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ABSTRACT 

Seibert, Jeffrey C. Ph.D., Purdue University, May 2012. Security and Economic 
Implications of Localizing Traffic in Overlay Networks. Major Professor: Cristina 
Nita-Rotaru. 

Overlay networks are a collection of nodes that form a virtual network on top of the 

normal routing infrastructure of the Internet. These virtual networks allow nodes to 

organize themselves for the purpose of transferring data in a robust manner. Overlay 

networks, and in particular Peer-to-Peer (P2P) systems, have become very popular as 

they provide scalable services for content distribution. However, many P2P systems 

have been oblivious to network locality, thus causing an increase in the amount of 

traffic that must leave an Internet Service Provider (ISP). P2P localization has then 

been proposed as a solution to contain traffic to within an ISP. In this dissertation, we 

first study the economic impact of actually deploying localization at an Internet-wide 

scale. We then consider how insider attackers can disrupt localization services and 

study how to protect such services from attacks. Finally, as insiders can also attack 

the overlays that utilize localization, we propose defenses for mitigating attacks in a 

high-bandwidth P2P streaming system. 

http:anISP.In
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1 INTRODUCTION 

Distributed systems have become an integral part of many of the services that run 

on top of the Internet. Particularly, overlay networks, such as Peer-to-Peer (P2P) 

systems and Content Distribution Networks (CDN), represent a large fraction of 

traffic on the Internet today as they allow for scalable distribution of content. For 

example, BitTorrent [1] and YouTube [2], which represent a popular P2P and CDN 

system respectively, both have millions of users. 

Overlay networks are a collection of nodes that form a virtual network on top of 

the normal routing infrastructure of the Internet. These virtual networks allow nodes 

to organize themselves for the purpose of transferring data in an efficient and robust 

manner. Overlay networks have been designed and deployed for two broad categories 

of purpose, routing and content distribution. 

Routing around failures on the Internet was the first motivation to implement 

and use overlays [3]. However, overlays have also been used for routing in the context 

of voice over IP (e.g. Skype [4]) and also for providing anonymous communications 

using onion routing (e.g. Tor [5]). In general, these types of overlays provide different 

means of one-to-one communication. 

Content distribution has also been a major motivator in the design of overlays. 

Content distribution comes mainly in two different forms: file distribution and stream­

ing. The main difference between the two being that in file distribution, the entire file 

must first be downloaded before using, while streaming allows media such as music or 

video to be watched while downloading. Overlays used for content distribution can be 

divided into two categories. The first are P2P systems, where the users who are down­

loading the content also upload the content to others, expending their own resources 

to provide service to others. Many P2P systems have been proposed and deployed 

for file distribution, such as BitTorrent [1] and others [6] and also for streaming, such 
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as PPLive [7] and others [8–15]. CDNs are also used for content distribution, these 

overlays are owned by a single entity who place servers all over the world. Then, when 

a user desires to download content, they will be directed to a server that is close to 

them. In CDNs, unlike P2P systems, the users do not upload data to others. CDNs 

are also used for both file distribution and streaming. For example, Akamai [16] is 

mainly used for file distribution and YouTube [2] also uses its own CDN to stream 

videos to users. 

1.1 Motivation 

While many overlay networks such as CDNs, have attempted to efficiently dis­

tribute content, many popular P2P systems that utilize a large amount of bandwidth 

have been oblivious to network locality. This lack of network-awareness has inevitably 

lead to an increase of traffic that leaves an Internet Service Provider (ISP). As many 

ISPs must pay others to carry traffic for them, the extra traffic increases their costs 

significantly. Due to this increase, many ISPs have tried to limit or block P2P traffic. 

In response, researchers have proposed several P2P localization schemes, with the 

goal of containing traffic to within an ISP. P2P localization has since become a crit­

ical component for designing distributed systems as it provides better performance 

by using network locality as an optimization criteria and allows them to better uti­

lize network resources. As a result, localization can have a significant impact on the 

global Internet. However, as P2P localization is not widely deployed on the Internet 

today, it is still not well understood who will benefit from it and to what degree. 

Furthermore, localization services may be subject to attack themselves, as insider 

attackers may try to disrupt them for either economic gains or malicious purposes. 

As localization services typically provide network-awareness, this could cause overlays 

to suffer in terms of performance, as overlays may not match the underlying network 

topology. Thus it is also important to ensure such services can defend against attacks. 

http:anInternetServiceProvider(ISP).As
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Finally, adversaries may target the application-level overlays that utilize localiza­

tion. By hijacking control of overlay traffic, attackers can cause problems such as 

denying service to users. Therefore, even though the overlay may be designed for 

high-bandwidth data delivery in benign scenarios, the application could suffer by re­

ceiving very little data due to malicious attackers. Creating robust overlays that can 

survive such threats thus is also an important problem. 

1.2 Thesis Focus and Contributions 

This thesis focuses on the design and implementation of secure and robust dis­

tributed systems that can continue to meet performance goals in the face of attacks. 

This work is motivated by the fact that even though distributed systems are ubiq­

uitous and enable a plethora of applications that are currently in use today, they 

often can be manipulated by attackers, causing them to be practically unusable. The 

reality and threat of attackers has caused many to consider how to integrate secu­

rity principles into the design of distributed systems, while still being able to meet 

the performance needs of a scalable system. This thesis centers around building 

intrusion-tolerant, low-latency, high-bandwidth distributed systems and understand­

ing the security-related effects of distributed systems on the Internet ecosystem. 

Specifically, my thesis work has focused on three directions: (1) Internet-wide 

impact of localization: as with any new disruptive technology, P2P localization can 

affect the Internet ecosystem in unforeseen ways, resulting in unintended side-effects. 

Through measurements of real systems combined with new models for estimating 

P2P traffic, we reveal how much ISPs gain or lose profit due to P2P localization, 

which indicate that some ISPs will have incentive to subvert P2P localization. (2) 

Secure localization services: how to build the services that provide localization 

properties while still being able to tolerate malicious participants has not been well 

understood. My work resulted in an intrusion-tolerant virtual coordinate system that 

takes advantage of physical laws to withstand advanced attacks. (3) Secure archi­
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tectures for peer-to-peer streaming: the applications that rely on localization 

services can also be susceptible to attack. Such is the case for peer-to-peer streaming, 

a high-bandwidth application, that due to its stringent real-time deadlines is partic­

ularly vulnerable. We designed a secure architecture which can continue to provide 

good performance even while under attack. 

We summarize our key contributions: 

• We develop models and methodologies by which to understand how P2P lo­

calization will effect residential and transit ISPs. We propose a new model to 

derive P2P inter-AS traffic matrices. Through large-scale measurements of a 

P2P system and real packet-level traces of P2P traffic from two ISPs we vali­

date the model. We then evaluate how much traffic can an AS actually reduce 

when localization occurs. Furthermore, we apply BGP inferred AS-paths and 

the business relations between these ASes to understand how this reduction will 

affect the profitability of ASes. 

• We describe how to protect localization services from insider attacks by identi­

fying invariants in unstructured overlays. We accomplish this by leveraging the 

physical abstraction that a popular Virtual Coordinate System (VCS) is based 

on, deriving three invariants from Newton’s three laws of motion. We show how 

to use the three identified invariants to detect and mitigate both well-studied 

basic attacks, as well as more recent advanced attacks. We conduct exten­

sive simulations and real-world experiments on the PlanetLab testbed [17] to 

demonstrate that our solution is able to mitigate all known attacks. We also 

find that, even with no attackers, our solution has better performance than the 

unprotected VCS, i.e. our solution is 25% more accurate and 68% more stable. 

• We present the design of a mesh-based P2P streaming system that can defend 

against insider attacks. To systematically show how a malicious node could 

attack the system, we developed a taxonomy of implicit commitments that 

a node makes with other entities in the system. We then show how, when 

not explicitly enforced, attackers can break these commitments and attack the 
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system. Specifically, we consider an important class of attacks where malicious 

nodes deliberately become neighbors of a large number of nodes and do not 

upload data to them. We present mechanisms that can enhance the resilience 

of mesh-based streaming against such attacks. We evaluate our design with 

real-world experiments on PlanetLab [17] and show that our design is effective. 

Even when there are 30% attackers, nodes can receive 92% of the data with our 

schemes compared to 10% of the data without our schemes. 

1.3 Thesis Roadmap 

The rest of this thesis is organized as follows. A description of our system and 

attacker model is in Chapter 2. We conduct a detailed simulation study to examine 

how localizing P2P traffic within network boundaries impacts the profitability of an 

ISP in Chapter 3. We demonstrate how to secure a localization service, that provides 

latency estimation, against insider attacks aiming to disrupt them in Chapter 4. We 

describe a scheme for securing data delivery for high-bandwidth streaming systems 

that can utilize localization in Chapter 5. We present related work in Chapter 6 and 

we present our conclusions in Chapter 7. 
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2 SYSTEM AND ATTACKER MODEL 

We now describe our system model for overlay networks, specifically a mesh overlay. 

We first though describe our model for the underlay that they run on top of, namely 

the Internet, and also our model for virtual coordinate systems, which provides a 

localization service for overlays. We also describe our adversarial model by which we 

study attacks on overlay networks. 

2.1 Internet Model 

The Internet consists of Autonomous Systems (AS) which participate in the BGP 

routing protocol, facilitating global connectivity on the Internet. An ISP is made 

up of at least one, but possibly many, ASes. Each AS has at least one of three 

business models, which we depict in Figure 2.1. The first model is a content provider, 

exemplified by Google, who provides services and media to end users. The second 

model is a residential AS, exemplified by Comcast, who allows end users to access the 

Internet. The last model is a transit AS, exemplified by Level 3, who interconnects 

other ASes and carries traffic for them. 

Google 

Microsoft 

Amazon 

Level 3 

Qwest 

Cogent 

Comcast 

Rogers 
Cable 

Cox 

Transit Residential Content 

Figure 2.1. ASes and their different business models
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As ASes interconnect, they must decide on who must pay who, if at all. Therefore 

ASes decide if they should form a “peering” relationship, where the ASes carry each 

others traffic for no cost, or form a “customer-provider” relationship, where the cus­

tomer pays the provider for traffic. Typically, if a residential and transit AS connect, 

the former will be a customer of the latter. 

2.2 Virtual Coordinate System Model 

Virtual Coordinate Systems (VCS) and other localization services similar to them, 

provide network-awareness to the overlays that run on top of them. VCS accomplish 

this by embedding the Internet onto a coordinate plane. In a VCS of n nodes, each 

node will maintain a coordinate value and can estimate its RTT to any other of 

the n nodes by calculating a distance function on two coordinate values. While the 

distance function is often Euclidean, the coordinates can also be embedded into a 

non-Euclidean space such as a hyperbolic space. 

Each node maintains information about a small set of m reference nodes. Specif­

ically, it will ping each of these nodes periodically, requesting their coordinate and 

possibly other auxiliary values. At the same time the node will measure their round-

trip time (RTT). These values will allow the node to iteratively update its coordinate 

through an algorithm specified by the VCS. 

2.3 Mesh Overlay Model 

An mesh overlay consists of a set of n nodes, where each node maintains a set 

of neighbor nodes. These neighbors form virtual links, which are unidirectional, and 

collectively form the topology of the network. An example of a mesh overlay in 

illustrated in Fig. 2.2. Neighbors are selected based on application-specific criteria, 

such as the latency or bandwidth that the node can provide. Neighbors that provide 

data to a node are called in-neighbors , neighbors that a node sends data to are called 

out-neighbors . 
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Figure 2.2. Example of a unidirectional mesh-based streaming overlay 
in which the source sends two different data chunks as denoted by the 
gray triangle and orange square. Each node has an in-neighbor set 
and an out-neighbor set. For example, for node 6, the in-neighbor set 
consists of node 7 and the source, while the out-neighbor set consists 
of nodes 1 and 9. 
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To join the overlay network, a node contacts a bootstrap node, which will respond 

with a subset of nodes already inside the network. The joining node can then establish 

neighbor links with the reported nodes and participate in the particular protocols of 

the overlay. We assume that for overlay networks designed for content distribution, 

there is a trusted source from which data originates. Other than the source, each 

node has similar functionality and can perform any role that the node needs, such as 

that of sending or receiving data. 

2.4 Attacker Model 

We consider insider attackers that have access to all necessary credentials, such as 

cryptographic keys, to be authenticated into the system and participate in the overlay 

network. These insiders gained access to keys and possibly stored data through 

compromising a node or because there is an open access model where anyone can join 

the system. 

While some P2P systems provide incentives so that rational nodes behave well [1] 

we consider a Byzantine attacker that can behave arbitrarily. This is due to the fact 

that while faithful participation by rational nodes can be brought about by proper 

incentives, Byzantine attackers do not necessarily respond to incentives and can often 

severely affect the performance of the system. We assume that attackers can collude 

with other attackers. We assume a bounded number of attackers f , where f < n. 
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3 THE INTERNET-WIDE IMPACT OF P2P TRAFFIC LOCALIZATION ON 

ISP PROFITABILITY 

The last decade has seen a rapid growth in popularity of peer-to-peer (P2P) systems, 

spanning diverse applications such as content distribution (e.g., BitTorrent, eMule, 

Gnutella), video streaming (e.g., PPLive, Coolstreaming), and audio conferencing 

(e.g., Skype). However, the success of these applications and the consequent growth 

in P2P traffic has raised concerns among Internet Service Providers (ISPs), which 

have to pay a high cost for carrying traffic while receiving little revenue. While there 

is evidence that P2P traffic is decreasing [18], it still represents today a significant 

fraction of the Internet traffic (more than 18% according to [18] and more than 50% 

in some of our datasets), and it is perceived as wasteful of network resources such 

as expensive peering link bandwidth. In order to reduce these costs, different P2P 

localization techniques have been proposed [19–25]. The key idea behind these tech­

niques is to limit the amount of traffic entering the ISP by enforcing a preference in 

exchanging content among peers in the same ISP. In this chapter we examine how 

localizing P2P traffic within network boundaries impacts the profitability of an ISP. 

3.1 Introduction 

Several previous works have shown the benefits of localization for both users and 

providers [19,21], while other works question the possible benefits for users [26]. How­

ever, all previous studies consider a partial view of the problem, e.g., by showing the 

benefits for a single Autonomous System (AS) or running a limited set of experiments 

involving different ASes. Therefore, it is unclear whether localization is necessarily 

beneficial to all ASes, how the adoption of localization by one AS impacts other ASes, 
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and how the traffic carried by various ASes is altered as localization techniques are 

widely adopted. 

Evaluating the impact of localization policies when applied on an Internet-wide 

scale is a challenging task given the complexity of the relationships that exist between 

different ASes. Specifically, because ASes play various roles from a business point of 

view, they may experience different effects from the use of localization policies. For 

example, some ASes (referred to as residential ASes), provide Internet service to end-

users, and P2P clients are found in these ASes. Other ASes (referred to as transit 

ASes) provide the service of connecting other residential and transit ASes together. 

However, many transit ASes also provide residential services, and a clean separation 

between the two types does not exist today. From a business point of view, ASes 

form “customer-provider” relationships, where a customer AS will pay for the service 

a provider AS offers, or “peering” relationships, where two ASes will agree to carry 

each others traffic for free. 

Given the current structure of the Internet, localization of traffic is intuitively 

beneficial for purely residential ASes, and it will have a negative impact on the rev­

enues of purely transit ASes. However, we have found that over 1,200 residential 

ASes also provide transit service to at least one other AS. Thus, for many ASes it 

is not obvious how localization may impact them. In addition, as the ultimate goal 

of ASes is cutting costs and increasing revenue, there are alternative approaches to 

simply localizing traffic inside an AS, and such approaches have not been explored in 

previous work. For example, ASes could prefer to exchange traffic with peering ASes. 

Furthermore, to increase revenue, ASes could prefer to push traffic to customers’ ASes 

and avoid providers’ ASes. 

Our goal in this chapter is to gain deeper insights into such Internet-wide implica­

tions of P2P traffic localization on ISP profits, and develop simulation methodologies 

to systematically explore the issues. We explicitly focus our work on the benefits 

and drawbacks for ISPs, though we note that the use of localization can also impact 

user performance. Our simulations are based on detailed models of (i) inter-AS P2P 
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traffic; (ii) inter-AS routing; (iii) localization policies; and (iv) pricing policies that 

predict the impact of changes in traffic on ISP profit. 

We model inter-AS P2P traffic by leveraging the model proposed in [27], perhaps 

the only inter-AS traffic model that is available today, in contrast to intra-AS traf­

fic which has been widely studied. We present refinements to the model presented 

in [27] and show that the refined model has better accuracy. The model requires the 

knowledge of the P2P population in each AS as input, which we estimate considering 

BitTorrent, one of the most popular and widely used P2P systems. Our estimation is 

based on a dataset of over 138 million BitTorrent peers participating in 2.75 million 

torrents, obtained by crawling a popular tracker. While our evaluations are based on 

BitTorrent, our methodologies are general, and apply to other P2P systems as well. 

Conducting our simulation study requires models that can predict the reduction in 

P2P traffic entering/exiting an ISP when localization techniques are employed. The 

possible traffic reduction depends on a wide range of factors including (i) the popula­

tion of peers inside an AS, (ii) the extent to which peers download similar content, and 

(iii) the upload capacities of peers inside the ISP relative to those outside [28]. Rather 

than focusing on a specific localization model, we conduct a sensitivity analysis to a 

range of models. 

As a last step, translating a change in traffic volumes into a change in profits 

for the ISP is a challenge. While the total profitability of an ISP depends on many 

factors, such as SLAs, backhaul costs, and private agreements, due to the difficulty of 

modeling this, we focus only on transit costs. Typical pricing models for transit costs 

in ISPs are based on the 95th percentile of traffic volumes [29], with the price per 

Mbps itself showing significant geographical variation. Further, the pricing models 

depend on total volumes of traffic across all applications rather than P2P traffic 

volume alone. However, while we are able to estimate P2P traffic volumes, total 

traffic volumes are unavailable to us. Therefore, we consider multiple pricing models 

and develop conservative and optimistic predictions of the change in profits for an 

ISP due to P2P traffic. 
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Armed with these models, we seek to answer several questions such as: (i) Do ASes 

necessarily benefit by employing localization? How significant are the benefits? (ii) 

How is the profitability of various ASes impacted if localization policies are adopted by 

an increasing fraction of ASes at the same time? What is the impact of global adoption 

of such policies? (iii) Are there any better policies that can be more profitable to 

some ASes than a simple localization policy? Given the complexity of the real-world 

factors that our models seek to capture, there are unavoidable simplifications that 

must be made. Thus, rather than “absolute” answers to these questions for specific 

“point-models”, our focus is on understanding the sensitivity of our results, and how 

the trends change with various localization and pricing models. 

Our results show that the benefits of localization must not be taken for granted. 

Some of our key findings include: (i) residential ISPs can actually lose money when 

localization is employed and some of them will not see increased profitability until 

other ISPs employ localization; (ii) the reduction in costs due to localization will be 

limited for small ISPs and tends to grow only logarithmically with client population; 

and (iii) some ISPs can better increase profitability through alternate strategies to 

localization by taking advantage of the business relationships they have with other 

ISPs. Overall, we believe our findings have important implications for ASes, and both 

our findings, as well as the methodologies and models that we develop in this chapter 

are important contributions in their own right. 

The remainder of the chapter is organized as follows: Section 3.2 introduces our 

P2P inter-AS traffic model and its validation. Section 3.3 and Section 3.4 discuss 

different localization policies and the pricing models we use in the chapter. Section 3.5 

and Section 3.6 show our findings under different localization scenarios. Finally, main 

findings of the chapter are summarized in Section 3.7. 



14 

3.2 Modeling Inter-AS P2P Traffic 

We first describe the model we used to predict an inter-AS P2P traffic matrix. We 

leverage the gravity model which has been previously used to estimate both intra­

AS [30, 31] and inter-AS [27] traffic matrix. As our focus is on inter-AS P2P traffic, 

we first review the model introduced in [27], which we refer to as the Gravity model, 

then propose a new refinement to improve P2P traffic prediction accuracy, which we 

refer to as the Affinity model. 

3.2.1 The Gravity Model 

Inter-AS traffic demand has been modeled only once before in the work by Chang 

et al. [27] which applies the well-established gravity model to an inter-AS setting. 

The model accounts separately for P2P and web traffic. Below we describe only the 

P2P component of the model. In the Gravity model, the traffic Xij sent from AS i 

to AS j is defined as follows: 

f(RRA(i))f(RRA(j)) 
Xij = , (3.1) 

RBA(i, j)β 

where f is the monotonically decreasing function f(x) = 1/x, RRA(i) is the rank of 

AS i in the list of ASes sorted by decreasing peer population, and RBA(i, j) is the 

rank of the bottleneck AS between i and j in the sorted list of ASes by capacity (the 

bottleneck AS is the smallest transit AS that is on the AS path between i and j). 

This model stems from the intuition that the higher the population of peers in an 

AS (i.e., the higher is its rank), the larger the aggregate of traffic the AS exchanges. 

In addition, if the path between two ASes has little capacity, then the amount of 

traffic will be consequently reduced. β is a parameter that is used to better weight 

the effect of bottlenecks along the path. In [27] β = 0.1 is suggested, which makes the 

bottleneck bias almost negligible. This implicitly suggests that the volume of P2P 

traffic exchanged between ASes is mainly driven by the peer population of each AS. 
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3.2.2 The Affinity Model 

Given the world-wide nature of the Internet and its diversity of users and available 

content, intuition suggests that P2P traffic will be driven not only by the population 

size of ASes, but also by the cultural and linguistic makeup of the users inside the 

ASes, or the “affinity” between ASes. Thus, if peers of two ASes are not interested 

in the same content, the traffic exchanged among them will be marginal, even if the 

number of peers in each AS is large. For example, if AS-1 and AS-2 are located in 

Italy, and AS-3 is located in China, it is expected that large traffic will be exchanged 

between AS-1 and AS-2, while little traffic will flow between AS-3 and AS-1, AS-2. 

We augment the Gravity model to also account for the affinity between ASes. 

We estimate the affinity between ASes using the cosine similarity distance [32]. The 

cosine similarity results in a value between 0 (no similarity) and 1 (perfect similarity) 

that is the cosine of the angle between two vectors V̄i and V̄j , i.e., 

¯ ¯Vi · Vj
Cos(i, j) = . (3.2) ¯ ¯ Vi  Vj 

In our case, each vector V̄i represents the “content distribution” in AS i, whose 

components report the number of peers interested in a given content that are present 

in AS i. Thus, if two ASes have many peers interested in the same content, then 

they will have high affinity. Completing the previous example, consider as content 

an Italian movie, a Chinese song, and an English book. Assuming V̄1 = (10, 1, 3), 

¯ ¯V2 = (100, 2, 30) and V3 = (0, 10, 3), we have Cos(1, 2) = 0.997 while Cos(1, 3) = 

0.173, which reflects the intuition that Italian ASes prefer to exchange traffic among 

themselves rather than with the Chinese AS. 

