
CERIAS Tech Report 2013-12
Kinesis: A Security Incident Response and Prevention System for Wireless Sensor Networks

 by Salmin Sultana, Daniele Midi, Elisa Bertino
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Kinesis: A Security Incident Response and

Prevention System for Wireless Sensor Networks

Salmin Sultana#, Daniele Midi†, Elisa Bertino†

School of ECE, † Dept. of Computer Science, Purdue University
{ssultana, dmidi, bertino}@purdue.edu

Abstract—Due to resource constraints, unattended operating
environment, and communication phenomena, Wireless Sensor
Networks (WSNs) are susceptible to operational failures and
security attacks. However, WSNs must be able to continuously
provide their services despite anomalies or attacks and to effec
tively recover from attacks. In this paper, we propose Kinesis
the first systematic approach to a security incident response and
prevention system for WSNs. We take a declarative approach to
support the specification of the response policies, based on which
Kinesis selects the response actions. The system is distributed
in nature, dynamic in actions depending on the context, quick
and effective in response, and secure. We implement Kinesis in
TinyOS. Testbed experiments and extensive TOSSIM simulations
show that the system successfully counteracts anomalies/attacks
and behaves consistently under various attack scenarios and rates.

I. INTRODUCTION

Large-scale WSNs are being deployed to enable economi
cally viable solutions for numerous application domains, such
as cyber-physical infrastructures, power grids, wireless health,
environmental monitoring, etc. WSNs for healthcare have
emerged in recent years to provide continuous and unobtru
sive services to diverse applications, ranging from emergency
response [5], real-time patient monitoring [3], in-hospital
communication, elderly care [17], etc. With the evolution of
the Internet-of-Things (IoT), the recent trend is to augment
physical devices with sensing, computing and communication
capabilities, integrate them into the ecosystems, and make use
of the collective effect of networked smart things to create
smart environments.

However, the WSN applications impose stringent require
ments on end-to-end system reliability, trustworthy data deliv
ery, and service availability. The problem is further exacerbated
by security attacks, where an attacker may exploit the resource
constraints of the sensor devices, the unreliable nature of low
power wireless communications, and also the communication
medium. By exploiting these vulnerabilities, it is possible for
an attacker to falsify context, modify access rights, mount
denial-of-service attacks, and, in general, disrupt the system
operation [8]. This can result in a wide area blackout, a patient
receiving the wrong treatment, or worse, facing a life risk.
Critical life devices, like insulin pump and pacemaker, have
already been hacked remotely by exploiting their insecure
wireless communications [1], which demonstrate the possibil
ity of catastrophic attacks on healthcare WSNs with multi-hop
wireless communication infrastructure. Hence, WSNs must be
able to continuously provide their services despite failures or
attacks and to effectively recover from these attacks.

Over the recent years, a number of Intrusion Detection Sys
tems (IDSes) [10], [15], [13] have been proposed specifically
for WSNs, which cooperatively detect intrusions and report
possible attacks to a central authority. However, when dealing
with attacks and failures, it is not sufficient to detect them; one
has to react as soon as possible. Today, however, IDSes are
not equipped with response tools that would enable automatic
responses and recovery actions. The intrusion response systems
developed for other domains, such as database, distributed
systems, etc., cannot be directly used in WSNs due to their
significant differences in terms of operation, resources, and
communication. In this paper, we focus on a systematic ap
proach to design an Incident Response and Prevention System
(IRPS) with particular concerns to WSN specifics. The unique
nature of sensor environment imposes a set of challenges to
the response system solution:

(i) The IRPS must be able to keep the WSN functional over
time and be able to recover from attacks without significant
interruption.

(ii) Instead of heavy interactions with a centralized sys
tem, the IRPS should use local and cooperative strategies.
However, in the context of IRPS, distributed schemes may
raise issues related to 1) triggering the action executions
and optimizing redundant actions, 2) proper load distributions
among the nodes in a neighborhood.

(iii) The IRPS should respond in real-time, yet apply the
most effective action for each incident. The response policies
should be specified in a way that it does not incur too much
overhead while selecting the appropriate response actions.

(iv) The IRPS system should be lightweight in terms of
computational cost, and resource usage.

Addressing the requirements discussed above, we design
and propose Kinesis - a rule based distributed incident response
and prevention system for WSNs. We extend the concept of
traditional intrusion response systems to an extensive response
framework that not only recovers from attacks, but also
reacts to anomalies in order to prevent service disruptions
and possibly prevent the attacks. According to the design,
every sensor in a WSN is a watchdog monitor [13] and
hosts both an IDS, and the Kinesis system. Through the IDS,
the monitor observes neighbor behaviors, detects suspicious
incidents (anomaly/attack) in the neighborhood, and notifies
Kinesis. However, Kinesis depends on the IDS only for the
notifications on good/bad neighbor behaviors which is the
basic functionality of an IDS. Being notified an incident,
Kinesis matches the appropriate response policy from the
set of response policies specified by the base station (BS)

mailto:bertino}@purdue.edu

according to the policy language we define for WSNs. A
response policy is defined on an incident and specifies different
actions corresponding to different severity levels. The severity
of an incident is estimated based on (i) the incident detection
confidence, (ii) the security status of the suspect nodes, and
(iii) the attack impact and helps selecting the most effective
response action at any instant. We have surveyed the various
attacks in WSNs and created a taxonomy of attacks (Fig. 1)
and a rigorous set of response actions (Table II).

Kinesis is truly distributed in terms of triggering action
executions since the node that will take the action in a
neighborhood is selected via a self-organizing competition by
an action timer. Thus, Kinesis does not require any message
exchanges due to response action synchronization and has no
communication overhead. The action timer value is locally
estimated based on: (i) neighborhood size, (ii) link quality, (iii)
time since last action. It reflects the effectiveness of a node and
ensures load distribution among the neighbors. The distributed
nature of Kinesis also adds security value to it. Even if a node
is compromised, other legitimate nodes in the neighborhood
can continue with the Kinesis functionalities. Kinesis is also
secure in terms of response policy dissemination and storage
since the BS specifies the policies, converts them to a binary
code and disseminates the binary throughout the network with
a secure dissemination protocol [7].

Contributions: Our contributions include:

•	 The first systematically designed incident response
and prevention system for WSNs.

•	 A declarative approach to define the response poli
cies in a simple and extensible way, considering the
resource constraints of sensors.

•	 A framework for selecting the most appropriate
response action depending on the impact of the
anomaly/attack and history of the suspect node.

•	 A simple yet robust mechanism to synchronize action
executions in a neighborhood without any communi
cation overhead. A local per-node action timer based
design to manage the actions by a node while minimiz
ing redundant actions and ensuring load distributions.

•	 A fine-grained analysis scheme to precisely detect
the type of attack in order to enhance the execution
performance of the response engine in case of more
than one possible attacks.

•	 An implementation of Kinesis in TinyOS. Testbed ex
periments and extensive simulations that demonstrate
the effectiveness of Kinesis in counteracting various
attacks and making the WSN operate like in any
attack-free environment. The system shows consistent
behaviors under various attack scenarios and rates.

The rest of the paper is organized as follows: Sec. II briefly
discusses the WSN attacks and IDSes. Sec. III presents the
design overview of Kinesis and we discuss all the design
details in Sec. IV. The simulation results are reported in Sec. V.
Sec. VI presents the performance of Kinesis in a real testbed.
Sec. VII discusses the state of the art. Sec. VIII discusses
future works and concludes.

II. BACKGROUND AND SYSTEM MODEL

A. Network Model

We consider a multihop wireless sensor network, consisting
of a number of sensor nodes and a base station (BS) that
collects data from the network. The BS is assumed to be
secure and to have a secure mechanism to broadcast authentic
messages and to disseminate code updates in the network.
Sensor nodes are stationary after deployment, but routing paths
may change over time, e.g., due to node failure.

The BS assigns each node u a unique nodeID and a
cryptographic key Ku for message encryption in order to
protect confidentiality and privacy. The sensor node also shares
a pairwise key Ku,k with each neighbor k and a group key
Kg with all the neighboring nodes. A node can monitor the
activities of its neighbors and locally detect a misbehavior,
anomaly or intrusion in the neighborhood. The neighboring
nodes can also cooperate for more accurate intrusion detection
or critical decision making.

B. Threat Model and Security Objectives

We assume that the BS is trusted, but any other arbitrary
node may be malicious. WSNs maintain the standard layered
architecture of protocol stack which enables typical as well
as WSN specific attacks to these layers. These attacks can
be directed to exploit or impair the following resources: (i)
Communication network, (ii) Control and data messages, (iii)
Sensor device resources such as, memory, power, etc. Below,
we categorize and discuss the attacks from the perspective of
the target resources.

