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Abstract—For efficient data management and economic bene
fits, organizations are increasingly moving towards the paradigm 
of “database as a service” where their data are managed by a 
database management system (DBMS) hosted in a public cloud. 
However, data are the most valuable asset in an organization, and 
inappropriate data disclosure puts the organization’s business at 
risk. Therefore, data are usually encrypted in order to preserve 
their confidentiality. Past research has extensively investigated 
query processing on encrypted data. However, a naive encryption 
scheme negates the benefits provided by the use of a DBMS. In 
particular, past research efforts do not have adequately addressed 
flexible access control on encrypted data at different granularity 
levels which is critical when data are shared among different 
users and applications. Previous access control approaches in 
the best case only support as minimum granularity level the 
table column, by which the authorization is associated with an 
entire column within a table. Other approaches only support 
access control granularity at the database level, meaning that 
authorizations are associated with the entire database, and thus 
either a user can access the entire database or cannot access any 
data item. In this paper, we propose DBMask, a novel solution 
that supports fine-grained access control, including row and cell 
level access control, when evaluating SQL queries on encrypted 
data. Our solution does not require modification to the database 
engine, and thus maximizes the reuse of the existing DBMS 
infrastructures. Our experimental results show that our solution 
is efficient and scalable to large datasets. 

I. INTRODUCTION 

The advances of Internet technology and the increasing 
demand for cost-effective and efficient data management have 
prompted the emergence of cloud storage servers, such as 
Rackspace, Amazon EC2, and Microsoft Azure. These third 
party clouds provide reliable data storage and efficient query 
processing services able to scale to large data volumes. By 
outsourcing data to the cloud, organizations save the cost 
of building and maintaining a private database system and 
have to pay only for the services they actually use. Therefore, 
organizations are increasingly fueled to move to the paradigm 
of “database as a service”. However in order to protect data 
from inappropriate disclosure either by the cloud or external 
attackers, in most cases data are encrypted before being 

outsourced to the cloud. The use of encryption raises issues 
related to the efficient processing of queries on encrypted data. 
In order to address such issues, past research has extensively 
investigated various techniques, such as bucketization [1], [2] 
and secure indexing [3], [4]. However, these techniques do 
not differentiate among authorized users of the data and thus 
do not support flexible access control with different units of 
access control granularity. This is inconsistent with the data 
sharing requirements of most real-world applications. 

Our work is inspired by the CryptDB project [5], which 
is the first research effort that has systematically investigated 
access control for SQL queries on encrypted relational data. 
The CryptDB architecture assumes a proxy between users and 
the cloud server. Authorized users log in to the proxy by 
entering passwords, from which the proxy derives secret keys. 
Given a plaintext query submitted by a user, the proxy first 
checks if the query can be authorized according to the access 
control policies. If this is the case, the proxy encrypts the 
query (i.e., encrypts table/column names and the constants in 
the query) by the corresponding secret key derived from the 
user’s password. The encrypted query is then forwarded to the 
cloud, which runs the query over encrypted data and returns 
the result to the proxy. The proxy then decrypts the query 
result and forwards it to the user. 

CryptDB [5] suffers however from the following two lim
itations. The first is that the minimum granularity support 
by its access control mechanism is the column-level. Such 
a granularity level is too coarse to satisfy the requirements 
of some real applications. For example, an employee may be 
permitted to access only his/her own record in an outsourced 
employee table. With column-level granularity, the only way 
to allow an employee to see his/her data is to grant the 
employee access to every column in the employee table. As a 
consequence, the employee can access the whole table. Access 
control is thus not enforced as required by the policy. The 
second limitation is the onions of encryption. An onion is 
a multiple layers of encryptions. Each layer is applied for 
a specific query operation or purpose, and the encryption 
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layers from the external layer to the most internal layer are 
increasingly weaker. Consider an onion for equality matching. 
In this case, depending on the expected queries, there would 
be three layers in CryptDB: the inner most layer is an adapted 
deterministic encryption for equality join, the middle one is 
classic deterministic encryption for equality selection, and the 
outer most one is random encryption to assure the maximum 
security. Given a query equality join, the proxy transmits the 
secret keys to the cloud server, so that the server can peel off 
the first two layers (i.e., random encryption and deterministic 
encryption) and run the join operation. Therefore, it is easy 
to see that the support of multiple query operations is at the 
cost of decryption. In addition, although onions offer multiple 
levels of security, the security level decreases over time when 
the outer layers are removed. Hence, the real security level 
an onion can guarantee is the protection offered by the inner 
most encryption. Furthermore, to support diverse operations, 
multiple onions need to be generated (e.g., an order onion is 
necessary if range queries are to be supported). 

To address the limitations of CryptDB, in this paper we 
propose DBMask, a novel solution that supports fine-grained 
access control when evaluating SQL queries on encrypted re
lational databases. Our solution does not require modification 
to the database engine, and thus maximizes the reuse of the ex
isting database management systems (DBMS) infrastructures. 
The contributions of DBMask include the following: 

•	 We propose a fine-grained access control model for 
relational data. The granularity level can be a table, a 
column, a row as well as a cell. 

•	 We enforce the access control policies on outsourced 
databases by an expressive attribute-based group key 
management scheme [6], [7]. Different portions of data 
are encrypted by different keys according to the access 
control policies, so that only authorized users receive the 
keys to decrypt the data they are authorized for access. 

•	 Our approach uses the blinded attribute-value pair en
cryption technique [8], which securely encrypts each 
numerical value by only one layer of encryption but 
still supports most of the relational query processing 
operators. 

•	 Besides operations on numerical values, secure keyword 
matching is also supported. 

The paper is organized as follows. Section II provides an 
overview of our solution and the adversarial model. Section III 
presents a fine-grained access control model and discusses its 
enforcement. Section IV provides information about the key 
cryptographic constructs for SQL query operators and a brief 
security analysis of each construct. Section V describes the 
evaluation of encrypted queries over an encrypted database in 
the cloud. Section VI reports experimental results. Section VII 
surveys related work and compares with our system. Finally, 
Section VIII outlines conclusions and future work 

II. OVERVIEW 

In this section, we provide an overview of our system 
architecture and the adversarial model. 

