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ABSTRACT 
Fine-grained access control for relational data defines user 
authorizations at the tuple level. Role Based Access Control 
(RBAC) has been proposed for relational data where roles 
are allowed access to tuples based on the authorized view 
defined by a selection predicate. During the last few years, 
extensive research has been conducted in the area of role en­
gineering. The existing approaches for role engineering are 
top-down (using domain experts), bottom-up (role-mining), 
or a hybrid of both. However, no research has been con­
ducted for role engineering in relational data. In this paper, 
we address this problem. The challenge is to extract an 
RBAC policy with authorized selection predicates for users 
given an existing tuple-level fine-grained access control pol­
icy. We formulate the problem for relational data, propose a 
role mining algorithm and conduct experimental evaluation. 
Experiments demonstrate that the proposed algorithm can 
achieve up to 400% improvement in performance for rela­
tional data as compared to existing role mining techniques. 

Categories and Subject Descriptors 
D.4.6 [Operating Systems]: Security and Protection—Ac­
cess Controls; H.2.8 [Database Management]: Database 
Applications—Data Mining 

General Terms 
Security, Management 

Keywords 
RBAC, role mining, relational data 

1. INTRODUCTION 
Role Based Access Control (RBAC) has emerged as a 

standard for enterprise resource management during the last 
decade. Creation of an RBAC configuration and its mainte­
nance is a major hindrance towards widespread adoption [15]. 

Role-based access control has been proposed for relational 
data that allows roles the access to an authorized view de­
fined by a selection predicate [27, 18, 3, 41]. Fine-grained 
access control for relational data allows defining tuple-level 
permissions for users, e.g., as in Label Based Access Con­
trol (LBAC) in IBM DB2 [42] and Virtual Private Database 
(VPD) in Oracle [4]. The benefit of employing RBAC is 
that the policy management cost is reduced in comparison to 
tuple-level permissions. To gain the benefits of both worlds, 
i.e., the fine-grained access control of tuple-level permissions 
and the cost reduction of role-based access control, relational 
role-mining is proposed that extracts new roles for an RBAC 
policy from the given tuple-level permissions. 

Role engineering is the process to create roles for users and 
assign permissions to roles [7]. Role-mining is the bottom-
up approach for role engineering and uses existing user-to­
permission assignments to extract an RBAC policy. In the 
top-down approach, domain experts manually configure the 
policy. Both bottom-up and top-down approaches have their 
disadvantages. The bottom-up approach requires existing 
policy information and the mined roles lack semantic mean­
ing. In contrast, the top-down approach is labor intensive 
and is dependent on domain experts [2]. A lot of research 
has been conducted in the area of role mining during the 
last few years [14]. However, the problem of role mining for 
relational data has not been explored. The contributions of 
this paper can be summarized as follows. 

1.	 We define the problem of Predicate Role Mining (PRM) 
in the context of relational data. 

2.	 We propose an algorithm for the approximate solution 
of PRM. 

3.	 We conduct experimental evaluation of the proposed 
algorithm. 

The rest of this paper proceeds as follows. Section 2 dis­
cusses related work. Section 3 presents the necessary back­
ground material. Section 4 formulates the problem of role 
mining. Section 5 introduces the new role mining algorithm. 
Section 6 presents the experimental results, and Section 7 
concludes the paper. 
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2. RELATED WORK 
In the top-down approach, domain experts define roles by 

analyzing the application’s business processes and then as­
sign permissions to derived roles based on job functions [1]. 
Roekle et al. propose a process-oriented approach for role 



engineering [28]. Strembek and Neuman et al. introduce 
scenario-driven role engineering based on requirements en­
gineering techniques. They also define functional and or­
ganizational roles [26, 32]. Functional roles are related to 
business functions while organizational roles are related to 
the organizational hierarchy. Shin et al. propose a hy­
brid approach using an information model with top-down 
and bottom-up information flows [30]. All the top-down ap­
proaches are performed manually and need domain experts. 