Communication Network: WSNs maintain the standard
layered architecture of protocol stack which enables typical
as well as WSN specific attacks to each of these layers.
Jamming can disrupt a portion of the network or even the
entire network. Attacks at the link layer include purposely
introduced collisions, resource exhaustion, and unfairness in
case of medium access. The attacker may attempt to transmit
data simultaneously with a legitimate node, leading towards a
collision and data loss at the receiver. Repeated collisions can
be introduced by the attacker to cause resource exhaustion.

Messages: In a sensor network, all the nodes act as routers.
Hence, an attacker may spoof, alter, or replay routing messages
in order to disrupt network traffic through creating routing
loops, modifying source routes, attracting or repelling traffic
from selected nodes, increasing end-to-end delay, etc. For
example, in a sinkhole attack a compromised node forges
routing messages to attract traffic from all the neighboring
nodes to pass through. A malicious insider may also selectively
forward certain messages and drop others. A specific form of
this attack is the black hole attack where a node drops all of its
received messages instead of forwarding them. Even without
compromising a node, an attacker can tunnel the messages
to another part of the network through a low-latency link and
then replay them. This kind of attack is referred to as wormhole
attack. Integrity attacks, spoofing, replay, selective forwarding
attacks can be also performed on data packets. Besides, there
may be false data injection, delayed forwarding, etc., which
are directed to degrade data quality and utility.

Sensor Device: Sensor devices come without any tamper-
resistant packaging, hence add the risk of physical attacks, e.g.,
physical capture, tampering, etc. An adversary can easily ex
tract all the secrets stored on captured sensors’ chip and cause
substantial damage by exploiting software vulnerabilities. The
adversary can also produce a large number of replicas of the
captured sensor with its keys and place them into network at
chosen locations. This attack is named as replication attack.
Once these replicas gain the trust of others, they can launch
a variety of insider attacks described above. ID spoofing such
as, Sybil attack also poses threat by enabling a malicious node
to present multiple false identities to the network.

To summarize, attacks may take place in many forms but
they disrupt the WSN by affecting one or more of the above
resources. Hence, to keep the WSN functional no matter what,
there should be effective mechanisms to detect failures/attacks
on these resources and to safeguard them through proper
response actions. In this context, our objective is to achieve
the following security properties:

•	 Once an anomaly or attack is detected, appropriate re
sponse actions should be executed in order to continue
the WSN services as well as to effectively recover
from the attacks. Since the severity of a failure/attack
depends on how the incident is affecting the infrastruc
ture, the importance of the asset under attack, impact
analyses, and speculations, the response system should
incorporate these key features into decision making
while issuing response actions. In other words, our
objective is to prevent data loss and communication
failure despite failures and attacks.

•	 The dissemination, update, storage, and execution of
response policies should be secure.

C. Intrusion Detection Systems

A number of IDSes have been proposed specifically for
WSNs that cooperatively detect intrusions. Marti et al. [13]
introduce the watchdog mechanism where a node identifies a
misbehaving neighbor node by observing the neighbor behav
iors. Such a node is termed watchdog monitor (a.k.a monitor)
in the literature. Since sensor nodes are characterized by
resource constraints, short transmission range, vulnerabilities,
and frequent failures, watchdog based node cooperation has
been adopted in IDSes for sensor systems. Each monitor
observes its neighbors, collects audit data, and then performs
behavioral analysis for each of them to detect any suspicious
activity. The intrusions are cooperatively detected by the
monitor nodes based on their analyses, and a set of pre-defined
or adaptive inference rules. The feature space, i.e. the attributes
monitored to detect anomalies may include packet arrival
rate, transmission ratio, data integrity, etc. The relationships
between the features used by these IDSes and the various
attacks are shown in Figure 1.

However, the IDSes mostly generate alerts on attacks to a
centralized authority, which leaves the most important concern
of recovering the incident still unsolved.

III. DESIGN OVERVIEW OF KINESIS

To bridge the gap, we propose Kinesis - a security solution
for incident response and prevention for WSNs. According

Fig. 1. Attack Graph

to the design of Kinesis, each monitor hosts a distributed IDS
and the Kinesis system. Through the IDS, the monitor observes
neighbor behaviors, detects suspicious events (anomaly/attack)
in the neighborhood, and notifies Kinesis for automated re
sponse action. However, as we see in section IV-C, Kinesis
depends on IDS only for the notifications on good/bad behav
iors which is the basic functionality of an IDS. Hence, the
design or any concern specific to IDS are out of the scope of
our work.

Sensor	 node	
IDS	

Kinesis	

Ac#on	 Selector	

Communicator	

Feedback	 on	 Responses	

Executor	

Neighbor	 Observer	

ac#on	 decision	

messages	
set	 of	 response	 ac#ons	

anomaly	 /aBack	
report	

neighbors	
behavior	

observa#ons	

fa
lse

	 a
le
rt
	

Fig. 2. Design Overview of Kinesis

Figure 2 shows the modular architecture of Kinesis. The
Neighbor Observer is a background process that, with the
help of IDS observations, keeps a record of the recent be
haviors for each monitored neighbor and periodically updates
the node’s security status based on this history. Upon de
tecting an incident, the IDS reports to Kinesis the possible
anomaly/attacks, suspect node(s), and alert confidence for each
reported anomaly/attack. The Action Selector module then
estimates the severity for each anomaly/attack based on the
alert confidence, the security state of the suspect, and the attack
impact. Depending on the severity measure, the particular set
of action(s) to be executed are selected dynamically from the
response policy matched on the incident. We propose a high-
level language for the specification of response policies partic
ularly for WSNs, which is simple yet robust and extensive and
makes it easy to specify the policies for WSNs and to match
a policy on each incident.

Given a set of response action(s), the Executor component
triggers and executes the actions. A monitor competes to be the
next demon (i.e. one to take the response action) by setting an

action timer inversely proportional to its action effectiveness
and takes the action when the action timer fires. It is to
be mentioned that some actions such as, LOG, ANALYZE,
etc. are to be executed by each node independently whereas
for actions, like RETRANSMIT DATA. the redundant actions
by the neighbors should be minimized. In the latter case,
upon hearing an action taken by a monitor, other monitors
in the neighborhood stop their action timers in order to refrain
themselves from taking any further actions for that incident.
Any communication related to response actions as well as the
communication interface with the BS is taken care of by the
Communicator module.

IV. KINESIS SYSTEM DETAILS

This section presents the detailed design of Kinesis.

A. State Information

Each node u maintains a list of its neighbors, N(u), and
link quality, L(u, k), with every neighboring node, k ∈ N(u).
Apart from that, node u maintains:

(i) Per-neighbor sliding window of size W to keep the his
tory of neighbor behaviors. Using these behavior observations,
the node also maintains security state and level of trust to the
neighbors.

(ii) The action timer value which indicates how long a
node u waits before triggering the next action, if it wins the
competition.

B. Response Policy Specification

The resource constrained nature of sensor devices makes it
challenging to utilize the typical response policy languages
used in general purpose networks, database systems, and
other domains. In order to be scalable and deployable, the
response policies for WSNs should be simple, lightweight yet
comprehensive so that they can successfully serve the purpose.
In Kinesis, we design a response policy language specific for
use in WSNs. The response policies are specified as a set of
rules, which can be expressed with the grammar in Table I.
Each policy is specified on an incident and contains different
actions applicable to various contexts of the attack and the
suspect. The words within quotes ’ ’ are static tokens and the
italics represent functions.
<rule>: This construct defines a response policy correspond

ing to an attack or anomaly and the context. The various
constructs in a rule are as follows:
<anomaly>: This clause specifies data and network failures
due to natural errors or malicious attempts. Examples include
data loss, data alteration, transmission delay, etc.
<attack>: This clause specifies an attack detected by the IDS.

<condition>: This clause specifies the conditions to be used
to select the set of responses. When the condition is evaluated,
a function severity is called to assess the threat of the attack
and then conditions are generated.
<action-list>: This clause specifies the response actions to
deploy. An action is taken w.r.t a <suspect> node. Based on
the severity measure, three classes of actions may be executed:

TABLE I. RESPONSE POLICY LANGUAGE

<rules> ::= ’Begin’ <rule-list> ’End’

<rule-list> ::= <rule> <rule-list> | <rule>

<rule> ::= ’on’ <incident> (<condition> <action-list>)+

<incident> ::= <anomaly> | <attack>

<anomaly> ::= data loss | data alteration | data replay | ...

<attack> ::= unknown | selective forwarding | jamming | ...

