
CERIAS Tech Report 2013-21
DBMask: Fine-Grained Access Control on Encrypted Relational Databases

 by Mohamed Nabeel, Muhammad I. Sarfraz, Jianneng Cao, Elisa Bertino
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

DBMask: Fine-Grained Access Control on

Encrypted Relational Databases

Mohamed Nabeel #1, Muhammad I. Sarfraz ∗2, Jianneng Cao #3, Elisa Bertino #4

Dept. of Computer Science, Purdue University
305 N. University Street, West Lafayette, IN, USA

1 nabeel@cs.purdue.edu

3 caojn@cs.purdue.edu

4 bertino@cs.purdue.edu

∗ Dept. of Electrical Engineering, Purdue University
475 Northwestern Ave., West Lafayette, IN, USA

2 msarfraz@purdue.edu

Abstract—For efficient data management and economic bene
fits, organizations are increasingly moving towards the paradigm
of “database as a service” where their data are managed by a
database management system (DBMS) hosted in a public cloud.
However, data are the most valuable asset in an organization, and
inappropriate data disclosure puts the organization’s business at
risk. Therefore, data are usually encrypted in order to preserve
their confidentiality. Past research has extensively investigated
query processing on encrypted data. However, a naive encryption
scheme negates the benefits provided by the use of a DBMS. In
particular, past research efforts do not have adequately addressed
flexible access control on encrypted data at different granularity
levels which is critical when data are shared among different
users and applications. Previous access control approaches in
the best case only support as minimum granularity level the
table column, by which the authorization is associated with an
entire column within a table. Other approaches only support
access control granularity at the database level, meaning that
authorizations are associated with the entire database, and thus
either a user can access the entire database or cannot access any
data item. In this paper, we propose DBMask, a novel solution
that supports fine-grained access control, including row and cell
level access control, when evaluating SQL queries on encrypted
data. Our solution does not require modification to the database
engine, and thus maximizes the reuse of the existing DBMS
infrastructures. Our experimental results show that our solution
is efficient and scalable to large datasets.

I. INTRODUCTION

The advances of Internet technology and the increasing
demand for cost-effective and efficient data management have
prompted the emergence of cloud storage servers, such as
Rackspace, Amazon EC2, and Microsoft Azure. These third
party clouds provide reliable data storage and efficient query
processing services able to scale to large data volumes. By
outsourcing data to the cloud, organizations save the cost
of building and maintaining a private database system and
have to pay only for the services they actually use. Therefore,
organizations are increasingly fueled to move to the paradigm
of “database as a service”. However in order to protect data
from inappropriate disclosure either by the cloud or external
attackers, in most cases data are encrypted before being

outsourced to the cloud. The use of encryption raises issues
related to the efficient processing of queries on encrypted data.
In order to address such issues, past research has extensively
investigated various techniques, such as bucketization [1], [2]
and secure indexing [3], [4]. However, these techniques do
not differentiate among authorized users of the data and thus
do not support flexible access control with different units of
access control granularity. This is inconsistent with the data
sharing requirements of most real-world applications.

Our work is inspired by the CryptDB project [5], which
is the first research effort that has systematically investigated
access control for SQL queries on encrypted relational data.
The CryptDB architecture assumes a proxy between users and
the cloud server. Authorized users log in to the proxy by
entering passwords, from which the proxy derives secret keys.
Given a plaintext query submitted by a user, the proxy first
checks if the query can be authorized according to the access
control policies. If this is the case, the proxy encrypts the
query (i.e., encrypts table/column names and the constants in
the query) by the corresponding secret key derived from the
user’s password. The encrypted query is then forwarded to the
cloud, which runs the query over encrypted data and returns
the result to the proxy. The proxy then decrypts the query
result and forwards it to the user.

CryptDB [5] suffers however from the following two lim
itations. The first is that the minimum granularity support
by its access control mechanism is the column-level. Such
a granularity level is too coarse to satisfy the requirements
of some real applications. For example, an employee may be
permitted to access only his/her own record in an outsourced
employee table. With column-level granularity, the only way
to allow an employee to see his/her data is to grant the
employee access to every column in the employee table. As a
consequence, the employee can access the whole table. Access
control is thus not enforced as required by the policy. The
second limitation is the onions of encryption. An onion is
a multiple layers of encryptions. Each layer is applied for
a specific query operation or purpose, and the encryption

mailto:msarfraz@purdue.edu
mailto:bertino@cs.purdue.edu
mailto:caojn@cs.purdue.edu
mailto:nabeel@cs.purdue.edu

layers from the external layer to the most internal layer are
increasingly weaker. Consider an onion for equality matching.
In this case, depending on the expected queries, there would
be three layers in CryptDB: the inner most layer is an adapted
deterministic encryption for equality join, the middle one is
classic deterministic encryption for equality selection, and the
outer most one is random encryption to assure the maximum
security. Given a query equality join, the proxy transmits the
secret keys to the cloud server, so that the server can peel off
the first two layers (i.e., random encryption and deterministic
encryption) and run the join operation. Therefore, it is easy
to see that the support of multiple query operations is at the
cost of decryption. In addition, although onions offer multiple
levels of security, the security level decreases over time when
the outer layers are removed. Hence, the real security level
an onion can guarantee is the protection offered by the inner
most encryption. Furthermore, to support diverse operations,
multiple onions need to be generated (e.g., an order onion is
necessary if range queries are to be supported).

To address the limitations of CryptDB, in this paper we
propose DBMask, a novel solution that supports fine-grained
access control when evaluating SQL queries on encrypted re
lational databases. Our solution does not require modification
to the database engine, and thus maximizes the reuse of the ex
isting database management systems (DBMS) infrastructures.
The contributions of DBMask include the following:

•	 We propose a fine-grained access control model for
relational data. The granularity level can be a table, a
column, a row as well as a cell.

•	 We enforce the access control policies on outsourced
databases by an expressive attribute-based group key
management scheme [6], [7]. Different portions of data
are encrypted by different keys according to the access
control policies, so that only authorized users receive the
keys to decrypt the data they are authorized for access.

•	 Our approach uses the blinded attribute-value pair en
cryption technique [8], which securely encrypts each
numerical value by only one layer of encryption but
still supports most of the relational query processing
operators.

•	 Besides operations on numerical values, secure keyword
matching is also supported.

The paper is organized as follows. Section II provides an
overview of our solution and the adversarial model. Section III
presents a fine-grained access control model and discusses its
enforcement. Section IV provides information about the key
cryptographic constructs for SQL query operators and a brief
security analysis of each construct. Section V describes the
evaluation of encrypted queries over an encrypted database in
the cloud. Section VI reports experimental results. Section VII
surveys related work and compares with our system. Finally,
Section VIII outlines conclusions and future work

II. OVERVIEW

In this section, we provide an overview of our system
architecture and the adversarial model.