In the recent years, the focus of research in role engineer­
ing has been in role mining using permission clustering and 
frequent permission sets. The Role Mining Problem (RMP) 
has been formally defined by Vaidya et al. and has been 
shown to be NP-complete [35, 36]. Vaidya et al. propose 
role mining algorithms using subset enumeration [37, 38]. 
Frank et al. view role mining as a prediction problem and 
define its provisioning, security, and maintainability require­
ments [11]. Kuhlman et al. use association rule mining and 
clustering to derive roles [19]. Zhang et al. perform graph 
optimization on user-to-permission assignments to discover 
an RBAC state [40]. Single linkage hierarchical clustering on 
permissions is utilized by Schlegelmilch and Steffens in the 
role mining tool ORCA [29]. Molloy et al. have proposed 
a hierarchical miner using formal concept analysis and an 
attribute miner using user semantics [22]. Frank et al. have 
proposed a probabilistic model for role mining that allows 
for the detection of wrong or missing assignments [10]. One 
of the issues with role mining is the presence of noise in the 
shape of exceptions and over- and under-assignments in user 
to permission assignment data. Molloy et al. use rank re­
duced matrix factorization to detect noise and have shown 
improved accuracy by mining noise-less data [25]. The at­
tribute relevance for role mining has also been discussed by 
Frank et al. in their probabilistic approach using entropy-
based relevance [12]. The entropy-based relevance requires 
the availability of training data. A weighted role mining 
algorithm has been proposed by Ma et al. by assigning 
weights to permissions [21]. Takabi et al. have proposed 
StateMiner that tries to find the optimal RBAC state simi­
lar to an existing RBAC state [33]. Uzun et al. extend the 
role mining problem to consider the separation of duty and 
exceptions [34]. They use Negatives Authorizations (NA) to 
reduce the policy cost that are also being used in our formu­
lation. Most of the existing role mining schemes are not scal­
able and might not be usable for relational data. Verde et 
al. propose scalable techniques to reduce the computational 
workload and parallelize the role mining effort [39]. Colan­
tonio et al. propose Visual Role Mining that is a graphical 
technique to enable quick analysis and elicitation of mean­
ingful roles [6]. 

Molloy et al. have evaluated the performance of some 
of the approaches discussed above on different datasets [24]. 
The Hierarchical Miner proposed by Molloy et al. was found 
to give the best results [22]. However, to the best of our 
knowledge, role mining for relational data has not been in­
vestigated before. The general role mining techniques can 
be used to extract roles for relational data but the extracted 
roles will lack any semantic meaning [2]. From the per­
spective of relational data, the focus is to extract selection-
predicate-based roles. 

3. BACKGROUND 
This section introduces fine-grained access control for re­

lational data, role-based access control, and the role mining 
problem. 

3.1 Fine-grained Access Control 
Fine-grained access control, e.g., LBAC in IBM DB2 [42] 

and VPD in Oracle [4] allows to define tuple-level permis­
sions for database users. An access control policy for a table 
of 12 tuples and 6 users is given in Figure 1. In this table, 
age and zip are the tuple attributes and the column user con­
tains the users that are authorized to access the tuple. Given 
m users and n tuples, if the tuples are directly assigned to 
users and the number of the tuples assigned to each user 
is large, then user-to-permission assignments on the order 
of mn need to be maintained. The number of assignments 
required for the access control policy in Figure 1 is 36. For 
evaluating user queries, we assume a Truman model [27]. 
In this model, a user query is modified by the access con­
trol mechanism and only the authorized tuples are returned. 
Assume that a user, say U1, executes a range query for the 
tuples with age 0-20, and zip 0-30. Although 4 tuples A, B, 
C, and H satisfy the query predicate, only A, B, and C are 
returned to the user. 

