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ABSTRACT 
The ability to trap the execution of a binary program at de­
sired instructions is essential in many security scenarios such 
as malware analysis and attack provenance. However, an in­
creasing percent of both malicious and legitimate programs 
are equipped with anti-debugging and anti-instrumentation 
techniques, which render existing debuggers and instrumen­
tation tools inadequate. In this paper, we present Spi­
der, a stealthy program instrumentation framework which 
enables transparent, efficient and flexible instruction-level 
trapping based on hardware virtualization. Spider uses in­
visible breakpoint, a novel primitive we develop that inher­
its the efficiency and flexibility of software breakpoint, and 
utilizes hardware virtualization to hide its side-effects from 
the guest. We have implemented a prototype of Spider on 
KVM. Our evaluation shows that Spider succeeds in re­
maining transparent against state-of-the-art anti-debugging 
and anti-instrumentation techniques; the overhead of in­
visible breakpoint is comparable with traditional hardware 
breakpoint. We also demonstrate Spider’s usage in various 
security applications. 

1. INTRODUCTION 
In a wide range of security scenarios, researchers need to 

trap the execution of a binary program, legitimate or mali­
cious, at desired instructions to perform certain actions. For 
example, in high accuracy attack provenance, instruction-
level trapping allows recording of events which are more 
fine-grained than system calls and library calls. In mal-
ware analysis, where malware often includes large number 
of garbage instructions to hamper analysis, it allows ana­
lysts to skip such instructions and focus on the instructions 
that are related to the behavior of malware. 

Debuggers [1, 2, 39] and dynamic instrumentation tools [25, 
26, 10, 31, 8, 14] both support efficient instruction-level trap­
ping. As a countermeasure, an increasing percent of malware 
is equipped with anti-debugging and anti-instrumentation 
techniques. Such techniques are also commonly used in le­
gitimate software for protection purpose [19]. While they do 
prevent reverse-engineering and software modification, they 
also render any security application that relies on instruction-
level trapping infeasible at the same time. 

Researchers have proposed to build systems that enable 
transparent trapping to solve the problem. However, exist­
ing approaches are insufficient to support transparent, ef­
ficient and flexible instruction-level trapping. In-guest ap­
proaches [35, 33] could be detected by program running in 
the same privilege level. Emulation based approaches [6, 

32] are not transparent enough due to imperfect emulation. 
Hardware virtualization based systems [13, 27, 37, 36, 12] 
provide better transparency. However, none of them sup­
ports instruction-level trapping with both flexibility and ef­
ficiency. Some of them utilize single-stepping which results 
in prohibitive performance overhead; others could trap only 
a certain subset of instructions. More detailed discussion 
about existing work is presented in Section 2. 

In this paper, we present Spider, a stealthy program in­
strumentation and debugging framework built upon hard­
ware virtualization. We propose a novel primitive called in­
visible breakpoint to support transparent, efficient and flex­
ible trapping of execution at any desired instruction in a 
program. Invisible breakpoint is an improvement over tra­
ditional software breakpoint, with all its side-effects hid­
den from the guest. Spider hides the existence of invisible 
breakpoint in the guest memory by utilizing the Extended 
Page Table (EPT) to split the code and data view seen by 
the guest, and handles invisible breakpoint at the hypervi­
sor level to avoid any unexpected in-guest execution. Spi­
der also provides data watchpoint which enables monitoring 
memory read/write at any address. 

We have developed a prototype of Spider on KVM [3]. 
We have evaluated the transparency of Spider using soft­
ware protectors and programs equipped with state-of-the-art 
anti-debugging and anti-instrumentation techniques. The 
result shows that Spider successfully maintains transparency 
against all of them. We have also applied Spider to the fol­
lowing cases: (1) We improve the applicability and security 
of an existing attack provenance system [24] by replacing its 
underlying in-guest instrumentation engine with Spider; (2) 
We demonstrate a threat that involves stealthy introspection 
on protected software to capture sensitive application data. 
The performance overhead introduced by Spider is less than 
6% in our case studies. The quantitative cost of each trap 
is around 3200 CPU cycles according to our measurement, 
which is less than a previous work [35] and comparable with 
hardware breakpoint. 

2. RELATED WORK 
In this section, we take an in-depth look at existing pro­

gram debugging, instrumentation and analysis tools and dis­
cuss their limitations. We only focus on instruction-level 
tools as they are most related to Spider. We classify them 
into four categories: in-guest, emulation based, hardware vir­
tualization based and hybrid. 
In-Guest Approaches. Traditional in-guest debuggers [1, 
2, 39] use software and hardware breakpoints to gain con­
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trol at arbitrary points during the execution of a program. 
In x86, software breakpoint is implemented by replacing the 
target instruction with a special 1-byte instruction (int3 ), 
which triggers a #BP exception upon its execution. Hard­
ware breakpoints are implemented as four debug registers 
(DR0-DR3 ). Each of these registers holds a target address; 
a #DB exception is triggered upon instruction execution 
or data access at the target address. Software breakpoints 
could be easily detected by code integrity checks as the in­
struction is modified. Hardware breakpoints are not trans­
parent either. The reason is that they are limited resource 
such that programs could hold and use all hardware break­
points exclusively to prevent debuggers from using them. 

To solve the transparency issue of traditional breakpoints, 
researchers proposed to use page-level mechanism to trap 
execution of arbitrary instruction [35, 33]. The page which 
contains the target instruction is set to non-present, which 
will cause a page fault upon execution. In the page fault han­
dler, the page is set to present and the target instruction is 
executed in single-step mode. Then the page is set back to 
non-present to enable breakpoint again. There are two lim­
itations with this approach. First, execution of any instruc­
tion in the non-present page will cause a page fault, even if 
there is no breakpoint set on that instruction. This would 
result in prohibitively high performance overhead. Second, 
although it is not as straightforward as detecting traditional 
breakpoints, the modified page table and page fault handler 
could still be detected by kernel-level programs. 

