OpenVAS [56] vulnerability 
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scanner on servers and client machines. Each vulnerability was then mapped to a node 

in the BN by associating it to the host and service(port) where the vulnerability was 

found. Finally, the nodes were connected according to the connectivity information 

for the distributed system. The BN had 345 nodes and 1948 edges. We then pruned 

the BN to only include high risk vulnerabilities, according to OpenVAS, as these ones 

are the primary vectors used by attackers to compromise systems. The final BN had 

90 nodes and 582 edges and is presented in Appendix D. 

We provide comparative results between DIADS (our algorithms presented in this 

chapter) and a static and heuristic-driven choice of sensors. All results are presented 

as Receiver Operating Characteristics or ROC curves [57]. The curve is a graphical 

plot of the tradeoff between true positive rate (TPR, detection rate) and the false 

positive rate (FPR, false alerts) for a detector. The different points in the ROC 

curves are generated by varying the threshold for the probability value for the BN 

nodes corresponding to the critical assets. 

We had a total of 18 possible sensors; 3 sensors for each of the web server, ap­

plication server, and database server, in both the development and the production 

environments. They are all generic sensors with signatures customized to detect the 

class of attack into which the corresponding (vulnerability) node can be categorized. 

For all experiments, for both baseline and DIADS, we constrain the algorithms to 

pick a set of 6 from 18 possible detectors. 

It is important to note that DIADS’ goal is to improve the performance of a set 

of detectors, by considering temporal information (i.e. when detectors are sending 

alerts about a progressing attack or when changes occur to the distributed system). 

For our experiments, we defined detectors with adequate but not perfect performance 

(in terms of TP and FP). It is not our goal to improve the performance of individual 

detectors. 
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3.5.2 Experiment 1: Dynamic Reconfiguration of Detection Sensor 

The first experiment compared the performance between a dynamic reconfigura­

tion of sensors and an static set of sensors, all close to the database servers. The static 

setup follows the intuitive decision of turning on all the sensors at the critical assets, 

in this case the database servers. To test both setups, we use an attack scenario that 

had the following progress: the attack started from the Internet, compromised the 

production web server, from where to compromise the applications server and then 

elevate permissions, and finally compromise the database server. Further details for 

all attack scenarios and the Bayesian network used in all experiments, are provided 

in [58]. 

In this experiment, a set of alerts are generated for the first three steps of the 

attack scenario. This set serves as evidence and is provided to the reasoning engine 

for DIADS to recompute the set of sensors. As shown in Figure 3.7, the dynamic 

reconfiguration setup outperforms the static configuration of sensors. The area under 

the continuous line (dynamic) is greater than the area under the dotted line (static) by 

16% (AreaDIADS = 0.7810 and Areabaseline = 0.6728). This also means, the dynamic 

setup provides a higher detection rate at points when both setups have the same false 

alarm rate. 

A notable point is that the difference between both setups is not large. This 

should be expected as the static setup is concentrated around the database servers 

(the critical asset and final setup in the attack scenario) while the dynamic setup is 

scattered around the protected system. 

3.5.3 Experiment 2: Dynamism from Firewall Rules Changes 

Experiment 2 tested the performance of the dynamic and static setups as changes 

were made to the firewall rule table of the protected system. We considered two 

real scenarios: (1) removing from the system a host belonging to a developer and (2) 

adding a direct communication path is created from a consulant’s host to the database 
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Fig. 3.7. Performance comparison between dynamic configuration of DIDS 
and a set of detectors monitoring only DB servers. 

server, in the development environment (in this case, the consultant determined some 

changes to the database schema had to be tried out in the development environment 

prior to unveiling it on production). For the static configuration, one sensor was 

deployed on each host in both development and production environments. 

For the first firewall change where a developer’s host was removed, we tested 

both setups using an attack scenario starting from another developer’s host. This 

represents the increasingly common client-side attacks. The attack starts as the 

developer visits a malicious website that installs some malware on the host. Then 

permissions are elevated thanks to another existing vulnerability in the developer’s 

host. Then a vulnerability in the database server (production) is exploited and finally 

another vulnerability is used to access the data in the database. For the second 

firewall change where a direct communication path is created, we used a different 

attack scenario. The attack starts from another developer’s host that also visits a 

malicious website and malware is installed in the host. Then a vulnerability in the 

web server (development) is exploited, after which the application server and finally 

the database server, all part of the development environment, are compromised. 
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(a) Removing a host (b) Opening ports to DB server 

Fig. 3.8. Impact on topology changes. (a) Removing a host (developer) 
from network. (b) Allowing direct access between the consultant box and 
the DB development server. 

For DIADS, the BN was modified based on the firewall rule changes and the 

dynamic programming algorithm picked the set of detectors after receiving the alerts 

at the start of the attack - the starting point being the same as in the static case. 

Results from this experiment are shown in Figures 3.8(a) and 3.8(b). The dynamic 

reconfiguration setup performs better under both attack scenarios than the static 

configuration. The area under the curve is greater by 32.7% (AreaDIADS = 0.6809 and 

Areabaseline = 0.5132) in the scenario when a host is removed and 20% (AreaDIADS = 

0.7659 and Areabaseline = 0.6383) in the scenario when a direct access is set up between 

a consultant box and the DB development server. We consider the most interesting 

result to be in Figure 3.8(b), where both setups show similar performance at the start. 

Both lines in the ROC curve have similar slopes, which is expected as the dynamic 

and static setups share 4 out of the 6 initial sensors. But as the alerts from the first 

three attack steps are provided to the reasoning engine in the dynamic setup, three 

sensors are reconfigured. This is the cause of the difference in performance, as shown 

in the ROC cuve. 



68 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

DIADS
Static configuration
(baseline)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

 

 

DIADS
Static configuration
(baseline)

(a) Attack from the Internet (b) Attack from the internal network 

Fig. 3.9. Comparison between our dynamic technique and a static setup 
for two attacks scenarios. The dynamic reconfiguration technique allows 
to reconfigure the detection sensors as alerts from the initial steps of the 
attacks are received. 

3.5.4 Experiment 3: Dynamism with Attack Spreading 

The goal of this experiment was to see if DIADS can reconfigure sensors on the 

fly as an attack spreads through the protected system. We used two different attack 

scenarios: (1) one starting from the Internet and (2) another starting from the internal 

network, a developer’s host. An attack starting from the internal network usually 

requires less steps to reach the critical asset than attacks starting from the Internet. 

The static configuration picks sensors as in the earlier experiment 2 (one for each 

host). 

The results are presented in Figures 3.9(a) and 3.9(b) for the two attack scenarios. 

In the attack starting from the Internet, the static setup shows a lower false alerts 

rate than the dynamic setup. But as evidence is provided, the ROC curve shows 

that the dynamic setup improves its performance. The curve shows the importance 

of taking into account the alerts from the initial stages of the attack to improve the 

performance of detection system. The improvement over the static setup, in terms 
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of the area under the curve, is 23% (AreaDIADS = 0.7845 and Areabaseline = 0.6366). 

During the experiments, 4 of the 6 original sensors are replaced by the reasoning 

engine. 

For the attack starting from internal network, the ROC curve in Figure 3.9(b) 

shows a similar performance between both setups. Three of the six sensors selected 

for the static setup are on the attack path and are quite accurate. Therefore, though 

DIADS outperforms the static setup, the advantage is not very large (11% where 

AreaDIADS = 0.7964 and Areabaseline = 0.7128). This experiment shows promise 

that inferencing in BN can be done fast enough relative to the speed of attacks. 

Of course, further experimentation is needed with a variety of attacks (and attack 

speeds). 

3.6 Conclusions and Future Work 

Current attacks to distributed systems involve multiple steps, with the ultimate 

goal of compromising a critical asset such as a database where important data is stored 

for an organization. In this chapter, we presented a distributed intrusion detection 

system called DIADS that picks and places sensors in a protected system, decreasing 

the uncertainty inherent in estimating the security state of the critical assets in the 

system. DIADS has the ability to evolve when changes are made to the topology of 

the protected system and with further evidence coming in the form of alers while the 

deployed system is operational. 

Future work will include experimenting further with the size of the Bayesian net­

work. We consider we made reasonable assumptions when pruning the Bayesian 

network, such as only including high risk vulnerabilities as nodes. Still, as the size of 

the CPTs for the nodes in the Bayesian network grows exponentially in terms of the 

number of nodes’ parents, we would like to answer the question of whether inferencing 

can be done fast enough. Another area to explore is the impact of evasion techniques 

or attacks directly targeted against DIADS. If an attacker has complete knowledge 
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of our model, she might launch attacks to falsely cause reconfiguration of our sensors 

away from the attack paths. 
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4. WEBCRAWLING TO GENERALIZE SQL INJECTION 

SIGNATURES 

4.1 Introduction 

Network intrusion detection systems (NIDS) are an important and necessary com­

ponent in the security strategy of many organizations. These systems continuously 

inspect network traffic to detect malicious activity and when this happens, send alerts 

to system administrators. One type of NIDS, called misuse-based detector, uses signa­

tures of attacks to inspect the traffic and flag the malicious activity. But a potential 

problem faced by these signature-based NIDS is that as new attacks are created and 

as new kinds of benign traffic are observed, the signatures need to be continuously up­

dated. The current approach to creation of the signatures is manual. Consequently, 

keeping them updated is a Herculean task that involves tedious work by many se­

curity experts at organizations that provide the NIDS software. A big drawback 

of the signature-based schemes that has been pointed out by many researchers and 

practitioners [59], [60] is that due to their relatively static nature, they miss zero-day 

attacks. These are attacks that target hitherto unknown vulnerabilities and conse­

quently, no signature exists for such attacks. Our goal in this work is to automatically 

generate signatures by performing data mining on attack samples. Further, we aim 

to create generalized signatures; “generalized” implies the signatures will be able to 

match some zero-day attacks as well, not just the attack samples that it has been 

trained on. 

We look at the rulesets of three popular misuse-based detectors—Snort, Bro, and 

ModSec. From this, we observe the reflection of the ad hoc manual nature of the 

signature creation (and update) process. We observe that many rulesets include sig­

natures that are too specific, many are disabled by default, and several show clear 
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overlaps. For example, 70% of the almost 20,000 signatures included in the ruleset 

for Snort [30] (snapshot 2920) are disabled by default. The ruleset file sql.rules 

includes different sets of signatures that could be merged as one. For example, sig­

natures with identifiers 19439 and 19440 have the same regular expression, except 

for the last character and hence could easily be merged. Further, we found multiple 

examples of signatures using very simple regular expressions, which increases the risk 

of generating false positive (FP) alerts. For example, several rules in Snort use the 

regex .+UNION\s+SELECT which includes the SQL statements UNION and SELECT to 

detect SQL injection attacks but is also popular in queries from web applications to 

databases. 