5

Age
U1, U2, U5

User
10

Zip
A

ID

15 U1, U2, U525B

15 U1, U2, U515C

30 U1, U2, U530D

30 U1, U2, U615E

40 U1, U2, U65F

5 U3, U4, U635G

10 U3, U4, U520H

15 U3, U4, U640I

30 U3, U4, U540J

40 U3, U4, U535K

35 U3, U4, U525L

Figure 1: Tuple-level access control policy 

3.2 Role-based Access Control 
Role-based Access Control (RBAC) allows users access to 

resources based on the role assumed by the user in an orga­
nization. The benefit of RBAC is that the policy manage­
ment is simplified in comparison to an access control policy 
with direct user-to-permission assignment. A core RBAC 
policy configuration is composed of a set of Users (U), a 
set of Roles (R), a set of Operations (Ops), a set of Ob­
jects (O), and a set of Permissions (P ). UA is a user-to-role 
(U × R) assignment relation, permissions are an operations­
to-objects (Ops × O) assignment relation, and PA is a role-
to-permission (R × P ) assignment relation. A role hierar­
chy (RH) defines an inheritance relationship between roles 
and is a partial order on roles (R × R) [8]. The benefit of 
RBAC is that the policy management cost is reduced, i.e, 
given m users and n tuples, an RBAC configuration requires 
the definition of policy assignments on the order of m+n as 
compared to mn for the case of direct assignment. 

3.2.1 The Role Mining Problem 
The extraction of roles by role mining requires that an ex­

isting access control policy with user-to-permission assign­
ments is available. This problem has been defined by Molloy 
et al. [22] as follows. 



Definition 1. (Role Mining Problem(RMP)). Given an ac­
cess control policy ρ = (U, P, UP ), where UP is a user-to­
permission assignment relation. The role mining problem is 
to find an RBAC state (U, R, UA, P A, RH, DUP A) that is 
consistent with ρ. DUP A is the direct user-to-permission 
assignment relation. The RBAC state is consistent with ρ if 
every user in the RBAC state has the same set of permissions 
as those of ρ. 

3.2.2 Weighted Structural Complexity (WSC) 
Given an access control policy ρ, many RBAC states can 

be consistent with ρ. WSC defines a cost measure for cre­
ating an RBAC state and can be used to select an RBAC 
state with minimal cost. WSC has been defined by Molloy 
et al. [22] as follows. 

Definition 2. (Weighted Structural Complexity). Given 
a weight scheme W = (wr , wu, wp, wh, wd), where wr , wu, 
wp, wh, wd ∈ Q+ ∪ {∞}, the Weighted Structural Complex­
ity (WSC), denoted by wsc(γ, W ), of an RBAC state γ is 
computed as follows. 

wsc(γ, W ) = wr ∗ |R|+ wu ∗ |UA| + wp ∗ |PA|+ wh ∗ 
tr educe(RH) + wd ∗ DUP A 

where treduce(RH) is the transitive reduction of a role 
hierarchy. 
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Figure 2: Role mining on relational data 

Example 1. The two-dimensional representation of the tu­
ples in Figure 1 is given in Figure 2 after role mining. R1 

and R2 are the two roles that were extracted after role 
mining (W : wr = wu = wp = wh = wd = 1) on user-
to-permission assignments given on the user column. The 
role R1 is assigned to users U1 and U2, while role R2 is 
assigned to users U3 and U4. Users U5 and U6 are di­
rectly assigned to the authorized tuples. The policy man­
agement cost with direct user-to-permission assignment was 
36 while with the RBAC policy the cost has been reduced 
to |R| + |UA| + |PA| + |DUP A| (2+4+12+12) = 30. 

3.3 RBAC for Relational Data 
For the relational model, we assume that the conjunc­

tion of the selection predicates on the attributes of relational 
schema defines a role [5]. We denote the role for relational 
data as a Predicate Role (PR). An RBAC configuration 
for relational data is composed of a set of Users (U) and 

a set of Predicate Roles (PR). RA is a user-to-predicate 
role (U × PR) assignment relation. Each predicate role de­
fines a hyper-rectangle in the tuple space and all the tuples 
enclosed by this hyper-rectangle are authorized to the user 
assigned to the predicate role. In practice, when a user exe­
cutes any query, the tuples satisfying the conjunction of the 
query predicate and the authorized predicate (defined by 
PR) are returned [27, 3, 41]. For predicate roles, the tuple 
membership is implicitly defined by the selection predicates. 
So, the role-to-tuple assignment and the role hierarchy are 
not required to be maintained. 

