
CERIAS Tech Report 2013-11
Distributed Digital Forensics on Pre-Existing Internal Networks

 by Jeremiah J Nielsen
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

DISTRIBUTED DIGITAL FORENSICS ON PRE-EXISTING INTERNAL

NETWORKS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Jeremiah J Nielsen

In Fulfillment of the

Requirements for the Degree

of

Master of Science

December 2013

Purdue University

West Lafayette, Indiana

ii

TABLE OF CONTENTS

 Page
LIST OF TABLES ... iv

LIST OF FIGURES .. v

LIST OF ABBREVIATIONS .. vi

GLOSSARY ... vii

ABSTRACT ... ix

CHAPTER 1. INTRODUCTION ... 1

1.1. Scope .. 2
1.2. Significane .. 2
1.3. Research Question .. 3
1.4. Assumptions ... 3
1.5. Limitations .. 3
1.6. Delimitations .. 4
1.7. Summary ... 4

CHAPTER 2. LITERATURE REVIEW .. 5

2.1. Potential Solutions .. 5
2.2. Related Work .. 7
2.3. High Performance Computing Research .. 9
2.4. Summary ... 10

CHAPTER 3. FRAMEWORK AND METHODOLOGY ... 12

3.1. Research Approach ... 12
3.2. Instrumentation and Data Capture .. 14
3.3. Application Architecture .. 14
3.4. Application Communication... 15
3.5. Application Class Structures .. 16
3.6. Imaging and Image Distribution ... 19
3.7. Application Buffers .. 20
3.8. Client Searches ... 20
3.9. Application GUI ... 22

iii

Page
3.10. Hypothesis .. 24

CHAPTER 4. OPTIMIZING APPLICATION PERFORMANCE 25

4.1. Imaging Buffers .. 25
4.2. Network Communication Buffer .. 26
4.3. Client Search Buffer ... 27
4.4. Image Chunk Size ... 29
4.5. Summary ... 30

CHAPTER 5. RESULTS .. 31

5.1. Test Preparation .. 31
5.2. Initial Testing on Server Hardware .. 32
5.3. FTK 4.1 Issues .. 33
5.4. Proposed Application Issues ... 34
5.5. Distributed String Searches (Sparse Hits) .. 34
5.6. Distributed String Searches (Several Hits) ... 35
5.7. Regular Expression Searches.. 37
5.8. Image Processing .. 38
5.9. Summary ... 40

CHAPTER 6. CONCLUSION.. 42

6.1. Future Work .. 43
6.1.1 Cross Platform Functionality .. 43
6.1.2 Search Improvements ... 44
6.1.3 Security Improvements ... 44

LIST OF REFERENCES .. 46

APPENDIX. CLIENT FILE SEARCH CODE IN C# ... 49

iv

 LIST OF TABLES

Table Page
Table 3.1 Client and Server Hardware Characteristics ... 12

Table 3.2 Communication Channels and Sizes... 16

v

LIST OF FIGURES

Figure Page
Figure 3.1 FTK Application Process .. 13

Figure 3.2 Proposed Client/Server Application Process ... 14

Figure 3.3 Pseudo Code for Application Communication .. 15

Figure 3.4 Application Search Process ... 18

Figure 3.5 Client Search Buffers .. 21

Figure 3.6 Search Buffer Overlaps ... 21

Figure 3.7 Client Search Pseudo Code ... 22

Figure 3.8 Server Application GUI ... 23

Figure 3.9 Client Application GUI ... 23

Figure 4.1 ‘DD’ 1 GB Imaging Time ... 26

Figure 4.2 500 MB Image Transfer .. 27

Figure 4.3 Search Runtime for a Single Image File .. 28

Figure 4.4 Search Runtime for Split Image File ... 29

Figure 5.1 10 GB Split Image Search Runtimes ... 33

Figure 5.2 100 GB String Search with Sparse Hits .. 35

Figure 5.3 100 GB String Search with Several Hits ... 36

Figure 5.4 100 GB Regular Expression Search .. 37

Figure 5.5 10 GB Image Processing Times .. 38

Figure 5.6 100 GB Image Processing Time .. 39

Figure 5.7 100 GB Overall Runtime ... 40

Figure 5.8 Application Speedup Compared to FTK ... 41

vi

LIST OF ABBREVIATIONS

BS - Block Size

DDF - Distributed Digital Forensics

FTK - Forensic Toolkit

GB - Gigabyte

GUI - Graphical User Interface

MPI - Message Passing Interface

RegEx - Regular Expression

TB - Terabyte

VPN - Virtual Private Network

vii

GLOSSARY

Client/Server Architecture – A computer architecture in which a single server machine
handles communication between several client machines.

Data Buffer – A portion of a host’s random access memory used to temporarily store data

between read/write operations.

DD – An application used to copy raw data between devices on a computer.

Digital Forensics – “The use of an expert to preserve, analyze, and produce data from

volatile and non-volatile media storage. This is used to encompass computer and
related media that may be used in conjunction with a computer” (Meyers &
Rogers, 2004, p. 4).

Distributed Digital Forensics - "Using aggressive data caching techniques and performing

investigative operations in parallel" (Richard & Roussev, 2006a, p. 79).

Forensic Toolkit - A court-accepted digital investigations platform built for speed,

analytics and enterprise-class scalability (AccessData Group, 2012).

Index Search - A fast search process in which a long preload time is used to create a

rapidly searchable object from a data object.

Live Search - A slow search process in which a data object itself is searched from

beginning to end.

MapReduce - A framework in which data is distributed across several nodes (Map

function), processed, and sent back to the initializing node for summation
(Reduce function).

MD5/SHA1 - One way mathematical functions that convert blocks of data into a unique

string of text providing the ability to compare files and checking for file
modifications.

Overlay Network – “A network built on top of one or more existing networks” (Stoica,

2009)

viii

Text Search – A search process in which a single word (literal string search) or pattern
(regular expression search) is located within a large block of data.

Windows Management Instrumentation - Infrastructure for management data and

operations on Windows-based operating systems that supplies management data
to other parts of the operating system and products. (Microsoft, 2013b)

ix

ABSTRACT

Nielsen, Jeremiah J. M.S., Purdue University, December 2013. Distributed Digital
Forensics on Pre-existing Internal Networks. Major Professor: Marc Rogers.

Today's large datasets are a major hindrance on digital investigations and have led to a

substantial backlog of media that must be examined. While this media sits idle, its

relevant investigation must sit idle inducing investigative time lag. This study created a

client/server application architecture that operated on an existing pool of internally

networked Windows 7 machines. This distributed digital forensic approach helps to

address scalability concerns with other approaches while also being financially feasible.

Text search runtimes and match counts were evaluated using several scenarios including

a 100 GB image with prefabricated data. When compared to FTK 4.1, a 125 times speed

up was experienced in the best case while a three times speed up was experienced in the

worst case. These rapid search times nearly irrationalize the need to utilize long indexing

processes to analyze digital evidence allowing for faster digital investigations.

 1

CHAPTER 1. INTRODUCTION

 Digital forensics is a rather immature discipline that has experienced a large

amount of growth over its short existence. Due to this rapid growth, which can most

likely be attributed to the rapid growth and increasing proliferation of technology, the

discipline is plagued by many issues that have yet to be effectively resolved as described

by Bebe (2009) and Garfinkel (2010). While the digital forensics research community

has shifted its focus between several of these proposed issues, the well-known data

deluge issue has yet to be effectively addressed. One potential solution for the data

deluge issue would be to employ the use of a pool of computers to conduct distributed

digital forensic investigations.

The distributed digital forensics concept has been previously investigated using a

client/server architecture (Richard & Roussev, 2004), a distributed ramdisk (Richard &

Roussev, 2006a), as well as the MPI reduce function (Roussev et al., 2009).

Unfortunately, these approaches require a substantial investment in dedicated computer

hardware and the involvement of IT professionals to configure and utilize. The ideal

distributed digital forensics application would be simple to instantiate, could operate on a

pool of existing machines, and would not entirely dedicate the involved clients to the

investigation process.

The proposed distributed digital forensic application architecture satisfies these

characteristics by running on a pool of existing Windows 7 machines. To help gauge the

effectiveness of the proposed approach, dataset distribution times across a set of

preexisting internal network resources was compared to that of a single workstation using

AccessData's Forensic Toolkit (FTK) 4.1. The main deliverable of this research was a

client/server application that can be used to create an ad-hoc overlay network on a pre-

existing pool of computational resources upon which large datasets can be analyzed.

 2

The remainder of this chapter will provide the scope and significance of the

research conducted in this thesis.

