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ABSTRACT 

Stanley, Dannie M. Ph.D., Purdue University, December 2013. Improved Kernel Secu
rity Through Code Validation, Diversification, and Minimization. Major Professors: 
Eugene H. Spafford and Dongyan Xu. 

The vast majority of hosts on the Internet, including mobile clients, are running 

one of three commodity, general-purpose operating system families. In such operating 

systems the kernel software executes at the highest processor privilege level. If an 

adversary is able to hijack the kernel software then by extension he has full control 

of the system. This control includes the ability to disable protection mechanisms and 

hide evidence of compromise. 

The lack of diversity in commodity, general-purpose operating systems enables 

attackers to craft a single kernel exploit that has the potential to infect millions of 

hosts. If enough variants of the vulnerable software exist, then mass exploitation is 

much more difficult to achieve. We introduce novel kernel diversification techniques 

to improve kernel security. 

Many modern kernels are self-patching; they modify themselves at run-time. Self-

patching kernels must therefore allow kernel code to be modified at run-time. To 

prevent code injection attacks, some operating systems and security mechanisms en

force a W ⊕ X memory protection policy for kernel code. This protection policy 

prevents self-patching kernels from applying patches at run-time. We introduce a 

novel run-time kernel instruction-level validation technique to validate the integrity 

of patches at run-time. 

Kernels shipped with general-purpose operating systems often contain extraneous 

code. The code may contain exploitable vulnerabilities or may be pieced together 

using return/jump-oriented programming to attack the system. Code-injection pre



x 

vention techniques do not prevent such attacks. We introduce a novel run-time kernel 

minimization technique to improve kernel security. 

We show that it is possible to strengthen the defenses of commodity general-

purpose computer operating systems by increasing the diversity of, validating the 

integrity of, and ensuring the minimality of the included kernel components without 

modifying the kernel source code. Such protections can therefore be added to ex

isting widely-used unmodified operating systems to prevent malicious software from 

executing in supervisor mode. 
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1 INTRODUCTION 

1.1 Background 

The vast majority of hosts on the Internet, including mobile clients, are running 

one of three commodity, general-purpose operating system families. In such operat

ing systems the kernel software executes at the highest processor privilege level and 

therefore has full control of the system. If an adversary is able to hijack the kernel 

software then by extension he has full control of the system. This control includes 

the ability to disable protection mechanisms and hide evidence of compromise. At

tackers may exploit flaws in software to subjugate the kernel using a variety of attack 

techniques, including buffer overflows [1], return-oriented programming [2, 3], heap 

overflows [4], format string vulnerabilities [5], and integer overflows [6, 7]. 

Malicious operating system kernel software, such as the code introduced by a 

kernel rootkit, is strongly dependent on the organization of the victim operating sys

tem. The lack of diversity in commodity, general-purpose operating systems enables 

attackers to craft a single kernel exploit that has the potential to infect millions of 

hosts. If the underlying structure of vulnerable operating system components has 

been changed in an unpredictable manner, then attackers must create many unique 

variations of their exploit to attack vulnerable systems en masse. If enough variants of 

the vulnerable software exist, then mass exploitation is much more difficult to achieve. 

Therefore, diversification can be used to improve the security of an operating system 

kernel. 

Security mechanisms have been created to prevent kernel rootkit code injection 

by authenticating all code that is loaded into kernel space. Modern self-patching 

kernels modify kernel code in-memory at run-time at instruction-level granularity. If 

the kernel code was validated at load-time and modified later at run-time, then the 
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code is no longer guaranteed authentic. Instruction-level run-time validation can be 

used to improve the security of an operating system kernel. 

Kernels shipped with general-purpose operating systems often contain extrane

ous code. The unnecessary kernel code is a security liability. The code may con

tain exploitable vulnerabilities or may be pieced together using return/jump-oriented 

programming to attack the system. Run-time kernel minimization can be used to 

improve the security of an operating system kernel. 

Our hypothesis is the following: It is possible to strengthen the defenses of com

modity, general-purpose computer operating systems by increasing the diversity of, 

validating the integrity of, and ensuring the minimality of the included kernel com

ponents without modifying the kernel source code. Such protections can therefore 

be added to existing, widely-used, unmodified operating systems to prevent malicious 

software from executing in supervisor mode. 

To test our hypothesis we design and implement six distinct kernel security mech

anisms, protect many unmodified commodity operating systems kernels using the 

mechanisms, and assail the protected kernels using common attack techniques in

cluding return-oriented programming and kernel rootkits. 

1.2 Contributions 

1.2.1 Diversification 

Many forms of automatic software diversification have been explored and found 

to be useful for preventing malicious software infection. Forrest et. al. make a strong 

case for software diversity and describe a few possible techniques including adding 

or removing nonfunctional code, reordering code, and reordering memory layouts [8]. 

Our diversification techniques build on the latter. 

We describe the design and implementation of two novel kernel diversification 

mechanisms that mutate an operating system kernel using memory layout random

ization. We introduce a new method for randomizing the stack layout of function 
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arguments and refine a previous technique for record layout randomization by intro

ducing a static analysis technique for determining the randomizability of a record. 

We developed prototypes of our kernel diversification mechanisms using the plu

gin architecture offered by GCC. To test the security benefits of our techniques, we 

randomized multiple Linux kernels using our compiler plugins. We attacked the ran

domized kernels using multiple kernel rootkits. We show that by strategically select

ing just a few components for randomization, our techniques prevent kernel rootkit 

infection. 

1.2.2 Validation 

Previous works in code injection prevention use cryptographic hashes to validate 

the integrity of kernel code at load-time. The hash creation and validation procedure 

depends on immutable kernel code. However, some modern kernels contain self-

patching kernel code [9]; they may overwrite executable instructions in memory after 

load-time. Such dynamic patching may occur for a variety of reason including CPU 

optimizations, multiprocessor compatibility adjustments, and advanced debugging. 

Previous hash-based validation procedures cannot handle such modifications. 

We describe the design and implementation of a novel kernel validation mechanism 

that validates the integrity of each modified instruction as it is introduced into the 

guest kernel. 

We developed prototypes of our kernel validation mechanism by customizing the 

Linux KVM hypervisor and performed instruction-level validation of a guest self-

patching Linux kernel. Our experiments show that our system can correctly detect 

and validate all valid instruction modifications and reject all invalid ones in support 

of a new code-injection prevention system named NICKLE-KVM. 
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1.2.3 Minimization 

Previous work has been done in additive operating system specialization [10]. An 

example of such specialization is loadable kernel modules, such as drivers, that add 

kernel code at runtime. However, work has not been done in subtractive operating 

system specialization. 

We describe the design and implementation of two novel run-time kernel mini

mization mechanisms. The first is an out-of-the-box function eviction technique. The 

second is a kernel-based non-executable page technique. 

We developed prototypes of our kernel minimization mechanism by customizing 

the Linux KVM hypervisor and performed run-time kernel minimization on a guest 

Linux kernel. Our experiments show that it is possible to improve the security of 

a kernel against return and jump oriented programming attacks by deactivating ex

traneous kernel code at run-time thereby limiting the supply of reusable instructions 

that can be used to construct return-oriented gadgets. 

1.3 Terminology 

Commodity General-Purpose Operating Systems Operating systems that are 

commonly used with desktop, laptop, and server-class hardware including the 

following families of operating system: Linux, Windows, and Mac OS X. This 

class of operating system excludes specialized operating systems used for em

bedded devices and mobile computing. 

1.4 Models 

1.4.1 Computation Model 

Our computation model follows the Von Neumann architecture described by [11], 

used by many modern architectures [12–14], and illustrated in Figure 1.1. The com

putation model has four primary components: the control unit (CU), the arithmetic 
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Memory

Control Unit Arithmetic and Logic 
Unit

Accumulator

Input

Output

Figure 1.1. Computation model 

and logic unit (ALU), accumulator that manages input/output operations, and mem

ory. The CU has many registers including one used as the program counter (PC) that 

are used to fetch and execute instructions as described in Section 1.4.2. The address 

of the next instruction to be executed is stored in the PC. The memory holds both 

code and data as described in Section 1.4.3. This model of computation is sometimes 

referred to as the “Princeton” architecture in contrast to the “Harvard” architec

ture that has distinct physically separate memory for code and data. The ALU is 

responsible for performing arithmetic and logical calculations. 

Further we assume a linearly addressed hardware-assisted paged virtual memory 

system with a memory management unit (MMU). A special processor control register1 

holds the memory address of the page directory base register (PDBR). The PDBR 

address is the entry point for the page table associated with the current task. Upon a 

context switch the PDBR may be updated giving each task its own linearly addressed 

virtual memory space. The MMU also utilizes a translation look-aside buffer2 (TLB). 

We assume that the TLB is flushed when the PDBR is updated. Further in our model, 

virtual memory pages have read-write-execute access control attributes that can be 

used for page-level protections. 

1CR3 for x86 
2for simplicity a unified TLB is assumed though some modern processors have multiple TLBs 
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1.4.2 Execution Model
 

Execute

Decode

Fecth

Start

Jump?

Interrupt?

MAR ← PC

PC ← PC + 1

IR ← M[MAR]

Decode IR

PC ← Jump Addr.

Execute IR

Result? Store Result

Y

Y

PC ← ISR Addr.Y

Figure 1.2. Execution model 

Our execution model follows the fetch-decode-execute design described by [15], 

used by many modern architectures [12–14], and illustrated in Figure 1.2. The ex

ecution model has three phases during one clock cycle: fetch, decode, and execute. 

The PC holds the memory address of the next executable instruction. At startup, 

the CPU sets an initial PC value. The CPU copies the PC value to the memory 

address register (MAR) and advances the PC to the next instruction. Then the CU 

fetches the instruction from memory (M[]), using the address stored in MAR, into 

the instruction register (IR). Then the CU decodes the instruction into its component 

parts including the operation and operands. If the operation is a jump, then the PC 

is updated and the execution continues. Otherwise the ALU executes the instruction 

and stores the result if one is emitted. If the interrupt request register (IRR) holds 

a pending interrupt, the programmable interrupt controller (PIC) copies the address 

of the corresponding interrupt service routine (ISR) to the PC. 
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For our model, we assume a single processing core running in a multitasking 

operating system. As a result, only one instruction is executed at a time and the 

operating system performs frequent context switches. The processor has at least two 

privilege modes that we refer to as kernel mode and user mode. Privileged instructions 

are only executed in kernel mode. Examples of such instructions includes: loading 

the interrupt descriptor table and changing the current privilege level. None of the 

techniques describe depend upon a specific task scheduling technique, instruction 

pipelining, instruction caching, or multi-core processing. Therefore, these components 

are not pertinent to our execution model. 

1.4.3 Process Memory Model 

Heap ↑

Stack ↓

Text (User Program Code)

Data (Initialized Global/Static Variables)

BSS (Uninitialized Global/Static Variables)

Kernel

Memory Mapped Files (shared libs)

kernel space

user space

Figure 1.3. Task memory model 

Our process memory model follows the memory layout used by many current 

commodity operating systems3, and illustrated in Figure 1.3. The user program code 

3Linux, Windows, and Mac OS 
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is loaded at the bottom of the process virtual address space. Dynamic user memory 

is allocated on the user heap (heap) adjacent to the user program, and it grows 

from a lower numerical memory address to a higher numerical memory address. The 

stack is located adjacent to the kernel space, described next, and grows from a higher 

numerical memory address to a lower numerical memory address. Shared libraries and 

other special files are mapped into a region of memory between the heap and the stack. 

These regions of memory are referred to collectively as “user space.” A predetermined 

fixed amount of memory is allocated for the operating system “kernel space” at the 

top of the task address range. The kernel program is loaded at the bottom of the 

kernel space. Dynamic kernel memory is allocated as needed in available kernel space. 

Though the operating system may have one or more kernel stacks, unless otherwise 

noted the term “stack” refers to the user stack. 

Generally, we rely on the stack-based calling convention design described in [16]. 

Specifically, the function calling convention used, unless otherwise noted, is the x86 

CDECL calling convention described by Kernighan and Ritchie [17]. This calling 

convention is the default for current popular x86 C compilers4 . This specific calling 

convention, though implementation specific, is germane to the attack and protection 

techniques described herein because of assumptions made about the layout of the 

stack during run-time. 

In the CDECL calling convention, the calling function pushes the arguments for 

the callee function onto the stack in reversed order and then calls the callee function. 

When the call instruction is executed the current PC is pushed onto the stack, this 

memory address value is referred to as the “return address.” The callee pushes the 

stack base pointer (BP) onto the stack and stores the current stack pointer (SP) as the 

new BP. The SP always holds the address of the top of the stack. The values resident 

in any of the registers that are needed by the function are pushed onto the stack. 

Then the callee allocates space for local, non-static, function variables on the stack 

by advancing the SP address proportional to the amount of space needed by local 

4GNU GCC 4.7.2 and Microsoft Visual Studio 2012 
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argument n

...

stack

...

argument 2

argument 1

return address

pushed by
caller

saved BP of caller

callee saved register 1

...

callee saved register n

callee saved register 2

local variable 1

...

local variable n

local variable 2

pushed by
callee

BP of
callee

SP

Figure 1.4. Call stack model 

variables. Figure 1.4 illustrates the layout of the stack after a call has been made. The 

callee is responsible for restoring the callee saved registers before returning. When a 

return instruction is reached, the return address is popped off the top of the stack 

into the PC. 

Many of the techniques described are not necessarily dependent on this task mem

ory model and have analogues in other platforms and calling conventions. However, 

for the sake of clarity and harmony with related works, we provide examples using 

these conventions. 
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1.4.4 Threat Model 

For our work we assume that an attacker can communicate with the vulnerable 

system through a network interface controller (NIC); that the system has a hardware 

or software vulnerability that is exploitable through NIC communications, such as a 

system service buffer overflow vulnerability; that the attacker is able to write to some 

region of memory, such as the user stack; and that the attacker is able to manipulate 

the PC either directly or indirectly. We assume that the operating system attempts 

to enforce contemporary protection mechanisms such as those listed in Section 2.2. 

Specifically, we assume that kernel code pages are read-only but kernel data pages 

are writeable and non-executable as implemented by the kernel or by VMM based 

solutions such as NICKLE [18]. 
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2 RELATED WORK 

2.1 Attack Techniques 

The operating system kernel may be subverted using a variety of attack techniques. 

One of the primary types of attacks is referred to as control-flow hijacking. In this 

type of attack, the control flow of a running program is diverted to an unintended 

segment of code. This is accomplished by modifying an address that is stored in 

memory and will be later used by a control flow instruction such as a jump, call or 

return instruction. For example, in the x86 architecture, when a “ret” instruction 

is encountered, an address is popped off the stack into the program counter. This 

address is referred to as the “return address.” As a result, the next instructions 

executed by the processor will be fetched from the memory region starting at the 

return address. Similarly, if a program makes a call to an address stored in data 

memory, such is the case when function pointers are used, and that address can be 

modified by an attacker, then the control flow may be subverted. 

In this section we discuss the various methods used to leverage a control-flow 

type of attack. For each attack, the naive approach is described. In some cases 

mitigation techniques have been adopted that require the attack technique to be 

more sophisticated than the one presented. Mitigation techniques are described in 

Section 2.2. 

2.1.1 Buffer Overflow Attack 

Buffer overflow attacks are well studied but have “been remarkably resistant to 

elimination” [19]. Attackers have used buffer overflows in combination with other 

techniques, as we describe later, to hijack the control flow of a program and execute 
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malicious code. Buffer overflow attacks can take place on the memory stack or the 

memory heap. Following is a description of both kinds of buffer overflow attacks and 

how they can lead to control-flow hijacking. 

Stack-Based Buffer Overflow Attack 

A piece of software is vulnerable to a stack-based buffer overflow attack if the 

boundaries of a buffer in memory allocated on the stack, such as a variable repre

senting an array, are not checked and enforced when the buffer is filled. For example, 

a programmer may designate a local variable of the size 32 bytes. When the proce

dure holding this local variable is executed, the function preamble allocates a chunk 

of memory on the stack for this variable in the size of 32 bytes. If during program 

execution another buffer, larger than 32 bytes, is copied into this local variable then 

the space on the stack allocated for this variable is overflowed. 

The ramifications of an overflow event may not be immediately apparent. The 

problem arises when the areas of memory adjacent to the buffer, such as other lo

cal variables, get overflowed into. Now those variables have values that were not 

intentionally set by the programmer. 

In an execution model where the return address is stored on the stack and the stack 

grows downward, the top of the stack is at a lower numerical address, the function 

return address is at a higher numerical address than the local variable holding the 

buffer. As a result, a carefully crafted overflow event can modify the return address 

of the function. When the function concludes, the control flow jumps to the return 

address stored on the stack even if address has been malicious manipulated. This 

kind of attack is often referred to as “stack smashing” [1]. This technique was used 

by the first Internet worm described by Spafford in 1989 [20]. 
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Heap-Based Buffer Overflow Attack 

Similar to the stack-based buffer overflow attack, a piece of software is vulnerable 

to a heap-based buffer overflow attack if the boundaries of a buffer in memory allo

cated on the heap are not checked and enforced when the buffer is filled. Generally, a 

heap-based buffer overflow attack can be used to write arbitrary data into arbitrary 

locations in memory. As a result, a heap based overflow attack, could also modify 

the return address stored on the stack. 

