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GLOSSARY 

Client/Server Architecture – A computer architecture in which a single server machine 
handles communication between several client machines. 

 
Data Buffer – A  portion  of  a  host’s  random  access  memory  used  to temporarily store data 

between read/write operations. 
 
DD – An application used to copy raw data between devices on a computer. 
 
Digital Forensics – “The  use  of  an  expert  to  preserve,  analyze, and produce data from 

volatile and non-volatile media storage. This is used to encompass computer and 
related  media  that  may  be  used  in  conjunction  with  a  computer”  (Meyers  &  
Rogers, 2004, p. 4). 

 
Distributed Digital Forensics - "Using aggressive data caching techniques and performing 

investigative operations in parallel" (Richard & Roussev, 2006a, p. 79). 
 
Forensic Toolkit - A court-accepted digital investigations platform built for speed, 

analytics and enterprise-class scalability (AccessData Group, 2012). 
 
Index Search - A fast search process in which a long preload time is used to create a 

rapidly searchable object from a data object. 
 
Live Search - A slow search process in which a data object itself is searched from 

beginning to end. 
 
MapReduce - A framework in which data is distributed across several nodes (Map 

function), processed, and sent back to the initializing node for summation 
(Reduce function). 

 
MD5/SHA1 - One way mathematical functions that convert blocks of data into a unique 

string of text providing the ability to compare files and checking for file 
modifications. 

 
Overlay Network – “A network built on top of one or more existing networks”  (Stoica, 

2009) 
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Text Search – A search process in which a single word (literal string search) or pattern 
(regular expression search) is located within a large block of data. 

 
Windows Management Instrumentation - Infrastructure for management data and 

operations on Windows-based operating systems that supplies management data 
to other parts of the operating system and products. (Microsoft, 2013b)
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ABSTRACT 

Nielsen, Jeremiah J. M.S., Purdue University, December 2013.  Distributed Digital 
Forensics on Pre-existing Internal Networks. Major Professor:  Marc Rogers. 
 
Today's large datasets are a major hindrance on digital investigations and have led to a 

substantial backlog of media that must be examined.  While this media sits idle, its 

relevant investigation must sit idle inducing investigative time lag.  This study created a 

client/server application architecture that operated on an existing pool of internally 

networked Windows 7 machines. This distributed digital forensic approach helps to 

address scalability concerns with other approaches while also being financially feasible.  

Text search runtimes and match counts were evaluated using several scenarios including 

a 100 GB image with prefabricated data.  When compared to FTK 4.1, a 125 times speed 

up was experienced in the best case while a three times speed up was experienced in the 

worst case.  These rapid search times nearly irrationalize the need to utilize long indexing 

processes to analyze digital evidence allowing for faster digital investigations. 

 

 

 

 



   1 

   

CHAPTER 1. INTRODUCTION 

 Digital forensics is a rather immature discipline that has experienced a large 

amount of growth over its short existence.  Due to this rapid growth, which can most 

likely be attributed to the rapid growth and increasing proliferation of technology, the 

discipline is plagued by many issues that have yet to be effectively resolved as described 

by Bebe (2009) and Garfinkel (2010).  While the digital forensics research community 

has shifted its focus between several of these proposed issues, the well-known data 

deluge issue has yet to be effectively addressed.  One potential solution for the data 

deluge issue would be to employ the use of a pool of computers to conduct distributed 

digital forensic investigations.   

The distributed digital forensics concept has been previously investigated using a 

client/server architecture (Richard & Roussev, 2004), a distributed ramdisk (Richard & 

Roussev, 2006a), as well as the MPI reduce function (Roussev et al., 2009).  

Unfortunately, these approaches require a substantial investment in dedicated computer 

hardware and the involvement of IT professionals to configure and utilize.  The ideal 

distributed digital forensics application would be simple to instantiate, could operate on a 

pool of existing machines, and would not entirely dedicate the involved clients to the 

investigation process.   

The proposed distributed digital forensic application architecture satisfies these 

characteristics by running on a pool of existing Windows 7 machines.  To help gauge the 

effectiveness of the proposed approach, dataset distribution times across a set of 

preexisting internal network resources was compared to that of a single workstation using 

AccessData's Forensic Toolkit (FTK) 4.1.  The main deliverable of this research was a 

client/server application that can be used to create an ad-hoc overlay network on a pre-

existing pool of computational resources upon which large datasets can be analyzed. 
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The remainder of this chapter will provide the scope and significance of the 

research conducted in this thesis.  

1.1. Scope 

 There are many issues with the concept of distributed digital forensics in regards 

to security, performance, and reliability.  However, the major problem that hampers its 

practicality  in  analyzing  today’s  large  datasets is scalability, as it would require a 

substantial investment in dedicated hardware. This thesis solves this problem by 

leveraging existing computational resources running the Windows 7 operating system 

though the utilization of a client/server application architecture.  These applications were 

used to distribute a large suspect dataset across a pool of internally networked 

computational resources and conduct text searches against it. 

1.2. Significance 

It was once unheard of to have terabyte storage volumes available for average 

computer users to utilize on personal workstations.  This is obviously no longer the case 

as it has become very affordable for personal workstations to employ large amounts of 

storage.  According to Seagate, this amount averaged nearly 600 GB (Hachman, 2011) in 

2011 which could increase exponentially if research in increasing mechanical hard drive 

densities goes mainstream (Halfacree, 2012).Unfortunately, most digital forensic 

methodologies cannot cope with this storage volume increase as they still rely on single 

machines to conduct investigations.  As storage volumes continue to increase in size, 

tools relying on this single machine approach simply take longer to run.  This in turn has 

led to an ever increasing backlog of digital evidence that is overwhelming criminal 

investigators and the tools which they employ.  Having the ability to distribute digital 

investigations across several machines provides a viable solution to analyzing today’s  

large datasets (Richard & Roussev, 2004).  
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1.3. Research Question 

Can scalability limitations of the distributed digital forensics concept be dealt 

with by operating on an internal network of existing computational resources running the 

Windows 7 operating system?   

1.4. Assumptions 

Assumptions with regards to this research are as follows: 

1. A suitable physical network architecture exists upon which the proposed 

distributed digital forensics applications can operate. 

2. All involved hosts are able to communicate with the designated server (i.e., all 

hosts are routable and can communicate through firewalls). 

3. Completely distributing a suspect dataset across the proposed distributed digital 

forensics network is the equivalent of a single workstation tool, such as FTK, 

conducting initial loading and indexing processes. 

4. Text searches using the proposed framework are the functional equivalent of 

FTK’s  live  search  function. 

1.5. Limitations 

Limitations with regards to this research are as follows: 

1. Several single workstation digital forensics tools exists but image distribution 

times using the proposed client/server application were only compared to the 

initial loading and indexing process used by FTK 4.1. 

2. While capable of spanning the public domain of the Internet this research only 

focused on computational resources connected directly to the same network 

switch. 

3. Only machines running the Windows 7 operating system with Microsoft’s  .Net  

Framework 4.0 installed were used for testing. 



   4 

   

1.6. Delimitations 

Delimitations with regards to this research are as follows: 

1. This research did not investigate other means to analyze suspect datasets outside 

of text searches. 

2. Comparison of variations in network hardware and architectures were not 

conducted as technological ambiguity makes such testing difficult and infeasible. 

