
CERIAS Tech Report 2013-4
A secure architecture design based on code minimization and application isolation

 by Aditi Gupta, Michael S. Kirkpatrick, Elisa Bertino
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086



A secure architecture design based on
 
code minimization and application isolation
 

Aditi Gupta Michael S. Kirkpatrick Elisa Bertino 
Purdue University James Madison University Purdue University 
West Lafayette, IN Harrisonbourg, VA West Lafayette, IN 

aditi@purdue.edu kirkpams@jmu.edu bertino@purdue.edu 

ABSTRACT 
With fast evolving attacks, using software patches for fixing 
software bugs is not enough as there are often considerable 
delays in their application to vulnerable systems and the at
tackers may find other vulnerabilities to exploit. A secure 
architecture design that provides robust protection against 
malware must be guided by strong security design princi
ples. In this work, we propose a system design based on 
the security principles that aim at achieving isolation and 
reducing attack surface. Our design leverages multi-core ar
chitecture to enforce physical isolation between application 
processes so that a malicious or infected application is un
able to affect other parts of the system. Further, we signifi
cantly reduce the software attack surface by executing each 
application on its own customized operating system image 
that is minimized to only contain code required by the given 
application. 

1. INTRODUCTION 
Recent years have seen a rise in sophisticated malware that 
employs various techniques, such as return oriented pro
gramming (ROP), to bypass system defenses. A typical re
sponse to such malware attacks is by patching the software 
vulnerability that was exploited to launch the malware. This 
involves deploying patches to vulnerable systems which in
volves considerable delay and the attack might have already 
propagated by the time the patch is applied. Further, patch
ing vulnerabilities is not an ideal solution to building secure 
systems as attackers are constantly finding new vulnerabili
ties and crafting new exploits. A secure architecture design 
that is resilient to evolving malware must be based on strong 
security principles that minimize the risk and limit damage 
if some part of the system is compromised. Further, these 
solutions should not be limited to software layer security but 
should also enforce protection at hardware layer. 

In this paper, we propose a design for secure architecture 
that is guided by two principles derived from the well known 
security design principle of least privilege. The first is ap
plication isolation which requires that applications be iso
lated from each other, thereby preventing a malicious appli
cation from compromising other applications. Often, isola
tion is implemented using software isolation techniques such 
as virtualization. It has been shown that software isolation 
is not sufficient since a malicious application may exploit 
vulnerabilities in the virtualization software to attack other 

parts of the system [11, 7, 6]. Also, software isolation tech
niques have been shown to be ineffective against side chan
nel attacks that exploit shared channels such as memory 
usage statistics for accurate adversarial inference of other 
processes’ behavior [5]. Thus, software isolation is insuffi
cient and secure systems must incorporate physical isolation 
by isolating the hardware resources as well. 

The second principle of our design is code minimization 
which reduces the software attack surface available to an 
attacker. Widely used operating systems (OS) such as Win
dows and Linux are based on monolithic kernels, that is, 
the entire OS code executes with superuser privilege. This 
provides a huge computing base that can be potentially ex
ploited by the attacker to perform privilege escalation at
tacks. Also, a typical process may use only a small fraction 
of services provided by a kernel. This leaves a significant 
chunk of privileged code base that is unused code. Our 
principle of code minimization aims at minimizing the ker
nel code so that it only contains the libraries and services 
required by the application. Code minimization can be en
forced at a much finer granularity by also minimizing the 
libraries so that they only contain the functionality needed 
by an application. For example, the generic C library, libc, 
is quite large but only a fraction of it is utilized by an ap
plication. 

Our proposed design leverages multi-core architecture to 
achieve strong process isolation by executing each process 
on a separate set of dedicated processor cores. Each process 
executes on its customized OS image which is minimized to 
only contain the code (drivers, services etc.) required by the 
process. Each application provides a manifest file specifying 
its dependencies, that is, the list of libraries, services and 
drivers that this application needs to execute successfully. 
This manifest file serves as the starting point for depen
dency analysis that determines the external code required by 
a given application. For each application, we build a custom 
OS image consisting of a micro-kernel and the application 
along with its dependencies. This custom OS image will not 
have any extraneous service not required by the application. 