Similar to the stack-based attack the key to the heap-based attack is what gets 

written into memory when the buffer is overflowed. Most of the buffer overflow 

attacks that can be leveraged on the stack can also be leveraged on the heap. How

ever, the heap does have a characteristic that distinguishes it from the stack-based 

vulnerabilities. When memory is allocated on the heap, bookkeeping information 

about the allocation itself is often stored alongside the memory chunks being allo

cated. Therefore, when an overflow event occurs, the bookkeeping information may 

get manipulated. Suppose for example, that the bookkeeping information contains 

linked-list like pointers to the next and previous blocks of allocated memory. When 

a block of memory is deallocated the bookkeeping information stored on adjacent 

linked list nodes is updated. Depending on the specific implementation of the alloca

tion routines, the update can be be tricked into writing a value from the next pointer, 

e.g. a new return address, into an address pointed to by the previous pointer, e.g. 

the location of the existing return address [4]. Other heap overflow techniques focus 

on manipulating data stored in the heap, such as function pointers, to hijack con

trol flow. Modifying a function pointer is not as general of a technique as modifying 

the return address because it is heavily dependent on the organization of the data 

structures used by the program. 
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2.1.2 Format String Attack 

A piece of software is vulnerable to a format string attack if the format parameter 

to any of the functions in the “printf” family of library function can be provided by 

the attacker [5]. There are two important attributes of the format string functions 

that make this attack possible. First, the number of parameters passed into the 

printf functions is variable. Second, the formatting character sequence “%n” in the 

format string writes the number of outputted bytes to the corresponding integer 

pointer also provided as a parameter. Because the number of parameters are variable, 

the printf functions pop values off the stack to satisfy the formatting string. For 

example, if the formatting string contains placeholders for 10 integers, then 10 integers 

are popped off the stack. Even if 10 integers are not provided to the function, 10 

integers are still popped off the stack. If one of the placeholders is a “%n”, then 

the corresponding integer popped off the stack is treated as an integer pointer and it 

receives the count value. The count value can be artificially incremented using special 

formatting parameters. The count value can therefore be set to any integer value, for 

example a memory address. The destination of the write is determined by the value 

popped off the stack. The format string itself is stored on the stack. As a result, if 

the prefix of the format string is a sequence of non-null bytes, they can be interpreted 

as an integer, for example the address of the return address. As a result, any integer 

can be written to any memory address if the attacker is able to control the format 

string parameter. 

2.1.3 Integer Overflow Attack 

Unlike the previous attacks, integer overflow attacks do not themselves lead to 

control-flow hijacking. Instead they are used in combination with buffer overflow 

attacks. An integer overflow occurs when a value is stored in a variable of insufficient 

size. This can happen as a result of a calculation. For example, adding two large 
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integers together may result in a number that is larger than the largest possible 

integer. Therefore, the sum should not be stored in an integer variable. 

This can also happen as a result of a condition called “integer promotion.” When 

a calculation involves variables of two different sizes, then the smaller variable is 

promoted to the size of the larger variable, then demoted at the conclusion of the 

calculation. In both cases, the value stored in a variable that has been overflowed, is 

unintentionally allowed by the programmer. 

Both overflow and integer promotion may lead to logic problems later in the 

code. For example, the overflowed variable may be used to check the boundaries of a 

buffer. If an attacker can force an integer overflow, he may be able to cause a buffer 

overflow [6, 7]. 

2.1.4 Return and Jump-Oriented Programming 

The attacks previously mentioned all hijack the control-flow of a program. Gen

erally they overwrite some area of memory that holds an address such as the return 

address on the stack. At some point during program execution, that address is used 

as the target of a jump, call or return instruction. At the location of the target 

memory address is a sequence of instructions that represent the attack code. 

The attack code can be injected using one of the previous attack techniques, for 

example a buffer overflow. However, various mitigation strategies, as described in 

Section 2.2 have been introduced to prevent the injection of code into executable 

regions of memory or to prevent the execution of writable area of memory such as the 

regions occupied by heap and the stack. As a result, a different kind of attack evolved 

that reuses portions of existing authorized code, such as kernel and system libraries, in 

unconventional combinations to carry out the attack rather than injecting new code. 

These kinds of attacks are generally referred to as “return-oriented programming” 

attacks. Following is a description of such attacks. 
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Return-Into-Libc Attack 

A return-into-libc attack was first described in 1997 as a proof-of-concept attack 

against a system with a non-executable stack [21]. If an attacker can write data to the 

stack, by using a buffer overflow for example, the stack can be strategically crafted 

so that the program execution jumps into a shared library function. The function 

executes exactly as if it had been called conventionally including popping function 

parameters off the stack1 . Therefore, both the function and function parameters can 

be provided by the attacker. 

By way of an example, the attack described in [21] calculates the memory address 

of the system library function named “system()” and the memory address of the string 

“/bin/sh” that represents the path to a shell program. The attacker carefully crafts 

a buffer that will exploit a known buffer overflow vulnerability in a system service 

named lpr. The exploit overwrites the stack in such a way that the string “/bin/sh” 

is passed to the library function “system().” The end result is that a shell is created. 

Because the software exploited runs under the root user identifier, zero, the new shell 

also runs under the root user identifier. Anyone with access to this root shell has full 

control of the system. 

The primary characteristic that distinguishes this kind of attack from the other 

return-oriented techniques listed later is that it uses a system library function in its 

entirety to carry out a malicious objective opposed to many smaller pieces of existing 

authorized system code. Later in 2001, this technique was extended to include the 

execution of multiple functions [22]. 

Return-Oriented Programming 

In 2005, Krahmer introduced a method that resembles a return-into-libc attack but 

instead of calling library functions his method borrows “chunks of code” from library 

functions [2]. He demonstrates how to chain together many chunks of code to carry 

1CDECL calling convention 
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out useful tasks. In 2007, Schacham generalized the technique and coined the term 

return-oriented programming (ROP) [3]. Schacham refers to a combination of code 

chunks as a gadget. Like the return-into-libc attack, a return-oriented programming 

attack is based on stack manipulation. However, rather than attempting to change a 

single address on the stack, for example the return address as in previous examples, 

the attacker attempts to place multiple address and other values on the stack. 

10

20

stack

d

c

b

a

a

a + 3 ret

mov    0x14(%ebp),%eax

BP

EAX ← 10

PC ← b

Addr Assembly (GAS) Action

b

b + 3 ret

mov    0x18(%ebp),%edx EDX ← 20

PC ← c

c

c + 2 ret

add    %edx,%eax EAX ← 20 + 10

PC ← d

adder
gadget

Figure 2.1. Return-oriented adder gadget 

Unlike the return-into-libc attack, the addresses are not location of functions in 

memory, rather locations of segments of code that perform some useful computation 

and occur just before a return instruction. After the computation is complete another 

return instruction is encountered that causes the next return address to be popped 

off the stack and execution continues to the next useful chunk of code. Figure 2.1 

illustrates an “adder gadget.” The purpose of this gadget is to add two arbitrary 

integers that are stored in the stack area of memory. The stack is represented on the 

left and it has already been populated with values strategically by the attacker. The 

variables a through d represent the starting addresses of four distinct non-contiguous 

chunks of code. The resulting sum is stored in a register that could be then used by 

successive gadgets. 

The computations may pop values from the stack or use values in registers. There

fore, along with return addresses, the stack is filled strategically with values to be 

used in the computations. For example, if the top of the stack holds the address of 

an instruction that pops the value off the stack into a register and the next value on 
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the stack is an integer value, then when the return instruction is reached the regis

ter has the value from the stack that can be used for the next computation. Many 

computation-return combinations are strung together to create “gadgets.” Shacham 

shows that enough gadgets can be assembled out of the standard C library to make 

the technique turing-complete on the x86 architecture. 

Jump-Oriented Programming 

Jump oriented programming (JOR) is similar to to ROP. It reuses chunks of code 

contained in libraries to carry out an attack. However, rather than reusing chunks 

of code that end with return statements, JOP reuses chunks of code that end with 

jump statements [23]. In ROP, the return statement pops the target address off the 

stack. In JOP, the jump statement obtains its target address from a register. 

At the JOP gadget’s jump target address is a carefully selected chunk of code that 

represents the “dispatcher gadget.” Only one dispatcher gadget is needed and it is 

reused as the glue that chains together the other JOP gadgets. The dispatcher gadget 

has the following two characteristics: First it has a statement that modifies a value 

in some “predictable” and “evolving” way. A simple example of such modification 

would be an increment operation. Then the value that has been modified is the target 

of a jump. 

The dispatcher gadget iterates over a dispatch table. In the dispatch table is a 

list of JOP gadget addresses. The dispatch table does not have to be in executable 

memory, it can be stored anywhere in memory. The dispatcher table must store values 

in a way that complements the dispatcher gadget. For example, if the dispatcher 

gadget increments its value by four bytes, then the dispatcher table must store JOP 

gadget starting addresses at four byte intervals. As a result, the dispatch gadget 

becomes a kind of program counter for stringing together JOP gadgets. 

Bletsch et. al. show that jump-oriented programming is just as expressive as 

return-oriented programming. JOP however, is more complex and more difficult to 
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construct. However, it has the benefits of not relying on the stack and is able to evade 

many ROP detection and prevention mechanisms. 

2.2 Mitigation Techniques 

Many of the vulnerabilities that lead to exploitation can be remedied by the 

software programmer. In the absence of bug-free code however, system developers 

have developed several techniques to prevent, detect, or resist some of the attacks 

previously described. In this section we discuss such techniques. 

2.2.1 Hardware Fault Isolation 

In 1968, Dijkstra described the hierarchical division of a computing system into 

six levels of responsibilities [24]. Software executing in level 0 of the system hierarchy 

manages the scheduling of tasks and provides a processor abstraction to software exe

cuting at higher-level layers. Software executing in levels 1-3 of the system hierarchy 

manages other computing resources such as memory and input/output devices. The 

operator, referred to in the model as responsibility level 5, executes programs in level 

4. Because software executing in level 0 controls access to the processor, it has a 

higher privilege level than software running in level 1; similarly, software running in 

level 1 has a higher privilege level than software running in level 2, and so on. 

Later, in 1972, Schroeder and Saltzer introduced the design of hardware-based 

“privilege rings” to support privilege separation for the MULTICS operating system 

[25]. Similar to the hierarchy suggested by Dijkstra, the ring with the highest privilege 

level is referred to as “ring 0” and higher level rings have decreasing privileges. Rings 

with more privileges include all of the capabilities of and access to the memory of 

the lower privilege rings. Access from a lower privileged ring upward is mediated by 

a well defined set of functions. These functions are generally referred to as “system 

calls.” This separation of privilege is referred to as hardware fault isolation (HFI). 

The faults that occur in lower privilege rings are isolated, by the hardware, from 
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disturbing software executing at a higher privilege level. This separation is a course-

grained realization of the principle of “least privilege” that states “every user of the 

system should operate using the least set of privileges necessary to complete the job” 

and “limits the damage that can result from an accident or error” [26]. 

Many modern computer processors, such as those found in personal computers, 

include support for privilege rings or modes [12, 13]. However, many modern com

modity operating systems, including Apple Mac OS X (OSX), Microsoft Windows 

(Windows), and Linux, only use two processor privilege levels: one privilege level for 

user tasks and one for for supervisor tasks. The modes of processor operation are 

referred to as “user mode” and “kernel mode” respectively. Tasks running in kernel 

mode are able to execute all instructions including privileged instructions. In con

trast, tasks running in user mode are restricted to running a subset of instructions 

that excludes privileged instructions. The transition between user and kernel mode, 

via a system call, requires a system interrupt and is therefore computationally more 

expensive than executing without a mode switch [27]. 

Host + Ring 3

Host + Ring 0

Guest + Ring 0

Guest + Ring 3

VM 0

Physical Hardware

Host Kernel

VMM

Guest Kernel

User Tasks

...VM 1

Guest Kernel

User Tasks

VM n

Guest Kernel

User Tasks

Figure 2.2. Privilege execution modes 

Some modern processors also include support for an additional more privileged 

mode that is used for hardware-assisted virtualization [28,29]. The processor supports 

a “host” and “guest” mode. When hardware-assisted virtualization is employed, the 

virtual machine monitor (VMM) and host operating system runs in host mode and 

each virtual machine (VM) runs in guest mode. Figure 2.2 illustrates privilege rings 
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combined with these virtualization modes. Virtualization-based security mechanisms 

such as NICKLE and SecVisor take advantage of this additional layer of privilege 

by placing protection mechanisms in the host that are designed to protect the guest 

operating systems [18, 30]. 

2.2.2 Reference Monitors 

In the “Anderson Report,” published in 1972, Anderson et. al. described the 

“reference monitor” concept [31]. A reference validation mechanism (RFM), that 

realizes the reference monitor concept, mediates the operations performed by a system 

subject on a system object ; read and write are two examples of an operation users 

and processes are two examples of a subject; files and I/O devices are two examples 

of an object. The reference monitor uses an access matrix to determine the access 

rights between subjects and objects. 

Any executing program that is not part of the security mechanism must access 

system objects through the reference monitor. Anderson sets out the following three 

requirements for such a mechanism: (1) it must be tamperproof, (2) it must always 

be invoked, and (3) it must be a small enough program that its correctness can be 

verified. 

Many security mechanisms can be loosely classified as reference monitors be

cause they attempt to enforce memory access control between subjects and objects. 

However, the requirements are not easily satisfied. For example, any in-kernel se

curity mechanisms share vulnerabilities with the kernel and are therefore not tam

perproof unless the kernel itself is tamperproof. Additionally, when integrated into 

a general-purpose operating system kernel, the trusted computing base (TCB) is 

large and not easily verified. Some VMM-based security mechanisms approximate a 

RFM [18,30,32,33] because the mechanism is placed outside of the protected system 

and therefore mostly isolated from the vulnerable system. Additionally, because a 
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VMM has a specialized set of responsibilities, it can be relatively lightweight and 

easier to prove correct than a general-purpose operating system [32]. 

2.2.3 Control Flow Integrity 

A software vulnerability is defined, by Bishop and Daily as “an authorized state 

from which an unauthorized state can be reached using authorized state transitions” 

[34]. The state transitions are authorized. However, the sequence of state transitions 

is not authorized. If a security mechanism calculates ahead of time all valid execution 

sequences and can verify control flow integrity (CFI) during run-time, then it may 

be able to dynamically detect and prevent the system from reaching unauthorized 

states. 

Some of the other mitigation techniques described can be weakly referred to as 

CFI verification and enforcement such as the stack canaries technique described in 

Section 2.2.5. The stack canaries technique prevents the system from following an 

unauthorized control flow sequence. However, Adabi et. al. describe a stronger CFI 

design [35]. Ahead of time a control-flow graph (CFG) is built that includes all of the 

valid control flow paths. Then the CFG is checked during run-time to verify CFI. 

Performing CFI verification after every instruction fetch would be extremely com

putationally expensive. Adabi et. al. perform the verification step at the function 

level. They instrument the code with two new custom call and return instructions. 

The new instructions operate on unique identifiers, rather than memory addresses. 

Then the transitions from one function to another can be compared to the CFG. They 

show experimentally that CFI enforcement incurs a 45% overhead in the worst case. 

2.2.4 NX 

One general approach to prevent the introduction of code by an attacker is to make 

regions of memory that are designated for data storage non-executable. Historically 
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this was done by leveraging memory segmentation as in the non-executable stack 

technique described in the following subsection. 

In addition to memory segmentation, many modern processor architectures sup

port a page-level permission option for restricting memory execution at the hardware-

level [12, 13]. This memory page option is often referred to as the “NX bit.” If the 

NX bit is set, the processor is not permitted to perform an instruction fetch from 

that memory page. 

Following are two techniques that enforce non-executable protection schemes. 

W ⊕ X 

A program residing in memory has multiple distinct sections. Some of the sections 

contain data and some of the sections contain code. Generally a section contains either 

code or data but not both. A section may hold both code and data as described in 

Section 2.2.4 but this is atypical. As a result, sections that contain data rarely need 

to be executable. 

Once machine code has been loaded into memory, it rarely changes. Under certain 

circumstance, such as run-time kernel patching, code may be modified after it has 

been loaded [36]. However, this is atypical. As a result, sections that contain code 

rarely need to be writeable. 

Some operating systems therefore often enforce a W ⊕ X memory access control 

policy. This policy ensures that no area of memory can be both writeable and exe

cutable. At load time, memory sections that contain code are set to read-only and 

memory sections that contain data are set to non-executable. 

