
CERIAS Tech Report 2012-09
Security and Economic Implications of Localizing Traffic in Overlay Networks

 by Jeffrey Seibert
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

SECURITY AND ECONOMIC IMPLICATIONS OF

LOCALIZING TRAFFIC IN OVERLAY NETWORKS

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Jeffrey C. Seibert

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2012

Purdue University

West Lafayette, Indiana

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

ABSTRACT . viii

1 INTRODUCTION . 1

1.1 Motivation . 2

1.2 Thesis Focus and Contributions . 3

1.3 Thesis Roadmap . 5

2 SYSTEM AND ATTACKER MODEL 6

2.1 Internet Model . 6

2.2 Virtual Coordinate System Model 7

2.3 Mesh Overlay Model . 7

2.4 Attacker Model . 9

3	 THE INTERNET-WIDE IMPACT OF P2P TRAFFIC LOCALIZATION

ON ISP PROFITABILITY . 10

3.1 Introduction . 10

3.2 Modeling Inter-AS P2P Traffic . 14

3.2.1 The Gravity Model . 14

3.2.2 The Affinity Model . 15

3.2.3 Model Validation . 16

3.3 Modeling P2P Localization . 21

3.3.1 System Architecture Assumptions 22

3.3.2 Locality Models . 23

3.4 Measuring ISP Profitability . 25

3.4.1 An Ideal Metric for ISP Profitability 26

3.4.2 Approximating ISP Profitability 27

3.4.3 Pricing Models . 29

3.5 Impact of Localization Policies . 33

3.5.1 Profitability before Localization 34

3.5.2 Localization Deployed by Individual ASes 37

3.5.3 Internet-wide Localization Deployed 40

3.5.4 Localization Deployed by Large ASes 42

3.6 Impact of Business-Relationship Policies 44

3.6.1 Modeling Business-Relationship Based Policies 44

iii

Page
3.6.2 Best Strategy for Individual ASes 45

3.6.3 Internet Impact of Business-Relationship Based Policies . . . 47

3.7 Summary . 48

4	 SECURING VIRTUAL COORDINATES BY ENFORCING PHYSICAL

LAWS . 53

4.1 Introduction . 53

4.2 Vivaldi Coordinate System . 56

4.3 Attacks Against VCS . 57

4.4 Description of Newton . 58

4.4.1 Vivaldi as a Physical System 58

4.4.2 Using Physical Laws to Identify Invariants 59

4.4.3 Detecting Extraneous Indirect Forces 60

4.4.4 Detecting Extraneous Direct Forces 64

4.4.5 Using IN1, IN2, and IN3 to Design Newton 65

4.5 Simulation Results . 69

4.5.1 Attacks Mitigation . 71

4.5.2 Extreme Attack Scenarios 75

4.5.3 Newton in Higher-dimensional and Hyperbolic Space 78

4.5.4 Invariants under Attack . 79

4.6 Experimental Results . 80

4.6.1 Performance in Benign Networks 80

4.6.2 Attack Mitigation . 81

4.7 Summary . 82

5	 A DESIGN FOR SECURING DATA DELIVERY IN MESH-BASED PEER
TO-PEER STREAMING . 92

5.1 Introduction . 92

5.2 Mesh-Based Peer-to-Peer Streaming 96

5.3 Attacks Against Data Delivery . 97

5.3.1 Attack Model . 97

5.3.2 Attacks on the Data Plane 98

5.3.3 Attacks on the Control Plane 100

5.3.4 Our Focus . 101

5.4 A Design For Securing Data Delivery 101

5.4.1 Design Goals and Overview 102

5.4.2 Protecting Peers through Local Reputation 103

5.4.3 Source Protection with Health Monitoring 108

5.4.4 Rate-limiting Bootstrap . 110

5.5 Security Analysis . 111

5.5.1 Attacks on Data Score Calculation 111

5.5.2 Attacks on Graph Connectivity Score Calculation 113

5.5.3 Other Attacks . 114

iv

Page

5.6 Experimental Methodology . 115

5.6.1 Schemes Considered . 115

5.6.2 Attacks Considered . 116

5.6.3 Experiment Configuration 117

5.6.4 Performance Metrics . 119

5.7 Experimental Evaluation . 119

5.7.1 Robust Neighbor Selection 119

5.7.2 Source Protection . 122

5.7.3 Rate-limiting Bootstrap . 123

5.7.4 Data Delaying . 126

5.8 Summary . 127

6 RELATED WORK . 129

6.1 P2P Localization . 129

6.2 Virtual Coordinate Systems . 130

6.3 P2P Streaming . 131

7 CONCLUSION . 134

LIST OF REFERENCES . 136

VITA . 146

v

LIST OF TABLES

Table Page

3.1 Approximating the 95th percentile for incoming traffic 28

3.2 Pricing functions . 30

3.3 ASes profiting or losing by category (no localization) 34

3.4 Interpreting metric results . 35

4.1 Sensitivity on threshold for IN2 . 67

5.1 Attacks against data and control planes 99

5.2 Mechanisms for each component of system 115

5.3 Notation . 118

vi

LIST OF FIGURES

Figure	 Page

2.1	 ASes and their different business models 6

2.2	 Example of a unidirectional mesh-based streaming overlay in which the

source sends two different data chunks as denoted by the gray triangle

and orange square. Each node has an in-neighbor set and an out-neighbor

set. For example, for node 6, the in-neighbor set consists of node 7 and

the source, while the out-neighbor set consists of nodes 1 and 9. 8

3.1	 Affinity and Gravity models compared against real measurements. . . . 19

3.2	 Relative error for Affinity and Gravity models 20

3.3	 Example topology illustrating our pricing model. P95 refer to P2P traffic. 30

3.4	 Individual AS deploys localization with Single(history) locality model.

Sensitivity to pricing models. 36

3.5	 Individual AS deploys localization with Class pricing model. Sensitivity

to locality models. 38

3.6	 All ASes deploy localization with Class pricing model. Sensitivity to lo
cality models. 49

3.7	 Largest ASes deploy localization with Single(history) locality model. Sen
sitivity to pricing models. 50

3.8	 Individual AS deploys Business, Single(history) or Hybrid, with Class pric
ing model. 51

3.9	 All ASes deploy Business, Single(history), Hybrid or Individual Best, with

Class pricing model. 52

4.1	 Detecting extraneous indirect forces . 61

4.2	 Invariants shown through deployments of Vivaldi on PlanetLab. 66

4.3	 Simulation results – inflation attack . 69

4.4	 Simulation results – deflation attack 70

4.5	 Simulation results – oscillation attack 71

4.6	 Simulation results – frog-boiling attack 72

vii

Figure	 Page

4.7	 Centroid over time for frog-boiling attack 74

4.8	 Simulation results – network-partition attack 75

4.9	 Simulation results – high percentage of attackers 76

4.10 Simulation results – attacks start at the beginning 77

4.11 Simulation results – accuracy when using 4 dimensions in hyperbolic space

with 30% attackers . 78

4.12 Simulation results – attackers (30%) push the limits of the thresholds used

by the three invariants . 84

4.13 Simulation results – attackers (30%) rotate around the origin at a slow

rate . 85

4.14 PlanetLab results – no attackers . 86

4.15 PlanetLab results – accuracy of Newton for 4 days 86

4.16 PlanetLab results – inflation attack . 87

4.17 PlanetLab results – deflation attack . 88

4.18 PlanetLab results – oscillation attack 89

4.19 PlanetLab results – frog-boiling attack 90

4.20 PlanetLab results – network-partition attack 91

5.1	 Importance of peer protection. 120

5.2	 Importance of source and bootstrap protection. 121

5.3	 Evaluating the corruption factor in different scenarios. 124

5.4	 Peers running the local reputation scheme while attackers conduct data

delaying attacks. 127

viii

ABSTRACT

Seibert, Jeffrey C. Ph.D., Purdue University, May 2012. Security and Economic
Implications of Localizing Traffic in Overlay Networks. Major Professor: Cristina
Nita-Rotaru.

Overlay networks are a collection of nodes that form a virtual network on top of the

normal routing infrastructure of the Internet. These virtual networks allow nodes to

organize themselves for the purpose of transferring data in a robust manner. Overlay

networks, and in particular Peer-to-Peer (P2P) systems, have become very popular as

they provide scalable services for content distribution. However, many P2P systems

have been oblivious to network locality, thus causing an increase in the amount of

traffic that must leave an Internet Service Provider (ISP). P2P localization has then

been proposed as a solution to contain traffic to within an ISP. In this dissertation, we

first study the economic impact of actually deploying localization at an Internet-wide

scale. We then consider how insider attackers can disrupt localization services and

study how to protect such services from attacks. Finally, as insiders can also attack

the overlays that utilize localization, we propose defenses for mitigating attacks in a

high-bandwidth P2P streaming system.

http:anISP.In

1

1 INTRODUCTION

Distributed systems have become an integral part of many of the services that run

on top of the Internet. Particularly, overlay networks, such as Peer-to-Peer (P2P)

systems and Content Distribution Networks (CDN), represent a large fraction of

traffic on the Internet today as they allow for scalable distribution of content. For

example, BitTorrent [1] and YouTube [2], which represent a popular P2P and CDN

system respectively, both have millions of users.

Overlay networks are a collection of nodes that form a virtual network on top of

the normal routing infrastructure of the Internet. These virtual networks allow nodes

to organize themselves for the purpose of transferring data in an efficient and robust

manner. Overlay networks have been designed and deployed for two broad categories

of purpose, routing and content distribution.

Routing around failures on the Internet was the first motivation to implement

and use overlays [3]. However, overlays have also been used for routing in the context

of voice over IP (e.g. Skype [4]) and also for providing anonymous communications

using onion routing (e.g. Tor [5]). In general, these types of overlays provide different

means of one-to-one communication.

Content distribution has also been a major motivator in the design of overlays.

Content distribution comes mainly in two different forms: file distribution and stream

ing. The main difference between the two being that in file distribution, the entire file

must first be downloaded before using, while streaming allows media such as music or

video to be watched while downloading. Overlays used for content distribution can be

divided into two categories. The first are P2P systems, where the users who are down

loading the content also upload the content to others, expending their own resources

to provide service to others. Many P2P systems have been proposed and deployed

for file distribution, such as BitTorrent [1] and others [6] and also for streaming, such

2

as PPLive [7] and others [8–15]. CDNs are also used for content distribution, these

overlays are owned by a single entity who place servers all over the world. Then, when

a user desires to download content, they will be directed to a server that is close to

them. In CDNs, unlike P2P systems, the users do not upload data to others. CDNs

are also used for both file distribution and streaming. For example, Akamai [16] is

mainly used for file distribution and YouTube [2] also uses its own CDN to stream

videos to users.

1.1 Motivation

While many overlay networks such as CDNs, have attempted to efficiently dis

tribute content, many popular P2P systems that utilize a large amount of bandwidth

have been oblivious to network locality. This lack of network-awareness has inevitably

lead to an increase of traffic that leaves an Internet Service Provider (ISP). As many

ISPs must pay others to carry traffic for them, the extra traffic increases their costs

significantly. Due to this increase, many ISPs have tried to limit or block P2P traffic.

In response, researchers have proposed several P2P localization schemes, with the

goal of containing traffic to within an ISP. P2P localization has since become a crit

ical component for designing distributed systems as it provides better performance

by using network locality as an optimization criteria and allows them to better uti

lize network resources. As a result, localization can have a significant impact on the

global Internet. However, as P2P localization is not widely deployed on the Internet

today, it is still not well understood who will benefit from it and to what degree.

Furthermore, localization services may be subject to attack themselves, as insider

attackers may try to disrupt them for either economic gains or malicious purposes.

As localization services typically provide network-awareness, this could cause overlays

to suffer in terms of performance, as overlays may not match the underlying network

topology. Thus it is also important to ensure such services can defend against attacks.

http:anInternetServiceProvider(ISP).As

3

Finally, adversaries may target the application-level overlays that utilize localiza

tion. By hijacking control of overlay traffic, attackers can cause problems such as

denying service to users. Therefore, even though the overlay may be designed for

high-bandwidth data delivery in benign scenarios, the application could suffer by re

ceiving very little data due to malicious attackers. Creating robust overlays that can

survive such threats thus is also an important problem.

1.2 Thesis Focus and Contributions

This thesis focuses on the design and implementation of secure and robust dis

tributed systems that can continue to meet performance goals in the face of attacks.

This work is motivated by the fact that even though distributed systems are ubiq

uitous and enable a plethora of applications that are currently in use today, they

often can be manipulated by attackers, causing them to be practically unusable. The

reality and threat of attackers has caused many to consider how to integrate secu

rity principles into the design of distributed systems, while still being able to meet

the performance needs of a scalable system. This thesis centers around building

intrusion-tolerant, low-latency, high-bandwidth distributed systems and understand

ing the security-related effects of distributed systems on the Internet ecosystem.

Specifically, my thesis work has focused on three directions: (1) Internet-wide

impact of localization: as with any new disruptive technology, P2P localization can

affect the Internet ecosystem in unforeseen ways, resulting in unintended side-effects.

Through measurements of real systems combined with new models for estimating

P2P traffic, we reveal how much ISPs gain or lose profit due to P2P localization,

which indicate that some ISPs will have incentive to subvert P2P localization. (2)

Secure localization services: how to build the services that provide localization

properties while still being able to tolerate malicious participants has not been well

understood. My work resulted in an intrusion-tolerant virtual coordinate system that

takes advantage of physical laws to withstand advanced attacks. (3) Secure archi

4

tectures for peer-to-peer streaming: the applications that rely on localization

services can also be susceptible to attack. Such is the case for peer-to-peer streaming,

a high-bandwidth application, that due to its stringent real-time deadlines is partic

ularly vulnerable. We designed a secure architecture which can continue to provide

good performance even while under attack.

We summarize our key contributions:

• We develop models and methodologies by which to understand how P2P lo

calization will effect residential and transit ISPs. We propose a new model to

derive P2P inter-AS traffic matrices. Through large-scale measurements of a

P2P system and real packet-level traces of P2P traffic from two ISPs we vali

date the model. We then evaluate how much traffic can an AS actually reduce

when localization occurs. Furthermore, we apply BGP inferred AS-paths and

the business relations between these ASes to understand how this reduction will

affect the profitability of ASes.

• We describe how to protect localization services from insider attacks by identi

fying invariants in unstructured overlays. We accomplish this by leveraging the

physical abstraction that a popular Virtual Coordinate System (VCS) is based

on, deriving three invariants from Newton’s three laws of motion. We show how

to use the three identified invariants to detect and mitigate both well-studied

basic attacks, as well as more recent advanced attacks. We conduct exten

sive simulations and real-world experiments on the PlanetLab testbed [17] to

demonstrate that our solution is able to mitigate all known attacks. We also

find that, even with no attackers, our solution has better performance than the

unprotected VCS, i.e. our solution is 25% more accurate and 68% more stable.

• We present the design of a mesh-based P2P streaming system that can defend

against insider attacks. To systematically show how a malicious node could

attack the system, we developed a taxonomy of implicit commitments that

a node makes with other entities in the system. We then show how, when

not explicitly enforced, attackers can break these commitments and attack the

5

system. Specifically, we consider an important class of attacks where malicious

nodes deliberately become neighbors of a large number of nodes and do not

upload data to them. We present mechanisms that can enhance the resilience

of mesh-based streaming against such attacks. We evaluate our design with

real-world experiments on PlanetLab [17] and show that our design is effective.

Even when there are 30% attackers, nodes can receive 92% of the data with our

schemes compared to 10% of the data without our schemes.

1.3 Thesis Roadmap

The rest of this thesis is organized as follows. A description of our system and

attacker model is in Chapter 2. We conduct a detailed simulation study to examine

how localizing P2P traffic within network boundaries impacts the profitability of an

ISP in Chapter 3. We demonstrate how to secure a localization service, that provides

latency estimation, against insider attacks aiming to disrupt them in Chapter 4. We

describe a scheme for securing data delivery for high-bandwidth streaming systems

that can utilize localization in Chapter 5. We present related work in Chapter 6 and

we present our conclusions in Chapter 7.

6

2 SYSTEM AND ATTACKER MODEL

We now describe our system model for overlay networks, specifically a mesh overlay.

We first though describe our model for the underlay that they run on top of, namely

the Internet, and also our model for virtual coordinate systems, which provides a

localization service for overlays. We also describe our adversarial model by which we

study attacks on overlay networks.

2.1 Internet Model

The Internet consists of Autonomous Systems (AS) which participate in the BGP

routing protocol, facilitating global connectivity on the Internet. An ISP is made

up of at least one, but possibly many, ASes. Each AS has at least one of three

business models, which we depict in Figure 2.1. The first model is a content provider,

exemplified by Google, who provides services and media to end users. The second

model is a residential AS, exemplified by Comcast, who allows end users to access the

Internet. The last model is a transit AS, exemplified by Level 3, who interconnects

other ASes and carries traffic for them.

Google

Microsoft

Amazon

Level 3

Qwest

Cogent

Comcast

Rogers
Cable

Cox

Transit Residential Content

Figure 2.1. ASes and their different business models

7

As ASes interconnect, they must decide on who must pay who, if at all. Therefore

ASes decide if they should form a “peering” relationship, where the ASes carry each

others traffic for no cost, or form a “customer-provider” relationship, where the cus

tomer pays the provider for traffic. Typically, if a residential and transit AS connect,

the former will be a customer of the latter.

2.2 Virtual Coordinate System Model

Virtual Coordinate Systems (VCS) and other localization services similar to them,

provide network-awareness to the overlays that run on top of them. VCS accomplish

this by embedding the Internet onto a coordinate plane. In a VCS of n nodes, each

node will maintain a coordinate value and can estimate its RTT to any other of

the n nodes by calculating a distance function on two coordinate values. While the

distance function is often Euclidean, the coordinates can also be embedded into a

non-Euclidean space such as a hyperbolic space.

Each node maintains information about a small set of m reference nodes. Specif

ically, it will ping each of these nodes periodically, requesting their coordinate and

possibly other auxiliary values. At the same time the node will measure their round-

trip time (RTT). These values will allow the node to iteratively update its coordinate

through an algorithm specified by the VCS.

2.3 Mesh Overlay Model

An mesh overlay consists of a set of n nodes, where each node maintains a set

of neighbor nodes. These neighbors form virtual links, which are unidirectional, and

collectively form the topology of the network. An example of a mesh overlay in

illustrated in Fig. 2.2. Neighbors are selected based on application-specific criteria,

such as the latency or bandwidth that the node can provide. Neighbors that provide

data to a node are called in-neighbors , neighbors that a node sends data to are called

out-neighbors .

8

5

10

2

6

1

9

3

8

7

4
B

Overlay
Node
Bootstrap
Node
Source
Data

Legend

Figure 2.2. Example of a unidirectional mesh-based streaming overlay
in which the source sends two different data chunks as denoted by the
gray triangle and orange square. Each node has an in-neighbor set
and an out-neighbor set. For example, for node 6, the in-neighbor set
consists of node 7 and the source, while the out-neighbor set consists
of nodes 1 and 9.

9

To join the overlay network, a node contacts a bootstrap node, which will respond

with a subset of nodes already inside the network. The joining node can then establish

neighbor links with the reported nodes and participate in the particular protocols of

the overlay. We assume that for overlay networks designed for content distribution,

there is a trusted source from which data originates. Other than the source, each

node has similar functionality and can perform any role that the node needs, such as

that of sending or receiving data.

2.4 Attacker Model

We consider insider attackers that have access to all necessary credentials, such as

cryptographic keys, to be authenticated into the system and participate in the overlay

network. These insiders gained access to keys and possibly stored data through

compromising a node or because there is an open access model where anyone can join

the system.

While some P2P systems provide incentives so that rational nodes behave well [1]

we consider a Byzantine attacker that can behave arbitrarily. This is due to the fact

that while faithful participation by rational nodes can be brought about by proper

incentives, Byzantine attackers do not necessarily respond to incentives and can often

severely affect the performance of the system. We assume that attackers can collude

with other attackers. We assume a bounded number of attackers f , where f < n.

10

3 THE INTERNET-WIDE IMPACT OF P2P TRAFFIC LOCALIZATION ON

ISP PROFITABILITY

The last decade has seen a rapid growth in popularity of peer-to-peer (P2P) systems,

spanning diverse applications such as content distribution (e.g., BitTorrent, eMule,

Gnutella), video streaming (e.g., PPLive, Coolstreaming), and audio conferencing

(e.g., Skype). However, the success of these applications and the consequent growth

in P2P traffic has raised concerns among Internet Service Providers (ISPs), which

have to pay a high cost for carrying traffic while receiving little revenue. While there

is evidence that P2P traffic is decreasing [18], it still represents today a significant

fraction of the Internet traffic (more than 18% according to [18] and more than 50%

in some of our datasets), and it is perceived as wasteful of network resources such

as expensive peering link bandwidth. In order to reduce these costs, different P2P

localization techniques have been proposed [19–25]. The key idea behind these tech

niques is to limit the amount of traffic entering the ISP by enforcing a preference in

exchanging content among peers in the same ISP. In this chapter we examine how

localizing P2P traffic within network boundaries impacts the profitability of an ISP.

3.1 Introduction

Several previous works have shown the benefits of localization for both users and

providers [19,21], while other works question the possible benefits for users [26]. How

ever, all previous studies consider a partial view of the problem, e.g., by showing the

benefits for a single Autonomous System (AS) or running a limited set of experiments

involving different ASes. Therefore, it is unclear whether localization is necessarily

beneficial to all ASes, how the adoption of localization by one AS impacts other ASes,

11

and how the traffic carried by various ASes is altered as localization techniques are

widely adopted.

Evaluating the impact of localization policies when applied on an Internet-wide

scale is a challenging task given the complexity of the relationships that exist between

different ASes. Specifically, because ASes play various roles from a business point of

view, they may experience different effects from the use of localization policies. For

example, some ASes (referred to as residential ASes), provide Internet service to end-

users, and P2P clients are found in these ASes. Other ASes (referred to as transit

ASes) provide the service of connecting other residential and transit ASes together.

However, many transit ASes also provide residential services, and a clean separation

between the two types does not exist today. From a business point of view, ASes

form “customer-provider” relationships, where a customer AS will pay for the service

a provider AS offers, or “peering” relationships, where two ASes will agree to carry

each others traffic for free.

Given the current structure of the Internet, localization of traffic is intuitively

beneficial for purely residential ASes, and it will have a negative impact on the rev

enues of purely transit ASes. However, we have found that over 1,200 residential

ASes also provide transit service to at least one other AS. Thus, for many ASes it

is not obvious how localization may impact them. In addition, as the ultimate goal

of ASes is cutting costs and increasing revenue, there are alternative approaches to

simply localizing traffic inside an AS, and such approaches have not been explored in

previous work. For example, ASes could prefer to exchange traffic with peering ASes.

Furthermore, to increase revenue, ASes could prefer to push traffic to customers’ ASes

and avoid providers’ ASes.

Our goal in this chapter is to gain deeper insights into such Internet-wide implica

tions of P2P traffic localization on ISP profits, and develop simulation methodologies

to systematically explore the issues. We explicitly focus our work on the benefits

and drawbacks for ISPs, though we note that the use of localization can also impact

user performance. Our simulations are based on detailed models of (i) inter-AS P2P

12

traffic; (ii) inter-AS routing; (iii) localization policies; and (iv) pricing policies that

predict the impact of changes in traffic on ISP profit.

We model inter-AS P2P traffic by leveraging the model proposed in [27], perhaps

the only inter-AS traffic model that is available today, in contrast to intra-AS traf

fic which has been widely studied. We present refinements to the model presented

in [27] and show that the refined model has better accuracy. The model requires the

knowledge of the P2P population in each AS as input, which we estimate considering

BitTorrent, one of the most popular and widely used P2P systems. Our estimation is

based on a dataset of over 138 million BitTorrent peers participating in 2.75 million

torrents, obtained by crawling a popular tracker. While our evaluations are based on

BitTorrent, our methodologies are general, and apply to other P2P systems as well.

Conducting our simulation study requires models that can predict the reduction in

P2P traffic entering/exiting an ISP when localization techniques are employed. The

possible traffic reduction depends on a wide range of factors including (i) the popula

tion of peers inside an AS, (ii) the extent to which peers download similar content, and

(iii) the upload capacities of peers inside the ISP relative to those outside [28]. Rather

than focusing on a specific localization model, we conduct a sensitivity analysis to a

range of models.

As a last step, translating a change in traffic volumes into a change in profits

for the ISP is a challenge. While the total profitability of an ISP depends on many

factors, such as SLAs, backhaul costs, and private agreements, due to the difficulty of

modeling this, we focus only on transit costs. Typical pricing models for transit costs

in ISPs are based on the 95th percentile of traffic volumes [29], with the price per

Mbps itself showing significant geographical variation. Further, the pricing models

depend on total volumes of traffic across all applications rather than P2P traffic

volume alone. However, while we are able to estimate P2P traffic volumes, total

traffic volumes are unavailable to us. Therefore, we consider multiple pricing models

and develop conservative and optimistic predictions of the change in profits for an

ISP due to P2P traffic.

13

Armed with these models, we seek to answer several questions such as: (i) Do ASes

necessarily benefit by employing localization? How significant are the benefits? (ii)

How is the profitability of various ASes impacted if localization policies are adopted by

an increasing fraction of ASes at the same time? What is the impact of global adoption

of such policies? (iii) Are there any better policies that can be more profitable to

some ASes than a simple localization policy? Given the complexity of the real-world

factors that our models seek to capture, there are unavoidable simplifications that

must be made. Thus, rather than “absolute” answers to these questions for specific

“point-models”, our focus is on understanding the sensitivity of our results, and how

the trends change with various localization and pricing models.

Our results show that the benefits of localization must not be taken for granted.

Some of our key findings include: (i) residential ISPs can actually lose money when

localization is employed and some of them will not see increased profitability until

other ISPs employ localization; (ii) the reduction in costs due to localization will be

limited for small ISPs and tends to grow only logarithmically with client population;

and (iii) some ISPs can better increase profitability through alternate strategies to

localization by taking advantage of the business relationships they have with other

ISPs. Overall, we believe our findings have important implications for ASes, and both

our findings, as well as the methodologies and models that we develop in this chapter

are important contributions in their own right.

The remainder of the chapter is organized as follows: Section 3.2 introduces our

P2P inter-AS traffic model and its validation. Section 3.3 and Section 3.4 discuss

different localization policies and the pricing models we use in the chapter. Section 3.5

and Section 3.6 show our findings under different localization scenarios. Finally, main

findings of the chapter are summarized in Section 3.7.

14

3.2 Modeling Inter-AS P2P Traffic

We first describe the model we used to predict an inter-AS P2P traffic matrix. We

leverage the gravity model which has been previously used to estimate both intra

AS [30, 31] and inter-AS [27] traffic matrix. As our focus is on inter-AS P2P traffic,

we first review the model introduced in [27], which we refer to as the Gravity model,

then propose a new refinement to improve P2P traffic prediction accuracy, which we

refer to as the Affinity model.

3.2.1 The Gravity Model

Inter-AS traffic demand has been modeled only once before in the work by Chang

et al. [27] which applies the well-established gravity model to an inter-AS setting.

The model accounts separately for P2P and web traffic. Below we describe only the

P2P component of the model. In the Gravity model, the traffic Xij sent from AS i

to AS j is defined as follows:

f(RRA(i))f(RRA(j))
Xij = , (3.1)

RBA(i, j)β

where f is the monotonically decreasing function f(x) = 1/x, RRA(i) is the rank of

AS i in the list of ASes sorted by decreasing peer population, and RBA(i, j) is the

rank of the bottleneck AS between i and j in the sorted list of ASes by capacity (the

bottleneck AS is the smallest transit AS that is on the AS path between i and j).

This model stems from the intuition that the higher the population of peers in an

AS (i.e., the higher is its rank), the larger the aggregate of traffic the AS exchanges.