<condition> ::= <condition>*|’if’ <incident> ’then’

|’if’ severity(<suspect>,<incident>) <op> (<value>|<range>) ’then’
<op> ::= ’<’ | ’>’ | ’<=’ | ’>=’ | ’==’ | ’!=’ | ’IN’
<action-list> ::= <action> <action-list> | <action>
<action> ::= <conservative-action> (<suspect>)*

|<moderate-action> (<suspect>)*
|<aggressive-action> (<suspect>)*

<aggressive-action> :: = revoke | reauthenticate | rekey | ...
<moderate-action> ::= retransmit data | trigger data authentication | ...
<conservative-action> ::= nop | analyze | alert | ...
<suspect> ::= <digit>+ | <literal> (<literal>*<digit>*)*
<range> ::= (’[’|’(’) <value>–<value> (’)’|’]’)
<value> ::= <digit> | <digit>+. <digit>+
<digit> ::= [’0’-’9’]
<literal> ::= [’A’-’Z”a’-’z’]

TABLE II. TAXONOMY OF RESPONSE ACTIONS

Actions Descriptions
CONSERVATIVE: Low Severity

nop No actions to take
log, analyze Record auxiliary information and analyze
alert Notify the suspicious node(s) or other

neighbors/the BS about the misbehavior

MODERATE: Medium Severity
discard data Prevent forwarding false data
retransmit data Send cached data in case data loss or

modification at other node
trigger reauthentication Re-authenticate the suspicious node
trigger route change Change route and notify others
trigger multipath routing Route data through multiple paths
suspend Temporarily block the suspect node

AGGRESSIVE: High Severity
revoke Black list/block the convicted node
re-program Re-program the malicious node
re-key Re-key the (sub) network
flood alerts Flood alert messages in the network

(i) Conservative Actions: These are low severity actions
that may enable logging, fine-grained analysis on incidents,
alerting suspicious node(s)/monitor(s)/others, etc. Though
these actions can help in identifying attacks more precisely
or restraining a watchdog monitor from deploying erroneous
responses, they cannot proactively prevent or recover from the
intrusions.

(ii) Moderate Actions: These actions are intended to main
tain the continuity of data and network service under failures or
attacks. Examples may include discard data to stop forward
ing false data, retransmit data in case of packet dropping or
modification attack, etc.

(iii) Aggressive Actions: These are high severity responses
and are executed to recover from an attack and to prevent
further malicious attempts. Such actions may initiate recovery
by reprogramming or revoking the malicious node(s), rekeying,
re-authenticating a subnetwork, etc., sometimes even before the
attack occurs. These actions can be executed at local sensors
or may require help from the BS to execute them.

Studying the various attacks in WSNs and corresponding
remedies, we have come up with a rigorous set of response
actions, which are listed in Table II.

Table III shows an example of response policy for
data alteration incident where nodeID is the ID of the

suspect node.

TABLE III. RESPONSE POLICY EXAMPLE

on ’data alteration’

if severity(data alteration, nodeID) <= 0.3 then retransmit data

if severity(data alteration, nodeID) IN (0.3,0.6]

then retransmit data

trigger route change
if severity(data alteration, nodeID) > 0.6
then revoke nodeID

C. Policy Matching and Response Selection

Since response policies in Kinesis are specified for partic
ular incidents, it is quite straightforward to match the response
policy specific to an incident, once reported by the IDS.
However the action to be executed is selected dynamically
from the action set specified by the matched policy, depending
on the impact of the incident and the security assessment of
the suspect node. Such a strategy is adopted to ensure that
Kinesis takes the most effective action at any incident.

According to the design of Kinesis, a node monitors its
neighbors and continuously updates per-neighbor security state
records, reflecting the neighbor behavior observations. The
security assessment of a neighbor node is quantified by a
numeric, referred to as Security Index (SI), and is updated on
each behavior observation. Whenever an incident is reported
(i.e. a misbehavior is observed), SI is updated based on three
factors:

(i) Incident Confidence:	 The confidence with which the
monitor node detects the incident, denoted by a Con
fidence Index (CI);

(ii) Impact of the Incident: A numerical representation of the
impact of the incident on the sensor network, denoted by
an Impact Index (II);

(iii) Neighbor behavior observations: The continuous behav
ioral observation of the neighbor, reflecting how much
the monitor node believes the suspect node.

However, when the neighbor behaves correctly, SI only
depends on behavior observations. In what follows, we discuss
in details how Kinesis computes these indices and then selects
the appropriate response action based on the security index.

1) Confidence Index: The IDS associates a confidence
value with each anomaly or attack reported to indicate how
likely the incident has occurred. We utilize it for selecting a
response action since it measures how effective the IDS is
in identifying an incident and how severe the response action
should be. However, if the IDS does not provide an in-built
confidence value, Kinesis computes CI as follows:

(i) For Anomalies, we consider CI = 1. This is reasonable
since watchdog monitors can correctly identify a failure
or misbehaving event [13].

(ii) For Attacks: In this case, CI is computed as a false alarm
rate based on the past performance of the IDS about
successfully detecting attacks. CI is computed using the
following equation

of true attacks
CI =

of attacks reported

The details about how Kinesis gets feedback about false
alerts are discussed in section IV-F.

2) Impact Index: The II estimates the overall impact of an
attack and indicates the urgency and extremity of the action
to uproot the cause of that attack. Despite extensive work on
vulnerability scoring in enterprise networks [14], little attention
is paid to WSNs. Few works [4] present mathematical risk
modeling and analysis for WSNs, but they do not provide
a complete framework considering the WSN specific attacks
and practical concerns. In this work, we propose a simple
mechanism to estimate the impact of an anomaly or attack.

Table IV summarizes the consequences of attacks to the
WSN services. The BS maintains a list of possible incidents
and their corresponding impacts. Based on the priority of the
WSN and risk assessment, the BS assigns static scores to these
impacts and pre-configures the nodes with the incident-impact
mapping and impact scores. Upon receiving a report of incident
x, Kinesis computes the impact of the incident as follows: n

impactk [j] × rk[j]j=0 x
Ik(x) = 	 (1)n

j=0 r
k[j]

where k is the type of impact, n is the total number of k-type
impacts, impactk is an n-length array of k-type impacts for x
incident x where impactk [j] = 1 means that the incident has x
j-th impact, and rk is an array of impact scores associated with
the k-type impacts. Using Eq. 1, Kinesis computes the Data
Impact (Id), Network Impact (In), Node Impact (Is) of the
incident and then the II as a linear combination of these three
impacts:

II(x) = βd × Id(x) + βn × In(x) + βs × Is(x)

where, the coefficients βd, βn, βs >= 0 are real numbers and
βd + βn + βs = 1. Note that if the network administrator does
not change the WSN priorities, the Impact Indexes are static
and suffice to calculate only once after the deployment.

TABLE IV. POSSIBLE IMPACTS OF WSN ANOMALIES AND ATTACKS

Data Impact Data delay, unavailability, alteration, falsification
Network Impact Network unavailability, disruption; Path unavailability
Node Impact Node unavailability, misbehavior, malfunction

3) Neighbor Behavior Observations: The neighbor behav
iors give a perception to a watchdog monitor about how
vulnerable the neighbor is and how likely it is going to make
an attack. Hence, we consider the behavior observations of
the suspect node as a factor to determine the intensity of the
response action. The history of behaviors and trust scores are
usually maintained by IDSes [6]. However to conform with
IDSes without such facilities, we provide a design to record
the neighbor behaviors from various aspects and to compute
trust scores, security score/state based on the behavior history.
Here, Kinesis depends on IDS only for the notifications on
good/bad behaviors which is the basic functionality of an IDS.

To justify the accuracy of the response action, we depend
on the history of neighbor behaviors rather than the most
recent single behavior. Kinesis maintains per-neighbor sliding
window of size W to keep track of the neighbor’s most recent
W behaviors. When a good/bad behavior notification about
that neighbor is received from IDS, the sliding window pushes
out the oldest behavior and stores the recent one. The monitor

nodes keeps watching two types of neighbor behaviors:
(i) Service Behavior: How sincere a neighbor node is in
providing sensor network services, such as intime packet
forwarding, transmitting no false data, etc.
(ii) IPRS Behavior: The efficiency/honesty of the neighbor in
taking response actions i.e. how often the neighbor is taking
required and desired actions.

4) Security State Update: A monitor u computes SI for
each neighbor k �N(u) on each behavior observation for k
and updates the security state accordingly. A node is estimated
to be in five possible states: (i) Fresh, (ii) Suspicious, (iii)
Secure, (iv) Malicious, and (v) Revoked. Figure 3 shows the
security state transition diagram. After the network deploy
ment, a monitor assigns to all its neighbors the Fresh state with
SI = 0. For a prespecified amount of time tf , a neighbor is
considered to be in Fresh state whereas its SI is updated on
behavior observations according to Eq. 2. The significance of
Fresh state is that a neighbor is given the benefitofdoubt while
being in this state. Although the SI of a suspect node in Fresh
state affects the response action selection, no aggressive action
is taken against the node i.e. the node will not be revoked,
reprogrammed, etc. After time tf , the neighbor transitions to
either Suspicious or Secure state based on its SI . A node in
the Suspicious state can move to the Secure state if it behaves
well for long and lowers its SI , and viceversa. On the other
hand, if a node in the Suspicious state continues illegitimate
behavior, its SI goes above a predefined threshold �2 and
moves to the Malicious state. Whenever a neighbor node goes
to Malicious state, the monitor initiates an aggressive action
against the node. However, a neighbor can be revoked from the
network anytime due to the monitor’s own decision or action
initiated by neighboring monitors. In such a case, the monitor
enlists the suspect node as Revoked and discards any further
request/data from this node.

