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ABSTRACT 

Fouad, Mohamed Ph.D., Purdue University, August 2012. Privacy Risk and Scala­
bility of Differentially-Private Data Anonymization. Major Professor: Elisa Bertino. 

Although data disclosure is advantageous for many obvious reasons, it may incur 

some risk resulting from potential security breaches. An example of such privacy 

violation occurs when an adversary reconstructs the original data using additional 

information. Moreover, sharing private information such as address and telephone 

number in social networks is always subject to a potential misuse. In this dissertation, 

we address both the scalability and privacy risk of data anonymization. We develop a 

framework that assesses the relationship between the disclosed data and the resulting 

privacy risk and use it to determine the optimal set of transformations that need to 

be performed before data is disclosed. We propose a scalable algorithm that meets 

differential privacy when applying a specific random sampling. 

The main contribution of this dissertation is three-fold: (i) we show that de­

termining the optimal transformations is an NP-hard problem and propose a few 

approximation heuristics, which we justify experimentally, (ii) we propose a person­

alized anonymization technique based on an aggregate (Lagrangian) formulation and 

prove that it could be solved in polynomial time, and (iii) we show that combining 

the proposed aggregate formulation with specific sampling gives an anonymization 

algorithm that satisfies differential privacy. Our results rely heavily on exploring the 

supermodularity properties of the risk function, which allow us to employ techniques 

from convex optimization. Finally, we use the proposed model to assess the risk of 

private information sharing in social networks. 

Through experimental studies we compare our proposed algorithms with other 

anonymization schemes in terms of both time and privacy risk. We show that the 



x 

proposed algorithm is scalable. Moreover, we compare the performance of the pro­

posed approximate algorithms with the optimal algorithm and show that the sacrifice 

in risk is outweighed by the gain in efficiency. 
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1 INTRODUCTION 

An important issue any organization or individual has to face when managing data 

containing sensitive information is the risk that can be incurred when releasing such 

data. Even though data may be sanitized before being released, it is still possible 

for an adversary to reconstruct the original data using additional information thus 

resulting in privacy violations. To date, however, a systematic approach to quantify 

such risks is not available. Releasing health care information, for example, though 

useful in improving the quality of service that patients receive, raises the chances of 

identity exposure of the patients. Disclosing the minimum amount of information 

(or no information at all) is compelling specially when organizations try to protect 

the privacy of individuals. To achieve such a goal, the organizations typically try to 

hide the identity of an individual to whom data pertains and apply a set of trans­

formations to the microdata before releasing it. These transformations include (i) 

data suppression (disclosing the value ⊥, instead), (ii) data generalization (releasing 

a less specific variation of the original data such as in [1]), and (iii) data perturba­

tion (adding noise directly to the original data values such as in [2]). Studying the 

risk-utility tradeoff has been the focus of much research. Resolving this tradeoff by 

determining the optimal data transformation has suffered from two major problems, 

namely, scalability and privacy risk. To the best of our knowledge, most of the work 

in determining the optimal transformation to be performed on a database before it 

gets disclosed is such inefficient that increasing the table dimension will substantially 

exacerbate the performance. Moreover, data anonymization techniques [3–8] do not 

provide enough theoretical evidence that the disclosed table is immune from security 

breaches. Indeed, hiding the identities by having each record indistinguishable from 

at least k −1 other records [3] (k-anonymity), ensuring that the distance between the 

distribution of sensitive attributes in a class of records and the distribution of them 
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in the whole table is no more than t [5] (t-closeness), or ensuring that there are at 

least l distinct values for a given sensitive attribute in each indistinguishable group 

of records [6] (l-diversity); do not completely prevent re-identification [9]. It is shown 

in [10] that the k-anonymity [3, 4] technique suffers from the curse of dimensional­

ity: The level of information loss in k-anonymity may not be acceptable from a data 

mining point of view because the specifics of the inter-attribute behavior have a very 

powerful revealing effect in the high dimensional case. 

A realization of t-closeness is proposed in [11], called SABRE. It partitions a 

table into buckets of similar sensitive attribute values in a greedy fashion, then it 

redistributes tuples from each bucket into dynamically configured equivalence classes 

(EC). SABRE adopts the information loss measures [12–15] for each EC as a unit 

rather than treating released records individually. Moreover, although experimental 

evaluation demonstrates that SABRE is superior to schemes that merely applied 

algorithms tailored for other models to t-closeness in terms of quality and speed, it 

lacks the theoretical foundations for privacy guarantees and efficiency. 

The notion of Differential privacy [16, 17] introduced an additional challenge to 

anonymization techniques. Namely, can you ensure that there will be no information 

gain if a single data item is added (removed) to (from) the disclosed data set? Differ­

ential privacy provides a mathematical way to model and bound such an information 

gain. 

In this dissertation we address the problem of minimizing the risk of data disclo­

sure while maintaining its utility above a certain acceptable threshold. We propose a 

differential privacy preserving algorithm for data disclosure. The algorithm provides 

personalized transformation on individual data items based on the risk tolerance of 

the person to whom the data pertains. We first consider the problem of obtaining such 

a transformation for each record individually without taking the differential privacy 

constraint into consideration. Next, we consider the problem of obtaining a set of 

data transformations, one for each record in the database, in such a way that satisfies 

differential privacy and at the same time maximizes (minimizes) the average utility 

http:completelypreventre-identification[9].It
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(risk) per record. Towards this end, we adopt the exponential mechanism recently 

proposed in [18]. The main technical difference that distinguishes our application of 

this mechanism from the previous applications (e.g., in [18,19]) is the fact that in our 

case the output set is also a function of the input, and hence it changes if a record is 

dropped from the database. In fact, a simple example is presented to show that it 

is not possible to obtain differential privacy without sacrificing utility maximization. 

To resolve this issue, we sample only from “frequent elements”, that is, those gener­

alizing a large number of records in the database and show that, this way, differential 

privacy can be achieved with any desired success probability arbitrarily close to 1. 

Another technical difficulty that we need to overcome is how to perform the sampling 

needed by the exponential mechanism. Again, we explore the supermodularity of the 

(denominator of the) risk function to show that such sampling can be done efficiently 

even for a large number of attributes. 

Moreover, we consider the information flow in a network of entities. An impor­

tant issue any organization or individual has to face when managing data containing 

sensitive information is the risk incurred when sharing such information. Although 

nodes of such networks tend to be locally clustered into dense subnetworks (cliques), 

the small-world phenomenon suggests that any two random nodes in the network are 

likely to be connected through a fairly short sequence of intermediate nodes. Con­

sequently, disclosing private information to a neighbor is inherently associated with 

the risk that this information is unwillingly leaked to an untrustworthy remote party 

that may abuse this information. The potential harmful effect of this leakage should 

stimulate careful judgements before releasing private information. In the last part of 

the dissertation we present our work to develop a novel model that would assess the 

risk in such networks. 
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2 PRIVACY RISK FORMALISM 

2.1 Background 

Data sharing has important advantages in terms of improved services and business, 

and also for the society at large, such as in the case of homeland security. However, 

unauthorized data disclosures can lead to violations of individuals’ privacy, can result 

in financial and business damages as in the case of data pertaining to enterprises, or 

can result in threats to national security as in the case of sensitive geospatial data. 

Preserving the privacy of such data is a complex task driven by two important 

privacy goals: (i) preventing the identification of the entity relating to the data, and 

(ii) preventing the disclosure of sensitive information. Entity identification occurs 

when the released information makes it possible to identify the entity either directly 

(e.g., by publishing identifiers like SSNs), or indirectly (e.g., by linkage with other 

sources). Sensitive information include data that must be protected by law such as 

medical data, or is deemed sensitive by the entity to whom the data pertains. In the 

latter case, data sensitivity is a subjective measure whose nature may differ across 

entities. 

In many cases, a careful evaluation needs to be carried out in order to assess 

whether the privacy risk associated with the dissemination of certain data outweighs 

the benefits of such dissemination. As pointed out in the recent guidelines issued 

by the [20], “Some organizations have curtailed access without assessing the risk to 

security, the significance of consequences associated with improper use of the data, 

or the public benefits for which the data were originally made available. Contradic­

tory decisions and actions by different organizations easily negate each organization’s 

actions.” [1] introduces a way for providing privacy protection while constructing al­

gorithms that learn information from disparate data and introduces the notion of 
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privacy-enhanced linking. [16] shows that it is impossible to achieve privacy with 

respect to worst-case external knowledge. 

2.2 Motivation 

To date, however, most of the work related to data privacy has focused on how to 

transform the data so that no sensitive information is disclosed or linked to specific 

entities. Because such techniques are based on data transformations that modify 

the original data with the purpose of preserving privacy, the main focus of such 

approaches has been the tradeoff between data privacy and data quality, e.g., [3, 21]. 

Similar approaches based on output perturbation have been proposed by [22] and [23]. 

An important practical requirement for any privacy solution is the ability to quan­

tify the privacy risk that can be incurred by the release of certain data. Even though 

data may be sanitized before being released, it is still possible for an adversary to 

reconstruct the original data by using additional information that may be available, 

or by record linkage techniques [24]. A possible adversarial scenario is depicted in 

Fig. 2.1: An attacker exploits data released by an organization by linking it with pre­

viously obtained data concerning the same entity to gain an enhanced insight about 

this organization. Indeed, this insight would help the attacker narrow down possible 

mismatches when it is compared against a public dictionary, and consequently raising 

the identification risk. The goal of the work presented in this chapter is to develop, 

for the first time, a comprehensive framework for quantifying such privacy risk and 

supporting informed disclosure policies. 

The framework we propose is based on statistical decision theory and introduces 

the notion of a disclosure rule that is a function representing the data disclosure 

policy. Our framework estimates the privacy risk by taking into account a given 

disclosure rule and possibly the knowledge that can be exploited by the attacker. It 

is important to point out that our framework is also able to assess privacy risks when 

no information is available concerning the knowledge or dictionary that the adversary 
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Linkage 
Data 

Joined 

Data 

Identified 

Dictionary 

Organization 
Database 

Figure 2.1. An adversarial framework for identity discovery 

may exploit. The privacy risk function naturally incorporates both identity disclosure 

and sensitive information disclosure. We introduce and analyze different shapes of the 

privacy risk function. Specifically, we define the risk in the classical decision theory 

formulation and in the Bayesian formulation, for either the linkage or the no-linkage 

scenario. We prove several interesting results within our framework including that, 

under reasonable hypotheses, the estimated privacy risk is an upper bound on the true 

privacy risk. Finally, we gain insight by showing that the privacy risk is a quantitative 

framework for exploring the assumptions and consequences of k-anonymity. 

2.3 Statistical Decision Theory 

Statistical decision theory [25] offers a natural framework for measuring the quan­

titative effect of information disclosure. As the necessary modifications of decision 

theory are relatively minor, we are able to adapt a considerable array of tools and re­

sults from over 50 years of impressive research. We describe below only the principal 
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concepts of this theory in its traditional abstract setting, and then proceed to apply 

it to the information disclosure problem. 

Statistical decision theory deals with the abstract problem of making decisions 

in an uncertain situation. Decisions, their properties and the resulting effect are 

specified formally, enabling their quantitative and rigorous study. The uncertainty 

is encoded by a parameter θ abstractly called “a state of nature”, which is typically 

unknown. However, it is known that θ belongs to a set Θ that is usually a finite or 

infinite subset of Rl . The decisions are being made based on a sample of observations 

(x1, . . . , xn), xi ∈ X and are represented via a function δ : X n → A where A is an 

abstract action space. The function δ is referred to as a decision policy or decision 

rule. 

A key element of statistical decision theory is that the state of nature θ governs 

the distribution pθ(x) that generates the observed data (x1, . . . , xn). Given the state 

of nature θ, the loss incurred by taking an action δ(x1, . . . , xn) ∈ A is determined by 

a non-negative loss function 

ℓ : A×Θ → [0, +∞] or ℓ
(
δ(x1, . . . , xn), θ

) 
≥ 0. 

We sometimes denote ℓ
(
δ(x1, . . . , xn), θ

) 
as δθ(x1, . . . , xn) when we wish to emphasize 

it as a function, parameterized by θ, of the observed data. 

Rather than measuring the loss incurred by a specific decision rule and a specific 

set of observations, it makes sense to consider the expected loss (or risk) where the ex­

pectation is taken over observations being generated from the distribution generating 

the data pθ. Denoting expectations in general as 

f

p(x)h(x) dx continuous x 
X

Ep(x)

(
h(x)

) 
= L

x∈X p(x)h(x) discrete x,  

the expected loss or risk associated with the decision rule δ and θ ∈ Θ is 

R(δ, θ) = Epθ(x1,...,xn)

(
ℓ(δ(x1, . . . , xn), θ)

) 
= E� 

(
ℓ(δ(x1, . . . , xn), θ)

)
,pθ(xi)

where the last equality assumes independence of x1, . . . , xn. 
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The two main statistical paradigms, classical statistics and Bayesian statistics, 

carry over to decision theory. In the classical setting of decision theory, the risk 

R(δ, θ) is the main quantity of interest and its properties and relations to different 

decision rules δ and states θ are studied. The Bayesian approach to decision theory 

assumes that another piece of information is available: our prior beliefs concerning 

the possibility of various states of nature θ ∈ Θ. This prior belief is represented by a 

prior probability q(θ) over possible states leading to the Bayes risk 

R(δ) = Eq(θ)

(
R(δ, θ)

) 
= Eq(θ){Epθ(x1,...,xn)

(
ℓ(δ(x1, . . . , xn), θ)

)
}. 

Much has been said in the statistics literature over the controversy between the 

classical and the Bayesian points of view. Without going into this discussion, we 

simply point out that an advantage of the Bayes risk is that we can compare different 

policies δ1, δ2 based on a single number (their associated risks R(δ1), R(δ2)) leading 

to a partial order on all possible policies. An advantage of the classical framework 

is that there is no need for a prior distribution q, which is often hard or impossible 

to specify. In both cases, we need to have a precise specification of the probabilistic 

model pθ(x), a set of possible states of nature Θ and a loss function ℓ. While pθ 

and Θ depend on modeling assumptions or estimation from data, the loss function 

ℓ is typically elicited from a user and its subjective quality reflects the personalized 

nature of risk-based analysis and decision theory. 

2.4 Framework 

As private information in databases is being disclosed, undesired effects occur 

such as privacy violations, financial loss due to identity theft, and national security 

breaches. To proceed with a quantitative formalism we assume that we obtain a 

numeric description, referred to as loss, of that undesired effect. The loss may be 

viewed as a function of two arguments (i) whether the disclosed information enables 

identification, and (ii) the sensitivity of the disclosed information. 
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The first argument of the loss function encapsulates whether the disclosed data 

can be tied to a specific entity or not. Consider for example the case of a hospital 

disclosing a list of patients’ gender and whether they have a certain medical condition 

or not. Due to the presence of medical information, such data is clearly sensitive. 

However, the data sensitivity does not provide any information about the chance of 

tying the disclosed data to specific individuals and as a result the patients maintain 

their anonymity and no harmful effect is produced. The clear distinction between data 

sensitivity and identification, and their combination via a probabilistic framework, is 

a central part of our framework. The quantification of the identification probability 

depends on (i) disclosed data, (ii) available side information such as national archives 

or a phone-book, and (iii) attacker’s model. 

In contrast to the identification probability, the second argument of the loss func­

tion concerning the data sensitivity depends on the entity associated with the data. 

Data such as annual income, medical history, and Internet purchases relating to spe­

cific users may be very sensitive to some but only marginally sensitive to others. Such 

personalized or customized sensitivity measures are important to take into consider­

ation when measuring harmful effects and deciding on a disclosure policy. Clearly, 

ignoring it may lead to offering insufficient protection to a subset of people while 

applying excessive protection to the privacy of another subset. It is worth point­

ing out that we do not draw a distinction between sensitive attributes and quasi-

identifiers [5, 6, 26]. Rather, our framework provides more flexibility by enabling the 

owners of the data to supply the sensitivity of their attributes at their discretion. 

We assume that the data resides in a relational database with the relational scheme 

(A1, . . . , Am), where each attribute Ai takes values in a domain Domi, which includes 

a possible missing value symbol ⊥. The space 

X = Dom1 × Dom2 × · · · × Domm 

represents the set of all possible records: both original records residing in a database 

and disclosed records. We make the following assumption for the sake of notational 

simplicity, none of which are crucial to the presented framework. First, we assume 
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that one of the attributes A1 uniquely identifies the entity associated with the record. 

This attribute will typically not be disclosed, but is important for notational conve­

nience. Second, we assume that the symbol ⊥ ∈ Domi for all i, corresponds to both a 

missing value in the database and to attribute values that are suppressed during the 

disclosure procedure. Suppression of the (non-missing) j-attribute in a record y ∈ X 

may thus be represented by a function δ : X → X for which [δ(y)]j = ⊥. Finally, we 

assume that the space X is sufficiently rich to denote attribute generalizations. For 

example 

North America ∈ Domcountry 

represents a generalization of the country attribute to a more vague concept. 

We will usually refer to an arbitrary record as x, y or z, and to a specific record 

in a particular database as a subscripted variable xi (note the bold-italic typesetting 

representing vector notation). The attribute values of records are represented using 

the notation [x]j, [xi]j or just xj or xij , respectively (note the non-bold typesetting). 

A collection of n records, for example a database containing n records, is represented 

by (x1, . . . , xn) ⊆ X n . 

2.4.1 Disclosure Rules and Privacy Risk 

Adapting the decision theory framework described in the previous section to pri­

vacy requires relatively few changes. Instead of decision policies δ : X n → A we 

have disclosure policies δ : X → X representing disclosing the data as is (δ(z) = 

z), attribute suppression ([δ(z)]j = ⊥), or attribute generalization (e.g., [δ(z)]j = 

North America). 

The state of nature θ that influences the incurred loss ℓθ = ℓ(·, θ) is the side infor­

mation used by the attacker in their identification attempt. Such side information θ is 

often a public data resource composed of identities and their attributes (e.g., a phone­

book). The record distribution p is the distribution that generates the disclosed data 

where we omit the dependence on θ since in our case p is independent of the attacker’s 



11 

side information θ. In the case of disclosing a specific set of records x1, . . . , xn that 

are known in advance, a convenient choice for p is the empirical distribution p̃ over 

these records defined below. 

Definition 2.4.1 The empirical distribution p̃ on X associated with a set of records 

x1, . . . , xn is 
1 

n

p̃(z) = 
L 

1{z=xi}, n 
i=1 

where 1{z=xi} is 1 if z = xi and 0 otherwise. 

Note that the expectations under p̃ reduce to empirical means 

1 
n

Ep̃

(
f(x, θ)

) 
= 

L 
f(xi, θ), 

n 
i=1 

and the expected loss reduces to the average incurred loss with respect to disclosing 

x1, . . . , xn: Ep̃

(
ℓθ(δ(x))

) 
= 1 

Ln ℓθ(xi). Taking expectation with respect to distri­n i=1 

butions other than p̃ can lead to a weighted average of losses, representing a situation 

in which some records are more important than others (although this effect can be 

more naturally incorporated into ℓ as described in the Section 2.4.3). More generally, 

in case of a streaming or sequential disclosure of records generated from a particular 

distribution p, we should compute the expected loss over that distribution in order 

to obtain a privacy risk relevant to the situation at hand. 

The following definitions complete the adaptation of statistical decision theory to 

the privacy risk setting. The similarities and differences between these definitions 

and their counterparts of the previous section are summarized in Table 2.1. 

Definition 2.4.2 The loss function ℓ : X ×Θ → [0, +∞] measures the loss incurred 

by disclosing the data δ(z) ∈ X due to possible identification based on the side infor­

mation θ ∈ Θ. 

Definition 2.4.3 The risk of the disclosure rule δ in the presence of side information 

θ is the expected loss R(δ, θ) = Ep(z)

(
ℓ(δ(z), θ)

)
. 

Definition 2.4.4 The Bayes risk of the disclosure rule δ is R(δ) = Eq(θ)

(
R(δ, θ)

)
, 

where q(θ) is a prior probability distribution on Θ. 
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Table 2.1 
Similarities and differences between the statistical decision theory and 
the privacy framework 

Statistical decision theory Privacy risk framework 

X 

x1, . . . , xn 

θ ∈ Θ 

δ 

ℓ 

R(δ, θ) 

R(δ) 

Space of abstract data 

Available observations sampled from pθtrue 

Determinant of data distribution pθ(x) 

Abstract action based on x1, . . . , xn 

Abstract loss based on x1, . . . , xn and 

the model θ 

Abstract risk associated with decision 

rule δ and the model θ 

Bayes risk associated with decision rule δ 

Space of disclosed or stored records 

Records to be (partially) disclosed; determine p̃(x) 

Side information; unrelated to data 

What to disclose from a single record xi 

Privacy loss incurred from disclosing δ(xi) 

in the presence of the side information θ 

Privacy risk associated with disclosure rule 

and side information θ 

Bayes risk associated with disclosure rule δ 

2.4.2 Identification Probabilities, Data Sensitivity, and Loss Functions 

We turn at this point to consider in detail the process of identifying the entity 

represented by the disclosed record, the data sensitivity, and their relation to the loss 

function. The identification attempt is normally carried out by the attacker who uses 

the disclosed record y = δ(x) and additional side information or dictionary θ whose 

role is to tie the disclosed data to a list of possible candidate identities. 

The specification of the loss function ℓ is typically entity and problem dependent. 

We can, however, make significant progress by decomposing the loss into two parts: 

(i) the attacker’s probability of identifying the data owner based on the disclosed data 

δ(x) and side information θ, and (ii) the user-specified data sensitivity. While the 

data sensitivity is a subjective measure specified by users, the attacker’s probability of 

identifying the data owner should be computed based on the side information θ and a 

probabilistic attacker model. We start below with describing a reasonable derivation 

of the attacker’s identification probability and then proceed with a description of the 

user-specified data sensitivity function. 

Given a disclosed record δ(x) and an available side information or dictionary θ the 

attacker can narrow down the list of possible identities to the subset of entity entries 
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in θ that are consistent with the disclosed attributes δ(x). For example, consider x 

being (first-name, surname, phone-number) and the dictionary θ being a phone­

book. The attacker needs only to consider dictionary entities that are consistent 

with the disclosed record δ(x). Specifically, if there are no missing values and the 

entire record is disclosed, i.e., δ(x) = x, it is likely that only one entity exists in 

the dictionary that is consistent with the disclosed information. On the other hand, 

if the attribute value for phone-number is suppressed, the phone-book θ may yield 

more than a single consistent entity depending on the popularity of the combination 

(first-name, surname). 

Formalizing the above idea we define the binary random variable Z which equals 

1 if the attacker successfully identified the data owner and 0 otherwise. The identifi­

cation probability p(Z = 1) depends on the attacker, but in the absence of additional 

information we may assume that the identification attempt is a uniform selection 

from the set of entities in θ consistent with the disclosed δ(x), denoted by ρ
(
δ(x), θ

)
, 


|ρ
(
δ(x), θ

)
|−1 if ρ

(
δ(x), θ

) 
�= ∅

 
p(Z = 1) = and p(Z = 0) = 1− p(Z = 1). 

0 if ρ
(
δ(x), θ

) 
= ∅ 

The data sensitivity is determined by two user specified functions Φ, Ψ : X → 

[0, +∞]. Φ measures the harmful effect of disclosing the data assuming that the 

attacker’s identification is successful, i.e., Φ(x) = ℓ(δ(x), θ) | {Z = 1}. Similarly, 

Ψ measures the harmful effect of disclosing the data assuming that the attacker’s 

identification is unsuccessful, i.e., Ψ(x) = ℓ
(
δ(x), θ

) 
| {Z = 0}. 

Putting the identification probability and sensitivity function together, we have 

that the harmful effect is a random variable with two possible outcomes: Φ
(
δ(x)

)

with probability p(Z = 1) and Ψ
(
δ(x)

) 
with probability p(Z = 0). Accounting for 

the uncertainty resulting from possible identification, we define the loss ℓ(y, θ) as the 

expectation 

ℓ
(
δ(x), θ

) 
= p(Z = 1)Φ

(
δ(x)

) 
+ p(Z = 0)Ψ

(
δ(x)

)
. 
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Allowing Φ, Ψ to take on the value +∞ enables us to model situations where the data 

sensitivity is so high that its disclosure is categorically prohibited (if Ψ ≡ +∞) or is 

prohibited under any positive identification chance (if Φ ≡ +∞). 

It is often the case that no harmful effect is caused if the attacker’s identification 

attempt fails leading to Ψ ≡ 0. For simplicity, we assume this is the case in the 

remainder of the chapter, leading to ℓ(δ(x), θ) = p(Z = 1)Φ(δ(x)). The risk R(δ, θ) 

with respect to the empirical distribution p̃ over the disclosed records is 

1 Φ(δ(xi)) 
R(δ, θ) = Ep̃

(
ℓ(δ(z), θ)

) 
= 
n 

L 

|ρ
(
δ(xi), θ

)
|
, 

i : ρ(δ(xi),θ) =∅ 

and the Bayes risk under the prior q(θ) is 

n
1 

 
q(θ)

R(δ) = Ep̃(R(δ, θ)) = 
n 

L 
Φ(δ(xi))

Θ 

1 
{ρ
(
δ(xi),θ

)
 |ρ

(
δ(xi), θ

)
|
dθ, 

=∅} 
i=1 

or its discrete equivalent if Θ is a discrete space. Similar expressions can be computed 

if the assumption Ψ ≡ 0 is relaxed. 

2.4.3 Parametric Families of Sensitivity Functions 

We now present several possible families of expressions for the data sensitivity 

function Φ. Since Φ is defined on the set X of all possible records, defining it by a 

lookup table is impractical for a large number of attributes. We therefore consider 

several options leading to compact and efficient representations. Given a disclosed 

record y = δ(x), perhaps the simplest meaningful form for Φ is a linear combination 

of non-negative weights wj ≥ 0 over the disclosed attributes 

L
Φ1(y) = wj, (2.1) 

j : yj= ⊥ 

where wj represents the sensitivity associated with the corresponding attribute Aj . 

A weight of +∞ represents critically sensitive information that may only be disclosed 

if there is zero chance of it leading to identification. 

