
CERIAS Tech Report 2013-6
Secure Configuration of Intrusion Detection Sensors for Dynamic Enterprise-Class Distributed Systems

 by Gaspar Modelo-Howard
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

SECURE CONFIGURATION OF INTRUSION DETECTION SENSORS

FOR DYNAMIC ENTERPRISE-CLASS DISTRIBUTED SYSTEMS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Gaspar Modelo-Howard

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2013

Purdue University

West Lafayette, Indiana

ii

This thesis is dedicated, first and foremost, to my muse Lourdes. I am so lucky to

have you. Hope our ride has been fun so far and that we can enjoy more adventures

together. The world is huge and there are still many more places to discover.

To David and Diego, you are my guiding light. Life is so wonderful thru your eyes.

To the perfect mom, Argy, your love and support knows no boundaries.

To my brother, Gabriel. My honest, true friend.

To Tio Ivan. You gave me my first computer, pushed me to dream big and chase

those dreams.

iii

ACKNOWLEDGMENTS

I would like to thank the many people who have contributed to this thesis. With

out their support, this work would not have been possible.

Many thanks to my advisor, Professor Saurabh Bagchi, for giving me the oppor

tunity to start my life as a computer security researcher. He took me into DCSL

and provided me with interesting opportunities to explore and study the world of

computer security.

My gratitude to the members of my Program Committee Professors Guy Lebanon,

Sonia Fahmy, and Vijai Pai for taking time out of their busy schedules to consider

this work.

Thanks to Dawn Weisman and the rest of the NEEScomm IT Team, for providing

an opportunity to support my research and a rich computing environment that shaped

it.

I also thank my friends Daniel Torres, Ruben Torres, and Oscar Garibaldi for the

great times watching sports, talking about research and Panama, and just enjoying

college life.

Many thanks to Julio Escobar for inspiring me to pursue a life of research in

computing. You are the epitome of the Panamanian who believes in his country and

its people. Let’s now “invent our future”.

Thanks to the team of researchers and developers of the Bro Network Security

Monitor system and to Matt Jonkman of the Emerging Threats IDS RuleSet. Both

open source projects helped foster our research and provided an important framework

to test our ideas.

My Ph.D. studies were partly supported by an IFARHU-SENACYT Scholarship

from the Republic of Panama. Many thanks to these public institutions for providing

a valuable opportunity to advance my professional career.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xii

1 INTRODUCTION . 1

1.1 Motivation . 1

1.2 Outline . 3

1.3 Published Work . 5

2	 DETERMINING PLACEMENT OF INTRUSION DETECTORS FOR A

DISTRIBUTED APPLICATION THROUGH BAYESIAN NETWORK MOD
ELING . 6

2.1 Introduction . 6

2.2 Related Work . 9

2.3 Background . 12

2.3.1 Attack Graphs . 12

2.3.2 Inference in Bayesian Networks 13

2.4 System Design . 16

2.4.1 Framework Description . 16

2.4.2 Greedy Algorithm . 18

2.4.3 Cost–Benefit Analysis . 20

2.4.4 FPTAS Algorithm . 23

2.5 Experimental Systems . 24

2.5.1 E-Commerce System . 25

2.5.2 Voice-over-IP (VoIP) System 26

2.6 Experiments for Greedy Algorithm 27

v

Page

2.6.1	 Experiment 1: Distance from Detectors 28

2.6.2	 Experiment 2: Impact of Imperfect Knowledge 30

2.6.3	 Experiment 3: Impact on Choice and Placement of Detectors 33

2.7 Experiments for FPTAS Algorithm 35

2.7.1	 Experiment 4: Comparison between Greedy algorithm and FP
TAS . 36

2.7.2	 Experiment 5: Sensitivity to Cost Value 41

2.7.3	 Experiment 6: ROC curves across Different Attack Graphs . 43

2.8 Conclusions and Future Work . 45

3	 SECURE CONFIGURATION OF INTRUSION DETECTION SENSORS

FOR CHANGING ENTERPRISE SYSTEMS 47

3.1 Introduction . 47

3.2 Related Work . 50

3.3 Problem Statement and Threat Model 53

3.4 DIADS Framework . 54

3.4.1	 Probabilistic Reasoning Engine 56

3.4.2	 Algorithm 1: BN update to structure based on Firewall rule

changes . 57

3.4.3	 Algorithm 2: Update of BN CPTs based on firewall changes 60

3.4.4	 Algorithm 3: BN update of CPT based on incremental trace

data . 61

3.4.5	 Algorithm 4: Update choice of sensors based on runtime infer
ence . 62

3.5 Experiments and Results . 63

3.5.1	 Experimental Setup . 63

3.5.2	 Experiment 1: Dynamic Reconfiguration of Detection Sensor 65

3.5.3	 Experiment 2: Dynamism from Firewall Rules Changes . . . 65

3.5.4	 Experiment 3: Dynamism with Attack Spreading 68

3.6 Conclusions and Future Work . 69

4 WEBCRAWLING TO GENERALIZE SQL INJECTION SIGNATURES 71

vi

Page

4.1	 Introduction . 71

4.2	 Framework Design . 75

4.2.1 Webcrawling for Attack Samples 76

4.2.2 Feature Selection . 78

4.2.3 Creating Clusters for Similar Attack Samples 82

4.2.4 Creation of Generalized Signatures 86

4.3	 Evaluation . 90

4.3.1 SQLi Signature Sets . 90

4.3.2 SQLi Test Datasets . 92

4.3.3 Implementation in Bro . 93

4.3.4 Experiment 1: Accuracy and Precision Comparison 94

4.3.5 Experiment 2: Incremental Learning 97

4.3.6 Experiment 3: Performance Evaluation 99

4.4	 Discussion . 100

4.5	 Related Work . 102

4.6 Conclusions and Future Work . 104

5 FUTURE WORK . 106

5.1	 Implementation of DIADS . 106

5.2	 Determining Confidence Levels from Intrusion Alerts to Configure De
tection Sensors . 106

5.3	 Incremental Deployment of Intrusion Detectors in a Dynamic Dis
tributed System . 107

LIST OF REFERENCES . 108

A DESCRIPTION OF E-COMMERCE BAYESIAN NETWORK 115

B CALCULATION OF APPROXIMATION RATIO FOR GREEDY ALGO
RITHM . 118

C ALGORITHMS FOR DIADS . 120

D BAYESIAN NETWORK USED FOR DIADS EXPERIMENTS 125

E SET OF SIGNATURES GENERATED WITH PSIGENE 127

vii

VITA . 134

viii

LIST OF TABLES

Table	 Page

2.1	 Comparison between Greedy algorithm and FPTAS for different cost val
ues. 37

2.2	 Sensitivity analysis to different low cost values and Capacity W = 0.90. 41

2.3	 Sensitivity analysis to different medium cost values and Capacity W =
2.00. 42

2.4	 Detectors selected by Greedy and FPTAS Algorithms for different attack

goals (ai) . 46

4.1	 Examples of SQLi Vulnerabilities published in July 2012. 77

4.2	 Sources of SQLi features. 79

4.3	 Features included in Signature 6. 88

4.4	 Probability Values produced by Signature 6 89

4.5	 Comparison between different SQLi rulesets. 91

4.6	 Accuracy Comparison between different SQLi rulesets. 95

4.7	 Details of signatures for each cluster created by pSigene. 98

E.1	 Coefficients and Features for Signature 1. 127

E.2	 Coefficients and Features for Signature 2. 129

E.3	 Coefficients and Features for Signature 3. 129

E.4	 Coefficients and Features for Signature 4. 130

E.5	 Coefficients and Features for Signature 5. 130

E.6	 Coefficients and Features for Signature 6. 131

E.7	 Coefficients and Features for Signature 7. 131

E.8	 Coefficients and Features for Signature 8. 132

E.9	 Coefficients and Features for Signature 9. 132

E.10 Coefficients and Features for Signature 10. 132

E.11 Coefficients and Features for Signature 11. 133

ix

LIST OF FIGURES

Figure	 Page

2.1	 Attack graph model for a sample web server. There are three starting
vertices, representing three vulnerabilities found in different services of
the server from where the attacker can elevate the privileges in order to
reach the final goal of compromising the password file. 7

2.2	 Simple Bayesian network with two types of nodes: an observed node (u)
and an unobserved node (v). The observed node correspond to the detector
alert in our framework and its conditional probability table includes the
true positive (α) and false positive (β). 15

2.3	 A block diagram of the framework to determine placement of intrusion
detectors. The dotted lines indicate a future component, controller, not
included currently in the framework. It would provide for a feedback
mechanism to adjust location of detectors. 17

2.4	 Network diagram for the e-commerce system and its corresponding Bayesian
network. The white nodes are the attack steps and the gray nodes are the
detectors. 26

2.5	 VoIP system and its corresponding Bayesian network. 27

2.6	 Parameters used for our experiments: True Positive (TP), False Positive
(FP), True Negative (TN), False Negative (FN), precision, and recall. . 28

2.7	 Results of experiment 1: Impact of distance to a set of attack steps. (a)
Generic Bayesian network used. (b) Using node 24 as the detector (ev
idence), the line shows mean values for rate of change. (c) Comparison
between different detectors as evidence, showing the mean rate of change
for case. 29

2.8	 Precision and recall as a function of detection threshold, for the e-commerce
Bayesian network. The line with square markers is recall and other line is
for precision. 31

2.9	 ROC curves for two attack steps in e-commerce Bayesian network. Each
curve corresponds to a different variance added to the CTP values. . . 31

2.10 Impact of deviation from correct CPT values, for the (a) e-commerce and
(b) generic Bayesian networks. 32

x

Figure	 Page

2.11 ROC curves for detection of attack steps, using pairs of detectors, in the
e-commerce network (left) and the VoIP network (right). 34

2.12 ROC	 curves for detectors picked by Greedy (dashed line) and FPTAS
(solid line) for different capacity values: (a) W = 0.51, (b) W = 0.60, (c)
W = 1.20 and (d) W = 1.50. 38

2.13 Execution time comparison between Greedy algorithm and FPTAS, for
different values of the error parameter (f). In our experiments, values of f
equal or larger than 0.01 allow FPTAS to run faster than Greedy. . . . 40

2.14 ROC	 curves for detectors picked by Greedy (dashed line) and FPTAS
(solid line) across all different attack goals in E-Commerce Bayesian net
work. 44

3.1	 (a) Results from curve fitting the data points from the Snort experiment.
(b) General block diagram of the proposed DIADS. A wrapper (software)
is used to allow communication from the sensors (circles labeled D1 to D4)
and firewall to the reasoning engine and viceversa (only for sensors). . . 49

3.2	 Diagram of the proposed framework, providing details on the components
of the reasoning engine. 55

3.3	 The framework uses four algorithms, three to update the reasoning engine
and one to reconfigure the detection sensors. 56

3.4	 Impact of changes to a firewall rule. A new rule (No.7) in the firewall
table changes the topology of the Bayesian network. Two of the four new
edges, shown as dashed lines, will be removed by the algorithm since they
lead to a cycle. A BN node is actually host × port × vulnerability, but
here for simplicity, we have a single vulnerability per service (i.e. per host
× port). 59

3.5	 Example for algorithm 02: initialization of BN CPT. To add a new parent
(C) to an existing node (A), we create the marginal probability Pr(C)
from its CVSS (base metric) value and use it to update the new CPT of
A. 60

3.6	 Connectivity graph for testing scenario, showing the TCP ports enabled
for communication between different hosts. The shaded nodes represent
the critical asset (databases) in the protected system. 63

3.7	 Performance comparison between dynamic configuration of DIDS and a
set of detectors monitoring only DB servers. 66

xi

Figure	 Page

3.8	 Impact on topology changes. (a) Removing a host (developer) from net
work. (b) Allowing direct access between the consultant box and the DB
development server. 67

3.9	 Comparison between our dynamic technique and a static setup for two
attacks scenarios. The dynamic reconfiguration technique allows to recon-
figure the detection sensors as alerts from the initial steps of the attacks
are received. 68

4.1	 Components of the pSigene architecture, a webcrawl-based creation pro
cess for SQLi attack signatures. For each component, there is a reference to
the section providing further details. It is shown below each component. 73

4.2	 Example of the creation of SQLi features from decomposing existing rules.
A ModSec signature (left blue box) was broken down into 7 features. Fea
tures 6 and 7 were not included in the final feature set as they were replaced
by simpler features or are for queries to non-MySQL databases. 80

4.3	 Heat map with two dendrograms of the matrix data representing the sam
ples dataset. The 30,000 attack samples are the rows and the 159 features
are the columns. The heat map also shows the seven biclusters selected
to create the signatures. 83

4.4	 ROC curves for each of the signatures generated for the generalized set.
The plot shows different performance for each signature, suggesting that
each one can be tuned separately which can improve the overall detection
rate of the set. 96

4.5	 Minimum, Average, and maximum processing time across all signatures
from Bro, pSigene, and ModSec sets. 100

A.1	 Bayesian network for the e-commerce system with corresponding descrip
tion of the nodes. Each node is either an attack step or a detector. . . 116

A.2	 Bayesian network for the e-commerce system with the conditional proba
bilities values used for the experiments. 117

D.1	 Bayesian Network created from an NSF Center at Purdue University and
used for experiments presented in chapter 3. 126

xii

ABSTRACT

Modelo-Howard, Gaspar Ph.D., Purdue University, May 2013. Secure Configuration
of Intrusion Detection Sensors for Dynamic Enterprise-Class Distributed Systems.
Major Professor: Saurabh Bagchi.

To secure todays computer systems, it is critical to have different intrusion de

tection sensors embedded in them. The complexity of distributed computer systems

makes it difficult to determine the appropriate choice and placement of these detec

tors because there are many possible sensors that can be chosen, each sensor can be

placed in several possible places in the distributed system, and overlaps exist between

functionalities of the different detectors. For our work, we first describe a method

to evaluate the effect a detector configuration has on the accuracy and precision of

determining the systems security goals. The method is based on a Bayesian network

model, obtained from an attack graph representation of the target distributed sys

tem that needs to be protected. We use Bayesian inference to solve the problem of

determining the likelihood that an attack goal has been achieved, given a certain set

of detector alerts. Based on the observations, we implement a dynamic programming

algorithm for determining the optimal detector settings in a large-scale distributed

system and compare it against a greedy algorithm, previously developed.

In the work described above, we take a (static) snapshot of the distributed system

to determine the configuration of detectors. But distributed systems are dynamic in

nature and current attacks usually involve multiple steps, called multi-stage attacks,

due to attackers usually taking multiple actions to compromise a critical asset for

the victim. Current sensors are not capable of analyzing multi-stage attacks. For

the second part of our work, we present a distributed detection framework based

on a probabilistic reasoning engine that communicates to detection sensors and can

xiii

achieve two goals: (1) protect a critical asset by detecting multi-stage attacks and

(2) tune sensors according to the changing environment of the distributed system,

which includes changes to the protected system as well as changing nature of attacks

against it.

Each node in the Bayesian Network model represents a detection signature to an

attack step or vulnerability. We extend our model by developing a system called

pSigene, for the automatic generation of generalized signatures. It follows a four-step

process based on a biclustering algorithm to group attack samples we collect from

multiple sources, and logistic regression model to generate the signatures. We imple

mented our system using the popular open-source Bro Intrusion Detection System

and tested it for the prevalent class of Structured Query Language injection attacks.

We obtain True and False Positive Rates of over 86% and 0.03%, respectively, which

are very competitive to existing signature sets.

1

1. INTRODUCTION

1.1 Motivation

Intrusion Detection Systems (IDS) play an important role in the cybersecurity

strategy of many organizations, to protect their distributed computing systems. The

host and network activity experienced in these systems calls for continuous monitor

ing, and this role is usually satisfied by an IDS with one or more detection sensors.

Today’s distributed systems exhibit a very dynamic and complex nature as its com

ponents are incessantly modified, interconnected or replaced and the topology of the

underlying network keeps changing. From a security perspective, it is impossible then

to assume under this scenario that all security risks can be completely eliminated or

that no errors will occur. Additionally, the system’s components are not perfect and

carry vulnerabilities and other security problems that eventually are exploited by ma

licious users. A sound, complete cybersecurity strategy must then include mechanisms

to detect when security breaches happen. That is the main role of an IDS.

The complexity and dynamism found nowadays in distributed systems creates a

conundrum for IDS designers and operators: how to configure and operate an IDS

to effectively detect when bad things happen in a computing scenario that keeps

changing and is composed from multiple components? Under this scenario, it is

difficult to determine the appropriate choice and placement of the intrusion detections

sensors because there are many possible sensors that can be chosen, each sensor can be

placed in several possible places in the distributed system, and overlaps exist between

functionalities of the different detection sensors.

In this thesis, we set out to provide mechanisms to help security professionals to

design, configure, and operate an IDS for a distributed system in a dynamic environ

ment. We develop techniques that evaluate the proposed or current configuration of

2

a intrusion detection system, which require numerous, distributed sensors. For each

of these components to effectively contribute, the IDS should continuously evaluate

the sensors and reconfigure itself, based on the changes to the monitored distributed

system. If the sensors are not properly managed, their contribution will decrease

over time, jeopardizing the effectiveness of the IDS and ultimately, compromising the

security of the distributed system.

An advantage to having multiple, distributed sensors in an IDS is the possibility

to correlate the alerts generated by these sensors, in order to ultimately make more

accurate detections than when using a single detection sensor. We present an alert

correlation technique based on attacks graphs and Bayesian inference by using the

probabilistic graphical model known as Bayesian network. It turns out that efficient

alert correlation is very environment specific as the value of a particular set of alerts to

help determine if an intrusion is happening, highly increases based on the location of

the corresponding sensors and the ability of the alerts to describe a possible intrusion

scenario.

The problem of dealing with complex and dynamic distributed systems makes it

necessary to consider the automation of many tasks to manage intrusion detection

systems. An IDS increasingly produces alerts that make it impossible for humans to

respond effectively and in a timely manner. It is then necessary to develop algorithms

that can scale to promptly determine if an intrusion has occurred and to allow for

the reconfiguration of the IDS when changes happen.

The detection method used by an IDS is a critical aspect when determining its

efficiency and performance. A 0-1 attitude by IDS developers when selecting the

detection method to use, has made users question the merits of the detection systems.

IDS are commonly divided into two groups, according to the detection method used:

anomaly- and misuse-based detection. The former creates a profile of the normal (non

malicious) behavior observed in the monitored system while the latter uses signatures

of attacks to detect malicious activity. Both methods present limitations and as we

present in this thesis, the detection efficiency of an IDS can be improved by mixing

3

both methods, producing signatures that represent generalized versions of malicious

behavior.

Our work is motivated by the experience of designing and operating the open-

source Bro IDS for NEEShub, a distributed system which is part of a National Science

Foundation-sponsored Center at Purdue University. The system serves content and

simulation tools for an engineering domain for thousands of users. While managing

the Bro IDS, we experienced the growing complexity and dynamism of the system

and served well as a reminder of the need to produce techniques for alert correlation,

to use multiple sensors, and to automate to managing of the IDS and its sensors.

1.2 Outline

Here we briefly summarize the contents of the chapters presented in this work.

In Chapter 2, we present a method to evaluate the effect a detector configu

ration has on the accuracy and precision of determining the systems security goals.

The method is based on a Bayesian network model, obtained from an attack graph

representation of the target distributed system that needs to be protected. We use

Bayesian inference to solve the problem of determining the likelihood that an attack

goal has been achieved, given a certain set of detector alerts.

We explore two methods to determine the configuration of intrusion detection

sensors in a distributed system. First, a greedy algorithm is introduced and tested

against two electronic commerce scenarios. Then, we present a dynamic programming

algorithm for determining the optimal detector settings in a large-scale distributed

system and compare it against the previously developed greedy algorithm. We also

report the results of five experiments, measuring the Bayesian networks behavior in

the context of two real-world distributed systems undergoing attacks. Results show

the dynamic programming algorithm outperforms the Greedy algorithm in terms

of the benefit provided by the set of detectors picked. The dynamic programming

4

solution also has the desirable property that we can trade off the running time with

how close the solution is to the optimal.

In the work described in the previous chapter, we take a (static) snapshot of the

distributed system to determine the configuration of detectors. But distributed sys

tems are dynamic in nature and current attacks usually involve multiple steps, called

multi-stage attacks, due to attackers usually taking multiple actions to compromise

a critical asset for the victim. Current sensors are not capable of analyzing multi

stage attacks. In Chapter 3, we introduce a distributed detection framework based

on a probabilistic reasoning engine that communicates to detection sensors and can

achieve two goals: (1) protect a critical asset by detecting multi-stage attacks and

(2) tune sensors according to the changing environment of the distributed system,

which includes changes to the protected system as well as changing nature of attacks

against it.

The Bayesian Network model described in the previous chapters, represents every

vulnerability found in the monitored distributed system as a node. That is, the

exact vulnerability is represented as a node in the Bayesian Network. To extend

the detection capability of the model, a node can be generalized so it represents a

group of similar vulnerabilities, not only a single one. To achieve this, in Chapter

4 we present a system, called pSigene, for the automatic generation of intrusion

signatures by mining the vast amount of public data available on attacks. Each

signature represents then a group of similar vulnerabilities. The system follows a

four-step process to generate the signatures, by first crawling attack samples from

multiple public cybersecurity web portals. Then, a feature set is created from existing

detection signatures to model the samples, which are then grouped using a biclustering

algorithm which also gives the distinctive features of each cluster. In the last step,

the system automatically creates a set of signatures using regular expressions, one

for each cluster. We tested our architecture for the prevalent class of SQL injection

attacks and found our signatures to have a True and False Positive Rates of over 86%

and 0.03%, respectively and compared our findings to other SQL injection signature

5

sets from popular IDS and web application firewalls. Results show our system to be

very competitive to existing signature sets.

Finally, Chapter 5 presents our future plans and work.

1.3 Published Work

Part of this thesis have been published:

• Gaspar Modelo-Howard, Jevin Sweval, and Saurabh Bagchi:

Secure Configuration of Intrusion Detection Sensors for Changing Enterprise

Systems. In: Proc. of the 7th ICST Conference on Security and Privacy

for Communication Networks (SecureComm’11). London, United Kingdom,

September 2011.

• Gaspar Modelo-Howard, Saurabh Bagchi, and Guy Lebanon:

Approximation Algorithms for Determining Placement of Intrusion Detectors in

a Distributed System. CERIAS Technical Report 2011-01, Purdue University.

• Gaspar Modelo-Howard, Saurabh Bagchi, and Guy Lebanon:

Determining Placement of Intrusion Detectors for a Distributed Application

through Bayesian Network Modeling. In: Proc. of the 11th International Sym

posium on Recent Advances in Intrusion Detection (RAID’08). Boston, MA,

September 2008.

6

2. DETERMINING PLACEMENT OF INTRUSION

DETECTORS FOR A DISTRIBUTED APPLICATION

THROUGH BAYESIAN NETWORK MODELING

2.1 Introduction

It is critical to provide intrusion detection to secure today’s distributed computer

systems. The overall intrusion detection strategy involves placing multiple detectors

at different points of the system. Examples of specific locations are network ingress

or combination points, specific hosts executing parts of the distributed system, or

embedded in specific applications that form part of the distributed system. At the

current time, the placement of the detectors and the choice of the detectors are more

an art than a science, relying on expert knowledge of the system administrator.

The choice of the detector configuration has substantial impact on the accuracy

and precision of the overall detection process. There are many choices to consider,

including the placement of detectors, their false positive (FP) and false negative (FN)

rates, and other detector properties. This results in a large exploration space which

is currently explored using ad-hoc techniques. This chapter presents an important

step in constructing a principled framework to investigate this exploration space.

At first glance it may seem that increasing the number of detectors is always a

good strategy. However, this is not the case and an extreme design choice of a de

tector at every possible network point, host, and application may not be ideal. First,

there is the economic cost of acquiring, configuring, and maintaining the detectors.

Detectors need tuning to achieve their best performance and to meet the targeted

needs of the application (specifically in terms of the balance between false positive

and false negative rates). Second, a large number of imperfect detectors means a

large number of alert streams in benign conditions that could overwhelm the manual

7

Fig. 2.1. Attack graph model for a sample web server. There are three
starting vertices, representing three vulnerabilities found in different ser
vices of the server from where the attacker can elevate the privileges in
order to reach the final goal of compromising the password file.

or automated response process. Third, detectors impose a performance penalty on

the distributed system as they typically share bandwidth and computational cycles

with the application. Fourth, system owners may have varying security goals such as

requiring high sensitivity or ensuring less tolerance for false positive alerts.

In this chapter we address the problem of determining where (and how many)

to place detectors in a distributed system, based on situation-specific security and

performance goals. We also show that this is an intractable problem. The security

goals are determined by requiring a certain trade-off between the true positive (TP)

– true negative (TN) detection rates.

Our proposed solution starts with attack graphs, as shown in Figure 2.1, which are

a popular representation for multi-stage attacks [1]. Attack graphs are a graphical

representation of the different ways multi-stage attacks can be launched against a

specific system. The nodes depict successful intermediate attack goals with the end

nodes representing the ultimate attack goal. The edges represent the notion that

some attack goals serve as stepping stones to other attack goals and therefore have to

be achieved first. The nodes can be represented at different levels of abstraction; thus

the attack graph representation can bypass the criticism that detailed attack methods

and steps need to be known a priori to be represented (which is almost never the case

for reasonably complex systems). Research in the area of attack graphs has included

automation techniques to generate these graphs [3], [2], to analyze them [4], [5], and

to reason about the completeness of these graphs [4].

8

We model the probabilistic relations between attack steps and detectors using

the statistical formalism of Bayesian networks. Bayesian networks are particularly

appealing in this setting since they enable computationally efficient inference for un

observed nodes (such as attack goals) based on observed nodes (detector alerts.) The

important question that Bayesian inference can answer for us is, given a set of detec

tor alerts, what is the likelihood or probability that an attack goal has been achieved.

A particularly important advantage is that Bayesian network can be relatively easily

created from an attack graph structure which is often assumed to be provided.

We formulate two Bayesian inference algorithms, implementing a greedy approach

for one and dynamic programming for the other, to systematically determine the

accuracy and precision a specific detector configuration has. We then proceed to

choose the detector placement that gives the highest value of a situation-specific

utility function. We show the Greedy algorithm has an approximation ratio of 1
2 . The

dynamic programming solution falls in the algorithm category of the fully polynomial

time approximation scheme (FPTAS) and has the desirable property that we can

trade off the running time with how close the solution is to the optimal.

We demonstrate our proposed framework in the context of two specific systems,

a distributed E-commerce system and a Voice-over-IP (VoIP) system, and compared

both algorithms. We experiment with varying the quality of the detectors, the level of

knowledge of attack paths, and different thresholds set by the system administrator

for determining whether an attack goal was reached. Our experiments indicate that

the value of a detector in terms of determining an attack step degrades exponentially

with its distance from the attack site.

The rest of this document is organized as follows. Section 2.2 presents the re

lated work and section 2.3 introduces the attack graph model and provides a brief

presentation of inference in Bayesian networks. Section 2.4 describes the model and

algorithms used to determine an appropriate location for detectors. Section 2.5 pro

vides a description of the distributed systems used in our experiments. Sections 2.6

and 2.7 present a complete description of the experiments along with their motiva

9

tions to help determine the location of the intrusion detectors. Finally, section 2.8

concludes the chapter and discusses future work.