1.1. Scope

 There are many issues with the concept of distributed digital forensics in regards

to security, performance, and reliability. However, the major problem that hampers its

practicality in analyzing today’s large datasets is scalability, as it would require a

substantial investment in dedicated hardware. This thesis solves this problem by

leveraging existing computational resources running the Windows 7 operating system

though the utilization of a client/server application architecture. These applications were

used to distribute a large suspect dataset across a pool of internally networked

computational resources and conduct text searches against it.

1.2. Significance

It was once unheard of to have terabyte storage volumes available for average

computer users to utilize on personal workstations. This is obviously no longer the case

as it has become very affordable for personal workstations to employ large amounts of

storage. According to Seagate, this amount averaged nearly 600 GB (Hachman, 2011) in

2011 which could increase exponentially if research in increasing mechanical hard drive

densities goes mainstream (Halfacree, 2012).Unfortunately, most digital forensic

methodologies cannot cope with this storage volume increase as they still rely on single

machines to conduct investigations. As storage volumes continue to increase in size,

tools relying on this single machine approach simply take longer to run. This in turn has

led to an ever increasing backlog of digital evidence that is overwhelming criminal

investigators and the tools which they employ. Having the ability to distribute digital

investigations across several machines provides a viable solution to analyzing today’s

large datasets (Richard & Roussev, 2004).

 3

1.3. Research Question

Can scalability limitations of the distributed digital forensics concept be dealt

with by operating on an internal network of existing computational resources running the

Windows 7 operating system?

1.4. Assumptions

Assumptions with regards to this research are as follows:

1. A suitable physical network architecture exists upon which the proposed

distributed digital forensics applications can operate.

2. All involved hosts are able to communicate with the designated server (i.e., all

hosts are routable and can communicate through firewalls).

3. Completely distributing a suspect dataset across the proposed distributed digital

forensics network is the equivalent of a single workstation tool, such as FTK,

conducting initial loading and indexing processes.

4. Text searches using the proposed framework are the functional equivalent of

FTK’s live search function.

1.5. Limitations

Limitations with regards to this research are as follows:

1. Several single workstation digital forensics tools exists but image distribution

times using the proposed client/server application were only compared to the

initial loading and indexing process used by FTK 4.1.

2. While capable of spanning the public domain of the Internet this research only

focused on computational resources connected directly to the same network

switch.

3. Only machines running the Windows 7 operating system with Microsoft’s .Net

Framework 4.0 installed were used for testing.

 4

1.6. Delimitations

Delimitations with regards to this research are as follows:

1. This research did not investigate other means to analyze suspect datasets outside

of text searches.

2. Comparison of variations in network hardware and architectures were not

conducted as technological ambiguity makes such testing difficult and infeasible.

1.7. Summary

 This chapter has provided a brief overview of this research in regards to its scope,

significance to the digital forensics field, as well as its focus. The next chapter will look

at relevant work that has been completed with respect to this research.

 5

CHAPTER 2. LITERATURE REVIEW

 Digital forensics has overcome several issues including increased public

awareness, a stronger scientific foundation, the creation of relevant journals, and the

development of a strong research community (Bebe, 2009). Unfortunately there are still

many other issues for the digital forensics discipline to overcome. Bebe (2009) created

four "research themes" that need to be addressed by the digital forensics community

which further illustrates this point. These derived themes included volume and

scalability challenges, more intelligent analytical approaches, digital forensics of non-

standard computing environments, and forensic tool development. The purpose of this

thesis is to develop an application approach that can be used to address the volume and

scalability research theme. This theme was brought about due to the fact that "data

storage needs and data storage capacities are ever increasing" (Bebe, 2009, p. 24) and

“the growing size of storage devices means that there is frequently insufficient time to

create a forensic image of a subject device, or to process all of the data once it is found”

(Garfinkel, 2010, p. S66). This chapter will look at relevant work that has been

completed to help cope with this volume and scalability research theme.

2.1. Potential Solutions

 One potential solution to analyzing today’s large datasets is to employ the use of

selective digital forensics in which only prudent information is taken from a suspect

medium instead of making an exact bit level image (Turner, 2006). The obvious issue

with such an approach is the potential for a selective digital forensic tool to potentially

overlook prudent information. Such oversights could be caused by operational

 6

inadequacies within the tool itself or by malicious users who deliberately exploit the

selection process.

 Another approach is to combine static analysis (sifting through a nonvolatile

storage volume such as a hard drives) with live analysis (sifting through volatile storage

such as random access memory) (Mrdovic et al., 2009). In this approach, a virtual

machine is created using a suspect drive image in conjunction with a memory image to

recreate a functional clone of the suspect's machine prior to its capture. While this

solution does not solve the volume and scalability issue since a full drive image is

utilized, it helps investigators to speed the investigative process along by narrowing their

search scope. The glaring problem with this approach is that live analysis tools

necessitate the use of an active suspect system which is inherently un-trusted.

 While other unmentioned approaches, such as data mining, exist to combat this

data volume issue, none appear to provide an effective mitigation strategy as the data

deluge issue still persists. In an ideal world refined imaging processes would create

smaller drive images by capturing only relevant information. These smaller images

would then be analyzed using refined analytical approaches that are fast, highly accurate,

and repeatable. User friendly tools would then present analysis results in a format that

even an untrained investigator would be able to understand. Garfinkel (2010) as well as

Richard and Roussev (2004b) describes some of these solutions in more detail.

While many investigators would enjoy working in such an ideal world, getting the

digital forensics discipline to such a point is excruciatingly difficult given the rapid pace

of technological development and its inherent ambiguity. Unfortunately, while

researchers continue to try and create the aforementioned ideal world, datasets are only

getting larger. A solution is necessitated to analyze these large datasets until the research

community is able to catch up. One possible solution is to utilize the concept of

distributed digital forensics. Distributed digital forensics is not much different than a

typical criminal investigation of the past in which no form of technology was utilized

(which is obviously highly unlikely today). One or more detectives could be assigned to

a case and information would be collected to ascertain a suspect’s involvement. If a case

 7

were to be time sensitive, such as a kidnapping case, then the investigating organization

could potentially speed the process along by doing one or more of the following:

 Use more efficient specialized internal resources (a kidnapping division)

 Assign more internal resources (add more detectives to the case)

 Utilize external resources (request assistance from other investigative

organizations)

 Many digital forensics tools are designed to work on a single workstation which is

essentially the equivalent of assigning a single investigator to an investigation. With the

concept of distributed digital forensics, several computer resources are pooled together to

work on one suspect dataset, which is essentially the equivalent of assigning several

detectives to one case.

2.2. Related Work

 Distributed digital forensics is not new concept as a working prototype has been

created, implemented, and tested (Richard & Roussev, 2004). The network used in their

approach consisted of a network file server and eight physical nodes with each housing

1 GB of random access memory. A 6 GB suspect dataset was loaded onto the network

storage server and one of the eight nodes involved, called the coordinator, was

responsible for splitting the files in the dataset across the remaining seven nodes on a file

by file basis. Each file from the dataset that was copied to a node was loaded entirely

into the node’s random access memory to prevent the induction of disk I/O latency. The

coordinating node then sent commands to and received commands from the worker nodes

via a customized command structure which operated over HTTP. In a performance

analysis of their implementation, Richard and Roussev showed some substantial

improvements in load times and string search times when compared to a single machine

utilizing FTK. Their results showed 34% faster load times, an eighteen times speed up

for string search times, and an eighty-nine times speedup for regular expression searches.

 Of course the glaring issue with the aforementioned approach is that a rather

small image by today’s standards, only 6 GB in size, was used for testing their

 8

implementation. This is understandable seeing as testing was conducted in 2004, but

currently hard drives average several hundred gigabytes (Hachman, 2011) and in many

cases even surpass the one terabyte mark. If an organization were to have machines with

12 gigabytes of random access memory, then over 160 machines would be necessary to

load a 2 TB dataset. Even if an adequate architecture existed and the dataset was loaded,

the machines involved would be entirely dedicated to conducting the investigation due to

resource saturation. Many organizations simply cannot afford or even rationalize the

dedication of such large clusters of machines for the sole purpose of digital forensic

investigations.

 In another approach, Richard and Roussev attempted to speed up digital forensics

applications by creating a distributed ramdisk (Richard, Roussev, & Tingstrom, 2006).

This block level ramdisk was created on a pool of machines that shared a portion of their

ram creating a single logical ram pool that was addressable from a single machine. Their

benchmark results showed a 3.5 times speed up for sequential read/write operations while

random operations showed a 22 times speedup. Such results are expected as random

access memory excels at random operations which mechanical hard drives find difficult

to deal with. While this speed up can be seen as rather substantial, this approach also

suffers from the same problems as their previous approach in that it would require a large

investment in hardware and would be difficult for average law enforcement personnel to

configure and use.