Once we have calculated the affinity between two ASes we can combine it with 

the peer population in each AS to form a gravity model. Thus, we define our Affinity 

model as follows: 

Xij = P (i)P (j)Cos(i, j), (3.3) 

where P (i) and P (j) are the population of AS i and AS j. 
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While the Affinity model could include a preference related to the upload capacity 

of peers, we chose to include only the affinity among ASes due to client’s interest in 

the same content. We superpose a bias in peer selection due to performance as part 

of the locality models in Section 3.3.2. 

3.2.3 Model Validation 

We first describe the datasets we use as input to the Affinity model and also use 

throughout the chapter. We then present results that compare our model with the 

Gravity model. 

BitTorrent crawl snapshots: The Affinity model requires as input the peer pop­

ulation P (i) and the content distribution vectors V̄i. To estimate them, we rely on 

active measurements obtained by crawling a very popular BitTorrent tracker named 

“OpenBitTorrent” [33]. As the tracker is not associated with a particular torrent pub­

lishing web site and it provides an easy way for users to publish content, it attracts 

users from all over the world. 

We took snapshots of BitTorrent activity every hour for a period of 8 days during 

May 2010. A total of 192 different snapshots have then been collected, which will 

be used throughout this chapter. In each snapshot, we crawled all torrents that had 

at least one active downloader and for every torrent we requested peers from the 

tracker until we received at least 95% of all participating peers. Since many users 

are behind NATs, we consider a peer to consist of a unique (IP, port) combination. 

This allows us to obtain information about which peers are actually participating in 

which torrent, i.e., the peer population by content. To obtain the peer population 

per AS, we map IP addresses to the corresponding AS by using the service provided 

by Team Cymru [34]. At the end, for every snapshot we obtain for each AS i the 

¯population P (i) and content distribution Vi, which allow us to compute 192 global 

AS level traffic matrices. 
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While a detailed characterization of these BitTorrent datasets is out of the scope 

of this chapter, we briefly summarize their size which reflects their generality. A 

normal snapshot consists of over 5 million peers, 154 countries, 12,000 ASes, and 1 

million torrents. Over the 8 days, we saw more than 138 million distinct peers in 

over 2.75 million torrents. One interesting finding about the dataset which will be 

instrumental later is the fact that each torrent population size follows a heavy tailed 

distribution with a small portion of very large torrents, but also a large number of 

torrents with less than 100 peers. Peer distribution over ASes is instead more biased 

toward larger ASes which host most of the peers, e.g., the largest 1,600 ASes account 

for 97% of peers. 

Inter-AS topology and routing: The knowledge of the AS paths is instrumental 

to predict the volume of traffic on individual inter-AS links. Besides, they are also 

necessary to compute RBA(i) for the Gravity model. First, we need a map of the AS 

topology which includes the business relationships between ASes. We use CAIDA’s 

AS map [35] augmented with peering edges from recent research on mapping Internet 

Exchange Points (IXPs) [36]. Second, we need to know the AS-level routing. To this 

end, we use the algorithm proposed by Qiu et al. [37] to determine valley-free paths 

between residential ASes. Qiu et al.’s algorithm uses Routing Information Bases 

(RIBs) alongside the AS topology to determine the most likely route between ASes. 

We use RIBs provided by the Oregon’s RouteViews Project [38] that are from the 

LINX, KIXP, PAIX, and Equinix Ashburn IXPs. This set of routing table dumps 

represents over 329,000 prefixes from 33,910 ASes. 

Leveraging on the fact that the largest 1,600 ASes according to peer population 

alone account for 97% of all the P2P traffic that is generated by the Affinity model, 

we limit our evaluation to only this subset. We also include all the transit ASes that 

belong on any AS path between these residential ASes, for a total of 2,067 ASes. In 

this chapter, we define a residential AS as having at least one peer in the BitTorrent 

crawl and a transit AS as having at least one customer AS in the CAIDA map. Thus, 
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an AS could be both a residential and a transit AS. More details about the ASes are 

deferred to Sec.3.5. 

Packet traces from large ISP datasets: To verify the accuracy of the Affinity 

model traffic prediction, we compare its output against packet-level traces from six 

vantage points scattered in the US and across three different European countries. 

Each vantage point monitors several thousands of users. For convenience, we name 

the vantage points ISP-1 to ISP-6. For each ISP, all packets going to and coming from 

all the hosts in the Points of Presence (PoP) were passively monitored for several 

months. An advanced traffic classification tool based on deep packet inspection and 

advanced statistical classifiers [39] was used to produce the per-application volume of 

traffic sent by hosts in the PoP to each different AS, i.e., an actual row of the traffic 

matrix for each given application. 

We show results from comparing models in Fig. 3.1, where we focus on a one-day 

long trace from ISP-1 and a one-hour long trace from ISP-2. We use the BitTorrent 

snapshots that refer to the same time of day that the ISP traces are from. Similar 

results were obtained for the rest of the traces.For each graph, we report the volume 

of traffic sorted in decreasing order, considering actual measurements (solid line), the 

Gravity model prediction (small dot line), and the Affinity model prediction (large 

dot line). As both the Gravity and Affinity models produce unit-less output, we scale 

them and the ISPs’ measured traffic volumes so they are comparable to a standard 

unit-less metric by minimizing the mean square error. We also show the corresponding 

relative error values of both models in Fig. 3.2. 

Fig. 3.1(a) refers to BitTorrent traffic as seen from ISP-1. The Gravity and Affinity 

models are very similar until rank 300, at which point the Gravity model severely 

overestimates the traffic demand, while the Affinity model better captures the sudden 

decrease of traffic sent by ISP-1 clients to the smaller ASes. Similarly, we compare 

BitTorrent traffic seen from ISP-2 in Fig. 3.1(b). Again, the Affinity model is able to 

better match the traffic demand trend for most ASes, while the Gravity model shows 

a much more regular slope, clearly missing the content bias induced on exchanged 
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(c) eMule dataset from ISP-1. 

Figure 3.1. Affinity and Gravity models compared against real measurements. 
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Figure 3.2. Relative error for Affinity and Gravity models 
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traffic. For the relative error values in Fig. 3.2(a) and 3.2(b), the Gravity model is 

only very accurate for 50% of ASes, while the Affinity model is accurate for 70% and 

60% of ASes, respectively. 

Finally, to show that the Affinity model is not specific to BitTorrent but can be 

generally applied to other P2P protocols, Fig. 3.1(c) shows results considering traffic 

volumes sent by ISP-1 clients, but using eMule as the P2P application. The same 

cosine similarity values as obtained from the BitTorrent snapshots are used, since the 

cosine similarity values catch the cultural and linguistic interests of peers, and are 

not expected to change across different P2P systems. The per AS eMule population 

has been estimated from the eMule traffic in ISP-1 instead. Also in this case, results 

show that the Gravity model overestimates the actual traffic sent to each AS, while 

the Affinity model closely matches the traffic demand even up to high ranking values. 

This difference is seen in Fig. 3.2(c), where the Gravity model is only very accurate 

for 30% of ASes, but the Affinity model is accurate for 60% of ASes. 

We have conducted other experiments to verify the goodness of the Affinity model, 

considering different times of the day, different days, transmitted and received traffic, 

different P2P systems and different crawls from different trackers. In all cases, the 

Affinity model provided more accurate estimates than the Gravity model. Moreover, 

the cosine similarity proved to be very robust, so that it can be used to model several 

P2P applications like BitTorrent or eMule. 

3.3 Modeling P2P Localization 

In this section we present models to predict the reduction in P2P traffic exchanged 

by an ISP if localization techniques are employed. We are not attempting to model 

particular P2P systems in this section, but simply what could happen if localization 

occurs. 

A single model may not be sufficient because P2P traffic reduction depends on a 

variety of factors such as (i) the population of peers inside an AS, (ii) the extent to 
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which peers download similar content, and (iii) the upload capacities of peers inside 

the ISP relative to those outside [28]. Hence, we consider a set of locality models 

and show sensitivity to them. Validation of these models is a difficult task, since this 

requires measuring P2P traffic aggregates from a large number of ISPs around the 

world, from different ISP categories (e.g., residential and transit), and with different 

upload capacities of clients. Instead, in later sections, we show trends of the impact 

that P2P localization may have on ISPs and perform extensive sensitivity analysis to 

the various localization policies. 

For each model we determine the ratio of traffic received by an AS j after local­

ization versus before localization, which we call αj. In other words, αj is the fraction 

of leftover traffic after localization that still will be received by peers in AS j. Intu­

itively, a good localization policy will result in a small αj value. The traffic Lij sent 

by peers in AS i to peers in AS j after localization is then simply: 

Lij = αjXij , (3.4) 

where Xij is the traffic demand generated by the Affinity model in Equation 3.3. As 

we have multiple snapshots from which we generate traffic matrices, we also calculate 

αj for each snapshot. For simplicity though, we drop the explicit notation on time in 

the following. 

3.3.1 System Architecture Assumptions 

We assume that there is a localization technique in place that allows peers to 

find other peers that are in the same AS. For example, peers contact an “oracle” 

which allows them to obtain an ordered and possibly filtered list of peers interested 

in the same content. Peers then start exchanging data with the suggested peers 

according to the P2P trading algorithm. Individual ASes can impose localization of 

traffic independently of what other ASes do, e.g., some may deploy an oracle, others 

may not. This scenario is compatible with both the P4P iTracker [19] and the IETF 

ALTO [40] proposals. 
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We further assume that an AS cannot influence peers outside of its own AS, so 

that external peers can still connect to and download from internal peers, i.e., an 

AS cannot stop external peers from downloading content from peers within the AS. 

This implies that transit ASes do not deploy traffic shaping on traffic that does not 

originate from their own AS, but only rely on the oracle to enforce localization policies. 

Furthermore, this implies there is some altruism in the system, so that clients in an 

AS that do not localize traffic can still receive the content, even if every other AS 

does localize traffic. Therefore, for an AS that does localize, its outgoing P2P traffic 

can be greater than its incoming traffic. 

3.3.2 Locality Models 

• Single(no history): This model captures a pessimistic scenario where for every 

crawl, the file must be downloaded again by every peer from outside the AS. That is, 

there are no internal seeds available. 

The model computes the leftover traffic assuming only one single copy of the con­

tent will need to be downloaded from outside the AS. Once the initial copy has entered 

the AS, content will be exchanged only among local peers. For example, assume there 

are Pj(k) = 10 peers from AS j downloading content k; when localization is used, 

only one copy would need to be downloaded, resulting in 1/Pj(k) = 0.1 leftover traf­

fic. Thus, the more popular a piece of content is, the less leftover traffic there will be. 

Given a snapshot, for every AS j that has clients in Nj distinct torrents, we estimate 

αj as follows: 
1 

αj = Nj . (3.5) 
"Nj 

k=1 Pj(k) 

• Single(history): This model captures a more realistic model where we consider 

that the first time a peer appears in a torrent in our crawls, it is considered a leecher, 

and if it appears again in that torrent in later crawls we consider it to be a seeder. 

To find out how sensitive αj actually is to content availability, we simply keep track 

of what peers have been in which torrents over time. For a given torrent, consider a 
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peer that has been seen at time slot t for the first time. When it reappears in time 

slot t ′ > t, it is considered a seed. That is, if the peer has been in a torrent in the 

past, it is marked as a seed in future time slots. Formally, for a snapshot t and AS 

j, let Sj(k) be the number of seeds in torrent k and let Tj be the number of torrents 

that have some seed in them. We can then calculate αj with the following equation: 

Nj − Tj
αj = 

"Nj 
. (3.6) 

k=1(Pj(k) − Sj(k)) 

• Single(persistent): This model represents an optimistic scenario, where once a 

single peer inside an AS downloads a file, then no other peer inside the AS will need 

to download from outside the AS again, since the initial peer remains as a seeder 

for everyone else. Thus, content k is made available to local peers forever after it 

has been downloaded once from the outside at time slot t. We use Equation 3.6 to 

calculate αj for this model, but assume at least one seed is always present for each 

time slot t ′ > t. 

• Perf(no history): We also consider policies that include a performance bias since 

peers might prefer to download from nodes with a higher upload capacity than those 

inside its AS. The first performance model captures the scenario when a peer prefers 

to download content from peers in its own AS, unless there exists external peers 

with much higher upload capacity. A similar policy has been examined in [28]. We 

compute E(j, k), the expected number of copies of content k downloaded from outside 

AS j. 
U(j, k)

E(j, k) = Pj(k) , (3.7) 
P (k) 

" 

where P (k) = j Pj(k) is the total number of peers interested in content k, and 

U(j, k) is the number of external peers interested in content k that have an average 

upload capacity higher by a factor of γ than peers in AS j. By averaging over all 

content in which AS j participates we have: 
"Nj 

k=1 max(E(j, k), 1) 
αj = 

" Nj 
, (3.8) 

k=1 Pj(k) 

where max(E(j, k), 1) states that at least one copy must be downloaded. 
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For the evaluation of this scheme, we use the iPlane [41] dataset, which provides 

an estimate of the access bandwidth of several tens of thousands of /24 networks 

in the Internet. To account for factors that could make the real and the estimated 

capacities differ, such as congestion of intermediate links, we select a remote peer 

over a local peer only if the access bandwidth of the remote peer is at least 10 times 

higher than the bandwidth of the local peer. Furthermore, any remote peer for which 

we do not have access bandwidth information will not be preferred over a local peer. 

• Perf(history): Similar to the previous model, if an internal seed exists at time 

t, then peers do not need to download anything from outside the AS. The following 

equations are used to calculate αj: 

U(j, k)
E(j, k) = (Pj(k) − Sj(k)) (3.9) 

P (k) 

"Tj 
"NjE(j, k) + max(E(j, k), 1) k=1 k=Tj +1 

αj = , (3.10) 
"Nj (Pj(k) − Sj(k)) k=1

• Perf(persistent): We again assume that content persists forever after being down­

loaded once from outside the AS. We use Equation 3.10 to calculate αj for this sce­

nario, but assume a seed always persists after the first download. 

3.4 Measuring ISP Profitability 

The total profitability of an ISP depends on many factors. Due to the difficulty 

of accurately modeling all the costs associated with carrying traffic, such as backhaul 

costs, we do not attempt to do so. In this chapter we focus on the portion of the 

profits/expenses that are related to money gained/paid due to the transit costs of 

carrying P2P traffic only. We define our ideal metric for achieving this goal and 

describe how we evaluate it using our pricing models. 
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3.4.1 An Ideal Metric for ISP Profitability 

A customer ISP i typically gets charged by a provider ISP j based on the 95th 

percentile (P95) volume of traffic exchanged on an individual link [29]. This is done by 

sampling the inbound and outbound volume of traffic every 5 minutes for the duration 

of a billing period, which is usually 30 days. Let Vij(t) and Vji(t) respectively denote 

the outbound and inbound volumes for ISP i at time instant t. After sorting these 

values, P95 is chosen from both the outbound and inbound traffic; let these terms 

be denoted as P95(Vij) and P95(Vji). Let CVij be the charging volume, which is the 

actual volume that charges are computed on. Typically, CVij is determined by taking 

the maximum of the inbound and outbound P95s: 

CVij = max(P95(Vij), P95(Vji)). (3.11) 

Alternatively, while not widely used, in some cases it is determined by taking the 

average: 

CVij = (P95(Vij) + P95(Vji))/2. (3.12) 

CVij is then used as input to a pricing function, which is typically non-decreasing, the 

output of which is a dollar amount that the customer owes the provider. Assuming a 

linear pricing function (see Sec 3.4.3 for more details), let pij be the price per Mbps 

for the link between i and j, then the amount that ISP i owes ISP j is pijCVij . 

Let Pi and Ci denote the set of providers and customers of ISP i, respectively. 
" " 

Then, the profit of the ISP i prior to localization is pikCVik − pikCVik.k∈Ci k∈Pi 

Thus far we have considered the profit with respect to a certain set of traffic 

volumes. However, if these traffic volumes change due to P2P localization policies, 

we can also calculate the increase in profits after this occurs. Formally, let δ(x) denote 

the change in a variable x when localization is employed. Then, 

δ(profit) = pikδ(CVik) − pikδ(CVik). (3.13) 
k∈Ci k∈Pi 
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To study how localization affects profit due to P2P traffic, we normalize δ(profit) 

to the profit before localization that is attributed to P2P traffic (profitp2p,before), i.e., 

profit is computed exactly as before, except only the portion of traffic that is P2P is 

considered. Thus, we have: 

δ(profit)
profit increase = . (3.14) 

profitp2p,before 

Finally, if profitp2p,before is negative (i.e., the ISP is originally losing due to P2P 

traffic), we simply normalize by the loss instead of the profit. Thus, if lossp2p,before = 

−profitp2p,before, we have: 

δ(profit)
loss reduction = . (3.15) 

lossp2p,before 

3.4.2 Approximating ISP Profitability 

Ideally, Equation 3.13 should be evaluated considering the total amount of traffic 

flowing across links. Unfortunately, modeling total inter-AS traffic is a hard problem. 

To the best of our knowledge, only [27] addressed this problem. However, that model 

is not easily applicable to our context as it assumes the ratio of P2P to other traffic 

is known for all ASes which varies widely and is difficult to ascertain. 

To handle this, we approximate the ideal metric by assuming that the change in 

P95 of total traffic volume on localization is the same as the change in P95 of P2P traf­

fic volumes on localization, in each of the inbound and outbound directions. Formally, 

let Vp2p,ij(t) and Vp2p,ji(t) respectively denote the inbound and outbound volumes of 

P2P traffic that ISP i sends to or receives from ISP j at time instant t. Then, 

we assume that δ(P95(Vij)) = δ(P95(Vp2p,ij)), and δ(P95(Vji)) = δ(P95(Vp2p,ji)). 

With this assumption, the approximate change in charging volume on localization 

is simply computed as follows: (i) if charging volumes are computed based on the 

maximum, as in Equation 3.11, then δ(CVij) = δ(P95(Vp2p,ij)) or δ(P95(Vp2p,ji)), de­

pending on whether the AS is inbound dominated or outbound dominated; and (ii) 
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Table 3.1
 
Approximating the 95th percentile for incoming traffic
 

Trace Real 

[Mbps] 

Approximation 

[Mbps] 

Relative 

Error [%] 

P2P 

Traffic [%] 

ISP-1 1221.8 1247.5 2.10 48.6 

ISP-2 1782.7 1660.9 6.83 45.1 

ISP-3 1053.1 1029.6 2.23 53.02 

ISP-4 1845.6 1765.3 4.35 42.5 

ISP-5 1385.7 1347.1 2.79 50.4 

ISP-6 1350.6 1173.6 13.1 6.5 

if charging volumes are computed based on the average, as in Equation 3.12, then 

δ(CVij) = (δ(P95(Vp2p,ij)) + δ(P95(Vp2p,ji)))/2. 

Intuition suggests that the daily traffic periodicity is due to human habits. During 

the day, more users are connected to the Internet and traffic grows. There is thus a 

correlation between the time at which the P95 happens and the time at which most 

users are online. For P2P traffic, users run P2P applications when they are online. 

It is thus likely that the P95 of total traffic happens closely to when the P95 of P2P 

traffic is reached [42]. Table 3.1 compares the P95 on the inbound traffic observed on 

the different ISP traces described in Sec. 3.2.3 over a one-week long period of time. 

The second column shows the actual P95 of total traffic while the third column shows 

the total traffic observed at the time when the P95 of P2P traffic occurs. The fourth 

column reports the relative error and the fifth column reports the percentage of P2P 

traffic from the total traffic. As can be seen, the relative error ranges between 2% to 

13% depending on the ISP link. Furthermore, the larger the fraction of P2P traffic 

in the monitored ISP, the smaller the relative error. We repeated the analysis for 

outbound traffic. The relative error was even smaller since the fraction of outbound 

P2P traffic was higher than 80% for all ISPs and thus P2P traffic dominates the P95. 
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Second, as we have seen that P2P traffic volumes prior to localization tend to 

be correlated to total traffic volumes, we now argue that the trend will continue 

after localization. We have found in our datasets that the ratio of P2P traffic after 

localization to P2P traffic before localization does not vary much over time for all 

links, and locality models. Thus, it is reasonable to assume that the time the P95 

occurs after localization does not shift. For instance, when the Single(history) locality 

model is used, for all links, the standard deviation of the ratio across various time 

snapshots (σ) is very small. In particular, 58% of links have σ < .05 and 90% have 

σ < 0.1. 

Overall, the discussion above suggests that the errors introduced due to our ap­

proximations will be limited in practice, and our prediction of the impact of localiza­

tion on ISP profitablity will be reasonable. 

3.4.3 Pricing Models 

We now discuss the models we use to compute the pricing function, and charging 

volumes. While pricing functions are often non-decreasing piece-wise linear [29] they 

are specific to each provider and require the total volume of traffic to be known. In 

order to facilitate our evaluation we assume ASes use linear pricing functions where 

the charging volume is multiplied by the unit traffic volume price. Linear pricing 

functions are a good first step towards finding the actual costs and have also been 

used in determining transit costs for content providers [43]. Linear pricing is a valid 

approximation in our case because the reduction/increase of traffic that is experienced 

due to localization policies is not so large to trigger an economy of scale range change 

in the pricing. Moreover, assuming linear pricing corresponds to evaluating an upper 

bound on the possible savings an AS can achieve given the sublinear effect induced 

by economy of scale. 
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Table 3.2
 
Pricing functions
 

Geographic Location $ per Mbps 

North America 10 

Europe 14 

Australia 34 

Asia 38 

South America 76 

AS B 
American 

AS C 
Australian 

AS D 
Japanese 

AS E 
American 

AS A 

P95AB In Out 
Before 600 450 
After 150 100 

P95BC In Out P95BD In Out P95BE In Out 
Before 300 250 Before 120 200 Before 400 375 
After 130 100 After 60 20 After 80 75 

Figure 3.3. Example topology illustrating our pricing model. P95 
refer to P2P traffic. 

As the price per Mbps is known to vary widely due to geographic location [44] we 

gather data from Telegeography Research [45] (summarized in Table 3.2) to determine 

how customer ASes are charged. 