2.2 Related Work

Bayesian networks have been used in intrusion detection to perform classification

of events. Kruegel et al. [6] proposed the usage of Bayesian networks to reduce the

number of false alarms. Bayesian networks are used to improve the aggregation of

different model outputs and allow integration of additional information. The ex

perimental results show an improvement in the accuracy of detections, compared to

threshold-based schemes. Ben Amor et al. [7] studied the use of naive Bayes in in

trusion detection, which included a performance comparison with decision trees. Due

to similar performance and simpler structure, naive Bayes is an attractive alternative

for intrusion detection. Other researchers have also used naive Bayesian inference for

classifying intrusion events [8].

To the best of our knowledge, the problem of determining an appropriate location

for detectors has not been systematically explored by the intrusion detection commu

nity. However, analogous problems have been studied to some extent in the physical

security and the sensor network fields.

Jones et al. [9] developed a Markov Decision Process (MDP) model of how an

intruder might try to penetrate the various barriers designed to protect a physical

facility. The model output includes the probability of a successful intrusion and the

most likely paths for success. These paths provide a basis to determine the location

of new barriers to deter a future intrusion.

In the case of sensor networks, the placement problem has been studied to identify

multiple phenomena such as determining location of an intrusion [10], contamination

source [11], [12], and atmospheric conditions [13]. Anjum et al. [10] determined which

nodes should act as intrusion detectors in order to provide detection capabilities in

a hierarchical sensor network. The adversary is trying to send malicious traffic to

10

a destination node (say, the base node). In their model, only some nodes called

tamper-resistant nodes are capable of executing a signature-based intrusion detection

algorithm and these nodes cannot be compromised by an adversary. Since these nodes

are expensive, the goal is to minimize the number of such nodes and the authors

provide a distributed approximate algorithm for this based on minimum cut-set and

minimum dominating set. The solution is applicable to a specific kind of topology,

widely used in sensor networks, namely clusters with a cluster head in each cluster

capable of communicating with the nodes at the higher layer of the network hierarchy.

In [11], the sensor placement problem is studied to detect the contamination of

air or water supplies from a single source. The goal is to detect that contamination

has happened and the source of the contamination, under the constraints that the

number of sensors and the time for detection are limited. The authors show that

the problem with sensor constraint or time constraint are both NP-hard and they

come up with approximation algorithms. They also solve the problem exactly for

two specific cases, the uniform clique and rooted trees. A significant contribution of

this work is the time efficient method of calculating the sensor placement. However,

several simplifying assumptions are made—sensing is perfect and no sensor failure

(either natural or malicious) occurs, there is a single contaminating source, and the

flow is stable.

Krause et al. [13] also point out the intractability of the placement problem and

present a polynomial-time algorithm to provide near-optimal placement which incurs

low communication cost between the sensors. The approximation algorithm exploits

two properties of this problem: submodularity, formalizing the intuition that adding

a node to a small deployment can help more than adding a node to a large deploy

ment; and locality, under which nodes that are far from each other provide almost

independent information. In our current work, we also experienced the locality prop

erty of the placement problem. The proposed solution learns a probabilistic model

(based on Gaussian processes) of the underlying phenomenon (variation of tempera

11

ture, light, and precipitation) and for the expected communication cost between any

two locations from a small, short-term initial deployment.

In [12], the authors present an approach for determining the location in an indoor

environment based on which sensors cover the location. The key idea is to ensure

that each resolvable position is covered by a unique set of sensors, which then serves

as its signature. They make use of identifying code theory to reduce the number of

active sensors required by the system and yet provide unique localization for each

position. The algorithm also considers robustness, in terms of the number of sensor

failures that can be corrected, and provides solutions in harsh environments, such as

presence of noise and changes in the structural topology. The objective for deploying

sensors here is quite different from our current work.

For all the previous work on placement of detectors, the authors are looking to

detect events of interest, which propagate using some well-defined models, such as,

through the cluster head en route to a base node. Some of the work (such as [13]) is

focused on detecting natural events, that do not have a malicious motive in avoiding

detection. In our case, we deal with malicious adversaries who have an active goal of

trying to bypass the security of the system. The adversaries’ methods of attacking

the system do not follow a well-known model making our problem challenging. As an

example of how our solution handles this, we use noise in our BN model to emulate

the lack of an accurate attack model.

There are some similarities between the work done in alert correlation and ours,

primarily the interest to reduce the number of alerts to be analyzed from an intrusion.

Approaches such as [14] have proposed modeling attack scenarios to correlate alerts

and identify causal relationships among the alerts. Our work aims to closely integrate

the vulnerability analysis into the placement process, whereas the alert correlation

proposals have not suggested such importance.

The idea of using Bayes theorem for detector placement is suggested in [15]. No

formal definition is given, but several metrics such as accuracy, sensitivity, and speci

ficity are presented to help an administrator make informed choices about placing

12

detectors in a distributed system. These metrics are associated to different areas or

sub-networks of the system to help in the decision process.

Many studies have been done on developing performance metrics for the evaluation

of intrusion detection systems (IDS), which have influenced our choice of metrics here.

Axelsson [16] showed the applicability of estimation theory in the intrusion detection

field and presented the Bayesian detection rate as a metric for the performance of

an IDS. His observation that the base rate, and not only the false alarm rate, is an

important factor on the Bayesian detection rate, was included in our work by using

low base rates as part of probability values in the Bayesian network. The MAFTIA

Project [17] proposed precision and recall to effectively determine when a vulnerability

was exploited in the system. A difference from our approach is that they expand the

metrics to consider a set of IDSes and not only a single detector. The idea of using

ROC curves to measure performance of intrusion detectors has been explored many

times, most recently in [18], [19].

Extensive work has been done for many years with attack graphs. Recent work

has concentrated on the problems of generating attack graphs for large networks and

automating the process to describe and analyze vulnerabilities and system compo

nents to create the graphs. The NetSPA system [2] uses a breath-first technique to

generate a graph that grows almost linearly with the size of the distributed system.

Ou et al. [3] proposed a graph building algorithm using a formal logical technique

that allows to create graphs of polynomial size to the network being analyzed.

2.3 Background

2.3.1 Attack Graphs

An attack graph is a representation of the different methods by which a distributed

system can be compromised. It represents the intermediate attack goals for a hypo

thetical adversary leading up to some high level attack goals. The attack goal may be

in terms of violating one or more of confidentiality, integrity, or availability of a com

13

ponent in the system. It is particularly suitable for representing multi-stage attacks,

in which a successful attack step (or steps) is used to achieve success in a subsequent

attack step. An edge will connect the antecedent (or precondition) stage to the con

sequent (or postcondition) stage. To be accurate, this discussion reflects the notion

of one kind of attack graph, called the exploit-dependency attack graph [2], [4], [3],

but this is by far the most common type and considering the other subclass will not

be discussed further in this chapter.

Recent advances in attack graph generation have been able to create graphs for

systems of up to hundreds and thousands of hosts [2], [3].

For our detector-location framework, exploit-dependency attack graphs are used

as the base graph from which we build the Bayesian network. For the rest of this

chapter, the vertex representing an exploit in the distributed system will be called an

attack step.

2.3.2 Inference in Bayesian Networks

Bayesian networks [20] provide a convenient framework for modeling the relation

ship between attack steps and detector alerts. Using Bayesian networks we can infer

which unobserved attack steps have been achieved based on the observed detector

alerts.

Formally, a Bayesian network is a joint probabilistic model for n random variables

(x1, . . . , xn) based on a directed acyclic graph G = (V, E) where V is a set of nodes

corresponding to the variables V = (x1, . . . , xn) and E ⊆ V xV contains directed

edges connecting some of these nodes in an acyclic manner. Instead of weights, the

graph edges are described by conditional probabilities of nodes given their parents

that are used to construct a joint distribution P (V) or P (x1, . . . , xn).

There are three main tasks associated with Bayesian networks. The first is infer

ring values of variables corresponding to nodes that are unobserved given values of

variables corresponding to observed nodes. In our context this corresponds to predict

14

ing whether an attack step has been achieved based on detector alerts. The second

task is learning the conditional probabilities in the model based on available data

which in our context corresponds to estimating the reliability of the detectors and

the probabilistic relations between different attack steps. The third task is learning

the structure of the network based on available data. All three tasks have been ex

tensively studied in the machine learning literature and, despite their difficulty in the

general case, may be accomplished relatively easily in the case of a Bayesian network.

We focus in this chapter mainly on the first task. For the second task, to es

timate the conditional probabilities, we can use characterization of the quality of

detectors [21] and the perceived difficulty of achieving an attack step, say through

risk assessment. We consider the fact that the estimate is unlikely to be perfectly

accurate and provide experiments to characterize the loss in performance due to im

perfections. For the third task, we rely on extensive prior work on attack graph

generation and provide a mapping from the attack graph to the Bayesian network.

In our Bayesian network, the network contains nodes of two different types V = �
Va Vb. The first set of nodes Va corresponds to binary variables indicating whether

specific attack steps in the attack graph occurred or not. The second set of nodes Vb

corresponds to binary variables indicating whether a specific detector issued an alert.

The first set of nodes representing attack steps are typically unobserved while the

second set of nodes corresponding to alerts are observed and constitute the evidence.

The Bayesian network defines a joint distribution P (V) = P (Va, Vb) which can be

used to compute the marginal probability of the unobserved values P (Va) and the

conditional probability P (Va|Vb) = P (Va, Vb)/P (Vb) of the unobserved values given

the observed values. The conditional probability P (Va|Vb) can be used to infer the

likely values of the unobserved attack steps given the evidence from the detectors.

Comparing the value of the conditional P (Va|Vb) with the marginal P (Va) reflects the

gain in information about estimating successful attack steps given the current set of

detectors. Alternatively, we may estimate the suitability of the detectors by comput

15

ing classification error rate, precision, recall and Receiver Operating Characteristic

(ROC) curve associated with the prediction of Va based on Vb.

Fig. 2.2. Simple Bayesian network with two types of nodes: an observed
node (u) and an unobserved node (v). The observed node correspond to
the detector alert in our framework and its conditional probability table
includes the true positive (α) and false positive (β).

Note that the analysis above is based on emulation done prior to deployment with

attacks injected through the vulnerability analysis tools, a plethora of which exist in

the commercial and research domains, including integrated infrastructures combining

multiple tools.

Some attack steps have one or more detectors that specifically measure whether an

attack step has been achieved while other attack steps do not have such detectors. We

create an edge in the Bayesian network between nodes representing attack steps and

nodes representing the corresponding detector alerts. Consider a specific pair of nodes

v ∈ Va, u ∈ Vb representing an attack step and a corresponding detector alert. The

conditional probability P (v|u) determines the values P (v = 1|u = 0), P (v = 0|u =

1), P (v = 0|u = 0), P (v = 1|u = 1). These probabilities representing false negative,

false positive, and correct behavior (last two) can be obtained from an evaluation of

the detectors quality.

16

2.4 System Design

2.4.1 Framework Description

Our framework uses a Bayesian network to represent the causal relationships be

tween attack steps and also between attack steps and detectors. Such relationships

are expressed quantitatively, using conditional probabilities. To produce the Bayesian

network1, an attack graph is used as input. The structure of the attack graph maps

exactly to the structure of the Bayesian network. Each node in the Bayesian network

can be in one of two states. Each attack stage node can either be achieved or not by

the attacker. Each detector node can be in one of two states: alarm generated state

or not. The leaf nodes correspond to the starting stages of the attack, which do not

need any precondition, and the end nodes correspond to end goals for an adversary.

Typically, there are multiple leaf nodes and multiple end nodes.

The Bayesian network requires that the sets of vertices and directed edges form a

directed acyclic graph (DAG). This property is also found in attack graphs. The idea

is that the attacker follows a monotonic path, in which an attack step does not have

to be revisited after moving to a subsequent attack step. This assumption can be

considered reasonable in many scenarios according to experiences from real systems.

A Bayesian network quantifies the causal relation that is implied by an edge in

an attack graph. In the cases when an attack step has a parent, determined by

the existence of an edge coming to this child vertex from another attack step, a

conditional probability table is attached to the child vertex. As such, the probability

values for each state of the child are conditioned by the state(s) of the parent(s). In

these cases, the conditional probability is defined as the probability of a packet from

an attacker that already achieved the parent attack step, achieving the child attack

step. All values associated to the child are included in a conditional probability table

(CPT). As an example, all values for node u in Figure 2.2 are conditioned on the

1Henceforth, when we refer to a node, we mean a node in the Bayesian network, as opposed to a
node in the attack graph. The clarifying phrase is thus implied.

17

Fig. 2.3. A block diagram of the framework to determine placement of
intrusion detectors. The dotted lines indicate a future component, con
troller, not included currently in the framework. It would provide for a
feedback mechanism to adjust location of detectors.

possible states of its parent, node v. In conclusion, we are assuming that the path

taken by the attacker is fully probabilistic. The attacker is following a strategy to

maximize the probability of success, to reach the security goal. To achieve it, the

attacker is well informed about the vulnerabilities associated to a component of the

distributed system and how to exploit it. The fact that an attack graph is generated

from databases of vulnerabilities support this assumption.

The CPTs have been estimated for the Bayesian networks created. Input values

are a mixture of estimates based on testing specific elements of the system, like using

a certain detector such as IPTables [22] or Snort [23], and subjective estimates, using

judgment of a system administrator. From the perspective of the expert (administra

tor), the probability values reflect the difficulty of reaching a higher level attack goal,

having achieved some lower level attack goal.

A potential problem when building the Bayesian network is to obtain a good

source for the values used in the CPTs of all nodes. The question is then how to

deal with possible imperfect knowledge when building Bayesian networks. We took

two approaches to deal with this issue: (1) use data from past work and industry

18

sources and (2) evaluate and measure in our experiments the impact such imperfect

knowledge might have.

For the purposes of the experiments explained in sections 2.6 and 2.7, we have

chosen the junction tree algorithm [?] to do inference, the task of estimating proba

bilities given a Bayesian network and the observations or evidence. There are many

different algorithms that could be chosen, making different tradeoffs between speed,

complexity, and accuracy. Still, the junction tree engine is a general-purpose inference

algorithm well suited for our experiments since it works under our scenario: allows

discrete nodes, as we have defined our two-states nodes, in direct acyclic graphs such

as Bayesian networks, and does exact inference. This last characteristic refers to the

algorithm computing the posterior probability distribution for all nodes in network,

given some evidence.

2.4.2 Greedy Algorithm

We present here an algorithm to achieve an optimal choice and placement of

detectors. It takes as input (i) a Bayesian network with all attack vertices, their

corresponding CPTs and the host impacted by the attack vertex; (ii) a set of detectors,

the possible attack vertices each detector can be associated with, and the CPTs for

each detector with respect to all applicable attack vertices.

The DETECTOR-PLACEMENT algorithm (2.1) starts by sorting all combina

tions of detectors and their associated attack vertices according to their benefit to the

overall system (line 1). The system benefit is calculated by the BENEFIT function

(2.2). This specific design considers only the end nodes in the BN , corresponding to

the ultimate attack goals. Other nodes that are of value to the system owner may also

be considered. Note that a greedy decision is made in the Benefit calculation each

detector is considered singly. From the sorted list, (detector, attack vertex) combi

nations are added in order, until the overall system cost due to detection is exceeded

(line 7). Note that we use a costBenefit table (line 4 of Benefit function), which is

19

Algorithm 2.1 DETECTOR-PLACEMENT (BN, D)

Input: (i) Bayesian network BN = (V, CP T (V), H(V)) where V is the set of at

tack vertices, CPT (V) is the set of conditional probability tables associated with

the attack vertices, and H(V) is the set of hosts affected if the attack vertex is

achieved.

(ii) Set of detectors D = (di, V (di), CPT [i][j]) where di is the ith detec

tor, V (di) is the set of attack vertices that the detector di can be attached to

(i.e., the detector can possibly detect those attack goals being achieved), and

CPT [i][j] ∀j ∈ V (di) is the CPT tables associated with detector i and attack

vertex j.

Output:	 Set of tuples θ = (di, πi) where di is the ith detector selected and πi is the

set of attack vertices that it is attached to.

systemCost = 0

1: sort all (di, aj), aj ∈ V (di), ∀i by Benefit(di, aj). Sorted list = L

2: length(L) = N

3: for i = 1N do

4: systemCost = systemCost + Cost(di, aj)

5: /* Cost(di, aj) can be in terms of economic cost, cost due

6: to false alarms and missed alarms, etc. */

7: if systemCost > threshold τ then

8: break

9: end if

10: if di ∈ Θ then

11: add aj to πi ∈ Θ

12: else

13: add di, πi = aj to Θ

14: end if

15:	 end for

20

likely specified for each attack vertex at the finest level of granularity. One may also

specify it for each host or each subnet in the system.

The worst-case complexity of this algorithm is O(dv B(v, CP T (v)) + dv log(dv)+

dv), where d is the number of detectors and v is the number of attack vertices.

B(v, CP T (v)) is the cost of Bayesian inference on a BN with v nodes and CPT (v)

defining the edges. The first term is due to calling Bayesian inference with up to d

times v terms. The second term is the sorting cost and the third term is the cost of

going through the for loop dv times. In practice, each detector will be applicable to

only a constant number of attack vertices and therefore the dv terms can be replaced

by a constant times d, which will be only d considering order statistics.

The reader would have observed that the presented algorithm is greedy-choice of

detectors is done according to a pre-computed order, in a linear sweep through the

sorted list L (the for loop starting in line 3). This is not guaranteed to provide an

optimal solution. For example, detectors d2 and d3 taken together may provide greater

benefit even though detector d1 being ranked higher would have been considered first

in the DETECTOR-PLACEMENT algorithm. This is due to the observation that

the problem of optimal detector choice and placement can be mapped to the 0 − 1

knapsack problem which is known to be NP-hard. The mapping is obvious consider

D × A (D: Detectors and A: Attack vertices). We have to include as many of these

tuples so as to maximize the benefit without the cost exceeding , the system cost of

detection.

2.4.3 Cost–Benefit Analysis

We address the problem of determining the number and placement of detectors as

a cost-benefit exercise. The system benefit is calculated by the BENEFIT function

shown below. This specific design considers only the end nodes in the BN, corre

sponding to the ultimate attack goals. Other nodes that are of value to the system

owner may also be considered in alternate designs.

21

Algorithm 2.2 BENEFIT (di, aj)

1:	 //This is to calculate the benefit from attaching detector di to attack vertex aj

2:	 //F is the set of end attack vertices fk �M
3:	 F ← k=1 fk

4:	 for all fk ∈ F do

5:	 perform Bayesian inference with di as the only detector in the network and

connected to attack vertex aj

6: calculate P recision(fk, di, aj)

7: calculate Recall(fk, di, aj) 	 j (1+β2) P recision(fk,di,aj)×(Recall(fk,di,aj)m di8: systemBenefit ← i=1
 	 j
βd
2
i
×P recision(fk,di,aj)+Recall(fk,di,aj)

9:

10:	 end for

11:	 return systemBenefit

22

The BENEFIT function is used to calculate the benefit from attaching a detec

tor to an attack vertex in the Bayesian network. To evaluate the performance of a

detector, the algorithm uses two popular measures from statistical classification, pre

cision and recall. Precision is the fraction of true positives (TP) determined among

all attacks flagged by the detection system. Recall is the fraction of TP determined

among all real positives in the system. Then, the BENEFIT function combines both

measures into a single measure, Fβ − measure [32], which is the weighted harmonic

mean of precision and recall and a popular method to evaluate predictors. β is the

ratio of recall over precision, defining the relative importance of one to the other. The

resulting Fβ −measure constitutes the output of the BENEFIT function and is called

the systemBenefit, provided from attaching the detector to the Bayesian network.

The cost model for the system under analysis is defined by the following formula,

corresponding to the expectation (in the probabilistic sense) of the cost:

MM
COST (di, aj) = P robfk (TP) × (costrespond) + P robfk (FP) × (costrespond)

k=1 j
+P robfk (FN) × (costnotrespond

We calculate the cumulative cost associated by selecting a detector, based on its

different outcomes with respect to the end nodes: true positive (TP), false positive

(FP), and false negative (FN). True negatives (TN) are not considered to compute the

detector cost as we believe there should not be any penalty for correct classification

of non-malicious traffic. The cost of positive (FP and TP) outcome is related to the

response made by the detection system, whereas the FN cost depends on the damage

produced by not detecting the attack.

In our design, all probability values (TP, FP, and FN) are first computed by

performing sampling on the Bayesian network, since there are no real data (logs)

when the system starts and placement of detectors is calculated for the first time.

After the initial configuration is done and the system has been monitored for some

time, the detection system can be reconfigured by using the log files collected to

compute new probability values.

23

2.4.4 FPTAS Algorithm

The mapping of our DETECTOR-PLACEMENT problem to the 0-1 Knapsack

problem allows us to utilize the existing algorithms for the popular NP-hard op

timization problem. In particular, the Knapsack problem allows approximation to

any required degree of the optimal solution by, as previously mentioned, using an

algorithm classified as (FPTAS) since the algorithm is polynomial in the size of the

instance n and the reciprocal of the error parameter f. An FPTAS is the best possi

ble solution for an NP-hard optimization problem, assuming of course that P = NP .

The original FPTAS for the 0-1 Knapsack problem was given in [33].

A description of the FPTAS implemented for our experiments follows and is

adapted from [34], [35]. The scheme is composed of two steps: first, the scaling

of the benefit space to reduce the number of different benefit values to consider and

second, running a pseudo polynomial time algorithm based on the dynamic program

ming technique on the scaled benefit space.

Step 1 - Scaling Step

To obtain the FPTAS, the benefit space is scaled to reduce the number of different

profit values and effectively bound the profits in n, the input size. By scaling with

respect to the error parameter f, the algorithm produces a solution that is at least

(1 − f) times the optimal value, in polynomial time with respect to both n and f. The

algorithm is as follows:

Algorithm 2.3 BENEFIT SPACE SCALING

1: Let B ← benefit of the most profitable object

EB2: Given f > 0, let E =
n

3: n ← length[L]

Step 2 - Dynamic Programming Step

Let W be the maximum capacity of the knapsack. All n items under consideration

are labeled i ∈ 1, . . . , k, . . . , n and each item has some weight wi and a scaled benefit

value b�i. Then the Knapsack problem can be divided into sub-problems to find an

�

24

optimal solution for Sk; that is the solution for when items labeled from 1 to k have

been considered, but not necessarily included, in the solution. Then, let B[k, w] be the

maximum profit of Sk that has total weight w ≤ W . Then, the following recurrence

allows to calculate all values for B[k, w]:

⎧
 ⎨
 B[k − 1, w] ifwk > w
B[k, w] = ⎩ maxB[k − 1, w], B[k − 1, w − wk] + bk else

The first case of the recurrence is when an item k is excluded from the solution

since if it were, the total weight would be greater than w, which is unacceptable.

In the second case, item k can be in the solution since its weight (wk) is less than

the maximum allowable weight(w). We choose to include item k if it gives a higher

benefit than if we exclude it. In the formula, if the the second term is the maximum

value, then we include item k, and we exclude it if the first term is the maximum.

The final solution B[n, W] then corresponds to the set Sn,W for which the benefit is

maximized and the total cost is less or equal to W . j
The running time of FPTAS is given by O n2

E
B , and its design is based on the

idea of trading accuracy for running time. The original benefit space of the 0-1

Knapsack problem is mapped to a coarser one, by ignoring a certain number of least-

significant bits of benefit values, which depend on the error parameter f. The mapped

coarser instance is solved optimally through an exhaustive search by using a dynamic

programming-based algorithm. The intuition, then, is to allow the algorithm to run

in polynomial time by properly scaling down the benefit space. This thus provides a

trade-off between the accuracy and the running time.

2.5 Experimental Systems

We created three Bayesian networks for our experiments modeling two real systems

and one synthetic network. These are a distributed electronic commerce (e-commerce)

system, a Voice-over-IP (VoIP) network, and a synthetic generic Bayesian network

that is larger than the other two. The Bayesian networks were manually created from

25

attack graphs that include several multi-step attacks for the vulnerabilities found in

the software used for each system. These vulnerabilities are associated with specific

versions of the particular software, and are taken from popular databases [24], [25].

An explanation for each Bayesian network follows.

2.5.1 E-Commerce System

The distributed e-commerce system used to build the first Bayesian network is

a three tier architecture connected to the Internet and composed of an Apache web

server, the Tomcat application server, and the MySQL database backend. All servers

are running a Unix-based operating system. The web server sits in a de-militarized

zone (DMZ) separated by a firewall from the other two servers, which are connected

to a network not accessible from the Internet. All connections from the Internet

and through servers are controlled by the firewall. Rules state that the web and

application servers can communicate, as well as the web server can be reached from

the Internet. The attack scenarios are designed with the assumption that the attacker

is an external one and thus her starting point is the Internet. The goal for the attacker

is to have access to the MySQL database (specifically access customer confidential

data such as credit card information node 19 in the Bayesian network of Figure 2.4).

A complete description of the Bayesian network used in the experiments is presented

in Appendix A (Figures A.1 and A.2).

As an example, an attack step would be a portscan on the application server (node

10). This node has a child node, which represents a buffer overflow vulnerability

present in the rpc.statd service running on the application server (node 12). The

other attack steps in the network follow a similar logic and represent other phases of

an attack to the distributed system. The system includes four detectors: IPtables,

Snort, Libsafe, and a database IDS. As shown in Figure 2.4, each detector has a

causal relationship to at least one attack step.

26

xx

Firewall

Internet

x
x

x
x

Database
Server

x
x

x
x

Application
Server

x
x

x
x

Web Server

DMZ

Internal
Network

3 1

4

2

57

6

8

9

10 11

12

15

16

14

17 18

19

13

20

b

Fig. 2.4. Network diagram for the e-commerce system and its correspond
ing Bayesian network. The white nodes are the attack steps and the gray
nodes are the detectors.

2.5.2 Voice-over-IP (VoIP) System

The VoIP system used to build the second network has a few more components,

making the resulting Bayesian network more complex. The system is divided into

three zones: a DMZ for the servers accessible from the Internet, an internal network

for local resources such as desktop computers, mail server and DNS server, and an

internal network only for VoIP components. This separation of the internal network

into two units follows the security guidelines for deploying a secure VoIP system [26].

The VoIP network includes a PBX/Proxy, voicemail server and software-based

and hardware-based phones. A firewall provides all the rules to control the traffic

between zones. The DNS and mail servers in the DMZ are the only accessible hosts

from the Internet. The PBX server can route calls to the Internet or to a public-

switched telephone network (PSTN). The ultimate goal of this multi-stage attack is

to eavesdrop on VoIP communication. There are 4 detectors: IPtables, and three

network IDSs on the different subnets.

27

xx

DNS

xx

Mail

xx

Firewall

xx

PBX/Proxy
xx

xx
xx xx

Internal User

xx

VoiceMailx
x
x
x xxx
x

VoIP Phone
(hardware)

xx

xx
xx xx

VoIP Phone
(software)

VoIP
Network

DMZ

Internal
Network

PSTN

Internetxx

Mail

xx

DNS

1

2

5

8

10

13

14

19

4

7

21

9

3

11

15

17

12

20

16

6

18

22

Fig. 2.5. VoIP system and its corresponding Bayesian network.

A third synthetic Bayesian network was built to test our framework for exper

iments where a larger network, than the other two, was required. This network is

shown in Figure 2.7(a).