This paper is organized as follows. In section 2, we present 
the high level design of the proposed architecture. In sec
tion 3, we present an analysis of libc library usage by popular 
applications. We then discuss the related work in section 4 



Core 0 Core 1 Core 2 Core 3 Core 4

Minimized 
OS

Minimized 
OS

App 1 App 2 App 3

Minimized 
OS

QEMU

Linux Kernel (Host OS)

KVM module 

Figure 1: Overview of system architecture 

and conclude in section 5. 

2. SECURE ARCHITECTURE DESIGN 
We propose a secure architecture design that leverages mul
ticore architecture to achieve strong isolation guarantees be
tween applications. Our basic architecture is inspired from 
the NoHype architecture [8] which uses multicore architec
ture to isolate virtual machines (VM) in a cloud setting. 
Our goal is to isolate not just guest VMs, but also the ap
plications that run on it. We incorporate the basic NoHype 
architecture into our design and extend it according to our 
requirements. Figure 1 shows an overview of our system 
design. 

In this architecture, each application is isolated by execut
ing on its own dedicated VM that only executes this appli
cation and no other application. The isolation guarantees 
are further strengthened by enforcing isolation at the hard
ware layer. This is achieved by executing the application’s 
corresponding VM on a dedicated set of processor cores that 
are not shared with other applications. At any given time, 
the system maintains a pool of unassigned processor cores. 
When a new application starts, it is assigned to a set of cores 
from this pool using the concept of processor core affinity. 
Memory isolation between VMs is enforced by capitalizing 
on the hardware paging mechanism in modern processors. 
Also, like NoHype, I/O devices are dedicated to each VM 
by virtualizing the I/O devices. Communications between 
applications executing on different cores is allowed via a re
stricted interface that is mediated according to certain pre
defined policies. 

The guest OS that hosts an application is also minimized 
according to this application’s requirement so as to reduce 
the software attack surface. That is, only the OS function
ality required by an application is retained and parts of the 
OS that are not required by the application are removed. 
The OS functionality that is considered for elimination con
sists of unused kernel services, libraries, drivers and other 
utilities. This reduces the software attack surface that is 
available to an attacker to craft a potential exploit. 

Our design assumes a large number of processor cores which 
is not unreasonable given the recent advances in multicore 
hardware. Commercial processors currently available in mar

ket already boast of more than 100 cores. The maximum 
number of cores required by a system is determined by the 
number of applications running at any given time and the 
number of cores required by each of them. For systems with 
limited numbers of cores, a variation of our proposed scheme 
can be used by which the applications are grouped accord
ing to a pre-defined criteria and the applications belonging 
to the same group are allowed to share processor cores. For 
example, applications written by the same developer can be
long to the same group. This allows our scheme to function 
even with limited number of processor cores. 

2.1 Communication 
One important aspect of application isolation is to mediate 
the communication between two applications. Forbidding 
all communications between two applications is not always 
practical since they may need to communicate to request 
and provide services, exchange data etc. For example, in our 
design, services such as file server may run isolated on a VM 
and will need to communicate with other applications that 
require these services. Another example would be an email 
client that needs to invoke other applications based on email 
content, such as a PDF viewer or a web browser. While such 
interactions enhance functionality, they also represent an 
attack vector that can be exploited by malicious or infected 
applications. Thus, it is crucial that these interactions be 
monitored according to a set of policies. 

The NoHype architecture has been developed for the cloud 
settings in which guest operating systems do not need to 
communicate with each other as they belong to different cus
tomers. This allows one to disengage the hypervisor from 
guest OS at runtime and eliminate the hypervisor attack 
surface. However, this is not true in our setting in which 
each guest OS is dedicated to a single application and ap
plications typically need to communicate. To ensure proper 
isolation, the communication between the various applica
tions needs to be mediated, by only allowing the authorized 
communications and preventing unauthorized interactions. 
Communication mediation can be enforced by the hypervi
sor by intercepting the communication and enforcing appro
priate policies. This means that, unlike NoHype, the hyper
visor cannot be disengaged from the guest OS because we 
need it to mediate the communication between applications. 