A. System architecture

Encrypted Results

Data

server
Proxy

Upload encrypted data

Encrypted

SQL Query Key hierarchy Data

owner

User

Fig. 1. The system architecture

Our system includes four entities: data owner, data user,
proxy, and data server. Their interactions are illustrated in
the system architecture in Figure 1. Data owner uses different
secret keys to encrypt different portions of data, according
to pre-defined access control policies. The secret keys are
organized in a lattice for an efficient management. Data owner
can also build secure indices over the encrypted data to
improve the search performance. The encrypted data together
with their secure indices are uploaded to the data server. A
data user with authenticated attributes can verify itself to the
proxy. The successful attribute based verification of the user
to the proxy allows the proxy to either derive or obtain one or
multiple secret keys required to encrypt the user query. Given
a plaintext query submitted by the user, the proxy uses these
keys to rewrite the query into an encrypted query, which can
then be executed on the encrypted data in the data server.
Encrypted query results are returned from data server to the
proxy, which decrypts the results using the secrets established
at the time of verification and forwards them to the data user.
Notice that during the query processing stage, the data server
learns neither the query being executed nor the result set of
the query.

B. Adversary model

The data owner remains offline after it uploads the encrypted
data to data server. We assume that the data owner is fully
trusted and is not vulnerable to attacks. However, all the three
remaining entities might be compromised. For each of them,
we will discuss the possible violations of data confidentiality,
and how to restrict them.

The data server is assumed to be honest-but-curious. It
does not attempt to actively attack the encrypted data, e.g.,
by altering the query answers or changing the encrypted data.
Instead, it is passive, and will try to learn the confidential data.
To address this, all the data outsourced to the server by the
data owner are encrypted. The server will never be given the
key, by which ciphertext can be decrypted to obtain plaintext.
Still, to support query processing, we develop techniques,
which allow the server to efficiently evaluate SQL queries

on encrypted data (see Section IV). In addition, the server
itself may be compromised by external attackers. In such a
case, the data confidentiality is still preserved, since attackers
cannot access encrypted data. Attackers might also change the
query answers and/or the encrypted data (e.g., by swapping
the attribute values of any two tuples). However, such active
attacks are out of the scope of this work.

The proxy is a trusted third party. All the secret keys, which
are generated by the data owner and stored at the proxy,
are encrypted. Our key management scheme (see Section IV)
requires that these encrypted secret keys cannot be decrypted
by the proxy alone. Instead, they can only be decrypted by the
proxy with the help of authorized data users. An attack that has
compromised the proxy can access the keys of logged-in users.
Consequently, it can also access the data, authorized to those
users. However, the secret keys of all the inactive users remain
secure. In our model, data owner does not outsource the data
encryption operation to the proxy, although it is trusted. This
is to avoid “single point of failure”. Otherwise, if the proxy
is compromised at the pre-processing stage (i.e., the stage of
generating the keys to encrypt data), then the whole system is
compromised.

In the system, there can be many data users. In general,
they are more vulnerable to attacks than the proxy and the
data server, because they have less knowledge and fewer
resources to provide high-level security, and because they
are distributed and the possible number of them is big. Our
system does not store at the user side any secret key, which
can be used to decrypt the data. Otherwise, the problem of
key distribution would be raised, and data would need to be
re-encrypted after the users are compromised. Instead, our
key management requires that only the collaboration between
proxy and authorized data user allows the proxy to derive
secret keys. Such a procedure can be seen as a function:
k ← f(As), where k is the secret key, As is the set of user’s
attributes, and f is a function representing the collaboration
between the proxy and the user. Now suppose that the user
is compromised (i.e., its attributes are disclosed). To prevent
unauthorized data access, the data owner can update the
attributes to As ′, so as to prevent attackers with As posing
as authorized user any more. Such a strategy allows the key
k and the data to remain unchanged.

III. ACCESS CONTROL MODEL

In this section, we describe our access control model in
detail. We utilize ABAC (attribute based access control) model
which has the following characteristics.

•	 Users have a set of identity attributes that describe
properties of users. For example, organizational role(s),
seniority, age and so on.

•	 Data is associated with ABAC policies that specify con
ditions over identity attributes.

•	 A user whose identity attributes satisfy the ABAC policy
associated with a data item can access the data item.

While the access can be controlled at different granularity
levels such as table level, row level, cell level, and so on, we

focus on the row level access control to propose our ABAC
basic model. In the basic model, each tuple (row) in a database
table is attached an ABAC policy. The policy attachment is
performed by adding an additional column to the table. Upon
receiving an SQL query from a user for a table T , the proxy
server needs to determine the ABAC policies attached to T
satisfied by the user’s attributes and restrict the query to only
those rows by adding a predicate to the user query. Such
predicate “encodes” the satisfied ABAC policies.

We formally define our model as follows:
Definition 3.1: Attribute Condition.

An attribute condition cond is an expression of the form:
“nameA op l”, where nameA is the name of an identity
attribute A, op is a comparison operator such as =, <, >, ≤,
≥, �=, and l is a value that can be assumed by attribute A.

Definition 3.2: ABAC Policy.
An ABAC policy ACP is a tuple (s, o) where: o denotes a
set of rows in the table T and s is a Boolean expression over
a set of attribute conditions that must be satisfied in order to
access o.

We observe that grouping users based on the ABAC policies
they satisfy enhances access control enforcement as it provides
one level of indirection. Such a grouping of users allows to
enforce access control policies on a set of users instead on
individual users. Further, relationships between groups can
be exploited to improve the management. Considering the
fact that every ACP can be converted into disjunctive normal
form (DNF), we define a group as follows for a collection of
attribute conditions.

Definition 3.3: Group.
We define a group G as a set of users which satisfy a specific
conjunction of attribute conditions in an ABAC policy.

The idea of groups is similar to user-role assignment in
RBAC, but in our approach, the assignment is performed
automatically based on identity attributes. Given the set of
data owner defined ABAC policies, the following steps are
followed to identify the groups:

•	 Convert each ABAC ACP into DNF. Note that this
conversion can be done in polynomial time.

• For each distinct disjunctive clause, create a group.

Example:
Consider the following two ACPs with the attribute conditions
C1, C2 and C3.

•	 ACP1 = C1 ∧ (C2 ∨ C3)
• ACP2 = C2

The ACPs in DNF form are as follows:

•	 ACP1 = (C1 ∧ C2) ∨ (C1 ∧ C3)
• ACP2 = C2

In this example, there are three groups G1, G2, G3 for the
set of users satisfying the attribute conditions C1 ∧C2, C1 ∧C3,
and C2 respectively.

We exploit the hierarchical relationship among groups in
order to support hierarchical key derivation and improve the
performance and efficiency of key management. We introduce
the concept of Group Poset as follows to achieve this objective.

Definition 3.4: Group Poset.
A group poset is defined as the partially ordered set (poset)
of groups where the binary relationship is ⊆.
Example:
Let G be all users. G1 ⊆ G3 and there is no ordering between
G1 and G2. As Figure 2, the poset has the Hasse diagram
φ → G1, φ → G2, G1 → G3, G2 → G and G3 → G. In the
figure, the set of users satisfying the condition attached to the
group Gi is denoted as Ui and U consists of all the users in
the system.

Fig. 2. An example group poset

A. Assigning Group Labels to Tuples and Users

Like the purpose-based access control model [9], we label
the tuples using descriptive group names. Each tuple may have
multiple groups associated with it. If there is an ordering
relationship between two groups associated with a row, we
discard the more privileged group and assign only the less
privileged group. When the proxy decides the group(s) that
user belongs to, it selects the most privileged groups. The
idea is that a user in the more privileged group can become
a member of the less privileged group by following the
hierarchical relationship in the group poset. Note that the
group label assignment to a tuple indirectly attach an ABAC
policy to a row as described at the beginning of this section.
Example:
Assume that the attribute Ai satisfies the attribute condition
Ci and there is a set of rows in the table T1 that the users in
the groups G1 and G3 satisfy. Further, assume that the user
u1 has the attributes A1 and A2.