In addition, if the path between two ASes has little capacity, then the amount of

traffic will be consequently reduced. β is a parameter that is used to better weight

the effect of bottlenecks along the path. In [27] β = 0.1 is suggested, which makes the

bottleneck bias almost negligible. This implicitly suggests that the volume of P2P

traffic exchanged between ASes is mainly driven by the peer population of each AS.

15

3.2.2 The Affinity Model

Given the world-wide nature of the Internet and its diversity of users and available

content, intuition suggests that P2P traffic will be driven not only by the population

size of ASes, but also by the cultural and linguistic makeup of the users inside the

ASes, or the “affinity” between ASes. Thus, if peers of two ASes are not interested

in the same content, the traffic exchanged among them will be marginal, even if the

number of peers in each AS is large. For example, if AS-1 and AS-2 are located in

Italy, and AS-3 is located in China, it is expected that large traffic will be exchanged

between AS-1 and AS-2, while little traffic will flow between AS-3 and AS-1, AS-2.

We augment the Gravity model to also account for the affinity between ASes.

We estimate the affinity between ASes using the cosine similarity distance [32]. The

cosine similarity results in a value between 0 (no similarity) and 1 (perfect similarity)

that is the cosine of the angle between two vectors V̄i and V̄j , i.e.,

¯ ¯Vi · Vj
Cos(i, j) = . (3.2) ¯ ¯ Vi Vj

In our case, each vector V̄i represents the “content distribution” in AS i, whose

components report the number of peers interested in a given content that are present

in AS i. Thus, if two ASes have many peers interested in the same content, then

they will have high affinity. Completing the previous example, consider as content

an Italian movie, a Chinese song, and an English book. Assuming V̄1 = (10, 1, 3),

¯ ¯V2 = (100, 2, 30) and V3 = (0, 10, 3), we have Cos(1, 2) = 0.997 while Cos(1, 3) =

0.173, which reflects the intuition that Italian ASes prefer to exchange traffic among

themselves rather than with the Chinese AS.

Once we have calculated the affinity between two ASes we can combine it with

the peer population in each AS to form a gravity model. Thus, we define our Affinity

model as follows:

Xij = P (i)P (j)Cos(i, j), (3.3)

where P (i) and P (j) are the population of AS i and AS j.

16

While the Affinity model could include a preference related to the upload capacity

of peers, we chose to include only the affinity among ASes due to client’s interest in

the same content. We superpose a bias in peer selection due to performance as part

of the locality models in Section 3.3.2.

3.2.3 Model Validation

We first describe the datasets we use as input to the Affinity model and also use

throughout the chapter. We then present results that compare our model with the

Gravity model.

BitTorrent crawl snapshots: The Affinity model requires as input the peer pop

ulation P (i) and the content distribution vectors V̄i. To estimate them, we rely on

active measurements obtained by crawling a very popular BitTorrent tracker named

“OpenBitTorrent” [33]. As the tracker is not associated with a particular torrent pub

lishing web site and it provides an easy way for users to publish content, it attracts

users from all over the world.

We took snapshots of BitTorrent activity every hour for a period of 8 days during

May 2010. A total of 192 different snapshots have then been collected, which will

be used throughout this chapter. In each snapshot, we crawled all torrents that had

at least one active downloader and for every torrent we requested peers from the

tracker until we received at least 95% of all participating peers. Since many users

are behind NATs, we consider a peer to consist of a unique (IP, port) combination.

This allows us to obtain information about which peers are actually participating in

which torrent, i.e., the peer population by content. To obtain the peer population

per AS, we map IP addresses to the corresponding AS by using the service provided

by Team Cymru [34]. At the end, for every snapshot we obtain for each AS i the

¯population P (i) and content distribution Vi, which allow us to compute 192 global

AS level traffic matrices.

17

While a detailed characterization of these BitTorrent datasets is out of the scope

of this chapter, we briefly summarize their size which reflects their generality. A

normal snapshot consists of over 5 million peers, 154 countries, 12,000 ASes, and 1

million torrents. Over the 8 days, we saw more than 138 million distinct peers in

over 2.75 million torrents. One interesting finding about the dataset which will be

instrumental later is the fact that each torrent population size follows a heavy tailed

distribution with a small portion of very large torrents, but also a large number of

torrents with less than 100 peers. Peer distribution over ASes is instead more biased

toward larger ASes which host most of the peers, e.g., the largest 1,600 ASes account

for 97% of peers.

Inter-AS topology and routing: The knowledge of the AS paths is instrumental

to predict the volume of traffic on individual inter-AS links. Besides, they are also

necessary to compute RBA(i) for the Gravity model. First, we need a map of the AS

topology which includes the business relationships between ASes. We use CAIDA’s

AS map [35] augmented with peering edges from recent research on mapping Internet

Exchange Points (IXPs) [36]. Second, we need to know the AS-level routing. To this

end, we use the algorithm proposed by Qiu et al. [37] to determine valley-free paths

between residential ASes. Qiu et al.’s algorithm uses Routing Information Bases

(RIBs) alongside the AS topology to determine the most likely route between ASes.

We use RIBs provided by the Oregon’s RouteViews Project [38] that are from the

LINX, KIXP, PAIX, and Equinix Ashburn IXPs. This set of routing table dumps

represents over 329,000 prefixes from 33,910 ASes.

Leveraging on the fact that the largest 1,600 ASes according to peer population

alone account for 97% of all the P2P traffic that is generated by the Affinity model,

we limit our evaluation to only this subset. We also include all the transit ASes that

belong on any AS path between these residential ASes, for a total of 2,067 ASes. In

this chapter, we define a residential AS as having at least one peer in the BitTorrent

crawl and a transit AS as having at least one customer AS in the CAIDA map. Thus,

18

an AS could be both a residential and a transit AS. More details about the ASes are

deferred to Sec.3.5.

Packet traces from large ISP datasets: To verify the accuracy of the Affinity

model traffic prediction, we compare its output against packet-level traces from six

vantage points scattered in the US and across three different European countries.

Each vantage point monitors several thousands of users. For convenience, we name

the vantage points ISP-1 to ISP-6. For each ISP, all packets going to and coming from

all the hosts in the Points of Presence (PoP) were passively monitored for several

months. An advanced traffic classification tool based on deep packet inspection and

advanced statistical classifiers [39] was used to produce the per-application volume of

traffic sent by hosts in the PoP to each different AS, i.e., an actual row of the traffic

matrix for each given application.

We show results from comparing models in Fig. 3.1, where we focus on a one-day

long trace from ISP-1 and a one-hour long trace from ISP-2. We use the BitTorrent

snapshots that refer to the same time of day that the ISP traces are from. Similar

results were obtained for the rest of the traces.For each graph, we report the volume

of traffic sorted in decreasing order, considering actual measurements (solid line), the

Gravity model prediction (small dot line), and the Affinity model prediction (large

dot line). As both the Gravity and Affinity models produce unit-less output, we scale

them and the ISPs’ measured traffic volumes so they are comparable to a standard

unit-less metric by minimizing the mean square error. We also show the corresponding

relative error values of both models in Fig. 3.2.

Fig. 3.1(a) refers to BitTorrent traffic as seen from ISP-1. The Gravity and Affinity

models are very similar until rank 300, at which point the Gravity model severely

overestimates the traffic demand, while the Affinity model better captures the sudden

decrease of traffic sent by ISP-1 clients to the smaller ASes. Similarly, we compare

BitTorrent traffic seen from ISP-2 in Fig. 3.1(b). Again, the Affinity model is able to

better match the traffic demand trend for most ASes, while the Gravity model shows

a much more regular slope, clearly missing the content bias induced on exchanged

19

U
n
it

s
o
f

T
ra

ff
ic

U

n
it

s
o
f

T
ra

ff
ic

U

n
it

s
o
f

T
ra

ff
ic

 100000

 10000

 1000

 100

 10

 1

 0.1

ISP-1
Gravity
Affinity

1 10 100 1000 10000

Rank

(a) BitTorrent dataset from ISP-1.

 1e+06

 100000

 10000

 1000

 100

 10

 1

 0.1

ISP-2
Gravity
Affinity

1 10 100 1000 10000

Rank

(b) BitTorrent dataset from ISP-2.

 1e+06

 100000

 10000

 1000

 100

 10

 1

 0.1

ISP-1
Gravity
Affinity

1 10 100 1000 10000

Rank

(c) eMule dataset from ISP-1.

Figure 3.1. Affinity and Gravity models compared against real measurements.

20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F
ra

ct
io

n
 o

f
A

S
es

Gravity
Affinity

0 500 1000 1500 2000 2500 3000

Relative Error

(a) BitTorrent dataset from ISP-1.

 0 200 400 600 800 1000

Relative Error

(b) BitTorrent dataset from ISP-2.

 0 500 1000 1500 2000 2500 3000

Relative Error

(c) eMule dataset from ISP-1.

Figure 3.2. Relative error for Affinity and Gravity models

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F
ra

ct
io

n
 o

f
A

S
es

Gravity
Affinity

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F
ra

ct
io

n
 o

f
A

S
es

Gravity
Affinity

21

traffic. For the relative error values in Fig. 3.2(a) and 3.2(b), the Gravity model is

only very accurate for 50% of ASes, while the Affinity model is accurate for 70% and

60% of ASes, respectively.

Finally, to show that the Affinity model is not specific to BitTorrent but can be

generally applied to other P2P protocols, Fig. 3.1(c) shows results considering traffic

volumes sent by ISP-1 clients, but using eMule as the P2P application. The same

cosine similarity values as obtained from the BitTorrent snapshots are used, since the

cosine similarity values catch the cultural and linguistic interests of peers, and are

not expected to change across different P2P systems. The per AS eMule population

has been estimated from the eMule traffic in ISP-1 instead. Also in this case, results

show that the Gravity model overestimates the actual traffic sent to each AS, while

the Affinity model closely matches the traffic demand even up to high ranking values.

This difference is seen in Fig. 3.2(c), where the Gravity model is only very accurate

for 30% of ASes, but the Affinity model is accurate for 60% of ASes.

We have conducted other experiments to verify the goodness of the Affinity model,

considering different times of the day, different days, transmitted and received traffic,

different P2P systems and different crawls from different trackers. In all cases, the

Affinity model provided more accurate estimates than the Gravity model. Moreover,

the cosine similarity proved to be very robust, so that it can be used to model several

P2P applications like BitTorrent or eMule.

3.3 Modeling P2P Localization

In this section we present models to predict the reduction in P2P traffic exchanged

by an ISP if localization techniques are employed. We are not attempting to model

particular P2P systems in this section, but simply what could happen if localization

occurs.

A single model may not be sufficient because P2P traffic reduction depends on a

variety of factors such as (i) the population of peers inside an AS, (ii) the extent to

22

which peers download similar content, and (iii) the upload capacities of peers inside

the ISP relative to those outside [28]. Hence, we consider a set of locality models

and show sensitivity to them. Validation of these models is a difficult task, since this

requires measuring P2P traffic aggregates from a large number of ISPs around the

world, from different ISP categories (e.g., residential and transit), and with different

upload capacities of clients. Instead, in later sections, we show trends of the impact

that P2P localization may have on ISPs and perform extensive sensitivity analysis to

the various localization policies.

For each model we determine the ratio of traffic received by an AS j after local

ization versus before localization, which we call αj. In other words, αj is the fraction

of leftover traffic after localization that still will be received by peers in AS j. Intu

itively, a good localization policy will result in a small αj value. The traffic Lij sent

by peers in AS i to peers in AS j after localization is then simply:

Lij = αjXij , (3.4)

where Xij is the traffic demand generated by the Affinity model in Equation 3.3. As

we have multiple snapshots from which we generate traffic matrices, we also calculate

αj for each snapshot. For simplicity though, we drop the explicit notation on time in

the following.

3.3.1 System Architecture Assumptions

We assume that there is a localization technique in place that allows peers to

find other peers that are in the same AS. For example, peers contact an “oracle”

which allows them to obtain an ordered and possibly filtered list of peers interested

in the same content. Peers then start exchanging data with the suggested peers

according to the P2P trading algorithm. Individual ASes can impose localization of

traffic independently of what other ASes do, e.g., some may deploy an oracle, others

may not. This scenario is compatible with both the P4P iTracker [19] and the IETF

ALTO [40] proposals.

23

We further assume that an AS cannot influence peers outside of its own AS, so

that external peers can still connect to and download from internal peers, i.e., an

AS cannot stop external peers from downloading content from peers within the AS.

This implies that transit ASes do not deploy traffic shaping on traffic that does not

originate from their own AS, but only rely on the oracle to enforce localization policies.

Furthermore, this implies there is some altruism in the system, so that clients in an

AS that do not localize traffic can still receive the content, even if every other AS

does localize traffic. Therefore, for an AS that does localize, its outgoing P2P traffic

can be greater than its incoming traffic.

3.3.2 Locality Models

• Single(no history): This model captures a pessimistic scenario where for every

crawl, the file must be downloaded again by every peer from outside the AS. That is,

there are no internal seeds available.

The model computes the leftover traffic assuming only one single copy of the con

tent will need to be downloaded from outside the AS. Once the initial copy has entered

the AS, content will be exchanged only among local peers. For example, assume there

are Pj(k) = 10 peers from AS j downloading content k; when localization is used,

only one copy would need to be downloaded, resulting in 1/Pj(k) = 0.1 leftover traf

fic. Thus, the more popular a piece of content is, the less leftover traffic there will be.

Given a snapshot, for every AS j that has clients in Nj distinct torrents, we estimate

αj as follows:
1

αj = Nj . (3.5)
"Nj

k=1 Pj(k)

• Single(history): This model captures a more realistic model where we consider

that the first time a peer appears in a torrent in our crawls, it is considered a leecher,

and if it appears again in that torrent in later crawls we consider it to be a seeder.

To find out how sensitive αj actually is to content availability, we simply keep track

of what peers have been in which torrents over time. For a given torrent, consider a

24

peer that has been seen at time slot t for the first time. When it reappears in time

slot t ′ > t, it is considered a seed. That is, if the peer has been in a torrent in the

past, it is marked as a seed in future time slots. Formally, for a snapshot t and AS

j, let Sj(k) be the number of seeds in torrent k and let Tj be the number of torrents

that have some seed in them. We can then calculate αj with the following equation:

Nj − Tj
αj =

"Nj
. (3.6)

k=1(Pj(k) − Sj(k))

• Single(persistent): This model represents an optimistic scenario, where once a

single peer inside an AS downloads a file, then no other peer inside the AS will need

to download from outside the AS again, since the initial peer remains as a seeder

for everyone else. Thus, content k is made available to local peers forever after it

has been downloaded once from the outside at time slot t. We use Equation 3.6 to

calculate αj for this model, but assume at least one seed is always present for each

time slot t ′ > t.

• Perf(no history): We also consider policies that include a performance bias since

peers might prefer to download from nodes with a higher upload capacity than those

inside its AS. The first performance model captures the scenario when a peer prefers

to download content from peers in its own AS, unless there exists external peers

with much higher upload capacity. A similar policy has been examined in [28]. We

compute E(j, k), the expected number of copies of content k downloaded from outside

AS j.
U(j, k)

E(j, k) = Pj(k) , (3.7)
P (k)

"

where P (k) = j Pj(k) is the total number of peers interested in content k, and

U(j, k) is the number of external peers interested in content k that have an average

upload capacity higher by a factor of γ than peers in AS j. By averaging over all

content in which AS j participates we have:
"Nj

k=1 max(E(j, k), 1)
αj =

" Nj
, (3.8)

k=1 Pj(k)

where max(E(j, k), 1) states that at least one copy must be downloaded.

25

For the evaluation of this scheme, we use the iPlane [41] dataset, which provides

an estimate of the access bandwidth of several tens of thousands of /24 networks

in the Internet. To account for factors that could make the real and the estimated

capacities differ, such as congestion of intermediate links, we select a remote peer

over a local peer only if the access bandwidth of the remote peer is at least 10 times

higher than the bandwidth of the local peer. Furthermore, any remote peer for which

we do not have access bandwidth information will not be preferred over a local peer.

• Perf(history): Similar to the previous model, if an internal seed exists at time

t, then peers do not need to download anything from outside the AS. The following

equations are used to calculate αj:

U(j, k)
E(j, k) = (Pj(k) − Sj(k)) (3.9)

P (k)

"Tj
"NjE(j, k) + max(E(j, k), 1) k=1 k=Tj +1

αj = , (3.10)
"Nj (Pj(k) − Sj(k)) k=1

• Perf(persistent): We again assume that content persists forever after being down

loaded once from outside the AS. We use Equation 3.10 to calculate αj for this sce

nario, but assume a seed always persists after the first download.

3.4 Measuring ISP Profitability

The total profitability of an ISP depends on many factors. Due to the difficulty

of accurately modeling all the costs associated with carrying traffic, such as backhaul

costs, we do not attempt to do so. In this chapter we focus on the portion of the

profits/expenses that are related to money gained/paid due to the transit costs of

carrying P2P traffic only. We define our ideal metric for achieving this goal and

describe how we evaluate it using our pricing models.

� �

26

3.4.1 An Ideal Metric for ISP Profitability

A customer ISP i typically gets charged by a provider ISP j based on the 95th

percentile (P95) volume of traffic exchanged on an individual link [29]. This is done by

sampling the inbound and outbound volume of traffic every 5 minutes for the duration

of a billing period, which is usually 30 days. Let Vij(t) and Vji(t) respectively denote

the outbound and inbound volumes for ISP i at time instant t. After sorting these

values, P95 is chosen from both the outbound and inbound traffic; let these terms

be denoted as P95(Vij) and P95(Vji). Let CVij be the charging volume, which is the

actual volume that charges are computed on. Typically, CVij is determined by taking

the maximum of the inbound and outbound P95s:

CVij = max(P95(Vij), P95(Vji)). (3.11)

Alternatively, while not widely used, in some cases it is determined by taking the

average:

CVij = (P95(Vij) + P95(Vji))/2. (3.12)

CVij is then used as input to a pricing function, which is typically non-decreasing, the

output of which is a dollar amount that the customer owes the provider. Assuming a

linear pricing function (see Sec 3.4.3 for more details), let pij be the price per Mbps

for the link between i and j, then the amount that ISP i owes ISP j is pijCVij .

Let Pi and Ci denote the set of providers and customers of ISP i, respectively.
" "

Then, the profit of the ISP i prior to localization is pikCVik − pikCVik.k∈Ci k∈Pi

Thus far we have considered the profit with respect to a certain set of traffic

volumes. However, if these traffic volumes change due to P2P localization policies,

we can also calculate the increase in profits after this occurs. Formally, let δ(x) denote

the change in a variable x when localization is employed. Then,

δ(profit) = pikδ(CVik) − pikδ(CVik). (3.13)
k∈Ci k∈Pi

27

To study how localization affects profit due to P2P traffic, we normalize δ(profit)

to the profit before localization that is attributed to P2P traffic (profitp2p,before), i.e.,

profit is computed exactly as before, except only the portion of traffic that is P2P is

considered. Thus, we have:

δ(profit)
profit increase = . (3.14)

profitp2p,before

Finally, if profitp2p,before is negative (i.e., the ISP is originally losing due to P2P

traffic), we simply normalize by the loss instead of the profit. Thus, if lossp2p,before =

−profitp2p,before, we have:

δ(profit)
loss reduction = . (3.15)

lossp2p,before

3.4.2 Approximating ISP Profitability

Ideally, Equation 3.13 should be evaluated considering the total amount of traffic

flowing across links. Unfortunately, modeling total inter-AS traffic is a hard problem.

To the best of our knowledge, only [27] addressed this problem. However, that model

is not easily applicable to our context as it assumes the ratio of P2P to other traffic

is known for all ASes which varies widely and is difficult to ascertain.

To handle this, we approximate the ideal metric by assuming that the change in

P95 of total traffic volume on localization is the same as the change in P95 of P2P traf

fic volumes on localization, in each of the inbound and outbound directions. Formally,

let Vp2p,ij(t) and Vp2p,ji(t) respectively denote the inbound and outbound volumes of

P2P traffic that ISP i sends to or receives from ISP j at time instant t. Then,

we assume that δ(P95(Vij)) = δ(P95(Vp2p,ij)), and δ(P95(Vji)) = δ(P95(Vp2p,ji)).

With this assumption, the approximate change in charging volume on localization

is simply computed as follows: (i) if charging volumes are computed based on the

maximum, as in Equation 3.11, then δ(CVij) = δ(P95(Vp2p,ij)) or δ(P95(Vp2p,ji)), de

pending on whether the AS is inbound dominated or outbound dominated; and (ii)

28

Table 3.1

Approximating the 95th percentile for incoming traffic

Trace Real

[Mbps]

Approximation

[Mbps]

Relative

Error [%]

P2P

Traffic [%]

ISP-1 1221.8 1247.5 2.10 48.6

ISP-2 1782.7 1660.9 6.83 45.1

ISP-3 1053.1 1029.6 2.23 53.02

ISP-4 1845.6 1765.3 4.35 42.5

ISP-5 1385.7 1347.1 2.79 50.4

ISP-6 1350.6 1173.6 13.1 6.5

if charging volumes are computed based on the average, as in Equation 3.12, then

δ(CVij) = (δ(P95(Vp2p,ij)) + δ(P95(Vp2p,ji)))/2.

Intuition suggests that the daily traffic periodicity is due to human habits. During

the day, more users are connected to the Internet and traffic grows. There is thus a

correlation between the time at which the P95 happens and the time at which most

users are online. For P2P traffic, users run P2P applications when they are online.

It is thus likely that the P95 of total traffic happens closely to when the P95 of P2P

traffic is reached [42]. Table 3.1 compares the P95 on the inbound traffic observed on

the different ISP traces described in Sec. 3.2.3 over a one-week long period of time.

The second column shows the actual P95 of total traffic while the third column shows

the total traffic observed at the time when the P95 of P2P traffic occurs. The fourth

column reports the relative error and the fifth column reports the percentage of P2P

traffic from the total traffic. As can be seen, the relative error ranges between 2% to

13% depending on the ISP link. Furthermore, the larger the fraction of P2P traffic

in the monitored ISP, the smaller the relative error. We repeated the analysis for

outbound traffic. The relative error was even smaller since the fraction of outbound

P2P traffic was higher than 80% for all ISPs and thus P2P traffic dominates the P95.

29

Second, as we have seen that P2P traffic volumes prior to localization tend to

be correlated to total traffic volumes, we now argue that the trend will continue

after localization. We have found in our datasets that the ratio of P2P traffic after

localization to P2P traffic before localization does not vary much over time for all

links, and locality models. Thus, it is reasonable to assume that the time the P95

occurs after localization does not shift. For instance, when the Single(history) locality

model is used, for all links, the standard deviation of the ratio across various time

snapshots (σ) is very small. In particular, 58% of links have σ < .05 and 90% have

σ < 0.1.

Overall, the discussion above suggests that the errors introduced due to our ap

proximations will be limited in practice, and our prediction of the impact of localiza

tion on ISP profitablity will be reasonable.

3.4.3 Pricing Models

We now discuss the models we use to compute the pricing function, and charging

volumes. While pricing functions are often non-decreasing piece-wise linear [29] they

are specific to each provider and require the total volume of traffic to be known. In

order to facilitate our evaluation we assume ASes use linear pricing functions where

the charging volume is multiplied by the unit traffic volume price. Linear pricing

functions are a good first step towards finding the actual costs and have also been

used in determining transit costs for content providers [43]. Linear pricing is a valid

approximation in our case because the reduction/increase of traffic that is experienced

due to localization policies is not so large to trigger an economy of scale range change

in the pricing. Moreover, assuming linear pricing corresponds to evaluating an upper

bound on the possible savings an AS can achieve given the sublinear effect induced

by economy of scale.

30

Table 3.2

Pricing functions

Geographic Location $ per Mbps

North America 10

Europe 14

Australia 34

Asia 38

South America 76

AS B
American

AS C
Australian

AS D
Japanese

AS E
American

AS A

P95AB In Out
Before 600 450
After 150 100

P95BC In Out P95BD In Out P95BE In Out
Before 300 250 Before 120 200 Before 400 375
After 130 100 After 60 20 After 80 75

Figure 3.3. Example topology illustrating our pricing model. P95
refer to P2P traffic.

As the price per Mbps is known to vary widely due to geographic location [44] we

gather data from Telegeography Research [45] (summarized in Table 3.2) to determine

how customer ASes are charged.

We next discuss our models for charging volume, using Fig. 3.3 to aid our dis

cussion. Assume that ASes B, C, D, and E are all residential ASes. The P95s of

P2P traffic for all links before and after localization are reported in the figure. For

instance, on the link between A and B, the P95 of the P2P traffic inbound to B

31

is 600 Mbps and 150 Mbps, before and after localization respectively. Likewise, the

P95 of the P2P traffic outbound from B is 450 Mbps and 100 Mbps, before and after

localization respectively.

We now summarize the various pricing models we use:

• Average: For the charging volume we calculate the average of the inbound

P95 (P95IN) and outbound P95 (P95OUT) for each link as in Equation 3.12. The

change in charging volume on localization may be approximated as in Sec. 3.4.2.

For instance, in Fig. 3.3, the charging volume on the link between B and A would

decrease from (600 + 450)/2 Mbps to (150 + 100)/2 Mbps, a reduction of 400 Mbps.

Considering traffic prices from Table 3.2, AS B is charged $10 per Mbps by A. Thus,

localization will reduce B’s costs by $4, 000. However, the charging volume will also

reduce on links from B to each of its customers, resulting in revenue reductions. The

revenue reduction is 34∗(300+250)/2−34∗(130+100)/2 = $5, 440 from customer C,

38∗(120+200)/2−38∗(60+20)/2 = $4, 560 from customer D, and 10∗(400+375)/2−

10∗(80+75)/2 = $3, 100 for customer E. The δ(profit) for B is then −$9, 100 and the

profit increase is δ(profit)/profitp2p,before = −$9, 100/$14, 055 = −0.65, indicating

that 65% of profits on P2P traffic were lost.

• Upper and Lower Bounds: In contrast to the average case, computing changes in

charging volume is more complicated if the pricing scheme is based on the maximum

of P95IN and P95OUT , as in Equation 3.11. Using such pricing schemes requires us to

know whether the total traffic volume is higher in the inbound or outbound direction.

However, we only have information regarding P2P traffic volumes. It is possible that

P2P traffic volumes are higher in the inbound (outbound) direction, while total traffic

volumes are higher in the outbound (inbound) direction. We address these challenges

by computing instead an upper and lower bound of the benefits that localization

could have on each ISP.

Consider again the link between A and B in Fig. 3.3. Depending on whether B is

charged based on inbound or outbound traffic prior to localization, and allowing for a

change in the direction of charging volume after localization, the reduction in charging

http:andP95OUT,asinEquation3.11

32

volume may range between 450−150 = 300 Mbps, and 600−100 = 500 Mbps. While

precise determination of the change in traffic volume is difficult, the best possible

scenario for B is a reduction of 500 Mbps, while the worst scenario is a reduction

of 300 Mbps. More generally, for a customer, the best possible case is obtained

assuming max(P95IN , P95OUT) before localization, and min(P95IN , P95OUT) after

localization. For a provider the opposite set of choices provides the best scenario. We

also observe that on any link, the best scenario for the provider is the worst scenario

for the customer, and vice versa. To compute the upper (lower) bound in terms of

benefits for an AS when localization policies are applied, we assume the best (worst)

case for each of its links.

We now illustrate the lower and upper bound computation for B. In the worst case

scenario, the decrease in costs on provider links on localization is 10 ∗ (450 − 150) =

$3, 000, while the decrease in revenue from customers is 34 ∗ (300− 100)+38 ∗ (200−

20)+10∗ (400−75) = $16, 890. Thus, the lower bound on δ(profit) is −$13, 890 and

profit decrease is 80%. However, in the best case scenario for B, the decrease in costs

on provider links on localization is 10 ∗ (600 − 100) = $5, 000, while the decrease in

revenue from customers is 34∗ (250−130)+38∗ (120−60)+10∗ (375−80) = $9, 310.

Thus, the upper bound on δ(profit) is −$4, 310 and the profit decrease is 37%.