We next discuss our models for charging volume, using Fig. 3.3 to aid our dis­

cussion. Assume that ASes B, C, D, and E are all residential ASes. The P95s of 

P2P traffic for all links before and after localization are reported in the figure. For 

instance, on the link between A and B, the P95 of the P2P traffic inbound to B 
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is 600 Mbps and 150 Mbps, before and after localization respectively. Likewise, the 

P95 of the P2P traffic outbound from B is 450 Mbps and 100 Mbps, before and after 

localization respectively. 

We now summarize the various pricing models we use: 

• Average: For the charging volume we calculate the average of the inbound 

P95 (P95IN) and outbound P95 (P95OUT ) for each link as in Equation 3.12. The 

change in charging volume on localization may be approximated as in Sec. 3.4.2. 

For instance, in Fig. 3.3, the charging volume on the link between B and A would 

decrease from (600 + 450)/2 Mbps to (150 + 100)/2 Mbps, a reduction of 400 Mbps. 

Considering traffic prices from Table 3.2, AS B is charged $10 per Mbps by A. Thus, 

localization will reduce B’s costs by $4, 000. However, the charging volume will also 

reduce on links from B to each of its customers, resulting in revenue reductions. The 

revenue reduction is 34∗(300+250)/2−34∗(130+100)/2 = $5, 440 from customer C, 

38∗(120+200)/2−38∗(60+20)/2 = $4, 560 from customer D, and 10∗(400+375)/2− 

10∗(80+75)/2 = $3, 100 for customer E. The δ(profit) for B is then −$9, 100 and the 

profit increase is δ(profit)/profitp2p,before = −$9, 100/$14, 055 = −0.65, indicating 

that 65% of profits on P2P traffic were lost. 

• Upper and Lower Bounds: In contrast to the average case, computing changes in 

charging volume is more complicated if the pricing scheme is based on the maximum 

of P95IN and P95OUT , as in Equation 3.11. Using such pricing schemes requires us to 

know whether the total traffic volume is higher in the inbound or outbound direction. 

However, we only have information regarding P2P traffic volumes. It is possible that 

P2P traffic volumes are higher in the inbound (outbound) direction, while total traffic 

volumes are higher in the outbound (inbound) direction. We address these challenges 

by computing instead an upper and lower bound of the benefits that localization 

could have on each ISP. 

Consider again the link between A and B in Fig. 3.3. Depending on whether B is 

charged based on inbound or outbound traffic prior to localization, and allowing for a 

change in the direction of charging volume after localization, the reduction in charging 

http:andP95OUT,asinEquation3.11
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volume may range between 450−150 = 300 Mbps, and 600−100 = 500 Mbps. While 

precise determination of the change in traffic volume is difficult, the best possible 

scenario for B is a reduction of 500 Mbps, while the worst scenario is a reduction 

of 300 Mbps. More generally, for a customer, the best possible case is obtained 

assuming max(P95IN , P95OUT ) before localization, and min(P95IN , P95OUT ) after 

localization. For a provider the opposite set of choices provides the best scenario. We 

also observe that on any link, the best scenario for the provider is the worst scenario 

for the customer, and vice versa. To compute the upper (lower) bound in terms of 

benefits for an AS when localization policies are applied, we assume the best (worst) 

case for each of its links. 

We now illustrate the lower and upper bound computation for B. In the worst case 

scenario, the decrease in costs on provider links on localization is 10 ∗ (450 − 150) = 

$3, 000, while the decrease in revenue from customers is 34 ∗ (300− 100)+38 ∗ (200− 

20)+10∗ (400−75) = $16, 890. Thus, the lower bound on δ(profit) is −$13, 890 and 

profit decrease is 80%. However, in the best case scenario for B, the decrease in costs 

on provider links on localization is 10 ∗ (600 − 100) = $5, 000, while the decrease in 

revenue from customers is 34∗ (250−130)+38∗ (120−60)+10∗ (375−80) = $9, 310. 

Thus, the upper bound on δ(profit) is −$4, 310 and the profit decrease is 37%. 

• Class: Since knowing if an AS link is inbound or outbound dominated for all 

links is practically impossible, we consider a scenario that we build to be as realistic 

as possible. We use PeeringDB [46], which is a database where network operators 

document information in hope of attracting other ASes to peer with. The database 

contains over 1,900 ASes that provide the ground truth by labeling themselves as hav­

ing traffic ratios that are dominated by inbound, outbound, or are balanced. About 

500 ASes are in our dataset and for them we explicitly consider this information. 

For the remaining ASes, we hypothesize that the ratio of P2P client to web server 

populations has a large impact on the amount of traffic entering and leaving an AS. 

This is because we would expect a residential AS with many P2P clients to have a large 

number of users consuming content; hence a large amount of inbound traffic. On the 
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other hand, we would expect an AS hosting many web servers to have large outbound 

traffic. To discover the server population per AS we use a methodology similar to 

that used in [27] and find 1 million servers in 19,000 ASes. We use then PeeringDB 

as ground truth to calibrate the threshold ratio to classify ASes. Indeed, we do find 

a strong correlation between dominating traffic direction and the ratio of population 

sizes. Considering the unclassified ASes, we find 95% have population ratios clearly 

indicating they are inbound dominated (and we label as such in this scenario); this 

is unsurprising as we would expect most ASes in our dataset to be residential ASes 

and not content providers. Given each AS classification, the corresponding P95 of 

incoming or outgoing traffic will be used as the charging volume for every provider 

link the AS has. 

To complete the example, let ASes B, C, D and E be classified inbound domi­

nated. Then, the decrease in costs for AS B is 10 ∗ (600 − 150) = $4, 500, while the 

decrease in revenue is 34 ∗ (300− 130) + 38 ∗ (120− 60) + 10 ∗ (400− 80) = $11, 260. 

This translates to a δ(profit) of −$6, 760 and a profit decrease of 68%. 

3.5 Impact of Localization Policies 

In this section, we evaluate the profitability of ISPs according to the P2P traffic 

that they carry today and how localization will affect it. We consider scenarios 

where a different fraction of ASes localize traffic as ISPs may implement locality 

policies independent of one another. We also perform sensitivity to locality models 

and pricing models. 

Using the Affinity model and the BitTorrent crawl, we consider, for each locality 

model, a set of 168 traffic matrices derived from the last 7 days of the 8 day long 

crawl. The first day is not used in order to discard initial transient conditions for the 

history and persistent locality models. For each matrix, traffic is then routed on the 

AS level topology using the AS paths inferred as described in Section 3.2.3. Finally, 



34 

Table 3.3
 
ASes profiting or losing by category (no localization)
 

AS Type # Profiting (%) # Losing (%) 

All ASes 322 (16%) 1745 (84%) 

Stub 60 (5%) 1140 (95%) 

Small ISP 115 (20%) 458 (80%) 

Large ISP 139 (49%) 147 (51%) 

Tier-1 8 (100%) 0 (0%) 

for each customer-provider link, the P95 of P2P traffic is computed considering the 

168 samples. 

So far we have classified ISPs based on their customer-provider relationship as 

transit or residential to allow us to clarify the implication of the pricing model. How­

ever, this classification does not capture the implication of the AS size on the ISP’s 

profitability, therefore we also categorize each AS according to how many downstream 

customers it has as proposed by the Internet Topology Collection [47]. There are four 

categories: Stub, Small ISP, Large ISP and Tier-1, which intuitively state how big a 

transit AS is. Stubs have less than 5 downstream customers, Small ISPs have 5 or 

greater, but less than 50, and Large ISPs have 50 or greater. Tier-1 ISPs are those 

who have no or very few providers and are the same as those identified by [47]. In 

our dataset there are 1200 Stubs, 573 Small ISPs, 286 Large ISPs, and 8 Tier-1 ISPs. 

3.5.1 Profitability before Localization 

We first consider the scenario where there is no localization used on the Internet. 

We determine for each category of AS, the number of ASes that are profiting or losing 

from carrying P2P traffic. We present results only for the Class pricing model since 

results for Average are similar and Upper and Lower can be calculated only when 
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Table 3.4
 
Interpreting metric results
 

Value Loss Reduction Profit Increase 

less than -1 more loss turned to loss 

between -1 and 0 more loss less profit 

between 0 and 1 less loss more profit 

greater than 1 turned profitable more profit 
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Figure 3.4. Individual AS deploys localization with Single(history) 
locality model. Sensitivity to pricing models. 

localization occurs. Table 3.3 reports the results. As expected, the vast majority of 

ASes lose money because of P2P traffic (see the first line summary). However, as the 

number of downstream AS customers increases, there are ASes that profit due to P2P 

traffic. Indeed, 322 ASes (16%) today are profitable overall, of which 266 ASes are 

residential. This indicates that not all ASes may want to limit P2P traffic, and only 

ASes that have few customers have the most incentive to limit external P2P traffic. 

Considering ASes that have losses due to P2P traffic, over 51% of them are purely 

residential, serving end users but not carrying traffic for other ASes. Surprisingly, 
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several ASes that have more than 500 downstream customers still suffer losses. Inves­

tigating further, we found that their relationship to Tier-1 ASes largely determines 

whether they profit or lose. Being a customer of a Tier-1 AS makes the AS lose 

money, while those that have peering agreements made a profit. 

A closer look reveals that some ASes are still profitable, in spite of having few 

provider agreements with Tier-1. For example, the 13th largest profitable AS (AS­

12956, Telefonica) has few agreements with Tier-1 ASes but more than 500 down­

stream customers, most of which are in Spanish speaking regions. By carrying mostly 

traffic that is exchanged among South American and other Spanish ASes, it takes ad­

vantage of the cultural and linguistic characteristics of P2P inter-AS traffic to send 

high volumes of profitable traffic between customer ASes and very little costly traffic 

to Tier-1 providers. 

Insight #1: Transit ASes that have customer ASes with similar cultural and linguis­

tic makeups benefit more from carrying P2P traffic than those whose customer ASes 

are dissimilar. A transit AS with such customer ASes sends more traffic to customers 

than to providers, increasing its revenue. 

3.5.2 Localization Deployed by Individual ASes 

We seek to understand if localization is beneficial for an individual AS, indepen­

dent of what other ASes do. Specifically, we investigate what is the expected benefit 

for an AS that deploys a localization policy alone. We consider only residential ASes 

since pure transit ASes have no benefits in localizing traffic (having no clients). 

Sensitivity to pricing model: We fix the locality policy to Single(history) and 

calculate the charging volumes as described in Section 3.4.3. We use the metrics 

defined by Equation 3.14 and 3.15. Fig. 3.4 summarizes what the values of these 

metrics mean for different ranges. Positive values indicate that the AS is benefiting 

from the locality policy. Negative values indicate that the AS is doing worse than 

before the policy is applied. For example, a profit increase larger than 0 means more 
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Figure 3.5. Individual AS deploys localization with Class pricing 
model. Sensitivity to locality models. 

profit, while a profit increase between 0 and -1 means less profit. Profit goes to 0 

when profit increase takes the values of -1. Finally, for values smaller than -1 the 

localization policy turns profit into loss. We show results in two different graphs: 

Fig. 3.4(a) plots the Cumulative Distribution Function (CDF) of loss reduction for 

ASes who have losses before localization, and Fig. 3.4(b) plots the CDF of profit 

increase for ASes who profit before localization. 

In Fig. 3.4(a), the Lower bound (i.e., the vertical curve at x=0) shows that no 

profit is gained. This is because the localization of P2P traffic will result in internal 
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P2P clients reducing content downloaded from the outside, but in the pessimistic 

case this will not necessarily reduce content uploaded to other ISPs. However, for the 

worst case, the AS is charged on outbound traffic which has not changed. As Class 

reveals though, most residential ASes do get charged for their incoming traffic and 

thus localization is beneficial to them. Benefits are somewhat limited, with a loss 

reduction smaller than 30% for more than 50% of ASes. Also for Class, note that a 

few residential ASes are outgoing dominated and thus are unaffected by localization. 

In our dataset we find 40 ASes that belong to this category. For those, loss reduction 

is equal to 0, as shown by the vertical segment of the Class curve close to y=0. 

For Average, less benefit is obtained than for Class because Average considers both 

directions of traffic but the cost associated with outbound traffic remains the same. 

Finally, Upper bound provides optimistic predictions that are unlikely in practice. 

Surprisingly even in this case the loss reduction is limited, i.e., only 40% of ASes see 

reductions over 60%. 

We now turn our attention to profitable ASes in Fig. 3.4(b), a total of 16 residential 

ASes for which most P2P traffic traverses customer links. We see that in Class, 63% 

of these ASes show a profit reduction. This is due to these residential ASes also 

being transit ASes. For example, the AS that suffers the most is AS-209 Qwest 

Communications, a Tier-1 provider who we found to have over 360,000 clients. This 

is due to almost all of the P2P traffic that clients in AS-209 generate being sent and 

received through customer links. 

Insight #2: Some residential ASes will actually lose profit when they localize traffic. 

This is due to these ASes also being transit providers for other residential ASes. For 

these ASes, P2P traffic that was previously downloaded from clients in customer ASes 

decreases due to localization and in turn revenue decreases. Therefore, they have little 

incentive to localize traffic. 

There are a few ASes that are able to increase profit due to localization. This 

is due to the fact that many AS paths are asymmetric. Specifically, outgoing traffic 

is sent on customer links and since outgoing traffic does not decrease when one AS 



40 

localizes, revenue remains the same. However, some incoming traffic is received on 

provider links, hence a reduction in costs and an increase in profit. This underlines 

the complexity of possible impacts of P2P traffic localization policies. 

Sensitivity to locality model: Now we fix the pricing model to Class and 

vary the locality model. As expected, Fig. 3.5(a) shows that most ASes that were 

suffering losses due to the P2P traffic are reducing their loss due to localization 

policies. However, the reduction is not as large as one could hope. Under Perf(no 

history), the most pessimistic locality policy, for 75% of ASes the reduction is less than 

25%. Even under Single(history), the most realistic locality policy, the loss reduction 

is still small, with less than 48% reduction for 75% of ASes. This is due to the small 

number of clients interested in the same content, which therefore tends to “disappear” 

as clients leave the torrent. Indeed, under the Single(persistent) policy the results are 

much improved: even 50% of ASes reduce their losses by 70%. In some cases, the AS 

is able to vastly improve profitability. For example, some small residential AS would 

be able to increase its loss reduction from 13% under Single(history) to 82% under 

Single(persistent). This is due to the optimistic assumption that content is available 

forever once it enters an AS. 

Insight #3: Content availability plays a crucial role in determining the effectiveness 

of localization. Due to churn, peers will often need to redownload content from outside 

the AS. However, when assuming persistent content, most ASes can reduce losses twice 

as much. 

3.5.3 Internet-wide Localization Deployed 

We now consider the scenario when all ASes deploy localization at the same time 

and thus we also include ASes who are purely transit in our results. We show results 

on sensitivity to locality models, but not on results concerning sensitivity to pricing 

models as the trends are similar to those already seen. 
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As before, we fix the pricing model to Class and plot results separately for ASes 

that normally lose or profit due to P2P traffic. Fig. 3.6(a) plots the loss reduction 

and shows results similar to when individual ASes localize. This is because an AS will 

reduce its incoming traffic only if it localizes its own traffic. Thus, as most ASes are 

inbound dominated they can unilaterally localize traffic and receive the full benefits. 

However, an AS will reduce its outgoing traffic only if other ASes localize their traffic. 

Therefore, ASes that are outbound dominated will not see benefit until other ASes 

start localizing traffic. In this scenario indeed, all ASes that were facing loss reduce 

costs (loss reduction greater than 0 for all ASes). 

Insight #4: The benefits of localization will be limited for some ASes unless all ASes 

start to localize traffic. Localization, if adopted by a single AS, only reduces traffic 

received by internal peers, but it may not affect traffic sent. Hence, individual ASes 

that are outbound dominated or are charged based on the average of the inbound and 

outbound P95s will not receive all the possible benefits. This reduced benefit may slow 

down the adoption of localization policies. 

To investigate which ASes benefit more, we show in Fig. 3.6(b) the loss reduction 

versus population size, considering the Single(history) locality policy. As can be seen, 

there is a trend that the larger the population, the more the AS can localize. For 

example, the Taiwanese AS-3462 where we found over 1.5 million clients, is able to 

get a reduction of 91%. However, more than 50% of ASes achieve gains smaller than 

30% as the limited number of peers interested in the same content inside an ISP limits 

the benefits of localization. 

Insight #5: The reduction in traffic due to localization only grows logarithmically 

with client population (notice the log-linear scale). Furthermore, we find that for all 

locality models the values of αj, the leftover traffic, also follow a similar logarithmic 

trend with respect to AS population sizes. This is due to torrent popularity following 

a Zipf-distribution, which has been shown to limit the effectiveness of caching. In 

particular, [48] demonstrates through analysis that a similar effect occurs considering 

web caching. 
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Moving to ASes that were already profitable, Fig. 3.6(c) shows a significant de­

crease in the amount of profit; in a pessimistic case – Single(no history) policy – 50% 

of ASes lose over 25% of their profits. In an optimistic case – Single(persistent) pol­

icy – 80% lose at least 60% in profit. Thus, while localization is beneficial for many 

residential ASes, over 300 transit ASes lose profit. Further investigation shows that 

the larger the transit AS is, the more likely it will suffer heavier losses in profit. 

Insight #6: Transit ASes lose significant amounts of profit when ASes localize. 

We found that all Tier-1 ISPs will lose over 56% of profits on P2P traffic under 

Single(history) when all ASes localize. 

Some ASes turn from being profitable to actually losing money (profit increase 

smaller than -1). For example, this happens for the AS-3786, who is a transit provider 

for the AS-17858. As AS-17858 has more peers than AS-3786, it can reduce its traffic 

more than AS-3786 can. Therefore, AS-3786’s customer traffic is reduced more than 

its provider traffic and hence it starts to lose money. Interestingly, there are a few 

ASes that are able to increase their profits due to localization. These transit ASes 

are providers for many small residential ASes. As small ASes achieve very small 

reductions, the transit ASes are able to increase their profits by reducing their costs 

more than their customers can. 

Insight #7: Small residential ASes have small reductions in traffic due to the log­

arithmic trend of localization. Hence transit ASes who carry traffic for many small 

ASes fare better than those who carry traffic for a few large ASes. 

3.5.4 Localization Deployed by Large ASes 

Besides the extreme cases when a single AS or all ASes deploy localization, we 

also investigate the scenario when ASes with larger populations will implement lo­

calization. We consider the Single(history) locality model and conduct sensitivity to 

pricing models. Results for sensitivity to locality models are similar. 
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We first consider when only the 100 largest ASes by client population size localize 

traffic, i.e., 6% of residential ASes in our dataset. As the largest ASes send and receive 

a very large amount of P2P traffic, we expect the localization to impact many other 

ASes as well. Fig. 3.7(a) shows the loss reduction results. In Class, the 100 ASes that 

localize receive the full benefits while 87% of ASes do not practically benefit. This is 

because many ASes are inbound dominated, but only outbound traffic decreased in 

this scenario. Indeed, the 40 ASes that are outbound dominated benefit with a loss 

reduction of 30% or greater. The Lower curve corroborates this result by showing 

that most ASes cannot get any benefit. The Average pricing model presents a “what­

if” scenario that allows more ASes to benefit from the localization deployment of few 

ASes, while the Upper Bound provides over-optimistic an prediction. 

Insight #8: Pricing scheme has a large impact on the effectiveness of savings. As 

the maximum pricing model ignores one direction of traffic, reduction in the other 

direction does not result in a reduction of cost. The average pricing model does con­

sider both inbound and outbound traffic and thus an AS could benefit both if it or some 

other AS localizes traffic. 

We now take the most realistic pricing model, Class, and to explore a “what­

if” scenario we compare it with Average, when a varying number of ASes localize 

traffic. We only focus on loss reduction graphs as we wish to highlight the effects 

the maximum and average pricing models have on costs. Fig. 3.7(b) shows Class and 

demonstrates that those who localize are generally the only ones who see benefit. This 

is in contrast to the Average pricing model, which we show in Fig. 3.7(c). Interestingly, 

in Average, almost all ASes that do not localize see increasing benefits as more ASes 

localize. For example, when 200 ASes localize, most ASes have over a 20% loss 

reduction, which is over 50% of the benefits possible when all ASes localize. 

Insight #9: Contrary to the average pricing model, for the maximum pricing model 

it is not sufficient that few ASes localize traffic to reduce cost. Even if the largest 

Ases start deploying localization schemes, overall loss reduction will be very limited. 
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3.6 Impact of Business-Relationship Policies 

In this section we explore alternative ways to increase profitability of carrying P2P 

traffic. In particular, we explore business-relationship based peer selection policies 

where ASes aim to improve their profit by making internal peers select external peers 

located in customer or peer ASes, while trying to avoid peers hosted in provider ASes. 

Notice that the AS is not trying to reduce the amount of traffic peers will download, 

but rather it is interested in carefully selecting the source ASes to download from. 

Clearly, the generalized use of these policies could have significant impact on existing 

peering agreements. As traffic exchange ratios [49] are often used to determine if an 

AS should be a peer or customer, a change in traffic may lead to a renegotiation of 

agreements. In this chapter, we do not consider such events. 

3.6.1 Modeling Business-Relationship Based Policies 

To model this preferential peer selection, we define θij as a preference bias index 

given by AS j to remote AS i. If the path from i to j traverses a customer link of 

j, the preference will be the highest (θij = 1); if the path from i to j traverses a 

peering link of j, a middle preference will be assigned (θij = wp, 0 < wp ≤ 1); finally, 

if the path from i to j traverses a provider link of j, the preference will be the lowest 

(θij = wq, 0 < wq ≤ wp). Then, the volume of P2P traffic sent from AS i to AS j is: 

Xij 
′ = XijθijB(j), (3.16) 

where Xij is computed based on the Affinity model as in Equation 3.3, and B(j) is a 

normalization factor that ensures the aggregate traffic downloaded by peers in AS j 

from external peers remains the same before and after the policy is applied. 

"Dj 

i=1 Xij 
B(j) = , (3.17) 

"Dj 

i=1 (Xijθij) 

where Dj is the total number of ASes from which j downloads content. We refer to 

this model as the Business model. 
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We have performed a sensitivity study to wp and wq, to understand how these 

parameters affect the loss reduction and the profit increase of ASes. Intuitively, 

ISPs should make wp and wq as small as possible to obtain the most benefits out 

of Business. In the extreme, if we make wq = 0, all the traffic from an AS will be 

directed to customer or peering links. However, in practice this may not be possible 

since customer or peer ASes of an ISP may not have the content or may not have 

enough clients to support the demand. Hence, we pick a very small value of wq, in 

particular we use wq =1E-10. For wp, the main requirement is that it is larger than 

wq; we choose wp =1E-03. We note that Business is an extreme version of such a 

scheme that we use to illustrate its potential. In reality, other practical considerations 

should be made, such as considering user performance and inter-AS link capacities. 