Dynamic binary instrumentation (DBI) frameworks [25, 
26, 10, 31, 8, 14] are able to insert instrumentation code 
at arbitrary points during the execution of a program. The 
mechanism of DBI frameworks is to relocate and instrument 
code blocks dynamically and handle control flow transitions 
between basic blocks. Transparency is an important con­
cern in DBI frameworks. For example, position-independent 
code makes assumption about relative offsets between in­
structions and/or data. DBI frameworks may break such as­
sumptions when relocating basic blocks, so they must change 
some instructions in the program to create an illusion that 
every address is the same as in a native run. However, de­
spite recent efforts [11, 34] targeting at improving the trans­
parency of DBI frameworks, they are still insufficient. A 
recent work [29] has also shown that there are a number 
of ways to detect DBI frameworks. More essentially, the 
DBI framework itself, along with the relocated and instru­
mented basic blocks must occupy additional memory in the 
virtual address space. Programs could scan the virtual ad­
dress space to detect unsolicited memory consumption and 
hence the DBI framework. 
Emulation Based Approaches. To get rid of in-guest 
components that are visible to guest programs, researchers 
have proposed to build program analysis and instrumenta­
tion tools [6, 32] using full system emulators such as QEMU [7] 
and Bochs [23]. Full system emulators create a virtual envi­
ronment for the guest so it feels like running in a dedicated 
machine. Instruction-level trapping could be easily imple­
mented as each instruction is emulated. However, attackers 
have been able to identify various methods [15, 16, 28] to de­
tect emulators by exploiting imperfect emulation of instruc­
tions and hardware events (e.g. interrupts and exceptions). 
Although imperfection that is already known could be fixed, 
the problem still exists as long as there might be unrevealed 
imperfections. In fact, it has been proved in [13] that de­

termining whether an emulator achieves perfect emulation 
is undecidable. 
Hardware Virtualization Based Approaches. With re­
cent advances in processor features, researchers propose to 
leverage hardware virtualization to construct more transpar­
ent program analysis and instrumentation tools [13, 27, 37, 
36, 12]. Hardware virtualization naturally provides better 
transparency than emulation by executing all guest instruc­
tions natively on processor. 

Among existing hardware virtualization based approaches, 
none of them supports transparent, efficient and flexible 
trapping of arbitrary instructions during execution of a pro­
gram. PinOS [12] implements a DBI framework on the 
Xen [5] hypervisor. As it needs to occupy part of the guest 
virtual address space, it suffers from the same transparency 
issue as in-guest DBI frameworks. Ether [13] and MAVMM [27] 
use single-stepping for instruction-level trapping, which trig­
gers a transition between hypervisor and guest upon execu­
tion of every guest instruction. Such transition causes sig­
nificant performance overhead as it costs hundreds to thou­
sands cycles while an instruction only costs several to tens 
cycles on average. The mechanism is not flexible either as 
one is forced to single-step through the whole program even 
if he is only interested in the states at specific points during 
execution. Such scenario is often encountered when ana­
lyzing obfuscated programs, which contain lots of garbage 
code. 

Several recent approaches [37, 36] propose to use x86 pro­
cessor features to trap specific events for program analy­
sis. In [37], the authors use branch tracing to record all 
the branches taken by the program during its execution. 
While the performance is much better than single-stepping, 
it is still 12 times slower than normal execution. Also, the 
tool is only able to record all branches. It cannot trap a 
specific branch, which renders detailed analysis at arbitrary 
given points during execution impossible. In [36], the au­
thors make use of performance monitoring counters (PMCs) 
to trap certain types of instructions (e.g. call, ret and condi­
tional branches). However, there are still many other types 
of instructions (e.g. mov) that could not be trapped this 
way. Also, the tool does not support trapping instruction at 
a specific location. 
Hybrid Approaches. Researchers have also proposed to 
use hybrid approaches [21, 38] to take advantage of both 
the transparency granted by hardware virtualization and 
the flexibility provided by emulation. In [21], the authors 
utilize the trace obtained from a transparent reference sys­
tem (e.g. Ether) to guide the execution of program in an 
emulator. However, as discussed above, it incurs high per­
formance overhead to obtain execution trace using current 
hardware virtualization based approaches. V2E [38] takes 
another approach by emulating only the instructions that 
can be perfectly emulated. For other instructions in the 
program, it records the state changes caused by these in­
structions in a hardware virtualization based system, and 
then replays the state changes in the emulator. While this 
method could substantially reduce performance overhead, 
how to precisely identify the set of instructions that can be 
perfectly emulated remains a problem. 

3. OVERVIEW 
The goal of Spider is to provide a program debugging 

and instrumentation framework with flexibility, efficiency, 
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Figure 1: Overview of Spider. 

transparency and reliability, which we define as follows: 

(R1) Flexibility: Spider should be able to trap the execu­
tion of the target program at any desired instruction 
and data access at any memory address. 

(R2)	 Efficiency: Spider should not introduce high perfor­
mance overhead on the target program. 

(R3)	 Transparency: The target program should not be 
able to detect the existence of Spider. 

(R4)	 Reliability: The trap should not be bypassed or tam­
pered with by the target program. 

An overview of Spider is shown in Figure 1. For sim­
plicity, we only show the trapping of instruction execution 
here. The trapping of data access using data watchpoint 
(Section 4.5) is much simpler and omitted in the figure. 
To trap the execution of an instruction, the user provides 
these inputs to Spider: the program address space identi­
fier (CR3 register value in x86), the virtual address to set 
trap and the function to call on trap. As shown in the fig­
ure, Spider is mainly implemented inside the Hypervisor. 
The guest virtual-to-physical mapping monitor component 
(Section 4.3), which captures guest virtual-to-physical map­
ping changes, translates the address space identifier and the 
virtual address into guest physical address and invokes the 
breakpoint manager to set the trap. The breakpoint man­
ager sets invisible breakpoint to trap the execution of the 
target program. 

