
CERIAS Tech Report 2012-07
An Agent-Based Model for Navigation Simulation in a Heterogeneous Environment

 by Teresa A. Shanklin
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Graduate School ETD Form 9

(Revised 12/07)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

Teresa A. Shanklin
By

Entitled AN AGENT-BASED MODEL FOR NAVIGATION SIMULATION IN A ��HETEROGENEOUS ENVIRONMENT
�

Doctor of Philosophy
For the degree of

Is approved by the final examining committee:

Eric T. Matson
 Chair

Brandeis Marshall

Alejandra Magana

Dong-Han Kim

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of

Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Eric T. Matson
Approved by Major Professor(s): ____________________________________

James Mohler 4/18/2012Approved by:
Head of the Graduate Program Date

Choose your degree

Graduate School Form 20
(Revised 9/10)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:
AN AGENT-BASED MODEL FOR NAVIGATION SIMULATION IN A HETEROGENEOUS !!ENVIRONMENT

For the degree of Doctor of Philosophy

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the
United States’ copyright law and that I have received written permission from the copyright owners for
my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless
Purdue University from any and all claims that may be asserted or that may arise from any copyright
violation.

Teresa A. Shanklin

Printed Name and Signature of Candidate

4/18/2012
Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

AN AGENT-BASED MODEL

FOR NAVIGATION SIMULATION IN A

HETEROGENEOUS ENVIRONMENT

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Teresa A. Shanklin

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2012

Purdue University

West Lafayette, Indiana

ii

Dedicated to my husband, daughter, family and friends. Without all your love and

support, I would never have finished this. Thanks to all members of ‘Team

Shanklin’ both operational and spirit crew!

iii

ACKNOWLEDGMENTS

I wish to gratefully acknowledge my thesis committee for their insightful com

ments and guidance. I wish to acknowledge my chair, Professor Eric Matson, for

serving as my principal advisor through this journey, and for all his thoughtful guid

ance. He has allowed me to venture into new areas and develop new passions for

learning.

Additionally, I would like to acknowledge the assistance of Professor Brandeis

Marshall. She was instrumental in allowing me to complete the research as well as

the statistical interpretation. Her time and input were invaluable, and I cannot fully

express my gratitude for her assistance.

A special thank you to Professor Alejandra Magana for pushing me to put

forth the best document possible. I am thankful for the feedback on critical thought

and analysis and feel the research is better for it.

Also, I would like to acknowledge Professor Dong-Han Kim. Although he

works out of South Korea, he has graciously given his time to help me complete this

milestone.

I want to thank ‘Team Shanklin’ for their assistance through this adventure.

In particular to my parents, Peter Aschenbrenner and Mitchel Friday, thanks for the

many, many hours of proof-reading and brainstorming sessions. Without them this

day would not have arrived, and even if it had all the commas would be in the wrong

place.

A strong thank you to my many friends who have o↵ered their friendship,

advice, and support during this long trek. It was easier to concentrate on the research,

knowing my family was being tended to.

Finally, a special thanks to my husband James, and my daughter Molly. They

have generously given up many hours, days, and weekends of time to allow me to

iv

achieve this goal. I hope I have made you proud. This has been a long time in the

making. Albert Einstein said it best, ”The important thing is not to stop questioning.

Curiosity has its own reason for existing..”.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABBREVIATIONS . xii

ABSTRACT . xiv

CHAPTER 1. INTRODUCTION . 1

1.1 Motivation . 2

1.2 Statement of Purpose . 3

1.3 Definable Goals . 4

1.4 Organization . 5

CHAPTER 2. LITERATURE REVIEW . 7

2.1 Mobile Devices . 8

2.1.1 Discussion of Mobile Devices and their Environment 14

2.2 Indoor Localization . 14

2.2.1 RFID . 14

2.2.2 Embedded Sensors . 19

2.2.3 Discussion on Indoor Localization 23

2.3 Modeling and Simulation . 24

2.3.1 Agent-Based Modeling . 24

2.3.2 Simulation . 28

2.3.3 Discussion of Modeling and Simulation 30

2.4 Complex Systems . 31

2.4.1 Multi-agent System . 32

2.4.2 System-of-Systems . 39

2.4.3 Discussion of Complex Systems 42

2.5 Path-Planning . 43

2.5.1 Dijkstra . 44

2.5.2 Nearest Neighbor . 46

2.5.3 Discussion on Path-Planning 46

2.6 Contribution and Summary . 48

CHAPTER 3. PATH-PLANNING AND NAVIGATION 51

3.1 P

I : Path-planning on the Samsung Nexus S 52

3.1.1 Methodology . 53

vi

Page
3.1.2 Design . 54

3.1.3 Implementation . 55

3.1.4 Results . 60

3.2 P
II

:Path-planning on the Apple iPhone 60

3.2.1 Methodology . 61

3.2.2 Design . 63

3.2.3 Implementation . 69

3.2.4 Results . 73

3.3 P
III

: MatLab Implementation & Simulation 76

3.3.1 Methodology . 80

3.3.2 Design . 80

3.3.3 Implementation . 81

3.3.4 Results . 89

3.4 Conclusion . 91

CHAPTER 4. METHODOLOGY . 92

4.1 Model . 95

4.1.1 Principles . 97

4.2 Implementation . 101

4.2.1 Conceptual Description . 105

4.3 Data Collection . 106

4.4 Data Analysis . 108

4.4.1 Statistical Methods . 108

4.4.2 Reconciliation . 108

4.5 Summary . 109

CHAPTER 5. AGENT-BASED SOS RESULTS 111

5.1 Methodology . 113

5.2 Design . 114

5.3 Implementation . 119

5.4 Results . 122

5.4.1 Statistical Analysis . 134

5.5 Conclusion . 139

CHAPTER 6. CONCLUSION . 144

6.1 Discussion . 144

6.2 Conclusion . 145

6.2.1 Contribution of Research . 147

6.3 Future Work . 147

LIST OF REFERENCES . 150

GLOSSARY . 161

Appendix: A . 164

vii

Page

.1 Sensors . 164

.2 Database . 164

.3 Mobile Platforms . 164

.3.1 BlackBerry . 165

.3.2 iPhone OS . 168

.3.3 Android . 171

.3.4 Windows Phone 7 . 175

.3.5 Summary of Mobile Devices 178

Appendix: B . 179

.4 Matlab Source Code . 179

Appendix: C . 236

.5 Patterns of Variables for M

IV . 236

VITA . 241

viii

LIST OF TABLES

Table	 Page

1.1 Distributions to Evaluate Expected Results 4

2.1 Characteristics of the top four smart-phone systems 11

2.2 Characteristics using RFID . 18

2.3 Characteristics using embedded sensors 23

2.4 Table summarizing Modeling and Simulation 30

2.5 Characteristics of Multi-agent Systems 37

2.6 Characteristics of System-of-Systems 42

2.7 Table summarizing path-planning . 47

2.8	 Summary of Paper Categories . 50

3.1	 Sensor characteristics . 64

3.2	 Basic Model with Limited Data P = path, 7 = intersection, 1 = inacces
sible . 82

3.3	 Table of assumptions for M
I . 84

3.4	 Table of assumptions for M
II . 85

3.5	 Table of assumptions for M
III . 88

3.6	 Comparison of Prototypes . 91

4.1	 Table of Characteristics . 99

4.2	 A sampling of the state of an agent over a time-step 107

5.1	 Extraction of Patterns of Variables . 112

5.2	 Table of assumptions for M
IV . 119

5.3	 Distributions to Evaluate Results . 124

5.4	 A sampling of the state of an agent over a time-step 127

6.1	 Comparison of Prototypes . 148

ix

LIST OF FIGURES

Figure	 Page

2.1	 Broad Concept Map of Literature Topics 7

2.2	 Broad Concept Map of Literature Topics 9

2.3	 Market Share of the top four smart-phones [3] 10

2.4	 System-of-Systems Concept . 40

3.1	 LWSN floor-plan overlay . 58

3.2	 LWSN floor-plan overlay . 59

3.3	 KNOY floorplan overlay . 59

3.4	 The path on Purdue Campus between Lawson Computer Science and

KNOY . 60

3.5	 This figure shows the coordinate system attached to the iPhone in which

the accelerations are expressed . 62

3.6	 Overview of the system . 64

3.7	 Projection matrix, cosines abbreviated with c and sinus with s 65

3.8	 Overview of the agent-based model . 66

3.9	 This figure shows the accelerations along the x and y axis 73

3.10 This figure shows the signal processing in LabView 74

3.11 This figure shows a person moving 5 steps forward, turning, and 5 steps

back . 75

3.12 This figure shows the lexicon applied in this environment. This figure is

adapted from the work by DeLaurentis and Callaway [72] 79

3.13 Purdue Campus Map Red line indicates the MatLab path 83

3.14 Cost Map . 86

3.15 Complex Cost Map . 86

3.16 Adjacency Matrix . 87

3.17 Example of Simulation by Time-Step 89

x

Figure Page

3.18 Sample of Results Recorded by Individual Run 89

3.19 Agent Speed Distribution . 90

5.1 Five cell grid for inside radius . 113

5.2 Five cell grid for outside radius . 113

5.3 Virtual grid for Purdue Campus & Knoy 2nd Floor 114

5.4 Image of Knoy second floor distributions showing range of sensors . . . 120

5.5 Image of Lawson second floor distributions showing range of sensors . . 120

5.6 Image of Purdue showing range of sensor distributions 121

5.7 GPS p-loss 80%, 0 Wifi nodes, 80 RFID nodes 123

5.8 Results from simulations with a range of Wifi 126

5.9 Results from simulations with a range of Wifi and No GPS 128

5.10 Results from simulations with a range of Wifi 129

5.11 Results from simulations with a range of RFID 129

5.12 Comparison of Wifi v RFID with equal ranges 130

5.13 Comparison of Wifi v RFID with ranges of 10 v 5 130

5.14 Results for the di↵erence in the Wifi range with 10-40 Wifi and 10-40 RFID 131

5.15 Results for the di↵erence in the Wifi range with 0-40 Wifi and 0 RFID

nodes . 131

5.16 Results of Wifi distributions over di↵erent signal ranges 132

5.17 Distribution of RFID across all nodes 132

5.18 Distribution of RFID across all ranges 132

5.19 A table of the mean value for each 100 runs 133

5.20 A table of the percentage increase for RFID 134

5.21 A table of the percentage increase for Wifi 135

5.22 Percentage of signal availability over 100 runs at p-loss 60% 136

5.23 Percentage of signal availability over 100 runs at p-loss 80% 137

5.24 The standard deviation of the mean . 138

5.25 Chi-Square Test of Independence for Wifi 139

xi

Figure Page

5.26 Chi-Square Test of Independence for RFID 140

5.27 Histogram of all Wifi configurations . 141

5.28 Histogram of all RFID configurations 142

5.29 Histogram for comparing the probabilities of GPS loss 142

5.30 The sensor system availability on the Purdue campus 143

5.31 Sensor Legend . 143

5.32 The sensor system availability in Knoy 143

5.33 The sensor system availability in Lawson 143

xii

ABBREVIATIONS

ABM Agent-Based Modeling

AIS Autonomic Information Systems

AMAS Adaptive Multi-agent System

AOS Android Operating System

API Application Programming Interface

CC Cartesian Coordinate

CIT Computer and Information Technology

COT College of Technology

CSE Complex System Engineering

DEVS Discrete Event Simulation

DoD Department of Defense

DOF Degree’s of Freedom

GPS Global Positioning System

HCI Human Computer Interface

IDE Integrated Development Environment

IMU Inertial Measurement Unit

iOS iPhone Operating System

JADE Java Database Engine

JVM Java Virtual Machine

kNN K Nearest Neighbor

KNOY Maurice G. Knoy Hall of Technology

LWSN Richard & Patricia Lawson Computer Science Building

MaNG Multi-agent Navigation Graph

MaS Multi-agent System

xiii

MaSD Multi-agent System Development

MaSE Multi-agent System Engineering

MaSoS Multi-agent System-of-Systems

MEMS Micro Electric Mechanical System

NN Nearest Neighbor

NNS Nearest Neighbor Search

OS Operating System

OSI Open Systems Interconnect

PDR Pedestrian Dead Reckoning

PPP Point-to-Point Protocol

RFID Radio Frequency Identification

RSS Received Signal Strength

SDK System Development Kit

SoS System-of-Systems

SoSE System-of-Systems Engineering

TDOA Time Di↵erence Of Arrival

TOA Time of Arrival

VM Virtual Machine

Wifi Wireless Fidelity

xiv

ABSTRACT

Shanklin, Teresa A. Ph.D., Purdue University, May 2012. An Agent-Based Model
for Navigation Simulation in a Heterogeneous Environment . Major Professor: Eric
T. Matson.

Complex navigation (e.g. indoor and outdoor environments) can be studied

as a system-of-systems problem. The model is made up of disparate systems that

can aid a user in navigating from one location to another, utilizing whatever sensor

system or information is available. By using intelligent navigation sensors and tech

niques (e.g. RFID, Wifi, GPS, embedded sensors on a mobile device, IMU, etc.) and

adaptive techniques to switch between them, brings the possibility of an end-to-end

navigational multi-agent system-of-systems (MaSoS).

Indoor location-based applications have a broad appeal for development in

navigation, robotics, gaming, asset tracking, networking, and more. GPS technolo

gies have been successfully leveraged for outdoor navigation, but often lose e↵ective

ness indoors due to a more constrained environment, possible loss of signal, lack of

elevation information and need for better accuracy.

Increasingly complex problems in navigation allow for the development of a

framework for a system-of-systems. Individual systems contain distributed and het

erogeneous components that are disparate in nature.

Multiple prototypes and a framework for a multi-agent system-of-systems are

presented. The purpose of the model is to overcome the limitations of a single tech

nology navigation system. The system creates a classic system-of-systems utilizing

existing and developing localization services. The system provides point-to-point path

planning and navigation regardless of the transportation medium, location of the user

or current environment.

1

CHAPTER 1. INTRODUCTION

This study presents an agent-based application, which, as modeled, o↵ers en

hanced personal navigation through a dense urban environment. The research de

velops a framework for an autonomous navigation system. The system-of-systems

approach o↵ers individual systems that are unique, distributed and disparate, [1],

which overcomes the limitations of a single-technology navigation system. The re

search sets, as its ultimate goal, creation of a classic system-of-systems by utilizing

three existing localization technologies, while o↵ering a common interface to exploit

all three services. This interface provides the navigator with end-to-end path-planning

and navigation regardless of the transportation medium, location of the user, current

connectivity or immediate environment. While both indoor and outdoor navigation

have been studied often and recently, to this author’s knowledge, using an agent- or

multi-agent-based system-of-systems (MaSoS) to design an autonomous navigation

system fusing existing signal technologies is unique.