In this chapter, we propose a solution for the automatic creation of generalized 

signatures represented as regular expressions, by applying a sequence of two data 

mining techniques to a corpus of attack samples. The goal is to make the process 

less manual (and tedious) and target detection of zero-day attacks. We call our solu­

tion pSigene (pronounced ‘‘psy-gene’’), which stands for probabilistic Signature 

generation. pSigene follows a four-step process. In the first step, it crawls multiple 

public cybersecurity portals to collect attack samples. In the second step, it extracts 

a rich set of features from the attack samples. In the third step, it applies a spe­

cialized clustering technique to the attack sample (training) data collected in step 2. 

The clustering technique also gives the distinctive features for each cluster. In the 

last step a generalized signature is created for each cluster, using logistic regression 

modeling, which is trained both on attack sample data (from step 2) and some benign 

traffic data. Logistic regression gives a probabilistic classifier — given a new sample, 

it can tell with a probability value what is the likelihood of the sample belonging to 

any given cluster. 

There exists a variety of cybersecurity portals from which attack samples can be 

gleaned (step one of the process outlined above), including SecurityFocus [24], the 

Open Source Vulnerability Database [61], the Exploit Database [62] and PacketStorm 

Security [63]. It is crucial to collect a diverse and comprehensive set of attack samples 
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Fig. 4.1. Components of the pSigene architecture, a webcrawl-based cre­
ation process for SQLi attack signatures. For each component, there is a 
reference to the section providing further details. It is shown below each 
component. 

for training the algorithm, which will create the clusters. Regular expressions (regexs) 

are a structural notation for describing similar strings. Regexs are a powerful tool 

used to define languages, per the automata theory definition. Current NIDS have 

incorporated the usage of regexs to generalize signatures, so variations of attacks can 

be detected. We adopt the use of regexs for our generalized signatures. 

Most of the efforts to date to automate the signature creation process has been 

related to malware activity [64], [65], such as for worms and botnets. This landscape 

is different from ours in that we target attack steps that have a small “distance” 

from legitimate activity. Consider for example, SQL injection attacks, which we 

use to demonstrate and evaluate pSigene. A small variation in the where clause, 

such as a tautology “1 == 1”, followed by a comment demarcation symbol “;”, 

can cause a legitimate-looking SQL query to become an attack sample. Second, we 

consider activities where the feature set of each sample is very rich. For example, 

we first started with 477 features for SQL injection attacks, corresponding to various 

keywords, symbols and their relative placements. The rich feature set poses challenges 

and constraints on the kinds of machine learning techniques that can be used. 
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We demonstrate our solution specifically with SQL injection attacks (shortened as 

SQLi attacks). Although there exist elegant preventive solutions to solve this problem, 

like parameterizing SQL statements [66] and escaping special SQL characters [67], in 

practice it seems elusive to completely implement such solutions. SQLi attacks have 

been very dominant in the last couple of years, being used in high-profile cases such 

as intrusions to large technology organizations [68], government agencies [69], and 

software companies [70], [71]. Signatures to improve detection mechanisms, such as 

what pSigene delivers, are necessary as they complement prevention mechanisms. 

pSigene effectively suggests the number of signatures necessary to detect the at­

tacks while helping to reduce the size of each signature, in terms of the number of 

features necessary to define each signature. In our experiments, pSigene collected a 

set of 30,000 attack samples from which we extracted a set of 159 features and created 

nine signatures, all but one of which required 14 or fewer features. For testing, we 

used the popular SQL injection tool called SQLmap [72]. The experimental results 

showed that our signature set was able to detect 86.53% of all attacks while only 

generating 0.037% of false positives. This is a higher true positive rate for SQLi than 

Snort (79.55%) and Bro (73.23%), which use manually created and progressively re­

fined signatures. Bro had no false positive while Snort had about 5X false positives 

compared to pSigene. ModSecurity however performed better than pSigene with a 

true positive rate of 96.07%, and a false positive rate only slightly worse (0.0515% 

compared to our 0.037%). pSigene allows for tuning the relative true positive and 

false positive rates by varying the threshold for the probabilities that are given by 

the logistic regression process. 

The contributions of this work are: 

1. An automatic approach to generate and update signatures for misuse-based 

detectors. 

2. A framework to generalize existing signatures. The detection of new variations 

of attacks is achieved by using regular expressions for the generalized signatures. 
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3. We rigorously benchmark our solution with a large set of attack samples and 

compare our performance to popular misuse-based IDS-es. Our evaluation also 

brings out the impact of practical use case whereby periodically new attack 

samples are fed into our algorithm and consequently the signatures can be 

progressively, and automatically, updated. 

The remainder of this chapter is structured as follows: Section 4.2 presents the 

threat model used along with the different components for the proposed framework. 

Section 4.3 describes the dataset used to evaluate pSigene, the evaluation results 

along with a comparison to existing open-source rulesets. We also determine the 

performance implications of using our approach. A discussion follows in Section 

4.4 about the usage scenarios and limitations of our approach. Then we give an 

overview of previous approaches to automatically generating signatures and detecting 

attacks through interactions between web services and databases. We end with some 

conclusions and future work. 

4.2 Framework Design 

The goal of pSigene is to generate generalized signatures from traces of attack 

samples and non-malicious network traffic. As shown in figure 4.1, the generation 

of the signatures involves four phases. First multiple public cybersecurity portals 

on the Internet are crawled to collect attack samples. In the second step, a set of 

features is extracted from the attack samples. The third step calls for the sample 

set to be grouped using a clustering technique. This step also gives the features that 

distinguish each cluster. In the final step, a generalized signature is created for each 

cluster, using logistic regression modeling. The process allows to create signatures 

that represent a set of similar attacks, reducing the number of rules handled by an 

NIDS. Additionally, by starting from samples of real attacks, we reduce the chances 

for the resulting signatures to flag non-malicious traffic as malicious. 
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To develop our system, we consider the prevalent class of SQL injection (SQLi) 

attacks. They have been a very relevant and popular attack vector for the last few 

years, as it targets databases (indirectly) available on the Internet. To consider SQLi 

attacks, our threat model assumes attacks against custom-developed web applications, 

connected to a database (commonly known as three-tier system). The profile of 

the attackers includes highly motivated individuals that might have an economical 

incentive to compromise the three-tier system. An attacker starts by having a publicly 

accessible description of the system and then browses the web application, looking for 

forms where she can provide user input and then this input can serve as parameters 

for an SQL statement. 

4.2.1 Webcrawling for Attack Samples 

The first phase is to crawl the web to collect attack samples that later are used 

to generate the generalized signatures. The objective is to take advantage of the 

multitude of public web sources available that provide attack samples. This approach 

looks to proactively collect samples from multiples web sources, which is the opposite 

of a more common strategy to use honeypots to collect attack samples. 

We chose to proactively collect samples because we are targeting slow moving 

attacks (such as SQLi), they present a greater diversity than typically handled by 

honeypots, the distance between legitimate requests and malicious requests is often 

quite small, and above all, for a purely logistical reason — to speed up the data 

collection. Our approach was facilitated in practice by the wide availability of well-

maintained data sources of SQLi attack samples, some of which provide APIs to enable 

automated sample collection. A practical point here is that what we see during the 

web crawling is the entire HTTP request payload and we extract the SQL query from 

it by leaving out the HTTP address, the port, and the path (typically a “?” indicates 

the start of the query string). 
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Table 4.1: Examples of SQLi Vulnerabilities published in 

July 2012. 

VULNERABILITY CVE ID 

Joomla 1.5.x RSGallery 2.3.20 component CVE-2012-3554 

Drupal 6.x-4.2 Addressbook module CVE-2012-2306 

Moodle 2.0.x mod/feedback/complete.php 2.0.10 CVE-2012-3395 

RTG 0.7.4 and RTG2 0.9.2 95/view/rtg.php CVE-2012-3881 

To collect the attack samples, we crawled different cybersecurity portals between 

April and June of 2012. Each portal or site is a public repository of computer security 

tools, exploits, and security advisories, where security professionals and hackers share 

examples of different attacks. Examples of cybersecurity portals include Security 

Focus [24], the Exploit Database [62], PacketStorm Security [63], and the Open Source 

Vulnerability Database [61]. This last site also provides its own search API, making 

it easy for security practicioners and researchers to automate the collection process 

of data on those sites. For sites that do not provide such capability, one can use the 

APIs provided by search engines, such as Google custom search API [73]. 

There are also open forums and mailing lists where users share attack samples. 

In our experiments, we collected over 30,000 SQLi attack samples from a few sources 

and used these as our dataset to generate the generalized signatures during the ex­

periments. 

It is important for our signature generalization approach to work effectively that 

the sample collection be as comprehensive as possible. As one heuristic-based check 

for this, we manually inspected the high and medium risk SQL injection vulnerabilities 

published during the month of July 2012 in the National Vulnerability Database [25] 

for web applications using the MySQL database — approximately 30 in number. 
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In each case, we found examples of SQLi attacks in our dataset that could be 

launched against each of the web applications reviewed. Table 4.1 includes some 

examples of the SQLi vulnerabilities published in July 2012. 

Once the attack samples are collected, the samples need to be standardized in 

preparation for the data analysis. We use a set of 5 transformations, including upper­

case → lowercase, URL encoding → ascii characters, and unicode → ascii characters. 

We found such standardization was necessary since the data came from a variety 

of sites and even within each site, there is a plethora of contributors. Thankfully, the 

standardization process was easily automated using only 5 rules. 

4.2.2 Feature Selection 

We characterize each sample using a set of features, which will be used as input 

for the clustering algorithm. To create the set of features, we use three sources 

that are domain-specific for the SQLi attack scenario: (1) SQL reserved words [74], 

(2) SQLi signatures from the Bro [75] and Snort [30] NIDS and the ModSecurity 

web application firewall (WAF) [76], and (3) SQLi reference documents [77], [78]. A 

summary of the feature sources is presented in Table 4.2. 