Invisible breakpoint uses the same triggering mechanism 
as traditional software breakpoint to inherit its flexibility 
(R1) and efficiency (R2). However, as discussed in Sec­
tion 2, traditional software breakpoint is not transparent 
because: (1) The instructions needs to be modified in order 
to set breakpoint; (2) The triggering and handling of the 

breakpoint involves control-flow which is different from nat­
ural execution. These side-effects are neutralized in invisible 
breakpoint to guarantee transparency (R3). Regarding the 
first side-effect, the breakpoint manager uses EPT to split 
the code and data views (Section 4.1) of the guest physical 
page that contains the breakpoint. In the code view, which 
is used for instruction fetching (shown as the grey path in 
Figure 1), the instruction is modified to set breakpoint; in 
the data view, which is used for read/write access (shown 
as the white path in Figure 1), the instruction is not mod­
ified at all, so the guest sees no change to the instruction. 
To neutralize the second side-effect, when a breakpoint is 
triggered, the breakpoint manager will capture the event, 
call the corresponding user-provided function and handle the 
breakpoint transparently (Section 4.2) so that the control-
flow in the guest is the same as a natural execution. The 
code modification handler (Section 4.4) captures any mod­
ification made to the data view and synchronizes with the 
code view to guarantee transparency (R3); it also makes sure 
the breakpoint is not maliciously overwritten by the guest 
to guarantee reliability (R4). 

4.	 DESIGN 

4.1 Splitting Code and Data View 
Spider neutralizes memory side-effects of traditional soft­

ware breakpoint by splitting the code and the data views of 
guest pages. Several existing techniques could have been 
used here to split the two views; however, they all have 
some limitations. For example, one could intercept all read 
accesses to modified instructions by setting the correspond­
ing pages to not-present, and return original instructions 
upon read accesses. However, it would introduce significant 
performance overhead as every instruction fetching or data 
access in these pages will cause a page fault. A recent work 



hvmHarvard [18] tries to implement a Harvard architecture 
on x86 by de-synchronizing the instruction TLB (iTLB) and 
the data TLB (dTLB). More specifically, it tries to maintain 
two different virtual-to-physical page mappings in iTLB and 
dTLB for the code and data view respectively. To prevent 
the mapping of the code view from being loaded into dTLB, 
the page table is set to map the data view all the time; the 
code view is only mapped when an instruction fetching hap­
pens, and a single-step is performed in the guest to load the 
code view into iTLB. Unfortunately, such mechanism could 
not guarantee the de-synchronization of iTLB and dTLB. 
As the code view is readable, one could still load the code 
view into dTLB by executing an instruction that reads from 
the page that contains it. An attacker could exploit this lim­
itation to read from the code view and detect the modified 
instructions. 

Spider splits the code and the data views of a guest phys­
ical page by mapping it to two host physical pages with 
mutually exclusive attributes. We call such guest physical 
page with split code and data views a split page. The code 
view of a split page is executable but not readable; the data 
view is readable but not executable. Both views are set 
to not writable to handle code modification, which will be 
discussed in Section 4.4. The mutually exclusive attributes 
ensure that the guest could neither read from the code view 
nor execute instruction from the data view of a split page. 
Traditionally, in x86 there is no way to set a page to exe­
cutable but not readable; however, recent processors intro­
duces a feature that allows one to specify such attribute in 
EPT entries [20]. Legacy page table still lacks such capa­
bility, which is the reason we split physical pages instead of 
virtual pages. 

Spider performs on-demand transparent switching be­
tween the two views of a split page. For example, let us 
assume its corresponding EPT entry is currently set to map­
ping its code view. When a data access happens in the page, 
since its current view—code view is not readable, an EPT 
violation will occur. Spider will capture the event and ad­
just the mapping and the attribute in the EPT entry to 
switch to the data view. It will then resume the guest, and 
the data access can proceed. Switching from data view to 
code view works in a similar way. 

It seems that Spider needs to switch views frequently 
when instruction fetching and data access in a split page are 
interleaved, which could result in a lot of EPT violations. 
However, the problem is greatly mitigated by the separation 
of iTLB and dTLB in x86. Given a split page, although the 
corresponding EPT entry could only map one of its views 
at any given time, the mappings of the two views can exist 
simultaneously in the iTLB and dTLB, respectively. For ex­
ample, when Spider switches the page from the code view to 
the data view due to a data access, the mapping in the EPT 
is set to mapping its data view. After resuming the guest, 
the data access will populate the dTLB with the mapping 
for the data view. However, the mapping for its code view 
still exists in the iTLB. Further instruction fetching will not 
cause any EPT violation until the mapping is evicted from 
iTLB. 

4.2 Handling Breakpoints 
Spider hides the #BP exceptions generated by invisible 

breakpoints and invokes breakpoint handlers at the hyper-
visor level to neutralize side-effects related to breakpoint 

handling. Spider sets the hypervisor to intercept all #BP 
exceptions generated by the guest. How to deal with in­
tercepted #BP exceptions depends on their causes: those 
caused by invisible breakpoints should not be seen by the 
guest, while those caused by traditional software breakpoints 
set by the guest should be passed on to the guest transpar­
ently. 

The breakpoint manager of Spider maintains a list which 
stores the guest physical addresses of all invisible break­
points and their associated handlers that should be called 
when they are triggered. When Spider intercepts a #BP 
exception, it translates the guest instruction pointer to guest 
physical address by looking up the guest page table, and 
compares the address against the list to see whether the 
triggered breakpoint is an invisible breakpoint or a tradi­
tional software breakpoint. If it is a traditional breakpoint, 
the #BP exception will be re-injected to the guest to let 
the guest handle the breakpoint on its own. Otherwise, if 
it is an invisible breakpoint, Spider will call its associated 
handler to handle the breakpoint event. After that, Spider 
will temporarily clear the breakpoint and restore the first 
byte of instruction which had been replaced. Then it lets 
the guest single-step through the instruction. 