In 1999 Maier presented his seminal work, which proposed five characteristics

to identify a System-of-Systems (SoS). [1]

•	 Operational Independence - Each of the navigational systems operate inde

pendently, i.e. the system currently navigating (GPS) is not influenced in its

path-planning by knowledge of any other system (Wifi, RFID).

•	 Managerial Independence - Each of the systems is managed independently.

•	 Evolutionary Development - The localization information may change over time

as routes change.

•	 Emergent Behavior - The various outputs from localized systems will influence

decisions made and routes selected.

2

•	 Geographic Distribution - The systems all cover disparate geographic locations

and will exchange information as part of the input and decision-making infor

mation.

According to DeLaurentis, Crossley and Mane [2], “the first three characteris

tics primarily describe the problem boundaries and mechanics of the interacting ele

ments while the latter two describe overall behavior.” By applying these five definitive

characteristics this research is categorized as a classic System-of-Systems; a complex

system with multiple, independent systems that interact at various levels.

1.1 Motivation

The majority of research in navigation and localization focuses on individual

technologies or a hybrid of several meshed together. These may be broken down

into: robotics, assistive devices (blind, cognitive disorders), informational navigation,

asset tracking, gaming, etc. Often the research is further subdivided into indoor or

outdoor environments; selected mode of transportation; or limitations and goals. The

motivation of this research is to construct a multi-agent system-of-systems (MaSoS)

to actualize heterogeneous personal navigation.

An example of an extendable SoS, which allows a user to navigate autonomously

through available modes of localization, may be seen in the movement of an individ

ual from an indoor RFID localization system, to an outdoor GPS navigation au

tonomously; or, the SoS might provide location information from one’s home to a

destination in a distant urban location, taking available modes of transportation.

At present the availability of localization and navigation information are de

pendent on whatever device is at hand, and is further limited by a user’s physical

location, network coverage or mode of transportation. The SoS model developed,

along with the prototype constructed and tested, combines disparate localization

technologies to o↵er the possibility of an end-to-end solution. The potential benefits

of this system include, for example:

3

1. allowing directional acuity without a priori knowledge;

2.	 building additional advances for persons with disabilities;

3.	 building environmental knowledge for alternative routing in tra�c tracking and

emergency preparedness.

1.2 Statement of Purpose

This work critically examines why an agent-based or multi-agent-based system

is appropriate for a navigation application in a heterogeneous environment. Multi-

modal movement, through and around multi-story buildings in an urban environment

is modeled. The research provides a formalized description of the systems and their

model. It introduces an agent-based model within an SoS to allow for the seamless

addition of new location and navigation technologies. Simulations and prototypes

are developed to aid in the study. This research quantifies measures by looking at

which system is active and providing information, and the speed of that system. The

research is novel as it looks at both the fusion of existing sensor technologies and a

framework to allow the addition of new technologies. These can be seen in the models

and prototypes described in Chapter 3.

Instances of the null hypothesis are presented later in the research; each of

these hypotheses isolates a set of variables by asserting that observed values for signal

availability (0 or 1) are consistent with random distribution.

•	 Null Hypothesis: H0 is the Null Hypothesis. H0: Performing navigation using

multiple technologies does not improve at least one of these conditions at any

time: availability, speed, or inclusiveness.

•	 Alternate Hypothesis: H
a is the Alternate Hypothesis. H

a

: Performing naviga

tion using multiple technologies will improve at least one of these conditions at

any time; availability of sensor based on location, speed of navigation, inclu

4

siveness of systems (i.e. outside, inside, elevation, etc.) as the system moves

autonomously through individual systems as appropriate.

The distributions and measures to evaluate can be seen in Table 1.1. These

include a binary range of the system’s availability, the assigned speed of the sensor

system available, and the percentage of the total run in which the sensor system is

available.

Table 1.1: Distributions to Evaluate Expected Results

Navigation

of System

Availability

of Sensor

(0 or 1)

Speed of

Navigation

(1 - 10)

Inclusiveness

of Systems

(Percentage)

Distribution 1 GPS

Distribution 2 GPS,Wifi

Distribution 3 Wifi

Distribution 4 GPS, RFID

Distribution 5 RFID

Distribution 6 GPS, Wifi, RFID

1.3	 Definable Goals

The definable goals for this research include implementing prototypes for test

ing, and discussing the connection between the prototypes and models. These are:

•	 Examine use of agent-based model

Discuss characteristics and applicability

• Formalize theoretical description of system-of-systems

5

Support why SoS is appropriate for a framework

Discuss independent systems and characteristics

• Perform agent-based modeling and simulation

Perform simulations

Collect data

Analyze data

• Implement prototypes for testing (P
i

)

P1: Path-planning on the Google Nexus S

P2: Path-planning on the Apple iPhone

P3: Matlab agent-based models

1.4 Organization

This chapter has clarified why the research was undertaken as a study of

system-of-systems and set forth definable goals for the successful completion of the

research.

Chapter 2 discusses the interdisciplinary aspect of the research which includes

mobile devices, localization and path-planning, complex systems, modeling and sim

ulation. This review selects seminal and state-of-the-art literature from the volume

of literature available.

Chapter 3 describes the predecessor and final prototype. It presents the design

and implementation of the device in light of the test physical environment. It also

discusses the parameters, factors and independent variables as the experimental e↵ort

moves forward.

Chapter 4 introduces the methodology of the project, which is agent-based

and utilizes both simulation and prototyping. The chapter o↵ers information on

agent-based modeling and formal specifications are noted.

6

Chapter 5 presents a detailed examination of the experiment and resulting

data. It addresses the appropriateness of the design and any weaknesses observed.

Chapter 6 places the research presented in the context of possible real-world

applications which are viable in light of the experiments presented. The conclusion

also suggests specific avenues for future work.

7

CHAPTER 2. LITERATURE REVIEW

A rich and mature literature exists in a variety of areas. When Googled, the

keyword pathplanning returns a count of approximately two and onehalf million

articles while the keyword simulation returns over four million articles. The sheer

number of papers in this interdisciplinary research requires sampling. The literature

involves many disciplines and continues to evolve rapidly.

Figure 2.1.: Broad Concept Map of Literature Topics

For this research a broad category of literature is reviewed. A hierarchical

concept map is provided in Fig: 2.1. The top level topics are mobile devices and

modeling and simulation. Mobile devices are included as application prototypes (P1

and P2 described in Chapter 4) and will be implemented on two individual smart

phones. From this category, the relevant and complementary portion includes indoor

8

localization either through RFID or mobile device embedded sensors. The specific

applications reviewed in these papers are multi-topical (e.g. mobile robots, visual

assistance, inventory management, etc.).

Modeling and simulation are explored through a variety of topics: multi-agent

systems; system-of-systems; agent-based model; and discrete event simulation. As the

research involves a framework to fuse the data of multiple sensor systems, a variety of

methods and systems are explored. Agent-based and multi-agent systems are explored

as an appropriate model for simulation. System-of-systems is important to explore, as

the architecture for the proposed model involves mergine multiple individual systems.

Additionally, navigation is impossible without a discussion of path-planning.

For this research, Dijkstra’s single-source shortest path and the Nearest Neighbor

algorithm are reviewed. This review is so broad, as this research encompasses more

than one area. For this reason, any reviewed research that is multi-topic in nature,

is contained in the section that is the most relevant.

A detailed concept map is presented in Fig: 2.2.

2.1 Mobile Devices

As mobile devices have become a ubiquitous technology, the need to compare

and contrast various systems was required. As embedded sensors and prototypes are

used in the research, the category of smart-phone was selected as the interface. In

North America, deployment of mobile applications generally occurs on one of the top

four mobile operating systems (Blackberry, iPhone, Android and Windows Mobile.)

In addition to the sensors of the phone, the details of the environment were relevant

to this research. As such, details of related work are shown below. To determine

which platform would be the most suitable for the prototypes required two di↵erent

but coordinated approaches:

1. determine the relative advantages and limitations of mobile device models;

9

Figure 2.2.: Broad Concept Map of Literature Topics

2.	 determine the capacity of a given mobile device to exploit RFID technology for

the purpose of enhancing navigation.

The potential of Apple’s iPhone against Google’s Android has been compared

in the literature and the results re-examined in this research. Take the openness of

an operating system for application development. While there are many Java pro

grammers, the iPhone OS is built on the long-running and stable Mac OS platform.

Therefore the claim by Hall that few developers have experience with it, is spuri

ous [4]. It has been suggested by Lin et al. [5] that market-share is a key factor in

determining the ease of application development. In contrast, Oliver [6] analyzed the

operating systems of selected phones with regard to the research goals of the devel

10

Figure 2.3.: Market Share of the top four smart-phones [3]

oper. Oliver’s article provides a detailed background to the development challenges

that the researcher faced in writing an application in Java for the Android. This

literature review (and its selected topics) may be regarded as an update of topics

addressed in Oliver’s work, given the more detailed experience with mobile devices

and their relative advantages and limitations.

Independent of literature in the field, a determination through experimenta

tion with the iPhone presented significant hurdles. Problems with the iPhone as a

development platform did not cause the research to move forward on the Android,

but rather a deficiency which many researchers have discovered in any embedded

sensor: noisy sensors with squared integration errors [7] [8] [9], for which no fix has

been developed. However, iPhone testing of RF sensors was an essential step forward

as this work allowed the research to isolate the problems and challenges of obtain

ing incoming signals, both native and programmed, as information to be fused with

Wifi and GPS signals. This preceded the conclusion by Anvaari, [10], that between

Android and iPhone, Android was the most open platform for development.

11

Table 2.1: Characteristics of the top four smart-phone

systems

. Blackberry iPhone Android Windows

Phone

Interface Se

lection

API available

to determine

network cov

erage

Framework

available to

determine

network

reliability

Class pro

vided to

monitor and

return state

of network

Class pro

vided to

select and re

ceive network

status

Bluetooth Available, re

quires pairing

procedure

Available, re

quires pairing

procedure

API, scan

and check

for paired

devices data

transfer and

connection

management

Unavailable

as of first ver

sion release

Background Service Supported as Permitted, Permitted

Processing module

available to

send/receive

background

messages

of Version 4.0 but any

process can

be killed

to reclaim

memory

for native

applications.

First version

prohibits 3rd

party control

Energy Moni

toring

API’s to

check state

of battery

(e.g. level,

charging,

temperature)

Register se

lectors (msg

service) re:

battery state

changes

Battery MGR

class to detect

status of bat

tery

No API avail

able to access

this info

Continued on next page

12

Table 2.1: (Continued) Characteristics of the top four

smart-phone systems

Blackberry iPhone Android Windows

Phone

Power Saving Power saving API query Fine-grained No API avail-

Controls is permitted-

en

able/disable

screen, shut

down device

battery ca

pacity, state,

voltage,

charging

status

control over

power con

sumption

able to ac

cess/control

this info

Memory JVM - allo- No garbage Uses custom Managed

Management cate memory

garbage

collection,

automatic

paging

collection.

Must use

reference and

retain count

Java Dalvik

VM. Ensures

multiple in

stances can

run e�ciently

code, includes

built-in

garbage

collection

Persistent File system, CoreData, File I/O File sys-

Storage SQLite DB,

Persistent

Store

FW opti

mized XML

format

SQLite DB tem access

prohibited.

Isolated and

stable, for

each process

Location GPS- inter- CoreLocation GPS local- API to use in-

Sensing nal/external

receiver,

Geo-location

framework

uses hw to

find location

ization and

cell tower

triangulation

put from GPS

or Wifi

Continued on next page

13

Table 2.1: (Continued) Characteristics of the top four

smart-phone systems

Blackberry iPhone Android Windows

Phone

Development

Language

Java - plat

form indepen

dent

Objective-C,

C MVC de

sign pattern

Java - plat

form indepen

dent

Currently

only C Sharp

Development Java de iPhone SDK Android Visual Studio

Environment velopment

kit, Eclipse

plug-in

$99.00 / year SDK, Eclipse

plug-in

Express for

Silverlight

SNA

Code Signing Signing

Authority

Tool pub-

lic/private

key cryptog

raphy

Signing Cer

tificates

Signing Cer

tificates may

be self-signed

Certification

testing prior

to code

signing

Testing, Em

ulation and

Tools

Emulators

available for

download for

all models

Large number

of tools avail

able

Large number

of tools avail

able

Emulator,

SNA Game

Studio, Ex

pression

Blend

Application BB App App store, Android Mar- Phone Mar-

Deployment World, ven

dor guide

lines, on-line

submission

must be ac

cepted by

Apple for

design and

content

ket, $25.00

registra

tion fee and

agree to Dist

agreement

ketplace

$99.00 annual

fee, and on

line certifica

tion/submission

Continued on next page

14

Table 2.1: (Continued) Characteristics of the top four

smart-phone systems

Blackberry iPhone Android Windows

Phone

Hardware OEM Black

berry devices

OEM iPhone,

iTouch and

iPad

Multiple

hardware

vendors

Multiple

hardware

vendors mini

mum system

requirements

2.1.1 Discussion of Mobile Devices and their Environment

A summary of the characteristics of each system is presented in Table: 2.1.

A lengthier discussion of background information is included in Appendix A. Mobile

devices are continually adapting and reinventing the state of the art. At the time of

the prototyping, the Apple iPhone and Google Nexus S were selected as they both

enjoy the largest market share and each had specific hardware and software features

necessary for the study.

2.2 Indoor Localization

Indoor localization is a topic area that is oft-researched. This section includes

work in the areas of RFID localization and embedded sensors on a mobile device.

2.2.1 RFID

Although radio frequency identification (RFID) technology is not new, inno

vative uses for it continue to grow. It has been used in topics that include inventory

management, smart card technology, robots and localization. In the context of this

15

research, the implementation of RFID is used to assist in determining location. In

door localization via RFID technology presents a natural avenue for research and

development. For example, brute force saturation has been used: the researchers

embed RFID sensors with minimal information stored into their memory (tags) in a

physical environment in a grid format. (Tagging is thus a term used to indicate the

deployment of RFID tags.) At this point it is important to note that implanting fixed

rigid tags in a grid is a significant step away from imitating the natural motion of a

human being, whose movements are guided by doors, stairwells, elevators and other

familiar landmarks.

Kim and Hong installed grids of RFID tags on the ceiling of an interior space;

each tag was programmed with coordinates and transmitted this information to a

device (not necessarily a smart-phone) which had a database of information to localize

the device [11]. The programming relied on a determination algorithm which used the

signal obtained from line-of-sight measurements. The algorithm deleted the outliers

which allowed it to extract the target location by calculating the mean value of the

remaining data set.