We formulate the computation of SI of a neighbor k with
two auxiliary functions f(x) and g(SI), where f(x) computes
the severity of an incident x and g(SI) returns a coefficient
based on the current SI and security state of k.

Fresh

Secure

Suspicious

time < tf
time > tf ʌ SI > σ1

tim
e >

 t
f ʌ SI <

 σ
1

Revoked

Malicious

σ1 < SI < σ2

Fig. 3. Security State Diagram of a Monitored Node

discard datadiscard data

reauthenticate
data

reauthenticate
data

retransmit dataretransmit data

reprogramreprogram

revokerevoke

loglog

analyzeanalyze

trigger
authentication

trigger
authentication

Fig. 4. Example of an Attack Precedence Graph

the individual response sets may be inclusive, overlapping
or inconsistent with respect to other sets. In addition, before
considering a new action set to be executed, we should check
it with the online responses to find out the same relationships.
As a key to resolve this issue for a limited resource system,
we introduce the concept of action precedence graph.

Action precedence graph (APG) is a directed graph which
describes the precedence relationship between actions in terms
of their effectiveness. Here, (i) each node ai is an action,
(ii) an edge ai � aj denotes that the parent action ai�����g(SI) =

1 ; SI � �1 i.e k is Fresh/Secure invalidates the child action aj , and (iii) we define a new type
1�5 ; �1 � SI � �2 i.e k is Suspicious of edge called black edge where ai � aj indicates that ai
2 ; SI > �2 i.e. k is Malicious and aj are contradictory actions and in case of conflict, ai

is executed. Thus the execution of an action ai invalidates �
0 ; x is good behavior

f(x) =
min(CI × II(x) × g(SI)� 1) ; otherwise

On each ith behavior observation for neighbor k, its SI is
computed at a monitor as � � i � j=1 f(wk[j]) , if i �WiSI = � W (2)

f(wk[j])�f(wk[0]))� j=1 , if i > WW

D. Response Set Computation

If the IDS reports a single anomaly/attack on an incident,
Kinesis computes the SI, matches the response policy and
selects the SI dependent response set from the matched policy,
as stated above. In case of multiple attacks reported on an
incident, we can follow the same procedure to compute the
response set for each attack and then compute the final
response set by finding the union of these sets. However,

all of its successors, and aj not reachable by ai means
that they are independent actions. Two actions ai� aj conflict
if one can reach the other only through a path of black
edges. An example of APG is shown in Figure 4 where the
reprogram action overrules all of its successors, { log, analyze,
alert} are independent of each other and { retransmit data,
reauthenticate data, discard data} conflict. We assume that
the BS preconfigures the nodes with all possible response
actions and the precedence relationships between them. For
computational efficiency, the nodes store this APG graph in an
adjacency matrix representation and identify the connectivity
between nodes once at the very beginning.

By utilizing the APG, we formalize the computation of
equivalence, independence, intersection, and coverage rela
tionships between two action sets in Algo. 1. To compute
the optimized response set from n different response sets
{ A1� A2� ����An } (each specific to an individual attack),
Kinesis runs a recursive algorithm that is initialized with

optimized set O1 = A1. It then continues by computing
Oi = cors(Oi−1, Ai) for i = 2, 3, . . . , n. Similarly, before
executing a new action set, we check its relationship with the
on-line responses using Algo. 1 and then find the optimized
response set to add to the execution queue.

E. Execution of a Response Action

In Kinesis, the response actions are executed in a fully
distributed manner. The low/medium severity actions are exe
cuted by the monitor nodes solely based on the own decisions
whereas the high severity actions against convicted nodes
require consensus among the monitors in a neighborhood. In
the latter case, a selected monitor node (demon) triggers a
message in the neighborhood asking the decisions of other
monitors, performs a majority voting on the collected replies
and then executes the agreed upon action. Some aggressive
actions, such as reprogram, rekey, etc. cannot be completed
at the sensors. In such a scenario, the demon node notifies
the BS with an authenticated report and the BS then performs
the action. In addition, even though some actions like retrans
mit data, alert others, etc. can be executed upon a monitor’s
own decision, they require interactions with other nodes. In
all these cases, a monitor has to initiate the action and take
over all the responsibilities related to it. Kinesis dynamically
selects this demon node as the most competent one to take the
action. This design ensures the effectiveness of the action as
well as avoids the same node doing all the job all the time.

1) Selection of the Demon: A node is selected dynamically
as the demon for executing an action via a self-organized
competition among neighboring monitor nodes. The novelty of
our scheme is that we do not require any synchronization
or message exchanges among the neighbors. Each node in
a neighborhood participates in the competition independently
through a locally managed back-off timer, called action timer.
The timer value depends on the action effectiveness (AE) of
the node, which is estimated locally based on three factors: (i)
neighborhood size, (ii) one-hop link qualities, and (iii) time
since last action. Intuitively, if a node is connected to more
neighbor monitors with good link qualities, it can interact with
more nodes and help minimizing the redundant actions. Again,
if the node has been idle for a long time, it should take the
action to effectively distribute the load in the neighborhood.
Hence, this node should be the next demon. The value of AE

Algorithm 1 : cors() - Computation of Optimized Response Set
Input: Response sets A = {ai}, B = {bi}
Output: Optimized response set O

if A = B then

O ← A // A is equivalent to B

else if ∀ai, ∃bj , bj → ai then
O ← B // B covers A

else if ∀ai, ∀bi, ai ⇒ bj or Vice-versa then

O ← A (or B) // A contradicts B

else if ∃ai, ∃bj , ai → bj then
O ← A ∪ (A\B) // A intersects B

else
O ← A ∪ B // A is independent to B

end if

for node u can be calculated as follows:
AE(u) ∝ c1 ∗ tl + c2 ∗ L(u, k) (3)

k∈N (u)
k∈N (s)

where c1, c2 are real numbers, N(u), N(s) denote the neigh
bors of u and the suspect node, respectively, L(u, k) is the
link quality between node u and the neighbor monitor k, and
tl denotes the time since last action by u. The higher the
AE(u) value, the more effective node u’s action is.

The node u joins the competition for being next demon
by setting the action timer, ActionTimer (u), inversely propor
tional to its action effectiveness.

1
ActionT imer(u) ∝ (4)

AE(u)

Thus, a node with better AE has lower back-off period
and wins the competition and executes the action. If the
action involves a transmission and a neighbor k overhears the
message, it cancels the running timer for any action against
the same suspect for same incident and updates its tl and AE
value.

2) Consensus among the monitors: To perform high sever
ity operations, the monitors consult with each other and
decide an action based on majority voting. After selecting
the appropriate response action, the communication module in
the demon node broadcasts an authenticated status req msg
in the neighborhood. The message contains the (i) detected
attack, (ii) the suspect node, (iii) the response decision, and
(iv) a MAC computed on data using the group key Kg .

Based on the received attack report and local analy
sis/response decision, other monitor nodes generate and broad
cast authenticated status reply msg-es. Each monitor node
computes the majority voting result and the demon node
broadcasts again the voting decision. Based on the majority
voting result, each of the monitor nodes as well as any other
neighboring nodes execute the agreed upon action. The BS
is also notified with an authenticated report and triggers any
action, if needed. The monitor nodes locally observe the
neighbors to check whether they abide by the majority decision
and otherwise stores a bad behavior in the IRS trust monitoring
window for that misbehaving node.

F. Response Feedback

The majority voting decision provides a feedback to the
monitors about their accuracy in terms of detecting an incident
and selecting the actions. If the severity of the agreed upon
action is lower than the locally determined action at a node,
it implies a false alarm and decreases the confidence of the
monitor. Every monitor node keeps the records of its false
alarms and updates its Confidence Index (CI) accordingly. To
be noticed that we do not consider the false negatives here.

The response feedbacks can also be beneficial from other
perspectives. For example, they can be utilized to determine
the effectiveness of an action based on which we can adapt the
response policies or to estimate the action effectiveness of the
demon, etc. However, we have not investigated these directions
fully and have not integrated them in our design.

G. Secure Policy Storage and Dissemination

The naive approach is to store the response policies as
a file or in a policy database which will be an input to
Kinesis. Whenever an incident is detected, Kinesis would
read the policy file/database to match the response policy.
Besides simplicity, this model has other advantages, such as,
policy update (e.g., adding a new rule) can be done in an
incremental fashion resulting in smaller data transfer over
networks. However, there are some significant drawbacks of
this approach as well. Most of the operating systems for
sensor nodes do not provide a mechanism for file or memory
protection. So, malicious modules may get access to the rule
file and manipulate it according to their needs. Also, each time
Kinesis has to manage an incident, it has to read the policy
file resulting in a large number of read operations in its life
time. Such operations are prohibitively expensive for resource
constrained sensor environment.