Intuition suggests we can improve the performance of the Business and Single poli­

cies by merging them. We call the new policy Hybrid and we model it by substituting 

Lij from Equation 3.4 into both Equation 3.16 and 3.17 , i.e., X ′ LijθijB(j). This ij = 

represents the policy for selecting peers outside an AS to obtain content that is not 

already present inside the AS. We use wp =1E-03 and wq =1E-10 as before. 

3.6.2 Best Strategy for Individual ASes 

The goal of this section is to study what strategy individual ASes should adopt to 

have the best impact on ISP profitability. We start by considering the case in which 

individual ASes deploy one of Business, Hybrid or Single(history). We fix the pricing 

model to Class. Fig. 3.8(a) shows a comparison between the three possible strategies 

reporting loss reduction. Interestingly, the Business policy is ineffective for more than 

75% of ASes, while Single(history) has proved to reduce the loss for most ASes. The 

Hybrid policy provides the best loss reduction for most of the ASes. Indeed, only for 

the top 25% of ASes, which are mostly transit ASes, Business performs better than 

Single(history) and similar to Hybrid. This is because transit ASes can benefit more 

from the Business policy by having internal peers download traffic from customer ASes 
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rather than provider ASes. In fact, the top 11% of ASes actually turn profitable, i.e., 

loss reduction becomes greater than 1. 

Fig. 3.8(b) shows the profit increase for the 16 residential ASes that are already 

profitable before localization. The figure shows that Business is the most beneficial 

policy, i.e., more than 30% of the ASes improve their profit by more than 100%. The 

other two policies can instead cause a profit reduction, as already seen in Fig. 3.5. 

Recall indeed that transit ASes will increase their profit if more traffic is pushed to 

customer ASes. 

Based on these results, we aim to study the strategy that gives the most benefits to 

ASes. Towards this goal, we plot Fig. 3.8(c). In this figure, we consider all ASes and 

group them according to the categories described in Sec. 3.5. Then, we find for each 

AS, which policy gives the most benefits. Finally, we aggregate the best policies per 

category of AS. For each type of AS there is a stacked bar, which indicates the fraction 

of ASes that performs the best with a given policy. Note that besides the Business 

and Hybrid policies, there is Single(history) = Hybrid, which accounts for the cases 

in which both Single(history) and Hybrid are the best policies. Single(history) is 

never better than Business or Hybrid, so it is not shown in the picture. 

There are several points to take away from Fig. 3.8(c). First, we observe that 

for around 90% of stub ASes, the best policy is Single(history) or Hybrid. This is 

because stub ASes receive considerable benefits from localization. ASes in the Small 

ISP category follow a similar trend with more than 60% of them benefiting the most 

from Single(history) or Hybrid. Second, all Tier-1 ASes on the contrary will get the 

most benefits out of the Business policy. This is because Tier-1 ASes will benefit 

from an increase in the traffic sent or received from customers. Finally, Hybrid is 

better for the Large ISP category, since these ISPs benefit both from directing traffic 

to customers and from localizing their own P2P traffic. 

Insight #10: Many ASes will achieve more profits through preferentially directing 

traffic to customers and peers rather than localizing traffic. Therefore, P2P traffic 

localization is not always the best choice for all ASes. 
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3.6.3 Internet Impact of Business-Relationship Based Policies 

In the previous section, we have seen how different strategies will benefit ASes if 

individual ASes adopt them. But what happens when all ASes adopt the same policy 

at the same time or when all ASes adopt their local best policy at the same time? 

Both P4P and ALTO indeed allow each AS to run their own “oracle” and chose a 

different policy. To answer these questions, we consider the scenarios in which all 

ASes adopt Business, Single(history), and Hybrid policies. In addition, we consider 

the scenario in which each AS applies its best local strategy, according to Fig. 3.8(c), 

which we have called ”Individual Best”. We fix the pricing model to Class. 

Fig. 3.9(a) shows the loss reduction. For about 10% of the ASes, Business causes 

them to lose considerably more. These are mostly stub ASes that will be “victims” 

of their providers that increase the amount of traffic they exchange with customer 

ASes. On the contrary, Single(history) almost never causes higher loss. Hybrid 

performs marginally better than Single(history) for large ASes, but slightly worse 

than Single(history) for small ASes. 

Fig. 3.9(b) shows the profit increase. Business performs better than Single(history) 

and Hybrid. When Business alone is considered, more than 70% of ASes either profit 

more or earn the same amount as before. For Single(history), over 90% of the ASes 

start losing profit due to localization. This is because many of the transit ASes that 

were profiting before will receive more benefit from Business since they will now select 

peers in customer ASes and direct more traffic to them. 

We note that for both loss reduction and profit increase, Individual Best closely 

follows Single(history) and Hybrid. In particular, ASes that profit from P2P traffic 

(e.g. Tier-1 ASes and a few Large ISPs), which benefit more from locally implement­

ing Business, lose because of policies implemented by their customers. 

Insight #11: While business-relationship based policies may locally be the best strat­

egy for some ASes, they can have a negative external impact on other ASes. Further­

more, as the best local strategy of an individual AS is chosen in isolation of others it 
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does not turn to be the best possible choice when all ASes deploy their own best local 

strategy. 

3.7 Summary 

In this chapter, we developed a detailed methodology for evaluating the profitabil­

ity of an ISP and how it will change due to P2P localization. We first proposed the 

Affinity model, a refinement of the Gravity model, for generating realistic inter-AS 

P2P traffic. We then devised several locality models to describe the reduction of 

P2P traffic under different scenarios. Coupling these models with realistic inter-AS 

paths inferred from BGP and IXP data, and pricing models based on the 95th per­

centile and geographic pricing, we calculate the impact of localization policies on ISP 

profits. We believe that the results we presented enhance the understanding and im­

plications of P2P traffic localization schemes on the Internet, and in particular from 

the perspective of ISPs. 
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4 SECURING VIRTUAL COORDINATES BY ENFORCING PHYSICAL LAWS 

As discussed in Chapter 3, localization services provide network locality to distributed 

systems, causing the amount of traffic that must leave an ISP to decrease. The re­

duced amount of traffic brings benefit to some ISPs as their costs can also decrease. 

Not only can ISPs benefit from localization, but also numerous distributed protocols 

that can take advantage of network locality, such as optimized replica placement [50], 

multicast tree and mesh construction [51], routing on the Internet [52,53], and Byzan­

tine fault-tolerant membership management [54]. Given how critical such services are, 

in this chapter we study how to protect Virtual Coordinate Systems (VCS) from in­

sider attacks aiming to disrupt them. 

4.1 Introduction 

Virtual Coordinate Systems (VCS) have been proposed as an efficient and low 

cost service to provide network locality estimations by accurately predicting round-

trip times (RTT) between arbitrary nodes in a network. Each node measures the 

RTT to a small number of other nodes and the VCS then assigns a coordinate to 

each node. Each node can then estimate the RTT between itself and any arbitrary 

node by calculating some distance function. 

While some VCS are centralized in nature [55], many have been designed as dis­

tributed systems [56], where each node maintains and updates its own coordinate 

by relying on information received from other nodes. Distributed VCS can be classi­

fied as landmark-based and decentralized. Landmark-based systems [57–61] assume a 

trusted set of nodes that form the infrastructure by which other nodes can determine 

their coordinates. Decentralized VCS [56, 62–64] assume no such infrastructure; a 
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node updates its coordinate based on measurements and information from a random 

set of nodes. 

Unfortunately, distributed VCSs have been shown [65] to be vulnerable to insider 

attacks, where compromised nodes delay measurement probes and lie about their 

coordinates to decrease system performance. As many applications rely on VCS to 

build robust services, there have been several proposals to secure them. For example, 

outlier detection [66, 67] and voting [68] were used to detect equivocation of lying 

attackers. Most of these defense methods ultimately decide if an update from a 

node is malicious or not by learning good behavior through system observation over 

time. As a result, these schemes are vulnerable to attacks where through small 

changes attackers make the defense mechanisms learn malicious behavior as being 

good behavior. One such attack is the well-known frog-boiling attack where attackers 

lie by small amounts that accumulate over time and gradually lead to large changes 

in performance [69–71]. 

A classical approach for designing distributed systems is to use safety invariants 

in order to ensure system correctness. These safety invariants specify states into 

which the distributed system should never enter. For example, a distributed system 

that forms a tree of nodes should never have any loops, or a distributed hash table 

should never form multiple rings, but only one continuous ring. At first glance, VCS 

do not appear to have such invariants as minimal constraints are imposed on how 

neighbors are selected or on what coordinates a node can possibly have. We make 

the key observation that some VCS are designed around an abstraction of a physical 

system [55, 56, 72] and that physical systems follow physical laws. As these laws are 

universally true, we can leverage them to identify safety invariants for VCSs based 

on physical systems. 

In this chapter we present Newton, a decentralized VCS which extends Vivaldi [56] 

to withstand a wide class of insider attacks by using safety invariants derived from 

Newton’s three laws of motion. Newton relies on the observation that Vivaldi is an 

abstraction of a real-life physical system and therefore all participating nodes must 
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follow Newton’s three laws of motion. As there is a direct mapping between the 

actions taken by nodes, in reporting their coordinates and RTTs, and the forces 

that these physical laws govern, any attack in which malicious nodes lie about their 

coordinates or delay probes will result in the invariants being violated. We leverage 

this fact to detect attacks and discard malicious updates. Our contributions are: 

• We describe how to use Newton’s three laws of motion as well as a mapping 

between forces and virtual coordinates to identify invariants that mitigate a 

wide range of attacks against Vivaldi. We show how to use the three identified 

invariants to detect and mitigate the well-studied inflation, deflation, and os­

cillation attacks, as well as the more recent frog-boiling and network-partition 

attacks. 

• We conduct extensive simulations and real-world experiments on PlanetLab to 

demonstrate that Newton is able to mitigate all five attacks mentioned above.We 

compare Newton with Vivaldi outfitted with Outlier Detection [67] and show 

that Newton is not vulnerable to the frog-boiling and network-partition attacks. 

We also find that, even with no attackers, Newton has better performance than 

Vivaldi, i.e. Newton is 25% more accurate and 68% more stable. 

• We consider extreme scenarios where the attackers are present in a much higher 

percentage, over 50% of nodes in the network are malicious, and also where 

attackers are conducting attacks from the beginning of the experiment, while 

the system has not converged yet to a steady state. We show that even under 

such conditions Newton still performs well. 

• We consider adaptive attackers that know how the invariants are used and try to 

exploit them. Because in real-deployments Newton is not a perfect abstraction 

of a physical system, an attacker can try to exploit the invariants. We explore 

a new type of attack, rotation attack, where attackers rotate their positions 

slowly around the origin of the coordinate plane in an attempt to destabilize 

http:mentionedabove.We
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nodes while remaining undetected. We find that Newton holds up well to such 

attacks, incurring only slightly worse accuracy. 

The remainder of this chapter is organized as follows: We describe Vivaldi in 

Sec. 4.2 and attacks against it in Sec. 5.3. We describe Newton and our invariants in 

Sec. 4.4. We show simulation results in Sec. 4.5 and PlanetLab experimental results 

in Sec. 5.7. We present our summary in Sec. 4.7. 

4.2 Vivaldi Coordinate System 

Algorithm 1: Node i Coordinate Update
 

Input: Remote node tuple (xj , ej , RTTij) 

Output: Updated local coordinate and error xi, ei 

1 w = ei/(ei + ej) 

2 es = | xi − xj − RTTij|/RTTij 

3 α = ce × w 

4 ei = (α × es) + ((1 − α) × ei) 

5 δ = cc × w 

6 xi = xi + δ × (RTTij − xi − xj ) × u(xi − xj) 

Vivaldi [56] is a decentralized VCS where the distance between coordinates repre­

sents the estimated RTT between nodes. All nodes start at the origin and periodically 

update their coordinates based on interaction with a subset of nodes referred to as 

the neighbor set. A node chooses half of these nodes randomly from all possible nodes 

and the other half from a set of low-latency nodes. Research [56] has shown that a 

neighbor set of 64 nodes ensures quick convergence. 

In addition to the coordinate value, each node also maintains a local error value 

which shows the confidence in the coordinate. Algorithm 1 describes how each node i 

updates its coordinate. Specifically, i will send a request to node j for its coordinate 

and local error value. When node j replies node i also measures the actual RTT. 
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An observation confidence w is calculated first (line 1) along with the error es in 

comparing the coordinates with the actual RTT (line 2). Node i updates its local 

error (line 4) by calculating an exponentially-weighted moving average with weight α 

and system parameter ce (line 3). Next, i computes the movement dampening factor 

calculated with another system parameter cc (line 5) and updates its coordinate by 

finding how far it should move and then multiplying that by a unit vector (represented 

by u(•)) in the direction it should move (line 6). 

A VCS generally has the system goals of providing accuracy and stability with 

respect to the coordinates that it produces. Accuracy describes how closely the 

coordinates reflect the actual RTT between nodes. Stability describes how quickly 

nodes converge to a set of accurate coordinates and how long a node can be absent 

from the system and still have accurate coordinates. 

Accuracy. We use prediction error to measure accuracy: Errorpred = |RTTAct − 

RTTEst|, where RTTAct is the measured RTT and RTTEst is the estimated RTT. 

A small prediction error indicates high accuracy. We report the median of all the 

prediction errors at a time instant. 

Stability. We use velocity of a node to measure stability: V elocity = Δ
t
xi , where 

Δxi is the change in coordinates for node i (or distance traveled by a node), and t 

is the amount of time taken to make that change. A small velocity indicates high 

stability. We report the average of velocity of all nodes at a time instant. 

4.3 Attacks Against VCS 

We consider that a bounded number of compromised and colluding nodes act 

maliciously. To attack Vivaldi, a malicious node can (1) influence the coordinate 

value computation by lying about its coordinate and local error value or (2) influence 

the RTT computation by delaying the measurement probe. 

An attacker can exploit coordinate and RTT computation to conduct the following 

basic attacks:
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• Inflation: Attackers lie about having very large coordinates. This pulls benign 

nodes far away from their correct coordinates and thus is an attack on accuracy. 

• Deflation: Attackers lie about having small coordinates near the origin. This 

prevents benign nodes from being able to update to their correct coordinates and 

therefore is also an attack on accuracy. 

• Oscillation: Attackers lie by reporting randomly chosen coordinates and randomly 

delaying measurement probes. This is an attack both on accuracy and stability. 

Basic attacks against Vivaldi have been shown to be very effective in reducing 

accuracy and stability [65]. Moreover, while defenses have been proposed, recent 

work [69–71] identified more advanced attacks that are able to bypass all previously 

proposed defenses [66–68]. Advanced attacks are: 

• Frog-boiling: Attackers lie by small amounts at a time, slowly increasing this 

amount by moving their coordinates in one direction. Over time though, the attacker 

ends up reporting coordinates that are far away from their correct coordinate. This 

results in an attack on both accuracy and stability. 

• Network-partition: Attackers lie similarly as in the frog-boiling attack, but in­

stead groups of nodes collude together and move in opposite directions, again attack­

ing both accuracy and stability. 

4.4 Description of Newton 

In this section we present our VCS, Newton, which builds upon Vivaldi by im­

plementing invariants derived from physical laws to defend against all known insider 

attacks against VCS. 

4.4.1 Vivaldi as a Physical System 

The coordinate update in Vivaldi is actually modeled based on a mass-spring sys­

tem abstraction, where each pair of nodes have a spring connecting them. Depending 

on its state, the spring applies a force to the nodes to either push them together or 
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pull them apart. This force is calculated by Hooke’s law, F = −kx, where k is a 

spring constant and x is the amount of displacement that a spring currently is from 

its equilibrium or rest position. Every node has a spring constant k value of 1. To 

determine displacement, the measured RTT between a pair of nodes is considered to 

be the length of the spring at its rest position, while the current length of the spring is 

the estimated RTT. Over time, the system stabilizes when all pairs of nodes minimize 

the amount of force that is placed upon them. 

When updating its coordinate based on information from node j, a node i calcu­

lates the magnitude and direction of the force f�ij that node j is applying to it. The 

magnitude of the force mij is determined by the RTT between the two nodes and the 

distance of the current nodes’ coordinates: mij = RTTij − xi −xj . The direction of 

the force d�ij is a unit vector that is calculated based on the two nodes’ coordinates: 

dij = u(xi − xj). The force f�ij is then simply f�ij = mij ∗ d�ij. This determines how 

much the coordinate needs to be updated from the previous value and corresponds 

to Line 6 in Algorithm 1. Note that Vivaldi is not a perfect physical system and also 

takes into account the perceived error reported by the node j and its own local error 

value. We discuss the implications of Vivaldi not being a perfect physical system in 

Sec. 4.4.5. 

4.4.2 Using Physical Laws to Identify Invariants 

Detecting insider attacks in distributed systems can benefit from identifying in­

variants in the system. For Vivaldi, no such invariants appear to exist at first glance 

since nodes make decisions based on inputs from nodes in their neighbor set and there 

are no constraints imposed by the system in node selection. We make the key obser­

vation that since Vivaldi [56] is built upon an abstraction of a mass-spring system, 

all nodes must follow physical laws. These laws are universal truths so they represent 

invariants that all nodes in Vivaldi should globally follow. In particular, nodes must 

follow Newton’s three laws of motion which are: 
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First law: A body stays at rest unless acted upon by an external, unbalanced force. 

Second law: A force F on a body of mass m undergoes an acceleration a, such that 

the acceleration is proportional to the force and indirectly proportional to the mass. 

Third law: When a first body exerts a force on a second body, the second body exerts 

an equal but opposite force on the first body. 

When an attacker lies about its own coordinate, it is implicitly lying about forces 

that have previously acted upon it, thus introducing extraneous indirect forces into 

the system. Introducing such forces into the system breaks the first and third laws, as 

attackers are not acting according to the influences of the outside forces upon them. 

When an attacker delays a measurement probe or lies about its local error value, it 

is lying about the force between itself and another node, thus introducing extraneous 

direct forces into the system. Lying about such forces breaks the second law, as nodes 

do not undergo accelerations that are governed by the forces determined by Hooke’s 

law. 

We show how to leverage Newton’s three laws of motion to identify three invari­

ants, which we call IN1, IN2 and IN3. Nodes can then use these invariants to 

locally detect whether an update that results in a force being acted upon is the result 

of nodes behaving according to the protocol and thus following physical laws, or the 

result of a lying attacker. Below we define the invariants and describe how to detect 

extraneous indirect and direct forces with their help. 

4.4.3 Detecting Extraneous Indirect Forces 

We first focus on how to detect whether a node is lying about the forces that have 

acted upon it, resulting in maliciously derived coordinates. For ease of exposition, 

assume each node i is at coordinate xi and at any moment is applying the force f�ij 

onto node j. As described in Sec. 4.2, a node chooses its neighbor set based on two 

criteria: (1) half are chosen randomly and (2) half are chosen based on if they are 
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Figure 4.1. Detecting extraneous indirect forces 

physically close. We design two detection schemes, one for nodes that are randomly 

chosen, and the other for nodes that are physically close. 

Detection for malicious random nodes from the neighbor set: We observe 

that the third law states that there can be no unbalanced forces in the mass-spring 

system. An attacker introducing any extraneous indirect force that causes nodes to 
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move will be an unbalanced force by definition of the first law. The third law then 

implies that an unbalanced force can be detected by finding the centroid of all the 

node’s coordinates, where the centroid is the average of all the coordinates and has 

the physical analogue of being the center of mass of the mass-spring system. We note 

that while perfect detection requires knowledge of the coordinates of all nodes, using 

just the randomly selected nodes also provides a good vantage point from which to 

calculate an approximate centroid. We summarize our first invariant. 

IN1: If the centroid of a node i and the randomly selected nodes from its neighbor set 

is at the origin then no unbalanced force has been introduced. However, if the centroid 

is not at the origin, then an attacker (or collection of attackers), has introduced an 

unbalanced force that has the same direction as a force vector from the origin to the 

centroid (�c). 

In Figs. 4.1(a) and 4.1(b) we illustrate how to use IN1 to detect attacks. In 

Fig. 4.1(a) node i, located at coordinate xi = (2,3), is the victim and all the other 

dots are the randomly selected nodes from its neighbor set, including node j. Node 

i can calculate the centroid c based on its own coordinate and the coordinates of 
n 

P

xp 

all those neighbors c = p=1 

n 
. Since the third law states that all forces must be 

balanced, we would expect that the centroid would never move, and thus even during 

normal operations, would be at the origin. In Fig. 4.1(a) the green square signifies 

this calculated centroid, and since no attack has taken place yet, it is at the origin. 

In Fig. 4.1(b), we consider what happens when the attacker, node j, represented 

by the red triangle at coordinate xj = (-2,2), introduces an extraneous unbalanced 

force. In this case, the attacker moves to coordinate (-9,9). Node i recalculates the 
n 

P

xpt +fij 

centroid, using ct = p=1 

n 
, to be at coordinate (-1,1), which corresponds to �c, 

the force that moved the centroid from the origin. Node i also experiences a force 

f�ij , represented by the arrow pushing it towards the attacker. Node i can detect the 

attack by finding that �c is non-zero, as described in IN1. It can then find which 

node introduced the unbalanced force, and thus is the attacker. Specifically, for every 

neighbor node k, i sums up the forces (�sik) that k has applied to it since k entered its 
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neighbor set and then calculates the vector projection of �sik onto �c. The node whose 

projection has the greatest magnitude is the one who has contributed most to the 

centroid being moved, thus an attacker, and its force is ignored. 

IN1 holds even if a malicious node initially reports an incorrect coordinate because 

the system always starts in a correct state (all the nodes start at the origin, and so 

does the centroid). 

Detection for malicious physically close nodes from neighbor set: For 

nodes that are physically close, we observe that because all nodes are connected via 

springs they will experience very similar forces from the same nodes. We can use 

the first law, which dictates that a node in a mass-spring system must move if acted 

upon by an external, unbalanced force. Moreover, the second law implies that we can 

detect if a node should be moving or not and we can calculate how much it should 

move. Our second invariant can now be summarized: 

IN2: Nodes i and k are physically close and if node i experiences a force f�ij from 

node j, then node i would expect node k to experience a force from j similar to the 

vector projection of f�ij onto the vector u(xj − xk). 