2.6 Experiments for Greedy Algorithm

The correct number, accuracy, and location of the detectors can provide an ad

vantage to the systems owner when deploying an intrusion detection system. Several

metrics have been developed for evaluation of intrusion detection systems. In our

work, we concentrate on the precision and recall. Precision is the fraction of true

positives determined among all attacks flagged by the detection system. Recall is

the fraction of true positives determined among all real positives in the system. The

notions of true positive, false positive, etc. are shown in Figure 2.6. We also plot the

ROC curve which is a traditional method for characterizing detector performanceit

is a plot of the true positive against the false positive.

For the experiments we create a dataset of 50,000 samples or attacks, based on

the respective Bayesian network. We use the Matlab Bayesian network toolbox [27]

28

TNFNDetection = False

FPTPDetection = True

Attack = FalseAttack = True

FNTP

TP
Recall

�

FPTP

TP
Precision

�

Fig. 2.6. Parameters used for our experiments: True Positive (TP), False
Positive (FP), True Negative (TN), False Negative (FN), precision, and
recall.

for our Bayesian inference and sample generation. Each sample consists of a set of

binary values, for each attack vertex and each detector vertex. A one (zero) value

for an attack vertex indicates that attack step was achieved (not achieved) and a one

(zero) value for a detector vertex indicates the detector generated (did not generate)

an alert. Separately, we perform inference on the Bayesian network to determine the

conditional probability of different attack vertices. The probability is then converted

to a binary determination whether the detection system flagged that particular attack

step or not, using a threshold. This determination is then compared with reality, as

given by the attack samples which leads to a determination of the systems accuracy.

There are several experimental parameters which specific attack vertex is to be

considered, the threshold, CPT values, etc. and their values (or variations) are

mentioned in the appropriate experiment. The CPTs of each node in the network are

manually configured according to the authors experience administering security for

distributed systems and frequency of occurrences of attacks from references such as

vulnerability databases, as mentioned earlier.

2.6.1 Experiment 1: Distance from Detectors

The objective of experiment 1 was to quantify for a system designer what is the

gain in placing a detector close to a service where a security event may occur. Here

we used the synthetic network since it provided a larger range of distances between

attack steps and detector alerts.

29

The CPTs were fixed to manually determined values on each attack step. Detec

tors were used as evidence, one at a time, on the Bayesian network and the respective

conditional probability for each attack node was determined. The effect of the single

detector on different attack vertices was studied, thereby varying the distance between

the node and the detector. The output metric is the difference of two terms. The

first term is the conditional probability that the attack step is achieved, conditioned

on a specific detector firing. The second term is the probability that the attack step

is achieved, without use of any detector evidence. The larger the difference is, the

greater is the value of the information provided by the detector. In Figure 2.7(b),

we show the effect due to detector corresponding to node 24 and in Figure 2.7(c), we

consider all the detectors (again one at a time). The effect of all the detectors shows

that the conclusions from node 24 are general.

1

4222

24

3

65

97 8

10 11

1412 13

1715 16

b

2018 19

21

26

28

27

25

23

0 2 4 6 8

0

0.2

0.4

0.6

0.8

Distance(X
24

,X
i
)

P
(X

i=
1|

X
24

=
1)

 −
 P

(X
i=

1)

0 2 4 6 8

0

0.2

0.4

0.6

0.8

Distance(X
detector

, X
i
)

|P
(X

i=
1

| X
de

te
ct

or
=

1)
 −

 P
(X

i=
1)

|

Fig. 2.7. Results of experiment 1: Impact of distance to a set of attack
steps. (a) Generic Bayesian network used. (b) Using node 24 as the
detector (evidence), the line shows mean values for rate of change. (c)
Comparison between different detectors as evidence, showing the mean
rate of change for case.

The results show that a detector can affect nodes inside a radius of up to three

edges from the detector. The change in probability for a node within this radius,

compared to one outside the radius, can be two times greater when the detector is

30

used as evidence. For all Bayesian networks tested, the results were consistent to the

three edges radius observation.

2.6.2 Experiment 2: Impact of Imperfect Knowledge

The objective of experiment 2 was to determine the performance of the detection

system in the face of attacks. In the first part of the experiment (Exp. 2a), the

effect of the threshold, that is used in converting the conditional probability of an

attack step into a binary determination, is studied. This corresponds to the practical

situation that a system administrator has to make a binary decision based on the

result of a probabilistic framework and there is no oracle at hand to help. For the

second part of the experiment (Exp. 2b), the CPT values in the Bayesian network are

perturbed by introducing variances of different magnitudes. This corresponds to the

practical situation that the system administrator cannot accurately gauge the level

of difficulty for the adversary to achieve attack goals. The impact of the imperfect

knowledge is studied through a ROC curve.

For Experiment 2a, precision and recall were plotted as a function of the threshold

value. This was done for all the attack nodes in the Bayesian network and the results

for a representative sample of six nodes are shown in Figure 2.8. We used threshold

values from 0.5 to 0.95, since anything below 0.5 would imply the Bayesian network

is useless in its predictive ability.

Expectedly, as the threshold is increased, there are fewer false positives and the

precision of the detection system improves. The opposite is true for the recall of the

system since there are more false negatives. However, an illuminating observation is

that the precision is relatively insensitive to the threshold variation while the recall

has a sharp cutoff. Clearly, the desired threshold is to the left of the cutoff point.

Therefore, this provides a scientific basis for an administrator to set the threshold for

drawing conclusions from a Bayesian network representing the system.

31

0.6 0.8
0

20

40

60

80

100
Node 1

0.6 0.8
0

50

100
Node 4

0.6 0.8
0

20

40

60

80

100
Node 9

0.6 0.8
0

50

100
Node14

0.6 0.8
0

50

100
Node 17

0.6 0.8
0

50

100
Node 19

Fig. 2.8. Precision and recall as a function of detection threshold, for the
e-commerce Bayesian network. The line with square markers is recall and
other line is for precision.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Node 6

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

var = 0.05
var = 0.15
var = 0.25

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

Node 1

var = 0.05
var = 0.15
var = 0.25

Fig. 2.9. ROC curves for two attack steps in e-commerce Bayesian net
work. Each curve corresponds to a different variance added to the CTP
values.

32

In experiment 2b we introduced variance to the CPT values of all the attack

nodes, mimicking different levels of imperfect knowledge an admin may have about

the adversarys attack strategies. When generating the samples corresponding to

the attacks, we used three variance values: 0.05, 0.15, and 0.25. Each value could

be associated with a different level of knowledge from an administrator: expert,

intermediate, and nave, respectively. For each variance value, ten batches of 1,000

samples were generated and the detection results were averaged over all batches.

In Figure 2.12, we show the ROC curves for nodes 1 and 6 of the e-commerce

system, with all four detectors in place. Expectedly, as the variance increases, the

performance suffers. However, the process of Bayesian inference shows an inherent

resilience since the performance does not degrade significantly with the increase in

variance. For node 1, several points are placed so close together that only one marker

shows up. On the contrary, for node 6, multiple well spread out TP-FP value pairs

are observed. We hypothesize that since node 1 is directly connected to the detector

node 3, its influence over node 1 dominates that of all other detectors. Hence fewer

number of sharp transitions are seen compared to node 6, which is more centrally

placed with respect to multiple detectors.

0 1 2 3 4 5

0.71

0.72

0.73

0.74

Number of CPTs changed

P
(X

19
=

1
| X

20
=

1)

0 1 2 3 4 5

0.69

0.7

0.71

0.72

Number of CPTs changed

P
(X

21
=

1
| X

28
 =

 1
)

Fig. 2.10. Impact of deviation from correct CPT values, for the (a) e-
commerce and (b) generic Bayesian networks.

33

Experiment 2c also looked at the impact of imperfect knowledge when defining

the CPT values in the Bayesian network. Here we progressively changed the CPT

values for several attack steps in order to determine how much we would deviate

from the correct value. We used two values 0.6 and 0.8 for each CPT cell (only two

are independent) giving rise to four possible CPT tables for each node. We plot the

minimum and maximum conditional probabilities for a representative attack node

for a given detector flagging. We change the number of CPTs that we perturb from

the ideal values. Expectedly as the number of CPTs changed increases, the difference

between the minimum and the maximum increases, but the range is within 0.03. Note

that the point at the left end of the curve for zero CPTs changed gives the correct

value.

Both experiments indicate that the BN formalism is relatively robust to imperfect

assumptions concerning the CPT values. This is an important fact since it is likely

that the values determined by an experienced system administrator would still be

somewhat imperfect. Overall, as long as the deviation of the assumed CPTs from the

truth is not overwhelming, the network performance degrades gracefully.

2.6.3 Experiment 3: Impact on Choice and Placement of Detectors

The objective of experiment 3 was to determine the impact of selecting the detec

tors and their corresponding locations. To achieve this, we ran experiments on the

e-commerce and the VoIP Bayesian networks to determine a pair of detectors that

would be most effective. This pair, called the optimal pair, is chosen according to the

algorithm described in Section ??. The performance of the optimal pair is compared

against additional pairs selected at random. We show the result using the ROC curve

for the two ultimate attack goals, namely node 19 and node 21 in the e-commerce

and the VoIP systems.

To calculate the performance of each pair of detectors, we created 10,000 samples

from each Bayesian network, corresponding to that many actual attacks. Then we

34

performed Bayesian inference and calculated the conditional probability of the attack

step, given the pair of detectors. We determined the true positive rate and false

positive rate by sweeping across threshold values.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

(d
20

,x
19

),(d
20

,x
18

)

(d
20

,x
19

),(d
20

,x
16

)

(d
13

,x
12

),(d
7
,x

6
)

(d
13

,x
12

),(d
3
,x

2
)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

(d
22

,x
20

),(d
18

,x
17

)

(d
18

,x
17

),(d
18

,x
14

)

(d
18

,x
12

),(d
18

,x
14

)

(d
18

,x
12

),(d
6
,x

4
)

Fig. 2.11. ROC curves for detection of attack steps, using pairs of detec
tors, in the e-commerce network (left) and the VoIP network (right).

Results show that the pair of detectors determined from the algorithm performs

better than the other randomly selected pairs. Figure 2.11a shows the situation in

which a single detector (d20) attached to two attack nodes (x19, x18) performs better

than two detectors (d13 and d7, or d12 and d3). The placement of the detector d20

affects the performance. This can be explained by the fact that node 18 is more

highly connected in the attack graph and therefore attaching detector d20 to that

node, rather than node 16, provides better predictive performance.

There is a cost of adding detectors to a system, but there is also a cost of having a

detector attached to more attack nodes, in terms of the bandwidth and computation.

Thus adding further edges in the Bayesian network between a detector node and an

attack node, even if feasible, may not be desirable. For the VoIP network, detector

pair d22 and d18 performs best. This time two separate detectors outperform a single

high quality detector (d18) connected to two nodes.

Further details on all experiments performed, including all the probability values

used for the Bayesian networks, are available at [28]. These are omitted here due

to space constraints and the interested party is welcome to further read. All the

35

experiments validate the intuition behind our algorithm that the greedy choice of the

detectors also gives good results when multiple detectors are considered together and

over the entire Bayesian network.

2.7 Experiments for FPTAS Algorithm

The correct number, accuracy, and location of the detectors can provide an ad

vantage to the system’s owner when deploying an intrusion detection system. Several

metrics have been developed for evaluation of intrusion detection systems. In our

work, as first presented in section 2.6, we concentrate on precision and recall. The

notions of TP, FP, etc., are shown in Figure 2.6. We also plot the ROC curve which

is a traditional method for characterizing detector performance – it is a plot of the

true positive against the false positive.

For the experiments, we create a dataset of 50,000 samples or attacks, based on the

respective Bayesian network. We use the Bayesian network toolbox for Matlab [27] for

our Bayesian inference and sample generation. Each sample consists of a set of binary

values, for each attack vertex and each detector vertex. A one (zero) value for an

attack vertex indicates that attack step was achieved (not achieved), and a one (zero)

value for a detector vertex indicates the detector generated (did not generate) an alert.

Separately, we perform inference on the Bayesian network to determine the conditional

probability of different attack vertices. The probability is then converted to a binary

determination – whether or not the detection system flagged that particular attack

step, using a threshold. This determination is then compared with reality, as given

by the attack samples which leads to a determination of the system’s accuracy. There

are several experimental parameters – which specific attack vertex is to be considered,

the threshold, CPT values, etc. – and their values (or variations) are mentioned in

the appropriate experiment. The CPTs of each node in the network are manually

configured according to the authors’ experience administering security for distributed

36

systems and frequency of occurrences of attacks from references such as vulnerability

databases, as mentioned earlier.

2.7.1 Experiment 4: Comparison between Greedy algorithm and FPTAS

The objective of experiment 1 was to determine the performance of the FPTAS and

compare it to the Greedy algorithm, using the Bayesian network for the e-commerce

distributed system. The experiment was repeated for different capacity thresholds,

representing cases for different numbers of detectors (1, 2, 3, or 4). For FPTAS, the

algorithm used f = 0.01 since varying the parameter for different values, from 0.01 to

0.30, produced no relevant change on the resulting set of detectors and the running

time was similar to the one from Greedy. More information on the running times is

provided at the end of this section.

In all cases of the experiment, FPTAS performed better than Greedy algorithm in

terms of achieving a higher benefit. FPTAS always first picked the (detector, location)

pair (d20,a19) closer to the attack goal of interest and with the highest benefit, given

the capacity constraint. Nevertheless, the selection of (detector, location) pairs was

not accumulative as the capacity threshold was increased. As an example, when the

threshold was set to 0.60 (representing the case for two detectors picked), FPTAS

selected pairs (d20,a19) and (d3,a1) but when threshold was increased to 1.20 (three

detectors), FPTAS selected (d20,a19), (d20,a17), and (d3,a2), removing (d3,a1) from

the solution set. The reason for this situation is that as the capacity threshold is

increased, it might include a detector with higher benefit and cost than one selected

under the previous threshold considered.

The performance of the Greedy algorithm was interesting as it always started

selecting the (d3,a1) pair, regardless of the capacity threshold. This actually shows

the drawback of the Greedy algorithm. It picks detectors that are accurate but are far

from the ultimate attack goals that we are interested in. The case when the threshold

was set to W = 0.51 (one detector) represented an example of a worst-case scenario

37

Table 2.1
Comparison between Greedy algorithm and FPTAS for different cost val
ues.

Capacity

(W=0.51)

Capacity

(W=0.60)

Capacity

(W=1.20)

Capacity

(W=1.50)

Selections made

by Greedy

algorithm

(d3, a1) (d3, a1)

(d3, a2)

(d3, a1)

(d3, a2)

(d20, a19)

(d3, a1)

(d3, a2)

(d20, a19)

Benefit 0.64 0.61 1.46 2.05

Cost 0.12 0.42 0.88 1.27

Selections made

by FPTAS

algorithm

(f = 0.01)

(d20, a19) (d20, a19)

(d3, a1)

(d20, a19)

(d20, a17)

(d2, a3)

(d20, a19)

(d20, a17)

(d3, a1)

(d7, a4)

Benefit 0.91 1.57 1.49 2.21

Cost 0.46 0.58 1.21 1,41

since the ratio between the optimal selection and the greedy choice was 1
2 . Still, as the

threshold was increased, the Greedy algorithm seemed to correct itself and provide a

solution closer to the optimal set. For cases of W = 1.20 and W = 1.50, the Greedy

algorithm had all but one of the (detector, location) pairs that are part of the solution

set chosen by FPTAS.

An interesting result is the cost associated to the detectors picked by the Greedy

algorithm when compared to the choices made by FPTAS. In all our experiments,

the selections made by Greedy had an overall lower cost and benefit than FPTAS.

Although the cost value achieved by Greedy might be considered positive result,

it is important to remember that our DETECTOR-PLACEMENT problem is an

optimization problem where we try to maximize the benefit.

38

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR
T

P
R

FPTAS: (d
20

,a
19

)

Greedy: (d
3
,a

1
)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

FPTAS: (d
20

,a
19

), (d
3
,a

1
)

Greedy: (d
3
,a

1
), (d

3
,a

2
)

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

FPTAS: (d
20

,a
19

), (d
20

,a
17

)
 (d

3
,a

2
)

Greedy: (d
3
,a

1
), (d

3
,a

2
)

 (d
20

,a
19

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

FPTAS: (d
20

,a
19

), (d
20

,a
17

),
 (d

7
,a

4
), (d

3
,a

1
)

Greedy: (d
3
,a

1
), (d

3
,a

2
),

 (d
20

,a
19

), (d
7
,a

4
)

(c) (d)

Fig. 2.12. ROC curves for detectors picked by Greedy (dashed line) and
FPTAS (solid line) for different capacity values: (a) W = 0.51, (b) W =
0.60, (c) W = 1.20 and (d) W = 1.50.

The ROC curves shown in Figure 2.12 also represent the results from the exper

iment. In (a) and (b), the Greedy algorithm starts picking detectors too far away

from the attack goal such that it doesn’t have any (TPR,FPR) points, except for

(0, 0) and (1, 1). We decided not to plot such lines because the performance of the

detector(s) selected is no better than flipping a (fair) coin to determine if the attack

goal has been achieved.

FPTAS performs better than the Greedy algorithm by immediately picking the

detector closest to the attack goal, in the case of cost = 0.51 (one detector). In this

case, FPTAS picks detector d20, which is directly connected to the attack goal. In

comparison, the Greedy algorithm starts by picking the detector farthest away from

the attack goal. The reason for this is that such a detector has the highest benefit

39

to-cost ratio among all detectors. The problem is that this ratio does not reflect the

actual performance of the detector for the attack goal. Such performance is shown in

the corresponding ROC curve (one detector).

In the case of cost = 0.60 (two detectors), The Greedy algorithm follows a similar

pattern as the previous case, picking the remaining detector with highest benefit-to

cost ratio. This detector is also far from the attack goal. In contrast, FPTAS picks

a detector connected to an attack step, which is connected to attack goal a19, and

increasing the overall True Positive Rate of the detection system. Nevertheless, the

same addition also increases the false positive rate.

For cases of cost = 1.20 (three detectors) and 1.50 (four detectors), the Greedy

algorithm starts picking detectors closer to the attack goal that, as is shown in the

corresponding ROC curves, perform relatively similar to the set of detectors selected

by FPTAS.

In conclusion, FPTAS starts by selecting the closest (best) detector for the attack

goal, and as it adds more detectors improves (marginally) the TPR of the detection

system but with a price (also increasing the FPR). The Greedy algorithm selects

from a decreasingly sorted list of detectors, according to their benefit-to-cost ratio.

These are two examples of the first experiment we performed with Bayesian networks,

where we demonstrated that as distance increases between detector and attack goal,

the detection capability decreases.

We evaluated the running time for both algorithms by performing 100 execution

runs for the Greedy algorithm and for each FPTAS with an error parameter (f)

from 0.0001 to 1. Figure 2.13 summarizes the findings on the running time for both

algorithms. It shows the results for FPTAS, for f from 0.0001 to 0.1 along with an

exponential regression curve to fit the series of data points collected. In the case of the

Greedy algorithm, we report a single value (represented by a straight line at 0.0523

seconds) since it is unaffected by f. From the results, the Greedy algorithm ran faster

than FPTAS, when the error parameter was less than 0.01. In our experiments,

around that error value (0.01) they both showed similar running times. For the

40

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Error Parameter (ε)

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

FPTAS
Curve fitting
Greedy

y=1.634 e−2787x +0.08919 e−43.39x

R2=0.9986

Fig. 2.13. Execution time comparison between Greedy algorithm and
FPTAS, for different values of the error parameter (f). In our experiments,
values of f equal or larger than 0.01 allow FPTAS to run faster than
Greedy.

41

Table 2.2

Sensitivity analysis to different low cost values and Capacity W = 0.90.

Low Greedy FPTAS (f = 0.01)

0.1 (d3, a1)

(d3, a2)

(d13, a12)

(d20, a19)

(d20, a17)

(d3, a2)

0.2 (d3, a1)

(d3, a2)

(d20, a19)

(d20, a17)

0.3 (d20, a19) (d20, a19)

Greedy algorithm it took on average 0.0523 seconds, while for FPTAS the average

running time was 0.0499 seconds. We excluded from both algorithms the time taken

to create the Bayesian network, the samples and to compute the probability values.

All are necessary inputs for both algorithms and took 32.75 seconds on average to

create and compute.

2.7.2 Experiment 5: Sensitivity to Cost Value

The objective of experiment 2 was to evaluate the impact of varying the quan

titative value assigned to each cost category (low, medium, high). Three values

were used for each category: low (0.10, 0.20, 0.30), medium (0.40, 0.50, 0.60) and high

(0.70, 0.80, 0.90). The experiment was repeated on both algorithms, FPTAS and

Greedy algorithm, using the Bayesian network for the e-commerce distributed system

and for different knapsack capacities (0.51, 0.90, 1.20, 1.50, 2.00, 2.50, and 3.50). Such

capacities correspond to the total resources available to the administrator to deploy

and administer the detection system. For FPTAS, the algorithm used f = 0.01.

Tables 2.2 and 2.3 summarize the results for the low and medium cost values

under two capacity scenarios. Table 2.2 is for capacity of 0.90, which corresponds

42

to two detectors selected by both algorithms. Table 2.3 is for capacity of 2.0, which

corresponds to five detectors selected.

Table 2.3

Sensitivity analysis to different medium cost values and Capacity W =

2.00.

Medium Greedy FPTAS (f = 0.01)

0.4 (d3, a1)

(d3, a2)

(d20, a19)

(d20, a17)

(d7, a4)

(d20, a19)

(d20, a17)

(d13, a12)

(d3, a2)

(d3, a1)

0.5 (d3, a1)

(d3, a2)

(d20, a19)

(d20, a17)

(d13, a12)

(d20, a19)

(d20, a17)

(d13, a12)

(d3, a2)

(d3, a1)

0.6 (d3, a1)

(d3, a2)

(d20, a19)

(d20, a17)

(d13, a12)

(d20, a19)

(d20, a17)

(d13, a12)

(d3, a2)

(d3, a1)

Varying the quantitative value of a cost level seems to only slightly affect the

outcome from the algorithms. In all cases, both algorithms are somehow consistent

picking at least the first two or three (detector, attack node) pairs, while varying the

quantitative value of the cost level. This is a positive result since the quantitative

values are arbitrarily determined by the system administrator or person responsible

for assessing the detection systems.

43

Comparing these results to the previous experiment, both the Greedy algorithm

and FPTAS performed as they did in the previous experiment. In the case of Greedy

algorithm, it keeps picking (d3, a1) before any other pair as this has the highest benefit

to-cost ratio. The FPTAS algorithm starts by picking (d20, a19) as it shows the highest

benefit for the knapsack capacity constraint, regardless of the different values used

for each cost level. In the case when a (detector, attack node) pair is changed because

a level value has been changed, this can be explained from the impact the pair has

on the individual cost assigned to each pair.

2.7.3 Experiment 6: ROC curves across Different Attack Graphs

The goal of this experiment is to show the performance of each algorithm, Greedy

and FPTAS, by picking a pair of detectors for different attack goals. All attack goals

in the e-commerce Bayesian network were used to evaluate the performance of the

algorithms.

We decided to limit the size of the set of detectors picked to two, for each case and

algorithm, since in our experience it is a reasonable number of detectors for a system

administrator to use to defend a particular attack goal. Although such number would

ultimately depend on several factors (for example: number of detectors available, the

size of the network and its corresponding Bayesian network), we believe that the two-

detector scenario allows us to show the behavior of each algorithm for the different

attack goals considered.

Table 2.4 shows the detectors picked for each attack goal scenario and the corre

sponding algorithm used to picked the pair of detectors. Also, a ROC curve is created

by averaging the FPR and TPR from the different attack goal scenarios.

The results from this experiment validate the observations from previous exper

iments. The Greedy algorithm starts by picking the detectors showing the highest

benefits regardless of its distance from the attack goal. Still, since all attack nodes

are considered as goals, there are several cases where the Greedy algorithm will pick

44

T
ab

le
 2
.4

D
et
ec
to
rs

 s
el
ec
te
d

 b
y

 G
re
ed
y

 a
n
d

 F
P
T
A
S

 A
lg
or
it
h
m
s
fo
r
d
iff

 er
en
t
at
ta
ck

 g
oa
ls

 (
a

 i)

A
tt
ac
k

G
oa
l

a
 19

a

 18

a
 17

a

 16

a
 15

a

 14

a
 12

a

 11

G
re
ed
y

(d

 3 ,
 a

1
)

(d
 3 ,

 a
2

)

(d
 3 ,

 a
2

)

(d
 3 ,

 a
2

)

(d
 3 ,

 a
2

)

(d
 3 ,

 a
1

)

(d
 3 ,

 a
1

)

(d
 3 ,

 a
2

)

(d
 3 ,

 a
1

)

(d
 3 ,

 a
2

)

(d
 3 ,

 a
1

)

(d
 3 ,

 a
2

)

(d
 13
, a

1
2
)

(d
 3 ,

 a
2

)

(d
 3 ,

 a
1

)

(d
 3 ,

 a
2

)

F
P
T
A
S

(d

 20
, a

1
9
)

(d
 3 ,

 a
2

)

(d
 20
, a

1
8
)

(d
 3 ,

 a
2

)

(d
 20
, a

1
7
)

(d
 3 ,

 a
1

)

(d
 3 ,

 a
1

)

(d
 3 ,

 a
2

)

(d
 3 ,

 a
1

)

(d
 3 ,

 a
2

)

(d
 3 ,

 a
1

)

(d
 3 ,

 a
2

)

(d
 13
, a

1
2
)

(d
 3 ,

 a
2

)

(d
 3 ,

 a
1

)

(d
 3 ,

 a
2

)

A
tt
ac
k

G
oa
l

a
 10

a

 9
a

 8
a

 6
a

 5
a

 4
a

 2
a

 1

G
re
ed
y

(d

 3 ,
 a

2
)

(d
 3 ,

 a
1

)

(d
 7 ,

 a
4

)

(d
 7 ,

 a
6

)

(d
 3 ,

 a
2

)

(d
 3 ,

 a
1

)

(d
 7 ,

 a
6

)

(d
 3 ,

 a
2

)

(d
 3 ,

 a
2

)

(d
 3 ,

 a
1

)

(d
 7 ,

 a
4

)

(d
 3 ,

 a
2

)

(d
 3 ,

 a
2

)

(d
 3 ,

 a
1

)

(d
 3 ,

 a
1

)

(d
 3 ,

 a
2

)

F
P
T
A
S

(d

 13
, a

1
2
)

(d
 7 ,

 a
4

)

(d
 7 ,

 a
6

)

(d
 7 ,

 a
4

)

(d
 13
, a

1
2
)

(d
 3 ,

 a
2

)

(d
 7 ,

 a
6

)

(d
 3 ,

 a
2

)

(d
 13
, a

1
2
)

(d
 3 ,

 a
2

)

(d
 13
, a

1
2
)

(d
 7 ,

 a
4

)

(d
 3 ,

 a
1

)

(d
 3 ,

 a
2

)

(d
 3 ,

 a
1

)

(d
 3 ,

 a
2

)

45

detectors close to the goal and with high benefit values. Therefore, the ROC curve

(dashed line) shown in Figure 2.14 performs just slightly worse than in the case of

the FPTAS algorithm. Looking at the choices made by FPTAS, it consistently picks

detectors with a high benefit and close to the attack goal considered.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

FPTAS
Greedy

Fig. 2.14. ROC curves for detectors picked by Greedy (dashed line)
and FPTAS (solid line) across all different attack goals in E-Commerce
Bayesian network.