A. System architecture 

Encrypted Results 

Data 

server 
Proxy 

Upload encrypted data 

Encrypted 
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Fig. 1. The system architecture 

Our system includes four entities: data owner, data user, 
proxy, and data server. Their interactions are illustrated in 
the system architecture in Figure 1. Data owner uses different 
secret keys to encrypt different portions of data, according 
to pre-defined access control policies. The secret keys are 
organized in a lattice for an efficient management. Data owner 
can also build secure indices over the encrypted data to 
improve the search performance. The encrypted data together 
with their secure indices are uploaded to the data server. A 
data user with authenticated attributes can verify itself to the 
proxy. The successful attribute based verification of the user 
to the proxy allows the proxy to either derive or obtain one or 
multiple secret keys required to encrypt the user query. Given 
a plaintext query submitted by the user, the proxy uses these 
keys to rewrite the query into an encrypted query, which can 
then be executed on the encrypted data in the data server. 
Encrypted query results are returned from data server to the 
proxy, which decrypts the results using the secrets established 
at the time of verification and forwards them to the data user. 
Notice that during the query processing stage, the data server 
learns neither the query being executed nor the result set of 
the query. 

B. Adversary model 

The data owner remains offline after it uploads the encrypted 
data to data server. We assume that the data owner is fully 
trusted and is not vulnerable to attacks. However, all the three 
remaining entities might be compromised. For each of them, 
we will discuss the possible violations of data confidentiality, 
and how to restrict them. 

The data server is assumed to be honest-but-curious. It 
does not attempt to actively attack the encrypted data, e.g., 
by altering the query answers or changing the encrypted data. 
Instead, it is passive, and will try to learn the confidential data. 
To address this, all the data outsourced to the server by the 
data owner are encrypted. The server will never be given the 
key, by which ciphertext can be decrypted to obtain plaintext. 
Still, to support query processing, we develop techniques, 
which allow the server to efficiently evaluate SQL queries 



on encrypted data (see Section IV). In addition, the server 
itself may be compromised by external attackers. In such a 
case, the data confidentiality is still preserved, since attackers 
cannot access encrypted data. Attackers might also change the 
query answers and/or the encrypted data (e.g., by swapping 
the attribute values of any two tuples). However, such active 
attacks are out of the scope of this work. 

The proxy is a trusted third party. All the secret keys, which 
are generated by the data owner and stored at the proxy, 
are encrypted. Our key management scheme (see Section IV) 
requires that these encrypted secret keys cannot be decrypted 
by the proxy alone. Instead, they can only be decrypted by the 
proxy with the help of authorized data users. An attack that has 
compromised the proxy can access the keys of logged-in users. 
Consequently, it can also access the data, authorized to those 
users. However, the secret keys of all the inactive users remain 
secure. In our model, data owner does not outsource the data 
encryption operation to the proxy, although it is trusted. This 
is to avoid “single point of failure”. Otherwise, if the proxy 
is compromised at the pre-processing stage (i.e., the stage of 
generating the keys to encrypt data), then the whole system is 
compromised. 

In the system, there can be many data users. In general, 
they are more vulnerable to attacks than the proxy and the 
data server, because they have less knowledge and fewer 
resources to provide high-level security, and because they 
are distributed and the possible number of them is big. Our 
system does not store at the user side any secret key, which 
can be used to decrypt the data. Otherwise, the problem of 
key distribution would be raised, and data would need to be 
re-encrypted after the users are compromised. Instead, our 
key management requires that only the collaboration between 
proxy and authorized data user allows the proxy to derive 
secret keys. Such a procedure can be seen as a function: 
k ← f(As), where k is the secret key, As is the set of user’s 
attributes, and f is a function representing the collaboration 
between the proxy and the user. Now suppose that the user 
is compromised (i.e., its attributes are disclosed). To prevent 
unauthorized data access, the data owner can update the 
attributes to As ′, so as to prevent attackers with As posing 
as authorized user any more. Such a strategy allows the key 
k and the data to remain unchanged. 

III. ACCESS CONTROL MODEL 

In this section, we describe our access control model in 
detail. We utilize ABAC (attribute based access control) model 
which has the following characteristics. 

•	 Users have a set of identity attributes that describe 
properties of users. For example, organizational role(s), 
seniority, age and so on. 

•	 Data is associated with ABAC policies that specify con
ditions over identity attributes. 

•	 A user whose identity attributes satisfy the ABAC policy 
associated with a data item can access the data item. 

While the access can be controlled at different granularity 
levels such as table level, row level, cell level, and so on, we 

focus on the row level access control to propose our ABAC 
basic model. In the basic model, each tuple (row) in a database 
table is attached an ABAC policy. The policy attachment is 
performed by adding an additional column to the table. Upon 
receiving an SQL query from a user for a table T , the proxy 
server needs to determine the ABAC policies attached to T 
satisfied by the user’s attributes and restrict the query to only 
those rows by adding a predicate to the user query. Such 
predicate “encodes” the satisfied ABAC policies. 

We formally define our model as follows: 
Definition 3.1: Attribute Condition. 

An attribute condition cond is an expression of the form: 
“nameA op l”, where nameA is the name of an identity 
attribute A, op is a comparison operator such as =, <, >, ≤, 
≥, �=, and l is a value that can be assumed by attribute A. 

Definition 3.2: ABAC Policy. 
An ABAC policy ACP is a tuple (s, o) where: o denotes a 
set of rows in the table T and s is a Boolean expression over 
a set of attribute conditions that must be satisfied in order to 
access o. 

We observe that grouping users based on the ABAC policies 
they satisfy enhances access control enforcement as it provides 
one level of indirection. Such a grouping of users allows to 
enforce access control policies on a set of users instead on 
individual users. Further, relationships between groups can 
be exploited to improve the management. Considering the 
fact that every ACP can be converted into disjunctive normal 
form (DNF), we define a group as follows for a collection of 
attribute conditions. 

Definition 3.3: Group. 
We define a group G as a set of users which satisfy a specific 
conjunction of attribute conditions in an ABAC policy. 

The idea of groups is similar to user-role assignment in 
RBAC, but in our approach, the assignment is performed 
automatically based on identity attributes. Given the set of 
data owner defined ABAC policies, the following steps are 
followed to identify the groups: 

•	 Convert each ABAC ACP into DNF. Note that this 
conversion can be done in polynomial time. 

• For each distinct disjunctive clause, create a group. 

Example: 
Consider the following two ACPs with the attribute conditions 
C1, C2 and C3. 

•	 ACP1 = C1 ∧ (C2 ∨ C3) 
• ACP2 = C2
 

The ACPs in DNF form are as follows:
 

•	 ACP1 = (C1 ∧ C2) ∨ (C1 ∧ C3) 
• ACP2 = C2 

In this example, there are three groups G1, G2, G3 for the 
set of users satisfying the attribute conditions C1 ∧C2, C1 ∧C3, 
and C2 respectively. 

We exploit the hierarchical relationship among groups in 
order to support hierarchical key derivation and improve the 
performance and efficiency of key management. We introduce 
the concept of Group Poset as follows to achieve this objective. 