We use Figs. 4.1(c) and 4.1(d) to illustrate IN2. Fig. 4.1(c) shows the nodes before 

the attack. The black dot at coordinate (-2,3) is node i, the victim, the blue dot at 

coordinate (-6,6) is node j, and the red triangle at coordinate (-3,2) is the attacker 

node k. Both i and k experience forces upon them from j. Node i can calculate what 

it expects the force upon k to be and thus determine that it expects k to update its 

coordinate to (2,-5). 

Fig 4.1(d) shows the nodes when the attack happens. Node i does move according 

to the force applied to it to coordinate (7,-3). However, when k attacks by introducing 

an extraneous indirect force, it moves in a different direction than expected. To detect 

the attack, node i can calculate the force value for node k as described in IN2 for every 

force that is applied to itself and sum up that value (�vk). Node i will remember the 

previous coordinate that was reported by k and when it receives a new update from 

k it calculates the change (Δxk). This difference and the sum of vector projections �vk 
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should be equivalent, if they are not, then k did not move according to the external 

unbalanced force. 

4.4.4 Detecting Extraneous Direct Forces 

We now focus on how to detect if a force directly acting on a node is extraneous 

and is caused by a malicious process. To accomplish this, we leverage the second 

law of motion and Hooke’s law. The second law states how much a node should 

accelerate given the force and mass of a node. In our mass-spring system, the mass 

of every node is 1, and thus can be ignored. In a mass-spring system, the amount of 

force applied to a node is controlled by Hooke’s law, F = −kx which states that the 

amount of force on a node is proportional to the spring’s current displacement from 

its rest position. We now state our third and final invariant: 

IN3: As the springs in the physical system stabilize and come closer to their rest 

position, nodes should decelerate and thus the forces that are applied to them should 

decrease over time. 

IN3 applies also to joining and leaving nodes. While joining nodes may lie about 

their initial force, IN3 obliges a decreasing force over time. Leaving nodes stop 

moving and the force becomes zero. 

One possible detection scheme is to impose a certain rate of decrease on the 

forces applied to a node, and if the force is larger than expected, offending nodes are 

considered malicious. However, we have experimentally found that this approach is 

too strict for real deployments, due to practical aspects of the Internet. First, triangle 

inequality violations result in nodes stabilizing even though springs are still exerting 

force on nodes. Thus we can expect forces to never decrease all the way to zero, but 

rather opposing forces will simply be balanced. Second, IN3 assumes that latencies 

do not change as real springs can not change their rest position. However, on the real 

Internet this will not hold as routes change and mobile nodes move. 
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We instead take a different approach. A node calculates the median f̃ and median 

absolute deviation D of the magnitude of the force that each node is applying to it. 

Then if the magnitude of any force mj is a few deviations larger than the median 

mj > f̃ + k ∗ D, the node will ignore it. We use the median and median absolute 

deviation instead of the average and standard deviation, as the former are more robust 

to outliers and have been shown to be resilient against frog-boiling attacks [73]. 

4.4.5 Using IN1, IN2, and IN3 to Design Newton 

We use IN1, IN2, and IN3 combined with Vivaldi to create Newton. We inves­

tigate if these invariants hold on real deployments of Vivaldi on PlanetLab. While 

Vivaldi models a mass-spring system, the actual protocol, and more importantly, any 

network on which it runs, will not perfectly emulate a physical mass-spring system. 

Thus, we expect some discrepancy between the ideal physical system and the real 

deployed system. We investigate these discrepancies and use the results to calibrate 

Newton. 

We use results of Vivaldi on PlanetLab deployments of 500 nodes to investigate the 

invariants. We implement all 5 attacks (inflation, deflation, oscillation, frog-boiling, 

and network-partition) and plot results relevant to each invariant. As inflation and 

deflation share similar characteristics, with inflation being a more damaging attack, 

and network-partition is a stronger variant of the frog-boiling attack, Fig. 4.2 shows 

results for inflation, oscillation, and network-partition. Each attack starts at 600 

seconds into the experiment and are conducted where 10% of nodes are attackers. 

IN1. In Fig. 4.2(a), we plot the distance from the origin to the centroid of the 

coordinates of randomly chosen neighbor nodes, averaged for all nodes in the system. 

We expect this distance to be zero or very small. When there is no attack, we find 

the centroid to be less than 20 ms away from the origin. However, during an inflation 

attack, the value increases drastically as nodes start to lie about their coordinate. We 

select a threshold of 20 ms to detect an attack. 
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Figure 4.2. Invariants shown through deployments of Vivaldi on PlanetLab. 
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Table 4.1
 
Sensitivity on threshold for IN2
 

Threshold (ms) FPR TPR 

10 0.57 0.98 

15 0.37 0.97 

20 0.27 0.95 

25 0.19 0.91 

30 0.14 0.90 

35 0.11 0.84 

40 0.09 0.83 

45 0.08 0.75 

50 0.06 0.61 

IN2. In Fig. 4.2(b) we plot the difference in distance from where physically close 

nodes were expected to have their coordinates located at, versus where they actually 

reported themselves to be. We expect this value to be zero or very small. When there 

is no attack on Vivaldi, we find these values to be small, with most less than 50 ms. 

When under a network-partition attack, these values increase dramatically, especially 

the further a node has moved from its correct coordinate. To find a good value for 

the threshold we conducted a sensitivity study by varying it between 10 and 50 and 

then finding the true positive rate (TPR) and the false positive rate (FPR) when 

classifying updates. We show the results in Table 4.1 and found a good threshold for 

detecting the attack to be 35 ms, which trades-off discarding some benign updates 

for better detection of malicious nodes. 

IN3. Fig. 4.2(c) depicts the median of the magnitude of the force applied to a 

single node over time. We see that while there is not a strictly decreasing line as one 

would expect in an ideal system, the general trend is present. Also, in an oscillation 

attack we see that this value quickly grows and is inconsistent with benign behavior. 
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To detect attackers, we have found that it is best to calculate the median separately 

for randomly chosen nodes and physically close nodes. This is due to physically close 

nodes having smaller force values, but deviate more from the median, while randomly 

chosen nodes have the opposite characteristics. Thus we choose a threshold of 8 

absolute deviations for physically close nodes and 5 for randomly chosen nodes. 

Implementation. To implement Newton, we started with the base code of Vi­

valdi and then added the invariants. In Newton, every node checks the invariants 

after receiving an update from another node. If at least one invariant is violated the 

update is discarded. 

Thresholds. Because Newton uses thresholds that rely on a fixed point as a 

reference, such as the origin, they are more difficult to exploit by an attacker. Nev­

ertheless, an attacker can still try to exploit these thresholds by staying under their 

values.We discuss scenarios where an attacker can exploit these thresholds in Sec. 4.5.4 

and show that Newton is robust even under such scenarios. 

Overhead. As Vivaldi is an efficient and low cost service for latency estimation, 

we also aimed to preserve that goal in designing Newton. As such, we do not add any 

extra network communication, as the use of our invariants do not require it, and the 

added computation and memory usage are very small. 

Non-Euclidiean spaces. Since Newton is based on physical laws found in our 

Euclidean-based world, we investigate if Newton works in non-Euclidean spaces. We 

show results for Newton in hyperbolic spaces in Sec. 4.5.3. Furthermore, as the 

most general form of non-Euclidean spaces are Riemannian manifolds, and as the 

Nash embedding theorem says that any m dimensional Riemannian manifold can be 

embedded isometrically in some Euclidean space, we see that the defined invariants 

would still hold in non-Euclidean spaces. However, the construction of this isometrical 

embedding is not straightforward and if pseudo-Riemannian manifolds are used for 

virtual coordinates then no such embedding might exist. 
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4.5 Simulation Results
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Figure 4.3. Simulation results – inflation attack 

We show through simulations, using the p2psim simulator [74], how effective New­

ton is in defending against attacks. We compare Newton against the unsecured Vivaldi 

and also Vivaldi outfitted with Outlier Detection [67], referred to as Outlier Detec­

tion. We also include Vivaldi when no attackers are present, referred to as No Attack, 

as a baseline comparison. 

We use the King data set [75] which contains Internet pairwise measurements 

between 1740 nodes (average RTT is 180 ms and maximum RTT is 800 ms). Simula­
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Figure 4.4. Simulation results – deflation attack 

tions last for 200 time units, where each time unit is 500 seconds. Each node joins at 

the beginning of the simulation in a flash-crowd scenario and remains for the entire 

duration. We use a typical setting for Vivaldi [56], where every node has a neighbor 

set of 64 nodes, with half randomly chosen and the other half being nodes with low 

RTT (also referred to as physically close nodes). The attackers are chosen randomly 

from all nodes. Unless otherwise stated, malicious nodes start their attack at one-

third of the way through the simulation. This is to give a fair comparison for Outlier 

Detection, as it needs to learn what good behavior is. Outlier Detection uses spatial 

and temporal thresholds of 1.25 and 4, respectively, as described in [67]. Newton 



71

P
re

d
ic

ti
o
n
 E

rr
o
r 

(m
s)

 140

 120

 100

 80

 60

 40

 20

 0

Simulation Time 

(a) Accuracy – 10% attackers

No Attack 
Vivaldi 
Newton 

Outlier Detection 

0  20  40  60  80  100 120 140 160 180 200 

0

 20

 40

 60

 80

 100

 120

 140

P
re

d
ic

ti
o
n
 E

rr
o
r 

(m
s)

 

No Attack 
Vivaldi 
Newton 

Outlier Detection 

0  20  40  60  80  100 120 140 160 180 200 

Simulation Time 

(b) Accuracy – 30% attackers 

Figure 4.5. Simulation results – oscillation attack 

uses the thresholds described in Sec. 4.4.5 which any Internet-wide deployment could 

use. For the coordinate space, we use a Euclidean distance and gradient function in 

2 dimensions, unless otherwise stated. 

4.5.1 Attacks Mitigation 

We vary the percentage of nodes that are attackers between 10%, 20%, and 30%. 

Due to similarity of results we show only the 10% and 30% cases. 



72

P
re

d
ic

ti
o
n
 E

rr
o
r 

(m
s)

 140

 120

 100

 80

 60

 40

 20

 0

Simulation Time 

(a) Accuracy – 10% attackers

No Attack 
Vivaldi 
Newton 

Outlier Detection 

0  20  40  60  80  100 120 140 160 180 200 

0

 20

 40

 60

 80

 100

 120

 140

P
re

d
ic

ti
o
n
 E

rr
o
r 

(m
s)

 

No Attack 
Vivaldi 
Newton 

Outlier Detection 

0  20  40  60  80  100 120 140 160 180 200 

Simulation Time 

(b) Accuracy – 30% attackers 

Figure 4.6. Simulation results – frog-boiling attack 

Inflation. Figs. 4.3(a) and 4.3(b) show the accuracy under an inflation attack. We 

can see that when under attack Vivaldi has very poor accuracy, which gets increasingly 

worse with the percentage of attackers. Both Outlier Detection and Newton are able 

to effectively keep the error low after the attack starts. However, as the percentage 

of malicious attackers increase, Outlier Detection’s prediction error also increases as 

time progresses, while Newton is able to match the baseline prediction error. We 

attribute Newton’s performance to its ability to detect that the attacker nodes are 

introducing unbalanced forces and thus shifting the centroid far away from the origin. 
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Deflation. Results for the impact of the deflation attack on accuracy are in 

Figs. 4.4(a) and 4.4(b). The deflation attack does not have as great of an impact on 

Vivaldi as inflation, but the opposite is true of Outlier Detection. However, we see 

again that Newton is able to successfully mitigate the attack. 

Oscillation. The oscillation attack is different from the previous two attacks 

in that while attackers lie about their coordinates in a random way, they also delay 

measurement probes up to 1 second. We show the results of how the different systems 

handle the attack and the impact on accuracy in Figs. 4.5(a) and 4.5(b). Outlier 

Detection is able to withstand the attacks until there are 30% attackers, when the 

prediction error increases to 26 ms. However, Newton continues to provide good 

performance for all percentage of attackers. We attribute this to IN3, requiring 

forces to decrease over time. 

Frog-boiling. The frog-boiling attack, has been shown in [69–71] to be an effec­

tive attack against VCS defenses that must learn over time what good behavior is. 

We now show the impact of the attack on accuracy in Figs. 4.6(a) and 4.6(b). Similar 

to previous works, we see that Outlier Detection indeed does not protect against such 

an attack. Newton, though, is able to successfully protect against the frog-boiling 

attack. 

We give insights about how Newton works in Fig. 4.7(a) showing how the centroid 

moves over time on the coordinate plane when under attack (10% attackers). Vivaldi’s 

centroid moves far away from the origin. Outlier Detection’s centroid does not move 

as far, but still it moves close to (100,100). To be able to see how Newton’s centroid 

moves, we show a zoomed in picture in Fig. 4.7(b). Newton’s centroid also initially 

moves away from the origin, until it almost reaches coordinate (13,15). At this point 

individual nodes calculate that the centroid is near 20 ms away from the origin, thus 

triggering the detection mechanism. The honest nodes can then determine who the 

attackers are and ignore their updates. 

Network-partition. The network-partition attack is similar to the frog-boiling 

attack, except multiple groups of attackers move in opposite directions, trying to split 
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the network. We consider four groups of nodes moving in four different directions. 

Figs. 4.8(a) and 4.8(b) show the accuracy for the different systems under attack. This 

attack is successful against Outlier Detection, while Newton still performs well under 

attack. This is even though groups of attackers moving in different directions give the 

illusion that they are actually acting according to balanced forces by not moving the 

centroid, thus making it difficult to detect this attack using IN1. However, in this 

case, attackers that are physically close can still be detected by IN2 and all types of 

attackers can be detected by IN3. 
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Figure 4.8. Simulation results – network-partition attack 

4.5.2 Extreme Attack Scenarios 

High percentage of attackers. We also show extreme scenarios where Newton 

must face an increasing percentage of attackers. We show the advanced attacks in 

Fig. 4.9, results were similar for the basic attacks, but we did not include them due to 

space constraints. Overall, we see that Newton is able to handle 50% attackers with­

out losing significant accuracy. However, under 60% and 70% of attackers accuracy 

starts to degrade, particularly for the network-partition attacks. We point out that 

each node updates its coordinate based on a set of 64 nodes, thus the high-percentage 
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Figure 4.9. Simulation results – high percentage of attackers 

of malicious nodes results into a lower percentage in the neighbor set. For exam­

ple, using the analysis from [67], when there are 70% malicious nodes in the entire 

network, about 54% of nodes will be malicious in the neighbor set and thus able to 

manipulate the median that is used to detect extraneous direct forces. 

Attacks before system converges to steady state. In previous simulations, 

we showed performance when there was a period before attacks started to allow 

Outlier Detection to learn good behavior. Newton does not need such period since it 

is based on invariants. We show results only for oscillation and frog-boiling attacks 

as results for the other attacks were similar. Fig. 4.10 shows results when attacks 
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(b) Frog-boiling 

Figure 4.10. Simulation results – attacks start at the beginning 

start from the beginning of the simulation. As can be seen, Newton mitigates the 

attacks. Under the oscillation attack, as the percentage of attackers increase, it takes 

slightly longer for coordinates to stabilize and become accurate. This is because we 

do not enforce a strict rate of decrease on the amount of force between two nodes and 

instead use the median force to detect nodes. Nodes must first sample a number of 

forces before they can calculate the correct median. Thus, in Newton an honest node 

cannot immediately detect if a node is artificially increasing the force between itself 

and another node. 
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Figure 4.11. Simulation results – accuracy when using 4 dimensions 
in hyperbolic space with 30% attackers 

4.5.3 Newton in Higher-dimensional and Hyperbolic Space 

So far we have shown that Newton works well in simple 2-dimensional Euclidian 

coordinate spaces. However, more complex spaces have been shown in the past to im­

prove prediction error. For example, Ledlie et al. [76] have shown through a Principal 

Component Analysis that 4 dimensions are appropriate for Internet-scale network co­

ordinates. Hyperbolic spaces also have been proposed as an alternative to Euclidean 

spaces as they better represent the structure of the Internet [77]. Several works have 

applied Vivaldi to such spaces and have shown that it does produce an accurate em-

bedding [78,79]. Modifying Vivaldi and Newton to work in hyperbolic spaces simply 
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involves changing the distance and gradient function. We implement these functions 

as described in [79]. Hyperbolic spaces also have a curvature parameter that describes 

how much a line deviates from being flat. We experimentally found that a value of 

60 provides good accuracy in benign environments. We ran simulations in hyperbolic 

space in 4 dimensions. We find that for 10% and 20% attackers, Newton performs 

better than the baseline. Newton continues to work well even under 30% attackers, 

which we show in Fig. 4.11. 

4.5.4 Invariants under Attack 

Because in real-deployments Newton does not behave exactly like a physical sys­

tem, it uses thresholds for the three invariants. We note that Newton’s thresholds use 

as a reference a fixed point such as the origin, while Outlier Detection’s thresholds 

use as a reference a moving point (the centroid of metrics derived from all nodes in 

the neighbor set), allowing attacks such as frog-boiling to move it. Thus, Newton’s 

thresholds are more difficult to exploit by an attacker. However, an adaptive attacker 

can still exploit the values of the thresholds used by Newton to his advantage. 

We conduct three tests, one for each invariant, where the attacker tries to remain 

undetected, yet come as close to the threshold as possible. For IN1, the attackers 

push the centroid to right below the 20 ms threshold. For IN2, attackers initially 

move as the forces dictate, but then always shift just below 35 ms away from this 

position. Finally, for IN3, attackers delay probes only enough to stay beneath the 

deviation threshold. The results of these tests are shown in Fig. 4.12, where we zoom 

in on the results of the steady state performance to see the effects. We compare the 

normal baseline of Vivaldi when no attack occurs, Newton when no attack occurs, 

labeled Newton 0%, and also Newton when there are 30% attackers, labeled Newton 

30%. We find that even 30% attackers can not significantly increase the prediction 

error. 
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Attackers can also conduct a new attack, which we call the rotation attack, where 

the goal is not necessarily to disrupt accuracy, but rather stability. In this attack, 

colluding nodes rotate around the origin in the same direction at a slow rate. This 

attack will not trigger IN1, and if done slowly enough, will bypass the thresholds of 

IN2 and IN3. We implement this attack and show the results in Fig. 4.13 (notice the 

zoomed-in y axis scale). We find the accuracy in Fig. 4.13(a) to only be slightly raised 

over our baseline. Stability, as shown in Fig. 4.13(b), is also raised over Newton’s 

normal levels, but is not yet worse than the baseline. 

4.6 Experimental Results 

We evaluate Newton in real-life experiments on the PlanetLab testbed. We use 

500 nodes and run each experiment for 30 minutes, unless otherwise stated. Every 

second a node chooses one of its neighbors to probe and gets their coordinate update. 

We use Newton configured for a Euclidean coordinate space. Due to PlanetLab being 

an Internet-scale testbed, we use 4 dimensions as suggested by Ledlie et al. [76]. 

Malicious nodes start performing attacks immediately once the experiment starts. 

All other parameters are the same as in the simulations. We compare Newton with 

Vivaldi under attacks and consider as baseline Vivaldi with no attacks. 

4.6.1 Performance in Benign Networks 

We first show the results when there are no attackers in Fig. 4.14. Accuracy is 

shown in Fig. 4.14(a) where the prediction error is lower in both Vivaldi and Newton 

for PlanetLab than the simulations. This is most likely due to the smaller number 

of nodes involved as the error needs to be minimized for a fewer number of nodes. 

Furthermore, Newton only has a resulting prediction error of 9 ms, while Vivaldi has 

one of 12 ms. The difference in stability has also increased over the simulations, as 

shown in Fig. 4.14(b). Vivaldi has a resulting velocity of 0.8 ms/s, while Newton is 

only 0.25 ms/s. This increase in accuracy and stability is due to Newton being less 
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sensitive to probes that get delayed occasionally as the result of benign occurrences 

such as queueing delays on routers. 

Adapting to changes in the network. In real deployments, such as on Plan­

etLab, route changes will take place, potentially having an effect on IN3. To show 

that Newton can withstand such changes, we run Newton for four days on 350 nodes 

on PlanetLab. For this particular experiment we reduce the frequency of how often 

a node sends a probe to a neighbor to 5 seconds, all other parameters remained the 

same as before. We performed traceroutes between all-pairs of nodes before and after 

the experiment to estimate the number of routes changed. We conservatively only 

count routes as changed if they contain different routers and also have a difference in 

RTTs greater than 10 ms. We find that 12% of all routes changed. 

Fig. 4.15 shows the results. Initially, Newton is able to stabilize within an hour 

to 6 ms of error. We attribute this smaller error, compared to the 9 ms seen earlier, 

to the smaller number of nodes that must embed coordinates. However, over time, 

Newton reduces the error even further to 3 ms. We also investigate in more details 

what happens when routes change. We find that in many cases the resulting change 

is not so large that IN3 is violated. However, there are cases in which IN3 is violated 

for a short period of time, for one of the two nodes. This is due to when a single path 

between routers change, it often affects many end-to-end routes for one node, thus 

causing RTTs to multiple neighbors to change simultaneously. Thus, one node will 

realize that many neighbors are putting extra force on it, and change its coordinate 

accordingly. 

4.6.2 Attack Mitigation 

Inflation and deflation. Figs. 4.16 and 4.17 show accuracy under inflation and 

deflation attacks respectively, for 10% and 30% attackers in the system. We find 

that the inflation attack is not as effective against Vivaldi in these experiments as it 

is in the simulations, even though in the experiments we increased the amount that 
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attackers lie about so that they have larger coordinates. The deflation attack is also 

not as effective as in simulations. In both cases, Newton is able to handle such attacks 

while having better accuracy than in the benign setting. 

Oscillation. For the rest of the attacks, we show just 30% attackers. We con­

ducted experiments with lower percentages of attackers, but we did not include them 

because of similarity of results. Fig. 4.18 shows accuracy and stability under the 

oscillation attack. This attack proves to be more damaging in the experiments than 

the simulations for Vivaldi. Newton though, because it is taking advantage of IN3, 

is able to mitigate such attacks easily. 

Frog-boiling and network-partition. Results for frog-boiling are shown in 

Fig. 4.19, which while we find it to be the most effective attack on Vivaldi, for reasons 

previously explained, it has no effect on Newton. Unsurprisingly, we find that the 

network-partition attack, which is similar to the frog-boiling attack but nodes move 

in different (four in our case) directions, has similar results to it. We plot the effects 

of this attack in Fig. 4.20. 