We propose using RPC-like mechanism to facilitate com
munication between applications running on different guest 
VMs. The hypervisor can serve as a middleware for RPC 
calls and the policy enforcement point that allows or blocks 
communication. The hypervisor must provide a RPC inter
face that uniquely identifies the application and the core it is 
running on and is able to route the RPC calls correctly. As 
an example, a text editor application running on one core 
may need to read a file, but the file server is running on 
another core. The call to read the file gets converted into a 
RPC like call that is transmitted via the hypervisor to the 
core that is running file server and the response from the 
file server will follow the same route back. The hypervisor 
will also check whether the text editor is allowed to ask for 
file system services and whether it is authorized to read the 
requested file. 



Application
(Ex: Text Editor)

Manifest File:

<Services>:
File server

……
<Drivers>:

Printer driver
……

<Libraries>:
libc
……

Figure 2: Example: Minimizing MINIX 3 Operating system for a text editor 

2.2 Operating System Minimization 
Traditional monolithic kernels violate the principle of least 
privilege by making several services and libraries available to 
an application even though the application does not require 
them. If the application is compromised, an attacker can 
misuse these system services for arbitrary code execution or 
privilege escalation attacks. To address this, the OS code 
must be minimized such that each guest OS only makes 
available the services required by the application executing 
on it. 

To reduce the attack surface offered by the OS, one of the 
following approaches can be adopted. In the first approach, 
one can start with a monolithic kernel and remove the un
wanted services, drivers and libraries from it. This would 
require removing a large chunk of code from the OS. The 
second approach involves starting from a microkernel and 
only adding the desired functionality that is required by an 
application. Instead of starting with a monolithic kernel and 
removing extra code, we adopted the microkernel approach 
which has only the basic functionality implemented in the 
kernel space. 

We used MINIX 3, a microkernel based OS, for our proto
type implementation. Figure 3 shows the design of MINIX 
3 where various services (such as file server, network server) 
and drivers are implemented in the user space. Given an 
application’s requirements, all the services and drivers not 
required by the application are removed from the OS and 
the required dependencies of the application are added. This 
can be viewed as creating a minimal standalone customized 
OS image for each application. 

Figure 2 shows an example use case of minimizing the op
erating system according to application requirements. In 
this example, the application under consideration is a sim
ple text editor that requires only few services provided by 
the MINIX 3 microkernel. For example, it does not need au
dio driver and network server and these should be removed 
from the OS to reduce attack surface. Also, MINIX 3 comes 
with some pre-installed applications such as Make, Lynx etc 
which should be removed if not required by the application 
(in this case, text editor). 

Figure 3: Architecture of MINIX 3 operating sys
tem (Photo credit - MINIX 3 document [4]) 

Dependency analysis 
To generate a minimized custom OS image for an appli
cation, we need to obtain the list of drivers, services and 
libraries required by the application. These should be spec
ified by the application developer in a manifest file that is 
included in the application package. Since these services 
may have their own dependencies, a transitive closure of all 
the dependencies required by the application must be con
structed. Correctly specifying all the application dependen
cies, especially at kernel level, may require significant effort 
from an application developer. Various techniques can be 
used to simplify this task for the developer by automatically 
inferring some or all of these dependencies from either the 
source code or the executable file. For instance, by analyzing 
the source code, we can see the libraries included and the 
system calls made by the application and make some infer
ence about system services used by an application. Process 
tracing is another approach that can be used to automati
cally infer application dependencies. This can be done by 
tracing the process execution and logging the system calls 
and API calls made by this application. In this approach, it 
is crucial to execute the application with all possible inputs 
to build a complete dependency profile for the application. 
Techniques like those used for software testing can be used 
to ensure that a complete coverage of inputs is achieved. 



LOC Symbols 
Total 276,970 2171 
Min 131,653 360 
Average 145,498 450 
Std Dev 13,350 75 

Figure 4: Statistics concerning lines of assembly 
code and symbols usage in libc 

2.3 Library minimization 
In addition to eliminating the libraries that are not needed 
by an application, a more fine grained minimization can be 
performed on the libraries themselves. In current systems, 
even if an application requires access to a single function in 
shared library, the entire library is mapped into the process 
memory image. This is a problem of over-provisioning of ac
cess. That is, the coarse granularity of shared library load
ing is inadequate for enforcing the principle of least privilege 
within the library. Consequently, an attacker exploiting an 
application vulnerability has more access to the library than 
is necessary. By minimizing the libraries so that only contain 
the required functionality, the principle of least privilege for 
code can be enforced more accurately. 