Unlike previous work [13, 27, 18] which enables single-
stepping by setting the trap flag in the guest EFLAGS reg­
ister, Spider uses the monitor trap flag (MTF) which is a 
flag specifically designed for single-stepping in hardware vir­
tualization. When MTF is set, the guest will trigger a VM 
Exit after executing each instruction. The reason why we 
choose not to use trap flag is that it is visible to the guest 
as a flag in a guest register. Despite various techniques used 
in previous work to hide the trap flag, the guest could still 
see it. For example, if an interrupt is pending right after the 
guest resumes execution, the processor will invoke the cor­
responding interrupt handler before single-stepping through 
the instruction. The EFLAGS register is saved onto the 
stack, and restored after the interrupt handler returns. The 
interrupt handler could check the EFLAGS on the stack to 
see if the trap flag has been set. Compared with the trap 
flag, MTF is transparent because it could not be read by 
the guest. However, using MTF also causes one problem. 
Consider the same scenario of pending interrupt as above: 
when using the trap flag, the saving/restoring of the trap 
flag implicitly avoids single-stepping through the interrupt 
handler; but when using MTF, the processor will single-step 
through the interrupt handler before reaching the instruc­
tion. Spider solves this problem by “retrying”: if it finds 
out that the guest has not executed the instruction after a 
single-step, it will clear MTF, set the invisible breakpoint 
again and resume the guest. The invisible breakpoint will 
be triggered again after the interrupt handler returns. This 
procedure repeats until the instruction is successfully exe­
cuted after a single-step, and Spider will then clear MTF, 
set the invisible breakpoint again and resume the execution 
of the guest. 

4.3 Monitoring Virtual-to-Physical Mapping 
The invisible breakpoint provides Spider the ability to 

trap the execution of program at arbitrary guest physical 
address. However, when paging is enabled in the guest, the 
processor uses virtual address instead of physical address to 
reference memory. As paging is used by almost all modern 
operating systems, it is more desirable to have the ability to 
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Figure 2: Monitoring guest virtual-to-physical mapping. 

trap the execution of program at arbitrary guest virtual ad­
dress in the program’s address space. We define the break­
point address where we want to set a breakpoint using a 
tuple of the address space identifier and the guest virtual 
address. In x86, the physical address of the base of the top-
level paging structure (stored in CR3 register) serves as the 
address space identifier, so we write the breakpoint address 
as BA = (P GB, GV A). If BA is mapped to a guest phys­
ical address GP A, we denote it as BA → GP A. If BA is 
not mapped to any guest physical address, we denote it as 
BA → NIL. 

To illustrate, assume the user wants to set a breakpoint 
at BA1 = (P GB1, GV A1). If BA1 → GP A1, then we could 
just set an invisible breakpoint at GP A1 to solve the prob­
lem. However, it is possible that BA1 → NIL when we 
set the breakpoint (e.g., the program has not been loaded). 
Even if BA1 is mapped, the mapping could change after the 
breakpoint is set. If the mapping changes to BA1 → GP A2, 
since there is no breakpoint set at GP A2, execution of the 
instruction at BA1 will not be trapped as expected. Simi­
larly, when BA1 is no longer mapped to GP A1, the break­
point set at GP A1 will cause problem when another ad­
dress is mapped to GP A1. Such virtual-to-physical map­
ping changes could happen for various reasons. For example, 
when the guest OS swaps out a virtual page, its correspond­
ing physical page might be used to map another virtual page; 
when a write access happens in a copy-on-write virtual page, 
the guest OS will map it to another physical page to per­
form the writing; kernel-level malware could even modify 
the guest page table directly to change virtual-to-physical 

mappings. Hence, Spider must monitor virtual-to-physical 
mapping changes to handle such scenarios correctly. 

Monitoring every change of virtual-to-physical mapping 
requires heavy-weight techniques such as shadow page ta­
ble. Fortunately, Spider only needs to monitor the change 
of virtual-to-physical mapping at each breakpoint address. 
In x86, the virtual-to-physical mapping is represented using 
multiple levels of paging structures. The number of levels 
depends on the operation mode of the processor, for ex­
ample, whether physical address extension (PAE) or long 
mode is enabled. Without loss of generality, let us assume 
that legacy two-level paging structure is being used. As 
shown in Figure 2(a), given a breakpoint address BA = 
(P GB, GV A), the processor traverses along a path from the 
page directory to the page table to translate it to a guest 
physical address. The only way to change the virtual-to­
physical mapping at BA is to modify the paging-structure 
entries that is traversed during address translation, which is 
shown as the rectangle area in the page directory and the 
page table. To capture such modifications, Spider sets these 
paging structures to read-only (shown as grey) in the EPT. 
When there is a write access to a paging structure, an EPT 
violation will be triggered and captured by Spider. Spider 
will record the current values of paging-structure entries, 
then temporarily set the paging structure to writable and 
let the guest single-step through the instruction that per­
forms the write access. After the single-stepping, Spider 
will read the new values of paging-structure entries and see 
which ones of them have been modified. After that, Spider 
will set the paging structure back to read-only to capture 



future modifications. The action that Spider performs to 
handle the modification depends on the type of the paging-
structure entries that get modified: 
Bottom-level paging-structure entries. As shown in 
Figure 2(b), when the bottom-level paging-structure entry 
used to translate BA is modified, the mapping changes from 
BA → GP A1 to BA → GP A2. As a result, Spider first 
removes the invisible breakpoint at GP A1. Then Spider 
compares the content of the page that contains GP A1 and 
the page that contains GP A2. If they are exactly the same 
(which is the case we show in the figure), then it is safe to 
move the breakpoint to GP A2. Otherwise, as the code in 
the page has changed, it is handled in the same way as a 
breakpoint that might no longer be valid due to code modi­
fication (Section 4.4). 