Since G1 → G3, the set of rows is labeled with the less
restrictive group G3. According to the selection criteria, the
proxy chooses G1 for u1 based on its two attributes A1 and
A2. When u1 submits a query for the table T1, the proxy
selects all rows containing either G1 or G3 as u1 is a member
of both groups.

B. Broadcast and Hierarchical Key Management

In traditional hierarchical access control models [10], each
node in a hierarchy is assigned a key and a user who has
access to a key corresponding to a node in the hierarchy can
access all the keys for all the descendant nodes using the public
information available. Hierarchical key encryption techniques

reduce the number of keys to be managed. However, a major
drawback is that assigning keys to each node and giving them
to users beforehand makes it difficult to handle dynamics
of adding and revoking users. For example, when a user is
revoked, one needs to update the keys given to other users
through private communication channels. We propose to ad
dress this drawback while utilizing the benefits of hierarchical
model by proposing a hybrid approach combining broadcast
and hierarchical key management. A broadcast group key
management (BGKM) allows one to efficiently handle group
keys when user dynamics change. We utilize a recent expres
sive scheme called AB-GKM (attribute based GKM) as the
broadcast GKM scheme which is described in Section IV-A.
Instead of directly assigning keys to each node in the hierarchy,
we assign a AB-GKM instance to each node and authorized
users can derive the key using the key derivation algorithm of
AB-GKM. A AB-GKM instance is attached to a node only
if there is at least one user who cannot derive the key of the
node by following the hierarchical relationship.
Example:
For the node for the group G1 in the poset in Figure 2, an
AB-GKM instance is created if U1 � φ.= Similarly, for the
node for the group G2, an AB-GKM instance is created if
U3 − U1 �= φ.

IV. CRYPTOGRAPHIC CONSTRUCTS

In this section, we describe the cryptographic constructs
used in our approach for secure query evaluation over en
crypted data.

A. Key management

Broadcast Group Key Management (BGKM) schemes [11],
[12], [13], [6] are a special type of GKM scheme whereby
the rekey operation is performed with a single broadcast
without requiring private communication channels. Unlike
conventional GKM schemes, BGKM schemes do not give
subscribers private keys. Instead subscribers are given a secret
which is combined with public information to obtain the
actual private keys. Such schemes have the advantage of
requiring a private communication only once for the initial
secret sharing. The subsequent rekeying operations are per
formed using one broadcast message. Further, in such schemes
achieving forward and backward security requires only to
change the public information and does not affect the secrets
given to existing subscribers. However, BGKM schemes do not
support group membership policies over a set of attributes. In
their basic form, they can only support 1-out-of-n threshold
policies by which a group member possessing 1 attribute
out of the possible n attributes is able to derive the group
key. A recently proposed attribute based GKM (AB-GKM)
scheme [7] provides all the benefits of BGKM schemes and
also supports attribute based access control policies (ACPs).

Users are required to show their identity attributes to the
data owner to obtain secrets using the AB-GKM scheme. In
order to hide the identity attributes from the data owner while
allowing only valid users to obtain secrets, we utilize oblivious

commitment based envelope (OCBE) protocols [14] which is
based on Pedersen commitments [15] 1 and zero knowledge
proof of knowledge techniques [16]. We omit the technical
details of the OCBE protocols due to the page limit. The
OCBE protocols between the data owner and users provide
the following guarantees in DBMask.

•	 The data owner does not learn the identity attributes
of users as their identities are hidden inside Pedersen
commitments.

•	 A user can obtain a valid secret for an identity attribute
from the data owner only if the identity attribute is not
fake. The data owner sends the secrets to the user in an
encrypted message and the user can decrypt the message
only if the user has a valid identity attribute.

We denote the set of all attribute conditions as ACB and
the set of all ACPs as ACPB. Example 4.1 shows an example
ACP.

Example 4.1: The ACP ((“type = regular” ∧ “region =
Indiana”) ∨ “type = premium”, {new movie}) states that a
user, either having a premium subscription or having a regular
subscription in Indiana region, has access to new movies.

The idea behind the AB-GKM scheme is as follows. A
separate BGKM instance for each attribute condition is con
structed. The ACP is embedded in an access structure T . T
is a tree with the internal nodes representing threshold gates
and the leaves representing BGKM instances for the attributes.
T can represent any monotonic policy. The goal of the access
tree is to allow deriving the group key for only the subscribers
whose attributes satisfy the access structure T . Figure 3 shows
the access tree for the ACP presented in Example 4.1.

type = premium

OR

AND

type = regular region = Indiana

Fig. 3. An example access tree

Each threshold gate in the tree is described by its child
nodes and a threshold value. The threshold value tx of a node
x specifies the number of child nodes that should be satisfied in
order to satisfy the node. Each threshold gate is modeled as a
Shamir secret sharing polynomial [17] whose degree equals to
one less than the threshold value. The root of the tree contains
the group key and all the intermediate values are derived in a
top-down fashion. A subscriber who satisfies the access tree
derives the group key in a bottom-up fashion.

We only provide the abstract algorithms of the AB-GKM
scheme. The AB-GKM scheme consists of five algorithms:

1Pedersen commitment is a cryptographic commitment allows a user to
commit to a value while keeping it hidden and preserving the user’s ability
to reveal the committed value later.

Setup, SecGen, KeyGen, KeyDer and ReKey. An abstract
description of these algorithms are given below.

•	 Setup(ℓ, N , Na):
It takes the security parameter ℓ, the maximum group size
N , and the number of attribute conditions Na as input,
and initializes the system.

•	 SecGen(γ):
The secret generation algorithm gives a userj , 1 ≤ j ≤ N

a set of secrets for each commitment comi ∈ γ, 1 ≤ i ≤
m. OCBE protocols are used to assure the privacy of
subscribers from the group controller. At the end of the
execution of this algorithm, the group controller does not
learn the attributes of subscribers and the subscribers can
recover the secret(s) only if they have valid credentials.

•	 KeyGen(ACP):
The key generation algorithm takes the access control
policy ACP as the input and outputs a symmetric key K,
a set of public information tuples PI, and an access tree
T .

•	 KeyDer(β, PI, T):
Given the set of identity attributes β, the set of public
information tuples PI, and the access tree T , the key
derivation algorithm outputs the symmetric K only if the
identity attributes in β satisfy the access structure T .

•	 ReKey(ACP):
The rekey algorithm is similar to the KeyGen algorithm.
It is executed whenever the dynamics in the system
change, that is, whenever subscribers join and leave or
ACPs change.