Definition 3.4: Group Poset. 
A group poset is defined as the partially ordered set (poset) 
of groups where the binary relationship is ⊆. 
Example: 
Let G be all users. G1 ⊆ G3 and there is no ordering between 
G1 and G2. As Figure 2, the poset has the Hasse diagram 
φ → G1, φ → G2, G1 → G3, G2 → G and G3 → G. In the 
figure, the set of users satisfying the condition attached to the 
group Gi is denoted as Ui and U consists of all the users in 
the system. 

Fig. 2. An example group poset 

A. Assigning Group Labels to Tuples and Users 

Like the purpose-based access control model [9], we label 
the tuples using descriptive group names. Each tuple may have 
multiple groups associated with it. If there is an ordering 
relationship between two groups associated with a row, we 
discard the more privileged group and assign only the less 
privileged group. When the proxy decides the group(s) that 
user belongs to, it selects the most privileged groups. The 
idea is that a user in the more privileged group can become 
a member of the less privileged group by following the 
hierarchical relationship in the group poset. Note that the 
group label assignment to a tuple indirectly attach an ABAC 
policy to a row as described at the beginning of this section. 
Example: 
Assume that the attribute Ai satisfies the attribute condition 
Ci and there is a set of rows in the table T1 that the users in 
the groups G1 and G3 satisfy. Further, assume that the user 
u1 has the attributes A1 and A2. 

Since G1 → G3, the set of rows is labeled with the less 
restrictive group G3. According to the selection criteria, the 
proxy chooses G1 for u1 based on its two attributes A1 and 
A2. When u1 submits a query for the table T1, the proxy 
selects all rows containing either G1 or G3 as u1 is a member 
of both groups. 

B. Broadcast and Hierarchical Key Management 

In traditional hierarchical access control models [10], each 
node in a hierarchy is assigned a key and a user who has 
access to a key corresponding to a node in the hierarchy can 
access all the keys for all the descendant nodes using the public 
information available. Hierarchical key encryption techniques 

reduce the number of keys to be managed. However, a major 
drawback is that assigning keys to each node and giving them 
to users beforehand makes it difficult to handle dynamics 
of adding and revoking users. For example, when a user is 
revoked, one needs to update the keys given to other users 
through private communication channels. We propose to ad
dress this drawback while utilizing the benefits of hierarchical 
model by proposing a hybrid approach combining broadcast 
and hierarchical key management. A broadcast group key 
management (BGKM) allows one to efficiently handle group 
keys when user dynamics change. We utilize a recent expres
sive scheme called AB-GKM (attribute based GKM) as the 
broadcast GKM scheme which is described in Section IV-A. 
Instead of directly assigning keys to each node in the hierarchy, 
we assign a AB-GKM instance to each node and authorized 
users can derive the key using the key derivation algorithm of 
AB-GKM. A AB-GKM instance is attached to a node only 
if there is at least one user who cannot derive the key of the 
node by following the hierarchical relationship. 
Example: 
For the node for the group G1 in the poset in Figure 2, an 
AB-GKM instance is created if U1 � φ.= Similarly, for the 
node for the group G2, an AB-GKM instance is created if 
U3 − U1 �= φ. 

IV. CRYPTOGRAPHIC CONSTRUCTS 

In this section, we describe the cryptographic constructs 
used in our approach for secure query evaluation over en
crypted data. 

A. Key management 

Broadcast Group Key Management (BGKM) schemes [11], 
[12], [13], [6] are a special type of GKM scheme whereby 
the rekey operation is performed with a single broadcast 
without requiring private communication channels. Unlike 
conventional GKM schemes, BGKM schemes do not give 
subscribers private keys. Instead subscribers are given a secret 
which is combined with public information to obtain the 
actual private keys. Such schemes have the advantage of 
requiring a private communication only once for the initial 
secret sharing. The subsequent rekeying operations are per
formed using one broadcast message. Further, in such schemes 
achieving forward and backward security requires only to 
change the public information and does not affect the secrets 
given to existing subscribers. However, BGKM schemes do not 
support group membership policies over a set of attributes. In 
their basic form, they can only support 1-out-of-n threshold 
policies by which a group member possessing 1 attribute 
out of the possible n attributes is able to derive the group 
key. A recently proposed attribute based GKM (AB-GKM) 
scheme [7] provides all the benefits of BGKM schemes and 
also supports attribute based access control policies (ACPs). 

Users are required to show their identity attributes to the 
data owner to obtain secrets using the AB-GKM scheme. In 
order to hide the identity attributes from the data owner while 
allowing only valid users to obtain secrets, we utilize oblivious 



commitment based envelope (OCBE) protocols [14] which is 
based on Pedersen commitments [15] 1 and zero knowledge 
proof of knowledge techniques [16]. We omit the technical 
details of the OCBE protocols due to the page limit. The 
OCBE protocols between the data owner and users provide 
the following guarantees in DBMask. 

•	 The data owner does not learn the identity attributes 
of users as their identities are hidden inside Pedersen 
commitments. 

•	 A user can obtain a valid secret for an identity attribute 
from the data owner only if the identity attribute is not 
fake. The data owner sends the secrets to the user in an 
encrypted message and the user can decrypt the message 
only if the user has a valid identity attribute. 

We denote the set of all attribute conditions as ACB and 
the set of all ACPs as ACPB. Example 4.1 shows an example 
ACP. 

Example 4.1: The ACP ((“type = regular” ∧ “region = 
Indiana”) ∨ “type = premium”, {new movie}) states that a 
user, either having a premium subscription or having a regular 
subscription in Indiana region, has access to new movies. 

The idea behind the AB-GKM scheme is as follows. A 
separate BGKM instance for each attribute condition is con
structed. The ACP is embedded in an access structure T . T 
is a tree with the internal nodes representing threshold gates 
and the leaves representing BGKM instances for the attributes. 
T can represent any monotonic policy. The goal of the access 
tree is to allow deriving the group key for only the subscribers 
whose attributes satisfy the access structure T . Figure 3 shows 
the access tree for the ACP presented in Example 4.1. 

type = premium 

OR 

AND 

type = regular region = Indiana 

Fig. 3. An example access tree 

Each threshold gate in the tree is described by its child 
nodes and a threshold value. The threshold value tx of a node 
x specifies the number of child nodes that should be satisfied in 
order to satisfy the node. Each threshold gate is modeled as a 
Shamir secret sharing polynomial [17] whose degree equals to 
one less than the threshold value. The root of the tree contains 
the group key and all the intermediate values are derived in a 
top-down fashion. A subscriber who satisfies the access tree 
derives the group key in a bottom-up fashion. 