All the experiments validate the intuition that the algorithms can provide good

results when multiple detectors are considered together and over the entire Bayesian

network. The Greedy algorithm performed well under the scenarios considered, which

we believe a good representation of the cases found in real-world systems. Still, as it is

shown in Appendix B, there could be some scenarios for which the Greedy algorithm

could produce results as low as half of the optimal solution. The FPTAS allows

getting closer to the optimal solution as the algorithm is bounded by a polynomial in

the size of the input and the reciprocal of the error parameter. In the experiments the

FPTAS always selected a solution equal to or better than the Greedy algorithm, in

terms of the benefit provided. As future work, we will test the algorithms under larger

scenarios, which will determine the impact of the error parameter on the running time

of the scheme.

46

2.8 Conclusions and Future Work

Bayesian networks have proven to be useful tools in representing complex proba

bility distributions, such as in our case of determining the likelihood that an attack

goal has been achieved, given evidence from a set of detectors. By using attack graphs

and Bayesian inference, we can quantify the overall detection performance in the sys

tems by looking at different choices and placements of detectors and the detection

parameter settings. We also quantified the information gain due to a detector as a

function of its distance from the attack step. Also, the effectiveness of the Bayesian

networks can be affected by imperfect knowledge when defining the conditional prob

ability values. Nevertheless, the Bayesian network exhibits considerable resiliency

to these factors, as our experiments showed. Finally, we compared the performance

of Greedy and FPTAS algorithms to determine a set of detectors given an attack

goal. FPTAS consistently outperformed Greedy, although the latter could be used in

scenarios where time constraints exist.

Future work will include looking at the scalability issues of Bayesian networks and

its impact on determining the location for a set of detectors in a distributed system.

The probability values acquisition problem can be handled by using techniques such

as the recursive noisy-OR modeling [29] or using honeynets to monitor the behavior

of attackers and compute the corresponding probability values. Experimentation is

required to determine its benefits and limitations for our scenario.

47

3. SECURE CONFIGURATION OF INTRUSION

DETECTION SENSORS FOR CHANGING ENTERPRISE

SYSTEMS

3.1 Introduction

Current computer attacks against distributed systems involve multiple steps, thanks

to attackers usually taking multiple actions to achieve their ultimate goal to compro

mise a critical asset. Such attacks are called multi-stage attacks (MSA). As today’s

enterprise systems are structured to protect their critical assets, such as, a mission-

critical service or private databases, by placing them inside the periphery, MSAs

have gained prominence. Examples include the breach of a large payment processing

firm [37] and the breaches published by the U.S. Department of Health & Human

Services [38]. MSAs are characterized by progressively achieving intermediate attack

steps and progressing using these as stepping stones to achieve the ultimate goal(s).

Thus, prior to the critical asset being compromised, multiple components are com

promised. Logically, therefore, to detect MSAs, it would be desirable to detect the

security state of various components in an enterprise distributed system—the outward

facing services as well as those placed inside the periphery. Further, the security state

needs to be inferred from the alerts provided by intrusion detection sensors (hence

forth, shortened as “sensors”) deployed in various parts of the system.

In the context of MSAs against distributed systems, this is challenging because

sensors are designed and deployed without consideration for assimilating inputs from

multiple detectors to determine how an MSA is spreading through the protected

system. Prior work has shown that it is possible to determine the choice and place

ment of sensors in a systematic manner and at runtime, perform inferencing based

on alerts from the sensors to determine the security state of the protected system

48

components [36]1 . In achieving this, the solutions have performed characterization of

individual sensors prior to deployment, in terms of their capability to detect specific

attack step goals. At runtime, inferencing has been performed on the basis of the

evidence—the alerts from the sensors—to determine the unobservable variables—the

security state of the different components of the protected system. The sensors may

be either network-based sensors, which observe incoming or outgoing network traffic,

or host-based sensors, which observe activities within a host.

However, no existing solution has handled the various sources of dynamism that

are to be expected in large-scale protected systems deployed in enterprise settings.

The underlying protected system itself changes with time, with the addition or dele

tion of hosts, ports, software applications, or changes in connectivity between hosts.

A static solution is likely to miss new attacks possible in the changed configuration

of the protected system as well as throw off false alarms for attack steps that are

just not possible under the changed configuration. The nature of attacks may also

change with time or the anticipated frequencies of attack paths may turn out to be not

completely accurate based on attack traces observed at runtime. Existing solutions

cannot update their ”beliefs” in an efficient manner and are therefore likely to be less

accurate. Finally, when the compromise of a critical asset appears imminent, fast

reconfiguration of existing sensors (such as, turning on some rules) may be needed to

increase the certainty about the security state of the critical asset. Our contribution

in this chapter is to show how the choice and placement of sensors can be updated

through incremental processing when the above kinds of dynamism occur.

The solution we propose in this chapter called Distributed Intrusion and Attack

Detection System (DIADS) is to have a central inferencing engine, which has a model

of MSAs as attack graphs. DIADS creates a Bayesian Network (BN) out of an attack

graph and observable (or evidence) nodes in the attack graph are mapped from sensor

alerts. It receives inputs from the sensors and performs inferencing to determine

1In this chapter, we will refer to the distributed enterprise system that is being protected as the
protected system and the set of sensors embedded in various components of the protected system as
the sensor system.

49

V�������

��������

	���
���

�����
�����������

�����

��
������

	�

	�

	�

	�

���������

������

Fig. 3.1. (a) Results from curve fitting the data points from the Snort ex
periment. (b) General block diagram of the proposed DIADS. A wrapper
(software) is used to allow communication from the sensors (circles la
beled D1 to D4) and firewall to the reasoning engine and viceversa (only
for sensors).

whether a rechoosing or replacement of sensors is needed. Further, it can reconfigure

existing sensors, by turning on or off rules or event definitions based on the changed

circumstances. Thus, the inferencing engine has a two-way communication path with

the sensors. DIADS determines changes to the protected system by parsing changes

to firewall rules at network points as well as at individual hosts and updates the BN

accordingly. If on the basis of current evidence, it determines that a critical asset

(also synonymously referred to as a crown jewel) will imminently be compromised, it

determines what further sensors close to the asset should be chosen, or equivalently,

what further rules in an already active sensor should be turned on.

One may think that a perfectly acceptable, and a much simpler, solution is to

activate all the available sensors and turn on all the available rules at any sensor.

Thus, there will be no reason to react to dynamic changes of the three types mentioned

above. However, this will impose too high an overhead on the protected system

in terms of the amount of computational resources that will be required and the

frequency of false alerts that will be generated. For example, we determine empirically

that for the popular Snort IDS [23] turning on the default set of rules will cause it to

potentially take 85 seconds to match a single packet (corresponding to 9700 rules in

50

Figure 3.1). Therefore there is the motivation to dynamically reconfigure the sensors

according to the activity observed in the network.

To sum up, in this chapter we make the following contributions:

1. We design a distributed intrusion detection system that can choose and place

sensors in a distributed system to increase the certainty of knowledge about the

security state of the critical assets in the system.

2. We imbue our solution with the ability to evolve with changes to the protected

system as well as the kinds of attacks seen in the system.

3. Through domain-specific optimizations, we make our reasoning engine fast enough

that it can perform reconfiguration of existing sensors while a multi-stage attack

(MSA) is coursing through the protected system.

We structure the remainder of this chapter as follows. In Section 4.5 we review

previous work on distributed intrusion detection systems (DIDS), MSA, and proba

bilistic approaches to intrusion detection. Section 3.3 states the problem studied and

the threat model considered. Section 3.4 presents the proposed DIADS framework

to detect MSAs and to reconfigure detection sensors, including a description of the

different components and algorithms used. In Section 3.5 we provide a description

of the experiments performed along with the results. Finally, Section 4.6 provides

conclusions and future work.

3.2 Related Work

There has been previous work on developing and proposing DIDSs. Early exam

ples of these systems are [39], [40], [41], and [42]. A starting point for DIDSs is the

collaboration between Lawrence Livermore National Labs, U.S. Air Force and other

organizations [39]. It represented the first attempt to physically distribute the detec

tion mechanism, while centralizing the analysis phase in a single component, running

a rule-based system.

51

Another distributed IDS is EMERALD [40]. It is a signature- and anomaly-based

distributed IDS with statistical analysis capabilities (rule-based and Bayesian infer

ence). The communication among sensors and monitors is structured in a hierarchy.

NetSTAT [41] is a network-based IDS modeling intrusions as state transition diagrams

and the target network as hypergraphs. By using both models, the system prioritizes

which network events to monitor. AAFID [42] is a distributed framework based on

software agents to collect and analyze data and used as a platform to develop intru

sion detection techniques. An interesting policy-based proposal based on the popular

Bro IDS [43] was presented in [44], using intrusion detection sensors in a distributed,

collaborative manner.

Unfortunately there has not been much discussion about DIDS in the last few

years so the impact of more complex distributed systems on the detection capabilities

of IDS as well as the evolution of MSAs has been somewhat neglected. Previous work

has primarily concentrated on increasing the accuracy of IDSs by improving their

true positive (TP) rate on single step attacks. Additionally, it does not consider the

dynamic nature of the protected system, one of our focus areas.

Previous work has considered MSAs [45], [46] but within a limited scope. [45]

proposes an offline-method to correlate alerts using an attack graph, to improve de

tection rate, while reducing false positive (FP) and false negative (FN) rates. It is

a rule-based method and does not consider a probabilistic approach. [46] presents

a formal conceptual model based on Interval Temporal Logic (ITL) to express the

temporal properties of MSAs.

A principal component for our framework is an attack graph, from which to create

a corresponding Bayesian network. An example of previous work on using attack

graphs for intrusion detection is found in [1]. Other works have previously focused

on using attack graphs to evaluate (offline) the vulnerability state of the computer

system [47].

Bayesian networks have been used for intrusion detection, examples include [36]

and [48]. [36] models the potential attacks to a target network using a Bayesian

52

network to determine (off-line) a set of detectors to protect the network. [48] presents

a method based on Dynamic Bayesian networks to include the temporal properties

of attacks in a distributed system.

Alert correlation is an area related to intrusion detection, that has received the

attention of the research community. Schemes in this area can be classified under two

basic groups: schemes that require patterns of actual attacks and/or alert interde

pendencies, and schemes that do not. Members of the first group include [14], [49],

and [50]. Our proposed framework, can be classified as part of the first group. The

second group of correlation schemes works without any specific knowledge of attacks.

Examples include [51], [52].

In [14], the authors present a formal framework for alert correlation that constructs

attack graphs by correlating individual alerts on the basis of the prerequisites and con

sequences manually associated to each alert. [49] presents techniques to learn attack

strategies from correlated attack graphs. The basic idea is to compute how similar

different attack graphs are by using error tolerant subgraph isomorphism detection.

In [50] the authors built on the results from the previous two papers, integrating

two alert correlation methods: correlation based on prerequisites and consequences of

attacks and those based on similarity between alert attribute values. They used the

results to hypothesize and reason about single attacks possibly missed by the IDSs.

There are several similarities between their approach and ours. We both represent

attack scenarios as graphs, assume attack steps are usually not isolated but rather

part of an MSA. Still, there are also several differences between their alert correlation

approach and ours. In a nutshell, our approach is adaptive, provides a larger visibility

of the target network, follows a probabilistic model, and works online, while theirs is

not.

53

3.3 Problem Statement and Threat Model

In this chapter, we answer two fundamental questions:

(1) How to update the configuration of sensors in an enterprise distributed system

(i.e., one with many hosts and software applications and hence attack injection points)

based on updated information that is obtained after the protected system and the

sensor system have been deployed.

(2) When the imminent threat to a critical asset(s) is high, how to reconfigure existing

sensors (such as, by activating new rules) to increase confidence in the estimate of

the security state of the critical asset(s).

In terms of the model for the protected system, all the components fall target

network under a single administrative domain and therefore, there is complete trust

between the owners of the different assets.

The profile of the attackers includes highly motivated individuals that might have

an economical incentive to compromise the distributed system. Attackers follow a

multi-step approach to compromise a resource or acquire data. It could start with

some reconnaissance, followed by exploitation of different hosts or services in the

target network. This description also fits the cases where attack sources are botnets

and malware, that does not include human intervention. We do not address intruders

who steal data by physically connecting to a host (for example, an insider’s attack

using a USB memory stick).

In our framework, one or more critical assets are identified in the protected sys

tem by the system owner and become the main protection objective of our DIADS

framework. Each critical asset is represented in the BN as a leaf node. An example of

a critical asset is a database that contains personally identifiable information (PII).

The above statement does not preclude having sensors that detect attacks at other

assets (such as, at a network ingress point), but our inferencing uses such sensors to

provide evidence of attacks leading up to a potential compromise of the critical assets.

Also, our DIADS framework is not attempting to create better intrusion detection

54

sensors; rather it is seeking to use existing sensors intelligently to obtain a better

estimate of the security state of critical assets in an enterprise distributed system.

We consider only multi-stage attacks (MSAs) to distributed systems. An impor

tant example is an MSA to a three-tier system (web / application logic / database)

which might allow an attacker to launch HTTP-based attacks to ultimately reach the

database and the information stored in it.

3.4 DIADS Framework

In this document we propose a distributed intrusion detection framework that

includes two components: (1) a probabilistic reasoning engine and (2) a network of

detection sensors to detect various stages of MSAs, as shown in Figure 3.1. The second

component comprises off-the-shelf sensors, augmented with a standard wrapper that

allows the sensor to send alerts to the reasoning engine and receive commands back

from the reasoning engine. The architecture is able to alert intrusion events related to

potential MSAs and determine if any critical asset has been compromised, or is under

imminent likelihood of being compromised based on current evidence of the spread

of the attack. It also allows for reconfiguration of sensors according to changes to the

protected system that is being monitored by the DIADS. Through this architecture,

the DIADS can reduce the number of false positives that it would report if it were

independently considering each step of the MSA. A block diagram of the proposed

architecture is shown in Figure 3.2.

The reasoning engine represents different possible MSAs as a single Bayesian net

work, which is updated according to events reported by the detection sensors and

the changing network configuration. The probabilistic engine can also request more

information from sensors when necessary. The reasoning engine can estimate the se

curity state of the critical assets given partial information about multi-stage attacks

and from imperfect or noisy sensors.

55

ì ì

ì ì

ì

ì ì

ì ì

ì ì

ì

ì ì

� �

�

ì��ì��

��ì��

�ì	
��ì�

�����

����ì���ì��

ì�ì�

��

���
�
�ì��

��
�
���

�
���

�
�������ì���

5

� � �

ì�ì��ì��
��
����

������ì�
�

�������ì�
�

�����

�	��
��

�������ì���

��������

�
�
�����

�
����

����
��
���	��
�

5

�
�
�

5 �����������

����������

�!����"

ì����#�"��$

����%"�&��

'������&��"��"&�

ì

�

Fig. 3.2. Diagram of the proposed framework, providing details on the
components of the reasoning engine.

56

É��������

������

þ��� ������

�	
��	�
�

����	

þ��� ������

��������	�

�	
�����	��

��	�
	����

�����
�����
	���	��

�������þ��� ������

��������	

þ��� ������

�	
��	�
�

����	

Fig. 3.3. The framework uses four algorithms, three to update the rea
soning engine and one to reconfigure the detection sensors.

The reasoning engine also collects background information about the distributed

system so the model can be updated. As a starting point, we should consider the

network and policy configurations stored in a firewall. The firewall can be at a

network ingress-egress point as well as at individual hosts. The firewall configuration

indicates which components are allowed to communicate with which components and

thus has an important determining effect on the structure of the attack graph, and

consequently, on the structure of the BN.

3.4.1 Probabilistic Reasoning Engine

To build our reasoning engine, we use Bayesian Network (BN), which is a popular

probabilistic graphical model. It is a macro-language, representing joint distributions

compactly by using a set of local relationships between random variables and specified

by a graph. A key point is that the missing edges in the graph imply the conditional

independence between the corresponding nodes. BN captures the characteristic in

real-world data of locality of influence, the idea that most variables are influenced by

only a few others. [36] shows the implications of this.

57

Bayesian networks combine graph theory with statistical techniques to model MSA

scenarios. In our framework, we use an attack graph to create the structure of the

BN, a directed acyclical graph. Each node in the graph represents a vulnerability,

more specifically, a 3-tuple: host × port × vulnerability existing in the target network.

This means that the service running on that host and listening on that port has that

vulnerability. The edges between nodes represent the direct precondition relationship

between the attack steps. The BN also includes nodes to represent intrusion detection

sensors. An edge A → D from an attack step node to a sensor node represents

the possibility of the sensor detecting that attack step, with the CPT quantifying

the accuracy and precision of the detection. Each node is parametrized by a set of

probability values and represented as a conditional probability tables (CPT). Proposed

in previous work [36] and also suggested by [48], the Bayesian network representation

can unify the information available from multiple sensors, in order to determine if an

MSA is occurring.

There are several benefits of using Bayesian networks. First, it can be a more

appropriate representation of reality than deterministic approaches, accounting for

several sources of uncertainty—noisy sensors, unknown intentions of the adversary

affecting the path of the MSA, and unknown difficulty of transitioning from one

attack step node to the next. A potential drawback of probabilistic models is the

combinatorial explosion faced when computing a joint probability distribution. In our

work, we address this issue by using the Noisy-OR model [53] to represent the CPTs.

Further details are provided in section 3.4.5. Our DIADS framework is composed

of four algorithms, which are schematically shown in Figure 3.3. Pseudo-code for

algorithms 1, 2, and 4 are provided in Appendix C.

3.4.2 Algorithm 1: BN update to structure based on Firewall rule changes

The algorithm produces a list of nodes and edges that should be added to (Va, Ea)

or deleted from (Vd, Ed) the Bayesian network to represent changes to the protected

58

system. We use changes to firewall rules as a proxy for the changes to the protected

system. The firewalls can be at a network ingress-egress point or at individual hosts

in the system.

The message passed from the Firewall to the reasoning engine has the follow

ing structure: message = < number, srcIPaddr, destIPaddr, portnumber, action,

ruletype > where number refers to the order of the rule in the firewall table. srcIP addr

and destIP addr are the IP addresses for the source and destination of communica

tion; portnumber is the TCP or UDP port number (16-bits in IPv4); action is one of

three options: allow, deny or drop; and ruletype refers to the change made to the rule

table: adding a new rule, modifying an existing rule or deleting an existing rule. For

the purposes of our experiments, we only considered firewall rule tables composed of

allow rules followed by a denyall rule. So effectively, the rule table creates a policy

where allowed communication is explicitly defined and everything else not defined, is

denied.

The algorithm can be divided into four parts: how to select the nodes and edges

to be added, if the rule has type add (lines 1 to 11); how to select the nodes and

edges to be deleted, if the rule has type delete (lines 13 to 29); checking for the

resulting changes to the BN to not introduce cycles and to confirm that the resulting

nodes are part of a path to the nodes representing the critical assets (lines 31 to

37); and finally, the converting the destIPaddr:port nodes into their corresponding

address:port:vulnerability nodes in the BN.

When a rule has type add or delete, the algorithm checks if the source and desti

nation addresses are new to the BN or already exist. If a node exists, then the edges

shared with its parents (line 4) or its children (line 7) should be included to the set

of edges to add (Ea). Also, the edge explicitly defined by the rule is included in (Ea).

If a node is new, then it should be added to the set of nodes to add (Va). A similar

approach (but with opposite results) is used for case when a rule has type delete.

The algorithm then checks the nodes and edges in the resulting BN by running

Depth First Search (DFS) to determine if the nodes have a path to the critical assets.

59

If the nodes do not, then they are pruned. DFS also checks if the addition creates any

cycles and if so, the back edges are deleted. The first is an important optimization

focusing the attention of DIADS to the critical assets and limiting the growth of the

BN.

Finally, the algorithm transforms the nodes in the sets Va and Vd to nodes in

the BN. It does this by doing a lookup in a matrix R that maps the host × port to

the vulnerability. It acquires the raw data for this from the National Vulnerability

Database (NVD) [25], a public repository of vulnerability management data.

o

���� ������� ��	
��
���� ��
����

�� ���� ������� ������

�� ���� �������� ������

�� ���� ������ ������

�� ��� ������� ������

�� ��� �������� ������

�� ��� ������ ������

 � ���� !"����� ������

�� ���� ���� �����

o

o

	������

���

���
����

���
���

���
���

���
���

(a) Firewall rule table (b) Bayesian network

Fig. 3.4. Impact of changes to a firewall rule. A new rule (No.7) in
the firewall table changes the topology of the Bayesian network. Two
of the four new edges, shown as dashed lines, will be removed by the
algorithm since they lead to a cycle. A BN node is actually host × port
× vulnerability, but here for simplicity, we have a single vulnerability per
service (i.e. per host × port).

As an example, consider a distributed system connected to the Internet, with

three computers: a web server (accessible from the Internet), a database server and

a desktop computer. The database server and the desktop computer are connected

to the same subnet, while the web server is connected to a separate subnet (DMZ).

All computers are protected by a network-based firewall and the rule table is shown

60

ì

��

�

�

�

���

���

ì

�

�

�

�

ì

��

�

�

�

�

�

�

�	
	�������	������

�������	������

�
	�������	������

�������	������

�����	
	��� �����	
	���

�

�

�

ì

�

�����	������

���� �	������

���	

����	

�

������	

����	

�

Fig. 3.5. Example for algorithm 02: initialization of BN CPT. To add a
new parent (C) to an existing node (A), we create the marginal probability
Pr(C) from its CVSS (base metric) value and use it to update the new
CPT of A.

in Figure 3.4(a). A Bayesian network can be built from the table, as shown in Figure

3.4(b). The critical asset is the database server and for simplicity purposes, we have

assumed one existing vulnerability per host.

If the rule any −− > FTP:21 allow is now added to the network firewall because

a new FTP server has been deployed and connected to the DMZ network, the resulting

Bayesian network is shown in Figure 3.4(b). A new node, Vuln FTP, is added and will

have five edges. Four are inbound, created from the added rule and one outbound,

from rule No. 1 in the table. The inbound edges from nodes Vuln Web and Vuln DB

are not included in the final Bayesian network as they make the graph cyclical.

3.4.3 Algorithm 2: Update of BN CPTs based on firewall changes

Algorithm 2 produces a list of CPTs for the changed nodes, i.e., nodes for which

there is an increase or reduction in the number of parents of the nodes, according to

the output from Algorithm 1. To update the CPT, we use the base metric value of

the CV SS score [54] of the node (corresponding to a vulnerability) to be added or

removed and divide it by 10 to use it as its marginal probability value. Then if the

resulting CPT is for an existing node, we take max(newP rob(vi) + Δ, oldP rob(vi)).

Figure 3.5 shows an example of how we use the formula.

61

In figure 3.5, first a new parent node C is added to an existing node A in the

BN. We take the base metric score (7) of the vulnerability corresponding to node C

and divide it by 10. Then use the formula max(P rob(C) + Δ, oldP rob(A|previous

evidence)) to create the new CPT. In our experiments, we use Δ = 0.05. Figure 3.5

also shows the CPT when node C is later removed. The base metric score of the

other parent node (B) is used to update the CPT.

3.4.4 Algorithm 3: BN update of CPT based on incremental trace data

The alerts received by the reasoning engine from the individual sensors are used

to update the CPTs in the Bayesian network in an incremental manner. To achieve

this, this algorithm uses the set of alerts received during a window of time and the

matrix R, that maps the existing vulnerabilities in the system to their corresponding

hosts and ports. The output of the algorithm is the set of CPTs with the updated

values.

The algorithm uses a popular and powerful model known as Noisy-OR [53] to

represent each CPT. Noisy-OR allows us to specify the CPT of a node with n parents,

using with n + 1 parameters as opposed to 2n for binary nodes. This prevents the

exponential growth experienced by the CPT of a node when the number of parents

(n) is large. The Noisy-OR model assumes that effect of each parent on the CPT of

the edge to the child node (vi) is independent from that of the other parents and is

sufficient to produce the effect (represented by the child node) in the absence of all

other parents. An additional parent node is added to capture all other causes that

were not modeled explicitly. The marginal probability of this node is 1 − p0. Then

the CPT can be built with the following formula, where C represents a combination

of the values for the parents of the child node:

 1 − P rob(vi|A = T, Others = F)
P rob(vi|C) = 1 − (1 − p0)

1 − p0
A=parent(vi)∈C

62

3.4.5 Algorithm 4: Update choice of sensors based on runtime inference

The final algorithm of our framework is used to reconfigure the detection sensors.

This includes adding and removing sensors, as well as reconfiguring existing ones.

The high level objective is to reduce the uncertainty of knowing if the critical asset

has been achieved or not. The algorithm works by looking at the alerts received and

uses them as evidence to compute the posterior probability of each Bayesian network

node that corresponds to the critical asset.

The first step of the algorithm (line 1) is to compute the posterior probability for

the critical asset, given the evidence received from the currently enabled sensors in

the system. If the value is larger than a threshold (determined by the system admin

istrator), this is taken as indication that the critical asset is likely to be compromised

and therefore greater certainty is needed in the determination of the security state.

Therefore, the algorithm measures (lines 3 and 4) the impact of candidate sensors,

which are close to the detected alerts and the critical asset. A radius can be set a

priori in terms of the number of edges away from a particular node to determine the

candidate set of sensors. Previous work [36] has shown that the effect of a sensor

on a Bayesian network node fades beyond 2-3 hops and thus this restriction appears

reasonable.

The algorithm determines a new set of detectors by using the Fully Polynomial

Time Approximation Scheme (FPTAS) presented in [55] for the problem of determin

ing the placement of intrusion detection sensors. The same cost bound is maintained

which will prevent the algorithm from blissfully adding new sensors. This problem

has been mapped to the 0-1 Knapsack problem for which a dynamic programming

solution (FPTAS) exists that runs in pseudo-polynomial time (running time scales up

as the solution approaches the optimal). The algorithm finishes by comparing the set

of current detectors with the new set. The delta between the sets indicates the set of

detectors to be disabled or enabled, which is output by the algorithm.

63

Fig. 3.6. Connectivity graph for testing scenario, showing the TCP ports
enabled for communication between different hosts. The shaded nodes
represent the critical asset (databases) in the protected system.

3.5 Experiments and Results

3.5.1 Experimental Setup

For our experiments, we used attacks against a real-world distributed system

which is part of an NSF Center at our university and serves content and simulation

tools for an engineering domain for thousands of users. The system includes fifteen

hosts that include two environments, one for production and another for development

of applications and staging prior to moving them to the production environment.

Each environment includes a web server, an application server and a database server.

A team of developers’ and consultants’ computers have access to subsets of both

environments. Communication between all hosts is controlled by firewall rules at

each host. The corresponding connectivity graph is shown in Figure 3.6.

In our experiments, the database servers are the critical assets to protect. A

strong motivation to pick the databases is their role to store critical information for

the organization. We created a Bayesian Network (BN) from the distributed system

by first generating a list of the vulnerabilities found by the OpenVAS [56] vulnerability

64

scanner on servers and client machines. Each vulnerability was then mapped to a node

in the BN by associating it to the host and service(port) where the vulnerability was

found. Finally, the nodes were connected according to the connectivity information

for the distributed system. The BN had 345 nodes and 1948 edges. We then pruned

the BN to only include high risk vulnerabilities, according to OpenVAS, as these ones

are the primary vectors used by attackers to compromise systems. The final BN had

90 nodes and 582 edges and is presented in Appendix D.