Brief security analysis. An adversary, who has compromised
the cloud server, cannot infer the keys used to encrypt the data
from the public information stored in the cloud server as the
AB-GKM scheme is key hiding even against computationally
unbounded adversaries. An adversary, who has compromised
the proxy, the AB-GKM secrets of the users who are currently
online are compromised as the proxy derives these secrets
using users’ passwords and encrypted secrets. Since the data
owner performs the setup and key generation operations of
the AB-GKM scheme, such an attack does not allow the
attacker to infer the secret information stored at the data
owner. If such an attack is detected, the proxy can invalidate
the existing secrets of the online users and request the data
owner to generate new set of secrets using the AB-GKM
scheme for the users without changing the underlying keys
used to encrypt/decrypt the data. Since the secrets at the time
of compromise and after regeneration are different, it is cryp
tographically hard for the adversary to derive the underlying
encryption/decryption keys from the invalid secrets. Notice
that, unlike a traditional key management scheme, since the
underlying encryption/decryption keys are not required to be
changed, such a compromise does not require to re-encrypt
the data stored in the cloud.

B. Numerical matching

Nabeel et. al. [8] recently proposed a privacy preserving
comparison of encrypted numerical values that does not re
quire decrypting the numerical values. We refer to this ap
proach as PPNC (privacy preserving numerical comparison) in
the remainder of the paper. The approach can be summarized
into the four algorithms, Setup, EncVal, GenTrapdoor and
Compare, which we use for numerical comparison in our
cloud based database system.

•	 Setup(t, l):
The security parameter t decides the bit length of the
prime numbers of the Paillier cryptosystem. The system
parameter l is the upper bound on the number of bits
required to represent any data values published, and we
refer to it as domain size. For example, if an attribute
can take values from 0 up to 500 (< 29), l should be
at least 9 bits long. Using these parameters, it initializes
the underlying Paillier cryptosystem and random values
required for the computations.

•	 EncVal(x):
Given an input value x, it produces a semantically secure
encrypted value ex that hides the actual value, but allows
to perform comparisons using the trapdoor values which
is described below.

•	 GenTrapdoor(t):
Given an input value t, it produces a semantically secure
encrypted value et, called the trapdoor, that is used with
its corresponding encrypted value to perform oblivious
comparisons.

•	 Compare(ex, et, op):
Given an encrypted value ex for x and a trapdoor value
et for t, it obliviously compares and outputs the result of
xopt. It should be noted that this algorithm is executed
without decrypting ex and et. Hence, at the end of the
evaluation, the actual x and t remains oblivious to the
algorithm. Further, the output only reveals a randomized
difference of the two values and, thus, does not leak even
the actual difference.

Brief security analysis. An adversary, who has compromised
the cloud server, cannot infer the plaintext values of the
encrypted values as the the private key is not stored at the
cloud server and the encrypted values are semantically secure.
An adversary, who has compromised both the proxy and the
cloud server, cannot directly infer the plaintext values using the
private key information stored at the proxy since the private
key used at the data owner to generate the encrypted value
and the private key used at the proxy to generate the trapdoor
are different and it is cryptographically hard to derive one
key from the other. The adversary may however repeatedly
execute comparison operations to infer the plaintext values
of the encrypted values in the cloud server. Detection and
prevention of such an attack is beyond the scope of this paper.

C. Keyword search

Besides the numerical matching, DBMask also allows a user
to check whether an encrypted string contains certain words.
We adopt the keyword search technique proposed in [18] to
support such a secure operation. Given a string, we extract
keywords from it, and encrypt them. Then, given a keyword,
a trapdoor is generated. The trapdoor is then sequentially
compared with the encrypted keywords. If there is a match,
then the corresponding string contains the given keyword with
a probability close to 1 (i.e., the false rate is negligible). We
refer to this approach as PPKC (privacy preserving keyword
comparison) in the remainder of the paper.The details of the
technique are summarized as follows.

, k ′′ •	 Setup(G, f , P , k ′ , E):
1) G : KG → X ℓ is a pseudorandom generator, where
X = {0, 1}n−m . The data owner generates a stream
cipher S1, S2, . . . , Sℓ, where Si has n − m bits. Note
that the stream cipher is kept confidential from both the
proxy and the data user. 2) f : KF × {0, 1}

∗ → KF

is a pseudorandom function. 3) F : KF × X → Y
is a pseudorandom function, where Y = {0, 1}m . 4)
P : KP ×Z → Z is a pseudorandom permutation, where
Z = {0, 1}n . 5) k ′ and k ′′ are two keys, which are
shared between the data owner and the proxy. 6) E is
a symmetric encryption function.

•	 EncVal(Wi):
Given a keyword Wi, the data owner computes Xi =
P(k ′′ ,Wi). The data owner then generates ki =
f(k ′ , Xi). Suppose that Si is the stream cipher for Wi.
The data owner calculates F (ki, Si), and Wi’s ciphertext
Ci = P(k ′′ ,Wi) ⊕ Ti, where Ti = Si||F (ki, Si). Let
str be a string with keywords W1,W2, . . . ,Wj . The
data owner sends to the server (E(str), C1, C2, . . . , Cj),
where E(str) is the encryption of the string.

•	 GenTrapdoor(W):
Given a keyword W , the proxy generates its trapdoor as
(X, k), where X = P(k ′′ ,W) and k = f(k ′ , X).

•	 Search(Ci, X):
The user sends the trapdoor (X, k) to the server. For each
ciphertext Ci, the server checks if Ci ⊕X has the form of
Si||F (k, Si), where Si is the first n − m bits of Ci ⊕ X .
If the form holds, then Ci is an encryption of keyword
W .

Extensions. The above searchable encryption scheme is ap
plicable only to exact keyword matching. However, it can be
easily extended to support the following two conditions: 1)

′Whether a string contains both keyword W and keyword W .
2) Suppose that the keywords to be encrypted are ordered
according to their locations in the string. Then, it is possible

′to check whether two keywords W and W in the string are
close to each other (e.g., the number of keywords between
them is smaller than a threshold).

Brief security analysis. An adversary, who has compromised
the cloud server, cannot infer the plaintext keywords from the
ciphertexts. See [18] for detailed proofs. An adversary may
break both the proxy and the server. In such a case, direct
inference of plaintext from the ciphertext is still impossible,
because the encrypted keyword P(k ′′ ,Wi) is randomized by
Ti = Si||F (ki, Si), where Si is kept confidential and ki is
unknown. However, a brutal force attack is still possible. The
adversary can first build a dictionary of keywords and then
generates the trapdoor for each keyword in the dictionary.
Finally, given the ciphertext of a keyword, the adversary com
pares it with each generated trapdoor (as in sequential search)
until finding the matching one. The keyword corresponding to
this matching trapdoor is the desired plaintext.

V. SECURE QUERY EVALUATION OVER ENCRYPTED DATA

In this section, we provide a detailed description of our
privacy preserving query processing scheme for encrypted
databases in a public cloud. As mentioned in Section II our
systems consists of four entities: data owner, proxy, cloud and
users. Our system undergoes the following phases: System
initialization, user registration, data encryption and uploading,
and data querying and retrieval. We now explain each phase
in detail.

A. System initialization

The data owner runs the Setup algorithm of the un
derlying cryptographic constructs, that is, AB-GKM.Setup,
PPNC.Setup and PPKC.Setup 2. The data owner makes avail
able the public security parameters to the proxy so that
the proxy can generate trapdoors during data querying and
retrieval phase.

The data owner also converts the ACPs into DNF and users
satisfying each disjunctive clause form a group. As mentioned
in Section III, these groups are used to construct the Group
poset to perform hierarchical key derivation along with the
AB-GKM based key management.

