
CERIAS Tech Report 2013-3
BISTRO: Binary Component Extraction and Embedding for Software Security Applications

 by Zhui Deng, Xiangyu Zhang, Dongyan Xu
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

BISTRO: Binary Component Extraction and

Embedding for Software Security Applications

Zhui Deng, Xiangyu Zhang, and Dongyan Xu

Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
{deng14,xyzhang,dxu}@cs.purdue.edu

Abstract. In software security and malware analysis, researchers often need to
directly manipulate binary program – benign or malicious – without source code.
A useful pair of binary manipulation primitives are binary functional component
extraction and embedding, for extracting a functional component from a binary
program and for embedding a functional component in a binary program, respec
tively. Such primitives are applicable to a wide range of security scenarios such as
legacy program hardening, binary semantic patching, and malware function anal
ysis. Unfortunately, existing binary rewriting techniques are inadequate to sup
port binary function carving and embedding. In this paper, we present BISTRO, a
system that supports these primitives without symbolic information, relocation
information, or compiler support. BISTRO preserves functional correctness of
both the extracted functional component and the stretched binary program (with
the component embedded) by properly patching them using – interestingly – the
same technique and algorithm. We have implemented an IDA Pro-based proto
type of BISTRO and evaluated it using real-world Windows software. Our results
show that BISTRO performs these primitives efficiently; Each stretched binary
program only incurs small time and space overhead. Furthermore, we demon
strate BISTRO’s capabilities in various security applications.

1 Introduction

In software security and malware analysis, researchers often need to manipulate binary
code – benign or malicious – without source code or symbolic information. One pair of
complementary binary manipulation primitives is to (1) extract a re-usable functional
component from a binary program and (2) embed a value-added functional component
in an existing binary program. We call the binary manipulation primitives described
above binary component extraction and embedding. These primitives are useful in a
wide range of software security and malware analysis scenarios. In security hardening
of legacy binaries, binary component embedding enables the retrofitting of legacy or
close-source software with a third-party functional component that performs a value-
added security function such as access control policy enforcement. In binary semantic
patching, binary programs from different vendors may leverage the same functional
component. Suppose one vendor identifies a vulnerability in such a component and re
leases a patched version for its own program; whereas other vendors are not aware of
the vulnerability or have not patched their products. We can apply binary component
extraction to carve out the patched component from a patched program and replace the

http:products.We
http:algorithm.We
http:embedding.In
mailto:deng14,xyzhang,dxu}@cs.purdue.edu

vulnerable version of the same component in an un-patched program using binary com
ponent embedding. In malware analysis, binary component extraction and embedding
supports “plug and play” of malicious functions extracted from malware captured in
the wild. One can even “stitch” multiple extracted malware functions to compose a new
piece of malware – a capability that may help enable strategic defence in cyber warfare.

Enabling binary component extraction and embedding poses significant challenges.
Brute force extraction and insertion of binary functions will most likely fail. Instead,
both the extracted component and the target binary program need to be carefully trans
formed. For example, instructions in the target binary need to be shifted to create space
for the embedded function; when a function is extracted from its origin binary, the in
structions in it need to be re-positioned and re-packaged; accesses to global variables
need to be re-positioned; function pointers need to be properly handled; and indirect
jumps/calls need to have their target addresses recalculated. These problems are es
pecially challenging when the binary component or the target binary program is not
relocatable, which is often the case when dealing with legacy or malware binaries.

Despite advances in binary instrumentation and rewriting, existing techniques are
inadequate to address the binary component extraction and embedding challenges. Dy
namic binary instrumentation tools such as PIN [1], Valgrind [2], DynamoRIO [3] and
QEMU [4] perform instrumentation only when a binary program is executed on their in
frastructures. They do not generate an instrumented, stand-alone version of the binary
for production runs. Static binary rewriting tools such as Diablo [5], Alto [6], Vul
can [31], and Atom [8] can generate instrumented, stand-alone binaries. However, they
require symbolic information or that the binaries be generated by special compilers.

More lightweight techniques exist that do not require symbolic information or spe
cial compilers [9–14]. Among these techniques, some create trampolines at the end of
the target binary program in which instrumentation is placed and then use control flow
detours to access the trampolines [9–11]. The others duplicate the body of the target
binary program in its virtual memory space and only the replica is instrumented. The
original binary body is retained in its original position to provide a kind of control flow
forwarding mechanism [12–14]. However, none of these techniques supports extraction
of binary component or implanting an extracted component to another binary. Many
of them cause substantial space/performance overhead. To the best of our knowledge,
none of them has been successfully applied to large-scale Windows applications or ker
nel code. A more detailed comparison is presented in Section 3.

Recently, researchers proposed approaches that focus on identification, extraction
and reuse of components from binaries. Inspector Gadget [30] performs dynamic slic
ing to identify and extract components from malware. The extracted component might
have incomplete code path coverage due to the limitation of dynamic analysis. BCR [17]
adopts a combination of static and dynamic approach to extract a function from a bi
nary. However, it uses labels to represent jump/call targets, thus does not preserve the
semantic of indirect jumps/calls. ROC [24] uses dynamic slicing to identify reusable
functional components in a binary but does not extract them. None of them supports
reusing extracted components to enhance legacy binaries. Moreover, they could not ex
tract components from non-executable binaries (e.g., malware corpse) due to the use of
dynamic analysis.

http:space/performanceoverhead.To

In this paper, we present BISTRO, a systematic approach to binary functional com

Binary
Extractor

Original binary program Q
Component to extract

Binary
StretcherTarget

binary P

Stretched binary
program

P’ = P + c
Component c

To be called
independently

Independent
Component

ponent extraction and embedding. BISTRO automatically performs the following: (1)
extracting a functional component, with its instructions and data section entries non-
contiguously located in the virtual address space, from an original binary program and
(2) embedding a binary component of any size at any user-specified location in a tar
get binary program, without requiring symbolic information, relocation information, or
compiler support. For both extraction and embedding, BISTRO preserves the function
alities of the target binary program and the extracted component by accurately patching
them – using the same approach and technique. BISTRO performs extraction and em
bedding operations efficiently and the “stretched” target binary program after embed
ding only incurs small time and space overhead.

We have developed a prototype of BISTRO as a IDA-Pro [22] plugin. We have con
ducted extensive evaluation and case studies using real-world Windows-based applica
tions (including large-scale software such as Firefox and Adobe Reader), kernel-level
device drivers, and malware. Our evaluation (Section 7) indicates BISTRO’s efficiency
and precision in patching the extracted components and target binary programs. More
over, the stretched target binary program incurs small performance overhead (1.9% on
average) and space overhead (10.9% on average). We have applied BISTRO to the fol
lowing usage cases: (1) We carve out patched components from a binary and use them
to replace their un-patched versions in other application binaries, achieving binary se
mantic patching (Section 7.2); (2) We stitch malicious functions from an un-executable
Conficker worm [15] sample and compose a new, executable malware (Section 7.3);
and (3) We demonstrate the realistic threat of trojan-ed device drivers with malicious
rootkit functions embedded in benign driver – using real-world drivers and rootkits
(Section 7.4).

2 Overview and Assumptions
An overview of BISTRO is shown in Figure 1. BISTRO has two key components: binary
extractor and binary stretcher.

Fig. 1. Overview of BISTRO.
–	 The binary extractor is responsible for extracting a designated functional compo

nent c from an original binary program Q. c includes both the code and data of the
functional component. The extractor does so by removing the unwanted code and
data from Q and then collapsing the remaining data and code into a re-usable com
ponent c that occupies a contiguous virtual address region. More importantly, the
instructions in c are properly patched for repositioning. We note that c can either be
called as a library function or be embedded directly in another binary program.

–	 The binary stretcher is responsible for stretching the target binary program P to
make “room” (holes in its address space) to embed a function component. As shown
in Figure 1, the stretcher takes the target binary P and the to-be-embedded compo
nent c as input; stretches P , and patches the code in P to allow the embedding of

http:repositioning.We

′ c. The output of the stretcher is a “stretched” binary program P = P + c that is
ready for execution.

Summary of Enabling Techniques. Both the binary extractor and stretcher are based
on the same binary stretching algorithm (Section 4). The overarching idea is to shift in
structions for creating space (by stretcher) or squeezing out unwanted space (by extrac
tor). The algorithm focuses on patching the control transfer and global data reference
instructions by precisely computing the offsets they need to be adjusted. For instance,
if a component with size |c| = n is inserted, all the original instructions following the
insertion point will be shifted by n bytes, and control transfers to any of the shifted
instructions need to be incremented by n.