In some cases, the data sensitivity significantly depends on the entity associated 

with the record. In other words, attributes Ai may be highly sensitive for some 
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records and less sensitive for other records. Recalling the assumption that one of 

the attributes, say y1, represents a unique identifier, we can construct the following 

personalized linear sensitivity function 

Φ2(y) = 
L 

wj,y1 . (2.2) 
j:yj=⊥ 

The weights {wj,r : j = 1, . . . , n} should be elicited from the different entities corre­

sponding to the records or otherwise assigned by the database according to the group 

or cluster they belong to. Normalization constraints such as 

∀r 
L 

wj,r = c or ∀r 
L 

wj,r ≤ c 
j j 

can be enforced to provide all entities with similar privacy protection, or to make sure 

that no single entity dominates the privacy risk. 

There are a number of ways to increase the flexibility of sensitivity functions 

beyond linear forms. One way to do so is by forming linear expressions containing 

k-order interaction terms, e.g., for k = 2 

Φ3(y) = 
L 

wj,y1 + 
L L 

wj,h,y1 . (2.3) 
j>1:yj=⊥ j>1:yj=⊥ h>j:yh =⊥ 

Expressions containing k-order interaction terms use additional weights to capture 

interactions of at most k attributes that are not accounted for in expressions (2.1), 

(2.2). As k increases in magnitude, the class of functions represented by Φ becomes 

richer and in the case of k = m provides arbitrary flexibility. However, increasing k 

beyond a certain limit is impractical as both the number of weights specified by the 

users as well as the computational complexity associated with Φ4 grow exponentially 

with k. 

A possible alternative to the linear sensitivity function is a multiplicative function 
  

wj,y1Φ4(y) = exp 
L 

wj,y1 
 = 

� 
e (2.4) 

j:yj=⊥ j:yj=⊥ 

in which case increasing one weight wi,j while fixing the others causes the sensitivity to 

increase exponentially in contrast to (2.1)-(2.3). The precise choice of the sensitivity 
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function Φ (and Ψ is applicable) ultimately depends on the database policy and 

entities relating to the data. A simple function such as (2.2) or (2.4) has the advantage 

of being easier to elicit and interpret. 

2.4.4 Data Transformation and Privacy Risk 

A common practice in privacy preservation is to replace data records with sup­

pressed or more general values [3, 4] in order to ensure anonymity and prevent the 

disclosure of sensitive data. A disclosure policy δ : X → X can suppress an attribute 

by assigning a ⊥ symbol to the appropriate attribute, i.e., [δ(x)]j = ⊥. 

Assuming that the space X is rich enough to contain the necessary generalizations, 

attribute value generalization may be accomplished by assigning a disclosed value that 

is more general than the original attribute value xj ≺ [δ(x)]j . Formally, we assume 

that Domi is a partially ordered set (Si, ≺) whose smallest elements correspond to 

non-generalized attribute values and whose single maximum element is the ultimate 

generalized value, which we identify with the suppressed or missing value introduced 

earlier ⊥. 

The partially ordered set Domi may be illustrated using its Hasse diagram in 

which every node corresponds to a member of Domi and the edges correspond to 

the covering relation: x covers y if y ≺ x and ∄z : y ≺ z ≺ x [27]. Furthermore, 

when constructing the Hasse diagram we draw more general nodes vertically higher 

than less general nodes. As an example, consider the attribute value representing a 

location or address and several levels of generalized values. A partial Hasse diagram 

representing the partial value generalization hierarchy for this attribute is illustrated 

in Fig. 2.2. In this particular case, the Hasse diagram is relatively simple and is 

graphically described using a tree structure. More general examples and properties 

of partially ordered set may be found in [27]. 
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⊥
 

Midwest 

Indiana Illinois 

Indianapolis Tippecanoe 

Greater 
Battle Ground Buck Creek Clarks Hill Dayton Romney Lafayette 

West Lafayette 
Lafayette 

Figure 2.2. A partial value generalization hierarchy (VGH) for the address field 

Replacing an attribute value xj by a more general value x̂j , i.e., xj ≺ x̂j increases 

the set of entities consistent with that value in the attacker’s dictionary θ, i.e., 

xj � x̂j =⇒ ρ
(
(x1, . . . , xj , . . . , xm), θ

) 
⊆ ρ

(
(x1, . . . , x̂j , . . . , xm), θ

)
, (2.5) 

where ρ(x, θ) is the set of entities in θ consistent with x. Equation (2.5) indicates 

that, as expected, generalizing an attribute value (which includes suppression as a 

special case) reduces the identification probability p(Z = 1). Equation (2.5) together 

with the assumption that the data sensitivity function Φ assigns smaller values to 

more general data ensure that the loss ℓ
(
δ(x), θ

) 
decreases with the amount of data 

generalization. The precise constraint on Φ depends on its parametric form, e.g., 

(2.1)-(2.4). For example, in the case of a personalized linear sensitivity (2.2), the 

appropriate constraints on the weights are 

• wa ≥ 0, 

• wa,r ≤ wb,r ∀a � b ∀r, 

• w⊥ = 0. 
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The last constraint above is not crucial, but it ensures that fully suppressed data 

have zero sensitivity Φ(⊥, . . . , ⊥) = 0. 

In summary, as we generalize or suppress data both the identification probability 

p(Z = 1) and data sensitivity Φ
(
δ(x)

) 
decrease leading to lower loss ℓ

(
δ(x, θ)

) 
and 

lower risk R(δ, θ). Considering the disclosure risk R(δ, θ) by itself leads to the conclu­

sion that in order to minimize the risk the data need to be completely suppressed or 

generalized. However, such a conclusion misses the point since it ignores the benefit 

obtained from the data disclosure. In order to appropriately appreciate the trade-off 

between the risk and benefit associated with private data disclosure we extend our 

discussion in the next section to include a quantification of the benefit associated 

with data disclosure. 

2.4.5 A Summary of Model Assumptions 

Privacy Risk Framework Assumptions: 

• Protection is provided in terms of masking values (data suppression and/or 

generalization) regardless of the information that the attacker may imply by 

masking out these values. 

• The adversarial external knowledge is defined in terms of a side information 

referred to as a dictionary. 

• The average-case measure is used to formulate the privacy risk and utility 

throughout the dissertation. This measure could be easily changed to other 

measures such as worst-case notion. 

• Sensitivity information is available at the attribute level. 

• Initial risk resulting from successful guess by the attacker does not have an 

impact on the optimum disclosure rule. 
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2.5 The Optimal Disclosure Policies 

Apart from incurring a privacy risk, disclosing private data δ(x) has some benefit, 

or else data would never be disclosed. We represent this benefit by a utility function 

u : X → R+ whose expectation 

U(δ) = Ep(x)

(
u(δ(x))

)

plays a similar but opposing role to the risk R(δ, θ). While the loss ℓ
(
δ(x), θ

) 
is user 

specified and may change from user to user, the utility is typically specified by the 

disclosing organization or the data recipient and is not user dependent. 

The relationship between the risk and expected utility is schematically depicted 

in Fig. 2.3, which displays disclosure policies δ by their 2-D coordinates (R, U) rep­

resenting their risk and expected utility. The shaded region in the figure corresponds 

to the set of achievable disclosure policies, i.e., every coordinate (R, U) in that region 

corresponds to one or more policies δ realizing it. The unshaded region corresponds 

to un-achievable policies, i.e., there does not exist any δ with the corresponding risk 

and expected utility. The vertical line in the figure corresponds to all rules whose risk 

is fixed at a certain level. Similarly, the horizontal line corresponds to all rules whose 

expected utility is fixed at a certain level. Since the disclosure goal is obtain both low 

risk and high expected utility, we are naturally most interested in disclosure policies 

occupying the boundary (or frontier) of the shaded region. Policies in the interior of 

the shaded region can be improved upon by projecting them to the boundary. 

The vertical and horizontal lines suggest the following two ways of resolving the 

risk-utility tradeoff. Assuming that we cannot afford incurring risk higher than some 

acceptable level, we can define the optimal policy as 

δ ∗ = argmax U(δ) subject to R(δ, θ) ≤ c. (2.6) 
δ 

Alternatively, insisting on having expected utility no less than a certain acceptable 

level we can define the optimal policy to be 

δ ∗ = argmin R(δ, θ) subject to U(δ) ≥ c. (2.7) 
δ 
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U(δ) 

R(δ,θ) 

Figure 2.3. Space of disclosure rules and their risk and expected 
utility. The shaded region corresponds to all achievable disclosure 
policies δ. 

A more symmetric definition of optimality is given by 

δ ∗ = argmin R(δ, θ)− λU(δ), (2.8) 
δ 

where λ ∈ R+ is a parameter controlling the relative importance of minimizing risk 

and maximizing utility. Note that a similar optimization model was proposed by 

Krause et al. [28]. The goal of this model is to optimize U(A)− λC(A) where A is a 

subset of user’s personal attributes, and the functions U(A) and C(A) are capturing 

the utility and cost of sharing this information, respectively. However, in computing 

the risk and utility, the model relied heavily on predicting the user’s target intention 

which is not an easy task. Also, the decision as to which user’s private attributes to 

share is made on an all-or-none basis and does not consider the possibility of disclosing 

more general information. 

The formation and interpretation of optimality depend on the situation in hand 

and are ultimately up to policy makers. We focus below on the case (2.7), but 

to simplify the notation we denote Δ = {δ : U(δ) ≥ c} so that (2.7) becomes 

δ∗ = argminδ∈Δ R(δ, θ). Solving (2.7) may often be computationally challenging as 

it is not easy to get a closed form definition of the constraint set Δ = {δ : U(δ) ≥ c}. 
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More efficient computational search can usually be obtained by considering instead 

δ∗ = argmin R(δ) Δ {δ : ∀i, u
(
δ(xi)

) 
≥ c} ⊆ Δ. δ∈6 where � = Δ 

Solving the optimization problems (2.6)-(2.8) requires knowledge of the attacker’s 

side information θ. In some cases the attacker’s side information is known – for 

example when θ constitutes national archives or some other publicly available dataset. 

Rather, in cases where the attacker’s side information θ is unknown, we can proceed 

using one of the following approaches. 

Bayes Risk: ReplacingR(δ, θ) in (2.6)-(2.8) with the Bayes risk R(δ) = Eq(θ)

(
R(δ, θ)

)

provides Bayesian-optimal policies that are independent of θ. 

Estimating θ: In some cases we can obtain an estimate of the attacker’s side infor­

mation θ̂. In these cases we can use expressions (2.6)-(2.8) with R(δ, θ) replaced 

by R(δ, θ̂). Mathematical analysis can be used to study the quality of the ap­

proximation R(δ, θ̂) ≈ R(δ, θ) in terms of the approximation θ̂ ≈ θ. 

Worst Case Scenario: In the absence of any information concerning θ we can use 

(2.6)-(2.8) with the worst case risk maxθ∈Θ R(δ, θ) instead of R(δ, θ). The re­

sulting policies, for example the minimax risk δ∗ = argminδ∈Δ maxθ∈Θ R(δ, θ), 

have the best worst case scenario. 

Bounding the Risk: This approach is described in the next Section. 

The following algorithm describes how to use the sets R = {
(
δi, R(δi, θ)

)
, i = 

1, 2, · · · } and U = {
(
δi, U(δi)

)
, i = 1, 2, · · · } to determine the optimal disclosure rule 

that achieves a minimum risk and in the meantime lower bounds the utility. 

2.5.1 Bounding the True Risk by the Estimated Risk 

As mentioned above, we can use an estimate θ̂ instead of θtrue and estimate the 

risk by R(δ, θ̂). In some cases, as described below, we can bound the true risk in 

terms of the estimated risk R(δ, θtrue) ≤ R(δ, θ̂) as well as the risk of the optimal 

policy argminδ∈Δ R(δ, θ
true) ≤ argminδ∈Δ R(δ, θ̂). 
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Algorithm 1: MinRisk: Identifying The Optimal Disclosure Rule 

Input: A threshold c and the sets R = {
(
δi, R(δi, θ)

)
, i = 1, 2, · · · } and 

U = {
(
δi, U(δi)

)
, i = 1, 2, · · · }. 

Output: The minimum risk R∗ and the corresponding optimal disclosure rule 

δ∗ such that U(δ∗) ≥ c. 

begin 

1 Δ∗ = φ; 

2 

3 

for 
(
δj , U(δj)

) 
∈ U do 

if U(δj) ≥ c then 

4 Δ∗ = Δ∗ ∪ {δj}; 

/* The set Δ∗ = {δj|U(δj) ≥ c} */ 

5 R∗ = ∞, δ∗ = ⊥; 

6 for δ∗ k ∈ Δ
∗ do 

7 

8 

find 
(
δ∗ k, R(δ

∗ 
k, θ)

) 
∈ R; 

if R(δ∗ k, θ) ≤ R∗ then 

9 R∗ = R(δ∗ k, θ); 

10 δ∗ = δ∗ k; 

11 return (δ∗, R∗); 

A frequent situation is when the estimate θ̂ is obtained from the organization’s 

records while the attacker’s dictionary θtrue is a more general-purpose dictionary. In 

other words, the estimated side information θ̂ is more specific than the attacker’s 

dictionary. For example, since θtrue is more general, it contains the records in θ̂ as 

well as additional records. Following the same reasoning we can also assume that 

for each record that exists in both dictionaries, θtrue will have more general attribute 

values than θ̂. 

For example, consider a database of employee records for some company. θ̂ would 

be a dictionary constructed from the database and θtrue would be a general-purpose 
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dictionary available to the attacker. It is natural to assume that θtrue will con­

tain additional records over the records in θ̂ and that the attributes in θtrue (e.g., 

first-name,surname,phone#) will be more general than the attributes in θ̂. After all, 

some of the record attributes are private and would not be disclosed in order to find 

their way into the attacker’s dictionary (resulting in more ⊥ symbols in θtrue). 

Below, we consider dictionaries θ = (θ1, . . . , θl) as relational tables, where θi = 

(θi1, . . . , θiq) is a record in a relation Tθ(A1, . . . , Aq), with A1 corresponding to the 

record identifier. 

Definition 2.5.1 We define a partial order relation ≪ between dictionaries θ = 

(θ1, . . . , θl1 ) and η = (η1, . . . , ηl2 
) by saying that θ ≪ η if for every θi, ∃ηj such that 

ηj1 = θi1 and ∀k θik � ηjk. 

θ ≪ θtrue Theorem 2.5.1 If θ̂ contains records that correspond to x1, . . . , xn and ˆ , 

then 

∀δ R(δ, θtrue) ≤ R(δ, θ̂). 

Proof For every disclosed record δ(xi) there exists a record in θ̂ that corresponds 

to it, and since θ̂ ≪ θtrue there is also a record in θtrue that corresponds to it. As a 

ˆresult, ρ
(
δ(xi), θ

) 
and ρ

(
δ(xi), θ

true
) 
are non-empty sets. 

ˆ ˆ θ ≪ θtrue For an arbitrary a ∈ ρ
(
δ(xi), θ

) 
we have a = θv for some v and since ˆ , 

there exists a corresponding record θtrue 
k . The record θtrue 

k will have the same (or more) 

∈ ρ
(
δ(xi), θ

true
)
.general values as a and, therefore, θtrue 

k The same argument can be 

ˆ ˆrepeated for every a ∈ ρ
(
δ(xi), θ

)
, thus showing that ρ

(
δ(xi), θ

) 
⊆ ρ

(
δ(xi), θ

true
) 
or 

|ρ
(
δ(xi), θ

true
)
|−1 ≤ |ρ

(
δ(xi), θ̂

)
|−1 . 

The probability of identifying δ(xi) by the attacker is thus smaller than the iden­

ˆtification probability based on θ and it follows that 

ˆ R(δ, θtrue) ≤ R(δ, ˆ∀i ℓ
(
δ(xi), θ

true
) 
≤ ℓ

(
δ(xi), θ

) 
⇒ θ). 
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2.6 Privacy Risk and k-Anonymity 

k-Anonymity [3] has received considerable attention by the research community 

[29, 30]. Given a relation T , k-anonymity ensures that each disclosed record can be 

indistinctly matched to at least k individuals in T . It is enforced by considering a 

subset of the attributes called quasi-identifiers, and forcing the disclosed values of 

these attributes to appear at least k times in the database. k-Anonymity uses two 

operators to accomplish this task: suppression and generalization. 

In its original formulation, k-anonymity does not seem to make any assumptions 

on the possible external knowledge that could be used for entity identification and 

does not refer to privacy loss. However, k-anonymity does make strong implicit 

assumptions whose presence may undermine its original motivation. Following the 

formal presentation of k-anonymity in the privacy risk context, we analyze these 

assumptions and their possible relaxations. 

Since the k-anonymity requirement is enforced on the relation T , the anonymiza­

tion algorithm considers the attacker’s side information θtrue as equal to the relation 

or database T . Representing the k-anonymity rule by δk
∗, the k-anonymity constraints 

may be written as 

∀i |ρ
(
δk
∗ (xi), T 

)
| ≥ k. (2.9) 

The sensitivity function is taken to be constant Φ ≡ c as k-anonymity is concerned 

with only satisfying the constraints (2.9). In fact, it treats disclosure of different 

attributes corresponding to different entities as equal, as long as the constraints (2.9) 

hold. 

As a result, the loss incurred by k-anonymity δ∗ is bounded by ℓ
(
δ∗(xi), T 

) 
≤ c/k,k k

where equality is achieved if the constraint |ρ
(
δ∗(xi), T 

)
| = k is met. On the other k

hand, any rule δ0 that violates the k-anonymity requirement for some xi will incur a 

loss higher (under θ = T and Φ ≡ c) than the k-anonymity rule 

c 
ℓ
(
δ0(xi), T 

) 
= 

|ρ
(
δ0(xi), T 

)
|
≥ ℓ

(
δ ∗ (xi), T 

)
.k
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We thus have the following result presenting k-anonymity as optimal in terms of the 

privacy risk framework. 

Theorem 2.6.1 Let δk 
∗ be a k-anonymity rule and δ0 be a rule that violates the k-

anonymity constraint, both with respect to xi ∈ T . Then, 

ℓ
(
δ ∗ (xi), T 

) 
≤ c/k < ℓ

(
δ0(xi), T 

)
.k

As the above theorem implies, the k-anonymity rule minimizes the privacy loss 

per example xi and may be seen as argminδ∈Δ R(δ, T ), where Δ is a set of rules that 

includes both k-anonymity rules and rules that violate the k-anonymity constraints. 

The assumptions underlying k-anonymity, in terms of the privacy risk framework are: 

1. θtrue = T , 

2. Φ ≡ c, and 

3. Δ is under-specified. 

The first assumption may be taken as an indication that k-anonymity simply 

assumes that the database relation T is available as side information to the attacker. 

This assumption can be expanded as described earlier by assuming an estimated θ̂

using a Bayesian averaging, worst case risk maxθ∈Θ R(δ, θ), or that θtrue is a publicly 

available resource. Such adaptation of k-anonymity is likely to more faithfully protect 

privacy and yet should not require a major conceptual change to the k-anonymity 

framework. 

The second assumption of the sensitivity function Φ ≡ c being constant is a result 

of k-anonymity’s singular attention to protection from identification. In other words, 

disclosing data incurs the same loss regardless of the data itself and the entity to whom 

the data pertain, as long as there exists a certain protection from identification. This 

is a problematic assumption since under imperfect identification protection, the notion 

of privacy preservation is not synonymous with identification. Imperfect identification 

protection occurs since a positive probability of identification remains, whether by the 
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original data disclosure or by linkage as described in the next section. As a result, it is 

imperative to take into consideration also the sensitivity of the disclosed information. 

As a simple example, consider facing two possible disclosure options: the disclo­

sure of data containing a substantial medical diagnosis (e.g., HIV positive) and the 

disclosure of data containing a recent grocery shopping transaction. Intuitively, the 

former case would lead to a greater privacy violation than the latter under non-zero 

identification probability. However, k-anonymity, assuming a constant sensitivity 

function, considers the disclosure of both data equally harmful if they provide similar 

identification protection. On the other hand, it may favor the disclosure of very sensi­

tive information if it provides slightly better identification protection than relatively 

non-sensitive data. Chapter 3 presents a case study illustrating this point further in 

the context of a commercial organization’s customer transaction database. For a di­

verse commercial organization such as Amazon.com, transactions should be classified 

according to varying sensitivity levels. k-Anonymity protection would exert unde­

sired privacy protection in some areas while lacking in other areas. The privacy risk 

framework presented in this dissertation provides a natural extension to k-anonymity 

by making Φ non-constant. The resulting privacy loss combines data sensitivity and 

identification protection in quantitative probabilistic manner. 

The third assumption implies that the set Δ may be specified in several ways. 

Recall that the risk minimization framework is based on the assumption that there 

is a tradeoff in disclosing private information. On one hand, the disclosed data incur 

a privacy loss and, on the other hand, disclosing data serves some benefit. The risk 

minimization framework argminδ∈Δ R(δ, θ) assumes that Δ contains a set of rules 

acceptable in terms of their disclosure benefit, and from which we select the one 

incurring the least risk. k-Anonymity ignores this tradeoff and the set of candidate 

rules Δ may be specified in several ways – for example Δ = Δ0 ∪ {δk
∗}, where Δ0 

contains rules that violate the k-anonymity constraints. 

http:Amazon.com
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2.7 Privacy Risk and Record Linkage 

We have thus far discussed the usage of a dictionary to identify the entity associ­

ated with a disclosed record. Side information is sometimes used in a different way 

to link disclosed records with additional data. The linkage, if successful, enlarges the 

available information, thereby influencing both the data sensitivity and subsequent 

identification probability. The probabilistic framework of the privacy risk can be nat­

urally extended to account for such cases. Fig. 2.1 illustrates the linkage process in 

the context of the privacy risk framework. 

We say that the linkage of the disclosed data δ(x) and public record z is successful 

if δ(x) and z are records that relate to the same entity [31]. The linkage of δ(xi) and 

z creates an enlarged set of attributes δ(xi) ∨ z combining information from both 

sources, which if successful, improves identification based on a dictionary. Note that 

while both linkage data and the dictionary are side information known to the attacker, 

they serve different roles. Linkage data typically comes from the organization that 

discloses δ(xi) or a related database. In particular, it does not typically contain iden­

tification information and yet is used by the attacker in order to extend the disclosed 

attributes of a certain entity. The dictionary is typically a massive listing containing 

identification information that is not closely related to the disclosed information. It is 

therefore considered as an identification resource for the disclosed and possibly linked 

record. 

The disclosed record y = δ(x) and the linked record z are random variables 

with a joint distribution p(x, z) = p(x)p(z|y) where p(x) may be the empirical p̃(x) 

described earlier and the conditional p(z|y) is the probability of linking record z with 

record y. In this case, it is important to estimate the linking probability based on 

what a sensible attacker might do. In the case of linking δ(xi) ∨ z, the risk is 

Rlink(δ, θ) = Ep(x)p(z|x)

(
ℓ(δ(x) ∨ z, θ)

)
, 

where the loss function ℓ
(
δ(xi)∨z

) 
can be structured in a similar way to our previous 

discussion. Introducing a binary random variable W representing successful linkage 



28 

we have that the loss incurred under successful linking and identification is equal to 

the sensitivity of the enlarged data 

Φ
(
δ(x) ∨ z, θ

) 
= ℓ

(
δ(x) ∨ z, θ) | {W = 1, Z = 1}. 

Continuing as before, we can define the loss ℓ
(
δ(x) ∨ z, θ

) 
as the expectation of the 

sensitivity taking into consideration probabilities of successful linking and identifica­

tion. As before, it is crucial that the developed mechanism leads to easy and accurate 

calculation of the loss. 
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3 FRAMEWORK IMPLEMENTATION AND EVALUATION 

3.1 Experiments 

The goals of our experiments are three-fold: (i) to validate the risk associated with 

different dictionaries, (ii) to assess the impact of different parameters on the privacy 

risk, and (iii) to use the proposed framework to assess the relationship between the 

estimated risk and the true risk. 

0 0 

additive F 
multiplicative F 

R
(δ
, θ
) 

0 

c Dictionary size 

Figure 3.1. The risk associated with different dictionaries and c values 

We conducted our experiments on a real Walmart database: An item description 

table of more than 400,000 records each with more than 70 attributes is used in the 

experiments. Part of the table is used to represent the disclosed data whereas the 

whole table is used to generate the dictionary. Throughout all our experiments, the 

risk components are computed as follows. First, the identification risk is computed 

with the aid of the Jaro distance function [32] that is used to identify dictionary items 
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k=100 

consistent with a released record to a certain extent (we used 80% similarity thresh­

old to imply consistency). Second, the sensitivity of the disclosed data is assessed 

by means of random weights that are generated using a uniform random number 

generator.

R
(δ

 ,θ
 ) 

k=75 

k=50 

k=25 

k=0 

excess risk of k-anonymity 
decision theory framework 

0
 0 

U(δ )
 

Figure 3.2. A comparison between our decision theory framework and k-anonymity 

We use a simplified utility function u(y) to capture the information benefit of 
Lmreleasing a record y: u(y) = i=1 Dist(RootDGHi

, yi) (i.e., the sum of the heights of 

all DGHs minus the number of generalization steps that were performed to obtain 

the record y). For each record xi, the minimum risk is obtained subject to the 

constraint set Δ = {δ : ∀i u
(
δ(xi)

) 
≥ c}. The impacts of the parameter c and the 

dictionary size on the privacy risk are reported in Fig. 3.1. As c increases (i.e., more 

specific data are being disclosed) and by fixing the dictionary size, the possibility 

of identifying the entity to which the data pertain, increases, thus increasing the 

privacy risks. We increase c from 0 to 10. On the other hand, by fixing c = 8, the 

relation between the risk and dictionary size is inversely related. The larger the size 

of the dictionary the attacker uses, the more consistent records to the entity on hand 
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he finds, and consequently the lower the probability that the entity be identified. 