To determine the library functionality that may be called by 
an application, we perform a control flow analysis to iden
tify the reachable code in a library. This involves performing 
an any-path evaluation, beginning with the set of dynami
cally mapped symbols in the program’s ELF symbol table. 
These can be retrieved using objdump utility. This any-path 
evaluation maintains a set of symbols to evaluate, where 
the set is initialized with the application’s required symbols. 
Each symbol in this set is processed by traversing the corre
sponding binary instructions in a disassembled version of the 
shared library. Whenever any variation of ret, jmp or call 
instruction is encountered, the target symbol is added to 
the working set. This is executed until the least fixed point 
of symbol references is reached, indicating that all library 
instructions that could possibly be reached from the sym
bols in the application’s symbol table have been traversed. 
The minimization technique only retains the code blocks of 
shared library corresponding to this set of symbols required 
by the application and removes rest of the code from the 
library. 

3. LIBC USAGE ANALYSIS 
To better understand typical libc usage in a variety of set
tings, we performed an empirical analysis of the usage of 
the libc library by 51 popular applications, which are listed 
in the Appendix. We selected applications from a broad 
range of categories (e.g., network applications, language in
terpreters, virtual machine monitors, media applications). 
Our analysis is based solely on the binary executable, so we 
considered both open- and closed-source software. All soft
ware packages were downloaded for Ubuntu 10.04 (“Lucid 
Lynx”) for version 2.6.32 of the Linux kernel. 

To analyze an application’s libc usage, we performed a con
trol flow analysis as explained in section 2.3. In our static 
analysis, we discovered that there is a significant minimum 
threshold of libc code that must be retained for all appli
cations. Specifically, all processes created from ELF exe

cutables jump to the __libc_start_main symbol, which in
dicates the start of the program. From this single symbol, 
every application reaches 360 of the 2171 function symbols 
in libc. 

Figure 4 shows the total and minimum libc code base, as well 
as some basic statistics about the applications we surveyed. 
In Figures 5-6, the minimum values are labeled and marked 
with dotted line for reference. Figure 5 shows the number 
of libc symbols used by a subset of the applications we sur
veyed. For each application, the darker region on the left 
indicates the number of symbols explicitly identified by per
forming objdump on the executable; the lighter region on the 
right denotes the total number of symbols reached through 
our any-path analysis. Figure 6 shows the total number of 
libc lines of code that are required for each application. This 
figure shows that most applications only require about half 
the code that exists in libc. Furthermore, observe that most 
of this code is the minimum (i.e., the code reachable from 
__libc_start_main entry point). From Figure 4, we ob
serve that the average application requires only 90 additional 
symbols when compared with the minimum. That is, min
imizing the libc code according to the application’s needed 
functionality has a drastic effect on the attack surface. On 
average, the lines of code (i.e., assembly instructions) and 
number of symbols used is significantly smaller than the full 
library size. In other words, mapping the full library gives 
the attacker access to a significant amount of unused code 
for attacking using attacks such as code-reuse attacks. 

Finally, Figure 7 shows an interesting result concerning the 
frequency of non-minimal symbol usage among the 51 ap
plications surveyed. That is, setting aside the 360 symbols 
derived from __libc_start_main, we calculated how many 
of the applications used each of the remaining symbols. For 
instance, there were 133 symbols that were used by only one 
application, while there was only one symbol used by 39 ap
plications. Furthermore, 426 (72.2%) of the symbols in libc 
were used by 10 or fewer applications, while 522 (88.5%) of 
the symbols were used by 20 or fewer applications. In other 
words, there is significant variation in the non-minimal sym
bols that are used by applications. Consequently, the prob
ability of any two applications using exactly the same set 
of symbols is very small; we observed only a single pair of 
applications (gs and OpenOffice) that used the exact same 
set of symbols, which happened to be the minimal set. 