To address the challenge of handling indirect calls and call back functions invoked
by external libraries, we develop another algorithm (Section 5.1) that stretches a subject
binary at the original entries of functions that are potential targets of indirect calls, cre
ating small holes (usually a few bytes) to hold a long jump instruction to forward any
calls to those functions to their shifted locations. These holes must not be shifted by any
stretching/shrinking operations. They always stay in their original positions and we thus
call them “anchors”. Our algorithm precisely takes into account these anchors when
performing stretching/shrinking. To handle indirect jumps, we leverage an efficient per
fect hashing scheme to translate jump targets dynamically. We use these approaches to
patch indirect jumps/calls in both the component and the target binary.

Assumptions. We make the following assumptions (and hence stating the non-goals
of BISTRO): (1) The user, not BISTRO, will predetermine the semantic appropriateness
of embedding functional component c in target program P . Furthermore, he/she will
decide the specific location to insert the component. This can be practically done by
performing reverse engineering on P . For example, to harden P with some security
policy enforcement mechanism based on control flow [7], the user can reconstruct the
control flow graph of P , collect its dominance and post-dominance information, and
decide proper locations to insert c. (2) The identification of component c in the original
program Q, including its code and data, is done a priori by the user through manual
or automated techniques, such as Inspector Gadget [30], binary slicing [16], binary
differencing [32], and BCR [17]. While we will present our experience with functional
component identification in our case studies (Section 7), the identification technique
itself is outside the scope of this paper. (3) Binaries can be properly disassembled (e.g.,
by IDA-Pro) before being passed to BISTRO. This assumption is supported by the large
number of real-world, off-the-shelf binaries in our experiments. Although we currently
do not handle obfuscated or self-modifying binaries, we note that, in addition to IDA-
Pro, other conservative disassembling [14, 36] and unpacking [35] tools can also be
used as the pre-processor of BISTRO to handle more sophisticated binaries.

3 Problems with Existing Techniques

Before presenting BISTRO, we take an in-depth look at the existing binary rewriting
techniques and explain their limitations for binary component extraction and implant
ing. Our discussion only focuses on existing techniques that work on stripped binaries

http:dynamically.We
http:stretching/shrinking.To

without debugging symbols or relocation information, which we classify into two cate
gories: detour-based rewriting and duplication-based rewriting.

Detour-Based Rewriting. Detour-based binary rewriters [9–11] create control flow de
tours from the original code to the instrumentation. More specifically, to instrument an
instruction, the rewriter replaces the instruction with a detour to a trampoline, where
the instrumentation code is located. At the end of the instrumentation, the control flow
jumps back to the original code. For example, as shown in Figure 2, suppose we need
to count the number of times function Func B gets called. The instrumentation involves
replacing the three instructions at the entry of Func B with a jump instruction, which
detours the control flow to the trampoline code Tramp B placed at the end of the binary.
Tramp B will increment the counter, execute the three instructions that were replaced,
and jump back to the instruction right after the instrumentation point. Detour-based
rewriting works well when the number of instrumentation points is small and the in
strumentation code is simple.

(a) before detour

loc_1:
xor eax, eax
loc_2:
xor ebx, ebx
loc_3:
push eax
push ebx
...

Table:
dd offset loc_1
dd offset loc_2
dd offset loc_3

Func_C:
jmp Table [eax *4]

Func_B:
push ebp
mov ebp, esp
sub esp, 60h
push ebx
...

Func_A:
call Func_B
...

Func_B:
jmp Tramp_B
nop
push ebx
...

(b) after detour

Tramp_B:
inc [counter]
push ebp
mov ebp, esp
sub esp, 60h
jmp Func_B + 6

loc_1:
//loc_2, loc_3
pointing to the jmp
jmp Tramp_C
push ebx
...

Tramp_C:
inc [counter]
xor eax, eax
xor ebx, ebx
push eax
jmp loc_1 + 5

Func_A:
call Func_B
...

Func_C:
jmp Table [eax *4]

Fig. 2. Examples of detour using trampoline. Arrows show the direction of control-flow. The
dashed line shows ill-formed control-flow.

The main problem with detour-based rewriting is that it requires the instructions
to be replaced at the instrumentation point be relocatable. To understand this problem,
let us look at the case where we try to perform the same instrumentation at loc 1 in
function Func C. There is an indirect jump in Func C using a jump table Table, with
potential targets loc 1, loc 2, and loc 3 – such structure is often generated by the com
piler to represent a switch statement. We replace the instructions at loc 1 with the
unconditional jump instruction, which will take 5 bytes, and the instructions being re
placed will be relocated to the trampoline code in Tramp C. However, now loc 2 and
loc 3 will point to the middle of the jump instruction, causing ill-formed control flow.
While it seems that one can patch the jump table in this example, the problem becomes
much more difficult to fix if an overwritten instruction is the computed target of some
indirect jump/call, as the target may be stored in some data structure fields or generated
dynamically via complex computation. One might also consider using software break
point (a special one-byte instruction) instead of jump instruction to detour the control
flow. However, software breakpoints incur significant performance overhead.

Duplication-Based Rewriting. Recently, duplication-based binary rewriters [12–14]
are proposed. These techniques make a copy of the original code sections and then in
strument the copy. The instrumented copy is executed in cooperation with the original

http:statement.We

code. In particular, to preserve control flow correctness, branch targets in the instru
mented copy need to be patched. To handle indirect calls and jumps, jump/call targets
in the original code sections are replaced with redirection to their new targets in the
instrumented copy. The original data sections are also reused by the new copy.

The first problem with duplication-based techniques is their excessive space require
ment. For the code sections, the space has to be almost doubled. Second, it is difficult
to precisely determine all the possible targets of each indirect jump/call before instru
mentation [13, 14] (for the sake of inserting redirection). Using a conservative analysis
may result in large sets of potential targets, leading to runtime inefficiency [13].

(a) before rewriting (b) detour-based

A.text

A.data

B.text
jmp eax

B.data

(c) duplication-based

Low
address

High
address

…

A.text

A.data

…
jmp eax

trampoline

B’s component

A.text

A.data

B.text

B.data
copy of A.text

…
jmp eax Conflict as both

need to be preserved

Fig. 3. Difficulties when transplanting a component (shaded) from binary B into binary A.

Most importantly, neither duplication-based nor detour-based rewriting supports bi
nary component transplanting – the main application scenario of BISTRO. Consider the
example in Figure 3. Suppose we wish to extract a component from B and insert it into
A. The component is shaded in (a) and contains an indirect jump instruction. In (b), a
detour-based technique is applied and the component is inserted in the trampoline at the
end of A’s body. However, the indirect jump in the component will not work properly,
jumping to some irrelevant location in A instead of to the correct target as if in B. In (c),
a duplication-based techniques is applied. The text section of A is duplicated and the
component is inserted to the replica. However, to ensure correctness of the indirect jump
in A, it is necessary to preserve B’s original text section at the same location as in B and
insert redirection at the original possible targets of the indirect jump. Unfortunately, the
position of B’s text section conflicts with that of A’s in the virtual address space. Such
conflict is highly likely to happen in practice: by default, common compilers choose to
select the same base loading address when generating executable binaries: 0x400000
for Windows PE binaries and 0x8048000 for Linux ELF binaries. This means that most
binaries will overlap from the very beginning when loaded into memory.

4 Basic Algorithm for Binary Extraction/Stretching

In this section, we present the basic algorithm (Algorithm 1) executed by both the binary
extractor and stretcher of BISTRO (Section 2). For the time being, we assume (1) there
is no indirect control transfer and (2) global data is directly referenced in an instruction
using its address.

The algorithm takes the subject binary and a list of virtual address intervals called
snippets representing (1) the holes to be created in the binary in the case of stretching or
(2) the unwanted instruction/data blocks in the case of shrinking (extraction). First, for
each byte in the binary, the algorithm computes a mapping between its original index

in the binary and its corresponding index after the snippets are inserted/removed. After
that, the algorithm patches address operands in control transfer and global data refer
ence instructions, and copy each byte to its mapped location according to the mapping.

Practical Challenges. To make BISTRO work for real-world large-scale software, we
still need to overcome a number of practical challenges not addressed by Algorithm 1.

–	 The target of an indirect control transfer instruction (e.g., call eax) is computed
during execution and takes different values depending on the execution path. Such
an instruction cannot be patched by Algorithm 1.

Algorithm 1 Basic binary stretching/shrinking algorithm
Input:	 P – the subject binary; it has size and base addr fields to represent its size when loaded into memory and

base loading address, respectively.

M – a list of address intervals represent code/data to be inserted/removed, sorted increasingly by their location;
each interval has addr, len and type fields, denoting the location, size and type respectively. Type “INSERT”
means inserting right before addr; “REMOVE” means the block starting at addr is to be removed.

′ Output: P – the stretched/shrunk binary.