1.7. Summary 

 This chapter has provided a brief overview of this research in regards to its scope, 

significance to the digital forensics field, as well as its focus.  The next chapter will look 

at relevant work that has been completed with respect to this research. 
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CHAPTER 2. LITERATURE REVIEW 

 Digital forensics has overcome several issues including increased public 

awareness, a stronger scientific foundation, the creation of relevant journals, and the 

development of a strong research community (Bebe, 2009).  Unfortunately there are still 

many other issues for the digital forensics discipline to overcome.  Bebe (2009) created 

four "research themes" that need to be addressed by the digital forensics community 

which further illustrates this point.  These derived themes included volume and 

scalability challenges, more intelligent analytical approaches, digital forensics of non-

standard computing environments, and forensic tool development.  The purpose of this 

thesis is to develop an application approach that can be used to address the volume and 

scalability research theme.  This theme was brought about due to the fact that "data 

storage needs and data storage capacities are ever increasing" (Bebe, 2009, p. 24) and 

“the growing size of storage devices means that there is frequently  insufficient  time to 

create a forensic image of a subject device, or to process all of the data once it is found”  

(Garfinkel, 2010, p. S66).  This chapter will look at relevant work that has been 

completed to help cope with this volume and scalability research theme. 

2.1. Potential Solutions 

 One potential solution to analyzing today’s  large  datasets  is to employ the use of 

selective digital forensics in which only prudent information is taken from a suspect 

medium instead of making an exact bit level image (Turner, 2006).  The obvious issue 

with such an approach is the potential for a selective digital forensic tool to potentially 

overlook prudent information.  Such oversights could be caused by operational 
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inadequacies within the tool itself or by malicious users who deliberately exploit the 

selection process. 

 Another approach is to combine static analysis (sifting through a nonvolatile 

storage volume such as a hard drives) with live analysis (sifting through volatile storage 

such as random access memory) (Mrdovic et al., 2009).  In this approach, a virtual 

machine is created using a suspect drive image in conjunction with a memory image to 

recreate a functional clone of the suspect's machine prior to its capture.  While this 

solution does not solve the volume and scalability issue since a full drive image is 

utilized, it helps investigators to speed the investigative process along by narrowing their 

search scope.  The glaring problem with this approach is that live analysis tools 

necessitate the use of an active suspect system which is inherently un-trusted. 

 While other unmentioned approaches, such as data mining, exist to combat this 

data volume issue, none appear to provide an effective mitigation strategy as the data 

deluge issue still persists.  In an ideal world refined imaging processes would create 

smaller drive images by capturing only relevant information.  These smaller images 

would then be analyzed using refined analytical approaches that are fast, highly accurate, 

and repeatable.  User friendly tools would then present analysis results in a format that 

even an untrained investigator would be able to understand.  Garfinkel (2010) as well as 

Richard and Roussev (2004b) describes some of these solutions in more detail. 

While many investigators would enjoy working in such an ideal world, getting the 

digital forensics discipline to such a point is excruciatingly difficult given the rapid pace 

of technological development and its inherent ambiguity.  Unfortunately, while 

researchers continue to try and create the aforementioned ideal world, datasets are only 

getting larger.  A solution is necessitated to analyze these large datasets until the research 

community is able to catch up.  One possible solution is to utilize the concept of 

distributed digital forensics.  Distributed digital forensics is not much different than a 

typical criminal investigation of the past in which no form of technology was utilized 

(which is obviously highly unlikely today).  One or more detectives could be assigned to 

a case and information would be collected to  ascertain  a  suspect’s  involvement.    If  a case 
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were to be time sensitive, such as a kidnapping case, then the investigating organization 

could potentially speed the process along by doing one or more of the following: 

 Use more efficient specialized internal resources (a kidnapping division) 

 Assign more internal resources (add more detectives to the case) 

 Utilize external resources (request assistance from other investigative 

organizations) 

 Many digital forensics tools are designed to work on a single workstation which is 

essentially the equivalent of assigning a single investigator to an investigation.  With the 

concept of distributed digital forensics, several computer resources are pooled together to 

work on one suspect dataset, which is essentially the equivalent of assigning several 

detectives to one case. 

2.2. Related Work 

 Distributed digital forensics is not new concept as a working prototype has been 

created, implemented, and tested (Richard & Roussev, 2004).  The network used in their 

approach consisted of a network file server and eight physical nodes with each housing   

1 GB of random access memory.  A 6 GB suspect dataset was loaded onto the network 

storage server and one of the eight nodes involved, called the coordinator, was 

responsible for splitting the files in the dataset across the remaining seven nodes on a file 

by file basis.  Each file from the dataset that was copied to a node was loaded entirely 

into the node’s random access memory to prevent the induction of disk I/O latency.  The 

coordinating node then sent commands to and received commands from the worker nodes 

via a customized command structure which operated over HTTP.  In a performance 

analysis of their implementation, Richard and Roussev showed some substantial 

improvements in load times and string search times when compared to a single machine 

utilizing FTK.  Their results showed 34% faster load times, an eighteen times speed up 

for string search times, and an eighty-nine times speedup for regular expression searches.  

 Of course the glaring issue with the aforementioned approach is that a rather 

small image by  today’s  standards, only 6 GB in size, was used for testing their 
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implementation.  This is understandable seeing as testing was conducted in 2004, but 

currently hard drives average several hundred gigabytes (Hachman, 2011) and in many 

cases even surpass the one terabyte mark.  If an organization were to have machines with 

12 gigabytes of random access memory, then over 160 machines would be necessary to 

load a 2 TB dataset.  Even if an adequate architecture existed and the dataset was loaded, 

the machines involved would be entirely dedicated to conducting the investigation due to 

resource saturation.  Many organizations simply cannot afford or even rationalize the 

dedication of such large clusters of machines for the sole purpose of digital forensic 

investigations. 

 In another approach, Richard and Roussev attempted to speed up digital forensics 

applications by creating a distributed ramdisk (Richard, Roussev, & Tingstrom, 2006).   

This block level ramdisk was created on a pool of machines that shared a portion of their 

ram creating a single logical ram pool that was addressable from a single machine.  Their 

benchmark results showed a 3.5 times speed up for sequential read/write operations while 

random operations showed a 22 times speedup.  Such results are expected as random 

access memory excels at random operations which mechanical hard drives find difficult 

to deal with.  While this speed up can be seen as rather substantial, this approach also 

suffers from the same problems as their previous approach in that it would require a large 

investment in hardware and would be difficult for average law enforcement personnel to 

configure and use. 

 While they may not be distributed digital forensics approaches per se, two other 

approaches created by Craiger et al. (2008) and Davis et al. (2005), try to solve the 

volume and scalability issue by utilizing virtualization technology to gain high speed 

access to suspect images stored on high speed network storage devices.  The idea is to 

have a device shipped to a nearby lab where it is imaged.  (Kechadi and Scanlon (2010) 

suggested transferring device images over the internet from the crime scene).  The 

resulting image is stored on high speed network storage devices residing on an internal 

optical network.  A virtual machine server, also connected to the optical network, hosts 

virtual machines that are leased out to remote users to analyze a desired image.  

Permissions to the network storage devices and the data they contain are then assigned to 
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individual virtual machines. When investigations are conducted through these virtual 

machines they would gain a substantial performance boost as all devices communicate 

through an internal low latency optical network without the induction of internet latency. 

 There is one major drawback with the approaches created by Craiger et al. (2008) 

and Davis et al. (2005) in that it would require a substantial investment in a dedicated 

infrastructure.  Since a VPN is used to grant outside users access to the system, 

usernames and passwords must be managed.  Permissions for the data store and 

individual files must also be managed to prevent users from damaging suspect images be 

it intentionally or unintentionally.  Policies would need to be created and enforced for 

data retention, destruction, and integrity.  Addressing all of the aforementioned issues 

would most assuredly necessitate the involvement of several fulltime IT personnel.  