4.7 Summary 

We introduced Newton, a new approach to providing a secure VCS by going back 

to the abstraction that Vivaldi is based on, a physical mass-spring system. In accor­

dance with the abstraction, our defenses are based on the three laws of motion as 

put forward by Newton.We have explained in depth how the laws provide invariants 

for our system and how they are leveraged to mitigate basic attacks such as infla­

tion, deflation, and oscillation but also more advanced attacks like frog-boiling, and 

network-partition attacks. Through simulations and experiments on the PlanetLab 

testbed we showed that Newton outperforms Vivaldi even in benign settings and is 

able to mitigate the advanced attacks that remained undetected by Outlier Detection. 

Newton can also cope with advanced attackers that might leverage insider knowledge 

about calibration specific parameters used by Newton. Newton is immune to such 

http:Newton.We
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attacks, since the calibration of the defense mechanism is relying on robust and fixed, 

time independent thresholds. 



84

P
re

d
ic

ti
o
n
 E

rr
o
r 

(m
s)

 
P

re
d
ic

ti
o
n
 E

rr
o
r 

(m
s)

 30

 25

 20

 15

 10

 5


 0


Simulation Time
 

(a) Attackers push the IN1 threshold

 30

 25

 20

 15

 10

 5


 0


Simulation Time
 

(b) Attackers push the IN2 threshold

No Attack 
Newton 0% 

Newton 30% 

40  60  80  100  120  140  160  180  200 

No Attack 
Newton 0% 

Newton 30% 

40  60  80  100  120  140  160  180  200 

0

 5

 10

 15

 20

 25

 30

P
re

d
ic

ti
o
n
 E

rr
o
r 

(m
s)

 

No Attack 
Newton 0% 

Newton 30% 

40  60  80  100  120  140  160  180  200 

Simulation Time 

(c) Attackers push the IN3 threshold 
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Figure 4.16. PlanetLab results – inflation attack 
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Figure 4.17. PlanetLab results – deflation attack 
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Figure 4.18. PlanetLab results – oscillation attack 
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Figure 4.19. PlanetLab results – frog-boiling attack 
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Figure 4.20. PlanetLab results – network-partition attack 
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5 A DESIGN FOR SECURING DATA DELIVERY IN MESH-BASED 

PEER-TO-PEER STREAMING 

As noted in Chapter 4, Virtual Coordinate Systems provide a localization service for 

overlays, however insider attacks can reduce the effectiveness of such services greatly. 

Similarly, insider attackers can target the overlays that run on top of localization 

services. In this chapter we discuss how to secure high-bandwidth P2P streaming 

systems against malicious insiders. 

5.1 Introduction 

The vision of enabling simultaneous video broadcast as a common Internet utility 

in a manner that any publisher can broadcast content to any set of receivers has been 

driving the research agenda in the networking community for over two decades. For 

much of the 1990’s, the research and industrial community investigated support for 

such applications using the IP Multicast architecture [80]. However, serious concerns 

regarding its scaling, support for higher level functionality, and deployment have 

dogged IP Multicast. The sparse deployment of IP Multicast, and the high cost of 

bandwidth required for server-based solutions or Content Delivery Networks (CDNs) 

are two main factors that have limited broadcast to only a subset of Internet content 

publishers. While many network service providers have enabled IPTV services that 

deliver quality video to their own subscribers using packet switching, there remains 

a need for cost-effective, ubiquitous support for Internet-wide video broadcast. 

Over the last decade, there has been significant interest in the use of peer-to-peer 

(P2P) technologies for Internet video broadcast [7, 10, 51,81–83]. There are two key 

drivers making the approach attractive. First, such technology does not require sup­

port from Internet routers and network infrastructure, and consequently is extremely 
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cost-effective and easy to deploy. Second, in such a technology, a participant that 

tunes into a broadcast is not only downloading a video stream, but also uploading it 

to other participants watching the program. Consequently, such an approach has the 

potential to scale with group size, as greater demand also generates more resources. 

The extensive research in the design of P2P streaming systems [15, 51, 81, 84– 

87] has matured to the extent that we are today seeing several efforts aimed at 

commercializing the technology [7,10–12,88–94]. High user demand for these systems 

has been shown by their increasingly large user base [82, 83]. 

P2P streaming can be divided into two main approaches, tree-based [15,85,95,96] 

and mesh-based [84,86,97,98] architectures (see [99] for a survey). Tree-based overlays 

construct a tree, rooted at the source, which broadcasts the stream. Mesh-based 

overlays disseminate data in a less structured manner, where nodes exchange data 

with a subset of the nodes in the network without using any predefined route. Mesh-

based approaches have received a lot of attention in recent times because they are 

more resilient to churn [100] and node failures, and have been shown to perform better 

than tree-based approaches [14, 100]. 

While mesh-based approaches have several attractive properties, the performance 

of these systems in the presence of malicious participants has received little atten­

tion. Dhungel et al. [101] show the vulnerability of such systems to attacks where 

malicious nodes upload polluted data to other nodes in the overlay. Similarly Hari­

dasan et al. [102] focus on polluted data but also denial of service attacks on nodes 

by flooding them with requests. Several works have focused on the problem of peers 

which download data from other nodes but do not in turn upload data [103–106], 

however these works focus on selfish rather than malicious node behavior. 

In this chapter, we systematically analyze the vulnerabilities of the components of 

mesh-based streaming overlays. We focus on an important and broad class of attacks 

where malicious nodes deliberately become neighbors of a very large number of nodes 

in the system and do not upload data to them. We also focus on attacks that are 

particular to streaming systems such as when malicious nodes artificially delay the 
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uploading of data, so while nodes still receive the data, because of real-time deadlines 

they are less likely to have opportunities to forward that data to others. We focus 

on these attacks given they have received limited attention, they can have significant 

disruption on data delivery, and they are applicable to many mesh-based systems. For 

instance, our evaluation with a state-of-the-art mesh-based streaming system shows 

that when the attacks are conducted with just 10% of nodes in the system being 

malicious, the average data rate received across all nodes is only 45% of the source 

rate when nodes upload no data and 47% when nodes delay some data. 

We wish to emphasize that our focus in this chapter is on mesh-based approaches 

for live video streaming, rather than file-download systems like BitTorrent [1]. While 

some of the attacks we consider may also be relevant to file-download systems, the 

impact on application performance is far more serious for streaming applications 

given that they are associated with stringent real-time deadlines. Consequently, the 

solutions must also be tailored to the unique demands of streaming applications. 

Our contributions are: 

• We provide a taxonomy of the implicit commitments made by nodes when 

peering with others. We show that when these commitments are not enforced 

explicitly, they can be exploited by malicious nodes to conduct attacks that 

degrade the data delivery service. To our knowledge, this is the first effort at 

taxonomizing attacks on mesh-based streaming protocols. 

• We present a novel reputation scheme that combines feedback from the data 

plane (based on data received from the nodes) and the control plane (based 

on who a node has as neighbors) to increase the robustness of the mesh-based 

streaming overlay to the identified attacks. Through detailed security analy­

sis, we show that our scheme is resistant to attacks commonly associated with 

reputation schemes such as self-promotion and slandering [107]. In particular, 

we show that our scheme ensures that a malicious node must contribute a min­

imum amount of data in a timely fashion to acquire a certain reputation. In 
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addition, we show that a benign node that contributes data is assured a certain 

minimum reputation and cannot be slandered. 

• We further augment the system, with a more comprehensive approach that also 

addresses potential vulnerabilities in the bootstrap mechanism, and with the 

source of the broadcast. We present a set of simple mechanisms to achieve 

this goal. Specifically, we present a scheme that prevents malicious nodes from 

influencing the membership bootstrap service and a source protection scheme 

that disallows malicious nodes to be overly connected to it. 

• We evaluate our design using experiments on the PlanetLab testbed. Our results 

show that our schemes are extremely effective in ensuring good performance 

under attacks. With the local-reputation scheme, with 10% of the nodes being 

malicious, the average data-rate received across nodes from the source increases 

from 45% to 65%. Augmenting the solution with source and bootstrap protec­

tion mechanisms results in nodes receiving 95% of the source-rate on average. 

Our schemes also work well when attackers use advanced techniques such as 

data delaying. In fact, even with 30% of the nodes being malicious, more than 

85% of the peers receive over 90% of the data. Overall, our results show the 

feasibility of augmenting mesh-based P2P streaming schemes to be resistant to 

attacks that target data delivery. 

The rest of the chapter is organized as follows. In Section 5.2 we describe the 

mesh model we consider for this work. We describe attacks against data delivery in 

meshes in Section 5.3 and present our design to mitigate such attacks in Section 5.4. 

In Section 5.5 we provide an analysis for the security of our design. We explain 

the methodology and results of our experiments in Section 5.6 and 5.7, respectively. 

Finally, we summarize our findings in Section 5.8. 



96 

5.2 Mesh-Based Peer-to-Peer Streaming 

We consider a unidirectional mesh-based P2P overlay consisting of a bootstrap 

node, a source node and peer nodes. As seen in Figure 2.2, the mesh allows peers 

to download a stream generated by the source, while the bootstrap maintains a list 

of alive peers used to assist peers to join the network. We consider a unidirectional 

mesh since it is more general than a bidirectional mesh. Also, unidirectional meshes 

have been shown to perform better than bidirectional meshes [13]. 

Every peer node maintains two sets of nodes, in-neighbors and out-neighbors. The 

in-neighbors represent the nodes that the peer node is receiving data from. The size 

of the in-neighbors is a system parameter. The out-neighbors represent the nodes 

that the peer node is sending data to. Each node decides independently the number 

of out-neighbors to support which will be proportional to its bandwidth. The source 

has no in-neighbors, only an out-neighbors set, whose size is usually larger than the 

size of an out-neighbor set of a peer node. 

At join time, a peer node j first contacts the bootstrap node to receive a set of 

candidate nodes to serve as its neighbors in the overlay. Node j then contacts each 

candidate node and requests to become one of its out-neighbors. If a candidate node 

c accepts the request, then in turn, j will add c to its in-neighbor set. Each node 

pro-actively looks for several out-neighbors to connect to as well. 

After it joins the overlay, a node discovers other peers by occasionally contacting 

its neighbors to learn about their own neighbors. This gossip protocol allows a node 

to update its in-neighbor set when neighbors leave or crash. A node also registers 

with the bootstrap node occasionally to allow the bootstrap node to have an up-to­

date list of alive nodes. We will refer to these protocols as the control plane of the 

overlay. 

The source node splits the stream into data chunks of a fixed size, each uniquely 

identified by a sequence number. To receive a chunk a node will send a request to 

an in-neighbor with that chunk’s sequence number. If the requested node does not 
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respond before a deadline then the requesting peer will consider that request lost. 

Each peer node maintains a buffer that it is trying to fill with data chunks. The 

buffer corresponds to a playback deadline, such that if a block of the stream is not 

received before that deadline, the data is considered lost and thus the quality of the 

playback stream is diminished. We will refer to this protocol as the data plane of the 

overlay. 

This model is general enough to capture the characteristics of several previously 

proposed and deployed mesh-based systems [7, 12, 86, 97, 98]. 

5.3 Attacks Against Data Delivery 

We state the assumptions we make about the attacker and provide a taxonomy of 

attacks against mesh-based P2P streaming systems. 

5.3.1 Attack Model 

We assume that a fraction f of peers are compromised and can behave arbitrar­

ily. The percentage f is the largest fraction of nodes that the system is willing to 

tolerate as malicious. Their main goal is preventing the overlay from delivering data 

to each peer in a timely fashion. An attacker can disrupt the data delivery directly 

by attacking the data plane, or indirectly by attacking first the control plane to gain 

control over the data delivery path and then disrupting the data delivery. 

We assume a defense against Sybil attacks [108] is in place, such as binding IP ad­

dresses to certificates or one that leverages social networks [109]. We also assume that 

data integrity is ensured and data is protected from pollution [82, 101]. We assume 

that the source and the bootstrap node are trusted and always behave correctly. 
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5.3.2 Attacks on the Data Plane 

When two nodes A and B accept each other as out-neighbor, and in-neighbor, 

respectively, they assume several implicit commitments from each other: 

• Data delivery commitment: A commits to B that it is going to deliver a certain 

amount of data to B. 

• Data download commitment: B commits to A that it is going to download a 

certain amount of data from A. 

• Data upload commitment: B is going to upload to the overlay what it down­

loaded from A. 

• Source upload commitment: If B is connected to the source, then it will 

upload the data downloaded from the source to others in the overlay. This is similar 

to the data upload commitment, however we list it separately given that the source 

is a special entity where all the data originates. 

• Data delay commitment: A will upload the data requested by B as soon as 

possible and not arbitrarily delay it. 

• Data integrity commitment: A commits to B that it is not going to upload to 

B meaningless data. 

However, in many mesh systems, not all of these commitments are explicitly en­

forced by the system. As a result, malicious nodes can exploit them to attack the 

data plane. We identify the following attacks (summarized in Table 5.1). 

• Data dropping attacks: If the data delivery commitment is not met, a malicious 

node can accept benign nodes as its out-neighbors, but not deliver data to them. 

The attacks are effective because each data chunk has a strict deadline. A node only 

has time to make a few downloading attempts for a chunk, and will miss it once the 

deadline is passed. 

• Data delaying attacks: If the data delay commitment is not met, a malicious 

node can send data to its out-neighbors yet delay the sending of it. Delaying data 

makes the attacker seem less malicious since it is actually delivering data before the 
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Table 5.1
 
Attacks against data and control planes
 

Data plane 

Data dropping 

Data delaying 

Neighbor exhaustion 

Source 

Free-riding 

Pollution 

Control plane Bootstrap list pollution 

Neighbor selection 

playback deadline. However, the data is less useful to the recipient since there will 

be fewer opportunities to upload the data to others. 

• Neighbor exhaustion attacks: If the data download commitment is not met, a 

malicious node can become out-neighbors of benign nodes, but not download data 

from them. As many meshes limit the number of out-neighbors to ensure that nodes 

can honor the bandwidth requirements, by being included in the out-neighbors a 

malicious node exhausts the slots in that set thus denying access to other benign 

nodes. 

• Source attack: If the source upload commitment is not met, malicious nodes 

do not forward data given to it by the source. Thus, if a particular chunk is only 

received by malicious nodes it will not be available to any benign node. To amplify 

this attack, malicious nodes can also become out-neighbors of benign nodes connected 

to the source and similarly not forward data given to them. 

• Free-riding attacks: If the data upload commitment is not met, malicious nodes 

could also download data but not upload them to other peers, and basically obtain 

free service without contributing to the system. 
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• Data pollution attacks: If the data integrity commitment is not met, malicious 

nodes can upload meaningless data, thus polluting the information in the overlay. 

5.3.3 Attacks on the Control Plane 

The above data plane attacks are more effective when they impact many nodes 

in the overlay. A malicious node can increase the impact of its attack by first at­

tacking the control plane. The control plane provides nodes with two mechanisms to 

discover peers. The first consists of the list of alive peers provided by the bootstrap 

node when a node joins the overlay. The second consists of exchanging membership 

information between the node and known peers. The bootstrap list is up-to-date if 

peers periodically register with the bootstrap node to inform it that they are alive. 

Assuming the bootstrap node is trusted, the control plane achieves its goals if the 

following commitments are met: 

• Registration with the bootstrap node commitment: A peer commits that it 

will register occasionally with the bootstrap node, at a rate specified by the protocol. 

• Referral list commitment: A node commits to provide a neighbors list that does 

not purposely contain malicious nodes and is not biased towards some nodes. 

We identify the following attacks that have an impact on neighbor selection: 

• Bootstrap list pollution attacks: If the registration with the bootstrap node 

commitment is not met, malicious nodes can register fast and often with the bootstrap 

node filling the bootstrap node’s list of alive peers. Thus, although the bootstrap 

node is trusted, the list that it will provide to the joining peers will be polluted with 

malicious nodes. Note that malicious nodes can also register infrequently or not at 

all, but in this case they will not impact the list of the bootstrap node. 

• Neighbor selection attacks: If the referral list commitment is not met an attacker 

can collude with other malicious nodes and when contacted about its own neighbors, 

refers only other malicious nodes. This attack is epidemic in nature since soon benign 

nodes will also be referring the malicious nodes they know to other benign nodes. 
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5.3.4 Our Focus 

We focus on the attacks that we believe can be the most effective strategy for an 

attacker to disrupt the data delivery, and allow him to inflict maximum damage on 

the system with minimal resources. The most effective strategy for a malicious node 

is to (i) become neighbors of as many nodes as possible, (ii) deliver as little data as 

possible and (iii) data that is delivered should be as useless as possible. Hence we 

focus on control plane attacks (i.e. bootstrap list pollution and neighbor selection) 

that seek to increase the connectivity of malicious nodes and also on several data 

plane attacks (i.e. dropping, delaying, neighbor exhaustion, and source) as they can 

create considerable damage in the network. 

We note that many of these attacks are specific to streaming, as file-distribution 

systems do not have real-time deadlines of data, nor need to download at a particular 

streaming rate, and often have centralized membership protocols (e.g. BitTorrent). 

We do not consider attacks such as free-riding or data pollution as they relate 

to selfish behavior and data integrity but not attacks on data delivery. Furthermore, 

several solutions to free-riding have been proposed in previous work [1,103,104]. Also, 

to prevent data pollution, Dhungel et al. [101] have shown that a suitable means to 

accomplishing this is the source digitally signing hashes of the chunks. We note that 

solutions to these attacks can be used to complement our work. 

5.4 A Design For Securing Data Delivery 

In this section we describe our design for securing the data delivery for a P2P 

mesh-based streaming overlay. We first outline the design goals, then describe the 

details of our design. 
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5.4.1 Design Goals and Overview 

Our focus is on ensuring that the P2P system achieves its intended goal which 

is continuous data delivery, even when under attack. However, achieving the same 

level of service in the presence of insider attacks as in the benign case is not always 

possible. As a result, our specific goals are: 

(G1) Limit the impact of the attack: We seek to raise the bar for the attacker 

and bound the amount of damage per attacker. The damage created is directly 

proportional with the number of attackers and the amount of data dropped or delayed 

by the attacker nodes. Our goal is to limit the degree of connectivity in the mesh 

that malicious nodes can obtain. We integrate mechanisms that use control plane 

feedback to mitigate bootstrap list pollution, source, and neighbor selection attacks 

and mechanisms that use data plane feedback to detect data dropping, delaying and 

neighbor exhaustion attacks. 

(G2) Limit the overhead of the defense mechanisms: Because malicious be­

havior is not a priori known, some of the components of our design are proactive, 

thus they must be enabled regardless of the presence of attacks. One specific concern 

is the overhead of the defense mechanisms. Our goal is that when no attack takes 

place, the system performance with the defense mechanisms enabled is the same as 

if those defense mechanisms were not used. 

To achieve the goals identified above we design several proactive and reactive 

protocols. Our schemes use local observations to help nodes identify malicious peers 

and build a robust neighbor set. We also design schemes tailored for the source and 

bootstrap nodes given their critical roles. 

Peer protection: To limit the impact of attacks and the overhead of the defense 

solution, we use decentralized mechanisms deployed at each individual peer that allow 

it to make local decisions about accepting, rejecting, or excluding other peers from 

its set of neighbors. Each node individually derives reputation scores for the other 

peers it is aware of in the overlay. The use of reputation is a natural choice in a dis­
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tributed system with malicious participants. Since many existing reputation systems 

require additional overlays or have high computational or bandwidth overhead [110], 

we design schemes that are tailored to streaming overlays. The novelty of our scheme 

lies in combining feedback from the data plane and control plane to build reputations 

for each peer. 

Source protection: As the source is a producer but not a consumer of data, the 

protection mechanisms used for peers are not applicable to the protection of the 

source. We use mechanisms that limit the impact of source attacks by allowing nodes 

to notify the source if certain data was not received. 

Bootstrap protection: The bootstrap node plays a critical role in the control plane. 

Attacks against the control plane can be amplified if the bootstrap is not a reliable 

and unbiased source of information on who is currently in the overlay. Our scheme 

discourages nodes from registering at a fast rate and thus limits the percentage of 

malicious nodes in the bootstrap list. 

Below we describe in details each of these protection mechanisms. First, we de­

scribe in Section 5.4.2 the details on a local reputation mechanisms that protects 

against data dropping and data delaying attacks. Then, we describe the source and 

bootstrap node protection mechanisms, in Sections 5.4.3 and 5.4.4, respectively. 

5.4.2 Protecting Peers through Local Reputation 

We propose a mechanism that allows peers to select as neighbors the nodes that 

provide the best performance while being resilient to data dropping and neighbor 

selection attacks. We also show how to extend this mechanism to protect against data 

delaying attacks. A node uses locally observed data and control plane information to 

compute scores for each of its neighbors. The lower the score, the higher the chance 

that a node is malicious. Nodes that have a score lower than a threshold Td are 

evicted from the in-neighbors set. The local reputations are also sent across one hop 
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to neighbors, so that they can avoid accepting malicious nodes as in-neighbors. The 

score consists of two components: 

• Data score: This score is a positive reputation (it rewards good behavior) and it is 

calculated based on how much data a node has received from a particular neighbor. 

The goal of the data score is to capture regular performance degradation and data 

dropping attacks. Nodes who do not deliver sufficient data will have a lower data 

score. Nodes with a data score below a threshold Ts are considered to be suspicious. 

This approach forces malicious neighbors to deliver a certain amount of data. Note 

that for a node to be evicted from the neighbors set, his total score has to be smaller 

than Td (Td < Ts). 

• Graph connectivity score: This score is a negative reputation (it penalizes bad 

behavior) and it is calculated based on how connected a node is to other nodes. The 

goal of the graph connectivity score is to target neighbor selection attacks. This score 

is relevant only for suspicious nodes because if the nodes deliver enough data (i.e. 

corresponding to a data score above Ts) they do not disturb the overlay. A high 

graph connectivity score indicates that a node is potentially conducting a neighbor 

selection attack. This score is used because if the data score is neither high nor low, 

it may not be obvious if a node is malicious. 

Below we provide details about the data and graph connectivity score computa­

tion, about the way they are combined into a reputation score, and about how the 

reputation score is used to make decisions on what nodes to allow as neighbors. Al­

gorithm 2 also describes this computation, specifically how a node i calculates the 

Local Reputation for node j. 

Data score computation. Every node i calculates a data score for every in-

neighbor j as follows: 
  

Gij(t)
Lij(t) = min 1, (5.1) 

E(t)

where Gij(t) is the number of chunks received by node i from j before deadline 

Dr in a time period. Dr is the amount of time the requesting peer will wait before 

considering that the request was dropped. If a request for a chunk is honored after 
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the Dr deadline has passed, it is not included in Gij(t). E(t) is the expected number 

of chunks to be received by a node in a time period. Typically, the expected value 

is the same for all nodes and if it is received from all in-neighbors the full streaming 

Gij (t)rate will be received. We take the minimum of and 1 so that if a node performs 
E(t) 

better than expected the end result will still be between 0 and 1. The more data j 

delivers to i, the bigger the Lij(t). If Lij(t) is less than a threshold Ts, then i marks 

j as suspicious. 