1: function BASICSTRETCHING(P, M)
2: map ← ComputeMapping(P, M)

′3: P	 ← PatchTarget(P, map)
4: end function

5: function COMPUTEMAPPING(P, M)
6: offset ← 0
7: m ← M.begin()
8: for i ← 0 to P.size do
9: if m.addr == P.base addr + i then
10:	 if m.type == INSERT then
11: offset ← offset + m.len
12:	 else if m.type == REMOV E then
13: offset ← offset − m.len
14: i ← i + m.len
15:	 end if
16:	 m ← M.next()
17: end if
18: map[i] ← i + offset
19: end for
20: return map
21: end function

22: function PATCHTARGET(P, map)
′23: P ← {nop, nop, ..., nop}

24: for i ← 0 to P.size do

25: if map[i] ≠ ⊥ then
26:	 if P [i] is instruction then
27: ins ← P [i]
28: for each data address operand op in ins do
29: target ← op.addr − P.base addr
30: off ← map[target] − target
31: op.addr ← op.addr + off
32: end for
33: if ins is near call/jump then
34: target ← i + ins.len + ins.target
35: off ← map[target] − target
36: off ′ ← map[i + ins.len] − (i + ins.len)
37: ins.target ← ins.target + off − off ′

38: else if ins is far call/jump then
39: target ← ins.target − P.base addr
40: off ← map[target] − target
41: ins.target ← ins.target + off
42: end if

′43: P [map[i]] ← ins
44:	 else if P [i] is data then

′45: P [map[i]] ← P [i]
46:	 end if
47: end if
48: end for

′49: return P
50: end function

–	 Function pointers may be present in data or in an instruction as an immediate
operand. These function pointers might be passed as parameters to external libraries
as callback functions. If a function is relocated due to stretching, the external library
will call back to a wrong address. All these have to be properly handled to ensure
correctness of binary stretching/shrinking.

–	 Accesses to global data may be via data pointers (e.g., mov ebx, ptr data;
mov eax, [ebx+4]). The addresses of data are not known until runtime. These
instructions cannot be patched using Algorithm 1 either.

We will present our solutions to these challenges in the following sections.

5 Handling Indirect Control Transfer

.rdata:0x400300 0x444142 //int (*fp)();

.rdata:0x400304 36 //int x;
…
.rdata:0x400324 0 //int y;
.rdata:0x400328 0x400300 //void * p;
…
.rdata:0x400340 1 //int y;
.rdata:0x400344 0x400324 //void * p;
…
.rdata:0x40040A “BAD\0” //char * s

Class A a;

Class B b1

Class B b2

mov [eax], 0x400340
…
mov ecx, [ebx]
mov edx, [ecx+4]
mov eax, [edx+4]
call [eax]

//eax=&b2

//ebx aliased to eax
//edx=400324
//eax=400300
//*(a.fp)()

.text:0x4302A0

.text:0x4302B2

.text:0x4302B6

.text:0x4302BA

.text:0x4302BD

//foo (eax, ebx):

Handling indirect jumps and calls is one of the key challenges in the design of BISTRO.
The difficulty is that the jump/call target cannot be known statically and thus is hard
to patch. To understand the challenge, consider the example in Figure 4. On the left,
there are three objects that are connected via pointers, with two of type B and one
of type A. On the right, part of function foo() is presented. The function takes two
parameters stored in eax and ebx denoting pointer values. These two pointers may
be aliased to each other. If so, ecx at 0x4302B2 gets the value 0x400340 defined at
0x4302A0, and then eventually the call instruction at 0x4302BD acquires the function
pointer 0x444142. However, if the two pointer parameters are not aliased, the call in
struction may get a completely different target, making statically patching it difficult.

Fig. 4. An example showing indirect call handling in binary stretching/extraction.

A naive solution is to identify and patch any constant value in the binary that appears
to be a jump/call target. But this is not safe as such values may not be jump/call targets.
Notice in the example, there is a null-terminated string “BAD” at address 0x40040A.
With the little endian representation in x86, this string has the same binary value as
the function pointer at 0x400300. Without type information, it is impossible to know
whether the value is a string or function pointer. Failure to identify and patch a function
pointer leads to broken control-flow, changing the semantics of the target binary. Mis
classifying a string as a function pointer leads to undesirable changes to data. While it
is plausible to leverage recent advances in binary type inference to type constants in a
binary [18–21], the involvement of aliasing as in the example makes such analysis very
difficult. In fact, IDA-Pro [22] failed to recognize the function pointer for this case.

If a binary has a relocation table and it does not perform any address space layout
self-management such as through a packer, the relocation table will provide the posi
tions of all constant values that are jump/call targets for BISTRO to patch them, thus
lead to a sound and complete solution to binary stretching/shrinking. However, relo
cation table may be absent or contain bogus entries in legacy and malware binaries.
Hence, for the rest of the paper, we do not assume the presence of relocation tables in
our design and evaluation. Next, we describe how to handle indirect calls in Section 5.1
and indirect jumps in Section 5.2.
5.1 Handling Indirect Calls
Indirect calls are very common in modern binaries to leverage the flexibility of function
pointers. We have discussed the difficulty of handling function pointers at the beginning
of Section 5. In fact, there is a more challenging situation, in which a binary may pass its
function addresses to external library functions which call back the provided functions
(e.g., a user function cmp() is provided as a parameter to an external library function

http:Figure4.On
http:patch.To

qsort()). In this case, if a function entry has changed due to stretching or shrinking,
its invocation sites are outside the body of the binary and thus beyond our control. It
is difficult to patch call back function pointer parameters before they are passed on to
libraries for two reasons. First, a function pointer might not directly appear as a pa
rameter. It could be a member of a structure passed to an external library. It may even
require several layers of pointer indirection to access its value. Patching that is chal
lenging. Second, for many external library functions, we cannot assume the availability
of their prototype definitions, it is hence difficult to know their parameter types.

(b) stretching w/o anchor

//cmp ()
push ebp
…
push 0x400120
call sort
…

…
400120:
400122:
…

400160:

401680:
401685:

40

app.exe

//cmp ()
push ebp
…
push 0x400120
call sort
…

…
400120:
400125:
…

400169:

401689:
40168E:

40+
9

jmp 400125
jmp 400169

anchor

(c) stretching w/ anchor

app.exe

//qsort() msvcrt .dll
…
//eax= 0x400120
call eax
…

AF8614:

…
//cmp ()
push ebp
mov ebp, esp
add esp, …
…

push 0x400120
call sort
…

400120:
400122:
400126:
…

401640:
401645:

(a) original binary

app.exe

//qsort() msvcrt .dll
…
//eax= 0x400120
call eax
…

AF8614:

//qsort() msvcrt .dll
…
//eax= 0x400120
call eax
…

AF8614:

To handle indirect calls including call back functions, we propose to stretch the
target binary to make small holes at the entry point of each function that may be an
indirect call target. These holes are called anchors; they should not be moved during
stretching/shrinking. Inside an anchor, we place a jump instruction that jumps to its
mapped new address in the stretched/shrunk binary, which is the new entry of the func
tion. As such, we do not need to identify or patch any function pointers in the binary.

Since an anchor must be placed at a fixed address in the stretched binary, it could
coincide with instructions that get shifted to the address. To ensure correctness, we put
a jump right before an anchor to jump over it. We call the jump the prefix of an anchor.

Fig. 5. Stretching with Anchors. The shaded area in (b) is the 40-byte snippet inserted.

Consider the example in Figure 5 (a), in which the call-back function cmp() is
invoked inside qsort(). The entry address of function cmp() in the original binary is
0x400120. When we stretch without anchors as shown in (b), in function qsort(), the
indirect call to cmp() at 0xAF8614 will incorrectly go to 0x400120 in the shaded area.
When we stretch with anchors as shown in Figure 5(c), an anchor containing the jump
instruction will be placed at 0x400120. Any indirect call that goes to the original entry
address of cmp(), 0x400120, will be redirected to the actual function body at the new
entry address. The jump instruction preceding 0x400120 is its prefix.
Anchor-based Algorithm. With the presence of anchors, fixing control flow trans
fer instructions becomes more challenging than that in Algorithm 1. We hence devise
a new algorithm (Algorithm 2). The idea is to divide the stretching/shrinking opera
tion into two phases. In phase one, the subject binary program is stretched/shrunk us

http:address.To

ing Algorithm 1 to create space for the inserted snippets or removed blocks. Then the
stretched/shrunk binary is further stretched to insert anchors using a similar procedure.
Separating the two phases substantially simplifies the interference from anchors.

Algorithm 2 Anchor-based stretching algorithm.
Input:	 P – the subject binary; it has size and base addr fields to represent its size when loaded into memory and

base loading address, respectively.
M – a list of code/data snippets to be inserted/removed, sorted increasingly by their location; each snippet has
addr, len and type fields, denoting the location, size and type respectively.
A – a list of anchors to be placed, sorted increasingly by their location; each anchor has addr and len fields,
denoting the location and the content size, respectively.