4. PREDICATE ROLE MINING (PRM) 
In this section, the predicate role mining problem and 

the weighted structural complexity for relational data have 
been defined. Let ti be a tuple in Table T with d at­
tributes A1, A2, . . . , Ad. Tuple ti can be expressed as a d-

ti tidimensional vector {v , . . . , v }, where vi is the value of 1 d 

the ith attribute. Let DAi be the domain of the attribute 
Ai, then ti ∈ DA1 × . . . × DAd . A predicate role PR in the 
attribute domain space can be defined as a d-dimensional 
hyper-rectangle. 

4.1 The Predicate Role Mining Problem 

Definition 3. (Predicate Role Mining Problem(PRMP)). 
Given an access control policy ρr = (U, T, UT ) on relational 
data, where UT is a user-to-tuple assignment relation. The 
predicate role mining problem is to find an RBAC state for 
the relational data (U, P R, RA, DT, NA) that is consistent 
with ρr , where DT is the direct user-to-tuple assignment re­
lation, and NA is a direct user-to-tuple assignment relation 
that defines a negative authorization. 

Conflict resolution between positive and negative autho­
rizations is done by applying the denials-take-precedence pol­
icy under which the NA assignment overrides the autho­
rization of a predicate role, i.e., even if access to a tuple is 
authorized by a predicate role, if NA exists for that a user 
and a tuple, then the access is denied. The relational RBAC 
state is consistent with ρr , if every user in the RBAC state 
has the same set of permissions as those in ρr . The forma­
tion of predicate roles can result in access to unauthorized 
tuples to users and the definition of NA allows to ensure the 
consistency of relational RBAC state. 

Definition 4. (Relational Weighted Structural Complex­
ity). Given a weight scheme Wr = (wpr , wra, , wdt, wna), 
where wpr , wra, wdt, wna ∈ Q+ ∪ {∞}, the Weighted Struc­
tural Complexity(WSC), denoted by wsc(γr ,Wr ), of a rela­
tional RBAC state γr is computed as follows. 

wsc(γr ,Wr) = wpr ∗ |PR|+ wra ∗ |RA| + wdt ∗ |DT | + 
wna ∗ |NA| 

Example 2. The two-dimensional representation of the tu­
ples in Figure 1 is given in Figure 3 after predicate role min­
ing. PR1, PR2, PR3, PR4 are four predicate roles that 
were extracted using PRM (Wr : wpr = wra = wdt = wna 

= 1) on the user-to-tuple assignments. The roles PR1 and 
PR4 are assigned to users U1 and U2 while PR2 and PR3 

are assigned to users U3 and U4. Predicate roles PR1 and 
PR3 are assigned to user U5 and roles PR2 and PR4 are as­
signed to user U6. The policy management cost with direct 
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Figure 3: Predicate role mining on relational data 

user-to-tuple assignment is 36 while with that of the RBAC 
state after role mining it is 30. The RBAC policy cost af­
ter PRM has been reduced to |PR| + |RA| + |DT | + |NA|
(4+12+4+4) = 24. 

4.2 Predicate role cost definitions 

Definition 5. (User Role Cost) The user role cost is the 
minimum number of assignments required for a User Uj for 
tuples inside a predicate role PRi to ensure a consistent γr . 
Formally, 

 
Uj Uj Uj Uj 

Uj |DT | + RA , if |DT | ≤ |NA | + 1 PRi PRi PRi PRiC =PRi Uj Uj|NA | + RA , otherwise PRi PRi 

(1) 
Uj Uj Ujwhere RA = 1, if |DT | > |NA | otherwise 0. PRi PRi PRi 

The intuition for the user assignment in Equation 1 is 
that the role is assigned to a user only if the negative autho­
rization cost is less than the direct user-to-tuple assignment 
cost. 