These additional requirements may simply be infeasible for smaller local investigative 

agencies. 

 Since many digital investigators are aware of the data deluge issue and distributed 

digital forensics has the potential to be a feasible solution, then why hasn't distributed 

digital forensics gained enough momentum for a company to capitalize on the idea?  One 

potential explanation that has been repeated several times throughout this thesis is that 

distributed digital forensics is viewed as infeasible from a resource or management point 

of view.  Another potential explanation is that researchers are logically concentrating 

their efforts into solving the causes of the deluge by researching analytical/presentation 

approaches and frameworks instead of trying to deal with the symptoms.  Unfortunately, 

research in this area still appears to be inconclusive as digital investigators still rely on a 

‘capture  all,  analyze  all’  mentality using single workstation tools that utilize time 

consuming indexing processes.   

2.3. High Performance Computing Research 

 Thanks to large computational projects, such  as  CERN’s  Large  Hadron  Collider  

(CERN,  2008)  and  NASA’s  cyclone  analysis  (Vishwanath  et  al.,  2008) project, several 

approaches have come to fruition to capture and analyze petabytes of information through 
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the use of multidimensional data, massively parallel processing, and large ultrafast 

networks.  This is quite a feat seeing as the digital forensics community is finding it 

excruciatingly difficult to manage several hundred gigabytes of data (Bebe, 2009).  

Unfortunately, these approaches seem to be effective for data that is largely 

homogeneous and predictable; characteristics that fit nicely with typical large scale 

instrumental data but not with largely heterogeneous file system data (Douceur & 

Bolosky, 1999) made up of several different types of data.  Such approaches also operate 

best using very fast hardware interconnected with large low latency networks.  These 

networks are typically located in close proximity to one another and consist of an optical 

communication medium. 

 Massive parallel processing can potentially be directly applied to DDF though the 

creation of an MPI cluster.  These clusters are simply a pool of machines that use a 

standardized protocol to communicate.  Typically machines in such clusters run a 

rudimentary operating system to limit resource utilization and are dedicated to running 

MPI functions.  In one DDF approach, the MPI MapReduce function was used to split 

large text files and conduct string searches against them (Roussev et al., 2009).  Their 

implementation showed a linear 15X speed up when compared to Hadoop which also 

utilizes the MapReduce function.  Some advantages of MPI clusters include scalability, 

the ability to use heterogeneous computer environments with respect to both hardware 

and software, and low level code optimizations. Some disadvantage of MPI clusters are 

that they are difficult to configure, do not typically tolerate node failures, and MPI 

software development can be very difficult.  These disadvantages make it difficult for 

investigators without a background in networking and distributed computing to 

effectively utilize MPI based clusters. 

2.4. Summary 

 While dealing with the causes of the data deluge is only logical via research in 

imaging and analysis, a stopgap solution is needed to deal with the current backlog of 

digital evidence caused by massive storage volumes.  The solution developed in this 
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thesis employed the distributed digital forensics concept.  While several similar 

prototypes of this concept have been developed, they do not appear to scale well with 

today’s  large  datasets as it they would require a substantial investment in dedicated 

hardware and or IT personnel.  In an attempt to address these limitations and make DDF 

a practical reality, this thesis leveraged existing computational resources for distributed 

digital investigations. This was accomplished using a client/server application 

architecture operating within the confines of an internal network.  Analysis of a large 

suspect volume was split across several clients providing an increase in performance 

when compared to a single workstation using FTK 4.1.    
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CHAPTER 3. FRAMEWORK AND METHODOLOGY 

 This chapter will discuss the overall approach used for this research including the 

research approach, instrumentation, application architecture, data capture, and data 

analysis. 

3.1. Research Approach 

 The computer forensics lab at Purdue University was used to run the proposed 

implementation across varying counts of physical hosts running Windows 7 Ultimate 

Service Pack 1.  All hosts were physically connected to the same Cisco 3750 gigabit 

network switch.  Due to the inability to access sata connections within the available client 

machines, a separate machine configuration was used for the designated server.  This 

designated server was also used to test single machine processing using FTK 4.1.  

Hardware specifications for both the clients and designated server are shown in Table 

3.1. 

Table 3.1 Client and Server Hardware Characteristics 

 Client Server 

Model iMac 21.5 Inch Mid 2011 N/A 

Processor Intel Core i5 @ 2.5 GHz AMD Phenom II X6 1055T @ 2.8 GHz 

Memory 8 GB DDR3 1333 8 GB DDR3 1333 

Storage 
Seagate ST3500418AS      

(500 GB) 

Seagate ST1500DL (1.5 TB) 

Seagate ST1500DL (1.5 TB) 

Western Digital (320 GB) 

Network Broadcom NetXtreme Realtek PCIe GBE 

OS Windows 7 Enterprise SP1 Windows 7 Enterprise SP1 
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A mock suspect volume was created and filled with textual data using a custom 

in-house text generator as described in Section 5.1. This text generator continually writes 

a specified block of text until a specified size or iteration count is reached and upon task 

completion presents the user with the total number of write operations.  This approach 

was chosen as it allowed known match counts to be compared to those returned from 

searches conducted using both the proposed implementation and live search functionality 

in FTK.  Text search runtimes were recorded using various image sizes distributed across 

varying counts of physical hosts. 

The total wall clock runtime of the distribution process using the proposed 

implementation was recorded for each host and image configuration.  Text search 

runtime as well as match counts were recorded for the proposed implementation.  Values 

were captured for the initial loading/indexing and search functionality of FTK 4.1 

running on a single workstation.  The application process utilized for FTK testing is 

illustrated in Figure 3.1 while the application testing process used for the proposed 

client/server application architecture is illustrated in Figure 3.2. 

sata

sata

sata Working HDD

Operating System HDD

FTK Imager 

Create suspect 
drive image

1

FTK 3.4

Load suspect 
image

2
Store suspect 
drive image

3

Index suspect 
image and store 

index DB

5

Server from Table X

4

Conduct 
live 

search
(string)

Conduct 
live 

search
(RegEx)

6

6

Suspect HDD

 
Figure 3.1 FTK Application Process 
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sata
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Operating System HDD

Distribute new 
suspect image 

chunk

Server from Table X

1

2

New image 
chunk 

created3

Suspect HDD

4 Client1

ClientN

If(all chunks sent)
     conduct search

If(client1 cnt != expectedCnt)
   send chunk to client1
Else if(clientN cnt != expectedCnt)
     send chunk to clientN

Server Application

5

6

Integrated DD 
Imager

Create suspect 
drive image

Store suspect 
drive image

Figure 3.2 Proposed Client/Server Application Process 

3.2. Instrumentation and Data Capture 

As previously stated, wall clock runtimes and string match counts were used to 

gauge the effectiveness of the proposed implementation and FTK 4.1.  Runtime tracking 

was built into both the client and server applications using the difference between a start 

and end time while counting was handled by a simple incremented counter.  The timers 

were used for both text search and imaging operations while the counter was only used 

for counting search matches.  FTK 4.1 automatically provided these values upon task 

completion. 