Output:	 anchor map – the mapping between the indices after placing snippets and their corresponding indices after
anchors are placed.
prefixlen[a] – the prefix length of an anchor a.

1: function STRECHINGWITHANCHOR(P, M, A)
2: map ← ComputeMapping(P, M)
3: Pt ← PatchTarget(P, map)
4: anchor map ← ComputeAcMapping(Pt, A)

′5: P	 ← PatchTarget(Pt , anchor map)
6: end function

7: function COMPUTEACMAPPING(P, A)
8: offset ← 0
9: ac ← A.begin()
10: i ← 0
11: while i < P.size do
12: curaddr ← P.base addr + i + offset
13: if ac.addr == curaddr then
14:	 prefix ← i− SIZEOF(JMP)

15: if P [prefix] is not the start of an instruction then
16: prefix ← start of instruction before prefix
17:	 end if
18:	 prefixlen[ac] ← i − prefix
19:	 i ← prefix
20:	 offset ← offset + ac.len + prefixlen[ac]
21:	 ac ← A.next()
22: else
23:	 anchor map[i] ← i + offset
24:	 i ← i + 1
25: end if
26: end while
27: return anchor map
28: end function

Pruning Anchors. Potentially, we can create anchors for all function entries to guaran
tee that we will never miss any necessary function call forwarding. However, this is not
efficient. In fact, we only need to create anchors for the subset of functions that could
be the possible target of some indirect call. Assuming a 32-bit machine, we construct
the subset with the following criterion: Any four-byte data value or any four-byte im
mediate operand in an instruction is considered a possible indirect call target, if it is
equal to one of the function entries. We obtain this subset by sequentially scanning data
and code sections. Our pruning heuristic is very effective in practice. For example, the
code section size of gcc in SPEC CPU 2000 benchmark suite is over 1MB, with over
2000 functions; after pruning, there are only 271 functions left that need anchors.
Embedding a Component with Anchors. If an extracted component contains a func
tion that may be invoked by an indirect call in the component, BISTRO will create an
anchor in the target binary at exactly the same address of the function entry in the com
ponent’s original binary to allow proper forwarding. If the anchor conflicts with some
existing anchor in the target binary, BISTRO will integrate the two overlapping anchors
into an arbitration function and redirect control flow to the function instead. The func
tion further determines which real target it should forward the call to. The calls from
the target binary and those from the to-be-embedded component are distinguished by
setting a flag. The arbitration function uses the flag to decide the real forwarding target.

In some rare cases, the space between two function entries might not be enough to
hold the anchors. In such cases, instead of using the jump instruction for redirection, we
use a software interrupt instruction, which takes only one byte. When an indirect call

http:entries.We

reaches the old function entry, a software exception will be generated and intercepted by
our exception handler, which will redirect the control flow to the new function entry.

5.2 Handling Indirect Jumps

Indirect jumps are different from indirect calls as the jump targets may not be function
entries, but rather anywhere in the binary. If we adopt the anchor approach, there would
be too many anchors needed. One might leverage some heuristics such as that indirect
jumps usually receive their targets from jump tables and thus simply patch the jump
table entries. However, this is unsafe because of the difficulty of determining jump
table boundaries. A jump table may not be distinguishable from regular data. Hence,
we propose a different approach. Specifically, we insert a code snippet right before
each indirect jump to translate the jump target to its mapped address in the stretched
binary at runtime, as shown in the example below.

mov eax, mapping[eax - old_base]jmp eax
−→ add eax, new_base

jmp eax

Note that the example is just for illustration. In our implementation, we use perfect
hashing for address lookup, which will be explained later, and preserve the flag register
during translation. Since a complete byte-to-byte mapping is computed in Algorithm 1,
any indirect jump target could be properly translated and handled by this method. Ob
serve that additional instructions need to be added to perform translation. We can easily
handle this by stretching the subject binary to accommodate these instructions.
Branch Target Set Pruning. Although the translation using a complete mapping guar
antees safety, it also introduces significant memory overhead. Each byte in the original
binary requires 4 bytes to represent its mapped address. In fact, we only need a subset of
the mapping: the stretched/shrunk binary will be safe as long as the mapping contains
translation for every possible indirect jump target.

We construct the set with the following criterion: any four-byte data value or any
four-byte immediate operand in an instruction is considered a possible indirect jump
target, if the value falls in the range of some code section. We further prune the set
by removing the values that point to the middle of an existing instruction. Note that
the strategy is safe for long/set jumps as their jump targets are acquired at runtime.
This pruning strategy is very effective in practice. For example, the code section size
of Adobe Reader X (AcroRd32.exe) is over 800KB, with over 260K instructions; after
pruning, there are only 3635 possible branch targets left.
Perfect Hash Translator. The remaining challenge is to achieve fast translation. Note
that after pruning, the jump target set becomes a sparse set in the address space. As a
compromise between memory consumption and runtime overhead, we choose to use
perfect hashing for translation. A perfect hash function maps a set of keys to another
set of integer values without any collision. It guarantees O(1) translation time. We use
gperf [23] to generate the perfect hash function for the jump target set and compile it
into a linkable .obj file that can be embedded in the target binary through BISTRO.

A perfect hash function may require more space than the N keys to achieve O(1)
translation time. In practice, we find the size of generated perfect hash functions ac
ceptable. For example, for the 3635 branch targets of Adobe Reader, the generated hash
function is about 152KB, which is about 11% of the size of the Adobe Reader binary.

http:section.We
http:translation.We

6 Handling Data References

Binary extraction/stretching may cause relocation of data entries, so we need to ensure
the correctness of instructions referencing those data. We discuss how to address this
problem from the perspectives of the target binary and the component to be embedded.

Compared to the component, the target binary is usually more complex and involves
a lot of global data references. To handle this problem efficiently, we group data in the
binary as continuous data blocks. If a data block might be indirectly accessed, we will
make sure the block is not re-located to avoid patching data accesses, by wrapping the
block in an anchor. Note that the number of data access instructions is much larger
than the number of indirect jumps/calls. Otherwise, if the data block is only directly
accessed, we allow it to be relocated (by Algorithm 1). We use the following criterion: if
the value of any four-byte data, or any four-byte immediate operand (in an instruction)
that is not directly used as an address falls in the range of a data block, then this block
might be indirectly accessed using data pointers, and hence should not be re-located.

In contrast, data entries extracted as part of the to-be-embedded component are most
likely to be relocated. For example, if they are sparsely distributed in the address space,
the BISTRO extractor (Section 2) will collapse them into a contiguous block, causing
relocation. We adopt a method similar to the dynamic jump target translation scheme
to translate data reference addresses. We add a comparison before translation to avoid
translating stack or heap accesses. According to our experience, only 2% of dynamic
memory references need to be translated. We further use offline static peephole scanning
to identify references that surely access stack and avoid instrumenting them completely.

7 Evaluation

We have implemented BISTRO for Win32 PE binaries as an IDA-Pro plug-in. We
have addressed a variety of engineering challenges such as virtual space layout re
arrangement with a large embedded component, patching PE header, import and export
tables, and re-generating relocation table. We omit the details due to space limitation.

7.1 Performance: Efficiency and Overhead

We first evaluate the performance of BISTRO by stretching (1) real-world Windows
based applications and (2) SPEC CPU 2000 binaries. Our experiments are done on a
Dell Inspiron 15R laptop with Intel(R) Core(TM) i5-2410M 2.30GHz CPU and 4GB
memory, running Windows 7 SP1. For the SPEC CPU 2000 benchmark suite, we use
the “win32-x86-vc7” config file which includes all integer benchmark binaries and four
floating-point benchmark binaries. We compile the benchmark suite using Visual Stu
dio 2010, with full optimizations. To test BISTRO on non-relocatable binaries, we set
“/DYNAMICBASE:NO” switch for the compiler to prevent it from generating relocat
able binaries. The application binaries are readily available and we do not know about
their compilers. Although the binaries of Adobe Reader and Chrome web browser carry
relocation tables, we ignore them for testing our solutions for non-relocatable binaries.

We measure the following performance metrics: (1) space overhead – for both bi
nary file and initial memory image – of a stretched binary compared with its original

http:binaries.We
http:table.We
http:relocation.We
http:references.To

Table 1. Performance results of stretching Windows software and SPEC CPU 2000 binaries.
Binary Instr.