An attacker who wishes to add his own executable payload to process memory 

will fail if the system is enforcing a W ⊕ X memory access control policy. If he adds 

code to a data section, the malicious code will not be executable. If he attempts to 

add code to a code section, the write will fail because the section is read-only. 
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A W ⊕ X access control policy does not protect systems from ROP or JOP at

tacks because those attack techniques do not rely on new code being added to the 

system. Additionally, this technique has a couple of NX bit-related implementation 

limitations. First, sections of memory may not be aligned on page boundaries. As a 

result, some memory pages may contain both code and data. These pages are some

times referred to as “mixed pages.” Mixed pages cannot be protected by a page-level 

access control mechanism such as the NX bit without assistance from other security 

mechanisms such as those presented in hvmHarvard [33]. 

Second, in-kernel page-level hardware-based access control mechanisms can be 

switched off by an attacker with supervisor-level permissions. Therefore, any hi

jacked process with sufficient privileges can disable the protection scheme. For this 

reason, virtual machine based security systems such as NICKLE, hvmHarvard and 

SecVisor have been created to enforce the W ⊕ X protection scheme from outside of 

the protected system [18, 30,33]. 

Non-Executable Stack 

In the case of a stack-based buffer overflow, the attacker already controls part of 

the stack memory. At the same time that the attacker is manipulating the return 

address by smashing the stack, he could write an instruction sequence into the stack 

memory region and set the return address to the beginning of that sequence. This 

technique was used by the first Internet worm described by Spafford in 1989 [20]. 

In 1997, the a Linux kernel developer introduced a set of Linux kernel patches 

that prevented the execution of code located in the stack memory region [37]. This 

approach prevented attackers from introducing executable code while smashing the 

stack. However, it does not protect the return address from being modified. The same 

kernel developer that introduced the non-executable stack simultaneously introduced 

the return-into-libc attack previously mentioned [21]. 
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This technique is not compatible with some existing programming techniques. For 

example, in GCC nested functions are permitted. A nested function is a function that 

is declared inside of another function. The compiled code that represents a nested 

function is very similar to a normal function. However, the nested function shares 

the stack of the parent function. As a result if one wants to use a pointer to a nested 

function, some care must be taken to first set the stack pointer. GCC implements 

this using trampolines. A trampoline is a small portion of code that it is written to 

the stack and then executed. The trampoline sets up the stack pointer appropriately 

and then jumps to the nested function. The trampoline will fail if the stack is set 

to non-executable. To accomodate this situation and other similar situations, the 

system must occasionally relax the non-executable stack restriction. 

2.2.5 Stack Canaries 

Attackers often use stack-based buffer overflow exploits to hijack program control-

flow. Non-executable memory protection techniques do not prevent stack-based buffer 

overflows, they merely prevent the attacker from executing his own code after he has 

already hijacked the control flow. 

The system can prevent stack-based buffer overflow control flow hijacking if it can 

detect that a buffer overflow event has occurred. To detect that a stack-based buffer 

overflow has occurred, some systems implement “stack canaries” [38, 39]. A stack 

canary is a special value stored on the stack by the operating system upon function 

entry. The operating system preserves a copy of the special value for verification 

purposes. The special value is dynamic and is not easily obtained by an attacker. 

Before the function pops the return value off the stack, the operating system verifies 

that the stack canary value matches the stored canary value. If the stack has been 

smashed, then the canary will be overwritten and verification will fail. 
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2.2.6 System Randomization 

Some attacks, such as the return-oriented techniques previously described, require 

the memory addresses of specific kernel instructions. An attacker must be able to 

predict the correct addresses or the attack will fail and the exploited program will 

likely encounter a fault. Depending on the exploited vulnerability, the attacker may 

be able to guess the addresses at run-time. However, often these attacks are crafted 

for predetermined memory layouts [40]. Techniques have been developed to make the 

addresses of such components unpredictable using various randomization techniques 

such as address space layout randomization (ASLR), Instruction Set Randomization 

(ISR), and Data Structure Layout Randomization (DSLR) [41]. We introduce a new 

protection technique in Chapter 4 that fits into this category. 

Address Space Layout Randomization 

When a commodity operating system loader prepares a program for execution 

it lays out various sections in memory including the program text, user stack, user 

heap, and memory mapped files including dynamic system libraries. If ASLR is not 

employed, the location of these key sections is predictable. If ASLR is employed, 

then the location of these key sections is unpredictable because the starting address 

of each section is different upon every new execution of the program2 . 

Shacham et al. demonstrated that ASLR on 32 bit x86 architectures is vulnerable 

to brute force attacks [40]. The primary reason for this vulnerability is that only 16 

bits of a 32 bit address are randomizable as the result of architecture limitations such 

as memory alignment. If the attack is repeatable therefore, a brute force attack takes 

a relatively short amount of time to succeed. The authors recommend moving to a 

64 bit architecture to remedy this vulnerability. 

2some systems, such as PaX on Linux, do not rerandomize the layout of child processes 
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Instruction Set Randomization 

Kc et al. introduced another randomization technique named Instruction Set 

Randomization [42]. This technique randomizes the machine instructions of a loaded 

program. When an instruction is fetched from memory it must first be decoded 

prior to running on the processor. Malicious code that is injected into the loaded 

program memory would not be randomized in the same way and therefore fail to run 

as intended. 

Some specialized processors have support for similar run-time transformations. 

However, without hardware support, the technique has significant performance costs. 

Data Structure Layout Randomization 

Data Structure Layout Randomization (DSLR) is a protection technique that 

randomizes the layout of data structures at compile-time. Attackers often construct 

attack code for specific data structure layouts. For example, it is common for a kernel 

rootkit to hide itself from the process list to evade detection. To do this the rootkit 

must manipulate the list of tasks. In the Linux kernel, these tasks are represented by 

the “task struct.” ADSLR can be employed to randomize the layout of task struct 

and prevent this rootkit behavior. 

Our randomization work, as described in Chapter 4, is partially inspired by previ

ous work in DSLR by Lin et. al [43]. Our record field order randomization technique 

is similar to the data structure layout randomization method described therein. 

We build upon their work with two separate but related efforts. First, we introduce 

a technique for automatically determining the suitability of a record for randomiza

tion. This is listed as a limitation of the previous work. Second, we introduce a novel 

polymorphing software technique. 
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2.2.7 ROP Defenses 

ROP Detection 

Chen et. al. introduced one of the first techniques for detecting ROP attacks [44]. 

Their system is named DROP. To detect an ROP attack, DROP dynamically inter

cepts all return instructions. If the corresponding return address popped from the 

stack is within the memory region occupied by libc, then DROP begins counting in

structions until another return instruction is encountered. If the number of instruction 

is less than some predetermined threshold, then they classify that sequence of code a 

potential gadget. If at least three potential gadgets are detected in sequence and the 

total number of sequential potential gadgets is greater than a second predetermined 

threshold, then the DROP reports the presence of an ROP attack. This method uses 

dynamic binary instrumentation and is therefore computationally expensive averag

ing slow down factor of about five. Though computationally inefficient, the detection 

rate for the tested attacks was strong with a low false-positive rate. 

ROP Prevention 

Li et. al. observed that ROP attacks could be prevented by instrumenting the call 

and return instructions to include one level of indirection [45]. When a call is made, 

the return address is stored in a centralized lookup table rather than on the stack 

directly. The table index of the return address stored on the stack. When the function 

returns, the index is popped off the stack and used as a lookup key to calculate the 

return address. The program then jumps to the return address. Program flow never 

jumps directly to the return address stored on the stack. If the attacker were to 

smash the stack and overwrite the return address index, the table lookup would fail 

or control flow would jump to an instruction immediately following a previous call 

site. This technique does not prevent JOP attacks described in [46]. 
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2.3 Kernel Specialization and Minimization 

2.3.1 Kernel Specialization 

Operating systems kernels often provide a facility for adding code to or activating 

code in the kernel during compile-time, boot-time, or at run-time. Every operating 

system implements such mechanisms in a unique way however, the designs are similar. 

In Linux and BSD, for example, a user may choose from an extensive list of features 

to be included in the kernel at compile-time by selecting from a list of configuration 

options. At boot-time, some operating systems include the ability to pass boot flags 

to the kernel. The flags instruct the kernel to activate or deactivate the corresponding 

code (and data). At run-time, kernels may often be augmented by loadable kernel 

modules (LKMs) [10, 47]. LKMs are often used to introduce hardware-specific code 

into the kernel such as device drivers. 

Kernels that support LKMs are “dynamically extensible.” They allow for additive 

run-time specialization but the original kernel image remains unmolested. However, 

some modern kernels contain self-patching kernel code; they may overwrite executable 

kenel instructions in memory after load-time. Such dynamic patching may occur 

for a variety of reason including: CPU optimizations, multiprocessor compatibility 

adjustments, and advanced debugging [36]. 

Pu and Massalin took specialization further in The Synthesis Kernel [48] (Syn

tehsis). Synthesis contains a code synthesizer that performs run-time kernel routine 

specialization for performance enhancements. The techniques employed by the code 

synthesizer resemble a few common compiler optimization techniques including con

stant folding and function inlining. In Synthesis, frequently visited routines are op

timized for specific run-time conditions. If the specific conditions are met, then the 

code branches from the unoptimized routine into the specialized routine. 



30 

2.3.2 Operating System Minimization 

The hardware rings described in Section 2.2.1 are used by many operating systems 

to separate user-level execution from kernel-level execution. However, it is not always 

clear what code should be included in the kernel space. This topic has been hotly 

debated by kernel designers [49]. 

User Process 0 User Process 1

Microkernel

File Service Memory Service...

Monolithic Kernel

User Process 0 User Process 1 User Process n...

File Service Memory Service

User Mode

Kernel Mode

User Mode

Kernel Mode

Message + Mode Switch
Message

Figure 2.3. Microkernel and Monolithic Kernel Designs 

The objective of a microkernel kernel design is to minimize the amount of code 

executed in kernel mode. In this type of kernel, as many kernel features as possible 

are moved into user space [50, 51]. The kernel then behaves more like a server in 

a client-server construction. Some potential advantages of this approach are fidelity 

and manageability. A potential drawback of this approach is increased mode switches 

that, as previously discussed, are computationally expensive. 

The objective of a monolithic kernel design is to maximize efficiency. In this type 

of kernel, many kernel features are included in kernel space that do not strictly need 

kernel-level privileges. Some potential advantages of this approach are performance 

and ease of development. Some potential drawbacks of this approach are suboptimal 

fault isolation and software management. 
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In 1975 Saltzer and M. Schroeder, in their seminal work titled The Protection 

of Information in Computer Systems, described the security principle: “economy of 

mechanism.” The economy of mechanism states that all system components, security 

components in particular, should be “as simple and small as possible” [26]. A micro-

kernel design follows more faithfully this principle. In point of fact, a general-purpose 

microkernel named seL4 has been created and completely formally verified [52]. In 

contrast, Andrew Tanenbaum, a proponent of microkernel design, refers to monolithic 

design as “the big mess” because of its perceived lack of structure and ad-hoc design. 

Despite its advantages, microkernels have not gained popularity. All of the com

modity, general-purpose operating systems available today have a monolithic kernel 

design. Two notable operating systems with microkernel designs, GNU Hurd and 

Tanenbaum’s MINIX, have had significant technical barriers that ultimately hindered 

their development and acceptance [49, 53]. 

In 2003 Bryant et. al. observed that general-purpose operating system kernels 

often have system calls and kernel subsystems included that are not essential to 

support the applications of the system [54]. For their Poly2 framework they use 

static analysis of the applications of the system and aggressively remove non-essential 

code from the kernel at compile time. As a result, each kernel in a Poly2 network is 

specialized for a specific set of applications. The code removed from the kernel is no 

longer exploitable. 

Where Poly2 aims to minimize a commodity, general purpose operating system, 

specialized operating systems, like Choices, also exist [55]. In Choices, like Poly2 , 

the operating system is tailor-made for a specific set of applications. However, the 

operating system itself is designed in a modular way and the selection of components is 

a natural part of the system construction process. Whereas Poly2 removes components 

that already exist. 
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3 VALIDATING THE INTEGRITY OF INCLUDED KERNEL COMPONENTS 

Portions of the work described in this chapter are published in the proceedings of the 

2012 Military Communications Conference (MILCOM) [36]. 

3.1 Introduction 

Kernel rootkits are a particularly virulent kind of malicious software that infects 

the operating system (OS) kernel. They are able to create and execute code at the 

highest OS privilege level giving them full control of the system. They are not only 

able to carry out malicious actions but are also able to evade detection by modifying 

other system software to hide their evidence. Once detected a kernel rootkit can be 

difficult to remove; it is not always obvious the extent to which the system has been 

modified. The goal therefore is to prevent kernel rootkit infection. 

Attackers can exploit vulnerable programs that are running with elevated permis

sions to insert kernel rootkits into a system. Security mechanisms similar to NICKLE 

have been created to prevent kernel rootkits by relocating the vulnerable physical 

system to a guest virtual machine and enforcing a W ⊕ KX memory access control 

policy from the host virtual machine monitor (VMM) [18]. The W ⊕ KX memory 

access control policy guarantees that no region of guest memory is both writable and 

kernel-executable. 

The guest system must have a way to bypass the W ⊕ KX restriction to load 

valid kernel code, such as kernel drivers, into memory. To distinguish between valid 

kernel code and malicious kernel rootkit code, NICKLE [18] and others [30] [33] use 

cryptographic hashes for code validation. Offline, a cryptographic hash is calculated 

for each piece of valid code that may get loaded into the guest kernel. Online, the 
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VMM intercepts each guest attempt to load new kernel code and calculates a hash 

for the code. If the online hash matches an offline hash, the load is allowed. 

Some modern kernels however, are “self-patching;” they may patch kernel code 

at run-time. If the patch is applied prior to hash-based validation, then the hashes 

will not match. If the patch is applied after hash-based validation, then the memory 

will be read-only, as a result of W ⊕ KX enforcement, and the patch will fail. Such 

run-time patching may occur for a variety of reason including: CPU optimizations, 

multiprocessor compatibility adjustments, and advanced debugging. The previous 

hash validation procedure cannot handle such modifications. 

We describe the design and implementation of a system that validates the integrity 

of each instruction introduced by a self-patching kernel. We validate each instruction 

by comparing it to a whitelist of valid instruction patches. We generate the whitelist 

ahead of time while the guest is offline. When online, certain predetermined guest 

events such as write-faults and code loading will trigger a trap into the host and give 

our system the opportunity to validate new instructions. 

Our system is guest-transparent; no modifications to the guest operating system 

are required. However, the whitelist construction is dependent on the guest kernel. 

Each guest kernel may patch itself in different ways. As we describe in Section 3.3, 

the whitelist creation procedure requires knowledge of the guest kernel to collect all 

of the possible valid patches. We discovered that the Linux kernel has six different 

facilities that influence code modification. We describe each facility and its impact 

on whitelist creation in Section 3.4. 

The implementation of our instruction authentication procedure, described in 

section 3.4, is part of our reimplementation of NICKLE [18]. NICKLE is a guest-

transparent virtual machine monitor (VMM) that prevents unauthorized code from 

executing with kernel-level privileges. NICKLE, as originally implemented, does not 

take advantage of the hardware-assisted virtualization extension present in many 

current processors. Our implementation, named NICKLE-KVM, takes advantage of 
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these extensions by adding NICKLE functionality to the Linux Kernel-based Virtual 

Machine (KVM) virtualization infrastructure. 

Additionally, the original NICKLE does not support self-patching guest kernels. 

NICKLE-KVM, with our instruction authentication subsystem, removes this restric

tion. Two other systems similar in nature to NICKLE, SecVisor [30] and hvmHar

vard [33], also require that the guest does not contain self-patching kernel code. 

3.2 Chapter Organization 

The remaining content of this chapter is structured as follows: In Section 3.3, we 

outline the problem and describe the design of our solution. Section 3.3.1 describes 

the context of the problem and provides a motivating example. In Section 3.3.2 we 

describe our solution in detail and demonstrate how it provides a remedy to our 

motivating example. Section 3.4 describes the implementation of our system and we 

report our experimental results in Section 3.5. Finally, in Section 3.7, we recap our 

findings and suggest some future work. 

3.3 Design 

3.3.1 Problem 

Preventing kernel rootkit injection is a challenge. Software is often buggy. If a 

bug is exploited in kernel mode, then malicious software can gain a foothold into 

the system with maximum privilege. Once such privilege is attained, the attacker 

can effectively disable all other protections. For example, similar to NICKLE, some 

operating systems implement a W ⊕ X memory access control scheme for kernel 

code. Unfortunately, a W ⊕ X policy cannot be reliably enforced by the same system 

that it is trying to protect. Because the operating system has full control over the 

hardware, a bug may allow an attacker to disable all protections. Systems similar to 

NICKLE solve this problem by relocating the vulnerable physical system to a guest 
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virtual machine (VM) and providing W ⊕KX access control policy enforcement from 

the host virtual machine monitor (VMM). This relocation enables such systems to 

provide services below the operating system [56]. In particular, the host can strictly 

control guest access to memory. 