We only provide the abstract algorithms of the AB-GKM 
scheme. The AB-GKM scheme consists of five algorithms: 

1Pedersen commitment is a cryptographic commitment allows a user to 
commit to a value while keeping it hidden and preserving the user’s ability 
to reveal the committed value later. 

Setup, SecGen, KeyGen, KeyDer and ReKey. An abstract 
description of these algorithms are given below. 

•	 Setup(ℓ, N , Na): 
It takes the security parameter ℓ, the maximum group size 
N , and the number of attribute conditions Na as input, 
and initializes the system. 

•	 SecGen(γ): 
The secret generation algorithm gives a userj , 1 ≤ j ≤ N 

a set of secrets for each commitment comi ∈ γ, 1 ≤ i ≤ 
m. OCBE protocols are used to assure the privacy of 
subscribers from the group controller. At the end of the 
execution of this algorithm, the group controller does not 
learn the attributes of subscribers and the subscribers can 
recover the secret(s) only if they have valid credentials. 

•	 KeyGen(ACP): 
The key generation algorithm takes the access control 
policy ACP as the input and outputs a symmetric key K, 
a set of public information tuples PI, and an access tree 
T . 

•	 KeyDer(β, PI, T ): 
Given the set of identity attributes β, the set of public 
information tuples PI, and the access tree T , the key 
derivation algorithm outputs the symmetric K only if the 
identity attributes in β satisfy the access structure T . 

•	 ReKey(ACP): 
The rekey algorithm is similar to the KeyGen algorithm. 
It is executed whenever the dynamics in the system 
change, that is, whenever subscribers join and leave or 
ACPs change. 

Brief security analysis. An adversary, who has compromised 
the cloud server, cannot infer the keys used to encrypt the data 
from the public information stored in the cloud server as the 
AB-GKM scheme is key hiding even against computationally 
unbounded adversaries. An adversary, who has compromised 
the proxy, the AB-GKM secrets of the users who are currently 
online are compromised as the proxy derives these secrets 
using users’ passwords and encrypted secrets. Since the data 
owner performs the setup and key generation operations of 
the AB-GKM scheme, such an attack does not allow the 
attacker to infer the secret information stored at the data 
owner. If such an attack is detected, the proxy can invalidate 
the existing secrets of the online users and request the data 
owner to generate new set of secrets using the AB-GKM 
scheme for the users without changing the underlying keys 
used to encrypt/decrypt the data. Since the secrets at the time 
of compromise and after regeneration are different, it is cryp
tographically hard for the adversary to derive the underlying 
encryption/decryption keys from the invalid secrets. Notice 
that, unlike a traditional key management scheme, since the 
underlying encryption/decryption keys are not required to be 
changed, such a compromise does not require to re-encrypt 
the data stored in the cloud. 



B. Numerical matching 

Nabeel et. al. [8] recently proposed a privacy preserving 
comparison of encrypted numerical values that does not re
quire decrypting the numerical values. We refer to this ap
proach as PPNC (privacy preserving numerical comparison) in 
the remainder of the paper. The approach can be summarized 
into the four algorithms, Setup, EncVal, GenTrapdoor and 
Compare, which we use for numerical comparison in our 
cloud based database system. 

•	 Setup(t, l): 
The security parameter t decides the bit length of the 
prime numbers of the Paillier cryptosystem. The system 
parameter l is the upper bound on the number of bits 
required to represent any data values published, and we 
refer to it as domain size. For example, if an attribute 
can take values from 0 up to 500 (< 29), l should be 
at least 9 bits long. Using these parameters, it initializes 
the underlying Paillier cryptosystem and random values 
required for the computations. 

•	 EncVal(x): 
Given an input value x, it produces a semantically secure 
encrypted value ex that hides the actual value, but allows 
to perform comparisons using the trapdoor values which 
is described below. 

•	 GenTrapdoor(t): 
Given an input value t, it produces a semantically secure 
encrypted value et, called the trapdoor, that is used with 
its corresponding encrypted value to perform oblivious 
comparisons. 

•	 Compare(ex, et, op): 
Given an encrypted value ex for x and a trapdoor value 
et for t, it obliviously compares and outputs the result of 
xopt. It should be noted that this algorithm is executed 
without decrypting ex and et. Hence, at the end of the 
evaluation, the actual x and t remains oblivious to the 
algorithm. Further, the output only reveals a randomized 
difference of the two values and, thus, does not leak even 
the actual difference. 

Brief security analysis. An adversary, who has compromised 
the cloud server, cannot infer the plaintext values of the 
encrypted values as the the private key is not stored at the 
cloud server and the encrypted values are semantically secure. 
An adversary, who has compromised both the proxy and the 
cloud server, cannot directly infer the plaintext values using the 
private key information stored at the proxy since the private 
key used at the data owner to generate the encrypted value 
and the private key used at the proxy to generate the trapdoor 
are different and it is cryptographically hard to derive one 
key from the other. The adversary may however repeatedly 
execute comparison operations to infer the plaintext values 
of the encrypted values in the cloud server. Detection and 
prevention of such an attack is beyond the scope of this paper. 

C. Keyword search 

Besides the numerical matching, DBMask also allows a user 
to check whether an encrypted string contains certain words. 
We adopt the keyword search technique proposed in [18] to 
support such a secure operation. Given a string, we extract 
keywords from it, and encrypt them. Then, given a keyword, 
a trapdoor is generated. The trapdoor is then sequentially 
compared with the encrypted keywords. If there is a match, 
then the corresponding string contains the given keyword with 
a probability close to 1 (i.e., the false rate is negligible). We 
refer to this approach as PPKC (privacy preserving keyword 
comparison) in the remainder of the paper.The details of the 
technique are summarized as follows. 

, k ′′ •	 Setup(G, f , P , k ′ , E): 
1) G : KG → X ℓ is a pseudorandom generator, where 
X = {0, 1}n−m . The data owner generates a stream 
cipher S1, S2, . . . , Sℓ, where Si has n − m bits. Note 
that the stream cipher is kept confidential from both the 
proxy and the data user. 2) f : KF × {0, 1}

∗ → KF 

is a pseudorandom function. 3) F : KF × X → Y 
is a pseudorandom function, where Y = {0, 1}m . 4) 
P : KP ×Z → Z is a pseudorandom permutation, where 
Z = {0, 1}n . 5) k ′ and k ′′ are two keys, which are 
shared between the data owner and the proxy. 6) E is 
a symmetric encryption function. 

•	 EncVal(Wi): 
Given a keyword Wi, the data owner computes Xi = 
P(k ′′ ,Wi). The data owner then generates ki = 
f(k ′ , Xi). Suppose that Si is the stream cipher for Wi. 
The data owner calculates F (ki, Si), and Wi’s ciphertext 
Ci = P(k ′′ ,Wi) ⊕ Ti, where Ti = Si||F (ki, Si). Let 
str be a string with keywords W1,W2, . . . ,Wj . The 
data owner sends to the server (E(str), C1, C2, . . . , Cj ), 
where E(str) is the encryption of the string. 