It is worth noting that the figure only shows the scenario 
where the mapping changes from a present one to another 
present one. The mapping might also changes from not-
present to present, or oppositely. If the mapping changes 
from BA → NIL to BA → GP A, or from BA → GP A to 
BA → NIL, Spider will create/remove invisible breakpoint 
at GP A, respectively. 
Non-bottom-level paging-structure entries. Figure 2(c) 
shows the scenario when a non-bottom-level paging-structure 
entry used to translate BA is modified. The virtual-to­
physical mapping changes from BA → GP A1 to BA → 
GP A3, so Spider moves the breakpoint from GP A1 to GP A3. 
In addition to that, the path which the processor traverses 
along to perform address translation is also modified, so Spi­
der also removes the read-only attribute from the paging 
structures in the previous path (Page Table 1) and sets the 
paging structures in the new path (Page Table 2) to read-
only. For simplicity, we only show the change of one mapping 
and one path in Figure 2(c). In practice, modification of a 
non-bottom-level paging-structure entry may affect multi­
ple paths and mappings, each of which will be handled by 
Spider individually. 

There is a special case that the path used for address 
translation is incomplete because a non-bottom-level paging-
structure entry is set to non-present, as shown in Figure 2(d). 
This could happen when setting a breakpoint at a virtual 
address that is not mapped in the guest, or after a non­
bottom-level paging-structure entry is modified. Spider sets 
the paging structures along the path to read-only, including 
the one that has the non-present entry. Later, when the 
paging-structure entry changes from non-present to present, 
the path will extend, and Spider will set the paging struc­
tures on the extended path to read-only. After the path 
reaches the bottom-level paging-structure (e.g. as in Fig­
ure 2(a)), Spider could handle further modifications using 
standard approaches as mentioned above. 

4.4 Handling Code Modification 
When the guest tries to modify the content of a split page, 

the write operation will be performed on its data view. This 
means that if an instruction is modified, the change will not 
be reflected in the code view. This could lead to incorrect 
execution of self-modifying programs, and could be utilized 
by malware to detect the existence of Spider. To guarantee 
transparency, Spider must synchronize any change of the 
data view to the code view. 

As mentioned in Section 4.1, Spider sets the data view 
of a split page to read-only in EPT to intercept any writing 

attempt. When the guest tries to write to the page, an EPT 
violation will be triggered and captured. Spider records 
the offset of the data OF F that is going to be written in 
the page. Spider also records the length LEN that will 
be synchronized by matching the instruction’s op-code in a 
pre-built table which stores the maximum data length that 
could be affected by each type of instruction. Then Spider 
will temporarily set the data view to writable, and let the 
guest single-step through the instruction that performs the 
write. After that, it will copy LEN bytes from offset OF F 
in the data view to the same offset in the code view. 

It is worth noting that the breakpoints that have been set 
in the page may or may not be valid after code modification. 
For example, if the guest overwrites an instruction with the 
same instruction, it indicates the guest is trying to overwrite 
and disable the breakpoint set at that instruction; in that 
case, the breakpoint is still valid and should be re-set when 
overwritten. But if the guest overwrites the instruction with 
a different instruction, re-setting breakpoint at the original 
place blindly may not make sense. Hence, we allow the user 
to specify a function which will be invoked when the page 
that contains the breakpoint is being modified, in which the 
user could perform proper actions to handle the event, such 
as re-setting the breakpoint at the same place, or moving it 
to another location after analyzing the modified code. 

4.5 Data Watchpoint 
Spider allows setting a data watchpoint at a specific phys­

ical address by adjusting the EPT entry of the guest physi­
cal page that contains the memory address to read-only (to 
trap write access) or execute-only (to trap both read/write 
access). When the page is accessed, an EPT violation will 
be triggered and captured by Spider. Spider will check 
if a watchpoint has been set on the address that is ac­
cessed in the page; if so, it will call the corresponding user-
provided watchpoint handler. After that, it will temporarily 
set the EPT entry to writable and resume the guest to single-
step through the instruction that does the memory access. 
When the guest returns from single-stepping, Spider ad­
justs the EPT entry again to trap future accesses. Like invis­
ible breakpoint, data watchpoint also utilizes the virtual-to­
physical mapping monitoring method (Section 4.3) so that it 
could be used to trap memory access at any virtual address. 

4.6 Handling Timing Side-Effect 
In hardware virtualization, since part of the CPU time 

is taken by hypervisor and VMEntry/VMExit, a program 
costs more time to run than in a native environment. At­
tackers could execute the RDTSC instruction to read the 
Time Stamp Counter (TSC) which stores the elapsed CPU 
cycles to detect the discrepancy. To maintain transparency, 
Spider needs to hide the CPU cycles cost by hypervisor 
(Th) and VMEntry/VMExit (Te) from the guest. Spider 
measures Th by reading the TSC right after each VMExit 
and right before each VMEntry and calculating the differ­
ence. Te is approximated by profiling a loop of RDTSC 
instruction in guest. Spider sets the TSC-offset field in vir­
tual machine control structure (VMCS) to −(Th +Te) so the 
value is subtracted from the TSC seen by the guest1 . 

5. IMPLEMENTATION 
1A citation is removed here for author anonymity. 



We have implemented a prototype of Spider on the KVM 
3.5 hypervisor. The prototype implements the design as 
described in Section 4 in the kernel module part of KVM 
(kvm-kmod) to provide the primitive of setting invisible 
breakpoint at specified virtual address in a process address 
space. Based on the primitive, it also implements a front-
end for Spider in the userspace part of KVM (qemu-kvm) 
to provide features that make debugging and instrumenta­
tion more convenient. It is worth noting that Spider itself is 
OS-independent; However, the front-end requires knowledge 
of the guest OS to perform VMI [17] for some features. Cur­
rently, our front-end supports both Windows XP SP2 32-bit 
and Ubuntu Linux 12.04 32-bit guest. We now discuss the 
implementation of some features in our front-end. 
Kernel Breakpoints. We have to specify an address space 
when setting an invisible breakpoint. For kernel break­
points, we could specify the address space of any process as 
the kernel space is mapped in the same way for any process. 
We hence choose the address space of a long-lasting process 
(init in Linux and System in Windows), so the breakpoint 
will not be cleared due to process termination. 
Monitor Process Creation. In practice, in addition to 
debugging running programs, it is also desirable to have the 
ability to get the control of a program at the moment when 
it is just created. For example, when analyzing malware, 
users often need to trap the execution at its entry point; if 
the malware is already running, it would be too late to set 
the breakpoint. To support such requirement, our front-end 
monitors process creation events. We set invisible break­
points at related kernel functions to capture a newly created 
process and match its name against the one specified by the 
user. The user could get notified as soon as a process of 
the target program is created, and perform corresponding 
actions such as setting an invisible breakpoint at the entry 
point. 