Different dictionaries are generated from the original table with sizes varying from 

10% to 100% of the size of the complete table. Moreover, the experimental data 

show that the multiplicative model for sensitivity is always superior over the additive 

model in terms of the modeled risk.

|θtrue| |θtrue|= |θ̂| = 2|θ̂| 

0�0�0�  0�0�0�

R
(δ
, θ̂
) 

0�0�0�
R(δ, θtrue) 

0�0�0� 
R(δ, θtrue)�
 

Figure 3.3. The relationship between the true risk and the estimated risk 

We compare the risk and utility associated with a disclosed table based on our deci­

sion theory framework and arbitrary k-anonymity rules for k from 1 to 100. In Fig. 3.2, 

we compare the utility and risk of optimally selected disclosure policies and standard 

k-anonymity rules (averaged over a random selection of 10 k-anonymity rules). The 

optimal disclosure policies consistently outperform standard k-anonymity rules. The 

arrows in the figure representing the risk difference between both approaches become 

higher as k increases. 

The relationship between the true risk R(δ, θtrue) and the estimated risk R(δ, θ̂) 

is reported in the scatter plot in Fig. 3.3. As we proved before, R(δ, θ̂) is always an 
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upper bound of R(δ, θtrue) (all the points occur above the line y = x). Note that 

as the size of the true dictionary becomes significantly larger than the size of the 

estimated dictionary, the points seem to trace a steeper line which means that the 

estimated risk becomes a looser upper bound for the true risk. 

3.2 Case Study: An Organization Releasing Customers’ Data 

In order to demonstrate the practical applicability of the privacy risk framework, 

in this section we apply our privacy risk framework on one of the common areas – 

customers database of commercial organizations. In such cases, organizations often 

benefit from disclosing customer records. This can be a result of the organization 

outsourcing its data mining efforts to analytics specialists or sharing customer records 

with partnering organizations. The initial customer suspicion, caused by potentially 

sharing their records, is often relaxed by offering them benefits such as loyalty cards 

or some other discount plans in return for their participation. 

{ ⊥ : 0 } 

{ ⊥ : 0 } 

{ [x, x+80k] : wS/80 } 
{ ⊥ : 0 } { ⊥ : 0 } 

{ Region R: wc/|cities in R| } 

{ [x, x+40k]: wS/40 } 
{ State S: wC/|cities in S| } { (yy) : wB/365}

{ Asian, Non-Asian : 
wR/|races in category| } 

{ [x, x+20k] : wS/20 }
{ County C : wC/|cities in C| } { (mm/yy) : wB/|days in mm| } 

{ White, African American, 
American Indian, Chinese, 

{ City : wC } Filipino,… : wR } { (mm/dd/yy) : wB } { Salary ($k) : wS } 

(a) City (b) Race (c) Birthdate (d) Income 

Figure 3.4. Domain generalization hierarchies (DGHs) with the asso­
ciated sensitivity weights 

Willing participants may rate the privacy of various parts of their data as non-

private, semi-private and very-private. For example, consider a customer database 
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such as Amazon.com where some of the customer transactions are non-private, some 

are semi-private, and some are very private (for example a purchase disclosing a 

health condition or an embarrassing area of interest). The organization will treat the 

transactions according to the user specified sensitivity which will in turn constitute 

a user specified loss function. To prevent customers from registering all transactions 

as very-private, the organization may enforce constraints on the supplied loss, which 

must be obeyed in order to participate in the discount plan. It is the organizations’ 

responsibility to determine at which level of generalization hierarchy each attribute is 

to be disclosed such that: (i) minimizing the inherited risk associated with violating 

customers’ privacy (e.g., the potential law suit resulting from releasing very-private 

information), and (ii) maximizing (or at least establishing a floor for) the benefit of 

the released information. Note that in this example, the utility of disclosing data 

may be quantified by the monetary amount the organization can expect to obtain, 

for example, by selling the data or by projected increase in efficiency due to data 

mining activity. 

An illustrative scenario is described as follows. Suppose that Walmart needs to 

assess the risk associated with releasing its members data while maximizing its ben­

efit. To carry out our experiments, a projected Walmart members table of 5, 667, 004 

records is used. The projection contains 4 attributes: City, Race, Birthdate, and 

Household Income. Fig. 3.4 depicts the used domain generalization hierarchies for 

these 4 attributes with the associated sensitivity weights computed as follows. First 

of all, we assume, without loss of generality, that all leaf nodes belonging to the same 

DGH are equally sensitive. We use a modified harmonic mean to compute the sensi­

tivity of a parent node wp with l immediate children given the sensitivities of these 

children wi, 1 ≤ i ≤ l: 
1 

wp = ,Ll 1 
i=1 wi 

with the exception that the root node (corresponding to suppressed data) has a
 

sensitivity weight of 0. Clearly, the modified harmonic mean satisfies the following
 

properties: (i) The sensitivity of any node is greater than or equal to 0 provided that
 

http:Amazon.com
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the sensitivity of all leaves are greater than or equal to 0, (ii) the sensitivity of a 

parent node is always less than or equal to (in case of 1 child) the sensitivity of any 

of its descendent nodes, and (iii) the higher the number of children a node has the 

lower the sensitivity of this node. 

For example, given a constant city weight wc, the weight of the County node 

j in the DGH for the City is � 1 = w
lj
c , where lj is the number of cities in 1 

1≤i≤lj wc 

the county j. Moreover, the sensitivity of the State node in the same DGH is 

1 wc wc� = � = , where m is the number of counties in the state and 1 lj n
1≤j≤m wc/lj 

1≤j≤m 

n = 
L

lj is the number of cities in the state. 1≤j≤m 

The multiplicative form Φ4(y) of the sensitivity function is used to compute 

the overall sensitivity of a released record. The weights wc, wr, wb, and ws are set 

at the values 0.3, 0.4, 0.5, and 0.75, respectively. Therefore, the sensitivity associ­

ated with the record (West Lafayette, White, 05/10/1975, $52k), for example, 

0.3+0.4+0.5+0.75 is e = 7.03, whereas the sensitivity associated with the record (West 
0.75 0.3+0+ 0.5 +

31 Lafayette, ⊥, May 1975, [$20k,$99k]) is e 80 = 1.38. 

We use the Adult database1 which is comprised of 9, 857, 623 records extracted 

from US Census data as a dictionary θ. The database contains 5 attributes: Age, 

Gender, Zipcode, Race, and Education. Each record y (and its generalizations) 

from Walmart members table is matched with this dictionary to identify the number 

of dictionary records consistent with it ρ
(
δ(y)

)
. The matching process is performed 

on the corresponding attributes representing age, race, and address in both tables. 

For example, the record (West Lafayette, White, 05/10/1975, $52k) has 7 dic­

tionary records consistent with it, whereas the record (West Lafayette, ⊥, May 

1975, [$20k,$99k]) has 198 dictionary records consistent with it. 

The loss function associated with releasing a record y is ℓ(y, θ) = Φ(y) 
|ρ(y,θ)|

. For 

example, from the above results, the loss associated with releasing the record (West 

Lafayette, White, 05/10/1975, $52k) is 7.03/7 = 1.004, whereas the loss associ­

ated with releasing the record (West Lafayette, ⊥, May 1975, [$20k,$99k]) is 

1Downloaded from http://www.ipums.org. 

http:http://www.ipums.org
http:0.3+0.4+0.5+0.75
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1.38/198 = 0.007. The overall risk associated with releasing the complete table is 

computed as the average loss associated with releasing its individual records. 

We use the same utility function explained in Section 3.1. For example, the util­

ity function corresponding to the record (West Lafayette, White, 05/10/1975, 

$52k) is 4 + 2 + 3 + 4 = 13 or equivalently (4 + 2 + 3 + 4) − (0) = 13, whereas 

the utility function corresponding to the record (West Lafayette, ⊥, May 1975, 

[$20k,$99k]) is 4+0+2+1 = 7 or equivalently (4+2+3+4)− (0+2+1+3) = 7. 

By following the procedure explained above, the organization goal to determine 

the disclosure rule that yields the minimal risk while maintaining the utility above a 

certain threshold is achievable. For each potentially disclosed table T , our model can 

be applied to assess both the risk and utility associated with releasing this table. As 

the case with the risk, the utility of a given table is the average utility of all individual 

records constituting this table rounded to the nearest integer. The table that poses 

the minimal risk with an acceptable utility is released. 

Fig. 3.5 shows some plots of the risks and associated utilities for various disclosure 

rules. Recall that a disclosure rule δi(T ) (or simply δi) is a combination of transforma­

tions (suppression, generalization, and disclosure of actual data) performed on the at­

tributes of the original table T which result in the table T ′ to be released2 . Fig. 3.5(a) 

and Fig. 3.5(b) plot the computed risks (in increasing order) and the corresponding 

′ utilities for random instances of the released table T , R = {
(
δi, R(δi, θ)

)
, i = 1, 2, · · · } 

and U = {
(
δi, U(δi)

)
, i = 1, 2, · · · }, respectively. As pointed out earlier, the trend is 

that the utility increases as the risk increases. However, sometimes this is not the case 

due to the settings of the sensitivity weights and the topologies of different DGHs. 

The scatter plot in Fig. 3.5 depicts the high positive correlations between risk and 

utility with a computed correlation coefficient of 0.858. 

Had the organization goal been focusing only on one factor (i.e., minimize the 

risk or maximize the utility), these 2 curves would have been sufficient to identify the 

′2An example of T is {(West Lafayette,White,05/10/1975,$52k), (Indiana,Asian,1948,⊥), 
(⊥,Chinese,August 1965,[$20k,$40k]), · · · }. 
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Figure 3.5. Risks and utilities for different disclosure rules 

optimal disclosure rule. However, the goal has always been to optimize one of the 

factors while maintaining an acceptable level of the other factor. 

Fig. 3.6 shows how the optimal disclosure rule is determined for the example 

on hand. By using different values for the constant c and obtaining the mini­

mum risk, Fig. 3.6(a) is plotted. It shows the optimal risk (and accordingly the 

optimal disclosure rule) that yields utility U ≥ c. Specifically, it helps determine 

δ∗ = argminδ R(δ) subject to U(δ) ≥ c. Likewise, by fixing the risk at different val­

ues for the constant c and obtaining the maximum utility, Fig. 3.6(b) is plotted. It 
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Figure 3.6. The optimal disclosure rule 

shows the optimal utility (and accordingly the optimal disclosure rule) that poses a 

risk R ≤ c. Specifically, it helps determine δ∗ = argmaxδ U(δ) subject to R(δ) ≤ c. 
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Figure 3.7. The discrete optimization algorithm 

We implemented a heuristic discrete optimization algorithm, Branch and Bound 

[33], to obtain the heuristic optimum disclosure rule. Fig. 3.7 shows that the discrete 
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optimization algorithm is superior in terms of execution time compared to the brute-

force algorithm with no significant risk increase. 
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Figure 3.8. Effect of utility threshold on the level of attribute disclosure 

Fig. 3.8 shows some statistics about the frequencies of generalization steps carried 

out on each attribute at different utility levels to obtain the optimal risk. For instance, 

when setting the utility U ≥ 5, Fig. 3.8(d) indicates that the actual salaries of almost 

all members are released. Clearly, the tendency towards releasing the actual data 

increases as the utility level increases. Moreover, depending on attribute settings, 

the level of aggressiveness with which the tendency to release the actual data occurs 

varies. The statistics shows, for instance, that most of the time the actual birthdate 

is released when the required utility U ≥ 3. An organization that is willing to apply 
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the disclosure rule which has been applied the most may elect to release the actual 

birthdate for a newly added record when the utility is sought to be no less than 3. 
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4 RISK-UTILITY-BASED ALGORITHMS FOR DATA DISCLOSURE 

4.1 Introduction 

Maximizing data usage and minimizing privacy risk are two conflicting goals. 

Disclosing the minimum amount of information (or no information at all) is compelling 

specially when organizations try to protect the privacy of individuals. To achieve 

such goal, the organizations typically try to (i) hide the identity of individual to 

whom data pertain, and (ii) apply a set of transformations to the microdata before 

releasing it. These transformations include data suppression, data generalization, and 

data perturbation. Data suppression refers to suppressing certain attribute values 

(or equivalently disclosing the value ⊥). Data generalization [1] refers to releasing 

a less specific variation of the original data; for example, releasing 479** for the 

zip code instead of 47906. In data generalization, a value generalization hierarchy 

(VGH) for each attribute is constructed and consulted whenever a generalization is 

to take place (see Fig. 4.1(a) for an example of the VGH for the city attribute). 

Data perturbation [2] adds noise directly to the original data values; for example, 

perturbing a numeric value such as a salary by a Gaussian noise. In this chapter, we 

focus on the technique of data generalization which includes data suppression as a 

special case. 

We measure the harmful effect due to the disclosure of private data using the 

notion of an expected loss or a risk. This loss could be incurred, for example, as a 

result of privacy violations, financial loss due to identity theft, and security breaches. 

On the other hand, releasing data has its own merits. Released data could be useful for 

data mining and research purposes, data sharing, and improved service provisioning. 

Examples of risk-utility conflicts include, but not limited to, (i) medical research 

benefits vs. fear of patients’ privacy violation, (ii) detecting purchasing patterns 
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{ ⊥ } { ⊥ } { ⊥ } 
Midwest 

$[x, x+80k] { s| s is a state} {Asian, Non-Asian} Indiana Illinois 

Indianapolis Tippecanoe $[x, x+40k] 
{ c| c is a county} 

{African American, 
American Indian, 

Greater 
Battle Ground Buck Creek Clarks Hill Dayton Romney Chinese, Filipino,…} 

{ ct| ct is a city} 
Lafayette $[x, x+20k] 

West Lafayette 
Lafayette $ 

(a) A partial VGH for city (b) DGHs for salary, city, and race 

Figure 4.1. Value generalization hierarchy (VGH) and domain gener­
alization hierarchy (DGH) 

of customers vs. privacy of customers’ transactions, and (iii) benefits of disclosing 

sensitive geospatial data (for example, maps) vs. threats to national security. 

Releasing more general information seems to have a diminishing effect on both 

risk and utility. However, the fact that we have opposite goals for risk and utility 

(minimizing the risk and maximizing the utility) raises the following crucial question: 

“Up to what level of generalization can we tolerate?” Indeed, without the help of 

powerful models that asses the risk and utility of a given information item, answering 

the above question is impossible. Many models have been proposed to quantify data 

utility all of which show that data generalization has negative impact on how useful 

data is. Xiao et al. [26] define the information loss of a more general attribute value v ∗ 

in terms of the number of values that it represents. Under the approach by Bayardo 

and Agrawal [7], a penalty cost is assigned to a generalized or suppressed tuple to 

reflect the information loss in such transformations. Fung et al. [34] define a tuple 

information in terms of the number of records that could be generalized to this tuple. 

An entropy-based model to assess information gain/loss is adopted in the approach 

by Wang et al. [35]. From the proposed models it is evident that when the released 

records are generalized to a greater extent, a larger information loss is incurred. 
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Assessing the risk of releasing a given information item has also been the subject 

of recent research. Assessing the risk is a more challenging task than quantifying 

the utility and there exist only very few models for assessing the risk. Intuitively, 

releasing more specific information will incur a higher risk than releasing general 

information. Cheng et al. [36] model the risk of a tuple in terms of the value of 

information contained in it. A privacy risk model has been proposed by Lebanon et 

al. [37] that takes into account both the entity identification and the sensitivity of 

the disclosed information. 

In this chapter we propose a few heuristic algorithms to address the tradeoff 

between data utility and data privacy. The algorithms operate on the microdata to 

identify the set of transformations that need to be applied in order to minimize the 

risk and in the meantime maintain the utility above a certain threshold. 

4.2 Problem Statement 

In this chapter we consider the problem of identifying the optimal set of trans­

formations which, when carried out on a given table, generate a resulting table that 

satisfies a set of optimality constraints. The optimality constraints are defined in 

terms of a preset objective function as well as risk and utility conditions. 

For convenience of discussion, the following argument is repeated from Chapter 2. 

The relationship between the risk and expected utility is schematically depicted in 

Fig. 2.3 which displays different instances of a disclosed table by their 2-D coordi­

nates (r, u) representing their risk and expected utility, respectively. In other words, 

different data generalization procedures pose different utility and risk which lead to 

different locations in the (r, u)-plane. The shaded region in the figure corresponds to 

the set of feasible points (r, u) (i.e., the risk and utility are achievable by a certain 

disclosure policy) whereas the unshaded region corresponds to the infeasible points. 

The vertical line corresponds to all instances whose risk is fixed at a certain level. 

Similarly, the horizontal line corresponds to all instances whose expected utility is 



43 

fixed at a certain level. Since the disclosure goal is to obtain both low risk and high 

expected utility, we are naturally most interested in disclosure policies occupying the 

boundary of the shaded region. Policies in the interior of the shaded region can be 

improved upon by projecting them to the boundary. 

The vertical and horizontal lines suggest the following two ways of resolving the 

risk-utility tradeoff. Assuming that it is imperative that the risk remains below a 

certain level, we can define the problem as 

maximize u subject to r ≤ c. (4.1) 

Alternatively, insisting on having the expected utility to be no less than a certain 

level we can define the problem as 

minimize r subject to u ≥ c. (4.2) 

A more symmetric definition of optimality is given by 

minimize (r − λu), (4.3) 

where λ ∈ R+ is a parameter controlling the relative importance of minimizing risk 

and maximizing utility. 

In this chapter, without loss of generality, we model our problem as in (2). Specifi­

cally, we address the problem of identifying the optimal transformations that produce 

the minimum risk and lower bound the utility above a given threshold. Given a spe­

cific tuples a = (a1, a2, · · · , ai, · · · , ak), the following problem has to be solved: 

t ∗ = argmin r(t) subject to u(t) ≥ c (4.4) 
t 

where t is a generalization of a . 

4.3 Notations and Definitions 

We will usually refer to an arbitrary record as a or b and to a specific record in 

a particular database using a subscripted variable a i. Attributes are denoted by Ai 
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(or simply A). Attribute values of A are represented using the notation [a ]j (or [a i]j) 

or just aj (or aij). Note the bold typesetting representing vector notation and the 

non-bold typesetting representing attribute values. A collection of n records such as 

a database is denoted by D =(a1, a2, . . . ,an). 

Definition 4.3.1 The depth of an attribute value ai corresponding to attribute A, 

denoted by depth(ai), is the length of the path from ai to ⊥ in the VGH corresponding 

to A, that is, the maximum possible number of generalization steps applicable to this 

value. 

Example 4.3.1 In the VGH shown in Fig. 4.1(a), depth(Greater Lafayette) = 4. 

Definition 4.3.2 The generalization set of an attribute value ai corresponding to 

attribute A, GE(ai), is the set of all ancestors of ai in the VGH corresponding to A. 

We denote any element in GE(ai) by a. The parent of ai is the immediate ancestor 

and is denoted by parent(ai). On the other hand, the specialization set of an attribute 

value ai, SP (ai), is the set of all descendants of ai in the VGH corresponding to A. 

That is, ∀ai∈SP (a6i) ai ∈ GE(ai). The child of ai is the immediate descendent and is 

denoted by child(ai). 

Example 4.3.2 In the VGH shown in Fig. 4.1(a), GE(Lafayette) = {Greater Lafa­

yette, Tippecanoe, Indiana, Midwest, ⊥}, and SP(Greater Lafayette) = {West Lafaye­

tte, Lafayette}. 

Definition 4.3.3 An immediate generalization of a record a = (a1, a2, · · · , ai, · · · , ak) 

with respect to an attribute ai is a transformation on this record in which the value ai 

is replaced by parent(ai) from the corresponding VGH. It is denoted by igai(a), that 

is, igai(a) = (a1, a2, · · · , parent(ai), · · · ak). The set of all immediate generalizations 

of a record a is denoted by IG(a) = 
�

i
k 
=1 igai(a). 

Lemma 4.3.1 The risk and utility associated with a record a (r(a) and u(a), respec­

tively) have the following property: 

r(a) ≥ r
(
igai(a)

) 
and u(a) ≥ u

(
igai(a)

)
, ∀i : 1, 2, . . . , k. 
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This property, which we refer to as the monotonicity property, can be easily verified 

for most standard definitions of utility and risk. 

Definition 4.3.4 An immediate specialization of a record a = (a1, a2, · · · , ai, · · · , ak) 

with respect to an attribute ai is a transformation on this record in which the value ai 

is replaced by child(ai) from the corresponding VGH. It is denoted by isai(a), that is, 

isai(a) = (a1, a2, · · · , child(ai), · · · ak). The set of all immediate specializations of a 

record a is denoted by IS(a) = 
�

i
k 
=1 isai(a). Note that |IG(a)| ≤ k and |IS(a)| ≤ k. 

Example 4.3.3 In Fig. 4.2(a), IG((Chinese, Tippecanoe)) = {(Asian, Tippecanoe), 

(Chinese,Indiana)} and IS((Chinese, Tippecanoe)) = {(Chinese,Dayton)}. 

Definition 4.3.5 A generalization lattice for a given record a = (a1, a2, · · · , ai, · · · , 

ak) is the lattice formed by the immediate generalization relation on the set 
(
{a1} ∪ 

GE(a1)
) 
× 
(
{a2} ∪ GE(a2)

) 
· · · × 

(
{ak} ∪ GE(ak)

)
. It is a graph (V, E) where V = 

(
{a1}∪GE(a1)

) 
×
(
{a2}∪GE(a2)

) 
· · ·× 

(
{ak}∪GE(ak)

) 
and E = {(v1, v2)| v1, v2 ∈ 

V ∧ v1 ∈ IG(v2)∪ IS(v2)}. The dimension of the lattice is the number of attributes 

of the initial record k. 

Lemma 4.3.2 The generalization lattice for a given record a = (a1, a2, · · · , ai, · · · , ak) 

has Πk
i=1 

(
depth(ai) + 1

) 
nodes. 

Definition 4.3.6 A border node a is a lattice vertex that satisfies the following con­

dition: |IG(a)| < k or |IS(a)| < k. It is the node in which at least one of the 

attributes cannot be further generalized or cannot be further specialized. Otherwise, if 

|IG(a)| = |IS(a)| = k, a is called an inner node. 

Example 4.3.4 In Fig. 4.2(a), (Chinese, Tippecanoe) is a border node whereas (Asian, 

Indiana) is an inner node. 

Fig. 4.1(b) shows examples of domain generalization hierarchies for the race, 

city, and salary attributes. Using these hierarchies, two lattices representing specific 
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> 

< ⊥ , ⊥ > < ⊥ , ⊥ , ⊥ > 

<Chinese, ⊥ , ⊥ > 
< ⊥ , Lafayette, ⊥ 

<Asian, ⊥ > < ⊥ , Indiana> 

Salary <Chinese, ⊥ > <Asian, Indiana> < ⊥ , Tippecanoe > 

<Chinese, Indiana> <Asian, Tippecanoe> < ⊥ , Dayton> 

City 

<Chinese, ⊥ , $85k> 
< ⊥ , Lafayette, $85k> 

<Chinese, Tippecanoe> <Asian, Dayton> 

Race Race City 

<Chinese, Dayton> 

<Chinese, Lafayette, $85k> 

(a) 2 attributes (b) 3 attributes 

Figure 4.2. Example of 2D and 3D lattices 

records with different number of attributes are depicted in Fig. 4.2. Note that moving 

in one dimension is equivalent to generalizing the attribute that corresponds to this 

dimension. Moreover, the dimension of the lattice is the number of attributes and 

the size of each dimension is the number of generalization steps for the corresponding 

attribute. 

Definition 4.3.7 A feasible node is the lattice vertex that satisfies all the given con­

straints that are mentioned in equations (4.1)-(4.3). Otherwise, it is called infeasible 

node. The best feasible node is called the optimal node. 

Note that all children of a feasible node are also feasible and all parents of an 

infeasible node are also infeasible. 

4.4 Risk and Utility Computation 

Our proposed algorithms make use of existing tools to quantify the utility and 

risk of a given tuple. In order to determine whether a tuple a is feasible, one needs 

to compute u(a). On the other hand, the proposed algorithms consider the objective 

function of minimizing the risk. Therefore, it is imperative that, given a tuple a, a 
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tool for quantifying risk r(a) exists. In this section, we describe some models that 

have been proposed in the literature for utility and risk assessment. It is worth to note 

that all these models intuitively adhere to the fact that both risk and utility increase 

as the disclosed data become more specific and decrease as the disclosed data become 

more general. 

4.4.1 Utility Assessment Models 

Utility assessment models are often specified in terms of the number of leaves of 

the VGH subtree rooted at each attribute value. Specifically, one way to assess the 

utility of a record a = (a1, a2, · · · , ai, · · · , ak) is 

k

u(a) = 
L 

1/ni, (4.5) 
i=1 

where ni is the number of leaf nodes of the VGH rooted at ai. Note that this model 

has a few disadvantages. According to this model, a non-zero (although minimum) 

value is assigned to the most general node and the utility of the leaf nodes is k. A 

variation of (4.5) is to use a logarithmic function as in 

k

u(a) = 
L 

ln(mi/ni), (4.6) 
i=1 

where mi and ni are the total number of leaf nodes of the VGH and the number 

of leaf nodes of the VGH subtree rooted at ai, respectively. In agreement with our 

intuition, equation (4.6) assigns zero utility for the most general node. 

Instead of taking into account the number of leaf nodes as a metric for utility 

assessment, one may consider attribute depths as defined in Definition 4.3.1, for 

example 
Lk

i=1 depth(ai) (the sum of the heights of all VGHs minus the number of 

lattice generalization steps that are performed to obtain the record a). As data gets 

more specific, its depth increases and, accordingly, so does the utility. As in the 

previous case, the utility of the most general node (⊥, ⊥, · · · , ⊥) is zero. 

In some cases, information loss, denoted by △u, can be used in lieu of utility. 

Maximizing the utility u is analogous to minimizing the information loss △u and, 
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therefore, it is straightforward to transfer the optimization problem from one of these 

utility measures to the other. Xiai and Tao [26] defined the information loss as 

follows: △u(a) = 
L

i
k 
=1 (ni − 1)/mi, where mi and ni are defined as above. Likewise, 

Iyengar [14] proposes the LM loss metric which is based on summing up normalized 

information losses for each attribute, i.e., LM = △u(a) = 
Lk

i=1 (ni − 1)/(mi − 1). 