We provide comparative results between DIADS (our algorithms presented in this

chapter) and a static and heuristic-driven choice of sensors. All results are presented

as Receiver Operating Characteristics or ROC curves [57]. The curve is a graphical

plot of the tradeoff between true positive rate (TPR, detection rate) and the false

positive rate (FPR, false alerts) for a detector. The different points in the ROC

curves are generated by varying the threshold for the probability value for the BN

nodes corresponding to the critical assets.

We had a total of 18 possible sensors; 3 sensors for each of the web server, ap

plication server, and database server, in both the development and the production

environments. They are all generic sensors with signatures customized to detect the

class of attack into which the corresponding (vulnerability) node can be categorized.

For all experiments, for both baseline and DIADS, we constrain the algorithms to

pick a set of 6 from 18 possible detectors.

It is important to note that DIADS’ goal is to improve the performance of a set

of detectors, by considering temporal information (i.e. when detectors are sending

alerts about a progressing attack or when changes occur to the distributed system).

For our experiments, we defined detectors with adequate but not perfect performance

(in terms of TP and FP). It is not our goal to improve the performance of individual

detectors.

65

3.5.2 Experiment 1: Dynamic Reconfiguration of Detection Sensor

The first experiment compared the performance between a dynamic reconfigura

tion of sensors and an static set of sensors, all close to the database servers. The static

setup follows the intuitive decision of turning on all the sensors at the critical assets,

in this case the database servers. To test both setups, we use an attack scenario that

had the following progress: the attack started from the Internet, compromised the

production web server, from where to compromise the applications server and then

elevate permissions, and finally compromise the database server. Further details for

all attack scenarios and the Bayesian network used in all experiments, are provided

in [58].

In this experiment, a set of alerts are generated for the first three steps of the

attack scenario. This set serves as evidence and is provided to the reasoning engine

for DIADS to recompute the set of sensors. As shown in Figure 3.7, the dynamic

reconfiguration setup outperforms the static configuration of sensors. The area under

the continuous line (dynamic) is greater than the area under the dotted line (static) by

16% (AreaDIADS = 0.7810 and Areabaseline = 0.6728). This also means, the dynamic

setup provides a higher detection rate at points when both setups have the same false

alarm rate.

A notable point is that the difference between both setups is not large. This

should be expected as the static setup is concentrated around the database servers

(the critical asset and final setup in the attack scenario) while the dynamic setup is

scattered around the protected system.

3.5.3 Experiment 2: Dynamism from Firewall Rules Changes

Experiment 2 tested the performance of the dynamic and static setups as changes

were made to the firewall rule table of the protected system. We considered two

real scenarios: (1) removing from the system a host belonging to a developer and (2)

adding a direct communication path is created from a consulant’s host to the database

66

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR
T

P
R

DIADS
Static configuration
(baseline)

Fig. 3.7. Performance comparison between dynamic configuration of DIDS
and a set of detectors monitoring only DB servers.

server, in the development environment (in this case, the consultant determined some

changes to the database schema had to be tried out in the development environment

prior to unveiling it on production). For the static configuration, one sensor was

deployed on each host in both development and production environments.

For the first firewall change where a developer’s host was removed, we tested

both setups using an attack scenario starting from another developer’s host. This

represents the increasingly common client-side attacks. The attack starts as the

developer visits a malicious website that installs some malware on the host. Then

permissions are elevated thanks to another existing vulnerability in the developer’s

host. Then a vulnerability in the database server (production) is exploited and finally

another vulnerability is used to access the data in the database. For the second

firewall change where a direct communication path is created, we used a different

attack scenario. The attack starts from another developer’s host that also visits a

malicious website and malware is installed in the host. Then a vulnerability in the

web server (development) is exploited, after which the application server and finally

the database server, all part of the development environment, are compromised.

67

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

DIADS
Static configuration
(baseline)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

DIADS
Static configuration
(baseline)

(a) Removing a host (b) Opening ports to DB server

Fig. 3.8. Impact on topology changes. (a) Removing a host (developer)
from network. (b) Allowing direct access between the consultant box and
the DB development server.

For DIADS, the BN was modified based on the firewall rule changes and the

dynamic programming algorithm picked the set of detectors after receiving the alerts

at the start of the attack - the starting point being the same as in the static case.

Results from this experiment are shown in Figures 3.8(a) and 3.8(b). The dynamic

reconfiguration setup performs better under both attack scenarios than the static

configuration. The area under the curve is greater by 32.7% (AreaDIADS = 0.6809 and

Areabaseline = 0.5132) in the scenario when a host is removed and 20% (AreaDIADS =

0.7659 and Areabaseline = 0.6383) in the scenario when a direct access is set up between

a consultant box and the DB development server. We consider the most interesting

result to be in Figure 3.8(b), where both setups show similar performance at the start.

Both lines in the ROC curve have similar slopes, which is expected as the dynamic

and static setups share 4 out of the 6 initial sensors. But as the alerts from the first

three attack steps are provided to the reasoning engine in the dynamic setup, three

sensors are reconfigured. This is the cause of the difference in performance, as shown

in the ROC cuve.

68

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

DIADS
Static configuration
(baseline)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FPR

T
P

R

DIADS
Static configuration
(baseline)

(a) Attack from the Internet (b) Attack from the internal network

Fig. 3.9. Comparison between our dynamic technique and a static setup
for two attacks scenarios. The dynamic reconfiguration technique allows
to reconfigure the detection sensors as alerts from the initial steps of the
attacks are received.

3.5.4 Experiment 3: Dynamism with Attack Spreading

The goal of this experiment was to see if DIADS can reconfigure sensors on the

fly as an attack spreads through the protected system. We used two different attack

scenarios: (1) one starting from the Internet and (2) another starting from the internal

network, a developer’s host. An attack starting from the internal network usually

requires less steps to reach the critical asset than attacks starting from the Internet.

The static configuration picks sensors as in the earlier experiment 2 (one for each

host).

The results are presented in Figures 3.9(a) and 3.9(b) for the two attack scenarios.

In the attack starting from the Internet, the static setup shows a lower false alerts

rate than the dynamic setup. But as evidence is provided, the ROC curve shows

that the dynamic setup improves its performance. The curve shows the importance

of taking into account the alerts from the initial stages of the attack to improve the

performance of detection system. The improvement over the static setup, in terms

69

of the area under the curve, is 23% (AreaDIADS = 0.7845 and Areabaseline = 0.6366).

During the experiments, 4 of the 6 original sensors are replaced by the reasoning

engine.

For the attack starting from internal network, the ROC curve in Figure 3.9(b)

shows a similar performance between both setups. Three of the six sensors selected

for the static setup are on the attack path and are quite accurate. Therefore, though

DIADS outperforms the static setup, the advantage is not very large (11% where

AreaDIADS = 0.7964 and Areabaseline = 0.7128). This experiment shows promise

that inferencing in BN can be done fast enough relative to the speed of attacks.

Of course, further experimentation is needed with a variety of attacks (and attack

speeds).

3.6 Conclusions and Future Work

Current attacks to distributed systems involve multiple steps, with the ultimate

goal of compromising a critical asset such as a database where important data is stored

for an organization. In this chapter, we presented a distributed intrusion detection

system called DIADS that picks and places sensors in a protected system, decreasing

the uncertainty inherent in estimating the security state of the critical assets in the

system. DIADS has the ability to evolve when changes are made to the topology of

the protected system and with further evidence coming in the form of alers while the

deployed system is operational.

Future work will include experimenting further with the size of the Bayesian net

work. We consider we made reasonable assumptions when pruning the Bayesian

network, such as only including high risk vulnerabilities as nodes. Still, as the size of

the CPTs for the nodes in the Bayesian network grows exponentially in terms of the

number of nodes’ parents, we would like to answer the question of whether inferencing

can be done fast enough. Another area to explore is the impact of evasion techniques

or attacks directly targeted against DIADS. If an attacker has complete knowledge

70

of our model, she might launch attacks to falsely cause reconfiguration of our sensors

away from the attack paths.

71

4. WEBCRAWLING TO GENERALIZE SQL INJECTION

SIGNATURES

4.1 Introduction

Network intrusion detection systems (NIDS) are an important and necessary com

ponent in the security strategy of many organizations. These systems continuously

inspect network traffic to detect malicious activity and when this happens, send alerts

to system administrators. One type of NIDS, called misuse-based detector, uses signa

tures of attacks to inspect the traffic and flag the malicious activity. But a potential

problem faced by these signature-based NIDS is that as new attacks are created and

as new kinds of benign traffic are observed, the signatures need to be continuously up

dated. The current approach to creation of the signatures is manual. Consequently,

keeping them updated is a Herculean task that involves tedious work by many se

curity experts at organizations that provide the NIDS software. A big drawback

of the signature-based schemes that has been pointed out by many researchers and

practitioners [59], [60] is that due to their relatively static nature, they miss zero-day

attacks. These are attacks that target hitherto unknown vulnerabilities and conse

quently, no signature exists for such attacks. Our goal in this work is to automatically

generate signatures by performing data mining on attack samples. Further, we aim

to create generalized signatures; “generalized” implies the signatures will be able to

match some zero-day attacks as well, not just the attack samples that it has been

trained on.

We look at the rulesets of three popular misuse-based detectors—Snort, Bro, and

ModSec. From this, we observe the reflection of the ad hoc manual nature of the

signature creation (and update) process. We observe that many rulesets include sig

natures that are too specific, many are disabled by default, and several show clear

72

overlaps. For example, 70% of the almost 20,000 signatures included in the ruleset

for Snort [30] (snapshot 2920) are disabled by default. The ruleset file sql.rules

includes different sets of signatures that could be merged as one. For example, sig

natures with identifiers 19439 and 19440 have the same regular expression, except

for the last character and hence could easily be merged. Further, we found multiple

examples of signatures using very simple regular expressions, which increases the risk

of generating false positive (FP) alerts. For example, several rules in Snort use the

regex .+UNION\s+SELECT which includes the SQL statements UNION and SELECT to

detect SQL injection attacks but is also popular in queries from web applications to

databases.

In this chapter, we propose a solution for the automatic creation of generalized

signatures represented as regular expressions, by applying a sequence of two data

mining techniques to a corpus of attack samples. The goal is to make the process

less manual (and tedious) and target detection of zero-day attacks. We call our solu

tion pSigene (pronounced ‘‘psy-gene’’), which stands for probabilistic Signature

generation. pSigene follows a four-step process. In the first step, it crawls multiple

public cybersecurity portals to collect attack samples. In the second step, it extracts

a rich set of features from the attack samples. In the third step, it applies a spe

cialized clustering technique to the attack sample (training) data collected in step 2.

The clustering technique also gives the distinctive features for each cluster. In the

last step a generalized signature is created for each cluster, using logistic regression

modeling, which is trained both on attack sample data (from step 2) and some benign

traffic data. Logistic regression gives a probabilistic classifier — given a new sample,

it can tell with a probability value what is the likelihood of the sample belonging to

any given cluster.

There exists a variety of cybersecurity portals from which attack samples can be

gleaned (step one of the process outlined above), including SecurityFocus [24], the

Open Source Vulnerability Database [61], the Exploit Database [62] and PacketStorm

Security [63]. It is crucial to collect a diverse and comprehensive set of attack samples

73

Fig. 4.1. Components of the pSigene architecture, a webcrawl-based cre
ation process for SQLi attack signatures. For each component, there is a
reference to the section providing further details. It is shown below each
component.

for training the algorithm, which will create the clusters. Regular expressions (regexs)

are a structural notation for describing similar strings. Regexs are a powerful tool

used to define languages, per the automata theory definition. Current NIDS have

incorporated the usage of regexs to generalize signatures, so variations of attacks can

be detected. We adopt the use of regexs for our generalized signatures.

Most of the efforts to date to automate the signature creation process has been

related to malware activity [64], [65], such as for worms and botnets. This landscape

is different from ours in that we target attack steps that have a small “distance”

from legitimate activity. Consider for example, SQL injection attacks, which we

use to demonstrate and evaluate pSigene. A small variation in the where clause,

such as a tautology “1 == 1”, followed by a comment demarcation symbol “;”,

can cause a legitimate-looking SQL query to become an attack sample. Second, we

consider activities where the feature set of each sample is very rich. For example,

we first started with 477 features for SQL injection attacks, corresponding to various

keywords, symbols and their relative placements. The rich feature set poses challenges

and constraints on the kinds of machine learning techniques that can be used.

74

We demonstrate our solution specifically with SQL injection attacks (shortened as

SQLi attacks). Although there exist elegant preventive solutions to solve this problem,

like parameterizing SQL statements [66] and escaping special SQL characters [67], in

practice it seems elusive to completely implement such solutions. SQLi attacks have

been very dominant in the last couple of years, being used in high-profile cases such

as intrusions to large technology organizations [68], government agencies [69], and

software companies [70], [71]. Signatures to improve detection mechanisms, such as

what pSigene delivers, are necessary as they complement prevention mechanisms.

pSigene effectively suggests the number of signatures necessary to detect the at

tacks while helping to reduce the size of each signature, in terms of the number of

features necessary to define each signature. In our experiments, pSigene collected a

set of 30,000 attack samples from which we extracted a set of 159 features and created

nine signatures, all but one of which required 14 or fewer features. For testing, we

used the popular SQL injection tool called SQLmap [72]. The experimental results

showed that our signature set was able to detect 86.53% of all attacks while only

generating 0.037% of false positives. This is a higher true positive rate for SQLi than

Snort (79.55%) and Bro (73.23%), which use manually created and progressively re

fined signatures. Bro had no false positive while Snort had about 5X false positives

compared to pSigene. ModSecurity however performed better than pSigene with a

true positive rate of 96.07%, and a false positive rate only slightly worse (0.0515%

compared to our 0.037%). pSigene allows for tuning the relative true positive and

false positive rates by varying the threshold for the probabilities that are given by

the logistic regression process.

The contributions of this work are:

1. An automatic approach to generate and update signatures for misuse-based

detectors.

2. A framework to generalize existing signatures. The detection of new variations

of attacks is achieved by using regular expressions for the generalized signatures.

75

3. We rigorously benchmark our solution with a large set of attack samples and

compare our performance to popular misuse-based IDS-es. Our evaluation also

brings out the impact of practical use case whereby periodically new attack

samples are fed into our algorithm and consequently the signatures can be

progressively, and automatically, updated.

The remainder of this chapter is structured as follows: Section 4.2 presents the

threat model used along with the different components for the proposed framework.

Section 4.3 describes the dataset used to evaluate pSigene, the evaluation results

along with a comparison to existing open-source rulesets. We also determine the

performance implications of using our approach. A discussion follows in Section

4.4 about the usage scenarios and limitations of our approach. Then we give an

overview of previous approaches to automatically generating signatures and detecting

attacks through interactions between web services and databases. We end with some

conclusions and future work.

4.2 Framework Design

The goal of pSigene is to generate generalized signatures from traces of attack

samples and non-malicious network traffic. As shown in figure 4.1, the generation

of the signatures involves four phases. First multiple public cybersecurity portals

on the Internet are crawled to collect attack samples. In the second step, a set of

features is extracted from the attack samples. The third step calls for the sample

set to be grouped using a clustering technique. This step also gives the features that

distinguish each cluster. In the final step, a generalized signature is created for each

cluster, using logistic regression modeling. The process allows to create signatures

that represent a set of similar attacks, reducing the number of rules handled by an

NIDS. Additionally, by starting from samples of real attacks, we reduce the chances

for the resulting signatures to flag non-malicious traffic as malicious.

76

To develop our system, we consider the prevalent class of SQL injection (SQLi)

attacks. They have been a very relevant and popular attack vector for the last few

years, as it targets databases (indirectly) available on the Internet. To consider SQLi

attacks, our threat model assumes attacks against custom-developed web applications,

connected to a database (commonly known as three-tier system). The profile of

the attackers includes highly motivated individuals that might have an economical

incentive to compromise the three-tier system. An attacker starts by having a publicly

accessible description of the system and then browses the web application, looking for

forms where she can provide user input and then this input can serve as parameters

for an SQL statement.

4.2.1 Webcrawling for Attack Samples

The first phase is to crawl the web to collect attack samples that later are used

to generate the generalized signatures. The objective is to take advantage of the

multitude of public web sources available that provide attack samples. This approach

looks to proactively collect samples from multiples web sources, which is the opposite

of a more common strategy to use honeypots to collect attack samples.

We chose to proactively collect samples because we are targeting slow moving

attacks (such as SQLi), they present a greater diversity than typically handled by

honeypots, the distance between legitimate requests and malicious requests is often

quite small, and above all, for a purely logistical reason — to speed up the data

collection. Our approach was facilitated in practice by the wide availability of well-

maintained data sources of SQLi attack samples, some of which provide APIs to enable

automated sample collection. A practical point here is that what we see during the

web crawling is the entire HTTP request payload and we extract the SQL query from

it by leaving out the HTTP address, the port, and the path (typically a “?” indicates

the start of the query string).

77

Table 4.1: Examples of SQLi Vulnerabilities published in

July 2012.

VULNERABILITY CVE ID

Joomla 1.5.x RSGallery 2.3.20 component CVE-2012-3554

Drupal 6.x-4.2 Addressbook module CVE-2012-2306

Moodle 2.0.x mod/feedback/complete.php 2.0.10 CVE-2012-3395

RTG 0.7.4 and RTG2 0.9.2 95/view/rtg.php CVE-2012-3881

To collect the attack samples, we crawled different cybersecurity portals between

April and June of 2012. Each portal or site is a public repository of computer security

tools, exploits, and security advisories, where security professionals and hackers share

examples of different attacks. Examples of cybersecurity portals include Security

Focus [24], the Exploit Database [62], PacketStorm Security [63], and the Open Source

Vulnerability Database [61]. This last site also provides its own search API, making

it easy for security practicioners and researchers to automate the collection process

of data on those sites. For sites that do not provide such capability, one can use the

APIs provided by search engines, such as Google custom search API [73].

There are also open forums and mailing lists where users share attack samples.

In our experiments, we collected over 30,000 SQLi attack samples from a few sources

and used these as our dataset to generate the generalized signatures during the ex

periments.

It is important for our signature generalization approach to work effectively that

the sample collection be as comprehensive as possible. As one heuristic-based check

for this, we manually inspected the high and medium risk SQL injection vulnerabilities

published during the month of July 2012 in the National Vulnerability Database [25]

for web applications using the MySQL database — approximately 30 in number.

78

In each case, we found examples of SQLi attacks in our dataset that could be

launched against each of the web applications reviewed. Table 4.1 includes some

examples of the SQLi vulnerabilities published in July 2012.

Once the attack samples are collected, the samples need to be standardized in

preparation for the data analysis. We use a set of 5 transformations, including upper

case → lowercase, URL encoding → ascii characters, and unicode → ascii characters.

We found such standardization was necessary since the data came from a variety

of sites and even within each site, there is a plethora of contributors. Thankfully, the

standardization process was easily automated using only 5 rules.

4.2.2 Feature Selection

We characterize each sample using a set of features, which will be used as input

for the clustering algorithm. To create the set of features, we use three sources

that are domain-specific for the SQLi attack scenario: (1) SQL reserved words [74],

(2) SQLi signatures from the Bro [75] and Snort [30] NIDS and the ModSecurity

web application firewall (WAF) [76], and (3) SQLi reference documents [77], [78]. A

summary of the feature sources is presented in Table 4.2.

The SQL reserved words are used as features since they represent identifiers or

functions, necessary to create SQL queries like in SQLi attacks. Examples of re

served words used to create the feature set for SQLi attacks include SELECT, DELETE,

CURRENT_USER, and VARCHAR. In this chapter, we limited the feature set to only in

clude the reserved words for the MySQL database management system, thus excluding

special-purpose keywords used in Microsoft SQL and other non MySQL databases.

We also looked at existing signatures for features since the signatures are the result

of a usually long optimization process, so it could be assume that these signatures

have components (strings inside a signature) that can be used as features to help

identify attacks. We did not use a whole signature as a single feature, but rather

divided the signature into logical components and each component then was used as

79

FEATURE

SOURCE EXAMPLES DESCRIPTION

MySQL create Words are reserved

Reserved insert in MySQL and require

Words delete special treatment

for use as identifiers

(table and column

names) or built-in

functions.

NIDS/WAF

Signatures

in\s*?\(+\s*?select

\)?;

[^a-zA-Z&]+=

SQLi signatures from

popular open-source

detection systems

are deconstructed

into its components,

such as the regular

expression groups

found in each

signature.

SQLi

Reference

Documents

\’ ORDER BY [0-9]- -

/*/

\"

Common strings

found in SQLi

attacks, shared by

subject matter experts.

a feature. To divide each signature, we looked at all the regular expressions found

inside round brackets or parentheses. The regex engine considers the expression inside

the parentheses as a single group. In this case, we use the group as a single feature.

Table 4.2
Sources of SQLi features.

80

Fig. 4.2. Example of the creation of SQLi features from decomposing
existing rules. A ModSec signature (left blue box) was broken down into
7 features. Features 6 and 7 were not included in the final feature set as
they were replaced by simpler features or are for queries to non-MySQL
databases.

Another mechanism used to split a signature was to look at the alternation operator

"|" found in the signature. We used this mechanism at our own discretion and in

case where we found evidence from other feature sources, that dividing the signature

with the alternation operator could prove beneficial.

Figure 4.2 shows an example of a signature taken from the ModSecurity Core

Rule Set (CRS) and the corresponding features generated to represent the SQLi

attack samples in our experiments. The original signature is a regular expression

with seven case insensitive groups, for which we proceeded create the corresponding

seven features. Features 6 and 7 were not included in our final feature set as they

were replaced by shorter regular expressions.

The SQLi reference documents also provide logical components that are found in

SQLi attack samples. Although there is no formal classification of SQLi attacks, these

documents provide a layout of different types of attacks found in web applications.

81

The documents also helped to determine when and how to divide the signatures and

which features to select if two or more overlap.

The resulting feature set consisted of a series of regular expressions representing

(1) relevant characters, (2) SQL tokens, and (3) popular strings found in SQLi attacks.

The group of strings allowed for our system to also consider the relative position of

SQL tokens among them, when creating the features. As an example, feature =[

0-9%]+ only considers a number if it is preceeded by the = character. Additionally, our

chosen clustering algorithm can handle some redundant features, i.e., some features

that do not help to discriminate between malicious and non-malicious SQL queries.

This is because the clustering technique that we use will not output such features for

any of the attack clusters and thus, they will not appear in any signature.

All features included in the set were of numeric type, each one measuring the num

ber of times a feature was found in an attack sample. For example, in the SQLi attack

sample ?artist=0+div+1+union#foo*/*bar select#foo 1,2,current user features

* and union.+select would return values 2 and 1 respectively. The resulting fea

ture set used in the experiments had 159 entries, after removing those features that

were not found in any of the samples used in the training phase of the system. We

originally had 477 features, which were pruned down to 159 through the simple rule

we just mentioned. The removed features also corresponded to cases for attacks to

non-MySQL databases (not considered in our experiments) or because of multiple

features looking for similar SQLi strings (overlapping features).

70 (out of 159) entries in the resulting feature set performed as binary features.

That is, the value for each of these features was either one (confirming the existence

of the corresponding SQL token or string in a sample) or a zero (non existence) in

each of the attack samples.

The process of creating the feature set might at first blush seem intensely manual.

But in our experience, the process was automatable for the most part. Both the

fragmentation of the existing signatures and the reserved words (rows 1 and 2 in

Table 4.2) could be automated since they follow from unambiguous rules. In the case

82

of analyzing the reference documents, this was partially automated and served more

to validate features created with the other sources. Additionally, we believe that the

feature space was exhausted so the creation of the feature set should be considered a

one-time task, for one kind of attack (such as SQLi).

We also considered using only binary features, i.e., the binary flag whether a

feature is present or absent in a sample, rather than its count. However, this did not

produce good results. When using a clustering algorithm on the samples represented

by the binary features, only a large number of very small clusters were produced.

This effectively meant that a large fraction of training samples were not covered, an

undesirable situation.

Each attack sample that provides the input to the clustering algorithm later used

is characterized by its values for the 159 features. The resulting data is organized

in a matrix where the samples are the rows of the matrix and the features are the

columns. The size of the matrix was then 30,000 by 159 and can be classified as sparse

because 85% of its cells were populated with zeroes. About 6% of its cell values were

ones. Visual inspection of the matrix revealed that any one feature was zero in most

samples and non-zero in the few remaining samples. Different features exhibited this

property in different samples.

4.2.3 Creating Clusters for Similar Attack Samples

We use the biclustering [79] technique to analyze our matrix, which is popularly

used in gene expression data analysis. The objective of this technique is to identify

blocks in the sample dataset built by a subset of features to characterize a subset of

samples. Given a set of m rows and n columns (i.e., an m×n matrix), the biclustering

algorithm generates biclusters - a subset of rows which exhibit similar behavior across

a subset of columns. To achieve this, the biclustering technique first clusters the rows

(samples) of the matrix and then clusters the columns (features) of the row-clustered

data. Biclustering has found wide success in analyzing gene expression data, in which

83

bicluster 2

bicluster 3

4 5

6

7

bicluster 1

10

9 8

11

features

sa
m

p
le

s

Fig. 4.3. Heat map with two dendrograms of the matrix data representing
the samples dataset. The 30,000 attack samples are the rows and the 159
features are the columns. The heat map also shows the seven biclusters
selected to create the signatures.

a subset of genes induces a similar linear ordering along a subset of conditions (e.g.,

different patients, different tissues, or varying cellular environments) [80].

To formalize the concept of bicluster, a sample set D is given as a |N |×|F | matrix

where N is the set of samples and F is the set of features. The elements dij of the

matrix indicate the relationship between sample i and feature j. Then, a bicluster

BRC is a block that includes a subset of the rows R ⊆ N and a subset of columns

C ⊆ F , sharing one or more similarity properties.

The objective is to identify subsets of attack samples which share similar values for

a subset of features. Each subset of samples (cluster) may use different sets of features.

We want to create a signature for each bicluster and the biclustering technique allows

84

using different features for different biclusters. This enables us to create compact

and distinctive signatures for the wide variety of SQLi attacks. The biclusters are

nonoverlapping (i.e., no two biclusters have spatial overlap) and nonexclusive (i.e.,

two biclusters may use overlapping set of features) (Figure 4.3). The heatmap shows

11 clusters that are formed, by visual analysis of the color patterns. A contiguous

region with one color pattern constitutes one cluster. Note that not all features are

used in the cluster formation; thus, there are some gaps for the feature dimension

when you consider all the clusters. Note also that not all samples are covered in a

cluster, indicating that some attack samples are considered so different that they do

not fit within any cluster. This may indicate that our training set has some noise

in it. Being able to deal with some noise in a training set is an important property

for any machine learning algorithm and we are heartened to see that that is the case

with pSigene.

We use a simple approach to achieve the biclustering technique, performing a two-

way hierarchical agglomerative clustering (HAC) algorithm, using the Unweighted

Pair Group Method with Arithmetic Mean (UPGMA). The way biclustering worked

is first it did a clustering of the samples and then within each cluster, it clustered

by the features. Thus, it identified what were the discriminating features for each

cluster. The UPGMA algorithm produces a hierarchical tree, usually presented as a

dendrogram, from which clusters can be created. It works in a bottom-up (agglom

erative) approach by first partitioning the sample set of size N into N clusters, each

one containing a single sample. Then, the Euclidean pairwise distance is calculated

among the initial, single sample clusters in order to merge the two closest ones. After

the first round of paired clusters finishes, UPGMA is used to recursively merge the

clusters. At each step, the nearest two clusters are combined into a higher-level clus

ter. The distance between any two clusters A and B is taken to be the average of all

distances between pairs of objects ”x” in A and ”y” in B, that is, the mean distance

between elements of each cluster. This biclustering process is repeated until a single

cluster containing all the samples is formed. Note that this is just the termination

85

point from biclustering; its results will guide us to pick the multiple clusters as we

explain below.