The limitations of this approach are obvious, and have been demonstrated in

other papers. Take passive UHF RFID tags in a grid format in a room: the algorithm

created relied on the Angle-of-Arrival to determine the users location. The conclusion

was that RFID alone was not enough for e↵ective indoor localization, but would be

better combined with other technologies for higher accuracy. [12]. The essence of

the approach was that a single mobile tag, attached to a computing device, could

determine the user’s location; even with pre-arranged grids and coding, localization

with RFID alone could not be rendered a reliable advance.

The history of RFID technology in indoor localization can be traced through

the works of Zhao [13] who, in 2007, published their first paper on a team exper

iment with fixed grids; to overcome the obstacles they observed and which appear

in the literature, the team stored a proximity map on the reader and an elimination

algorithm to calculate location. The results brought the experimenter to within .14

16

meters of the true location; however, even these results, documented in their follow-up

papers [14] and [15], demonstrate the likelihood that massive grids will never make

RFID a stand-alone enhancement technology. These results were confirmed by Prad

han et al. [16], who conducted field tests under real operating conditions with ultra

high frequency RFID tags placed at fixed interior locations, while the user carried

the reader inside the building. As with other research, mapping of the environment

was a prerequisite to localization and was done by measuring the signal strength of

the RFID tags from di↵erent locations; this team obtained errors of over ten meters

from the true location.

Zhu, Wei and Hu [17] compared LANDMARC and VIRE. LANDMARC was

discussed in a previous paper by Ni et al. [18]. The authors were interested in the

performance of the positioning algorithms in active RFID systems. An improvement

was presented as a reduction algorithm for higher accuracy.

An interesting step forward was the utilization of two signals, active RFID and

ultrasonic, proposed by Yuan et al. [19]. The research gathered signals to localize a

user indoors, and then perform path-planning from a starting point to a final desti

nation. The first method used was range measurement: the local ’landmark’ would

send out both an RF and Ultrasonic signal, and the user’s terminal would receive

these independently. As RF travels faster then Ultrasonic, the discrepancy was used

to measure the Time-Di↵erence-of-Arrival (TDOA) between the signals.

The second method involved using A* to perform path-planning using an oc

cupancy grid. Putting the limitations of fixed grid-based installations to one side,

Yuan advanced the research by exploiting two signals and deploying the information

for localization and path-planning purposes.

In this regard, it is worth noting that a significant branch of the literature

assumes that indoor navigation systems are designed to guide mobile robots. As far

back as 2003, Hahnel et al. [20] proposed a fusion of data from lasers with RFID to

improve localization of mobile robots or persons. Conversely, a study investigating

the potential of stand-alone and purpose-built computers was explored by Yelamarthi

17

et al. [21]. They described a Smart-Robot system with an integrated navigation

system using RFID and GPS. The system was designed to help a visually-impaired

user navigate to a location through a set of predefined routes. The smart-robot also

avoided obstacles using ultrasonic and infrared sensor inputs. The conclusion reached

was that RFID and GPS in combination for navigation assistance was technically and

economically feasible. The Smart-Robot system could potentially improve the quality

of life for the visually impaired by making routine tasks simple and feasible.

BlindAid, a project presented by Mau et al. [22] lacked presentation of any

visual aid, such as a Google Map. Instead audio cues were used for the sight-impaired.

The research was designed using passive RFID tags deployed within buildings and

equipping the software to determine their location. Some of the methods for this work

were map generation by using a floor-plan and noting the location of the RFID tags

on it. Path-planning was performed using Dijkstra’s algorithm to provide a path for

the user to follow. An early Dell Axim phone was used running Microsoft Windows

5.0. The software was written in C# .

It is worth noting that BlindAid was clearly an improvement over the com

puter in a fanny-pack, which supplied feedback with vibrations to orient the user.

Willis and Helal [23] proposed an RFID infrastructure; shoe and white-cane inte

grated reader; blue-tooth connection, and RFID tags with spatial information. This

infrastructure was used to o↵er a navigation system to blind users on a college cam

pus. The localization was performed using pre-mapped rooms and paths and then

applying the spatial coordinates from the passive RFID tags.

The specialized requirements of fire-fighters, are an interesting example of

research that tests the limitations of a smart-phone in dangerous environments. As

suming passive tags, densely located in a building, an Android HTC Droid phone was

programmed in Java (along with an RFID reader in a glove) to signal the fire-fighter

with cues for the physical layout of the building. A textual floor-plan was included

and transmitted, via cues, to the phone.

18

The benefits of the system were listed as: low deployment costs, scalability,

on-demand information and portability. However, the pre-planning is considerable:

densely embedded RFID tags, pre-mapping of the RFID and floor-plans in text for

mat; streaming video to overlap mapped environmental information; and a glove

which the user was obliged to place directly on the RFID sensor.

Other specialized environments have also been investigated. In addition to

deploying an RFID infrastructure, Ahmed [24] created middle-ware dubbed Guardian

Angel which allowed improved care-giver monitoring in an assisted living environment.

Although localization accuracy was important to the study, the system was designed

with privacy in mind. This allowed the user to control what information about their

location could be monitored by health care givers.

A summary of these papers, including the methods and outcomes is included

in Table: 2.2.

Table 2.2: Characteristics using RFID

Research Outcome Research Methods Author

Indoor Localization passive RFID

plus Wifi

Localization - line of sight custom al

gorithm

[11]

Localization algorithm passive UHF

RFID tags

Localization - Angle of Arrival Tags

placed in grid

[12]

Indoor Localization active RFID Localization algorithm RSSI signal

measure interpolation and elimina

tion

[13]

Indoor localization active UHF

RFID tags mounted tags

Map generation - using measure sig

nal strength hypothesis testing and

k-Nearest Neighbor

[16]

Comparison of previous methods Localization - using RSSI Measure

previous performance

[17]

Continued on next page

19

Table 2.2: (Continued) Characteristics using RFID

Research Outcome Research Methods Author

Localization and Navigation Localization - RF & ultrasonic sig

nals - time di↵erence of arrival, New

ton iterative process

[19]

Data fusion- RFID + lasers Local

ization using probabilistic measures

Pre-existing map Monte Carlo for lo

calization

[20]

Wayfinding for blind users, active

RFID

Map generation to localize. Path-

planning using Dijkstra algorithm

[22]

Localization, Navigation obstacle

avoidance using a smart robot for

blind users

Indoor & outdoor localization. Nav

igation algorithm using pre-defined

routes Sensor use for obstacle avoid

ance

[21]

Wayfind for blind users with passive

RFID and reader integrated white

cane

Pre-mapping of rooms and paths.

Localization using spatial coordi

nates

[23]

Accurate localization plus naviga

tion for emergency workers or blind

users

Passive RFID + audio landmarks.

Back-end processing, Android

smart-phone

[25]

Passive RFID for localization Localization with user control for

privacy control

[24]

2.2.2 Embedded Sensors

Due to the popularity and mass distribution of mobile phones,location-based

services have been a natural progression for the platform. As the previous discussions

suggest, advances in localization services are a function of;

• capturing and manipulating additional information, from any source; and

20

•	 fusing the information into data that can be projected into a user-friendly for

mat.

The gold-standard in location-based services is Google Maps. This research

utilizes and extends this as described in Chapter 3.

The architecture of the mobile phone took a dramatic step forward with the

deployment of MEMS (Micro Electric Mechanical System) technology. Chips in

stalled on the motherboard of these devices o↵er information via an Accelerometer,

Gyroscope or Magnetometer (Electronic Compass).

The familiar pattern of new technology having di�culties achieving reliable

location data now repeats itself. The challenge is how to use these devices e↵ectively

to provide an accurate solution. Some of the prototypes developed in this research

have involved mobile platforms and their embedded sensors.

Several works included the idea that accelerometer data was easily obtain

able from ubiquitous mobile devices. The research was done believing accelerometer

information was suitable to augment other systems (either to improve accuracy or

conserve battery.) In Constandache et al. [26] the team describes deployment of an

accelerometer and digital compass from a mobile phone; the authors measured the

walking speed and orientation of the user. They drew data points from the mobile

device’s sensors, as they were more energy e�cient than GPS and Wifi based systems.

The drawback was the level of accuracy, which averaged over ten meters. The authors

concluded “noisy phone sensors and complicated human movements present practical

research challenges. To overcome the deficiency, the authors proposed recording walk

ing patters. The MEMS-supplied data could not be reliably digested by the hardware

and software commanded by the investigators.

To continue isolating the information of the MEMS-based sensors Hsu and

Yu [27] theorized that coarse indoor localization could be maintained through ac

celerometer data alone; their approach computed an object’s displacement by trans

forming the information gathered by the accelerometer. Their paper presented a

theoretical and simulated version of accelerometer-based positioning. The conclusion

21

points to the compounding error occasioned by successive integrations, i.e. the error

exponentially increases as the user attempts to navigate.

Another group categorized various states of user activity from data emitted

from an Android NTCG1. Specifically, accelerometer data was gathered to classify the

activity. Parnandi et al. [28] combined this data with the last known GPS coordinates

when the user moved indoors to provide a coarse indoor location of the user. The

following method was employed: the GPS coordinates for the last known outdoor

location was logged; once the user moved inside, accelerometer data was logged to a

file at specific intervals. It was the user’s hesitation that triggered the change in state

which the software was programmed to interpret. Once the user stops moving, the

changed states caused the system to attempt to calculate the current location of the

user based on the logged accelerometer data.

The authors performed case studies using both naive Bayes and dynamic time

warping strategies to classify the user’s activities: standing still; walking; going up

or down stairs; or going up or down the elevator. While the dynamic time warping

was found to be more accurate, the computational complexity was such that the

increased accuracy was not enough benefit to select it. It is worth noting that the

authors illustrated the required placement of the mobile device as strapped to the

users foot.

Combining Wifi and accelerometer readings from a mobile phone Ofstad et

al. [29] theorized that user localization on a Google Map could be supplied via mobile

phone (Nokia N95), which directed the user to one of three desired locations. In the

system as modeled, the time interval for a sensor recording was set to one second.

At one minute; a filter classifies and records the user’s current activity based on the

recorded sensor data, i.e. sitting or standing. The limitation of this work was the

lack of information displayed advising the user of their current location and there was

no investigation into combinating or fusing signals.

Fusing three sensor technologies and an algorithm to enhance the positioning

performance for first responders was addressed by Amanatiadis et al. [30]. Their pre

22

liminary experiments showed an improvement in navigational accuracy derived from

exploitation of RFID, accelerometer, and image processing. Their indoor navigation

system, however, was based on sensor data from first responders wearable modules.

The researchers required an additional input device to supplement the input from the

smart-phone.

A rather odd experiment: data from accelerometers, gyrometers, magnetome

ters and barometers were evaluated through a device created by Kourogi et al. [31].

A PDR (Pedestrian Dead Reckoning) Evaluation Kit was developed; PDR software

and self-contained sensor module enabled indoor and outdoor localization systems.

At the time of publication the hardware and software were available for evaluation

from SHIBUYA KOGYO for around $5,000.00 No citations (other than the authors)

suggest that this became commercially viable.

Testing the capabilities of an unaugmented smart-phone, the research e↵ort by

Dekel and Shiller [32] attempted to exploit an iPhone 3GS. In this case accelerometer

and magnetometer data were gathered. The approach counted steps multiplied by

estimated step-size to supply localization data. The results required the user to

supply user gait characteristics; an improvement from strapping the phone to the

user’s foot, which other studies require. In the work by Hynes et al. [33] investigator’s

fascination with footwear-fixed inputs may be tracked. This study relied on recorded

accelerometer data to analyze the user gait. The study used a low pass filter to detect

periods in the data. This allowed the researchers to determine between two states

dubbed walking and non-walking. The advance in analyzing gait and activity analysis

has not supported any further advances in navigation enhancement technology.

While Liu et al. [34] used the embedded accelerometer to determine the peri

odic pattern of each step, what is of more interest was the deployment of the Weibull

function, used to represent the wireless signal strength distribution over time. To be

e↵ective, a database of Wifi signal strength values must be measured and recorded to

a database in order to manipulate the information received in its raw form. Liu et al.,

combined this data with data derived from the pedestrian movement, via the Nokia

http:5,000.00

23

N95s accelerometer. This permitted the authors to combine Wifi-aided positioning

with context detection, i.e. whether the movement detected was static, walking slowly

or walking fast.

2.2.3 Discussion on Indoor Localization

There is active research into methods for better indoor localization. The cri

teria employed for including a review in this research is that the work utilized RFID

sensors or embedded mobile sensors (e.g. accelerometers, gyroscopes or magnetome

ters) or a fusion of sensors and localization techniques. No single solution has been

found to successfully solve indoor localization or navigation. A summary of the review

is included in Table: 2.3.

Table 2.3: Characteristics using embedded sensors

Research Outcome Research Methods Author

Indoor localization based on steps

and path once GPS fails.

Map generation - manual process.

Signature matching for localization

[26]

Indoor navigation sensor fusion:

IMU, RFID and digital camera

Classification of activity Measure

ment of vertical acc Fuzzy algorithm

for fusion

[30]

Course indoor localization based on

accelerometer measures

Simulation of localization using ac

celerometer - object displacement

through info transformation

[27]

Course indoor localization using ac

celerometer data from a smart-

phone

Accelerometer plus GPS Classifica

tion with naive Bayes and dynamic

time warping

[28]

Mobile phone accelerometer mea

sures

Categorization of user context based

on accelerometer readings

[29]

Commercial Application for local

ization

Calculations based on sensor atti

tude, velocity and movement

[31]

Continued on next page

24

Table 2.3: (Continued) Characteristics using embedded

sensors

Research Outcome Research Methods Author

Indoor navigation using smart-

phones

Calculation of dead reckoning based

on pedometer activity

[32]

Indoor navigation using smart-

phone

Calculation based on acc measure.

Classification algorithm for gait, ac

tivity

[33]

Indoor navigation using acc and Wifi Measure signal with Weibull func

tion. Accelerometer measure. hMM

particle filter to combine

[34]

2.3 Modeling and Simulation

In addition to application prototypes, this research also implements a model

and simulation. Modeling is the abstraction of a concept to allow the development of

a formal specification of the system. Simulation is the computerized execution of the

model over time to study the interactions of the agents. The concepts of simulation

and Agent-Based Modeling (ABM) are presented.

2.3.1 Agent-Based Modeling

The search to replicate, a series of patterned events began with John von Neu

mann’s design for machine-to-machine replication, he followed a detailed set of in

structions [35]. His colleague at Los Alamos, Stanislaw Ulam, (also a mathematician),

proposed an automaton which could express itself in a chess-board like grid. [36].