•	 GenTrapdoor(W ): 
Given a keyword W , the proxy generates its trapdoor as 
(X, k), where X = P(k ′′ ,W ) and k = f(k ′ , X). 

•	 Search(Ci, X): 
The user sends the trapdoor (X, k) to the server. For each 
ciphertext Ci, the server checks if Ci ⊕X has the form of 
Si||F (k, Si), where Si is the first n − m bits of Ci ⊕ X . 
If the form holds, then Ci is an encryption of keyword 
W . 

Extensions. The above searchable encryption scheme is ap
plicable only to exact keyword matching. However, it can be 
easily extended to support the following two conditions: 1) 

′Whether a string contains both keyword W and keyword W . 
2) Suppose that the keywords to be encrypted are ordered 
according to their locations in the string. Then, it is possible 

′to check whether two keywords W and W in the string are 
close to each other (e.g., the number of keywords between 
them is smaller than a threshold). 



 

 

 

  
 
 

   

  

Brief security analysis. An adversary, who has compromised 
the cloud server, cannot infer the plaintext keywords from the 
ciphertexts. See [18] for detailed proofs. An adversary may 
break both the proxy and the server. In such a case, direct 
inference of plaintext from the ciphertext is still impossible, 
because the encrypted keyword P(k ′′ ,Wi) is randomized by 
Ti = Si||F (ki, Si), where Si is kept confidential and ki is 
unknown. However, a brutal force attack is still possible. The 
adversary can first build a dictionary of keywords and then 
generates the trapdoor for each keyword in the dictionary. 
Finally, given the ciphertext of a keyword, the adversary com
pares it with each generated trapdoor (as in sequential search) 
until finding the matching one. The keyword corresponding to 
this matching trapdoor is the desired plaintext. 

V. SECURE QUERY EVALUATION OVER ENCRYPTED DATA 

In this section, we provide a detailed description of our 
privacy preserving query processing scheme for encrypted 
databases in a public cloud. As mentioned in Section II our 
systems consists of four entities: data owner, proxy, cloud and 
users. Our system undergoes the following phases: System 
initialization, user registration, data encryption and uploading, 
and data querying and retrieval. We now explain each phase 
in detail. 

A. System initialization 

The data owner runs the Setup algorithm of the un
derlying cryptographic constructs, that is, AB-GKM.Setup, 
PPNC.Setup and PPKC.Setup 2. The data owner makes avail
able the public security parameters to the proxy so that 
the proxy can generate trapdoors during data querying and 
retrieval phase. 

The data owner also converts the ACPs into DNF and users 
satisfying each disjunctive clause form a group. As mentioned 
in Section III, these groups are used to construct the Group 
poset to perform hierarchical key derivation along with the 
AB-GKM based key management. 

B. User registration 

Users first get their identity attributes certified by a trusted 
identity provider. These certified identity attributes are cryp
tographic commitments that hide the actual identity attribute 
value but still bind the value to users. Users register their cer
tified identity attributes with the data owner using the OCBE 
protocol. The data owner executes the AB-GKM.SecGen 
algorithm to generate secrets for the identity attributes and 
gives the encrypted secrets to users. Users can decrypt and 
obtain the secrets only if they presented valid certified identity 
attributes. The data owner maintains a database of user-secret 
values. When a user or an identity attribute is revoked, the 
corresponding association(s) from the user-secret database are 
deleted. The user-secret database is also stored at the proxy 
with the secrets encrypted using a password only each user 

2We use the dot notation to refer to an algorithm of a specific cryptographic 
construct. For example, AB-GKM.Setup refers to the Setup algorithm of AB
GKM scheme. 

possesses. Every time the user-secret database changes, the 
data owner synchronizes its changes with the proxy. 

C. Data encryption and uploading 

In our solution each cell in an original table is encrypted 
twice as illustrated in Figure 4: the first encryption is for 
fine-grained access control, and the second is for privacy-
preserving matching. Correspondingly, each column in the 
original table is expanded to two. We denote the column 
resulting from the encryption for fine-grained access control as 
data-col, and the one resulting for the encryption for privacy-
preserving matching as match-col. 

cell 

AB-GKM 
Encrypted 

Value 

Paillier Blinded 
Value/ Keyword 
Matching Value 

Each cell is encrypted twice 

(For Access Control) (For Encrypted SQL Queries) 

Fig. 4. The two encryptions of each cell 

Let us first discuss the creation of data-col. Given a cell in 
the original table, its encryption in the corresponding data-col 
is generated by a secret key derived from AB-GKM scheme [7] 
as follows. Consider the row containing the cell in the original 
table. Based on the ACPs, each row is assigned one or more 
group labels. The set of groups decides the key, under which 
the cell in the row is encrypted. If two groups are connected 
in the group poset, only the label of less privileged group 
is assigned to the row. The intuition behind is that users in 
the more privileged group can reach the less privileged group 
by following the hierarchical relation in the group poset. After 
removing the labels of groups with higher privileges, a row can 
still be associated with multiple groups. For each remaining 
group Gi, a group secret key Ki is generated by executing 
the AB-GKM.KeyGen algorithm. In order to avoid multiple 
encryptions (i.e., one group secret key for one encryption), 
the AB-GKM.KeyGen algorithm is again executed to generate 
a master group key K using the group keys Ki’s as secret 
attributes to the algorithm. As a consequence, if a user belongs 
to any of the groups assigned to the row, the user can access 
the row by executing the AB-GKM.KeyDer algorithm twice. 
The first execution generates the group key and second derives 
the master key. Public information to derive the key is stored 
in a separate table called PubInfo. 
Example: 
Following the example in Figure 2, suppose that C1, C2 and 
C3 are conditions defined as as follows. C1 = “level > 3”, C2 

= “role = doctor” and C3 = “role = nurse”. Therefore, ACP1 



is satisfied by all users whose level is greater than 3 and who 
are either doctors or nurses. ACP2 is satisfied by all doctors. 

Assume that the above ACPs are applied to the Patient table 
and group labels are assigned as shown in the following table. 