4.4.2 Risk Assessment Models 

Lebanon et al. [37] have proposed an analytical model to quantify the privacy risk. 

The risk of disclosing a record a is decomposed into two parts: (i) the user-specified 

data sensitivity Φ(a), and (ii) the attacker’s probability of identifying the data owner 

based on a and side information θ. Data sensitivity is a subjective and personalized 

measure, for example Φ(a) = 
L

i : ai=⊥ wi, where wi represents the sensitivity of the 

attribute value ai to the user who owns this data. The second component of the risk 

corresponding to the attacker’s probability of identifying the data owner is given by 

1/|ρ(a, θ)| where |ρ(a, θ)| is the number of entries in the database θ consistent with 

the disclosed data a (anonymity number). Multiplying the two components we obtain 

Φ(a) 
r(a, θ) = . 

|ρ(a, θ)| 

The database θ is assumed to be the side information available to the attacker but, 

assuming it is unknown, replacing it with the original database of pre-disclosed records 

provides an upper bound of the risk. 

In this chapter, we consider for the risk a more general combination of the data 

sensitivity Φ and anonymity number |ρ| given by an arbitrary function 

r(a, θ) = f
(
Φ(a), |ρ(a, θ)|

)
. 

Three examples which we concentrate on are: 

Model I: f1(x, y) = x/y which leads to the risk proposed by Lebanon et al. [37]. 

Model II: f2(x, y) = 1/y which leads to non-personalized and constant data sensi­

tivity. 



49 

Model III: f3(x, y) = x log(1/y) corresponding to an entropic measure emphasizing 

small values of 1/|ρ|. 

4.5 Algorithms for Optimal Data Disclosure 

Taking into account the special nature of the optimization problem in hand as 

well as the monotonicity property of both risk and utility, the discrete optimization 

problem (4.4) reduces to the following problem: Given a record a, it is required to 

(x1,x2,...,xi,...,xk))minimize r(a

subject to 

(x1,x2,...,xi,...,xk)) ≥u(a c, 0 ≤ xi ≤ hi, ∀i : 1, 2, . . . , k; 

where: hi = depth(ai), xi represents the number of generalization steps applied on 

the ith attribute value of the record a, and a(x1,x2,...,xi,...,xk) is the resulting record 

after applying these generalization steps. Moreover, the risk and utility satisfy the 

following: 

(x1,x2,...,xi,...,xk)) ≥ (x1,x2,...,xi+1,...,xk)),r(a r(a

(x1,x2,...,xi,...,xk)) ≥ (x1,x2,...,xi+1,...,xk)),u(a u(a ∀i : 1, 2, . . . , k. 

A brute-force method for obtaining the optimal transformations is to try all pos­

sible combinations of attribute values and their generalizations and select the trans­

formation that produces a feasible anonymized table which poses the minimum risk. 

Note that: (i) A crucial difference between our algorithm and most of the other 

anonymization algorithms is that we apply the transformations on a record-by-record 

basis instead of dealing with sets of equivalent records and we capture record similar­

ities by means of the number of consistent records, |ρ(a, θ)|, that is embedded in the 

risk models; (ii) the proposed algorithms do not require the construction of the lat­

tice beforehand; (iii) the risk and utility functions are called as needed; (iv) checking 

whether a node v has been visited (i.e., v ∈ V ) can be implemented by inserting the 
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nodes in V in a hash table and checking if v, when hashed using the same hashing 

function, collides with any existing node; and (v) the proposed algorithms can be 

easily extended to handle the dual problem of maximizing the utility subject to a risk 

constraint. 

4.5.1 Basic Top-Down Algorithm (BTDA) 

In this section we propose a modification of the brute-force algorithm that uses 

the priority queue data structure to navigate through lattice nodes until it reaches 

the optimal point. 

Definition 4.5.1 A priority queue is a linked list of lattice nodes sorted by risk in 

ascending order. 

Theorem 4.5.1 Algorithm 2 generates the optimal node. 

Proof We prove the theorem by contradiction. Assume that the front node of Q, 

say v, is feasible but not optimal. This implies that the optimal node is one of the 

nodes already inserted in Q after v or one of their children yet to be inserted. Since 

children nodes have higher risk than their parents and the parents have higher risk 

than v (because they are inserted after v in the priority queue), the optimal node a ∗ 

has higher risk than v which contradicts with the optimality definition. 

4.5.2 ARUBA 

In this section we propose an efficient algorithm, referred to as A Risk-Utility 

Based Algorithm (ARUBA), to identify the optimal node for data disclosure. The 

algorithm scans a significantly smaller subset of nodes (the so-called frontier nodes) 

that is guaranteed to include the optimal node. 

Definition 4.5.2 A frontier node is a lattice vertex that is feasible and that has at 

least one infeasible immediate generalization. 
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Algorithm 2: BTDA Algorithm
 

Input: A record a = (a1, a2, · · · , ai, · · · , ak) , a utility threshold c, and risk 

and utility functions r(a), u(a), respectively.
 

Output: The optimal node a ∗ .
 

begin
 

1	 initialize Q, V ; 

/* Q is priority queue where r(a) is used to insert a node, 

where nodes are sorted such that the front of Q always holds 

the node with the minimum risk. V is the set of visited 

nodes. Inserting a node v in Q is done according to r(v). */ 

2 insert (⊥, ⊥, · · · , ⊥) in both Q and V ;
 

3 while The front node, call it v, of Q is infeasible, i.e., u(v) < c do
 

4 delete v from Q;
 

5 insert IS(v)− V in Q and V ;
 

/* v is the first feasible node with min risk. */
 

6	 return v; 

Theorem 4.5.2 The optimal node is a frontier node. 

Proof First, it is evident that the optimal node, say a ∗, is feasible. Second, we 

prove that all its immediate generalizations are infeasible by contradiction. Assume 

that at least one of its parents, say b ∈ IG(a ∗), is feasible. Since r(b) ≤ r(a ∗) and b 

is feasible, then b is better than a ∗ which contradicts the fact that a ∗ is the optimal 

node. Therefore, all immediate generalizations of a ∗ are infeasible and a ∗ is thus a 

frontier node. 

Definition 4.5.3 An adjacency cube associated with a lattice vertex v = (v1, v2, 

· · · , vi, · · · , vk) is the set of all nodes 
�
(u1, u2, · · · , ui, · · · , uk)|ui ∈ {vi, parent(vi), 

child(vi)} ∀i : 1, 2, · · · , k
� 
\ {(v1, v2, · · · , vi, · · · , vk)}. The number of nodes in the 

adjacency cube is ≤ 3k − 1. 
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f 
b g 

c 

a 

d 

e 

h 

i 

Figure 4.3. Neighboring frontier nodes 

Example 4.5.1 In Fig. 4.3, the adjacency cube associated with f is the set 

{a, b, c, d, e, g, h, i}. 

Theorem 4.5.3 Let L be a generalization lattice of dimension k. Except for border 

nodes, a frontier node f ∈ L has at least k frontier neighbors in the adjacency cube 

associated with it. 

Proof We prove the theorem for the case of 2D lattice. The proof could be gener­

alized to handle lattices with higher dimensions. Fig. 4.3 shows a general section of 

a 2D lattice. Assume that the node f is a frontier node. There are 2 cases: 

• Both c and e are infeasible. If b is feasible, then it is a frontier node (since c 

is infeasible). Otherwise, c is a frontier node. The same argument applies to 

nodes e, g, and h. 

• One of c and e is infeasible. Assume, without loss of generality, that c is infea­

sible and e is feasible. Since c is infeasible, then d is infeasible and, therefore, 

e is a frontier node. Moreover, if b is feasible, then it is a frontier node (since 

c is infeasible). Otherwise, a is a frontier node. 

In both cases, the frontier node f has two frontier neighbors in its adjacency cube. 



53 

Algorithm 3: ARUBA Algorithm
 

Input: A record a = (a1, a2, · · · , ai, · · · , ak) , a utility threshold c, and risk 

and utility functions r(a), u(a), respectively. 

Output: The optimal node a ∗ . 

begin 

1 initialize S, V ; 

/* S is the set of uninvestigated frontier nodes, V is the set 

of visited nodes. */ 

2 locate an initial frontier node f, update V ; 

3 set a ∗ = f and r ∗ = r(f); 

4 S = S ∪ f; 

5 while S �= Φ do 

6 extract v from S; 

7 if r(v) ≤ r ∗ then 

8 set r ∗ = r(v); 

∗ 
9 set a = v; 

10 locate the set of uninvestigated neighboring frontier nodes in the 

adjacency cube associated with v, call it NF ; 

11 update V ; 

12 S = S ∪NF ; 

/* All frontier nodes are scanned and a ∗ is the node with min 

risk. */ 

∗ 
13 return a 

Theorem 4.5.4 Algorithm 3 generates the optimal node. 

Proof The proof follows directly from Theorem 4.5.3 in that all frontier nodes will 

have been visited when Algorithm 3 terminates. Since the optimal node is a frontier 

node (from Theorem 4.5.2), Algorithm 3 will generate the optimal node. 
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c70,26 

a70,30 

f62,18 

j55,17 

e* 60,21 

b63,23 

i44,15 

n37,14 

h52,15 

d51,17 

m30,11 

q21,9 

l22,11 

g29,14 

p15,7 

s10,4 

o14,5 

k16,8 

r12,2 

t0,0 

feasible nodes 

Figure 4.4. An illustrative lattice for obtaining min r s.t. u ≥ 18 

The initial frontier node may be obtained by (i) using binary search to locate the 

node with a utility closest to c given the maximum utility (utility for the most specific 

node), or (ii) navigating through a random path. 

4.5.3 Example: Applying ARUBA and BTDA on a 2D-Lattice 

For the sake of illustration, consider the simple 2D lattice in Fig. 4.4. The sub­

scripts assigned to each node are the hypothetical risks and utilities satisfying the 

monotonicity property. The feasible nodes are enclosed in the dotted area, the fron­

tier nodes are underlined, and the optimal node is denoted by e ∗ . We assume a risk 

minimization problem subject to u ≥ 18. 

First, we apply Algorithm 2 on the displayed lattice. Fig. 4.5(left) shows the 

status of the priority queue Q and the set of visited nodes V after the execution of 

each iteration of the algorithm (steps 3, 4, 5). The algorithm begins by inserting the 

most general node t in Q and V . Due to the fact that it is infeasible, t is removed 

from Q and its unvisited immediate specializations are inserted in Q in ascending 

order of risk (s then r). The algorithm continues until the node at the front of Q is 
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16 e60,21 f62,18 b63,23 t s r p q o k l 
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e f b 
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Iter. frontier Visited 

# nodes S nodes V 

0 f a c f j 

1 e a c f j e i n 

2 b a c f j e i n b d h m 

3 a c f j e i n b d h m 

Figure 4.5. A list of visited nodes at different iterations of Algorithm 
2 (left) and Algorithm 3 (right) for the lattice shown in Fig. 4.4 

feasible (node e in iteration #16). At the end of the execution, the queue contains 

the frontier nodes and the number of visited nodes is 18. 

We also apply Algorithm 3 on the same lattice. The algorithm starts from node 

a and assumes that the first frontier node to be visited is f. Along the path to f, the 

nodes a, c, f, j are visited before determining that f is a frontier node. Node f is 

inserted in S. In the next iteration, the uninvestigated nodes in the adjacency cube 

of f are visited (nodes e, i, n) where it is determined that e is a frontier node and 

needs to be inserted in S. The algorithm continues until S is empty. Fig. 4.5(right) 

shows the status of the set of uninvestigated frontier nodes S and the set of visited 

nodes V after the execution of each iteration of the algorithm (steps 6 through 13). 

At the end of execution, the algorithm has visited all frontier nodes and determined 

that f is the optimal node. The number of visited nodes in this case is 11 which is, 

considering the small scale of the lattice, still a good improvement over Algorithm 2. 
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4.5.4 A Genetic Search Algorithm 

In [38], a record with all its possible generalizations form a complete lattice wherein 

the record itself constitutes the least element and (⊥, ⊥, · · · , ⊥) constitutes the great­

est element. Fig. 4.2 shows an example of a generalization lattice formed on a two-

attribute record. 

There are three types of special nodes in the lattice: (i) The feasible node is the 

node that satisfies the utility constraint, (ii) the frontier node is a feasible node that 

has at least one infeasible immediate parent, and (iii) the optimal node is a frontier 

node that has the least risk. A feasible path is the path from the lattice greatest 

element to a feasible node. The goal is to identify the optimal path. Moving one 

step down a path means we specialize it based on only one attribute in the record by 

replacing the value of this attribute with its direct specialization. 

<⊥ , ⊥ > 

a1 
a2 

frontier node 

Figure 4.6. A path in the genetic algorithm 

In this section we transform the optimization problem into an analogous genetic 

problem. Genetic algorithms [39] represent an approximate method for solving opti­
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mization problems. We define mutations and crossovers of chromosomes in the context 

of data privacy and use it to determine an approximate optimal node. The basic unit 

of the algorithm is a path in the lattice from the most general node (⊥, ⊥, · · · , ⊥) 

to a frontier node. This path is represented as a string S of attribute names ai. 

Having the attribute ai in the j
th position of S indicates an immediate specialization 

of the record in hand with respect to attribute ai. For simplicity of notation, and 

throughout the rest of this section, we use integers to represent different attributes 

rather than the actual attribute names. For example, Fig. 4.6 shows the lattice path 

corresponding to S = 12122. 

Algorithm 4 shows the application of genetics to solve our optimization problem. 

Algorithm 4: Genetic
 

Input: a database A record a = (a1, a2, · · · , ai, · · · , ak), a utility threshold c, 

and risk and utility functions r(a), u(a), respectively. 

Output: The optimal node a ∗ . 

begin 

1 start with random probing to collect initial population P ; 

2 compute the fitness for each element v ∈ P ; 

3 call a ∗ the optimum node; 

while accuracy is low do 

4 perform Mutation(P); 

5 perform Crossover(P); 

6 add new immigrants; 

7 compute a ∗ ; 

∗ 
8 return a 

The analogy between the genetic algorithm and the optimization problem in hand 

is described as follows. Any possible solution is a lattice frontier node. A a path on 

the lattice from (⊥, ⊥, · · · , ⊥) to such a node is treated as a blueprint for this specific 
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solution and is analogous to a chromosome. Each lattice node has both utility and 

risk associated with it. We assume that, without loss of generality, the problem is 

to minimize the risk. The risk associated with each node will be used as a quality 

indicator of such a node and will be referred to as a fitness function. 

Starting with a random population of possible solutions, basic genetic operations 

are applied to generate a new population. At each step, the fitness function is used 

to rank individual solutions. The process continues until a suitable solution has been 

found or a certain number of iterations have passed. The basic genetic operations in­

clude selection, mutation, crossover, and creating new immigrants. We briefly explain 

how these operations are deployed in the context of privacy risk optimization. For 

a more complete explanation, refer to [40]. A comparison between the performance 

of this genetic search algorithm and the exact algorithm in terms of risk, utility, and 

time is provided in Section 4.6. 

Probing: An initial population may be determined by randomly selecting a set of 

chromosomes to start with. Our algorithm applies random probing by generating 

random feasible paths to collect the initial set of nodes. 

Selection: In genetics, chromosomes with advantageous traits tend to contribute 

more offsprings than their peers. The algorithm mocks this property by associating 

a rank to each solution that is in direct proportion to its utility and making those 

solutions with high rank more likely to be selected in the next step. 

Mutation: Genetic mutations are changes in the DNA sequence of a cell. We apply 

this notion to our scheme by altering the one attribute that we specialize on towards 

the middle of the sequence of attributes that leads to a frontier node. Fig. 4.7 depicts 

how a single mutation is represented in the optimization problem. Two special cases 

arise when the mutated path (i) goes beyond a frontier node, or (ii) never reaches a 

frontier node. We address (i) by ending the path as soon as it hits a frontier node, 

and (ii) by randomly selecting the remaining part of the path that leads to a frontier 

node. Fig. 4.8 shows the 2 special cases when the path in Fig. 4.6 is mutated. 
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<⊥ , ⊥ > 

a1 
a2 

<⊥ , ⊥ > 

a1 
a2 

frontier node frontier node 

Figure 4.7. An individual solution before mutation (left) and after mutation (right)
 

<⊥ , ⊥ > 

a1 
a2 

<⊥ , ⊥ > 

a1 
a2 

frontier node frontier node 

Figure 4.8. Special cases of mutation 

Crossover: Crossover is a genetic operator that combines two chromosomes (parents) 

to produce a new chromosome (offspring). The idea behind crossover is that the new 

chromosome may be better than both of the parents if it takes the best characteristics 
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<⊥ , ⊥ > 

a1 
a2 

<⊥ , ⊥ > 

a1 
a2 

Figure 4.9. Before crossover: Parents
 

<⊥ , ⊥ > 

a1 
a2 

<⊥ , ⊥ > 

a1 
a2 

frontier node 

Figure 4.10. After crossover: Children 

from each of the parents. The algorithm presents crossover in our scheme by having 

two paths interchange their second half. That is, the algorithm swaps the second 

half of their specialization sequences. Fig. 4.9 and Fig. 4.10 depict how crossover is 

applied on an example of 2 paths in the optimization problem. We deal with the two 

special cases mentioned before with mutation the exact same way. 
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New Immigrants: In our genetic algorithm, and at the end of each iteration, the 

algorithm makes sure that a new population is added to introduce new search space 

that guides the search in different directions. 

4.6 Experiments 

We use an experimental setup similar to that described in Chapter 3. Specifically, 

we conducted our experiments on a real Walmart database. An item description 

table of more than 400,000 records each with more than 70 attributes is used in the 

experiments. Part of the table is used to represent the disclosed data whereas the 

whole table is used to generate the attacker’s dictionary. Throughout all our exper­

iments, the risk components are computed as follows. First, the identification risk 

is computed by using the Jaro distance function [32] to identify the dictionary items 

consistent with a released record to a certain extent (we used 80% similarity thresh­

old to imply consistency.) Second, the sensitivity of the disclosed data is assessed by 

means of an additive function and random weights that are generated using a uniform 

random number generator. The heights of the generalization taxonomies VGHs are 

chosen to be in the range from 1 to 5. 

We use a modified harmonic mean to compute the sensitivity of a parent node wp 

with l immediate children given the sensitivities of these children wi: wp = � 1 
1 

1≤i≤l wi 

with the exception that the root node (corresponding to suppressed data) has a 

sensitivity weight of 0. Clearly, the modified harmonic mean satisfies the following 

properties: (i) the sensitivity of any node is greater than or equal to zero provided 

that the sensitivity of all leaves are greater than or equal to zero, (ii) the sensitivity 

of a parent node is always less than or equal (in case of 1 child) the sensitivity of any 

of its descendent nodes, and (iii) the higher the number of children a node has the 

lower the sensitivity of this node is. For example, given a constant city weight wc, 

wcthe weight of the County node j in the VGH for the City is � 1 = 
lj 
, where 1 

1≤i≤lj wc 

lj is the number of cities in the county j. Moreover, the sensitivity of the State 
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1 wc wcnode in the same VGH is � = � 
lj 
= 

n 
, where m is the number of 1 

1≤j≤m wc/lj 
1≤j≤m 

counties in the state and n = 
L

lj is the number of cities in the state. Due to 1≤j≤m 

the randomness nature of the sensitivity weights, each of the obtained result points 

is averaged over 5 runs.
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Figure 4.11. Algorithms behavior with increasing utility threshold c 
(subfigures (a) and (b)) and with increasing dimension (subfigures (c) 
and (d)) 

We use a simplified utility function u(a) to capture the information benefit of 

releasing a record a : u(a) = 
Lk

i=1 depth(ai). For each record a, the minimum risk 

is obtained subject to the constraint u(a) ≥ c. The impact of varying the utility 

threshold c while maintaining a full set of attributes is shown in Fig. 4.11(a) and 

Fig. 4.11(b). The percentage of frontier nodes is plotted as c varies from 30 to 240 in 

Fig. 4.11(a). It is evident that the number of frontier nodes is not directly proportional 

http:Fig.4.11(a).It
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to c. When c is large, all lattice nodes tend to be infeasible leading to zero or a small 

number of frontier nodes. Likewise, when c is too small, all lattice nodes tend to be 

feasible leading to zero or small number of frontier nodes (refer to the definition of 

frontier nodes in Section 4.5). In Fig. 4.11(b), the running time for both algorithms is 

measured at various values of c. The experimental results show that ARUBA almost 

always outperforms BTDA especially for large values of c. Intuitively, as c increases 

towards the high extreme, the number of frontier nodes rapidly decreases (as shown 

in Fig. 4.11(a)) and, consequently, ARUBA converges very quickly. On the other 

hand, for large values for c more lattice nodes will be visited by BTDA before the 

optimum is reached. Therefore, the performance of BTDA deteriorates as c increases. 

Interestingly, for small values of c, there is no significant difference between ARUBA 

and BTDA. The reason is that the number of frontier nodes decreases rapidly as c 

approaches the lower extreme and ARUBA tends to perform well. 

Throughout the following set of experiments, we fix the utility threshold c at a 

certain level, which is intentionally chosen to be midway through the lattice (i.e., 

1 c = 
Lk hi) where ARUBA tends to perform the worst. We implement a heuristic 

2 i=1 

discrete optimization algorithm, Branch and Bound [33], to obtain the heuristic op­

timum disclosure rule. Fig. 4.11(c) and Fig. 4.11(d) show that ARUBA outperforms 

BTDA in terms of both execution time and number of lattice visited nodes. Moreover, 

ARUBA exhibits a comparable performance with the discrete optimization algorithm 

in terms of time as shown in Fig. 4.11(c) but with a lower risk as shown in Fig. 4.12. 

We compare the risk and utility associated with a disclosed table based on our 

proposed algorithm and arbitrary k-anonymity rules for k from 1 to 100. At each 

value of k, we generate a set of 10 k-anonymous tables and then compute the average 

utility associated with these tables using the simplified utility measure mentioned 

earlier. For each specific utility value c, we run both our proposed algorithm and the 

discrete optimization algorithm to identify the table that has not only the minimum 

risk but also a utility greater than or equal to c. We use each of the three risk models 

when solving these optimization problems. In Fig. 4.12, we plot the utility and risk 
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Figure 4.12. A comparison between our proposed algorithms and k-anonymity 

of ARUBA (optimally selected disclosure policies), discrete optimization algorithm, 

and standard k-anonymity rules for different risk models. It is clear that ARUBA 

consistently outperforms both of the discrete optimization algorithm and standard 

k-anonymity rules regardless the nature of the model used to compute the risk. It 

is worth mentioning that a crucial difference between our algorithm and most of the 

other anonymization algorithms is that we apply the transformations on a record-by­

record basis instead of dealing with sets of equivalent records and we capture record 

similarities by means of the number of consistent records, |ρ(a, θ)|, that is embedded 

in the risk models. 

We also compare the performance of our proposed genetic algorithm with other 

date disclosure algorithms in the literature in terms of risk, utility, and time. Fig. 4.13 

depicts the relationship between the running time for both genetic and ARUBA [38] 

http:Fig.4.13
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Figure 4.13. Comparing the efficiency between ARUBA and the genetic algorithm 

algorithms at various number of attributes. The figure shows that the genetic algo­

rithms are much more efficient than ARUBA in terms of time. It also shows that 

applying probing in the genetic algorithm will have a positive impact on the run­

ning time. However, this impact is not significant compared to the improvement of 

applying the genetic algorithm over ARUBA.

 0
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ARUBA 

Genetic (n=100, p=0.3) 

k-anonymity 
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Figure 4.14. Comparing the accuracy between ARUBA and the genetic algorithm 
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Again, we compare the risk and utility associated with a disclosed table based on 

our proposed genetic algorithm and arbitrary k-anonymity rules for k from 1 to 100. 

At each value of k, we generate a set of 10 k-anonymous tables and then compute 

the average utility associated with these tables using the simplified utility measure 

mentioned earlier. For each specific utility value c, we run both the genetic algorithm 

and optimally selected disclosure rules ARUBA algorithm to identify the table that 

has not only the minimum risk but also a utility greater than or equal to c. In 

Fig. 4.14, we plot the utility and risk of ARUBA, genetic optimization algorithm, 

and standard k-anonymity rules for different risk models. Although it is clear that 

ARUBA consistently outperforms both of the genetic algorithm and standard k-

anonymity rules, the risk sacrifices (7%, at worst) by applying the genetic algorithm 

over ARUBA is outweighed by the gain in efficiency (Fig. 4.13). 

4.7 Conclusion 

In this chapter we propose an efficient algorithm to address the tradeoff between 

data utility and data privacy. Maximizing data usage and minimizing privacy risk are 

two conflicting goals. Our proposed algorithm (ARUBA) deals with the microdata on 

a record-by-record basis and identifies the optimal set of transformations that need 

to be applied in order to minimize the risk and in the meantime keep the utility 

above a certain acceptable threshold. We use predefined models for data utility and 

privacy risk throughout different stages of the algorithm. We show that the proposed 

algorithm is consistently superior in terms of risk when compared with k-anonymity 

and discrete optimization algorithm without a significant sacrifice in the execution 

time. We also propose a Genetic-based approximation algorithm and compare its 

performance experimentally with ARUBA. 

http:inefficiency(Fig.4.13
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5 SCALABILITY OF DATA ANONYMIZATION 

5.1 Background 

Although data disclosure is advantageous for many reasons such as research pur­

poses, it may incur some risk due to security breaches. Releasing health care infor­

mation, for example, though useful in improving the quality of service that patients 

receive, raises the chances of identity exposure of the patients. Disclosing the mini­

mum amount of information (or no information at all) is compelling specially when 

organizations try to protect the privacy of individuals. To achieve such a goal, the 

organizations typically try to hide the identity of an individual to whom data per­

tains and apply a set of transformations to the microdata before releasing it. These 

transformations include (i) data suppression (disclosing the value ⊥, instead), (ii) 

data generalization (releasing a less specific variation of the original data such as 

in [1]), and (iii) data perturbation (adding noise directly to the original data values 

such as in [2]). Studying the risk-utility tradeoff has been the focus of much research. 