 While they may not be distributed digital forensics approaches per se, two other

approaches created by Craiger et al. (2008) and Davis et al. (2005), try to solve the

volume and scalability issue by utilizing virtualization technology to gain high speed

access to suspect images stored on high speed network storage devices. The idea is to

have a device shipped to a nearby lab where it is imaged. (Kechadi and Scanlon (2010)

suggested transferring device images over the internet from the crime scene). The

resulting image is stored on high speed network storage devices residing on an internal

optical network. A virtual machine server, also connected to the optical network, hosts

virtual machines that are leased out to remote users to analyze a desired image.

Permissions to the network storage devices and the data they contain are then assigned to

 9

individual virtual machines. When investigations are conducted through these virtual

machines they would gain a substantial performance boost as all devices communicate

through an internal low latency optical network without the induction of internet latency.

 There is one major drawback with the approaches created by Craiger et al. (2008)

and Davis et al. (2005) in that it would require a substantial investment in a dedicated

infrastructure. Since a VPN is used to grant outside users access to the system,

usernames and passwords must be managed. Permissions for the data store and

individual files must also be managed to prevent users from damaging suspect images be

it intentionally or unintentionally. Policies would need to be created and enforced for

data retention, destruction, and integrity. Addressing all of the aforementioned issues

would most assuredly necessitate the involvement of several fulltime IT personnel.

These additional requirements may simply be infeasible for smaller local investigative

agencies.

 Since many digital investigators are aware of the data deluge issue and distributed

digital forensics has the potential to be a feasible solution, then why hasn't distributed

digital forensics gained enough momentum for a company to capitalize on the idea? One

potential explanation that has been repeated several times throughout this thesis is that

distributed digital forensics is viewed as infeasible from a resource or management point

of view. Another potential explanation is that researchers are logically concentrating

their efforts into solving the causes of the deluge by researching analytical/presentation

approaches and frameworks instead of trying to deal with the symptoms. Unfortunately,

research in this area still appears to be inconclusive as digital investigators still rely on a

‘capture all, analyze all’ mentality using single workstation tools that utilize time

consuming indexing processes.

2.3. High Performance Computing Research

 Thanks to large computational projects, such as CERN’s Large Hadron Collider

(CERN, 2008) and NASA’s cyclone analysis (Vishwanath et al., 2008) project, several

approaches have come to fruition to capture and analyze petabytes of information through

 10

the use of multidimensional data, massively parallel processing, and large ultrafast

networks. This is quite a feat seeing as the digital forensics community is finding it

excruciatingly difficult to manage several hundred gigabytes of data (Bebe, 2009).

Unfortunately, these approaches seem to be effective for data that is largely

homogeneous and predictable; characteristics that fit nicely with typical large scale

instrumental data but not with largely heterogeneous file system data (Douceur &

Bolosky, 1999) made up of several different types of data. Such approaches also operate

best using very fast hardware interconnected with large low latency networks. These

networks are typically located in close proximity to one another and consist of an optical

communication medium.

 Massive parallel processing can potentially be directly applied to DDF though the

creation of an MPI cluster. These clusters are simply a pool of machines that use a

standardized protocol to communicate. Typically machines in such clusters run a

rudimentary operating system to limit resource utilization and are dedicated to running

MPI functions. In one DDF approach, the MPI MapReduce function was used to split

large text files and conduct string searches against them (Roussev et al., 2009). Their

implementation showed a linear 15X speed up when compared to Hadoop which also

utilizes the MapReduce function. Some advantages of MPI clusters include scalability,

the ability to use heterogeneous computer environments with respect to both hardware

and software, and low level code optimizations. Some disadvantage of MPI clusters are

that they are difficult to configure, do not typically tolerate node failures, and MPI

software development can be very difficult. These disadvantages make it difficult for

investigators without a background in networking and distributed computing to

effectively utilize MPI based clusters.

2.4. Summary

 While dealing with the causes of the data deluge is only logical via research in

imaging and analysis, a stopgap solution is needed to deal with the current backlog of

digital evidence caused by massive storage volumes. The solution developed in this

 11

thesis employed the distributed digital forensics concept. While several similar

prototypes of this concept have been developed, they do not appear to scale well with

today’s large datasets as it they would require a substantial investment in dedicated

hardware and or IT personnel. In an attempt to address these limitations and make DDF

a practical reality, this thesis leveraged existing computational resources for distributed

digital investigations. This was accomplished using a client/server application

architecture operating within the confines of an internal network. Analysis of a large

suspect volume was split across several clients providing an increase in performance

when compared to a single workstation using FTK 4.1.

 12

CHAPTER 3. FRAMEWORK AND METHODOLOGY

 This chapter will discuss the overall approach used for this research including the

research approach, instrumentation, application architecture, data capture, and data

analysis.

3.1. Research Approach

 The computer forensics lab at Purdue University was used to run the proposed

implementation across varying counts of physical hosts running Windows 7 Ultimate

Service Pack 1. All hosts were physically connected to the same Cisco 3750 gigabit

network switch. Due to the inability to access sata connections within the available client

machines, a separate machine configuration was used for the designated server. This

designated server was also used to test single machine processing using FTK 4.1.

Hardware specifications for both the clients and designated server are shown in Table

3.1.

Table 3.1 Client and Server Hardware Characteristics

 Client Server

Model iMac 21.5 Inch Mid 2011 N/A

Processor Intel Core i5 @ 2.5 GHz AMD Phenom II X6 1055T @ 2.8 GHz

Memory 8 GB DDR3 1333 8 GB DDR3 1333

Storage
Seagate ST3500418AS

(500 GB)

Seagate ST1500DL (1.5 TB)

Seagate ST1500DL (1.5 TB)

Western Digital (320 GB)

Network Broadcom NetXtreme Realtek PCIe GBE

OS Windows 7 Enterprise SP1 Windows 7 Enterprise SP1

 13

A mock suspect volume was created and filled with textual data using a custom

in-house text generator as described in Section 5.1. This text generator continually writes

a specified block of text until a specified size or iteration count is reached and upon task

completion presents the user with the total number of write operations. This approach

was chosen as it allowed known match counts to be compared to those returned from

searches conducted using both the proposed implementation and live search functionality

in FTK. Text search runtimes were recorded using various image sizes distributed across

varying counts of physical hosts.

The total wall clock runtime of the distribution process using the proposed

implementation was recorded for each host and image configuration. Text search

runtime as well as match counts were recorded for the proposed implementation. Values

were captured for the initial loading/indexing and search functionality of FTK 4.1

running on a single workstation. The application process utilized for FTK testing is

illustrated in Figure 3.1 while the application testing process used for the proposed

client/server application architecture is illustrated in Figure 3.2.

sata

sata

sata Working HDD

Operating System HDD

FTK Imager

Create suspect
drive image

1

FTK 3.4

Load suspect
image

2
Store suspect
drive image

3

Index suspect
image and store

index DB

5

Server from Table X

4

Conduct
live

search
(string)

Conduct
live

search
(RegEx)

6

6

Suspect HDD

Figure 3.1 FTK Application Process

 14

sata

sata

sata Working HDD

Operating System HDD

Distribute new
suspect image

chunk

Server from Table X

1

2

New image
chunk

created3

Suspect HDD

4 Client1

ClientN

If(all chunks sent)
 conduct search

If(client1 cnt != expectedCnt)
 send chunk to client1
Else if(clientN cnt != expectedCnt)
 send chunk to clientN

Server Application

5

6

Integrated DD
Imager

Create suspect
drive image

Store suspect
drive image

Figure 3.2 Proposed Client/Server Application Process

3.2. Instrumentation and Data Capture

As previously stated, wall clock runtimes and string match counts were used to

gauge the effectiveness of the proposed implementation and FTK 4.1. Runtime tracking

was built into both the client and server applications using the difference between a start

and end time while counting was handled by a simple incremented counter. The timers

were used for both text search and imaging operations while the counter was only used

for counting search matches. FTK 4.1 automatically provided these values upon task

completion.

3.3. Application Architecture

A rudimentary overlay network was created with preexisting computational

resources using a two tier application architecture written in Microsoft’s C#

programming language. This architecture consisted of a single server application

instance and multiple client application instances. The single instantiated server

application was responsible for monitoring the status of all involved clients, imaging a

suspect volume, and distributing the image across all connected clients. All involved

clients were required to receive files from the server as well as conduct text searches

against them. Results for each of these operations were compounded and sent to the

designated server using several class objects (see section 3.5). This process was done for

 15

all clients whereupon task completion the user is presented with the match results on the

designated server. In the high performance computing realm this would be the equivalent

of a MapReduce function.

3.4. Application Communication

Once initialized, the user designated server simply listens for clients to connect.