In Windows, a process is created through the NtCreatePro­
cessEx 2 system call, which calls the PspCreateProcess kernel 
function to do the actual work. We set a breakpoint at the 
instruction right after the call to PspCreateProcess. When 
the breakpoint is triggered, we walk through the active pro­
cess list at PsActiveProcessHead to find out the EPROCESS 
of the newly created process. The name is stored in its Im­
ageFileName field. 

In Linux, there are two system calls fork and clone that 
could be used to create a new process. They both call the 
same function copy process to do the actual work, so we set a 
breakpoint at the instruction right after the call. When the 
breakpoint is triggered, the task struct of the newly created 
task is in the EAX register as the return value. As clone 
could also be called to create thread, we need to verify the 
newly created task is a process by making sure its address 
space identifier (stored in task struct.mm->pgd) is different 
from the one of the current task. The name is stored in the 
task struct.comm field. 
Monitor Process Termination. When a process termi­
nates, all invisible breakpoints in its address space should be 
cleared. Our front-end sets invisible breakpoints at related 
kernel functions to monitor process termination. When a 
terminating process is captured, we use its address space 
identifier to check if it is one of our debuggee targets. If 
so, we will clear all invisible breakpoints in this target and 

2Another system call NtCreateProcess for process creation 
is a wrapper of NtCreateProcessEx. 

remove the target. 
In Windows, we set the breakpoint at the entry of the 

function PspProcessDelete, which handles cleanup when a 
process terminates. When the breakpoint is triggered, we 
read the first argument of the function from the stack, which 
is the EPROCESS structure of the process. The address 
space identifier is in its Pcb.DirectoryTableBase field. 

In Linux, we set the breakpoint at the entry of the function 
do exit, which handles the termination of the current task. 
However, the task could be a process or thread. We deter­
mine if the task is a process by checking if the task struct.pid 
field matches the task struct.tgid field. The address space 
identifier is read from the task struct.mm->pgd field. 

The system call execve in Linux requires special handling. 
Although it does not create a new process or terminate an 
existing process, it changes the program running in the cur­
rent task. We consider that both process “termination” and 
“creation” are involved in this procedure: the current task 
which runs the previous program is “terminated”, and one 
that loads the new program is “created”. As execve calls 
do execve to do the actual work, we set a breakpoint right 
before the function call to capture the “terminated” current 
task, and another breakpoint right after the call to capture 
the “created” one. 

6. EVALUATION 
In this section, we present the evaluation of Spider. The 

experiments are done on a Thinkpad T510 laptop with Intel 
Core i7-3720QM 2.6GHz CPU and 8GB RAM. The host OS 
is Ubuntu Linux 12.10 64-bit. We use Windows XP SP2 
32-bit and Ubuntu Linux 12.04 32-bit as the guest OS. We 
allocate 30GB image file as the hard disk and 1GB memory 
for the guest VM. 

6.1 Transparency 
We use two groups of Windows programs with anti-debugging 

and anti-instrumentation techniques to evaluate the trans­
parency of Spider. For comparison, we use Spider, two de-
buggers (OllyDbg and IDA Pro) and two DBI frameworks 
(DynamoRIO and PIN) to trap the execution of the target 
programs at certain locations. In Spider, the trapping is 
done by setting invisible breakpoints. In the debuggers, we 
use software or hardware breakpoints. The DBI frameworks 
insert instrumentations at desired instructions for trapping. 

The first group of targets consists of 7 software protec­
tors, which are widely used by both COTS software vendors 
and malware authors to protect their programs from be­
ing analyzed or modified. We apply these software protec­
tors to a system program hostname.exe in Window XP SP2. 
This program reads and displays the host name of the local 
system; our goal is to trap the execution of its protected 
versions to get the host name string. We reverse-engineer 
the original program and find out the address of the host 
name string is store in the eax register when the program 
runs to the address 0x10011C6. This also holds in the pro­
tected versions, as this program does not contain relocation 
information and could not be relocated by the protectors. 
Hence, we set the traps at 0x10011C6 in the protected ver­
sions. However, for some of the protectors, we could not 
set the trap when the program starts, as the instruction at 
0x10011C6 is encrypted by the protectors and has not been 
decrypted at that time. We hence set a data watchpoint at 
0x10011C6 to monitor the decryption, and set the trap once 



Target Spider OllyDbg 1.10 IDA Pro 6.1 DynamoRIO 4.0.1-1 PIN 2.12 
Software Protectors (Applied to hostname.exe) 

Safengine Shielden 2.1.9.0 Pass Fail Fail Fail Fail 
Themida 2.1.2.0 Pass Fail Fail Pass Pass 
PECompact 3.02.1 (w/ead loader) Pass Fail Fail Pass Pass 
ASProtect 1.5 Pass Fail Fail Pass Pass 
RLPack 1.21 Pass Fail Fail Pass Pass 
Armadillo 9.60 Pass Fail Fail Fail Pass 
tElock 0.98 Pass Fail Fail HBP/SBP Fail Fail 

Anti-debugging & Anti-instrumentation POC Samples 
eXait Pass Pass Pass Fail Fail 
hardware bp.exe Pass Fail HBP Fail Pass Pass 
heapflags.exe Pass Fail Fail Pass Pass 
instruction counting.exe Pass Fail HBP Fail HBP Fail Fail 
ntglobal.exe Pass Fail Fail Pass Pass 
peb.exe Pass Fail Fail Pass Pass 
rdtsc.exe Pass Fail HBP/SBP Fail HBP/SBP Pass Pass 
software bp.exe Pass Fail SBP Fail SBP Pass Pass 

Table 1: Transparency evaluation result of Spider and other debuggers/DBI frameworks. 

the instruction is decrypted. 
We turn on all anti-debugging, anti-instrumentation and 

anti-VM options of the protectors when using them. The 
only exception is when we use Safengine Shielden, we turn 
off its anti-VM option. With that option on, we found that 
the program protected by Safengine Shielden would cease 
to function even when we run it in vanilla KVM without 
Spider; but it runs correctly in BitVisor, which is another 
hardware virtualization based hypervisor. We hence con­
clude that the problem is due to the implementation of KVM 
but not Spider. 