Count
Indirect
Jumps

Indirect
Calls

Call/Jump Targets:
Anchors(%)

Data Blocks:
Data Anchors(%)

File Size (KB) Initial Mem. Image Size (KB) Run Time (s) Stretching
Time (s) Orig: Stch’ed growth(%) Orig: Stch’ed growth(%) Orig: Stch’ed overhead(%)

SPEC CPU 2000 benchmarks
164.gzip 19825 19 103 98: 23 (23.47%) 163: 1 (0.61%) 86.5: 98.5 13.87% 424: 440 3.77% 83.2: 84.6 1.68% 0.752
175.vpr 54595 53 106 229: 31 (13.54%) 404: 1 (0.25%) 232: 248.5 7.11% 248: 268 8.06% 64.5: 64.6 0.16% 0.755
176.gcc 337033 456 260 3855: 271 (7.03%) 2580: 14 (0.54%) 1264: 1393 10.21% 1348: 1480 9.79% 33.3: 33.9 1.8% 1.420
181.mcf 20566 36 103 144: 25 (17.36%) 100: 2 (2.00%) 76.5: 85.5 11.76% 100: 108 8% 40.2: 40.4 0.5% 0.685
186.crafty 65375 56 130 312: 29 (9.29%) 247: 1 (0.40%) 283: 298.5 5.48% 1344: 1360 1.19% 38.2: 38.9 1.83% 0.935
197.parser 44554 36 112 155: 27 (17.42%) 463: 1 (0.22%) 164: 173.5 5.79% 352: 360 2.27% 83.1: 83.5 0.48% 0.754
252.eon 114249 50 441 1659: 1253 (75.53%) 1455: 1 (0.07%) 499: 575 15.23% 592: 668 12.84% 42.7: 44.7 4.68% 0.950
253.perlbmk 164093 148 211 2166: 499 (23.04%) 1293: 6 (0.46%) 626: 743 18.69% 648: 764 17.9% 63.3: 67.9 7.27% 1.118
254.gap 129464 35 1357 816: 625 (76.59%) 1142: 1 (0.09%) 452.5: 492 8.73% 896: 936 4.46% 35.4: 37.2 5.08% 1.001
255.vortex 132034 66 145 446: 71 (15.92%) 738: 1 (0.14%) 561: 585 4.28% 588: 612 4.08% 50.6: 51.1 0.99% 1.050
256.bzip2 21360 36 101 145: 25 (17.24%) 150: 1 (0.67%) 87.5: 99 13.14% 172: 184 6.98% 73.4: 74.6 1.63% 0.714
300.twolf 64669 41 106 193: 30 (15.54%) 391: 2 (0.51%) 253: 263 3.95% 296: 304 2.7% 93.2: 93.6 0.43% 0.809
177.mesa 143679 211 552 2675: 473 (17.68%) 942: 5 (0.53%) 549.5: 652.5 18.74% 568: 672 18.31% 64.9: 65.6 1.08% 0.990
179.art 23353 38 103 149: 26 (17.45%) 103: 2 (1.94%) 85.5: 94.5 10.53% 104: 112 7.69% 32: 32.3 0.94% 0.690
183.equake 21824 38 101 146: 27 (18.49%) 116: 1 (0.86%) 88.5: 97 9.6% 104: 112 7.69% 26.1: 26.1 0% 0.720
188.ammp 61214 39 128 224: 70 (31.25%) 279: 1 (0.36%) 235.5: 245.5 4.25% 252: 264 4.76% 88.7: 88.3 1.92% 0.780
Average - - - - (24.80%) - (0.60%) - 10.09% - 7.53% - 1.90% -

Real-world Windows-based Software
putty 107220 57 662 942: 291 (30.89%) 93: 1 (1.08%) 444: 496 11.71% 472: 524 11.02% - - 0.865
gvim 561626 294 5111 3893: 1004 (25.79%) 5081: 22 (0.43%) 1950.5: 2150 10.23% 2008: 2212 10.16% - - 2.121
notepad++ 272434 159 4302 4897: 2695 (55.03%) 3394: 7 (0.21%) 1584: 1864 17.68% 1660: 1940 16.87% - - 1.480
Adobe Reader 273710 146 2543 3635: 2160 (59.42%) 3037: 11 (0.36%) 1445.9: 1702.4 17.74% 1472: 1728 17.39% - - 1.556
Chrome 230234 82 1280 1842: 933 (50.65%) 930: 6 (0.65%) 1211: 1338 10.49% 1240: 1368 10.32% - - 1.391
Average - - - - (44.36%) - (0.55%) - 13.57% - 13.15% - - -

version, (2) runtime overhead of the stretched binary, and (3) time for BISTRO to stretch
the binary. In particular, we are interested in the overhead incurred by BISTRO itself,
not by the execution of the embedded components. As such, we embed a minimal com
ponent (a one-byte snippet) into each subject binary in our experiments. To create a
“worst-case” scenario, we insert it at the beginning of each binary so that every byte in
the binary gets shifted, which entails all indirect control transfer targets in the binary to
be redirected. The measured overhead is hence the upper bound of overhead.

For each SPEC 2000 binary, we run both its original and stretched versions, and
compare their execution time and file/initial image size. We do not measure the execu
tion time of the Windows applications because they are all interactive. We experience
no perceivable overhead when using their stretched versions.

The results are shown in Table 1. From the Indirect Jumps and Indirect Calls 1

columns, we observe that indirect calls are very common in application binaries, indi
cating that they might be C++ programs. Further investigation confirms our speculation,
indicating B ISTRO’s effectiveness for binaries compiled from C++ programs. More
over, there are much less indirect jumps than indirect calls, indicating they are likely
to have less impact on runtime overhead. Note that a small number of indirect jumps
does not imply an equally small number of potential indirect jump targets. In fact, due
to the difficulty of identifying jump table boundaries, we conservatively consider any
constant in a binary that appears to be an instruction address as a potential jump target.
The large number of potential jump targets and the low impact on performance justify
our design choice of using the slightly more expensive but more flexible dynamic target
translation scheme (Section 5.2), compared to the anchor scheme (Section 5.1).

The Call/Jump Targets: Anchors column shows the number of potential indirect
call/jump targets, the number of anchors generated, and their comparison. Observe that
the number of anchors created is small, compared to the size of the potential set. For bi
naries from C++ programs, due to the heavy use of virtual methods, it is not a surprise to
see many anchors created. The Data Blocks: Data Anchors column shows that only less

1 We exclude indirect calls to external library functions through import address table (IAT), as
these external targets are not handled by our redirection mechanisms.

http:ourexperiments.To

than 1% of all data blocks need to be preserved at their original locations using anchors.
From the File Size columns, we can see BISTRO only increases the file size by 10.1% on
average for SPEC programs, and 13.6% for application binaries. The overhead is dom
inated by the perfect hash tables. The Initial Mem. Image Size columns show the initial
memory consumption when the binary is loaded into memory, which increases by only
7.5% on average for SPEC programs and 13.2% for application programs. Note that
BISTRO does not cause any additional memory overhead during execution. The Run
Time columns present the runtime overhead, which is only 1.9% on average. Except
eon, perlbmk and gap, all SPEC binaries have less than 2% overhead. The last column
Stretching Time shows the stretching time of BISTRO. The time is consistently short,
implying that B ISTRO can stretch a binary at runtime when it is loaded.

7.2 Case Study I: Binary-level Semantic Patching Using BISTRO

Code reuse is a common practice in software development. One popular approach is to
directly compile and statically link a piece of re-usable code with the target software
– either directly in the executable or in some private library – to make the software
self-contained, avoid compatibility problems, and improve performance. Indeed, devel
opers of many popular programs (e.g., chrome and firefox) reuse code this way. The
consequence is that programs reusing the same code may have the code placed at dif
ferent locations in their address spaces. The reused code may not even have the same
instructions if compiled by different compilers.

Table 2. Results of binary semantic patching using B ISTRO
Vulnerability Patch Extracted From Vulnerable Application Patched Original File Size

(KB)
Patched File Size (KB)

w. / w.o. Reloc
Semantic Patch

Available
Vendor Patch

Available
CVE-2010-1205 libpng 1.2.43 1.2.44 (rpng2-win.exe) Firefox 3.6.6 (xul.dll) 11747.5 12371.5 / 13005 6/25/2010 7/20/2010
CVE-2011-3026 libpng 1.4.8 1.4.9 (rpng2-win.exe) Zoner Photo Studio 15 (Zxl.dll) 8225.1 8502.1 / 9181.6 2/18/2012 N/A

SA47322 / CVE-2012-0025 IrfanView 4.30 4.32 (Fpx.dll)
XnView 1.99.5 (Xfpx.dll) 356 368 / 400 12/20/2011 N/A

LeadTools 17.5 (ltkdku.dll) 138.5 143 / 151 12/20/2011 N/A

SA47388 XnView 1.98.5 1.98.8 (Xfpx.dll)
IrfanView 4.35 (Fpx.dll) 432 448 / 508 3/12/2012 N/A

LeadTools 17.5 (ltkdku.dll) 372.5 428.5 / 493.5 3/12/2012 N/A

SA48772 / CVE-2012-0278 IrfanView 4.33 4.34 (Fpx.dll)
XnView 1.99.5 (Xfpx.dll) 356 368 / 400 4/13/2012 N/A

LeadTools 17.5 (ltkdku.dll) 138.5 142.5 / 150.5 4/13/2012 N/A
SA49091 XnView 1.98.8 1.99 (Xfpx.dll) LeadTools 17.5 (ltkdku.dll) 372.5 428.5 / 488.5 6/15/2012 N/A

However, code reuse via static linking introduces a security liability: When a piece
of re-usable code contains a vulnerability, all programs that reuse the code will suffer
from the same vulnerability. If these programs have been shipped in binary forms, the
only way to fix the vulnerability is to release multiple binary patches – one for each
program and by the corresponding vendor. However, not all vendors react to a vulner
ability with equal timeliness and some may not even be aware of the vulnerability not
in their own code. Thus it may be desirable for customers, who do not have source
code access, to patch these programs without vendors’ involvement. Binary syntactic
patching, which directly applies a patch for software A to software B sharing the same
(vulnerable) code, will hardly work, because of the different locations of the code and
the syntactic differences between the two code copies (due to different compilers used
or different call/jump targets inside the copies).