As part of enforcing a W ⊕ KX policy in the guest, the host must set all regions 

of memory containing guest kernel code to read-only and executable. To determine 

the addresses of these regions, the host can trap on guest events that introduce new 

kernel code into the guest. Two such events occur at guest kernel load-time and 

kernel module load-time. To trap on these events, the guest functions that load 

code into the kernel can be intercepted through, for example, debug breakpoints. 

Breakpoint execution triggers a VM exit enabling the host to extract the address 

range of the guest’s newly loaded code. Once the host determines the regions of 

memory containing new kernel code, the code can be validated using cryptographic 

hashes. Following validation, the code memory regions can be then set to read-only 

and executable. 

Code Authentication 

Code loaded into kernel space originates in executable files stored on disk. Exe

cutable file formats divide executable files into sections. At least one section contains 

machine instructions. The most primitive executable file contains one primary sec

tion that holds the machine instructions. We will refer to this section as the text 

section. In addition to the text section, some executable files have many other sec

tions that contain machine instructions. We discovered 11 such unique sections during 

our experimentation (see Section 3.4 for details). We refer to all sections of a single 

executable file that contain machine instructions as executable texts. 

To authenticate kernel code as it is introduced into the kernel space, the original 

NICKLE uses cryptographic hashes. When the guest is offline, a cryptographic hash 

is calculated for each executable file that may get loaded into the guest. The hash is 
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calculated over the executable text of the file. Each hash is stored, along with other 

meta data, in a database. This hash database is stored in the host and is inaccessible 

from the guest. When the guest is online and an attempt to load new kernel code into 

the guest is detected, a trap to the host occurs. The host then calculates a hash over 

the executable texts as they appear in the guest’s memory space. If the hash matches 

the hash of the corresponding executable file, then the code addition is allowed and 

the permissions for the new executable texts are set to read-only. If the hash does 

not match, then the code addition is not allowed. 

Comparing offline and online hashes does not work for relocatable code, such as 

the kernel and kernel modules, because the relocation process changes addresses in the 

online code. NICKLE works around this problem by writing zeroes to all relocation 

call-sites prior to calculating hashes. 

Code Modification 

NICKLE’s hash creation and validation procedure depends on immutable kernel 

code. However, some modern kernels are “self-patching;” they may overwrite exe

cutable instructions in memory after load-time. The original NICKLE hash-based 

validation procedure cannot handle such modifications. 

As a motivating example, Linux kernel versions greater than 2.5.68 include support 

for “alternative instructions” (altinstructions1) [9]. Altinstructions enable the kernel 

to optimize code at run-time based on the capabilities of the CPU. The example 

provided in the original kernel mailing list announcement was for “run-time memory 

barrier patching” (RTMBP). According to the RTMBP announcement the default 

Linux memory barrier instruction sequence, lock; addl $0,0(%%esp), is slow on 

Pentium 4 processors and should be replaced with the processor’s built-in memory 

barrier instruction: lfence. To take advantage of the CPU’s capabilities, the Linux 

distributor could package a separate kernel image tailor-made for the Pentium 4 

1We adopt this label to alleviate confusion between the intuitive meaning of the phrase “alternative 
instructions” and the Linux facility. 
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processor or dynamically patch the instructions at run-time using the altinstructions 

kernel feature. 

Consider how the existing code authentication procedure would work in the pres

ence of RTMBP. Offline a hash would be calculated over a section of text containing 

the unoptimized memory barrier: lock; addl $0,0(%%esp). When online and that 

section of code gets loaded into the guest kernel, the host has two options. The first 

option is for the host to check the hash prior to run-time modifications. If the cor

responding memory is set to read-only immediately following hash validation, then 

future run-time modifications will fail and the guest system will run without opti

mizations (because the destination kernel code region is set to read-only). The second 

option is for the host to check the hash after run-time modifications have been ap

plied. However, the hash will not match on a Pentium 4 processor because the stored 

hash was calculated over the original instruction (lock; addl $0,0(%%esp)) not the 

optimized instructions (lfence). 

3.3.2 Approach 

Our approach to solving the problem introduced by self-patching kernels is patch-

level validation. We observe that if the guest kernel can introduce new instructions at 

run-time and those instructions take the form of a constrained set of patches (possibly 

requiring source code or vendor documentation to determine), then we can create a 

whitelist of valid instruction patches. 

We refer to each valid replacement instruction as a “patch” and each description 

of the patch as a “patch definition.” Offline we generate a whitelist of valid patch 

definitions that we refer to as the “patch set.” Each patch definition is a 3-tuple: 

(patch-location, patch-length, patch-data). The patch-location describes the address, 

relative to the start of the text section, where the patch may get applied. The patch-

length describes the size of the replacement instruction. The patch-data holds the 
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replacement instruction in raw binary form. We refer to the location in a text section 

that may or may not be patched at run time as a “patch site.” 

The patch set and the hash database are similar; the hash database is used to 

validate the integrity of new executable kernel code (minus patches) and the patch 

set is used to validate individual patches to kernel code. The patch set is created 

while the guest system is offline, stored in the host system, and is inaccessible from 

the guest. 

Patch Set Creation 

Patch set creation varies widely and is dependent on the self-patching mechanisms 

present in the guest kernel. During our experimentation with a Linux guest kernel, 

we discovered six unique facilities with which the kernel patches itself. We list them 

in Section 3.4 and describe some of the challenges they pose to patch-level validation. 

For now, we reintroduce our motivating example of RTMBP to demonstrate the 

creation of our patch set. 

Recall that RTMBP uses the altinstructions mechanism to achieve kernel patching. 

Prior to getting loaded into the system, kernel code is stored on disk in executable files; 

in this case, kernel code is stored in an executable and linkable format (ELF) file. Each 

ELF file carries with it all of its own altinstruction patches defined by two ELF file 

sections: “.altinstructions” and “.altinstr replacement”. The .altinstructions section 

contains a set of zero or more “alt instr” structures with the following fields: (*instr, 

*replacement, cpuid, instrlen, replacementlen). Two fields of this structure, *instr 

and instrlen, map directly to our patch definition fields patch-location and patch-

length respectively. The third patch definition field, patch-data, can be copied directly 

from the bytes stored at *replacement (of length replacementlen). The *replacement 

pointer points to an address located in the .altinstr replacement ELF section. 

Our patch set creation procedure adds two patch definitions for each alt instr. 

The first patch definition corresponds to the default instruction, such as “lock; 
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addl $0,0(%%esp)” for RTMBP, located in the text. The second patch definition 

corresponds to the replacement instruction, lfence for RTMBP, described by the alt 

instr. Both definitions have the same patch-location values and the same patch-length 

values because they are both candidates for the same patch site. When patch-level 

validation occurs at run-time, the instruction present in memory must match one of 

the candidates. 

Each executable file (kernel or kernel module) that may get loaded into the guest 

kernel has a corresponding offline patch set. When the guest comes online and at

tempts to load code from an executable file, the corresponding offline patch set entries 

are copied by the host into the online patch set. The online patch set is identical in 

structure to the offline patch set. The patch-location values however are recalculated 

to reflect the guest memory address of the patch site (as opposed to the relative 

patch-location in the original executable file). The online patch set is a subset of the 

offline version. It only contains entries for texts that are loaded into the guest kernel. 

Run-Time Patch-Level Validation 

If the guest is protected by a W ⊕ KX security policy then during run-time when 

the guest self-patching kernel tries to modify previously authenticate code, an access 

violation will occur (write-fault). This access violation can be trapped by the host 

and used as an opportunity to perform patch-level validation. 

The write-fault event provides an address corresponding to the access control 

violation. For each write-fault we lookup the faulting address in our online patch 

set. If the instructions to-be-written match the patch-data field of one of the patch 

definitions in the patch set, then validation succeeds. 

If patch-level validation succeeds, then the write is permitted. We temporarily 

remove the read-only restriction allowing the guest to execute one write instruction, 

the one that triggered the write fault, and then we reapply the read-only access 

restriction. This procedure is illustrated in Figure 3.1. 



40 

host

guest
New Kernel 

Code (C)

Copy C to W+NX 
memory

Compare C to 
crypto. hash

Hash 
Database

Verified?

Apply RO+X
Permissions to C

Y

For each patch P
modify C

Patches 
destined for C

Compare P to 
patch set

Patch Set Verified?

Apply W+NX
Permissions to C

Y

VM exit for each P
(write fault)

VM exit
(debug breakpoint fault) VM entry VM entry

Write P to C
(single step)

VM exit
(singl-step fault)

Figure 3.1. Run-Time Patch-Level Validation
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Figure 3.2. Load-Time Optimized Patch-Level Validation 

Load-Time Optimized Patch-Level Validation 

For our system, each write-fault causes two VM exits. The first is the result of the 

write-fault itself, and is unavoidable for systems similar to NICKLE in the presence 

of a self-patching kernel. The second VM exit allows us to reapply the read-only 
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access control restriction to kernel code. VM exits are expensive, therefore we offer 

the following optimization that significantly reduces the number of VM exits caused 

by self-patching kernels. 

During experimentation we discovered that many changes made by self-patching 

kernels happen immediately after the code is loaded into memory and before it is 

executed. Recall from Section 3.3.1 that if we try to compare the cryptographic hash 

of the code after it has been modified, then the hashes will not match. However, we 

can adjust the hash generation procedure to accommodate self modifying code. Recall 

from Section 3.3.1 how NICKLE calculates a cryptographic hash in the presence of 

relocatable code; it writes all zeroes to the relocation sites prior to hash calculation. 

We use a similar method for load-time optimized patch-validation. From the patch 

set we know all of the patch sites present in the code. We write zeroes to those 

locations prior to hash creation. When online, we defer validation until after the 

code has been loaded and modified. 

At validation time we first check the integrity of the code using the hash database. 

Secondly we check the integrity of each unique patch site using the corresponding 

patch set. If the hash matches and the contents of each patch site are validated, 

then patch-level validation succeeds and the code is added to authenticated memory. 

Figure 3.2 demonstrates this procedure in the context of NICKLE-KVM. As shown 

in the figure, the optimized approach incurs no additional VM exits for patch-level 

validation. 

3.4 Implementation 

Our patch-level validation procedure is implemented as a subsystem of NICKLE

KVM. NICKLE-KVM is a NICKLE-like system based on KVM. KVM is a Linux

based VMM that takes advantage of hardware-assisted virtualization. The original 

NICKLE implementation, based on QEMU, does not take advantage of hardware-

assisted virtualization. Instead, it uses binary translation to intercept each instruc
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tion to preserve the NICKLE guarantee: “No unauthorized code can be executed at 

the kernel level. [18]” Instead of the instruction-level redirection technique used by 

NICKLE, we use the page-level redirection technique introduced by hvmHarvard and 

takes advantage of hardware-assisted virtualization for better performance [33]. In 

the absence of a complete description of NICKLE-KVM, we describe the parts we 

leveraged for our implementation next. 

To evaluate our design, we implemented the optimized patch-level validation so

lution described in Section 3.3.2 for both kernel and module loading. To support our 

solution, we modified NICKLE-KVM in the following ways: 

1. At both kernel load-time (boot) and	 module load-time the guest must pass 

control to the host for code authentication. Therefore, at guest system start 

up we set a hardware debug break point on the return addresses of the guest 

Linux functions named “init post” and “trim init extable” for kernel and mod

ule authentication respectively. These addresses are reached immediately after 

patches have been applied making them an ideal point in the loading sequence 

to trigger our authentication procedures. KVM gives us access to the guest’s 

virtual CPU (vcpu) allowing us to set the corresponding debug registers for 

these break points. Our implementation catches the resulting debug exceptions 

and then performs code and patch-level validation. 

2. If code validation succeeds, NICKLE-KVM must apply the read-only and exe

cute permissions to the new code prior to returning control to the guest. We 

notify NICKLE-KVM of the new code and it handles the manipulation of and 

enforcement of the page-level permissions. 

3. If	 code validation fails, the host can take protective measures. In the case 

of kernel validation failing, the host could force the guest to shutdown. In 

the case of module validation failing, the host could force the module to fail 

loading by manipulating guest execution. For example, in one version of our 
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implementation we forced the return value of the function “module finalize” to 

be -1 by manipulating a guest vcpu register (EAX). 

3.4.1 Experimental Setup 

We implemented NICKLE-KVM and our patch-level validation subsystem using 

an Intel i5-2410M 2.30GHz processor. Both our host and guest systems run an un

modified version of Ubuntu (11.04 2.6.38-8-generic). The host runs the 64 bit version 

of Ubuntu (x86 64) and the guest runs the 32 bit version (i686). NICKLE-KVM is a 

modified version of KVM version 2.6.38.6. 

3.4.2 Patch Validation 

Recall that patch set creation is heavily dependent on knowledge of the guest 

kernel. Through analysis of the Linux kernel source code we found six facilities that 

contribute to kernel run-time patching: Alternative Instructions, SMP Locks, Jump 

Labels, Mcounts, Paravirtual Instructions, and Kprobes. For our implementation 

four of the six kinds apply, however we list them all here for completeness. For each 

of the four that do apply, we describe how it influences patch set creation. 

Alternative Instructions 

Our motivating example of RTMBP, introduced in Section 3.3, was an instance 

of altinstructions. Recall that the purpose of altinstructions is to allow the kernel to 

optimize code at run-time based on the capabilities of the CPU. The ELF file that 

contains the loadable kernel code has two sections used by kernel patching functions 

related to altinstructions: .altinstructions and .altinstr replacement. The details of 

how we derive a patch definition from these sections can be found in Section 3.3.2. 

The altinstructions patch sites do not change after the code has been loaded for the 

first time because the the CPU capabilities do not change during run-time. 
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In all cases that we encountered patching facilities modified only the .text ELF 

section with the one exception of altinstructions getting applied to the kernel (not 

modules). In this case, altinstructions were applied to both the .text and .init.text 

executable sections. 

SMP Locks 

The SMP locks code modification mechanism is similar to altinstructions. Based 

on the capabilities of the CPU, the kernel module code may be modified at load-time. 

The Linux kernel modules shipped with Ubuntu are compiled for both symmetric 

multiprocessing (SMP) and uniprocessor systems (UP). When the code is running on 

an SMP system, a lock prefix (0xF0 for x86) is used to indicate that the following 

read-modify-write instructions should be executed atomically. However, when the 

kernel is running on a UP system the SMP locks are not needed. In that case, the 

kernel modifies the module code to remove SMP locks (by replacing each with DS 

segment override prefix, 0x3E for x862) 

ELF files with SMP locks in their code have a special section named “.smp locks” 

that holds zero or more 4-byte addresses. Each address corresponds to an SMP lock 

site in the text section. The length of the lock is one byte. Therefore for each 

SMP patch site, two patch definitions are created: (<address from header>, 1, 0xF0) 

and (<address from header>, 1, 0x3E). For the same reasons as altinstructions, the 

module’s SMP locks code does not change after the module has been loaded. 

Jump Labels 

Jump labels were introduced into the Linux kernel to optimize kernel tracing [57]. 

Prior to Jump Labels, if a developer wanted to add a trace point to his code he in

cluded a conditional statement to evaluate if tracing was enabled. If enabled, the code 

would jump to a code block that provided tracing information. To avoid the overhead 

2See the Linux kernel function alternatives smp unlock() for details. 
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associated with the conditional statement, Jump Labels are used. Essentially a Jump 

Label site in code contains either a jump instruction (JMP) or a NOP instruction. 

At module load-time, the site contains a JMP instruction and it is overwritten with a 

NOP instruction. When tracing is enabled for that Jump Label, the JMP instruction 

is reintroduced. The result is that most of the time tracing logic incurs no overhead 

(except the overhead associated with the NOP instruction). 

ELF files with Jump Labels in their code have a special section named “ jump 

table.” For each Jump Label an entry exists in the jump table table. Each entry 

has the following fields: code, target, key. The code field corresponds to the location 

in text where the Jump Label is inserted. The target field corresponds to the jump 

target (where to jump when tracing is enabled for this Jump Label). Each Jump 

Label is identified by a unique key. When one wants to enable tracing for that Jump 

Label he calls the Linux function named “enable jump label” with the Jump Label 

key as a parameter. 

For each Jump Label location, two patch definitions are created: (<address from 

code field>, 5, <NOP of size 53>) and (<address from code field>, 5, JMP <address 

from label field>). Unlike altinstructions and SMP Locks, Jump Label code sites get 

changed at load-time (NOP inserted) and when tracing is enabled (JMP inserted). 

For this implementation we are interested in the changes made at load-time (NOP 

inserted). For kernel tracing to work, NICKLE-KVM must perform patch-level vali

dation at write-fault time as described in Section 3.3.2. 

Mcounts 

When Linux kernel code is compiled with the “-pg” flag the compiler automatically 

adds a call to the mcount procedure at the beginning of each kernel function [58]. 