• Class: Since knowing if an AS link is inbound or outbound dominated for all

links is practically impossible, we consider a scenario that we build to be as realistic

as possible. We use PeeringDB [46], which is a database where network operators

document information in hope of attracting other ASes to peer with. The database

contains over 1,900 ASes that provide the ground truth by labeling themselves as hav

ing traffic ratios that are dominated by inbound, outbound, or are balanced. About

500 ASes are in our dataset and for them we explicitly consider this information.

For the remaining ASes, we hypothesize that the ratio of P2P client to web server

populations has a large impact on the amount of traffic entering and leaving an AS.

This is because we would expect a residential AS with many P2P clients to have a large

number of users consuming content; hence a large amount of inbound traffic. On the

33

other hand, we would expect an AS hosting many web servers to have large outbound

traffic. To discover the server population per AS we use a methodology similar to

that used in [27] and find 1 million servers in 19,000 ASes. We use then PeeringDB

as ground truth to calibrate the threshold ratio to classify ASes. Indeed, we do find

a strong correlation between dominating traffic direction and the ratio of population

sizes. Considering the unclassified ASes, we find 95% have population ratios clearly

indicating they are inbound dominated (and we label as such in this scenario); this

is unsurprising as we would expect most ASes in our dataset to be residential ASes

and not content providers. Given each AS classification, the corresponding P95 of

incoming or outgoing traffic will be used as the charging volume for every provider

link the AS has.

To complete the example, let ASes B, C, D and E be classified inbound domi

nated. Then, the decrease in costs for AS B is 10 ∗ (600 − 150) = $4, 500, while the

decrease in revenue is 34 ∗ (300− 130) + 38 ∗ (120− 60) + 10 ∗ (400− 80) = $11, 260.

This translates to a δ(profit) of −$6, 760 and a profit decrease of 68%.

3.5 Impact of Localization Policies

In this section, we evaluate the profitability of ISPs according to the P2P traffic

that they carry today and how localization will affect it. We consider scenarios

where a different fraction of ASes localize traffic as ISPs may implement locality

policies independent of one another. We also perform sensitivity to locality models

and pricing models.

Using the Affinity model and the BitTorrent crawl, we consider, for each locality

model, a set of 168 traffic matrices derived from the last 7 days of the 8 day long

crawl. The first day is not used in order to discard initial transient conditions for the

history and persistent locality models. For each matrix, traffic is then routed on the

AS level topology using the AS paths inferred as described in Section 3.2.3. Finally,

34

Table 3.3

ASes profiting or losing by category (no localization)

AS Type # Profiting (%) # Losing (%)

All ASes 322 (16%) 1745 (84%)

Stub 60 (5%) 1140 (95%)

Small ISP 115 (20%) 458 (80%)

Large ISP 139 (49%) 147 (51%)

Tier-1 8 (100%) 0 (0%)

for each customer-provider link, the P95 of P2P traffic is computed considering the

168 samples.

So far we have classified ISPs based on their customer-provider relationship as

transit or residential to allow us to clarify the implication of the pricing model. How

ever, this classification does not capture the implication of the AS size on the ISP’s

profitability, therefore we also categorize each AS according to how many downstream

customers it has as proposed by the Internet Topology Collection [47]. There are four

categories: Stub, Small ISP, Large ISP and Tier-1, which intuitively state how big a

transit AS is. Stubs have less than 5 downstream customers, Small ISPs have 5 or

greater, but less than 50, and Large ISPs have 50 or greater. Tier-1 ISPs are those

who have no or very few providers and are the same as those identified by [47]. In

our dataset there are 1200 Stubs, 573 Small ISPs, 286 Large ISPs, and 8 Tier-1 ISPs.

3.5.1 Profitability before Localization

We first consider the scenario where there is no localization used on the Internet.

We determine for each category of AS, the number of ASes that are profiting or losing

from carrying P2P traffic. We present results only for the Class pricing model since

results for Average are similar and Upper and Lower can be calculated only when

35

Table 3.4

Interpreting metric results

Value Loss Reduction Profit Increase

less than -1 more loss turned to loss

between -1 and 0 more loss less profit

between 0 and 1 less loss more profit

greater than 1 turned profitable more profit

36

 0.8

 0.6

 0.4

 0.2

Loss Reduction

(a)

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Profit Increase

(b)

Figure 3.4. Individual AS deploys localization with Single(history)
locality model. Sensitivity to pricing models.

localization occurs. Table 3.3 reports the results. As expected, the vast majority of

ASes lose money because of P2P traffic (see the first line summary). However, as the

number of downstream AS customers increases, there are ASes that profit due to P2P

traffic. Indeed, 322 ASes (16%) today are profitable overall, of which 266 ASes are

residential. This indicates that not all ASes may want to limit P2P traffic, and only

ASes that have few customers have the most incentive to limit external P2P traffic.

Considering ASes that have losses due to P2P traffic, over 51% of them are purely

residential, serving end users but not carrying traffic for other ASes. Surprisingly,

F
ra

ct
io

n
 o

f
A

S
es

 0

 1

Lower
Average

Class
Upper

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

0

 0.2

 0.4

 0.6

 0.8

 1

F
ra

ct
io

n
 o

f
A

S
es

Lower
Average

Class
Upper

37

several ASes that have more than 500 downstream customers still suffer losses. Inves

tigating further, we found that their relationship to Tier-1 ASes largely determines

whether they profit or lose. Being a customer of a Tier-1 AS makes the AS lose

money, while those that have peering agreements made a profit.

A closer look reveals that some ASes are still profitable, in spite of having few

provider agreements with Tier-1. For example, the 13th largest profitable AS (AS

12956, Telefonica) has few agreements with Tier-1 ASes but more than 500 down

stream customers, most of which are in Spanish speaking regions. By carrying mostly

traffic that is exchanged among South American and other Spanish ASes, it takes ad

vantage of the cultural and linguistic characteristics of P2P inter-AS traffic to send

high volumes of profitable traffic between customer ASes and very little costly traffic

to Tier-1 providers.

Insight #1: Transit ASes that have customer ASes with similar cultural and linguis

tic makeups benefit more from carrying P2P traffic than those whose customer ASes

are dissimilar. A transit AS with such customer ASes sends more traffic to customers

than to providers, increasing its revenue.

3.5.2 Localization Deployed by Individual ASes

We seek to understand if localization is beneficial for an individual AS, indepen

dent of what other ASes do. Specifically, we investigate what is the expected benefit

for an AS that deploys a localization policy alone. We consider only residential ASes

since pure transit ASes have no benefits in localizing traffic (having no clients).

Sensitivity to pricing model: We fix the locality policy to Single(history) and

calculate the charging volumes as described in Section 3.4.3. We use the metrics

defined by Equation 3.14 and 3.15. Fig. 3.4 summarizes what the values of these

metrics mean for different ranges. Positive values indicate that the AS is benefiting

from the locality policy. Negative values indicate that the AS is doing worse than

before the policy is applied. For example, a profit increase larger than 0 means more

38

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0

Loss Reduction

(a)

 1
Single(persistent)

0.9 Perf(persistent)
0.8 Single(history)

Perf(history)

Single(no history)

0.7

 0.6
Perf(no history)

0.5

 0.4

 0.3

 0.2

 0.1

 0

Profit Increase

(b)

Figure 3.5. Individual AS deploys localization with Class pricing
model. Sensitivity to locality models.

profit, while a profit increase between 0 and -1 means less profit. Profit goes to 0

when profit increase takes the values of -1. Finally, for values smaller than -1 the

localization policy turns profit into loss. We show results in two different graphs:

Fig. 3.4(a) plots the Cumulative Distribution Function (CDF) of loss reduction for

ASes who have losses before localization, and Fig. 3.4(b) plots the CDF of profit

increase for ASes who profit before localization.

In Fig. 3.4(a), the Lower bound (i.e., the vertical curve at x=0) shows that no

profit is gained. This is because the localization of P2P traffic will result in internal

F
ra

ct
io

n
 o

f
A

S
es

F

ra
ct

io
n
 o

f
A

S
es

Perf(no history)
Single(no history)

Perf(history)
Single(history)
Perf(persistent)

Single(persistent)

0 0.2 0.4 0.6 0.8 1

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

39

P2P clients reducing content downloaded from the outside, but in the pessimistic

case this will not necessarily reduce content uploaded to other ISPs. However, for the

worst case, the AS is charged on outbound traffic which has not changed. As Class

reveals though, most residential ASes do get charged for their incoming traffic and

thus localization is beneficial to them. Benefits are somewhat limited, with a loss

reduction smaller than 30% for more than 50% of ASes. Also for Class, note that a

few residential ASes are outgoing dominated and thus are unaffected by localization.

In our dataset we find 40 ASes that belong to this category. For those, loss reduction

is equal to 0, as shown by the vertical segment of the Class curve close to y=0.

For Average, less benefit is obtained than for Class because Average considers both

directions of traffic but the cost associated with outbound traffic remains the same.

Finally, Upper bound provides optimistic predictions that are unlikely in practice.

Surprisingly even in this case the loss reduction is limited, i.e., only 40% of ASes see

reductions over 60%.

We now turn our attention to profitable ASes in Fig. 3.4(b), a total of 16 residential

ASes for which most P2P traffic traverses customer links. We see that in Class, 63%

of these ASes show a profit reduction. This is due to these residential ASes also

being transit ASes. For example, the AS that suffers the most is AS-209 Qwest

Communications, a Tier-1 provider who we found to have over 360,000 clients. This

is due to almost all of the P2P traffic that clients in AS-209 generate being sent and

received through customer links.

Insight #2: Some residential ASes will actually lose profit when they localize traffic.

This is due to these ASes also being transit providers for other residential ASes. For

these ASes, P2P traffic that was previously downloaded from clients in customer ASes

decreases due to localization and in turn revenue decreases. Therefore, they have little

incentive to localize traffic.

There are a few ASes that are able to increase profit due to localization. This

is due to the fact that many AS paths are asymmetric. Specifically, outgoing traffic

is sent on customer links and since outgoing traffic does not decrease when one AS

40

localizes, revenue remains the same. However, some incoming traffic is received on

provider links, hence a reduction in costs and an increase in profit. This underlines

the complexity of possible impacts of P2P traffic localization policies.

Sensitivity to locality model: Now we fix the pricing model to Class and

vary the locality model. As expected, Fig. 3.5(a) shows that most ASes that were

suffering losses due to the P2P traffic are reducing their loss due to localization

policies. However, the reduction is not as large as one could hope. Under Perf(no

history), the most pessimistic locality policy, for 75% of ASes the reduction is less than

25%. Even under Single(history), the most realistic locality policy, the loss reduction

is still small, with less than 48% reduction for 75% of ASes. This is due to the small

number of clients interested in the same content, which therefore tends to “disappear”

as clients leave the torrent. Indeed, under the Single(persistent) policy the results are

much improved: even 50% of ASes reduce their losses by 70%. In some cases, the AS

is able to vastly improve profitability. For example, some small residential AS would

be able to increase its loss reduction from 13% under Single(history) to 82% under

Single(persistent). This is due to the optimistic assumption that content is available

forever once it enters an AS.

Insight #3: Content availability plays a crucial role in determining the effectiveness

of localization. Due to churn, peers will often need to redownload content from outside

the AS. However, when assuming persistent content, most ASes can reduce losses twice

as much.

3.5.3 Internet-wide Localization Deployed

We now consider the scenario when all ASes deploy localization at the same time

and thus we also include ASes who are purely transit in our results. We show results

on sensitivity to locality models, but not on results concerning sensitivity to pricing

models as the trends are similar to those already seen.

41

As before, we fix the pricing model to Class and plot results separately for ASes

that normally lose or profit due to P2P traffic. Fig. 3.6(a) plots the loss reduction

and shows results similar to when individual ASes localize. This is because an AS will

reduce its incoming traffic only if it localizes its own traffic. Thus, as most ASes are

inbound dominated they can unilaterally localize traffic and receive the full benefits.

However, an AS will reduce its outgoing traffic only if other ASes localize their traffic.

Therefore, ASes that are outbound dominated will not see benefit until other ASes

start localizing traffic. In this scenario indeed, all ASes that were facing loss reduce

costs (loss reduction greater than 0 for all ASes).

Insight #4: The benefits of localization will be limited for some ASes unless all ASes

start to localize traffic. Localization, if adopted by a single AS, only reduces traffic

received by internal peers, but it may not affect traffic sent. Hence, individual ASes

that are outbound dominated or are charged based on the average of the inbound and

outbound P95s will not receive all the possible benefits. This reduced benefit may slow

down the adoption of localization policies.

To investigate which ASes benefit more, we show in Fig. 3.6(b) the loss reduction

versus population size, considering the Single(history) locality policy. As can be seen,

there is a trend that the larger the population, the more the AS can localize. For

example, the Taiwanese AS-3462 where we found over 1.5 million clients, is able to

get a reduction of 91%. However, more than 50% of ASes achieve gains smaller than

30% as the limited number of peers interested in the same content inside an ISP limits

the benefits of localization.

Insight #5: The reduction in traffic due to localization only grows logarithmically

with client population (notice the log-linear scale). Furthermore, we find that for all

locality models the values of αj, the leftover traffic, also follow a similar logarithmic

trend with respect to AS population sizes. This is due to torrent popularity following

a Zipf-distribution, which has been shown to limit the effectiveness of caching. In

particular, [48] demonstrates through analysis that a similar effect occurs considering

web caching.

42

Moving to ASes that were already profitable, Fig. 3.6(c) shows a significant de

crease in the amount of profit; in a pessimistic case – Single(no history) policy – 50%

of ASes lose over 25% of their profits. In an optimistic case – Single(persistent) pol

icy – 80% lose at least 60% in profit. Thus, while localization is beneficial for many

residential ASes, over 300 transit ASes lose profit. Further investigation shows that

the larger the transit AS is, the more likely it will suffer heavier losses in profit.

Insight #6: Transit ASes lose significant amounts of profit when ASes localize.

We found that all Tier-1 ISPs will lose over 56% of profits on P2P traffic under

Single(history) when all ASes localize.

Some ASes turn from being profitable to actually losing money (profit increase

smaller than -1). For example, this happens for the AS-3786, who is a transit provider

for the AS-17858. As AS-17858 has more peers than AS-3786, it can reduce its traffic

more than AS-3786 can. Therefore, AS-3786’s customer traffic is reduced more than

its provider traffic and hence it starts to lose money. Interestingly, there are a few

ASes that are able to increase their profits due to localization. These transit ASes

are providers for many small residential ASes. As small ASes achieve very small

reductions, the transit ASes are able to increase their profits by reducing their costs

more than their customers can.

Insight #7: Small residential ASes have small reductions in traffic due to the log

arithmic trend of localization. Hence transit ASes who carry traffic for many small

ASes fare better than those who carry traffic for a few large ASes.

3.5.4 Localization Deployed by Large ASes

Besides the extreme cases when a single AS or all ASes deploy localization, we

also investigate the scenario when ASes with larger populations will implement lo

calization. We consider the Single(history) locality model and conduct sensitivity to

pricing models. Results for sensitivity to locality models are similar.

43

We first consider when only the 100 largest ASes by client population size localize

traffic, i.e., 6% of residential ASes in our dataset. As the largest ASes send and receive

a very large amount of P2P traffic, we expect the localization to impact many other

ASes as well. Fig. 3.7(a) shows the loss reduction results. In Class, the 100 ASes that

localize receive the full benefits while 87% of ASes do not practically benefit. This is

because many ASes are inbound dominated, but only outbound traffic decreased in

this scenario. Indeed, the 40 ASes that are outbound dominated benefit with a loss

reduction of 30% or greater. The Lower curve corroborates this result by showing

that most ASes cannot get any benefit. The Average pricing model presents a “what

if” scenario that allows more ASes to benefit from the localization deployment of few

ASes, while the Upper Bound provides over-optimistic an prediction.

Insight #8: Pricing scheme has a large impact on the effectiveness of savings. As

the maximum pricing model ignores one direction of traffic, reduction in the other

direction does not result in a reduction of cost. The average pricing model does con

sider both inbound and outbound traffic and thus an AS could benefit both if it or some

other AS localizes traffic.

We now take the most realistic pricing model, Class, and to explore a “what

if” scenario we compare it with Average, when a varying number of ASes localize

traffic. We only focus on loss reduction graphs as we wish to highlight the effects

the maximum and average pricing models have on costs. Fig. 3.7(b) shows Class and

demonstrates that those who localize are generally the only ones who see benefit. This

is in contrast to the Average pricing model, which we show in Fig. 3.7(c). Interestingly,

in Average, almost all ASes that do not localize see increasing benefits as more ASes

localize. For example, when 200 ASes localize, most ASes have over a 20% loss

reduction, which is over 50% of the benefits possible when all ASes localize.

Insight #9: Contrary to the average pricing model, for the maximum pricing model

it is not sufficient that few ASes localize traffic to reduce cost. Even if the largest

Ases start deploying localization schemes, overall loss reduction will be very limited.

44

3.6 Impact of Business-Relationship Policies

In this section we explore alternative ways to increase profitability of carrying P2P

traffic. In particular, we explore business-relationship based peer selection policies

where ASes aim to improve their profit by making internal peers select external peers

located in customer or peer ASes, while trying to avoid peers hosted in provider ASes.

Notice that the AS is not trying to reduce the amount of traffic peers will download,

but rather it is interested in carefully selecting the source ASes to download from.

Clearly, the generalized use of these policies could have significant impact on existing

peering agreements. As traffic exchange ratios [49] are often used to determine if an

AS should be a peer or customer, a change in traffic may lead to a renegotiation of

agreements. In this chapter, we do not consider such events.

3.6.1 Modeling Business-Relationship Based Policies

To model this preferential peer selection, we define θij as a preference bias index

given by AS j to remote AS i. If the path from i to j traverses a customer link of

j, the preference will be the highest (θij = 1); if the path from i to j traverses a

peering link of j, a middle preference will be assigned (θij = wp, 0 < wp ≤ 1); finally,

if the path from i to j traverses a provider link of j, the preference will be the lowest

(θij = wq, 0 < wq ≤ wp). Then, the volume of P2P traffic sent from AS i to AS j is:

Xij
′ = XijθijB(j), (3.16)

where Xij is computed based on the Affinity model as in Equation 3.3, and B(j) is a

normalization factor that ensures the aggregate traffic downloaded by peers in AS j

from external peers remains the same before and after the policy is applied.

"Dj

i=1 Xij
B(j) = , (3.17)

"Dj

i=1 (Xijθij)

where Dj is the total number of ASes from which j downloads content. We refer to

this model as the Business model.

45

We have performed a sensitivity study to wp and wq, to understand how these

parameters affect the loss reduction and the profit increase of ASes. Intuitively,

ISPs should make wp and wq as small as possible to obtain the most benefits out

of Business. In the extreme, if we make wq = 0, all the traffic from an AS will be

directed to customer or peering links. However, in practice this may not be possible

since customer or peer ASes of an ISP may not have the content or may not have

enough clients to support the demand. Hence, we pick a very small value of wq, in

particular we use wq =1E-10. For wp, the main requirement is that it is larger than

wq; we choose wp =1E-03. We note that Business is an extreme version of such a

scheme that we use to illustrate its potential. In reality, other practical considerations

should be made, such as considering user performance and inter-AS link capacities.

Intuition suggests we can improve the performance of the Business and Single poli

cies by merging them. We call the new policy Hybrid and we model it by substituting

Lij from Equation 3.4 into both Equation 3.16 and 3.17 , i.e., X ′ LijθijB(j). This ij =

represents the policy for selecting peers outside an AS to obtain content that is not

already present inside the AS. We use wp =1E-03 and wq =1E-10 as before.

3.6.2 Best Strategy for Individual ASes

The goal of this section is to study what strategy individual ASes should adopt to

have the best impact on ISP profitability. We start by considering the case in which

individual ASes deploy one of Business, Hybrid or Single(history). We fix the pricing

model to Class. Fig. 3.8(a) shows a comparison between the three possible strategies

reporting loss reduction. Interestingly, the Business policy is ineffective for more than

75% of ASes, while Single(history) has proved to reduce the loss for most ASes. The

Hybrid policy provides the best loss reduction for most of the ASes. Indeed, only for

the top 25% of ASes, which are mostly transit ASes, Business performs better than

Single(history) and similar to Hybrid. This is because transit ASes can benefit more

from the Business policy by having internal peers download traffic from customer ASes

46

rather than provider ASes. In fact, the top 11% of ASes actually turn profitable, i.e.,

loss reduction becomes greater than 1.

Fig. 3.8(b) shows the profit increase for the 16 residential ASes that are already

profitable before localization. The figure shows that Business is the most beneficial

policy, i.e., more than 30% of the ASes improve their profit by more than 100%. The

other two policies can instead cause a profit reduction, as already seen in Fig. 3.5.

Recall indeed that transit ASes will increase their profit if more traffic is pushed to

customer ASes.

Based on these results, we aim to study the strategy that gives the most benefits to

ASes. Towards this goal, we plot Fig. 3.8(c). In this figure, we consider all ASes and

group them according to the categories described in Sec. 3.5. Then, we find for each

AS, which policy gives the most benefits. Finally, we aggregate the best policies per

category of AS. For each type of AS there is a stacked bar, which indicates the fraction

of ASes that performs the best with a given policy. Note that besides the Business

and Hybrid policies, there is Single(history) = Hybrid, which accounts for the cases

in which both Single(history) and Hybrid are the best policies. Single(history) is

never better than Business or Hybrid, so it is not shown in the picture.

There are several points to take away from Fig. 3.8(c). First, we observe that

for around 90% of stub ASes, the best policy is Single(history) or Hybrid. This is

because stub ASes receive considerable benefits from localization. ASes in the Small

ISP category follow a similar trend with more than 60% of them benefiting the most

from Single(history) or Hybrid. Second, all Tier-1 ASes on the contrary will get the

most benefits out of the Business policy. This is because Tier-1 ASes will benefit

from an increase in the traffic sent or received from customers. Finally, Hybrid is

better for the Large ISP category, since these ISPs benefit both from directing traffic

to customers and from localizing their own P2P traffic.

Insight #10: Many ASes will achieve more profits through preferentially directing

traffic to customers and peers rather than localizing traffic. Therefore, P2P traffic

localization is not always the best choice for all ASes.

47

3.6.3 Internet Impact of Business-Relationship Based Policies

In the previous section, we have seen how different strategies will benefit ASes if

individual ASes adopt them. But what happens when all ASes adopt the same policy

at the same time or when all ASes adopt their local best policy at the same time?

Both P4P and ALTO indeed allow each AS to run their own “oracle” and chose a

different policy. To answer these questions, we consider the scenarios in which all

ASes adopt Business, Single(history), and Hybrid policies. In addition, we consider

the scenario in which each AS applies its best local strategy, according to Fig. 3.8(c),

which we have called ”Individual Best”. We fix the pricing model to Class.

Fig. 3.9(a) shows the loss reduction. For about 10% of the ASes, Business causes

them to lose considerably more. These are mostly stub ASes that will be “victims”

of their providers that increase the amount of traffic they exchange with customer

ASes. On the contrary, Single(history) almost never causes higher loss. Hybrid

performs marginally better than Single(history) for large ASes, but slightly worse

than Single(history) for small ASes.

Fig. 3.9(b) shows the profit increase. Business performs better than Single(history)

and Hybrid. When Business alone is considered, more than 70% of ASes either profit

more or earn the same amount as before. For Single(history), over 90% of the ASes

start losing profit due to localization. This is because many of the transit ASes that

were profiting before will receive more benefit from Business since they will now select

peers in customer ASes and direct more traffic to them.

We note that for both loss reduction and profit increase, Individual Best closely

follows Single(history) and Hybrid. In particular, ASes that profit from P2P traffic

(e.g. Tier-1 ASes and a few Large ISPs), which benefit more from locally implement

ing Business, lose because of policies implemented by their customers.

Insight #11: While business-relationship based policies may locally be the best strat

egy for some ASes, they can have a negative external impact on other ASes. Further

more, as the best local strategy of an individual AS is chosen in isolation of others it

48

does not turn to be the best possible choice when all ASes deploy their own best local

strategy.

3.7 Summary

In this chapter, we developed a detailed methodology for evaluating the profitabil

ity of an ISP and how it will change due to P2P localization. We first proposed the

Affinity model, a refinement of the Gravity model, for generating realistic inter-AS

P2P traffic. We then devised several locality models to describe the reduction of

P2P traffic under different scenarios. Coupling these models with realistic inter-AS

paths inferred from BGP and IXP data, and pricing models based on the 95th per

centile and geographic pricing, we calculate the impact of localization policies on ISP

profits. We believe that the results we presented enhance the understanding and im

plications of P2P traffic localization schemes on the Internet, and in particular from

the perspective of ISPs.

49

 1

 0.9

 0.8

 0.7

s
S

e

 0.6

 0.5

F
ra

ct
io

n
 o

f
A

0.4
Perf(no history)

Single(no history)
0.3 Perf(history)

0.2 Single(history)

0

 0.1 Perf(persistent)
Single(persistent)

0 0.2 0.4 0.6 0.8 1

Loss Reduction

(a)

 1

0.8

 0.6

 0.4

 0.2

 0
3 4 5 6 7

10 10 10 10 10

Client Population

(b) Impact of client population on profit.

 1

0.9

 0.8

 0.7

 0.6

 0.5
Single(persistent)

0.4 Perf(persistent)
0.3 Single(history)

Perf(history)
Single(no history)

0.2

 0.1
Perf(no history)

0
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4

Profit Increase

(c)

Figure 3.6. All ASes deploy localization with Class pricing model.
Sensitivity to locality models.

F
ra

ct
io

n
 o

f
A

S
es

L

o
ss

 R
ed

u
ct

io
n

50

F
ra

ct
io

n
 o

f
A

S
es

F

ra
ct

io
n
 o

f
A

S
es

	
F

ra
ct

io
n
 o

f
A

S
es

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0

Lower
Average

Class
Upper

0	 0.2 0.4 0.6 0.8 1 1.2

Loss Reduction

(a) Largest 100 localize.

Top 10
Top 25
Top 50

Top 100
Top 200
Top 500

All ASes

0	 0.2 0.4 0.6 0.8 1 1.2

Loss Reduction

(b) Class pricing model.

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0

Top 10
Top 25
Top 50

Top 100
Top 200
Top 500

All ASes

0	 0.2 0.4 0.6 0.8 1 1.2

Loss Reduction

(c) Average pricing model.

Figure 3.7. Largest ASes deploy localization with Single(history) lo
cality model. Sensitivity to pricing models.

51

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F
ra

ct
io

n
 o

f
A

S
es

Business
Single(history)

Hybrid

-1.5 -1 -0.5 0 0.5 1 1.5

Loss Reduction

(a)

-1.5 -1 -0.5 0 0.5 1 1.5

Profit Increase

(b)

Stub SmallISP LargeISP Tier-1

AS Category

Single(history)=Hybrid
Hybrid

Business

(c)

Figure 3.8. Individual AS deploys Business, Single(history) or Hybrid,
with Class pricing model.

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

F
ra

ct
io

n
 o

f
A

S
es

Business
Single(history)

Hybrid

0

 0.2

 0.4

 0.6

 0.8

 1

B
es

t
P

o
li

cy
 f

o
r

F
ra

ct
io

n
 o

f
A

S
es

52

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1.5 -1 -0.5 0 0.5 1 1.5

F
ra

ct
io

n
 o

f
A

S
es

Business
Single(history)

Hybrid
Individual Best

Loss Reduction

(a)

Profit Increase

(b)

Figure 3.9. All ASes deploy Business, Single(history), Hybrid or In
dividual Best, with Class pricing model.

0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1.5 -1 -0.5 0 0.5 1 1.5

F
ra

ct
io

n
 o

f
A

S
es

Business
Single(history)

Hybrid
Individual Best

53

4 SECURING VIRTUAL COORDINATES BY ENFORCING PHYSICAL LAWS

As discussed in Chapter 3, localization services provide network locality to distributed

systems, causing the amount of traffic that must leave an ISP to decrease. The re

duced amount of traffic brings benefit to some ISPs as their costs can also decrease.