Definition 6. (Predicate Role Cost (PRC)) The relational 
RBAC policy cost for a predicate role PRi is the minimum 
number of assignments required for all users authorized to 
access tuples inside PRi for a consistent γr and is denoted 
by P RCPRi 

P|U| 
UjP RCPRi = RCPi + CPRi 

(2) 
j=1  |U | Ujwhere RCPi = 1 if RA > 0 otherwise 0. j=1 PRi 

RCPi = 1, means that the predicate role is only created 
when at least one user is assigned to the predicate role. The 
sum of cost for all predicate roles is equal to the wsc(γr ,Wr ) 
as given in Definition 4, i.e., 

|PPR| 

wsc(γr ,Wr ) = P RCPRi (3) 
i=1 

Example 3. Consider the predicate role PR1 in Figure 3. 
U1 U1The user role cost for user U1 is C = 2 (DT = 4PR1 PR1 

and NAU1 = 2). The predicate role cost for PR1 is (sum PR1 
of user role costs for users U1 − U 6 plus 1 for role creation 
cost = 2+2+1+1+1+0+1) is 8. The total cost for the sum 
of all predicate roles PR1 − PR4(8+4+8+4) is 24, which is 
the wsc(γr,Wr ) computed in Example 2. 

5. PRM ALGORITHM 
In this section, a new algorithm for predicate role min­

ing is presented. The general problem of role mining has 
been shown to be NP-complete [36, 23]. The predicate role 
mining problem is a space-partitioning problem and similar 
problems for multidimensional partitioning have been shown 
to be NP-hard [20]. We provide a greedy algorithm that tries 
to minimize the cost of a relational RBAC policy. 

The new Predicate Role Mining (PRM) algorithm is sim­
ilar to the kd-tree construction [13]. PRM starts with the 
whole tuple space as one predicate role and then roles are 
recursively split into two halves if the sum of predicate role 
cost by creating new roles does not increase as compared 
to the existing predicate role. To split a predicate role, 
two decisions need to be made; i) Choosing a split value 
along each dimension, and ii) Choosing a dimension along 
which to split. The split value is chosen along the median in 
each dimension and then the dimension having the minimum 
predicate role cost P RCCR1 + P RCCR2 is selected. 

i i 

The PRM algorithm is listed in Algorithm 1. In Line 1, 
the whole tuple space is added to the set of candidate roles. 
The for loop in Line 2 selects a predicate role and then 
the role is split along the median. The dimension having 
the lowest role cost is selected to split the candidate role 
in Lines 3-4. If after the split the role cost increases, then 
we add the predicate role to the RBAC state in Lines 8-9. 
Otherwise, the new roles are added to candidate role set in 
Line 6. 

Algorithm 1: PRM 

Input : T, ρr ,Wr 

Output: γr 

1 Initialize Set of Candidate Roles(CR ← T ) 
2 for (CRi ∈ CR) do 
3 Split CRi into CRi 

1 and CRi 
2 along median in each 

dimension 
4 Select dimension with least P RCCR1 + P RCCR2 

i i 

5 if (P RCCR1 + P RCCR2 ≤ P RCCRi ) then 
i i 

6 Create new predicate roles and add to CR 
7 else 
8 Add predicate role to PR 
9 Update γr 

10 return (γr ) 

Lemma 1. The time complexity of PRM is O(dmnlgn). 

Proof. Assume that there are m users and n tuples in 
a relational table. The time complexity is derived by mul­
tiplying the height of the kd-tree with the work performed 
at each level. The height of the kd-tree for the median split 
is lgn. At each level, the policy cost for each user is cal­
culated over all tuples, which leads to dmn, where d is the 



number of attributes in relational data. Then, the total time 
complexity is O(dmnlgn). 

The PRM algorithm generates a hierarchical kd-tree along 
with the predicate roles as the leaf nodes of the tree. There 
are two approaches to define hierarchical relationships among 
predicate roles: 

1.	 An intermediate node’s hyper-rectangle might enclose 
smaller leaf-node’s hype-rectangles for predicate roles 
assigned to any user. If the assignment of user to larger 
hyper-rectangle reduces the policy cost then we remove 
the user-to-role assignments for the smaller roles and 
update DT and NA accordingly. 

2.	 Cluster the predicate roles to generate role hierarchy. 
However, with this approach, assignments for relation­
ships between roles will need to be maintained. 

However, in our experiments in Section 6 we observed only 
minor cost improvement after replacing smaller roles with 
larger predicate roles. 