The SQL reserved words are used as features since they represent identifiers or 

functions, necessary to create SQL queries like in SQLi attacks. Examples of re­

served words used to create the feature set for SQLi attacks include SELECT, DELETE, 

CURRENT_USER, and VARCHAR. In this chapter, we limited the feature set to only in­

clude the reserved words for the MySQL database management system, thus excluding 

special-purpose keywords used in Microsoft SQL and other non MySQL databases. 

We also looked at existing signatures for features since the signatures are the result 

of a usually long optimization process, so it could be assume that these signatures 

have components (strings inside a signature) that can be used as features to help 

identify attacks. We did not use a whole signature as a single feature, but rather 

divided the signature into logical components and each component then was used as 
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FEATURE 

SOURCE EXAMPLES DESCRIPTION 

MySQL create Words are reserved 

Reserved insert in MySQL and require 

Words delete special treatment 

for use as identifiers 

(table and column 

names) or built-in 

functions. 

NIDS/WAF 

Signatures 

in\s*?\(+\s*?select 

\)?; 

[^a-zA-Z&]+= 

SQLi signatures from 

popular open-source 

detection systems 

are deconstructed 

into its components, 

such as the regular 

expression groups 

found in each 

signature. 

SQLi 

Reference 

Documents 

\’ ORDER BY [0-9]-­ -

/\*/ 

\" 

Common strings 

found in SQLi 

attacks, shared by 

subject matter experts. 

a feature. To divide each signature, we looked at all the regular expressions found
 

inside round brackets or parentheses. The regex engine considers the expression inside
 

the parentheses as a single group. In this case, we use the group as a single feature.
 

Table 4.2 
Sources of SQLi features. 
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Fig. 4.2. Example of the creation of SQLi features from decomposing 
existing rules. A ModSec signature (left blue box) was broken down into 
7 features. Features 6 and 7 were not included in the final feature set as 
they were replaced by simpler features or are for queries to non-MySQL 
databases. 

Another mechanism used to split a signature was to look at the alternation operator 

"|" found in the signature. We used this mechanism at our own discretion and in 

case where we found evidence from other feature sources, that dividing the signature 

with the alternation operator could prove beneficial. 

Figure 4.2 shows an example of a signature taken from the ModSecurity Core 

Rule Set (CRS) and the corresponding features generated to represent the SQLi 

attack samples in our experiments. The original signature is a regular expression 

with seven case insensitive groups, for which we proceeded create the corresponding 

seven features. Features 6 and 7 were not included in our final feature set as they 

were replaced by shorter regular expressions. 

The SQLi reference documents also provide logical components that are found in 

SQLi attack samples. Although there is no formal classification of SQLi attacks, these 

documents provide a layout of different types of attacks found in web applications. 
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The documents also helped to determine when and how to divide the signatures and 

which features to select if two or more overlap. 

The resulting feature set consisted of a series of regular expressions representing 

(1) relevant characters, (2) SQL tokens, and (3) popular strings found in SQLi attacks. 

The group of strings allowed for our system to also consider the relative position of 

SQL tokens among them, when creating the features. As an example, feature =[­

0-9%]+ only considers a number if it is preceeded by the = character. Additionally, our 

chosen clustering algorithm can handle some redundant features, i.e., some features 

that do not help to discriminate between malicious and non-malicious SQL queries. 

This is because the clustering technique that we use will not output such features for 

any of the attack clusters and thus, they will not appear in any signature. 

All features included in the set were of numeric type, each one measuring the num­

ber of times a feature was found in an attack sample. For example, in the SQLi attack 

sample ?artist=0+div+1+union#foo*/*bar select#foo 1,2,current user features 

* and union.+select would return values 2 and 1 respectively. The resulting fea­

ture set used in the experiments had 159 entries, after removing those features that 

were not found in any of the samples used in the training phase of the system. We 

originally had 477 features, which were pruned down to 159 through the simple rule 

we just mentioned. The removed features also corresponded to cases for attacks to 

non-MySQL databases (not considered in our experiments) or because of multiple 

features looking for similar SQLi strings (overlapping features). 

70 (out of 159) entries in the resulting feature set performed as binary features. 

That is, the value for each of these features was either one (confirming the existence 

of the corresponding SQL token or string in a sample) or a zero (non existence) in 

each of the attack samples. 

The process of creating the feature set might at first blush seem intensely manual. 

But in our experience, the process was automatable for the most part. Both the 

fragmentation of the existing signatures and the reserved words (rows 1 and 2 in 

Table 4.2) could be automated since they follow from unambiguous rules. In the case 
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of analyzing the reference documents, this was partially automated and served more 

to validate features created with the other sources. Additionally, we believe that the 

feature space was exhausted so the creation of the feature set should be considered a 

one-time task, for one kind of attack (such as SQLi). 

We also considered using only binary features, i.e., the binary flag whether a 

feature is present or absent in a sample, rather than its count. However, this did not 

produce good results. When using a clustering algorithm on the samples represented 

by the binary features, only a large number of very small clusters were produced. 

This effectively meant that a large fraction of training samples were not covered, an 

undesirable situation. 

Each attack sample that provides the input to the clustering algorithm later used 

is characterized by its values for the 159 features. The resulting data is organized 

in a matrix where the samples are the rows of the matrix and the features are the 

columns. The size of the matrix was then 30,000 by 159 and can be classified as sparse 

because 85% of its cells were populated with zeroes. About 6% of its cell values were 

ones. Visual inspection of the matrix revealed that any one feature was zero in most 

samples and non-zero in the few remaining samples. Different features exhibited this 

property in different samples. 

4.2.3 Creating Clusters for Similar Attack Samples 

We use the biclustering [79] technique to analyze our matrix, which is popularly 

used in gene expression data analysis. The objective of this technique is to identify 

blocks in the sample dataset built by a subset of features to characterize a subset of 

samples. Given a set of m rows and n columns (i.e., an m×n matrix), the biclustering 

algorithm generates biclusters - a subset of rows which exhibit similar behavior across 

a subset of columns. To achieve this, the biclustering technique first clusters the rows 

(samples) of the matrix and then clusters the columns (features) of the row-clustered 

data. Biclustering has found wide success in analyzing gene expression data, in which 
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Fig. 4.3. Heat map with two dendrograms of the matrix data representing 
the samples dataset. The 30,000 attack samples are the rows and the 159 
features are the columns. The heat map also shows the seven biclusters 
selected to create the signatures. 

a subset of genes induces a similar linear ordering along a subset of conditions (e.g., 

different patients, different tissues, or varying cellular environments) [80]. 

To formalize the concept of bicluster, a sample set D is given as a |N |×|F | matrix 

where N is the set of samples and F is the set of features. The elements dij of the 

matrix indicate the relationship between sample i and feature j. Then, a bicluster 

BRC is a block that includes a subset of the rows R ⊆ N and a subset of columns 

C ⊆ F , sharing one or more similarity properties. 

The objective is to identify subsets of attack samples which share similar values for 

a subset of features. Each subset of samples (cluster) may use different sets of features. 

We want to create a signature for each bicluster and the biclustering technique allows 
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using different features for different biclusters. This enables us to create compact 

and distinctive signatures for the wide variety of SQLi attacks. The biclusters are 

nonoverlapping (i.e., no two biclusters have spatial overlap) and nonexclusive (i.e., 

two biclusters may use overlapping set of features) (Figure 4.3). The heatmap shows 

11 clusters that are formed, by visual analysis of the color patterns. A contiguous 

region with one color pattern constitutes one cluster. Note that not all features are 

used in the cluster formation; thus, there are some gaps for the feature dimension 

when you consider all the clusters. Note also that not all samples are covered in a 

cluster, indicating that some attack samples are considered so different that they do 

not fit within any cluster. This may indicate that our training set has some noise 

in it. Being able to deal with some noise in a training set is an important property 

for any machine learning algorithm and we are heartened to see that that is the case 

with pSigene. 

We use a simple approach to achieve the biclustering technique, performing a two-

way hierarchical agglomerative clustering (HAC) algorithm, using the Unweighted 

Pair Group Method with Arithmetic Mean (UPGMA). The way biclustering worked 

is first it did a clustering of the samples and then within each cluster, it clustered 

by the features. Thus, it identified what were the discriminating features for each 

cluster. The UPGMA algorithm produces a hierarchical tree, usually presented as a 

dendrogram, from which clusters can be created. It works in a bottom-up (agglom­

erative) approach by first partitioning the sample set of size N into N clusters, each 

one containing a single sample. Then, the Euclidean pairwise distance is calculated 

among the initial, single sample clusters in order to merge the two closest ones. After 

the first round of paired clusters finishes, UPGMA is used to recursively merge the 

clusters. At each step, the nearest two clusters are combined into a higher-level clus­

ter. The distance between any two clusters A and B is taken to be the average of all 

distances between pairs of objects ”x” in A and ”y” in B, that is, the mean distance 

between elements of each cluster. This biclustering process is repeated until a single 

cluster containing all the samples is formed. Note that this is just the termination 
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point from biclustering; its results will guide us to pick the multiple clusters as we 

explain below. 

Next, the results from applying the biclustering technique are presented as a heat 

map in Figure 4.3. On each axis, the corresponding dendrograms are also shown. The 

heat map shows the graphical representation of the reordering of the matrix |N |×|F | 

into a set of bi-clusters. Each bicluster is represented as an area of similar color as the 

heat map simultaneously exposes the hierarchical cluster structure of both rows and 

columns, as explained in [81]. Each column in the matrix is standardized as follows: 

the statistical mean and standard deviation of the values is computed. The mean is 

then subtracted from each value and the result divided by the standard deviation. As 

a value is closer to the mean, it is shown with the black color in the heat map. The 

highest and the lowest values are shown in red and green, respectively. Figure 4.3 also 

shows the dendrograms produced by the HAC algorithm for both rows (sample set) 

and columns (feature set). The dendrogram consists of many inverted U-shaped lines 

that connect different clusters in a hierarchical tree. The height of each U represents 

the distance between the two clusters being connected. 

We tested different pair-wise distance metrics and linkage criteria for the HAC 

algorithm on the sample set. We selected the Euclidean distance metric and the 

UPGMA method as they helped produce clean bi-clusters, represented by boxes of 

(mostly or completely) a single color in the heat map 4.3. To validate the accuracy of 

the HAC algorithm, we also calculated the cophenetic correlation coefficient for each 

dendrogram. The cophenetic correlation for a cluster tree is defined as the linear 

correlation coefficient between the cophenetic distances obtained from the tree, and 

the original distances (or dissimilarities) used to construct the tree. Thus, it is a 

measure of how faithfully the tree represents the dissimilarities among observations. 