4. RELATED WORK 
Our basic architecture is very similar to the NoHype [8] ar
chitecture as both leverage multicore to achieve isolation. 
However, our architecture has some important differences 
from NoHype as discussed below. First, the NoHype ar
chitecture has been designed specifically for cloud settings 
where the isolation is performed at VM level as opposed to 
application level as in our design. Second, NoHype uses the 
hypervisor only in the initial phase to allocate resources and 
in the end to terminate a VM. The hypervisor is disengaged 
from the VM when it starts the application execution. This 
is not the case in our design since in our design applications 
may need to communicate and constant involvement of hy
pervisor is required to mediate this communication. Also, 
unlike our approach, NoHype does not use code minimiza
tion for the guest OS running in the VM. 



Figure 5: Number of libc symbols used by popular applications 

Figure 6: Number of lines of libc assembly code used by popular applications 

Figure 7: Histogram of non-minimum symbols used by popular applications 



Poly2 [1], a secure platform for network services, isolates 
network services on different systems and proposes min
imization of operating system to remove unused services. 
However, this work is limited to network services and uses 
different machines for isolation. Our approach significantly 
extends Poly2 by isolating all applications in addition to 
just network services. Also, in our architecture, the isolated 
applications still run on the same machine and isolation is 
enforced by eliminating sharing of the processor cores and 
isolating memory. 

Codejail [10] is a framework to isolate untrusted libraries 
so as to prevent a bug in the library from compromising 
the main program. This is achieved by creating separate 
execution contexts, that is trusted and untrusted contexts 
for executing main program and untrusted library code re
spectively. All accesses to system resources from untrusted 
context are sandboxed. Codejail approach can be integrated 
into our proposed design to achieve a higher degree of isola
tion within an isolated VM. 

Dong et al. [2] quantify security benefits and performance 
costs of performing privilege separation in web browser de
signs. In web browsers, various browser components can be 
grouped into isolated partitions that are assigned minimum 
privileges as needed for runtime operation. However, ex
cessive isolation between browser components may increase 
communication between components and incur higher per
formance costs. [2] provides empirical data on this trade-off 
while choosing various partitioning strategies in web browsers. 

Tartler et al. [9] reduce the size of trusted computing base 
by reducing the kernel code using compile time kernel con
figuration options. This reduces the attack surface available 
to the attacker. They showed a decrease of 10% in CVE vul
nerabilities by reducing the kernel code using configuration 
option. This reduction is based on the anticipated work
load and is limited to the KCONFIG features. On the other 
hand, our minimization is specific to the application that 
will execute on the guest OS. 

5.	 CONCLUSION 
In this work, we have proposed an initial secure architecture 
design that is based on the principles of application isolation 
and code minimization. The application isolation is enforced 
at both software and hardware layers to prevent a malicious 
application from compromising other parts of the system. 
The code minimization for the operating system code and 
the library code is performed to reduce the software attack 
surface that can potentially be exploited by an attacker. We 
have also performed analysis of libc library to show that only 
a fraction of the entire library is used by any given appli
cation. It is important to mention that to further securing 
applications from attacks such as ROP attacks, our archi
tecture can be combined with the application randomization 
techniques by which the application code is randomized at 
each execution [3]. As result, security will be achieved by 
the combination of four key approaches: isolation, mediated 
communication, minimization, and randomization. 

6.	 REFERENCES 
[1] E. Bryant, J. Early, R. Gopalakrishna, G. Roth, 

E. Spafford, K. Watson, P. William, and S. Yost. 

Poly2 paradigm: a secure network service architecture. 
In Computer Security Applications Conference, 2003. 
Proceedings. 19th Annual, pages 342–351, 2003. 

[2] X. Dong, H. Hu, P. Saxena, and Z. Liang. A 
quantitative evaluation of privilege separation in web 
browser designs. In ESORICS, 2013. 

[3] A. Gupta, S. Kerr, M. Kirkpatrick, and E. Bertino. 
Marlin: A fine grained randomization approach to 
defend against rop attacks. In J. Lopez, X. Huang, 
and R. Sandhu, editors, Network and System Security, 
volume 7873 of Lecture Notes in Computer Science, 
pages 293–306. Springer Berlin Heidelberg, 2013. 