6. EXPERIMENTAL EVALUATION 
The experiments are carried out on three datasets for the 

empirical evaluation of the proposed algorithm for predicate 
role mining. The first dataset, Normal, is generated syn­
thetically from the normal distribution for the purpose of 
the visual representation of the generated predicate roles. 
2000 tuples with two attributes are randomly selected (from 
a Normal distribution with µ = 50, σ = 10, and cardinal­
ity = 100). The second dataset is the Adult dataset from 
the Machine Learning Repository at the University of Cali­
fornia, Irvine [9]. The Adult dataset has 45222 tuples with 
the following schema: Age, Work class, Education, Marital 
status, Occupation, Relationship, Race, and Gender. The 
third dataset is the Census dataset [31] from IPUMS. This 
dataset is extracted for Year 2001 using attributes: Age, 
Gender, Marital status, Race, Birth place, Language, Occu­
pation, and Income. The size of the Census dataset is about 
1.2 million tuples. 

6.1 Random Policy Generator 
The basic assumption for predicate role mining is that the 

tuple-level permissions for users have a semantic relation­
ship. If a user is working on Project 1, then the user will 
have access to most of the tuples related to Project 1. In or­
der to generate tuple-level permissions for the three datasets, 
two tuples are randomly selected from the tuple space and 
a bounding box of these two tuples is formed [17]. For the 
Normal dataset, we select three such bounding boxes (with 
cardinality BC between 200 ≤ BC ≤ 500) for each user. 
Then, we assign all the unique tuples inside the bounding 
boxes to the user as a tuple-level permission. The three ran­
domly selected bounding boxes for the first four users are 
given in Figure 4. For the Adult and Census datasets, we 
use five bounding boxes (500 ≤ BC ≤ 2000) and ten bound­
ing boxes (2000 ≤ BC ≤ 10, 000), respectively. The bound­
ing boxes are used to assign user-to-tuple level permissions. 
The summary of the direct assignment policy generation for 
the datasets is given in Table 1. 

6.2 Results 
Molloy et al. evaluated the existing role mining algorithms 

and found that the Hierarchical Miner (HM) [22] gives the 
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Figure 4: Assignment of random permissions to 
users 

Table 1: Dataset and assigned permissions 

Users Tuples UT Density 

Normal 20 2000 15513 0.387 

Adult 300 45222 1451715 0.107 

Census 500 1192206 21654616 0.036 

lowest RBAC policy cost [24]. The HM algorithm uses a 
concept lattice that is reduced and pruned to generate a 
role hierarchy. For the generation of a concept lattice, we 
use Colibri-Java, an implementation of the Formal Concept 
Analysis in Java [16]. It has built-in functions to derive the 
reduced concept lattice but the state space for the concept 
lattice grows exponentially as the number of users and per­
missions increase. Instead of pruning the reduced lattice, 
we just estimate the cost of HM from the reduced lattice 
by using the pruning rules for HM. The pruning rules are 
applied to estimate the policy cost as follows: 

1.	 Roles are created for nodes in the reduced lattice hav­
ing both new users and new permissions and UA and 
PA costs are evaluated for each node. We assume an 
RH cost of one for each role. 

2.	 A node with only roles will be mapped to existing roles 
according to the Lower Neighbors (LN). The UA cost 
(UA*LN) for each node is evaluated. 

3.	 A node with only permissions will also be mapped to 
existing roles according to the Upper Neighbors. The 
PA cost (PA*UN) for each node is evaluated. 

4.	 The nodes with no new roles and permissions are ig­
nored for W : wr = wu = wp = wh = wd = 1. 

We iterate over all nodes and sum the total cost according 
to the applicable pruning rule. We compare our results of 
the PRM algorithm with that of estimated HM cost for the 
first dataset only. The weight scheme used is Wr : wpr = 
wra = wdt = wna = 1 for PRM and W : wr = wu = wp = 