The cophenetic distance between two observations is represented in a dendrogram 

by the height of the link at which those two observations are first joined. That 

height is the distance between the two subclusters that are merged by that link. 

In our experiments, we found the cophenetic correlation coefficient value of 0.92, a 
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promisingly high number. Ultimately, the above-mentioned explorations of the design 

space required visual inspection of multiple heatmaps rather than the alternative: use 

of multiple security experts and an almost zen master -like grasp of regular expressions. 

4.2.4 Creation of Generalized Signatures 

From each bicluster bj, we create a signature Sigbj which characterizes the samples 

in that bicluster, plus is more generalized. Specifically, in our solution, a signature 

Sigbj is a logistic regression model built to predict whether an SQL query is an attack 

similar to the samples in cluster bj . 

Logistic regression is a very popular classification method since the output values 

for the hypothesis function, lay in the range between 0 and 1. These values are 

interpreted as the estimated probability that a sample belongs to a class. In our 

scenario, we use logistic regression to compute the probability that an HTTP request, 

as seen by the IDS, includes an SQLi attack. 

Each bi-cluster bj is defined by a set of features Fj and a set of samples Sj . 

We then create the corresponding signature of a bicluster by using the features as 

the variables in the hypothesis function and training this function with the samples 

from the bicluster, as well as normal traffic. Now, pSigene needs to come up with a 

signature for cluster bj using the features Fj . For this it calculates the parameters Θj 

(which is a vector of individual parameter values), using the labeled data of attack 

samples from cluster bj as well as benign network traffic data. The intuition behind 

the calculation of Θj is that it should minimize the errors in the labeled training set. 

We give the mathematical formulation behind this computation later in the section. 

An example signature created by this method (for cluster 6 in this case) is given for 

ΘT at the end of this section. 6 
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Having calculated Θj , let us see how pSigene would work during the operational 

phase (the test phase). When a sample is available to pSigene, to determine if it 

belongs to attack class j, it calculates the value of the hypothesis function: 

hθ(Fj ) = g(ΘT Fj ) 

We use for g the sigmoid function which is defined as:
 

1
 
g(z) = −z1 + e

This gives a value between 0 and 1 and is interpreted as the probability that the 

test sample belongs to attack class j. 

To find the optimal parameters Θ of the regression model we use the Precondi­

tioned Conjugate Gradients (PCG) method [82], with the cost function in logistic 

regression as: 

M M 
2J(Θ) = 

1 
m

[−y(i)log(hΘ(Fj 
(i))) − (1 − y(i))log(1 − hΘ(Fj 

(i)))] + 
λ 

n

Θj
m 2m 

i=1 j=1 

The intuition behind this formulation is that the first term is the cost due to 

mislabeling a sample in the training set - the two sub-terms are respectively for 

mislabeling an attack sample in the training set and a benign sample in the training 

set. The second summation term of the cost function is a regularization term based 

on the ridge-regression (L2-norm) method, with λ as the regularization parameter, 

m is the number of samples in a bicluster bj , and n is the number of parameters Θ, 

excluding the intercept term (Θ0). The regularization helps to avoid over-fitting of 

the model, especially for a sparse matrix as in our case, where a small fraction of the 

features are influencing the predictions but the identities of those influential features 

is unknown. We tested λ for values between 0.01 and 100, and for each value ran a 

test to determine the true positive and false positive rates (TPR, FPR). We chose 

a value of 50 for all our experiments, as this value provided a nice tradeoff between 

fitting the samples well and keeping the parameters Θ relatively small. 

The gradient of the cost is a vector Θ where the kth feature is defined as follows: 
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Table 4.3 
Features included in Signature 6. 

FEATURE NUMBER FEATURE (Regular Expression) 

25 = 

37 =[-0-9\%]* 

53 <=>|r?like|sounds\s+like|regex 

36 ([^a-zA-Z&]+)?&|exists 

28 [\?&][^\s\t\x00-\x37\|]+? 

32 \)?; 

⎧ ⎪⎨
 m (i) (i)1 (i)hΘ(F ) − y F for k = 0 i=1 j jk ∂J(Θ)
 
= 

m   
∂Θk ⎪⎩
 m (i) (i)1 (i)hΘ(F ) − y F + λΘk for k ≥ 1 

m i=1 j jk 

As an example of how we used logistic regression in the SQL injection attack 

scenario, consider a bicluster b6 obtained after running the biclustering algorithm. 

This bicluster has a set S6 of 2, 741 samples and a set F6 of the features listed in 

Table 4.3. 

After training with the set S6 of 2, 741 samples (attack class) and one day of 

non-malicious traffic (other class), we compute the parameters Θ6 of the generalized 

signature for bicluster S6: 

ΘT 
6 = −3.761054+0.262131f6,25 + 0.262131f6,37 

+0.261463f6,53 + 0.261584f6,36 

−0.117270f6,28 + 0.708324f6,32 

Table 4.4 shows the probability values for three samples, when using signature 

6. The attack sample produces a probability value of 0.9926 while the two benign 

samples have probability values of 0.0694 and 0.1928. 
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Table 4.4 
Probability Values produced by Signature 6 

SAMPLE TYPE 

PROB. 

VALUE 

?option=com\_simplefaq\&amp; 

task=answer\&amp;Itemid=9999 

\&amp;catid=9999\&amp;aid=-1 

+union+select+1,concat\_ws(0x3, 

username,password,email),3,4, 

5,6,7,8,9,10,11,12,13,14,15, 

16,17,18,19, 20+from+jos\_u sers 

attack 0.9926 

/mod/resource/view.php?id=21154 benign 0.0694 

/blocks/mle/dwn/index.php? 

vendor=Samsung\&device=X830 

benign 0.1928 
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4.3 Evaluation 

We evaluated pSigene and the signatures in three other IDSes by using SQL attack 

samples and benign web traffic. In the first experiment, we determined the TPR and 

FPR by using two network traces collected from real systems (we describe the details 

of the traces in Section 4.3.2. 

The second experiment involved incrementing the number of attack samples given 

during the learning step of the signature creation phase to see if there is improve­

ment. Finally, the third experiment determined performance impact of matching the 

signatures generated by pSigene when the signatures were integrated with the Bro 

IDS. We also compared to the performance to the three other three signature sets 

used in experiment 1. 

4.3.1 SQLi Signature Sets 

We analyzed four different sets of SQLi signatures, taken from popular open-source 

NIDS (Snort and Bro) and a web application firewall (ModSec). A summary of the 

different signatures used in the evaluation is presented in Table 4.5. The fact that 

some of the SQLi rules are disabled by default in some of the IDSes may indicate 

the perception that there exists overlaps between rules. The high usage of regex is 

because it holds the promise that a regex will be able to match a wide set of attacks. 

This observation motivated us to build on regex’s in choosing the features in pSigene. 

A description of each signature set follows: 

Bro 

It is a network analysis framework that can be used as a signature-based IDS. 

It comes with a set of signatures to perform low-level pattern matching. We 

analyzed the 6 SQLi rules present on Bro v2.0 [75] to detect SQLi attacks. All 

six of the rules make extensive usage of regular expressions. 
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Table 4.5 
Comparison between different SQLi rulesets. 

Rules 

Distribution 

Version Number 

SQLi rules 

SQLi rules 

Enabled 

Usage 

of Regex 

Bro 2.0 6 100% 100% 

Snort Rules 2920 79 61% 82% 

Emerging 

Threats 

7098 4231 0% 99% 

ModSecurity 2.2.4 34 100% 100% 

Snort 

Snort is an open source network IDS that performs packet-level analysis to 

detect attacks and comes with its own ruleset, which gets updated periodically. 

We downloaded and analyzed version 2920 of the ruleset [83]. It included 79 

SQLi-related rules, 82% of which use regular expressions. 

Emerging Threats 

An open source project that publishes detection rulesets for two IDS, Snort and 

Suricata [84]. The ruleset is updated daily. We analyzed version 7098 of the 

ruleset, which includes over 4,200 SQLi-related rules. 99% of those rules use 

simple regular expressions. For the purposes of our experiments, we merged 

this signature set with Snort’s signature set. 

ModSec 

ModSecurity (shortened as “ModSec”) is a web application firewall (WAF) used 

to protect Apache web servers from attacks such as SQLi. The OWASP Mod-

Security Core Rule Set (CRS) project is an open-source initiative to provide 

the signatures used by ModSecurity to detect attacks to web applications. We 
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analyzed CRS version 2.2.4, which includes 22 SQLi-related rules. All of the 

rules make use of regular expressions. 

A number of differences exist between the different NIDS where these signatures 

sets are used. First, Snort and Bro use a deterministic approach to handle the signa­

tures. In other words, these systems produce an alert only if all the requisites defined 

in a signature are met. In contrast, ModSecurity takes a probabilistic approach and 

uses a scoring scheme where signatures are weighted and can contribute to determine 

the level of anomaly for a particular trace. 

A second difference between the NIDS involves the regular expression engine that 

each one uses. Snort and ModSecurity use the Perl-compatible regular expressions 

(PCRE) library, while Bro’s regex engine is POSIX compliant. PCRE is a more 

sophisticated library and has a richer syntax and set of supported features (such as, 

backtracking over a string). 

A third difference is the composition of the SQLi signatures analyzed and used in 

the experiments. The signatures found in Bro and ModSecurity made extensive use 

of regexs, while Snort’s signatures include much simpler regexs. Of the 6 signatures 

found in Bro, the average length of the regular expressions was 247.7 characters (max: 

429, min: 27). Meanwhile, regular expressions in ModSecurity had an average length 

of 390.2 characters (max: 2917, min: 28) and in Snort were 27.1 (max: 40.1, min: 0). 

All these differences impact the detection capabilities of these systems. For all the 

experiments presented in this chapter, we considered only those signatures that used 

or included regular expressions. We did this to allow for a fairer comparison between 

pSigene and the other IDSes, since pSigene uses regular expressions for its features. 

4.3.2 SQLi Test Datasets 

We used two test datasets to evaluate the performance of the different signature 

sets. The test dataset used to compute FPR corresponds to a 1-week network trace 

at a university institution. We captured all HTTP traffic to the main web servers at 
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the university, including the institutional web servers, the registration and payment 

servers, and the web interface for the mailing servers. The network trace amounts 

to 4.53 GB and included over 1.4 million HTTP GET requests. Although no ground 

truth existed for this trace, we ran it through all three signature sets and manually 

reviewed the alerts generated. All alerts were false positives; therefore we concluded 

no malicious attack was included in the trace. 