Next, the results from applying the biclustering technique are presented as a heat

map in Figure 4.3. On each axis, the corresponding dendrograms are also shown. The

heat map shows the graphical representation of the reordering of the matrix |N |×|F |

into a set of bi-clusters. Each bicluster is represented as an area of similar color as the

heat map simultaneously exposes the hierarchical cluster structure of both rows and

columns, as explained in [81]. Each column in the matrix is standardized as follows:

the statistical mean and standard deviation of the values is computed. The mean is

then subtracted from each value and the result divided by the standard deviation. As

a value is closer to the mean, it is shown with the black color in the heat map. The

highest and the lowest values are shown in red and green, respectively. Figure 4.3 also

shows the dendrograms produced by the HAC algorithm for both rows (sample set)

and columns (feature set). The dendrogram consists of many inverted U-shaped lines

that connect different clusters in a hierarchical tree. The height of each U represents

the distance between the two clusters being connected.

We tested different pair-wise distance metrics and linkage criteria for the HAC

algorithm on the sample set. We selected the Euclidean distance metric and the

UPGMA method as they helped produce clean bi-clusters, represented by boxes of

(mostly or completely) a single color in the heat map 4.3. To validate the accuracy of

the HAC algorithm, we also calculated the cophenetic correlation coefficient for each

dendrogram. The cophenetic correlation for a cluster tree is defined as the linear

correlation coefficient between the cophenetic distances obtained from the tree, and

the original distances (or dissimilarities) used to construct the tree. Thus, it is a

measure of how faithfully the tree represents the dissimilarities among observations.

The cophenetic distance between two observations is represented in a dendrogram

by the height of the link at which those two observations are first joined. That

height is the distance between the two subclusters that are merged by that link.

In our experiments, we found the cophenetic correlation coefficient value of 0.92, a

86

promisingly high number. Ultimately, the above-mentioned explorations of the design

space required visual inspection of multiple heatmaps rather than the alternative: use

of multiple security experts and an almost zen master -like grasp of regular expressions.

4.2.4 Creation of Generalized Signatures

From each bicluster bj, we create a signature Sigbj which characterizes the samples

in that bicluster, plus is more generalized. Specifically, in our solution, a signature

Sigbj is a logistic regression model built to predict whether an SQL query is an attack

similar to the samples in cluster bj .

Logistic regression is a very popular classification method since the output values

for the hypothesis function, lay in the range between 0 and 1. These values are

interpreted as the estimated probability that a sample belongs to a class. In our

scenario, we use logistic regression to compute the probability that an HTTP request,

as seen by the IDS, includes an SQLi attack.

Each bi-cluster bj is defined by a set of features Fj and a set of samples Sj .

We then create the corresponding signature of a bicluster by using the features as

the variables in the hypothesis function and training this function with the samples

from the bicluster, as well as normal traffic. Now, pSigene needs to come up with a

signature for cluster bj using the features Fj . For this it calculates the parameters Θj

(which is a vector of individual parameter values), using the labeled data of attack

samples from cluster bj as well as benign network traffic data. The intuition behind

the calculation of Θj is that it should minimize the errors in the labeled training set.

We give the mathematical formulation behind this computation later in the section.

An example signature created by this method (for cluster 6 in this case) is given for

ΘT at the end of this section. 6

87

Having calculated Θj , let us see how pSigene would work during the operational

phase (the test phase). When a sample is available to pSigene, to determine if it

belongs to attack class j, it calculates the value of the hypothesis function:

hθ(Fj) = g(ΘT Fj)

We use for g the sigmoid function which is defined as:

1

g(z) = −z1 + e

This gives a value between 0 and 1 and is interpreted as the probability that the

test sample belongs to attack class j.

To find the optimal parameters Θ of the regression model we use the Precondi

tioned Conjugate Gradients (PCG) method [82], with the cost function in logistic

regression as:

M M
2J(Θ) =

1
m

[−y(i)log(hΘ(Fj
(i))) − (1 − y(i))log(1 − hΘ(Fj

(i)))] +
λ

n

Θj
m 2m

i=1 j=1

The intuition behind this formulation is that the first term is the cost due to

mislabeling a sample in the training set - the two sub-terms are respectively for

mislabeling an attack sample in the training set and a benign sample in the training

set. The second summation term of the cost function is a regularization term based

on the ridge-regression (L2-norm) method, with λ as the regularization parameter,

m is the number of samples in a bicluster bj , and n is the number of parameters Θ,

excluding the intercept term (Θ0). The regularization helps to avoid over-fitting of

the model, especially for a sparse matrix as in our case, where a small fraction of the

features are influencing the predictions but the identities of those influential features

is unknown. We tested λ for values between 0.01 and 100, and for each value ran a

test to determine the true positive and false positive rates (TPR, FPR). We chose

a value of 50 for all our experiments, as this value provided a nice tradeoff between

fitting the samples well and keeping the parameters Θ relatively small.

The gradient of the cost is a vector Θ where the kth feature is defined as follows:

88

Table 4.3
Features included in Signature 6.

FEATURE NUMBER FEATURE (Regular Expression)

25 =

37 =[-0-9\%]*

53 <=>|r?like|sounds\s+like|regex

36 ([^a-zA-Z&]+)?&|exists

28 [\?&][^\s\t\x00-\x37\|]+?

32 \)?;

⎧ ⎪⎨
 m (i) (i)1 (i)hΘ(F) − y F for k = 0 i=1 j jk ∂J(Θ)

=

m
∂Θk ⎪⎩
 m (i) (i)1 (i)hΘ(F) − y F + λΘk for k ≥ 1

m i=1 j jk

As an example of how we used logistic regression in the SQL injection attack

scenario, consider a bicluster b6 obtained after running the biclustering algorithm.

This bicluster has a set S6 of 2, 741 samples and a set F6 of the features listed in

Table 4.3.

After training with the set S6 of 2, 741 samples (attack class) and one day of

non-malicious traffic (other class), we compute the parameters Θ6 of the generalized

signature for bicluster S6:

ΘT
6 = −3.761054+0.262131f6,25 + 0.262131f6,37

+0.261463f6,53 + 0.261584f6,36

−0.117270f6,28 + 0.708324f6,32

Table 4.4 shows the probability values for three samples, when using signature

6. The attack sample produces a probability value of 0.9926 while the two benign

samples have probability values of 0.0694 and 0.1928.

89

Table 4.4
Probability Values produced by Signature 6

SAMPLE TYPE

PROB.

VALUE

?option=com_simplefaq\&

task=answer\&Itemid=9999

\&catid=9999\&aid=-1

+union+select+1,concat_ws(0x3,

username,password,email),3,4,

5,6,7,8,9,10,11,12,13,14,15,

16,17,18,19, 20+from+jos_u sers

attack 0.9926

/mod/resource/view.php?id=21154 benign 0.0694

/blocks/mle/dwn/index.php?

vendor=Samsung\&device=X830

benign 0.1928

90

4.3 Evaluation

We evaluated pSigene and the signatures in three other IDSes by using SQL attack

samples and benign web traffic. In the first experiment, we determined the TPR and

FPR by using two network traces collected from real systems (we describe the details

of the traces in Section 4.3.2.

The second experiment involved incrementing the number of attack samples given

during the learning step of the signature creation phase to see if there is improve

ment. Finally, the third experiment determined performance impact of matching the

signatures generated by pSigene when the signatures were integrated with the Bro

IDS. We also compared to the performance to the three other three signature sets

used in experiment 1.

4.3.1 SQLi Signature Sets

We analyzed four different sets of SQLi signatures, taken from popular open-source

NIDS (Snort and Bro) and a web application firewall (ModSec). A summary of the

different signatures used in the evaluation is presented in Table 4.5. The fact that

some of the SQLi rules are disabled by default in some of the IDSes may indicate

the perception that there exists overlaps between rules. The high usage of regex is

because it holds the promise that a regex will be able to match a wide set of attacks.

This observation motivated us to build on regex’s in choosing the features in pSigene.

A description of each signature set follows:

Bro

It is a network analysis framework that can be used as a signature-based IDS.

It comes with a set of signatures to perform low-level pattern matching. We

analyzed the 6 SQLi rules present on Bro v2.0 [75] to detect SQLi attacks. All

six of the rules make extensive usage of regular expressions.

91

Table 4.5
Comparison between different SQLi rulesets.

Rules

Distribution

Version Number

SQLi rules

SQLi rules

Enabled

Usage

of Regex

Bro 2.0 6 100% 100%

Snort Rules 2920 79 61% 82%

Emerging

Threats

7098 4231 0% 99%

ModSecurity 2.2.4 34 100% 100%

Snort

Snort is an open source network IDS that performs packet-level analysis to

detect attacks and comes with its own ruleset, which gets updated periodically.

We downloaded and analyzed version 2920 of the ruleset [83]. It included 79

SQLi-related rules, 82% of which use regular expressions.

Emerging Threats

An open source project that publishes detection rulesets for two IDS, Snort and

Suricata [84]. The ruleset is updated daily. We analyzed version 7098 of the

ruleset, which includes over 4,200 SQLi-related rules. 99% of those rules use

simple regular expressions. For the purposes of our experiments, we merged

this signature set with Snort’s signature set.

ModSec

ModSecurity (shortened as “ModSec”) is a web application firewall (WAF) used

to protect Apache web servers from attacks such as SQLi. The OWASP Mod-

Security Core Rule Set (CRS) project is an open-source initiative to provide

the signatures used by ModSecurity to detect attacks to web applications. We

92

analyzed CRS version 2.2.4, which includes 22 SQLi-related rules. All of the

rules make use of regular expressions.

A number of differences exist between the different NIDS where these signatures

sets are used. First, Snort and Bro use a deterministic approach to handle the signa

tures. In other words, these systems produce an alert only if all the requisites defined

in a signature are met. In contrast, ModSecurity takes a probabilistic approach and

uses a scoring scheme where signatures are weighted and can contribute to determine

the level of anomaly for a particular trace.

A second difference between the NIDS involves the regular expression engine that

each one uses. Snort and ModSecurity use the Perl-compatible regular expressions

(PCRE) library, while Bro’s regex engine is POSIX compliant. PCRE is a more

sophisticated library and has a richer syntax and set of supported features (such as,

backtracking over a string).

A third difference is the composition of the SQLi signatures analyzed and used in

the experiments. The signatures found in Bro and ModSecurity made extensive use

of regexs, while Snort’s signatures include much simpler regexs. Of the 6 signatures

found in Bro, the average length of the regular expressions was 247.7 characters (max:

429, min: 27). Meanwhile, regular expressions in ModSecurity had an average length

of 390.2 characters (max: 2917, min: 28) and in Snort were 27.1 (max: 40.1, min: 0).

All these differences impact the detection capabilities of these systems. For all the

experiments presented in this chapter, we considered only those signatures that used

or included regular expressions. We did this to allow for a fairer comparison between

pSigene and the other IDSes, since pSigene uses regular expressions for its features.

4.3.2 SQLi Test Datasets

We used two test datasets to evaluate the performance of the different signature

sets. The test dataset used to compute FPR corresponds to a 1-week network trace

at a university institution. We captured all HTTP traffic to the main web servers at

93

the university, including the institutional web servers, the registration and payment

servers, and the web interface for the mailing servers. The network trace amounts

to 4.53 GB and included over 1.4 million HTTP GET requests. Although no ground

truth existed for this trace, we ran it through all three signature sets and manually

reviewed the alerts generated. All alerts were false positives; therefore we concluded

no malicious attack was included in the trace.

The other testing dataset was used to compute the TPR of all signature sets.

We generated this testing dataset by running SQLmap [72], a popular SQL injection

scanning tool, against a vulnerable web application running Apache Tomcat and

MySQL database. SQLmap was launched against the application which contained

136 vulnerabilities, triggering the scanning tool to generate over 7200 attack samples.

To collect this testing dataset, we set up an isolated network which only had the test

traffic and thus the traces were not contaminated with other traffic.

4.3.3 Implementation in Bro

To run our experiments, we integrated the signatures generated by pSigene into

the Bro NIDS and then instructed Bro to use only our signatures and not its own.

Additionally, we coded a function count all that accepted as input two parameters,

a regular expression and a string, and returned the number of times the regular

expression was found in the string. Bro is an extensible IDS in that it allows one to

plug in user scripts, which we did. Plus, it allows one to develop core functions and

integrate them with Bro after recompiling it. The user scripts can then reach back

and call these core functions. We also used this feature to integrate our new function

count all. This function was used in pSigene to count the number of occurrences

corresponding to the features. pSigene is invoked by Bro from its upper policy layer,

which is analogous to where Bro’s own SQLi signatures sit.

94

4.3.4 Experiment 1: Accuracy and Precision Comparison

We performed the evaluation separately with 7 signatures (corresponding to 7

clusters) and with 9 signatures (corresponding to 9 clusters). As shown in Figure 4.3,

we considered 11 biclusters to produce two signature sets, one with seven signatures

and another with nine. The set of seven signatures showed a group of rules that

obtained a higher TPR than Bro and Snort, while also producing a very low FPR.

The results from the set of nine signatures allowed determining how much the TPR

can be improved while also measuring the increase in the FPR. From the heatmap, we

visually identified 11 biclusters as this permitted to include a large percentage of all

the samples in the original training set, while giving reasonably homogeneous colored

areas. From the experiments, we determined that biclusters 9 and 10, as labeled in

Figure 4.3, gave poor signatures and so we dropped them from the evaluation. Their

bad detection rate can be traced to two main causes: (1) almost all the samples

included in each of bi-clusters 9 and 10 have the selected features with values of zero

(a small percentage had values of 1); and (2) each bi-cluster has a small number of

features. Note the black color in the heatmap in Figure 4.3 tells us that the normalized

value of the selected features is zero; in addition, the mean value is also close to zero.

These two reasons make these signatures incapable of discriminating between normal

and malicious traffic.

The result is shown in Table 4.6. Our signatures had higher detection rate (86.53%

for 9 signatures and 82.72% for 7 signatures) than Snort (79.55%) and Bro (73.23%) ,

but lower than ModSecurity (96.07%). Both our signature sets had the lowest FPRs,

only behind Bros signature set (which did not raise a single false positive). Although

the other FPRs were very low, one should not be deceived by these numbers. A

FPR of 0.174%, as recorded for Snort, represents over 2, 463 false alarms generated

over the one week traffic, while ModSecs TPR represents over 730 false alarms. In

comparison, our sets produced 523 false alarms in the case of nine signatures and 226

in the case of seven signatures.

95

Table 4.6

Accuracy Comparison between different SQLi rulesets.

RULES TPR

(%)

FPR

(%)

Bro 73.23 0.0000

Snort - Emerging

Threats

79.55 0.1742

ModSecurity 96.07 0.0515

Generalized

Signatures (9) 86.53 0.037

Generalized

Signatures (7) 82.72 0.016

ModSecurity achieved the highest TPR of all signatures sets at 96%. We had

suspected this to be a difficult result to improve. The ModSec set has been developed

and tested over several years by a team of security developers, and is part of a popular

open-source WAF. This situation has fostered the development of a robust signature

set and our results confirmed it. Further, the focused nature of these rulesets for web

application detection also explains its good detection rate.

Accuracy and Precision of Individual Signatures

We wanted to drill deeper into the overall accuracy and precision result of pSigene

to see what the contribution from each of the signatures is. For this, we plotted the

ROC curves for each of the 9 signatures for the entire test data. The result is shown

in Figure 4.4. To generate the ROC curve for a given signature, we ran pSigene with

only that signature enabled and we varied the probability threshold for the output of

logistic regression. In the ROC curve, the point (0, 1) corresponds to the ideal case

96

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate

T
ru

e
P

os
iti

ve
 R

at
e

ROC Curves for Generalized Signatures

Signature 6

Signatures 2 and 3

Signature 1

Signature 8

Signature 5

Signature 7

Signature 11

Signature 4

Fig. 4.4. ROC curves for each of the signatures generated for the gen
eralized set. The plot shows different performance for each signature,
suggesting that each one can be tuned separately which can improve the
overall detection rate of the set.

and the greater is the area under the curve, the better the performance is. Note that

in this plot, the FPR only goes till 0.05, not till 1. This is because the maximum

value of FPR for the systems under test does not grow beyond 0.05.

The first observation is that there is wide variability in the quality of the signa

tures. Signature 6 performs well while signature 4 lags. Second, some signatures are

quite insensitive to the threshold settings — signatures 1, 2, 3, and 8 — since their

detection rates go up only slightly. Third, signature 6 will produce false positives

faster than signatures 1 and 8. From a ROC curve like this and with an idea of

a desired TPR and FPR, a security administrator can visually, and approximately,

decide which signatures to enable or disable. We believe this is a useful and practical

visualization for signatures of misuse-based IDSes in general, not just for pSigene.

97

Coverage of Individual Signatures

Another aspect of the clusters and the corresponding signatures is how many

samples does each cover and how many features are used in each cluster’s signature.

This result is shown in Table 4.7. There is quite a large range of cluster sizes, as is

of the number of features output by biclustering. The largest cluster has 44% of the

samples while the smallest has 5.5%. Three clusters use 57% of the total number of

features (90 out of 159). However, an interesting, and not a priori obvious, observation

is that logistic regression does significant amount of pruning of features for these three

clusters. Thus, logistic regression downplays the role of some features in classifying

a sample as being malicious or benign. For example, for cluster 3, logistic regression

throws out 88% of the features, for cluster 2 86% of the features, and for cluster 1

63% of the features. We hypothesize that this large amount of filtering by logistic

regression is due to two causes. First, the reduction of the feature set from 477 to 159

is a manual process and there still remain overlaps between some of them. Second,

biclustering provides a clustering but it may be clustering noisy data, while logistic

regression pays attention to the quality of the data itself.

Nevertheless, biclustering is a crucial step and needs to precede logistic regression.

Biclustering creates some order out of the chaos of the large amount of samples and

large set of features, by identifying the samples which are similar and by identifying

a superset of features according to which they are similar.

4.3.5 Experiment 2: Incremental Learning

In this experiment, we first incremented the number of attack samples while learn

ing the Θ parameters in logistic regression to create the signatures. We progressively

added some attack samples from the test dataset into the training dataset - we ex

perimented with 20% and 40% of the test dataset being included in the training.

This reflects the real world scenario where fresh attack samples will be fed to pSigene

and pSigene will do incremental training with these new samples. Thus, over time,

98

Table 4.7

Details of signatures for each cluster created by pSigene.

BICLUSTER

NUMBER

NUMBER

OF SAMPLES

NUMBER OF

FEATURES FROM

BICLUSTERING

NUMBER OF

FEATURES IN

SIGNATURE

Bicluster 1 13272 90 33

Bicluster 2 5477 90 13

Bicluster 3 2629 90 11

Bicluster 4 6947 12 8

Bicluster 5 4245 8 5

Bicluster 6 2741 6 6

Bicluster 7 3928 10 5

Bicluster 8 1676 8 6

Bicluster 11 1671 15 14

pSigene will be able to detect more and more of the attacks as it operates for longer

periods and gets incrementally trained. Note that the incremental training is also

an automatic process and therefore, we are spared the tedium of manually updating

prior signatures. How exactly incremental training is done is described in Section

When adding 20% of the SQLmap dataset, we obtained a TPR = 89.13% and

a FPR = 0.039%. After augmenting the training dataset with 40% of the samples

from the SQLmap set, the TPR increased to 91.15% while the FPR also increased to

0.044%. In both cases (20% and 40%), we used sets of 10 signatures.

From the results, the TPR showed an increment of a bit over 2%, for each round

of the experiment. This can be explained as we first randomized the SQLmap set and

then divided it into 20% parts. So one can hypothesize that pSigene is seeing some

similar attack samples in the test phase.

99

The FPR also increased slightly from the 20% to 40% experiment. Such behavior

highlights a limitation of our approach. By only adding more samples for the malicious

class in the training phase, we should be improving the TPR and this is reflected in

our results. But this does not necessarily reduce the FPR because we are not adding

more samples from the non-malicious class and so our ability to model normal traffic

is not improving. In fact, in the extreme, if the training data has a great imbalance of

a large amount of malicious labeled samples and a small amount of benign samples,

the FPR is expected to go up.

4.3.6 Experiment 3: Performance Evaluation

In this section, we report the overhead of pSigene signatures against Bro and Mod-

Sec signatures that are implemented as *.bro scripts in the Bro NIDS. Specifically,

we measured the average processing-time per HTTP request for each signature in

SQLmap dataset. The minimum, average, and maximum processing times across the

signatures of the three systems are presented in Figure 4.5. We observe that on av

erage, pSigene gives a slowdown of 17X and 11X against Modsec and Bro signatures

respectively. The increased processing-time in pSigene is majorly attributed to the

count all function call, which counts the number of regex matches for each HTTP

request string. We observe from the data that the signatures with a large number

of invocations of count all take a disproportionately large fraction of the total pro

cessing time. Given that we run these measurements on a relatively resource-starved

machine (700 MHz (CPU), 512 MB (RAM)) and still the worst case processing time

was less than 2 ms, we would expect that signature matching in pSigene will not be

come a bottleneck. Importantly, the signature matching is completely parallelizable

- each parallel thread can match one signature and this functionality is inbuilt in

Bro (Bro’s cluster mode). But we do not have this obvious performance optimization

implemented yet.

100

0

500

1000

1500

2000

BRO PSIGENE MODSEC

A
ve

ra
ge

 L
at

e
n

cy
 P

e
r

Si
gn

at
u

re
 (

M
ic

ro
se

co
n

d
s)

Performance of Signatures in BRO

Min

Avg

Max

Fig. 4.5. Minimum, Average, and maximum processing time across all
signatures from Bro, pSigene, and ModSec sets.

4.4 Discussion

An important issue to consider in pSigene, is how to adapt it after it is deployed,

i.e., improve its signatures as new attack samples are collected. We presented results

from an experiment on incremental learning and its benefits. In this section, we define

an approach so pSigene can systematically update its signature set.

Given new attack samples, we can sequentially (i.e., incrementally) update our

existing bi-clusters and also sequentially update our logistic regression models, instead

of retraining both of them using the entire data set. These sequential updates enable

us to deal with massive amounts of dynamic attack data, and update the whole

detection system in a computationally efficient way. A typical usage scenario that we

envisage is that new attack samples will be fed into pSigene daily and we would retrain

the system to come up with new signatures. Thus, the signatures can evolve and the

resultant detection performance can improve. We emulate such a usage scenario in

our experiments in Section 4.3.5.

101

Specifically, given new attack samples, we will examine how similar a new sample

is, to the existing bi-clusters. We can use the same Euclidean distance metric that we

use in the initial training. If it is similar to certain (one or several) existing bi-clusters

up to a threshold, we add this sample into these existing bi-cluster and adjust the

parameters of these bi-clusters – such as the mean parameters – accordingly. If the

new sample is not similar to any existing bi-cluster, we will list it as a candidate

for a new signature. Given multiple such candidates we will run our bi-clustering

algorithm to generate new signatures. With increasingly more new samples, we can

repeat this process to incrementally adjust bi-clusters and obtain new signatures.

Given new samples, we can use Bayesian online learning to sequentially update

the classifier. First, if new features are added because of emerging biclusters based

on new samples, we can first expand the classifier accordingly with zero weights

for new signatures before applying online learning updates. Then, we will update

the classifier based on the new samples. In a Bayesian framework, this goal can

be naturally achieved via the update of the posterior distribution of the classifier.

To conduct the needed computation, we can either resort to sequential Monte Carlo

methods [85], such as particle filtering, or deterministic approximation such as virtual

vector machine [86].

Combining the above strategies, we can efficiently update the signatures and the

classifiers as pSigene runs in an operational deployment over time.

Another aspect that this work throws light on is the importance of good training

data for creating the clusters and subsequently the signatures. It is imperative that

the training data be representative of the kinds of attacks that will be seen in op

eration, though they do not need to be identical. How far apart can the attacks in

training and test be? This is a perennial question that is asked of machine learning

algorithms in all different contexts. This is also a question that does not have a com

pletely satisfactory answer. The partial answer is that the features should be chosen

to be rich enough that they are likely to capture important characteristics of the

zero-day attacks. Thus, signatures based on such features will likely be able to match

102

some of the zero-day attacks. The feature selection process needs to be repeated for

each kind of attack, but not for each attack sample. This makes this process more

feasible in practice. In contrast, manual signature update is a process that needs to

be done for each attack sample and is therefore not as scalable. Of course, in practice,

a signature update is done in a batch mode after a certain number of attack samples

have been collected.

4.5 Related Work

The work presented in this chapter is related to three areas of intrusion detection:

automatic signature creation, signature generalization, and the interaction between

web applications and databases. We discuss how previous work in these three areas

relates to our research.

An interesting and important work on automatic signature creation is by Yeg

neswaran, et al [64]. The authors presented a framework based on machine learning

algorithms to produce attack signatures. It aims to create generalized signatures that

represent a set of attack vectors, as the framework clusters similar attacks detected.

A key point by the authors and which we agree with is that the framework requires

protocol knowledge in order to produce effective signatures and such insight impacts

the resulting detection mechanism. Knowing the syntax, semantics and behavior of

a protocol allows to produce accurate signatures. When this information is not con

sidered, there is higher probability to false alarms and false negatives. Distinct from

our work, they take a passive approach as HTTP and NetBIOS-based malware traf

fic is collected from honeynets, whereas we proactively collect from the web samples

for SQL-based attacks. Additionally, our framework is agnostic to transport- and

network-level information, which is important for their framework. Finally, we rely

heavily on regular expressions, looking to produce rich, optimized regex signatures.

Their approach to regexs is somehow limited as it only uses simple metacharacters

such as *, +, and ? to express clusters of signatures.

103

Previous work on signature generalization also includes [87], [88], [65], and [89].

In [87], several conditionals and parameters in SNORT rules are modified, using a

similar approach to classic rule learning operators such as generalization and special

ization. They analyze each signature separately to generalize it, while our approach

uses clusters of attack samples to then create generalized signatures. In [88], a sys

tem called Polygraph generates signatures that consist of multiple disjoint substrings.

In doing so, Polygraph leverages our insight that for a real-world attack to function

properly, multiple invariant substrings must often be present in the payload. In other

words, every attack sample includes invariant components that help to identify it. In

our approach, we look to cluster samples so it helps identify the invariants that can

appropriately represent the attacks. Similarly, [65] applies pattern-matching tech

niques and protocol conformance checks on multiple levels in the protocol hierarchy

to network traffic captured at a honeypot system, to produce worm signatures. [89]

extends this idea to detect zero-day polymorphic worms on high-speed networks. In

both cases, the goal is to detect worms at the network layer while our general approach

considers protocol information and suited for other types of attacks.

Robertson et al. [90] present an anomaly generalization technique to automatically

translate suspicious requests to a web server into anomaly signatures. This approach

is complementary to ours and uses heuristics-based techniques to infer web-based

attacks. For the class of SQL injection attacks, the technique performs a simple scan

for common SQL language keywords and syntactic elements. This results in basic

signatures to detect SQLi attacks, but no details were provided on the performance of

these signatures. Other papers that present similar anomaly-based intrusion detection

techniques for SQLi attacks include [91] and [92].