wh = wd = 1 for HM. The results for predicate role min­
ing for the Normal dataset are given in Table 2. The first 
row gives the cost for the Direct Assignment Policy (DAP), 
the second row gives the RBAC cost of policy generated by 
the hierarchical miner, and the third row shows the cost 
of relational RBAC policy generated by the predicate role 
mining algorithm. The PRM algorithm generates 160 pred­
icate roles and there are 1108 assignment relations for 20 
users. The total cost for the relational RBAC policy is 2927 
that is about five times less than the direct assignment cost 
and three time less than the estimated HM cost. The vi­
sual representation of the generated predicate roles is given 
in Figure 5. In this figure, the blue rectangles (darker) are 
predicate roles generated by the PRM algorithm while the 
red rectangles are the candidate roles that are created but 
are not assigned to any user due to the high NA (negative 
authorization) cost. The policy cost reported for PRM for 
all the three datasets is without the hierarchy step. 

Table 2: Results for the Normal dataset 
|PR| |RA| |PA| |DT| |NA| Total 

DAP 0 0 0 15513 0 15513 

HM 11 183 9480 0 0 9685 

PRM 160 1108 0 940 719 2927 
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Figure 5: Visual representation of the extracted 
predicate roles 

In the next experiment for the Normal dataset, we vary 
the number of users and generate random user-to-tuple as­
signments for 10, 15, 20, 25, 30, and 35 users. The policy 
cost for the generated policies by HM and PRM is given in 
Figure 6. Observe in Figure 6(a) that PRM gives the lowest 
policy cost as compared to DAP and HM. The cost com­
parison for the creation of roles, user-to-role assignments, 
and role-to-permission assignments between HM and PRM 
is given in Figure 6(b), Figure 6(c), and Figure 6(d), repec­
tively. The HM forms an RBAC policy with a fewer number 
of roles in Figure 6(b) as there are no spatial constraints for 
the formation of roles. However, this requires a high cost 
to maintain the role-to-permission assignments as given in 
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Figure 6: Varying the number of users for the Nor­
mal dataset 

Figure 6(d). On the contrary, more predicate roles are made 
by PRM with a lower DT and NA cost as compared to the 
PA cost of HM. 

The results for the Adult dataset are given in Table 3. 
The PRM algorithm generates 7994 predicate roles for 300 
users. The relational RBAC cost for the policy generated by 
PRM is 376545 that is about four times less than the direct 
assignment cost. 

The predicate role mining results for the Census dataset 
are given in Table 4. In this case also, PRM reduces the 
policy cost by a factor of about three as compared to the 
direct assignment cost. 

The cost savings after hierarchy step is given in Table 5 
for all three datasets. 

7. CONCLUSIONS 
Lot of research has been conducted in the area of role 

mining during the last few years. However, the problem 
of role engineering for relational data has not been inves­
tigated. We formulate the problem of predicate role min­
ing for relational data and define the relational weighted 
structural complexity for a relational RBAC policy. To ex­
tract predicate roles from existing user-to-tuple permission 
assignments, we propose a predicate role mining algorithm 
and conduct experimental evaluation. Experiments demon­
strate that the proposed algorithm can achieve up to 400% 
improvement in performance. In future work, we plan to 
work on hardness results of the predicate role mining prob­
lem and performance guarantees for the PRM algorithm. 

8. COMMENTS 
Study following changes 

1. Implement another RM algorithm, Zhang or any other 

2.	 Apply role mining to cluster PRM and check cost sav­
ing 

3. Investigate hybrid PRM and compare with Comment 2 



Table 3: Results for the Adult dataset 
|PR| |RA| |PA| |DT| |NA| Total 

DAP 0 0 0 1451715 0 1451715 

PRM 7994 173390 0 122541 72620 376545 

Table 4: Results for the Census dataset 
|PR| |RA| |PA| |DT| |NA| Total 

DAP 0 0 0 21654616 0 21654616 

PRM 182942 2843769 0 2703658 1440781 7171150 

Table 5: Cost saving after hierarchy step 

Cost Cost Saving % Improvement 

Normal 2927 317 10.83 

Adult 376545 25761 6.84 

Census 7171150 486986 6.79 

4. Generate Hierarchical by bottom up approach too 

5.	 Add bottom up approach too with benefits (doesnt 
require to store complete dataset) 
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