The other testing dataset was used to compute the TPR of all signature sets. 

We generated this testing dataset by running SQLmap [72], a popular SQL injection 

scanning tool, against a vulnerable web application running Apache Tomcat and 

MySQL database. SQLmap was launched against the application which contained 

136 vulnerabilities, triggering the scanning tool to generate over 7200 attack samples. 

To collect this testing dataset, we set up an isolated network which only had the test 

traffic and thus the traces were not contaminated with other traffic. 

4.3.3 Implementation in Bro 

To run our experiments, we integrated the signatures generated by pSigene into 

the Bro NIDS and then instructed Bro to use only our signatures and not its own. 

Additionally, we coded a function count all that accepted as input two parameters, 

a regular expression and a string, and returned the number of times the regular 

expression was found in the string. Bro is an extensible IDS in that it allows one to 

plug in user scripts, which we did. Plus, it allows one to develop core functions and 

integrate them with Bro after recompiling it. The user scripts can then reach back 

and call these core functions. We also used this feature to integrate our new function 

count all. This function was used in pSigene to count the number of occurrences 

corresponding to the features. pSigene is invoked by Bro from its upper policy layer, 

which is analogous to where Bro’s own SQLi signatures sit. 
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4.3.4 Experiment 1: Accuracy and Precision Comparison 

We performed the evaluation separately with 7 signatures (corresponding to 7 

clusters) and with 9 signatures (corresponding to 9 clusters). As shown in Figure 4.3, 

we considered 11 biclusters to produce two signature sets, one with seven signatures 

and another with nine. The set of seven signatures showed a group of rules that 

obtained a higher TPR than Bro and Snort, while also producing a very low FPR. 

The results from the set of nine signatures allowed determining how much the TPR 

can be improved while also measuring the increase in the FPR. From the heatmap, we 

visually identified 11 biclusters as this permitted to include a large percentage of all 

the samples in the original training set, while giving reasonably homogeneous colored 

areas. From the experiments, we determined that biclusters 9 and 10, as labeled in 

Figure 4.3, gave poor signatures and so we dropped them from the evaluation. Their 

bad detection rate can be traced to two main causes: (1) almost all the samples 

included in each of bi-clusters 9 and 10 have the selected features with values of zero 

(a small percentage had values of 1); and (2) each bi-cluster has a small number of 

features. Note the black color in the heatmap in Figure 4.3 tells us that the normalized 

value of the selected features is zero; in addition, the mean value is also close to zero. 

These two reasons make these signatures incapable of discriminating between normal 

and malicious traffic. 

The result is shown in Table 4.6. Our signatures had higher detection rate (86.53% 

for 9 signatures and 82.72% for 7 signatures) than Snort (79.55%) and Bro (73.23%) , 

but lower than ModSecurity (96.07%). Both our signature sets had the lowest FPRs, 

only behind Bros signature set (which did not raise a single false positive). Although 

the other FPRs were very low, one should not be deceived by these numbers. A 

FPR of 0.174%, as recorded for Snort, represents over 2, 463 false alarms generated 

over the one week traffic, while ModSecs TPR represents over 730 false alarms. In 

comparison, our sets produced 523 false alarms in the case of nine signatures and 226 

in the case of seven signatures. 
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Table 4.6
 
Accuracy Comparison between different SQLi rulesets.
 

RULES TPR 

(%) 

FPR 

(%) 

Bro 73.23 0.0000 

Snort - Emerging 

Threats 

79.55 0.1742 

ModSecurity 96.07 0.0515 

Generalized 

Signatures (9) 86.53 0.037 

Generalized 

Signatures (7) 82.72 0.016 

ModSecurity achieved the highest TPR of all signatures sets at 96%. We had 

suspected this to be a difficult result to improve. The ModSec set has been developed 

and tested over several years by a team of security developers, and is part of a popular 

open-source WAF. This situation has fostered the development of a robust signature 

set and our results confirmed it. Further, the focused nature of these rulesets for web 

application detection also explains its good detection rate. 

Accuracy and Precision of Individual Signatures 

We wanted to drill deeper into the overall accuracy and precision result of pSigene 

to see what the contribution from each of the signatures is. For this, we plotted the 

ROC curves for each of the 9 signatures for the entire test data. The result is shown 

in Figure 4.4. To generate the ROC curve for a given signature, we ran pSigene with 

only that signature enabled and we varied the probability threshold for the output of 

logistic regression. In the ROC curve, the point (0, 1) corresponds to the ideal case 
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Fig. 4.4. ROC curves for each of the signatures generated for the gen­
eralized set. The plot shows different performance for each signature, 
suggesting that each one can be tuned separately which can improve the 
overall detection rate of the set. 

and the greater is the area under the curve, the better the performance is. Note that 

in this plot, the FPR only goes till 0.05, not till 1. This is because the maximum 

value of FPR for the systems under test does not grow beyond 0.05. 

The first observation is that there is wide variability in the quality of the signa­

tures. Signature 6 performs well while signature 4 lags. Second, some signatures are 

quite insensitive to the threshold settings — signatures 1, 2, 3, and 8 — since their 

detection rates go up only slightly. Third, signature 6 will produce false positives 

faster than signatures 1 and 8. From a ROC curve like this and with an idea of 

a desired TPR and FPR, a security administrator can visually, and approximately, 

decide which signatures to enable or disable. We believe this is a useful and practical 

visualization for signatures of misuse-based IDSes in general, not just for pSigene. 
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Coverage of Individual Signatures 

Another aspect of the clusters and the corresponding signatures is how many 

samples does each cover and how many features are used in each cluster’s signature. 

This result is shown in Table 4.7. There is quite a large range of cluster sizes, as is 

of the number of features output by biclustering. The largest cluster has 44% of the 

samples while the smallest has 5.5%. Three clusters use 57% of the total number of 

features (90 out of 159). However, an interesting, and not a priori obvious, observation 

is that logistic regression does significant amount of pruning of features for these three 

clusters. Thus, logistic regression downplays the role of some features in classifying 

a sample as being malicious or benign. For example, for cluster 3, logistic regression 

throws out 88% of the features, for cluster 2 86% of the features, and for cluster 1 

63% of the features. We hypothesize that this large amount of filtering by logistic 

regression is due to two causes. First, the reduction of the feature set from 477 to 159 

is a manual process and there still remain overlaps between some of them. Second, 

biclustering provides a clustering but it may be clustering noisy data, while logistic 

regression pays attention to the quality of the data itself. 

Nevertheless, biclustering is a crucial step and needs to precede logistic regression. 

Biclustering creates some order out of the chaos of the large amount of samples and 

large set of features, by identifying the samples which are similar and by identifying 

a superset of features according to which they are similar. 

4.3.5 Experiment 2: Incremental Learning 

In this experiment, we first incremented the number of attack samples while learn­

ing the Θ parameters in logistic regression to create the signatures. We progressively 

added some attack samples from the test dataset into the training dataset - we ex­

perimented with 20% and 40% of the test dataset being included in the training. 

This reflects the real world scenario where fresh attack samples will be fed to pSigene 

and pSigene will do incremental training with these new samples. Thus, over time, 
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Table 4.7
 
Details of signatures for each cluster created by pSigene.
 

BICLUSTER 

NUMBER 

NUMBER 

OF SAMPLES 

NUMBER OF 

FEATURES FROM 

BICLUSTERING 

NUMBER OF 

FEATURES IN 

SIGNATURE 

Bicluster 1 13272 90 33 

Bicluster 2 5477 90 13 

Bicluster 3 2629 90 11 

Bicluster 4 6947 12 8 

Bicluster 5 4245 8 5 

Bicluster 6 2741 6 6 

Bicluster 7 3928 10 5 

Bicluster 8 1676 8 6 

Bicluster 11 1671 15 14 

pSigene will be able to detect more and more of the attacks as it operates for longer 

periods and gets incrementally trained. Note that the incremental training is also 

an automatic process and therefore, we are spared the tedium of manually updating 

prior signatures. How exactly incremental training is done is described in Section 

When adding 20% of the SQLmap dataset, we obtained a TPR = 89.13% and 

a FPR = 0.039%. After augmenting the training dataset with 40% of the samples 

from the SQLmap set, the TPR increased to 91.15% while the FPR also increased to 

0.044%. In both cases (20% and 40%), we used sets of 10 signatures. 

From the results, the TPR showed an increment of a bit over 2%, for each round 

of the experiment. This can be explained as we first randomized the SQLmap set and 

then divided it into 20% parts. So one can hypothesize that pSigene is seeing some 

similar attack samples in the test phase. 
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The FPR also increased slightly from the 20% to 40% experiment. Such behavior 

highlights a limitation of our approach. By only adding more samples for the malicious 

class in the training phase, we should be improving the TPR and this is reflected in 

our results. But this does not necessarily reduce the FPR because we are not adding 

more samples from the non-malicious class and so our ability to model normal traffic 

is not improving. In fact, in the extreme, if the training data has a great imbalance of 

a large amount of malicious labeled samples and a small amount of benign samples, 

the FPR is expected to go up. 

4.3.6 Experiment 3: Performance Evaluation 

In this section, we report the overhead of pSigene signatures against Bro and Mod-

Sec signatures that are implemented as *.bro scripts in the Bro NIDS. Specifically, 

we measured the average processing-time per HTTP request for each signature in 

SQLmap dataset. The minimum, average, and maximum processing times across the 

signatures of the three systems are presented in Figure 4.5. We observe that on av­

erage, pSigene gives a slowdown of 17X and 11X against Modsec and Bro signatures 

respectively. The increased processing-time in pSigene is majorly attributed to the 

count all function call, which counts the number of regex matches for each HTTP 

request string. We observe from the data that the signatures with a large number 

of invocations of count all take a disproportionately large fraction of the total pro­

cessing time. Given that we run these measurements on a relatively resource-starved 

machine (700 MHz (CPU), 512 MB (RAM)) and still the worst case processing time 

was less than 2 ms, we would expect that signature matching in pSigene will not be­

come a bottleneck. Importantly, the signature matching is completely parallelizable 

- each parallel thread can match one signature and this functionality is inbuilt in 

Bro (Bro’s cluster mode). But we do not have this obvious performance optimization 

implemented yet. 
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Fig. 4.5. Minimum, Average, and maximum processing time across all 
signatures from Bro, pSigene, and ModSec sets. 