B. User registration

Users first get their identity attributes certified by a trusted
identity provider. These certified identity attributes are cryp
tographic commitments that hide the actual identity attribute
value but still bind the value to users. Users register their cer
tified identity attributes with the data owner using the OCBE
protocol. The data owner executes the AB-GKM.SecGen
algorithm to generate secrets for the identity attributes and
gives the encrypted secrets to users. Users can decrypt and
obtain the secrets only if they presented valid certified identity
attributes. The data owner maintains a database of user-secret
values. When a user or an identity attribute is revoked, the
corresponding association(s) from the user-secret database are
deleted. The user-secret database is also stored at the proxy
with the secrets encrypted using a password only each user

2We use the dot notation to refer to an algorithm of a specific cryptographic
construct. For example, AB-GKM.Setup refers to the Setup algorithm of AB
GKM scheme.

possesses. Every time the user-secret database changes, the
data owner synchronizes its changes with the proxy.

C. Data encryption and uploading

In our solution each cell in an original table is encrypted
twice as illustrated in Figure 4: the first encryption is for
fine-grained access control, and the second is for privacy-
preserving matching. Correspondingly, each column in the
original table is expanded to two. We denote the column
resulting from the encryption for fine-grained access control as
data-col, and the one resulting for the encryption for privacy-
preserving matching as match-col.

cell

AB-GKM
Encrypted

Value

Paillier Blinded
Value/ Keyword
Matching Value

Each cell is encrypted twice

(For Access Control) (For Encrypted SQL Queries)

Fig. 4. The two encryptions of each cell

Let us first discuss the creation of data-col. Given a cell in
the original table, its encryption in the corresponding data-col
is generated by a secret key derived from AB-GKM scheme [7]
as follows. Consider the row containing the cell in the original
table. Based on the ACPs, each row is assigned one or more
group labels. The set of groups decides the key, under which
the cell in the row is encrypted. If two groups are connected
in the group poset, only the label of less privileged group
is assigned to the row. The intuition behind is that users in
the more privileged group can reach the less privileged group
by following the hierarchical relation in the group poset. After
removing the labels of groups with higher privileges, a row can
still be associated with multiple groups. For each remaining
group Gi, a group secret key Ki is generated by executing
the AB-GKM.KeyGen algorithm. In order to avoid multiple
encryptions (i.e., one group secret key for one encryption),
the AB-GKM.KeyGen algorithm is again executed to generate
a master group key K using the group keys Ki’s as secret
attributes to the algorithm. As a consequence, if a user belongs
to any of the groups assigned to the row, the user can access
the row by executing the AB-GKM.KeyDer algorithm twice.
The first execution generates the group key and second derives
the master key. Public information to derive the key is stored
in a separate table called PubInfo.
Example:
Following the example in Figure 2, suppose that C1, C2 and
C3 are conditions defined as as follows. C1 = “level > 3”, C2

= “role = doctor” and C3 = “role = nurse”. Therefore, ACP1

is satisfied by all users whose level is greater than 3 and who
are either doctors or nurses. ACP2 is satisfied by all doctors.

Assume that the above ACPs are applied to the Patient table
and group labels are assigned as shown in the following table.

TABLE I

PATIENT TABLE

ID Age Diagnosis Groups
1 35 HIV G1
2 30 Cancer G1, G2
3 40 Asthma G2, G3
4 38 Gonorrhea G1

In Table I (Patient table), each group Gi is assigned a
unique ki. Rows 1 and 4 are encrypted using key k1. Since
rows 2 and 3 have multiple groups, in order to avoid multiple
encryptions/decryptions, a master key is assigned using AB
GKM by considering the group keys as input secrets to the
AB-GKM.KeyGen algorithm. Row 2 is encrypted using key
k12 generated from the AB-GKM instance having k1 and k2 as
input secrets. We denote the public information corresponding
to this master key as PI12. Similarly, row 3 is encrypted with
key k23. The public information is stored in Table II.

TABLE II

PUBINFO TABLE

Groups PI
G1 P I1
G2 P I2
G3 P I3
G1, G2 P I12
G2, G3 P I13

Table III shows the broadcast encrypted values where Ek(x)
refers to the semantically secure encryption of the value x
using the symmetric key k.

TABLE III

ENCRYPTED PATIENT TABLE

ID-enc Age-enc Diag-enc Groups
Ek1 (1) Ek1 (35) Ek1 (HIV) G1
Ek12 (2) Ek12 (30) Ek12 (Cancer) G1, G2
Ek23 (3) Ek23 (40) Ek23 (Asthma) G2, G3
Ek1 (4) Ek1 (38) Ek1 (Gonorrhea) G1

Now, let us consider the creation of match-col. Given a
cell in the original table, its encryption in the match-col is
generated as follows. Our scheme supports both numerical
matching and keyword search for strings. If the cell is of
numerical type, PPNC.EncVal algorithm is used to encrypt
the cell value. If the cell is of type string, the PPKC.EncVal
algorithm is used to perform the encryption. Once each cell is
encrypted twice, the encrypted table is uploaded to the cloud.

Table IV shows the final table with both encrypted data
col’s and comparison friendly match-col’s, where compn and
compk refer to PPNC.EncVal and PPKC.EncVal respectively.

D. Data querying and retrieval

Processing of a query over encrypted data is a filtering-
refining procedure. Given an encrypted query forwarded to the
server by the proxy, the server evaluates the predicates of the
query on the encrypted data. Encrypted tuples that satisfy the
predicates are returned to the proxy, while others are pruned.
The proxy decrypts the data, refines the query result, and sends
the plaintext result to the user. The details are as follows.

•	 An authorized user sends a plaintext SQL query to the
proxy, as if the outsourced database is unencrypted. In
other words, encryption and decryption of the data in the
database is transparent to users.

•	 The proxy parses the query and generates the abstract
syntax tree of the query in order to rewrite the query for
the cloud. It first removes ORDER BY clause, GROUP
BY clause, HAVING clause, aggregate functions, and
predicates with aggregate functions from the query. Then,
for each column to be included in the query result (i.e.,
column following the SELECT keyword in the query), it
replaces it by its corresponding “data-col”. After that, in
each predicate for numerical matching, the proxy com
putes the trapdoor value using PPNC.GenTrapdoor algo
rithm and replaces the predicate with a user defined func
tion (UDF) which invokes the PPNC.Compare algorithm.
Similarly, for each keyword matching predicate, the proxy
computes the trapdoor value using PPKC.GenTrapdoor
algorithm and replaces the predicate with a user defined
function which invokes the PPKC.Compare algorithm.
The rewritten query is then sent to the cloud server.

•	 The cloud executes the rewritten query over the encrypted
database. It filters tuples that do not satisfy the predicates
in the query, and sends back the encrypted result set to
the proxy.

•	 The proxy generates necessary keys to decrypt the result
set using the AB-GKM.KeyDer algorithm with the public
information3 and the user secrets as well as the hierar
chical key derivation. If the proxy has removed some
clauses (e.g., ORDER BY) and/or aggregate functions
(e.g., SUM) from the original query in query rewriting,
it populates an in-memory database with the decrypted
result set and refines the query result according to the
constraints in the clauses and/or aggregate functions. If
no term from the query is removed, decrypted result set is
the final result. The proxy sends the final plaintext result
back to the user.