A score for a node’s out-neighbors is calculated by replacing Gij(t) with the num­

ber of requests fulfilled for that node in a time period. Such a score allows nodes to 

mitigate neighbor exhaustion attacks. 

Graph connectivity score computation. Every node also calculates a graph 

connectivity score for each of its neighbors that were marked suspicious. This score 

relies on the observation that a malicious node conducting a neighbor selection at­

tack will be an in-neighbor for many honest nodes. In particular, if node i has as 

in-neighbors node k and j, and node j is malicious, then it is likely that j is an 

in-neighbor for node k as well. Furthermore, the more in-neighbors of i that j is 

connected to, the more likely it is that j is conducting an attack. We propose the 

following graph connectivity equation for each node i to calculate the likelihood of 

each of its in-neighbor j being malicious: 

Kij(t)
Cij(t) = (5.2) 

Ni(t) 

where Ni(t) is the total number of non-suspicious neighbors of i (i.e. a non-

suspicious neighbor is one whose data score L is greater than Ts), and Kij(t) is 

the number of these non-suspicious neighbors for whom j is also an in-neighbor. 

Intuitively, the equation calculates a score equal to the percentage of non-suspicious 

neighbors that a neighbor j is currently an in-neighbor for. The score will be high if 

a neighbor is in many neighbor sets, indicating that it is malicious. We consider only 

non-suspicious nodes so that in the case a malicious node wants to falsely advertise 

other nodes in its in-neighbor set, it has to first perform some work for the system. 
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Reputation score computation. Every node combines the data and graph 

connectivity score as follows: 

 


 Lij(t) − α ∗ Cij(t) if j is suspicious 
R ′ ij(t) = (5.3) 

 Lij(t) otherwise 

If a node had a low data score and was marked as suspicious, then we take into 

account the graph connectivity score as it is a negative score and will further reveal 

if the node is misbehaving. Specifically, we subtract from the data score the graph 

connectivity score and we weight the latter with a parameter α. However, if the node 

was not marked as suspicious, we do not take into account the graph connectivity 

score. This choice was made based on the observation that if the nodes deliver enough 

data, it does not matter how connected they are as they do not disturb the honest 

nodes. 

Incorporating history. Every node takes into account the history of its neigh­

bors by calculating for each neighbor the following equation: 

Rij(t) = λ ij(t) + (1 − λ) ∗ Rij(t − 1) ∗ R ′ (5.4) 

where λ is a value less than 1. We take into account history to accommodate 

transient network conditions, such as congestion. This gives nodes the opportunity 

to recover and not be disconnected due to non-persistent problems. All nodes start 

with a reputation equal to Ts. 

Reputation based neighbor selection. A node uses reputation scores to decide 

when to drop or add neighbors. To decide if he keeps a node j as a neighbor, node i 

compares the reputation score Rij for node j with a threshold Td. If j’s score becomes 

less than Td, then i will drop j from its neighbor set and will not allow j to be in either 

its in-neighbor or out-neighbor sets from then on. We identify j by its IP address to 

avoid trivial Sybil attacks. 

A node also uses the reputation score to determine if a node is non-malicious 

when deciding to add a neighbor. Consider the case when a node s refers a neighbor 

k to node i, s will also send the reputation score of k. To decide if he adds k as a 
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neighbor, i computes Ris ∗ Rsk. Node i will then add node k as a neighbor if the 

resulting number is greater than the suspicion threshold, Ts. 

Protecting against data delaying. As long as there is no enforcement of data 

delivery, an attacker’s best strategy is to drop all data. However, once the above 

protection mechanisms are introduced, an attacker’s best strategy is to send as little 

data as possible, but delay everything it sends so that the node receives it just before 

the Dr deadline. The delaying of data is advantageous to attackers in multiple ways. 

Attackers can still get credit for sending data, yet it is less likely that the benign node 

will have as many opportunities to pass that data on to others. Delaying data also 

creates a temporary scarcity of data chunks, and as few benign nodes will have that 

data, malicious nodes will be able to fill that request for many nodes. 

As data delaying unnecessarily increases the amount of delay in receiving chunks, 

nodes can measure the delay and then penalize the offenders. To do this we introduce 

the inverse relative stretch (IRSu) metric which node i will calculate for each chunk 

u received from node j. We define IRSu as the ratio between the delay from the 

source to node i and the delay from when the source generates a chunk u to when 

node i actually receives it. An IRSu of 1 would indicate node i received the chunk 

with no extra delay whatsoever while less than 1 indicates that there was some extra 

delay. To incorporate this value into the data score, we recalculate Gij (as referenced 

in Equation 5.1) as follows: 

Gij(t) = min(l ∗ IRSu, 1) (5.5) 
u 

During one time period, node i evaluates the IRSu of every chunk u received from 

node j and calculates a summation based on these values. Specifically, the summation 

of Gij is calculated by adding the minimum of 1 and l times IRSu for every chunk 

received. We multiply the IRSu by some parameter l as some stretch is normal for any 

application-layer multicast and l lets us determine how much stretch we are willing to 

tolerate. We then take the minimum of that value and 1 to normalize it and ensure 

that we are adding at most 1 for every chunk received. We would expect then that a 
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benign node that does not add extra delay to a chunk would receive a score equal to 

the number of chunks it sent. However, any malicious node adding extra delay would 

receive a lower score. 

Overhead. The Local Reputation scheme adds minimal overhead to the system. 

This is due to it only involving simple calculations, the most expensive being mul­

tiplications, and it scales linearly with the number of neighbors a node has, which 

typically runs between 15 and 60, depending on how much bandwidth a node has. 

Furthermore, the network overhead is negligable as we use messages that are already 

being sent to transport the extra data about reputation scores. 

5.4.3 Source Protection with Health Monitoring 

The source is a critical component of the overlay. As will be shown in Section 5.7 

attacks against the source can significantly degrade the performance of the system. 

While Local Reputation is effective for peers, it can be intuitively seen that such a 

mechanism is ill-suited for the source. This is for two reasons. First, the source does 

not request data from its neighbors, it only gives data, so it cannot judge a node 

based on data received. Second, malicious nodes will prefer to receive data from the 

source rather than from peers so this also will not lead to the source suspecting them. 

As a result the source can not differentiate between a benign and malicious node. 

We first observe that in some P2P live streaming systems today, there is extensive 

gathering of statistics from peers [82]. This allows for further refinement of protocols 

and code so that the quality of the experience can continue to improve. One very 

important metric to collect is the amount of data that peers miss from the stream. 

This gives a way to measure the overall health of the system. We then use this 

monitoring information to protect the source. 

Specifically we propose that the source keeps track of who it sends which data 

chunks to. Then if peers miss some data chunks, they can report the specific ones 

missed to the source. One would expect that if many nodes miss a chunk, it is due 
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Algorithm 2: Local Reputation computed by node i for node j.
 
//This algorithm is run every t seconds 

//Rij is initialized to be Ts when node j becomes a neighbor 

Gij = 0; 

E = source streaming rate / num neighbors; 

//compute data score 

foreach chunk u sent by j do 

Gij + = 1;
 

// if protecting against data-delaying do instead:
 

// Gij + = min(l ∗ IRSu, 1);
 

end 

Lij = min(1, Gij /E); 

if Lij < Ts then 
//node is suspicious, consider graph connectivity score
 

Ni = 0;
 

Kij = 0;
 

foreach in-neighbor k of i do
 

if Lik > Ts then 
// in-neighbor k is not suspicious 

Ni+ = 1; 

if j is in-neighbor of k then 

Kij + = 1; 

end 

end 

end 

Cij = Ni/Kij ; 

//reputation considers both data and 

// graph connectivity scores 

R′ 
ij = Lij − α ∗ Cij ; 

else 
//reputation only considers data score 

R ′ = ij Lij ; 

end 

//take into account history of reputation 

Rij = λ ∗ R ′ + (1 − λ) ∗ Rij ;ij 

if Rij < Td then 
//node j is below drop threshold 

disconnect j 

end 

to malicious nodes not forwarding data received from the source. Therefore, once
 

the source has received complaints from a percentage of nodes greater than f it can
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then disconnect the nodes it sent those data chunks to. The percentage f must be 

the largest fraction of nodes less than 50% that the system can tolerate as malicious. 

Also, as this scheme might create an implosion of messages at the source, nodes can 

collect them and send them in batches. 

Overhead. In practice, the network overhead is small as we batch complaints 

into a single message and only send them periodically. Furthermore, the source will 

only receive messages when nodes are not receiving the data chunks, which should 

be abnormal behavior. To further reduce the overhead, nodes could piggy-back the 

complaints on messages that are already being sent to the bootstrap. 

5.4.4 Rate-limiting Bootstrap 

Our solution for protecting the bootstrap relies on the observation that nodes 

that register with the bootstrap node many times in a short period are most likely 

malicious. Thus to detect and discourage this behavior, if nodes register faster than 

once every w seconds, they will not be put into the bootstrap list and then will not be 

propagated by the bootstrap node. To detect misbehavior the bootstrap keeps track 

of all registrations that have occurred in the past w seconds. From the registration 

information it will make a list of k nodes that have only registered once. 

The w parameter decides how often nodes can register, so the larger it is the 

more resilient the bootstrap will be against attacks. However, if it is too large it 

will prevent good nodes from legitimately re-registering. The k parameter allows the 

bootstrap to decide how it will pick nodes from the recent time window and in what 

quantity. There are different strategies to fill the bootstrap list, for our design though, 

we simply choose the k most recently registered nodes to ensure the freshness of the 

list. 

To only do rate-limiting and nothing else might bring about scenarios where there 

are still very few honest nodes in the bootstrap list. This could be due to very few 

nodes joining the overlay for a period of time. To ensure that the bootstrap list still 
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can not be filled with malicious nodes, we have each node randomly register once 

every w to 2w seconds. 

Overhead. The Rate-limiting Bootstrap scheme introduces no new overhead into 

the system, as periodically registering with the bootstrap is normal behavior. Addi­

tionally, the rate of at which registrations occur, and thus the amount of overhead, 

can be adjusted by setting w to the desired rate. 

5.5 Security Analysis 

In this section, we analyze how robust the Local Reputation scheme is in defending 

against common classes of attacks. Recall that the final reputation score is derived 

by combining the data score, which is a positive score, and the graph connectivity 

score, which is a negative score. The node uses the final reputation score to decide 

who should remain as neighbors and who to admit as neighbors. Possible attacks 

that can be conducted on these reputation calculations and uses include [107]: 

Self-promoting: Malicious nodes falsely inflate their own reputation. This attack 

is only effective in positive feedback based systems. 

Slandering: Malicious nodes attack the reputation of other nodes by reporting un­

true information about them. This attack is only effective in negative feedback based 

systems. 

Orchestrated: Colluding nodes combine several strategies to game the system. 

Whitewashing: Malicious nodes take advantage of a system vulnerability to restore 

a damaged reputation. One possible way to do this is by assuming new identities. 

5.5.1 Attacks on Data Score Calculation 

The reputation system is designed so that a node cannot get a high data score and 

thus a high reputation without doing useful work. Therefore, the data score cannot 

be influenced by slandering or self-promoting attacks, as the only way to change it 

is for a node to deliver more data. We present the following lemma which quantifies 
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the amount of useful work done by a node given a particular data score, which can 

be derived from Equation 5.1. 

Lemma 1: For a node j to obtain a data score of Lij at a neighboring node i, j must 

deliver data to i at a minimum rate of E ∗ Lij , where E is the expected amount of 

data a node should deliver to a neighbor in a time window (Section 5.4.2). 

This lemma guarantees that benign nodes will receive good performance even 

when surrounded by a significant number of malicious neighbors, for example, when 

under an orchestrated attack. This is because each malicious neighbor is forced to 

deliver a minimum amount of data in order not to be dropped. More specifically, if 

we assume a node with a fraction f of its neighbors is malicious, and assume benign 

neighbors always deliver the expected amount of data, then the node will receive at 

least (1 − f) + Tdf = 1 − f(1 − Td) of the streaming rate (Td is the drop threshold). 

For example, with Td = 0.5 and f = 0.3, the node will receive at least 85% of the 

stream rate. 

Furthermore, Lemma 1 imposes a high bandwidth cost on malicious nodes who 

seek to be a neighbor of a large number of nodes. To highlight this, consider a 

streaming system with 150K nodes [82], and that a malicious node desires to maintain 

a reputation score of Td at every node. According to Lemma 1, with a streaming rate 

of 1Mbps, a neighbor-set size of 15, and assuming a Td value of 0.5, the node must 

deliver data at a minimum total rate of 5Gbps. 

We note that though Equation 5.5 modifies how the data score is calculated to 

protect against data delaying, this simply raises the bar for attackers, forcing them 

to send even more data if they wish to delay the data they are sending. Hence, 

even when data delaying protection is in place malicious attackers still must send at 

minimum E ∗ Lij . We present the following lemma which quantifies how much more 

data a node must send if it delays it. 

Lemma 2: For a node j to obtain a data score of Lij at a neighboring node i when 

E∗Lij delaying data, j must deliver data to i at a minimum rate of , where IRS is the 
l∗IRS

inverse relative stretch and l is a system parameter. 
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Lemma 2 shows that attackers must increasingly send more data the longer they 

delay it. For example, if node i and the source have a delay of 100 ms and node j 

delays data so that it arrives after 600 ms, the IRS will be 1/6. Assuming l is set to 

3, then node j must send data at a rate of 2 ∗ E ∗ Lij to get a score of Lij , in this 

case doubling the amount of data it would normally have to send. 

5.5.2 Attacks on Graph Connectivity Score Calculation 

When a node calculates its neighbors’ graph connectivity score, it takes into ac­

count neighbor set information provided by all of its non-suspicious neighbors. This 

scheme is subject to slandering attacks where a malicious neighbor can provide fake 

neighbor set information. Slandering can be seen from two different perspectives, 

the ability of a node to slander others and the resistance a node has from slandering 

attempts. We first present the following lemma that shows the limitations a node has 

in its ability to slander others, which can be derived from Equation 5.2. 

Lemma 3: A node j can only influence the graph connectivity scores of the neighbors 

of node i if j has a data score of Ts with i. 

Lemma 3 shows that malicious nodes must themselves do a substantial amount of 

work to remain non-suspicious, which means having a data score above Ts. According 

to Lemma 1, this means they must deliver data to i at a minimum rate of E ∗ Ts. 

Given that Ts > Td, this imposes an even greater bandwidth constraint on attackers 

that want to slander others over attackers that want to simply not be dropped. 

We next present a lemma that demonstrates that a node can resist slandering 

attacks from others. The key insight behind the lemma is that if a node transmits 

data at a high enough rate, its final reputation as computed by the neighbor depends 

on the data score alone, and is not impacted by the graph connectivity score. 

Lemma 4: Any node that delivers data to a neighbor at a rate greater than E ∗ Ts is 

assured of a reputation greater than Ts with the neighbor. 
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We expect that most benign nodes will be cooperative and deliver data at rates 

close to the expected rate, which is well above E ∗ Ts. Therefore, benign nodes will 

not be subject to slandering attacks as their graph connectivity score will not even 

be considered. 

5.5.3 Other Attacks 

We discuss other attacks on the schemes, and why our approach is resilient to 

them: 

Whitewashing attacks: In these attacks, malicious nodes who received a bad 

reputation may choose to rejoin the network with a different identity. We believe 

this attack is not a concern because of the following reasons. First, the reputation 

is initialized to Ts, and all new nodes will be marked suspicious initially. Therefore, 

a new node cannot refer other nodes or report connectivity information about other 

nodes until it has done work and improved its reputation. Further, the newly added 

node will be quickly dropped unless it transmits data at a sufficient rate. Second, in 

our model, nodes are identified by their IP address. To cause damage, a malicious 

node cannot acquire a new identity by simply spoofing an IP address, but must be able 

to receive packets targeted to the IP address. By our attacker model in Section 5.3.1, 

we assume only a fraction f of the total number of IP addresses are controlled by 

malicious nodes. 

Attacks on reputation-based neighbor selection: A node adds new neighbors 

by taking referrals from existing non-suspicious neighbors. This process is subject 

to attacks where a malicious neighbor (m) could refer other malicious nodes to a 

benign node (i). However, to conduct this attack, the malicious neighbor m must be 

considered non-suspicious, and hence must deliver data at a minimum rate of Ts ∗ E, 

where Ts is the suspicion threshold. Further, each newly inserted malicious node 

referred by m must also do a substantial amount of work to obtain a minimum data 

score of Td (the drop threshold), or it will be dropped quickly by node i. 
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5.6 Experimental Methodology 

In this section, we describe how we evaluate and compare our protection schemes 

with several alternative schemes. We implemented the unidirectional mesh described 

in Section 5.2 in a mesh streaming codebase [84]. We also implemented all of our 

own protection schemes plus some alternatives which we will describe next, which are 

summarized in Table 5.2. 

5.6.1 Schemes Considered 

Table 5.2
 
Mechanisms for each component of system
 

Peers Source Bootstrap 

Least Performing Peer (LP) Drop Periodically (DP) Periodic Register (PR) 

Local Reputation (LR) Health Monitoring (HM) Rate-limiting (RB) 

LR Data Delaying (LR-DD) 

No Protection (NP): This is our baseline scheme which has no protection for any 

of the system components. 

Local Reputation (LR): This peer level scheme, as described in Section 5.4.2 builds 

up a reputation from information gathered from the control and data planes. With 

this reputation scheme in place, nodes are able to decide if a node is malicious and 

thus can better select who they should accept as neighbors. 

LR Data Delaying (LR-DD): This is the extended Local Reputation scheme that 

adds protection against data delaying attacks. 

Health Monitoring (HM): This source protection scheme, described in detail in 

Section 5.4.3, uses information gathered from peers to decide who should stay as 

neighbors of the source. If a percentage of nodes declare that a certain data chunk 
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was missed by them, the source will drop the nodes that it originally sent those chunks 

to. 

Rate-limiting Bootstrap (RB): This is a bootstrap protection scheme, described 

in detail in Section 5.4.4, keeps track of how often nodes register and penalizes the 

ones who register fast. The bootstrap will only refer nodes who register at a rate less 

frequently than the rate it specifies. 

Least Performing Peer (LP): This is a peer level scheme, similar to the one used 

in CoolStreaming [86], that drops the in-neighbor that is currently contributing the 

least amount of data. We chose this alternative to LR because of its simplicity and to 

show that while simple schemes such as this prove to be effective in a setting where all 

nodes are benign, more robust methods are needed when malicious nodes are present. 

Drop Periodically (DP): This is a source protection scheme that induces churn [111] 

on the source. We note that as time progresses and benign nodes churn in and out 

of the system, malicious nodes can continue to stay and eventually eclipse the source 

as its neighbors. To address this problem we allow a single node to stay as an out-

neighbor for only a certain amount of time and then disconnect it. To further stagger 

the disconnection times of nodes, we only allow one node to be disconnected in a time 

period. 

Periodic Register (PR): This is a bootstrap protection scheme that requires all 

peers to re-register every r time. We chose this scheme as an alternative to RB since 

it also requires re-registration of nodes, but does not do any rate-limiting. Thus, it 

demonstrates that more robust methods are needed when malicious nodes target the 

bootstrap service. 

5.6.2 Attacks Considered 

To show the effectivness of our schemes, we also implemented the most effective 

attacks available for an attacker to disrupt the data delivery. 
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• Data dropping attack: A malicious node will advertise the chunks of data that 

it has, but will not fulfill any requests made for those chunks unless otherwise stated. 

• Data delaying attack: A malicious node will advertise and fulfill a small amount 

of chunk requests to avoid being dropped from another node’s neighbor set. However, 

the malicious node will delay the sending of the chunk until very close to the chunk’s 

deadline. 

• Source attack: A malicious node will not forward data given to it by the source. 

As the source has limited bandwidth, if only malicious nodes receive a particular 

chunk, then that chunk will be effectively lost and no benign nodes will receive it. 

• Bootstrap list pollution attack: A malicious node will register often with the 

bootstrap, to ensure that it is always in its list of peers and to increase its chances of 

being referred to benign nodes. 

• Neighbor selection attack: When a benign node contacts a malicious node to 

discover more peers to connect to, the malicious node will bias its referrals to include 

only other malicious nodes. This results in benign nodes being neighbors with many 

malicious nodes. 

5.6.3 Experiment Configuration 

The experiments were run on the PlanetLab overlay testbed. The source was 

located on a host at our lab. We set Dr (see Table 5.3 for a list of parameters and 

their definitions) to be 1 second. We determined this value experimentally as we 

observed that in a non-malicious scenario 96% of nodes receive 99% of chunks within 

1 second. Each node is configured to obtain up to 15 in-neighbors and the maximum 

number of out-neighbors is proportional to its bandwidth. The source will obtain 30 

out-neighbors. 

We used overlay deployments of 300 nodes. Each experiment lasted for 10 minutes. 

For each experiment we varied the percentage of malicious nodes from 0 to 30% and 

fixed the source’s streaming rate at 1 Mbps. Each experiment was run for 10 times 
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Table 5.3
 
Notation
 

Dr Deadline at which a peer considers a request for data 

dropped 

Ts The suspicion threshold 

Td The drop threshold 

α When calculating R ′ ij(t) gives a weight to Cij(t) 

λ When calculating Rij(t) gives a weight to the previous value 

of Rij(t − 1) and the current value of R ′ ij(t) 

l When using IRS to calculate Gij(t), defines how much 

stretch is to be tolerated 

and the results were averaged. Standard deviations are plotted where appropriate. 

The malicious nodes joined at the beginning of the experiment and stayed for the 

entire duration. Benign nodes both join at the beginning of the experiment and also 

during the experiment. We modeled the join times by using a Poisson process and 

the participation time by a Pareto distribution. The mean of the Poisson process was 

3 and the Pareto distribution is used with a shape parameter of 1.42, giving a mean 

participation time of 300 seconds and we also assume a minimum participation time 

of 90 seconds. The parameters have been used previously by Bharambe et al. [112] 

and were motivated by traces of real multicast systems [81] and Mbone sessions [113]. 