The second group of targets includes 8 proof-of-concept 
(POC) samples. Among these programs, eXait [29] aims at 
detecting DBI frameworks. We randomly select 10 instruc­
tions in it for trapping. The rest 7 samples implement the 
anti-debugging techniques commonly used in malware that 
is not protected by protectors, according to the statistics 
in [9]. Since these samples are very small (tens of instruc­
tions), we choose to trap every instruction in them. 

The result is shown in Table 1. “Pass” indicates the pro­
gram runs properly and its execution is successfully trapped 
at the desired location. “Fail” means the program fails to run 
properly in the environment even without any trap. “Fail 
HBP” and “Fail SBP” means the program fails to run prop­
erly after setting hardware breakpoint or software break­
point. We can see that OllyDbg and IDA Pro fail at every 
target except eXait; most targets could detect their exis­
tence even when no trap is set. DynamoRIO and PIN per­
form better, but are still detected by 5 and 4 targets, respec­
tively. Compared with them, Spider successfully maintains 
transparency against all 15 targets; there are 3 targets that 
could only be transparently trapped by Spider. 

We also test Spider against techniques of detecting em­
ulators in [15, 16, 28], which we implement as individual 
POC programs. We run them in Spider and trap every in­
struction in these programs as they are very short. As we 
expected, none of them is able to detect Spider, as Spider 
is built upon hardware virtualization. 

6.2 Case Study I: Attack Provenance 
In this case study, we demonstrate the use of Spider to 

improve the tamper-resistance of an existing attack prove­
nance system BEEP [24]. Traditional attack provenance 
approaches are based on analysis of system event log with 
per-process granularity (i.e., each log entry pertains to one 
process). Such approaches face the problem of dependency 
explosion when a long running process receives/produces a 
lot of inputs/outputs during its lifetime as each output is 
considered causally related to all preceding inputs. To solve 
this problem, BEEP partitions the execution of a program 
into individual units, with each unit handling an indepen­
dent input request (e.g., one email or one web request) in 
one event-handling loop iteration. With such a finer logging 
granularity, BEEP is able to link each output to the truly 
related input(s) hence achieving higher attack provenance 
accuracy. 

To capture the entry and exit of each unit, BEEP needs 
to instrument the target binary program at certain loca­
tions. BEEP uses a static binary rewriting tool PEBIL [22] 
to perform such instrumentation, which has several short­
comings: (1) Attackers could patch the instrumented pro­
gram at runtime to disable BEEP; (2) The instrumentation 
needs to modify the code in the program, hence cannot be 
applied to programs with self-checking and self-protection 
mechanisms, which widely exist in COTS software to pre­
vent malicious software manipulation. To overcome these 
problems, we use Spider to replace PEBIL for BEEP’s in­
strumentation. The reliability of Spider (Section 3) guaran­
tees that the instrumentation could not be circumvented or 
disabled. More importantly, Spider performs instrumenta­
tion by setting invisible breakpoints, which are transparent 
to the target applications. 

We evaluate the effectiveness and performance of our ap­
proach using 7 Linux3 binary programs. We first identify 
the instrumentation points for each program using BEEP. 
We then set Spider to monitor the creation of processes 
of these programs. Once a process of a target program is 
created, we set invisible breakpoints at the instrumentation 
points in its address space. The original instrumentation 
routines in BEEP invoke a special system call to log unit­

3The prototype of BEEP only supports Linux currently. 



specific events; we modify them to directly log unit events 
into a file in the host. 
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Figure 3: Overhead of using Spider to perform in­
strumentation for BEEP. 

We repeated the case studies in [24] and verified the cor­
rectness of attack provenance achieved by our system. We 
also measure the overhead of our system over the execution 
of the programs in vanilla KVM. In vanilla KVM we enable 
Linux audit system but do not perform instrumentation. 
For wget and yafc, we run them to download a 1.2MB file 
from a server 500 times. For apache and cherokee, we use 
the weighttp to generate 1 million requests with 100 threads 
and 100 concurrency. For proftpd, we use the integration 
test provided with it. We use the SunSpider benchmark 
for firefox. For vim, we feed it a script to replace the first 
character of each line with ‘a’ in 50000 text files. All net­
work programs except firefox are evaluated in a dedicated 
LAN to rule out the factor of network delay. The result is 
shown in Figure 3. The overhead is less than 2% except 
firefox and vim. The overhead for firefox is slightly higher 
because it has more instrumentation points (24) than other 
programs (2∼6), which leads to more breakpoint hits. The 
overhead for vim is due to an instrumentation point which 
gets triggered each time the script processes a line. Users 
will experience much less overhead when they use vim inter­
actively as the instrumentation point is triggered much less 
frequently. 