Kinesis overcomes these difficulties by generating a binary
code from the input policy file and uploading the binary to
the nodes. The BS generates the policy binary file from the
response policies specified according to our policy language
and disseminates or updates the binary throughout the WSNs
in the form of standard code dissemination. However, dissem
inating this binary is likely to be more expensive than doing
an incremental update of the rule set according to the naive
approach. We assume that such policy changes are infrequent
and hence do not become a serious concern. It also eliminates
the need for expensive read operations from the flash memory
at run-time.

To maintain the integrity of policies, the code dissemination
process must be secure. We can utilize any of the secure
code dissemination protocols proposed for WSNs [7]. Since
the policy dissemination/update is performed through a secure
mechanism and an attacker cannot modify the sensor ROM
(that contains the policy binary) even if it is compromised [16],
the integrity of the response policy is ensured.

H. Kinesis Implementation and Configuration

We implemented the Kinesis modules and the policy rules
in TinyOS 2.x. According to the policy language we define
in Sec. IV, policy rules are implemented as switch-case based
on incident. This strategy optimizes the implementation. An
alternative might be to automatically generate and optimize C
codes for policy rules from the definition grammar using stan
dard compliers and then include the binary in Kinesis package.
However, we did not focus on various optimizations, such as
fusing code blocks to reduce the codebase, optimization on
the input rule set, etc. Security state thresholds (σ1, σ2) are
used to specify the severities in policies. To compute σ1, σ2,
we average over all the incident impacts, measure SI with this
average impact for various attack rates and select the values
based on the severity tolerance.

To configure Kinesis, the network administrator has to
configure the sensor nodes with the response policy binary, the
attack risk scores, the action priorities, and the real coefficients.
We assume that the sensors are configured after the deployment
and changes to these data are infrequent.

V. SIMULATION RESULTS

A. Simulation Setup

At first, we simulate the performance of Kinesis in the
TinyOS simulator TOSSIM. As a routing protocol, we use
the standard Collection Tree Protocol. In the experiments, we
consider anomalies and attacks at various protocol layers: (i)
data loss, (ii) data alteration, (iii) selective forwarding, and (iv)
sinkhole attacks. The policies considered for these incidents
are shown in Table V. To detect the relevant incidents, we
implement a simple watchdog monitor based IDS in TinyOS
2.x.

We generate the topologies with symmetric links. The
source periodically sends out data every 2 seconds. In each
run of simulation, the results are averaged over 4, 000 data
transmissions. Unless otherwise stated, we use the above
default values in simulation.

TABLE V. CONSIDERED RESPONSE POLICIES

on ’data alteration’
if severity(data alteration, suspect) IN (0,0.3] then retransmit data
if severity(data alteration, nodeID) IN (0.3,0.5]

then retransmit data, trigger route change
if severity(data alteration, suspect) > 0.5

then retransmit data, revoke nodeID

on ’data loss’
if severity(data loss, suspect) IN (0,0.3] then retransmit data
if severity(data loss, nodeID) IN (0.3,0.5]

then retransmit data, trigger route change
if severity(data loss, suspect) > 0.5

then retransmit data, revoke nodeID

on ’selective forwarding’
retransmit data, revoke nodeID

on ’sinkhole’
revoke nodeID

B. Performance Metrics

The performance metrics considered to evaluate Kinesis
are:

(1) Effectiveness: Since our goal is to prevent data and
network failure, we show the effectiveness of Kinesis from
two aspects:

•	 Data Loss Rate at the BS: The frequency with which
the BS experiences the effect of an anomaly or attack.
For example, in case of data loss incidents, it implies
the rate of reception failures at the BS. In this context,
we compare the performance of our system with (i)
an attack free typical sensor environment, and (ii) an
under-attack network to show that Kinesis can get
back the WSN into a normally operating environment,
even under anomalies or attacks.

•	 Average Data Transmission Delay: The average time
needed for a packet to reach the BS since its transmis
sion by the source. Here, we compare the performance
of Kinesis with an attack free scenario.

(2) Optimization of Redundant Actions: The number of
actions taken per incident by the monitors in a neighborhood.
It justifies our action timer design based distributed scheme to
trigger the response action for an incident.

(3) Load Balance: How evenly the response action execu
tions are distributed in the neighborhood. This is indicated by

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Pa
ck

et
 lo

ss
 r

at
e

Packet drop rate

Ideal
Packet Dropping

Kinesis + Packet Dropping

 0

 20

 40

 60

 80

 100

 120

 140

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

D
el

ay
 (

in
 m

s)

Packet drop rate

Ideal
Kinesis + Packet Dropping

0.03 0.05 0.1 0.2 0.4
0

0.25

0.5

0.75

1

1.25

A
c
ti
o
n
s
 p

e
r

e
v
e
n
t

Packet drop rate
0.03 0.05 0.1 0.2 0.4

0

0.25

0.5

S
td

 d
e
v
 o

f
n
u
m

b
e
r

o
f
a
c
ti
o
n
s

Packet drop rate

(a) Packet reception failure rate at the BS (b) Average data transmission delay (c) Average number of actions per data loss (d) Load balance between neighbor monitors
incident

Fig. 5. Kinesis Performance for data loss incidents in Controlled Network Experiments

the standard deviation among the number of actions taken by
the monitors in a neighborhood.

(4) Energy Consumption: The energy consumption by
Kinesis in defending against various attacks.

C. Controlled Experiments

To show the near-perfect behavior of Kinesis, we first
run the simulations in a small network of 10 sensors where
the source node has a 2-hop routing path to the BS and
the forwarder is a data dropping attacker. We control the
links between the intermediate nodes so that they all become
neighbors to each other with good link qualities and can
observe both the source and the attacker. Another implication
is that, when a monitor transmits an action message, all other
awaiting monitors can overhear it and stop their actions.

Fig. 5(a) displays the performance of Kinesis in case of
data recovery on data loss events. The data loss rate is varied
from low (0.03) to high rates (0.4). The figure shows that in
a network without Kinesis, the rate of data reception failure
at the BS increases linearly with the data drop rate by the
attacker. On the other hand, Kinesis counteracts the attack and
reduces the data loss rate to 0, which is equal to the natural
data loss rate of the attack free WSN we considered.

As shown in Fig. 5(b), Kinesis introduces an average data
latency within a range of [20,101] ms with respect to the
attack free WSN. When Kinesis is notified about a data loss,
the response execution is controlled by the action timer value
which adds a delay to the retransmission of the dropped data
packet. Hence, it takes longer for the packet to reach the BS. It
also explains the linear increasing trend of average data latency
with the drop rate. The higher the data rate, the more data
packets experience action execution delays which increases
the average latency over all the transmissions. However, the
latency increases at most by 5% with respect to inter-packet
delays at the BS.

Fig. 5(c) shows the average number of actions taken per
event and fig. 5(d) shows the standard deviation among total
actions executed by the neighboring monitors. As expected, on
average about 1 action is taken for each event. It implies that
Kinesis maintains a perfect synchronization among the neigh
bors on action executions. The very small standard deviation
∼ [0, 0.5] indicates the high success of Kinesis in distributing
the response executions amongst the neighbors.

D. Grid Network Experiments

We place 16 to 100 nodes in grid topologies of dimensions
from 4 × 4 to 10 × 10, respectively. The nodes are spaced 1.5
meter apart. For each network, the source and the attacker are
randomly selected and the results are averaged over 10 runs.
The attack rate is set to 0.1. For concurrent attacks, a second
attacker is placed both in the same and different neighborhood
than the first one. The attackers are equally likely to make an
attack.

1) Single Attack: In this section, we show the performance
of Kinesis in case of a single attacker in the network.

data loss incident: Fig. 6 illustrates the performance of Ki
nesis in networks of various sizes, from 16 to 100. As shown
in Fig. 6(a), Kinesis reduces the data loss rate of a network
under attack from [0.073, 0.103] to ∼ 0.002, which is similar
to the natural data loss rate (∼ 0.0018) in a network without
attack. It proves the effectiveness and scalability of Kinesis,
both in small and large networks.

Fig. 6(b) reveals the linearly increasing trend in average
transmission latencies with network sizes. However, the aver
age amount of delay Kinesis adds due to action execution is
almost invariant ([39.03, 41.607] ms) for different networks.
The delay incurred by Kinesis is mostly because of the action
timer. As we see from Eq. 3,4, the action timer value doesn’t
directly depend on the network size, rather depends on the
number of neighbors and the qualities of links with them. In the
experiments, neighborhood sizes vary from 3 to 5 in different
networks and the range of link qualities lies in [0.8, 0.976]. The
combined effect of neighborhood size and link qualities made
the action timer values almost invariant in different networks.