Choosing Parameters: For Local Reputation we by reason set its parameters to 

appropriate values and validated them experimentally. We set Ts to be 0.7 to tolerate 

transient network conditions. We note that Ts can be set by the user, to the minimum 

quality threshold that he is willing to tolerate. We set α to be 0.5 since we consider 

data plane feedback to be more useful than control plane feedback. We also conduct 

a sensitivity study of α in Section 5.7. For nodes to evict malicious nodes that are 

both suspicious and highly connected, the equation Td ≥ Ts −α must hold. Therefore 
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we set Td to be 0.2. We set λ to be 0.4 to give a greater weight to the history of 

the reputation but also be able to change quickly if nodes consistently behave badly. 

We set the time period for the recalculation of the scores to be every 3 seconds. For 

Local Reputation with Data Delaying protection (LR-DD) we experimentally set l 

to be 3. Therefore, the delay of the chunk must be 3 times greater than the delay to 

the source before a node is penalized. 

5.6.4 Performance Metrics 

We evaluate the effectiveness of the attacks and solutions with the following met­

rics. 

Goodput Ratio: This represents the percentage of useful data a node received while 

in the overlay, averaged across all nodes. We use it to measure the effects of churn 

on the quality of the goodput. The higher the goodput ratio, the higher the quality 

of the stream received. 

Corruption Factor: This represents the percentage of nodes in the neighbor set 

that are malicious. We use it to measure the level of control an adversary has on 

the neighbor set of a particular node. The higher the corruption factor, the more 

adversarial neighbors a node has. 

5.7 Experimental Evaluation 

In this section we experimentally show that the schemes we proposed in Section 5.4 

are able to effectively mitigate attackers. 

5.7.1 Robust Neighbor Selection 

To give motivation to our Local Reputation (LR), we first compare it to Least 

Performing Peer (LP) and No Protection (NP). Malicious nodes perform data drop­

ping, source and neighbor selection attacks. As can be seen in Figure 5.1(a) both 
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Figure 5.1. Importance of peer protection. 

NP and LP perform worse than LR. This difference becomes more pronounced as the 

percentage of malicious nodes increases. NP is ineffective simply because nodes never 

change who their neighbors are, regardless of their poor performance. 

LP is not as effective as LR since a node never drops all of the malicious nodes 

from its neighbor set. Further investigation shows that for a node running LP the 
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Figure 5.2. Importance of source and bootstrap protection. 

number of malicious nodes in its in-neighbor set decreases as some of the malicious 

nodes will be dropped. However, there are still malicious nodes present in the in-

neighbor set because LP does not prevent the node from reconnecting multiple times 

to the same malicious nodes. When the node is running LR, it does not reconnect 
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anymore to malicious nodes since malicious behavior is captured in the reputation 

score for those nodes. 

Importance of considering graph connectivity: We examine the contribu­

tion of the graph connectivity score on LR and identify regimes in which its use is 

beneficial. We compare the case when the reputation score computation is based only 

on the data feedback (i.e. α = 0) to the case when both data and graph connectivity 

are considered (i.e. α = 1). 

As we can see in Figure 5.1(b) when attackers drop 25% or 75% of the data they 

were expected to deliver, the performance does not change no matter the value of 

α. For the case of 25% dropping, recall that a node i will only calculate the graph 

connectivity score for a neighbor j if it marks j as suspicious (i.e. Lij < Ts). When 

j drops 25% of the data it will not be marked as suspicious since we use a Ts value 

of 0.7, thus the graph connectivity score will not be considered. In the case of 75% 

dropping, enough data is dropped that the neighbor will be perceived as malicious 

by its data score alone. Hence graph connectivity is most useful in regimes where 

the amount of data dropped by a malicious node is large enough to be marked as 

suspicious, but not large enough to be interpreted as malicious by their data scores 

alone. This is the case for 50% dropping. In Figure 5.1(b), when attackers drop 

50% of the data, LR combining the two scores performs better than LR using only 

data score. The information from the control plane about the existence of a neighbor 

selection attacks helps effectively identify malicious nodes. 

We varied α even more to find values that give better performance but we found 

that a value of 1 is sufficient across all percentages of attackers. 

5.7.2 Source Protection 

While LR performs much better than other schemes, the goodput ratio achieved is 

still far from satisfactory. We believe this is because LR does not protect the stream­

ing source, as we explained in Section 5.4. Further investigation into the source’s 
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performance confirms our hypothesis. While peers using LR expel all malicious nodes 

from their in-neighbor set, the source’s out-neighbor set is almost full of malicious 

nodes. This illustrates the importance of having additional mechanisms to protect 

the source. 

We next evaluate mechanisms that can be used to protect the source. When using 

Drop Periodically (DP) the source will drop a node after it has been a neighbor for 

1 minute. In these experiments malicious nodes again perform data dropping, source 

and neighbor selection attacks. Figure 5.2(a) shows the results. The goodput ratio 

is significantly raised for DP combined with LR (i.e. the curve titled LR+DP). This 

is because DP effectively reduces the corruption factor at the source to a value that 

is very close to the percentage of malicious nodes in the overlay at all times, for all 

settings. 

Figure 5.2(a) also shows that DP alone is not sufficient. This is not surprising, be­

cause DP protects only the source, not the peers. This again highlights that solutions 

must be employed at both the source and peers to achieve satisfactory performance. 

5.7.3 Rate-limiting Bootstrap 

We now consider when malicious nodes also conduct a bootstrap list pollution 

attack, along with the data dropping, source, and neighbor selection attacks. We 

evaluate the effectiveness of Rate-limiting Bootstrap (RB) in mitigating such attacks 

and compare it with Periodic Register (PR). Two parameters influence the perfor­

mance of RB : the time period in which a node may register only once to be considered 

as non-malicious (w) and the size of the short list maintained by the bootstrap (k). 

Selection of w: Taking into consideration the trade-offs described in Section 5.4.4, 

we set w conservatively at 300 seconds. This value is much smaller than the typical 

session length in P2P streaming systems, which is usually in the order of tens of 

minutes [81,82,114]. For Periodic Register (PR), we use a w value of 120 seconds to 
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Figure 5.3. Evaluating the corruption factor in different scenarios. 

show that even when sacrificing overhead for a more up-to-date list and thus better 

security, rate-limiting schemes are still preferred. 

Selection of k: We experimentally determine the value of k. We fixed the system 

solution to be LR+DP+RB and varied the value of k. The malicious nodes are aware 
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of the solution and only register every w seconds in order not to get themselves 

excluded from the bootstrap’s short list. The malicious nodes all register at the same 

time. Note that if they space out their registrations, the impact on the bootstrap list 

would be diluted. In Figure 5.3(a) there are four sets of bars each with a different k 

value, and two bars in each set corresponding to the maximum and average corruption 

factor at the source. The figure shows that as k increases, the maximum corruption 

factor decreases, but the average corruption factor increases. This is because the 

smaller the k, the easier it is for the attacker to flood the bootstrap’s short list in a 

burst, thus achieving a high corruption factor at the source. However, each node will 

only remain on the list until k more nodes have joined. Thus, the larger the k, the 

longer a malicious node will stay on the list, resulting in a higher average corruption 

factor. From the figure we conclude that setting k at 50 is a good trade-off between 

having a large corruption factor all the time and having a large spike in the corruption 

factor every w seconds. In the rest of our experiments we set k to be 50. 

Figure 5.2(b) shows the evaluation results. RB combined with solutions for 

source and peers (i.e. the curve titled LR+DP+RB) performs the best and mitigates 

the attack across all malicious percentages. PR combined with other solutions (i.e. 

LR+DP+PR) works equally well for small percentage of attackers (up to 15%). For 

higher percentages of attacker nodes, PR effectiveness decreases because the scheme 

simply puts both benign and malicious nodes on equal footing. Thus, while the boot­

strap’s list of nodes is very close to being up-to-date, it does not punish attackers. On 

the other hand the RB solution is more effective for exactly this reason, if nodes reg­

ister too fast they are not made known to nodes who request a list of peers. We also 

note that PR incurs a large overhead at the bootstrap node as it requires all nodes 

to re-register with the bootstrap node often. Lastly, both schemes perform signifi­

cantly better than NP, highlighting the importance of having additional mechanisms 

to protect the bootstrap node. 

To gain more insight into these results, we also plot in Figure 5.3(b) the corruption 

factor at the source for each solution. Recall that DP at the source requires that the 
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source only obtains neighbors from the bootstrap node, thus the degree of pollution 

at the bootstrap node directly affects the corruption factor at the source. The figure 

shows that the corruption factor is significantly lower with the LR+DP+RB than 

other solutions, further confirming its effectiveness. 

5.7.4 Data Delaying 

As evidenced by our analysis and experiments, attackers will be thwarted as long 

as they continue to drop data. To prolong the amount of time they can stay as 

neighbors and thus do more damage, attackers will necessarily have to actually give 

data to others. However, attackers are motivated to make sure the data that is given 

out is as useless as possible to benign nodes. Attackers can achieve this by delaying 

the sending of data to the last possible moment. 

For the attack to succeed even though data is still being given away the attacker 

will need to make sure it has a good strategy for only giving out data that will become 

very common and not data that will remain rare. Attackers obviously do not know 

the future, but can assume that if no other benign nodes have the data then they 

should not pass it on to others, but if some other benign nodes do have the data, 

they can upload it to others. 

To show how effective delaying is, we now run experiments where malicious nodes 

conduct data delaying instead of data dropping attacks. Malicious nodes also conduct 

source, neighbor selection and bootstrap list pollution attacks. We deploy the LR-DD 

and HM protection schemes and show how well they mitigate attacks. For HM we set 

the fraction f of nodes that the source must get complaints for before it disconnects 

a node to be 30%. 

We present the results in Figure 5.4, which demonstrate that these attacks are 

effective in increasing damage done. For example, when peers and source are just 

protected with LR and DP, (i.e. the curve entitled LR+DP+RB) nodes increasingly 

have worse performance as the fraction of malicious nodes increases, culminating in 
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Figure 5.4. Peers running the local reputation scheme while attackers 
conduct data delaying attacks. 

only a .68 goodput ratio when there are 30% malicious attackers. As LR-DD and HM 

protection schemes are added performance increases, effectively mitigating the attack. 

LR-DD proves to be effective as most benign nodes receive data fairly quickly after 

the source sends it out, thus malicious nodes delaying data are promptly removed 

from in-neighbor sets. HM also outperforms DP as it is able to actually identify 

malicious nodes who do not forward data to others and disconnect them, rather than 

simply keeping the fraction of malicious nodes low. 

5.8 Summary 

In this chapter, we present one of the first efforts aimed at systematically analyzing 

and addressing the vulnerabilities of mesh-based P2P streaming systems to malicious 

insider attacks. We consider both direct attacks on the data plane, as well as attacks 

on the control plane which could in turn lead to further disruption of data delivery. 

These include data dropping and neighbor selection attacks, as well as data delaying, 

which is a novel attack on P2P streaming. We present a design for securing data 

delivery, of which a key component is a reputation scheme that helps nodes identify 

malicious peers and build a robust neighbor set. Through detailed security analysis, 
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we show that our scheme is resistant to a variety of attacks commonly associated with 

reputation schemes such as self-promotion, slandering, and white-washing [107]. 

We present an extensive evaluation of our design through experiments on Planet-

Lab. Our results show that (i) without our solution, the data delivery can be seriously 

disrupted by attacks exploiting the vulnerabilities we identified. For example, 15% 

malicious nodes caused the average goodput ratio to decrease to less than 30%. (ii) 

Our solution is effective in mitigating the attacks; it achieves an average goodput 

ratio of more than 90% even when there are 30% malicious nodes conducting data 

dropping attacks and over 83% average goodput ratio when there are 30% malicious 

nodes conducting data delaying attacks. (iii) While each of the mechanisms we intro­

duce can individually benefit the system, the solution is most effective when all the 

mechanisms are combined. 
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6 RELATED WORK 

This chapter presents related work that has influenced and shaped the work contained 

in this thesis. We first look at research focused on modelling P2P traffic and works 

evaluating the effectiveness of localization. We then review previous work on attacks 

and defenses in Virtual Coordinate Systems. Finally, we discuss research on P2P 

streaming and attacks and defenses in P2P systems. 

6.1 P2P Localization 

Much work on modeling traffic on the Internet has been done in the context of 

intra-AS traffic matrix estimation [30,31]. Our work though focuses on inter-AS P2P 

traffic matrix estimation, of which the only related paper is [27], which we extensively 

discussed in Chapter 3 Sec. 3.2. 

The effects of P2P systems on ASes has also been studied by Rasti et al. [115] 

who shows the effects of the Gnutella P2P system on the AS topology. Rather than 

focusing on localization, they instead study how the load on ASes due to Gnutella 

clients has changed over time due to the evolution of both the AS topology and the 

Gnutella system. 

Many recent works have focused on how to implement P2P localization [19–25,40]. 

However, we evaluate the impact localization will have on all ASes and on their 

profitability. 

Complementary to our work is the work by Cuevas et al. [28]. Their focus is 

on understanding the extent to which localization improves the performance of users 

and reduces the amount of P2P traffic residential ASes exchange with their providers. 

Similarly, Blond et al. [116] focus on how much traffic can be reduced due to local­

ization using experiments driven by a BitTorrent crawl. In contrast, our goal is to 



130 

understand the implications of localization on the global Internet, particularly, which 

ASes will benefit and which will lose. In addition, our analysis not only considers 

residential ASes but also study how localization may affect pure-transit ASes, which 

may not have any internal peers. 

Piatek et al. [26] question the effectiveness of localization on peers performance and 

ISP traffic reduction. Specifically, they perform experiments showing that client-only 

localization policies will have limited benefits and the tracker will need to be involved 

to receive full benefits. They also evaluate the amount of traffic reduction possible 

for a crawl of one thousand torrents. In contrast, we consider a very large dataset 

including millions of torrents and also use realistic pricing models to understand how 

traffic reductions translate into impact on profit for ISPs. 

6.2 Virtual Coordinate Systems 

Much research has been conducted to find detection and mitigation techniques 

against attacks [65] in VCS. 

Landmark-based defenses: Kaafar et al. [66] propose to model the behavior 

of trusted landmark nodes using a Kalman filter, this provides an outlier detection 

scheme by which nodes learn good behavior and can then filter out malicious updates. 

Their technique requires 8% of all nodes to be trusted, which could be non-trivial to 

obtain given a large deployment. Similarly, Saucez et al. [117] define a reputation 

based system that leverage trusted nodes and a reputation certification agent to cal­

culate the other nodes reputation. Treeple [71], while not strictly coordinate based, 

provides secure latency estimation, using landmarks as vantage points for providing 

traceroutes on the Internet. In Treeple, landmarks perform traceroute measurements 

to peers, which the landmarks can then digitally sign and provide for nodes to com­

pute the network distance themselves. As landmark-based defenses have stronger 

assumptions, as they require a priori trusted nodes, we do not compare Newton to 

them as Newton is a decentralized defense and does not require trusted nodes. 
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Decentralized defenses: Zage et al. [67] propose the usage of spatial and tempo­

ral properties of nodes to learn what good behavior is, then by using outlier detection 

detect anomalous coordinate updates. Veracity [68] uses a voting scheme to ver­

ify potentially malicious coordinate updates by using a subset of nodes. Each node 

maintains a verification set where several other nodes attest to whether a particular 

update increases their estimation error above a certain threshold, and if so, ignores 

it. Suspected nodes are tested based on their error to the verifying nodes; nodes with 

large errors are considered malicious. 

Although these decentralized defenses differ in the way they secure virtual coordi­

nate systems, they both, along with [66], suffer from the frog-boiling attack [69–71]. 

A few works have been proposed to defend against the frog-boiling attack. Wang et 

al. [69] proposes detecting attackers that lie about coordinates by using the PeerRe­

view [118] accountability protocol. Since, if implemented, this approach would have 

higher costs than our method (i.e. bandwidth, storage for a tamper-evident log, and 

computation for public-key cryptography), we do not compare Newton with them. 

Becker et al. [119] propose a method for detecting frog-boiling by using a machine 

learning approach, where through a training data set the system learns what normal 

and abnormal data is. In contrast, our approach has no need to train the system and 

can detect abnormal behavior directly due to the applied physical laws. Furthermore, 

while [119] can detect attacks are occuring but not find and discard the updates that 

are causing it, Newton is able to do both. 

6.3 P2P Streaming 

Much recent work has gone on in improving the efficiency and performance of P2P 

streaming systems. Lui et al [120] present algorithms that find near-optimal streaming 

rates when nodes can only support a bounded number of children. Picconi et al [22] 

demonstrate that P2P live streaming systems can incorporate locality-awareness and 

thus be ISP-friendly. Several works [121, 122] have also focused on utilizing network 
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coding for improving download speeds and reducing the scarcity of data. We note 

that works such as these are orthogonal to ours and can be incorporated with our 

design. 

However, the security challenges in designing mesh-based streaming protocols has 

received little attention. Recent work [123, 124] has surveyed security issues in P2P 

streaming, but cite a lack of solutions in this area. The only prior work we are aware 

of focuses on attacks where malicious nodes pollute data sent to other nodes [101,125] 

or malicious nodes overload others with requests [102]. In contrast, our focus is on 

data availability and prevention of neighbor selection attacks. 

Attacks on data availability have been considered in the context of tree-based 

multicast [126]. The proposed solution takes advantage of the tree structure, knowing 

that if a child did not receive a message then an ancestor can be traced back to that 

is at fault for dropping it. Meshes do not have parent-child relationships but rather 

nodes get data from many neighbors, so this approach cannot be applied to them. 

Attacks against measurement-based neighbor selection were studied in the context of 

tree-based streaming [127]. The proposed solution uses outlier detection to identify 

malicious nodes that report wrong measurement results. This approach only works 

with systems that employ such measurement-based adaptation. 

Dealing with selfish and Byzantine behavior using game theoretic principles has 

been investigated in several previous works [106, 128]. Most similar to our work 

is Flightpath [106], a P2P streaming system that is designed to give selfish peers 

incentives to obey protocols and can tolerate Byzantine behavior. Unlike their work, 

we do not assume synchronized clocks or synchronous communication channels. 

Several previous works have dealt solely with selfish users in P2P streaming. Con­

tracts [104] develops incentives that rewards nodes by giving them higher quality 

playback based on how effective a node’s contributions to the entire system are. Sub-

stream trading [103] applies BitTorrent’s tit-for-tat mechanism to a streaming context 

to encourage uploading, in this context nodes commit to sending each other parts of 
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the video stream for a period of time. Pulse [105] also applies a tit-for-tat mechanism 

to live P2P streaming, but also combines it with incentives for altruistic behavior. 

Several schemes have been proposed to mitigate neighbor selection attacks (re­

ferred to as eclipse attacks) in the context of distributed hash tables (DHTs) [129,130]. 

The solutions are DHT-specific and do not apply to streaming protocols. A key as­

pect that distinguishes streaming protocols is the potential for feedback from the 

data-plane. In particular, it is possible to infer malicious behavior based on lack of 

data received from a neighbor. Our solutions leverage this observation resulting in 

significantly simpler designs. 

Reputation systems have been a subject of wide interest, especially for P2P file-

sharing systems. File-sharing reputation systems generally fall into two categories of 

purpose, incentivizing users to share files [110,131], or thwarting file pollution [132]. 

Piatek et al. [131] show the feasibility of using one-hop reputations to incentivize 

interactions between users in BitTorrent. They take advantage of the fact that there 

are some users who are in many BitTorrent overlays and thus can be used as interme­

diaries, keeping track of long-term reputation values for others and facilitating data 

exchanges. While our work also uses local reputations, we differ in that our goal is 

mitigating malicious adversaries and not creating incentives. Also, as users usually 

only watch one video stream at a time, this precludes them from being in many 

overlays at once, making it impossible for some users to be intermediaries. Thus, 

streaming presents new challenges for reputation systems and has unique features 

that create opportunities, such as the continual downloading of data and stringent 

data deadlines, that we take advantage of. 
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7 CONCLUSION 

Overlay networks provide scalable services for the distribution of content on the In­

ternet today. As such, a large portion of traffic on the Internet is due to overlay 

networks. However, in the past, many P2P systems have been oblivious to network 

locality, thus causing an increase in the amount of traffic that must leave an ISP. P2P 

localization has then been proposed as a solution to contain traffic to within an ISP. 

Localization has since become a critical design component for overlay networks as it 

benefits both ISPs and end users. 

However, what ISPs will really benefit economically due to localization and to 

what extent has not been studied previously. We conducted an extensive simulation 

study to understand how profits will change for ISPs once localization is deployed. 

To accomplish this, we proposed a new inter-AS P2P traffic model that takes into 

consideration the cultural and linguistic preferences that the end users in each AS 

have. We also proposed models for localization that allow us to understand to what 

degree will traffic be reduced when localization is deployed. Finally, we used realistic 

pricing models to calculate how reductions in traffic translate in actual profits gained. 

These models, together with real P2P data, allowed us to see that the benefits of 

localization should not be taken for granted. While some residential ISPs can received 

up to 90% loss reduction, other residential ISPs do not see any profit gains as they 

also serve as transit ISPs and thus make money on the traffic their own clients send. 

Furthermore, many pure transit ISPs lose a considerable amount of profit as they 

have to carry less traffic. 

The services that provide localization can also be subject to insider attacks. Specif­

ically, Virtual Coordinate Systems are vulnerable to attackers that lie about their 

coordinate values or delay measurement probes. Previous defenses have been pro­

posed but must first learn what good behavior is and thus are subject to attacks 
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where malicious nodes mimic good behavior. We proposed to secure VCS by intro­

ducing invariants into the system that allow us to judge whether a node is following 

the protocol or not. We designed three invariants that are based on Newton’s three 

laws of motion. We found that with our defenses in place we are able to mitigate all 

known attacks against VCS and are able to tolerate a higher percentage of attackers 

than previous defenses. We also found that we are able to perform better than an 

unprotected VCS even in benign settings. We found that our solution is 25% more 

accurate and 68% more stable. 

We also investigated how to protect the overlays that run on top of localization, as 

they too can be vulnerable to insider attackers. While mesh-based approaches have 

emerged as the dominant architecture for P2P streaming, the performance of these 

approaches under malicious participants has received little attention. We provided 

a taxonomy of the implicit commitments made by nodes when peering with others. 

We showed that when these commitments are not enforced explicitly, they can be 

exploited by malicious nodes to conduct attacks that degrade the data delivery service. 

We presented mechanisms that can enhance the resilience of mesh-based streaming 

against such attacks. A key part of our solution is a novel reputation scheme that 

combines feedback from both the control and data planes of the overlay. We evaluate 

our design with real-world experiments on the PlanetLab testbed and show that our 

design is effective. Even when there are 30% attackers, nodes receive 92% of the data 

with our schemes, however without our schemes they only receive 10% of the data. 
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