Another step forward came with the work of John Conway; in 1970 he con

structed the ’Game of Life’; in which each cell has its own preprogrammed behavior

and, once launched, the cells (or agents) will interact perpetually according to the

25

rules. The simulation appears on a two-dimensional checkerboard [37]. Although

Schelling’s initial 1971 model did not use computers, the agents he described (coins

on graph paper) were autonomous and interacted with observable and emergent out

comes [38]. The design of these simulations was to capture human emotion as the

motive which explained change of state in each agent.

Many of the advances in modeling produced computer code which simulated

small communities. In Epstein and Axtell’s Sugarscape presented the modeler with

a game-type interface in which the wants and fears of agents were exploited. Once

launched, the scenario would play out on the screen for the players edification [39].

From the perspective of this research, Parunak et al [40] o↵ered a case-study

of vehicle transportation networks; the team compared modeling with agents versus

mathematic modeling applicable to the movement of product through the network.

Similarities and di↵erences were presented as well as criteria for selecting one ap

proach over the other. At the time, ABM was a relatively new approach to system

modeling and simulation. The conclusion described ABM as “appropriate for domains

characterized by a high degree of localization and distribution [of decision-making].

As focus on improved agent navigation would exploit ABM’s advantages, rather than

focusing on the dynamics of movements explained by physical laws.

The development of the field proceeded rapidly with the deployment of ever-

increasing computer resources. Closer in time to the current research, Macal and

North published their “Tutorials on Agent-Based Modeling”, part I in 2005 and part

II in 2006 [41] [42]. Identification of the variables, relevant definitions, an example of

the model and its simulation, and interpretation and analysis of the results were sup

plied by the authors. The authors compared the advantages of ABM to conventional

simulation approaches.

In their research, a MatLab simulation was written on the assumption that

the navigator was independent, but would want to be aware of the choice of available

signals, information pertinent to choices in path-planning, and, most importantly,

the cost of errors in path-planning. Charles Macal and Michael North’s ABM obliges

26

the code writer to make these features of the navigator explicit, which this research

does, even if ABM does not oblige the code writer to expand the types of agents

and render the owner of the physical environment an agent in the simulation whose

preferences and costs must be taken into account. That latter step, as is explained

in other sections of this research, is reserved for future investigation.

The deployment results of modeling and simulation was addressed in Bauer,

Beauchemin and Perelson [43] who reviewed various agent-based models relevant to

host-pathogen systems, and noted limitations and challenges of agent-based models.

This research approached modeling only after deployment of two prototypes (one

abandoned, given the known accelerometer deficiencies). The modeling e↵ort pointed

to refining the Java-based manipulation of multiple incoming signals. The develop

ment, in this research, of the Java programming (for the Android) and the MatLab

programming (for ABM simulation) went hand-in-hand, the preferred approach sug

gested by Bauer, et al. who posit that modelers should quantitatively validate the

results of their simulations with independent experiments or with reports in the lit

erature.

Norths work on a team at the University of Chicago, lead directly to the

development of the Repast modeling toolkit, which facilitate modeling and simula

tion [44]. Getchell [45] reviewed theory and practice of agent-based modeling and

evaluated toolkits, including RepastPy, Repast Symphony, Breve and described his

experience with these programs to develop increasingly sophisticated ABMs. Noted

was a greater-than-anticipated learning curve in using Repast Simphony, although

the author determined it was the best for network and grid models with visualization

of non-spatial temporal data. The author concluded that RepastPy was the best

for prototyping of network or grid models. This modeling and simulation was done

using MatLab. It is designed to handle the mathematics associated with an extensive

grid-based representation. In 2009, the article “Tools of the Trade” by Nikolai [46]

cited MatLab among the fifty-three programs available for modeling and simulation.

27

MatLab’s subspecialty is considered matrix-based math, computation and computer

simulation.

“MatLab is a high-level language that includes matrix-based data struc

tures, its own internal data types, an extensive catalog of functions, an en

vironment in which to develop your own functions and scripts, the ability

to import and export to many types of data files, object-oriented program

ming capabilities, and interfaces to external technologies such as COM,

Java, programs written in C and Fortran, and serial port devices.”

In preparation for this review, the work of Brian Heath [47] was reviewed.

Heath reviewed 279 articles in the literature; of interest, he diagrammed a melding of

best features to serve as the medium between the real world system and the simulation

model, a technique he called CM4S. His case study involved naval warfare (WWII)

in the Bay of Biscay, featuring anti-submarine warfare. In distinction, however, the

preferred approach for the development of any computer application is the deployment

of the prototype in the field, with modeling and simulation as the discipline to improve

real world results rather than use of a medium as the authors research suggests.

An example of this preferred approach, is the simulation designed by Zhao

and Li [15] which involved agent-based modeling, path-planning and driver behavior

for a tra�c simulation study. Typically, each agent in the prototype was bound by a

number of behavioral rules; memory, learning and adaptation modules were resourced

by the agents; deficiencies such as limited memory were included. In general, both the

route planning process and driving process were simulated which allowed the modelers

to create agents who behave in realistic fashion, even if the shortest path was not

their choice. Zhao’s team demonstrated that coherence with the failings of human

behavior, at least as to modeling path-planning, is a measure of the model’s success;

the enhancement which the team o↵ered drivers took into account known human

tendencies expressed in sometimes irrational behavior in the driving experience.

28

2.3.2 Simulation

Discrete event system specification (DEVS) was introduced by Bernard Zeigler

in the early 1970’s [48]. DEVS is a formal specification over discrete time events that

is both modular and hierarchical. In the context of this research, the atomic model

is used. The atomic model has inputs and output with transitional states linking

them. The advantages of making DEVS’s specifications explicit are explained more

fully in the methodology. In brief, from the modeler’s point of view DEVS permits

the modeling e↵ort to more closely mirror the thoughtprocess of the researcher. This

is accomplished by dividing research into logical phases. Time is not ignored; it is

accumulated into the states the DEVS specifications call for.

DEVS also enables more conservative use of computer resources, as events are

logged by changes in state instead of time. This allows an agent to be tracked in

more detail and stochastic events programmed into the code.

The formal model of DEVS combined with Z formalism was proposed by

Traore [49]. The combined formalisms enabled rigorous analysis of models and their

properties. A study of urban bus transport was introduced. The author combined this

one-to-one linking to determine a formal analysis using the newly minted Z/EVES.

This demonstrated that any agent-based model meeting minimal formal requirements

can be linked to a discrete event model. According to Onggo [50] the advantage of

this approach is the modeler’s do not need to change their modeling paradigm.

A case study modeled fishing activities complete with a harbor and fixed har

vest zones, replicating the real-life dense management of o↵-shore fisheries. The model

was translated into DEVS specifications; in some detail, Duboz et al. [51] investigated

a multi-agent simulation as the agents paths were traced as discrete events dividing

known states, rather than by exhaustion of time-steps through virtual grids.

Writing a JAVA application for the Nexus smart-phone enabled this mobile

device to fuse di↵erent inputs to enhance pedestrian navigation. A formal demon

stration of the benefits of exploiting DEVS specifications appears in Gianni [52]. The

29

opportunity to call for packaged code via the Java Database Engine (JADE) was

disciplined “by a formulation of DEVS in terms of a multi-agent simulation in terms

of a software [the team named] simJADE.” The framework was used to simulate a

variety of emergency scenarios. The authors tested and validated their design through

repeated simulations.

Preparatory research for navigation simulations in MatLab has been explored

in the agricultural context. Bochtis et al. [53] converted a topological map to a two-

dimensional grid on which the defined states (i.e. obstacle, start state, free or goal

state) could be mapped. The path-planning occurred by using a graph search algo

rithm to find the shortest path. The researchers performed simulations of automated

path-planning. Although the technology was developed for agriculture, and specifi

cally seed and harvest machinery, the exploitation of a topological resource (in this

case a map of the Purdue University campus) is viable.

The work of Usher and Strawderman [54], investigated states. Pedestrian

behavior was selected based on a literature review and narrowed down to collision

avoidance, changes in speed and trajectory, passing strategies and distance between

objects. The simulation was found to be comparable to the empirical experiment for

displaying navigation and pedestrian behaviors. The programming in C++ yielded

a model rather than an enhanced navigation tool.

Although the work by Wei et al. [55] was not useful for the current project,

the ideas were interesting enough for inclusion toward future work. The authors

created a framework for hybrid modeling, in e↵ect a fusion of models. The goal

was to combine various simulation models into a single model capable of complex

dynamics. The authors combined integrated agent-based models of di↵erent scope

and scale: computational microscopic model for individual pedestrians; macroscopic

model for crowd movement, and an agent-based model for vehicles on the road. The

models were connected through both direct and indirect data and event flows. The

infrastructure was validated through experimentation and will allow future research

to combine many types and scales of scenarios.

30

2.3.3 Discussion of Modeling and Simulation

Like previous background topics, modeling and simulation is a broad topic.

The review was bound by specific, relevant and recent works. The simulation section

was limited to works in the area of discrete-event simulation (DEVS) and pedes

trian simulations. Modeling was constrained to agent-based modeling for a variety of

purposes. A summary can be seen in Table: 2.4.

Table 2.4: Table summarizing Modeling and Simulation

Research Outcome Research Methods Author

Simulating pedestrian navigation

with human behavior

Pedestrian navigation while ac

counting for collision avoidance,

change in speed or trajectory, pass

ing and distance between objects

[54]

Multi-agent model combining multi

ple formalisms

Generate DEVS model, Combine

with other DEVS models, Create lo

calization grid as a cell-DEVS

[51]

Path-planning using a discrete tran

sition graph and graph search algo

rithm

Map generation - convert topological

map to 2D grid cell, Path-planning

use graph algorithm to find shortest

path

[53]

Fusion of models for complex simu

lations

Implement infrastructure to com

bine models. Validate through ex

perimentation

[53]

Framework for agent-based DEVS

for emergency simulations

Create/extend a framework for dis

aster and emergency prepareedness.

Validate through repeated simula

tions

[52]

Continued on next page

31

Table 2.4: (Continued) Table summarizing Modeling and

Simulation

Research Outcome Research Methods Author

Agent-based model for simulation of

driver behavior

Create model with rules about mem

ory, tra�c info, character, route

planning, and driving. Navigation:

Dijkstra

[15]

Review of ABM Review ABM, note limitations and

challenges, suggest verification ap

proaches

[43]

Review of theory and practice of

ABM

Evaluate existing ABM toolkits,

RepastPy, Simphony, and Breve

[45]

Introduce and perform ABM as a

simulation approach

Identify data and variables. Define

and implement a model. Perform

simulation. Interpret and analyze

the results

[42]

Historical review of ABM and appli

cability to complex system

Conduct lit review and evaluate re

sults. Provide historical and philo

sophical review of ABM

[47]

Compare ABM to mathematical

equations

Determine the appropriate situation

for ABM v mathematical modeling

[40]

2.4 Complex Systems

Research in multi-agent and system-of-systems has, relevant to this research,

focused on allocating the various navigation capacities and responsibilities between

human navigators needing an enhanced experience and a number of mediating agents

who acquire information, manipulate it, and supply the enhancements needed or

desired by the human navigators. A variety of theoretical and practical challenges

mark the research in this area, as mediating agents are defined and deployed.

32

2.4.1 Multi-agent System

Multi-agent modeling challenges the investigator to move beyond defining

and launching models to simulate human navigators with such deficits as old age,

disabilities, confined physical environment, etc. The architecture by Falco et al.

[56] includes specialized agents responsible for path-planning, path-building, user-

orientating, tracking user-position and locating the user on the map. The incoming

signals are manipulated and broadcast to the navigators according to their precise

needs, given their current state. The authors suggested a range of means by which

communication to the navigators could be achieved; however, the navigators, reduced

to a role, makes the system too disconnected from the navigator’s own needs.

Mediating agents have been explored, one trajectory for the research in the

last decade. The navigator of an intelligent wheelchair would be able to select the

type of control it should use to allow the user to navigate more easily, precisely, and

safely. Y. Morre and A. Pruski [57] included functionality by allowing the system to

record previous routes traveled to give the agents intelligent choices based on a hidden

Markov Model and tuning parameters. If a route was recognized, the system could

suggest the next move based on prior performance. Avoidance agents, wall-following

agents, right- and left-turning agents, etc., were operational for limited trials in the

wheelchair itself. The agents were modeled in multi-agent simulations before field

work began.

The background that preceded these two instances of research exploiting multi-

agent modeling, as applied in the field, is reviewed. A multi-agent system is typically

composed of some number of multiple, intelligent agents as consumers of computing

resources. Typical characteristics of the agents in the system are autonomy, awareness

of surroundings limited to a defined purview, and decentralization of computing power

[58].

The opportunity to endow agents with intelligent capacity has attracted no

table theoretical and practical research e↵orts. The potential o↵ered by a division

33

of labor among agents suggests that, from a modeling point of view, any number of

intelligent, non-human agents may be assigned targeted roles and the ability to com

municate; that is to learn, remember and adapt to the significance of information.

Additionally, the agents are able to provide information to others so that each agent

has more complete information.

Russell and Norvigs seminal work, “Artificial Intelligence: A Modern Ap

proach”, now on its third version, o↵ered a comprehensive review of the theory and

practice of designing and deploying artificial intelligence in task management. “A

truly autonomous intelligent agent should be able to operate successfully in a wide

variety of environments, given su�cient time to adapt” [59]. The goals of multi-agent

systems were detailed as accessibility, determinism, dynamics, discreteness, episodic

ity and dimensionality; each of these goals are considered in both the Java program

ming for the Nexus and the MatLab programming for the various simulations, as

explained here. In this regard, the work of Gerhard Weiss, who edited “Multi-Agent

Systems, A modern approach to distributed artificial intelligence”, is relevant [60].

The paper by Tao and Huang [61] reported on integrating an innovative envi

ronmental information sensing technology with multi-agent systems, to enhance the

ability of tra�c simulation systems. Along the way they developed a tra�c simulation

system titled JADE, an agent-based framework in Java.

A methodological approach for the developer was presented by Abdelaziz,

Elammari and Branki, Multi-Agent System Development (MASD) methodology [62].

A virtual car rental operation illustrated the point-by-point construction of a multi-

agent system. The team focused on a design methodology to assist multi-agent system

designers through software development life-cycle, from system requirements through

working code.

The principal strengths of the methodology was based on three important

phases: concepts, models, and process. MASD provided extensive guidance for the

process of developing and communicating design within a group. The traceability

of the design, as each step progressed, allowed the developer to be satisfied that the

34

design was “justified and validated by the methodology [62]. This is overly optimistic,

given the realities of a system that functions as a human computer interface on one

hand, and models the view in a simulation of the real environment.