Unlike the controlled experiments, Fig. 6(c) shows that
Kinesis is not always able to take a single action per incident.
Occasionally, it triggered as high as 1.4 actions per event on
average. We also determined the rate of redundant actions
taken per incident, which is computed by normalizing the
number of actions with the number of possible actors. As
shown in Fig. 6(d), the rate of redundant actions is bounded by
0.11 for different actions. The phenomena of redundant actions
may occur due to two reasons

1. Hidden node problem: The problem occurs when the
monitors of the source and the attacker are not connected or
weakly connected to each other. Let’s explain the scenario
with Fig. 8 - a segment of the attacker’s neighborhood found
from a simulation topology. Here, node 8 is the source, 18
is the attacker and others are their watchdog monitors. When
18 drops a packet, all the monitors 7, 9 and 29 starts their

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 20 30 40 50 60 70 80 90 100

P
ac

k
et

 l
o
ss

 r
at

e

Number of nodes

Ideal
Packet Dropping

Kinesis + Packet Dropping

 0

 20

 40

 60

 80

 100

 120

 140

 20 30 40 50 60 70 80 90 100

D
el

ay
 (

in
 m

s)

Number of nodes

Ideal
Kinesis + Packet Dropping

(a) Packet reception failure rate at the BS (b) Average data transmission delay

16 25 36 64 100
0

0.5

1

1.5

A
c
ti
o

n
s
 p

e
r

e
v
e

n
t

Number of nodes
16 25 36 64 100

0

0.05

0.1

R
a

te
 o

f
re

d
u

n
d

a
n

t
a

c
ti
o

n
s

Number of nodes
16 25 36 64 100

0

1

2

3

4

5

6

7

8

9

S
td

.
d
e
v
.
o
f
n
u
m

b
e
r

o
f
a
c
ti
o
n
s

Number of nodes

(c) Average number of actions per data loss incident (d) Rate of redundant actions per data loss incident (e) Load balance between neighbor monitors

Fig. 6. Kinesis Performance for data loss incidents with rate 0.1 in grid networks of various sizes

Fig. 8. A segment of the attacker’s neighborhood in the simulation topology

action timers to execute the response. When the timer in one
of the nodes 7 and 9 fires, for example 7 wins, it retransmits
the dropped data and node 9 stops its timer whenever it
overhears the action. However, 29 does not possess link to
either 7 or 9 and cannot overhear whoever takes the action.
Being unaware of other actions on the same event, 29 will
execute the action when its timer fires. On the contrary, in
controlled experiments, all the monitors of the source and the
attacker were connected to each other with high quality links.
So they could immediately learn about any other action in
the neighborhood on the same event. However, this kind of
redundancy is not a sole problem of Kinesis, but will be a
problem to any overhearing based solutions.

2. Action Timer Value: The locally computed action timer
values at two monitors may be close when the load balancing
factor (i.e. time since last action) is same in both the nodes and
the link quality factor with the neighbors cannot make a big
difference, and vice versa. Since a monitor executes response
actions when the timer fires, it may take a redundant action
when it does not get enough time to hear others’ actions, even
if it has good connectivity to other actor(s).

The small standard deviation (� [1�93� 8�41]) in the num
ber of actions taken by the neighboring monitors, as shown in

Fig. 6(e), indicates the high success of Kinesis in balancing
load.

To further analyze the scalability of Kinesis, we measure
its performance under various data loss rates in a 100node
network and show in Fig. 7 how well Kinesis survives, even
for very high attack rates. As expected and consistent to earlier
results, Kinesis counteracts the data loss attacks and gets the
network back to normal operating condition. Fig. 7(a) shows
that Kinesis reduces the data loss rate of a network under attack
from [0.02, 0.52] to � 0�0001, which proves its effectiveness
and scalability, even under higher attack rates. Fig. 7(b) reveals
the linearly increasing trend in average transmission latencies
(similar to what is shown in Fig. 5(b)) with higher rate attacks.
Even the range of average latencies introduced by Kinesis with
varying attack rates is negligible ([12,223] ms).

Fig. 7(c) and 7(d) show that the average number of actions
per incident and redundancy per incident are invariant with
respect to attack rates. As discussed above in this section,
the number of actions depend on how well the monitoring
neighbors are connected to each other and how well the action
timer values differ at these nodes. It explains why the number
of total and redundant actions per incident does not vary with
different attack rates. With small standard deviation in the
number of actions taken by the monitors in a neighborhood,
Fig. 7(e) shows how well the distributed mechanism of Kinesis
works in triggering the response actions.

We also vary the number of attackers from 2% to as high
as 20% of the total nodes in a 100node network. Fig. 10(a)
shows that Kinesis still keeps the data loss rate < 0�009. Due to
Kinesis operations, average transmission latencies vary within
[122.33,189.46] ms as shown in Fig. 10(b). The results are
consistent to earlier results.

http:122.33,189.46

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.1 0.2 0.3 0.4 0.5 0.6

P
ac

k
et

 l
o
ss

 r
at

e

Packet drop rate

Ideal
Packet Dropping

Kinesis + Packet Dropping

 0

 50

 100

 150

 200

 250

 300

 350

 0.1 0.2 0.3 0.4 0.5 0.6

D
el

ay
 (

in
 m

s)

Packet drop rate

Ideal
Kinesis + Packet Dropping

(a) Packet reception failure rate at the BS (b) Average data transmission delay

0.03 0.1 0.3 0.4 0.6
0

0.5

1

1.5

A
c
ti
o

n
s
 p

e
r

e
v
e

n
t

Packet drop rate
0.03 0.1 0.3 0.4 0.6

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

R
a

te
 o

f
re

d
u

n
d

a
n

t
a

c
ti
o

n
s

Packet drop rate
0.03 0.1 0.3 0.4 0.6

0

2

4

6

8

10

12

14

S
td

.
d
e
v
.
o
f
n
u
m

b
e
r

o
f
a
c
ti
o
n
s

Packet drop rate

(c) Average number of actions per data loss incident (d) Rate of redundant actions per data loss incident (e) Load balance between neighbor monitors

Fig. 7. Kinesis Performance for data loss incidents of various rates in a 10 × 10 grid network

-0.05
 0

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 5 10 15 20

D
at

a
lo

ss
 ra

te

Percentage(%) of attackers

Ideal
data_loss

Kinesis + data_loss

(a) Data reception failure rate at the
BS

 0

 50

 100

 150

 200

 5 10 15 20

D
el

ay
 (i

n
m

s)

Percentage(%) of attackers

Ideal
Kinesis + data_loss

(b) Data reception failure rate at the
BS

Fig. 10. Kinesis Performance for data loss for various % of attackers (each
with rate 0.1) in a 10 × 10 grid network.

data alteration attack: We also run simulations for
data alteration attacks and find similar trends in the results.
Later on, we show the performance of Kinesis for concurrent
incidents of data loss + data alteration, hence we do not
report the graphs here.

selective forwarding attack: In a selective forwarding attack,
the monitor nodes initially observe data loss by the attacker
and hence retransmits dropped data. Once they detect a selec
tive forwarding attack, a monitor node (selected as the next
daemon) issues a state req msg to the neighborhood. The
neighboring monitors reply with their own action decision
about the suspicious node in a status reply msg. Based on the
majority voting decision from the replies, the daemon possibly
issues a revocation request to the BS. The BS then disseminates
a revoke command to the network, upon receiving which all
the nodes exclude the attacker from the routing path.

Fig. 9 reports the performance measurements of Kinesis
under selective forwarding attack in networks of various sizes.
In a selective forwarding attack, no matter whether the attacker
is revoked from the network or not, Kinesis retransmits the

packet dropped by the attacker. Hence, Kinesis reduces the
data loss rate of a network under attack to that of a network
without attack. Fig. 9(a) supports the claim by showing that
the natural data loss rate and the loss rate of a network under
attack with Kinesis enabled are almost equal.

Fig. 9(b) shows an interesting and significantly different
trend in transmission latencies with Kinesis under selec
tive forwarding attack. In this case, the average transmission
delays are much lower compared to that of data loss incidents
and quite closer to the natural data transmission delays. This
is due to the revoke operation after which all nodes exclude
the attacker from the routing path. Before the revocation,
Kinesis only retransmits dropped data and adds latency to data
transmissions. However, after the revocation of the attacker,
there is no attack and hence no delay is incurred due to
response action execution.

To analyze the performance better, we show the average
transmission delays over time in Fig. 9(c). Initially when the
monitors do not detect the selective forwarding attack yet but
only observe data losses, they retransmit dropped packets and
hence add latencies to data transmissions. However after the
revocation of the malicious node at packet 1755, there is no
attack and hence no delay is incurred due to response action
execution.

Fig. 9(d) shows the average number of control messages
(state req msg + status reply msg) exchanged in a neighbor
hood when a monitor detects a selective forwarding attack and
goes for majority voting, and possibly revokes. The number of
control messages is proportional to the size of neighborhood,
hence it does not vary significantly with the network size.
However, the number of control messages per majority voting
is bounded by 6.2 packets. To be mentioned that the size of
state req msg is 27 bytes and of state reply msg is 35 bytes.