3.3. Application Architecture 

A rudimentary overlay network was created with preexisting computational 

resources using a two tier application architecture written  in  Microsoft’s  C#  

programming language.  This architecture consisted of a single server application 

instance and multiple client application instances.  The single instantiated server 

application was responsible for monitoring the status of all involved clients, imaging a 

suspect volume, and distributing the image across all connected clients.  All involved 

clients were required to receive files from the server as well as conduct text searches 

against them.  Results for each of these operations were compounded and sent to the 

designated server using several class objects (see section 3.5).  This process was done for 
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all clients whereupon task completion the user is presented with the match results on the 

designated server.  In the high performance computing realm this would be the equivalent 

of a MapReduce function. 

3.4. Application Communication 

Once initialized, the user designated server simply listens for clients to connect.  

When a new client connects to the server a new instance of a custom class is instantiated 

using a newly spawned processor thread.  All clients communicate with the server 

simultaneously and independent of all other clients.  Communication between the server 

and involved clients is accomplished using separate channel identifiers, a known packet 

size, and a synchronization bit referred to as a “puck”.    This  puck  assigns network write 

permissions to either the client or server so as to prevent collisions during data transfers.   

The pseudo code for this communication process is shown in Figure 3.3 below. 

Thread N

While(keepRunning)
{

}

If(havePuck)
sendData();
sendPuck();

If(dataAvailable)
receiveData

Server

Background Thread

While(keepRunning)
{

}

If(havePuck)
sendData();
sendPuck();

If(dataAvailable)
receiveData

Client A

Network Comm

Client N

Network Comm

 
Figure 3.3 Pseudo Code for Application Communication 

 In order to differentiate between messages and message types, the channel 

identifier and expected packet size are written to the network stream before outgoing 

data.  When a channel identifier is received the recipient knows what type of data is 

incoming.  The packet size is necessary so the recipient knows when to stop reading data 

from the network stream so as not to overlap message data thus causing data corruption.  

Types of data and their respective size and channel are shown in Table 3.2. 
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Table 3.2.  Communication Channels and Sizes 

Data Identifier Packet Size Channel 

Synchronization Bit (puck) 1 byte 0 

Channel Identifier 1 byte N/A 

Packet Size 2 bytes N/A 

clsPerformanceValues Varies 200 

clsSearchResults Varies 205 

clsReconnect Varies 210 

File Packet Varies 253 

Message Packet Varies 254 

 Two things to note about Table 3.2 are the items with no channel as well as those 

with varying packet sizes.  Channel identifiers are not necessary for the channel identifier 

and packet size because they are configured with a static size and will always precede 

data traversing the network stream.  However, some items vary in size based on the 

amount of data being sent.  Very large data streams, such as a large file transfer, are split 

into several chunks based on a specified block size (more details in section 4.2) and 

written to the network stream individually.  Smaller messages, and in many cases the tail 

end of a file, manipulate the block size to only accommodate the amount of data being 

sent.  This approach helps to prevent the induction of unnecessary computational 

overhead from writing redundant data to the network stream. 

3.5. Application Class Structures 

Quite possibly the most important component of the proposed application process 

is the use of structured class objects to send several client values to the server via a single 

data transfer.  Three such objects were used including a reconnect class (aptly named 

clsReconnect), a performance values class (aptly named clsPerformanceValues), and a 

client search results class (clsSearchResults) 

The clsPerformanceValues class is used to ensure that all involved clients provide 

enough combined computational resources to feasibly analyze a suspect volume.  Once a 
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client is started, this class is instantiated and used to store resource values gathered using 

the Windows Management Instrumentation.  While several resource values can be 

captured, the most important ones with regard to this thesis are the available hard drives 

for a client and their respective capacities.  The hard drive with the greatest amount of 

free space and read/write capability is used as the destination for incoming file chunks 

received from the server. 

Subsequent resource updates are only made for dynamic resource values after the 

performance values class has been instantiated on a client.  For instance, total drive 

capacity of a selected drive will not change but the amount of free space will change as 

files are received from the server.  Resource updates uploaded to the server after client 

instantiation only include updates for these dynamic values.  Once these values are 

updated, the clsPerformanceValues object is serialized and sent to the server where it is 

processed and stored in an array. 

 The second class, clsReconnect, is only used by clients during the initial 

connection handshake with the application server.  Some form of mitigation strategy was 

necessitated to deal with client or server connection failures even though this thesis did 

not address reliability issues.  If nodes were to fail during testing the entire imaging and 

distribution process would have to start over.  A large amount of testing time would have 

been lost solely on application re-instantiation given the amount of time these processes 

can take. 

 The reconnect class prevents this time loss by providing the server with a list of 

files that already exist on a client.  Once the class is instantiated on a client it is populated 

with names, sizes, and hash values of all files located in the client’s configured working 

directory.  The class is serialized and transmitted where its contents are compared to that 

of the server working directory.  If a discrepancy is found the client connection attempt is 

denied until the issue is resolved. 

 The third and final class, clsSearchResults, is slightly more involved as it 

necessitates the use of two other class objects named clsSearchMatch and 

clsSearchResultsSub.  The clsSearchMatch class is used to store information about a 

specific search match found in a file.  This includes the file ID of the image file it was 
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found in, the index location of the match, its byte offset, and the match itself including 

fifteen characters before and after.  While the index and offset values were not used in 

this thesis, their inclusion provides the ability to correlate search matches to locations on 

the physical suspect volume. 

 When a search match has been found a new clsSearchMatch object is instantiated, 

all afore mentioned values for the match are captured, and the resulting object is saved in 

an array within clsSearchResults.  Unfortunately, all instantiated class objects are stored 

in the host machine's memory.  This can be problematic in the event several million 

matches are found.  Each host is configured to only store the first one million matches as 

clsSearchMatch objects to prevent excessive memory consumption.  Matches discovered 

after the one million match limit are not stored as clsSearchMatch objects but are 

included in the total match count.   

 Resource saturation can also be a problem on the server as it must receive and 

display search matches from all involved hosts.  This is where the clsSearchResultsSub 

class comes into play as it will only store a subset of the search results until it occupies a 

single network transfer block (a 65KB block size was used as described in Chapter 4).  

This technique simplifies the transfer of the clsSearchResultsSub object as the client does 

not have to split the object and the server does not have to reconstruct it.  The 

clsSearchResultsSub class is sent to the server when a client has finished searching all 

files.  The user can then review each search result list from all involved clients from the 

single sever instance.  The overall search process using the three class objects is shown in 

Figure 3.4. 

Search Thread

RequestSearch();

clientA clsSearchResultsSub
clientN clsSearchResultsSub

If(allClientsSearched)
     DispalySearchResults();

Server

String Search Thread
clsSearchResults
clsSearchResultsSub
While(Matches < 1M)
{

}
SendResults();

Client A

   If(MatchFound)
          new clsSearchMatch
          clsSearchResults + 1;
   if(clsSearchResultsSub +1 < BS)
          clsSearchResultsSub + 1;

Request 
Search

Send 
Results

Figure 3.4 Application Search Process 



   19 

   

3.6. Imaging and Image Distribution 

Two Seagate 1.5 terabyte 5900 rpm ST1500DL001 hard drives were connected 

directly to the designated server via an integrated sata controller.  Some form of write 

blocker would be used in an actual digital investigation but was not used in this research.  

Since this research is only concerned with search performance a write blocker would only 

increase imaging times but have no effect on search times.   