When a new client connects to the server a new instance of a custom class is instantiated

using a newly spawned processor thread. All clients communicate with the server

simultaneously and independent of all other clients. Communication between the server

and involved clients is accomplished using separate channel identifiers, a known packet

size, and a synchronization bit referred to as a “puck”. This puck assigns network write

permissions to either the client or server so as to prevent collisions during data transfers.

The pseudo code for this communication process is shown in Figure 3.3 below.

Thread N

While(keepRunning)
{

}

If(havePuck)
sendData();
sendPuck();

If(dataAvailable)
receiveData

Server

Background Thread

While(keepRunning)
{

}

If(havePuck)
sendData();
sendPuck();

If(dataAvailable)
receiveData

Client A

Network Comm

Client N

Network Comm

Figure 3.3 Pseudo Code for Application Communication

 In order to differentiate between messages and message types, the channel

identifier and expected packet size are written to the network stream before outgoing

data. When a channel identifier is received the recipient knows what type of data is

incoming. The packet size is necessary so the recipient knows when to stop reading data

from the network stream so as not to overlap message data thus causing data corruption.

Types of data and their respective size and channel are shown in Table 3.2.

 16

Table 3.2. Communication Channels and Sizes

Data Identifier Packet Size Channel

Synchronization Bit (puck) 1 byte 0

Channel Identifier 1 byte N/A

Packet Size 2 bytes N/A

clsPerformanceValues Varies 200

clsSearchResults Varies 205

clsReconnect Varies 210

File Packet Varies 253

Message Packet Varies 254

 Two things to note about Table 3.2 are the items with no channel as well as those

with varying packet sizes. Channel identifiers are not necessary for the channel identifier

and packet size because they are configured with a static size and will always precede

data traversing the network stream. However, some items vary in size based on the

amount of data being sent. Very large data streams, such as a large file transfer, are split

into several chunks based on a specified block size (more details in section 4.2) and

written to the network stream individually. Smaller messages, and in many cases the tail

end of a file, manipulate the block size to only accommodate the amount of data being

sent. This approach helps to prevent the induction of unnecessary computational

overhead from writing redundant data to the network stream.

3.5. Application Class Structures

Quite possibly the most important component of the proposed application process

is the use of structured class objects to send several client values to the server via a single

data transfer. Three such objects were used including a reconnect class (aptly named

clsReconnect), a performance values class (aptly named clsPerformanceValues), and a

client search results class (clsSearchResults)

The clsPerformanceValues class is used to ensure that all involved clients provide

enough combined computational resources to feasibly analyze a suspect volume. Once a

 17

client is started, this class is instantiated and used to store resource values gathered using

the Windows Management Instrumentation. While several resource values can be

captured, the most important ones with regard to this thesis are the available hard drives

for a client and their respective capacities. The hard drive with the greatest amount of

free space and read/write capability is used as the destination for incoming file chunks

received from the server.

Subsequent resource updates are only made for dynamic resource values after the

performance values class has been instantiated on a client. For instance, total drive

capacity of a selected drive will not change but the amount of free space will change as

files are received from the server. Resource updates uploaded to the server after client

instantiation only include updates for these dynamic values. Once these values are

updated, the clsPerformanceValues object is serialized and sent to the server where it is

processed and stored in an array.

 The second class, clsReconnect, is only used by clients during the initial

connection handshake with the application server. Some form of mitigation strategy was

necessitated to deal with client or server connection failures even though this thesis did

not address reliability issues. If nodes were to fail during testing the entire imaging and

distribution process would have to start over. A large amount of testing time would have

been lost solely on application re-instantiation given the amount of time these processes

can take.

 The reconnect class prevents this time loss by providing the server with a list of

files that already exist on a client. Once the class is instantiated on a client it is populated

with names, sizes, and hash values of all files located in the client’s configured working

directory. The class is serialized and transmitted where its contents are compared to that

of the server working directory. If a discrepancy is found the client connection attempt is

denied until the issue is resolved.

 The third and final class, clsSearchResults, is slightly more involved as it

necessitates the use of two other class objects named clsSearchMatch and

clsSearchResultsSub. The clsSearchMatch class is used to store information about a

specific search match found in a file. This includes the file ID of the image file it was

 18

found in, the index location of the match, its byte offset, and the match itself including

fifteen characters before and after. While the index and offset values were not used in

this thesis, their inclusion provides the ability to correlate search matches to locations on

the physical suspect volume.

 When a search match has been found a new clsSearchMatch object is instantiated,

all afore mentioned values for the match are captured, and the resulting object is saved in

an array within clsSearchResults. Unfortunately, all instantiated class objects are stored

in the host machine's memory. This can be problematic in the event several million

matches are found. Each host is configured to only store the first one million matches as

clsSearchMatch objects to prevent excessive memory consumption. Matches discovered

after the one million match limit are not stored as clsSearchMatch objects but are

included in the total match count.

 Resource saturation can also be a problem on the server as it must receive and

display search matches from all involved hosts. This is where the clsSearchResultsSub

class comes into play as it will only store a subset of the search results until it occupies a

single network transfer block (a 65KB block size was used as described in Chapter 4).

This technique simplifies the transfer of the clsSearchResultsSub object as the client does

not have to split the object and the server does not have to reconstruct it. The

clsSearchResultsSub class is sent to the server when a client has finished searching all

files. The user can then review each search result list from all involved clients from the

single sever instance. The overall search process using the three class objects is shown in

Figure 3.4.

Search Thread

RequestSearch();

clientA clsSearchResultsSub
clientN clsSearchResultsSub

If(allClientsSearched)
 DispalySearchResults();

Server

String Search Thread
clsSearchResults
clsSearchResultsSub
While(Matches < 1M)
{

}
SendResults();

Client A

 If(MatchFound)
 new clsSearchMatch
 clsSearchResults + 1;
 if(clsSearchResultsSub +1 < BS)
 clsSearchResultsSub + 1;

Request
Search

Send
Results

Figure 3.4 Application Search Process

 19

3.6. Imaging and Image Distribution

Two Seagate 1.5 terabyte 5900 rpm ST1500DL001 hard drives were connected

directly to the designated server via an integrated sata controller. Some form of write

blocker would be used in an actual digital investigation but was not used in this research.

Since this research is only concerned with search performance a write blocker would only

increase imaging times but have no effect on search times.

Imaging of the suspect volume was handled via a separate thread on the server

using two variations of ‘DD’ for windows. One variation of ‘DD’ (version 0.5)

(http://www.chrysocome.net/dd) was used simply for its volume listing functionality

which is faster than querying the Windows Management Instrumentation for hard drive

identifiers. The second variation of ‘DD’ (Garner, 2011) was chosen because it provided

image splitting functionality but lacked volume listing functionality. Both of these ‘DD’

variants are compiled into the server application and extracted to a temporary directory

when the server is started. They are then run transparent to the user as hidden

background processes.

Before the imaging phase is started, image chunking can be manually configured

by the user with regard to chunk size and count. These image chunks are stored in a

working directory on a separate internal SATA hard drive connected to the designated

server. The server application monitors this specified working directory for new files.

When a new file is discovered the file is hashed, its name and resulting hash are stored in

a Microsoft Access Database, and the file is sent to one of the connected clients.

The file distribution process is conducted by first predicting the number of

expected file chunks using the suspect volume size in conjunction with the configured

chunk size. The total number of chunks is determined and divided by the host count to

determine how many chunks a client should receive from the server. If a certain client

does not have enough free space for this expected client chunk count then these files are

simply sent to the next client until its client chunk count is reached (Figure 3.2). This

approach was chosen as it helps prevent image fragmentation of a suspect volume while

also evenly distributing the processing load. Total client free space is calculated to

 20

ensure that enough free space is available to store the entirety of a suspect volume before

starting the image distribution process.

 One final aspect of the imaging and distribution process is the utilization of

hashing to ensure that files are not changed during the file transfer process. When a

client receives a file chunk it has the ability to request an MD5 and/or SHA1 hash from

the server. The server sends these hashes to the client whereupon the client also

calculates the hash value. The client and server values are compared to ensure that the

data was successfully transferred from the server to the client.

3.7. Application Buffers

Both the client and server applications utilize multiple data buffers for various

tasks. These include a data buffer for data being transferred over the network stream,

reading from the suspect volume, writing to the storage volume, and searching the image

chunks on a client. Minor changes to these buffer sizes have drastic effects on

application performance and resource utilization. Ideal buffer sizes were determined by

manipulating them across several scenarios and monitoring the effect on application

performance. Results from this testing including the ideal values determined are

described in Chapter 4 in more detail.

3.8. Client Searches

When the server requests a search, the query is forwarded to all clients. Upon

receipt the client searches all received file chunks using the specified query and the

Microsoft Regex library. This is accomplished by reading portions of a file into a

temporary file buffer, converting the buffer to a string, and passing the string to the

Microsoft Regex library configured with the server designated query. The total number

of matches is accumulated and the process repeated until the end of the file is reached.