-0.02
-0.01

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07

 20 30 40 50 60 70 80 90 100

D
at

a
lo

ss
 ra

te

Number of nodes

Ideal
SF

Kinesis + SF

 0
 20
 40
 60
 80

 100
 120

 20 30 40 50 60 70 80 90 100

D
el

ay
 (i

n
m

s)

Number of nodes

Ideal
Kinesis + data_loss

 0
 20
 40
 60
 80

 100
 120
 140
 160

 500 1000 1500 2000 2500 3000 3500 4000

D
el

ay
 (i

n
m

s)

Number of packets

Ideal
Kinesis w/o revoke

Kinesis with revoke

(a) Packet reception failure rate at the BS (b) Average data transmission delay (c) Average transmission delays over packets

16 36 49 64 100
0

1

2

3

4

5

6

7

C
o

n
tr

o
l
p

a
c
k
e

ts
 p

e
r

re
v
o

k
e

Number of nodes

(d) Average number of control mes
sage exchanges in a neighborhood on
revoke

16 36 49 64 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
A

c
ti
o
n
s
 p

e
r

e
v
e
n
t

Number of nodes

(e) Average number of actions per
data loss incident

16 36 49 64 100
0

0.05

0.1

0.15

0.2

0.25

R
a
te

 o
f
re

d
u
n
d
a
n
t
a
c
ti
o
n
s

Number of nodes

(f) Rate of redundant actions per
data loss incident

16 36 49 64 100
0

1

2

3

4

5

6

7

8

9

S
td

.
d

e
v
.

o
f

n
u

m
b

e
r

o
f

a
c
ti
o

n
s

Number of nodes

(g) Load balance between neighbor
monitors

Fig. 9. Kinesis Performance for selective forwarding attacks in grid networks of various sizes

Fig. 9(e), 9(f), and 9(g) show consistent results with the
earlier experiments and hence can be explained in a similar
way.

For the selective forwarding attacks, the monitors always
agreed on the decision to revoke the suspect node. The average
time to perform the majority voting and executing the decided
action is ∼ 96.4 ms, most of which is contributed by the action
timer value.
sinkhole attack: For sinkhole attack, we modify the routing
protocol to enable the attacker advertising low cost routing
path through it. Once the attacker attracts all the data in the
neighborhood, it drops data at a rate of 0.2. In Kinesis, a
monitor suspects a potential sinkhole attack upon hearing an
inconsistent path cost advertisement. The following data drop
observations confirm the attack, leading to a quick attacker
revocation. Thus, Kinesis not only reduces the data loss rate to
∼ 0.0015 (Fig. 11(a)), but also makes the transmission delays
closer to natural latency (Fig. 11(b)). Note that sinkhole attack
often created routing loop causing as high as 3.5% data loss.
By revoking the attacker, Kinesis made the WSN stable again.
Fig. 11(c), 11(d), and 11(e) show consistent results with the
earlier experiments.

2) Concurrent Attacks: We first consider two concurrent
but independent attackers, one causing data loss attack and
the other data alteration attack at various rates. Fig. 12
shows that the performance of Kinesis does not degrade
even under concurrent and high rate attackers. As we see in
Fig. 12(a) 12(b) 12(c), Kinesis shows behaviors consistent with
the single attack scenario, in all the aspects.

Next, we consider two colluding attackers performing sink
hole and selective forwarding (SF) attack. When the sinkhole
attacker is revoked, routing path changes enable data routing
through the SF attacker which then drops data at a rate of 0.5,
and vice versa. Fig. 13(a) 13(b) 13(c) 13(d) show how Kinesis
performs in such scenario. The irregularity for node 16 is due

to the temporary routing instability after revocations.

E. Energy Consumption of Kinesis

Table VI shows the energy efficiency of Kinesis by compar
ing the aggregate energy consumption of an WSN without and
with Kinesis. Here, we consider one data source and measure
the energy consumption over 3000 packet transmissions.

TABLE VI. AGGREGATE ENERGY CONSUMPTION OF KINESIS

Ideal Kinesis
data loss SF sinkhole

×107 mJ 1.320488 1.320482 1.320488 1.32048020

F. Action Timer Configuration

Action timer design is a crucial part of Kinesis system
and its configuration impacts the performance with respect
to redundant actions and load balance. Hence, we vary the
coefficient factors (c1, c2) in Eq. 3 and see the impact of timer
values on Kinesis performance. Fig. 15 shows the timer impact
of these coefficients on the timer and on load balance and
redundant actions. Since c1, c2 are weight coefficients, c1 + c2
should be bounded to optimize the timer value. If c1 +c2 is too
small, action timer fires frequently which increases the number
of actions. If c1 + c2 is too big, the latency increases. In our
experiment, we fixed c1 + c2 to 8. Fig. 14(a) shows that the
optimum values of (c1, c2) in terms of load balance is near
(3,5) whereas in Fig. 14(b) the optimum value is found after
(4.5, 3.5). Thus to optimize both the action redundancy and
load balance, (c1, c2) should be selected onwards (4.5, 3.5).

VI. TESTBED EVALUATION

We ported the implementation of Kinesis to the TelosB
platform. Our motes have a 8 MHz TI MSP430 micro con
troller, 2.4 GHz radio, 10 kB RAM, and 1 MB external ash
for data logging. We evaluated the performance of Kinesis

 0
 0.002
 0.004
 0.006
 0.008
 0.01

 0.012
 0.014
 0.016

 20 30 40 50 60 70 80 90 100
D

at
a

lo
ss

 ra
te

Number of nodes

Ideal
sinkhole

Kinesis + sinkhole

 0
 10
 20
 30
 40
 50
 60
 70
 80

 20 30 40 50 60 70 80 90 100

D
el

ay
 (i

n
m

s)

Number of nodes

Ideal
Kinesis + sinkhole

(a) Data reception failure rate at the BS (b) Average transmission delays

16 25 36 64 100
0

0.5

1

1.5

2

Ac
tio

ns
 p

er
 e

ve
nt

Number of nodes
16 25 36 64 100

0

0.05

0.1

0.15

0.2

0.25

R
at

e
of

 re
du

nd
an

t a
ct

io
ns

Number of nodes
16 25 36 64 100

0

0.5

1

1.5

2

St
d.

 d
ev

. o
f n

um
be

r o
f a

ct
io

ns

Number of nodes

(c) Average number of actions per sinkhole attack (d) Rate of redundant actions per sinkhole attack (e) Load balance between neighbor monitors

Fig. 11. Kinesis performance for sinkhole attack

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.1 0.2 0.3 0.4 0.5 0.6

P
ac

k
et

 l
o
ss

 r
at

e

Packet drop rate

Ideal
With attack

Kinesis with attack

 0

 50

 100

 150

 200

 0.1 0.2 0.3 0.4 0.5 0.6

D
el

ay
 (

in
 m

s)

Packet drop rate

Ideal
Kinesis with attack

0.02 0.06 0.1 0.2 0.4 0.6
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

A
c
ti
o
n
s
 p

e
r

e
v
e
n
t

Attack rate

(a) Data Reception Failure Rate at the BS (b) Data Transmission Delay (c) Action per Event

Fig. 12. Kinesis performance for data loss + data alteration incidents with various rates in a 10 × 10 grid network

for two attacks (i) data loss (ii) selective forwarding. For
the evaluation, we consider the same performance metrics as
in TOSSIM simulations: (i) Data Loss Rate at the BS, (ii)
Average Data Transmission Delay, (iii) Average Actions per
Incident.

A. Experimental Setup

We placed TelosB motes in an indoor environment and
controlled the transmission power of the motes to ensure multi-
hop communication in the network. All motes are battery-
powered and a special mote is used as the root node and to
collect statistical information. A source node sends out data
packets every 1 second. For the purpose of performance anal
ysis, we collected information about the number of transmitted
data packets, action packets and transmission delays. The root
node is connected to a laptop in a USB port and passes the
statistical data information through the serial forwarder. We
run the experiments for 10000 packets and average the results.

B. Multihop Indoor Experiments

We build a 250×150 cm topology consisting of 20 TelosB
sensors deployed randomly in a home environment. In order
to ensure multihop communication, we use the lowest power
level 1. Fig. 15(b) shows a part of the testbed and fig. 15(a)
shows the coordinates of the nodes, where nodes are labeled
from 2 to 21. Node 2 is selected as the source node and 20 is
the root node.

data loss incident: For data drop attacks, node 12 is
set as the attacker which drops packets at the rate of 0.1.
Table VII summarizes the performance of Kinesis and shows
the comparison with a network without attack.