Code-writing is work-in-progress: what disciplines the developer is the real-

time experience of transition from one organizational perspective to the other and

back again. In virtually all cases, trial and error will trump elaborate methodology.

Nevertheless it is worthwhile, for a developer to know that some theoretical attention

is being given to an organized process.

The analysis of Bernon et al. [63] was more practical. ADELFE o↵ered the de

veloper guidance. Described as a multi-agent oriented methodology suited to adaptive

multi-agent systems, it is better seen as an editor which promotes best practices in

achieving successful interaction among agents. The team illustrated the methodology

in a case study of a timetable design.

The paper by An et al. [64] presented the design and implementation of nego

tiation agents that vied for acquisition of finite resources. The agents that negotiated

did not know the reserve price of each resource and were allowed to de-commit from

existing agreements. Their experimental results show it improved agent performance

and achieved better results.

This idea has immediate application as, even if finances are deemed unlimited,

resources are always insu�cient to supply all the information that human and intel

ligent agents need. It is more useful to calculate virtual costs that agents pay when

they drift o↵ course, given path-planning as presented in topological format. In the

case of this research, the negotiation occurs in the modeling as it assumes that finite

resources require negotiation by the developer on behalf of the agents simulated.

As the discussion moves to the theoretical aspects of developing multi-agent

systems, there is a need to review agents both in-field and via modeling. Multi-agent

systems can be complex and elaborate. It is useful to view these agents as partici

pants in an organization and, at that level of abstraction, to examine transition in the

organization itself. Matson [65] distinguishes between an initial and reorganizational

35

processes. The research shows it is computationally better to begin with a small

organization and grow it, reorganizing many times, rather than initially organize a

very large organization in a single process. Follow-on research “Transition Process

Distinction in Multi-Agent Organization”, points the way to reorganizational chal

lenges such as the owner of a physical environment as an agent [66]. Including the

owner obliges the system designer (now a system-of-systems designer) to ask if the

“set of available agents can satisfy the set of goals through playing the set of roles”.

The fact that this research will pursue enhancement of the navigation expe

rience by deploying the resources of intelligent agents forces the examination of the

organization. Is a new participant or agent, whose interaction is modeled, able to fo

cus on mistake and cost avoidance over successful deployment of a given technology.

It is necessary for the modeler to show the agents as intelligent agents.

Organizational analysis, as a resource for developers, was presented by Argente

et al. [67]; the team proposed an agent organization model based on four concepts:

organizational unit, service, environment, and norm. The main features of an orga

nization were characterized by structure, functionality, dynamics, environment and

norms. The utility of the research suggests that goals, projected onto an organi

zational agent, are a means of focusing the attention of the developer, for whom

transitional states of a single agent-in-motion are not the total goal of the research

e↵ort.

Wood and DeLoach, [68] developed a multi-agent system methodology (MaSE)

based on the idea of agent classes and the communication between them. The method

ology was an extension of object-oriented environment development. The method was

broken into seven steps along a logical progression. In the context of this research a

system-of-systems may be substituted for a single system, given that when moving

from Java to MatLab, each e↵ort is assignable to a di↵erent and, possibly discon

nected, system.

The seven steps of the progression were:

• capturing goals:

36

(a) the programmer’s experience of identifying the transition states for the

navigator,

(b) the navigator’s experience of visualizing the environment via the en

hanced display of Google Maps, and

(c) the programmer’s experience of simulating the agent’s navigation expe

rience;

•	 applying use cases: accomplished using the table of characteristics and relying

on DEVS formal specifications;

•	 refining roles: the principal role assigned in the field was the navigator; in

simulation the various intelligent agents were assigned roles, which include path-

planning and information updating;

•	 creating agent classes: as MatLab is not an object-oriented language per-se,

class definitions were developed and deployed in Java;

•	 constructing conversations: the research models conversations between agents

in path-planning, updating the agent position and updating the navigation state

(in MatLab);

•	 assembling agent classes: generating the agents and their behavior; and

•	 system design: the initial and transitional states of the agent as navigator were

defined, as explained in the methodology section of DEVS formalism.

There were a number of goals of this methodology; support for automatic code

generation using a MaSE tool; creation of a proven methodology; and guide devel

opment through design and implementation. A limitation of the method was that

only one-to-one agent-interactions was supported. This is overcome in the research

by using the Android as a platform. It processes the various intelligent agent and

navigator inputs and organizes responses to them in real-time and on the fly.

37

There is a need to exploit multiple and overlapping communication paths; to

address this need, Oyenan and DeLoach [69], aimed to implement an information

system that could adjust its processing algorithms to provide required information at

various levels of e�ciency.

In this regard, a simulation of multi-agents that exchange information, in

the work by Silva et al., [70], is relevant to future research which will seek to ex

ploit learning by intelligent agents of environmental hazards and conditions generally.

Path-planning based on Dijkstra’s algorithm was coupled with information sharing;

path updating based on dynamic information is to be exchanged among the agents.

To address limitations in multi-agent path-planning, Wang et al. [71] intro

duced MAPP, a tractable algorithm for multi-agent path-planning on grid maps.

MAPP has low polynomial complexity in time, space, and solution quality. Using

A* as an alternative to Dijkstra, the team created a tractable class of multi-agent

path-planning problems, of which scalability and scarce computer resources stand out

as deserving the most attention.

The authors believed this to be the first study that formalizes restrictions to

maximize path-planning output while guarding against over-use of finite computer

resources. This is necessarily a point to consider as the concept of public ‘shared

space comes under evaluation; multiple navigators each having access to multiple and

available intelligent agents will present real-time issues in accessing and deploying

computer resources.

A summary of multi-agent systems is included in Table: 2.5

Table 2.5: Characteristics of Multi-agent Systems

Research Outcome Research Methods Author

Multi-agent system

path-planning

for dynamic Navigation performed by Dijkstra.

Agents exchange info re dynamic en

vironment changes for replanning

[70]

Continued on next page

38

Table 2.5: (Continued) Characteristics of Multi-agent

Systems

Research Outcome Research Methods Author

Methodology for multi-agent system

engineering.

Capture goals, apply use cases, re

fining roles, create agent classes,

construct conversations, assembling

agent classes, system design

[68]

Navigation assistance for the elderly Create agents; path-planning, path

building, user orientating, tracking

and localization

[56]

Intelligent wheelchair navigation as

sistance for the elderly

Multi-agent system, intelligent

agents, hidden Markov Model

and tuning parameters for vector

recognition

[57]

Methodology for multi-agent system

development

Develop multi-agent system devel

opment methodology. Test with

software development life-cycle, De

velop concept, model and process

[62]

Negotiation agents compete for mul

tiple resources

Design agents. Implement agents.

Experimental validation

[64]

Methodology for engineering of

adaptive multi-agent systems

Define/characterize environment of

system. Analyze technology and

identify agents

[63]

Use agents to control sensor/robotic

systems

Integrate agent capabilities with

MAS and physical systems

[65]

Automate the development of an

AIS

Implement AIS, automate the pro

cess and reconfigure processing algo

rithms

[69]

Continued on next page

39

Table 2.5: (Continued) Characteristics of Multi-agent

Systems

Research Outcome Research Methods Author

Tra�c simulation with MAS Integrate environmental info with

MAS. Implement tra�c simulation

[61]

MAS path-planning algorithm Formalize MAS path-planning algo

rithm. Prove low polynomial com

plexity in time, space and quality

[71]

MAS to exchange info Implement Dijkstra. Exchange dy

namic info between agents

[70]

2.4.2 System-of-Systems

System-of-systems (SoS) is an emerging field: the developer is presented with

methodologies that study independent systems with unique attributes, which become

complex systems when they work together.

In the work by DeLaurentis and Callaway [72], a lexicon is proposed that

divides an SoS into both categories and levels.

“[A]s good navigating is predicated on the ability to understand and use

maps, good decision-making (and problem solving) is predicated on first

understanding the problem structure itself and then being able to com

municate with others about it.”

A formal presentation of categories and levels is presented by DeLaurentis and Call

away and, as modified, appears in Chapter 4, under P3.

The two primary traits, evolutionary and emergent behavior, present signifi

cant insights into the research as it arrives at the current phase and for future devel

opment. Drawing on his previous work and using transportation as the illustration

40

Figure 2.4.: System-of-Systems Concept

topic, DeLaurentis [73] introduced the problems described as system-of-systems and

the primary traits noted above.

The problems require articulation, which is the point DeLaurentis made. The

code-writing must render path-planning or updating functionalities, considered as in

telligent agents, capable of learning and evolving behavior. However, as the code nears

the point of delivering this functionality, attention to emergent behavior requires that

the user’s response to the information be taken into account. System-of-systems ac

commodates the need for the developer to take each agent’s perspective into account,

even when moving between field testing and simulation.

Within the model, agents make decisions which a↵ect not only that agent, but

potentially many other agents. In Vander Schaaf et al. [74], the agent moved through

states “that described its status and logic to direct its transition to new state. It is

the user’s experience that was the focus of the e↵ort; many of the papers cited depart

from this. Thus,

41

“within the logical structure, an agent has desires and goals that provide

the agents objectives and beliefs, knowledge, and information to determine

decisions/actions the agent will make to pursue these objectives [74].

In DeLaurentis and Crossleys work [75] a three-axis taxonomy is proposed to

hierarchically categorize and clarify SoS design. The work is proposed to highlight the

importance of interactions and dependencies between the systems. This introduces

the work of Jamshidi who introduced the notion of system-of-systems engineering

(SoSE), which he described as an emerging field with a large vacuum of knowledge [76].

The author o↵ered a list of the most prevalent challenges in dealing with SoS’s

in the environment: basic definition; theory; management; and implementation. As

a brand new field, both authors, (DeLaurentis and Jamshidi), o↵ered their insights

into conceptual development more than code-writing.

Jamshidi stated that integration of the systems is the key to a successful SoS,

and this integration was achieved through optimal communication and interactions

among the systems. The paper also reviewed key issues such as architecture, mod

eling, simulation, identification, emergence, standards, net-centricity, and control in

an attempt to cover open questions of SoS and SoSE.

Modeling an SoS in MatLab requires an attention to system interaction that is

qualitatively di↵erent from modeling a single agent-based system or a system which

o↵ers enhanced navigation to a number of similar agents.

An SoS modeling approach appears in work by Mahulkar et al. [77], illustrated

via a Navy Warfighter. To promote “enhanced health and war-fighter performance

both afloat and ashore, the SoS envisioned by the O�ce of Naval Resources seeks to

harness “new technologies [to achieve] enhanced war-fighter and system performance

with reduced personnel costs as a result of the right information being provided to

the right people with the right skills at the right time in the right jobs.

SoS engineering (SoSE) disregards computing power as a scarce resource and

focuses on the attention of the warfighter and support personnel (in Jamshidi [76]) as

a resource to be marshaled and guarded from distractions. The SoS approach, using

42

agent-based modeling to simulate involvement of a ship’s crew conducting routine

functions, is in-line with this research.

The results demonstrated an increase in machine availability due to implemen

tation of intelligent maintenance systems. In the same way, the MatLab programming

supports both agent-based modeling to achieve enhanced navigation, with the SoS

based restriction that the “right information [must be] being provided to the right

people [and computer functionalities] at the right time.

In conclusion, according to DeLaurentis, Crossley and Mane [2] “design is

the process of developing a system to achieve a particular goal while managing con

straints.”

2.4.3 Discussion of Complex Systems

Complex systems in this research are used in the context of multi-agent sys

tems or system-of-systems. The systems are organized and form a higher functioning

system when working together as designed. This allows for the possibility of evolving

and emergent behavior.

Table 2.6: Characteristics of System-of-Systems

Research Outcome Research Methods Author

Describe problems of transportation

as an SoS

Develop method for transportation

SoS. Identify traits and emergent be

havior

[73]

Categorization of SoS design Create taxonomy of SoS. Categorize

SoS design

[75]

Develop an SoS engineering method

ology

Describe holes in the research. Iden

tify possible solutions. Describe the

methodology

[76]

Continued on next page

43

Table 2.6: (Continued) Characteristics of System-of-

Systems

Research Outcome Research Methods Author

Modeling approach to aspects of a

navy war fighter

Address problems in SoS approach.

Create ABM for simulation. Ana

lyze results

[77]

Extend computational exploratory

model

Improve model. Di↵erentiate and

quantify data results. Analyze alter

natives

[78]

2.5 Path-Planning

In any navigation application or simulation, the implementation of path-

planning determines a route through a physical environment. Typically, algorithms

are developed and ranked based on goals and computational complexity. In this re

search, navigation is achieved by creating a graph to represent a map. The graph is

represented as a two-dimensional array of values between one and ten. These values

correspond to the cost of moving through the node. Areas that are not traversable

are set to infinity. This cost ranking allows the influence of the path-planning results

by setting better routes to a lower cost. One of the key features of this research is

the assignment of costs of navigation choices.

Ozkil, et al., [79] presented an application that generated and used a hybrid

map to perform indoor navigation to enhance robotic movement in a defined and

pre-mapped space. The method of the work was two-pronged:

1. map generation and navigation: a local map was generated as an occupancy grid

metric map that represented smaller indoor areas. A global map was created as

a topographical map using nodes and edges to abstract the areas between the

local maps.

44

2.	 navigation occurred once the start and end point were known, and was per

formed using A* algorithm. The path was stored as a sequence of nodes to be

followed by the robots.

Generating a custom algorithm for graphing paths from wireless signals supple

mented by an acoustic beacon allowed MacMillan et al. [80] to measure informational

entropy with movements of the consumer robot, the Roomba. A known trouble area

identified was the quality of sensors present in o↵-the-shelf hardware and the resulting

errors due to the high noise levels. Deployment of path-planning algorithms (Dijk

stra’s algorithm and K-Nearest Neighbor) were not able to overcome these hurdles.

2.5.1 Dijkstra

A 1959 paper written by Edgser Dijkstra identified two problems in connection

with graphs. He wrote the paper while associated with the Mathematics Center at

Amsterdam, and it supplied an elegant method for finding the single-source shortest

path when moving through two-dimensional space. The algorithm for which he is

known, functions as a depth-first search algorithm to find the shortest paths from a

single starting node to a destination node in a graph [81]. It is explored formally in

Chapter 4.

This research has been coded in MatLab and is able to call for a choice of

mathematical functions, including both Dijsktra and its next-generation competitor

A*, presented in a 1968 publication [82]. The use of competing algorithms in simu

lating path-planning of a user in two-dimensional space exploits the computing power

of MatLab, given the conservation of inputs that the DEVS-based specifications for

transitional states guarantees the programmer.