 One major issue with such an approach is that matches overlapping file buffer

occurrences will not be found. This is true at both the individual chunk level as well as

 21

between distinct file chunks on a client. This issue was dealt with at the client level by

developing a search overlap function. Two secondary buffers were used to store the

beginning and end of the primary search buffer when appropriate. Once the primary

buffer has been searched, the beginning portion of the next file is copied to a start buffer

while the tail end of the current file is copied to an end buffer. The beginning and end

buffers are combined and searched before the next portion of the file is loaded into the

primary buffer. To ensure that matches at the end and beginning of the primary buffer

are not counted multiple times, the beginning and end buffers are configured with a

length equal to one character less than the query length. An example of this buffered

search process is illustrated in Figure 3.5 below.

...fox_

...fox_the_quick_the_the_quick_brown...

the_quick_th e_the_quick_ brown...

PrimaryBuffer Size:

SearchTerm:

12 char

the

th e_
Begin/end buffer size: 2 char

 Figure 3.5 Client Search Buffers

 As shown in Figure 3.5, the second ‘the’ occurrence would be missed if

overlapping buffers were not used. It should also be noted that if the beginning and end

buffers were too long then the first ‘the’ occurrence would be counted twice. This

overlapping buffer approach was used between search buffers for a single file and

between files on a client but was not used between clients. Figure 3.6 illustrates these

overlapping search buffers and depicts discovered matches with a circle and missed

matches with a diamond.

the_quick_brown_fox_jumped_over_the_lazy_dog_the_quick_brown_foxLarge file:

Client A : File1 Client A : File2 Client B : File1 Client B : File2

the_quick_brown_ fox_jumped_over_ the_lazy_dog_the _quick_brown_foxDistributed file:

the_quic k_brown_ fox_jump ed_over_ the_lazy _dog_the _quick_br own_fox

Within file match: own_ fox_

Between file match:

_the _qui
ver_ the_

3Between client match:

8 char search buffer:

1

2

Figure 3.6 Search Buffer Overlaps

 22

The total match count and a subset of the client’s matches are sent back to the

server via a clsSearchResultsSub class object. Pseudo code for the client search process

is illustrated in Figure 3.7 below while the actual search code written in C# can be found

in the Appendix.

Input: Drive image file and desired search term
Output: clsSearchResultsSub and clsSearchResults object

1: Retrieve list of image chunks from client working directory sorted numerically
2: Copy portion of drive image to searchBuffer
3: Convert buffer to string, search for term, compound matches into output objects
4: bufferOverlap: End of previous searchBuffer with beginning of next searchBuffer
5: Convert bufferOverlap to string, search, and compound into output objects
6: Finish searching all buffer iterations for single image chunk
7: betweenFileOverlap: End of previous file with beginning of next file
8: Convert betweenFileOverlap to string, search, and compound into output objects
9: Select next file in directory and repeat steps 2 – 9

Figure 3.7 Client Search Pseudo Code

3.9. Application GUI

One of the major advantages of the proposed implementation is simple

instantiation. While usability testing was not within the scope of this thesis the GUI for

both the client and server application were designed for simplicity. The GUI for the

sever side allows users to create volume images, manage clients, and conduct searches.

The user can start the imaging process on the server application by selecting a volume

from the imaging tab. The server will start to listen for clients after the user specifies an

IP address on the server tab. Connected clients are also listed and can be managed from

the server tab as illustrated in Figure 3.8 below.

 23

Figure 3.8 Server Application GUI

The client GUI is even simpler than the server application since a client simply

receives server commands and returns results back to the server for processing. Several

options were included in the client GUI including a message log for debugging, a display

listing all client files, and several configurable options as shown in Figure 3.9 below.

Figure 3.9 Client Application GUI

 24

3.10. Hypotheses

Hypotheses with regard to this research were as follows:

1. The proposed implementation should show a decrease in text search times as the

number of physical hosts involved increases.

2. The proposed approach should show a lower number of text search matches

compared to the actual match count due to matches overlapping files between

clients.

The first hypothesis was formulated simply due to the nature of distributed systems.

Distributed systems are meant to spread processing load across several nodes thus

decreasing the work load of any one single node. Adding more nodes decreases the

amount of work for each single node resulting in an increase in performance. In this

thesis, performance was measured by recording search runtimes thus increasing the

number of nodes should shorten overall search runtime.

The second hypothesis was formulated due to a limitation with regard to the client

search function. This search function is unable to find matches overlapping client

instances due to the inability of clients to communicate directly. Increasing the number

of clients involved increases the occurrence of such gaps thus increasing the probability

of matches being missed.

The first hypothesis looks at scalability directly by measuring the effect of increasing

the number of clients. The second hypothesis looks at the effect of a scalability limitation

that was made apparent during application development. Both of these hypotheses are

directly applicable to the research question posed in this thesis in that they help to

illustrate the scalability of the proposed client/server application.

 25

CHAPTER 4. OPTIMIZING APPLICATION PERFORMANCE

Several application parameters are available which can be manipulated resulting

in drastic changes with regard application performance. While the degree of these effects

may vary across hardware architectures, values chosen for use in the application testing

section were determined using the hardware specified in Table 3.1. The following

section describes why values were chosen based on tracking application performance

across several parameter configurations.

4.1. Imaging Buffer

As stated in section 3.6, two variations of ‘DD’ are used during the image process

with one being used for volume listing while the other is used for creating images. The

variation used in creating images (Garner, 2011) allows input and output buffers to be

configured by the user. Eight different buffer sizes were used in creating a 1 GB solid

image to determine the ideal imaging configuration. Both the input and output buffers

were set to identical values. This image was created twenty times for each buffer size

and the average runtimes, standard deviations, and memory usage are illustrated in the

Figure 4.1 below.

Memory usage by ‘DD’ during the image process is essentially twice the buffer

size as both an input and output buffer are allocated. Run times decreased as the buffer

size increased up until the 15 MB buffer size. After this point the runtime decreases

leveled off while memory usage continued to increase. Therefore the 15 MB buffer was

chosen for application testing as it provided the fastest imaging times with the least

amount of memory usage.

 26

Figure 4.1 ‘DD’ 1 GB Imaging Time

4.2. Network Communication Buffer

Network communication buffers can be configured in two places which include

the .Net TcpClient (Microsoft, 2013a) class and the byte array used to store information

when writing data to and receiving data from the network stream. These values do not

have to be identical as the .Net framework will handle chunking data accordingly.

However, testing showed that having the byte array size and TcpClient buffer size differ

resulted in much higher CPU utilization due to these background chunking operations.

Therefore, both buffer sizes were set identically during file transfer testing. Fifteen file

transfer operations were completed using a 120 MB and a 525 MB file for each of five

different buffer sizes. No file transfer failures were experienced with any of the

illustrated transfer iterations. The average runtime time for the fifteen iterations and their

standard deviations are show in Figure 4.2.

As expected, increasing the buffer sizes lead to faster file transfer times since

more data is allowed to be sent across the network channel at a given time. Another thing

to note about the graph is the increase in standard deviation as the buffer size decreased.

This was simply caused by a greater number of fluctuations in the data transfer rate

across a longer duration resulting in a more profound effect on transfer time.

0
10
20
30
40
50
60
70

0

5

10

15

20

25

512 1024 5120 10240 15360 20480 25600 30720

M
em

or
y

U
sa

ge
 (M

B)

Im
ag

e
Ru

nt
im

es
 (s

ec
)

DD Buffer Size (KB)

'DD' 1 GB Imaging Time

 27

Figure 4.2 500 MB Image Transfer

The 65 KB network buffer was chosen as it resulted in the fastest image transfer

times. Any transfers using a buffer size greater than 65 KB failed. While the cause of

this failure was not determined it is believed to be caused by the limitations of TCP

which has a max window size of 65 KB. This hypothesis could by tested by configuring

TCP window scaling; however, delving into the finer points of network tuning is outside

the scope of this thesis. Details with regard to TCP window size and window scaling can

be found in RFC 1323 created by the Internet Engineer Task Force (Jacobson et al.,

1992).

4.3. Client Search Buffer

The client search process is conducted by reading small portions of a drive image

into a memory buffer with a configurable size. This buffer is then converted into a string

which is then searched using Microsoft’s Regex library. To determine the ideal search

buffer size, several searches were conducted using seven different buffer sizes across five

different file sizes. Ten iterations for each file and buffer size combination were

averaged and graphed. The same search term was used across all iterations and no

0
5
10
15
20
25
30
35
40
45
50

0

10

20

30

40

50

60

70

80

90

4095 8191 16383 32767 65535

Tr
an

sf
er

 S
pe

ed
 (M

B/
s)

Tr
an

sf
er

 T
im

e
(s

ec
)

Network Block Size (KB)

500 MB Image Transfer

 28

matches were found. Since computation time is used to process discovered matches it

was important that no matches be found as match processing would directly affect overall

runtime. The runtime results for several continuous image files of various sizes (images

that were not split into chunks) are illustrated in Figure 4.3 below.