TABLE I
 
PATIENT TABLE
 

ID Age Diagnosis Groups 
1 35 HIV G1 
2 30 Cancer G1, G2 
3 40 Asthma G2, G3 
4 38 Gonorrhea G1 

In Table I (Patient table), each group Gi is assigned a 
unique ki. Rows 1 and 4 are encrypted using key k1. Since 
rows 2 and 3 have multiple groups, in order to avoid multiple 
encryptions/decryptions, a master key is assigned using AB
GKM by considering the group keys as input secrets to the 
AB-GKM.KeyGen algorithm. Row 2 is encrypted using key 
k12 generated from the AB-GKM instance having k1 and k2 as 
input secrets. We denote the public information corresponding 
to this master key as PI12. Similarly, row 3 is encrypted with 
key k23. The public information is stored in Table II. 

TABLE II
 
PUBINFO TABLE
 

Groups PI 
G1 P I1 
G2 P I2 
G3 P I3 
G1, G2 P I12 
G2, G3 P I13 

Table III shows the broadcast encrypted values where Ek(x) 
refers to the semantically secure encryption of the value x 
using the symmetric key k. 

TABLE III
 
ENCRYPTED PATIENT TABLE
 

ID-enc Age-enc Diag-enc Groups 
Ek1 (1) Ek1 (35) Ek1 (HIV) G1 
Ek12 (2) Ek12 (30) Ek12 (Cancer) G1, G2 
Ek23 (3) Ek23 (40) Ek23 (Asthma) G2, G3 
Ek1 (4) Ek1 (38) Ek1 (Gonorrhea) G1 

Now, let us consider the creation of match-col. Given a 
cell in the original table, its encryption in the match-col is 
generated as follows. Our scheme supports both numerical 
matching and keyword search for strings. If the cell is of 
numerical type, PPNC.EncVal algorithm is used to encrypt 
the cell value. If the cell is of type string, the PPKC.EncVal 
algorithm is used to perform the encryption. Once each cell is 
encrypted twice, the encrypted table is uploaded to the cloud. 

Table IV shows the final table with both encrypted data
col’s and comparison friendly match-col’s, where compn and 
compk refer to PPNC.EncVal and PPKC.EncVal respectively. 

D. Data querying and retrieval 

Processing of a query over encrypted data is a filtering-
refining procedure. Given an encrypted query forwarded to the 
server by the proxy, the server evaluates the predicates of the 
query on the encrypted data. Encrypted tuples that satisfy the 
predicates are returned to the proxy, while others are pruned. 
The proxy decrypts the data, refines the query result, and sends 
the plaintext result to the user. The details are as follows. 

•	 An authorized user sends a plaintext SQL query to the 
proxy, as if the outsourced database is unencrypted. In 
other words, encryption and decryption of the data in the 
database is transparent to users. 

•	 The proxy parses the query and generates the abstract 
syntax tree of the query in order to rewrite the query for 
the cloud. It first removes ORDER BY clause, GROUP 
BY clause, HAVING clause, aggregate functions, and 
predicates with aggregate functions from the query. Then, 
for each column to be included in the query result (i.e., 
column following the SELECT keyword in the query), it 
replaces it by its corresponding “data-col”. After that, in 
each predicate for numerical matching, the proxy com
putes the trapdoor value using PPNC.GenTrapdoor algo
rithm and replaces the predicate with a user defined func
tion (UDF) which invokes the PPNC.Compare algorithm. 
Similarly, for each keyword matching predicate, the proxy 
computes the trapdoor value using PPKC.GenTrapdoor 
algorithm and replaces the predicate with a user defined 
function which invokes the PPKC.Compare algorithm. 
The rewritten query is then sent to the cloud server. 

•	 The cloud executes the rewritten query over the encrypted 
database. It filters tuples that do not satisfy the predicates 
in the query, and sends back the encrypted result set to 
the proxy. 

•	 The proxy generates necessary keys to decrypt the result 
set using the AB-GKM.KeyDer algorithm with the public 
information3 and the user secrets as well as the hierar
chical key derivation. If the proxy has removed some 
clauses (e.g., ORDER BY) and/or aggregate functions 
(e.g., SUM) from the original query in query rewriting, 
it populates an in-memory database with the decrypted 
result set and refines the query result according to the 
constraints in the clauses and/or aggregate functions. If 
no term from the query is removed, decrypted result set is 
the final result. The proxy sends the final plaintext result 
back to the user. 

For queries that cannot be processed in a single round, 
multiple queries are executed at the cloud server in order to 
obtain the final answer for user queries. Intermediate results 
obtained from the cloud server in such multi-round queries are 
loaded into an in-memory database at the proxy and executed 
to generate results for the subsequent queries to the cloud 
server. When a query is split into multiple sub-queries, the 
query planner at the proxy server generates the sub-queries 

3The public information (i.e., PI) is stored at the cloud server and retrieved 
together with the query. 



TABLE IV
 
TWICE ENCRYPTED PATIENT TABLE
 

ID-enc ID-com Age-enc Age-com Diag-enc Diag-com Groups 
Ek1 (1) compn(1) Ek1 (35) compn(35) Ek1 (HIV) compk(HIV) G1 
Ek12 (2) compn(2) Ek12 (30) compn(30) Ek12 (Cancer) compk(Cancer) G1, G2 
Ek23 (3) compn(3) Ek23 (40) compn(40) Ek23 (Asthma) compk(Asthma) G2, G3 
Ek1 (4) compn(4) Ek1 (38) compn(38) Ek1 (Gonorrhea) compk(Gonorrhea) G1 

such that the cloud server performs the maximum possible 
computation and the utilization of the bandwidth between the 
proxy and the cloud server is minimized. 

Now we illustrate query processing DBMask through ex
ample queries. 

A user having the attribute “role = doctor” executes Query 
1 through the proxy server. 
Query 1: 

SELECT ID, Age, Diag
 
FROM Patient
 

The proxy determines that the user is a member of the group 
G3, re-writes the query as Query 2 and submits to the cloud 
server. 
Query 2: 

SELECT ID-enc, Age-enc, Diag-enc
 
FROM Patient
 
WHERE Groups LIKE ’%G3%’
 

The proxy receives the encrypted row 3 of the Patient table 
from the cloud server. The proxy uses the secrets of the user 
and PI3 to derive k3 using AB-GKM.KeyDer algorithm. Then 
it uses k3 and PI23 to derive k23. The proxy uses this key to 
decrypt the encrypted result set and send the plaintext result 
back to the user. 