In the work by Yuksel and Sezgin [83], three path-planning algorithms (in

cluding Dijkstra) are implemented and compared. The results showed similar com

putation time and complexity between A* and Dijkstra. The A* algorithm was faster

and shorter, but relied more on the input heuristic. When the cost of deviation was

45

relatively modest, A* was an acceptable choice. In a study by Rampant [84], three

algorithms were compared: Dijkstra, A* and Ant Colony Optimization. The authors

concluded that both Dijkstra and A* algorithms were e�cient, but the author be

lieved Dijkstra’s performance would su↵er on very large or dense graphs. However,

it was still a good choice, as A* was susceptible to the heuristic selected; reliance on

user input in this regard a↵ected both error and delay in computation.

In practical terms, the user wants to know both the fastest and the shortest

route, in an unfamiliar urban environment. The research examines the user’s potential

insu�cient initial knowledge to secure the promised benefit of A* over Dijkstra.

The paper presented by Wu et al. [85] described path-planning and algorithms

for use in indoor navigation for the blind and visually impaired in unfamiliar indoor

environments. The path-planning algorithm used an intelligent map and a relational

data structure called a Cactus Tree, combined with a path-planning algorithm (both

A* and Dijkstra were used). The approach was to follow paths of convergence and

reduce the required accuracy of the underlying positioning and tracking system. The

results showed that the Dijkstra algorithm was suitable for path-planning in a navi

gational application, just as the current research has concluded.

Dijkstra’s algorithm is still employed, which attests to its utility: an au

tonomous system was created by Zhou and Lin [86] which allowed a mobile robot

to localize, path-plan and avoid obstacles during movement. The Dijkstra algorithm

was implemented for path-planning. The results were validated in both simulation

and real world experiments, without, however, the investigator disciplining results via

deployment of two competing algorithms.

On the other hand, exploitation of the concept underlying Edgser Dijkstra’s

work is exemplified in Sun and Li [87], who generated a map using a graph-based grid

model over a floor-plan. This allowed the determination of immovable objects (such

as walls) and the ability to assign a metric for cost routing. Secondly, navigation was

performed using Dijkstra’s search algorithm.

46

The notion of assigning costs to navigation is a fundamental premise of all

navigation, although it is not always discussed in the literature as a stand-alone

dimension for evaluating results. Humans are complex, and their goal in navigation

is not aways the fastest route. The challenge for developers is to enhance, not enforce

navigation. Users traveling in a dense urban environment may deviate from the

intended goal for any variety of reasons.

2.5.2 Nearest Neighbor

Nearest Neighbor (NN) is conceived as the equivalent of ‘interpolation of miss

ing values in one-space.’ Belur Dasarathy [88] developed NN as a computer challenge:

given a collection of data points and a query point, find the data point closest to the

query point (i.e. it’s nearest neighbor).

This is particularly useful in mapping or graphing applications needing to

determine the nearest point given the current position. The literature has given rise

to the nearest-neighbor search algorithm (NNS), a greedy algorithm for finding the

closest data point. A more formal treatment will be provided in a later section. For

present purposes, the paper by Almeida and Gűting [89] proposed a storage scheme to

support the Dijkstra algorithm with k-Nearest Neighbor supplementing information.

The results were analyzed quantitatively to show that the proposed data structure

is more e�cient than previous choices. Beyer et al. [90] implemented the Nearest

Neighbor algorithm on various data sets to illustrate that as dimensionality increases,

this algorithm is often not the most e�cient. This is another instance of mathematics

intruding into the opportunities presented by coding and simulating.

2.5.3 Discussion on Path-Planning

Often, declarations of new solutions, are simply improvements to ideas previ

ously advanced. The Dijkstra algorithm, for example, has not been replaced outright,

although tinkering has improved it as an operational tool. Advances by the various

47

communities who exploit this algorithm, are often limited to the increase in compu

tation and run-time in a single application, or overcoming unknowns in variables or

challenges. For this reason the review has been limited to research on Dijkstra or

Nearest Neighbor algorithms, as this is pertinent to the project.

Table 2.7: Table summarizing path-planning

Research Outcome Research Methods Author

Hybrid map for indoor navigation,

local occupancy grid and topo global

map

Map Generation: metric map, anno

tation, topo map

[79]

Indoor navigation for the blind Path-planning-Dijkstra and A*.

Cactus-tree data structure

[85]

Grid graph-based model for route

analysis

Map Generation-grid graph overlay

floor-plan. Navigation: Dijkstra

[87]

E�cient shortest path processing Creating e�cient data structure.

Calculate shortest path with random

sampling and graph Voronoi duals

[91]

Comparing single-source shortest

path algorithms

Implementation and Measurement

of A*, Dijkstra and Breadth-First

[83]

Comparing single-source shortest

path algorithms

Implementation and Measurement

of A*, Dijkstra, Ant Colony Opti

mization

[84]

Use present wireless information to

create a path for a mobile robot

Generate algorithm for map cre

ation. Implement prototype. Vali

date results and discuss errors

[80]

Allow autonomous navigation by a

mobile robot

Localize the robot, Path-planing us

ing Dijkstra, Avoid obstacles with

laser sensor

[86]

Improved Dijkstra algorithm with k-

Nearest Neighbor

Implement k-NN and improve Dijk

stra, Measure results

[89]

Continued on next page

48

Table 2.7: (Continued) Table summarizing path-planning

Research Outcome Research Methods Author

Illustrate when Nearest Neighbor al

gorithm is ine�cient

Measure e�ciency of Nearest Neigh

bor as dimensionality increases

[90]

2.6 Contribution and Summary

The contribution of the research is in the study of the mechanics of an agent-

based system of navigation in a complex environment. The details of switching be

tween individual navigation systems and transport modes is examined specifically.

This study is multidisciplinary in nature. To consider, implement and formal

ize a model and application prototype, a broad overview of relevant literature was

reviewed for this research.

There is a steep learning curve in current research that can be seen as a

barrier to further advances. The phrase used is ‘jack of all trades, master of none’.

For example, there are 73 software platforms listed in Wikipedia for agent-based

modeling [92]. Of these, there are 37 di↵erent language platforms that these are built

upon.

Doing a search for ‘simulation software’ returns pages for simulation software,

discrete event simulation software, dynamic systems, etc. From these pages, there are

60 di↵erent platforms. This leaves much of the development choice open to subjective

criteria such as: what is available; what is familiar; what is required. Although some

topics transcend the implementation (Dijkstra’s algorithm), others are specific to a

language (e.g. Matlab is specific to numerical computations, the name stands for

Matrix Laboratory). It would be di�cult to perform some of the specific functions

in Matlab in a di↵erent environment. Often, papers will not draw from concepts or

environmental techniques outside of the development platform. Exceptions indicate

that borrowings are restricted to the conceptual level.

49

These barriers are especially evident when the mathematical foundations of

a new algorithm or extension of an existing algorithm is deployed. The authors’

presentation does not direct the reader to how the formula will advance the reader’s

software, but rather the concept generically. Platform implementation is limited to

the authors’ choice.

No paper presented any translation of technical advances between the major

environments or technologies. If intrigued by an application in Java for modeling

agents in a given real-time environment, the challenge is to work through a di↵erent

environment to replicate, if possible, the advance presented in the author’s choice of

software.

While long accepted with hardware that the machinery in use dictates the

user’s options, it is a new development in the field of agent-based modeling and

application development. The barriers render even literature review problematic.

There is no way for an application developer to read thousands, let alone, hundreds

of thousands of papers that might yield useful queries. With every author eager

to demonstrate that the client’s needs have been addressed with some advance in

hardware and/or software, identifying unfruitful labor or di�culties requiring further

research are subordinated by the author’s desire for self-promotion. In short, the

literature suggests a multiplicity of success-stories and only implicitly identifies basic

research required into unknown areas. A summary of the category of each paper is

included in Table 2.8.

A literature review should be able to identify specific trends in a problem area

or application. Real-time solutions require a deep understanding of the subject and

cooperation between researchers. The fields are simply too broad and cover too many

interleaved ideas, to have a simple generic list. The solution is often predicated on

existing knowledge of the researcher and shaped by personal experiences and famil

iarity.

50

Table 2.8: Summary of Paper Categories

Localization & Navigation [56] [57] [54] [13] [51] [53] [93]

... RFID [94] [12] [13] [16] [20] [22] [23] [25] [24] [30] [11] [19]

[95] [96] [18] [97]

... GPS [28]

... Accelerometer [27] [28] [29] [32] [33] [34] [98] [99] [34] [100]

... Wifi [11] [80]

... Other [12] [19] [20] [21] [25] [30] [31] [34]

... Obstacle avoidance [21] [54] [80]

Path-planning [70] [101] [56] [71] [61] [53] [13] [85] [102] [103] [104]

[87] [91] [86] [89] [90] [105] [106] [107] [108]

... Nearest Neighbor [16] [89] [90]

... Dijkstra [22] [13] [101] [70] [85] [87] [91] [86] [89] [90]

... Other [56] [71] [85] [83] [84]

... Map generation [16] [22] [23] [25] [26] [51] [53] [79] [87] [80]

... Methodology [62] [68] [63] [109] [110] [111]

Algorithm [11] [12] [13] [21] [24] [30] [31] [83] [84] [80]

Mobile Phone [28] [29] [32] [10] [4] [5] [112] [6]

Simulation [61]

... Navigation [54] [13] [51] [53]

... Formalism [51] [42]

... Graph Theory [51] [53] [87] [91] [79]

... DEVS [51] [52] [42]

... ABM [54] [51] [55] [52] [13] [43] [45] [42] [47] [40] [113]

[114] [115] [116] [74]

... Agents [64] [57] [117] [118] [65] [66] [70] [68] [56] [69] [61]

SoS [72] [75] [119] [120] [2] [76] [121] [77] [122] [123] [78]

[30] [124] [125]

51

CHAPTER 3. PATH-PLANNING AND NAVIGATION

This chapter details experiments for each logical phase of the research, from

conceptual development through experimental phases. The first section discusses the

investigation e↵ort using a consumers hand-held device evaluated in the field, the

Samsung Nexus S. The next section involved testing the embedded sensors on the

iPhone and finally, the modeling of enhanced navigation through a MatLab simu

lation. Field-testing via proof-of-concept preceded the simulations as sensors and

functionality were explored.

As mobile devices become universal, increased functionality on the devices

ensues. Leveraging the characteristics of a smart-phone for new research, allows

greater access of the development to more users and limits the cost of entry for any

results. This research explores path-planning and navigation on both real devices and

through simulation.

During this research a sequence of models and prototypes were implemented

(designated P
I - P

III

). The prototypes denote the individual systems developed

(e.g. the Nexus S with AOS, the iPhone 4 with iOS, and the MatLab models). The

progression of complexity and ideas is presented in this chapter.

P
I was a proof-of-concept to study path-planning and navigation as well as

the embedded sensors on a smart-phone. P
I was developed on the Samsung Nexus S

/ Android operating system for several reasons:

1.	 the Android operating system contained a built-in NFC compliant RFID reader

and writer;

2.	 accessibility of geo-aware overlays using Google Earth;

3.	 the Android SDK contained functionality for Google maps, which allowed access

to existing maps and path-planning algorithms; and

52

4.	 the development environment is in Java, which is widely-used and more open

than the iPhone.

P2, the second prototype, was a combination of simulation and mobile sensor

exploration. Localization using the embedded sensors of the Apple iPhone was exam

ined, as well as simulation of a multi-agent system for path-planning on a phone. The

iPhone was selected for this experiment as it contained both an embedded three-axis

accelerometer and three-axis gyroscope. The API contained appropriate function

ality and filtering to gather data from these sensors to study if the data would be

useful. Although the result of the embedded sensors on the iPhone was not a usable

solution (due to reasons discussed in later sections), it was still a useful exercise.

It allowed experimentation with the iPhone and its environment. Additionally, the

first agent-based model simulation was designed and successfully deployed based on

i-Phone acquired data.

Finally, the third prototype (P
III

) was a progressive simulation involving lo

calization, path-planning and navigation in both indoor and outdoor models. The

prototype was not developed on a mobile device, as the simulation environment al

lowed much greater range and freedom to explore variable relations and influences.

It also limited the noise involved in the system which could overwhelm the data.

To recap: two physical and one virtual prototype were deployed; the physical

prototypes involved the Samsung Nexus S and a Java-based application; other re

sults were obtained from the Apple i-Phone running iOS. “Proof-of-concept is used

interchangeably with prototype in this presentation.

3.1 P
I

: Path-planning on the Samsung Nexus S

The first prototype was implemented on the Samsung Nexus-S phone. The

system coded in this research was based in Java and implemented the Android and

Google Maps frameworks. This prototype generated a system-of-systems that allowed

a user to transition autonomously between individual navigation sensors as appropri

53

ate. An example could be walking across campus using GPS and wireless systems

and then transitioning to Wifi and RFID system indoors.

Motivation: One of the overarching goals of the research was to investigate

a system of multiple navigation sensors to enhance urban navigation. To do this,

the strengths and weaknesses of various mobile platforms and embedded sensors was

explored. By field testing di↵erent combinations of hardware and software, the costs

and benefits pertinent to a solution involving a fusion of sensors would be clearer.

The system was coded in Java and implemented the Android and Google Maps frame

works. The motivation of this prototype was to generate a system-of-systems (SoS)

that allows a user to transition autonomously between individual navigation sensors

as appropriate. An example could be walking across the Purdue campus using GPS

and Wifi systems and then transitioning to Wifi and RFID systems indoors, where

GPS is often unreliable or unavailable. There are several benefits to this data fusion

approach:

•	 the ability to localize more precisely depending on location requirements;

•	 the ability to move autonomously through systems without user intervention;

and

•	 the ability to add new technology as available to improve existing system-of

systems.

3.1.1 Methodology

The methodology used in this experiment was localization and path-planning

done via the Google Map SDK. The user’s position was marked on the Google map

based on either GPS or Wifi. If an RFID tag was detected, the related floor-plan was

appropriately sized and shown over the location on the Google Map. The following

steps were taken:

54

1. Get the latitude and longitude of each buildings image for correct placement as

the overlay;

2.	 Write the correct latitude and longitude of each RFID tags placement;

3.	 Software will be developed for the Nexus S phone.

Locate current location of user;

Read the RFID location;

Calculate the size of the building;

Overlay the building on Google Map;

4.	 Update current location of user based on RFID tag.

3.1.2 Design

The system was designed with several factors in mind: ease of use; inclusion

of embedded sensors; limited external hardware or infrastructure requirements; and

a software development kit with application programming interfaces for implementa

tion.