Figure 4.3 Search Runtime for a Single Image File

As expected, larger files take longer to search and increasing the search buffer

size resulted in slightly faster runtimes. Search runtimes across buffer variations

appeared relatively consistent but was more pronounced with larger file sizes.

Unfortunately, single continuous files cannot be used as images must be distributed

across several clients. Consequently search runtimes were also gauged using images that

were split into several chunks.

Figure 4.4 below depicts search runtimes using a 400 MB image that was split

into various chunk counts. Chunk counts were varied from a minimum of one file to a

maximum of forty files. The legend in Figure 4.4 shows the number of files involved and

the resulting chunk size in parenthesis.

As was the case with the single continuous files, increasing the buffer size

decreased search runtimes in most cases. However, search runtimes lengthened with

large and small buffer sizes as the number of chunks increased. This was particularly

0

5

10

15

20

25

30

35

40

10 100 1000 5000 10000 20000 50000

File Size
(MB)

Se
ar

ch
 R

un
tim

e
(s

ec
)

Search Buffer Size (KB)

Search Runtime (Single File)

100

200

300

400

500

 29

apparent when looking at the performance of the forty file case. This is most likely

caused by the induction of I/O operations from opening and closing a greater number of

files.

Figure 4.4 Search Runtime for Split Image File

The 10 MB search buffer was chosen as it resulted in the fastest search runtimes.

This became much more apparent when testing across variations in chunk size where

increasing the chunk count resulted in an increase in search times.

4.4. Image Chunk Size

Image chunking operations are an important component of the proposed

implementation as their inclusion makes the distribution of large suspect volumes

feasible. Setting an appropriate chunk size is important but not necessarily vital for the

proposed implementation to function well. Large chunk sizes would result in fewer

image files but lead to longer file transfers and hashing operations. Small chunk sizes

would lead to faster transfers and hashing operations but result in greater fragmentation

thus inducing file management overhead as discussed in the previous section.

25.5
26

26.5
27

27.5
28

28.5
29

29.5
30

30.5

10 100 1000 5000 10000 20000 50000

File Count

Se
ar

ch
 R

un
tim

e
(s

ec
)

Search Buffer Size (KB)

File Search (400MB Split)

1 (400MB)

4 (100MB)

8 (50MB)

12 (34MB)

16 (25MB)

40 (10MB)

 30

The ideal chunk size would result in the least number of files while allowing

hashing and transfers to complete in a reasonable amount of time. While an ideal size

was not determined through testing, a 500 MB chunk size was arbitrarily chosen as it

appeared to satisfy the afore mentioned criteria.

4.5. Summary

This chapter measured the effect of configurable performance values for several

components of the proposed application architecture. These included imaging, searching,

and data transfer functions. Ideal values were chosen after running each process against

variations in configurable parameters for each function. These ideal values were then set

as the default configuration to ensure optimum application performance.

 31

CHAPTER 5. RESULTS

Performance was gauged by comparing the runtime of live search operations in

FTK with the runtime of the text search function using the proposed implementation.

Accuracy was gauged by comparing the number of match results across both

applications. This was made possible since a known block of text was written a known

number of times to fill volumes before they were imaged.

Text searches were run using two scenarios which included searching for a word

with a low frequency and a word with high frequency. This approach helped to

extrapolate the effect match processing had on overall search runtime. Regular

expression searches were also used as their computationally intensive nature results in

longer runtimes when compared to their literal counterparts.

5.1. Test Preparation

Desired images had to be created for each testing scenario without contamination

from other tests. This was accomplished on the server by first creating a partition of

desirable size on one of the Seagate ST1500DL 1.5 TB hard drives. This partition was

then wiped with a one pass zero algorithm using DiskWipe 1.7

(http://www.diskwipe.org). A blank text file was created on the zeroed partition and an

in house text generator was used to write text to the file until a specified size was met.

Les Miserables (http://www.gutenberg.org/files/135/135.txt) was used as the text block as

it provided a large enough block of text which helped to eliminate repetitiveness. After

the text file was created the partition was then imaged and stored on the second Seagate

1.5 TB hard drive in 500 MB chunks. These chunks where then searched using FTK and

the proposed implementation. This process was repeated for each testing scenario.

 32

Another important step for test preparation was the configuration of the live

search function in FTK. Live searches in FTK are run directly against suspect images

which results in long search times. FTK limits the number of live search results to 200

matches per file by default to expedite the search process. This is unacceptable as

searches were conducted against a single large text file which would result in the early

termination of the live search process. During testing this live search limit was set to

zero which allowed the entire file, and consequently the entire image, to be searched in

full.

It should be noted that search runtimes essentially equate to the average of the

slowest running host. Some host may have slower search runtimes due to irrelevant

background processes and or hard drive problems such as a large number of reallocated

sectors.

5.2. Initial Testing on Server Hardware

The first test conducted was used to record a base line performance measurement.

This was accomplished by first following the preparation steps described in section 5.1 to

create a 10 GB image split into 500 MB chunks. The text generator wrote the Les

Miserables text block 3,131 times to fill the 10 GB partition before it was imaged. Both

FTK and the client portion of the proposed application were run on the designated server

meaning there was no variation in hardware. The images chunks were searched for the

term ‘crowell’ due to its low frequency per text block iteration. The term ‘crowell’

occurred only once per text block iteration meaning a match count of 3,131 was expected.

Both FTK and the proposed client application returned this expected match count.

Search runtime results for both applications averaged across five iterations are illustrated

in Figure 5.1 below.

 33

Figure 5.1 10 GB Split Image Search Runtimes

The search process used in the proposed client application was nearly three times

faster for literal string searches than the search process used in FTK 4.1. Variations in

hardware were not the cause since both applications were run on the server described in

Table 3.1.

5.3. FTK 4.1 Issues

Several problems were experienced when using FTK 4.1 against the 100 GB test

images filled with text. The FTK indexing process would hang when adding the 100 GB

test image to FTK 4.1 with default settings. The process was allowed to run for a 48 hour

period but a “failed work event error” was continually written to the job error log. This

error was further described with “Could not search objects: bad allocation”. The 100 GB

image was recreated several times but the error still occurred. The error was finally

remedied when the FTK indexing process was disabled during the add evidence process.

While the direct cause of the error was not determined, it was surmised to be caused by

the excessive amount of repetitive text in the test dataset which the FTK data processor

simply could not handle.

5.3

1.8

0

1

2

3

4

5

6

FTK 4.1 Proposed (1 client)

Se
ar

ch
 R

un
tim

e
(M

in
ut

es
)

10GB Split Image Search

 34

5.4. Proposed Application Issues

An issue was encountered with the proposed application that affected both the

client and server variants. Several hundred matches were being missed between files on

a single client even though debugging eliminated the search function as the cause. On the

server side, the folder monitor function would hang even though the ‘DD’ imaging

process would complete successfully. It was eventually surmised that both the search

function on the client and the folder monitor function on the server relied on a file listing

function within Microsoft’s .NET Framework. This file listing function returns a list of

files in a directory sorted alphabetically instead of numerically. A third-party file listing

function was used to retrieve a list of files in a directory sorted numerically. Both the

client and server issues were resolved once the original file listing function was replaced.

Vcepa (2005) describes the problem in more detail including the third-party solution that

was used.

5.5. Distributed String Searches (Sparse Hits)

The distributed string search test scenario described in this section used a word

with a low frequency against a 100 GB image file split into 500 MB chunks. Exactly

31,529 text block iterations were written to fill the 100 GB volume before it was imaged.

The search term ‘crowell’ was used as it has the lowest frequency with only one

occurrence per text block iteration. Five runs were averaged for each of the five testing

scenarios which are illustrated in Figure 5.2 below.

 35

Figure 5.2 100 GB String Search with Sparse Hits

No failures were experienced during any of the test runs and all implementations

returned the expected 31,529 result count. FTK 4.1 had the longest search run time

taking nearly four times longer than a single client running the proposed application. As

expected, adding more clients increased search performance nearly in proportion to the

number of clients added. The fifteen client scenario showed nearly a fifty times speed up

when compared to FTK and a thirteen times speed up when compared to the single client

scenario.