Not only can ISPs benefit from localization, but also numerous distributed protocols

that can take advantage of network locality, such as optimized replica placement [50],

multicast tree and mesh construction [51], routing on the Internet [52,53], and Byzan

tine fault-tolerant membership management [54]. Given how critical such services are,

in this chapter we study how to protect Virtual Coordinate Systems (VCS) from in

sider attacks aiming to disrupt them.

4.1 Introduction

Virtual Coordinate Systems (VCS) have been proposed as an efficient and low

cost service to provide network locality estimations by accurately predicting round-

trip times (RTT) between arbitrary nodes in a network. Each node measures the

RTT to a small number of other nodes and the VCS then assigns a coordinate to

each node. Each node can then estimate the RTT between itself and any arbitrary

node by calculating some distance function.

While some VCS are centralized in nature [55], many have been designed as dis

tributed systems [56], where each node maintains and updates its own coordinate

by relying on information received from other nodes. Distributed VCS can be classi

fied as landmark-based and decentralized. Landmark-based systems [57–61] assume a

trusted set of nodes that form the infrastructure by which other nodes can determine

their coordinates. Decentralized VCS [56, 62–64] assume no such infrastructure; a

54

node updates its coordinate based on measurements and information from a random

set of nodes.

Unfortunately, distributed VCSs have been shown [65] to be vulnerable to insider

attacks, where compromised nodes delay measurement probes and lie about their

coordinates to decrease system performance. As many applications rely on VCS to

build robust services, there have been several proposals to secure them. For example,

outlier detection [66, 67] and voting [68] were used to detect equivocation of lying

attackers. Most of these defense methods ultimately decide if an update from a

node is malicious or not by learning good behavior through system observation over

time. As a result, these schemes are vulnerable to attacks where through small

changes attackers make the defense mechanisms learn malicious behavior as being

good behavior. One such attack is the well-known frog-boiling attack where attackers

lie by small amounts that accumulate over time and gradually lead to large changes

in performance [69–71].

A classical approach for designing distributed systems is to use safety invariants

in order to ensure system correctness. These safety invariants specify states into

which the distributed system should never enter. For example, a distributed system

that forms a tree of nodes should never have any loops, or a distributed hash table

should never form multiple rings, but only one continuous ring. At first glance, VCS

do not appear to have such invariants as minimal constraints are imposed on how

neighbors are selected or on what coordinates a node can possibly have. We make

the key observation that some VCS are designed around an abstraction of a physical

system [55, 56, 72] and that physical systems follow physical laws. As these laws are

universally true, we can leverage them to identify safety invariants for VCSs based

on physical systems.

In this chapter we present Newton, a decentralized VCS which extends Vivaldi [56]

to withstand a wide class of insider attacks by using safety invariants derived from

Newton’s three laws of motion. Newton relies on the observation that Vivaldi is an

abstraction of a real-life physical system and therefore all participating nodes must

55

follow Newton’s three laws of motion. As there is a direct mapping between the

actions taken by nodes, in reporting their coordinates and RTTs, and the forces

that these physical laws govern, any attack in which malicious nodes lie about their

coordinates or delay probes will result in the invariants being violated. We leverage

this fact to detect attacks and discard malicious updates. Our contributions are:

• We describe how to use Newton’s three laws of motion as well as a mapping

between forces and virtual coordinates to identify invariants that mitigate a

wide range of attacks against Vivaldi. We show how to use the three identified

invariants to detect and mitigate the well-studied inflation, deflation, and os

cillation attacks, as well as the more recent frog-boiling and network-partition

attacks.

• We conduct extensive simulations and real-world experiments on PlanetLab to

demonstrate that Newton is able to mitigate all five attacks mentioned above.We

compare Newton with Vivaldi outfitted with Outlier Detection [67] and show

that Newton is not vulnerable to the frog-boiling and network-partition attacks.

We also find that, even with no attackers, Newton has better performance than

Vivaldi, i.e. Newton is 25% more accurate and 68% more stable.

• We consider extreme scenarios where the attackers are present in a much higher

percentage, over 50% of nodes in the network are malicious, and also where

attackers are conducting attacks from the beginning of the experiment, while

the system has not converged yet to a steady state. We show that even under

such conditions Newton still performs well.

• We consider adaptive attackers that know how the invariants are used and try to

exploit them. Because in real-deployments Newton is not a perfect abstraction

of a physical system, an attacker can try to exploit the invariants. We explore

a new type of attack, rotation attack, where attackers rotate their positions

slowly around the origin of the coordinate plane in an attempt to destabilize

http:mentionedabove.We

56

nodes while remaining undetected. We find that Newton holds up well to such

attacks, incurring only slightly worse accuracy.

The remainder of this chapter is organized as follows: We describe Vivaldi in

Sec. 4.2 and attacks against it in Sec. 5.3. We describe Newton and our invariants in

Sec. 4.4. We show simulation results in Sec. 4.5 and PlanetLab experimental results

in Sec. 5.7. We present our summary in Sec. 4.7.

4.2 Vivaldi Coordinate System

Algorithm 1: Node i Coordinate Update

Input: Remote node tuple (xj , ej , RTTij)

Output: Updated local coordinate and error xi, ei

1 w = ei/(ei + ej)

2 es = | xi − xj − RTTij|/RTTij

3 α = ce × w

4 ei = (α × es) + ((1 − α) × ei)

5 δ = cc × w

6 xi = xi + δ × (RTTij − xi − xj) × u(xi − xj)

Vivaldi [56] is a decentralized VCS where the distance between coordinates repre

sents the estimated RTT between nodes. All nodes start at the origin and periodically

update their coordinates based on interaction with a subset of nodes referred to as

the neighbor set. A node chooses half of these nodes randomly from all possible nodes

and the other half from a set of low-latency nodes. Research [56] has shown that a

neighbor set of 64 nodes ensures quick convergence.

In addition to the coordinate value, each node also maintains a local error value

which shows the confidence in the coordinate. Algorithm 1 describes how each node i

updates its coordinate. Specifically, i will send a request to node j for its coordinate

and local error value. When node j replies node i also measures the actual RTT.

57

An observation confidence w is calculated first (line 1) along with the error es in

comparing the coordinates with the actual RTT (line 2). Node i updates its local

error (line 4) by calculating an exponentially-weighted moving average with weight α

and system parameter ce (line 3). Next, i computes the movement dampening factor

calculated with another system parameter cc (line 5) and updates its coordinate by

finding how far it should move and then multiplying that by a unit vector (represented

by u(•)) in the direction it should move (line 6).

A VCS generally has the system goals of providing accuracy and stability with

respect to the coordinates that it produces. Accuracy describes how closely the

coordinates reflect the actual RTT between nodes. Stability describes how quickly

nodes converge to a set of accurate coordinates and how long a node can be absent

from the system and still have accurate coordinates.

Accuracy. We use prediction error to measure accuracy: Errorpred = |RTTAct −

RTTEst|, where RTTAct is the measured RTT and RTTEst is the estimated RTT.

A small prediction error indicates high accuracy. We report the median of all the

prediction errors at a time instant.

Stability. We use velocity of a node to measure stability: V elocity = Δ
t
xi , where

Δxi is the change in coordinates for node i (or distance traveled by a node), and t

is the amount of time taken to make that change. A small velocity indicates high

stability. We report the average of velocity of all nodes at a time instant.

4.3 Attacks Against VCS

We consider that a bounded number of compromised and colluding nodes act

maliciously. To attack Vivaldi, a malicious node can (1) influence the coordinate

value computation by lying about its coordinate and local error value or (2) influence

the RTT computation by delaying the measurement probe.

An attacker can exploit coordinate and RTT computation to conduct the following

basic attacks:

58

• Inflation: Attackers lie about having very large coordinates. This pulls benign

nodes far away from their correct coordinates and thus is an attack on accuracy.

• Deflation: Attackers lie about having small coordinates near the origin. This

prevents benign nodes from being able to update to their correct coordinates and

therefore is also an attack on accuracy.

• Oscillation: Attackers lie by reporting randomly chosen coordinates and randomly

delaying measurement probes. This is an attack both on accuracy and stability.

Basic attacks against Vivaldi have been shown to be very effective in reducing

accuracy and stability [65]. Moreover, while defenses have been proposed, recent

work [69–71] identified more advanced attacks that are able to bypass all previously

proposed defenses [66–68]. Advanced attacks are:

• Frog-boiling: Attackers lie by small amounts at a time, slowly increasing this

amount by moving their coordinates in one direction. Over time though, the attacker

ends up reporting coordinates that are far away from their correct coordinate. This

results in an attack on both accuracy and stability.

• Network-partition: Attackers lie similarly as in the frog-boiling attack, but in

stead groups of nodes collude together and move in opposite directions, again attack

ing both accuracy and stability.

4.4 Description of Newton

In this section we present our VCS, Newton, which builds upon Vivaldi by im

plementing invariants derived from physical laws to defend against all known insider

attacks against VCS.

4.4.1 Vivaldi as a Physical System

The coordinate update in Vivaldi is actually modeled based on a mass-spring sys

tem abstraction, where each pair of nodes have a spring connecting them. Depending

on its state, the spring applies a force to the nodes to either push them together or

�

59

pull them apart. This force is calculated by Hooke’s law, F = −kx, where k is a

spring constant and x is the amount of displacement that a spring currently is from

its equilibrium or rest position. Every node has a spring constant k value of 1. To

determine displacement, the measured RTT between a pair of nodes is considered to

be the length of the spring at its rest position, while the current length of the spring is

the estimated RTT. Over time, the system stabilizes when all pairs of nodes minimize

the amount of force that is placed upon them.

When updating its coordinate based on information from node j, a node i calcu

lates the magnitude and direction of the force f�ij that node j is applying to it. The

magnitude of the force mij is determined by the RTT between the two nodes and the

distance of the current nodes’ coordinates: mij = RTTij − xi −xj . The direction of

the force d�ij is a unit vector that is calculated based on the two nodes’ coordinates:

dij = u(xi − xj). The force f�ij is then simply f�ij = mij ∗ d�ij. This determines how

much the coordinate needs to be updated from the previous value and corresponds

to Line 6 in Algorithm 1. Note that Vivaldi is not a perfect physical system and also

takes into account the perceived error reported by the node j and its own local error

value. We discuss the implications of Vivaldi not being a perfect physical system in

Sec. 4.4.5.

4.4.2 Using Physical Laws to Identify Invariants

Detecting insider attacks in distributed systems can benefit from identifying in

variants in the system. For Vivaldi, no such invariants appear to exist at first glance

since nodes make decisions based on inputs from nodes in their neighbor set and there

are no constraints imposed by the system in node selection. We make the key obser

vation that since Vivaldi [56] is built upon an abstraction of a mass-spring system,

all nodes must follow physical laws. These laws are universal truths so they represent

invariants that all nodes in Vivaldi should globally follow. In particular, nodes must

follow Newton’s three laws of motion which are:

60

First law: A body stays at rest unless acted upon by an external, unbalanced force.

Second law: A force F on a body of mass m undergoes an acceleration a, such that

the acceleration is proportional to the force and indirectly proportional to the mass.

Third law: When a first body exerts a force on a second body, the second body exerts

an equal but opposite force on the first body.

When an attacker lies about its own coordinate, it is implicitly lying about forces

that have previously acted upon it, thus introducing extraneous indirect forces into

the system. Introducing such forces into the system breaks the first and third laws, as

attackers are not acting according to the influences of the outside forces upon them.

When an attacker delays a measurement probe or lies about its local error value, it

is lying about the force between itself and another node, thus introducing extraneous

direct forces into the system. Lying about such forces breaks the second law, as nodes

do not undergo accelerations that are governed by the forces determined by Hooke’s

law.

We show how to leverage Newton’s three laws of motion to identify three invari

ants, which we call IN1, IN2 and IN3. Nodes can then use these invariants to

locally detect whether an update that results in a force being acted upon is the result

of nodes behaving according to the protocol and thus following physical laws, or the

result of a lying attacker. Below we define the invariants and describe how to detect

extraneous indirect and direct forces with their help.

4.4.3 Detecting Extraneous Indirect Forces

We first focus on how to detect whether a node is lying about the forces that have

acted upon it, resulting in maliciously derived coordinates. For ease of exposition,

assume each node i is at coordinate xi and at any moment is applying the force f�ij

onto node j. As described in Sec. 4.2, a node chooses its neighbor set based on two

criteria: (1) half are chosen randomly and (2) half are chosen based on if they are

61

 8 6 4 2 2 4 6 8

2

4

6

8

8

6

4

2

j i

8 6 4 2 2 4 6 8

2

4

6

8

8

6

4

2

i

j
fij

c

(a) Random: no attack (b) Random: attack

i

j

k
 8 6 4 2 2 4 6 8

2

4

6

8

8

6

4

2
fij

vk

j

i

k

 8 6 4 2 2 4 6 8

2

4

6

8

8

6

4

2
fij

vk

(c) Physical close: no attack (d) Physical close: attack

Figure 4.1. Detecting extraneous indirect forces

physically close. We design two detection schemes, one for nodes that are randomly

chosen, and the other for nodes that are physically close.

Detection for malicious random nodes from the neighbor set: We observe

that the third law states that there can be no unbalanced forces in the mass-spring

system. An attacker introducing any extraneous indirect force that causes nodes to

62

move will be an unbalanced force by definition of the first law. The third law then

implies that an unbalanced force can be detected by finding the centroid of all the

node’s coordinates, where the centroid is the average of all the coordinates and has

the physical analogue of being the center of mass of the mass-spring system. We note

that while perfect detection requires knowledge of the coordinates of all nodes, using

just the randomly selected nodes also provides a good vantage point from which to

calculate an approximate centroid. We summarize our first invariant.

IN1: If the centroid of a node i and the randomly selected nodes from its neighbor set

is at the origin then no unbalanced force has been introduced. However, if the centroid

is not at the origin, then an attacker (or collection of attackers), has introduced an

unbalanced force that has the same direction as a force vector from the origin to the

centroid (�c).

In Figs. 4.1(a) and 4.1(b) we illustrate how to use IN1 to detect attacks. In

Fig. 4.1(a) node i, located at coordinate xi = (2,3), is the victim and all the other

dots are the randomly selected nodes from its neighbor set, including node j. Node

i can calculate the centroid c based on its own coordinate and the coordinates of
n

P

xp

all those neighbors c = p=1

n
. Since the third law states that all forces must be

balanced, we would expect that the centroid would never move, and thus even during

normal operations, would be at the origin. In Fig. 4.1(a) the green square signifies

this calculated centroid, and since no attack has taken place yet, it is at the origin.

In Fig. 4.1(b), we consider what happens when the attacker, node j, represented

by the red triangle at coordinate xj = (-2,2), introduces an extraneous unbalanced

force. In this case, the attacker moves to coordinate (-9,9). Node i recalculates the
n

P

xpt +fij

centroid, using ct = p=1

n
, to be at coordinate (-1,1), which corresponds to �c,

the force that moved the centroid from the origin. Node i also experiences a force

f�ij , represented by the arrow pushing it towards the attacker. Node i can detect the

attack by finding that �c is non-zero, as described in IN1. It can then find which

node introduced the unbalanced force, and thus is the attacker. Specifically, for every

neighbor node k, i sums up the forces (�sik) that k has applied to it since k entered its

63

neighbor set and then calculates the vector projection of �sik onto �c. The node whose

projection has the greatest magnitude is the one who has contributed most to the

centroid being moved, thus an attacker, and its force is ignored.

IN1 holds even if a malicious node initially reports an incorrect coordinate because

the system always starts in a correct state (all the nodes start at the origin, and so

does the centroid).

Detection for malicious physically close nodes from neighbor set: For

nodes that are physically close, we observe that because all nodes are connected via

springs they will experience very similar forces from the same nodes. We can use

the first law, which dictates that a node in a mass-spring system must move if acted

upon by an external, unbalanced force. Moreover, the second law implies that we can

detect if a node should be moving or not and we can calculate how much it should

move. Our second invariant can now be summarized:

IN2: Nodes i and k are physically close and if node i experiences a force f�ij from

node j, then node i would expect node k to experience a force from j similar to the

vector projection of f�ij onto the vector u(xj − xk).

We use Figs. 4.1(c) and 4.1(d) to illustrate IN2. Fig. 4.1(c) shows the nodes before

the attack. The black dot at coordinate (-2,3) is node i, the victim, the blue dot at

coordinate (-6,6) is node j, and the red triangle at coordinate (-3,2) is the attacker

node k. Both i and k experience forces upon them from j. Node i can calculate what

it expects the force upon k to be and thus determine that it expects k to update its

coordinate to (2,-5).

Fig 4.1(d) shows the nodes when the attack happens. Node i does move according

to the force applied to it to coordinate (7,-3). However, when k attacks by introducing

an extraneous indirect force, it moves in a different direction than expected. To detect

the attack, node i can calculate the force value for node k as described in IN2 for every

force that is applied to itself and sum up that value (�vk). Node i will remember the

previous coordinate that was reported by k and when it receives a new update from

k it calculates the change (Δxk). This difference and the sum of vector projections �vk

64

should be equivalent, if they are not, then k did not move according to the external

unbalanced force.

4.4.4 Detecting Extraneous Direct Forces

We now focus on how to detect if a force directly acting on a node is extraneous

and is caused by a malicious process. To accomplish this, we leverage the second

law of motion and Hooke’s law. The second law states how much a node should

accelerate given the force and mass of a node. In our mass-spring system, the mass

of every node is 1, and thus can be ignored. In a mass-spring system, the amount of

force applied to a node is controlled by Hooke’s law, F = −kx which states that the

amount of force on a node is proportional to the spring’s current displacement from

its rest position. We now state our third and final invariant:

IN3: As the springs in the physical system stabilize and come closer to their rest

position, nodes should decelerate and thus the forces that are applied to them should

decrease over time.

IN3 applies also to joining and leaving nodes. While joining nodes may lie about

their initial force, IN3 obliges a decreasing force over time. Leaving nodes stop

moving and the force becomes zero.

One possible detection scheme is to impose a certain rate of decrease on the

forces applied to a node, and if the force is larger than expected, offending nodes are

considered malicious. However, we have experimentally found that this approach is

too strict for real deployments, due to practical aspects of the Internet. First, triangle

inequality violations result in nodes stabilizing even though springs are still exerting

force on nodes. Thus we can expect forces to never decrease all the way to zero, but

rather opposing forces will simply be balanced. Second, IN3 assumes that latencies

do not change as real springs can not change their rest position. However, on the real

Internet this will not hold as routes change and mobile nodes move.

65

We instead take a different approach. A node calculates the median f̃ and median

absolute deviation D of the magnitude of the force that each node is applying to it.

Then if the magnitude of any force mj is a few deviations larger than the median

mj > f̃ + k ∗ D, the node will ignore it. We use the median and median absolute

deviation instead of the average and standard deviation, as the former are more robust

to outliers and have been shown to be resilient against frog-boiling attacks [73].

4.4.5 Using IN1, IN2, and IN3 to Design Newton

We use IN1, IN2, and IN3 combined with Vivaldi to create Newton. We inves

tigate if these invariants hold on real deployments of Vivaldi on PlanetLab. While

Vivaldi models a mass-spring system, the actual protocol, and more importantly, any

network on which it runs, will not perfectly emulate a physical mass-spring system.

Thus, we expect some discrepancy between the ideal physical system and the real

deployed system. We investigate these discrepancies and use the results to calibrate

Newton.

We use results of Vivaldi on PlanetLab deployments of 500 nodes to investigate the

invariants. We implement all 5 attacks (inflation, deflation, oscillation, frog-boiling,

and network-partition) and plot results relevant to each invariant. As inflation and

deflation share similar characteristics, with inflation being a more damaging attack,

and network-partition is a stronger variant of the frog-boiling attack, Fig. 4.2 shows

results for inflation, oscillation, and network-partition. Each attack starts at 600

seconds into the experiment and are conducted where 10% of nodes are attackers.

IN1. In Fig. 4.2(a), we plot the distance from the origin to the centroid of the

coordinates of randomly chosen neighbor nodes, averaged for all nodes in the system.

We expect this distance to be zero or very small. When there is no attack, we find

the centroid to be less than 20 ms away from the origin. However, during an inflation

attack, the value increases drastically as nodes start to lie about their coordinate. We

select a threshold of 20 ms to detect an attack.

66

 1000

 900

 800

 700

 600

 500

 400

 300

 200
Inflation

100
No Attack

0
 0 300 600 900 1200 1500 1800

Time (s)

(a) IN1 with Inflation

 4000
Network-Partition

3500

s)

(m No Attack

3000

n
ce

2500

is
ta

 2000

in
 D

 1500ce

 1000

er
en

 500

D
if

f

 0
 0 300 600 900 1200 1500 1800

Time (s)

(b) IN2 with Network-Partition

 110
Oscillation100
No Attack

90
 80
 70
 60
 50
 40
 30
 20
 10
 0

 0 300 600 900 1200 1500 1800

Time (s)

(c) IN3 with Oscillation

Figure 4.2. Invariants shown through deployments of Vivaldi on PlanetLab.

D
is

ta
n
ce

 f
ro

m
 O

ri
g
in

 (
m

s)
M

ed
ia

n
 M

ag
n
it

u
d
e

o
f

F
o
rc

e
(m

s)

67

Table 4.1

Sensitivity on threshold for IN2

Threshold (ms) FPR TPR

10 0.57 0.98

15 0.37 0.97

20 0.27 0.95

25 0.19 0.91

30 0.14 0.90

35 0.11 0.84

40 0.09 0.83

45 0.08 0.75

50 0.06 0.61

IN2. In Fig. 4.2(b) we plot the difference in distance from where physically close

nodes were expected to have their coordinates located at, versus where they actually

reported themselves to be. We expect this value to be zero or very small. When there

is no attack on Vivaldi, we find these values to be small, with most less than 50 ms.

When under a network-partition attack, these values increase dramatically, especially

the further a node has moved from its correct coordinate. To find a good value for

the threshold we conducted a sensitivity study by varying it between 10 and 50 and

then finding the true positive rate (TPR) and the false positive rate (FPR) when

classifying updates. We show the results in Table 4.1 and found a good threshold for

detecting the attack to be 35 ms, which trades-off discarding some benign updates

for better detection of malicious nodes.

IN3. Fig. 4.2(c) depicts the median of the magnitude of the force applied to a

single node over time. We see that while there is not a strictly decreasing line as one

would expect in an ideal system, the general trend is present. Also, in an oscillation

attack we see that this value quickly grows and is inconsistent with benign behavior.

68

To detect attackers, we have found that it is best to calculate the median separately

for randomly chosen nodes and physically close nodes. This is due to physically close

nodes having smaller force values, but deviate more from the median, while randomly

chosen nodes have the opposite characteristics. Thus we choose a threshold of 8

absolute deviations for physically close nodes and 5 for randomly chosen nodes.

Implementation. To implement Newton, we started with the base code of Vi

valdi and then added the invariants. In Newton, every node checks the invariants

after receiving an update from another node. If at least one invariant is violated the

update is discarded.

Thresholds. Because Newton uses thresholds that rely on a fixed point as a

reference, such as the origin, they are more difficult to exploit by an attacker. Nev

ertheless, an attacker can still try to exploit these thresholds by staying under their

values.We discuss scenarios where an attacker can exploit these thresholds in Sec. 4.5.4

and show that Newton is robust even under such scenarios.

Overhead. As Vivaldi is an efficient and low cost service for latency estimation,

we also aimed to preserve that goal in designing Newton. As such, we do not add any

extra network communication, as the use of our invariants do not require it, and the

added computation and memory usage are very small.

Non-Euclidiean spaces. Since Newton is based on physical laws found in our

Euclidean-based world, we investigate if Newton works in non-Euclidean spaces. We

show results for Newton in hyperbolic spaces in Sec. 4.5.3. Furthermore, as the

most general form of non-Euclidean spaces are Riemannian manifolds, and as the

Nash embedding theorem says that any m dimensional Riemannian manifold can be

embedded isometrically in some Euclidean space, we see that the defined invariants

would still hold in non-Euclidean spaces. However, the construction of this isometrical

embedding is not straightforward and if pseudo-Riemannian manifolds are used for

virtual coordinates then no such embedding might exist.

69

4.5 Simulation Results

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

140

 120

 100

 80

 60

 40

 20

 0

Simulation Time

(a) Accuracy – 10% attackers

No Attack
Vivaldi
Newton

Outlier Detection

0 20 40 60 80 100 120 140 160 180 200

0

 20

 40

 60

 80

 100

 120

 140

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

No Attack
Vivaldi
Newton

Outlier Detection

0 20 40 60 80 100 120 140 160 180 200

Simulation Time

(b) Accuracy – 30% attackers

Figure 4.3. Simulation results – inflation attack

We show through simulations, using the p2psim simulator [74], how effective New

ton is in defending against attacks. We compare Newton against the unsecured Vivaldi

and also Vivaldi outfitted with Outlier Detection [67], referred to as Outlier Detec

tion. We also include Vivaldi when no attackers are present, referred to as No Attack,

as a baseline comparison.

We use the King data set [75] which contains Internet pairwise measurements

between 1740 nodes (average RTT is 180 ms and maximum RTT is 800 ms). Simula

70

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

 140

 120

 100

 80

 60

 40

 20

 0

Simulation Time

(a) Accuracy – 10% attackers

No Attack
Vivaldi
Newton

Outlier Detection

0 20 40 60 80 100 120 140 160 180 200

0

 20

 40

 60

 80

 100

 120

 140

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

No Attack
Vivaldi
Newton

Outlier Detection

0 20 40 60 80 100 120 140 160 180 200

Simulation Time

(b) Accuracy – 30% attackers

Figure 4.4. Simulation results – deflation attack

tions last for 200 time units, where each time unit is 500 seconds. Each node joins at

the beginning of the simulation in a flash-crowd scenario and remains for the entire

duration. We use a typical setting for Vivaldi [56], where every node has a neighbor

set of 64 nodes, with half randomly chosen and the other half being nodes with low

RTT (also referred to as physically close nodes). The attackers are chosen randomly

from all nodes. Unless otherwise stated, malicious nodes start their attack at one-

third of the way through the simulation. This is to give a fair comparison for Outlier

Detection, as it needs to learn what good behavior is. Outlier Detection uses spatial

and temporal thresholds of 1.25 and 4, respectively, as described in [67]. Newton

71

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

 140

 120

 100

 80

 60

 40

 20

 0

Simulation Time

(a) Accuracy – 10% attackers

No Attack
Vivaldi
Newton

Outlier Detection

0 20 40 60 80 100 120 140 160 180 200

0

 20

 40

 60

 80

 100

 120

 140

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

No Attack
Vivaldi
Newton

Outlier Detection

0 20 40 60 80 100 120 140 160 180 200

Simulation Time

(b) Accuracy – 30% attackers

Figure 4.5. Simulation results – oscillation attack

uses the thresholds described in Sec. 4.4.5 which any Internet-wide deployment could

use. For the coordinate space, we use a Euclidean distance and gradient function in

2 dimensions, unless otherwise stated.

4.5.1 Attacks Mitigation

We vary the percentage of nodes that are attackers between 10%, 20%, and 30%.

Due to similarity of results we show only the 10% and 30% cases.

72

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

 140

 120

 100

 80

 60

 40

 20

 0

Simulation Time

(a) Accuracy – 10% attackers

No Attack
Vivaldi
Newton

Outlier Detection

0 20 40 60 80 100 120 140 160 180 200

0

 20

 40

 60

 80

 100

 120

 140

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

No Attack
Vivaldi
Newton

Outlier Detection

0 20 40 60 80 100 120 140 160 180 200

Simulation Time

(b) Accuracy – 30% attackers

Figure 4.6. Simulation results – frog-boiling attack

Inflation. Figs. 4.3(a) and 4.3(b) show the accuracy under an inflation attack. We

can see that when under attack Vivaldi has very poor accuracy, which gets increasingly

worse with the percentage of attackers. Both Outlier Detection and Newton are able

to effectively keep the error low after the attack starts. However, as the percentage

of malicious attackers increase, Outlier Detection’s prediction error also increases as

time progresses, while Newton is able to match the baseline prediction error. We

attribute Newton’s performance to its ability to detect that the attacker nodes are

introducing unbalanced forces and thus shifting the centroid far away from the origin.