This feature enables kernel profiling and tracing. To optimize Mcounts, when code 

is loaded that contains mcount call sites, the kernel automatically replaces the call 

30x3e 0x8d 0x74 0x26 0x00 
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instructions with a DS segment override prefixes (0x3E) as in the case of SMP Locks. 

Later when mcount tracing is enabled, the call instruction will be restored. 

Because the mcount symbol is relocatable, the patch-location can be calculated 

based on relocation information found in the .rel.text section. The start of the patch-

location is one byte before the mcount symbol address in the text. For each Mcount 

patch site, two patch definitions are created: (<byte offset of mcount from .rel.text 

- 1>, 1, 0x3E) and (<byte offset of mcount from .rel.text - 1>, 1, 0xe8). Similar 

to Jump Labels, mcount call sites will get changed during run-time when tracing 

is enabled. For kernel tracing to work, NICKLE-KVM must perform patch-level 

validation at write-fault time as described in Section 3.3.2. 

Other Facilities 

During our exploration of the Linux kernel source code we discovered two facilities 

that influenced run-time patching but did not ultimately apply to this implementa

tion: Paravirtual Instructions and Kprobes. We list them briefly here for posterity. 

Similar to the four facilities detailed previously, Paravirtual Instructions have a 

special section in the ELF file (.parainstructions) [59]. The .parainstructions section 

has an entry for each location in the text that holds an instruction that needs to 

be modified if the guest is running in a paravirtualized environment. Our guest is 

not running in a paravirtualized environment. Therefore, we explicitly turn off this 

feature in the guest kernel by supplying the “noreplace-paravirt” boot option at boot-

time. If paravirtualized instruction were to be used in our implementation, further 

work would have to be done to generate the corresponding patch set entries. 

Kprobes [60] (including jprobes and kretprobes) are distinct from the other facili

ties in that they do not have a corresponding ELF file section for calculating patch set 

entries. Kprobes are typically used for debugging and each patch site is defined by the 

end user at debug time. Therefore, Kprobes could work in the presence of patch-level 

instruction validation if the end user supplied a list of potential probe patch sites to 
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the offline patch set creation procedure. Because Kprobes are inserted at run-time, 

they do not apply directly to the optimized implementation that we describe here. 

3.5 Evaluation 

To evaluate our system we generated patch sets for the Linux kernel (vmlinux) 

and 3308 kernel modules (only 11 modules4 were needed by our guest system). The 

kernel contained 31643 patch sites in total. The 11 modules contained 639 patch 

sites in total. After implementing patch-level validation, NICKLE-KVM correctly 

validated the integrity of all 32282 patch sites. 

If an attacker were to modify the text section of previously profiled code, then 

validation should fail or the malicious code should be discarded. We tested this 

scenario by manipulating the text section of a module and loading it into the guest. 

If the modified instruction was not in a location subject to receiving all zeros, e.g. 

a patch or relocation site, then our system prevented the module from loading as 

expected. If the spurious instruction was part of a patch or relocation site, then 

the module passed the initial hash-based validation but the kernel overwrote the 

instruction, the instruction was discarded, and the module was allowed to load. If 

the spurious instruction was part of a patch site and was overwritten by the kernel, 

then as in the relocation case, the spurious instruction was discarded and the module 

loaded without the instruction. If the spurious instruction was part of a patch site 

and was not overwritten by the kernel, then patch-level validation correctly identified 

the foreign code and prevented the module from loading. 

If an attacker were to modify one of the candidate replacement instructions found 

in the .altinstr replacement section of previously profiled code, then validation should 

fail or the malicious code should be discarded. We validated this scenario by manip

ulating the .altinstr replacement section of a module and loading it into the guest. 

If the spurious instruction was part of an instruction that was selected at load time 

48139cp, 8139too, binfmt misc, floppy, i2c-piix4, lp, parport, parport pc, ppdev, psmouse, serio raw 
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by the guest kernel, then patch-level validation failed and the module was prevented 

from loading. 

Our implementation incurs no additional VM exits for patch-level validation. We 

merely reuse the single VM exit already required by NICKLE-KVM to perform hash 

validation. In the presence of patches that are applied well after loading, such as 

Kprobe patches, the less efficient procedure described in Section 3.3.2 is required. 

3.6 Discussion 

We assume that other commodity operating system kernels may patch themselves 

at run-time using a procedure similar to the Linux patching mechanisms described 

in Section 3.3.1. Our patch whitelist generation technique depends on our ability 

to accurately predict the location, size and contents of all possible patches ahead of 

time. Our patching technique also assumes that patches will not exceed the size of the 

original instruction and that patches are applied in-place. Our techniques rely heavily 

on our analysis of the Linux kernel specifically, it is possible that other self-patching 

operating system kernels defy these assumptions. 

It is possible, because of write buffering and the single-stepping method that we 

use for run-time patch validation described in Section 3.3.2, that an attacker could 

craft a malicious patch that is a combination of bytes from multiple valid patch defini

tions. We can limit this vulnerability by ensuring that a patch-site is the combination 

of no more than two valid patches. To do this, we must locate all patch definitions 

that include the faulting address in the range patch-location to patch-location plus 

patch-length. If a matching patch definition is discovered, then the range of guest 

memory from patch-location to faulting address, instruction prefix, is compared to 

the corresponding instruction prefix in the patch definition data. If the instruction 

prefix matches, then we compare the new data, that caused the write-fault, to the 

corresponding segment in the patch definition. If it too matches, then the validation 

succeeds. We do not validate the instruction suffix because the existing instruction 
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has already been validated. This ensures that at any given time the instruction 

in memory is a combination of no more than two authenticated instructions. This 

reduces the risks associated with malicious control flow manipulations. 

The patch-definition whitelist creation technique described in Section 3.3.2 may 

incur significant one-time costs for initial analysis. For our evaluation of the Linux ker

nel, we discovered six patching mechanisms. Each mechanism requires a customized 

patch-definition procedure. 

Our code authentication and a W ⊕ KX protection policy do not prevent attacks 

that reuse authenticated code. As a result, systems protected only by these techniques 

will be vulnerable to ROP-style attacks. Further discussion of ROP countermeasures 

is provided in Chapters 4 and 5. 

3.7 Summary 

NICKLE-like systems must have a way to authenticate kernel code when it is 

loaded into the guest kernel space. Previous NICKLE-like systems were not able 

to authenticate code introduced by self-patching kernels. Our procedure provides 

a way for NICKLE-like systems to accommodate self-patching kernels by validating 

each patch introduced by the kernel. We implemented our system in the context of 

NICKLE-KVM and demonstrated how patch-level validation correctly permits valid 

kernel patches to be applied and rejects patches that are invalid. 
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4 INCREASING THE DIVERSITY OF INCLUDED KERNEL COMPONENTS 

Portions of the work described in this chapter are published in the proceedings of 

the 2013 International Performance Computing and Communications Conference 

(IPCCC) [61]. 

4.1 Introduction 

Organizations have strong economic incentive to standardize the software that 

they use across their enterprise [62]. Furthermore, organizations have strong economic 

incentive to choose market-leading software [63]. Such economic incentives have lead 

to a homogeneity of operating system software among network-connected hosts. This 

homogeneity increases the risk of mass exploitation of similarly vulnerable hosts. 

[64, 65]. 

The vast majority of hosts on the Internet, including mobile clients, are running 

one of three major operating system families1 . Within each operating system family 

there exists many versions of the operating system code. However, relative to the total 

number of hosts, the number of unique versions of operating systems is minuscule. 

Malicious operating system kernel software, such as the code introduced by a 

kernel rootkit, is strongly dependent on the organization of the victim operating 

system. The lack of diversity in operating systems enables attackers to craft a single 

kernel exploit for a single unique operating system version that has the potential to 

infect millions of hosts. 

One approach to strengthen computer security is software diversity. Organizations 

can choose to add diversity to their software ecosystem by purchasing less popular 

1http://www.netmarketshare.com/ 

http:1http://www.netmarketshare.com
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software that performs the same tasks. However, such a choice is often not economi

cally feasible even if viable alternatives exists [62]. 

Another approach to software diversification is for the software itself to mutate; 

where multiple variants of the same version of a piece of software are used. The 

variants are compatible with each other and function the same from the end-user’s 

point of view. However, some underlying component of their structure has been 

changed. 

Computer virus authors have long used automatic software diversification to avoid 

detection. Each time the virus infects a new victim the virus mutates. This mutation 

prevents signature-based anti-virus software from detecting the virus. This class of 

malware is often referred to as polymorphic computer viruses [66, 67]. In much the 

same way, but inverted, polymorphic software can be used offensively to withstand 

malicious software. If the vulnerable components of a piece of software have been 

changed in an unpredictable manner, then attackers must create many unique varia

tions of their exploit to attack vulnerable systems en masse. If enough variants exists, 

then mass exploitation is much more difficult to achieve if not impossible. 

Some attacks, such as the return-oriented techniques introduced by [21], [2] and [3] 

require the memory addresses of key system libraries. An attacker must be able to 

predict the correct addresses or the attack will fail and the exploited program will 

likely encounter a fault. Depending on the exploited vulnerability, the attacker may 

be able to guess the addresses at run-time. However, often these attacks are crafted 

for predetermined memory layouts [40]. If the memory layout can be obfuscated in 

some way, then the exploitation can be thwarted. 

Forrest et. al. make a strong case for software diversity and describe a few possible 

techniques including: adding or removing nonfunctional code, reordering code, and 

reordering memory layouts [8]. Our technique builds on the latter. We describe two 

different ways to mutate an operating system kernel using memory layout reordering 

to resist kernel-based attacks. 
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Our randomization techniques occur at compile-time. Some software diversifica

tion techniques occur at run-time or load-time. Some, such as instruction set random

ization, incur significant run-time overhead [42]. In contrast, our techniques incur no 

run-time overhead and are therefore suitable for any system including low-powered 

devices such as mobile phones and embedded devices. 

Our randomization techniques are tailored specifically for operating system ker

nels. The techniques themselves have wider application, however they are practically 

well suited for an operating system kernel. Because our technique occurs at compile-

time all dependent software must be recompiled to be compatible. In the user-space, 

this could be a significant undertaking; if for example, one wanted to randomize a 

system library all dependent software would have to be recompiled. However, the 

kernel compilation is self contained, loadable kernel modules notwithstanding, and 

its code is executed only through well-defined system calls. Our system does allow 

for loadable kernel modules to be compiled with compatible randomization during 

kernel compilation or separately. 

Practically, we would not expect our techniques to be adopted by every end-user. 

A small fraction of computer users would have the technical prowess to compile their 

own kernel and for many operating systems the kernel source code is not available. 

Rather, our techniques are better suited for organization-wide application. For ex

ample, military organizations often distribute their own version of the Linux kernel. 

If they employed our technique they could withstand all versions of kernel malware 

that was not specifically targeted for their organization. Similarly a mobile device 

manufacturer could randomize their kernels so that it would be invulnerable to the 

same attacks leveraged against other similar devices. 

Our contributions are as follows: We introduce a new method for randomizing 

the stack layout of function arguments. We refine a previous technique for record 

layout randomization by introducing a static analysis technique for determining the 

randomizability of a record. We provide an implementation of our techniques using 

the plugin architecture offered by GCC. Finally, to evaluate the security benefits of 
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our techniques we randomize multiple Linux kernels using our plugins and attack them 

using kernel rootkits. We show that by strategically selecting just a few components 

for randomization, our techniques prevent all tested kernel rootkits. 

4.2 Chapter Organization 

The remainder of this chapter is organized as follows: we begin in Section 4.3 by 

laying out the design of our randomization techniques followed by a description of our 

GCC implementation in Section 4.4. In Section 4.5, we evaluate the security merits of 

our approaches and the performance of our implementations. Finally, in Section 4.7, 

we summarize our contributions and findings. 

4.3 Design 

Our design has three distinct but related parts: record field order randomization 

(RFOR), RFOR suitability analysis, and subroutine argument order randomization 

(SAOR). Each part is described in the following three sections. 

4.3.1 Record Field Order Randomization 

We have designed our field order randomization technique to occur at compile-

time. During compilation we randomize the field order of the record definition. As 

a result, all instances of that record type are defined with the new field order in the 

resulting binary. Each compilation unit may have its own definition for a given record. 

Therefore, we use a seeded pseudo-random algorithm so that the same field order can 

be replicated across multiple compilation units. This also allows for modular software, 

such as loadable kernel modules, to be compiled with compatible record layouts. 

Our field order randomization technique takes as input the source code of the 

software to be randomized, a set of one or more record names, a set of one or more 

randomization seeds, and a set of one or more padding flags. Each record name may 
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correspond to a unique randomization seed or one seed may apply to all record names. 

Each record name corresponds to a unique padding flag that indicates whether or not 

the record receives padding. Our field order randomization technique produces as 

output a compiled binary. Given different randomization seeds and padding flags, 

our system may produce distinct binaries. However, our field reordering algorithm 

is not collision resistant; multiple seeds will produce the same field order. Naturally, 

records with more fields will have more layout permutations. 

To increase the possible number of layout permutations, our system takes as input 

a padding flag for each record name. When this boolean flag is set to true for a given 

record name a pseudorandom number of bogus fields are inserted pseudorandomly into 

the record. The randomization algorithm used to add padding is also seeded with 

the same seed that determines the layout. We have bound the amount of padding 

automatically generated so that a record will have no more than two times the number 

of fields of its original. This upper bound was selected arbitrarily. In practice, some 

bound will be desired to keep the records from becoming space-inefficient. 

Field order randomization takes place after the source code has been parsed into an 

abstract syntax tree but before any compiler optimization passes. Figure 4.3, located 

later in the implementation section (4.4.1), illustrates the abstract syntax tree for 

both a randomized (b) and unrandomized (c) record. Figure 4.1 illustrates the stack 

memory layout and machine instructions for assignment to an unrandomized (a) and 

randomized (b) record. 

Given a record type τ , Algorithm 1 depicts field order randomization subroutine. 

We use the Knuth shuffling algorithm for reordering the fields [68]. 

When a kernel data structure is reordered using RFOR, attack code compiled, 

without randomization, against the kernel source code will be incompatible. For 

example, regarding the record randomization illustrated in Figure4.1, suppose the 

attack code was trying to assign a malicious value to field “foo.b.” The malicious 

code will assume that “foo.b” is at offset 0x8 and assign the malicious value to 

offset 0xc instead. A similar problem occurs when attack code tries to read from a 
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Algorithm 1 Field order randomization with padding
 
a[] ← τfields 

n ← count of items in a[] 

if option to add padding is true then 

x ← seeded pseudorandom integer < max and > min 

for 1 to x do 

a[] ← new field declaration 

n ← n + 1 

end for 

end if 

for i = n − 1 down to 1 do 

j ← seeded pseudorandom integer ≥ 0 and ≤ i
 

swap a[j] and a[i]
 

end for 

τfields ← a[] 
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int a
int b
int c

R
R-0x4
R-0x8
R-0xc

ad
dr

es
s

movl   $0x1,-0xc(%R)
movl   $0x2,-0x8(%R)
movl   $0x3,-0x4(%R)

Source Order

movl   $0x1,-0x4(%R)
movl   $0x2,-0xc(%R)
movl   $0x3,-0x8(%R)

int b
int c
int a

Reordered

Input: struct foo{int a;int b;int c;} bar = {1,2,3};

(a) (b)

Figure 4.1. Record field order randomization. “R” represents a 
general-purpose processor register 

predetermined offset. The results of the malicious code execution are unpredictable 

in the presence of RFOR. For our evaluation, detailed in Section 4.5, we found that 

malicious code often resulted in a non-destructive kernel “oops” (not panic) when a 

victim data structure was randomized. For all tested kernel rootkits, the malicious 

software failed to run as intended on systems compiled with RFOR. In some cases, 

infection was prevented entirely by RFOR. 

4.3.2 Suitability of a Record for Field Reordering 

Not all records are suitable for field reordering. If a record is used or defined, 

in a raw memory form, by an external system that expects a predetermined format, 

then the record may be an unfit candidate for randomization. For example, for our 

evaluation we randomized the Linux TCP header record (tcphdr). When TCP packets 
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were formed using the randomized layout, the system could not communicate with 

other systems using TCP. If both end-points had their TCP headers reordered in the 

same way, then it may be possible for the two to communicate; assuming that deep 

packet inspection or similar transport-layer logic is not present on intermediary nodes 

and total header size does not change as the result of field realignment (see discussion 

of record resizing in Section 4.4.1 and Figure 4.4). 

If the compiler supported it, the programmer could annotate the source code to 

indicate whether or not a record’s fields may be safely reordered. For example, some 

compilers provide a way for the programmer to suggest how to align a variable type. In 

GCC, the programmer can specify type attributes using the keyword attribute at 

the end of a type definition. The programmer can specify the “packed” attribute of a 

record to instruct the compiler not to realign its fields. We can leverage this paradigm 

for our purposes; we can add a custom attribute to the compiler that indicates that the 

record is unfit for field reordering. If the attribute is not present, the compiler could 

freely reorder fields as it sees fit. We describe our implementation of this approach 

in Section 4.4.1. This approach may have benefits beyond randomization for security 

purposes. For example, if the compiler were free to reorder fields it may be able to 

automatically improve record cache performance as described by Chilimbi et al [69]. 