The interaction between web applications and databases to improve the detection

rate of attacks against these resources has been covered in [93], [94], [95], and [96]. [93]

et al. present a novel approach for automatically detecting potential server-side vul

nerabilities of this kind in legacy web applications through blackbox analysis. [94]

proposes a serially composed system with a web-based anomaly detection system,

104

a reverse HTTP proxy, and a database anomaly detection system to increase the

detection rate of web-based attacks. In [95], a system that automates repair from

intrusions in web applications is presented. It works by continuously recording ac

tivity in the application and constructs a global dependency graph from this logged

information to retroactively patch vulnerabilities by rolling back parts of the system

to an earlier checkpoint. Finally, [96] looks at the problem of scarce training data for

anomaly-based intrusion detection systems. By applying clustering techniques to de

termine similar clusters between sets of HTTP requests made to different components

of web applications, the undertrained profiles of the applications can be enhanced with

similar well-trained profiles.

4.6 Conclusions and Future Work

In this work, we presented a system called pSigene, for the automatic generation

and update of intrusion signatures. The system benefits from mining the vast amount

of public data available on attacks. We tested our architecture for the prevalent class

of SQLi attacks and found our signatures to perform very well, compared to existing

signature sets, which have been created manually and with a tremendous amount of

security expertise and progressive refinement over the period of multiple years.

Our framework allows one to generalize existing signatures and the detection of

new variations of attacks (i.e., some kinds of zero-day attacks) is achieved by using

regular expressions for the generalized signatures. We also rigorously benchmarked

our solution with a large set of attack samples and compare our performance to

popular misuse-based IDS-es. The evaluation also brings out the impact of a practical

use case whereby periodically new attack samples are fed into our algorithm and

consequently the signatures can be progressively, and automatically, updated. In

contrast, to improve the other signature sets requires the manual inspection and

testing of the signatures, which could overwhelm a system administrator with limited

resources.

105

Future work will include the implementation of the incremental update operation,

as described earlier. This task has some open design choices in terms of the machine

learning technique to use and empirical evidence is needed to guide our choice. We

will also improve the online performance of the signature matching process. This will

be done first by simply parallelizing the process and next by optimizing the code path

within Bro through which our signature matching occurs.

106

5. FUTURE WORK

5.1	 Implementation of DIADS

The objective is to perform an evaluation of different types of detection sensors to

determine the parameters needed to create the conditional probability tables (CPT)

for the Bayesian network model. Using the popular Bro [43] and Snort [23] intrusion

detection sensors, we evaluate them to determine their performance when detecting

attacks against different components (web, application, and database) of a distributed

system. To evaluate the sensors, several types of performance measurements are

considered [97], [98].

Additionally, the DIADS [99] framework should be implemented and tested to

determine its operational performance in a real environment. For this, the Bro sen

sor can be used as the baseline detection engine to develop the rest of the DIADS

framework, specially the reasoning engine. A specific type of attack (or two) can be

used to evaluate the framework. Candidates include those attacks associated to high

False Positive rates (FPR), when detected by a single intrusion detection sensor. Ex

amples include SQL injection attacks [?]. The objective would then be to determine

the improvement (in terms of the FPR) provided by DIADS, compared to a single

detector.

5.2	 Determining Confidence Levels from Intrusion Alerts to Configure

Detection Sensors

The DIADS framework currently considers the alerts as absolute values to de

termine the configuration setup of a set of detectors. The Bayesian model defines

the performance of each detector, by its corresponding conditional probability table

107

(CPT). Still, this definition does not allow the DIADS framework to evaluate the on

going performance of a detector. Whenever a detector sends an alert to the reasoning

engine, currently we dont determine how accurate or correct the alert is.

A method to fix the lack of evaluation on the quality of an alert is to compute

confidence intervals for each detector, based on the success experienced of past alerts.

Such intervals indicate the reliability of the alert send by a detector. For the DIADS

framework, confidence intervals will act as a triggering mechanism for algorithm 4,

which reconfigures DIADS given the newly received evidence (alerts). The original

IDES model [100] and later work [101] have stated the need to consider the confidence

interval for an alert when determining how should an intrusion detection system react.

Those works do not provide a mechanism on how could the confidence intervals be

used.

5.3	 Incremental Deployment of Intrusion Detectors in a Dynamic Dis

tributed System

The current DIADS framework does not consider the current setup of detection

sensors to determine the new configuration of the sensors. When new alerts are

received, DIADS considers all possible choices based on a finite radius set around the

node in the Bayesian model. The node corresponds to the vulnerability associated to

the alert received. For example, DIADS would not consider the current setup of the

detection sensors when determining how to reconfigure the detection system, in light

of new evidence.

In this work, the DIADS framework would be modified to perform incremental

configuration of the intrusion detection sensors. This should improve the reconfigura

tion time taken by the framework and potentially help to detect multi-stage attacks

faster than under the current framework.

LIST OF REFERENCES

108

LIST OF REFERENCES

[1] B. Foo, Y.-S. Wu, Y.-C. Mao, S. Bagchi, and E. H. Spafford, “Adepts: Adaptive
intrusion response using attack graphs in an e-commerce environment,” in 2005
International Conference on Dependable Systems and Networks (DSN 2005),
28 June - 1 July 2005, Yokohama, Japan, Proceedings, pp. 508–517, IEEE
Computer Society, 2005.

[2] K. Ingols, R. Lippmann, and K.	 Piwowarski, “Practical attack graph gener
ation for network defense,” in ACSAC ’06: Computer Security Applications
Conference, 22nd Annual, pp. 121–130, December 2006.

[3] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach to attack graph
generation,” in CCS ’06: Proceedings of the 13th ACM conference on Computer
and communications security, (New York, NY, USA), pp. 336–345, ACM, 2006.

[4] S. Jha, O. Sheyner, and J. M. Wing, “Two formal analys s of attack graphs,”
in 15th IEEE Computer Security Foundations Workshop (CSFW-15 2002), 24
26 June 2002, Cape Breton, Nova Scotia, Canada, pp. 49–63, IEEE Computer
Society, 2002.

[5] V. Mehta, C. Bartzis, H. Zhu, E. M. Clarke, and J. M. Wing, “Ranking attack
graphs,” in Recent Advances in Intrusion Detection, 9th International Sympo
sium, RAID 2006, Hamburg, Germany, September 20-22, 2006, Proceedings,
vol. 4219 of Lecture Notes in Computer Science, pp. 127–144, Springer, 2006.

[6] C. Krugel, D. Mutz, W. K. Robertson, and F. Valeur, “Bayesian event classifi
cation for intrusion detection,” in 19th Annual Computer Security Applications
Conference (ACSAC 2003), 8-12 December 2003, Las Vegas, NV, USA, pp. 14–
23, IEEE Computer Society, 2003.

[7] N. B. Amor, S. Benferhat, and Z. Elouedi, “Naive bayes vs decision trees in
intrusion detection systems,” in Proceedings of the 2004 ACM Symposium on
Applied Computing (SAC), Nicosia, Cyprus, March 14-17, 2004, pp. 420–424,
ACM, 2004.

[8] A. Valdes and K. Skinner, “Adaptive,	 model-based monitoring for cyber at
tack detection,” in Recent Advances in Intrusion Detection, Third Interna
tional Workshop, RAID 2000, Toulouse, France, October 2-4, 2000, Proceed
ings, vol. 1907 of Lecture Notes in Computer Science, pp. 80–92, Springer, 2000.

[9] D. Jones, C. Davis, M. Turnquist, and L. Nozick, “Physical security and vulner
ability modeling for infrastructure facilities,” in Sandia National Laboratories,
2005.

[10] F. Anjum, D. Subhadrabandhu, S. Sarkar, and R. Shetty, “On optimal place
ment of intrusion detection modules in sensor networks,” Broadband Networks,
International Conference on, vol. 0, pp. 690–699, 2004.

109

[11] T. Berger-Wolf, W. Hart, and J. Saia, “Discrete sensor placement problems in
distribution networks,” Mathematical and Computer Modelling, vol. 42, no. 13,
pp. 1385 – 1396, 2005.

[12] S. Ray, D. Starobinski, A. Trachtenberg, and R. Ungrangsi, “Robust location
detection with sensor networks,” IEEE Journal on Selected Areas in Commu
nications, vol. 22, no. 6, pp. 1016–1025, 2004.

[13] A. Krause, C. Guestrin, A. Gupta, and J. M. Kleinberg, “Near-optimal sensor
placements: maximizing information while minimizing communication cost,” in
Proceedings of the Fifth International Conference on Information Processing in
Sensor Networks, IPSN 2006, Nashville, Tennessee, USA, April 19-21, 2006,
pp. 2–10, ACM, 2006.

[14] P.	 Ning, Y. Cui, and D. S. Reeves, “Constructing attack scenarios through
correlation of intrusion alerts,” in Proceedings of the 9th ACM Conference on
Computer and Communications Security, pp. 245–254, ACM, 2002.

[15] C. Peikari and A. Chuvakin, Security Warrior. O’Reilly Media, 2004.

[16] S.	 Axelsson, “The base-rate fallacy and the difficulty of intrusion detection,”
ACM Trans. Inf. Syst. Secur., vol. 3, no. 3, pp. 186–205, 2000.

[17] M. D. (Ed.), “Design of an intrusion-tolerant intrusion detection system,” tech.
rep., Maftia Project, 2002.

[18] A. A. Cárdenas, J. S. Baras, and K. Seamon, “A framework for the evaluation of
intrusion detection systems,” in 2006 IEEE Symposium on Security and Privacy
(S&P 2006), 21-24 May 2006, Berkeley, California, USA, pp. 63–77, IEEE
Computer Society, 2006.

[19] G. Gu, P. Fogla, D. Dagon, W. Lee, and B. Skorić, “Measuring intrusion de
tection capability: an information-theoretic approach,” in ASIACCS ’06: Pro
ceedings of the 2006 ACM Symposium on Information, computer and commu
nications security, (New York, NY, USA), pp. 90–101, ACM, 2006.

[20] F.	 V. Jensen and T. D. Nielsen, Bayesian networks and decision graphs.
Springer, second ed., 2007.

[21] R. Lippmann, D. Fried, I. Graf, J. Haines, K. Kendall, D. McClung, D. Weber,
S. Webster, D. Wyschogrod, R. Cunningham, and M. Zissman, “Evaluating
intrusion detection systems: the 1998 darpa off-line intrusion detection evalu
ation,” in DARPA Information Survivability Conference and Exposition, 2000.
DISCEX ’00. Proceedings, vol. 2, pp. 12 –26 vol.2, 2000.

[22]	 “Iptables firewall.” http://www.netfilter.org/projects/iptables/, 2008.

[23] M. Roesch, “Snort: Lightweight intrusion detection for networks,” in Proceed
ings of the 13th Conference on Systems Administration (LISA-99), pp. 229–238,
USENIX, 1999.

[24] “Bugtraq	 vulnerability database.” http://www.securityfocus.com/
vulnerabilities, 2008.

http:http://www.securityfocus.com
http://www.netfilter.org/projects/iptables

110

[25] NIST,	 “National vulnerability database.” http://nvd.nist.gov/nvd.cfm,
2008.

[26] D. R. Kuhn, T. Walsh, and S. Fires, “Nist special publication 800-58 security
considerations for voice over ip systems,” 2005.

[27] K. Murphy, “Bayes net toolbox for matlab.” http://www.cs.ubc.ca/
~murphyk/Software, March 2006.

[28] G. Modelo-Howard, “Addendum to determining placement of intru
sion detectors for a distributed application through bayesian net
work modeling.” http://cobweb.ecn.purdue.edu/dcsl/publications/
detectors-location_addendum.pdf.

[29] J. F. Lemmer and D. E. Gossink, “Recursive noisy or	 - a rule for estimating
complex probabilistic interactions,” IEEE Transactions on Systems, Man, and
Cybernetics, Part B, vol. 34, no. 6, pp. 2252–2261, 2004.

[30] “Snort ids.” http://www.snort.org, 2008.

[31] S. L. Lauritzen and D. J. Spiegelhalter, “Local computations with probabilities
on graphical structures and their application to expert systems,” Journal of the
Royal Statistical Society. Series B (Methodological), vol. 50, no. 2, pp. 157–224,
1988.

[32] R. A. Baeza-Yates and B. A. Ribeiro-Neto, Modern Information Retrieval. ACM
Press / Addison-Wesley, 1999.

[33] O. H. Ibarra and C. E. Kim, “Fast approximation algorithms for the knapsack
and sum of subset problems,” J. ACM, vol. 22, no. 4, pp. 463–468, 1975.

[34] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack Problems. Springer, 1 ed.,
October 2004.

[35] V. V. Vazirani, Approximation Algorithms. Springer, March 2004.

[36] G. Modelo-Howard, S. Bagchi, and G. Lebanon, “Determining placement of in
trusion detectors for a distributed application through bayesian network model
ing,” in RAID ’08: Proceedings of the 11th international symposium on Recent
Advances in Intrusion Detection, (Berlin, Heidelberg), pp. 271–290, Springer-
Verlag, 2008.

[37] B. Acohido, “Hackers breach heartland payment credit card system,” USA To
day, January 2009.

[38] “Health	 information privacy: Breaches affecting 500 or more indi
viduals.” http://www.hhs.gov/ocr/privacy/hipaa/administrative/
breachnotificationrule/postedbreaches.html.

[39] S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heberlein, C. lin Ho,
K. N. Levitt, B. Mukherjee, S. E. Smaha, T. Grance, D. M. Teal, and D. Mansur,
“Dids (distributed intrusion detection system) - motivation, architecture, and
an early prototype,” in In Proceedings of the 14th National Computer Security
Conference, pp. 167–176, 1991.

http://www.hhs.gov/ocr/privacy/hipaa/administrative
http:http://www.snort.org
http://cobweb.ecn.purdue.edu/dcsl/publications
http://nvd.nist.gov/nvd.cfm

111

[40] P.	 A. Porras and P. G. Neumann, “Emerald: Event monitoring enabling re
sponses to anomalous live disturbances,” in In Proceedings of the 20th National
Information Systems Security Conference, pp. 353–365, 1997.

[41] G. Vigna and R. A. Kemmerer, “Netstat: A network-based intrusion detection
system,” Journal of Computer Security, vol. 7, pp. 37–71, 1999.

[42] E. H. Spafford and D. Zamboni, “Intrusion detection using autonomous agents,”
Computer Networks, vol. 34, no. 4, pp. 547–570, 2000.

[43] V. Paxson, “Bro: a system for detecting network intruders in real-time,” Com
puter Networks, vol. 31, no. 23-24, pp. 2435–2463, 1999.

[44] C.	 Kreibich and R. Sommer, “Policy-controlled event management for dis
tributed intrusion detection,” in In Proceedings of the 4th International Work
shop on Distributed EventBased Systems (DEBS05, 2005.

[45] S. Noel, E. Robertson, and S. Jajodia, “Correlating intrusion events and build
ing attack scenarios through attack graph distances,” in 20th Annual Computer
Security Applications Conference (ACSAC 2004), 6-10 December 2004, Tucson,
AZ, USA, pp. 350–359, IEEE Computer Society, 2004.

[46] E. Nowicka and M. Zawada, “Modeling temporal properties of multi-event at
tack signatures in interval temporal logic,” 2006.

[47] J. Wing, Information Assurance: Dependability and Security in Networked Sys
tems, ch. Scenario graphs applied to network security. Morgan Kaufmann, 2007.

[48] M. Frigault, L. Wang, A. Singhal, and S. Jajodia, “Measuring network security
using dynamic bayesian network,” in QoP ’08: Proceedings of the 4th ACM
workshop on Quality of protection, (New York, NY, USA), pp. 23–30, ACM,
2008.

[49] P. Ning and D. Xu, “Learning attack strategies from intrusion alerts,” in Pro
ceedings of the 10th ACM Conference on Computer and Communications Se
curity, pp. 200–209, ACM, 2003.

[50] P.	 Ning, D. Xu, C. G. Healey, and R. S. Amant, “Building attack scenarios
through integration of complementary alert correlation method,” in Proceedings
of the Network and Distributed System Security Symposium, NDSS 2004, San
Diego, California, USA, The Internet Society, 2004.

[51] A. Valdes and K. Skinner, “Probabilistic alert correlation,” in Recent Advances
in Intrusion Detection, 4th International Symposium, RAID 2001 Davis, CA,
USA, October 10-12, 2001, Proceedings, vol. 2212 of Lecture Notes in Computer
Science, pp. 54–68, Springer, 2001.

[52] X. Qin and W. Lee, “Statistical causality analysis of infosec alert data,” in In
Proceedings of The 6th International Symposium on Recent Advances in Intru
sion Detection (RAID 2003, pp. 73–93, 2003.

[53] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., 1988.

112

[54] F. of Incident Response and S. Teams, “Common vulnerability scoring system
(cvss).” http://www.first.org/cvss.

[55] G. L. Gaspar Modelo-Howard, Saurabh Bagchi, “Approximation algorithms for
determining placement of intrusion detectors,” tech. rep., Purdue University, 2
2011.

[56] OpenVAS, “The open vulnerability assessment system.” http://www.openvas.
org.

[57] J. Swets, “The relative operating characteristic in psychology,” Science, vol. 182,
pp. 990–1000, December 1973.

[58] G. Modelo-Howard, “Addendum:	 Secure configuration of intrusion detection
sensors.” http://sites.google.com/site/securecomm11msa/.

[59] C. Kruegel,	 Intrusion Detection and Correlation: Challenges and Solutions.
Santa Clara, CA, USA: Springer-Verlag TELOS, 2004.

[60] R. Di Pietro and L. V. Mancini,	 Intrusion Detection Systems. Springer Pub
lishing Company, Incorporated, 1 ed., 2008.

[61] “Open source vulnerability database.” http://www.osvdb.org, 2012.

[62] O. Security, “Exploit database,” 2012.

[63] “Packetstorm security portal.” http://packetstormsecurity.org, 2012.

[64] V.	 Yegneswaran, J. T. Giffin, P. Barford, and S. Jha, “An architecture for
generating semantics-aware signatures,” in Proceedings of the 14th conference
on USENIX Security Symposium - Volume 14, (Berkeley, CA, USA), pp. 97–
112, USENIX Association, 2005.

[65] C. Kreibich and J. Crowcroft, “Honeycomb: creating intrusion detection signa
tures using honeypots,” SIGCOMM Comput. Commun. Rev., vol. 34, pp. 51–56,
jan 2004.

[66]	 Automatically Preparing Safe SQL Queries, Jan 2010.

[67] R. Kaushik and R. Ramamurthy, “Efficient auditing for complex sql queries,”
in Proceedings of the 2011 international conference on Management of data,
SIGMOD ’11, (New York, NY, USA), pp. 697–708, ACM, 2011.

[68] D. Goodin, “New sony hack exposes more consumer passwords,” June 3, 2011.

[69] “Royal navy website attacked by romanian hacker.” http://www.bbc.co.uk/
news/technology-11711478, November 8, 2010.

[70] A. Moscaritolo, “Oracle’s mysql.com hacked via sql injection,” March 28, 2011.

[71] “Adobe	 hacker says he used sql injection to grab database of 150,000 user
accounts,” November 2012.

[72] B. Damele and M. Stampar, “Sqlmap,” July 2012.

http:mysql.com
http:http://www.bbc.co.uk
http:http://packetstormsecurity.org
http:http://www.osvdb.org
http://sites.google.com/site/securecomm11msa
http://www.openvas
http://www.first.org/cvss

113

[73] Google,	 “Google custom search api.” https://developers.google.com/
custom-search, 2012.

[74]	 “Mysql 5.5 reference manual, rev. 31755,” August 2012.

[75] V. Paxson, R. Sommer, S. Hall, C. Kreibich, J. Barlow, G. Clark, G. Maier,
J. Siwek, A. Slagell, D. Thayer, and M. Vallentin, “The bro network security
monitor.” http://www.bro-ids.org, 2012.

[76]	 “Modsecurity core rule set,” January 2012.

[77] R. Salgado, “Websec sql injection pocket reference,” 2011.

[78] J. Clarke,	 SQL Injection Attacks and Defense. Syngress Publishing, 1st ed.,
2009.

[79] J. M. Kraus, G. Palm, F. Schwenker, and H. A. Kestler, Semi-Supervised Clus
tering in Functional Genomics, pp. 243–271. Wiley-VCH Verlag GmbH & Co.
KGaA, 2009.

[80] A. Prelić, S. Bleuler, P. Zimmermann, A. Wille, P. Bühlmann, W. Gruissem,
L. Hennig, L. Thiele, and E. Zitzler, “A systematic comparison and evaluation
of biclustering methods for gene expression data,” Bioinformatics, vol. 22, no. 9,
pp. 1122–1129, 2006.

[81] M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein, “Cluster analysis
and display of genome-wide expression patterns,” Proc Natl Acad Sci U S A,
vol. 95, pp. 14863–14868, Dec 1998.

[82] S. Eisenstat, “Efficient implementation of a class of preconditioned conjugate
gradient methods,” SIAM Journal on Scientific and Statistical Computing,
vol. 2, no. 1, pp. 1–4, 1981.

[83] “Snort rules.” http://www.snort.org/snort-rules, 2012.

[84] “Suricata	 intrusion detection and prevention engine.” http://www.
openinfosecfoundation.org, 2012.

[85] J. Liu, Monte Carlo strategies in scientific computing. Springer Verlag, 2008.

[86] T. P. Minka, R. Xiang, and Y. A. Qi, “Virtual vector machine for bayesian online
classification,” in Proceedings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence, UAI ’09, (Arlington, Virginia, United States), pp. 411–
418, AUAI Press, 2009.

[87] U. Aickelin, J. Twycross, and T. Hesketh-Roberts, “Rule generalisation in in
trusion detection systems using snort,” CoRR, vol. abs/0803.2973, 2008.

[88] J. Newsome, B. Karp, and D. Song, “Polygraph:	 automatically generating
signatures for polymorphic worms,” in Security and Privacy, 2005 IEEE Sym
posium on, pp. 226 – 241, may 2005.

[89] Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and B. Chavez, “Hamsa: fast signature
generation for zero-day polymorphic worms with provable attack resilience,” in
Security and Privacy, 2006 IEEE Symposium on, pp. 15 pp. –47, may 2006.

http:openinfosecfoundation.org
http://www
http://www.snort.org/snort-rules
http:http://www.bro-ids.org
http:https://developers.google.com

114

[90] W. Robertson, G. Vigna, C. Kruegel, and R.	 Kemmerer, “Using Generaliza
tion and Characterization Techniques in the Anomaly-based Detection of Web
Attacks,” in Proceeding of the Network and Distributed System Security Sym
posium (NDSS), (San Diego, CA), February 2006.

[91] A. Kamra, E. Bertino, and G. Lebanon, “Mechanisms for database intrusion
detection and response,” in Proceedings of the 2nd SIGMOD PhD workshop
on Innovative database research, IDAR ’08, (New York, NY, USA), pp. 31–36,
ACM, 2008.

[92] S. Y. Lee, W. L. Low, and P. Y. Wong, “Learning fingerprints for a database
intrusion detection system,” in Proceedings of the 7th European Symposium on
Research in Computer Security, ESORICS ’02, (London, UK, UK), pp. 264–280,
Springer-Verlag, 2002.

[93] P.	 Bisht, T. Hinrichs, N. Skrupsky, R. Bobrowicz, and V. N. Venkatakrish
nan, “Notamper: automatic blackbox detection of parameter tampering op
portunities in web applications,” in Proceedings of the 17th ACM conference
on Computer and communications security, CCS ’10, (New York, NY, USA),
pp. 607–618, ACM, 2010.

[94] G. Vigna, F. Valeur, D. Balzarotti, W. Robertson, C. Kruegel, and E. Kirda,
“Reducing Errors in the Anomaly-based Detection of Web-Based Attacks
through the Combined Analysis of Web Requests and SQL Queries,” Journal
of Computer Security, vol. 17, no. 3, 2009.

[95] R. Chandra, T. Kim, M. Shah, N. Narula, and N. Zeldovich, “Intrusion recov
ery for database-backed web applications,” in Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, SOSP ’11, (New York, NY,
USA), pp. 101–114, ACM, 2011.

[96] W. Robertson, F. Maggi, C. Kruegel, and G. Vigna, “Effective anomaly detec
tion with scarce training data,” in Proceedings of the Network and Distributed
System Security Symposium, NDSS 2010, San Diego, California, USA, 28th
February - 3th March 2010, The Internet Society, 2010.

[97] P.	 Mell, V. Hu, R. Lippmann, J. Haines, and M. Zissman, “An overview of
issues in testing intrusion detection systems,” tech. rep., NIST, 6 2003.

[98] C. Gates, C. Taylor, and M. Bishop, “Dependable security:	 Testing network
intrusion detection systems,” in Third Workshop on Hot Topics in System De
pendability (HotDep’07), 2007.

[99] G. Modelo-Howard, J. Sweval, and S. Bagchi, “Secure configuration of intrusion
detection sensors for changing enterprise systems,” in SecureComm ’11, 2011.

[100] D. E. Denning, “An intrusion-detection model,” IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, vol. 13, no. 2, pp. 222–232, 1987.

[101] L. Peck, “Countering	 ambiguity in exterior intrusion detection,” in Security
Technology, 2008. ICCST 2008. 42nd Annual IEEE International Carnahan
Conference on, pp. 89 –93, oct. 2008.

APPENDICES

115

A. DESCRIPTION OF E-COMMERCE BAYESIAN

NETWORK

We provide a description of the Bayesian network built for the e-commerce system

used in the experiments. It includes a description of each node in the Bayesian net

work, for the observed and unobserved nodes, as well as the corresponding probability

values (shown as tables) associated with each node.

116

y �

�

�

��

�

�

�

�� ��

��

��

��

��

�� ��

��

�y

��

	
��������������	
�

��	
����������������� �� !�"#�

�#���#"$����"�%�&���#'�#�

��	
����������������� #$ �

�"#���� �#�" �%�&���#'�#�

|�������������	
����
�����������

��	
����������������� �(�)"���

��)*$+��'$) ,�" �%�&���#'�#

��	
����������������� �������%�&�

��#'�#��*+� �����

��	
����������������� -#$���."#���

�*+� ��%*

|�������������	
����
�����	
�

��	
����������������� �"�/�0����#�

�"")��"�%�&���#'�#�&/�$�� !��.��

��	
����������������� � ���))�'$) �

��� �#�" �%�&���#'�#

��	
������������������ $ �

�"#���� �#�" �� ��# �)� ��%"#�

��	
������������������ � ���))�� �..�#�

�"�����$#���%*�

��	
������������������
(�)"���

#��,����*���#'����" ������" �#"))�#

|��������������	
����
����������

��	
������������������
(�)"���

#�+"���'$) ,�" �1/�23���#'�#

��	
������������������ -#$���."#���

#""���%*�" ������" �#"))�#

��	
������������������ $ ��23�)$��

�"��(��$���4$�#����" ���&)��

��	
������������������ �" �����"�

1/�23���#'�#�%��0��*+� ����"$ �

��	
������������������ ��*�

�$��"+�#�*������&)�

��	
������������������ �"�/�

�$��"+�#��#�*�����#*�)���

|��������������	
����
��� ���������

��������������	�����
��!�

���
	����"

��

��

�����5���
��

67��-�
8
	���	
9

�����5�:��3

67��-�
8
	���	
9

	
�
����

6�-�
8
	���	
9

��

��

��

�y

��

Fig. A.1. Bayesian network for the e-commerce system with corresponding

description of the nodes. Each node is either an attack step or a detector.