A user having the attributes “role = doctor” and “level = 4’ 
executes Query 3 through the proxy server. 
Query 3: 

SELECT ID, Age, Diag
 
FROM Patient
 
WHERE Age > 35
 
ORDER BY Age ASC
 

The proxy determines that the user is a member of the 
groups G1 and G3, re-writes the query as Query 4 and submits 
to the cloud server. 
Query 4: 

SELECT ID-enc, Age-enc, Diag-enc
 
FROM Patient
 
WHERE UDF Compare Num(Age-com,
 

PPNC.GenTrapdoor(35), ’>’) 
AND (Groups LIKE ’%G1%’ OR 
Groups LIKE ’%G3%’) 

UDF Compare Num is a user defined function that simply 
invokes the PPNC.Compare algorithm internally. Notice the 
’ORDER BY’ clause is removed from the query as the cloud 
server does not have sufficient information to order the query 
results. The cloud server returns the encrypted rows 3 and 4 to 
the proxy. In order to decrypt the resultset, the proxy derives 

the key k1 for the higher privileged group G1 using the AB
GKM scheme. In order to generate k2, instead of executing 
another AB-GKM key derivation algorithm, it utilizes the 
hierarchical key derivation to derive k2 from k1. The derivation 
of the key k23 is similar to the previous example. The proxy 
uses k1 and k23 to decrypt the resultset and orders the plaintext 
resultset using its in-memory database before sending the final 
resultset to the user. 

The same user executes Query 5 through the proxy server. 
Query 5: 

SELECT ID, Age, Diag 
FROM Patient 
WHERE Age > 35 AND Diag LIKE ’Asthma’ 
ORDER BY Age ASC 

The query is very similar to Query 3, except for the 
additional predicate “Diag LIKE ’Asthma”’. Therefore, 
the query is re-written similar to Query 4 by includ
ing the additional predicate “UDF Compare Str(Diag-com, 
PPKC.GenTrapdoor(’Asthma’))” where UDF Compare Str is 
a user defined function that simply invokes the PPKC.Search 
algorithm internally. We omit the details of the execution as 
it is very similar to the previous query. 

E. Handling user dynamics 

When users are added or revoked, or attributes of existing 
users change, the user dynamics of the system change. This 
requires changing the underlying constructs. Since DBMask 
utilizes AB-GKM, these changes are performed transparent 
to other users in the system. When a new identity attribute 
for a user is added to the system, the data owner simply adds 
the corresponding secret to the user-secret database. Similarly, 
when an existing attribute for a user is revoked from the 
system, the data owner simply removes the corresponding 
secret from the user-secret database. In either scenario, the 
data owner recomputes the affected public information tuples 
and inform both the proxy server and the cloud server to 
update the data. Notice that unlike the traditional symmetric 
key based systems, DBMask does not need to re-key existing 
users and they can continue to use their existing secrets. Since 
no re-keying is performed, the encrypted data in the database 
remains the same even after such changes. Therefore, DBMask 
can handle very large datasets even when the user dynamics 
change. 
Example: 
Assume that a user having the attribute “role = doctor” is 
added to the system. This affects only the group G2. The data 
owner executes AB-GKM.Re-Key operation with the same 



symmetric key k2 as the group key to generate the new 
′public information PI . The proxy and the cloud server are 2

updated with the new secret and the new public information 
respectively. Notice that this change affects neither the secrets 
issued to other users nor the public information related to other 
groups in which the new user is not a member. 

VI. EXPERIMENTS 

This section evaluates the performance overhead and the 
functionality of our prototype implementation. We imple
mented DBMask in C++ on top of Postgres 9.1 while not 
modifying the internals of the database itself. This is achieved 
by including UDFs in the query containing encrypted fields 
during the rewriting process of a query at the proxy. We use the 
memory storage engine of MySQL as the in-memory database 
at the proxy to store contents of a query when the execution 
of a query requires more than one round of communication 
between the proxy and the server. The cryptographic opera
tions are supported by using NTL and OpenSSL libraries. The 
experimental setup is run on 3.40 GHz Intel i7-3770 processor 
with 8 GB of RAM in Ubuntu 12.04 environment. We analyze 
the performance of our prototype by running a TPC-C query 
workload and the functionality of our prototype by using a web 
based scientific application called Computational Research 
Infrastructure for Science (CRIS). The performance of TPC
C query workload when running on an unmodified Postgres 
server is compared to running the workload through the 
proxy of our prototype. The experimental results below show 
a low runtime overhead with a 29-31% loss in throughput 
in comparison to unmodified Postgres. The access control 
functionality deployed by our prototype on CRIS ensures that 
a logged in user is only able to retrieve data that the user is 
authorized to access. 

A. TPC-C 

TABLE V
 
TPC-C WORKLOAD
 

Application # Tables # Columns # Queries
 

TPC-C 9 92 3300
 

Fig. 5. Throughput from TPC-C Workload 

The TPC-C workload queries contain comparison predicates 
(=, < , >) and other predicates such as DISTINCT and 
COUNT as well as aggregates such as SUM and MAX. In 
total, the workload contains 1900 SELECT, 100 DELETE, 900 
UPDATE and 400 Insert statements with 100 Selects using 
SUM predicate. Our prototype currently supports operations 
on integer and text data types and do not support certain 
fields such as those that perform date manipulation. We study 
the performance of the TPC-C workload by evaluating two 
different metrics: the server throughput for different sql queries 
and the interval between issuing a query and receiving the 
results. 

Figure 5 shows the server throughput. The results show 
that there is an overall loss of DBMask’s throughput by 
29-31% in comparison to running an unencrypted trace of 
TPC-C workload on Postgres. The most variation is noticed 
in SELECT statements where simple SELECT statements 
perform relatively better than aggregates such as SUM.The 
throughput of the remaining queries that make the greater 
part of TPC-C workload is relatively modest. We consider a 
lower throughput of 31% for encrypted query processing to be 
modest considering the gains in confidentiality and privacy. 

To understand latency, we measure the processing time 
of the same type of queries used above by studying the 
intervals at each stage of processing, namely server and proxy. 
We observe that there is an increase by 30% on the server 
side. The proxy adds on average 3.1 ms to the interval of 
which 13% is utilized in encryption/decryption and the most 
(67%) is spent in query rewriting and processing. A simple 
SELECT statement with no predicates returned a latency of 
0.42 ms on unmodified Postgres and a latency of 0.45 ms 
with DBMask. In the case of a SELECT statement with 
SUM predicate, unmodified Postgres returned a latency of 
0.45 ms and DBMask returned 6.7 ms primarily due to further 
processing of the query at the proxy. 

TABLE VI
 
CRYPTOGRAPHIC OPERATIONS
 

Scheme # Encrypt Decrypt 

AES-CBC 0.002 ms 0.002 ms 
PPNC 0.0001 ms 0.00001 ms 
PPKC 0.00256 ms 0.00276 ms 

Table VII shows the average time required to en
crypt/decrypt a 64-bit integer or a 15-byte text using the 
three different encryption schemes used in our approach. It 
can be observed that the overhead involved in cryptographic 
operations is small since the schemes are efficient. There is 
an increase in the amount of data that is stored (2.0x) in the 
DBMS since we store two columns for each original column 
in the table in order to facilitate fine grained access control 
and encrypted query processing. 