[4] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. 
Tanenbaum. Minix 3: a highly reliable, self-repairing 
operating system. SIGOPS Oper. Syst. Rev., 
40(3):80–89, July 2006. 

[5] S. Jana and V. Shmatikov. Memento: Learning secrets 
from process footprints. In Security and Privacy (SP), 
2012 IEEE Symposium on, pages 143–157, 2012. 

[6] Kostya Kortchinsky. CLOUDBURST: A VMware 
Guest to Host Escape Story. http://www.blackhat. 
com/presentations/bh-usa-09/KORTCHINSKY/ 
BHUSA09-Kortchinsky-Cloudburst-SLIDES.pdf. 

[7] National Vulnerability Database (NVD). Vulnerability 
Summary for CVE-2009-1244. http://web.nvd.nist. 
gov/view/vuln/detail?vulnId=CVE-2009-1244. 

[8] J. Szefer, E. Keller, R. B. Lee, and J. Rexford. 
Eliminating the hypervisor attack surface for a more 
secure cloud. In Proceedings of the 18th ACM 
conference on Computer and communications security, 
CCS ’11, pages 401–412, New York, NY, USA, 2011. 
ACM. 

[9] R. Tartler, A. Kurmus, B. Heinloth, V. Rothberg, 
A. Ruprecht, D. Dorneanu, R. Kapitza, 
W. Schröder-Preikschat, and D. Lohmann. Automatic 
os kernel tcb reduction by leveraging compile-time 
configurability. In Proceedings of the Eighth USENIX 
conference on Hot Topics in System Dependability, 
HotDep’12, pages 3–3, Berkeley, CA, USA, 2012. 
USENIX Association. 

[10] Y. Wu, S. Sathyanarayan, R. H. C. Yap, and Z. Liang. 
Codejail: Application-transparent isolation of libraries 
with tight program interactions. In ESORICS, pages 
859–876, 2012. 

[11]	 Xen Security Advisory CVE-2012-0217. 64-bit PV 
guest privilege escalation vulnerability. 
http://lists.xen.org/archives/html/ 
xen-announce/2012-06/msg00001.html. 

APPENDIX 
A. APPLICATIONS SURVEYED 

Application	 Version 

Acroread 9.3.2 
Amazon MP3 Downloader 1.0.9 
Apache 2.2.14 
Bash 4.1.5 
Bluetooth 4.60 
Brasero 2.30.2 
Chromium 10.0.648.205 
Cups 1.4.3 
Dhclient 3.1.3 

http://lists.xen.org/archives/html
http://web.nvd.nist
http://www.blackhat


Dropbox 
Eclipse 
Empathy 
Evolution 
Firefox 
Gcc 
Gimp 
Git 
Gnome-terminal 
Grip 
Gs 
Gtkpod 
Gzip 
Java 
Lame 
Last.fm 
libc 
Make 
Mencoder 
Mono 
Mplayer 
OpenOffice 
OpenSSH 
PdfTeX 
Perl 
Python 
Qemu 
Sha1sum 
Skype 
Smbclient 
Subversion 
Sudo 
Tar 
Thunderbird 
Totem 
Truecrypt 
Vim 

Vlc 
Transmission 
Wine 
Wireshark 
Xine 

0.6.7
 
3.5.2
 
2.30.3
 
2.28.3
 
3.6.16
 
4.4.3
 
2.6.8
 
1.7.0.4
 
2.30.2
 
3.3.1
 
8.71
 

0.99.14
 
1.3.12
 
1.6.0 20
 
3.98.2
 
1.5.4
 

2.11.01
 
3.81
 
4.4.3
 
2.4.4
 
1.0
 
3.2.0
 
5.3p1
 

1.40.10-2.2
 
5.10.1
 
2.6.5
 
0.12.3
 
7.4
 

2.1.0.81
 
3.4.7
 
1.6.6
 

1.7.2p1
 
1.22
 
3.1.8
 
2.30.2
 
6.3a
 
7.2
 

1.0.6
 
1.93
 
1.2.2
 
1.2.7
 
0.99.6
 

VirtualBox 4.0.0 

http:2.1.0.81