For queries that cannot be processed in a single round,
multiple queries are executed at the cloud server in order to
obtain the final answer for user queries. Intermediate results
obtained from the cloud server in such multi-round queries are
loaded into an in-memory database at the proxy and executed
to generate results for the subsequent queries to the cloud
server. When a query is split into multiple sub-queries, the
query planner at the proxy server generates the sub-queries

3The public information (i.e., PI) is stored at the cloud server and retrieved
together with the query.

TABLE IV

TWICE ENCRYPTED PATIENT TABLE

ID-enc ID-com Age-enc Age-com Diag-enc Diag-com Groups
Ek1 (1) compn(1) Ek1 (35) compn(35) Ek1 (HIV) compk(HIV) G1
Ek12 (2) compn(2) Ek12 (30) compn(30) Ek12 (Cancer) compk(Cancer) G1, G2
Ek23 (3) compn(3) Ek23 (40) compn(40) Ek23 (Asthma) compk(Asthma) G2, G3
Ek1 (4) compn(4) Ek1 (38) compn(38) Ek1 (Gonorrhea) compk(Gonorrhea) G1

such that the cloud server performs the maximum possible
computation and the utilization of the bandwidth between the
proxy and the cloud server is minimized.

Now we illustrate query processing DBMask through ex
ample queries.

A user having the attribute “role = doctor” executes Query
1 through the proxy server.
Query 1:

SELECT ID, Age, Diag

FROM Patient

The proxy determines that the user is a member of the group
G3, re-writes the query as Query 2 and submits to the cloud
server.
Query 2:

SELECT ID-enc, Age-enc, Diag-enc

FROM Patient

WHERE Groups LIKE ’%G3%’

The proxy receives the encrypted row 3 of the Patient table
from the cloud server. The proxy uses the secrets of the user
and PI3 to derive k3 using AB-GKM.KeyDer algorithm. Then
it uses k3 and PI23 to derive k23. The proxy uses this key to
decrypt the encrypted result set and send the plaintext result
back to the user.

A user having the attributes “role = doctor” and “level = 4’
executes Query 3 through the proxy server.
Query 3:

SELECT ID, Age, Diag

FROM Patient

WHERE Age > 35

ORDER BY Age ASC

The proxy determines that the user is a member of the
groups G1 and G3, re-writes the query as Query 4 and submits
to the cloud server.
Query 4:

SELECT ID-enc, Age-enc, Diag-enc

FROM Patient

WHERE UDF Compare Num(Age-com,

PPNC.GenTrapdoor(35), ’>’)
AND (Groups LIKE ’%G1%’ OR
Groups LIKE ’%G3%’)

UDF Compare Num is a user defined function that simply
invokes the PPNC.Compare algorithm internally. Notice the
’ORDER BY’ clause is removed from the query as the cloud
server does not have sufficient information to order the query
results. The cloud server returns the encrypted rows 3 and 4 to
the proxy. In order to decrypt the resultset, the proxy derives

the key k1 for the higher privileged group G1 using the AB
GKM scheme. In order to generate k2, instead of executing
another AB-GKM key derivation algorithm, it utilizes the
hierarchical key derivation to derive k2 from k1. The derivation
of the key k23 is similar to the previous example. The proxy
uses k1 and k23 to decrypt the resultset and orders the plaintext
resultset using its in-memory database before sending the final
resultset to the user.

The same user executes Query 5 through the proxy server.
Query 5:

SELECT ID, Age, Diag
FROM Patient
WHERE Age > 35 AND Diag LIKE ’Asthma’
ORDER BY Age ASC

The query is very similar to Query 3, except for the
additional predicate “Diag LIKE ’Asthma”’. Therefore,
the query is re-written similar to Query 4 by includ
ing the additional predicate “UDF Compare Str(Diag-com,
PPKC.GenTrapdoor(’Asthma’))” where UDF Compare Str is
a user defined function that simply invokes the PPKC.Search
algorithm internally. We omit the details of the execution as
it is very similar to the previous query.

E. Handling user dynamics

When users are added or revoked, or attributes of existing
users change, the user dynamics of the system change. This
requires changing the underlying constructs. Since DBMask
utilizes AB-GKM, these changes are performed transparent
to other users in the system. When a new identity attribute
for a user is added to the system, the data owner simply adds
the corresponding secret to the user-secret database. Similarly,
when an existing attribute for a user is revoked from the
system, the data owner simply removes the corresponding
secret from the user-secret database. In either scenario, the
data owner recomputes the affected public information tuples
and inform both the proxy server and the cloud server to
update the data. Notice that unlike the traditional symmetric
key based systems, DBMask does not need to re-key existing
users and they can continue to use their existing secrets. Since
no re-keying is performed, the encrypted data in the database
remains the same even after such changes. Therefore, DBMask
can handle very large datasets even when the user dynamics
change.
Example:
Assume that a user having the attribute “role = doctor” is
added to the system. This affects only the group G2. The data
owner executes AB-GKM.Re-Key operation with the same

symmetric key k2 as the group key to generate the new
′public information PI . The proxy and the cloud server are 2

updated with the new secret and the new public information
respectively. Notice that this change affects neither the secrets
issued to other users nor the public information related to other
groups in which the new user is not a member.

VI. EXPERIMENTS

This section evaluates the performance overhead and the
functionality of our prototype implementation. We imple
mented DBMask in C++ on top of Postgres 9.1 while not
modifying the internals of the database itself. This is achieved
by including UDFs in the query containing encrypted fields
during the rewriting process of a query at the proxy. We use the
memory storage engine of MySQL as the in-memory database
at the proxy to store contents of a query when the execution
of a query requires more than one round of communication
between the proxy and the server. The cryptographic opera
tions are supported by using NTL and OpenSSL libraries. The
experimental setup is run on 3.40 GHz Intel i7-3770 processor
with 8 GB of RAM in Ubuntu 12.04 environment. We analyze
the performance of our prototype by running a TPC-C query
workload and the functionality of our prototype by using a web
based scientific application called Computational Research
Infrastructure for Science (CRIS). The performance of TPC
C query workload when running on an unmodified Postgres
server is compared to running the workload through the
proxy of our prototype. The experimental results below show
a low runtime overhead with a 29-31% loss in throughput
in comparison to unmodified Postgres. The access control
functionality deployed by our prototype on CRIS ensures that
a logged in user is only able to retrieve data that the user is
authorized to access.

A. TPC-C

TABLE V

TPC-C WORKLOAD

Application # Tables # Columns # Queries

TPC-C 9 92 3300

Fig. 5. Throughput from TPC-C Workload

The TPC-C workload queries contain comparison predicates
(=, < , >) and other predicates such as DISTINCT and
COUNT as well as aggregates such as SUM and MAX. In
total, the workload contains 1900 SELECT, 100 DELETE, 900
UPDATE and 400 Insert statements with 100 Selects using
SUM predicate. Our prototype currently supports operations
on integer and text data types and do not support certain
fields such as those that perform date manipulation. We study
the performance of the TPC-C workload by evaluating two
different metrics: the server throughput for different sql queries
and the interval between issuing a query and receiving the
results.