Imaging of the suspect volume was handled via a separate thread on the server 

using  two  variations  of  ‘DD’ for  windows.    One  variation  of  ‘DD’ (version 0.5) 

(http://www.chrysocome.net/dd) was used simply for its volume listing functionality 

which is faster than querying the Windows Management Instrumentation for hard drive 

identifiers.  The second variation  of  ‘DD’ (Garner, 2011) was chosen because it provided 

image splitting functionality but lacked volume listing functionality.  Both  of  these  ‘DD’  

variants are compiled into the server application and extracted to a temporary directory 

when the server is started.  They are then run transparent to the user as hidden 

background processes.   

Before the imaging phase is started, image chunking can be manually configured 

by the user with regard to chunk size and count.  These image chunks are stored in a 

working directory on a separate internal SATA hard drive connected to the designated 

server.  The server application monitors this specified working directory for new files.  

When a new file is discovered the file is hashed, its name and resulting hash are stored in 

a Microsoft Access Database, and the file is sent to one of the connected clients.   

The file distribution process is conducted by first predicting the number of 

expected file chunks using the suspect volume size in conjunction with the configured 

chunk size.  The total number of chunks is determined and divided by the host count to 

determine how many chunks a client should receive from the server.  If a certain client 

does not have enough free space for this expected client chunk count then these files are 

simply sent to the next client until its client chunk count is reached (Figure 3.2).  This 

approach was chosen as it helps prevent image fragmentation of a suspect volume while 

also evenly distributing the processing load.  Total client free space is calculated to 
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ensure that enough free space is available to store the entirety of a suspect volume before 

starting the image distribution process. 

 One final aspect of the imaging and distribution process is the utilization of 

hashing to ensure that files are not changed during the file transfer process.  When a 

client receives a file chunk it has the ability to request an MD5 and/or SHA1 hash from 

the server.  The server sends these hashes to the client whereupon the client also 

calculates the hash value.  The client and server values are compared to ensure that the 

data was successfully transferred from the server to the client. 

3.7. Application Buffers 

Both the client and server applications utilize multiple data buffers for various 

tasks.  These include a data buffer for data being transferred over the network stream, 

reading from the suspect volume, writing to the storage volume, and searching the image 

chunks on a client.  Minor changes to these buffer sizes have drastic effects on 

application performance and resource utilization.  Ideal buffer sizes were determined by 

manipulating them across several scenarios and monitoring the effect on application 

performance.  Results from this testing including the ideal values determined are 

described in Chapter 4 in more detail. 

3.8. Client Searches 

When the server requests a search, the query is forwarded to all clients.  Upon 

receipt the client searches all received file chunks using the specified query and the 

Microsoft Regex library.  This is accomplished by reading portions of a file into a 

temporary file buffer, converting the buffer to a string, and passing the string to the 

Microsoft Regex library configured with the server designated query.  The total number 

of matches is accumulated and the process repeated until the end of the file is reached.  

 One major issue with such an approach is that matches overlapping file buffer 

occurrences will not be found.  This is true at both the individual chunk level as well as 
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between distinct file chunks on a client.  This issue was dealt with at the client level by 

developing a search overlap function.   Two secondary buffers were used to store the 

beginning and end of the primary search buffer when appropriate.  Once the primary 

buffer has been searched, the beginning portion of the next file is copied to a start buffer 

while the tail end of the current file is copied to an end buffer.  The beginning and end 

buffers are combined and searched before the next portion of the file is loaded into the 

primary buffer.  To ensure that matches at the end and beginning of the primary buffer 

are not counted multiple times, the beginning and end buffers are configured with a 

length equal to one character less than the query length.  An example of this buffered 

search process is illustrated in Figure 3.5 below. 

...fox_

...fox_the_quick_the_the_quick_brown...

the_quick_th e_the_quick_ brown...

PrimaryBuffer Size:

SearchTerm:

12 char

the

th e_
Begin/end buffer size: 2 char

 
  Figure 3.5 Client Search Buffers 

 As shown in Figure 3.5,  the  second  ‘the’  occurrence would be missed if 

overlapping buffers were not used.  It should also be noted that if the beginning and end 

buffers  were  too  long  then  the  first  ‘the’  occurrence would be counted twice.  This 

overlapping buffer approach was used between search buffers for a single file and 

between files on a client but was not used between clients.  Figure 3.6 illustrates these 

overlapping search buffers and depicts discovered matches with a circle and missed 

matches with a diamond. 

the_quick_brown_fox_jumped_over_the_lazy_dog_the_quick_brown_foxLarge file:

Client A : File1 Client A : File2 Client B : File1 Client B : File2

the_quick_brown_ fox_jumped_over_ the_lazy_dog_the _quick_brown_foxDistributed file:

the_quic k_brown_ fox_jump ed_over_ the_lazy _dog_the _quick_br own_fox

Within file match: own_ fox_

Between file match:

_the _qui
ver_ the_

3Between client match:

8 char search buffer:

1

2

 

Figure 3.6 Search Buffer Overlaps 
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The total match count and a subset of the  client’s  matches are sent back to the 

server via a clsSearchResultsSub class object.  Pseudo code for the client search process 

is illustrated in Figure 3.7 below while the actual search code written in C# can be found 

in the Appendix.  

Input: Drive image file and desired search term 
Output: clsSearchResultsSub and clsSearchResults object 

1: Retrieve list of image chunks from client working directory sorted numerically  
2: Copy portion of drive image to searchBuffer 
3: Convert buffer to string, search for term, compound matches into output objects 
4: bufferOverlap: End of previous searchBuffer with beginning of next searchBuffer 
5: Convert bufferOverlap to string, search, and compound into output objects 
6: Finish searching all buffer iterations for single image chunk 
7: betweenFileOverlap: End of previous file with beginning of next file 
8: Convert betweenFileOverlap to string, search, and compound into output objects 
9: Select next file in directory and repeat steps 2 – 9 
 

Figure 3.7 Client Search Pseudo Code 

3.9. Application GUI 

One of the major advantages of the proposed implementation is simple 

instantiation.  While usability testing was not within the scope of this thesis the GUI for 

both the client and server application were designed for simplicity.  The GUI for the 

sever side allows users to create volume images, manage clients, and conduct searches.    

The user can start the imaging process on the server application by selecting a volume 

from the imaging tab.  The server will start to listen for clients after the user specifies an 

IP address on the server tab.  Connected clients are also listed and can be managed from 

the server tab as illustrated in Figure 3.8 below. 
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Figure 3.8 Server Application GUI 

The client GUI is even simpler than the server application since a client simply 

receives server commands and returns results back to the server for processing.  Several 

options were included in the client GUI including a message log for debugging, a display 

listing all client files, and several configurable options as shown in Figure 3.9 below. 

 
Figure 3.9 Client Application GUI 
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3.10. Hypotheses 

Hypotheses with regard to this research were as follows: 

1. The proposed implementation should show a decrease in text search times as the 

number of physical hosts involved increases. 

2. The proposed approach should show a lower number of text search matches 

compared to the actual match count due to matches overlapping files between 

clients. 

The first hypothesis was formulated simply due to the nature of distributed systems.  

Distributed systems are meant to spread processing load across several nodes thus 

decreasing the work load of any one single node.  Adding more nodes decreases the 

amount of work for each single node resulting in an increase in performance.  In this 

thesis, performance was measured by recording search runtimes thus increasing the 

number of nodes should shorten overall search runtime. 

The second hypothesis was formulated due to a limitation with regard to the client 

search function.  This search function is unable to find matches overlapping client 

instances due to the inability of clients to communicate directly.  Increasing the number 

of clients involved increases the occurrence of such gaps thus increasing the probability 

of matches being missed. 