73

Deflation. Results for the impact of the deflation attack on accuracy are in

Figs. 4.4(a) and 4.4(b). The deflation attack does not have as great of an impact on

Vivaldi as inflation, but the opposite is true of Outlier Detection. However, we see

again that Newton is able to successfully mitigate the attack.

Oscillation. The oscillation attack is different from the previous two attacks

in that while attackers lie about their coordinates in a random way, they also delay

measurement probes up to 1 second. We show the results of how the different systems

handle the attack and the impact on accuracy in Figs. 4.5(a) and 4.5(b). Outlier

Detection is able to withstand the attacks until there are 30% attackers, when the

prediction error increases to 26 ms. However, Newton continues to provide good

performance for all percentage of attackers. We attribute this to IN3, requiring

forces to decrease over time.

Frog-boiling. The frog-boiling attack, has been shown in [69–71] to be an effec

tive attack against VCS defenses that must learn over time what good behavior is.

We now show the impact of the attack on accuracy in Figs. 4.6(a) and 4.6(b). Similar

to previous works, we see that Outlier Detection indeed does not protect against such

an attack. Newton, though, is able to successfully protect against the frog-boiling

attack.

We give insights about how Newton works in Fig. 4.7(a) showing how the centroid

moves over time on the coordinate plane when under attack (10% attackers). Vivaldi’s

centroid moves far away from the origin. Outlier Detection’s centroid does not move

as far, but still it moves close to (100,100). To be able to see how Newton’s centroid

moves, we show a zoomed in picture in Fig. 4.7(b). Newton’s centroid also initially

moves away from the origin, until it almost reaches coordinate (13,15). At this point

individual nodes calculate that the centroid is near 20 ms away from the origin, thus

triggering the detection mechanism. The honest nodes can then determine who the

attackers are and ignore their updates.

Network-partition. The network-partition attack is similar to the frog-boiling

attack, except multiple groups of attackers move in opposite directions, trying to split

74

 800

700

 600

 500

 400

 300

 200

 100 Vivaldi

0 Outlier Detection
Newton

-100
-100 0 100 200 300 400 500 600 700 800

(a) Centroid

20

15

 10

 5

 0

Vivaldi-5
Outlier Detection

Newton
-10

-10 -5 0 5 10 15 20

(b) Centroid of Newton

Figure 4.7. Centroid over time for frog-boiling attack

the network. We consider four groups of nodes moving in four different directions.

Figs. 4.8(a) and 4.8(b) show the accuracy for the different systems under attack. This

attack is successful against Outlier Detection, while Newton still performs well under

attack. This is even though groups of attackers moving in different directions give the

illusion that they are actually acting according to balanced forces by not moving the

centroid, thus making it difficult to detect this attack using IN1. However, in this

case, attackers that are physically close can still be detected by IN2 and all types of

attackers can be detected by IN3.

75

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

 140

 120

 100

 80

 60

 40

 20

 0

Simulation Time

(a) Accuracy – 10% attackers

No Attack
Vivaldi
Newton

Outlier Detection

0 20 40 60 80 100 120 140 160 180 200

0

 20

 40

 60

 80

 100

 120

 140

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

No Attack
Vivaldi
Newton

Outlier Detection

0 20 40 60 80 100 120 140 160 180 200

Simulation Time

(b) Accuracy – 30% attackers

Figure 4.8. Simulation results – network-partition attack

4.5.2 Extreme Attack Scenarios

High percentage of attackers. We also show extreme scenarios where Newton

must face an increasing percentage of attackers. We show the advanced attacks in

Fig. 4.9, results were similar for the basic attacks, but we did not include them due to

space constraints. Overall, we see that Newton is able to handle 50% attackers with

out losing significant accuracy. However, under 60% and 70% of attackers accuracy

starts to degrade, particularly for the network-partition attacks. We point out that

each node updates its coordinate based on a set of 64 nodes, thus the high-percentage

76

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

P

re
d
ic

ti
o
n
 E

rr
o
r

(m
s)

 140

 120

 100

 80

 60

 40

 20

 0

 140

 120

 100

 80

 60

 40

 20

 0

No Attack
40%
50%
60%
70%

0 20 40 60 80 100 120 140 160 180 200

Simulation Time

(a) Frog-boiling

No Attack
40%
50%
60%
70%

0 20 40 60 80 100 120 140 160 180 200

Simulation Time

(b) Network-partition

Figure 4.9. Simulation results – high percentage of attackers

of malicious nodes results into a lower percentage in the neighbor set. For exam

ple, using the analysis from [67], when there are 70% malicious nodes in the entire

network, about 54% of nodes will be malicious in the neighbor set and thus able to

manipulate the median that is used to detect extraneous direct forces.

Attacks before system converges to steady state. In previous simulations,

we showed performance when there was a period before attacks started to allow

Outlier Detection to learn good behavior. Newton does not need such period since it

is based on invariants. We show results only for oscillation and frog-boiling attacks

as results for the other attacks were similar. Fig. 4.10 shows results when attacks

77

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

 140

 120

 100

 80

 60

 40

 20

 0

Simulation Time

(a) Oscillation

No Attack
10%
20%
30%
50%

0 20 40 60 80 100 120 140 160 180 200

0

 20

 40

 60

 80

 100

 120

 140

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

No Attack
10%
20%
30%
50%

0 20 40 60 80 100 120 140 160 180 200

Simulation Time

(b) Frog-boiling

Figure 4.10. Simulation results – attacks start at the beginning

start from the beginning of the simulation. As can be seen, Newton mitigates the

attacks. Under the oscillation attack, as the percentage of attackers increase, it takes

slightly longer for coordinates to stabilize and become accurate. This is because we

do not enforce a strict rate of decrease on the amount of force between two nodes and

instead use the median force to detect nodes. Nodes must first sample a number of

forces before they can calculate the correct median. Thus, in Newton an honest node

cannot immediately detect if a node is artificially increasing the force between itself

and another node.

78

 140 140

 120 120

 100 100

No Attack
Vivaldi
Newton

No Attack
Vivaldi
Newton

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

P

re
d

ic
ti

o
n

 E
rr

o
r

(m
s)

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

P

re
d

ic
ti

o
n

 E
rr

o
r

(m
s)

80

 60

 40

 20

 80

 60

 40

 20

 0 0
 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

Simulation Time Simulation Time

(a) Deflation attack (b) Oscillation attack

 140 140
No Attack

Vivaldi
Newton

No Attack
Vivaldi
Newton

120

 100

 80

 60

 40

 120

 100

 80

 60

 40

 20 20

 0 0
 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

Simulation Time Simulation Time

(c) Frog-boiling attack (d) Network-partition attack

Figure 4.11. Simulation results – accuracy when using 4 dimensions
in hyperbolic space with 30% attackers

4.5.3 Newton in Higher-dimensional and Hyperbolic Space

So far we have shown that Newton works well in simple 2-dimensional Euclidian

coordinate spaces. However, more complex spaces have been shown in the past to im

prove prediction error. For example, Ledlie et al. [76] have shown through a Principal

Component Analysis that 4 dimensions are appropriate for Internet-scale network co

ordinates. Hyperbolic spaces also have been proposed as an alternative to Euclidean

spaces as they better represent the structure of the Internet [77]. Several works have

applied Vivaldi to such spaces and have shown that it does produce an accurate em-

bedding [78,79]. Modifying Vivaldi and Newton to work in hyperbolic spaces simply

79

involves changing the distance and gradient function. We implement these functions

as described in [79]. Hyperbolic spaces also have a curvature parameter that describes

how much a line deviates from being flat. We experimentally found that a value of

60 provides good accuracy in benign environments. We ran simulations in hyperbolic

space in 4 dimensions. We find that for 10% and 20% attackers, Newton performs

better than the baseline. Newton continues to work well even under 30% attackers,

which we show in Fig. 4.11.

4.5.4 Invariants under Attack

Because in real-deployments Newton does not behave exactly like a physical sys

tem, it uses thresholds for the three invariants. We note that Newton’s thresholds use

as a reference a fixed point such as the origin, while Outlier Detection’s thresholds

use as a reference a moving point (the centroid of metrics derived from all nodes in

the neighbor set), allowing attacks such as frog-boiling to move it. Thus, Newton’s

thresholds are more difficult to exploit by an attacker. However, an adaptive attacker

can still exploit the values of the thresholds used by Newton to his advantage.

We conduct three tests, one for each invariant, where the attacker tries to remain

undetected, yet come as close to the threshold as possible. For IN1, the attackers

push the centroid to right below the 20 ms threshold. For IN2, attackers initially

move as the forces dictate, but then always shift just below 35 ms away from this

position. Finally, for IN3, attackers delay probes only enough to stay beneath the

deviation threshold. The results of these tests are shown in Fig. 4.12, where we zoom

in on the results of the steady state performance to see the effects. We compare the

normal baseline of Vivaldi when no attack occurs, Newton when no attack occurs,

labeled Newton 0%, and also Newton when there are 30% attackers, labeled Newton

30%. We find that even 30% attackers can not significantly increase the prediction

error.

80

Attackers can also conduct a new attack, which we call the rotation attack, where

the goal is not necessarily to disrupt accuracy, but rather stability. In this attack,

colluding nodes rotate around the origin in the same direction at a slow rate. This

attack will not trigger IN1, and if done slowly enough, will bypass the thresholds of

IN2 and IN3. We implement this attack and show the results in Fig. 4.13 (notice the

zoomed-in y axis scale). We find the accuracy in Fig. 4.13(a) to only be slightly raised

over our baseline. Stability, as shown in Fig. 4.13(b), is also raised over Newton’s

normal levels, but is not yet worse than the baseline.

4.6 Experimental Results

We evaluate Newton in real-life experiments on the PlanetLab testbed. We use

500 nodes and run each experiment for 30 minutes, unless otherwise stated. Every

second a node chooses one of its neighbors to probe and gets their coordinate update.

We use Newton configured for a Euclidean coordinate space. Due to PlanetLab being

an Internet-scale testbed, we use 4 dimensions as suggested by Ledlie et al. [76].

Malicious nodes start performing attacks immediately once the experiment starts.

All other parameters are the same as in the simulations. We compare Newton with

Vivaldi under attacks and consider as baseline Vivaldi with no attacks.

4.6.1 Performance in Benign Networks

We first show the results when there are no attackers in Fig. 4.14. Accuracy is

shown in Fig. 4.14(a) where the prediction error is lower in both Vivaldi and Newton

for PlanetLab than the simulations. This is most likely due to the smaller number

of nodes involved as the error needs to be minimized for a fewer number of nodes.

Furthermore, Newton only has a resulting prediction error of 9 ms, while Vivaldi has

one of 12 ms. The difference in stability has also increased over the simulations, as

shown in Fig. 4.14(b). Vivaldi has a resulting velocity of 0.8 ms/s, while Newton is

only 0.25 ms/s. This increase in accuracy and stability is due to Newton being less

81

sensitive to probes that get delayed occasionally as the result of benign occurrences

such as queueing delays on routers.

Adapting to changes in the network. In real deployments, such as on Plan

etLab, route changes will take place, potentially having an effect on IN3. To show

that Newton can withstand such changes, we run Newton for four days on 350 nodes

on PlanetLab. For this particular experiment we reduce the frequency of how often

a node sends a probe to a neighbor to 5 seconds, all other parameters remained the

same as before. We performed traceroutes between all-pairs of nodes before and after

the experiment to estimate the number of routes changed. We conservatively only

count routes as changed if they contain different routers and also have a difference in

RTTs greater than 10 ms. We find that 12% of all routes changed.

Fig. 4.15 shows the results. Initially, Newton is able to stabilize within an hour

to 6 ms of error. We attribute this smaller error, compared to the 9 ms seen earlier,

to the smaller number of nodes that must embed coordinates. However, over time,

Newton reduces the error even further to 3 ms. We also investigate in more details

what happens when routes change. We find that in many cases the resulting change

is not so large that IN3 is violated. However, there are cases in which IN3 is violated

for a short period of time, for one of the two nodes. This is due to when a single path

between routers change, it often affects many end-to-end routes for one node, thus

causing RTTs to multiple neighbors to change simultaneously. Thus, one node will

realize that many neighbors are putting extra force on it, and change its coordinate

accordingly.

4.6.2 Attack Mitigation

Inflation and deflation. Figs. 4.16 and 4.17 show accuracy under inflation and

deflation attacks respectively, for 10% and 30% attackers in the system. We find

that the inflation attack is not as effective against Vivaldi in these experiments as it

is in the simulations, even though in the experiments we increased the amount that

82

attackers lie about so that they have larger coordinates. The deflation attack is also

not as effective as in simulations. In both cases, Newton is able to handle such attacks

while having better accuracy than in the benign setting.

Oscillation. For the rest of the attacks, we show just 30% attackers. We con

ducted experiments with lower percentages of attackers, but we did not include them

because of similarity of results. Fig. 4.18 shows accuracy and stability under the

oscillation attack. This attack proves to be more damaging in the experiments than

the simulations for Vivaldi. Newton though, because it is taking advantage of IN3,

is able to mitigate such attacks easily.

Frog-boiling and network-partition. Results for frog-boiling are shown in

Fig. 4.19, which while we find it to be the most effective attack on Vivaldi, for reasons

previously explained, it has no effect on Newton. Unsurprisingly, we find that the

network-partition attack, which is similar to the frog-boiling attack but nodes move

in different (four in our case) directions, has similar results to it. We plot the effects

of this attack in Fig. 4.20.

4.7 Summary

We introduced Newton, a new approach to providing a secure VCS by going back

to the abstraction that Vivaldi is based on, a physical mass-spring system. In accor

dance with the abstraction, our defenses are based on the three laws of motion as

put forward by Newton.We have explained in depth how the laws provide invariants

for our system and how they are leveraged to mitigate basic attacks such as infla

tion, deflation, and oscillation but also more advanced attacks like frog-boiling, and

network-partition attacks. Through simulations and experiments on the PlanetLab

testbed we showed that Newton outperforms Vivaldi even in benign settings and is

able to mitigate the advanced attacks that remained undetected by Outlier Detection.

Newton can also cope with advanced attackers that might leverage insider knowledge

about calibration specific parameters used by Newton. Newton is immune to such

http:Newton.We

83

attacks, since the calibration of the defense mechanism is relying on robust and fixed,

time independent thresholds.

84

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

P

re
d
ic

ti
o
n
 E

rr
o
r

(m
s)

 30

 25

 20

 15

 10

 5

 0

Simulation Time

(a) Attackers push the IN1 threshold

 30

 25

 20

 15

 10

 5

 0

Simulation Time

(b) Attackers push the IN2 threshold

No Attack
Newton 0%

Newton 30%

40 60 80 100 120 140 160 180 200

No Attack
Newton 0%

Newton 30%

40 60 80 100 120 140 160 180 200

0

 5

 10

 15

 20

 25

 30

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

No Attack
Newton 0%

Newton 30%

40 60 80 100 120 140 160 180 200

Simulation Time

(c) Attackers push the IN3 threshold

Figure 4.12. Simulation results – attackers (30%) push the limits of
the thresholds used by the three invariants

http:Figure4.12

85

 30

 25

 20

 15

 10

 5

 0

Simulation Time

(a) Accuracy

 0.02

 0.015

 0.01

 0.005

 0

No Attack
Newton 0%

Newton 30%

40 60 80 100 120 140 160 180 200

Simulation Time

(b) Stability

Figure 4.13. Simulation results – attackers (30%) rotate around the
origin at a slow rate

V
el

o
ci

ty
 (

m
s/

s)

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

No Attack
Newton 0%

Newton 30%

40 60 80 100 120 140 160 180 200

http:Figure4.13

86

 35

V
el

o
ci

ty
 (

m
s/

s)

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

30

 25

 20

 15

 10

 5

 0

Vivaldi
Newton

0 300 600 900 1200 1500 1800

Time (s)

(a) Accuracy

 10

 8

 6

 4

 2

 0

Vivaldi
Newton

0 300 600 900 1200 1500 1800

Time (s)

(b) Stability

Figure 4.14. PlanetLab results – no attackers

 10

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s) 8

 6

 4

 2

 0

Time (hours)

0 10 20 30 40 50 60 70 80 90

Figure 4.15. PlanetLab results – accuracy of Newton for 4 days

87

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

P

re
d
ic

ti
o
n
 E

rr
o
r

(m
s)

120

 100

 80

 60

 40

 20

 0

No Attack
Vivaldi
Newton

0 300 600 900 1200 1500 1800

Time (s)

(a) Accuracy – 10% attackers

 120

 100

 80

 60

 40

 20

 0

No Attack
Vivaldi
Newton

0 300 600 900 1200 1500 1800

Time (s)

(b) Accuracy – 30% attackers

Figure 4.16. PlanetLab results – inflation attack

88

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

P

re
d
ic

ti
o
n
 E

rr
o
r

(m
s)

120

 100

 80

 60

 40

 20

 0

No Attack
Vivaldi
Newton

0 300 600 900 1200 1500 1800

Time (s)

(a) Accuracy – 10% attackers

 120

 100

 80

 60

 40

 20

 0

No Attack
Vivaldi
Newton

0 300 600 900 1200 1500 1800

Time (s)

(b) Accuracy – 30% attackers

Figure 4.17. PlanetLab results – deflation attack

89

V
el

o
ci

ty
 (

m
s/

s)

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

120

 100

 80

 60

 40

 20

 0

No Attack
Vivaldi
Newton

0 300 600 900 1200 1500 1800

Time (s)

(a) Accuracy – 10% attackers

 30

 25

 20

 15

 10

 5

 0

No Attack
Vivaldi
Newton

0 300 600 900 1200 1500 1800

Time (s)

(b) Stability – 30% attackers

Figure 4.18. PlanetLab results – oscillation attack

90

V
el

o
ci

ty
 (

m
s/

s)

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

120

 100

 80

 60

 40

 20

 0

No Attack
Vivaldi
Newton

0 300 600 900 1200 1500 1800

Time (s)

(a) Accuracy – 10% attackers

 30

 25

 20

 15

 10

 5

 0

No Attack
Vivaldi
Newton

0 300 600 900 1200 1500 1800

Time (s)

(b) Stability – 30% attackers

Figure 4.19. PlanetLab results – frog-boiling attack

91

V
el

o
ci

ty
 (

m
s/

s)

P
re

d
ic

ti
o
n
 E

rr
o
r

(m
s)

120

 100

 80

 60

 40

 20

 0

No Attack
Vivaldi
Newton

0 300 600 900 1200 1500 1800

Time (s)

(a) Accuracy – 10% attackers

 30

 25

 20

 15

 10

 5

 0

No Attack
Vivaldi
Newton

0 300 600 900 1200 1500 1800

Time (s)

(b) Stability – 30% attackers

Figure 4.20. PlanetLab results – network-partition attack

92

5 A DESIGN FOR SECURING DATA DELIVERY IN MESH-BASED

PEER-TO-PEER STREAMING

As noted in Chapter 4, Virtual Coordinate Systems provide a localization service for

overlays, however insider attacks can reduce the effectiveness of such services greatly.

Similarly, insider attackers can target the overlays that run on top of localization

services. In this chapter we discuss how to secure high-bandwidth P2P streaming

systems against malicious insiders.

5.1 Introduction

The vision of enabling simultaneous video broadcast as a common Internet utility

in a manner that any publisher can broadcast content to any set of receivers has been

driving the research agenda in the networking community for over two decades. For

much of the 1990’s, the research and industrial community investigated support for

such applications using the IP Multicast architecture [80]. However, serious concerns

regarding its scaling, support for higher level functionality, and deployment have

dogged IP Multicast. The sparse deployment of IP Multicast, and the high cost of

bandwidth required for server-based solutions or Content Delivery Networks (CDNs)

are two main factors that have limited broadcast to only a subset of Internet content

publishers. While many network service providers have enabled IPTV services that

deliver quality video to their own subscribers using packet switching, there remains

a need for cost-effective, ubiquitous support for Internet-wide video broadcast.

Over the last decade, there has been significant interest in the use of peer-to-peer

(P2P) technologies for Internet video broadcast [7, 10, 51,81–83]. There are two key

drivers making the approach attractive. First, such technology does not require sup

port from Internet routers and network infrastructure, and consequently is extremely

93

cost-effective and easy to deploy. Second, in such a technology, a participant that

tunes into a broadcast is not only downloading a video stream, but also uploading it

to other participants watching the program. Consequently, such an approach has the

potential to scale with group size, as greater demand also generates more resources.

The extensive research in the design of P2P streaming systems [15, 51, 81, 84–

87] has matured to the extent that we are today seeing several efforts aimed at

commercializing the technology [7,10–12,88–94]. High user demand for these systems

has been shown by their increasingly large user base [82, 83].

P2P streaming can be divided into two main approaches, tree-based [15,85,95,96]

and mesh-based [84,86,97,98] architectures (see [99] for a survey). Tree-based overlays

construct a tree, rooted at the source, which broadcasts the stream. Mesh-based

overlays disseminate data in a less structured manner, where nodes exchange data

with a subset of the nodes in the network without using any predefined route. Mesh-

based approaches have received a lot of attention in recent times because they are

more resilient to churn [100] and node failures, and have been shown to perform better

than tree-based approaches [14, 100].

While mesh-based approaches have several attractive properties, the performance

of these systems in the presence of malicious participants has received little atten

tion. Dhungel et al. [101] show the vulnerability of such systems to attacks where

malicious nodes upload polluted data to other nodes in the overlay. Similarly Hari

dasan et al. [102] focus on polluted data but also denial of service attacks on nodes

by flooding them with requests. Several works have focused on the problem of peers

which download data from other nodes but do not in turn upload data [103–106],

however these works focus on selfish rather than malicious node behavior.

In this chapter, we systematically analyze the vulnerabilities of the components of

mesh-based streaming overlays. We focus on an important and broad class of attacks

where malicious nodes deliberately become neighbors of a very large number of nodes

in the system and do not upload data to them. We also focus on attacks that are

particular to streaming systems such as when malicious nodes artificially delay the

94

uploading of data, so while nodes still receive the data, because of real-time deadlines

they are less likely to have opportunities to forward that data to others. We focus

on these attacks given they have received limited attention, they can have significant

disruption on data delivery, and they are applicable to many mesh-based systems. For

instance, our evaluation with a state-of-the-art mesh-based streaming system shows

that when the attacks are conducted with just 10% of nodes in the system being

malicious, the average data rate received across all nodes is only 45% of the source

rate when nodes upload no data and 47% when nodes delay some data.

We wish to emphasize that our focus in this chapter is on mesh-based approaches

for live video streaming, rather than file-download systems like BitTorrent [1]. While

some of the attacks we consider may also be relevant to file-download systems, the

impact on application performance is far more serious for streaming applications

given that they are associated with stringent real-time deadlines. Consequently, the

solutions must also be tailored to the unique demands of streaming applications.

Our contributions are:

• We provide a taxonomy of the implicit commitments made by nodes when

peering with others. We show that when these commitments are not enforced

explicitly, they can be exploited by malicious nodes to conduct attacks that

degrade the data delivery service. To our knowledge, this is the first effort at

taxonomizing attacks on mesh-based streaming protocols.

• We present a novel reputation scheme that combines feedback from the data

plane (based on data received from the nodes) and the control plane (based

on who a node has as neighbors) to increase the robustness of the mesh-based

streaming overlay to the identified attacks. Through detailed security analy

sis, we show that our scheme is resistant to attacks commonly associated with

reputation schemes such as self-promotion and slandering [107]. In particular,

we show that our scheme ensures that a malicious node must contribute a min

imum amount of data in a timely fashion to acquire a certain reputation. In

95

addition, we show that a benign node that contributes data is assured a certain

minimum reputation and cannot be slandered.

• We further augment the system, with a more comprehensive approach that also

addresses potential vulnerabilities in the bootstrap mechanism, and with the

source of the broadcast. We present a set of simple mechanisms to achieve

this goal. Specifically, we present a scheme that prevents malicious nodes from

influencing the membership bootstrap service and a source protection scheme

that disallows malicious nodes to be overly connected to it.

• We evaluate our design using experiments on the PlanetLab testbed. Our results

show that our schemes are extremely effective in ensuring good performance

under attacks. With the local-reputation scheme, with 10% of the nodes being

malicious, the average data-rate received across nodes from the source increases

from 45% to 65%. Augmenting the solution with source and bootstrap protec

tion mechanisms results in nodes receiving 95% of the source-rate on average.

Our schemes also work well when attackers use advanced techniques such as

data delaying. In fact, even with 30% of the nodes being malicious, more than

85% of the peers receive over 90% of the data. Overall, our results show the

feasibility of augmenting mesh-based P2P streaming schemes to be resistant to

attacks that target data delivery.

The rest of the chapter is organized as follows. In Section 5.2 we describe the

mesh model we consider for this work. We describe attacks against data delivery in

meshes in Section 5.3 and present our design to mitigate such attacks in Section 5.4.

In Section 5.5 we provide an analysis for the security of our design. We explain

the methodology and results of our experiments in Section 5.6 and 5.7, respectively.

Finally, we summarize our findings in Section 5.8.

96

5.2 Mesh-Based Peer-to-Peer Streaming

We consider a unidirectional mesh-based P2P overlay consisting of a bootstrap

node, a source node and peer nodes. As seen in Figure 2.2, the mesh allows peers

to download a stream generated by the source, while the bootstrap maintains a list

of alive peers used to assist peers to join the network. We consider a unidirectional

mesh since it is more general than a bidirectional mesh. Also, unidirectional meshes

have been shown to perform better than bidirectional meshes [13].

Every peer node maintains two sets of nodes, in-neighbors and out-neighbors. The

in-neighbors represent the nodes that the peer node is receiving data from. The size

of the in-neighbors is a system parameter. The out-neighbors represent the nodes

that the peer node is sending data to. Each node decides independently the number

of out-neighbors to support which will be proportional to its bandwidth. The source

has no in-neighbors, only an out-neighbors set, whose size is usually larger than the

size of an out-neighbor set of a peer node.

At join time, a peer node j first contacts the bootstrap node to receive a set of

candidate nodes to serve as its neighbors in the overlay. Node j then contacts each

candidate node and requests to become one of its out-neighbors. If a candidate node

c accepts the request, then in turn, j will add c to its in-neighbor set. Each node

pro-actively looks for several out-neighbors to connect to as well.

After it joins the overlay, a node discovers other peers by occasionally contacting

its neighbors to learn about their own neighbors. This gossip protocol allows a node

to update its in-neighbor set when neighbors leave or crash. A node also registers

with the bootstrap node occasionally to allow the bootstrap node to have an up-to

date list of alive nodes. We will refer to these protocols as the control plane of the

overlay.

The source node splits the stream into data chunks of a fixed size, each uniquely

identified by a sequence number. To receive a chunk a node will send a request to

an in-neighbor with that chunk’s sequence number. If the requested node does not

97

respond before a deadline then the requesting peer will consider that request lost.

Each peer node maintains a buffer that it is trying to fill with data chunks. The

buffer corresponds to a playback deadline, such that if a block of the stream is not

received before that deadline, the data is considered lost and thus the quality of the

playback stream is diminished. We will refer to this protocol as the data plane of the

overlay.

This model is general enough to capture the characteristics of several previously

proposed and deployed mesh-based systems [7, 12, 86, 97, 98].

5.3 Attacks Against Data Delivery

We state the assumptions we make about the attacker and provide a taxonomy of

attacks against mesh-based P2P streaming systems.

5.3.1 Attack Model

We assume that a fraction f of peers are compromised and can behave arbitrar

ily. The percentage f is the largest fraction of nodes that the system is willing to

tolerate as malicious. Their main goal is preventing the overlay from delivering data

to each peer in a timely fashion. An attacker can disrupt the data delivery directly

by attacking the data plane, or indirectly by attacking first the control plane to gain

control over the data delivery path and then disrupting the data delivery.