6.3 Case Study II: Stealthy Introspection 
We now demonstrate the use of Spider to reveal a possible 

threat to two popular Windows instant messaging programs, 
anonymized as IM1 and IM2. The threat involves the ac­
quisition of confidential application data without user aware­
ness. Such data usually have very short lifetime in memory 
and are encrypted before network transmission. Hence they 
are deemed difficult/impossible to acquire through memory 
scanning or network sniffing. We also protect the two appli­
cations using the (arguably) strongest protector Safengine 
Shielden, so that existing debugging/instrumentation tech­
niques cannot be used to analyze them. Now, we show that 
even with those protections, confidential data could still be 
“stolen” by using Spider to trap the program at the right 
instruction. The stealthiness and efficiency of Spider make 
it possible to perform the attack while the programs are run­
ning normally; none of the existing techniques could achieve 
the same level of user-transparency and efficiency. The real­
ism of the threat is backed by the fact that, an attacker 

is able to transparently hijack a running OS into a VM 
on malicious hypervisor (e.g., using BluePill [30]). Once 
that happens, Spider can be used to stealthily set invisible 
breakpoints on the target application for confidential data 
acquisition by the hypervisor. In the following description, 
such breakpoints are set on the functions and memory loca­
tions in bold font. 
IM1. We show the possibility of capturing all communica­
tion between a sender and the user. To find the function 
that handles messages, we search through the functions ex­
ported by the libraries of IM1. We find a function named 
SaveMsg4 in KernelUtil.dll and set an invisible breakpoint 
at the entry of that function. As expected, the function 
is called every time a message is received; we also find out 
one of its parameters is the ID of the sender. However, 
the message text is not directly present in the argument 
list, which implies that it might be part of a data structure 
rooted at one of the arguments. We further speculate that 
a message may need to be decoded either inside SaveMsg 
or through some other related function. We find a function 
named GetMsgAbstract in the list of exported functions. 
The name suggests that it may need to decode a message. 
We set a breakpoint at its entry and another one at its re­
turn. We observe that the message text is in fact decoded 
as its return value. We also find out that at the entry of 
GetMsgAbstract that the value of one of its parameters 
is always the same as one of the parameters of SaveMsg, 
which might both point to the same opaque structure that 
contains the message text. Therefore, we log all messages at 
GetMsgAbstract return and associate them to individual 
senders by matching the parameters of GetMsgAbstract 
and SaveMsg. As such, we are able to identify all messages 
from individual senders. 
IM2. We show the possibility of capturing user login cre­
dentials in IM2. We first find the functions that read the 
username and password. As a native Win32 application, 
we suspect it uses the GetWindowTextW Windows API 
function to retrieve the text from the controls in the login 
dialog. We set a breakpoint at the entry of that function 
and log all its invocations. After we rule out unrelated in­
vocations by checking if the retrieved text matches a login 
credential, we find out the invocations at 0x449dbd and 
0x437a23 are for retrieving username and password, re­
spectively. The remaining problem is to find out if the cap­
tured login credential is valid. As an error message will be 
displayed upon failed login, we set a breakpoint at the Mes­
sageBoxW function. From the call stack we could read the 
functions on the path of failed login. We set breakpoints 
on these functions too. We then do a successful login to 
see if it shares the same path. We find that both successful 
and failed logins will execute to the function at 0x48591c, 
and then the path deviates. Successful login will execute 
to the branch of 0x485bcd, while failed login leads to an­
other branch. Therefore, we log the content acquired by 
GetWindowTextW when it is invoked at 0x449dbd and 
0x437a23, and then we use the call stack path to prune 
those belonging to failed logins. 

We verified that the confidential data (messages or login 
credentials) is correctly and completely acquired through 
stealthy introspection, without any slow-down of program 
execution. 

4Note that the binary of IM1 does not contain symbolic 
information. We simply inspect the export table. 



6.4 Performance Overhead
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Figure 4: Relation between the overhead of Spider 
and the number of breakpoint hits. 

We have already presented the empirical overhead of Spi­
der in our case studies in Section 6.2. In this experiment, 
we further study the overhead of Spider. We build a micro 
benchmark program that executes a loop for a given num­
ber of times. In each loop iteration, the program increments 
a variable 1000 times. The program executes the RDTSC 
instruction to read the CPU cycle counter before and after 
the loop, and calculate the difference which is the number 
of CPU cycles cost by the loop. We compile the program 
with Visual Studio 2010 in Windows. 

We run the program using the parameter from 104 to 106 

iterations, with a step of 104 . The program is executed in 
both vanilla KVM and Spider; In Spider, we set an invisi­
ble breakpoint at the first instruction of the loop. We obtain 
the number of CPU cycles cost by the loop in vanilla KVM 
and Spider, and the difference is the overhead, as shown in 
Figure 4. From the figure, we could see that the overhead 
is linear to the number of breakpoint hits. A single invisi­
ble breakpoint hit costs around 3217 CPU cycles. A large 
part of the overhead is due to the transitions between host 
and guest during breakpoint handling. A round-trip transi­
tion costs about 1200 cycles (measured using kvm-unit-test). 
This is the cost we have to pay to maximize stealthiness: To 
prevent any in-guest side effect, the breakpoint handler must 
run outside the guest VM, which means the transition is in­
evitable. Nevertheless, the overhead of our invisible break­
point is still less than the breakpoint in an existing work [35] 
and comparable with in-guest hardware breakpoint. Consid­
ering that the cost of VMExit/VMEntry is decreasing over 
the years [4], the overhead of our approach is likely to be 
less in future processors. 

We also measure the overhead of other components in Spi­
der, including the cost of splitting code and data views 
and monitoring the guest virtual-to-physical mapping. We 
exclude the overhead of breakpoint hits by setting “fake” 
breakpoints, which use the original instruction as the break­
point instruction instead of int3. The target program we use 
is gzip 1.2.4. We run the program in both vanilla KVM and 
Spider to compress a 98.7MB file and measure the execu­
tion time. In Spider, we set a breakpoint at one instruction 
in each page of the code section to make sure all code pages 
are split. The run in vanilla KVM costs 4171ms, while the 
run in Spider costs 4192ms. The overhead is less than 1% 

which confirms that the number of breakpoint hits is the 
dominant factor of overhead. 

7. CONCLUSION 
In this paper, we present Spider, a stealthy binary pro­

gram instrumentation and debugging framework. Spider 
uses invisible breakpoint, a novel primitive to trap execu­
tion of program at any desired instruction efficiently. Our 
evaluation shows Spider is transparent against various anti-
debugging and anti-instrumentation techniques. We have 
applied Spider in two security application scenarios, demon­
strating its transparency, efficiency and flexibility. 
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