In the event that such a compiler mechanism were widely adopted today, there 

exists much source code that is not already annotated. In the absence of compiler 

support and source code annotations, we have designed a static analysis technique for 

testing the suitability of a record for field reordering.Our initial design was informed 

by previous research at Hewlett-Packard in compiler optimization techniques [70]. 

However, our technique has a different purpose and differs significantly from this 

prior work. 

First we define a few terms: x, y and z are free variables. τ represents the 

candidate type and ¬τ represents all other types. A type followed by an ∗ represents 

a pointer to a variable of that type. τn represents field n in τ . The function A returns 

the memory address of its argument. 
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There are four conditions that may disqualify a record for field reordering2: 

xτ∗ = A(y¬τ ) 

If a variable of type τ pointer is positioned on the lefthand-side of an assignment3 

and the righthand-side expression does not result in a τ -pointer, then τ may not be 

suitable for field reordering. 

An example of how this operation is potentially unsafe for field reordering is as 

follows: suppose that the righthand-side expression is the address of a buffer that is 

filled by a network receive function and the format of the receive buffer is consistent 

with the headers of a published network protocol. The protocol specification is ex

ternal to our system and not subject to compile-time reordering. Therefore, if τ is 

reordered, then τ can no longer be used to reliably access parts of the network buffer. 

x¬τ∗ = A(yτ ) 

If the righthand-side expression of an assignment3 results in a τ pointer and the 

lefthand-side variable is not of type τ -pointer, then τ may not be suitable for field 

reordering. 

An example of how this operation is potentially unsafe for field reordering is as 

follows: suppose the inverse of the previous example listed in Section 4.3.2. Suppose 

that the righthand-side expression results in a memory address that is formatted as a 

reordered version of type τ and the lefthand-side is expecting a pointer to a region of 

memory that specifies network headers to be sent directly on the network, then the 

send buffer will be formatted in a way that is inconsistent with the network protocol 

and network communication will fail. 
2Our system is designed to protect commodity operating system kernels. As a result, our design is 
pertinent to the C programming language specifically.
 
3In the source code, an assignment may be manifested in various forms. For example: passing a
 
variable into a function is an assignment.
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x = A(yτz ) 

If the righthand-side expression of an assignment3 results in the address of a field 

inside of a variable of type τ , then τ may not be suitable for field reordering. 

An example of how this operation is potentially unsafe for field reordering is 

as follows: suppose that the x is used in the source code to calculate the address 

of a sibling field. If the sibling offset address calculation were not aware of the 

potential for field reordering, then the calculation would likely be incorrect. It is 

worth noting however, that code containing this kind of sibling calculation would 

be difficult to maintain considering alignment issues alone. However uncommon, it 

remains a possibility. 

τ is a member of a union or record 

If τ is the type of a member included in a union definition, then τ may not be 

suitable for field reordering. 

An example of how this use is potentially unsafe for field reordering is as follows: 

suppose that a union was constructed with two members τ and ¬τ . Supposed that 

τx and ¬τy were the same offset in the union. If τx were relocated at compile time, 

then ¬τy would no longer point to the same offset. Additionally, suitability analysis 

would have to be performed on all unions that include τ because unsafe casting of 

the union may occur. 

Similarly, if τ is the type of a field included in anther record, then τ many not be 

suitable for field reordering. Suitability analysis would have to be performed on all 

records that include τ because unsafe casting may occur. 

4.3.3 Subroutine Argument Order Randomization 

Similar to RFOR, we have designed our subroutine argument order randomization 

technique to occur at compile-time. During compilation we randomize the argument 
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Algorithm 2 Subroutine argument order randomization with padding
 
for all (definitions, types, calls) of S do 

a[] ← Sarguments 

n ← count of items in a[] 

if option to add padding is true then 

x ← seeded pseudorandom integer < max and > min 

for 1 to x do 

if S is definition then 

a[] ← new parameter declaration 

end if
 

if S is type then
 

a[] ← new argument type
 

end if
 

if S is call then
 

a[] ← new call argument
 

end if 

n ← n + 1 

end for
 

end if
 

for i = n − 1 down to 1 do
 

j ← seeded pseudorandom integer ≥ 0 and ≤ i 

swap a[j] and a[i] 

end for 

Sarguments ← a[] 

end for 
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arg 2
arg 3

ad
dr

es
s

Source Order Reordered

Input: foo_func(1,2,3);

arg1
ret

svd bp
BP

BP+0x8
BP+0xc

BP+0x10
Callee

SP
SP+0x4
SP+0x8
Caller

arg 3
arg 1

arg 2
ret

svd bp

movl   $0x1,0x8(%SP)
movl   $0x3,0x4(%SP)
movl   $0x2,(%SP)
call     <foo_func>

movl   $0x3,0x8(%SP)
movl   $0x2,0x4(%SP)
movl   $0x1,(%SP)
call   <foo_func>

(a) (b)

Figure 4.2. Subroutine argument order randomization. “SP” rep
resents the stack pointer register. “BP” represents the stack base 
pointer register. 

order for each definition of, type of, and call to a given subroutine. Also similar to 

RFOR, we use a seeded pseudorandomization algorithm so that the same argument 

order can be replicated across multiple compilation units. 

Our argument order randomization technique takes as input the source code of the 

software to be randomized, a set of one or more subroutine names, a set of one or more 

randomization seeds, and a set of one or more padding flags. The meaning of each 

input is analogous to the RFOR example outlined in Section 4.3.1. Our argument 

order randomization technique produces as output a compiled binary. 

When a kernel subroutine is reordered using SAOR, attack code compiled, with

out randomization, against the kernel source code will be incompatible. For example, 

regarding the subroutine argument order randomization illustrated in Figure4.2, sup

pose the attack code made a call to a randomized subroutine. The callee variable that 
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holds the first argument will get the value of the malicious callers third parameter. 

Similar to RFOR, the results of the malicious code execution are unpredictable. 

Not all subroutines are suitable for SAOR. Subroutines that are called using a 

function pointer are not randomizable because the caller would not be identified 

at compile-time and the call stack would not be correctly reordered. Additionally, 

functions with a variable length argument list are likely not randomizable without 

modifications to the subroutine logic. 

For our evaluation, detailed in Section 4.5, we found that Similar to a system 

using RFOR, malicious software failed to run as intended on systems compiled with 

SAOR. 

4.4 Implementation 

To test our design, we implemented three plugins: RFOR, RFOR Fitness, and 

SAOR using the GNU Compiler Collection (GCC). GCC versions 4.5 and newer have 

the ability to load user-supplied plug-ins during compilation [71]. We leverage this 

plug-in architecture to realize our design. Following are the details for each plug-in. 

4.4.1 Record Field Order Randomization 

The RFOR GCC plugin provides compile-time record offsets randomization. The 

GCC plug-in architecture provides an event callback named “PLUGIN FINISH 

TYPE” that gives us a hook into the compilation process. The PLUGIN FINISH 

TYPE event occurs after a record or union type specifier has been parsed. The event 

data passed to our plugin’s callback function is a pointer to the AST tree node for the 

most recently parsed record or union as illustrated in Figure 4.3(b) and (c). We are 

only interested in record types. As a result, we ignore events associated with unions. 

We implemented two versions of this plug-in. Both versions perform the random

ization step in the same way; using the algorithm described in Algorithm 1. To save 

the new layout, the pointer fields of each field declaration are updated in the AST as 
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record_type

field_decl

field_decl

field_decl

NULL

fooidentifier.id.str

aidentifier.id.str

bidentifier.id.str

cidentifier.id.str

type.values

common.chain

common.chain

common.chain

struct foo{
int a;
int b;
int c;

};

record_type

field_decl

field_decl

field_decl

NULL

fooidentifier.id.str

aidentifier.id.str

bidentifier.id.str

cidentifier.id.str

type.values

common.chain

common.chaincommon.chain

Source AST AST After Randomization

(a) (b) (c)

Figure 4.3. AST-based randomization 

shown in Figure 4.3(c). The two versions of this plug-in differ only in how the records 

are selected for randomization. The first version, variant “A” randomizes all records 

encountered except those with the GCC attribute “noreorder” set in the source code, 

e.g. “ attribute ((noreorder))”. 

The second version, variant “B” randomizes only the records provided by name 

on the command line. The plug-in and its argument are provided by the user as 

GCC command line flags. The plug-in accepts multiple arguments, one argument for 

each target record name. All records of the same name will be randomized because 

the name is not necessarily unique across all compilation units. The randomization 

happens at type definition time and therefore applies to all instances of the record. 

In addition to standard randomization, our plug-in allows the user to specify a 

boolean flag for each target record that indicates whether or not the record should 

be padded with bogus members. If yes, our plug-in adds a random number of bogus 

fields to the target record or records. 
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char
char

integer

char
char

integer

padding

char

integer

padding

char

4 
by

te
s

integer

integer
padding

integer

Packed Aligned Reordered

10 bytes

12 bytes

16 bytes

(a) (b) (c)

Figure 4.4. Record size variation 

The total record size may change as a side effect of field reordering as illustrated 

in Figure 4.4. Notice that Figure 4.4(c) is a reordering of fields found in (b). If a 

record is not “packed,” then the compiler may align fields for efficiency. One common 

optimization is for the compiler to align field offsets on word boundaries as shown in 

(b) and (c). If a record is packed, as in Figure 4.4(a) the record will always take up 

the minimal amount of memory and the total record size will not change as a result 

of randomization. 

Our initial implementation performed randomization after the entire compila

tion unit had been parsed but prior to optimization passes (PLUGIN PRE GENER

ICIZE). We observed that if the size of the record changed as a result of random

ization, then some compile-time calculations such as “sizeof” were incorrect. Also 

affected was offsetof ( builtin offsetof) calculations that we later discovered was an 

essential calculation for common Linux kernel data structures such as “list.” GCC, 
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folds the result of sizeof into a constant during parsing and leaves no indication that 

the constant was a result of the sizeof calculation. As a result, there was no reliable 

way for us to find the constant in the AST to update it. To remedy this problem, we 

moved the randomization procedure to the PLUGIN FINISH TYPE event as previ

ously described. This event happens after the record definition is parsed but before 

it is an argument to sizeof and other similar compiler functions. 

struct foo x = 
{ 
   .a = 1,
   .b = 2,
   .c = 3,
};

struct foo x =
{1, 2, 3};

UndesignatedDesignated

(a) (b)

struct foo { 
   int a;
   int b;
#ifdef BAR
   int x;
#endif
   int c;
};

Figure 4.5. Variable initializers 

We discovered that this early randomization approach fixed size-related calcula

tions but broke non-designated variable initializers. Figure 4.5 illustrates the differ

ence between initializers. Currently, this is the only known limitation of our plug-in. 

The problem is that when a non-designated initializer is parsed, the compiler assumes 

that the source-code-order of values matches the source-code-order of the record mem

bers. This problem could be solved by modifying the way GCC stores initializers in 

the AST. Simply adding a node attribute that indicates how the initializer was formed 

would solve the problem. However, we discovered that, for the tested kernel records, 

non-designated initializers were not used. The reason for this is shown in the Fig

ure 4.5. If the macro BAR is defined, then (b) would be an invalid initializer assuming 
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that the programmer was intending to assign the value 3 to field c and not x. How

ever, with or without defining BAR, initializer (a) would assign values correctly. Our 

static analysis tool, described in Section 4.4.2, reports when and if the target record 

is declared with an initializer. 

GCC permits an incomplete variable type, such as a flexible array, to be positioned 

as the last field of a record. Therefore, if the last element is an incomplete type, it 

cannot be moved during randomization. Our plug-in handles this situation by pinning 

the last field to the last position when the field type is incomplete. 

4.4.2 RFOR Fitness Check 

The RFOR Fitness Check GCC plug-in is a static analysis tool for determining 

the fitness of a candidate record for randomization by inspecting the abstract syntax 

tree during compilation. The inspection occurs after parsing has been completed but 

prior to optimization passes. 

Again we leverage the GCC plug-in architecture callback event “PLUGIN PRE 

GENERICIZE” to do most of the work. The callback associated with this event 

received the function definition (FUNCTION DECL) of the most recently parsed 

function definition. From this root node we traverse the tree using the API functioned 

named “walk tree().” One of the parameters to walk tree is a callback function name. 

Our callback function checks for four kinds of nodes: NOP EXPR, CALL EXPR, 

ADDR EXPR, and CONVERT EXPR. 

A NOP EXPR node represents, among other things, a cast of one type to another. 

Figure 4.6 shows the case where a pointer to a record is cast from another type. This 

case would be reported by our tool. We can use the NOP EXPR to find the cases 

where memory is cast to or from a pointer to the type of the target record. If the 

target record for analysis was of type foo as shown in the figure, then we check to 

see if the left-hand side of the cast is a pointer to a variable of type foo by checking 

the corresponding nodes of the AST. If the right-hand side of the modify expression 
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@2:void_type

@3:var_decl

@6:identifier_node
x @7:pointer_type

@12:modify_expr

@15:record_type

@19:nop_expr

@21:identifier_node
foo

@30:var_decl

@37:identifier_node
y @38:pointer_type

name type

ptd

type

op 0 op 1

name

type op 0

name type

ptd

Input: x = (struct foo *) y;

Figure 4.6. AST of a cast from one pointer type to another 

is not also a pointer to a variable of type foo, then our plug-in reports this case as a 

potentially unsafe operation. 

GCC does not allow for direct assignment from one record type to another even 

if both records have the same layout4 . Similarly, GCC does not allow for coerced 

assignment from one record type to another using a cast5 . Therefore, all unsafe 

assignments to/from a record type will be pointer casts using the NOP EXPR. Our 

first two cases: x¬τ ∗ = A(yτ ) and x = A(yτz ) are therefore tested when a NOP EXPR 

is encountered in the AST. 
4error: incompatible types when assigning to type 
5error: conversion to non-scalar type requested 
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The third case: x = A(yτz ) is tested also during the PLUGIN PRE GENERICIZE 

event. We have developed two detection mechanisms for this case. The first is the 

more straight-forward and conservative approach. When an ADDR EXPR is encoun

tered we check the operand. If the operand of the address expression is the field of 

a target record, then we report the instance. The second implementation of this 

test is similar, however we only report the instance if the ADDR EXPR is part of a 

CONVERT EXPR and the address is immediately converted to an integer. In this 

case the the ADDR EXPR is a child node to the CONVERT EXPR so we ignore 

ADDR EXPR and check the operand of all instances of CONVERT EXPR. If the 

type of the convert expression is INTEGER, then we report the instance. More infor

mation about the motivation for this optional refinement is described in the evaluation 

Section 4.5.2. 

Often, a record field is passed by address to a function. As described in Sec

tion 4.3.2, taking the address of a field and then using it to calculate the address 

offset of a sibling field is an unlikely occurrence. An even more unlikely occurrence is 

for such a calculation to be performed on the address of an argument to a function. 

Therefore, our evaluation ignores cases when a field address is taken in the context of 

a call parameter. To detect such occurrences, we collect all call parameters during the 

PLUGIN PRE GENERICIZE event that are pointers to fields of the target record 

type. Then later during AST tree traversal, when the address is taken of the field, 

the ADDR EXPR corresponding to call parameters are not reported. 

The fourth and final case, the case when the target record is nested inside of 

a union or record, is tested when the compiler event PLUGIN FINISH TYPE is 

encountered. The event data received is a finished type node. For our purpose we 

ignore all types except RECORD TYPE and UNION TYPE. Each type contains a 

set of FIELD DECL nodes. We iterate over each field declaration and check the type. 

If the target type is found in a FIELD DECL, the instance is reported as a potentially 

unsafe condition. 
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As mentioned in Section 4.4.1, non-designated variable initializers are not compat

ible with field reordering. This is an implementation limitation. Therefore, as part 

of our fitness analysis, we report when initializers are used for the target record type. 

We use the PLUGIN FINISH DECL event to check for such cases. Unfortunately, 

by the time the PLUGIN FINISH DECL event occurs the initializers has already 

been parsed into its final form in the AST. At this point, from the AST perspective, 

a non-designated initializer is structured the same as a designated initializer. As a 

result, we report all instances where the target record is initialized. As previously 

described, a modification to GCC proper could remedy this situation by classifying 

the initializer nodes as either designated or non-designated in the AST. 

4.4.3 Subroutine Argument Order Randomization 

The SAOR GCC plugin provides compile-time subroutine argument order random

ization. The GCC plug-in architecture provides two callback events that we leverage 

for this plugin named “PLUGIN PRE GENERICIZE” and “PLUGIN OVERRIDE 

GATE.” We introduced the former in Section 4.4.1. The event data passed to our 

plug-in’s callback function is a pointer to the AST tree node for the most recently 

parsed function definition. The latter event, PLUGIN OVERRIDE GATE, occurs 

many times during optimization passes. However, we are only interested in the first 

occurrence. The first occurrence happens before optimization but after all PLUGIN 

PRE GENERICIZE events. 