We assume a defense against Sybil attacks [108] is in place, such as binding IP ad

dresses to certificates or one that leverages social networks [109]. We also assume that

data integrity is ensured and data is protected from pollution [82, 101]. We assume

that the source and the bootstrap node are trusted and always behave correctly.

98

5.3.2 Attacks on the Data Plane

When two nodes A and B accept each other as out-neighbor, and in-neighbor,

respectively, they assume several implicit commitments from each other:

• Data delivery commitment: A commits to B that it is going to deliver a certain

amount of data to B.

• Data download commitment: B commits to A that it is going to download a

certain amount of data from A.

• Data upload commitment: B is going to upload to the overlay what it down

loaded from A.

• Source upload commitment: If B is connected to the source, then it will

upload the data downloaded from the source to others in the overlay. This is similar

to the data upload commitment, however we list it separately given that the source

is a special entity where all the data originates.

• Data delay commitment: A will upload the data requested by B as soon as

possible and not arbitrarily delay it.

• Data integrity commitment: A commits to B that it is not going to upload to

B meaningless data.

However, in many mesh systems, not all of these commitments are explicitly en

forced by the system. As a result, malicious nodes can exploit them to attack the

data plane. We identify the following attacks (summarized in Table 5.1).

• Data dropping attacks: If the data delivery commitment is not met, a malicious

node can accept benign nodes as its out-neighbors, but not deliver data to them.

The attacks are effective because each data chunk has a strict deadline. A node only

has time to make a few downloading attempts for a chunk, and will miss it once the

deadline is passed.

• Data delaying attacks: If the data delay commitment is not met, a malicious

node can send data to its out-neighbors yet delay the sending of it. Delaying data

makes the attacker seem less malicious since it is actually delivering data before the

99

Table 5.1

Attacks against data and control planes

Data plane

Data dropping

Data delaying

Neighbor exhaustion

Source

Free-riding

Pollution

Control plane Bootstrap list pollution

Neighbor selection

playback deadline. However, the data is less useful to the recipient since there will

be fewer opportunities to upload the data to others.

• Neighbor exhaustion attacks: If the data download commitment is not met, a

malicious node can become out-neighbors of benign nodes, but not download data

from them. As many meshes limit the number of out-neighbors to ensure that nodes

can honor the bandwidth requirements, by being included in the out-neighbors a

malicious node exhausts the slots in that set thus denying access to other benign

nodes.

• Source attack: If the source upload commitment is not met, malicious nodes

do not forward data given to it by the source. Thus, if a particular chunk is only

received by malicious nodes it will not be available to any benign node. To amplify

this attack, malicious nodes can also become out-neighbors of benign nodes connected

to the source and similarly not forward data given to them.

• Free-riding attacks: If the data upload commitment is not met, malicious nodes

could also download data but not upload them to other peers, and basically obtain

free service without contributing to the system.

100

• Data pollution attacks: If the data integrity commitment is not met, malicious

nodes can upload meaningless data, thus polluting the information in the overlay.

5.3.3 Attacks on the Control Plane

The above data plane attacks are more effective when they impact many nodes

in the overlay. A malicious node can increase the impact of its attack by first at

tacking the control plane. The control plane provides nodes with two mechanisms to

discover peers. The first consists of the list of alive peers provided by the bootstrap

node when a node joins the overlay. The second consists of exchanging membership

information between the node and known peers. The bootstrap list is up-to-date if

peers periodically register with the bootstrap node to inform it that they are alive.

Assuming the bootstrap node is trusted, the control plane achieves its goals if the

following commitments are met:

• Registration with the bootstrap node commitment: A peer commits that it

will register occasionally with the bootstrap node, at a rate specified by the protocol.

• Referral list commitment: A node commits to provide a neighbors list that does

not purposely contain malicious nodes and is not biased towards some nodes.

We identify the following attacks that have an impact on neighbor selection:

• Bootstrap list pollution attacks: If the registration with the bootstrap node

commitment is not met, malicious nodes can register fast and often with the bootstrap

node filling the bootstrap node’s list of alive peers. Thus, although the bootstrap

node is trusted, the list that it will provide to the joining peers will be polluted with

malicious nodes. Note that malicious nodes can also register infrequently or not at

all, but in this case they will not impact the list of the bootstrap node.

• Neighbor selection attacks: If the referral list commitment is not met an attacker

can collude with other malicious nodes and when contacted about its own neighbors,

refers only other malicious nodes. This attack is epidemic in nature since soon benign

nodes will also be referring the malicious nodes they know to other benign nodes.

101

5.3.4 Our Focus

We focus on the attacks that we believe can be the most effective strategy for an

attacker to disrupt the data delivery, and allow him to inflict maximum damage on

the system with minimal resources. The most effective strategy for a malicious node

is to (i) become neighbors of as many nodes as possible, (ii) deliver as little data as

possible and (iii) data that is delivered should be as useless as possible. Hence we

focus on control plane attacks (i.e. bootstrap list pollution and neighbor selection)

that seek to increase the connectivity of malicious nodes and also on several data

plane attacks (i.e. dropping, delaying, neighbor exhaustion, and source) as they can

create considerable damage in the network.

We note that many of these attacks are specific to streaming, as file-distribution

systems do not have real-time deadlines of data, nor need to download at a particular

streaming rate, and often have centralized membership protocols (e.g. BitTorrent).

We do not consider attacks such as free-riding or data pollution as they relate

to selfish behavior and data integrity but not attacks on data delivery. Furthermore,

several solutions to free-riding have been proposed in previous work [1,103,104]. Also,

to prevent data pollution, Dhungel et al. [101] have shown that a suitable means to

accomplishing this is the source digitally signing hashes of the chunks. We note that

solutions to these attacks can be used to complement our work.

5.4 A Design For Securing Data Delivery

In this section we describe our design for securing the data delivery for a P2P

mesh-based streaming overlay. We first outline the design goals, then describe the

details of our design.

102

5.4.1 Design Goals and Overview

Our focus is on ensuring that the P2P system achieves its intended goal which

is continuous data delivery, even when under attack. However, achieving the same

level of service in the presence of insider attacks as in the benign case is not always

possible. As a result, our specific goals are:

(G1) Limit the impact of the attack: We seek to raise the bar for the attacker

and bound the amount of damage per attacker. The damage created is directly

proportional with the number of attackers and the amount of data dropped or delayed

by the attacker nodes. Our goal is to limit the degree of connectivity in the mesh

that malicious nodes can obtain. We integrate mechanisms that use control plane

feedback to mitigate bootstrap list pollution, source, and neighbor selection attacks

and mechanisms that use data plane feedback to detect data dropping, delaying and

neighbor exhaustion attacks.

(G2) Limit the overhead of the defense mechanisms: Because malicious be

havior is not a priori known, some of the components of our design are proactive,

thus they must be enabled regardless of the presence of attacks. One specific concern

is the overhead of the defense mechanisms. Our goal is that when no attack takes

place, the system performance with the defense mechanisms enabled is the same as

if those defense mechanisms were not used.

To achieve the goals identified above we design several proactive and reactive

protocols. Our schemes use local observations to help nodes identify malicious peers

and build a robust neighbor set. We also design schemes tailored for the source and

bootstrap nodes given their critical roles.

Peer protection: To limit the impact of attacks and the overhead of the defense

solution, we use decentralized mechanisms deployed at each individual peer that allow

it to make local decisions about accepting, rejecting, or excluding other peers from

its set of neighbors. Each node individually derives reputation scores for the other

peers it is aware of in the overlay. The use of reputation is a natural choice in a dis

103

tributed system with malicious participants. Since many existing reputation systems

require additional overlays or have high computational or bandwidth overhead [110],

we design schemes that are tailored to streaming overlays. The novelty of our scheme

lies in combining feedback from the data plane and control plane to build reputations

for each peer.

Source protection: As the source is a producer but not a consumer of data, the

protection mechanisms used for peers are not applicable to the protection of the

source. We use mechanisms that limit the impact of source attacks by allowing nodes

to notify the source if certain data was not received.

Bootstrap protection: The bootstrap node plays a critical role in the control plane.

Attacks against the control plane can be amplified if the bootstrap is not a reliable

and unbiased source of information on who is currently in the overlay. Our scheme

discourages nodes from registering at a fast rate and thus limits the percentage of

malicious nodes in the bootstrap list.

Below we describe in details each of these protection mechanisms. First, we de

scribe in Section 5.4.2 the details on a local reputation mechanisms that protects

against data dropping and data delaying attacks. Then, we describe the source and

bootstrap node protection mechanisms, in Sections 5.4.3 and 5.4.4, respectively.

5.4.2 Protecting Peers through Local Reputation

We propose a mechanism that allows peers to select as neighbors the nodes that

provide the best performance while being resilient to data dropping and neighbor

selection attacks. We also show how to extend this mechanism to protect against data

delaying attacks. A node uses locally observed data and control plane information to

compute scores for each of its neighbors. The lower the score, the higher the chance

that a node is malicious. Nodes that have a score lower than a threshold Td are

evicted from the in-neighbors set. The local reputations are also sent across one hop

104

to neighbors, so that they can avoid accepting malicious nodes as in-neighbors. The

score consists of two components:

• Data score: This score is a positive reputation (it rewards good behavior) and it is

calculated based on how much data a node has received from a particular neighbor.

The goal of the data score is to capture regular performance degradation and data

dropping attacks. Nodes who do not deliver sufficient data will have a lower data

score. Nodes with a data score below a threshold Ts are considered to be suspicious.

This approach forces malicious neighbors to deliver a certain amount of data. Note

that for a node to be evicted from the neighbors set, his total score has to be smaller

than Td (Td < Ts).

• Graph connectivity score: This score is a negative reputation (it penalizes bad

behavior) and it is calculated based on how connected a node is to other nodes. The

goal of the graph connectivity score is to target neighbor selection attacks. This score

is relevant only for suspicious nodes because if the nodes deliver enough data (i.e.

corresponding to a data score above Ts) they do not disturb the overlay. A high

graph connectivity score indicates that a node is potentially conducting a neighbor

selection attack. This score is used because if the data score is neither high nor low,

it may not be obvious if a node is malicious.

Below we provide details about the data and graph connectivity score computa

tion, about the way they are combined into a reputation score, and about how the

reputation score is used to make decisions on what nodes to allow as neighbors. Al

gorithm 2 also describes this computation, specifically how a node i calculates the

Local Reputation for node j.

Data score computation. Every node i calculates a data score for every in-

neighbor j as follows:

Gij(t)
Lij(t) = min 1, (5.1)

E(t)

where Gij(t) is the number of chunks received by node i from j before deadline

Dr in a time period. Dr is the amount of time the requesting peer will wait before

considering that the request was dropped. If a request for a chunk is honored after

105

the Dr deadline has passed, it is not included in Gij(t). E(t) is the expected number

of chunks to be received by a node in a time period. Typically, the expected value

is the same for all nodes and if it is received from all in-neighbors the full streaming

Gij (t)rate will be received. We take the minimum of and 1 so that if a node performs
E(t)

better than expected the end result will still be between 0 and 1. The more data j

delivers to i, the bigger the Lij(t). If Lij(t) is less than a threshold Ts, then i marks

j as suspicious.

A score for a node’s out-neighbors is calculated by replacing Gij(t) with the num

ber of requests fulfilled for that node in a time period. Such a score allows nodes to

mitigate neighbor exhaustion attacks.

Graph connectivity score computation. Every node also calculates a graph

connectivity score for each of its neighbors that were marked suspicious. This score

relies on the observation that a malicious node conducting a neighbor selection at

tack will be an in-neighbor for many honest nodes. In particular, if node i has as

in-neighbors node k and j, and node j is malicious, then it is likely that j is an

in-neighbor for node k as well. Furthermore, the more in-neighbors of i that j is

connected to, the more likely it is that j is conducting an attack. We propose the

following graph connectivity equation for each node i to calculate the likelihood of

each of its in-neighbor j being malicious:

Kij(t)
Cij(t) = (5.2)

Ni(t)

where Ni(t) is the total number of non-suspicious neighbors of i (i.e. a non-

suspicious neighbor is one whose data score L is greater than Ts), and Kij(t) is

the number of these non-suspicious neighbors for whom j is also an in-neighbor.

Intuitively, the equation calculates a score equal to the percentage of non-suspicious

neighbors that a neighbor j is currently an in-neighbor for. The score will be high if

a neighbor is in many neighbor sets, indicating that it is malicious. We consider only

non-suspicious nodes so that in the case a malicious node wants to falsely advertise

other nodes in its in-neighbor set, it has to first perform some work for the system.

106

Reputation score computation. Every node combines the data and graph

connectivity score as follows:

 Lij(t) − α ∗ Cij(t) if j is suspicious
R ′ ij(t) = (5.3)

 Lij(t) otherwise

If a node had a low data score and was marked as suspicious, then we take into

account the graph connectivity score as it is a negative score and will further reveal

if the node is misbehaving. Specifically, we subtract from the data score the graph

connectivity score and we weight the latter with a parameter α. However, if the node

was not marked as suspicious, we do not take into account the graph connectivity

score. This choice was made based on the observation that if the nodes deliver enough

data, it does not matter how connected they are as they do not disturb the honest

nodes.

Incorporating history. Every node takes into account the history of its neigh

bors by calculating for each neighbor the following equation:

Rij(t) = λ ij(t) + (1 − λ) ∗ Rij(t − 1) ∗ R ′ (5.4)

where λ is a value less than 1. We take into account history to accommodate

transient network conditions, such as congestion. This gives nodes the opportunity

to recover and not be disconnected due to non-persistent problems. All nodes start

with a reputation equal to Ts.

Reputation based neighbor selection. A node uses reputation scores to decide

when to drop or add neighbors. To decide if he keeps a node j as a neighbor, node i

compares the reputation score Rij for node j with a threshold Td. If j’s score becomes

less than Td, then i will drop j from its neighbor set and will not allow j to be in either

its in-neighbor or out-neighbor sets from then on. We identify j by its IP address to

avoid trivial Sybil attacks.

A node also uses the reputation score to determine if a node is non-malicious

when deciding to add a neighbor. Consider the case when a node s refers a neighbor

k to node i, s will also send the reputation score of k. To decide if he adds k as a

�

107

neighbor, i computes Ris ∗ Rsk. Node i will then add node k as a neighbor if the

resulting number is greater than the suspicion threshold, Ts.

Protecting against data delaying. As long as there is no enforcement of data

delivery, an attacker’s best strategy is to drop all data. However, once the above

protection mechanisms are introduced, an attacker’s best strategy is to send as little

data as possible, but delay everything it sends so that the node receives it just before

the Dr deadline. The delaying of data is advantageous to attackers in multiple ways.

Attackers can still get credit for sending data, yet it is less likely that the benign node

will have as many opportunities to pass that data on to others. Delaying data also

creates a temporary scarcity of data chunks, and as few benign nodes will have that

data, malicious nodes will be able to fill that request for many nodes.

As data delaying unnecessarily increases the amount of delay in receiving chunks,

nodes can measure the delay and then penalize the offenders. To do this we introduce

the inverse relative stretch (IRSu) metric which node i will calculate for each chunk

u received from node j. We define IRSu as the ratio between the delay from the

source to node i and the delay from when the source generates a chunk u to when

node i actually receives it. An IRSu of 1 would indicate node i received the chunk

with no extra delay whatsoever while less than 1 indicates that there was some extra

delay. To incorporate this value into the data score, we recalculate Gij (as referenced

in Equation 5.1) as follows:

Gij(t) = min(l ∗ IRSu, 1) (5.5)
u

During one time period, node i evaluates the IRSu of every chunk u received from

node j and calculates a summation based on these values. Specifically, the summation

of Gij is calculated by adding the minimum of 1 and l times IRSu for every chunk

received. We multiply the IRSu by some parameter l as some stretch is normal for any

application-layer multicast and l lets us determine how much stretch we are willing to

tolerate. We then take the minimum of that value and 1 to normalize it and ensure

that we are adding at most 1 for every chunk received. We would expect then that a

108

benign node that does not add extra delay to a chunk would receive a score equal to

the number of chunks it sent. However, any malicious node adding extra delay would

receive a lower score.

Overhead. The Local Reputation scheme adds minimal overhead to the system.

This is due to it only involving simple calculations, the most expensive being mul

tiplications, and it scales linearly with the number of neighbors a node has, which

typically runs between 15 and 60, depending on how much bandwidth a node has.

Furthermore, the network overhead is negligable as we use messages that are already

being sent to transport the extra data about reputation scores.

5.4.3 Source Protection with Health Monitoring

The source is a critical component of the overlay. As will be shown in Section 5.7

attacks against the source can significantly degrade the performance of the system.

While Local Reputation is effective for peers, it can be intuitively seen that such a

mechanism is ill-suited for the source. This is for two reasons. First, the source does

not request data from its neighbors, it only gives data, so it cannot judge a node

based on data received. Second, malicious nodes will prefer to receive data from the

source rather than from peers so this also will not lead to the source suspecting them.

As a result the source can not differentiate between a benign and malicious node.

We first observe that in some P2P live streaming systems today, there is extensive

gathering of statistics from peers [82]. This allows for further refinement of protocols

and code so that the quality of the experience can continue to improve. One very

important metric to collect is the amount of data that peers miss from the stream.

This gives a way to measure the overall health of the system. We then use this

monitoring information to protect the source.

Specifically we propose that the source keeps track of who it sends which data

chunks to. Then if peers miss some data chunks, they can report the specific ones

missed to the source. One would expect that if many nodes miss a chunk, it is due

109

Algorithm 2: Local Reputation computed by node i for node j.

//This algorithm is run every t seconds

//Rij is initialized to be Ts when node j becomes a neighbor

Gij = 0;

E = source streaming rate / num neighbors;

//compute data score

foreach chunk u sent by j do

Gij + = 1;

// if protecting against data-delaying do instead:

// Gij + = min(l ∗ IRSu, 1);

end

Lij = min(1, Gij /E);

if Lij < Ts then
//node is suspicious, consider graph connectivity score

Ni = 0;

Kij = 0;

foreach in-neighbor k of i do

if Lik > Ts then
// in-neighbor k is not suspicious

Ni+ = 1;

if j is in-neighbor of k then

Kij + = 1;

end

end

end

Cij = Ni/Kij ;

//reputation considers both data and

// graph connectivity scores

R′
ij = Lij − α ∗ Cij ;

else
//reputation only considers data score

R ′ = ij Lij ;

end

//take into account history of reputation

Rij = λ ∗ R ′ + (1 − λ) ∗ Rij ;ij

if Rij < Td then
//node j is below drop threshold

disconnect j

end

to malicious nodes not forwarding data received from the source. Therefore, once

the source has received complaints from a percentage of nodes greater than f it can

110

then disconnect the nodes it sent those data chunks to. The percentage f must be

the largest fraction of nodes less than 50% that the system can tolerate as malicious.

Also, as this scheme might create an implosion of messages at the source, nodes can

collect them and send them in batches.

Overhead. In practice, the network overhead is small as we batch complaints

into a single message and only send them periodically. Furthermore, the source will

only receive messages when nodes are not receiving the data chunks, which should

be abnormal behavior. To further reduce the overhead, nodes could piggy-back the

complaints on messages that are already being sent to the bootstrap.

5.4.4 Rate-limiting Bootstrap

Our solution for protecting the bootstrap relies on the observation that nodes

that register with the bootstrap node many times in a short period are most likely

malicious. Thus to detect and discourage this behavior, if nodes register faster than

once every w seconds, they will not be put into the bootstrap list and then will not be

propagated by the bootstrap node. To detect misbehavior the bootstrap keeps track

of all registrations that have occurred in the past w seconds. From the registration

information it will make a list of k nodes that have only registered once.

The w parameter decides how often nodes can register, so the larger it is the

more resilient the bootstrap will be against attacks. However, if it is too large it

will prevent good nodes from legitimately re-registering. The k parameter allows the

bootstrap to decide how it will pick nodes from the recent time window and in what

quantity. There are different strategies to fill the bootstrap list, for our design though,

we simply choose the k most recently registered nodes to ensure the freshness of the

list.

To only do rate-limiting and nothing else might bring about scenarios where there

are still very few honest nodes in the bootstrap list. This could be due to very few

nodes joining the overlay for a period of time. To ensure that the bootstrap list still

111

can not be filled with malicious nodes, we have each node randomly register once

every w to 2w seconds.

Overhead. The Rate-limiting Bootstrap scheme introduces no new overhead into

the system, as periodically registering with the bootstrap is normal behavior. Addi

tionally, the rate of at which registrations occur, and thus the amount of overhead,

can be adjusted by setting w to the desired rate.

5.5 Security Analysis

In this section, we analyze how robust the Local Reputation scheme is in defending

against common classes of attacks. Recall that the final reputation score is derived

by combining the data score, which is a positive score, and the graph connectivity

score, which is a negative score. The node uses the final reputation score to decide

who should remain as neighbors and who to admit as neighbors. Possible attacks

that can be conducted on these reputation calculations and uses include [107]:

Self-promoting: Malicious nodes falsely inflate their own reputation. This attack

is only effective in positive feedback based systems.

Slandering: Malicious nodes attack the reputation of other nodes by reporting un

true information about them. This attack is only effective in negative feedback based

systems.

Orchestrated: Colluding nodes combine several strategies to game the system.

Whitewashing: Malicious nodes take advantage of a system vulnerability to restore

a damaged reputation. One possible way to do this is by assuming new identities.

5.5.1 Attacks on Data Score Calculation

The reputation system is designed so that a node cannot get a high data score and

thus a high reputation without doing useful work. Therefore, the data score cannot

be influenced by slandering or self-promoting attacks, as the only way to change it

is for a node to deliver more data. We present the following lemma which quantifies

112

the amount of useful work done by a node given a particular data score, which can

be derived from Equation 5.1.

Lemma 1: For a node j to obtain a data score of Lij at a neighboring node i, j must

deliver data to i at a minimum rate of E ∗ Lij , where E is the expected amount of

data a node should deliver to a neighbor in a time window (Section 5.4.2).

This lemma guarantees that benign nodes will receive good performance even

when surrounded by a significant number of malicious neighbors, for example, when

under an orchestrated attack. This is because each malicious neighbor is forced to

deliver a minimum amount of data in order not to be dropped. More specifically, if

we assume a node with a fraction f of its neighbors is malicious, and assume benign

neighbors always deliver the expected amount of data, then the node will receive at

least (1 − f) + Tdf = 1 − f(1 − Td) of the streaming rate (Td is the drop threshold).

For example, with Td = 0.5 and f = 0.3, the node will receive at least 85% of the

stream rate.

Furthermore, Lemma 1 imposes a high bandwidth cost on malicious nodes who

seek to be a neighbor of a large number of nodes. To highlight this, consider a

streaming system with 150K nodes [82], and that a malicious node desires to maintain

a reputation score of Td at every node. According to Lemma 1, with a streaming rate

of 1Mbps, a neighbor-set size of 15, and assuming a Td value of 0.5, the node must

deliver data at a minimum total rate of 5Gbps.

We note that though Equation 5.5 modifies how the data score is calculated to

protect against data delaying, this simply raises the bar for attackers, forcing them

to send even more data if they wish to delay the data they are sending. Hence,

even when data delaying protection is in place malicious attackers still must send at

minimum E ∗ Lij . We present the following lemma which quantifies how much more

data a node must send if it delays it.

Lemma 2: For a node j to obtain a data score of Lij at a neighboring node i when

E∗Lij delaying data, j must deliver data to i at a minimum rate of , where IRS is the
l∗IRS

inverse relative stretch and l is a system parameter.

113

Lemma 2 shows that attackers must increasingly send more data the longer they

delay it. For example, if node i and the source have a delay of 100 ms and node j

delays data so that it arrives after 600 ms, the IRS will be 1/6. Assuming l is set to

3, then node j must send data at a rate of 2 ∗ E ∗ Lij to get a score of Lij , in this

case doubling the amount of data it would normally have to send.

5.5.2 Attacks on Graph Connectivity Score Calculation

When a node calculates its neighbors’ graph connectivity score, it takes into ac

count neighbor set information provided by all of its non-suspicious neighbors. This

scheme is subject to slandering attacks where a malicious neighbor can provide fake

neighbor set information. Slandering can be seen from two different perspectives,

the ability of a node to slander others and the resistance a node has from slandering

attempts. We first present the following lemma that shows the limitations a node has

in its ability to slander others, which can be derived from Equation 5.2.

Lemma 3: A node j can only influence the graph connectivity scores of the neighbors

of node i if j has a data score of Ts with i.

Lemma 3 shows that malicious nodes must themselves do a substantial amount of

work to remain non-suspicious, which means having a data score above Ts. According

to Lemma 1, this means they must deliver data to i at a minimum rate of E ∗ Ts.

Given that Ts > Td, this imposes an even greater bandwidth constraint on attackers

that want to slander others over attackers that want to simply not be dropped.

We next present a lemma that demonstrates that a node can resist slandering

attacks from others. The key insight behind the lemma is that if a node transmits

data at a high enough rate, its final reputation as computed by the neighbor depends

on the data score alone, and is not impacted by the graph connectivity score.

Lemma 4: Any node that delivers data to a neighbor at a rate greater than E ∗ Ts is

assured of a reputation greater than Ts with the neighbor.

114

We expect that most benign nodes will be cooperative and deliver data at rates

close to the expected rate, which is well above E ∗ Ts. Therefore, benign nodes will

not be subject to slandering attacks as their graph connectivity score will not even

be considered.

5.5.3 Other Attacks

We discuss other attacks on the schemes, and why our approach is resilient to

them:

Whitewashing attacks: In these attacks, malicious nodes who received a bad

reputation may choose to rejoin the network with a different identity. We believe

this attack is not a concern because of the following reasons. First, the reputation

is initialized to Ts, and all new nodes will be marked suspicious initially. Therefore,

a new node cannot refer other nodes or report connectivity information about other

nodes until it has done work and improved its reputation. Further, the newly added

node will be quickly dropped unless it transmits data at a sufficient rate. Second, in

our model, nodes are identified by their IP address. To cause damage, a malicious

node cannot acquire a new identity by simply spoofing an IP address, but must be able

to receive packets targeted to the IP address. By our attacker model in Section 5.3.1,

we assume only a fraction f of the total number of IP addresses are controlled by

malicious nodes.

Attacks on reputation-based neighbor selection: A node adds new neighbors

by taking referrals from existing non-suspicious neighbors. This process is subject

to attacks where a malicious neighbor (m) could refer other malicious nodes to a

benign node (i). However, to conduct this attack, the malicious neighbor m must be

considered non-suspicious, and hence must deliver data at a minimum rate of Ts ∗ E,

where Ts is the suspicion threshold. Further, each newly inserted malicious node

referred by m must also do a substantial amount of work to obtain a minimum data

score of Td (the drop threshold), or it will be dropped quickly by node i.

115

5.6 Experimental Methodology

In this section, we describe how we evaluate and compare our protection schemes

with several alternative schemes. We implemented the unidirectional mesh described

in Section 5.2 in a mesh streaming codebase [84]. We also implemented all of our

own protection schemes plus some alternatives which we will describe next, which are

summarized in Table 5.2.

5.6.1 Schemes Considered

Table 5.2

Mechanisms for each component of system

Peers Source Bootstrap

Least Performing Peer (LP) Drop Periodically (DP) Periodic Register (PR)

Local Reputation (LR) Health Monitoring (HM) Rate-limiting (RB)

LR Data Delaying (LR-DD)

No Protection (NP): This is our baseline scheme which has no protection for any

of the system components.

Local Reputation (LR): This peer level scheme, as described in Section 5.4.2 builds

up a reputation from information gathered from the control and data planes. With

this reputation scheme in place, nodes are able to decide if a node is malicious and

thus can better select who they should accept as neighbors.

LR Data Delaying (LR-DD): This is the extended Local Reputation scheme that

adds protection against data delaying attacks.

Health Monitoring (HM): This source protection scheme, described in detail in

Section 5.4.3, uses information gathered from peers to decide who should stay as

neighbors of the source. If a percentage of nodes declare that a certain data chunk

116

was missed by them, the source will drop the nodes that it originally sent those chunks

to.