4.4 Discussion 

An important issue to consider in pSigene, is how to adapt it after it is deployed, 

i.e., improve its signatures as new attack samples are collected. We presented results 

from an experiment on incremental learning and its benefits. In this section, we define 

an approach so pSigene can systematically update its signature set. 

Given new attack samples, we can sequentially (i.e., incrementally) update our 

existing bi-clusters and also sequentially update our logistic regression models, instead 

of retraining both of them using the entire data set. These sequential updates enable 

us to deal with massive amounts of dynamic attack data, and update the whole 

detection system in a computationally efficient way. A typical usage scenario that we 

envisage is that new attack samples will be fed into pSigene daily and we would retrain 

the system to come up with new signatures. Thus, the signatures can evolve and the 

resultant detection performance can improve. We emulate such a usage scenario in 

our experiments in Section 4.3.5. 
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Specifically, given new attack samples, we will examine how similar a new sample 

is, to the existing bi-clusters. We can use the same Euclidean distance metric that we 

use in the initial training. If it is similar to certain (one or several) existing bi-clusters 

up to a threshold, we add this sample into these existing bi-cluster and adjust the 

parameters of these bi-clusters – such as the mean parameters – accordingly. If the 

new sample is not similar to any existing bi-cluster, we will list it as a candidate 

for a new signature. Given multiple such candidates we will run our bi-clustering 

algorithm to generate new signatures. With increasingly more new samples, we can 

repeat this process to incrementally adjust bi-clusters and obtain new signatures. 

Given new samples, we can use Bayesian online learning to sequentially update 

the classifier. First, if new features are added because of emerging biclusters based 

on new samples, we can first expand the classifier accordingly with zero weights 

for new signatures before applying online learning updates. Then, we will update 

the classifier based on the new samples. In a Bayesian framework, this goal can 

be naturally achieved via the update of the posterior distribution of the classifier. 

To conduct the needed computation, we can either resort to sequential Monte Carlo 

methods [85], such as particle filtering, or deterministic approximation such as virtual 

vector machine [86]. 

Combining the above strategies, we can efficiently update the signatures and the 

classifiers as pSigene runs in an operational deployment over time. 

Another aspect that this work throws light on is the importance of good training 

data for creating the clusters and subsequently the signatures. It is imperative that 

the training data be representative of the kinds of attacks that will be seen in op­

eration, though they do not need to be identical. How far apart can the attacks in 

training and test be? This is a perennial question that is asked of machine learning 

algorithms in all different contexts. This is also a question that does not have a com­

pletely satisfactory answer. The partial answer is that the features should be chosen 

to be rich enough that they are likely to capture important characteristics of the 

zero-day attacks. Thus, signatures based on such features will likely be able to match 
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some of the zero-day attacks. The feature selection process needs to be repeated for 

each kind of attack, but not for each attack sample. This makes this process more 

feasible in practice. In contrast, manual signature update is a process that needs to 

be done for each attack sample and is therefore not as scalable. Of course, in practice, 

a signature update is done in a batch mode after a certain number of attack samples 

have been collected. 

4.5 Related Work 

The work presented in this chapter is related to three areas of intrusion detection: 

automatic signature creation, signature generalization, and the interaction between 

web applications and databases. We discuss how previous work in these three areas 

relates to our research. 

An interesting and important work on automatic signature creation is by Yeg­

neswaran, et al [64]. The authors presented a framework based on machine learning 

algorithms to produce attack signatures. It aims to create generalized signatures that 

represent a set of attack vectors, as the framework clusters similar attacks detected. 

A key point by the authors and which we agree with is that the framework requires 

protocol knowledge in order to produce effective signatures and such insight impacts 

the resulting detection mechanism. Knowing the syntax, semantics and behavior of 

a protocol allows to produce accurate signatures. When this information is not con­

sidered, there is higher probability to false alarms and false negatives. Distinct from 

our work, they take a passive approach as HTTP and NetBIOS-based malware traf­

fic is collected from honeynets, whereas we proactively collect from the web samples 

for SQL-based attacks. Additionally, our framework is agnostic to transport- and 

network-level information, which is important for their framework. Finally, we rely 

heavily on regular expressions, looking to produce rich, optimized regex signatures. 

Their approach to regexs is somehow limited as it only uses simple metacharacters 

such as *, +, and ? to express clusters of signatures. 
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Previous work on signature generalization also includes [87], [88], [65], and [89]. 

In [87], several conditionals and parameters in SNORT rules are modified, using a 

similar approach to classic rule learning operators such as generalization and special­

ization. They analyze each signature separately to generalize it, while our approach 

uses clusters of attack samples to then create generalized signatures. In [88], a sys­

tem called Polygraph generates signatures that consist of multiple disjoint substrings. 

In doing so, Polygraph leverages our insight that for a real-world attack to function 

properly, multiple invariant substrings must often be present in the payload. In other 

words, every attack sample includes invariant components that help to identify it. In 

our approach, we look to cluster samples so it helps identify the invariants that can 

appropriately represent the attacks. Similarly, [65] applies pattern-matching tech­

niques and protocol conformance checks on multiple levels in the protocol hierarchy 

to network traffic captured at a honeypot system, to produce worm signatures. [89] 

extends this idea to detect zero-day polymorphic worms on high-speed networks. In 

both cases, the goal is to detect worms at the network layer while our general approach 

considers protocol information and suited for other types of attacks. 

Robertson et al. [90] present an anomaly generalization technique to automatically 

translate suspicious requests to a web server into anomaly signatures. This approach 

is complementary to ours and uses heuristics-based techniques to infer web-based 

attacks. For the class of SQL injection attacks, the technique performs a simple scan 

for common SQL language keywords and syntactic elements. This results in basic 

signatures to detect SQLi attacks, but no details were provided on the performance of 

these signatures. Other papers that present similar anomaly-based intrusion detection 

techniques for SQLi attacks include [91] and [92]. 

The interaction between web applications and databases to improve the detection 

rate of attacks against these resources has been covered in [93], [94], [95], and [96]. [93] 

et al. present a novel approach for automatically detecting potential server-side vul­

nerabilities of this kind in legacy web applications through blackbox analysis. [94] 

proposes a serially composed system with a web-based anomaly detection system, 
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a reverse HTTP proxy, and a database anomaly detection system to increase the 

detection rate of web-based attacks. In [95], a system that automates repair from 

intrusions in web applications is presented. It works by continuously recording ac­

tivity in the application and constructs a global dependency graph from this logged 

information to retroactively patch vulnerabilities by rolling back parts of the system 

to an earlier checkpoint. Finally, [96] looks at the problem of scarce training data for 

anomaly-based intrusion detection systems. By applying clustering techniques to de­

termine similar clusters between sets of HTTP requests made to different components 

of web applications, the undertrained profiles of the applications can be enhanced with 

similar well-trained profiles. 

4.6 Conclusions and Future Work 

In this work, we presented a system called pSigene, for the automatic generation 

and update of intrusion signatures. The system benefits from mining the vast amount 

of public data available on attacks. We tested our architecture for the prevalent class 

of SQLi attacks and found our signatures to perform very well, compared to existing 

signature sets, which have been created manually and with a tremendous amount of 

security expertise and progressive refinement over the period of multiple years. 

Our framework allows one to generalize existing signatures and the detection of 

new variations of attacks (i.e., some kinds of zero-day attacks) is achieved by using 

regular expressions for the generalized signatures. We also rigorously benchmarked 

our solution with a large set of attack samples and compare our performance to 

popular misuse-based IDS-es. The evaluation also brings out the impact of a practical 

use case whereby periodically new attack samples are fed into our algorithm and 

consequently the signatures can be progressively, and automatically, updated. In 

contrast, to improve the other signature sets requires the manual inspection and 

testing of the signatures, which could overwhelm a system administrator with limited 

resources. 
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Future work will include the implementation of the incremental update operation, 

as described earlier. This task has some open design choices in terms of the machine 

learning technique to use and empirical evidence is needed to guide our choice. We 

will also improve the online performance of the signature matching process. This will 

be done first by simply parallelizing the process and next by optimizing the code path 

within Bro through which our signature matching occurs. 
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5. FUTURE WORK 

5.1	 Implementation of DIADS 

The objective is to perform an evaluation of different types of detection sensors to 

determine the parameters needed to create the conditional probability tables (CPT) 

for the Bayesian network model. Using the popular Bro [43] and Snort [23] intrusion 

detection sensors, we evaluate them to determine their performance when detecting 

attacks against different components (web, application, and database) of a distributed 

system. To evaluate the sensors, several types of performance measurements are 

considered [97], [98]. 

Additionally, the DIADS [99] framework should be implemented and tested to 

determine its operational performance in a real environment. For this, the Bro sen­

sor can be used as the baseline detection engine to develop the rest of the DIADS 

framework, specially the reasoning engine. A specific type of attack (or two) can be 

used to evaluate the framework. Candidates include those attacks associated to high 

False Positive rates (FPR), when detected by a single intrusion detection sensor. Ex­

amples include SQL injection attacks [?]. The objective would then be to determine 

the improvement (in terms of the FPR) provided by DIADS, compared to a single 

detector. 

5.2	 Determining Confidence Levels from Intrusion Alerts to Configure 

Detection Sensors 

The DIADS framework currently considers the alerts as absolute values to de­

termine the configuration setup of a set of detectors. The Bayesian model defines 

the performance of each detector, by its corresponding conditional probability table 
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(CPT). Still, this definition does not allow the DIADS framework to evaluate the on­

going performance of a detector. Whenever a detector sends an alert to the reasoning 

engine, currently we dont determine how accurate or correct the alert is. 

A method to fix the lack of evaluation on the quality of an alert is to compute 

confidence intervals for each detector, based on the success experienced of past alerts. 

Such intervals indicate the reliability of the alert send by a detector. For the DIADS 

framework, confidence intervals will act as a triggering mechanism for algorithm 4, 

which reconfigures DIADS given the newly received evidence (alerts). The original 

IDES model [100] and later work [101] have stated the need to consider the confidence 

interval for an alert when determining how should an intrusion detection system react. 

Those works do not provide a mechanism on how could the confidence intervals be 

used. 

5.3	 Incremental Deployment of Intrusion Detectors in a Dynamic Dis­

tributed System 

The current DIADS framework does not consider the current setup of detection 

sensors to determine the new configuration of the sensors. When new alerts are 

received, DIADS considers all possible choices based on a finite radius set around the 

node in the Bayesian model. The node corresponds to the vulnerability associated to 

the alert received. For example, DIADS would not consider the current setup of the 

detection sensors when determining how to reconfigure the detection system, in light 

of new evidence. 