117

y �

�

�

��

�

�

�

�� ��

��

��

��

��

�� ��

��

�y

��

	

�������

�������

��

	

���

��y

��

��y

���

	

��

	

��y

���

��

���

���

	

��

	

	

����

���

��y

����

��

����

��y

���

����

	

��

	

	

��

	

	

����

��y

��y

����

��

����

���

���

����

	

��

	

	

��

	

���

���

��

���

��y

	

��

	

��y

���

��

���

���

	

��

	

	

����

���

���

����

��

����

���

���

����

	

���

	

	

��

	

	

��y

���

���

���

��

���

���

���

���

	

��

	

	

��

	

	

����

���

���

����

��

����

���

���

����

	

���

	

	

��

	

���

���

���

���

���

	

���

	

���

���

���

���

���

	

��y

	

���

���

���

���

���

	

���

	

���

���

���

���

���

	

���

	

	

����

���

���

���

���

����

��y

���

���

	

���

	

	

���

	

	

���

���

���

���

���

���

���

���

���

	

���

	

	

���

	

���

���

���

���

���

	

���

	

	

	

	

���

���

���

��y

���

��y

��y

���

���

���

���

��y

���

��y

���

���

���

	

���

	

	

	

	

���

	

	

	

	

���

	

	

	

	

	

	

	

	

����

���

��y�

��y

��y�

��y

��y

����

��y�

��y

��y

����

��y

����

����

����

���

����

���

����

���

����

���

���

����

����

���

���

����

���

����

����

����

	

���

	

	

	

	

	

	

	

	

���

	

	

	

	

	

	

	

	

���

	

	

	

	

	

	

	

	

���

	

	

���

���

���

���

��

���

���

���

���

	

�y

	

	

��

Fig. A.2. Bayesian network for the e-commerce system with the conditional
probabilities values used for the experiments.

118

B. CALCULATION OF APPROXIMATION RATIO FOR

GREEDY ALGORITHM

We provide the calculation of the approximation ratio for a Greedy algorithm of the

0-1 knapsack problem (KP), for the bounded case (when there is a limited number

of items from which to pick and put in the knapsack). The proofs for the calculation

of the approximation ratio are adapted from [34] and [35]. We include the proofs in

this paper to make the previous proofs more accessible to a systems security audience

and to show the thinking process that went on behind our search for FPTAS after

having designed the Greedy solution.

KP can be formally defined as the following: given an instance with item set N ,

consisting of n items xi, each with a profit pi and weight wi. The knapsack has a

capacity value c. The objective is to select a subset of N such that the total profit of

the selected items (Σn
i=1pixi) is maximized subject to the corresponding total weight

not exceeding the knapsack capacity (Σn ≤ c). The optimal solution value is i=1wixi

denoted by zOP T .

The idea of the Greedy algorithm with a solution value zG is to start with an

empty knapsack, sort the items in decreasing order according to its profit to weight

ratio
w
pi
i
and go through the sorted items, adding every item into the knapsack while

its capacity is not overwhelmed. The final step is making a comparison between the

given solution and the highest profit value of any item. The larger of the two is

finally taken and is denoted by zmG . This final step can be considered a modification

of the original Greedy algorithm found in literature [33], but necessary to guarantee

an approximation ratio of 1
2 to the optimal solution.

A linear programming relaxation (LKP) is made to compute the approximation

ratio, omitting the integer constraint of KP and optimizing instead over all nonnega

tive real values. Naturally, the optimal solution value zLKP of the relaxed problem is

119

at least as large as the original value zOP T because the set of feasible solutions for the

original KP is a subset of the feasible solutions for the relaxed problem. The Greedy

algorithm for LKP packs the items in decreasing order of profit-to-weight ratio, sim

ilar to the original Greedy algorithm, but with one difference. When adding an item

s to the knapsack would cause the capacity c to overflow for the first time, only an

appropriate fractional part of the item is used. Item s is referred as the split item,

its corresponding profit as ps and weight as ws. The split solution, not including the

split item, is defined by a profit p̂ and weight ŵ. Therefore, the optimal solution value

of LKP is defined as

z LKP = Σs−1 .i=1 pi + (c − Σs−1 ps
(B.1)i=1 wi)

ws

The value zLKP is an upper bound on the optimal solution for KP. A tighter upper

OPT LKP J,bound ULP for z can be obtained by using the floor of zLKP , i.e. ULP := lz
LP :since all data are integers. Then we get the following bounds on z

OPT LKP G p̂ ≤ z ≤ ULKP ≤ z ≤ Σs
i=1pi = p̂+ ps = z + ps. (B.2)

Another consequence of these considerations is the following fact:

OP T − z OP T − ˆz G ≤ z p ≤ pmax, (B.3)

where pmax denotes the largest profit of any item in the set N.

The Greedy algorithm has an approximation ratio of
2
1 and this bound is tight.

OPT mG + z mGAs proof, we know from (3) that: z ≤ zG + pmax ≤ z mG = 2z

The tightness of the bound can be shown by the following example. Item 1 is

given by w1 = 1, p1 = 2, and b1 = 1 (number of item 1 available). Item 2 is given by

w2 = p2 = M and b2 = 2. The knapsack capacity is c = 2M . The Greedy algorithm

would pack item 1 first and then an item 2, reaching a solution value of 2 + M while

the optimal solution would pack items 2 and would reach a value of 2M . Choosing

M large enough, the ration between the approximate and optimal solution value can

be arbitrarily close to 1
2 .

120

C. ALGORITHMS FOR DIADS

The DIADS framework presented in chapter 3 is composed of four algorithms:

BN-STRUCTURE-UPDATE The structure of the Bayesian Network (BN) is up

dated, using the changes made to the firewall rule table. The algorithm produces

a list of nodes and edges that should be added or deleted from the BN and is

presented later in this appendix (algorithm C.1).

BN-CPT-UPDATE The conditional probability tables (CPT) of the BN are up

dated, using the changes made to the firewall rule table. The algorithm pro

duces a lists of CPTs for the changed nodes in the BN, i.e., nodes for which

there is an increase or deduction in the number of parents and according to

the output from the BN-STRUCTURE-UPDATE algorithm. We present the

BN-CPT-INITIALIZATION below (algorithm C.2).

CPT-UPDATE-NOISY-OR The alerts received by the reasoning engine from dif

ferent detection sensors are used to update the CPTs in the BN, in an incre

mental manner. This algorithm uses a popular and powerful model known as

Noisy-OR ?? that represents the core of the algorithm.

SENSOR-RECONFIGURATION This algorithm is used to reconfigure the de

tection sensors. This includes adding and removing sensors, as well as reconfig

uring existing ones. The algorithm is presented below as C.3.

121

Algorithm C.1 BN-STRUCTURE-UPDATE (message, A)

Input: message m = (number, srcIPaddr, destIPaddr, portnumber, action,

ruletype) . This input represents an addition, change, or deletion of a firewall

rule; Adjacency matrix representation of Bayesian network BNet = (V, E) con

sists of a |V |x|V | matrix A = (aij) such that aij = 1 if (i, j) ∈ E otherwise

aij = 0

Output: Va = set of nodes to add, Vd = set of nodes to delete, Ea = set of edges to

add, Ed = set of edges to delete

1: //case when a rule is added

2: if ruletype = add then

3: if srcIP addr : ∗ in A then

4: add all (parents(srcIP addr : ∗), srcIP addr : ∗) to Ea

5: end if

6: if destIP addr : port in A then

7: add all (destIP addr : port, children(destIP addr : port)) to Ea

8: else

9: add Ea ← (srcIP addr : ∗, destIP addr : port)

10: end if

11: end if

12: // case when a rule is deleted

13: if ruletype = delete then

14: add Ed ← (srcIP addr : ∗, destIP addr : port)

15: if srcIP addr : ∗ in A then

16: if notparents(srcIP addr : ∗) then

17: add Vd ← srcIP addr : ∗

18: else

19: add all (parents(srcIP addr : ∗), srcIP addr : ∗) to Ed

20: end if

21: end if

122

22: if destIP addr : port in A then

23: if notchildren(destIP addr : port) then

24: add Vd ← destIP addr : port

25: else

26: add all (destIP addr : port, children(destIP addr : port)) to Ed

27: end if

28: end if

29: end if

30: // check if new edge creates a path to the end goal and if node creates a cycle

31: for all address : port ∈ V ∪ Va do

32: run DFS from address : port

33: if not(address : port → VCA) then

34: remove address : port from Va

35: end if

36: add backedges to Ed

37: end for

38: // convert address:port node to address:port:vulnerability node

39: for all address : port ∈ Va do

40: if vulnerability(address : port) ∈ NV D then

41: update address : port to address : port : vulnerability(vi) in Va and Ea

42: else

43: remove address : port from Va

44: end if

45: end for

46: for all address : port ∈ Vd do

47: search BNET and replace for corresponding address : port : vulnerablity(vi)

48: end for

49: return Va, Vd, Ea, Ed

123

Algorithm C.2 BN-CPT-UPDATE (Va, Vd, Ea, Ed)
Input: Va = set of nodes to add, Vd = set of nodes to delete, Ea = set of edges to

add, Ed = set of edges to delete

Output: SCPT = set of CPTs to update

1: for all vi ∈ Va do

2: new P rob(vi) = CV SS(vi)/10

3: add each outedge(vi) ∈ Ea

4: for all children(vi) do

5: update CPT using max(newP rob(vi) + Δ, oldP rob(vi))

6: end for

7: end for

8: for all (vi, vj) ∈ Ea do

9: new P rob(vi) = CV SS(vi)/10

10: add each (vi, vj) ∈ Ea

11: for all children(vi) do

12: update CPT using max(newP rob(vi) + Δ, oldP rob(vi))

13: end for

14: end for

15: for all vi ∈ Vd do

16: new P rob(vi) = CV SS(vi)/10

17: remove all inedge(vi) and outedge(vi)

18: for all children(vi) do

19: update CPT using max(newP rob(vi) + Δ, oldP rob(vi))

20: end for

21: end for

22: for all (vi, vj) ∈ Ed do

23: new P rob(vi) = CV SS(vi)/10

24: remove all (vi, vj) ∈ Ed

25: for all vj do

26: update CPT using max(newP rob(vi) + Δ, oldP rob(vi))

27: end for

28: end for

124

Algorithm C.3 SENSOR-RECONFIGURATION (E, Detectorsexisting)
Input: E = evidence, represented by set of alerts received; Detectorsexisting = set of

detectors currently enabled

Output: set of nodes to enable/disable. Nodes correspond to <

address, port, vulnerability > tuple so can be mapped to a detection sen

sor

1:	 compute a = P rob(critical asset |E)

2:	 if a > threshold then

3: Create set of candidate sensors close to E and critical asset

4: Run F P T AS(BN)

5:	 end if

6:	 Detectorsdisable = |Detectorsexisting − DetectorsF P T AS|

DetectorsF P T AS, Detectorsdisable

125

D. BAYESIAN NETWORK USED FOR DIADS

EXPERIMENTS

Below we show the Bayesian Network (BN) used for the experiments presented in

chapter 3. The BN was created from a real-world distributed system which is part of

an NSF Center at Purdue University. The system includes fifteen hosts that include

two environments, one for production and another for development of applications

and staging, prior to moving them to the production environment. Each environ

ment includes a web server, an application server, and a database server. A team of

developers’ and consultants’ computer have access to subsets of both environments.

To create the BN, we first generated a list of vulnerabilities found in the distributed

system with the OpenVAS [56] vulnerability scanner. Each vulnerability was then

mapped to a node in the BN, by associating it to the host and service (port) were

the vulnerability was found. The nodes were connected according to the connectivity

information for the distributed system. The resulting BN had 345 nodes and 1948

edges. We then pruned the BN to only include high risk vulnerabilities, according

to the OpenVAS tool, as these ones are the primary vectors used by attackers to

compromise sustems. The final BN, shown below, has 90 nodes and 582 edges.

The use the following color code to identify the computers and servers of the

distributed system: The six light blue boxes in the top left corner of the diagram

correspond to the developers’ computers. The three purple boxes (top right corner)

are for the consultants’ computers. The two orange boxes (bottom left corner) are

the web and application servers for the production environment. To their right, the

red box corresponds to the database server in the same environment. The final three

boxes (bottom right corner) are the three servers in the development environment:

database (red), web (yellow), and application (yellow).

126

d
e
v
e
lo

p
e
r
0
1

d
e
v
e
lo

p
e
r
0
2

d
e
v
e
lo

p
e
r
0
3

d
e
v
e
lo

p
e
r
0
4

d
e
v
e
lo

p
e
r
0
5

d
e
v
e
lo

p
e
r
0
6

c
o
n
s
u
lt
a
n
t0

1

c
o
n
s
u
lt
a
n
t0

2
c
o
n
s
u
lt
a
n
t0

3

w
e
b
_
p
ro

d
w
s
_
p
ro

d

d
b
_
p
ro

d

w
e
b
_
d
e
v

w
s
_
d
e
v

d
b
_
d
e
v

d
o
w
n
lo
a
d

e
m
a
il

C
V
E
-2

0
1
0
-0

4
8
7

C
V
E
-2

0
1
0
-2

5
6
8

C
V
E
-2

0
1
0
-0

8
1
6

d
o
w
n
lo
a
d

e
m
a
il

C
V
E
-2

0
1
0
-0

2
5
0

C
V
E
-2

0
1
0
-1

2
6
2

C
V
E
-2

0
0
7
-0

0
6
5

C
V
E
-2

0
1
0
-1

8
8
0

C
V
E
-2

0
1
0
-0

8
1
6

d
o
w
n
lo
a
d

e
m
a
il

C
V
E
-2

0
1
0
-0

7
4
2

C
V
E
-2

0
0
9
-0

0
8
9

d
o
w
n
lo
a
d

e
m
a
il

C
V
E
-2

0
0
9
-0

2
4
1

C
V
E
-2

0
0
9
-0

2
4
1

C
V
E
-2

0
0
9
-3

0
9
5

C
V
E
-2

0
0
9
-3

0
9
5

C
V
E
-2

0
1
0
-0

7
4
2

C
V
E
-2

0
1
0
-0

7
4
2

C
V
E
-2

0
1
0
-0

7
4
2

C
V
E
-2

0
0
8
-1

4
8
3

C
V
E
-2

0
0
8
-1

4
8
3

C
V
E
-2

0
0
8
-1

4
8
3

C
V
E
-2

0
1
0
-3

6
0
0

C
V
E
-2

0
1
0
-3

6
0
0

C
V
E
-2

0
1
0
-2

4
1
9

C
V
E
-2

0
1
0
-0

9
1
1

C
V
E
-2

0
1
0
-0

9
1
1

d
o
w
n
lo
a
d

e
m
a
il

d
o
w
n
lo
a
d

e
m
a
il

d
o
w
n
lo
a
d

e
m
a
il

d
o
w
n
lo
a
d

e
m
a
il

d
o
w
n
lo
a
d

e
m
a
il

b
ro

w
s
e

w
e
b

C
V
E
-2

0
1
0
-3

9
7
0

C
V
E
-2

0
0
9
-1

9
2
0

C
V
E
-2

0
1
0
-1

8
8
0

b
ro

w
s
e

w
e
b

C
V
E
-2

0
0
7
-0

2
1
4

C
V
E
-2

0
0
6
-0

0
1
2

C
V
E
-2

0
0
6
-3

3
1
1

b
ro

w
s
e

w
e
b

b
ro

w
s
e

w
e
b

b
ro

w
s
e

w
e
b

b
ro

w
s
e

w
e
b

b
ro

w
s
e

w
e
b

b
ro

w
s
e

w
e
b

b
ro

w
s
e

w
e
b

C
V
E
-2

0
0
9
-4

0
1
8

C
V
E
-2

0
0
9
-4

0
1
8

C
V
E
-2

0
0
9
-4

0
1
8

C
V
E
-2

0
0
9
-3

5
4
6

C
V
E
-2

0
0
9
-3

5
4
6

C
V
E
-2

0
0
9
-3

5
4
6

C
V
E
-2

0
1
0
-0

7
4
2

C
V
E
-2

0
1
0
-0

7
4
2

C
V
E
-2

0
1
0
-0

7
4
2

C
V
E
-2

0
1
0
-0

7
4
2

C
V
E
-2

0
0
9
-2

4
4
6

C
V
E
-2

0
0
8
-1

4
8
3

C
V
E
-2

0
1
0
-1

8
4
8

C
V
E
-2

0
1
0
-4

0
2
8

C
V
E
-2

0
0
9
-4

9
9
9

C
V
E
-2

0
0
9
-3

5
4
6

C
V
E
-2

0
1
0
-2

2
2
5

C
V
E
-2

0
1
0
-1

1
2
9

C
V
E
-2

0
1
0
-1

1
2
9

C
V
E
-2

0
1
0
-1

1
2
9

C
V
E
-2

0
0
9
-4

1
4
3

C
V
E
-2

0
0
9
-4

1
4
3

C
V
E
-2

0
0
9
-4

1
4
3

C
V
E
-2

0
0
9
-3

2
9
3

C
V
E
-2

0
0
9
-3

2
9
3

C
V
E
-2

0
0
9
-3

2
9
3

C
V
E
-2

0
0
9
-2

4
9
4

C
V
E
-2

0
0
9
-0

5
5
0

C
V
E
-2

0
0
9
-0

5
5
0

C
V
E
-2

0
0
8
-4

2
5
0

C
V
E
-2

0
1
1
-0

0
2
7

C
V
E
-2

0
0
6
-4

6
8
6

C
V
E
-2

0
1
0
-2

5
5
3

C
V
E
-2

0
0
9
-2

4
4
6

C
V
E
-2

0
0
9
-0

2
4
1

C
V
E
-2

0
1
0
-4

0
2
8

C
V
E
-2

0
1
0
-2

4
1
9

C
V
E
-2

0
0
9
-2

4
4
6

C
V
E
-2

0
0
9
-2

4
4
6

C
V
E
-2

0
1
0
-1

8
4
8

IN
T
E
R
N
E
T

F
ig
. D

.1
.
B
ay
es
ia
n

 N
et
w
or
k

 c
re
at
ed

 f
ro
m

 a
n

 N
S
F

 C
en
te
r
at

 P
u
rd
u
e
U
n
iv
er
si
ty

 a
n
d

 u
se
d

 f
or

 e
x
p
er
im

en
ts

 p
re
se
n
te
d

in
 c
h
ap

te
r
3.

127

E. SET OF SIGNATURES GENERATED WITH PSIGENE

From each bicluster bj , we create a signature Sigbj which characterizes the samples

in that bicluster, plus is more generalized. Specifically, in our solution, a signature

Sigbj is a logistic regression model built to predict whether an SQL query is an attack

similar to the samples in cluster bj . In other words, the signature is the hypothesis

(sigmoid) function produced with logistic regression:

1
Sigbj (Θj) =

−ΘT
j1 + e

Nine signatures were created for our experiments. For each of these signatures,

we present below the features used and the corresponding coefficients Θj computed

from the logistic regression phase:

Table E.1: Coefficients and Features for Signature 1.

COEFFICIENT FEATURE (Regular Expression)

-2.892839

-0.133652 insert

0.007340 [\"’‘]\s*?(x?or)\s*?[\"’‘]?\d

-0.008639 ^[\W\d]+\s*?desc

-0.204895 drop

0.019437 length

-0.003320 delete

0.019437 \bselect\b.{0,40}\bascii\b

-0.001505 exec

-0.134897 [\"’‘]\|?[\w-]{3,}[^\w\s.,]+[\"’‘]

128

COEFFICIENT FEATURE (Regular Expression)

-0.146769 [\"’‘]\s*?(and)\s[^\d]+[\w-]+.*?\d

0.213769 in\s*?\(+\s*?select

0.154269 benchmark\((.*?)\,(.*?)\)

-0.001133 create

0.069142 x?x?or[\s(]+\w+[\s)]*?[!=+]+[\s\d]*?[\"’‘=()]

0.199486 ;\s*?select\s*?[\[(]?\w{2,}

0.212993 ^[\W\d]+\s*?select

1.093432 [’"]

1.107889 [\"’‘]\s*?|{

-0.156529 [\"’‘]\s*?[^\w\s]?=\s*?[\"’‘]

-0.156529 [\"’‘]\W*?[+=]+\W*?[\"’‘]

0.296613 \!\=|\&\&|\|\||>>|<<|>=|<=|<>|<=>|xor|rlike|regexp|isnull

0.108078 \|\|\s*?\w+\(

0.227742 \blike\W*?char\W*?\(

-0.005946 [\"’‘]\s*?[^\w\s?]+\s*?[^\w\s]+\s*?[\"’‘]

0.209669 \(\s*?select\s*?\w+\s*?\(

0.334135 [\s(]load_file\s*?\(

-0.011009 ,.*[\da-f\"’‘][\"’‘]\Z

-0.262865 !=|<=|>=|<>|<|>|\^|is\s+not|not\s+like|not\s+regexp

0.346328 --[^-]*?

0.101613 ^["’‘;]

0.117828 [\"’‘].*?*\s*?\d

0.769650 db_name\W*\(

0.754294 --[\s\r\n\v\f]

129

Table E.2: Coefficients and Features for Signature 2.

COEFFICIENT FEATURE (Regular Expression)

-3.367189

0.036476 insert

0.021010 ^[\W\d]+\s*?desc

-0.145124 drop

0.008877 delete

0.004067 exec

0.003068 create

0.278587 [’"]

0.280161 [\"’‘????????]\s*?|{

-0.063421 [’;]-

-0.063421 [\"’‘????????]\s*?-

0.001034 \!\=|\&\&|\|\||>>|<<|>=|<=|<>|<=>|xor|rlike|regexp|isnull

-0.022594 !=|<=|>=|<>|<|>|\^|is\s+not|not\s+like|not\s+regexp

0.006042 --[^-]*?

Table E.3: Coefficients and Features for Signature 3.

COEFFICIENT FEATURE (Regular Expression)

-4.561008

-0.017283 insert

-0.004940 ^[\W\d]+\s*?desc

-0.155173 drop

-0.001858 delete

-0.000827 exec

-0.000620 create

130

COEFFICIENT FEATURE (Regular Expression)

1.816763 [’"]

1.872849 [\"’‘]\s*?|{

-0.000207 \!\=|\&\&|\|\||>>|<<|>=|<=|<>|<=>|xor|rlike|regexp|isnull

-0.263687 !=|<=|>=|<>|<|>|\^|is\s+not|not\s+like|not\s+regexp

-0.001239 --[^-]*?

Table E.4: Coefficients and Features for Signature 4.

COEFFICIENT FEATURE (Regular Expression)

-3.623943

-0.046207
([\s’\"‘\(\)]*)([\d\w]+)([\s’\"‘\(\)]*)

(=|<=>|r?like|sounds\s+like|regexp)[\s’\"‘\(\)]*\2

0.350203 @

0.019025 coalesce\s*?\(|@@\w+\s*?[^\w\s])

1.774084 char

2.559842 ch(a)?r\s*?\(\s*?\d)

0.019470 information_schema

0.019460 \btable_name\b

0.019460 \Wtable_name\W

Table E.5: Coefficients and Features for Signature 5.

COEFFICIENT FEATURE (Regular Expression)

-8.431682

2.627309 \(

0.815482 (current_)?user\s*?\([^\)]*?

131

COEFFICIENT FEATURE (Regular Expression)

0.758978 select.*?\w?user\(

1.097862 database\W*\(

1.097862 (current_)?database\s*?\([^\)]*?

Table E.6: Coefficients and Features for Signature 6.

COEFFICIENT FEATURE (Regular Expression)

-3.761054

0.262131 =

0.262131 =[-0-9\%]*

0.261463 <=>|r?like|sounds\s+like|regex

0.261584 ([^a-zA-Z&]+)?&|exists

-0.117270 [\?&][^\s\t\x00-\x37\|]+?

0.708324 \)?;

Table E.7: Coefficients and Features for Signature 7.

COEFFICIENT FEATURE (Regular Expression)

-4.670291

3.322430 \(

0.015823 (current_)?user\s*?\([^\)]*?

0.806333 (x?x?\s+)\s*?\w+\(

0.002432 \bselect\b.{0,40}\busers?\b

3.601496 version

132

Table E.8: Coefficients and Features for Signature 8.

COEFFICIENT FEATURE (Regular Expression)

-5.397672

0.377096 =

0.377096 =[\-0-9%]*

0.410321 =|<=>|r?like|sounds\s+like|regex

0.377096 ([^a-zA-Z&]+)?=|[eE][xX][iI][sS][tT][sS]

0.172626 [\?&][^\s\t\x00-\x37\|]+?

0.148376 \)?;

Table E.9: Coefficients and Features for Signature 9.

COEFFICIENT FEATURE (Regular Expression)

-4.738639

0.019820 [\"’][\s\d]*?[^\w\s]+\W*?\d\W*?.*?[\"’\d]

0.019820 [()*<>%+-][\w-]+[^\w\s]+[\"’][^,]

-0.006550 cast

-0.001040 [\"’;]+$

-0.000174 ^[\W\d]+\s*?union

Table E.10: Coefficients and Features for Signature 10.

COEFFICIENT FEATURE (Regular Expression)

-4.197985

0.039358 (\/*.*?*\/)+?

0.039358 */

133

COEFFICIENT FEATURE (Regular Expression)

-0.825733
([\s’\"\(\)]*)([\d\w]+)([\s’\"\(\)]*)

(=|<=>|r?like|sounds\s+like|regexp)[\s’\"\(\)]*

-0.003813 @

-0.018053 char

-0.000582 ch(a)?r\s*?\(\s*?\d

Table E.11: Coefficients and Features for Signature 11.

COEFFICIENT FEATURE (Regular Expression)

-5.912046

0.044724 (length of string)

-0.096772 [\s’\"\(\)]*

-1.086292 ([\s\t\x00-\x37]|\/*.*?*\/|\)?;)+.*?

-0.333336 [A-Za-z]{1}

0.381274 [\s\t\r\n\v\f]{1}

0.381274 " " (space)

-0.435454 [0-9]{1}

0.061053 [\s\t\x00-\x37]

1.397264 [!"#$%&’()*+,./:;<=>?@˜_‘{|}~-]{1}

0.987805 ([\d\w]+)

-0.035547 and

-0.107282 ([^a-zA-Z&]+)=

-0.000218
([\s\t\x00-\x37]|\/*.*?*\/|\)?;)+

([xX]?[oO][rR]|[nN]?[aA][nN][dD])

-0.066444 [\[(]+[a-zA-Z&]{2,}?

VITA

134

VITA

Gaspar Modelo-Howard received his B.Sc. degree in Electrical and Electronics

Engineering from Technological University of Panama (Panama) in 1996. He obtained

his M.Sc. degree in Information Security from Royal Holloway College, University of

London (United Kingdom) in 1999. Gaspar joined Purdue University in the Fall of

2006 as a Ph.D. student in Computer Engineering. He worked as a research assistant

for Prof. Saurabh Bagchi and Prof. Guy Lebanon. His research interests include

systems security, intrusion detection, and machine learning. He has worked as a

security engineer for more than 10 years at the Panama Canal Authority and Purdue

University. During his Ph.D. studies, he spent the Summer of 2009 at Hewlett-

Packard Labs in Princeton, New Jersey developing a rule-based policy compliance

checking software for a payment card industry standard. Additionally, his research

project was selected for three years to represent Purdue University in the Northrop

Grumman Cyber-Security Consortium, an industry-academia partnership set out to

advance research in cyber-security.