In our first case study, we show that BISTRO can enable binary semantic patching.
Assume that software A and B share a function f and the vendor of A has released a
binary patch of f for a vulnerability. Let the patched program and the patched function

′be A ′ and f ′, respectively. We will use BISTRO to extract f from A ′ and embed it to B

http:respectively.We

to replace the vulnerable version. Note that BISTRO is critical in ensuring the extracted
′ ′ f is properly patched and the target binary B is properly stretched to contain f .

We acquire a group of application binaries that leverage the same vulnerable com
ponent using public, vendor-provided information (e.g., which libraries are used in the
software) or by finding similar binary snippets using the binary comparison tool bin
diff [32]. Suppose at least one binary in the group, say A, has a patched version A ′ .
Our goal is to extract a semantic patch out of A ′ and transplant it to patch the other
vulnerable binaries {B1, ..., Bn}.

We collect 6 real-world vulnerabilities, with their CVE or Secunia IDs shown in
Column 1 of Table 2. For each vulnerability, the vulnerable program(s) that has been
patched by its vendor is shown in Column 2. The file names in braces represent the files
that are patched. Column 3 shows a list of other un-patched programs with the same
vulnerabilities. Column 6 shows the patch release date for the application in Column
2, i.e. the earliest date we can extract the semantic patch. Column 7 shows the date
when the vendors for the software in Column 3 release their patches (N/A means no
vendor patch is available yet). Most of the applications used in this case study are close-
source (except libpng and firefox). Observe that most of the applications in Column 3
do not have vendor patches so far. For firefox, the new version (3.6.7) which patched the
vulnerability was released – but with a one-month latency. With BISTRO, we can fix all
these vulnerable applications as soon as one vendor releases the corresponding patch.

Failure of Syntactic Patching. We first verify that simple syntactic patching does not
work – that is, using an existing binary differencing tool that generates and applies
patches (e.g., xdelta, bsdiff, bspatch, etc.) will not properly patch B1...n. For each vul
nerability in Table 2, we use bsdiff to extract the syntactic difference between the pair of
shared functions (f and f ′) in the versions in Column 2 as a patch, and use bspatch to
apply it to the corresponding vulnerable applications in Column 3. None of the resultant
binaries works. Further inspection shows that syntactic patches cannot properly fix the
call/jump targets that are different among copies of the same reused code.

Function Identification. To extract the semantic patch for a specific vulnerability, we
need to identify the functions in A and A ′ that are related to the vulnerability. To illus
trate, we denote the set of functions in a binary A by FA. First, we notice that the related
functions must exist in all the vulnerable binaries. We take A and the other vulnerable
binaries {B1, ..., Bn} and use bindiff [32] to identify the set of common functions F
among them (Equation (1) below). However, some functions in F are not related to
the vulnerability (e.g., other pieces of reused code.) To pinpoint the relevant functions
in F , we leverage the observation that they have been patched in A ′. Particularly, we
utilize the partial matching feature of bindiff to identify the relevant patched functions
as shown in Equation (2). The generated M is a mapping that maps a function f E F

′to its patched version f E FA ′ . Two functions are said to be partially matched when
they share similar characteristics (e.g., common basic blocks, similar CFG) but are not
exactly the same. By performing partial matching between F and FA′ , we also exclude
patches in A ′ that are not related to the target vulnerability. Note that a vendor may

http:vulnerability.To
http:SyntacticPatching.We

patch a few (unrelated) problems in a single release.

F = FA n FB1 n FB2 ... n FBn (1)
M = BinDiff Partial Matching(F, FA′) (2)

Patch Transplanting. We have developed a binary semantic patching tool based on
BISTRO and bindiff. The extraction and application of the patch is guided by mapping

′ ′function M . For each mapping under M : (f, f E FA′), we use BISTRO to extract f
from A ′ as the semantic patch for f . For each vulnerable binary B, we use bindiff to
find f . We use BISTRO to cut out f and then stretch the resulting binary to implant
′ ′ f at the same starting address of f . BISTRO ensures the correctness of both f and

the patched binary B ′ by properly stretching and patching control transfer instructions
and data references. Our patching tool tries to avoid extracting dependent functions or

′global data entries of f (i.e., functions being called and global data accessed by f ′) as
much as possible by redirecting them to their counterparts in the target binary B. Since
′ f is a patched version of f , they likely share the same dependencies. For example,

′for each function invocation to function g inside f ′, if bindiff is able to identify the
matching function g in B, our tool will automatically redirect the invocation in the

′extracted patch to g, without extracting g ′. To be conservative, g and g must be fully
′matched. Otherwise, g will be extracted as part of the semantic patch.

We evaluate our patching tool on the subjects in Table 2. We apply our tool in two
different ways to stress-test the robustness of BISTRO: first, we use the relocation infor
mation when it is present in the binary; second, we do not use relocation information
at all. The patches are not large, each consisting of tens to hundreds of instructions.
However, it is not straightforward to generate them because of the nature of the vulner
abilities being patched. In both runs, the patching is successful: the patched applications
work well and no longer suffer from the corresponding vulnerabilities. Columns 4 and
5 show the file size changes.

The first two vulnerabilities are in libpng, which is widely used in various software
to read, write and render PNG images. The two vulnerable applications in Column 3
have libpng statically linked in their private DLLs (xul.dll and Zxl.dll). To patch these
DLLs, we extract the semantic patch from rpng2-win.exe, a sample application in the
libpng package. The remaining four vulnerabilities lie in libfpx, a library to handle the
Flashpix (.fpx) image format. For the four vulnerabilities, only the first one was patched
by the maintainer of libfpx; the other three were patched by individual developers who
use libfpx. However, as shown in the table, individual developers only care about patch
ing the libfpx code in their own applications. Using our binary semantic patching tool,
users of the un-patched applications can transplant the patches and eliminate the vul
nerabilities without the help of application developers.

7.3 Case Study II: Malware Stitching Using BISTRO

In the second case study, we demonstrate how BISTRO helps in the study of cyber at
tacks and counter-attacks. Specifically, we use BISTRO to compose a new, executable
malware by stitching 3 separate functional components extracted from a non-executable

http:Zxl.dll).To

sample of the Conficker worm [15]. It is an unpacked version without relocation infor
mation. Based on the published technical report of Conficker [15] and manual code
inspection, we identify the code and data associated with the following 3 components:

–	 DNS API hijacking. This component prevent DNS query of the web sites in a
blacklist by hijacking the functions Query Main, DNSQuery A, DNSQuery W and
DNSQuery UTF8 in dnsapi.dll. The result is these web sites will not be accessible
using their domain names.

–	 Code injection. To hijack the functions in dnsapi.dll used by a process (e.g., Inter
net Explorer), the malware must inject itself into the address space of the process.
This component performs the injection. It takes the process identifier (PID) of the
target process and the path of the malware as parameters.

–	 Process identification. This component gets a process’ PID using its process name
and provide the PID to the code injection component.

The identification process takes us about 60 minutes. After that we use BISTRO
to extract the three components from the Conficker sample. We then create a dummy
DLL to serve as the container of these components. Next, we use BISTRO to embed
the 3 components into the empty DLL, right before the DllMain() function. After that,
we add instructions to the DllMain() function to invoke the inserted components. The
invocation code first checks if the current process is the target process. If so, it will
invoke the DNS API hijacking component to hijack the DNS query. If not, it will call
the process identification component to find the PID of the target process, and then
call the DLL injection component to inject itself into the target process for DNS API
hijacking. The whole composition process takes us about 30 minutes.