TABLE VII. PERFORMANCE OF KINESIS IN TESTBED ON data loss

INCIDENTS

Ideal Packet drop Kinesis + Packet drop
Packet loss rate 0.00029 0.103 0.00058
Average transmission delay (ms) 98.20 N/A 122.87
Average actions per incident N/A N/A 1.66

We can see that the performance of Kinesis in testbed is

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 20 30 40 50 60 70 80 90 100

D
at

a
lo

ss
 ra

te

Number of nodes

Ideal
sinkhole

Kinesis + sinkhole

 0
 20
 40
 60
 80

 100
 120

 20 30 40 50 60 70 80 90 100

D
el

ay
 (i

n
m

s)

Number of nodes

Ideal
Kinesis + sinkhole

16 25 36 64 100
0

0.5

1

1.5

2

Ac
tio

ns
 p

er
 e

ve
nt

Number of nodes
16 25 36 64 100

0

0.05

0.1

0.15

0.2

0.25

R
at

e
of

 re
du

nd
an

t a
ct

io
ns

Number of nodes

(a) Data loss rate for sinkhole + SF (b) Average transmission delays for sinkhole (c) Average number of actions per sinkhole (d) Rate of redundant actions per sinkhole
+ SF + SF + SF

Fig. 13. Kinesis performance for concurrent attacks

(1,7) (2,6) (3,5) (4,4) (5,3) (6,2) (7,1)
0

20

40

Timer coefficients (c
1
,c

2
)

L
o
a
d
 b

a
la

n
c
e

200

400

600

T
im

e
r

v
a
lu

e
 (

in
 m

s)

Timer value

Load balance

(1,7) (2,6) (3,5) (4,4) (5,3) (6,2) (7,1)
0.1

0.12

0.14

0.16

0.18

Timer coefficients (c
1
,c

2
)

R
a
te

 o
f

re
d
u
n
d
a
n
c
t

a
c
ti

o
n
s

200

300

400

500

600

T
im

e
r

v
a
lu

e
 (

in
 m

s)

Timer value

Redundant actions

(a) Load balance vs Action timer (b) Action redundancy vs Action timer

Fig. 14. Coefficient configuration for Action Timer

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

120

140

 3

 4

 2

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

*Source *BS*Drop attack

*SF attack

X−Distance (in cm)

Y
−

D
is

ta
n

c
e

 (
in

 c
m

)

(a) Coordinates of nodes

Fig. 15. Placement of nodes in indoor multihop network

consistent to that in simulations, which justifies the simulation
results.

selective forwarding attack: For selective forwarding at
tack, node 5 is set as the attacker which drops packets at the
rate of 0.1. However, in this case, instead of revoking the
attacker, we let the attacker continue to see how accurately
the monitor nodes can take decisions of data retransmit only
and revocation. We found that, in all the cases, Kinesis took
accurate decisions. The other typical performance, e.g. packet
loss rate, etc. shows similar behavior as earlier.

VII. RELATED WORK

Past approaches have focused on anomaly detection in
WSNs but very few provided automatic responses to ensure
continuous service availability. Asim et al. [2] propose an
architecture that organize the WSN nodes in a virtual grid of
cells; each cell has a manager responsible for anomaly detec

(b) Part of the testbed

tion and recovery. Their approach is not fully distributed and
focuses mainly on network failures and energy related issues,
rather than on malicious behaviors or attacks. MALADY is a
machine learning-based system that enables embedded sensor
nodes to use gathered data to make real-time decisions [9].
However, MALADY aims at the detection and learning process
rather than response to attacks. Mamun et al. propose a
policy based intrusion detection and response system with a
four level hierarchy architecture [12]. Their intrusion response
system has a general scope based on customizable policies,
however their only responses are temporary or permanent
revocation depending on the misbehavior occurrence, and are
only applicable to their hierarchical architecture.

Lim et al. proposed rerouting strategies against jamming
attacks in WSNs for Microgrids [11]. They recover from such
attacks by rerouting their traffic to a chosen path based on the
highest RSSI value among multiple candidate paths, without
considering other link factors. Some researchers have designed

response systems to isolate faulty nodes from the network
communication layer as an initial response.

To the best of our knowledge, our approach is the first able
to provide responses to an extensive amount of WSN attacks.
It is also extensible to novel anomalies and intrusions, scalable
over larger networks, and provides a flexible policy language.

VIII. CONCLUSION

In this paper, we presented the first incident response and
prevention system for WSNs. The system reacts not only after
an attack occurs but also on anomalous events so that the
WSN is functional while the attack progresses. The system
is dynamic as it selects the response actions based on the
suspects security status. It is distributed since it does not
require any central authority to trigger the actions. The simple
yet flexible design of the response policies make the system
easily extensible to handle newer attacks. Kinesis is secure in
policy dissemination, storage and executions. The experimental
results show that Kinesis achieves high effectiveness in terms
of data rate and latency, low redundancies in action executions,
and most importantly, the scalability.

To further enhance the system, we will

(i) investigate how to improve the redundancy and load
distribution in case of hidden node problem, discussed in the
simulation section. A related problem might be to select the
monitors in an optimized way so that all the monitors in a
group can listen to each other,

(ii) work towards more extensive risk assessment and
policy configuration framework

REFERENCES

[1]	 W. Alexander. Barnaby jack could hack your pacemaker and make
your heart explode. http://www.vice.com/en ca/read/i-worked-out-how
to-remotely-weaponise-a-pacemaker, June 2013.

[2]	 M. Asim, H. M. Mokhtar, and M. Merabti. A self-managing
fault management mechanism for wireless sensor networks. CoRR,
abs/1011.5072, 2010.

[3]	 O. Chipara, C. Lu, T. C. Bailey, and G.-C. Roman. Reliable clinical
monitoring using wireless sensor networks: experiences in a step-down
hospital unit. In Proc. of the ACM Conf. on Embedded Networked
Sensor Systems, pages 155–168, 2010.

[4]	 R. Falcon, A. Nayak, and R. Abielmona. An evolving risk management
framework for wireless sensor networks. In Conf. on Computational
Intelligence for Measurement Systems and Applications, 2011.

[5]	 T. Gao, C. Pesto, L. Selavo, Y. Chen, J. Ko, J. H. Lim, A. Terzis,
A. Watt, J. Jeng, B. rong Chen, K. Lorincz, and M. Welsh. Wireless
medical sensor networks in emergency response: Implementation and
pilot results. In IEEE Conf. on Tech. for Homeland Security, 2008.

[6]	 A. Hasswa, M. Zulkernine, and H. S. Hassanein. Routeguard: an
intrusion detection and response system for mobile ad hoc networks.
In WiMob (3), pages 336–343, 2005.

[7]	 S. Hyun, P. Ning, A. Liu, and W. Du. Seluge: Secure and dos-resistant
code dissemination in wireless sensor networks. In IPSN, 2008.

[8]	 J. Ko, C. Lu, M. Srivastava, J. Stankovic, A. Terzis, and M. Welsh.
Wireless sensor networks for healthcare. Proceedings of the IEEE,
98(11):1947–1960, 2010.

[9]	 S. Krishnamurthy, G. Thamilarasu, and C. Bauckhage. Malady: A
machine learning-based autonomous decision-making system for sensor
networks. In Proc. of the Intl. Conf. on Computational Science and
Engineering - Volume 02, pages 93–100, 2009.

[10]	 I. Krontiris, K. M. Ave, T. Giannetsos, and T. Dimitriou. Lidea:
A distributed lightweight intrusion detection architecture for sensor
networks. In In Proceeding of SecureComm, 2008.

[11]	 Y. Lim, H.-M. Kim, and T. Kinoshita. Traffic rerouting strategy
against jamming attacks in wsns for microgrid. International Journal
of Distributed Sensor Networks, 2012.

[12]	 M. S. I. Mamun, A. F. M. S. Kabir, M. S. Hossen, and R. H. Khan.
Policy based intrusion detection and response system in hierarchical
wsn architecture. CoRR, abs/1209.1678, 2012.

[13]	 S. Marti, T. J. Giuli, K. Lai, and M. Baker. Mitigating routing
misbehavior in mobile ad hoc networks. In Proc. of the Intl. Conf.
on Mobile Computing and Networking, pages 255–265, 2000.

[14]	 P. Mell, K. Scarfone, and S. Romanosky. CVSS: A Complete Guide to
the Common Vulnerability Scoring System Version 2.0, 2007.

[15]	 Y. Ponomarchuk and D.-W. Seo. Intrusion detection based on traffic
analysis in wireless sensor networks. In Annual Wireless and Optical
Communications Conference (WOCC), pages 1–7, 2010.

[16]	 A. Seshadri, M. Luk, A. Perrig, L. van Doorn, and P. Khosla. Scuba:
Secure code update by attestation in sensor networks. In Proc. of the
ACM Workshop on Wireless Security, pages 85–94, 2006.

[17]	 G. Virone, A. Wood, L. Selavo, Q. Cao, L. Fang, T. Doan, Z. He,
R. Stoleru, S. Lin, and J. A. Stankovic. An advanced wireless
sensor network for health monitoring. In Transdisciplinary Conf. on
Distributed Diagnosis and Home Healthcare, pages 2–5, 2006.

http://www.vice.com/en