5.6. Distributed String Searches (Several Hits)

The distributed string search test scenario described in this section used a word

with a high frequency against a 100 GB image file split into 500 MB chunks. The

purpose of this test was to illustrate the effect match processing has on overall search

times. The same process from the previous section was used with the only difference

being the search term. The search term ‘his’ was used for this test because it had a

reasonably high frequency but not absurdly so like many noise words such as ‘the’. One

Les Miserables text block iteration contained 10,753 iterations of the term ‘his’ resulting

63.8

13.6

3.6 2.0 1.3
0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

FTK 4.1 1 Client 5 Clients 10 Clients 15 clients

Ru
nt

im
e

(M
in

ut
es

)

100GB String Search (Sparse Hits)

 36

in an expected total match count of 339,031,337. Five runs were averaged for each of the

five testing scenarios and are illustrated in Figure 5.3 below.

Figure 5.3 100 GB String Search with Several Hits

The proposed application experienced a problem in that it did not return the

excepted count of results. The ten and fifteen client scenarios were three hits shy of the

expected 339,031,337 hits while the five client scenario was only two hits shy. These

results confirm the hypothesis that matches overlapping clients would be overlooked and

therefore not counted. This was further reinforced by the fact that the single client

scenario returned the expected result count exonerating the client search function as the

cause.

The speed up experienced in the several hits scenario was much greater than the

speed up in the sparse hits scenario. The fifteen client case showed a 126 times speed up

when compared to FTK 4.1 and a fifteen times speed up when compared to the single

client case. All testing scenarios experienced an increase in search times when compared

to the sparse hits scenario in the previous section. This can most likely be attributed to

processing and storing an increased number of matches.

174.5

22.4
3.7 2.7 1.4

0.0
20.0
40.0
60.0
80.0

100.0
120.0
140.0
160.0
180.0
200.0

FTK 4.1 1 Client 5 Clients 10 Clients 15 clients

Ru
nt

im
e

(M
in

ut
es

)

100GB String Search (Several Hits)

 37

5.7. Regular Expression Searches

A regular expression search test was conducted against the 100 GB test image to

gauge the performance of processor intensive searches. The query “[qer] was arbitrarily

chosen due to the relatively high frequency of quoted text in the Les Miserables text

block. Figure 5.4 show the results of running the selected regular expression query

across several different testing scenarios with each scenario averaged across five

iterations.

Figure 5.4 100 GB Regular Expression Search

Regular expression searches increased search runtimes across all testing scenarios

when compared to literal string searches. When a potential match is found the regular

expression is referenced for all expression combinations. This is a CPU intensive task

which causes the longer search runtimes. FTK had the longest search runtime time while

the proposed application showed a decrease in search time as clients were added. The

fifteen client scenario provided the fastest regular expression search time which was

approximately thirty-eight times faster than FTK 4.1.

All client scenarios showed an identical match count of 5,174,931 which was

4,175 matches greater than expected. This was believed to be caused by file system meta

data located at the beginning of the drive image since it was consistent across all

104.7

34.8

6.9 3.3 2.7
0.0

20.0

40.0

60.0

80.0

100.0

120.0

FTK 4.1 1 Client 5 Clients 10 Clients 15 Clients

Ru
nt

im
e

(M
in

ut
es

)

100GB Regular Expression Search

 38

iterations. FTK 4.1 returned 476 fewer results than expected with a total value of

5,171,232 which was also consistent across all five iterations. The cause of these

differing match counts between applications was not fully determined.

5.8. Image Processing

Both the proposed application and FTK 4.1 must process images before they can

be searched. FTK 4.1 conducts several processing operations when an image is added as

evidence including indexing, file carving, and thumbnail generation just to name a few.

Image processing for the proposed application consists of hashing individual image files

and distributing them across all clients. Image processing times for the 10 GB test image

are illustrated in Figure 5.5 below.

Figure 5.5 10 GB Image Processing Times

FTK 4.1 had the longest processing time for the 10 GB test image but was the

fastest processor when its indexing functionality was disabled. Hashing accounted for

less than 20% of the proposed application processing time while Indexing accounted for

more than 95% of the processing time in FTK. Indexing processes lead to very long

evidence load times in FTK but allowed for nearly instantaneous index searches. A 10

1:39:32

0:02:55 0:04:12 0:05:00
0:00:00

0:14:24

0:28:48

0:43:12

0:57:36

1:12:00

1:26:24

1:40:48

1:55:12

FTK 4.1
(indexing)

FTK 4.1
(no indexing)

Proposed
(no hashing)

Proposed
(hashing)

Pr
oc

es
sin

g
Ti

m
e

(H
H:

M
M

:S
S)

10GB Image Processing

 39

GB image is not a realistic representation of modern datasets so imaging processing times

were also recorded for a 100 GB test image.

FTK 4.1 had difficulty handling the 100GB test images as described in section 5.3

and therefore an indexing time for the 100 GB image could not be determined. All FTK

4.1 settings were kept at default with the exception of disabling the indexing process.

Figure 5.6 below shows the 100 GB image process times for FTK 4.1 with indexing

disabled along with the proposed application with and without hashing functionality.

Figure 5.6 100 GB Image Processing Time

FTK 4.1 had the fastest processing time with the 100 GB image as its indexing

functionality was disabled due to program failure. Hashing functions were used in the

proposed application to ensure images were not corrupted during the transfer process.

Both the server and the client must calculate hash values and the server compares the

values upon transfer completion. The inclusion of this functionality accounted for nearly

27% of the processing time which is slightly higher when compared to the 10 GB image

case.

0:34:27
0:41:53

0:57:40

0:00:00
0:07:12
0:14:24
0:21:36
0:28:48
0:36:00
0:43:12
0:50:24
0:57:36
1:04:48

FTK 4.1 Proposed
(no hashing)

Proposed
(hashing)

Ru
nt

im
e

(H
H:

M
M

:S
S)

100GB Image Processing

 40

5.9. Summary

The DDF implementation developed by Richard and Roussev (2004) excelled at

regular expression searches while also being slightly faster with regard to load time. The

application proposed in this thesis showed a massive runtime advantage with regard to

literal string searches. Direct comparison of the two approaches is difficult given the

multitude of differences in the implementations and testing approaches. For example, the

difference in regular expression speedups could simply be the result of variations in FTK

versions.

In the best case scenario the client/server application showed a 125 times speed

up in text search times using fifteen clients when compared to FTK 4.1. Indexing

evidence in FTK takes a rather lengthy amount of time but allows for nearly

instantaneous indexed searches. The proposed application allows live searches to

complete very quickly almost eliminating the need for indexing operations. Figure 5.7

illustrates overall runtime of operations across several testing scenarios. FTK indexing

was disabled as explained in Section 5.3.

Figure 5.7 100 GB Overall Runtime

Richard and Roussev (2004) conducted similar testing of their distributed digital

forensics implementation using both literal string and regular expressions searches. Their

0:00:00

0:14:24

0:28:48

0:43:12

0:57:36

1:12:00

1:26:24

1:40:48

1:55:12

FTK 4.1 1 Client 5 Clients 10 Clients 15 Clients

Ru
nt

im
e

(H
H:

M
M

:S
S)

100GB Overall Runtime

Searching

Transfer

Loading

 41

best case speedups as well as the best case speedups for the implementation proposed in

this thesis are illustrated in Figure 5.8 below.

Figure 5.8 Application Speedup Compared to FTK

During testing, all hypotheses in Section 3.10 were proven correct. Increasing the

number of clients running the developed architecture resulted in increasingly faster

search runtimes for all testing scenarios. Increasing the client count also led to matches

being missed due to an increased probability of overlapping client instances. This was

only apparent in the ‘several hits’ testing scenario due to the large quantity of search

matches.

89

18 24
38

125

20

0

20

40

60

80

100

120

140

RegEx Search Literal Search Load

Sp
ee

du
p

Application Speedup

Richard and
Roussev
(2004)

Proposed
Application

 42

CHAPTER 6. CONCLUSION

The result of this thesis was a client/server application architecture employing the

distributed digital forensics concept. Similar approaches have been developed but this

thesis resolves some of their inherent infeasibilities. These include substantial financial

investments and difficulty in application instantiation. This thesis provides a solution to

these infeasibilities by leveraging existing desktop workstations on an internal network.

The application architecture developed in this thesis was written entirely in C#

and allows for one server instance to manage several client instances. Its effectiveness

was gauged by testing it against FTK which is one of the most widely used tools in the

digital forensics discipline. Testing consisted of using fabricated volume images to

compare search match counts and runtimes across both applications. Literal string

searches and regular expression searches were run across various counts of physical hosts

and on a single machine running FTK 4.1.

The client/server architecture in this thesis showed a decrease in search runtimes

in all testing scenarios when compared to FTK 4.1. With a 100 GB volume image, a 125

times speed up was experienced in the best case while a three time speed up was

experienced in the worst case. The hypotheses stated in this research were validated in

that search runtimes decreased as clients were added and matches were missed due to the

inability to search between clients.