B. CRIS 

CRIS is a web based application with its primary tenets to 
provide an easy to use system in order to create, maintain and 



share scientific data. CRIS currently has a community of users 
in Agronomy, Biochemistry, Bioinformatics and Healthcare 
Engineering at Purdue University.4 The data in the form of 
projects, experiments and jobs residing in CRIS is of sensitive 
nature and hence must be protected from unauthorized usage. 
CRIS has an access control mechanism where users are 
organized into groups and both users and groups have a set of 
permissions on data objects. To test the functionality of our 
prototype we select a workspace which acts as a container 
for all activities and data to be managed by a single group 
of scientists consisting of 19 users with 8 attributes each. 
The users based on common attributes are arranged into 4 
groups and each group is assigned a randomly chosen secret 
using AB-GKM.SecGen algorithm. A selected set of sensitive 
columns are encrypted as some need not be encrypted since 
they are not sensitive and each row is assigned a label for 
access control. 

In this experiment, we evaluate the effect on throughput by 
running CRIS on Postgres in comparison to DBMask while 
making sure unauthorized users are not allowed access to 
sensitive data . Each HTTP request from the application by 
a logged in user consists of multiple SELECT queries with 
no predicates. The results show that there is a 33% loss of 
throughput, but the confidentiality and privacy are preserved. 
A logged in user is only able to access the objects it has 
permission for. There is also an increase by around 22-28 
ms when creating, updating or deleting a certain project, 
experiment or a job due to the overhead DBMask introduces. 

TABLE VII
 
THROUGHPUT COMPARISON FOR CRIS
 

Postgres DBMask 
Throughput(HTTP req./sec) 9 6 

VII. RELATED WORK 

In this section, we discuss research work related to our work 
and compare them our approach. DBMask is the first system to 
support row/cell level access control and query processing over 
encrypted data without decrypting on a relational database. 
Some of the techniques used in DBMask are built on prior 
work from the cryptographic community. 

In theory, it is possible to utilize fully homomorphic encryp
tion [19] to perform any arbitrary operation that a relational 
database demands. However, the current implementations of 
fully homomorphic encryption is very inefficient and are not 
suitable for any practical application [20]. 

Querying non-relational encrypted data has also been exten
sively researched. These techniques are used in the outsourced 
storage model where a user’s data are stored on a third-party 
server and encrypted using the user’s symmetric or public key. 
The user can use a query in the form of an encrypted token to 
retrieve relevant data from the server, whereas the server does 
not learn any more information about the query other than 
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whether the returned data matches the search criteria. There 
have been efforts to support simple equality queries [18], [21] 
and more recently complex ones involving conjunctions and 
disjunctions of range queries [22]. While these approaches 
assist in constructing the predicate portion of SQL queries, 
they do not directly apply to query processing over encrypted 
relational data. 

With the increasing utilization of cloud computing services, 
there has been some recent research efforts [23], [24] to con
struct privacy preserving access control systems by combining 
oblivious transfer and anonymous credentials. The goal of such 
work has similarities to ours but we identify the following 
limitations. Each transfer protocol allows one to access only 
one record from the database, whereas our approach does not 
have any limitation on the number of records that can be 
accessed at once since we separate the access control from 
query processing. Another drawback is that the size of the 
encrypted database is not constant with respect to the original 
database size. Redundant encryption of the same record is 
required to support ACPs involving disjunctions. However, our 
approach encrypts each data item only twice as we have made 
the encryption independent of ACPs. While attribute based 
encryption (ABE) based approaches [25] support expressive 
policies, they cannot handle revocations efficiently. Yu et 
al. [26] proposed an approach based on ABE utilizing PRE 
(Proxy Re-Encryption) to handle the revocation problem of 
ABE. While it solves the revocation problem to some extent, 
it does not preserve the privacy of the identity attributes as 
in our approach. Further, these approaches mostly focus on 
non-relational data such as documents, whereas DBMask is 
optimized for relational data. 

Efficient query processing over encrypted data has been re
searched utilizing various techniques in the past. Hacig¨ us et um¨
al. [1] proposed the pioneering work in this area by performing 
as much query processing as possible at the remote database 
server without decrypting the data and then performing the 
remaining query processing at the client site. Their idea is to 
utilize bucketization technique to execute approximate queries 
at the remote database server and then execute the original 
query over the approximate result set returned by the remote 
server. They later extend their work to support aggregate 
queries [27], [28]. While DBMask utilizes split processing 
between the cloud server and the proxy for complex queries, 
DBMask is different in that it performs exact query execution 
whenever possible and it enforces row/cell level access control 
utilizing the AB-GKM scheme, whereas their approach does 
not support fine-grained access control of the relational data. 

The idea of utilizing specialized encryption techniques such 
as order preserving encryption [29], [30], additive homomor
phic encryption [31], and so on to perform different relational 
operations is first introduced in CryptDB [5]. The same idea 
is extended to support more complex analytical queries in 
MONOMI [32]. As mentioned in Section I, while they lay 
the foundation for systematic query processing and access 
control, they suffer from two limitations. First the security 
of the encrypted data reduces to deterministic encryption over 
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time as the outer layers of stronger encryptions are removed 
in order to execute certain queries. Second, these techniques 
do not support fine grained access control over the encrypted 
relational database. DBMask addresses these two limitations 
by separating access control from query processing. Further, 
in DBMask, data are never decrypted to weaker encryptions 
inside the cloud server and therefore the security of the data 
do not weaken over time. 

VIII. CONCLUSION 

In this paper, we proposed DBMask, a novel solution 
that supports fine-grained access control, including row and 
cell level access control, when evaluating SQL queries 
on encrypted relational data. Similar to CryptDB [5] and 
MONOMI [32], DBMask does not require modification to 
the database engine, and thus maximizes the reuse of the 
existing DBMS infrastructures. However, unlike CryptDB and 
MONOMI, the level of security provided by the encryption 
techniques in DBMask does not degrade with time as DBMask 
does not perform any intermediate decryptions in the cloud 
database. DBMask introduces the idea of two encryptions per 
each cell for fine-grained access control and predicate match
ing. Hence, DBMask can perform access control and predicate 
matching at the time of query processing by simply adding 
predicates to the query being executed. Unlike the existing 
systems, DBMask can efficient handle large database even 
when user dynamics change. Our experimental results show 
that our solution is efficient and overhead due to encryption 
and access control is low. 

Currently, DBMask does not support all relational opera
tions. In the future, we plan to extend DBMask to expand the 
supported relational operations as well as further optimize the 
supported relational operations. 
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