The first hypothesis looks at scalability directly by measuring the effect of increasing 

the number of clients.  The second hypothesis looks at the effect of a scalability limitation 

that was made apparent during application development.  Both of these hypotheses are 

directly applicable to the research question posed in this thesis in that they help to 

illustrate the scalability of the proposed client/server application.   
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CHAPTER 4. OPTIMIZING APPLICATION PERFORMANCE 

Several application parameters are available which can be manipulated resulting 

in drastic changes with regard application performance.  While the degree of these effects 

may vary across hardware architectures, values chosen for use in the application testing 

section were determined using the hardware specified in Table 3.1.  The following 

section describes why values were chosen based on tracking application performance 

across several parameter configurations. 

4.1. Imaging Buffer 

As stated in section 3.6, two variations  of  ‘DD’  are  used  during  the  image  process  

with one being used for volume listing while the other is used for creating images.  The 

variation used in creating images (Garner, 2011) allows input and output buffers to be 

configured by the user.  Eight different buffer sizes were used in creating a 1 GB solid 

image to determine the ideal imaging configuration.  Both the input and output buffers 

were set to identical values.  This image was created twenty times for each buffer size 

and the average runtimes, standard deviations, and memory usage are illustrated in the 

Figure 4.1 below. 

Memory  usage  by  ‘DD’  during  the  image  process  is  essentially  twice  the  buffer  

size as both an input and output buffer are allocated.  Run times decreased as the buffer 

size increased up until the 15 MB buffer size.  After this point the runtime decreases 

leveled off while memory usage continued to increase.  Therefore the 15 MB buffer was 

chosen for application testing as it provided the fastest imaging times with the least 

amount of memory usage. 
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Figure 4.1 ‘DD’  1  GB  Imaging  Time 

4.2. Network Communication Buffer 

Network communication buffers can be configured in two places which include 

the .Net TcpClient (Microsoft, 2013a) class and the byte array used to store information 

when writing data to and receiving data from the network stream.  These values do not 

have to be identical as the .Net framework will handle chunking data accordingly.  

However, testing showed that having the byte array size and TcpClient buffer size differ 

resulted in much higher CPU utilization due to these background chunking operations.  

Therefore, both buffer sizes were set identically during file transfer testing.  Fifteen file 

transfer operations were completed using a 120 MB and a 525 MB file for each of five 

different buffer sizes.  No file transfer failures were experienced with any of the 

illustrated transfer iterations.  The average runtime time for the fifteen iterations and their 

standard deviations are show in Figure 4.2. 

As expected, increasing the buffer sizes lead to faster file transfer times since 

more data is allowed to be sent across the network channel at a given time.  Another thing 

to note about the graph is the increase in standard deviation as the buffer size decreased.  

This was simply caused by a greater number of fluctuations in the data transfer rate 

across a longer duration resulting in a more profound effect on transfer time. 
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Figure 4.2 500 MB Image Transfer 

The 65 KB network buffer was chosen as it resulted in the fastest image transfer 

times.  Any transfers using a buffer size greater than 65 KB failed.  While the cause of 

this failure was not determined it is believed to be caused by the limitations of TCP 

which has a max window size of 65 KB.   This hypothesis could by tested by configuring 

TCP window scaling; however, delving into the finer points of network tuning is outside 

the scope of this thesis.  Details with regard to TCP window size and window scaling can 

be found in RFC 1323 created by the Internet Engineer Task Force (Jacobson et al., 

1992). 

4.3. Client Search Buffer 

The client search process is conducted by reading small portions of a drive image 

into a memory buffer with a configurable size.  This buffer is then converted into a string 

which is then searched using  Microsoft’s  Regex  library.  To determine the ideal search 

buffer size, several searches were conducted using seven different buffer sizes across five 

different file sizes.  Ten iterations for each file and buffer size combination were 

averaged and graphed.  The same search term was used across all iterations and no 
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matches were found.  Since computation time is used to process discovered matches it 

was important that no matches be found as match processing would directly affect overall 

runtime.  The runtime results for several continuous image files of various sizes (images 

that were not split into chunks) are illustrated in Figure 4.3 below. 

 
Figure 4.3 Search Runtime for a Single Image File  

As expected, larger files take longer to search and increasing the search buffer 

size resulted in slightly faster runtimes.  Search runtimes across buffer variations 

appeared relatively consistent but was more pronounced with larger file sizes.  

Unfortunately, single continuous files cannot be used as images must be distributed 

across several clients.  Consequently search runtimes were also gauged using images that 

were split into several chunks. 

Figure 4.4 below depicts search runtimes using a 400 MB image that was split 

into various chunk counts.  Chunk counts were varied from a minimum of one file to a 

maximum of forty files.  The legend in Figure 4.4 shows the number of files involved and 

the resulting chunk size in parenthesis. 

As was the case with the single continuous files, increasing the buffer size 

decreased search runtimes in most cases.   However, search runtimes lengthened with 

large and small buffer sizes as the number of chunks increased.  This was particularly 
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apparent when looking at the performance of the forty file case.  This is most likely 

caused by the induction of I/O operations from opening and closing a greater number of 

files. 

 
Figure 4.4 Search Runtime for Split Image File 

The 10 MB search buffer was chosen as it resulted in the fastest search runtimes.  

This became much more apparent when testing across variations in chunk size where 

increasing the chunk count resulted in an increase in search times. 

4.4. Image Chunk Size 

Image chunking operations are an important component of the proposed 

implementation as their inclusion makes the distribution of large suspect volumes 

feasible.  Setting an appropriate chunk size is important but not necessarily vital for the 

proposed implementation to function well.  Large chunk sizes would result in fewer 

image files but lead to longer file transfers and hashing operations.  Small chunk sizes 

would lead to faster transfers and hashing operations but result in greater fragmentation 

thus inducing file management overhead as discussed in the previous section.  
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The ideal chunk size would result in the least number of files while allowing 

hashing and transfers to complete in a reasonable amount of time.  While an ideal size 

was not determined through testing, a 500 MB chunk size was arbitrarily chosen as it 

appeared to satisfy the afore mentioned criteria. 

4.5. Summary 

This chapter measured the effect of configurable performance values for several 

components of the proposed application architecture.  These included imaging, searching, 

and data transfer functions.  Ideal values were chosen after running each process against 

variations in configurable parameters for each function.  These ideal values were then set 

as the default configuration to ensure optimum application performance. 
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CHAPTER 5. RESULTS 

Performance was gauged by comparing the runtime of live search operations in 

FTK with the runtime of the text search function using the proposed implementation.  

Accuracy was gauged by comparing the number of match results across both 

applications.  This was made possible since a known block of text was written a known 

number of times to fill volumes before they were imaged.   

Text searches were run using two scenarios which included searching for a word 

with a low frequency and a word with high frequency.  This approach helped to 

extrapolate the effect match processing had on overall search runtime.  Regular 

expression searches were also used as their computationally intensive nature results in 

longer runtimes when compared to their literal counterparts. 

5.1. Test Preparation 

Desired images had to be created for each testing scenario without contamination 

from other tests.  This was accomplished on the server by first creating a partition of 

desirable size on one of the Seagate ST1500DL 1.5 TB hard drives.  This partition was 

then wiped with a one pass zero algorithm using DiskWipe 1.7 

(http://www.diskwipe.org).  A blank text file was created on the zeroed partition and an 

in house text generator was used to write text to the file until a specified size was met.  