In this work, the DIADS framework would be modified to perform incremental 

configuration of the intrusion detection sensors. This should improve the reconfigura­

tion time taken by the framework and potentially help to detect multi-stage attacks 

faster than under the current framework. 
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A. DESCRIPTION OF E-COMMERCE BAYESIAN
 

NETWORK
 

We provide a description of the Bayesian network built for the e-commerce system 

used in the experiments. It includes a description of each node in the Bayesian net­

work, for the observed and unobserved nodes, as well as the corresponding probability 

values (shown as tables) associated with each node. 
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Fig. A.1. Bayesian network for the e-commerce system with corresponding
 
description of the nodes. Each node is either an attack step or a detector.
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Fig. A.2. Bayesian network for the e-commerce system with the conditional 
probabilities values used for the experiments. 
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B. CALCULATION OF APPROXIMATION RATIO FOR
 

GREEDY ALGORITHM
 

We provide the calculation of the approximation ratio for a Greedy algorithm of the 

0-1 knapsack problem (KP), for the bounded case (when there is a limited number 

of items from which to pick and put in the knapsack). The proofs for the calculation 

of the approximation ratio are adapted from [34] and [35]. We include the proofs in 

this paper to make the previous proofs more accessible to a systems security audience 

and to show the thinking process that went on behind our search for FPTAS after 

having designed the Greedy solution. 

KP can be formally defined as the following: given an instance with item set N , 

consisting of n items xi, each with a profit pi and weight wi. The knapsack has a 

capacity value c. The objective is to select a subset of N such that the total profit of 

the selected items (Σn
i=1pixi) is maximized subject to the corresponding total weight 

not exceeding the knapsack capacity (Σn ≤ c). The optimal solution value is i=1wixi 

denoted by zOP T . 

The idea of the Greedy algorithm with a solution value zG is to start with an 

empty knapsack, sort the items in decreasing order according to its profit to weight 

ratio 
w
pi
i 
and go through the sorted items, adding every item into the knapsack while 

its capacity is not overwhelmed. The final step is making a comparison between the 

given solution and the highest profit value of any item. The larger of the two is 

finally taken and is denoted by zmG . This final step can be considered a modification 

of the original Greedy algorithm found in literature [33], but necessary to guarantee 

an approximation ratio of 1
2 to the optimal solution. 

A linear programming relaxation (LKP) is made to compute the approximation 

ratio, omitting the integer constraint of KP and optimizing instead over all nonnega­

tive real values. Naturally, the optimal solution value zLKP of the relaxed problem is 
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at least as large as the original value zOP T because the set of feasible solutions for the 

original KP is a subset of the feasible solutions for the relaxed problem. The Greedy 

algorithm for LKP packs the items in decreasing order of profit-to-weight ratio, sim­

ilar to the original Greedy algorithm, but with one difference. When adding an item 

s to the knapsack would cause the capacity c to overflow for the first time, only an 

appropriate fractional part of the item is used. Item s is referred as the split item, 

its corresponding profit as ps and weight as ws. The split solution, not including the 

split item, is defined by a profit p̂ and weight ŵ. Therefore, the optimal solution value 

of LKP is defined as 

z LKP = Σs−1 .i=1 pi + (c − Σs−1 ps 
(B.1)i=1 wi) 

ws 

The value zLKP is an upper bound on the optimal solution for KP. A tighter upper 

OPT LKP J,bound ULP for z can be obtained by using the floor of zLKP , i.e. ULP := lz
LP :since all data are integers. Then we get the following bounds on z

OPT LKP G p̂ ≤ z ≤ ULKP ≤ z ≤ Σs
i=1pi = p̂+ ps = z + ps. (B.2) 

Another consequence of these considerations is the following fact: 

OP T − z OP T − ˆz G ≤ z p ≤ pmax, (B.3) 

where pmax denotes the largest profit of any item in the set N. 

The Greedy algorithm has an approximation ratio of 
2
1 and this bound is tight. 

OPT mG + z mGAs proof, we know from (3) that: z ≤ zG + pmax ≤ z mG = 2z

The tightness of the bound can be shown by the following example. Item 1 is 

given by w1 = 1, p1 = 2, and b1 = 1 (number of item 1 available). Item 2 is given by 

w2 = p2 = M and b2 = 2. The knapsack capacity is c = 2M . The Greedy algorithm 

would pack item 1 first and then an item 2, reaching a solution value of 2 + M while 

the optimal solution would pack items 2 and would reach a value of 2M . Choosing 

M large enough, the ration between the approximate and optimal solution value can 

be arbitrarily close to 1
2 . 
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C. ALGORITHMS FOR DIADS 

The DIADS framework presented in chapter 3 is composed of four algorithms: 

BN-STRUCTURE-UPDATE The structure of the Bayesian Network (BN) is up­

dated, using the changes made to the firewall rule table. The algorithm produces 

a list of nodes and edges that should be added or deleted from the BN and is 

presented later in this appendix (algorithm C.1). 

BN-CPT-UPDATE The conditional probability tables (CPT) of the BN are up­

dated, using the changes made to the firewall rule table. The algorithm pro­

duces a lists of CPTs for the changed nodes in the BN, i.e., nodes for which 

there is an increase or deduction in the number of parents and according to 

the output from the BN-STRUCTURE-UPDATE algorithm. We present the 

BN-CPT-INITIALIZATION below (algorithm C.2). 

CPT-UPDATE-NOISY-OR The alerts received by the reasoning engine from dif­

ferent detection sensors are used to update the CPTs in the BN, in an incre­

mental manner. This algorithm uses a popular and powerful model known as 

Noisy-OR ?? that represents the core of the algorithm. 

SENSOR-RECONFIGURATION This algorithm is used to reconfigure the de­

tection sensors. This includes adding and removing sensors, as well as reconfig­

uring existing ones. The algorithm is presented below as C.3. 
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Algorithm C.1 BN-STRUCTURE-UPDATE (message, A)
 
Input: message m = (number, srcIPaddr, destIPaddr, portnumber, action, 

ruletype) . This input represents an addition, change, or deletion of a firewall 

rule; Adjacency matrix representation of Bayesian network BNet = (V, E) con­

sists of a |V |x|V | matrix A = (aij ) such that aij = 1 if (i, j) ∈ E otherwise 

aij = 0 

Output: Va = set of nodes to add, Vd = set of nodes to delete, Ea = set of edges to 

add, Ed = set of edges to delete 

1: //case when a rule is added 

2: if ruletype = add then 

3: if srcIP addr : ∗ in A then 

4: add all (parents(srcIP addr : ∗), srcIP addr : ∗) to Ea 

5: end if 

6: if destIP addr : port in A then 

7: add all (destIP addr : port, children(destIP addr : port)) to Ea 

8: else 

9: add Ea ← (srcIP addr : ∗, destIP addr : port) 

10: end if 

11: end if 

12: // case when a rule is deleted 

13: if ruletype = delete then 

14: add Ed ← (srcIP addr : ∗, destIP addr : port) 

15: if srcIP addr : ∗ in A then 

16: if notparents(srcIP addr : ∗) then 

17: add Vd ← srcIP addr : ∗ 

18: else 

19: add all (parents(srcIP addr : ∗), srcIP addr : ∗) to Ed 

20: end if 

21: end if 
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22: if destIP addr : port in A then 

23: if notchildren(destIP addr : port) then 

24: add Vd ← destIP addr : port 

25: else 

26: add all (destIP addr : port, children(destIP addr : port)) to Ed 

27: end if 

28: end if 

29: end if 

30: // check if new edge creates a path to the end goal and if node creates a cycle 

31: for all address : port ∈ V ∪ Va do 

32: run DFS from address : port 

33: if not(address : port → VCA) then 

34: remove address : port from Va 

35: end if 

36: add backedges to Ed 

37: end for 

38: // convert address:port node to address:port:vulnerability node 

39: for all address : port ∈ Va do 

40: if vulnerability(address : port) ∈ NV D then 

41: update address : port to address : port : vulnerability(vi) in Va and Ea 

42: else 

43: remove address : port from Va 

44: end if 

45: end for 

46: for all address : port ∈ Vd do 

47: search BNET and replace for corresponding address : port : vulnerablity(vi) 

48: end for 

49: return Va, Vd, Ea, Ed 
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Algorithm C.2 BN-CPT-UPDATE (Va, Vd, Ea, Ed) 
Input: Va = set of nodes to add, Vd = set of nodes to delete, Ea = set of edges to 

add, Ed = set of edges to delete 

Output: SCPT = set of CPTs to update 

1: for all vi ∈ Va do 

2: new P rob(vi) = CV SS(vi)/10 

3: add each outedge(vi) ∈ Ea 

4: for all children(vi) do 

5: update CPT using max(newP rob(vi) + Δ, oldP rob(vi)) 

6: end for 

7: end for 

8: for all (vi, vj ) ∈ Ea do 

9: new P rob(vi) = CV SS(vi)/10 

10: add each (vi, vj ) ∈ Ea 

11: for all children(vi) do 

12: update CPT using max(newP rob(vi) + Δ, oldP rob(vi)) 

13: end for 

14: end for 

15: for all vi ∈ Vd do 

16: new P rob(vi) = CV SS(vi)/10 

17: remove all inedge(vi) and outedge(vi) 

18: for all children(vi) do 

19: update CPT using max(newP rob(vi) + Δ, oldP rob(vi)) 

20: end for 

21: end for 

22: for all (vi, vj ) ∈ Ed do 

23: new P rob(vi) = CV SS(vi)/10 

24: remove all (vi, vj ) ∈ Ed 

25: for all vj do 

26: update CPT using max(newP rob(vi) + Δ, oldP rob(vi)) 

27: end for 

28: end for 
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Algorithm C.3 SENSOR-RECONFIGURATION (E, Detectorsexisting) 
Input: E = evidence, represented by set of alerts received; Detectorsexisting = set of 

detectors currently enabled 

Output: set of nodes to enable/disable. Nodes correspond to < 

address, port, vulnerability > tuple so can be mapped to a detection sen­

sor 

1:	 compute a = P rob(critical asset |E) 

2:	 if a > threshold then 

3: Create set of candidate sensors close to E and critical asset 

4: Run F P T AS(BN) 

5:	 end if 

6:	 Detectorsdisable = |Detectorsexisting − DetectorsF P T AS| 

DetectorsF P T AS, Detectorsdisable 
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D. BAYESIAN NETWORK USED FOR DIADS
 

EXPERIMENTS
 

Below we show the Bayesian Network (BN) used for the experiments presented in 

chapter 3. The BN was created from a real-world distributed system which is part of 

an NSF Center at Purdue University. The system includes fifteen hosts that include 

two environments, one for production and another for development of applications 

and staging, prior to moving them to the production environment. Each environ­

ment includes a web server, an application server, and a database server. A team of 

developers’ and consultants’ computer have access to subsets of both environments. 