Resolving this tradeoff by determining the optimal data transformation has suffered 

from two major problems, namely, scalability and privacy risk. To the best of our 

knowledge, most of the work in determining the optimal transformation to be per­

formed on a database before it gets disclosed is so inefficient that increasing the table 

dimension will substantially exacerbate the performance. Moreover, data anonymiza­

tion techniques [3–8] do not provide enough theoretical evidence that the disclosed 

table is immune from security breaches. Indeed, many techniques for hiding the users’ 

identities have been proposed. These techniques include (i) having each record indis­

tinguishable from at least k −1 other records [3] (k-anonymity), (ii) ensuring that the 

distance between the distribution of sensitive attributes in a class of records and the 

distribution of them in the whole table is no more than t [5] (t-closeness), and (iii) 
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ensuring that there are at least l distinct values for a given sensitive attribute in each 

indistinguishable group of records [6] (l-diversity). Arguably they do not completely 

prevent re-identification [9]. It is shown in [10] that the k-anonymity [3, 4] technique 

suffers from the curse of dimensionality: the level of information loss in k-anonymity 

may not be acceptable from a data mining point of view because the specifics of the 

inter-attribute behavior have a very powerful revealing effect in the high dimensional 

case. 

A realization of t-closeness is proposed in [11], called SABRE. It partitions a 

table into buckets of similar sensitive attribute values in a greedy fashion, then it 

redistributes tuples from each bucket into dynamically configured equivalence classes 

(EC). SABRE adopts the information loss measures [12–15] for each EC as a unit 

rather than treating released records individually. Moreover, although experimental 

evaluation demonstrates that SABRE is superior to schemes that merely applied 

algorithms tailored for other models to t-closeness in terms of quality and speed, it 

lacks the theoretical foundations for privacy guarantees and efficiency. 

In [38], an algorithm called ARUBA is proposed to address the tradeoff between 

data utility and data privacy. The proposed algorithm determines a personalized 

optimum data transformation based on predefined risk and utility models. However, 

ARUBA provides neither scalability nor theoretical foundations for privacy guaran­

tees. 

Another risk-utility-based optimization algorithm for online query services was 

proposed in [41]. In this model, the utility function is computed based on Shannon 

entropy reduction and both utility and cost functions relied on the empirical dis­

tribution capturing user’s intention. A local search algorithm (LS) [42] is adopted 

to solve the optimization problem wherein the values for utility and cost, due to the 

inefficiencies of computing such functions, are estimated using Monte Carlo sampling. 

Our Contribution: In this chapter we address the scalability of data anonymiza­

tion and propose a scalable algorithm for data disclosure. The algorithm provides 

personalized transformation on individual data items based on the risk tolerance of 
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the person to whom the data pertains. We show that determining the optimal trans­

formation is an NP-hard problem and propose two different methods to deal with 

this hardness: (i) an approximation algorithm that we prove (under some condi­

tions) produces a data transformation within constant guarantees of the optimum, 

and (ii) a slightly modified variant of the formulation in [38] that can be used to 

get a polynomial-time algorithm for the data transformation. For achieving these 

results, we explore the fact that the risk function is a ratio with supermodular de­

nominator. Thus, we get a fractional program whose solution can be reduced to a 

number of supermodular function maximization problems each of which can be solved 

in polynomial time. 

5.2 The Data Generalization Model 

In this section, we recall the data transformation model proposed in [38, 40]. For 

reasons that will become clear soon, we will refer to this model as the Threshold Model. 

We show that finding an optimal solution for this model is an NP-hard problem in 

general. Then in the next subsections, we propose two different methods to deal with 

such NP-hardness. Specifically, in Section 5.2.2, we modify the model by bringing 

the constraint on the utility into the objective and show that this modified objective 

can be optimized in polynomial time. In section 5.2.3, we develop an approximation 

algorithm for the threshold model which can be used to produce a solution within a 

constant factor of the optimal risk, yet violating the utility constraint by a constant 

factor. 

5.2.1 The Threshold Formulation 

The Informal Model 

As explained in Chapter 2, the relationship between the risk and expected utility is 

schematically depicted in Fig. 2.3 which displays different instances of a disclosed ta­
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ble by their 2-D coordinates (r, u) representing their risk and expected utility, respec­

tively. The shaded region in the figure corresponds to the set of feasible points (r, u) 

(that is, the risk and utility are achievable by a certain disclosure policy) whereas the 

unshaded region corresponds to the infeasible points. The vertical line corresponds 

to all instances whose risk is fixed at a certain level. Similarly, the horizontal line 

corresponds to all instances whose expected utility is fixed at a certain level. Since 

the disclosure goal is to obtain both low risk and high expected utility, naturally 

we are most interested in these disclosure policies occupying the boundary of the 

shaded region. Policies in the interior of the shaded region can be improved upon by 

projecting them to the boundary. 

The vertical and horizontal lines suggest the following way of resolving the risk­

utility tradeoff. Assuming that it is imperative that the utility remains above a certain 

level c, the optimization problem becomes 

min r subject to u ≥ c. 

The Formal Model 

More formally, we assume that we have k attributes, and let L1, . . . , Lk be the 

corresponding value generalization hierarchies (VGH’s). We will consider VGH’s that 

allow for modeling taxonomies (see Fig. 4.1(a) for an example of the VGH for the 

city attribute). Each such Li equipped with the hierarchical relation bi defines a 

join semi-lattice, that is, for every pair x, x ′ ∈ Li, the least upper bound x ∨x ′ exists, 

where the relation x bi x ′ means that x is a generalization of x ′ in the corresponding 

VGH. Let L = L1 × . . . × Lk be the semi-lattice defined by the product such that 

′ ′ ′ ′ ′ for every x = (x1, . . . , xk), x = (x1, . . . , x k) ∈ L; x b x if and only if xi bi xi 

for all i ∈ [k] = {1, . . . , k}. The unique upper bound of L corresponds to the most 

general element and is denoted by (⊥, . . . , ⊥). For x ∈ L and i ∈ [k], let us denote by 

xi 
+ = {y ∈ Li : y bi xi} the chain (that is, total order) of elements that generalize 

+ + + xi, and let x = x . . . × x be the chain product that generalizes x.1 × k 
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When considering a chain Ci, we will assume, without loss of generality, that 

Ci = {0, 1, 2, . . . , hi}, where hi = |Ci| and the ordering on Ci is given by the natural 

ordering on the integers. 

The utility function: The utility is defined by non-negative monotonically de­

creasing functions d1 : L1 → R+, . . . , dk : Lk → R+, (i.e., di(x) ≤ di(y) for x, y ∈ Li 

such that x bi y). For x ∈ L, the utility is given by u(x) = 
L

i
k 
=1 di(xi). For instance, 

as in Chapter 2 and [38, eq.(5)], di(xi) = 1 , and in [38, eq.(6)], di(xi) = ln( ni(⊥) ); 
ni(xi) ni(xi)

for xi ∈ Li, where ni(xi) is the number of leaf nodes of the VGH subtree rooted at 

xi. 

The risk function: We use the risk model proposed in Chapter 2 and [38]. For 

a record a, given the side database Θ, the risk of a generalization x ∈ a+ is given by 

a(x)
Lk a a +Φa(x)r = ra(x, Θ) = . The function Φa(x) = wi (xi), where wi : ai → R+|ρ(x,Θ)| i=1 

is a non-negative monotonically non-increasing function, represents the sensitivity of 

the ith attribute to the user owning a, and ρ(x, Θ) = {t ∈ Θ | t � x} is the set 

of records in the external database Θ consistent with the disclosed generalization x. 

In [38, Model I], wa is either 0 if xi = ⊥ or some fixed weight wa if xi � ⊥;= i (xi) i 

a 1 +whereas in [38, Model II], wi (xi) = 
k 
for all xi ∈ ai . 

Definition 5.2.1 The Threshold Model 

In data privacy context, given a record a = (a1, a2, · · · , ai, · · · , ak), a utility measure 

u(x), and a risk measure r(x), the threshold model determines the generalization 

x ∈ a+ that minimizes r(x) subject to u(x) ≥ c, where c ∈ R+ is a given parameter 

and a+ is the set of all generalizations of the record a. 

Unfortunately, when the number of attributes k is part of the input, the threshold 

formulation cannot be solved in polynomial time unless P=NP. 

Theorem 5.2.1 Computing an optimal solution for the threshold formulation is NP-

hard. 

Proof We give a reduction from the densest ℓ-subgraph problem (ℓ-DSP): Given a 

graph G = (V, E) and integers ℓ, m, is there a subset X ⊆ V of size ℓ such that the 
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induced subgraph G[X] = (X, E(X)) has at least m edges, where E(X) = 
{
{i, j} ∈ 

E : i, j ∈ X
}
? 

Given an instance < G = (V, E), ℓ > of ℓ-DSP, we construct an instance of the 

threshold formulation (Definition 5.2.1) as follows. We have k = |V | VGH’s wherein 

the ith VGH Li = {⊥, ai, bi} with the only relations ⊥ bi ai and ⊥ bi bi. For each 

edge e = {i, j} ∈ E, we introduce a record t(e) in the database Θ with components: 

tl(e) = 


 


 

bl, if l = i, j, 

al, otherwise. 

Let Θ = {t(e) : e ∈ E} ∪ {a}, where we set a = (a1, . . . , ak). For x ∈ a
+, the utility 

function u(x) is defined by di(xi) = 1 , for i ∈ [k]; so di(⊥) = 1 and di(ai) = 
ni(xi) 2 

Φa(x) Lk adi(bi) = 1. The risk function is defined as , where Φa(x) = wi (xi), and |ρ(x,Θ)| i=1 

we set wi 
a(xi) = 1 if xi ∈ {ai, bi} and 0 otherwise. Finally, we set c = k − 1

2
ℓ. 

Suppose that there is a set X of size ℓ such that |E(X)| ≥ m. We construct a 

feasible solution x for the threshold model with value r(x) ≤ 
m
k−
+1 
ℓ as follows: 

xi = 


 


 

⊥, if i ∈ X,
 

ai, otherwise. 

Then t(e) � x if and only if the edge e is in the induced subgraph G[X] = 
{
{i, j} ∈ 

k−|X|E : i, j ∈ X
}
, and hence |ρ(x, Θ)| = |E(X)| + 1 ≥ m + 1. Thus r(x) = ≤

|E(X)|+1
 

k−ℓ 1 1 1
 . Furthermore, u(x) = |X| + (k − |X|) = k − |X| = k − ℓ. It follows that x 
m+1 2 2 2

is feasible with the value r(x) ≤ k−ℓ . 
m+1

On the other hand, suppose that x is a feasible solution for the threshold model 

≤ k−ℓ k−|X|with the value r(x) . Let X = {i : xi = ⊥}. Then r(x) = and 
m+1 |E(X)|+1 

1 1 1 u(x) = 
2
|X|+ k − |X| = k − 

2
|X|. It follows from u(x) ≥ k − 

2
ℓ that |X| ≤ ℓ, and 

≤ k−ℓthen from r(x) 
m+1 

that |E(X)| ≥ m, that is, X is a set of size at most ℓ that 

induces at least m edges. 
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5.2.2 A Polynomial-Time Solvable Optimization Model: The Aggregate Formulation 

Preliminaries 

Our results in Sections 5.2.2 and 5.2.3 are mainly based on the fact that the risk 

function exhibits certain submodularity properties. The very desirable property of 

submodular (respectively, supermodular) functions is that they can be minimized 

(respectively, maximized) in polynomial time [43]. In this section we summarize the 

basic facts that we need about such functions. 

Definition 5.2.2 A function f : C → R on a chain (or a lattice) product C = 

C1 × C2 × . . . × Ck is said to be monotonically increasing (or simply monotone) if 

f(x) ≥ f(x ′ ) whenever x b x ′ , and monotonically decreasing (or anti-monotone) if 

f(x) ≤ f(x ′ ) whenever x b x ′ . 

Definition 5.2.3 A function f : C → R is said to be supermodular if 

f(x ∧ x ′ ) + f(x ∨ x ′ ) ≥ f(x) + f(x ′ ), (5.1) 

for every pair x and x ′ in C, where x ∧ x ′ is the meet (the greatest lower bound of x 

and x ′ ), and x ∨x ′ is the join (the least upper bound). f is submodular if the reverse 

inequality in (5.1) holds for every pair x and x ′ in C. 

Clearly, f is submodular if and only if −f is supermodular. To show that a given 

function is supermodular, the following proposition will be useful. 

Proposition 5.2.1 A function f : C → R is supermodular if and only if, for any 

i ∈ [k], for any z ∈ Ci, and for any x ∈ C1 × . . . × Ci−1 × {z} × Ci+1 × . . . × Ck; the 

difference 

def 
∂f (x, i, z) = f(x + e i)− f(x) 

as a function of x is monotonically increasing in x, where ei is the ith unit vector. 
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When restricted on the chain product a+, for a ∈ L, the utility function defined 

in Section 5.2.1 is modular, that is, for x, x ′ ∈ a+, inequality (5.1) holds. Indeed, 

k k
′ ′ u(x ∧ x ′ ) + u(x ∨ x ′ ) = 

L 
di(min{xi, x i}) + 

L 
di(max{xi, x i}) 

i=1 i=1 

k k
′ = 

L 
di(xi) + 

L 
di(xi) 

i=1 i=1 

= u(x) + u(x ′ ). 

The following proposition will be used to establish that a certain combination of 

risk and utility is supermodular. 

Proposition 5.2.2 

(i) The function g(x) = |ρ(x, Θ)|, over x ∈ a+, is supermodular and monotonically 

increasing. 

(ii) Let p : a+ → R+ be a monotonically decreasing supermodular function and 

q : a+ → R+ be a non-negative monotonically decreasing modular function. 

Then, h(x) = q(x)p(x), over x ∈ a+ is monotonically decreasing supermodular. 

Proof 

(i) Clearly, g is monotonically increasing. Using the notation of Proposition 5.2.1, 

with Ci = a + 
i , we have 

∂g(x, i, z) = g(x + e i)− g(x) 

= 
��{t ∈ θ | t � x + e i}

�� −
��{t ∈ θ | t � x}

�� 

= 
��{t ∈ θ | tj � xj , for j �= i and ti �� z, ti � z + 1}

��. (5.2) 

For x, x ′ ∈ C1 × . . . × Ci−1 × {z} × Ci+1 × . . . × Ck, equation (5.2) implies that 

∂g(x, i, z) ≥ ∂g(x 
′ , i, z), whenever x b x ′ . This implies the supermodularity of 

the function g by Proposition 5.2.1. 
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(ii) There exist non-negative monotonically decreasing functions w1
′ , . . . , w n 

′ : a+ → 

′R such that q(x) = 
Ln w (xi). Note that i=1 i

∂h(x, i, z) = h(x + e i)− h(x) = q(x + e i)p(x + e i)− q(x)p(x)�
L 

� 
′ ′ i)− q(x)p(x)= wj(xj) + wi(z + 1) p(x + e 

j=i 

k

′ ′ ′ = 

�
L 

wj(xj) + wi(z + 1) − wi(z) 

� 

p(x + e i)− q(x)p(x) 
j=1 

′ ′ = q(x)∂p(x, i, z) +
(
w (z + 1) − w (z)

)
p(x + e i). (5.3) i i

′ ′ ′ The anti-monotonicity of wi implies that wi(z + 1) ≤ wi(z), while the super-

modularity of p implies, by Proposition 5.2.1, that the function ∂p(x, i, z) is 

monotonically increasing in x. Combined with (5.3), the non-negativity and 

anti-monotonicity of wj 
′ for all j, and the anti-monotonicity of p; this implies 

in turn that ∂h(x, i, z) ≥ ∂h(x 
′ , i, z), for x b x ′ . The supermodularity of the 

function h then follows from Proposition 5.2.1. 

Repeated application of Proposition 5.2.2 yields the following. 

Corollary 5.2.1 The function h(x) = Φa(x)
(
u(x)

)κ 
over x ∈ a+, is supermodular. 

The Modified Aggregate Model 

One other way to deal with the NP-hardness of the threshold formulation is to use 

the following model which aggregates both risk and utility into one objective function. 

Given a record a, it is required to find a generalization x ∈ a+ that maximizes the 

“Lagrangian” relaxation 
λ 

fa(x) = + 
(
u(x)

)κ 
, (5.4) 

ra(x) 

where λ ∈ R+ and κ ∈ Z+ are given parameters. Here we assume that the risk 

parameters wi = wi 
a are functions of a to reflect the dependence on the user owning 
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the data record. We also use λ and κ as design parameters to control how much 

importance to give to utility maximization/risk minimization. It is worth noting that 

throughout the rest of the dissertation we will use the term “utility” interchangeably 

to denote the utility function u(x) and the aggregate objective function (5.4). 

Theorem 5.2.2 Assuming rational input, α∗ = maxx∈a+ fa(x) can be computed in 

+polynomial time in 
Lk

i=1 |ai |, |θ|, and the bit length of the input weights. 

Proof Write 
λ|ρ(x, Θ)|+ Φa(x)

(
u(x)

)κ 
fa(x) = . 

Φa(x) 

By the rationality of the input, the value of fa(x) for any x ∈ a+ is a rational number 

whose bit length is bounded by the bit length of the input. Thus, by binary search 

we can reduce the problem of computing α∗ into a polynomial number (in the bit 

length of the input) of problems of the form: Given a constant α, determine if there 

is an x ∈ a+, such that fa(x) ≥ α. The latter problem can be solved by checking 

if maxx∈a+ λ|ρ(x, Θ)| + Φa(x)
(
u(x)

)κ 
− αΦa(x) ≥ 0. Note that the function g(x) = 

λ|ρ(x, Θ)| + Φa(x)
(
u(x)

)κ 
− αΦa(x) is the sum of two supermodular functions and 

a modular function. It follows that g is supermodular and hence can be maximized 

over the chain product a+ in polynomial time. 

Optimization On a Ring Family 

Since it is easier to work on the 0/1-hypercube (and, in addition, there are available 

software tools for maximizing supermodular/minimizing submodular set-functions), 

we describe here how to reduce the optimization problem over a chain product to one 

over the cube. 
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By Birkhoff’s representation theorem (for e.g., [44, Chapter II]), we may regard a 

chain product C as a sublattice of the Boolean lattice1 . More precisely, we consider 

the set of join-irreducible elements2 

J = {(1, 0, . . . , 0), (2, 0, . . . , 0), . . . , (h1, 0, . . . , 0), 

(0, 1, . . . , 0), (0, 2, . . . , 0), . . . , (0, h2, . . . , 0), 
. . . 

(0, 0, . . . , 1), (0, 0, . . . , 2), . . . , (0, 0, . . . , hk)}, 

and, for x ∈ C, define S(x) = {y ∈ J : y � x}. Then, a supermodular (respectively, 

submodular, or modular) function f : C → R gives rise to another supermodular 

(respectively, submodular, or modular) function g : F → R, defined over the ring 

family3 F = {S(x) : x ∈ C} as g
(
S(x)

) 
= f(x). 

Thus, we can maximize a supermodular function on C by solving a maximization 

problem for a supermodular set-function over a ring family. Using known techniques 

(for e.g., [43, Chapter 10] and [45, Chapter 10]), the problem can be further reduced 

to maximizing a supermodular function over the hypercube 2J . For completeness, 

we sketch the reduction from [45] here. For v ∈ J , denote by Nv the largest member 

of F not containing v. For X ⊆ J , define the closure X = S(∨x∈Xx). Equivalently, 

X is the smallest member in F that contains X. Let us now extend the function 

g : F → R into the function ḡ : 2J → R by setting 

ḡ(X) = g(X) + c(X)− c(X) for X ⊆ J , 

where c ∈ RJ is given by 

c(v) = max
{
0, g(Nv ∪ {v})− g(Nv)

} 
for v ∈ J . 

As shown in [45], the following assertions hold: (i) ḡ is supermodular, and (ii) for all 

X ⊆ J , g(X) ≥ ḡ(X). In particular, X ∈ argmax ḡ implies X ∈ argmax g. Thus, 

1A bounded distributive lattice for which every element has a complement is called a Boolean lattice.
 
2An element x is join-irreducible if it is not the join of a finite set of other elements.
 
3A set family F is called a ring family if X, Y ∈ F ⇒ X ∩ Y, X ∪ Y ∈ F .
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we can maximize g over F by maximizing ḡ over the hypercube. Alternatively [43], 

we may also use the extension ḡ(X) = g(X) −K|X \X|, for sufficiently large K > 

maxX⊆J ,v∈J g(X ∪ {v})− g(X). 

5.2.3 An Approximation Algorithm 

When the utility threshold c is “large”, we can use convex optimization, as de­

scribed in this section, to obtain a generalization of the given record a that approx­

imately minimizes the risk and is only within a constant from the utility threshold. 

We need a few more preliminaries first. 

The Lovász extension [43]: 

Let V be a finite set of size n, and F ⊆ 2V be a ring family over V , such that ∅, V ∈ F . 

We assume that the family F is defined by a membership oracle, that is an algorithm 

that can decide for a given S ⊆ V whether S ∈ F or not. For S ⊆ V , denote by 

χ(S) ∈ {0, 1}V the characteristic vector of S, that is, χi(S) = 1 if and only if i ∈ S. 

Let us denote by P (F) = conv{χ(S) : S ∈ F} the convex hull4 of the characteristic 

vectors of the sets in F . Given x ∈ [0, 1]V , and writing Ui(x) = {j : xj ≥ xi}, 

for i = 1, . . . , n, one can easily check that x ∈ P (F) if and only if Ui(x) ∈ F for 

all i ∈ [n]. Thus, a membership oracle for P (F) can be obtained from the given 

membership oracle for F . 

Given a set function f : F → R over F , the Lovász extension f̂ : P (F) → R of 

f , is defined as follows: For any x ∈ P (F), assuming without loss of generality, that 

x1 ≥ x2 ≥ · · · ≥ xn and defining xn+1 = 0, 
n

f̂(x) = 
L

(xi − xi+1)
(
f({1, . . . , i})− f(∅)

) 
+ f(∅). 

i=1 

It is known (for e.g., [43, chapter 10], and [45, Chapter 10]) that f is supermodular 

(respectively, submodular) over F , if and only if f̂ is concave (respectively, convex) 

over P (F). In particular, the extension of a modular function is linear. 

4The convex hull for a set X of points is the minimal convex set containing X . For instance, when 
X is a bounded subset of the plane, the convex hull may be visualized as the shape formed by a 
rubber band stretched around X . 
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Randomized rounding of a vector in the extension: 

Let f : F → R be a set function and f̂ be its Lovász extension. Given a vector x̂

from P (F), we can get back a point in the discrete domain F as follows. Assuming 

x̂1 ≥ x̂2 ≥ · · · ≥ x̂n, for i = 1, . . . , n − 1, we return the characteristic vector of the set 

{1, . . . , i} with probability x̂i−x̂i+1, return the vector 1 of all ones with probability x̂n,
¯ 

and return the vector 0 of all zeros with the remaining probability 1− x̂1. Let RR(x̂)
¯ 

be the random set returned by this procedure. It is easy to see that if X = RR(x̂), 

then E[f(X)] = f̂(x̂). 

Example 5.2.1 Let V = {v1, v2, · · · , v5} and x̂ = (0.7, 0.5, 0.4, 0.1, 0). Then, 
 

{1, 0, 0, 0, 0} = {v1} with prob. 0.2 

{1, 1, 0, 0, 0} = {v1, v2} with prob. 0.1 


{1, 1, 1, 0, 0} = {v1, v2, v3} with prob. 0.3

X = RR(x̂) = 

{1, 1, 1, 1, 0} = {v1, v2, v3, v4} with prob. 0.1 

{1, 1, 1, 1, 1} = {v1, v2, · · · , v5} with prob. 0 

{0, 0, 0, 0, 0} = ∅ with prob. 0.3 

Example 5.2.2 Consider the 2D lattice in Fig. 4.2(a). Let us assign numbers 0, 1, 

2, and 3 to Dayton, Tippecanoe, Indiana, and ⊥, respectively; and 0, 1, and 2 to 

Chinese, Asian, and ⊥, respectively. Hence, the set of join-irreducibles is 

J = {(1, 0), (2, 0), (3, 0), (0, 1), (0, 2)}. ' -v " ' -v
b 

" ' -v " ' -v
d 

" 
ea c 

' -v " 

The corresponding sets in the ring family F are: 

S
(
(0, 0)

) 
= ∅, S

(
(1, 0)

) 
= {a}, S

(
(2, 0)

) 
= {a, b}, S

(
(3, 0)

) 
= {a, b, c} 

S
(
(0, 1)

) 
= {d}, S

(
(1, 1)

) 
= {a, d}, S

(
(2, 1)

) 
= {a, b, d}, S

(
(3, 1)

) 
= {a, b, c, d} 

S
(
(0, 2)

) 
= {d, e}, S

(
(1, 2)

) 
= {a, d, e}, S

(
(2, 2)

) 
= {a, b, d, e}, S

(
(3, 2)

) 
= {a, b, c, d, e} 



80 

Let us pick a point x̂ ∈ P (F). For instance, let x̂ be an element in the convex hull 

of the characteristic vectors of the sets S
(
(1, 0)

)
, S

(
(2, 1)

) 
and S

(
(1, 2)

)
. Then, 

x̂ = (0.2)(1, 0, 0, 0, 0) + (0.1)(1, 1, 0, 1, 0) + (0.4)(1, 0, 0, 1, 1) = (0.7, 0.1, 0, 0.5, 0.4). 

After ordering the coordinates, we have x̂ = (0.7, 0.5, 0.4, 0.1, 0) (corresponding to 

the order a,d,e,b,c). The sets that can be returned by randomized rounding are ∅, 

{a}, {a, d}, {a, d, e}, {a, b, d, e} and {a, b, c, d, e} (as in Example 5.2.1). Suppose that 

{a, d, e} was returned. Then, since S
(
(1, 2)

) 
= {a, d, e}, the corresponding vector in 

the lattice is (1,2)=(Tippecanoe, ⊥). 

Now we can state our result for this section. 