Randomize Call Expression Arguments 

When a PLUGIN PRE GENERICIZE event occurs, we traverse the function def

inition’s AST and inspect all call expressions. If the target of the call expression is a 

function targeted by randomization, then we reorder the call arguments. Because the 

call expression is allocated with a static number of arguments and to support adding 

bogus call parameters, we must build a new call expression with the new arguments 
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using the API function named “build call array loc.” Once we build the new call 

expression we replace the original with the new one in the AST. 

Also during the PLUGIN PRE GENERICIZE event, we capture the unique iden

tifier for the completed function definition if the function is a target for SAOR. This 

identifier is used later for definition and type randomization. We discovered that we 

must randomize all of the call expressions prior to randomizing the function defini

tion and type. Otherwise, if bogus fields were added to the definition, then the parser 

would complain when a corresponding call expression was parsed because the source 

code would not contain enough parameters; we cannot fix the call expression until 

after it has been parsed into an AST. 

Randomize Function Definition and Type 

The PLUGIN OVERRIDE GATE occurs after all functions have been parsed into 

the AST. The difference between this event and PLUGIN PRE GENERICIZE is 

that the latter occurs after each function is parsed. Therefore at the time that the 

PLUGIN OVERRIDE GATE event occurs our AST is in an inconsistent state. All 

calls to target functions have been randomized however, the function definition and 

type has not yet been randomized. Recall from the previous section that we had to 

delay randomizing these components until after all calls have been parsed to avoid 

compilation errors. 

We collected the AST unique identifier for each of the completed target function 

definitions previously during the PLUGIN PRE GENERICIZE event. Now we iterate 

over that list of targeted function definitions and randomize the definition as well as 

the associated type for each. 

Reordering the arguments for both the definition and the type was similar to 

RFOR randomization illustrated in Figure 4.3. We obtained parameter declara

tion head list node and the argument type head list node from the GCC macros 

DECL ARGUMENTS and TYPE ARG TYPES. Using the algorithm described in 



71 

Algorithm 2, we shuffled each list by updating the next pointer of each element. 

For the type, we used the function GCC build function type to reinitialize the type 

attributes. 

4.5 Evaluation 

We performed our evaluation on a 2.30GHz four core Intel R@CoreTMi5-2410M 

CPU with 8 GB of RAM running 32 bit Fedora (15), Linux (2.6.38.6-26), and GCC 

(Red Hat 4.6.3-2). Our experiments were performed in KVM/QEMU (0.14) virtual 

machines with 1024 M of memory allocated for each. 

4.5.1 Security Benefits 

To evaluate the security benefits of record field order randomization, we employed 

our RFOR plug-in to compile two different Linux kernel versions, 2.6.26 and 3.36, and 

attempted to run four kernel rootkits against the protected system. 

Kernel rootkits in the wild are kernel version-sensitive. As a result, two of the 

tested rootkits were rewritten to be compatible with our test systems using the princi

ples outlined in the original work. The hidefile rootkit is based on [72]. The hideproc 

rootkit is based on [73]. The other two rootkits Adore-NG and hp were used in their 

original form with few compatibility modifications. 

One cannot compile Linux kernel versions less than 2.6 with GCC version 4 or 

greater. The plug-in architecture was not introduced in GCC until version 4.5. As a 

result, the oldest kernel that we were able to randomize was 2.6.26 using GCC 4.7.3 

and our RFOR plugin. We were able to test the adore-ng rootkit against this version 

of the Linux kernel. 

We identified five security sensitive records in the Linux kernel based, in-part, 

on previous work: task struct, module, file, proc dir entry and inode operations [74]. 

We compiled our test kernels using variant B of our RFOR plug-in and specifying, 

6We used Fedora’s custom version 2.6.43.8-1 that is a patched version of vanilla kernel 3.3 
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depending on the experiment, some subset of the five security-sensitive records as 

inputs (with no padding added). 

All of the tested rootkits were introduced into the kernel as kernel modules. As a 

result, randomizing a single record type named “module” defeated all tested rootkits 

before they were loaded into the kernel. The specific failure was that the module 

loading procedure could not find the module’s name in the attacker-provided module 

struct. 

It is possible for malicious kernel code to be introduced through means other 

loadable kernel modules [1]. We performed some further experiments without ran

domizing the “module” record type to test our protection mechanism against rootkit 

behaviors. We found that if we randomize the record type named “task struct,” we 

prevent hp, adore-ng, hideproc from hiding system processes. If we randomize the 

record type named “module,” we prevent hidefile from hiding system files. 

Similar to our evaluation of RFOR, to evaluate the security benefits of subroutine 

argument order randomization, we employed our SAOR plug-in to compile Linux 

kernel version 3.2.46 with all calls-to, declarations-of, and types named “pid task” 

randomized. This kernel subroutine returns the corresponding task struct for a given 

process identifier (PID). We then attempted to use the hp rootkit against this kernel. 

The hp rootkit was not able to hide a process as a result of SAOR randomization. 

Though the rootkit loaded successfully into kernel space, its payload was neutralized. 

4.5.2 Randomizability Analysis 

We used our RFOR Fitness plugin to test the suitability of the record type 

“task struct” for randomization. For each potentially unsafe condition found in the 

source code, our plugin emits a warning message complete with file name and line 

number7 . 
7In some cases an approximate location is provided. 



73 

For our experiments we compiled the Linux kernel version linux-2.6.38.8 using our 

RFOR Fitness plug-in with “task struct” as an argument and the linuxconf configu

ration template named “allnoconfig.” 

The plug-in reported that there were 312 conditions found in the kernel source 

code that may disqualify task struct from randomization. After careful analysis we 

found that many of the cases were not actually a problem for randomization and 

could be automatically detected. We discovered that we could employ whitelists to 

reduce the total number of false-positive. Following is a list of heuristics that we 

used to create the whitelists. These heuristics are provided as an aid to analysis. The 

specifics, e.g. function names and types, will vary from system to system. The RFOR 

Fitness plug-in results for task struct both with and without whitelists are provided 

in Table 4.1. 

Generics 

Often large code bases provide a reusable set of generic types, macros, and func

tions that implement common data structures such as lists and queues. These data 

structures can be reused for a variety of types. For example, the Linux process list is 

a list of task structs. The same list implementation used for processes, can be used 

to create other kinds of lists. To allow the list to hold multiple types, at some point 

the type will be untyped and cast as a generic list member. This casting trips the 

assignment to/from τ∗ condition. 

We found that we could whitelist specific Linux types and drastically reduce 

the number of conditions reported by the RFOR Fitness plug-in. Specifically we 

whitelisted the following pointer types for assignment: list head, hlist node, rcu head, 

plist node, sched entity, sched rt entity, wait queue.private, raw spinlock.owner, 

mid q entry.callback data. Additionally, we whitelisted the function named 

heap insert8 . 

8Many data structure operations were macros. This function was an exception. 



74 

In addition to generic data structures, there were three generic error-related func

tions we determined to be safe for field reordering. Specifically we whitelisted the 

following functions: IS ERR, PTR ERR and ERR PTR. 

Memory Allocation Functions 

When memory is dynamically allocated the raw memory begins untyped and is 

cast as a type. The assignment of this untyped memory to a τ∗ is reported by our 

RFOR Fitness plug-in. We found that we could whitelist specific Linux memory allo

cation function and reduce the number of conditions reported by the RFOR Fitness 

plug-in. Specifically we whitelisted all of the malloc functions detected automatically 

by GCC using the DECL IS MALLOC macro in addition to the kmem cache alloc 

and kmem cache free functions. 

Address of Field Conversion 

Our plugin reports when the address of a field of τ is taken. This is a frequent 

occurrence. As mentioned in Section 4.3.2, this is likely not problematic for field re

ordering. However, our plug-in detects the condition. To aid in analysis, we whitelist 

the condition where the address of the field is taken but not immediately converted 

into an integer. 

The problematic case for field reordering is when the address of a field is used to 

calculate the relative position of a sibling field. To do this math, the address would 

have to be converted into an integer eventually. Again we emphasize that this kind of 

calculation has not been observed in source code, is difficult to get correct because of 

compile-time field realignment, and would make the source code difficult to maintain; 

yet, it remains a possibility. Our plug-in can be configured to report all instances if 

desired. 
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Table 4.1
 
RFOR Fitness Report for task struct
 

Test 

Assignment To task struct * 

Assignment From task struct * 

Address Taken of task struct Field 

W/O Whitelists 

52 

46 

214 

W/ Whitelists 

1 

2 

0 

312 3 
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Table 4.2 
Performance impact of RFOR 

Phoronix Benchmark 

Gzip Compression 

Timed ImageMagick Compilation 

w/o RFOR 

36.12s 

231.14s 

w/ RFOR 

35.97s 

232.46s 

Table 4.3
 
Time to compile kernel
 

Options Avg Time 

w/o Plug-Ins 86.730s 

w/ RFOR Plugin 87.9087s 

w/ Fitness Plugin 87.2170s 

w/ SAOR Plugin 87.8303s 

4.5.3 Performance 

We used the Phoronix test suite to measure the system performance both with 

and without the record randomization.The results are shown in Table 4.2. With a 

single record randomized, task struct, randomization has no observable performance 

impact. 

To test the performance impact of our compiler plug-in’s on compilation time, 

we used the “time” command to measure compilation time with each plug-in. For 

each test we compiled a minimal Linux kernel version 2.6.38.8 using the configuration 

template named “allnoconfig.” We ran each compilation test three times and calcu

lated the average. The percentage increase of compilation time was between 0.5% 

and 1.35%. The average results are shown in Table 4.39 . 

9For our tests, task struct was not nested in a union therefore the related test results are excluded 
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4.6 Discussion 

The record field-order randomization suitability analysis method described in Sec

tion 4.3.2 applies directly to the C programming language. C is the primary language 

used for commodity operating system kernels (NT, XNU and Linux). Kernels written 

in a different programming language may use additional language features that are 

incompatible with field order randomization. 

The conservative static RFOR suitability analysis technique described in Sec

tion 4.3.2 is likely to report false-positives, that a record type is not randomizable 

when in actuality it is safe for randomization. We introduced a heuristics based ap

proach in Section 4.5.2 to aid in analysis of the the Linux kernel specifically. This 

approach could be refined and made more general by adding pointer analysis. 

We assume that the rules described in Section 4.3.2 are comprehensive for RFOR 

suitability analysis. Our analysis of source code, survey of the literature including [70], 

and experimentation leads us to the conclude that the ruleset is complete. If our 

ruleset is incomplete, RFOR suitability analysis would omit conditions that should 

be reported (false-negatives). 

According to the C11 standard, a single structure may have at most 1023 members 

and a single function definition may have at most 127 parameters [75]. To conform 

to the standard and the capabilities of standards-compliant compilers, RFOR and 

SAOR may not add counterfeit padding that exceeds these limits. This reduces, 

particularly in the case of SAOR, the total number of permutations possible for 

each randomization technique. These limitations therefore reduce the efficacy of our 

techniques against brute-force attack. 

Many architectures including ARM, X86-64, MIPS and SPARC have argument 

registers; function arguments may be store in processor registers rather than on the 

stack. Figure 4.2 illustrates a stack-based argument passing paradigm. However, the 

design of SAOR is not dependent on stack-based argument passing because reordering 
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occurs in the AST and yielded machine code will be reordered regardless of the 

argument storage paradigm. 

If an attacker were to gain access to the randomized executable file or to the ran

domized binary image in memory, he may be able to reverse engineer the randomized 

layout order and use the information to customize an attack. Randomized program 

files should be protected. Additionally, special memory devices, such as /dev/kmem 

on Linux, should be disabled and other kernel protection mechanism, such as those 

described in Chapter 3 should be employed to protect the in-memory randomized 

code. 

Our randomization techniques likely have other benefits not addressed herein. For 

example, similar to our minimization technique, described in Chapter 5, randomiza

tion may assist in protecting systems against ROP attacks. ROP attacks depend 

considerably on the memory layout of the victim programs. If the program is ran

domized using our techniques, then ROP attacks may be subverted. 

Both randomization techniques may complicate program debugging. If debug in

formation is included in the yielded executable file, the debugging information will 

correspond to either the randomized layout or the unrandomized source-order layout. 

In the former situation, the debugging information could potentially be used by an 

attacker to acquire information about the layout. In the latter situation, the debug

ging information would be incorrect. For our implementation, if debug information 

is stored, it is stored prior to layout randomization. 

4.7 Summary 

In conclusion, we have demonstrated that memory layout randomization is an 

effective defense against kernel rootkits and that these compile-time techniques incur 

no run-time overhead making them suitable for even low-powered devices. Further, 

we have demonstrated that our static analysis technique is an effective way to auto

matically determine the suitability of a record for field order randomization. 
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5 ENSURING THE MINIMALITY OF INCLUDED KERNEL COMPONENTS 

5.1 Introduction 

Code injection prevention and authentication techniques, such as those described 

in Chapter 3, are still vulnerable to return and jump oriented programming (ROP and 

JOP respectively) attacks because the payload executable code is already present in 

kernel memory. The instructions are merely reused in unintended and malicious ways. 

With large commodity operating system, the amount of reusable code is abundant. 

As described by Bryant et. al. in their work on Poly2 , the operating system 

kernel often includes code that is unnecessary for the applications that are running 

on the system [54]. General-purpose operating system vendors include kernel code 

for many possible hardware profiles and system use cases to cover the most uses with 

a single piece of software. Though this makes the kernel executable larger, it reduces 

the number of versions that the vendor must support and update. This extra code, 

though perhaps convenient for both end-users and vendors is a security liability. 

The seminal work on return-oriented programming is titled, in-part, “innocent 

flesh on the bone,” a crude reference to the code flesh left on the bone, the kernel in 

our case, and available for devouring by attackers [3]. In Poly2, researchers remove 

unnecessary code at compile time. Though there has been work done in adding code 

to a kernel at run-time, such as loadable kernel modules, there has not been work 

done in removing code from a kernel at run-time. In our work we intend to garner the 

benefits of the kernel reduction technique described in Poly2 at run-time and reduce 

the vulnerability of commodity operating system kernels. 

Our hypothesis is that it is possible to improve the security of a kernel against 

return and jump oriented programming attacks by deactivating extraneous kernel 
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code at run-time, thereby limiting the supply of reusable instructions that can be 

used to construct return-oriented gadgets. 

To test our hypothesis, we introduce two novel techniques for run-time kernel 

minimization. The first is an out-of-the-box function eviction technique. The second 

is a kernel-based non-executable page technique. We implement a prototype for the 

out-of-the-box technique and report the results. 

5.2 Related Work 

Work has been done in design-time techniques for minimizing the code contained 

in a kernel. Minix and Mach are microkernel designs that attempt to include only 

necessary components in the kernel space [50, 76]. 

Work has been done in compile-time techniques for reducing the code contained 

in a kernel. In the Poly2 framework, kernels are minimized at compile-time based on 

the kernel mechanisms needed for specific applications to improve security [54]. For 

the operating system family named Choices, the kernel is minimized at compile-time 

based on the functions needed for a specific embedded system to make the kernel as 

small as possible [55]. 

Work has been done in run-time techniques for optimizing the code contained in a 

kernel. The Synthesis kernel optimizes system functions at run-time that get reused 

frequently to improve system performance [77]. 

5.3 Chapter Organization 

The remainder of this chapter is organized as follows: we begin in Section 5.4 by 

laying out the design of our minimization techniques followed by a description of our 

KIS implementation in Section 5.5. In Section 5.6, we evaluate the security merits of 

our approaches. Finally, in Section 4.7, we summarize our contributions and findings. 
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5.4 Design 

5.4.1 Problem 

Modern commodity operating systems are equipped with monolithic kernels that, 

by design, contain code that does not strictly need kernel-level privileges. Since 1991 

the Linux kernel has grown in size from 10,000 lines of code (LOC) to 15,004,006 LOC 

in 2012. From 2010 to 2012 it more than doubled in size. Likewise, the Windows NT 

Kernel has 50 million LOC by some estimates 1 . This excessive code increases the 

risk of kernel-level exploitation. 

We are motivated to reduce this risk by dynamically applying the economy of 

mechanism to the operating system kernel code; to prune the kernel back to the 

minimum amount of instructions that are required for each specific system use case 

and hardware configuration at run-time. To keep with the carnivorous analogy, we 

intend to remove as much kernel flesh from the bone as possible. We refer to this 

technique as run-time kernel minimization. 

5.4.2 Approach 

In this section we describe the general approach to run-time kernel minimization. 