Rate-limiting Bootstrap (RB): This is a bootstrap protection scheme, described

in detail in Section 5.4.4, keeps track of how often nodes register and penalizes the

ones who register fast. The bootstrap will only refer nodes who register at a rate less

frequently than the rate it specifies.

Least Performing Peer (LP): This is a peer level scheme, similar to the one used

in CoolStreaming [86], that drops the in-neighbor that is currently contributing the

least amount of data. We chose this alternative to LR because of its simplicity and to

show that while simple schemes such as this prove to be effective in a setting where all

nodes are benign, more robust methods are needed when malicious nodes are present.

Drop Periodically (DP): This is a source protection scheme that induces churn [111]

on the source. We note that as time progresses and benign nodes churn in and out

of the system, malicious nodes can continue to stay and eventually eclipse the source

as its neighbors. To address this problem we allow a single node to stay as an out-

neighbor for only a certain amount of time and then disconnect it. To further stagger

the disconnection times of nodes, we only allow one node to be disconnected in a time

period.

Periodic Register (PR): This is a bootstrap protection scheme that requires all

peers to re-register every r time. We chose this scheme as an alternative to RB since

it also requires re-registration of nodes, but does not do any rate-limiting. Thus, it

demonstrates that more robust methods are needed when malicious nodes target the

bootstrap service.

5.6.2 Attacks Considered

To show the effectivness of our schemes, we also implemented the most effective

attacks available for an attacker to disrupt the data delivery.

117

• Data dropping attack: A malicious node will advertise the chunks of data that

it has, but will not fulfill any requests made for those chunks unless otherwise stated.

• Data delaying attack: A malicious node will advertise and fulfill a small amount

of chunk requests to avoid being dropped from another node’s neighbor set. However,

the malicious node will delay the sending of the chunk until very close to the chunk’s

deadline.

• Source attack: A malicious node will not forward data given to it by the source.

As the source has limited bandwidth, if only malicious nodes receive a particular

chunk, then that chunk will be effectively lost and no benign nodes will receive it.

• Bootstrap list pollution attack: A malicious node will register often with the

bootstrap, to ensure that it is always in its list of peers and to increase its chances of

being referred to benign nodes.

• Neighbor selection attack: When a benign node contacts a malicious node to

discover more peers to connect to, the malicious node will bias its referrals to include

only other malicious nodes. This results in benign nodes being neighbors with many

malicious nodes.

5.6.3 Experiment Configuration

The experiments were run on the PlanetLab overlay testbed. The source was

located on a host at our lab. We set Dr (see Table 5.3 for a list of parameters and

their definitions) to be 1 second. We determined this value experimentally as we

observed that in a non-malicious scenario 96% of nodes receive 99% of chunks within

1 second. Each node is configured to obtain up to 15 in-neighbors and the maximum

number of out-neighbors is proportional to its bandwidth. The source will obtain 30

out-neighbors.

We used overlay deployments of 300 nodes. Each experiment lasted for 10 minutes.

For each experiment we varied the percentage of malicious nodes from 0 to 30% and

fixed the source’s streaming rate at 1 Mbps. Each experiment was run for 10 times

118

Table 5.3

Notation

Dr Deadline at which a peer considers a request for data

dropped

Ts The suspicion threshold

Td The drop threshold

α When calculating R ′ ij(t) gives a weight to Cij(t)

λ When calculating Rij(t) gives a weight to the previous value

of Rij(t − 1) and the current value of R ′ ij(t)

l When using IRS to calculate Gij(t), defines how much

stretch is to be tolerated

and the results were averaged. Standard deviations are plotted where appropriate.

The malicious nodes joined at the beginning of the experiment and stayed for the

entire duration. Benign nodes both join at the beginning of the experiment and also

during the experiment. We modeled the join times by using a Poisson process and

the participation time by a Pareto distribution. The mean of the Poisson process was

3 and the Pareto distribution is used with a shape parameter of 1.42, giving a mean

participation time of 300 seconds and we also assume a minimum participation time

of 90 seconds. The parameters have been used previously by Bharambe et al. [112]

and were motivated by traces of real multicast systems [81] and Mbone sessions [113].

Choosing Parameters: For Local Reputation we by reason set its parameters to

appropriate values and validated them experimentally. We set Ts to be 0.7 to tolerate

transient network conditions. We note that Ts can be set by the user, to the minimum

quality threshold that he is willing to tolerate. We set α to be 0.5 since we consider

data plane feedback to be more useful than control plane feedback. We also conduct

a sensitivity study of α in Section 5.7. For nodes to evict malicious nodes that are

both suspicious and highly connected, the equation Td ≥ Ts −α must hold. Therefore

119

we set Td to be 0.2. We set λ to be 0.4 to give a greater weight to the history of

the reputation but also be able to change quickly if nodes consistently behave badly.

We set the time period for the recalculation of the scores to be every 3 seconds. For

Local Reputation with Data Delaying protection (LR-DD) we experimentally set l

to be 3. Therefore, the delay of the chunk must be 3 times greater than the delay to

the source before a node is penalized.

5.6.4 Performance Metrics

We evaluate the effectiveness of the attacks and solutions with the following met

rics.

Goodput Ratio: This represents the percentage of useful data a node received while

in the overlay, averaged across all nodes. We use it to measure the effects of churn

on the quality of the goodput. The higher the goodput ratio, the higher the quality

of the stream received.

Corruption Factor: This represents the percentage of nodes in the neighbor set

that are malicious. We use it to measure the level of control an adversary has on

the neighbor set of a particular node. The higher the corruption factor, the more

adversarial neighbors a node has.

5.7 Experimental Evaluation

In this section we experimentally show that the schemes we proposed in Section 5.4

are able to effectively mitigate attackers.

5.7.1 Robust Neighbor Selection

To give motivation to our Local Reputation (LR), we first compare it to Least

Performing Peer (LP) and No Protection (NP). Malicious nodes perform data drop

ping, source and neighbor selection attacks. As can be seen in Figure 5.1(a) both

120

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

G
o
o
d
p
u
t

R
at

io

NP
LP
LR

Percentage of Malicious Nodes

(a) No Protection, Least Performing Peer, and Local

Reputation schemes running at the peers with No

Protection at the source.

 1

G
o
o
d
p
u
t

R
at

io

0.8

 0.6

 0.4

 0.2

 0

Percentage of Data Dropped by Malicious Nodes

α=0
α=1

25 50 75

(b) Goodput ratio when 10% of participants are ma

licious and they drop varying amounts of the stream.

Local Reputation is protecting the peers and α is var

ied.

Figure 5.1. Importance of peer protection.

NP and LP perform worse than LR. This difference becomes more pronounced as the

percentage of malicious nodes increases. NP is ineffective simply because nodes never

change who their neighbors are, regardless of their poor performance.

LP is not as effective as LR since a node never drops all of the malicious nodes

from its neighbor set. Further investigation shows that for a node running LP the

121

 0

 0.2

 0.4

 0.6

 0.8

 1

G
o
o
d
p
u
t

R
at

io

LR + DP
LR
DP

0 5 10 15 20 25 30

Percentage of Malicious Nodes

(a) Peers running the Local Reputation scheme with

Drop Periodically, Pretrusted Peers, and No Protec

tion at the source. For comparison we also plot the

Drop Periodically only scheme.

 0

 0.2

 0.4

 0.6

 0.8

 1

G
o
o
d
p
u
t

R
at

io

LR + DP + RB
LR + DP + PR

LR + DP
RB

0 5 10 15 20 25 30

Percentage of Malicious Nodes

(b) Rate-limiting Bootstrap, Periodic Register, and

No Protection are combined with Local Reputation

and Drop Periodically. Rate-limiting Bootstrap with

No Protection is also shown.

Figure 5.2. Importance of source and bootstrap protection.

number of malicious nodes in its in-neighbor set decreases as some of the malicious

nodes will be dropped. However, there are still malicious nodes present in the in-

neighbor set because LP does not prevent the node from reconnecting multiple times

to the same malicious nodes. When the node is running LR, it does not reconnect

122

anymore to malicious nodes since malicious behavior is captured in the reputation

score for those nodes.

Importance of considering graph connectivity: We examine the contribu

tion of the graph connectivity score on LR and identify regimes in which its use is

beneficial. We compare the case when the reputation score computation is based only

on the data feedback (i.e. α = 0) to the case when both data and graph connectivity

are considered (i.e. α = 1).

As we can see in Figure 5.1(b) when attackers drop 25% or 75% of the data they

were expected to deliver, the performance does not change no matter the value of

α. For the case of 25% dropping, recall that a node i will only calculate the graph

connectivity score for a neighbor j if it marks j as suspicious (i.e. Lij < Ts). When

j drops 25% of the data it will not be marked as suspicious since we use a Ts value

of 0.7, thus the graph connectivity score will not be considered. In the case of 75%

dropping, enough data is dropped that the neighbor will be perceived as malicious

by its data score alone. Hence graph connectivity is most useful in regimes where

the amount of data dropped by a malicious node is large enough to be marked as

suspicious, but not large enough to be interpreted as malicious by their data scores

alone. This is the case for 50% dropping. In Figure 5.1(b), when attackers drop

50% of the data, LR combining the two scores performs better than LR using only

data score. The information from the control plane about the existence of a neighbor

selection attacks helps effectively identify malicious nodes.

We varied α even more to find values that give better performance but we found

that a value of 1 is sufficient across all percentages of attackers.

5.7.2 Source Protection

While LR performs much better than other schemes, the goodput ratio achieved is

still far from satisfactory. We believe this is because LR does not protect the stream

ing source, as we explained in Section 5.4. Further investigation into the source’s

123

performance confirms our hypothesis. While peers using LR expel all malicious nodes

from their in-neighbor set, the source’s out-neighbor set is almost full of malicious

nodes. This illustrates the importance of having additional mechanisms to protect

the source.

We next evaluate mechanisms that can be used to protect the source. When using

Drop Periodically (DP) the source will drop a node after it has been a neighbor for

1 minute. In these experiments malicious nodes again perform data dropping, source

and neighbor selection attacks. Figure 5.2(a) shows the results. The goodput ratio

is significantly raised for DP combined with LR (i.e. the curve titled LR+DP). This

is because DP effectively reduces the corruption factor at the source to a value that

is very close to the percentage of malicious nodes in the overlay at all times, for all

settings.

Figure 5.2(a) also shows that DP alone is not sufficient. This is not surprising, be

cause DP protects only the source, not the peers. This again highlights that solutions

must be employed at both the source and peers to achieve satisfactory performance.

5.7.3 Rate-limiting Bootstrap

We now consider when malicious nodes also conduct a bootstrap list pollution

attack, along with the data dropping, source, and neighbor selection attacks. We

evaluate the effectiveness of Rate-limiting Bootstrap (RB) in mitigating such attacks

and compare it with Periodic Register (PR). Two parameters influence the perfor

mance of RB : the time period in which a node may register only once to be considered

as non-malicious (w) and the size of the short list maintained by the bootstrap (k).

Selection of w: Taking into consideration the trade-offs described in Section 5.4.4,

we set w conservatively at 300 seconds. This value is much smaller than the typical

session length in P2P streaming systems, which is usually in the order of tens of

minutes [81,82,114]. For Periodic Register (PR), we use a w value of 120 seconds to

124

 1
Max Corruption Factor

Average Corruption Factor

20 50 100 150

C
o
rr

u
p
ti

o
n
 F

ac
to

r 0.8

 0.6

 0.4

 0.2

 0

Value of k

(a) Corruption factor at the source on a single ex

periment when 20% of nodes are malicious and they

are aware that Rate-limiting Boostrap is running and

do not register fast. We vary k to find the best value.

 1
RB

0.9 PRNP

C
o
rr

u
p
ti

o
n
 F

ac
to

r 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0

PR
RB

NP

0 100 200 300 400 500 600

Time (seconds)

(b) Corruption factor at the source on a single exper

iment when 20% of nodes are malicious. We compare

the effects on the source of the three different boot

strap node schemes.

Figure 5.3. Evaluating the corruption factor in different scenarios.

show that even when sacrificing overhead for a more up-to-date list and thus better

security, rate-limiting schemes are still preferred.

Selection of k: We experimentally determine the value of k. We fixed the system

solution to be LR+DP+RB and varied the value of k. The malicious nodes are aware

125

of the solution and only register every w seconds in order not to get themselves

excluded from the bootstrap’s short list. The malicious nodes all register at the same

time. Note that if they space out their registrations, the impact on the bootstrap list

would be diluted. In Figure 5.3(a) there are four sets of bars each with a different k

value, and two bars in each set corresponding to the maximum and average corruption

factor at the source. The figure shows that as k increases, the maximum corruption

factor decreases, but the average corruption factor increases. This is because the

smaller the k, the easier it is for the attacker to flood the bootstrap’s short list in a

burst, thus achieving a high corruption factor at the source. However, each node will

only remain on the list until k more nodes have joined. Thus, the larger the k, the

longer a malicious node will stay on the list, resulting in a higher average corruption

factor. From the figure we conclude that setting k at 50 is a good trade-off between

having a large corruption factor all the time and having a large spike in the corruption

factor every w seconds. In the rest of our experiments we set k to be 50.

Figure 5.2(b) shows the evaluation results. RB combined with solutions for

source and peers (i.e. the curve titled LR+DP+RB) performs the best and mitigates

the attack across all malicious percentages. PR combined with other solutions (i.e.

LR+DP+PR) works equally well for small percentage of attackers (up to 15%). For

higher percentages of attacker nodes, PR effectiveness decreases because the scheme

simply puts both benign and malicious nodes on equal footing. Thus, while the boot

strap’s list of nodes is very close to being up-to-date, it does not punish attackers. On

the other hand the RB solution is more effective for exactly this reason, if nodes reg

ister too fast they are not made known to nodes who request a list of peers. We also

note that PR incurs a large overhead at the bootstrap node as it requires all nodes

to re-register with the bootstrap node often. Lastly, both schemes perform signifi

cantly better than NP, highlighting the importance of having additional mechanisms

to protect the bootstrap node.

To gain more insight into these results, we also plot in Figure 5.3(b) the corruption

factor at the source for each solution. Recall that DP at the source requires that the

126

source only obtains neighbors from the bootstrap node, thus the degree of pollution

at the bootstrap node directly affects the corruption factor at the source. The figure

shows that the corruption factor is significantly lower with the LR+DP+RB than

other solutions, further confirming its effectiveness.

5.7.4 Data Delaying

As evidenced by our analysis and experiments, attackers will be thwarted as long

as they continue to drop data. To prolong the amount of time they can stay as

neighbors and thus do more damage, attackers will necessarily have to actually give

data to others. However, attackers are motivated to make sure the data that is given

out is as useless as possible to benign nodes. Attackers can achieve this by delaying

the sending of data to the last possible moment.

For the attack to succeed even though data is still being given away the attacker

will need to make sure it has a good strategy for only giving out data that will become

very common and not data that will remain rare. Attackers obviously do not know

the future, but can assume that if no other benign nodes have the data then they

should not pass it on to others, but if some other benign nodes do have the data,

they can upload it to others.

To show how effective delaying is, we now run experiments where malicious nodes

conduct data delaying instead of data dropping attacks. Malicious nodes also conduct

source, neighbor selection and bootstrap list pollution attacks. We deploy the LR-DD

and HM protection schemes and show how well they mitigate attacks. For HM we set

the fraction f of nodes that the source must get complaints for before it disconnects

a node to be 30%.

We present the results in Figure 5.4, which demonstrate that these attacks are

effective in increasing damage done. For example, when peers and source are just

protected with LR and DP, (i.e. the curve entitled LR+DP+RB) nodes increasingly

have worse performance as the fraction of malicious nodes increases, culminating in

127

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

G
o
o
d
p
u
t

R
at

io

NP
LR + DP + RB

LR-DD + DP + RB
LR-DD + HM + RB

Percentage of Malicious Nodes

Figure 5.4. Peers running the local reputation scheme while attackers
conduct data delaying attacks.

only a .68 goodput ratio when there are 30% malicious attackers. As LR-DD and HM

protection schemes are added performance increases, effectively mitigating the attack.

LR-DD proves to be effective as most benign nodes receive data fairly quickly after

the source sends it out, thus malicious nodes delaying data are promptly removed

from in-neighbor sets. HM also outperforms DP as it is able to actually identify

malicious nodes who do not forward data to others and disconnect them, rather than

simply keeping the fraction of malicious nodes low.

5.8 Summary

In this chapter, we present one of the first efforts aimed at systematically analyzing

and addressing the vulnerabilities of mesh-based P2P streaming systems to malicious

insider attacks. We consider both direct attacks on the data plane, as well as attacks

on the control plane which could in turn lead to further disruption of data delivery.

These include data dropping and neighbor selection attacks, as well as data delaying,

which is a novel attack on P2P streaming. We present a design for securing data

delivery, of which a key component is a reputation scheme that helps nodes identify

malicious peers and build a robust neighbor set. Through detailed security analysis,

128

we show that our scheme is resistant to a variety of attacks commonly associated with

reputation schemes such as self-promotion, slandering, and white-washing [107].

We present an extensive evaluation of our design through experiments on Planet-

Lab. Our results show that (i) without our solution, the data delivery can be seriously

disrupted by attacks exploiting the vulnerabilities we identified. For example, 15%

malicious nodes caused the average goodput ratio to decrease to less than 30%. (ii)

Our solution is effective in mitigating the attacks; it achieves an average goodput

ratio of more than 90% even when there are 30% malicious nodes conducting data

dropping attacks and over 83% average goodput ratio when there are 30% malicious

nodes conducting data delaying attacks. (iii) While each of the mechanisms we intro

duce can individually benefit the system, the solution is most effective when all the

mechanisms are combined.

129

6 RELATED WORK

This chapter presents related work that has influenced and shaped the work contained

in this thesis. We first look at research focused on modelling P2P traffic and works

evaluating the effectiveness of localization. We then review previous work on attacks

and defenses in Virtual Coordinate Systems. Finally, we discuss research on P2P

streaming and attacks and defenses in P2P systems.

6.1 P2P Localization

Much work on modeling traffic on the Internet has been done in the context of

intra-AS traffic matrix estimation [30,31]. Our work though focuses on inter-AS P2P

traffic matrix estimation, of which the only related paper is [27], which we extensively

discussed in Chapter 3 Sec. 3.2.

The effects of P2P systems on ASes has also been studied by Rasti et al. [115]

who shows the effects of the Gnutella P2P system on the AS topology. Rather than

focusing on localization, they instead study how the load on ASes due to Gnutella

clients has changed over time due to the evolution of both the AS topology and the

Gnutella system.

Many recent works have focused on how to implement P2P localization [19–25,40].

However, we evaluate the impact localization will have on all ASes and on their

profitability.

Complementary to our work is the work by Cuevas et al. [28]. Their focus is

on understanding the extent to which localization improves the performance of users

and reduces the amount of P2P traffic residential ASes exchange with their providers.

Similarly, Blond et al. [116] focus on how much traffic can be reduced due to local

ization using experiments driven by a BitTorrent crawl. In contrast, our goal is to

130

understand the implications of localization on the global Internet, particularly, which

ASes will benefit and which will lose. In addition, our analysis not only considers

residential ASes but also study how localization may affect pure-transit ASes, which

may not have any internal peers.

Piatek et al. [26] question the effectiveness of localization on peers performance and

ISP traffic reduction. Specifically, they perform experiments showing that client-only

localization policies will have limited benefits and the tracker will need to be involved

to receive full benefits. They also evaluate the amount of traffic reduction possible

for a crawl of one thousand torrents. In contrast, we consider a very large dataset

including millions of torrents and also use realistic pricing models to understand how

traffic reductions translate into impact on profit for ISPs.

6.2 Virtual Coordinate Systems

Much research has been conducted to find detection and mitigation techniques

against attacks [65] in VCS.

Landmark-based defenses: Kaafar et al. [66] propose to model the behavior

of trusted landmark nodes using a Kalman filter, this provides an outlier detection

scheme by which nodes learn good behavior and can then filter out malicious updates.

Their technique requires 8% of all nodes to be trusted, which could be non-trivial to

obtain given a large deployment. Similarly, Saucez et al. [117] define a reputation

based system that leverage trusted nodes and a reputation certification agent to cal

culate the other nodes reputation. Treeple [71], while not strictly coordinate based,

provides secure latency estimation, using landmarks as vantage points for providing

traceroutes on the Internet. In Treeple, landmarks perform traceroute measurements

to peers, which the landmarks can then digitally sign and provide for nodes to com

pute the network distance themselves. As landmark-based defenses have stronger

assumptions, as they require a priori trusted nodes, we do not compare Newton to

them as Newton is a decentralized defense and does not require trusted nodes.

131

Decentralized defenses: Zage et al. [67] propose the usage of spatial and tempo

ral properties of nodes to learn what good behavior is, then by using outlier detection

detect anomalous coordinate updates. Veracity [68] uses a voting scheme to ver

ify potentially malicious coordinate updates by using a subset of nodes. Each node

maintains a verification set where several other nodes attest to whether a particular

update increases their estimation error above a certain threshold, and if so, ignores

it. Suspected nodes are tested based on their error to the verifying nodes; nodes with

large errors are considered malicious.

Although these decentralized defenses differ in the way they secure virtual coordi

nate systems, they both, along with [66], suffer from the frog-boiling attack [69–71].

A few works have been proposed to defend against the frog-boiling attack. Wang et

al. [69] proposes detecting attackers that lie about coordinates by using the PeerRe

view [118] accountability protocol. Since, if implemented, this approach would have

higher costs than our method (i.e. bandwidth, storage for a tamper-evident log, and

computation for public-key cryptography), we do not compare Newton with them.

Becker et al. [119] propose a method for detecting frog-boiling by using a machine

learning approach, where through a training data set the system learns what normal

and abnormal data is. In contrast, our approach has no need to train the system and

can detect abnormal behavior directly due to the applied physical laws. Furthermore,

while [119] can detect attacks are occuring but not find and discard the updates that

are causing it, Newton is able to do both.

6.3 P2P Streaming

Much recent work has gone on in improving the efficiency and performance of P2P

streaming systems. Lui et al [120] present algorithms that find near-optimal streaming

rates when nodes can only support a bounded number of children. Picconi et al [22]

demonstrate that P2P live streaming systems can incorporate locality-awareness and

thus be ISP-friendly. Several works [121, 122] have also focused on utilizing network

132

coding for improving download speeds and reducing the scarcity of data. We note

that works such as these are orthogonal to ours and can be incorporated with our

design.

However, the security challenges in designing mesh-based streaming protocols has

received little attention. Recent work [123, 124] has surveyed security issues in P2P

streaming, but cite a lack of solutions in this area. The only prior work we are aware

of focuses on attacks where malicious nodes pollute data sent to other nodes [101,125]

or malicious nodes overload others with requests [102]. In contrast, our focus is on

data availability and prevention of neighbor selection attacks.

Attacks on data availability have been considered in the context of tree-based

multicast [126]. The proposed solution takes advantage of the tree structure, knowing

that if a child did not receive a message then an ancestor can be traced back to that

is at fault for dropping it. Meshes do not have parent-child relationships but rather

nodes get data from many neighbors, so this approach cannot be applied to them.

Attacks against measurement-based neighbor selection were studied in the context of

tree-based streaming [127]. The proposed solution uses outlier detection to identify

malicious nodes that report wrong measurement results. This approach only works

with systems that employ such measurement-based adaptation.

Dealing with selfish and Byzantine behavior using game theoretic principles has

been investigated in several previous works [106, 128]. Most similar to our work

is Flightpath [106], a P2P streaming system that is designed to give selfish peers

incentives to obey protocols and can tolerate Byzantine behavior. Unlike their work,

we do not assume synchronized clocks or synchronous communication channels.

Several previous works have dealt solely with selfish users in P2P streaming. Con

tracts [104] develops incentives that rewards nodes by giving them higher quality

playback based on how effective a node’s contributions to the entire system are. Sub-

stream trading [103] applies BitTorrent’s tit-for-tat mechanism to a streaming context

to encourage uploading, in this context nodes commit to sending each other parts of

133

the video stream for a period of time. Pulse [105] also applies a tit-for-tat mechanism

to live P2P streaming, but also combines it with incentives for altruistic behavior.

Several schemes have been proposed to mitigate neighbor selection attacks (re

ferred to as eclipse attacks) in the context of distributed hash tables (DHTs) [129,130].

The solutions are DHT-specific and do not apply to streaming protocols. A key as

pect that distinguishes streaming protocols is the potential for feedback from the

data-plane. In particular, it is possible to infer malicious behavior based on lack of

data received from a neighbor. Our solutions leverage this observation resulting in

significantly simpler designs.

Reputation systems have been a subject of wide interest, especially for P2P file-

sharing systems. File-sharing reputation systems generally fall into two categories of

purpose, incentivizing users to share files [110,131], or thwarting file pollution [132].

Piatek et al. [131] show the feasibility of using one-hop reputations to incentivize

interactions between users in BitTorrent. They take advantage of the fact that there

are some users who are in many BitTorrent overlays and thus can be used as interme

diaries, keeping track of long-term reputation values for others and facilitating data

exchanges. While our work also uses local reputations, we differ in that our goal is

mitigating malicious adversaries and not creating incentives. Also, as users usually

only watch one video stream at a time, this precludes them from being in many

overlays at once, making it impossible for some users to be intermediaries. Thus,

streaming presents new challenges for reputation systems and has unique features

that create opportunities, such as the continual downloading of data and stringent

data deadlines, that we take advantage of.

134

7 CONCLUSION

Overlay networks provide scalable services for the distribution of content on the In

ternet today. As such, a large portion of traffic on the Internet is due to overlay

networks. However, in the past, many P2P systems have been oblivious to network

locality, thus causing an increase in the amount of traffic that must leave an ISP. P2P

localization has then been proposed as a solution to contain traffic to within an ISP.

Localization has since become a critical design component for overlay networks as it

benefits both ISPs and end users.

However, what ISPs will really benefit economically due to localization and to

what extent has not been studied previously. We conducted an extensive simulation

study to understand how profits will change for ISPs once localization is deployed.

To accomplish this, we proposed a new inter-AS P2P traffic model that takes into

consideration the cultural and linguistic preferences that the end users in each AS

have. We also proposed models for localization that allow us to understand to what

degree will traffic be reduced when localization is deployed. Finally, we used realistic

pricing models to calculate how reductions in traffic translate in actual profits gained.

These models, together with real P2P data, allowed us to see that the benefits of

localization should not be taken for granted. While some residential ISPs can received

up to 90% loss reduction, other residential ISPs do not see any profit gains as they

also serve as transit ISPs and thus make money on the traffic their own clients send.

Furthermore, many pure transit ISPs lose a considerable amount of profit as they

have to carry less traffic.

The services that provide localization can also be subject to insider attacks. Specif

ically, Virtual Coordinate Systems are vulnerable to attackers that lie about their

coordinate values or delay measurement probes. Previous defenses have been pro

posed but must first learn what good behavior is and thus are subject to attacks

135

where malicious nodes mimic good behavior. We proposed to secure VCS by intro

ducing invariants into the system that allow us to judge whether a node is following

the protocol or not. We designed three invariants that are based on Newton’s three

laws of motion. We found that with our defenses in place we are able to mitigate all

known attacks against VCS and are able to tolerate a higher percentage of attackers

than previous defenses. We also found that we are able to perform better than an

unprotected VCS even in benign settings. We found that our solution is 25% more

accurate and 68% more stable.

We also investigated how to protect the overlays that run on top of localization, as

they too can be vulnerable to insider attackers. While mesh-based approaches have

emerged as the dominant architecture for P2P streaming, the performance of these

approaches under malicious participants has received little attention. We provided

a taxonomy of the implicit commitments made by nodes when peering with others.

We showed that when these commitments are not enforced explicitly, they can be

exploited by malicious nodes to conduct attacks that degrade the data delivery service.

We presented mechanisms that can enhance the resilience of mesh-based streaming

against such attacks. A key part of our solution is a novel reputation scheme that

combines feedback from both the control and data planes of the overlay. We evaluate

our design with real-world experiments on the PlanetLab testbed and show that our

design is effective. Even when there are 30% attackers, nodes receive 92% of the data

with our schemes, however without our schemes they only receive 10% of the data.