Theorem 5.2.3 Consider a record a in the database. Let ν(k) = maxx∈a+ u(x) and 

suppose that the utility threshold c = θ · ν(k), for some constant θ ∈ (0, 1). Then, 

there is an algorithm that, for any constants ǫ > 0, σ1 ∈ (0, 1), and σ2 > 1 such that 

1−θ 1+ < 1, outputs in expected polynomial time an element x ∈ a+ such that 
1−θσ1 σ2 

� 
1 

� 
1 

E ≥ 
∗ 
and u(x) ≥ σ1c, 

ra(x) σ2(1 + ǫ)z 

where z ∗ = minx ′ ∈a+, u(x ′ )≥c r
a(x). 

aProof Let J and Fa be the set of join-irreducible elements of a+ and the cor­

responding ring family defined in Section 5.2.2, respectively. Thus, the functions 

Φa(·), u(·) and T (·) = |ρ(·, Θ)| can also be thought of as functions over the ring 

family Fa ⊆ 2J . Let Φ̂a u, ˆ asz extensions of these func­
a 

, ˆ T : P (Fa) → R+ be the Lov´

tions. Moreover, let φl(k) =	 minx∈a+:Φa(x)>0 Φ
a(x) and φu(k) = maxx∈a+ Φa(x). For 

φu(k)i = 0, 1, 2, . . . , U = ⌈log(1+ǫ) ⌉, define τi = φl(k)(1 + ǫ)i . Then, we consider the 
φl(k)

following set of problems, for i = 0, 1, 2. . . . , U : 

zi 
∗ = max T̂ (x) subject to û(x) ≥ c, Φ̂a(x) ≤ τi (5.5) 

over x in the set P (F) (given by a membership oracle). Since Φa, u are modular 

and T is supermodular, it follows that (5.5) is a concave maximization problem over 
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a convex set given by a membership oracle, and hence can be solved in polynomial 

time [46]. Once we get an optimal solution x̂i to (5.5) we return the randomized 

rounding X i = RR(x̂i), which then corresponds to an element xi ∈ a+ . If it happens 

that u(xi) < σ1c or Φa(xi) > σ2τi, then we repeat the randomized rounding step. 

Finally, among all the obtained rounded solutions, we return the solution x that 

maximizes 1/ra(xi). The details are given in Algorithm 5. 

Algorithm 5: Approx(a, ǫ, θ, σ)
 

Input: a record a ∈ D, real numbers ǫ, θ, σ1 ∈ (0, 1), and σ2 > 1 such that 

1−θ 1+ < 1. 
1−θσ1 σ2 

Output: a point x ∈ a+ . 

begin 

1
 

2
 

3
 

4
 

5 

for i ∈ {0, 1, . . . , U} do 

let x̂i be an optimal solution to (5.5); 

repeat 

X i = RR(x̂i) and let xi = ∨x∈Xix be the corresponding element in 

a+; 

until u(xi) ≥ σ1c and Φa(xi) ≤ σ2τi; 

return x = argmaxi 
1 ;

ra(xi)

Now we argue about the quality of the solution. We begin with some observa­

ˆ i) ∗tions: For all i, (i) E[T (xi)] = T (x̂ = zi , (ii) E[u(x
i)] = û(x̂i) ≥ c, and (iii) 

E[Φa(xi)] = Φ̂a(x̂i) ≤ τi. These follow from the properties of the randomized round­

ing procedure and the feasibility of x̂i for (5.5), and imply by Markov’s Inequality5 

that β = Pr[u(xi) ≥ σ1c and Φa(xi) ≤ σ2τi] ≥ 1 − 1−θ − 1 . It follows that the 
1−θσ1 σ2 

expected number of iterations until the condition of the loop in step 3 is satisfied is 

at most 
β
1 . Since u(xi) ≥ σ1c, for all i, the bound on the utility u(x) ≥ σ1c follows. 

5Let Y be a random variable taking non-negative values. Then, Markov’s inequality states that for 
E[Y ]any y > 0, Pr[Y ≥ y] ≤ . In particular, if Y ′ is a random variable taking values bounded by M ,
y 

M−E[Y ]then Pr[Y < y] ≤ 
M−y . 
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Now it remains to bound the expected risk. Let xi be the element computed in 

step 4 at the ith iteration of the algorithm, and x ∗ be an element in a+ such that 

ra(x ∗) = z ∗ . Choose i ∈ {0, 1, . . . , U} such that τi−1 ≤ Φa(x ∗) ≤ τi. Note that 

Φa(x ∗) τi−1
E[T (x i)] = zi 

∗ ≥ 
z ∗ 

≥ 
z ∗ 

, 

since x ∗ is feasible for (5.5) (as Φ̂a and û are extensions of Φa and u, respectively, and 

hence agree on the elements of a+). On the other hand, since Φa(xi) ≤ σ2τi (with 

probability 1), it follows that 

� 
T (xi)

� �
T (xi)

� 
τi−1 1 

E ≥ E ≥ = . (5.6) 
Φa(xi) σ2τi σ2τiz ∗ σ2(1 + ǫ)z ∗ 

By our choice in step 5, we have E[1/ra(x)] ≥ E[1/ra(xi)], and the theorem follows. 

5.3 Experimental Analysis 

We use an experimental setup similar to that described in Chapter 3. We com­

pare the performance of both the threshold optimization algorithm and the modified 

(with supermodular objective function) aggregate algorithm. We implement the su­

permodular minimization using [47]. We run both algorithms with various (i) number 

of attributes, and (ii) utility thresholds. In each experiment, we run the aggregate 

algorithm and compute the utility of the resulting table then use it as a lower bound 

for the threshold algorithm. Fig. 5.1(a) depicts the impact of imposing supermodu­

larity on the time needed for optimizing the objective function. To compute the risk 

and utility for a disclosed table, we consider 3 models: (i) The risk (utility) is the 

average value of all records (Fig. 5.1(b)), (ii) The risk (utility) is the highest value of 

all records (Fig. 5.1(c)), and (iii) The risk (utility) is the lowest value of all records 

(Fig. 5.1(d)). It is clear that, regardless of the models used to compute the risk 

and utility, the modified aggregate algorithm significantly outperforms the threshold 

algorithm in terms of running time while both algorithms have comparable risks. 
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Figure 5.1. The impact of imposing supermodularity on the opti­
mization objective function in terms of (a) efficiency and (b, c, d) 
accuracy 



84 

6 DIFFERENTIAL PRIVACY 

6.1 Background 

The notion of Differential privacy [16, 17] introduced an additional challenge to 

anonymization techniques. Namely, can you ensure that there will be no information 

gain if a single data item is added (removed) to (from) the disclosed data set D ⊆ 

L? Differential privacy provides a mathematical way to model and bound such an 

information gain. Let D−a denote the dataset D after removing the record a. 

In this chapter we consider the problem of obtaining a set of data transformations, 

one for each record in the database, in such a way that satisfies differential privacy 

and at the same time maximizes (minimizes) the average utility (risk) per record. 

Towards this end, we adopt the exponential mechanism recently proposed in [18]. 

The main technical difference that distinguishes our application of this mechanism 

from the previous applications (e.g., in [18,19]) is the fact that in our case the output 

set is also a function of the input, and hence it changes if a record is dropped from 

the database. In fact, a simple example is presented to show that it is not possible 

to obtain differential privacy without sacrificing utility maximization. To resolve this 

issue, we sample only from “frequent elements”, that is, those generalizing a large 

number of records in the database and show that, this way, differential privacy can be 

achieved with any desired success probability arbitrarily close to 1. Another technical 

difficulty that we need to overcome is how to perform the sampling needed by the 

exponential mechanism. Again, we explore the supermodularity of the (denominator 

of the) risk function to show that such sampling can be done efficiently, even for a 

large number of attributes. 
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Definition 6.1.1 Differential Privacy 

A randomized algorithm A : D → 2L is said to satisfy the (ǫ, δ)-differential privacy 

if 
Pr[A(D) ∈ G] ǫ e −ǫ ≤ ≤ e ,	 (6.1) 
Pr[A(D−a) ∈ G] 

with probability ≥ (1 − δ) for any dataset D, any record a ∈ D, and any subset of 

outputs G ⊆ Range(A). 

6.2	 Challenges 

For every record a in the database D, we define an “aggregate utility” function 

fa as in (5.4). Our ultimate goal is to design a (randomized) mechanism A : D → 2L 

that outputs a set G ⊆ L that satisfies the following 3 conditions: 

(C1)	 Complete cover: for each a ∈ D, there is a ga ∈ A(D) such that ga generalizes 

a, that is, ga b a (with probability 1); 

(C2)	 Differential privacy: A(D) satisfies the (ǫ, δ)-differential privacy, for some given 

constants ǫ and δ; 

(C3)	 Utility maximization: the average expected utility E 
� 

1 
L 

fa(ga)
� 
is max­

|D|	 a∈D 

imized. 

We may also consider the threshold version wherein the function fa above is 

replaced by ra, and the generalizations ga satisfy ua(ga) ≥ c. In this case, the 

conditions (C1) and (C3) are replaced by: 

a	 a(C1 ′ )	 Complete cover: for each a ∈ D, there is a g ∈ A(D) such that g b a and 

ua(ga) ≥ c (with probability 1); 

(C3 ′ )	 Risk minimization: the average expected risk E 
� 

1 
L 

a(ga)
� 
is minimized. 

|D|	 a∈D r

Some further notation: We define h to be the maximum possible height of the k 

VGH’s. As before, we assume that φl(k) ≤ Φa(x) ≤ φu(k) and u(x) ≤ ν(k) for all 
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a ∈ D and all x ∈ a+, and some functions φl(k), φu(k) and ν(k) that depend only 

on the dimension k. We assume also that the database is large enough: |D| ≥ ν(k)κ , 

where κ is the constant defined in (5.4). For L ′ ⊆ L, we denote by Optimum(D, L) 

the maximum average utility when each generalization g is chosen from the sublattice 

L ′ . We define fmax = maxa∈D, x∈a+ fa(x), and rmax = maxa∈D, x∈a
a(x). By our + r

≤ λ|D| assumptions, fmax + ν(k)κ , rmax ≤ φu(k), and hence, 
fmax ≤ tf (k) and φl(k) |D| 

rmax ≤ tr(k) are bounded constants that depend on the dimension, but not on the 

size of the database. 

6.3 t-Frequent Elements 

Ideally, one would like to generalize the database records with two goals in mind: 

(i) maximize the total utility obtained from the generalization, and (ii) satisfy differ­

ential privacy. Unfortunately, the following example shows that it is not possible in 

general to achieve the two objectives (C2) and (C3) at the same time. 

Example 6.3.1 Consider a database D whose attributes are generalized through k 

VGH’s. The ith VGH is of the form: Li = {⊥, ai, b
1 
i , bi

2, . . . , bhi } with only the relations 

⊥ bi ai and ⊥ bi b
1 
i bi b

2 
i bi · bi b

h
i . Suppose that there is only one record a0 in D 

whose attributes are a1, . . . , ak, while all other records have the ith attribute belonging 

to the chain {bi
1, bi

2, . . . , bi
h} for all i. 

Let G = {γa : a ∈ D} be a set of generalizations such that γa0 ∈ {(ai, x−i) : x−i ∈ 
I

j=i Lj}. Then, for any mechanism A, Pr[A(D−a0 ) ∈ G] = 0 since none of the 

records in D−a0 have attribute ai, for some i. Thus, in order to satisfy (6.1), we 

must have Pr[A(D) ∈ G] ≤ δ, implying that the “trivial” generalization γa0 = ⊥ must 

be chosen for a0 with probability at least 1 − δ. In particular, if the utility of a0 is 

very large compared to the maximum average utilities of all other records, then only 

a fraction δ of this utility can be achieved by any differentially private mechanism. 

Examining the above example, we observe that the main obstacle for obtaining 

differential privacy is that some of the elements in L (such as a0 in the example) 
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are not generalizing “enough” number of records. This motivates us to consider 

only those elements in L which are generalizing many records in D. More formally, 

following [48,49], we say that an element x ∈ L is t-frequent for a given integer t with 

respect to the given database D if it generalizes at least t records in D: |ρ(x, D)| ≥ t. 

In the sequel, we denote by Lt(D) the set of t-frequent elements in D. 

6.4 The Mechanism 

We will apply the framework of McSherry and Talwar [18]. For a ∈ D and x ∈ a+ , 

define 

ǫ ′ fa(x)/|D| e
q ǫ 

′ 

(x) = , or af L 
ǫ ′ fa(x ′ )/|D|

+ ex ′∈a
−ǫ ′ ra(x)/|D| e

qr
ǫ ′ 
a (x) = . (6.2) 

−ǫ′ ra(x ′ )/|D|
L 

+ ex ′∈a

This distribution has the property that it tends to give preference to elements with 

larger utility (hence, approximately maximizing the utility), but in such a smooth way 

that the output of the mechanism does not change much if the size of the database 

changes by a constant (hence, satisfying differential privacy). Note that since we 

assume below that the external database Θ = D, fa(·) and ra(·) are functions of D, 

therefore we sometimes refer to them as fa,D(·) and ra,D(·). However, in case Θ is 

independent of D, we may assume that ra(·) is independent of D. 

For convenience, we assume in the algorithm that ⊥ ′ is another copy of ⊥. We 

introduce a parameter β s.t. β ≥ e−ǫ . We define η(k) = 2
� 

φ(
λ
k) 
+ 1

� 
and choose 

ǫ ′ tf (k)
β2hket ′ = 

1−β 
. In case of risk minimization (conditions (C1 ′ ) and (C3 ′ )), we define 

η(k) = φu(k). 

Algorithm 6 shows the mechanism which initially samples each record with prob­

ability 1 − β (step 4). Then for each sampled record a ∈ D, it outputs an element 

from the generalization a+ according to the exponential distribution (6.2) defined by 

the utility. Note that the sampling step 4 is necessary, or otherwise the outputs on 

two databases with different sizes will be different with probability 1. Note also that 
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the threshold frequency t is chosen at random; otherwise, differential privacy does 

not hold since an element can be frequent in D but not in D−a. 

Algorithm 6: A(D, β, ǫ, t)
 
Input: a database D ⊆ L, an accuracy ǫ, and constants β, θ0 ∈ (0, 1).
 

Output: a subset G ⊆ L satisfying (C1).
 

begin
 

1 

2 

3 

4 

5 

6 

7 

8 

ǫ+lnβlet ǫ ′ = ;
3η(k)(1−β)

let t = θ|D| where θ is chosen randomly in (θ0, 1);
 

find the sublattice Lt ⊆ L of t-frequent elements;
 

sample a set Is ⊆ D s.t. Pr[a ∈ Is] = 1− β for all a ∈ D (independently);
 

for a ∈ Is do
 

sample x ∈ a+ ∩ Lt(D) with probability qf
ǫ ′ (x)a 

(or sample x ∈ a+ ∩ {g ∈ Lta (D) : u(g) ≥ c} 

with prob. qr
ǫ ′ 
a (x) in case of the threshold version); 

set ga = x; 

areturn the (multiset) {⊥ ′ } ∪ {g : a ∈ Is}; 

Clearly, the output of the algorithm satisfies (C1) (or (C1 ′ ) for the threshold 

version). We show that it approximately satisfies (C2) and (in some cases) (C3) (or 

(C3 ′ ) for the threshold version). 

In the next section, we show how the sampling step 6 can be performed in poly­

nomial time, when the dimension is not fixed (i.e., it is part of the input). 

Theorem 6.4.1 

(i) A(D) satisfies (ǫ, δ + o(1))-differential privacy1; 

(ii) A(D) satisfies (C3) (respectively, (C3 ′ )) approximately: the expected average 

utility obtained is at least (1− β)(1− 3 
ℓ
)Optimum(D, Lt(D)) whenever the op­

ℓk|D| timum average utility satisfies Optimum(D, Lt(D)) ≥ 
ǫ ′ 

ln(hℓ). 

1Here, o(1) hides a factor of the form hk 

|D|2 . 
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Outline of the proof 

To show that (C2) holds, it is enough to consider an output G (which is a set 

of generalizations some of which are just the trivial ⊥ ′ ) of the mechanism, and show 

that for some fixed record a0, 

Pr[A(D) = G]−ǫ ≤e ≤ e ǫ (6.3) 
Pr[A(D−a0 ) = G] 

holds except when the size of G (and hence Is) is “too large”, or there is an element 

+in a0 ∩ Lt(D) that does not generalize ”large enough” number of records from the 

set Is sampled in step 4. By Chernoff bounds we can bound the probability of the 

first event since the expected size of the set Is is (1 − β)m, where m = |D|, and 

the probability that it deviates much from this value goes down exponentially with 

m. To bound the probability of the second event, we use the fact that each element 

in Lt(D) is t-frequent and, hence, it is expected to generalize many of the sampled 

records in Is. Chernoff bounds can be then applied to get the desired bound on the 

probability. 

To show that (6.3) holds, we condition on the chosen subset Is, and use the 

fact proved in [18] that the exponential mechanism applied to the vector of vari­

ables in Is satisfies differential privacy (i.e., an inequality similar to (6.3)). More 

precisely, for a subset I ⊆ D, and a vector γ ∈ SI = 
I 

a∈I |a
+ ∩ Lt(D)|, we de­

note by γI = (γa)a∈I the restriction of γ to I and define the function F I(·, D) : 

1SI → R+ by F I(γ, D) = 
|D| 

L 
a∈I f

a,D(γa). Define the sensitivity of F I as ΔF I = 

maxD,D′ maxγ∈S |F I(γ, D) − F I(γ, D ′ )|, where the maximum is over all databases 

D and D ′ that differ in size by at most 1. Similarly, we define the sensitivity of 

the risk function ΔRI = maxD,D′ maxγ∈S |R
I(γ, D) − RI(γ, D ′ )|, where RI(γ, D) = 

1 
|D| 

L 
a∈I r

a,D(γa). 

Lemma 6.4.1 (Theorem 6 in [18]) For any a0 ∈ D, I ⊆ D \ {a0} and G ⊆ SI , 

−2ǫ ′ ΔFI Pr[gI(D) ∈ G] 2ǫ ′ ΔFI 

e ≤ ≤ e , (6.4) 
Pr[gI(D−a0 ) ∈ G] 

where ΔF I is the sensitivity of F I . 
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For the proof of (C2), we need to show that the sensitivity is small as follows. 

Bounding the sensitivity: 

|I| |I| Lemma 6.4.2 ΔF I ≤ η(k) (respectively, ΔRI ≤ η(k) ). 
|D| |D|

Proof Assuming, without loss of generality, that |D| = |D ′ |+ 1, 

|F I(γ, D)− F I(γ, D ′ )|
 

1 
fa,D(γa)− 

1
L L 
fa,D(γa)= 

|D| |D′| 
a∈I a∈I 

� 1 
�
λ|ρ(γa , D)| 

� 
1 

�
λ|ρ(γa , D ′ )| 

= 
L 

+ u(γa)κ − 
L 

+ u(γa)κ

����� 

������|D| Φa(γa) |D′| Φa(γa) 
a∈I a∈I 

1 
�
λ(|ρ(γa , D)| − |ρ(γa , D ′ )|)

� 
1 

�
λ|ρ(γa , D ′ )| 

� 

≤ 
L L 

u(γa)κ+ + ,
|D| Φa(γa) |D| · |D′| Φa(γa) 

a∈I a∈I 

(6.5) 

where κ and λ are the constants defined in (5.4). Using ρ(x, D) − ρ(x, D ′ ) ≤ 1, 

|ρ(x, D ′ )| ≤ |D ′ |, Φa(x) ≥ φl(k), and u(γ
a) ≤ ν(k) in (6.5); we can bound ΔF I as 

follows: 
2|I| 

� 
λ ν(k)κ

� 
|I| 

ΔF I ≤ + = η(k) . 
|D| φl(k) |D| |D| 

Similarly, we can bound the sensitivity of the risk function ΔRI as follows: 

|RI(γ, D)−RI(γ, D ′ )|
 

1 1
L 
a,D(γa)− 

L 
a,D(γa)= r r 

|D| |D′| 
a∈I a∈I 

1 Φa(γa) 1 Φa(γa) 
= 

L 
− 

L 

|D| |ρ(γa , D)| |D′| |ρ(γa , D′)| 
a∈I a∈I � 

1 1 
� 

≤ 
L 

Φa(γa) − 
|D′| · |ρ(γa , D′)| |D| · |ρ(γa , D)| 

a∈I � 
1 1 

� 

≤ 
L 

Φa(γa) − 
(|D| − 1)(|ρ(γa , D)| − 1) |D| · |ρ(γa , D)| 

a∈I � 
|D|+ |ρ(γa , D)| − 1 

�L 
Φa(γa)= 

|D| · |ρ(γa , D)|(|D| − 1)(|ρ(γa , D)| − 1) 
a∈I 
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implying that 

|I| 
� 

1 1 
� 

|I| 
ΔRI ≤ φu(k) + = η(k) . 

|D| t(t − 1) (|D| − 1)(t − 1) |D| 

Theorem 6.4.1 follows from these lemmas and Chernoff bounds as follows. 

Proof (of Theorem 6.4.1) 

We will consider, without loss of generality, the case of aggregate utility functions 

fa,D, and point out the places where the proof has to be modified to deal with the 

threshold formulation (C1 ′ and C3 ′ ). Let g(D) = 
(
ga(D)

)
be a random variable 

a∈D 

in which the component ga(D) indicates the element sampled in step 6 of Algorithm 

6 when considering the record a ∈ D. Define the average utility function 

1 
F 
(
g(D), D

) 
= 

L 
fa,D

(
g a(D)

)
. 

|D| 
a∈D 

For a subset I ⊆ D, we denote by gI(D) = 
(
ga(D)

)
the restriction of g(D)

a∈I 

1to I, and define F I
(
g(D), D

) 
= 

L 
fa,D

(
ga(D)

)
. We will write F 

(
g(D), D

) 
as 

|D| a∈I 

F D
(
g(D), D

)
. Since, for a � a ′ , the vectors g and g (D) are sampled indepen­= a(D) a ′ 

dently, the vector gI(D) is a random variable defined over the product space SI with 

probability distribution: Pr[gI = γ] = qF
ǫ ′

I ,D(γ), for γ = (γa)a∈I ∈ SI , where 

ǫ ′ FI(γ,D)eǫ ′ ǫ ′ q (γ) = 
� 

qfa,D(γ
a) = .FI ,D L

ǫ ′ FI(γ,D) 
a∈I γ ′ ∈SI e

Let further Xa ∈ {0, 1} be a random variable that takes value 1 if and only if a ∈ D 

was picked in the random set Is in step 4. For I ⊆ D, let XI = 
I 

Xa 
I 

(1 − a∈I a  ∈I

Xa). Then, Pr[XI = 1] = Pr[Is = I] = (1 − β)iβm−i, where i is the size of I and 

m = |D|. For a multiset G of vectors from L, denote by πI(G) the set of unordered 

permutations γ ∈ SI such that γa ∈ a+ for all a ∈ I. 

(i) Fix an output G of the algorithm of size i + 1. Then, 

Pr[A(D) = G] = 
L 

Pr[A(D) = G | XI = 1] Pr[XI = 1] 
I⊆D: |I|=i 

= P1(i, D) + P2(i, D), (6.6) 
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where 

P1(i, D) = 
L 

Pr
 
g I(D) ∈ πI(G \ {⊥ ′ })

 
(1− β)iβm−i , 

I⊆D: |I|=i
 

a0  ∈I
 

P2(i, D) = 
L 

Pr
 
g I(D) ∈ πI(G \ {⊥ ′ })

 
(1− β)iβm−i . (6.7) 

I⊆D: |I|=i
 

a0∈I
 

Similarly, 

Pr[A(D−a0 ) = G] = 
L 

Pr
 
g I(D−a0 ) ∈ π

I(G \ {⊥ ′ })
 
(1− β)iβm−1−i . 

I⊆D−a0 : |I|=i 

We will derive (C2) from the following claims 6.4.1, 6.4.2 and 6.4.3. 

Claim 6.4.1 Pr[A(D) = G] ≥ e−ǫ Pr[A(D−a0 ) = G], provided that 

ǫ + ln β 
i ≤ i1 = m. (6.8) 

2ǫ′η(k) 

Proof Using (6.6), (6.7), and Lemmas 6.4.1 and 6.4.2, we get 

Pr[A(D) = G] ≥ P1(i, D) 

i−2ǫ ′ η(k)≥ 
L 

e m Pr
 
g I(D−a0 ) ∈ π

I(G \ {⊥ ′ })
 
(1− β)iβm−i 

I⊆D\{a0}: |I|=i 

≥ e −ǫ Pr[A(D−a0 ) = G]. 

Claim 6.4.2 Let t ′ = (1 − τ1)βt. Then, Pr[A(D) = G] ≤ eǫ Pr[A(D−a0 ) = G], 

provided that 

′ +|ρ(x, D) \ I(G)| ≥ t + 1 ∀x ∈ a0 ∩ L ′ , (6.9) 

ǫ 
i ≤ i2 = m, and (6.10) 

2ǫ′η(k)�
ln 
(
( 1 − 1)t ′

) 
+ ǫ − k ln h − ǫ ′ fmax 

� 

i ≤ i3 = 
β m 

m + 1. (6.11) 
2ǫ′η(k) 
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Proof
 

a0 a0P2(i, D) = 
L 

P2(i, D | g = x) Pr[g = x], 
+ x∈a0 ∩L

′ 

where 

a0P2(i, D | g a0 = x) = 
L 

Pr g I(D) ∈ πI(G \ {⊥ ′ }) | g = x (1− β)iβm−i . 
I⊆D: |I|=i
 

a0∈I
 

Then it suffices to show that
 

P1(i, D) ≤ βeǫ Pr[A(D−a0 ) = G], and
 

a0P2(i, D | g = x) ≤ (1− β)e ǫ Pr[A(D−a0 ) = G]. (6.12) 

The first bound in (6.12) follows from (6.7), Lemmas 6.4.1 and 6.4.2, since 

i2ǫ ′ η(k)
mP1(i, D) ≤ 

L 
e Pr g I(D−a0 ) ∈ π

I(G \ {⊥ ′ }) (1− β)iβm−i 

I⊆D\{a0}: |I|=i 

≤ βeǫ Pr[A(D−a0 ) = G], assuming (6.10) holds. 