Les Miserables (http://www.gutenberg.org/files/135/135.txt) was used as the text block as 

it provided a large enough block of text which helped to eliminate repetitiveness.  After 

the text file was created the partition was then imaged and stored on the second Seagate 

1.5 TB hard drive in 500 MB chunks.  These chunks where then searched using FTK and 

the proposed implementation.  This process was repeated for each testing scenario. 
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Another important step for test preparation was the configuration of the live 

search function in FTK.  Live searches in FTK are run directly against suspect images 

which results in long search times.  FTK limits the number of live search results to 200 

matches per file by default to expedite the search process.  This is unacceptable as 

searches were conducted against a single large text file which would result in the early 

termination of the live search process.  During testing this live search limit was set to 

zero which allowed the entire file, and consequently the entire image, to be searched in 

full. 

It should be noted that search runtimes essentially equate to the average of the 

slowest running host.  Some host may have slower search runtimes due to irrelevant 

background processes and or hard drive problems such as a large number of reallocated 

sectors. 

5.2. Initial Testing on Server Hardware 

The first test conducted was used to record a base line performance measurement.  

This was accomplished by first following the preparation steps described in section 5.1 to 

create a 10 GB image split into 500 MB chunks.  The text generator wrote the Les 

Miserables text block 3,131 times to fill the 10 GB partition before it was imaged.  Both 

FTK and the client portion of the proposed application were run on the designated server 

meaning there was no variation in hardware.  The images chunks were searched for the 

term  ‘crowell’  due to its low frequency per text block iteration.  The  term  ‘crowell’  

occurred only once per text block iteration meaning a match count of 3,131 was expected.  

Both FTK and the proposed client application returned this expected match count.  

Search runtime results for both applications averaged across five iterations are illustrated 

in Figure 5.1 below. 
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Figure 5.1 10 GB Split Image Search Runtimes 

The search process used in the proposed client application was nearly three times 

faster for literal string searches than the search process used in FTK 4.1.  Variations in 

hardware were not the cause since both applications were run on the server described in 

Table 3.1. 

5.3. FTK 4.1 Issues 

Several problems were experienced when using FTK 4.1 against the 100 GB test 

images filled with text.  The FTK indexing process would hang when adding the 100 GB 

test image to FTK 4.1 with default settings.  The process was allowed to run for a 48 hour 

period  but  a  “failed  work  event  error”  was  continually  written  to  the  job  error  log.    This  

error  was  further  described  with  “Could  not  search  objects:  bad  allocation”.    The  100 GB 

image was recreated several times but the error still occurred.  The error was finally 

remedied when the FTK indexing process was disabled during the add evidence process. 

While the direct cause of the error was not determined, it was surmised to be caused by 

the excessive amount of repetitive text in the test dataset which the FTK data processor 

simply could not handle.   
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5.4. Proposed Application Issues 

An issue was encountered with the proposed application that affected both the 

client and server variants.  Several hundred matches were being missed between files on 

a single client even though debugging eliminated the search function as the cause.  On the 

server side, the folder monitor  function  would  hang  even  though  the  ‘DD’  imaging  

process would complete successfully.  It was eventually surmised that both the search 

function on the client and the folder monitor function on the server relied on a file listing 

function  within  Microsoft’s  .NET  Framework.    This  file  listing  function  returns  a  list  of  

files in a directory sorted alphabetically instead of numerically.  A third-party file listing 

function was used to retrieve a list of files in a directory sorted numerically.  Both the 

client and server issues were resolved once the original file listing function was replaced.  

Vcepa (2005) describes the problem in more detail including the third-party solution that 

was used.  

5.5. Distributed String Searches (Sparse Hits) 

The distributed string search test scenario described in this section used a word 

with a low frequency against a 100 GB image file split into 500 MB chunks.  Exactly 

31,529 text block iterations were written to fill the 100 GB volume before it was imaged.  

The  search  term  ‘crowell’  was  used  as  it  has  the  lowest  frequency  with  only  one 

occurrence per text block iteration.  Five runs were averaged for each of the five testing 

scenarios which are illustrated in Figure 5.2 below. 
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Figure 5.2 100 GB String Search with Sparse Hits 

No failures were experienced during any of the test runs and all implementations 

returned the expected 31,529 result count.  FTK 4.1 had the longest search run time 

taking nearly four times longer than a single client running the proposed application.  As 

expected, adding more clients increased search performance nearly in proportion to the 

number of clients added.  The fifteen client scenario showed nearly a fifty times speed up 

when compared to FTK and a thirteen times speed up when compared to the single client 

scenario. 
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The distributed string search test scenario described in this section used a word 

with a high frequency against a 100 GB image file split into 500 MB chunks.  The 

purpose of this test was to illustrate the effect match processing has on overall search 

times.  The same process from the previous section was used with the only difference 

being the search term.  The  search  term  ‘his’  was  used  for this test because it had a 
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in an expected total match count of 339,031,337.  Five runs were averaged for each of the 

five testing scenarios and are illustrated in Figure 5.3 below. 

 
Figure 5.3 100 GB String Search with Several Hits 

The proposed application experienced a problem in that it did not return the 

excepted count of results.  The ten and fifteen client scenarios were three hits shy of the 

expected 339,031,337 hits while the five client scenario was only two hits shy.  These 

results confirm the hypothesis that matches overlapping clients would be overlooked and 

therefore not counted.  This was further reinforced by the fact that the single client 

scenario returned the expected result count exonerating the client search function as the 

cause. 
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speed up in the sparse hits scenario.  The fifteen client case showed a 126 times speed up 
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5.7. Regular Expression Searches 

A regular expression search test was conducted against the 100 GB test image to 

gauge  the  performance  of  processor  intensive  searches.    The  query  “[qer]  was  arbitrarily  

chosen due to the relatively high frequency of quoted text in the Les Miserables text 

block.  Figure 5.4 show the results of running the selected regular expression query 

across several different testing scenarios with each scenario averaged across five 

iterations. 

 
Figure 5.4 100 GB Regular Expression Search 

Regular expression searches increased search runtimes across all testing scenarios 

when compared to literal string searches.  When a potential match is found the regular 

expression is referenced for all expression combinations.  This is a CPU intensive task 

which causes the longer search runtimes.  FTK had the longest search runtime time while 

the proposed application showed a decrease in search time as clients were added. The 

fifteen client scenario provided the fastest regular expression search time which was 

approximately thirty-eight times faster than FTK 4.1.   

All client scenarios showed an identical match count of 5,174,931 which was 

4,175 matches greater than expected.  This was believed to be caused by file system meta 
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iterations.  FTK 4.1 returned 476 fewer results than expected with a total value of 

5,171,232 which was also consistent across all five iterations.  The cause of these 

differing match counts between applications was not fully determined.  

5.8. Image Processing 

Both the proposed application and FTK 4.1 must process images before they can 

be searched.  FTK 4.1 conducts several processing operations when an image is added as 

evidence including indexing, file carving, and thumbnail generation just to name a few.  

Image processing for the proposed application consists of hashing individual image files 

and distributing them across all clients.  Image processing times for the 10 GB test image 

are illustrated in Figure 5.5 below. 

 
Figure 5.5 10 GB Image Processing Times 

FTK 4.1 had the longest processing time for the 10 GB test image but was the 

fastest processor when its indexing functionality was disabled.  Hashing accounted for 

less than 20% of the proposed application processing time while Indexing accounted for 

more than 95% of the processing time in FTK.   Indexing processes lead to very long 

evidence load times in FTK but allowed for nearly instantaneous index searches.  A 10 
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GB image is not a realistic representation of modern datasets so imaging processing times 

were also recorded for a 100 GB test image. 