To verify the functionality of the newly composed malware, we select two applica
tions as our targets (in two experiment runs): Internet Explorer and FlashFXP (an FTP
client). After being loaded, the malware injects itself into the target processes. Then, in
the target application, we try to access web site avast.com, which is blacklisted by Con
ficker [15]. Interestingly, the access was not blocked at first (namely, the malware did
not succeed). After debugging, we found that it was due to a bug in Conficker’s original
code: the hijacked DNSQuery W() has one unnecessary instruction which sets a wrong
return value. We point out that we would not have spotted the problem, had we not made
these components executable and observed their runtime behavior. After removing this
instruction using B ISTRO, both IE and FlashFXP are successfully compromised: they
can no longer access avast.com due to a DNS query error.

7.4 Case Study III: Trojan-ing Kernel Drivers

In the third case study, we demonstrate the use of BISTRO in transplanting malicious
modules from existing kernel rootkits to existing kernel-level device drivers. The trojan
ed kernel drivers will execute the rootkit modules while performing their original func
tionalities. The goal of this case study is two-fold: (1) to evaluate the effectiveness of
BISTRO for kernel-level binaries, (2) to show the possibility and ease of composing –
instead of implementing from scratch – device drivers with hidden and possibly ma
licious logic. Such trojan-ed device drivers are more difficult to detect and clean up,
compared with traditional rootkits that come as stand-alone kernel modules. On the flip

http:avast.com
http:returnvalue.We
http:avast.com
http:sample.We

Table 3. Trojan-ed Device Drivers (Two per Row).

w/ proc hider embedded w/ keylogger embedded
Original Driver File Name File Size(KB)

File size(KB) Work? File size(KB) Work?

Beep beep.sys 4.1 7.9 12.4
FAT File System ftdisk.sys 122.1 135.1 137.5
NT File System ntfs.sys 561.1 595.3 598

Intel E1000 Network Adapter e1000325.sys 167.1 175.4 180.6
Logitech C500 Webcam LVPr2Mon.sys 25 31.4 33.8

side, trojan-ed kernel drivers can also be leveraged in defensive missions, such as hon
eypot deployment, to achieve better stealthiness in attack monitoring and containment.
For example, malware may try to aggressively detect and disable any monitoring kernel
module (e.g., Sebek). With BISTRO, one could transplant stealthy monitoring/logging
functions into a general-purpose device driver, making them more difficult to detect and
disable.

In this case study, the two Windows-based kernel rootkits tested are captured vari
ants of HookSSDTMDL and Klog which were originally packed in the wild, without
relocation information for the rootkit code. The packers use their own algorithms to
perform rootkit code relocation, and such relocation information is lost after the rootk
its are unpacked. The samples we obtained are the unpacked version. We wish to extract
two modules from the samples (one from each): (1) proc hider for hiding processes and
(2) keylogger for logging keystrokes. To show the generality of device driver trojan-ing,
we transplant these two rootkit modules into 5 different Windows-based kernel drivers,
resulting in a total of 10 trojan-ed kernel drivers.

First, we use an approach similar to [16, 24] to identify the modules to extract. We
then use BISTRO to shrink each of the two kernel rootkits so that only the code of the
two modules and the data they access remain (as snippets). The size of the extracted
snippets is 2.3KB for proc hider and 7KB for keylogger, respectively. The size of the
data in the extracted snippets is 169 bytes and 514 bytes, respectively. After prepar
ing the snippets, we use BISTRO to insert each of them into each of the following five
drivers: beep.sys, ftdisk.sys, ntfs.sys, e1000325.sys and LVPr2Mon.sys. The OS is Win
dows XP (SP2)2. Table 3 lists the 10 resultant trojan-ed drivers (two per row). For each
of the 10 drivers, we install it and confirm the proper working of (1) the original driver
functionalities and (2) the malicious rootkit module.

When determining where to insert a rootkit module, we choose to insert it right
before a randomly chosen function in the driver. To invoke the rootkit module when
the driver is loaded, we insert a call to the rootkit module in the DriverEntry ()
function of the driver, which is a mandatory function exported by any driver and can
be located in the code section by reading the export table. Interestingly, we are able to
use BISTRO to implement a “timebomb”-style invocation of the rootkit module: Instead
of activating the module upon driver loading, we wish to invoke it only under a certain
condition. Specifically, when we trojan the NT file system driver (ntfs.sys) with the
keylogger module, we want to activate the keylogger only when a file with the word

2 We use Windows XP because the real-world rootkits we obtained do not work with newer
versions.

http:modulestoextract.We

“secret” in its name is opened. This is done by calling a file-name-matching function
before activating the keylogger. We write this function using C, compile it into a binary
snippet, and use BISTRO to insert it into ntfs.sys (just like inserting the rootkit
module), particularly, inside NtfsFsdCreate (), a function that is called every
time a file is opened. Here, we leverage IDA-Pro to spot this function, which is the IRP
dispatch routine to handle IRP MJ CREATE IRPs. This can be easily done by finding
the initialization of the IRP dispatch table in DriverEntry (). We verify that the
timebomb-controlled trojan-ed driver works as expected.

We observe that, for a “native” driver developed by the OS vendor (e.g., beep.sys,
ftdisk.sys and ntfs.sys), the installation of the trojan-ed version does raise an alert to the
user, thanks to the built-in integrity check mechanism in the OS. Unfortunately, if the
user chooses to ignore the alert, the installation will proceed and the system will never
complain again. For third-party drivers (e.g., e1000325.sys and LVPr2Mon.sys), the
detection of maliciously trojan-ed version is much more difficult because these drivers
may be widely distributed and frequently updated without a centralized authority. Even
if such an authority exists and performs digital signing for its drivers, authors of trojan
ed drivers may still evade detection by stealing certificates from the authority to sign
their trojan-ed drivers, as was done in the crafting of Stuxnet [33]. In our study, the
installations of the trojan-ed third-party drivers did not trigger any warnings.

8 Discussion

BISTRO cannot work on self-modifying, self-checking or obfuscated binaries. Self-
modifying binaries generate instructions dynamically during runtime, which could not
be statically patched using BISTRO. Self-checking binaries use checksum or other in
tegrity checks to detect changes made to their code by BISTRO, thus may refuse to
run properly. Obfuscated binaries in many cases cannot be properly disassembled. For
instance, the attacker can craft a conditional jump, with one branch never taken but
pointing to a data entry. A disassembler will have trouble handling such binaries as it
does not know statically that one of the branches cannot be taken. However, we note that
all other static binary rewriting/instrumentation techniques face the same challenge.

Our anchor and branch target set pruning criteria assume the constants in a binary
represent a superset of all possible indirect control transfer targets. This assumption
should hold for binaries generated by common compilers. One exception is position
independent code (PIC), which obtains addresses at runtime and use them to compute
indirect control transfer targets. All PIC we encountered has the form of making a call
and then obtain the return address from the stack (e.g., call $+5; pop eax), which is the
address of the instruction right after the call. We identify all such instructions and insert
snippets to adjust the addresses to their mapped addresses. Also, special compilers or
hand-written binaries might violate our assumption. For example, in the instruction
sequence mov eax, Target; add eax, 5; jmp eax, the actual target is Target +5 instead of
the constant Target; our pruning heuristic will miss the actual target. For such binaries,
we can choose not to prune the anchor set or the branch target set, which will consume
more memory but guarantee correctness.

http:thekeylogger.We

Currently, B ISTRO only supports Win32 PE binaries. However, the design is gen
eral, without relying on specific features of Win32 PE. We plan to extend BISTRO to
support other formats on x86, especially ELF, which is similar to Win32 PE.

9 Related Work

The most related work is discussed in Section 1 (with details in Section 3.) In this
section, we discuss other related work in the general area of binary manipulation. They
fall into three categories: (1) static binary rewriting (2) dynamic binary rewriting and
(3) binary component identification, extraction and reuse.

Static Binary Rewriting. Static binary rewriting is widely applied in many scenarios,
such as in-lined reference monitors [34], software fault isolation [25, 26, 7, 27], binary
instrumentation [11, 10, 12, 6, 8, 5], binary obfuscation [37, 38] and retrofitting security
in legacy binaries [28, 13]. Most of these rewriters require the binary to be compiled by
specific compilers, or contains symbolic information.

PEBIL [12], REINS [34], STIR [14] and SecondWrite [13] are recently developed
rewriters targeting stripped binaries. However, they all aim at rewriting a single binary,
so they all keep the original code and data sections in place. In contrast, BISTRO sup
ports “transplanting” binary components from one or more binaries to a target binary,
which requires rewriting and combining multiple binaries. Keeping original code and
data sections in place may result in address space conflicts and hence is not an option for
BISTRO. Detour-based techniques [11, 9, 10] are lightweight and can work on stripped
binaries. However, they cannot patch non-trivial jumps/calls that are repositioned.

Dynamic Binary Rewriting. Dynamic binary rewriters [3, 4, 1, 29] are generally more
robust as they do not require specific compilers or symbolic information. It is possible
to apply them to conduct binary stretching and transplanting. However, we choose to
use a static approach mainly because of the following two reasons: (1) Dynamic binary
rewriters usually have much higher run time overhead than static ones. (2) It is more
difficult to deploy a instrumented binary using dynamic approaches, as the rewriter
itself must be deployed along with the binary.