We can expand P2(i, D | ga0 = x) as follows:
 

P2(i, D | g a0 = x)
 

= 
L L 

Pr g J (D) = {x, . . . , x} ×
 
I⊆D\{a0} J⊆I 

|I|=i−1 |J |=jx 

I\J (D) ∈ πI\J (G \ {⊥ ′ Pr g , x}) (1− β)iβm−i , 

2ǫ ′ η(k) i−1 
m≤ e 

L L 
Pr g J (D−a0 ) = {x, . . . , x} × 

I⊆D\{a0} J⊆I 

|I|=i−1 |J |=jx 

I\J (D−a0 ) ∈ π
I\J (G \ {⊥ ′ Pr[g , x})](1− β)iβm−i , (6.13) 

where the inequality follows from Lemmas 6.4.1 and 6.4.2. On the other hand, 

Pr[A(D−a0 ) = G] 

= 
L L L 

Pr[g a(D−a0 ) = x] Pr[g J (D−a0 ) = {x, . . . , x}]× 
I⊆D−a0 

J⊆I a∈D−a0 \I
 
|J |=jx
|I|=i−1 

I\J (D−a0Pr[g ) ∈ πI\J (G \ {⊥ ′ , x})](1− β)iβm−1−i . (6.14) 

http:assuming(6.10
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Comparing (6.13) and (6.14), it is clear that the second inequality in (6.12) holds if 

ǫ 
mβe2ǫ 

′ η(k) i−1 
≤ (1− β)e 

L 
Pr[g a(D−a0 ) = x], (6.15) 

a∈D−a0 \I 

for all sets I ⊆ D \ {a0} of size i − 1, such that I = I(G). Note that if x b a, then 

by the definition of qf
ǫ ′ (x), we have a 

1 
Pr[g a(D−a0 ) = x] ≥ ,

hk ǫ ′ fmax/me

since 0 ≤ fa(x) ≤ fmax. Using (6.9), we get that the right hand side of (6.15) is at 

least 
(1− β)t ′ eǫ 

hkeǫ ′ fmax/m
, 

which is at least the left hand side of (6.15), provided that (6.11) holds. 

Bounding the probability of a bad output: 

Now it remains to bound the probability that any of the events (6.8), (6.9), (6.10), 

or (6.11) occurs. 

Claim 6.4.3 Let 

G1 = {G ∈ (L ′ )D : |I(G)| > min{i1, i2, i3}+ 1},
 

G2 ′ +
 = {G ∈ (L ′ )D : |ρ(x, D) \ I(G)| < t for some x ∈ a0 ∩ L ′ }. 

Then, Pr[A(D) ∈ G1 ∪ G2] ≤ δ. 

Proof By the choice of t, min{i1, i2, i3} = i1. Let X = |Is| = 
L 

Xa . By a∈D−a0 

ǫ+lnβChernoff bounds [50], with E[X] = (1− β)m, and τ2 = − 1 > 0, we have 
2ǫ ′ η(k)(1−β) 

Pr[A(D) ∈ G1] = Pr[|Is| > min{i1, i2, i3}+ 1]
 

ǫ + ln β
 
≤ Pr

�
X > m

� 
= Pr[X > (1 + τ2E[X])] 

2ǫ′η(k) 
�(1−β)mτ

� 
e δ 

≤ ≤ ,
(1 + τ2)1+τ2 2

for sufficiently large m.
 

http:oftheevents(6.8),(6.9),(6.10
http:sideof(6.15),providedthat(6.11
http:sideof(6.15
http:and(6.14
http:Comparing(6.13
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+For x ∈ a ∩ L ′ , let Y x = 
L 

(1−Xa). Then, E[Y x] ≥ βt, since x ∈ L ′ . It 0 a∈ρ(x,D)

follows by Chernoff bounds that 

+Pr[A(D) ∈ G2] = Pr[∃x ∈ a0 ∩ L ′ : |ρ(x, D) \ Is| ≤ t ′ ] 

≤ 
L 

Pr[Y x ≤ (1− τ1)βt] 

x∈a +0 ∩L′ 

≤ 
L 

Pr Y x ≤ (1− τ1)E[Y x] 
x∈a +0 ∩L′ 

L
 
e
 −τ21E[Y

x]/2 ≤ hk −τe 
2
1 βt/2≤
 

x∈a 

≤ ,
2

by our choice of t. 

+
0 ∩L′ 

δ 

Finally, Claims (6.4.1), (6.4.2) and (6.4.3) already imply (C2). 

(ii) Define the random variable 

1 
F 
(
X, g(D), D

) 
= 

L 
Xafa,D

(
g a(D)

)
. 

|D| 
a∈D 

Then, the expected utility output by the algorithm is at least E[F 
(
X, g(D), D

)
]. Note 

that 

1 
E[F 

(
X, g(D), D

) 
| g a(D)] = 

L 
E[Xa]fa,D

(
g a(D)

)
|D| 

a∈D 

1 
= (1− β) 

L 
fa,D

(
g a(D)

)
. 

|D| 
a∈D 

Thus, 

E F 
(
X, g(D), D

) 
= E E[F 

(
X, g(D), D

) 
| g a(D)] 

= (1− β)E[F (g(D), D)], 

where the last expectation is over the elements γ ∈ SD, drawn with probability 

ǫ ′ F (γ,D)proportional to e . Using Theorem 8 in [18], we obtain 

E[F 
(
g(D), D

)
] ≥ Optimum(D, L ′ )− 3t, 
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ln(Optimum(D,L ′ )|SD |provided that t ≥ 1 ), where Optimum(D, L ′ ) = maxγ∈SD F (γ, D)
ǫ ′ t|St| 

is the maximum utility, and St = {x ∈ SD : g(D) ≥ Optimum(D, L ′ ) − t}. Using 

Optimum(D,L ′ )|St| ≥ 1 and |S| ≤ hk|D|, and setting t = 
ℓ 

, we obtain 

� 
1 

� � 
1 

�
L 

fa
(
g a(D)

) L 
Xafa,D

(
g a(D)

)
E = E 

|D| |D| 
a∈D a∈D 

≥ (1− β)(Optimum − 3t) 

≥ (1− β)(1− 
3
)Optimum(D, L ′ ), (6.16) 
ℓ 

ℓk|D| provided that Optimum(D, L ′ ) ≥ 
ǫ ′ 

ln(hℓ). 

6.5 Sampling 

In this section we consider the problem of sampling from an exponential distribu­

tion defined by (6.2). We start with a few preliminaries. 

Sampling from a log-concave distribution over a convex body: 

Let B be a convex set, and q : B → R+ be a log-concave density function, that is, 

log q is concave over B. For instance, the density function qf
ǫ ′ (x) defined in (6.2) a 

is log-concave. It known [51–53] that we can sample from B according to such a 

distribution q approximately in polynomial time. More precisely, there is polynomial­

time algorithm that samples a point x ∈ B with density q̂ : B → R+, such that 

q̂(B ′ ) q(B ′ ) 
sup − ≤ δ ′ , (6.17) 
B′⊆B q̂(B) q(B) 

where q̂(B ′ ) = 
f 
x∈B′ q̂(x)dx, and δ ′ is a given desired accuracy (q(B ′ ) could be defined 

similarly). We will ignore the issue of representation of B and q since, for our pur­

poses, both are given explicitly. We only require that q has a polynomial bit-length 

representation, that is, log 
( 
maxx∈B f(x)/ minx∈B f(x)

) 
is bounded by a polynomial 

in the input size. Note that the running time of the sampling algorithm depends 

polynomially on log 
δ 
1 
′ , so δ ′ can be set exponentially small in |D|. 

Recall that for Theorem 6.4.1 to hold, it is enough to be able to sample x ∈ a+ 

ǫ ′ fwith probability proportional to e
a(x)/|D| for each record a ∈ D. If the dimension 
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(number of attributes in D) is sufficiently small, then the sampling is trivial. There­

fore, we assume in this section that the dimension k is part of the input. Due to 

the nature of the sampling procedure described below, we will have to extend the 

function fa(x) over the hypercube (recall the Lovász extension and the randomized 

rounding procedure RR(·) in Section 5.2.3), and then sample from the exponential 

distribution over the hypercube. Once we get a point sampled from the hypercube, 

we apply randomized rounding to get back a point in a+ . While the resulting distri­

bution over a+ might not be exponential2, we will prove that it is still sufficient for 

proving differential privacy. 

ξa(x)Let us consider a single function fa : Ca → R+, and assume that fa(x) = ,
Φa(x)

where ξa : Ca → R+ is supermodular, Φa : Ca → R+ is modular, and Ca is the 

chain product a+ . The function fa is not necessarily supermodular, and hence its 

extension is not generally concave. To deal with this issue, we will divide the lattice 

into layers according to the value of Φa, and sample from each layer independently. �
φu(k)

�
More precisely, let ǫ ′′ ∈ (0, 1) be a constant. For i = 0, 1, 2, . . . , U = log1+ǫ ′′ ,

φl(k) 

adefine the layer Ca,i(ǫ ′′ ) = {x ∈ Ca : (1+ ǫ ′′ )i ≤ Φa(x) ≤ (1+ ǫ ′′ )i+1}. Let J and Fa 

be the set of join-irreducible elements of Ca and the corresponding ring family defined 

in Section 5.2.2, respectively. For X ⊆ J a, define 

ǫ ′ ξa(∨x∈Xx)
Ψa,i(X) = , Φa(X) = Φa(∨x∈Xx),

|D|(1 + ǫ′′)i 1 1

T (X) = |{S(a) : a ∈ D and S(a) ⊇ X}|, 

where S(·) is the operator defined in Section 5.2.2. Since Ψa,i and T are supermodular, 

their Lovász extensions Ψ̂a,i , T̂ : P (Fa) → R are concave. Likewise, Φa 
1 is modular 

and hence its Lovász extension Φ̂1 
a : P (Fa) → R is linear. It follows that the set 

Ba,i(ǫ ′′ ) = {x ∈ P (Fa) : T̂ (x) ≥ t, (1 + ǫ ′′ )i ≤ Φ̂1
a(x) ≤ (1 + ǫ ′′ )i+1} 

is convex. Note that the constraint T̂ (x) ≥ t is added to ensure that we sample from 

t-frequent elements. The details of the sampling procedure are shown in Algorithm 

2At least we are not able to prove it. 
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7. It works by first picking a layer at random from 0, 1, . . . , U . Then, a point x̂

is picked from (the continuous extension of) this layer according to the log-concave 

Ψ̂a,i(x)density q(x) = e . We then round x̂ by procedure RR(·) to a set X in the family 

F , which corresponds to a point ∨x∈Xx in the lattice C
a . If X is not approximately 

t-frequent, we apply RR(·) again on x̂. If t is large enough, we can argue that X is 

σt-frequent with constant probability for some constant σ. 

Algorithm 7: Sample-Point(a, ǫ ′ , ǫ ′′ , θ, σ) 
Input: a record a ∈ D, and real numbers ǫ ′ , ǫ ′′ , θ, σ ∈ (0, 1).
 

Output: a point x ∈ Ca .
 

begin
 

1 let t = θ|D|;
 

2 pick i ∈ {0, 1, . . . , U} at random;
 

3 sample x̂ ∈ Ba,i(ǫ ′′ ) with density q̂ satisfying (6.17), where
 

Ψ̂a,i(x)∀x ∈ [0, 1]J
a 

q(x) = e ; 

4 repeat 

5 X = RR(x̂) ; 

until T (X) ≥ σt; 

6 return ∨x∈Xx; 

Examining the proof of Theorem 6.4.1, we notice that the only place where we 

use the properties of the exponential distribution for satisfying differential privacy is 

(6.4). In fact, ignoring small constant factors in the exponents, it is enough to show 

the following. 

O(δ2−|D|2 
Lemma 6.5.1 With some δ ′ = ), 

η(k) η(k)Pr[ga(D) = γa]− δ ′ −2ǫ ′ (1+ǫ ′′ ) 2ǫ ′ (1+ǫ ′′ )
m me ≤ ≤ e ,

Pr[ga(D−a0 ) = γa] + δ′ 

for every a, a0 ∈ D and any output γa ∈ a+, when ga(D) is sampled according to 

Algorithm Sample-Point(a, ǫ ′ , ǫ ′′ , θ, σ). 

http:satisfying(6.17
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ψa,i ψ̂a,i,DProof We first bound the sensitivity of ˆ = . Consider two databases D 

and D ′ that differ in size by at most 1. Then, for any x ∈ Ba,i(ǫ ′′ ), assuming x1 ≥ 

x2 ≥ · · · ≥ xn, we have 

Ψa,i,D(x)− Ψ̂a,i,D ′ |ˆ (x)| 
n

≤ 
L

(xi − xi+1)
����Ψa,i,D(Ni)−Ψa,i,D ′ (Ni) + |Ψa,i,D(∅)| −Ψa,i,D ′ (∅)

���
� 

i=1 

+|Ψa,i,D(∅)−Ψa,i,D ′ (∅)| 

≤ 2x1ΔΨa,i +ΔΨa,i ≤ 3ΔΨa,i , (6.18) 

where Ni{1, 2, . . . , i} and 

ΔΨa,i |Ψa,i,D(X)−Ψa,i,D ′ = max max (X)|, 
X∈P (Fa)

D,D′ :

��|D|−|D′|

��≤1 

which can be bounded (by a similar argument as in (6.5)) by (1 + ǫ ′′ )η(k) .
|D| 

Let L ∈ {0, 1, . . . , U} be a random variable indicating the layer selected in step 2. 

We will denote by Pri[E] = Pr[E | L = i] the probability of the event E conditioned 

on the event that L = i, and fix γa ∈ Ca . It is enough to prove (6.5.1) with Pr[·] 
a 

replaced by Pri[·]. For x ∈ [0, 1]J , denote by πx : [n] → [n] the permutation that 

puts x in non-increasing order: xπx(1) ≥ xπx(2) ≥ · · · ≥ xπx(n), where n = |J a|, and 

let Uj(x) be as defined earlier and xπx(n+1) = 0. Let x̂ be a random point sampled in 

step 3. Then, 

 
xπx(j) − xπx(j+1) if γa = 

� 
y,y∈Uj(x)


γa 


Pri[g 

a(D) = | x̂ = x] = 1− if γa = ∅,xπx(1)
0 otherwise, 

and this probability is independent of D. In particular, Pri[g
a(D) = γa | x̂ = x] = 

Pri[g
a(Da0 ) = γa | x̂ = x]. 
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Denote by qa,i,D and q̂a,i,D the density functions used in step 3. Then, we can 

write 

γa a,i,D(x)Pri[g
a(D) = | x̂ = x]q̂

Pri[g 
a(D) = γa] = dx 

qa,i,D(P (Fa)) x∈Ba,i(ǫ ′′ ) ˆ
a,i,D(x)Pri[g

a(D) = γa | x̂ = x]q
≤ dx + δ ′ 

qa,i,D
(
P (Fa)

)
x∈Ba,i(ǫ ′′ ) 

a,i,D(x)(xπx(j) − xπx(j+1))q
= dx + δ ′ , 

qa,i,D
(
P (Fa)

)
x∈B′ 

a,i,D ′ 

6ΔΨa,i (xπx(j) − xπx(j+1))q (x)
≤ e dx + δ ′ 

qa,i,D′ 
(
P (Fa)

)
x∈B′ 

6ΔΨa,i

= e Pri[g 
a(D ′ ) = γa] + δ ′ , 

where j = |Uj(x)| and B 
′ is the set of points x in Ba,i(ǫ ′′ ) such that S(γa) = Uj(x). 

Note that the last inequality follows from the sensitivity bound (6.18). Similarly, we 

6ΔΨa,i 
can show that Pri[g

a(D) = γa] ≥ e Pri[g
a(D ′ ) = γa]−δ ′ . Lemma (6.5.1) follows. 

Running time: To show that the expected running time is polynomial, it is enough 

to bound the probability of the event that T (X) < σt in step 4. Let x̂ be the point 

sampled in step 3 and X = RR(x̂). Then, E[T (X)] = T̂ (x̂) ≥ t since x̂ ∈ Ba,i(ǫ ′′ ). 

≤ 1−θBy Markov’s Inequality, Pr[T (X) < σt]
1−θσ

. Thus, the expected number of calls 

to RR(x̂) until we get T (X) ≥ σt is at most 1−θσ .
1−θ 

Expected utility: Denote by Ei[Y ] = E[Y | L = i] the expectation of random 

variable Y conditioned on the event that L = i. Then, 

a,i,D(x)dxEi[f
a
(
g a(D)

)
] = Ei[f

a
(
g a(D)

) 
| x̂ = x]q̂ 

x∈x∈Ba,i(ǫ ′′ ) 

a,i,D(x)dx −

� 
1 

� 

≥ f̂a(x)q o 
x∈x∈Ba,i(ǫ ′′ ) |D|2 

� 
1 

� 

= Ei[f̂
a(x̂)]− o ,

|D|2 

� 
1 
�

for our choice of δ ′ . Thus, E[fa
(
ga(D)

)
] = E[f̂a(x̂)]− o .

|D|2 

http:inequalityfollowsfromthesensitivitybound(6.18
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By arguments similar to the ones used in the proof of Theorem 6.4.1-(ii) and 

Theorem 8 in [18], and using the fact that f̂a is an extension of fa for all a, we get a 

bound on the expected utility arbitrarily close to (6.16). 

6.6 Experimental Analysis

Exact
 

w/ Sampling from lattice
 

ris
k 

ris
k 

0 

w/ Sampling from t-frequent 

utility 

0

(a)

β = 0.8 

0 

utility 

β = 0.4 

β = 0.0 

0

(b) 

Figure 6.1. The impact of sampling from (a) All items, and (b) Subset of the items 

http:closeto(6.16
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In this section, we study the impact of sampling on the utility of the generated 

database. Again, we use an experimental setup similar to that described in Chap­

ter 3. We evaluate both the risk and utility functions using the models presented in 

Chapter 3 and use equation (5.4) to compute the overall utility of a database D. Each 

data point is obtained by running Algorithm 6 several times with random sampling 

and taking the average of the obtained results. We consider exponential sampling 

over both the whole lattice as well as the t-frequent items. We apply exponential 

sampling on the whole lattice with the value of β set to 1. Fig. 6.1(a) compares 

the results obtained from sampling with the optimal results. Indeed, the results are 

consistent with our claim that differential privacy occurs at the cost of sacrificing 

(a little) data utility. The same conclusion is reached when decreasing the value of 

β, and therefore increasing the sampling set size. Fig. 6.1(b) depicts the impact of 

varying the sampling set size on utility. 
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7 APPLYING PRIVACY RISK FORMALISM ON SOCIAL NETWORKS 

7.1 Overview 

With the widespread of social networks, the risk of information sharing has become 

inevitable. Sharing a user’s particular information in social networks is an all-or-none 

decision. Users receiving friendship invitations from others may decide to accept this 

request and share their information or reject it in which case none of their information 

will be shared. Access control in social networks is a challenging topic. Social network 

users would want to determine the optimum level of details at which they share their 

personal information with other users based on the risk associated with the process. 

In this Chapter, we formulate the problem of data sharing in social networks using 

two different models: i) a model based on diffusion kernels, and ii) a model based on 

access control. We show that it is hard to apply the former in practice and explore 

the latter. We prove that determining the optimal levels of information sharing is an 

NP-hard problem and propose an approximation algorithm that determines to what 

extent social network users share their own information. We propose a trust-based 

model to assess the risk of sharing sensitive information and use it in the proposed 

algorithm. Moreover, we prove that the algorithm could be solved in polynomial 

time. Our results rely heavily on adopting the supermodularity property of the risk 

function, which allows us to employ techniques from convex optimization. 

To evaluate our model, we conduct a user study to collect demographic informa­

tion of several social networks users and get their perceptions on risk and trust. In 

addition, through experimental studies on synthetic data we compare our proposed 

algorithm with the optimal algorithm both in terms of risk and time. We show that 

the proposed algorithm is scalable and that the sacrifice in risk is outweighed by the 

gain in efficiency. 
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7.2 Introduction 

Small-world networks have recently emerged as a promising area of research with 

its vast applications. One of the most tempting applications is social network such 

as plus.google.com [54], MySpace.com [55], LinkedIn.com [56], and FaceBook.com [57] 

where people exchange personal and/or public information. Another application is 

a network of organizations where an organization releases its information to one of 

its affiliates for data mining purposes. Sharing electronic medical records among 

different hospitals and clinics is another promising application of such networks. All 

these applications exhibit the so-called small-world phenomenon [58]: Although nodes 

of the network tend to be locally clustered into dense subnetworks (cliques), any 

two random nodes in the network are likely to be connected through a fairly short 

sequence of intermediate nodes. For example, in social networks, although there 

is a high possibility that friends of a common person are also friends, two random 

persons are connected through a short chain of social acquaintances. The six degrees 

of separation [59] estimates that the average number of intermediaries between two 

random persons on the planet is around six. Due to the apparent proximity between 

any two parties in the network, sharing private information between neighboring 

nodes is a key challenge. Disclosing private information to a neighbor is inherently 

associated with the risk that this information is unwillingly leaked to an untrustworthy 

remote party that may abuse this information. 

Online social networks have enabled users to connect with their friends, coworkers, 

colleagues, family and even with strangers. Each user manages an online profile which 

usually includes information such as the user’s name, birthdate, address, contact 

information, emails, education, interests, photos, music, videos, blogs and many other 

items. Users post information on their profiles to share and interact with other friends 

in the social network. The structure of an example social network profile is depicted 

in Fig. 7.1. 

http:FaceBook.com
http:LinkedIn.com
http:MySpace.com
http:plus.google.com
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Profile 

Personal 

Information 

Birth Date Address Phone 

Number 

Marital 

Status 
Friends Albums Videos Notes 

Events 

Event E1 Event E… … … 

… … … … … … … … … Friend Friend Album A1 Album AN Video V1 Video VN Note N1 Note NN… … …
�
Profile F1 Profile FN
�

Figure 7.1. An example user profile structure 

Social networks house millions of users. For example, as of April 2012, Facebook 

has over 800 million user accounts. Social networks are not completely open environ­

ments. Rather, for each user the world is divided into a trusted and a non-trusted set 

of users, referred to as friends and strangers, respectively. Furthermore, some social 

networks allow users to further partition the set of friends by geographical location, 

social group, organization, or by how well they know them. Enabling fine grain ac­

cess control on each user profile [60], where each user is able to define access rules on 

each data item and for each of their friends, is an expensive task. Instead, users are 

provided with group based access control mechanisms that apply access rules on the 

different groups of friends and strangers. For example, a user could share his wedding 

album with his family members and not with his colleagues from work. Another 

example is the Facebook which enables users to create a limited profile and to select 

which users map to that profile. These access control mechanisms have limited ex­

pressiveness to control user to user interactions and these mechanisms were designed 

to enable the average Internet user to understand and use them effectively. The need 

for a risk-based model that would recommend a user-to-user access control policy is 

becoming more compelling. Indeed, defining the risk as a sole factor for determining 

the access control policy would result in no access being granted. Rather, a precise 

definition of a utility function of the accessed information is mandatory. 
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The issue of trust has been extensively studied by research communities. Trust 

is defined in [61] as “the willingness of a party to be vulnerable to the actions of an­

other party based on the expectation that the other will perform a particular action 

important to the truster, irrespective of the ability to monitor or control that other 

party.” The potential harmful effect of information leakage should stimulate careful 

judgements before releasing private information. For example, consider the following 

scenario: In a social network, based on an invitation from a member x to a member 

y to join his/her network (Fig. 7.2), y needs to assess the risk associated with ex­

changing information with x. This risk arises from the fact that x may abuse or leak 

this information to a distrusted person. With the help of a centralized system that 

leverages (i) some inputs from the users about how much they trust different persons 

in the network (if any) and (ii) a maintained log of the behavior these persons, the 

risk could be estimated and an optimal access setting could be recommended to y. 

7.3 A Diffusion-Kernel-Based Formalism 

Ideally, the risk in information sharing between different entities is modeled based 

on the potential leakage of information to untrusted entities. This leakage may occur 

across different nodes that span more than one hop from the source. In this section, 

we leverage the notion of Diffusion Kernel [62–64] to model data leakage. Moreover, 

??? 
x y 

Figure 7.2. Social network where u is sending a friendship invitation to v
 



107 

we show that this model, though logical, is hard to apply in reality due to the difficulty 

of estimating some of the system parameters. The model is summarized as follows. 

1. The social network of users can be modeled as a unweighted graph G = (V, E) 

where V is the set of users and E is the matrix representing the friendship 

between a user u and a user v: (u, v) ∈ E if and only if user u is a friend of 

user v. Moreover, let L be a matrix whose sparsity represents the connections 

and whose values represents the leakage of information across nodes (how much 

information entity i is expected to transmit to node j). We assume that L is a 

stochastic matrix (rows sum to one). 

2. Since the matrix L represents one-step transitions, we want to actually capture 

longer range transitions. We can use Lp to measure transitions after a random 

walk of p steps. Alternatively, a better solution is to use the graph diffusion 

kernel 

tL 
K = exp(tL) = lim (1 + )n 

n→∞ n 
t2	 t3 
L2	 L3 = I + tL + + + · · · ,

2!	 3! 

where I	 is the identity matrix and L is the Laplacian of G. That is, 
 

−di i = j; di is the degree of node i


Lij =	 1 node i is adjacent to node j 

0 otherwise. 

 

For example, the Laplacian matrix of a complete three-node graph is 

	 
−2 1 1 	 

L = 
	

1 −2 1 

.	 	 