Utilizing the features of the Nexus S smart-phone, both hardware and software

were useful to the application. The Android software has an API for Google Maps, as

well as the ability to localize using both GPS and Wifi. The phone hardware contains

built-in NFC compliant RFID reading and writing support. This allowed the addition

of passive RFID sensors to the model.

Although much of the map functionality is provided through the API, there

are a considerable number of constraints when localizing, e.g.:

1.	 Signal strength: Wifi varies in any physical environment and Purdue’s signal

strength is no exception. It is better inside some buildings than others, better

on some floors than others, and can drop o↵ in the space between building

55

leaving holes of coverage which will be addressed in the simulation phase in a

later section.

2.	 Elevation: A known constraint of GPS and Wifi is the di�culty in determining

the vertical dimension of a location. Latitude and longitude are the same no

matter how high or how low one is in that position.

Wifi can address this limitation by field testing and mapping signal strengths

and overlaps among access points. Signals are subject to interference and in a dynamic

environment, this can be problematic. This is a broad and open research question,

and is outside the scope of this experiment.

3.1.3 Implementation

The Samsung Nexus S comes with a variety of embedded sensors and on-board

chips. Those relevant to this research are a high performance, single GPS chip (ST

Ericsson GNS7560), an NFC compliant RFID controller (NXP’s PN544 NFC chip),

and a low-power Wifi chip (Broadcomm BCM4329GKUBG Wifi). Although GPS and

Wifi are common capabilities among smart-phones, an RFID tag reader and writer

is novel. For this research a passive tag (UPM Raflactac) is used.

The experimentation on the Nexus phone was a combination of localization

using GPS and Wifi, and the addition of passive RFID tags. In this experiment, the

elevation and building information was obtained form the addition of NFC compliant

passive RFID tags. NFC is a subset of passive RFID tags which uses inductive-

coupling (i.e., loosely coupled inductive circuits share power and data over a distance

of a few centimeters) [126]. NFC compliance indicates the implementation of an ISO

accepted standard [127]. The tags work in the 13.56 MHz High Frequency (HF) range,

which allows the use of coils constructed with printed ink and an EEPROM. This

lowers the cost of individual tags and supports the goal of using less or inexpensive

additional equipment. This experiment uses the NFC Data Exchange Format (NDEF)

56

specification, a common data format which supports four record types; text, URI,

smart poster and generic control.

Within this experiment, the physical environment had no permanent RFID

tags installed. The tags were programmed, temporarily placed, and tested as ex

plained below.

The model was implemented in Java through the Eclipse IDE. Development

began using a freely downloadable Android software development kit (SDK). Google

also provides an application programming interface (API) for their mapping soft

ware functionality. This allows Google map, a universally familiar format, to localize

a user through GPS or Wifi. Sensitivity parameters and provider information are

configurable within the code.

Once implementation of localization with Wifi and GPS was working, the

portion involving RFID was studied. The ability of the embedded sensor on the

Nexus to detect incoming RFID signals was utilized in the programming. This is

implemented as a Java event, which allows the system to detect ambient change in

state. In this case, an ’event’ occurs when the system detects the reading of an NFC

compliant tag. When it does, the software reads the text field information in, which

for this research stored the building and room number within the 64 kilobytes of

memory available to the tag.

Additionally, with the ability to determine elevation, a need to see more than

the gray outline of the building as provided by Google maps is necessary. The Purdue

College of Technology website has a facilities page with downloadable JPEG’s of the

Maurice G. Knoy Hall of Technology floor-plans. Overlaying the image on the Google

map allows the navigator to obtain a location inside a building.

The floor-plan obtained from the website comes in the JPEG format as 14

inches by 8.5 inches. While this provides clear imagery for the website, it is exceed

ingly large for a smart-phone display. To have functionality, the image must resize as

the user zooms in or out. Additionally, there is a point at which the zoom is too small

for the floor-plan to provide any useful information. A collaboration occurred to solve

57

the zoom issue described as follows: in addition to the correct geographic location of

the the floor-plan, the image must also be appropriately sized based on the current

size of the map. To achieve this, the position on the screen of two points with corre

sponding coordinates to the image’s top left and bottom right geo-referenced corners

was obtained. While the screen position is required for sizing the image correctly, it

also provides reference to whether the building is currently visible in the map. If not,

the image does not need resizing.

To determine the correct size for the image, a comparison (in Pixels) must be

done between the actual image size and the size of it on the screen. To compare these

values, the diagonal measure of the image must be done both for the actual image

and the place in the map of the image. Equations are shown in Eq: 3.1 and 3.2. As

this prototype was deployed on a mobile phone, the threshold value of 0.1 is selected

as the lower bound of the zoom. Anything smaller would have no purpose and lack

details.

For two points p1[x1andY1] and p2[x2andY2] the distance between them is

defined by the function:

distance(p1, p2) =
p

(x2 x1)2 + (y2 y1)2 (3.1)

The zoom function is then given by:

distance(topLeft, bottomRight)
zoom = (3.2)p

imageW idth2 + imageHeight2

The College of Technology is located in the Maurice G. Knoy Hall of Tech

nology and is shown in Fig. 3.3. The building is shown as a satellite image with the

floor-plan overlay. The improvement in this map is the ability to recognize the floor

based on RFID tag. In the experiment, the RFID tags were placed at the door to the

stairwell of the first and second floor. As a user navigated through the building and

moved up or down the stairs, a scan of an RFID tag would allow a JPEG floor-plan

overlay to switch to the appropriate floor. This allows easier navigation not only

indoors but on multiple floors and elevations as well.

58

The floorplan must be placed on the Google map in the right location, known

as georeferencing. When laying a rectangular image over the map, two locations

must be known, opposing corners of the image. To determine the location, the JPEG

image was used in Google Earth. By sizing the image appropriately to the satellite

image on Google Earth, each corner of the figure’s latitude and longitude could be

obtained to allow for the proper placement. Fig: 3.2 shows the overlay in Google

Earth of the Richard & Patricia Lawson Computer Science building in the correct

location. The Java code took the known upper left and lower right corner and placed

the image between them. The default was to set the first floor image as current. The

addition of the room number allowed the application to di↵erentiate between floors

in buildings that are more than a single story (100’s indicate the first floor, 200’s

indicate the second floor, etc.).

Figure 3.1.: LWSN floorplan overlay

If a di↵erent floor was discovered, the current floorplan overlay was replaced

with the appropriate second, third or fourth floor image set to the appropriate size.

Figure 3.4 shows a map of the Purdue University Campus. Floorplan image

overlays are included for Lawson Computer Science and Knoy Hall of Technology.

The map shows a Googlegenerated walking path (the blue line) from Lawson via

defined road to Knoy.

59

Figure 3.2.: LWSN floorplan overlay

Figure 3.3.: KNOY floorplan overlay

In addition to performing sensor localization, the system was designed to

record and display both the current user location and the provider in use. The

image in Fig:3.4 shows the path walked by the user from Lawson Computer Science

to Knoy Hall of Technology. In the actualized path, the colors changed in response to

the provider in use: red for Wifi; yellow for GPS; and purple for RFID. Additionally,

the path was not limited to only defined roads.

60

Figure 3.4.: The path on Purdue Campus between Lawson Computer Science and

KNOY

3.1.4 Results

The proposed proof of concept provided a data fusion of existing techniques

and new technologies to provide an improved navigation application. The system

was implemented on existing and publicly available devices. This limited the need for

additional or costly equipment. By using both existing devices and ISO standardized

equipment, the system is opensource and easily modifiable. The system was able to

track the user across campus and within the building as well as provide the current

floorplan based on the user’s location.

3.2 P
II

:Pathplanning on the Apple iPhone

The second prototype was created using the fourth generation iPhone and its

internal sensors. The fourth generation iPhone was one of the first smartphones to

include an essential sensor for inertial navigation: a threeaxis gyroscope. This sensor,

in addition to the threeaxis accelerometer that the previous generations contained,

made it a good candidate to study in an inertial navigation system. Using a general

publicoriented device was challenging from a sensor standpoint because of the low

61

quality of the embedded sensors. Additionally, the complexity of human movement

increased the di�culty of research in this area.

The benefit of the iPhone was that it was widespread and relatively low cost.

This narrowed the cost gap between any research results and the end-user. Addi

tionally, a multi-agent simulation was explored on the iPhone for path-planning. The

motivation of the simulation was to explore the appropriateness of an agent-based

model for mobile path-planning applications. Each agent in the system was respon

sible for a set of specialized tasks. This allowed the implementation to be easily

modified to individual needs for both ease and usability. Implementing the model as

a multi-agent framework, enhances adaptation to di↵erent goals or scenarios.

3.2.1 Methodology

For the experiment, two processes were used:

•	 (1) use of the fourth generation Apple iPhone, with the computation and record

ing information done locally; and

•	 (2) computation and logging o↵-loaded from the iPhone via UDP packets over

the local Wifi connection to a computer running LabView.

The relative projection was calculated first. To obtain useful information about

the phone’s movement, it must be expressed relative to the earth’s referential. To

do this a measure of the acceleration in the earths’ referential was needed. The

gyroscopes of the iPhone measured the attitude of the phone. Knowing the attitude,

the acceleration vectors (expressed in the referential of the phone) could be projected

(to the referential of the earth).

The theory behind inertial navigation systems is well known: accelerometers

and gyroscopes are used to measure acceleration relative to the earth. Using the

approximation that this referential was Galilean, two integration steps were used to

get the position from the acceleration.

62

Figure 3.5.: This figure shows the coordinate system attached to the iPhone in

which the accelerations are expressed

(1) Integrate the acceleration to obtain the speed:

t

Z
a
x

(t) dt = v
x

(t) v
x

(0) (3.3)
0

t

Z
a
y

(t) dt = v
y

(t) v
y

(0) (3.4)
0

t

Z
a
z

(t) dt = v
z

(t) v
z

(0) (3.5)
0

(2) Integrate the speed to calculate the position:

t

Z
v
x

(t)dt = x(t) x(0) (3.6)
0

t

Z
v
y

(t)dt = y(t) y(0) (3.7)
0

t

Z
v
z

(t)dt = z(t) z(0) (3.8)
0

In addition to the theory being well known, the issue of double integration

causing a squared error is also well known. Using sensors always includes noise.

63

Despite filtering, an error due to this noise is present. Integrating a single measure

will result in a linear drift after the first integration as seen in Eq: (3.10) and a

squared drift after the second shown in Eq: (3.11).

Definition 3.2.1 Let A
x be the value of acceleration measured along the x-axis, a

x

the real value of the acceleration and ✏ the error:

A
x

(t) = a
x

(t) + ✏ (3.9)

Z Z
A

x

(t)dt = (a
x

(t) + ✏)dt = v
x

(t) + ✏t + ↵ (3.10)

Definition 3.2.2 To simplify the equation, assign the integration constant ↵ = 0,

observe the linear drift ✏t due to the error in the measure of the acceleration. This

time a squared drift ✏t2 is observed.

ZZ Z
1 2A

x

(t)dt = (v
x

(t) + ✏t)dt = x(t) + ✏t + � (3.11)
2

Additionally, a second component implemented was a multi-agent simulation

of path-planning on the iPhone.

3.2.2 Design

An overview of the system used is shown in Fig: 3.6. Steps of the system are

also detailed.

The iPhone has two embedded sensors that were utilized, an accelerometer and

a gyroscope. The accelerometer was an ultra-low power digital three-axis model by

STMicroelectronics (LIS331DLH). According to the data-sheet of the constructor the

accelerometer can be configured to measure acceleration data between ±2g/±4g/±8g.

The experiments shown in Table 3.1 indicate that Apple configured it in the ±2g

range.

64

Figure 3.6.: Overview of the system

Table 3.1: Sensor characteristics

Accelerometer Gyroscope

Range (g) ±2 Range (dps) ±250

Acceleration noise density (µg/
p
Hz) 218 Acceleration noise density (dps) 0.03

Bandwidth (Hz) 25 Bandwidth (Hz) 40

A threeaxis gyroscope by STMicroelectronics (ST) was included in the iPhone

4 (L3G4200D). A gyroscope is used to determine the rate an object rotates. Integrat

ing this data over time measures the pitch, yaw and roll of the phone again due to

integration in this step, the measure su↵ers from drift.

According to the datasheet of the constructor the accelerometer can be con

figured to measure acceleration data between ±250dps/ ± 500dps/ ± 2000dps. The

experiments shown in Table 3.1 indicate that Apple configure it in the ±250dps range.

The drift observed was almost nonexistent for the pitch and roll when the

iPhone was standing still. The API used to access the roll and pitch of the iPhone

implemented an e�cient algorithm to remove the drift using the direction of gravity

(obtained by the accelerometer). The drift is more important for the yaw, but in the

65

experiment the drift observed was less than one degree over ten minutes when the

iPhone is stationary.

Drawing a functional Inertial Measurement Unit (IMU) from the sensors was

a challenge. Although the sensors embedded in the iPhone 4 were more accurate than

the one in the previous versions, they still delivered noisy results.

In iOS version 4, Apple introduced a new framework called CoreMotion [128].

This framework allowed access to low level information (i.e. the rotation rates of the

gyroscopes or the raw acceleration data). It also permitted access to higher level data

(i.e. the user acceleration with gravity filtered out or the pitch, roll and yaw).

The iPhone provided a measure of acceleration where the constant due to

gravity had been removed. The acceleration due to the motion was a low frequency

signal, so the signal was isolated from the noise using a low pass filter.

To determine the projection, the following matrix was used. It is the inverse

of a rotation matrix with the three Euler angles of the phone (= yaw, ✓ = pitch,

 = roll).

2 3
c✓c c s + s s✓c s s + c s✓c 6 76
c✓s c c + s s✓s s c + c s✓s

76 74 5
s✓s c ✓c c✓

Figure 3.7.: Projection matrix, cosines abbreviated with c and sinus with s

Integration (1) : The first integration indicated the use of the Zero Velocity

Update principle to remove or reduce the drift.

Integration (2) : The second integration provided pertinent information re

garding the position of the user. This was tied to the path-planning portion of the

experiment, and results shown for this are broad and general.

An initial calibration was required:

66

• To compute angles of rotation from the rotation rate provided by the gyroscopes,

the origin of the angles must be defined.

• The pitch and roll of the iPhone are zero when parallel to the ground and face

up. An initial calibration was required. The accelerometer and a high pass filter

were used. This provided the direction of gravity, expressed in the referential of

the iPhone. Basic trigonometric functions were used to get the corresponding

pitch and roll of the iPhone shown in the equations below.

• Initial speed: the constant in equation (3.3) corresponded to an integration

constant.