Figure 5 shows the server throughput. The results show
that there is an overall loss of DBMask’s throughput by
29-31% in comparison to running an unencrypted trace of
TPC-C workload on Postgres. The most variation is noticed
in SELECT statements where simple SELECT statements
perform relatively better than aggregates such as SUM.The
throughput of the remaining queries that make the greater
part of TPC-C workload is relatively modest. We consider a
lower throughput of 31% for encrypted query processing to be
modest considering the gains in confidentiality and privacy.

To understand latency, we measure the processing time
of the same type of queries used above by studying the
intervals at each stage of processing, namely server and proxy.
We observe that there is an increase by 30% on the server
side. The proxy adds on average 3.1 ms to the interval of
which 13% is utilized in encryption/decryption and the most
(67%) is spent in query rewriting and processing. A simple
SELECT statement with no predicates returned a latency of
0.42 ms on unmodified Postgres and a latency of 0.45 ms
with DBMask. In the case of a SELECT statement with
SUM predicate, unmodified Postgres returned a latency of
0.45 ms and DBMask returned 6.7 ms primarily due to further
processing of the query at the proxy.

TABLE VI

CRYPTOGRAPHIC OPERATIONS

Scheme # Encrypt Decrypt

AES-CBC 0.002 ms 0.002 ms
PPNC 0.0001 ms 0.00001 ms
PPKC 0.00256 ms 0.00276 ms

Table VII shows the average time required to en
crypt/decrypt a 64-bit integer or a 15-byte text using the
three different encryption schemes used in our approach. It
can be observed that the overhead involved in cryptographic
operations is small since the schemes are efficient. There is
an increase in the amount of data that is stored (2.0x) in the
DBMS since we store two columns for each original column
in the table in order to facilitate fine grained access control
and encrypted query processing.

B. CRIS

CRIS is a web based application with its primary tenets to
provide an easy to use system in order to create, maintain and

share scientific data. CRIS currently has a community of users
in Agronomy, Biochemistry, Bioinformatics and Healthcare
Engineering at Purdue University.4 The data in the form of
projects, experiments and jobs residing in CRIS is of sensitive
nature and hence must be protected from unauthorized usage.
CRIS has an access control mechanism where users are
organized into groups and both users and groups have a set of
permissions on data objects. To test the functionality of our
prototype we select a workspace which acts as a container
for all activities and data to be managed by a single group
of scientists consisting of 19 users with 8 attributes each.
The users based on common attributes are arranged into 4
groups and each group is assigned a randomly chosen secret
using AB-GKM.SecGen algorithm. A selected set of sensitive
columns are encrypted as some need not be encrypted since
they are not sensitive and each row is assigned a label for
access control.

In this experiment, we evaluate the effect on throughput by
running CRIS on Postgres in comparison to DBMask while
making sure unauthorized users are not allowed access to
sensitive data . Each HTTP request from the application by
a logged in user consists of multiple SELECT queries with
no predicates. The results show that there is a 33% loss of
throughput, but the confidentiality and privacy are preserved.
A logged in user is only able to access the objects it has
permission for. There is also an increase by around 22-28
ms when creating, updating or deleting a certain project,
experiment or a job due to the overhead DBMask introduces.

TABLE VII

THROUGHPUT COMPARISON FOR CRIS

Postgres DBMask
Throughput(HTTP req./sec) 9 6

VII. RELATED WORK

In this section, we discuss research work related to our work
and compare them our approach. DBMask is the first system to
support row/cell level access control and query processing over
encrypted data without decrypting on a relational database.
Some of the techniques used in DBMask are built on prior
work from the cryptographic community.

In theory, it is possible to utilize fully homomorphic encryp
tion [19] to perform any arbitrary operation that a relational
database demands. However, the current implementations of
fully homomorphic encryption is very inefficient and are not
suitable for any practical application [20].

Querying non-relational encrypted data has also been exten
sively researched. These techniques are used in the outsourced
storage model where a user’s data are stored on a third-party
server and encrypted using the user’s symmetric or public key.
The user can use a query in the form of an encrypted token to
retrieve relevant data from the server, whereas the server does
not learn any more information about the query other than

4cris.cyber.purdue.edu

whether the returned data matches the search criteria. There
have been efforts to support simple equality queries [18], [21]
and more recently complex ones involving conjunctions and
disjunctions of range queries [22]. While these approaches
assist in constructing the predicate portion of SQL queries,
they do not directly apply to query processing over encrypted
relational data.

With the increasing utilization of cloud computing services,
there has been some recent research efforts [23], [24] to con
struct privacy preserving access control systems by combining
oblivious transfer and anonymous credentials. The goal of such
work has similarities to ours but we identify the following
limitations. Each transfer protocol allows one to access only
one record from the database, whereas our approach does not
have any limitation on the number of records that can be
accessed at once since we separate the access control from
query processing. Another drawback is that the size of the
encrypted database is not constant with respect to the original
database size. Redundant encryption of the same record is
required to support ACPs involving disjunctions. However, our
approach encrypts each data item only twice as we have made
the encryption independent of ACPs. While attribute based
encryption (ABE) based approaches [25] support expressive
policies, they cannot handle revocations efficiently. Yu et
al. [26] proposed an approach based on ABE utilizing PRE
(Proxy Re-Encryption) to handle the revocation problem of
ABE. While it solves the revocation problem to some extent,
it does not preserve the privacy of the identity attributes as
in our approach. Further, these approaches mostly focus on
non-relational data such as documents, whereas DBMask is
optimized for relational data.

Efficient query processing over encrypted data has been re
searched utilizing various techniques in the past. Hacig¨ us et um¨
al. [1] proposed the pioneering work in this area by performing
as much query processing as possible at the remote database
server without decrypting the data and then performing the
remaining query processing at the client site. Their idea is to
utilize bucketization technique to execute approximate queries
at the remote database server and then execute the original
query over the approximate result set returned by the remote
server. They later extend their work to support aggregate
queries [27], [28]. While DBMask utilizes split processing
between the cloud server and the proxy for complex queries,
DBMask is different in that it performs exact query execution
whenever possible and it enforces row/cell level access control
utilizing the AB-GKM scheme, whereas their approach does
not support fine-grained access control of the relational data.

The idea of utilizing specialized encryption techniques such
as order preserving encryption [29], [30], additive homomor
phic encryption [31], and so on to perform different relational
operations is first introduced in CryptDB [5]. The same idea
is extended to support more complex analytical queries in
MONOMI [32]. As mentioned in Section I, while they lay
the foundation for systematic query processing and access
control, they suffer from two limitations. First the security
of the encrypted data reduces to deterministic encryption over

http:4cris.cyber.purdue.edu

time as the outer layers of stronger encryptions are removed
in order to execute certain queries. Second, these techniques
do not support fine grained access control over the encrypted
relational database. DBMask addresses these two limitations
by separating access control from query processing. Further,
in DBMask, data are never decrypted to weaker encryptions
inside the cloud server and therefore the security of the data
do not weaken over time.