LIST OF REFERENCES

136

LIST OF REFERENCES

[1] Bram Cohen. Incentives build robustness in BitTorrent. In Proceedings of the
ACM SIGCOMM Workshop on Economics of Peer-to-Peer Systems (P2PEcon),
2003.

[2] YouTube. http://www.youtube.com.

[3] David Andersen, Hari Balakrishnan, Frans Kaashoek, and Robert Morris. Re
silient overlay networks. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 2001.

[4] Skype. http://www.skype.com.

[5] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-
generation onion router. In Proceedings of the USENIX Security Symposium,
2004.

[6] Christos Gkantsidis and Pablo Rodriguez Rodriguez. Network coding for large
scale content distribution. In Proceedings of the IEEE International Conference
on Computer Communications (INFOCOM), 2005.

[7] PPLive. http://www.pplive.com.

[8] Joost. http://www.joost.com.

[9] PPMate. http://www.ppmate.com.

[10] PPStream. http://www.ppstream.com.

[11] QQLive. http://tv.qq.com.

[12] UUSee. http://www.uusee.com.

[13] Bartosz Biskupski, Raymond Cunningham, Jim Dowling, and René Meier.
High-bandwidth mesh-based overlay multicast in heterogeneous environments.
In Proceedings of the International Workshop on Advanced Architectures and
Algorithms for Internet Delivery and Applications (AAA-IDEA), 2006.

[14] Nazanin Magharei and Reza Rejaie. PRIME: Peer-to-peer receiver driven mesh
based streaming. In Proceedings of the IEEE International Conference on Com
puter Communications (INFOCOM), 2007.

[15] Miguel Castro, Peter Druschel, Anne-Marie Kermarrec, Animesh Nandi,
Antony Rowstron, and Atul Singh. Splitstream: High-bandwidth multicast in
cooperative environments. In Proceedings of the ACM Symposium on Operating
Systems Principles (SOSP), 2003.

http:http://www.uusee.com
http:http://tv.qq.com
http:http://www.ppstream.com
http:http://www.ppmate.com
http:http://www.joost.com
http:http://www.pplive.com
http:http://www.skype.com
http:http://www.youtube.com

137

[16] Akamai. http://www.akamai.com.

[17] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson,
Mike Wawrzoniak, and Mic Bowman. Planetlab: An overlay testbed for broad-
coverage services. SIGCOMM Computer Communication Review, 33(3):3–12,
July 2003.

[18] Craig Labovitz, Scott Iekel-Johnson, Danny McPherson, Jon Oberheide, and
Farnam Jahanian. Internet inter-domain traffic. In Proceedings of the ACM
Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM), 2010.

[19] Haiyong Xie, Y. Richard Yang, Arvind Krishnamurthy, Yanbin Grace Liu, and
Abraham Silberschatz. P4P: Provider portal for applications. In Proceedings of
the ACM Conference on Applications, Technologies, Architectures, and Proto
cols for Computer Communications (SIGCOMM), 2008.

[20] Vinay Aggarwal, Anja Feldmann, and Christian Scheideler. Can ISPs and P2P
users cooperate for improved performance? SIGCOMM Computer Communi
cation Review, 37(3):29–40, July 2007.

[21] David R. Choffnes and Fabián E. Bustamante. Taming the torrent: A practical
approach to reducing cross-ISP traffic in peer-to-peer systems. In Proceedings
of the ACM Conference on Applications, Technologies, Architectures, and Pro
tocols for Computer Communications (SIGCOMM), 2008.

[22] Fabio Picconi and Laurent Massoulié. ISP friend or foe? Making P2P live
streaming ISP-aware. In Proceedings of the International Conference on Dis
tributed Computing Systems (ICDCS), 2009.

[23] Jiajun Wang, Cheng Huang, and Jin Li. On ISP-friendly rate allocation for
peer-assisted VoD. In Proceedings of the ACM International Conference on
Multimedia (MM), 2008.

[24] Minghong Lin, John C. S. Lui, and Dah-Ming Chiu. Design and analysis of
ISP-friendly file distribution protocols. In Proceedings of Allerton Conference
on Communication, Control, and Computing (Allerton), 2008.

[25] R. Bindal, Pei Cao, W. Chan, J. Medved, G. Suwala, T. Bates, and A. Zhang.
Improving traffic locality in BitTorrent via biased neighbor selection. In Pro
ceedings of the International Conference on Distributed Computing Systems
(ICDCS), 2006.

[26] Michael Piatek, Harsha V. Madhyastha, John P. John, Arvind Krishnamurthy,
and Thomas Anderson. Pitfalls for ISP-friendly P2P design. In Proceedings of
the Workshop on Hot Topics in Networks (HotNets), 2009.

[27] Hyunseok Chang, Sugih Jamin, Z. Morley Mao, and Walter Willinger. An
empirical approach to modeling inter-AS traffic matrices. In Proceedings of the
ACM SIGCOMM Conference on Internet Measurement (IMC), 2005.

[28] Ruben Cuevas, Nikolaos Laoutaris, Xiaoyuan Yang, Georgos Siganos, and Pablo
Rodriguez. Deep Diving into BitTorrent Locality. In Proceedings of the IEEE
International Conference on Computer Communications (INFOCOM), 2011.

http:http://www.akamai.com

138

[29] David K. Goldenberg, Lili Qiuy, Haiyong Xie, Yang Richard Yang, and Yin
Zhang. Optimizing cost and performance for multihoming. In Proceedings of the
ACM Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications (SIGCOMM), 2004.

[30]	 Yin Zhang, Matthew Roughan, Nick Duffield, and Albert Greenberg. Fast
accurate computation of large-scale IP traffic matrices from link loads. In
Proceedings of the International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS), 2003.

[31] Vijayi Erramill, Mark Crovella, and Nina Taft. An independent-connection
model for traffic matrices. In Proceedings of the ACM SIGCOMM Conference
on Internet Measurement (IMC), 2006.

[32] Gerard Salton and Michael J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[33]	 OpenBittorrent. http://www.openbittorrent.com.

[34] Team-Cymru. IP to ASN mapping. http://www.team-cymru.org/Services/ip
to-asn.html.

[35] Xenofontas Dimitropoulos, Dmitri Krioukov, Marina Fomenkov, Bradley Huf
faker, Young Hyun, Kimberly Claffy, and George Riley. AS relationships: Infer
ence and validation. SIGCOMM Computer Communication Review, 37(1):29–
40, January 2007.

[36] Brice Augustin, Balachander Krishnamurthy, and Walter Willinger. IXPs:
Mapped? In Proceedings of the ACM SIGCOMM Conference on Internet Mea
surement (IMC), 2009.

[37] Jian Qiu and Lixin Gao. AS path inference by exploiting known AS paths.
In Proceedings of the IEEE Global Telecommunications Conference (GLOBE
COM), 2006.

[38]	 Oregon RouteViews. http://www.routeviews.org/.

[39] Alessandro Finamore, Marco Mellia, Michela Meo, Maurizio M. Munafò, and
Dario Rossi. Experiences of Internet traffic monitoring with Tstat. IEEE Net
work, 25(3), March/April 2011.

[40] Jan Seedorf, Sebastian Kiesel, and Martin Stiemerling. Traffic localization for
P2P-applications: The ALTO approach. In Proceedings of the IEEE Interna
tional Conference on Peer-to-Peer Computing (P2P), 2009.

[41] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon, Thomas
Anderson, Arvind Krishnamurthy, and Arun Venkataramani. iPlane: An infor
mation plane for distributed services. In Proceedings of the USENIX Symposium
on Operating Systems Design and Implementation (OSDI), 2006.

[42] John S. Otto, Mario A. Sánchez, David R. Choffnes, Fabián E. Bustamante, and
Georgos Siganos. On blind mice and the elephant: Understanding the network
impact of a large distributed system. In Proceedings of the ACM Conference on
Applications, Technologies, Architectures, and Protocols for Computer Commu
nications (SIGCOMM), 2011.

http:system.In
http:http://www.routeviews.org
http://www.team-cymru.org/Services/ip
http:http://www.openbittorrent.com

139

[43] Zheng Zhang, Ming Zhang, Albert Greenberg, Y. Charlie Hu, Ratul Maha
jan, and Blaine Christian. Optimizing cost and performance in online service
provider networks. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2010.

[44] Nikolaos Laoutaris, Georgios Smaragdakis, Pablo Rodriguez, and Ravi Sun
daram. Delay tolerant bulk data transfers on the Internet. In Proceedings of
the International Conference on Measurement and Modeling of Computer Sys-
tems (SIGMETRICS), 2009.

[45] Teleography Research. Telegeography international telecom trends seminar.
http://www.ptc.org/ptc09/images/papers/PTC’09 TeleGeography Slides.pdf.

[46] PeeringDB. Peering networks. https://www.peeringdb.com/.

[47] Internet Topology Collection. http://irl.cs.ucla.edu/topology/.

[48] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching
and Zipf-like distributions: Evidence and implications. In Proceedings of the
IEEE International Conference on Computer Communications (INFOCOM),
1999.

[49] Dr. Peering. http://drpeering.net/AskDrPeering/blog/articles/The Folly of
Peering Ratios Intro.html.

[50] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr
ishnan. Chord: A scalable peer-to-peer lookup service for Internet applications.
In Proceedings of the ACM Conference on Applications, Technologies, Architec
tures, and Protocols for Computer Communications (SIGCOMM), 2001.

[51] Yang-hua Chu, Sanjay G. Rao, and Hui Zhang. A case for end system multicast.
In Proceedings of the International Conference on Measurement and Modeling
of Computer Systems (SIGMETRICS), 2000.

[52] Jonathan Ledlie, Michael Mitzenmacher, and Margo Seltzer. Wired geometric
routing. In Proceedings of the International Workshop on Peer-to-peer Systems
(IPTPS), 2007.

[53] Ramakrishna Gummadi and Ramesh Govindan. Reduced state routing in the
Internet. In Proceedings of the Workshop on Hot Topics in Networks (HotNets),
2004.

[54] James Cowling, Dan R. K. Ports, Barbara Liskov, Raluca Ada, and Popa Abhi
jeet Gaikwad. Census: Location-aware membership management for large-scale
distributed systems. In Proceedings of the USENIX Annual Technical Confer
ence (ATC), 2009.

[55] Yuval Shavitt and Tomer Tankel. Big-bang simulation for embedding net
work distances in euclidean space. IEEE/ACM Transactions on Networking,
12(6):993–1006, December 2004.

[56] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A de
centralized network coordinate system. In Proceedings of the ACM Conference
on Applications, Technologies, Architectures, and Protocols for Computer Com
munications (SIGCOMM), 2004.

http://drpeering.net/AskDrPeering/blog/articles/The
http://irl.cs.ucla.edu/topology
http:https://www.peeringdb.com
http://www.ptc.org/ptc09/images/papers/PTC�09

140

[57] T. S. Eugene Ng and Hui Zhang. A network positioning system for the Internet.
In Proceedings of the USENIX Annual Technical Conference (ATC), 2004.

[58] T. S. Eugene Ng and Hui Zhang. Predicting Internet network distance with
coordinates-based approaches. In Proceedings of the IEEE International Con
ference on Computer Communications (INFOCOM), 2002.

[59] Paul Francis, Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval Shavitt,
and Lixia Zhang. IDMaps: A global Internet host distance estimation service.
IEEE/ACM Transactions on Networking, 9(5):525–540, October 2001.

[60] Liying Tang and Mark Crovella. Virtual landmarks for the Internet. In Pro
ceedings of the ACM SIGCOMM Conference on Internet Measurement (IMC),
2003.

[61] Marcelo Pias, Jon Crowcroft, Steve R. Wilbur, Timothy L. Harris, and
Saleem N. Bhatti. Lighthouses for scalable distributed location. In Proceed
ings of the International Workshop on Peer-to-peer Systems (IPTPS), 2003.

[62] Manuel Costa, Miguel Castro, Antony Rowstron, and Peter Key. PIC: Practical
Internet coordinates for distance estimation. In Proceedings of the International
Conference on Distributed Computing Systems (ICDCS), 2004.

[63] Li-wei Lehman and Steven Lerman. A decentralized network coordinate system
for robust Internet distance. In Proceedings of the International Conference on
Information Technology: New Generations (ITNG), 2006.

[64] Li-wei Lehman and Steven Lerman. Pcoord: Network position estimation using
peer-to-peer measurements. In Proceedings of the IEEE International Sympo
sium on Network Computing and Applications (NCA), 2004.

[65] Mohamed Ali Kaafar, Laurent Mathy, Thierry Turletti, and Walid Dabbous.
Virtual networks under attack: Disrupting Internet coordinate systems. In Pro
ceedings of the ACM International Conference on emerging Networking EXper
iments and Technologies (CoNext), 2006.

[66] Mohamed Ali Kaafar, Laurent Mathy, Chadi Barakat, Kave Salamatian,
Thierry Turletti, and Walid Dabbous. Securing Internet coordinate embedding
systems. In Proceedings of the ACM Conference on Applications, Technolo
gies, Architectures, and Protocols for Computer Communications (SIGCOMM),
2007.

[67] David John Zage and Cristina Nita-Rotaru. On the accuracy of decentralized
virtual coordinate systems in adversarial networks. In Proceedings of the ACM
Conference on Computer and Communications Security (CCS), 2007.

[68] Micah Sherr, Matt Blaze, and Boon Thau Loo. Veracity: Practical secure
network coordinates via vote-based agreements. In Proceedings of the USENIX
Annual Technical Conference (ATC), 2009.

[69] Guohui Wang and T.S. Eugene Ng. Distributed algorithms for stable and secure
network coordinates. In Proceedings of the ACM SIGCOMM Conference on
Internet Measurement (IMC), 2008.

141

[70] Eric Chan-Tin, Victor Heorhiadi, Nicholas Hopper, and Yongdae Kim. The
frog-boiling attack: Limitations of secure network coordinate systems. ACM
Transactions of Information and System Security, 14(3):27:1–27:23, November
2011.

[71] Eric Chan-Tin and Nicholas Hopper. Accurate and provably secure latency
estimation with Treeple. In Proceedings of ISOC Symposium of Network and
Distributed Systems Security (NDSS), 2011.

[72] Marco Mamei, Franco Zambonelli, and Letizia Leonardi. Co-fields: A phys
ically inspired approach to distributed motion coordination. IEEE Pervasive
Computing, 3(2):52 –61, April-June 2004.

[73] Benjamin I.P. Rubinstein, Blaine Nelson, Ling Huang, Anthony D. Joseph,
Shing-hon Lau, Satish Rao, Nina Taft, and J. D. Tygar. ANTIDOTE: Under
standing and defending against poisoning of anomaly detectors. In Proceedings
of the ACM SIGCOMM Conference on Internet Measurement (IMC), 2009.

[74] p2psim. http://pdos.csail.mit.edu/p2psim/.

[75] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble. King: Estimat
ing latency between arbitrary Internet end hosts. In Proceedings of the ACM
SIGCOMM Workshop on Internet measurment (IMW), 2002.

[76] Jonathan Ledlie, Paul Gardner, and Margo Seltzer. Network coordinates in the
wild. In Proceedings of the USENIX Symposium on Networked Systems Design
and Implementation (NSDI), 2007.

[77] Yuval Shavitt and Tomer Tankel. On the curvature of the Internet and its usage
for overlay construction and distance estimation. In Proceedings of the IEEE
International Conference on Computer Communications (INFOCOM), 2004.

[78] Cristian Lumezanu and Neil Spring. Measurement manipulation and space
selection in network coordinates. In Proceedings of the International Conference
on Distributed Computing Systems (ICDCS), 2008.

[79] Yongquan Fu and Yijie Wang. Hyperspring: Accurate and stable latency esti
mation in the hyperbolic space. In Proceedings of the International Conference
on Parallel and Distributed Systems (ICPADS), 2009.

[80] Stephen E. Deering and David R. Cheriton. Multicast routing in datagram
internetworks and extended LANs. ACM Transactions on Computer Systems,
8(2):85–110, May 1990.

[81] Yang-hua Chu, Aditya Ganjam, T. S. Eugene Ng, Sanjay G. Rao, Kunwadee
Sripanidkulchai, Jibin Zhan, and Hui Zhang. Early experience with an Internet
broadcast system based on overlay multicast. In Proceedings of the USENIX
Annual Technical Conference (ATC), 2004.

[82] Yan Huang, Tom Z.J. Fu, Dah-Ming Chiu, John C. S. Lui, and Cheng Huang.
Challenges, design and analysis of a large-scale P2P-VoD system. In Proceed
ings of the ACM Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM), 2008.

http://pdos.csail.mit.edu/p2psim

142

[83] Xiaojun Hei, Chao Liang, Jian Liang, Yong Liu, and Keith Ross. A mea
surement study of a large-scale P2P IPTV system. IEEE Transactions on
Multimedia, 9(8):1672–1687, December 2007.

[84] Vinay Pai, Kapil Kumar, Karthik Tamilmani, Vinay Sambamurthy, and
Alexander Mohr. Chainsaw: Eliminating trees from overlay multicast. In Pro
ceedings of the International Workshop on Peer-to-peer Systems (IPTPS), 2005.

[85] Vidhyashankar Venkataraman, Kaouru Yoshida, and Paul Francis.
Chunkyspread: Heterogeneous unstructured tree-based peer-to-peer mul
ticast. In Proceedings of the IEEE International Conference on Network
Protocols (ICNP), 2006.

[86] Xinyan Zhang, Jiangchuan Liu, Bo Li, and Tak-Shng Peter Yum. CoolStream
ing/DONet: A data-driven overlay network for peer-to-peer live media stream
ing. In Proceedings of the IEEE International Conference on Computer Com
munications (INFOCOM), 2005.

[87] Dejan Kostić, Adolfo Rodriguez, Jeannie Albrecht, and Amin Vahdat. Bullet:
High bandwidth data dissemination using an overlay mesh. In Proceedings of
the ACM Symposium on Operating Systems Principles (SOSP), 2003.

[88] SOPCast. http://www.sopcast.org/.

[89] Pdbox. http://www.pdbox.co.kr.

[90] StreamerOne. http://www.streamerone.com.

[91] TVUnetworks. http://www.tvunetworks.com.

[92] VGO. http://vgo.21cn.com.

[93] Zattoo. http://zattoo.com.

[94] Veetle. http://www.veetle.com, 2010.

[95] Venkata N. Padmanabhan, Helen J. Wang, and Philip A. Chou. Resilient peer
to-peer streaming. In Proceedings of the IEEE International Conference on
Network Protocols (ICNP), 2003.

[96] John Jannotti, David K. Gifford, Kirk L. Johnson, M. Frans Kaashoek, and
James W. O’Toole, Jr. Overcast: Reliable multicasting with on overlay network.
In Proceedings of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2000.

[97] Dongni Ren, Y.-T. Hillman Li, and S.-H. Gary Chan. On reducing mesh de
lay for peer-to-peer live streaming. In Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM), 2008.

[98] Feng Wang, Jiangchuan Liu, and Yongqiang Xiong. Stable peers: Existence,
importance, and application in peer-to-peer live video streaming. In Proceedings
of the IEEE International Conference on Computer Communications (INFO
COM), 2008.

http:http://www.veetle.com
http:http://zattoo.com
http:http://vgo.21cn.com
http:http://www.tvunetworks.com
http:http://www.streamerone.com
http:http://www.pdbox.co.kr
http:http://www.sopcast.org

143

[99] Jiangchuan Liu, Sanjay G. Rao, Bo Li, and Hui Zhang. Opportunities and
challenges of peer-to-peer internet video broadcast. In Proceedings of the IEEE,
Special Issue on Recent Advances in Distributed Multimedia Communications,
2007.

[100] Jeff Seibert, David Zage, Sonia Fahmy, and Cristina Nita-Rotaru. Experimental
comparison of peer-to-peer streaming overlays: An application perspective. In
IEEE Conference on Local Computer Networks (LCN), 2008.

[101] Prithula Dhungel, Xiaojun Hei, Keith Ross, and Nitesh Saxena. The pollution
attack in P2P live video streaming: Measurement results and defenses. In
Proceedings of the SIGCOMM P2P-TV Workshop, 2007.

[102] Maya Haridasan and Robbert van Renesse. Defense against intrusion in a live
streaming multicast system. In Proceedings of the IEEE International Confer
ence on Peer-to-Peer Computing (P2P), 2006.

[103] Zhengye Liu, Yanming Shen, Keith Ross, Shivendra. S. Panwar, and Yao Wang.
Substream trading: Towards an open P2P live streaming system. In Proceedings
of the IEEE International Conference on Network Protocols (ICNP), 2008.

[104] Michael Piatek, Arvind Krishnamurthy, Arun Venkataramani, Richard Yang,
David Zhang, and Alexander Jaffe. Contracts: Practical contribution incentives
for P2P live streaming. In Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2010.

[105] Fabio Pianese, Student Member, Diego Perino, Joaqun Keller, and Ernst W.
Biersack. Pulse: An adaptive, incentive-based, unstructured P2P live streaming
system. IEEE Transactions on Multimedia, 9(8):1645–1660, December 2007.

[106] Harry C. Li, Allen Clement, Mirco Marchetti, Manos Kapritsos, Luke Robison,
Lorenzo Alvisi, and Mike Dahlin. Flightpath: Obedience vs. choice in coopera
tive services. In Proceedings of the USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2008.

[107] Kevin Hoffman, David Zage, and Cristina Nita-Rotaru. A survey of attack and
defense techniques for reputation systems. ACM Computing Surveys, 42(1):1:1–
1:31, December 2009.

[108] John R. Douceur. The sybil attack. In Proceedings of the International Work
shop on Peer-to-peer Systems (IPTPS), 2002.

[109] Haifeng Yu, Phillip B. Gibbons, Michael Kaminsky, and Feng Xiao. Sybil-
limit: A near-optimal social network defense against sybil attacks. IEEE/ACM
Transactions on Networking, 18(3):885–898, June 2010.

[110] Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. The
Eigentrust algorithm for reputation management in P2P networks. In Proceed
ings of the International Conference on World Wide Web (WWW), 2003.

[111]	 Tyson Condie, Varun Kacholia, Sriram Sankararaman, Joseph M. Hellerstein,
and Petros Maniatis. Induced churn as shelter from routing table poisoning. In
Proceedings of ISOC Symposium of Network and Distributed Systems Security
(NDSS), 2006.

http:tablepoisoning.In

144

[112] Ashwin R. Bharambe, Sanjay G. Rao, Venkata N. Padmanabhan, Srinivasan
Seshan, and Hui Zhang. The impact of heterogeneous bandwidth constraints on
DHT-based multicast protocols. In Proceedings of the International Workshop
on Peer-to-peer Systems (IPTPS), 2005.

[113] Kevin Almeroth and Mostafa Ammar. Characterization of mbone session dy
namics: Developing and applying a measurement tool. Technical Report GIT
CC-95-22, Georgia Institute of Technology, 1995.

[114] Bo Li, Susu Xie, Gabriel Y. Keung, Jiangchuan Liu, Ion Stoica, Hui Zhang, and
Xinyan Zhang. An empirical study of the Coolstreaming+ system. IEEE Jour
nal on Selected Areas in Communications, 25(9):1627–1639, December 2007.

[115] Amir Hassan Rasti, Reza Rejaie, and Walter Willinger. Characterizing the
global impact of P2P overlays on the AS-level underlay. In Proceedings of the
International Conference on Passive and Active Measurement (PAM), 2010.

[116] Stevens Le Blond, Arnaud Legout, and Walid Dabbous. Pushing BitTorrent
locality to the limit. Computer Networks, 55(3):541–557, February 2011.

[117] Damien Saucez, Benoit Donnet, and Olivier Bonaventure. A reputation-based
approach for securing Vivaldi embedding system. In Proceedings of the Confer
ence on Dependable and Adaptable Networks and Services, 2007.

[118] Andreas Haeberlen, Petr Kuznetsov, and Peter Druschel. PeerReview: Practical
accountability for distributed systems. In Proceedings of the ACM Symposium
on Operating Systems Principles (SOSP), 2007.

[119] Sheila Becker, Jeff Seibert, Cristina Nita-Rotaru, and Radu State. Securing
application-level topology estimation networks: Facing the frog-boiling attack.
In Proceedings of the International Symposium on Recent Advances in Intrusion
Detection (RAID), 2011.

[120] Shao Liu, Minghua Chen, Sudipta Sengupta, Mung Chiang, Jin Li, and Phil A.
Chou. P2P streaming capacity under node degree bound. In Proceedings of the
International Conference on Distributed Computing Systems (ICDCS), 2010.

[121] Zimu Liu, Chuan Wu, Baochun Li, and Shuqiao Zhao. UUSee: Large-scale
operational on-demand streaming with random network coding. In Proceedings
of the IEEE International Conference on Computer Communications (INFO
COM), 2010.

[122] Anh Tuan Nguyen, Baochun Li, and Frank Eliassen. Chameleon: Adaptive
peer-to-peer streaming with network coding. In Proceedings of the IEEE Inter
national Conference on Computer Communications (INFOCOM), 2010.

[123] Jan Seedorf. Security issues for P2P-based voice- and video-streaming applica
tions. In Proceedings of Open Research Problems in Network Security (iNetSec),
2009.

[124] Gabriela Gheorghe, Renato Lo Cigno, and Alberto Montresor. Security and
privacy issues in P2P streaming systems: A survey. Peer-to-Peer Networking
and Applications, 2010.

http:nodedegreebound.In
http:XinyanZhang.An

145

[125] Qiyan Wang, Klara Nahrstedt Long Vu, and Himanshu Khurana. Identifying
malicious nodes in network-coding-based peer-to-peer streaming networks. In
Proceedings of the IEEE International Conference on Computer Communica-
tions (INFOCOM), 2010.

[126] Liang Xie and Sencun Zhu. Message dropping attacks in overlay networks:
Attack detection and attacker identification. ACM Transactions of Information
and System Security, 11(3):15:1–15:30, March 2008.

[127] AAron Walters, David Zage, and Cristina Nita-Rotaru. Mitigating attacks
against measurement-based adaptation mechanisms in unstructured multicast
overlay networks. In Proceedings of the IEEE International Conference on Net
work Protocols (ICNP), 2006.

[128] Idit Keidar, Roie Melamed, and Ariel Orda. Equicast: Scalable multicast with
selfish users. In Proceedings of the ACM Symposium on Principles of Distributed
Computing (PODC), 2006.

[129] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron, and Dan S.
Wallach. Secure routing for structured peer-to-peer overlay networks. In Pro
ceedings of the USENIX Symposium on Operating Systems Design and Imple
mentation (OSDI), 2002.

[130] Atul Singh, Tsuen-Wan Ngan, Peter Druschel, and Dan S. Wallach. Eclipse
attacks on overlay networks: Threats and defenses. In Proceedings of the IEEE
International Conference on Computer Communications (INFOCOM), 2006.

[131] Michael Piatek, Tomas Isdal, Arvind Krishnamurthy, and Thomas Anderson.
One hop reputations for peer to peer file sharing workloads. In Proceedings
of the USENIX Symposium on Networked Systems Design and Implementation
(NSDI), 2008.

[132] Kevin Walsh and Emin Gün Sirer. Experience with an object reputation sys
tem for peer-to-peer filesharing. In Proceedings of the USENIX Symposium on
Networked Systems Design and Implementation (NSDI), 2006.

VITA

146

VITA

Jeffrey Seibert was born in Evansville, Indiana. He received his Bachelor of Science

in Computer Science and Mathematics from Purdue University in 2006. He received

his Ph.D. in Computer Science in 2012 from Purdue University. During his time at

Purdue, he was a member of the Dependable and Secure Distributed Systems Lab and

was affiliated with the Center for Education and Research in Information Assurance

and Security (CERIAS). His research focused on designing and building distributed

systems that can tolerate malicious insiders and can continue to perform well even

when under attack. He also conducted research in developing automated approaches

to finding attacks in real implementations of distributed systems.