We introduce a run-time kernel specialization security monitor named KIS. KIS is 

an acronym borrowed, in-part, from a common design principle named KISS that 

stands for “keep it simple, stupid.” The economy of mechanism security principle 

can be described colloquially as the KISS principle. For our use, KIS stands for 

“kernel instructions specialization” and “keep it simple.” KIS is the mechanism that 

deactivates and activates code at run-time. 
1http://www.knowing.net/index.php/2005/12/06/how-many-lines-of-code-in-windows/ 
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Code Deactivation 

We have devised two general techniques for deactivating instructions at run-time. 

The first is function-level code deactivation. The second is page-level code deactiva

tion. 

The function-level deactivation technique modifies kernel functions that are resi

dent in memory. Offline, the kernel is analyzed and a profile is generated. The profile 

is a list of pairs. The first element in each pair is the address of a kernel function. 

The second element in each pair is the size of the function in bytes. Each pair can be 

used to define the byte range of every kernel function. 

Online, after the kernel has been loaded into memory, for each function that must 

be deactivated, we will refer to these functions as mutant functions. KIS replaces 

the mutant function body with alternative instructions. The form of the alternative 

instructions depends on whether or not the mutant function can be restored to its 

original. If the mutant function must never be restored, then the mutant function 

may be filled with a return instruction, a NOP sled, and a final return instruction. 

If instructions are fetched from anywhere in the mutant function, execution will im

mediately return to the caller. Depending on the callee-caller contract, some register 

restoring may also be necessary. As described in [18], the return value of “-1” can be 

used as an impostor return value that is handled by some caller code. If the mutant 

function should truly never be used by the system, then the mutant function will 

never be called legitimately and illegitimate calls will fail gracefully in many cases. 

If mutant function restoration is allowed, then the mutant body is replaced with 

an interrupt instruction (INT3) or series of interrupt instructions that, if executed, 

would pass control to an interrupt handler. In the case that KIS is located “out of 

the box” in a hypervisor, the interrupt would be raised to the hypervisor first and 

KIS could manage the restoration of the mutant. In the case that KIS is located in 

the kernel, KIS would have to be installed as an interrupt handler. 
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In both cases, KIS removes the original mutant function bodies. Any return-

oriented programming attacks that rely on the original mutant body will hampered, 

if not completely prevented. 

The second code deactivation technique is similar to the NICKLE-KVM approach 

described in Chapter 3. Rather than deactivating the code at the function-level, we 

deactivate code at the page-level. If a page contains code that must be deactivated, 

we call this a mutant page, then the corresponding page table entry is set to non

executable. If instructions located in that page are fetched, control would then be 

passed to KIS by way of a page fault exception. 

Because the page-level deactivation is less granular than the function-level tech

nique previously described, special consideration must be given to pages that contain 

both code that should be executable and code that should not be executable. If such 

mixed pages exist, they should likely remain executable. If KIS is located in the hy

pervisor, then the mixed mutant pages may be set non-executable. This would reduce 

the size of the kernel until the page-adjacent approved code was activated thereby 

activating the excessive code at the same time. 

The Poly2 approach is to remove unnecessary code once and never reintroduce 

it. This occurs at compile time. If an analogous run-time approach is used, then we 

would need to calculate offline the kernel code required by the applications that will 

be running on the system and deactivate the unneeded instructions at run-time. An 

alternative approach is to deactivate code liberally, leaving only essential components 

activated, and reactivate code on an as-needed basis. Deciding what code to reactivate 

is described later. 

KIS Security Monitor 

The purpose of the security monitor is to deactivate and reactivate code and log 

related events. KIS may be activated by system exceptions such as a page fault or 

debug interrupt previously described or by a message passing. Additionally, it may 
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itself be monitoring the system for specific conditions and trigger code to be activated 

or deactivated based on predefined events. 

The security monitor can be used passively for anomaly detection. If the deacti

vated code should not be executed but is, then the event is logged and used as part of 

an intrusion detection analysis. It is passive in that, in this mode, it has a permissive 

re-inclusion policy that allows for the code to be reactivated. In this mode KIS would 

act primarily as a detection mechanism rather than a prevention mechanism. 

KIS may also take a more active role. If the deactivated code should not be 

executed but is, then the event is logged and used as part of an intrusion detection 

analysis. If no reactivation policy is available, then KIS would terminate the process. 

If a reactivation policy is available that permits reactivation, then the security monitor 

reactivates the code. 

Various deactivation/reactivation policies may be constructed. We have devised 

two examples of such policies. The first is based on an event model; the second on a 

control flow graph technique such as the one described by [35]. 

One example of an event driven policy is the following: for a kernel that supports 

LKM, at system boot many modules are loaded automatically to service the hardware 

present in the system. Suppose that this system is a server system in a data center 

that never needs any new hardware hot-plugged. Once the system is booted, the 

module loading code can be deactivated. A “modules loaded” message could be 

passed to KIS or KIS could be configured to detect that event and deactivate the 

module loading code. 

A second example of a reactivation policy is on-demand activation. Suppose that 

after system boot-up is complete all non-essential kernel code is deactivated. The code 

is then reactivated on an as-needed basis. A permissive approach is to reactivate code 

on-demand. In this scenario, KIS verifies that the first instruction fetched from the 

mutant, function or page, is the first instruction byte of a function body. 

Though permissive, this is a minimally intrusive approach that allows the system 

to run nearly unfettered while still preventing ROP and JOP attacks from reusing 
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instructions originally found in the mutants. In the case that the kernel memory 

is not visible to the attacker, for example /dev/kmem access is prevented in the 

Linux kernel, then the ROP and JOP attacks would be formulated against the offline 

version of the kernel code, the code that contains all of the original mutant function 

instructions. Online, any attack that depends on a mutant instruction would fail. 

This approach is described further and evaluated in Sections 5.5 and 5.6. 

The previously described permissive on-demand activation policy can be con

strained further using control-flow analysis. Offline, a control-flow graph is generated 

for the kernel. The graph describes all parent-child relationships between code re

gions and all valid control flow entry points. For example, if code is deactivated at 

the function level, then the first time that code is fetched, it should be on a function 

boundary and at least one parent function should already be activated. If the code is 

deactivate at the page level, then the entry control-flow validation would work simi

larly. However, for code that crosses page boundaries, additional entry points would 

be required. 

KIS Location 

The kernel is intended to run with all of its instructions intact. If essential in

structions are removed, then a kernel fault will likely destabilize if not destroy the 

kernel operation. If, for example, KIS is placed in the system kernel, the page fault 

interrupt handler must be able to service page faults at all times. If KIS is placed 

outside of the system and code may be reactivated on demand, then the number of 

essential components may be minimal. 

Out-of-the-box security mechanisms, such as those described in Chapter 3, are 

tamper-resistant against guest-based attacks. In-kernel security mechanisms are sub

ject to vulnerabilities of the kernel that it is trying to protect. In situations where 

virtualization is is used, such as in a cloud hosting environment, KIS should be lo

cated in the hypervisor for maximum security benefits. However, in situations where 
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virtualization is not appropriate, such as resource constrained mobile devices, KIS 

should be located in the kernel. 

Out-of-the-box security mechanisms must be designed carefully as not to impose 

too many virtual machine exits (VM exits). VM exits are computationally expensive. 

One advantage to an in-kernel KIS design is that it can be more intrusive and code 

can be deactivated on a per process basis. 

For example, consider the following process-level deactivation scenario. Suppose 

a sandboxed shell process (SSHELL) is used for launching all processes subjected to 

kernel minimization. The SSHELL has all non-essential kernel code pages marked as 

non-executable. When a process is created via a fork, the virtual memory page table 

is copied but the physical memory is not, thereby propagating the non-executable 

kernel code pages to all child processes. The KIS-enabled kernel has a modified page-

fault handler. When an instruction is fetched from a mutant page, the KIS-assisted 

page-fault handler will detect if the fault was caused by an NX permissions violation. 

If so, then KIS will determine whether or not to allow the page to be reactivated based 

on some previously described reactivation policy. If allowed, then the mutant page is 

reactivated and the page table entry is set to executable for the duration of the process 

and all spawned processes. All processes, such as threads and spawned processes, that 

share this process’s page table have the same activated kernel code. Unlike previously 

described designs, including Poly2 that are system-level, this design is process-level; 

though the kernel is mapped into each process, SSHELL ancestor processes will not 

have access to all of the kernel code. 

5.5 Implementation 

We implemented our run-time kernel minimization security monitor, KIS, using an 

Intel i5-2410M 2.30GHz processor. Both our host and guest systems run an unmodified 

version of Ubuntu (11.04 2.6.38-8-generic). The host runs the 64 bit version of Ubuntu 
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(x86 64) and the guest runs the 32 bit version (i686). We added our security monitor 

to the Linux Kernel Virtual Machine (KVM) version kvm-kmod-2.6.38-rc7. 

Our run-time kernel minimization implementation closely resembles the permis

sive on-demand method described previously in Section 5.4.2. KIS is placed in a 

Linux KVM hypervisor and protects a single guest running as a QEMU/KVM vir

tual machine. Guest instructions are deactivated at the function level. Functions are 

reactivated when its first function instruction is executed. Though this technique is 

permissive, it prevents ROP and JOP that reuse instructions directly preceding free-

branch instructions such as return instructions. Such instructions, that are suitable 

for reuse, do not occur in the function preamble. As a result ROP and JOP gadgets 

will not naturally trigger on-demand function activation. 

KIS uses virtual machine introspection to intercept specific guest events. The 

first event intercepted is the completion of system startup. For the Linux kernel, we 

purposefully chose a point in the boot sequence when the kernel is fully loaded into 

memory and has already patched itself. This occurs right before the kernel function 

named init post is executed. We refer to this event as the INIT event. The functions 

that are executed prior to the INIT event are not protected. Many of those functions 

are part of the ELF file section named .init.text and are deallocated shortly after 

booting completes and are therefore likely not part of an ROP/JOP attack. 

When the INIT event occurs, our security monitor takes control. It reaches into 

the virtual machine and deactivates all kernel functions. To deactivate functions it 

replaces the first byte of every function with a INT3 byte (0xCC). When the INT3 

byte is executed by the guest at some later time, it causes a software interrupt to 

occur. This interrupt is raised to the hypervisor and our security monitor handles 

the interrupt. If the interrupt is caused by the first byte of a function, then the 

original byte is replaced. Because INT3 is an interrupt and not an exception, when 

the virtual machine resumes, it tries the instruction again. This time however, the 

original instruction is in place and the function executes normally. For this prototype 

the function remains activated for the duration of the system. 
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5.6 Evaluation
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Figure 5.1. Reactivation of functions over time (log scale) 

To evaluate our design, we configured the protected guest with a common LAMP 

web server stack (Linux, Apache, MySQL, and PHP). We installed all of these pack

ages from the Ubuntu packaging system. To emulate common usage, we configured 

and installed a popular blogging web application named WordPress and configured 

all relevant LAMP modules. 

After configuring the web server, we rebooted the system with KIS protection 

enabled. At boot, KIS disabled 28,828 kernel functions, and 94% of the functions that 

were eventually reactivated were activated within the first 1 minute after deactivation. 

We allowed the web server to run for 39 hours. Upon shutdown, 160 functions were 

activated. A plot of these numbers is illustrated in Figure 5.1. 
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Of the 28,828 functions deactivate, only 6,309 were reactivated. 78% of the kernel 

functions were not needed by this web server workload. 72% of the instruction bytes 

were not needed by this web server workload. KIS can therefore effectively remove 

nearly 3/4 of the instructions that could be reused by ROP and JOP attacks. 
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Figure 5.2. KIS keeps it simple 

To evaluate the effectiveness of KIS against attack, we used an ROP exploitation 

tool named ROPgadget v4.0.3 [78]. ROPgadget found 92 reusable gadgets in the 

Linux kernel ELF file (vmlinux-2.6.38-8-generic). For our evaluation, with 6,309 

kernel functions activated, KIS would prevent 69.56% of the gadgets from executing. 

Any attack that depends on one of the 64 deactivated gadgets will fail to run on our 

web server’s kernel. Figure 5.2 illustrates these numbers. 

5.7 Discussion 

The on-demand function activation technique described in Sections 5.4.2 and 5.5 

assumes that all valid calls to a function, set the program counter to the address of the 

first instruction byte for the function. As a result features such as function nesting, a 

non-standard C feature found in GCC, are not supported unless the parent function 

is first activated [75]. Similarly, according to the C standard, nonlocal jumps from 

a callee function are permitted when the jump destination is located in the calling 

function. If C programming standards are followed, the target function of a nonlocal 

jump will have already been previously activated. It is possible however, that valid 
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machine code could be created that defies our assumptions and that valid programs 

would be prevented from executing as intended as a result of KIS. 

We have demonstrated that it is possible to reduce the kernel code significantly 

for one specific well-defined workload. We have demonstrated that for this specific 

workload and for one known set of ROP exploits, that kernel security is improved. 

It is possible that some workloads will activate significantly more of the kernel code. 

It is also possible that other ROP techniques may produce significantly more attack 

possibilities. 

If an attacker understood and detected the on-demand function activation tech

nique described in Chapter 5, he may be able to directly or indirectly cause valid calls 

to a set of functions that contain code segments necessary for a specific return-oriented 

attack. 

5.8 Summary 

We introduced two novel techniques for run-time kernel minimization. We showed 

that these techniques can be an effective defense against kernel-based ROP attacks. 

Further, we demonstrated that for a common Linux web server workload, the dis

tributed, unmodified Linux kernel tested was far too large; the workload demanded 

only 27.17% (by bytes) of the shipped kernel code to run. 

Code injection prevention and authentication techniques provide a strong defense 

against attacks that require foreign code to run in kernel space. However, these 

techniques are insufficient on their own to defend against attacks that reuse existing 

kernel code. Combining the former with run-time kernel minimization significantly 

improves the security of a commodity operating system kernel. 
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6 CONCLUSIONS 

6.1 Summary 

In this dissertation we have shown that it is possible to strengthen the defenses of 

commodity, general-purpose, computer operating systems by increasing the diversity 

of, validating the integrity of, and ensuring the minimality of the included kernel 

components without modifying the kernel source code. Such protections can therefore 

be added to existing widely-used unmodified operating systems to prevent malicious 

software from executing in supervisor mode. 

6.1.1 Validation 

In Chapter 3 we introduced a novel technique to validate the integrity of unmod

ified, self-patching, commodity, general-purpose computer operating system kernels. 

We implemented a code injection prevention technique that relies upon kernel code 

authentication. We discovered that some modern kernels are “self-patching;” the 

kernel instructions mutate at run-time. Previous cryptographic hash validation pro

cedures were not able to handle such modifications. In addition to implementing an 

out-of-the-box code injection prevention mechanism that takes advantage of hardware 

virtualization for significantly increased performance, we designed and implemented 

a system that validates the integrity of each instruction introduced by a self-patching 

kernel at run-time and demonstrated that patch-level validation correctly permits 

valid kernel patches to be applied and rejects patches that are invalid. 
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6.1.2 Diversification 

In Chapter 4, we introduced a novel technique to increase the diversity of com

modity, general-purpose, computer operating system kernels. We introduce a new 

method for randomizing the stack layout of function arguments. We refine a previous 

technique for record layout randomization by introducing a static analysis technique 

for determining the randomizability of a record. We showed that our static analysis 

technique is an effective way to automatically determine the suitability of a record 

for field order randomization. Additionally, we showed that by strategically selecting 

just a few components for randomization, our techniques prevent all tested kernel 

rootkits. These compile-time techniques incur no run-time overhead and makes them 

suitable for even low-powered devices. 

6.1.3 Minimization 

In Chapter 5 we introduced a novel technique to ensure the minimality of unmodi

fied, commodity, general-purpose, computer operating systems kernels. We show that 

it is possible to improve the security of a standard commodity operating system kernel 

against return oriented programming attacks by deactivating extraneous kernel code 

at run-time and thereby limiting the supply of reusable instructions that can be used 

to construct return-oriented gadgets. We designed and implemented our run-time 

kernel minimization and demonstrated that, for a common web server workload, 72% 

of the instructions included in the kernel were extraneous and that run-time kernel 

minimization reduced the number of ROP usable gadgets found in the kernel by 70%. 

6.2 Future Work 

Mobile computing is rapidly replacing desktop and server computing. Many of the 

techniques described in this dissertation rely upon virtualization. The compile-time 

randomization techniques described in Chapter 4 impose no run-time overhead that 
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is essential for low-powered devices. To bring these techniques to mobile computing, 

we must investigate how to apply the principles discovered to a mobile context. Can 

we run a minimal hypervisor on mobile devices? For the mobile devices that rely 

heavily upon a Java Virtual Machine (JVM), such as Android, can we reuse the JVM 

for code injection prevention, code authentication, and code minimization? In the 

case of run-time kernel minimization, can the in-kernel design be used? 

We do not believe that general-purpose operating system kernels can continue to 

grow at the current rate. It is too risky. The run-time kernel minimization technique 

described here is a patching mechanism for large multipurpose kernels. It would be 

better to redesign kernels to include a finer-grained code deactivation paradigm that 

allows vendors the flexibility to ship one software artifact for many use cases but also 

allows the system to keep it simple. 
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