VIII. CONCLUSION

In this paper, we proposed DBMask, a novel solution
that supports fine-grained access control, including row and
cell level access control, when evaluating SQL queries
on encrypted relational data. Similar to CryptDB [5] and
MONOMI [32], DBMask does not require modification to
the database engine, and thus maximizes the reuse of the
existing DBMS infrastructures. However, unlike CryptDB and
MONOMI, the level of security provided by the encryption
techniques in DBMask does not degrade with time as DBMask
does not perform any intermediate decryptions in the cloud
database. DBMask introduces the idea of two encryptions per
each cell for fine-grained access control and predicate match
ing. Hence, DBMask can perform access control and predicate
matching at the time of query processing by simply adding
predicates to the query being executed. Unlike the existing
systems, DBMask can efficient handle large database even
when user dynamics change. Our experimental results show
that our solution is efficient and overhead due to encryption
and access control is low.

Currently, DBMask does not support all relational opera
tions. In the future, we plan to extend DBMask to expand the
supported relational operations as well as further optimize the
supported relational operations.

REFERENCES

[1]	 H. Hacigümüs, B. R. Iyer, C. Li, and S. Mehrotra, “Executing sql over
encrypted data in the database-service-provider model,” in SIGMOD,
2002, pp. 216–227.

[2]	 B. Hore, S. Mehrotra, and G. Tsudik, “A privacy-preserving index for
range queries,” in VLDB, 2004, pp. 720–731.

[3]	 E. Damiani, S. D. C. di Vimercati, S. Jajodia, S. Paraboschi, and
P. Samarati, “Balancing confidentiality and efficiency in untrusted re
lational dbmss,” in CCS, 2003, pp. 93–102.

[4]	 S. Wang, D. Agrawal, and A. El Abbadi, “A comprehensive framework
for secure query processing on relational data in the cloud,” in Secure
Data Management, 2011, pp. 52–69.

[5]	 R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: protecting confidentiality with encrypted query processing,”
in SOSP, 2011, pp. 85–100.

[6]	 N. Shang, M. Nabeel, F. Paci, and E. Bertino, “A privacy-preserving
approach to policy-based content dissemination,” in ICDE 2010.

[7]	 M. Nabeel and E. Bertino, “Towards attribute based group key manage
ment,” in CCS 2011.

[8]	 M. Nabeel, N. Shang, and E. Bertino, “Efficient privacy preserving
content based publish subscribe systems,” in SACMAT, 2012, pp. 133–
144.

[9]	 J.-W. Byun, E. Bertino, and N. Li, “Purpose based access control of
complex data for privacy protection,” in Proceedings of the tenth ACM
symposium on Access control models and technologies, ser. SACMAT
’05. New York, NY, USA: ACM, 2005, pp. 102–110.

[10]	 M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken, “Dynamic and
efficient key management for access hierarchies,” ACM Transaction on
Information System Security, vol. 12, no. 3, pp. 18:1–18:43, Jan. 2009.

[11]	 G. Chiou and W. Chen, “Secure broadcasting using the secure lock,”
IEEE TSE, vol. 15, no. 8, pp. 929–934, Aug 1989.

[12]	 S. Berkovits, “How to broadcast a secret,” in EUROCRYPT 1991, pp.
535–541.

[13]	 X. Zou, Y. Dai, and E. Bertino, “A practical and flexible key management
mechanism for trusted collaborative computing,” INFOCOM 2008, pp.
538–546.

[14]	 J. Li and N. Li, “OACerts: Oblivious attribute certificates,” IEEE TDSC,
vol. 3, no. 4, pp. 340–352, 2006.

[15]	 T. Pedersen, “Non-interactive and information-theoretic secure verifiable
secret sharing,” in CRYPTO ’92. London, UK: Springer-Verlag, 1992,
pp. 129–140.

[16]	 C. Schnorr, “Efficient identification and signatures for smart cards,” in
Proceedings of the 8th CRYPTO Conference on Advances in Cryptology.
New York, NY, USA: Springer-Verlag New York, Inc., 1989, pp. 239–
252.

[17]	 A. Shamir, “How to share a secret,” The Communication of ACM,
vol. 22, pp. 612–613, November 1979.

[18]	 D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in IEEE Symposium on Security and Privacy, 2000,
pp. 44–55.

[19]	 C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Pro
ceedings of the 41st annual ACM symposium on Theory of computing,
ser. STOC ’09. New York, NY, USA: ACM, 2009, pp. 169–178.

[20]	 M. Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully ho
momorphic encryption over the integers,” in Advances in Cryptology
EUROCRYPT 2010, ser. Lecture Notes in Computer Science, H. Gilbert,
Ed. Springer Berlin Heidelberg, 2010, vol. 6110, pp. 24–43.

[21]	 D. Boneh, G. Crescenzo, R. Ostrovsky, and G. Persiano, “Public-key
encryption with keyword search,” in EUROCRYPT, 2004.

[22]	 D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” CRYPTO, pp. 535–554, 2007.

[23]	 S. Coull, M. Green, and S. Hohenberger, “Controlling access to an
oblivious database using stateful anonymous credentials,” in Irvine:
Proceedings of the 12th International Conference on Practice and
Theory in Public Key Cryptography. Berlin, Heidelberg: Springer-
Verlag, 2009, pp. 501–520.

[24]	 J. Camenisch, M. Dubovitskaya, and G. Neven, “Oblivious transfer with
access control,” in CCS ’09: Proceedings of the 16th ACM conference on
Computer and communications security. New York, NY, USA: ACM,
2009, pp. 131–140.

[25]	 J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy attribute-
based encryption,” in SP ’07: Proceedings of the 2007 IEEE Symposium
on Security and Privacy. Washington, DC, USA: IEEE Computer
Society, 2007, pp. 321–334.

[26]	 S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data sharing
with attribute revocation,” in Proceedings of the 5th ACM Symposium
on Information, Computer and Communications Security, ser. ASIACCS
’10. New York, NY, USA: ACM, 2010, pp. 261–270.

[27]	 H. Hacigümüs, B. Iyer, and S. Mehrotra, “Efficient execution of aggrega
tion queries over encrypted relational databases,” in Database Systems
for Advanced Applications, ser. Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin / Heidelberg, 2004, vol. 2973, ch. 10,
pp. 633–650.

Hacig¨ us and [28]	 H. um¨¸, B. Iyer, S. Mehrotra, “Query optimization in
encrypted database systems,” in Database Systems for Advanced Ap
plications, ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2005, vol. 3453, pp. 43–55.

[29]	 R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving
encryption for numeric data,” in Proceedings of the 2004 ACM SIGMOD
International Conference on Management of Data. New York, NY,
USA: ACM, 2004, pp. 563–574.

[30]	 A. Boldyreva, N. Chenette, and A. O’Neill, “Order-preserving encryp
tion revisited: Improved security analysis and alternative solutions,” in
Advances in Cryptology CRYPTO 2011, ser. Lecture Notes in Computer
Science, P. Rogaway, Ed. Springer Berlin Heidelberg, 2011, vol. 6841,
pp. 578–595.

[31]	 P. Paillier, “Public-key cryptosystems based on composite degree resid
uosity classes,” in EUROCRYPT ’99, 1999, pp. 223–238.

[32]	 S. Tu, M. F. Kaashoek, S. Madden, and N. Zeldovich, “Processing
analytical queries over encrypted data,” in Proceedings of the 39th
international conference on Very Large Data Bases, ser. PVLDB’13.
VLDB Endowment, 2013, pp. 289–300.