While the search runtime results were faster than FTK 4.1 in all testing scenarios,

the client/server architecture could greatly benefit from additional functionality. This

includes cross platform operation, search browsing beyond the client maximum, and the

securing of evidence on remote clients as described in Section 6.1 below. Adding such

functionalities would make the proposed application a practical tool for use in real world

digital investigations.

 43

Distributed digital forensics can be a viable option for analyzing today’s very

large suspect datasets. The quick live search times of DDF implementations almost

eliminate the need for time consuming indexing processes. This time savings

consequently results in faster investigation times which are vital in time sensitive

investigations. While other DDF approaches have been developed, the approach in this

thesis is novel in that it is simple to instantiate while also eliminating the need to

purchase and or dedicate additional hardware. As such it is a practical tool for an

investigative agency of any size to utilize. The end result is the ability to conduct more

digital investigations in less time helping to alleviate the strains of an ever increasing

backlog of digital evidence.

6.1. Future Work

While the performance of the proposed distributed digital forensics application is

noteworthy, it suffers from several short comings. These include limited operating

system compatibility, search matches not being displayed, search matches not being

found, and remnant evidence on the clients. These shortcomings were made apparent

during application development and solutions were partially implemented due to their

irrelevancy to the scope of the thesis. The proposed application can become a much more

viable solution for the digital forensics community if these short comings were addressed.

This chapter describes these shortcomings and potential solutions that may be fully

implemented in the future.

6.1.1. Cross Platform Functionality

The proposed application was developed entirely in Microsoft’s C# programming

language. This is not ideal as it severely hampers cross platform operation on networks

consisting of machines running various operating systems. The obvious solution would

be to port the application to a more cross platform friendly programming language such

as C++.

 44

6.1.2. Search Improvements

As stated in section 3.5, each client sends a list of search results back to the server

for display to the user. The number of matches sent to the server is limited based on both

the size of the results and the size of the communication buffer. This limit helps prevent

resource saturation since the server is responsible for storing results from every client.

Matches not stored in the initial batch of matches are not stored on the server and thus

cannot be displayed to the user.

This shortcoming was apparent during development and as such an index pointer

was configured on the client side. This pointer is updated to the index of the last search

match located at the end of the last batch of matches. The final step required to complete

this solution would be to implement search querying on the server. The client would

simply send the next batch of matches greater than the stored index value when the server

requests additional matches.

Quite possibly the greatest shortcoming of the proposed search process is the

inability to search files overlapping separate clients. A simple solution would be to store

the beginning of the first file and the end of the last file from each client on the server.

The resulting loss of resources on the server should essentially equate to two times the

search term length multiplied by the number of clients. This resource loss would be

justified as it would eliminate the need to implement any type of direct communication

between clients.

6.1.3. Security Improvements

Quite possibly the biggest issue with the proposed implementation is the security

concerns of the distribution process. This application was created with the intention of

operating on existing computational resources. Doing so facilitates easier instantiation

while also eliminating the need to purchase and or dedicate hardware. Unfortunately,

such machines may be publicly accessible and or compromised which could lead to

possible evidence tampering and or malicious file recovery.

 45

One potential solution would be to employ some sort of encryption on the remote

clients. Employing encryption could lead to significant performance loss depending on

what algorithm is used and how it is implemented. This performance loss may be

considered acceptable depending on the sensitivity of the suspect data being analyzed.

However, encryption may not be necessary if all machines are considered secure and

unoccupied during analysis. Secure file wiping may be a more viable if encryption is

deemed impractical or unnecessary. Involved clients could securely wipe all suspect

image files once an investigation is completed. Deciding between either of these options

would depend largely on the situation as well as the impact on overall application

performance.

LIST OF REFERENCES

 46

LIST OF REFERENCES

AccessData Group. (2013). FTK overview. Retrieved November 24, 2013, from
http://accessdata.com/products/computer-forensics/ftk

Allcock, B., Bester, J., Bresnahan, J., Chervenak, A., Kesselman, C., Meder, S., et al.

(2001). Secure, efficient data transport and replica management for high-
performance data-intensive computing. In Mass Storage Systems and
Technologies, 2001. MSS'01. Eighteenth IEEE Symposium on (pp. 13-13). IEEE.

Ames, J., Bresnahan, J., Chervenak, A., Feller, M., Foster, I., Keator, D., et al. (2010,

December). A data management framework for distributed biomedical research
environments. In e-Science Workshops, 2010 Sixth IEEE International
Conference on (pp. 72-79). IEEE.

Beebe, N. (2009). Digital forensic research: The good, the bad and the unaddressed.

In Advances in digital forensics V (pp. 17-36). Springer Berlin Heidelberg.

Burke, P., Craiger, P., Marberry, C., & Pollitt, M. (2008). A virtual digital forensics

laboratory. Advances in digital forensics IV (pp. 357-365). New York: Springer.

Davis, M., Manes, G., & Shenoi, S. (2005). A network-based architecture for storing

digital evidence. In Advances in Digital Forensics (pp. 33-42). Springer US.

Douceur, J., & Bolosky, W. (1999). A large-scale study of file-system contents. ACM

SIGMETRICS Performance Evaluation Review, 27(1), 59-70.

Garfinkel, S. L. (2010). Digital forensics research: The next 10 years. Digital

Investigation, 7, S64-S73.

Garner, G. (2013, August 30). Forensic Acquisition Utilities. Forensic Acquisition

Utilities. Retrieved November 24, 2013, from http://gmgsystemsinc.com/fau/

Hachman, M. (2011, July 20). Average drive capacity tops 500 GB as Seagate reports

profit. PCMAG. Retrieved November 26, 2013, from
http://www.pcmag.com/article2/0,2817,2388807,00.asp

 47

Halfacree, G. (2012, March 20). Seagate HAMRs hard drives to 1Tb per square inch. Bit-

tech. Retrieved November 26, 2013, from
http://www.bit-tech.net/news/hardware/2012/03/20/seagate-hamr/1

Jacobson, V., & Borman, D. (1992, May). TCP extensions for high performance. The

Internet Engineering Task Force. Retrieved November 24, 2013, from
http://www.ietf.org/rfc/rfc1323.txt

Kechadi, M., & Scanlon, M. (2010). Online Acquisition of Digital Forensic Evidence.

In Digital Forensics and Cyber Crime (pp. 122-131). Springer Berlin Heidelberg.

Microsoft. (2013a). TcpClient Class. Retrieved November 24, 2013, from

http://msdn.microsoft.com/en-us/library/system.net.sockets.tcpclient(v=vs.110).as
px

Microsoft. (2013b). About WMI. Retrieved November 24, 2013, from

http://msdn.microsoft.com/en-us/library/aa384642(v=vs.85).aspx

Mrdovic, S., Huseinovic, A., & Zajko, E. (2009, October). Combining static and live

digital forensic analysis in virtual environment. In Information, Communication
and Automation Technologies, 2009. ICAT 2009. XXII International Symposium
on (pp. 1-6). IEEE.

Richard III, G. & Roussev, V. (2004, August). Breaking the performance wall: The case

for distributed digital forensics. In Proceedings of the 2004 Digital Forensics
Research Workshop (Vol. 94).

Richard III, G., & Roussev, V. (2006a). Next-generation digital forensics.

Communications of the ACM, 49(2), 76-80.

Richard III, G. & Roussev, V. (2006b). Digital forensics tools: the next

generation. Digital Crime and Forensic Science in Cyberspace. Idea Group
Publishing, 75-90.

Richard III, G., Roussev, V., & Tingstrom, D. (2006). dRamDisk: Efficient RAM sharing

on a commodity cluster. In Performance, Computing, and Communications
Conference, 2006. IPCCC 2006. 25th IEEE International,193-198. IEEE.

Roussev, V., Wang, L., Richard III, G., & Marziale, L. (2009). MMR: A platform for

large-scale forensic computing. Research Advances in Digital Forensics, 5, 201-
214.

 48

Stoica, I. (2009). Overlay networks. University of Virginia Department of Computer
Science. Retrieved November 24, 2013, from
http://www.cs.virginia.edu/~cs757/slidespdf/757-09-overlay.pdf

Turner, P. (2006). Selective and intelligent imaging using digital evidence bags. Digital

Investigation, 3, 59-64.

Vishwanath, V., Burns, R., Leigh, J., & Seablom, M. (2009). Accelerating tropical

cyclone analysis using LambdaRAM, a distributed data cache over wide-area
ultra-fast networks. Future Generation Computer Systems, 25(2), 184-191.

Vcepa. (2005, August 8). Numeric string sort in C#. Code Project. Retrieved November

23, 2013, from http://www.codeproject.com/Articles/11016/Numeric-String-Sort-
in-C

APPENDIX

 49

APPENDIX. CLIENT FILE SERACH CODE IN C#

 50

 51

 52

 53