FTK 4.1 had difficulty handling the 100GB test images as described in section 5.3 

and therefore an indexing time for the 100 GB image could not be determined.  All FTK 

4.1 settings were kept at default with the exception of disabling the indexing process.  

Figure 5.6 below shows the 100 GB image process times for FTK 4.1 with indexing 

disabled along with the proposed application with and without hashing functionality. 

 
Figure 5.6 100 GB Image Processing Time 

FTK 4.1 had the fastest processing time with the 100 GB image as its indexing 

functionality was disabled due to program failure.  Hashing functions were used in the 

proposed application to ensure images were not corrupted during the transfer process.  

Both the server and the client must calculate hash values and the server compares the 

values upon transfer completion.  The inclusion of this functionality accounted for nearly 

27% of the processing time which is slightly higher when compared to the 10 GB image 
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5.9. Summary 

The DDF implementation developed by Richard and Roussev (2004) excelled at 

regular expression searches while also being slightly faster with regard to load time.  The 

application proposed in this thesis showed a massive runtime advantage with regard to 

literal string searches.  Direct comparison of the two approaches is difficult given the 

multitude of differences in the implementations and testing approaches.  For example, the 

difference in regular expression speedups could simply be the result of variations in FTK 

versions. 

In the best case scenario the client/server application showed a 125 times speed 

up in text search times using fifteen clients when compared to FTK 4.1.  Indexing 

evidence in FTK takes a rather lengthy amount of time but allows for nearly 

instantaneous indexed searches.  The proposed application allows live searches to 

complete very quickly almost eliminating the need for indexing operations.  Figure 5.7 

illustrates overall runtime of operations across several testing scenarios.  FTK indexing 

was disabled as explained in Section 5.3. 

 
Figure 5.7 100 GB Overall Runtime 
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best case speedups as well as the best case speedups for the implementation proposed in 

this thesis are illustrated in Figure 5.8 below. 

 

Figure 5.8 Application Speedup Compared to FTK 

During testing, all hypotheses in Section 3.10 were proven correct.  Increasing the 

number of clients running the developed architecture resulted in increasingly faster 

search runtimes for all testing scenarios.  Increasing the client count also led to matches 

being missed due to an increased probability of overlapping client instances.  This was 

only  apparent  in  the  ‘several  hits’  testing  scenario  due  to  the  large  quantity  of  search 

matches. 
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CHAPTER 6. CONCLUSION 

The result of this thesis was a client/server application architecture employing the 

distributed digital forensics concept.  Similar approaches have been developed but this 

thesis resolves some of their inherent infeasibilities.  These include substantial financial 

investments and difficulty in application instantiation.  This thesis provides a solution to 

these infeasibilities by leveraging existing desktop workstations on an internal network. 

The application architecture developed in this thesis was written entirely in C# 

and allows for one server instance to manage several client instances.  Its effectiveness 

was gauged by testing it against FTK which is one of the most widely used tools in the 

digital forensics discipline.  Testing consisted of using fabricated volume images to 

compare search match counts and runtimes across both applications.  Literal string 

searches and regular expression searches were run across various counts of physical hosts 

and on a single machine running FTK 4.1. 

The client/server architecture in this thesis showed a decrease in search runtimes 

in all testing scenarios when compared to FTK 4.1.  With a 100 GB volume image, a 125 

times speed up was experienced in the best case while a three time speed up was 

experienced in the worst case.  The hypotheses stated in this research were validated in 

that search runtimes decreased as clients were added and matches were missed due to the 

inability to search between clients. 

While the search runtime results were faster than FTK 4.1 in all testing scenarios, 

the client/server architecture could greatly benefit from additional functionality.  This 

includes cross platform operation, search browsing beyond the client maximum, and the 

securing of evidence on remote clients as described in Section 6.1 below.  Adding such 

functionalities would make the proposed application a practical tool for use in real world 

digital investigations. 
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Distributed  digital  forensics  can  be  a  viable  option  for  analyzing  today’s  very  

large suspect datasets.  The quick live search times of DDF implementations almost 

eliminate the need for time consuming indexing processes.  This time savings 

consequently results in faster investigation times which are vital in time sensitive 

investigations.  While other DDF approaches have been developed, the approach in this 

thesis is novel in that it is simple to instantiate while also eliminating the need to 

purchase and or dedicate additional hardware.  As such it is a practical tool for an 

investigative agency of any size to utilize.  The end result is the ability to conduct more 

digital investigations in less time helping to alleviate the strains of an ever increasing 

backlog of digital evidence. 

6.1. Future Work 

While the performance of the proposed distributed digital forensics application is 

noteworthy, it suffers from several short comings.  These include limited operating 

system compatibility, search matches not being displayed, search matches not being 

found, and remnant evidence on the clients.  These shortcomings were made apparent 

during application development and solutions were partially implemented due to their 

irrelevancy to the scope of the thesis.  The proposed application can become a much more 

viable solution for the digital forensics community if these short comings were addressed.  

This chapter describes these shortcomings and potential solutions that may be fully 

implemented in the future. 

6.1.1. Cross Platform Functionality 

The  proposed  application  was  developed  entirely  in  Microsoft’s  C#  programming  

language.  This is not ideal as it severely hampers cross platform operation on networks 

consisting of machines running various operating systems.  The obvious solution would 

be to port the application to a more cross platform friendly programming language such 

as C++. 



   44 

   

6.1.2. Search Improvements 

As stated in section 3.5, each client sends a list of search results back to the server 

for display to the user.  The number of matches sent to the server is limited based on both 

the size of the results and the size of the communication buffer.  This limit helps prevent 

resource saturation since the server is responsible for storing results from every client.  

Matches not stored in the initial batch of matches are not stored on the server and thus 

cannot be displayed to the user. 

This shortcoming was apparent during development and as such an index pointer 

was configured on the client side.  This pointer is updated to the index of the last search 

match located at the end of the last batch of matches.  The final step required to complete 

this solution would be to implement search querying on the server.  The client would 

simply send the next batch of matches greater than the stored index value when the server 

requests additional matches. 

Quite possibly the greatest shortcoming of the proposed search process is the 

inability to search files overlapping separate clients.  A simple solution would be to store 

the beginning of the first file and the end of the last file from each client on the server.  

The resulting loss of resources on the server should essentially equate to two times the 

search term length multiplied by the number of clients.  This resource loss would be 

justified as it would eliminate the need to implement any type of direct communication 

between clients.   

6.1.3. Security Improvements 

Quite possibly the biggest issue with the proposed implementation is the security 

concerns of the distribution process.  This application was created with the intention of 

operating on existing computational resources.  Doing so facilitates easier instantiation 

while also eliminating the need to purchase and or dedicate hardware.  Unfortunately, 

such machines may be publicly accessible and or compromised which could lead to 

possible evidence tampering and or malicious file recovery. 
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One potential solution would be to employ some sort of encryption on the remote 

clients.  Employing encryption could lead to significant performance loss depending on 

what algorithm is used and how it is implemented.  This performance loss may be 

considered acceptable depending on the sensitivity of the suspect data being analyzed.  

However, encryption may not be necessary if all machines are considered secure and 

unoccupied during analysis.  Secure file wiping may be a more viable if encryption is 

deemed impractical or unnecessary.   Involved clients could securely wipe all suspect 

image files once an investigation is completed.  Deciding between either of these options 

would depend largely on the situation as well as the impact on overall application 

performance.
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APPENDIX. CLIENT FILE SERACH CODE IN C#
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