1 1	 −2 

This is better since it takes into account random walks of different steps. The
 

parameter t represents the diffusion time and controls the amount of diffusion.
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The diffusion kernel is either stochastic, or can be normalized in which case 

(t)
K represents the amount of information diffused from i to j after time tij 

assuming that a bit of information is given to node i at time 0. To compute the 

diffusion kernel, there is no need to compute the infinite series that corresponds 

to its definition (matrix exponential). Rather, from the positive-definiteness of 

L we can just compute the Eigen values and Eigen vectors of the Laplacian L 

and then the formula for the diffusion kernel K follows [63]. Specifically, let the 

normalized eigenvectors of L be v1, v2, · · · , vn and the corresponding eigenvalues 

be λ1, λ2, · · · , λn. Then, 
n

tλi TK = exp(tL) = 
L 

vie vi . 
i=1 

3. A matrix T = [Tuv] which measures how much user u trusts user v. Tuv is either 

positive to represent trust or negative to represent mistrust. Its magnitude rep­

resents the degree of trust (or mistrust). A high positive value means high trust, 

a high negative value means high mistrust, and 0 means lack of information. 

4. The risk function R(u, x, v) which represents the risk associated with node u 

transmitting information x to node v can be defined as the expectation of the 

data sensitivity times the trust function. 

R(u, x, v) = E(TuvΦu(x)) 

= Φu(x)E(Tuv) 

= Φu(x)
L 

K
(t) 
vj Tuj . 

j∈V 

The expectation above is taken with respect the diffusion process. Alternatively, 

one can use Lp for a different kind of information movement across the network. 

Moreover, each user u enters Φu for different data (address, email, personal 

messages). We can assume that L depends only on the social network topology 

(all nodes are equally likely to transmit information), for e.g., assume a uniform 

distribution on the neighbors. The L matrix may be changed if the user or the 

network have some additional data concerning the entities. 
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The usefulness of this model is that the user could get a quantification of the 

consequences of transmitting different data. This will help the user in deciding which 

neighbor or sets of neighbors gets to access which data. However, the model suffers 

from the following limitations that make it hard to implement in reality. Indeed, esti­

mating the exact leaking distribution that is essential part in this model is a complex 

problem that depends on many parameters such as historic behavior of users as well 

as strong assumptions about the correlations between this past information and their 

future behavior. In addition, accurately estimating the trust among different users 

in a social network, though a commonly studied problem, is very challenging. Due 

to the above mentioned limitations, we propose a simplifying model that addresses 

these limitations to some extent and is easier to implement. 

7.4 An Access-Control-Based Formalism 

Throughout the rest of the chapter, we represent the social network of users as a 

graph G = (V, E) where V represents the set of network users (nodes) and each node 

i ∈ {1, 2, . . . , |V |} has a corresponding attribute vector (profile) xi. Fig. 7.1 shows an 

example of user’s profile. We refer to the contents of that attribute vector using xik 

(where some entries may be missing). 

We have the following parameters describing the network. 

• Sensitivity Matrix Φ: The value Φik corresponds to the user-defined sensi­

tivity of the attribute k belonging to node i (or xik). 

• Trust matrix T : As in the previous model, the value Tij corresponds to the 

trust of node i in node j. This matrix may be user-specified, network specified, 

or may be predicted by a machine learning algorithm based on some training 

data. Although node i may never know the value of Tij since it does not have 

access to the full topology and attributes of the entire network, we assume a 

centralized system in which the network administrator has a global information 
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about mutual trust and can use it to guide the selection of access control policies. 

A few examples of trust matrices are provided in Section 7.4.1. 

• Generalization Hierarchies Heights Vector g: The value gk corresponds 

to the height of the value generalization hierarchy (VGH) of attribute k (with 1 

representing the the height of a one-node tree). Generalizing user’s information 

means showing a superset of the user’s data item instead of the data item itself. 

For example, instead of displaying the Zip code 47906, a one-level generalized 

value 4790∗ could be used. Another example is showing “sports” instead of 

“soccer” as a hobby of the user. See Fig. 4.1(a) for an example of the VGH for 

the city attribute. 

• Access Control Matrix A: The value Aijk ∈ Z corresponds to the level of 

the generalization hierarchy of attribute k belonging to node i that is accessible 

to node j (with 0 representing no access, gk representing complete access, and 

higher values representing access to more detailed information). Note that in 

the subsequent sections we assume that the conditions Aijk ≤ gk, ∀i, j should 

always hold even if we do not explicitly mention it. 

We define the privacy loss corresponding to node i as 

|V |

ℓi = 
L�

f(Tij)
L 

ΦikAijk 

� 
, 

j=1 k 

where f(Tij) is a function that is inversely related to the trust of node i in node j, 

Tij . The total loss is defined as L(A) = 
L

i ℓi. Moreover, we define the information 

gain (utility) when a node i shares its information with other nodes as ui and the 

total utility as U(A) = 
L

i ui. A few examples of utility functions are provided in 

Section 7.4.2. 

The merits of the above model are two-fold: (i) given an access control policy as 

well as other parameters, the system can estimate the associated privacy loss, and (ii) 

more importantly, the system may recommend the access control policies to different 

users as follows. The goal is to determine the optimal access control policy that 
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achieves a minimum loss and in the meantime lower bounds the utility. Specifically, 

assuming that we cannot afford incurring a loss higher than some acceptable level, 

we can define the optimal access control policy as 

A ∗ = argmax U(A) subject to L(A) ≤ c1. 
A 

Alternatively, insisting on having expected utility no less than a certain acceptable 

level, we can define the optimal policy to be 

A ∗ = argmin L(A) subject to U(A) ≥ c2. 
A 

Finally, a more symmetric definition of optimality is given by 

A ∗ = argmin L(A)− λU(A), 
A 

where λ ∈ R+ is a parameter controlling the relative importance of minimizing loss 

and maximizing utility. 

7.4.1 Examples of Trust Matrices 

Practically, user i cannot specify the entire row Ti of the matrix T . However, users 

may construct rules that assign values to Ti based on the attributes of the different 

nodes in the network. For example, user i may elect to specify 


1 user i shares the age and hobbies as user j

Tij = 
−1 otherwise.  

Another scenario is that each user is asked to provide a set of trustworthy people. 

Based on this positive information provided by a user, say i, a one-class classification 

method could be used to classify different users as either trusted or distrusted by 

user i. Schölkopf et al. [65] extended the Support Vector Machine (SVM) classifier to 

handle the case when training data only contains positive information. 

A simple estimate of the trust between user i and user j is the number of common 

friends, nij. That is, 

Tij = nij. 
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7.4.2 Examples of Utility Functions 

One way to model the benefit of shared data is by defining the utility function 

U(A) as an information gain to the user: A more diversified neighbor (e.g., if he has 

different background, hobbies, ... etc) is deemed to be more beneficial than other users 

that exhibit closer attributes. In this case, it is of both parties interest to grant each 

other access to their own information. Indeed, an accurate measure of diversification 

must be developed and used to assess the utility of exchanging different attributes. 

Another example of how utility functions could be modeled is as follows. Each 

user i is asked to provide the system with how valuable collecting attribute k from 

other users is to them, call it Ψik. The benefit (utility) of sharing information to user 

i is then defined as 

|V |LL
ui = ΨikAijk. 

j=1 k 

A special case is when all attributes are equi-valuable to all users, i.e., Ψik = C, ∀i, k. 

In this case the more detailed information users get, the more they benefit from it. 

Last but not least, from the perspective of the network as a whole, the utility 

could be measured in terms of network connectivity or diameter. Specifically, it may 

be more beneficial to have a strongly connected network or a network with smaller 

diameter. A link (or edge) from user i to user j may be assumed to exist if user j 

grants user i “enough” access to his/her own information. 

7.5 The Formal Model 

In this section, we formulate the problem of identifying the optimal set of data a 

social network user may be willing to share with other users. More specifically, we 

apply the privacy risk model proposed in Section 7.4 to solve the following optimiza­

tion problem. A user i receiving a friendship invitation from a user j needs to decide 

whether to accept or reject this invitation. We assume, without loss of generality, that 



113 

the information of each user is a record x and that rejecting a friendship invitation 

is equivalent to showing the inviter no information, that is, < ⊥, ⊥, · · · , ⊥ >. 

7.5.1 Risk & Utility 

We use the risk and utility models of information sharing similar to the ones 

defined in [38]. The utility is defined by non-negative monotonically decreasing func­

tions d1 : L1 → R+, . . . , dk : Lk → R+. Note that di(x) represents the distance from 

the root ⊥ and, therefore, di(x) ≤ di(y) for x, y ∈ Li such that x bi y. For x ∈ L, 

the utility is given by 

k

u(x) = 
L 

di(xi). 
i=1 

That is, the more detailed the shared information is, the higher the utility gets. 

On the other hand, the risk of sharing a generalized data x ∈ a+ is given by 

r(x) = Φ(x) , where Tij represents how much user i trusts user j. The sensitivity 
Tij
 Lk +
function Φ(x) = wi(xi), where wi : a → R+ is a non-negative monotonically i=1 i 

non-increasing function, represents the sensitivity weight of the ith attribute to the 

user owning a. We use a simplistic model to define trust between two users based 

on the number of common friends as follows. Tij = ξij(x), where ξij(x) ≤ nij is the 

number of common friends between user i and user j that have least one consistent 

attribute. The definition of consistent attributes depends on the semantic of the 

attribute. For example, two attributes are consistent if one of them is a generalization 

of the other. A photo album containing pictures of the two users (or a wall post where 

both users contributed in) may be considered a consistent attribute. Therefore, the 

risk of sharing a record x is given by 

Φi(x) 
r(x) = . 

ξij(x) 

Proposition 7.5.1 The function g(x) = ξij(x) over x ∈ a
+, is supermodular and 

monotonically increasing. 
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Proof We adapt the same method used to prove Proposition (5.2.2). Clearly g is 

monotonically increasing. That is, the more general information users share with their 

friends, the larger the number of common friends that have consistent information. 

Using the notation of Proposition 5.2.1, with Ci = a + 
i , we have 

∂g(x, i, z) = g(x + e i)− g(x) 

= 
��{t ∈ θ | t � x + e i}

�� −
��{t ∈ θ | t � x}

�� 

= 
��{t ∈ θ | xj , for j � i and ti �� z, ti � z + 1}

��. (7.1) tj � = 

For x, x ′ ∈ C1×. . .×Ci−1×{z}×Ci+1×. . .×Ck, equation (7.1) implies that ∂g(x, i, z) ≥ 

∂g(x 
′ , i, z), whenever x b x ′ . This implies the supermodularity of g by Proposition 

5.2.1. 

Theorem 7.5.1 Algorithm Modified-Aggregate outputs in expected polynomial time 

an element x ∈ a+ such that 

λξij(x) + Φ(x)(u(x))κ 
f(x) = 

Φ(x) 

is approximately maximized. 

Proof We consider the following set of problems, for i = 0, 1, 2. . . . , U : 

λξij(x
i) + Φ(xi)(u(xi))κ 

x ∗ i = argmax , Φ(x i) = τi. (7.2) 
Φ(xi) 

Since the functions Φ, u and ξ are modular, it follows from Proposition (7.5.1) and 

Corollary (5.2.1) that (7.2) is a supermodular maximization problem and hence can 

be solved in polynomial time [46]. Among all the obtained solutions, we return 

the solution x that maximizes f(x). The details are given in Algorithm 8. The 

approximation is due to the fact that the problem is discretized on different values 

of the sensitivity function Φ(x) but could be proved that it produces an estimate for 

the maximum within decent bounds [40]. 
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Algorithm 8: Modified-Aggregate(x, ǫ, λ, κ)
 
Input: a user’s profile information x, real numbers ǫ, λ, and κ.
 

Output: a point x ∈ a+ .
 

begin
 

1 let φl(k) = minx∈a+:Φ(x)>0 Φ(x); 

2 let φu(k) = maxx∈a+ Φ(x); 

φu(k)
3 for i = 0, 1, 2, . . . , U = ⌈log(1+ǫ) ⌉ do 

φl(k)

4 define τi = φl(k)(1 + ǫ)i; 

5 let xi be an optimal solution to the supermodular optimization 

λξij(x)+Φ(x)(u(x))κ 
� 

τi;problem: max
�
f(x) = 

Φ(x) 
, Φ(x) = 

λξij(xm)+Φ(xm)(u(xm))κ 
6 return x = argmax ;m Φ(xm) 

7.6 User Study 

We conducted a user study to collect the demographics of users of several social 

networks and their perception of trust. A little over 300 users from 4 different con­

tinents participated in the survey. Table 7.1 shows the demographic distribution1 of 

the participating users. Of the participating users 62% are Facebook users, 47% are 

Twitter users, 39% are LinkedIn users, 28% are Google+ users, and 11% are MySpace 

users. Table 7.2 shows the participating users’ frequencies of usage broken down by 

the social network. 

In addition to collecting basic demographic information and background infor­

mation about participants’ use of social networking services such as Facebook and 

Twitter, the survey asked a series of questions related users’ perception of utility and 

trust. We asked several follow-up questions to understand the motivation behind 

their answer. 

The issues of trust and data sharing were the focus of the survey. Participants 

were asked questions related to how they evaluate the benefit of data sharing. Table 

1Percentages are rounding to the nearest whole integer. 



116 

Table 7.1
 
Users’ demographic distribution
 

Demographic Type Percentage 

Gender 
male 

female 

57% 

43% 

Age group 

10-18 

19-30 

30-40 

40-50 

50+ 

19% 

43% 

22% 

12% 

4% 

Education 

No high school diploma 

High school grad 

College grad 

College+ 

23% 

18% 

42% 

17% 

Employment status 

Employed for wages 

Self-employed 

Out of work and looking for work 

Out of work but not currently looking for work 

A student 

Retired 

56% 

12% 

8% 

3% 

20% 

1% 

Race 

Asian 

American Indian or Alaska Native 

Black or African American 

Native Hawaiian or Other Pacific Islander 

White 

20% 

12% 

15% 

4% 

49% 
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Table 7.2
 
The frequency that survey participants used social networks
 

Social Network Never Once 

a month 

Once 

a week 

A few times 

a week 

A few times 

a day 

Google+ 72% 4% 9% 11% 4% 

Facebook 38% 12% 17% 19% 14% 

Twitter 53% 17% 7% 13% 10% 

LinkedIn 61% 20% 7% 6% 6% 

MySpace 89% 5% 3% 2% 1% 

Table 7.3
 
Participants’ main criterion when sharing personal information
 

Criteria Percentage 

Social network 21% 

Sensitive information 5% 

Their prior knowledge of a user 62% 

Number of friends who already know this user 6% 

Shared interests 4% 

Shared demographic 2% 

7.3 summarizes the users’ criteria that they use when deciding whether to share their 

personal data such as demographic informations, photos and status updates with 

another user. On the issue of trust, 74% of the participants indicated their willingness 

to share private information with users they met personally, 56% of participants were 

willing to share their private information with friends of friends, and only 23% of the 

participants were willing to share private information with people they do not know. 

Table 7.4 summarizes the participants’ perceived trust. The conditions based on 
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which participants were willing to accept friendship requests included (in descending 

order of preference) number of common friends, education, shared interests, age, and 

shared demographics. 

Table 7.4
 
Participants’ perceived trust
 

Criteria Always Under some conditions Never 

A friend 74% 23% 3% 

A friend of friend 56% 30% 14% 

Never met (stranger) 23% 23% 54% 

7.7 Experimental Analysis 

We use synthetic data to evaluate our model. In each experiment, a synthetically 

constructed network of 500,000 users is used. The number of attributes in each user’s 

profile is selected randomly in the range [1, k]. Different experiments are conducted 

by varying k from 10 to 70. The types of attributes are selected randomly from 

{categorical, numerical} and the heights of corresponding VGHs are selected ran­

domly from {1, 2, · · · , 10}. Moreover, we use the utility and risk functions defined in 

Section 7.5.1. Each data point is the average result of 10 experiments. Each experi­

ment is conducted by choosing a random set of 50,000 users pairs (ui, vi) and solve the 

optimization problem (5.4) (with λ = κ = 1) to determine the recommended level at 

which user ui shares his personal information with user uj. The optimization problem 

is solved using both Algorithm 8 and an exact algorithm and the performance results 

are compared. The supermodular optimization problem in step 5 of Algorithm 8 is 

implemented using [47]. 

Fig. 7.3 depicts the impact of imposing supermodularity on the optimization ob­

jective function. It is clear that while both algorithms have comparable risks, the 
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Figure 7.3. The impact of imposing supermodularity on the optimiza­
tion objective function (a) Efficiency, and (b) Accuracy 

modified aggregate algorithm significantly outperforms the exact algorithm in terms 

of running time. 
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7.8 Conclusion and Future Directions 

In this chapter, we developed a model to assess the risk of data sharing in so­

cial networks. We addressed both scalability and privacy risk when identifying the 

optimal set of transformations which, when carried out on a user’s profile, generate 

a resulting record that satisfies a set of optimality constraints. We showed that the 

problem is NP-hard and suggested a method to deal this hardness by utilizing the 

supermodularity properties of the risk function. In particular, we gave an approxi­

mation algorithm that computes a nearly optimal solution. 
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8 RELATED WORK 

Studying the risk-utility tradeoff has been the focus of much research. To the best 

of our knowledge most of the work in determining the optimal transformation to 

be performed on a database before it gets disclosed is so inefficient that increasing 

the table dimension will substantially exacerbate the performance. Moreover, data 

anonymization techniques [3–8] do not provide enough theoretical evidence that the 

disclosed table is immune from security breaches. Hiding the identities by having 

each record indistinguishable from at least k − 1 other records [3], ensuring that the 

distance between the distribution of sensitive attributes in a class of records and the 

distribution of them in the whole table is no more than t [5], or ensuring that there 

are at least l distinct values for a given sensitive attribute in each indistinguishable 

group of records [6]; do not completely prevent re-identification [9]. 

In statistical databases, queries result in some statistical information, for exam­

ple the average of a set of values. The techniques for preserving privacy can be 

divided into two categories: (i) query restriction and (ii) input-output perturbation. 

Query restriction methods pose limitations on query parameters while input-output 

perturbations alter the data by introducing noise to either the data or the query 

results. Unlike statistical databases that are concerned with disclosing statistical 

data summaries, our framework focuses on disclosing elementary data and thus in­

corporates a broader class of queries. Moreover, while recent proposals in statistical 

database [22, 23] focus on the tradeoff between meaningfulness of information and 

privacy loss, we are interested in the fundamentally different tradeoff between disclo­

sure benefit and privacy loss. In the data mining area, several approaches have been 

developed for privacy preserving data mining. Unlike our approach, such approaches 

(e.g., [21]) are based on perturbing the original data and at the same time achieving 

correct data mining results. 
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Duncan et al. [66] describes a framework, called Risk-Utility (R-U) confidentiality 

map, which addresses the tradeoff between data utility and disclosure. Lakshmanan 

et al. [67] propose an approach to the risk analysis for disclosed anonymized data. 

Such approach models a database as series of transactions and the attacker’s knowl­

edge as a belief function. Our model is fundamentally different since we deal exactly 

with relational instances rather than data frequencies. We do not consider simply 

anonymized data and we incorporate the concept of data sensitivity into our frame­

work. Miklau and Suciu [68] provide a measure of the privacy risk in the context 

of the query-view security problem, but such measure does not result in a complete 

framework for privacy risk assessment. 

In summary, the goal of avoiding privacy breaches has been investigated by differ­

ent communities. Nevertheless, to the best of our knowledge, our approach is the first 

in providing a comprehensive theoretical framework for assessing privacy risks. Our 

framework is based on statistical decision theory and is a highly flexible tool for mod­

eling the trade-off between disclosure benefits and risks. Moreover, it incorporates the 

notion of data sensitivity. Besides resulting in a clear probabilistic interpretation, the 

connection to decision theory may be exploited in deriving additional results based 

on the vast literature in that topic. 

As for risk-based access control, there has not been much work done. In [69], a 

quantified risk adaptive access control model is proposed based on an expansion to the 

Bell-Lapadula model. However, the proposed model has the following drawbacks. The 

risk model depends mainly on estimating the probability of leakage of information, 

which is very difficult to estimate. Moreover, the model did not take into account the 

generalization hierarchies for different attributes. In [70], a quantified approach to 

estimate the risk is proposed and then used to derive optimal access control policies. 

However, the model requires a tremendous amount of knowledge prior to estimating 

the risk. 

Much of the research carried out on data transformations focused on anonymizing 

a disclosed table so that every record that belongs to it is made indistinguishable 
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from as many other released records as possible [3, 5–8]. This approach, although 

may sometimes achieve privacy, does not address the privacy-utility tradeoff. 

Samarati et al. [71] introduced the concept of minimal generalization in which k­

anonymized tables are generated without distorting data more than needed to achieve 

k-anonymity. Such approach, although it tries to minimize suppressions and general­

izations, does not take into account sensitivity and utility of different attribute values 

at various levels of the generalization hierarchies. 

The tradeoff between privacy and utility is investigated by Rastogi et al. [72]. 

A data-perturbation-based algorithm is proposed to satisfy both privacy and utility 

goals. However, they define privacy based on a posterior probability that the released 

record existed in the original table. This kind of privacy measure does not account for 

sensitive data nor does it make any attempt to hide the identity of the user to whom 

data pertain. Moreover, they define the utility as how accurate the results of the 

count() query are. Indeed, this definition does not capture many aspects concerning 

the usefulness of data. 

A top-down specialization algorithm is developed by Fung et al. [34] that iter­

atively specializes the data by taking into account both data utility and privacy 

constraints. A genetic algorithm solution for the same problem is proposed by Iyen­

gar [14]. Both approaches consider classification quality as a metric for data utility. 

However, to preserve classification quality, they measure privacy as how uniquely an 

individual can be identified by collapsing every subset of records into one record. The 

per-record customization nature of our algorithm makes it much more practical than 

other algorithms in terms of both privacy and utility. 

A personalized generalization technique is proposed by Xiao and Tao [26]. Under 

such approach users define maximum allowable specialization levels for their different 

attributes. That is, sensitivity of different attribute values are binary (either released 

or not released). In contrast, our proposed scheme provides users with the ability to 

specify sensitivity weights for their attribute values. 
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9 CONCLUSION & FUTURE RESEARCH 

In this dissertation, we have described a novel framework for assessing privacy risk in 

a variety of situations. We consider optimal disclosure rules in the contexts of exact 

knowledge, partial knowledge, and no knowledge with respect to the attacker’s side 

information. The framework also naturally encompasses pre-identification linkage. 

We discuss several forms for expressing the largely ignored role of data sensitivity 

in the privacy risk. We have shown that the estimated privacy risk is an upper 

bound for the true privacy risk, under some reasonable hypotheses on the relationships 

between the attacker’s dictionary and the database dictionary. We have also provided 

a computationally efficient algorithm for minimizing the privacy risk under some 

hypotheses. Furthermore, we have proved the generality of our framework by showing 

that k-anonymity is a special case of it, and we have highlighted in our decision theory 

based formulation the particular assumptions underlying k-anonymity. 

At first glance it may appear that the privacy risk framework requires knowledge 

that is typically unavailable or somewhat undesirable assumptions. After all, it seems 

possible to use k-anonymity without making such compromising assumptions. This 

is a misleading interpretation for any attempt at forming a sensible privacy policy or 

characterizing the result of private data disclosure requires such assumptions. In par­

ticular, assumptions have to be made concerning the attacker’s resources and the data 

sensitivity. Existing algorithms such as k-anonymity typically make such assumptions 

implicitly. However, in order to obtain a coherent view of privacy, it is essential to 

make these assumptions explicit and discuss their strengths and weaknesses. 

While we believe that our framework overcomes several limitations of previous 

work, mainly due to partial or not formally stated formulations, we would like to 

point out that our work leaves room for many future investigations. The problem 

of efficiently obtaining or approximating the optimal policy need to be further stud­
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ied. A careful investigation should consider the impact various assumptions such as 

independence and integrity constraints have on this issue. Another area for possible 

exploration is the investigation of applying disclosure rules incrementally and main­

taining them over time. This corresponds to an online setting, in contrast to the 

off-line or batch setting described in this dissertation. 

Developing an efficient tool for privacy risk incorporating our decision theory 

framework to identify the optimum disclosure rule that not only minimizes the risk 

but also maintains the utility level above a certain threshold is of an importance. 

In this dissertation we propose an efficient algorithm to address the tradeoff between 

data utility and data privacy. Maximizing data usage and minimizing privacy risk are 

two conflicting goals. Our proposed algorithm (ARUBA) deals with the microdata on 

a record-by-record basis and identifies the optimal set of transformations that need 

to be applied in order to minimize the risk and in the meantime keep the utility 

above a certain acceptable threshold. We use predefined models for data utility and 

privacy risk throughout different stages of the algorithm. We show that the proposed 

algorithm is consistently superior in terms of risk when compared with k-anonymity 

and discrete optimization algorithm without a significant sacrifice in the execution 

time. 

Next we addressed both scalability and privacy risk when identifying the optimal 

set of transformations which, when carried out on a given table, generate a resulting 

table that satisfies a set of optimality constraints. We showed that the problem is 

NP-hard and suggested several methods to mitigate this hardness by utilizing the 

supermodularity properties of the risk function. In particular, we gave an approxi­

mation algorithm that computes a nearly optimal solution when the utility threshold 

is high enough. We also proposed a genetic-based algorithm as a heuristic to solve 

the problem and compared its performance with other optimal methods. Finally, 

we proposed a scalable algorithm that meets differential privacy (with acceptable 

probability) by applying a specific random sampling. 
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There are several open problems that deserve investigation in relation to our work. 

Can the approximation algorithm be extended to the cases when the utility threshold 

is small? Examining the NP-hardness reduction, one observes the connection to the 

notoriously hard densest subgraph problem. While this might shed some light on the 

difficulty of obtaining an optimal solution for the threshold model, it may be also 

possible to extend some of the techniques used for the densest subgraph problem to 

our problem. One also notes the weakness of the exponential mechanism with respect 

to the theoretically proved bound on the expected utility (Theorem 6.4.1-(ii)). A very 

interesting point would be to modify the mechanism such that better utility bounds 

can be obtained. 

Finally, we consider the case of information exchange in a network of interacting 

entities (e.g., social networks). We present our ongoing work to develop a novel model 

that would assess the risk in such networks. There are several open problems that 

deserve investigation in relation to our social network work. More profound models 

for risk and trust need to be explored. We also plan to apply the model to real data 

gathered from crawling an actual Internet social network. The following question 

remains open: Can the approximation algorithm be extended to the cases when the 

utility threshold is small? 
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