Binary Component Identification, Extraction and Reuse. Recently, researchers pro
posed to identify, extract and reuse components from binaries for security scenarios [30,
17, 24]. Kolbitsch et al. proposed Inspector Gadget [30], which performs dynamic slic
ing on a malware binary to identify and extract the slice pertinent to a specific malicious
functionality, and wrap the slice into a stand-alone binary that could be reused later to
execute the malicious functionality. Inspector Gadget is able to extract component from
self-modifying code, which is not supported by B ISTRO due to the limitation of static
binary manipulation. Using dynamic slicing, Inspector Gadget also avoids the problem
of handling indirect calls/jumps in BISTRO as all call/jump targets are directly known in
the slice. However, the slice may not cover all possible code paths, which could result
in incorrect execution when the user provides an input that would lead to a code path
which is not included in the slice. Compared to Inspector Gadget, BISTRO statically ex
tracts the component from the binary, which involves handling of indirect calls/jumps
but provides better code path coverage.

http:place.In

Caballero et al. proposed BCR [17] to identify and extract a function from a binary
using a combination of static and dynamic analysis. The extracted function, in the for
mat of disassembly, is wrapped in a C file to be reused. BCR statically disassembles the
designated function starting at its entry point; when encountering indirect call/jumps,
BCR utilizes dynamic execution trace to the find the call/jump targets. During the ex
traction, BCR rewrites all calls/jumps to use labels. Using labels implies that indirect
call/jump can only have one target, which may not always hold in practice. Although
BCR specially handles indirect jumps that use jump tables, there are other forms of
multiple-target indirect calls/jumps such as function pointers and vtables. Compared to
BCR, BISTRO preserves the original semantic of indirect calls/jumps when performing
the extraction, hence does not suffer from this problem.

Neither Inspector Gadget nor BCR could extract components from non-executable
binaries (as in Section 7.3) because they are based on dynamic analysis. In such case,
BISTRO can still perform the extraction statically. Moreover, neither Inspector Gad
get nor BCR supports reusing extracted components to enhance legacy binaries (as in
Section 7.2), as they lack the capability of embedding instructions that invoke the com
ponents into the target binary. BISTRO is able to handle such a scenario by performing
both binary component extraction and embedding.

Lin et al. proposed ROC [24] which uses dynamic slicing to identify reusable func
tional components in a binary for attack purposes. However, compared to BISTRO, ROC
only reuses the components in the same binary; it does not support extraction or reusing
components in a different program.

10 Conclusions

We have developed a new pair of binary program manipulation primitives called BISTRO,
which provides two complementary capabilities: extracting and re-packaging a func
tional component from a binary program; and embedding a functional component in a
target binary program. We have overcome the challenges of patching control transfer
instructions and data references to preserve the semantics of both the extracted com
ponent and the stretched binary program, especially indirect calls and jumps. BISTRO
incurs low runtime overhead (1.9% on average) and small space overhead (11% on
average). The extraction and embedding operations are highly efficient, with less than
1.5s for most cases. We have applied BISTRO to two security application scenarios,
demonstrating B ISTRO’s efficiency, precision, and versatility.

Acknowledgements. This research has been supported by DARPA under Contract
12011593. Any opinions, findings, and conclusions in this paper are those of the au
thors only and do not necessarily reflect the views of DARPA.

References

1. C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. Reddi, and
K. Hazelwood, “Pin: building customized program analysis tools with dynamic instrumen
tation,” in SIGPLAN Notices, 2005.

2. N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight dynamic binary in
strumentation,” in PLDI’07.

3. D. Bruening, “Efficient, transparent, and comprehensive runtime code manipulation,” Ph.D.
dissertation, MIT, 2004.

4. F. Bellard, “Qemu, a fast and portable dynamic translator,” in USENIX ATC’05 .
5. B. De Sutter, B. De Bus, and K. De Bosschere, “Link-time binary rewriting techniques for

program compaction,” in TOPLAS’05.
6. R. Muth, S. Debray, S. Watterson, and K. De Bosschere, “Alto: a link-time optimizer for the

compaq alpha,” in SPE’01.
7. M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow integrity principles, imple

mentations, and applications,” in TISSEC’09.
8. A. Eustace and A. Srivastava, “Atom: A flexible interface for building high performance

program analysis tools,” in USENIX ATC’95
9. B. Buck and J. K. Hollingsworth, “An api for runtime code patching,” in IJHPCA’00.

10. T. Romer, G. Voelker, D. Lee, A. Wolman, W. Wong, H. Levy, B. Bershad, and B. Chen, “In
strumentation and optimization of win32/intel executables using etch,” in USENIX Windows
NT Workshop, 1997.

11. G. Hunt and D. Brubacher, “Detours: Binary interception of win32 functions,” in USENIX
Windows NT Symposium’99.

12. M. Laurenzano, M. Tikir, L. Carrington, and A. Snavely, “Pebil: Efficient static binary in
strumentation for linux,” in ISPASS’10.

13. P. OSullivan, K. Anand, A. Kotha, M. Smithson, R. Barua, and A. Keromytis, “Retrofitting
security in cots software with binary rewriting,” IFIP SEC’11.

14. R. Wartell, V. Mohan, K. Hamlen, and Z. Lin, “Binary stirring: Self-randomizing instruction
addresses of legacy x86 binary code,” in CCS’12.

15. P. Porras, H. Saidi, and V. Yegneswaran, “Conficker c analysis,” SRI International, 2009.
16. N. Johnson, J. Caballero, K. Chen, S. McCamant, P. Poosankam, D. Reynaud, and D. Song,

“Differential slicing: Identifying causal execution differences for security applications,” in
IEEE S&P’11.

17. J. Caballero, N. Johnson, S. Mccamant, and D. Song, “Binary code extraction and interface
identification for security applications,” in NDSS’10.

18. G. Balakrishnan and T. Reps, “Analyzing memory accesses in x86 executables,” in CC’04.
19. A. Slowinska, T. Stancescu, and H. Bos, “Howard: A dynamic excavator for reverse engi

neering data structures,” in NDSS’11.
20. J. Lee, T. Avgerinos, and D. Brumley, “Tie: Principled reverse engineering of types in binary

programs,” in NDSS’11.
21. Z. Lin, X. Zhang, and D. Xu, “Automatic reverse engineering of data structures from binary

execution,” in NDSS’10.
22. Hex-Rays, “Ida pro disassembler.” http://www.hex-rays.com/products/ida/index.shtml
23. D. Schmidt, “Gperf: a perfect hash function generator,” More C++ gems, 2000.
24. Z. Lin, X. Zhang, and D. Xu, “Reuse-oriented camouflaging trojan: Vulnerability detection

and attack construction,” in DSN’10.
25. R. Wahbe, S. Lucco, T. Anderson, and S. Graham, “Efficient software-based fault isolation,”

in OS Review’94.
26. S. McCamant and G. Morrisett, “Evaluating sfi for a cisc architecture,” in USENIX Secu

rity’06.
´

system address spaces,” in OSDI’06.

27. U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. Necula, “Xfi: Software guards for

28. M. Prasad and T. Chiueh, “A binary rewriting defense against stack based buffer overflow
attacks,” in USENIX ATC’03.

http://www.hex-rays.com/products/ida/index.shtml

29. K. Scott, N. Kumar, S. Velusamy, B. Childers, J. Davidson, and M. Soffa, “Retargetable and
reconfigurable software dynamic translation,” in CGO’03.

30. C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda, “Inspector gadget: Automated extraction of
proprietary gadgets from malware binaries,” in IEEE S&P’10.

31. A. Srivastava, A. Edwards, and H. Vo, “Vulcan: Binary transformation in a distributed envi
ronment,” Tech. Rep., Microsoft Research, 2001.

32. H. Flake, “Structural comparison of executable objects,” in DIMVA’04.
33. N. Falliere, L. Murchu, and E. Chien, “W32. stuxnet dossier,” White paper, Symantec Corp.,

Security Response, 2011
34. R. Wartell, V. Mohan, K. Hamlen, and Z. Lin, “Securing untrusted code via compiler-

agnostic binary rewriting,” in ACSAC’12.
35. A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis via hardware virtu

alization extensions,” in CCS’08.
36. S. Nanda, W. Li, L. Lam, and T. Chiueh, “BIRD: binary interpretation using runtime disas

sembly,” in CGO’06.
37. A. Moser, C. Kruegel, and E. Kirda, “Limits of static analysis for malware detection,” in

ACSAC’07.
38. I. Popov, S. Debray, and G. Andrews, “Binary obfuscation using signals,” in USENIX Secu

rity’07.