To create the BN, we first generated a list of vulnerabilities found in the distributed 

system with the OpenVAS [56] vulnerability scanner. Each vulnerability was then 

mapped to a node in the BN, by associating it to the host and service (port) were 

the vulnerability was found. The nodes were connected according to the connectivity 

information for the distributed system. The resulting BN had 345 nodes and 1948 

edges. We then pruned the BN to only include high risk vulnerabilities, according 

to the OpenVAS tool, as these ones are the primary vectors used by attackers to 

compromise sustems. The final BN, shown below, has 90 nodes and 582 edges. 

The use the following color code to identify the computers and servers of the 

distributed system: The six light blue boxes in the top left corner of the diagram 

correspond to the developers’ computers. The three purple boxes (top right corner) 

are for the consultants’ computers. The two orange boxes (bottom left corner) are 

the web and application servers for the production environment. To their right, the 

red box corresponds to the database server in the same environment. The final three 

boxes (bottom right corner) are the three servers in the development environment: 

database (red), web (yellow), and application (yellow). 
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E. SET OF SIGNATURES GENERATED WITH PSIGENE 

From each bicluster bj , we create a signature Sigbj which characterizes the samples 

in that bicluster, plus is more generalized. Specifically, in our solution, a signature 

Sigbj is a logistic regression model built to predict whether an SQL query is an attack 

similar to the samples in cluster bj . In other words, the signature is the hypothesis 

(sigmoid) function produced with logistic regression: 

1 
Sigbj (Θj ) = 

−ΘT 
j1 + e 

Nine signatures were created for our experiments. For each of these signatures, 

we present below the features used and the corresponding coefficients Θj computed 

from the logistic regression phase: 

Table E.1: Coefficients and Features for Signature 1. 

COEFFICIENT FEATURE (Regular Expression) 

-2.892839 

-0.133652 insert 

0.007340 [\"’‘]\s*?(x?or)\s*?[\"’‘]?\d 

-0.008639 ^[\W\d]+\s*?desc 

-0.204895 drop 

0.019437 length 

-0.003320 delete 

0.019437 \bselect\b.{0,40}\bascii\b 

-0.001505 exec 

-0.134897 [\"’‘]\|?[\w-]{3,}[^\w\s.,]+[\"’‘] 
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COEFFICIENT FEATURE (Regular Expression) 

-0.146769 [\"’‘]\s*?(and)\s[^\d]+[\w-]+.*?\d 

0.213769 in\s*?\(+\s*?select 

0.154269 benchmark\((.*?)\,(.*?)\) 

-0.001133 create 

0.069142 x?x?or[\s(]+\w+[\s)]*?[!=+]+[\s\d]*?[\"’‘=()] 

0.199486 ;\s*?select\s*?[\[(]?\w{2,} 

0.212993 ^[\W\d]+\s*?select 

1.093432 [’"] 

1.107889 [\"’‘]\s*?|{ 

-0.156529 [\"’‘]\s*?[^\w\s]?=\s*?[\"’‘] 

-0.156529 [\"’‘]\W*?[+=]+\W*?[\"’‘] 

0.296613 \!\=|\&\&|\|\||>>|<<|>=|<=|<>|<=>|xor|rlike|regexp|isnull 

0.108078 \|\|\s*?\w+\( 

0.227742 \blike\W*?char\W*?\( 

-0.005946 [\"’‘]\s*?[^\w\s?]+\s*?[^\w\s]+\s*?[\"’‘] 

0.209669 \(\s*?select\s*?\w+\s*?\( 

0.334135 [\s(]load_file\s*?\( 

-0.011009 ,.*[\da-f\"’‘][\"’‘]\Z 

-0.262865 !=|<=|>=|<>|<|>|\^|is\s+not|not\s+like|not\s+regexp 

0.346328 --[^-]*?­

0.101613 ^["’‘;] 

0.117828 [\"’‘].*?\*\s*?\d 

0.769650 db_name\W*\( 

0.754294 --[\s\r\n\v\f] 
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Table E.2: Coefficients and Features for Signature 2.
 

COEFFICIENT FEATURE (Regular Expression) 

-3.367189 

0.036476 insert 

0.021010 ^[\W\d]+\s*?desc 

-0.145124 drop 

0.008877 delete 

0.004067 exec 

0.003068 create 

0.278587 [’"] 

0.280161 [\"’‘????????]\s*?|{ 

-0.063421 [’;]-­

-0.063421 [\"’‘????????]\s*?-­

0.001034 \!\=|\&\&|\|\||>>|<<|>=|<=|<>|<=>|xor|rlike|regexp|isnull 

-0.022594 !=|<=|>=|<>|<|>|\^|is\s+not|not\s+like|not\s+regexp 

0.006042 --[^-]*?­

Table E.3: Coefficients and Features for Signature 3.
 

COEFFICIENT FEATURE (Regular Expression) 

-4.561008 

-0.017283 insert 

-0.004940 ^[\W\d]+\s*?desc 

-0.155173 drop 

-0.001858 delete 

-0.000827 exec 

-0.000620 create 
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COEFFICIENT FEATURE (Regular Expression) 

1.816763 [’"] 

1.872849 [\"’‘]\s*?|{ 

-0.000207 \!\=|\&\&|\|\||>>|<<|>=|<=|<>|<=>|xor|rlike|regexp|isnull 

-0.263687 !=|<=|>=|<>|<|>|\^|is\s+not|not\s+like|not\s+regexp 

-0.001239 --[^-]*?­

Table E.4: Coefficients and Features for Signature 4.
 

COEFFICIENT FEATURE (Regular Expression) 

-3.623943 

-0.046207 
([\s’\"‘\(\)]*)([\d\w]+)([\s’\"‘\(\)]*) 

(=|<=>|r?like|sounds\s+like|regexp)[\s’\"‘\(\)]*\2 

0.350203 @ 

0.019025 coalesce\s*?\(|@@\w+\s*?[^\w\s]) 

1.774084 char 

2.559842 ch(a)?r\s*?\(\s*?\d) 

0.019470 information_schema 

0.019460 \btable_name\b 

0.019460 \Wtable_name\W 

Table E.5: Coefficients and Features for Signature 5.
 

COEFFICIENT FEATURE (Regular Expression) 

-8.431682 

2.627309 \( 

0.815482 (current_)?user\s*?\([^\)]*? 
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COEFFICIENT FEATURE (Regular Expression) 

0.758978 select.*?\w?user\( 

1.097862 database\W*\( 

1.097862 (current_)?database\s*?\([^\)]*? 

Table E.6: Coefficients and Features for Signature 6.
 

COEFFICIENT FEATURE (Regular Expression) 

-3.761054 

0.262131 = 

0.262131 =[-0-9\%]* 

0.261463 <=>|r?like|sounds\s+like|regex 

0.261584 ([^a-zA-Z&]+)?&|exists 

-0.117270 [\?&][^\s\t\x00-\x37\|]+? 

0.708324 \)?; 

Table E.7: Coefficients and Features for Signature 7.
 

COEFFICIENT FEATURE (Regular Expression) 

-4.670291 

3.322430 \( 

0.015823 (current_)?user\s*?\([^\)]*? 

0.806333 (x?x?\s+)\s*?\w+\( 

0.002432 \bselect\b.{0,40}\busers?\b 

3.601496 version 
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Table E.8: Coefficients and Features for Signature 8.
 

COEFFICIENT FEATURE (Regular Expression) 

-5.397672 

0.377096 = 

0.377096 =[\-0-9%]* 

0.410321 =|<=>|r?like|sounds\s+like|regex 

0.377096 ([^a-zA-Z&]+)?=|[eE][xX][iI][sS][tT][sS] 

0.172626 [\?&][^\s\t\x00-\x37\|]+? 

0.148376 \)?; 

Table E.9: Coefficients and Features for Signature 9.
 

COEFFICIENT FEATURE (Regular Expression) 

-4.738639 

0.019820 [\"’][\s\d]*?[^\w\s]+\W*?\d\W*?.*?[\"’\d] 

0.019820 [()*<>%+-][\w-]+[^\w\s]+[\"’][^,] 

-0.006550 cast 

-0.001040 [\"’;]+$ 

-0.000174 ^[\W\d]+\s*?union 

Table E.10: Coefficients and Features for Signature 10.
 

COEFFICIENT FEATURE (Regular Expression) 

-4.197985 

0.039358 (\/\*.*?\*\/)+? 

0.039358 \*/ 
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COEFFICIENT FEATURE (Regular Expression) 

-0.825733 
([\s’\"\(\)]*)([\d\w]+)([\s’\"\(\)]*) 

(=|<=>|r?like|sounds\s+like|regexp)[\s’\"\(\)]* 

-0.003813 @ 

-0.018053 char 

-0.000582 ch(a)?r\s*?\(\s*?\d 

Table E.11: Coefficients and Features for Signature 11.
 

COEFFICIENT FEATURE (Regular Expression) 

-5.912046 

0.044724 (length of string) 

-0.096772 [\s’\"\(\)]* 

-1.086292 ([\s\t\x00-\x37]|\/\*.*?\*\/|\)?;)+.*? 

-0.333336 [A-Za-z]{1} 

0.381274 [\s\t\r\n\v\f]{1} 

0.381274 " " (space) 

-0.435454 [0-9]{1} 

0.061053 [\s\t\x00-\x37] 

1.397264 [!"#$%&’()*+,./:;<=>?@˜_‘{|}~-]{1} 

0.987805 ([\d\w]+) 

-0.035547 and 

-0.107282 ([^a-zA-Z&]+)= 

-0.000218 
([\s\t\x00-\x37]|\/\*.*?\*\/|\)?;)+ 

([xX]?[oO][rR]|[nN]?[aA][nN][dD]) 

-0.066444 [\[(]+[a-zA-Z&]{2,}? 
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