• Initial position: the constant in equation (3.6) corresponds to an integration

constant. To make the results useful, a known initial starting position was

necessary. This portion was o✏oaded to the pathplanning and navigation

portion.

The multiagent simulation architecture was designed with other considera

tions. An overview of the system (Fig. 3.8) details which agents were used and

updated the data held in the blackboard and the messages they were able to send.

Figure 3.8.: Overview of the agentbased model

67

The path-planning agent generated the itineraries based on departure and

destination points on the map, the translator agent generated the interface between

the system and the user and the tracking agent displayed the absolute position. The

information was corrected according to mapping information (i.e. in car navigation

if the absolute position was not shown on a road we would correct it). The tracking

agent tracks if the user was following the computed itinerary. If the user deviated

from the path, the agent issued a message to trigger the recomputing of the itinerary.

The shared information cache (e.g. the blackboard) was storage space where

agents put information needed by other agents in the system. Each agent was able

to read and update information. There were several pertinent pieces of information

stored. A map was used by the path-planning agent to compute the itinerary, the

tracking agent to correct the position if needed and the translator agent to provide

contextual map information to the user. Next an itinerary was created and updated by

the path-planning agent. It was used by the tracking agent to correlate the user path

to the computed path. It was used by the translator agent to provide information

about the itinerary if needed. Finally, user position and heading updated by the

tracking agent was used by the translator agent to provide the user with information

regarding their position.

The path-planning agent has two states: waiting and computing path. In the

waiting state, the agent listened to the messages from other agents. When a message

“itinerary wanted” was received, the agent moved into the state, computing path.

The agent used the departure and destination data provided to compute an itinerary.

Once the computation is complete, the agent sent an “itinerary computed” message

and updated the corresponding itinerary on the blackboard. The agent then returned

to the waiting state.

The tracking agent functioned as the clock of the system. When a new position

was detected the tracking agent was in charge of detecting the change. The tracking

agent moved between the following states: tracking, mapping, or wrong path. In the

tracking state, the agent acquired the sensor data and computed the position of the

http:agent.It

68

user in the appropriate coordinate system. When a new position was computed, the

agent returned to the mapping state where the position was adjusted.

In the mapping state, the tracking agent compared the position of the user

to the itinerary. When the mapping of the user position was complete, the agent

sent the message “user position and heading updated.” If the user was in the path

corresponding to the itinerary, the tracking agent returned to the tracking state,

otherwise the agent changed to a wrong path state. When the agent entered this

state a “user not in the right path” message was sent and the agent retrieved the user

destination from the blackboard. The tracking agent requested a new itinerary with

the message “itinerary wanted” plus the user departure and destination positions.

When completed the agent returned to the tracking state.

The translator agent initialized to a waiting state. The agent listened to mes

sages from other agents and user inputs. If new information was received, the agent

transitioned into an updating interface state. When user input was detected, the

translator agent moved to a state dependent on the new input. In the get itinerary

state, the agent converted the user input into two positions on the map: the depar

ture and the destination. If the departure corresponded to the current user position,

no input was required for that measure. When the positions were processed, a mes

sage “itinerary wanted”, plus the selected departure and destination coordinates, was

sent. The system returned to a waiting state. The framework of the model allowed

transitions to be implemented between the waiting state and updating interface state

to fit the specific characteristics of the modeler’s needs.

All agents had the same communication capabilities: the ability to post and

read textual messages to the shared blackboard; and the ability to send/receive broad

cast messages with textual data. The organization was implicitly known to all agents,

as they shared the same unambiguous communication protocol. The di↵erence in com

munication method selected (i.e. post and read vs send and receive) was based on the

needs of the data. If the data was central to the model with an important lifetime it

was posted or read. However, if the data was transient, then it was broadcast.

69

Each agent had individualized functions. The path-planning agent used the

Dijkstra Algorithm [129] to find the shortest path between departure and arrival

nodes selected by the user. In this first model, the positioning data needed was

simulated. The path followed by the user was defined when the application started

(the path may or may not correspond to the itinerary) and the application changed

the virtual position of the user by time-step. The translator agent functioned as a

Human Computer Interface (HCI). In the model the end user (a human) was presented

with visual information on the screen about the map and itinerary.

3.2.3 Implementation

Only data provided by the embedded sensors of the iPhone were used in this

prototype. The initial experiment kept all measuring and filtering on the iPhone.

For greater flexibility and easier future change, this intial setup was modified.

Filtering parameters and data was sent via UDP packets over the Wifi network to a

computer running LabView. LabView provided processing functionality to determine

the most appropriate parameters for filtering and integration.

Attachment of the device to the body: The body has many degrees of freedom

(DOF). This presented a challenge for the system, as high DOF mean unwanted

movement in the measure (e.g. trembling or vibrations). Initially, the iPhone was

attached to the foot, a body part with a consistent and stable motion when walking,

which allowed the Zero Velocity Update principle to remove the drift due to the

integration of the speed. The basis of this principle was that as a person walks, one

foot moves and then stands still. If the end of a step and the beginning of the next

step can be detected, the speed of the foot during the period is zero. This allowed

the speed to be re-calibrated, decreasing the e↵ect of the drift.

A solution considered to detect a step :

• Detect the minimum of the acceleration norm:

|a| =
q

a2
x

+ a2
y

+ a2
z

(3.12)

70

• Detect the minimum of the gyroscope rotation rate.

Re-initialization to account for drift

begin

if |a| is < threshold then
reset Initialization variable to true

Although having the phone strapped to the foot was not a practical solution,

the idea was to identify and categorize movement. If the iPhone was in the hand or

pocket and movement was categorized, there would still be a moment when a method

(such as the Zero Velocity Update) would be e↵ective. As the movement of the body

was consistently inconsistent, this was a di�cult challenge.

For the simulation portion, the agents were implemented in C and Objective

C and embedded on the iPhone. The Cocoa Touch framework provided by Apple was

also used.

The map and itinerary were formalized as a directed graph for single-source

shortest paths. In this model a textual representation of a list of nodes and a list of

edges was used, plus the weight of each edge to define the graph. The graph was defi

by the equation: G = (V,E,w), where V is a set of vertices (or nodes) and E ✓ V xV

is a set of edges. As E contains ordered pairs, the graph is directed. By adding the

variable (w), weighting of the edges was implemented. Variable (P), is defined as

the path between vertices. If P consists of edges e0, e1, ..., ek�1, then the length of P ,

denoted w(P) is calculated using equation 3.13:

k�1

w(P) =
X

w(e
i

) (3.13)
i=0

The blackboard was the storage cache accessible by all the agents. This was

implemented using the SharedInstance/Singleton pattern. This ensures that only one

instance of the blackboard existed at run-time. The Agent Class contained the com

mon behavior of all agents in this model. To enable inter-agent communication the

71

agents used an instance of the MessagingProxy class. The behavior of the Messag

ingProxy is described below.

Each agent was subdivided into classes: Translator; Tracker; and PathPlanner.

The classes defined the general actions the agents were required to implement; the

states the agents could be in; and the binding between the messages and the functions.

As this was modeled in Objective-C, none of the classes were defined as abstract.

The following classes implemented the actions of their superclass: MyTranslator;

MyTracker; and MyPathPlanner. By using this model, a level of abstraction was

created that allowed easy modification of the implementation details, depending on

the context of the application.

The MessagingProxy class was the messaging interface of each agent. This

component implemented the communication capabilities of the agents: the ability to

broadcast messages using the communication channels available. In the CocoaTouch

Framework the broadcast mechanism is called NSNotification. NSNotification broad

casted an index (the integer identifier) and a dictionary containing any number of

objects. To transform the message (and data) that any object wanted to send, it was

placed into a dictionary as an NSNotification object. This object was dispatched by

the NSNotificationCenter.

To receive a message, the process was reversed. The MessagingProxy listened

to the NSNotifications broadcast using NSNotificationCenter. The proxy breaks down

the NSNotification object received into a message. The delegate pattern allowed the

agents to be informed by their MessagingProxy when a new message has been received.

This messaging architecture made it easy to implement other communication chan

nels; to do so involved implementing additional communication channels as needed;

and the MessagingProxy required implementation details of encoding and decoding

a message.

When the application launched, the user was asked to enter both the departure

coordinates by touching the nodes on the screen. The translator agent (currently in

72

the get itinerary state) sent the message “itinerary wanted” as well as departure and

destination nodes selected. It then returned to the waiting state.

The path-planning agent received the “itinerary wanted” message along with

the coordinates and moved into the computing path state. It computed the shortest

path between the departure and arrival nodes. Once the computation was complete,

the path-planning agent returned to the waiting state and sent the message “itinerary

computed.” The translator agent received the “itinerary computed” message, and

switched to the updating interface state. In this state the itinerary was displayed on

the interface as a green line between the departure and arrival nodes.

To simulate the path in this model, the user touched the nodes on the screen in

succession to simulate a user moving along an actual route. The path was designated

with purple nodes. The translator agent returned to the get simulation path state and

sent a message “simulation path acquired”, plus the route information. The tracking

agent received the information, stored it and began sending positioning signals corre

sponding to the simulated data. The states and messages corresponding to this step

are not described further in this model as they are artifacts of the simulation.

When the virtual user moved one time-step, it corresponded to a change in

user position, and was logged as a normal step on the computed itinerary. The

tracking agent in the tracking state generated a new position and heading for the

user. As the user had taken a normal step, the tracking agent sent a “user position

and heading updated” message and updated the user’s current position and heading

on the shared blackboard. The translator agent received the message and moved into

the updating interface state. The new position of the user, the direction to turn at the

next intersection and the remaining distance are updated and the display refreshed.

If the virtual user in the time-step changed position and stepped out of the

itinerary, it is considered not a normal step. The tracking agent and path-planning

agent maintain the same behavior as the normal step. The translator agent received

the “user position and heading updated message”, however as the user was not on

the computed path, the tracking agent shifts into the wrong path state. It sent a

73

“user not in the right path” message. The tracking agent received the destination

of the itinerary from the blackboard and sent the current position and the message

“itinerary wanted” to the translator agent. The translator agent reacted to this

message by changing into the updating interface state and displaying an alert on the

screen in red text.

3.2.4 Results

System with filtering embedded on the iPhone: The prototype used only the

sensors from the fourth generation iPhone: 3axis accelerometer and 3axis gyroscope.

The measures taken during several of the test runs are shown in Fig: 3.9 3.11.

For the initial run, movement was limited to a straight line with the iPhone

strapped tightly to the foot to reduce the amount of noise due to the complexity of

human movement. The acceleration along the x and y axes are shown in Fig: 3.9.

A simple lowpass filter was used with a cuto↵ frequency of 2Hz and a trapezoidal

algorithm for integration. The Zero Velocity Update method was not implemented

yet so the drift for the speed was important.

Figure 3.9.: This figure shows the accelerations along the x and y axis

System with the iPhone forwarding data to LabVIEW: In this trial, data from

the sensors was sampled at a frequency of 60Hz. The data was sent as a string via

UDP packets over Wifi to LabView. The string was made up of acceleration along

74

the x, y and z axis and pitch, roll, yaw. These measurements were passed into the

processing element where they were projected relative to the correct referential. The

data was filtered using the Butterworth lowpass filter. To create the e↵ect of the Zero

Velocity Update, a reinitialization occurred each time the norm of the acceleration

was near zero between the first integration and the second. Data was exported to both

a graph and a file. Although these results would not be accurate for long durations,

when combined with other information they could potentially be useful to assist in

indoor location estimation.

Figure 3.10.: This figure shows the signal processing in LabView

Fig: 3.11 shows an experimental run where the phone was strapped tightly

to the foot. A straight line, approximately five steps long was walked, a directional

change of 180 degrees occurred, and the same straight line was walked to the origin.

Although the position was not projected onto any mapping feature, it still showed

the anatomy of movement equal to the actual movement with the expected drift.

Clean results that match what was expected were gained in the shape of the

curve, however the values are far from being accurate. To get clean curves, a lowpass

75

Figure 3.11.: This figure shows a person moving 5 steps forward, turning, and 5

steps back

filter was applied with a very low cuto↵ frequency. This caused the noise to be very

low but also filtered a part of the signal required for accuracy. The filtering would

need improvement to get accurate or even useful values.

To improve step detection, the derivative to detect the minimum threshold

(of the acceleration norm or the gyroscope’s rotation rate) instead of using a simple

threshold was studied. Although this would be more costly in term of processing

(which is a scarce resource on a smartphone), it would be much more accurate. This

work concluded with the realization that the sensors were not nearly exact enough

to get the type of precision required for indoor navigation. Additionally, human

locomotion was too complex to correctly categorize movement of a user holding the

phone to apply the zero velocity update.

The simulation was a system implemented as a proofofconcept. As such it

was implemented in a simplistic manner to verify functionality. The model was imple

mented on a ubiquitous smartphone; however the model could have been developed

76

from data acquired through other platforms. The system was designed to be easily

adaptable to a multitude of environments and situations. By using a multi-agent

system, the basic system is solid and highly flexible within the application.

The model was extracted from the development of previous work on an indoor

positioning system designed for smart-phones. Future work involves moving from a

system designed for a theoretical environment with simple map data and simulated

positions to a system using the indoor positioning method we are developing and

actual geographical data in the context of a building. To accomplish this will require

improvements regarding the way path-planning is implemented so that the model is

able to handle larger graphs. One possible solution may be embedding the geograph

ical information (i.e. the predecessor list for certain precomputed paths) within the

application. The result would be only small parts of the itinerary requiring real-time

computations. Finally, the communication protocol could be improved with better

error handling in the system.

3.3 P
III

: MatLab Implementation & Simulation

For the third prototype, a model and simulation was developed to implement

a multi-agent-based complex system for navigation. This model was developed as a

simulation for better control over the environment and the noise factors. By control

ling the environment, the measurements are presumed to be valid and do not include

any external factors.

For this model, navigation in a complex campus environment is viewed as a

system-of-systems (SoS) problem. The SoS is made up of independent systems, each

able to aid a user in navigation, utilizing whichever system, sensor or tool is available.

Using intelligent navigation sensors and techniques (RFID, wireless, GPS, embedded

sensors on a mobile device, IMU) based on current availability in combination with

an adaptive technique to switch between them brings the possibility of a navigational

Multi-agent SoS (MaSoS).

77

Abstracting the problem provides four distinct areas of the problem to be

examined;

1. stakeholder;

2. resource;

3. driver; and

4. disruptor.

Additionally, the interactions between these four areas are examined. This

allows for a big-picture view of the problem. In turn, this assists with a better un

derstanding and facilitates the transition from defining the problem to implementing

the solution. The abstraction taxonomy was based on the work of DeLaurentis [75].

1. The stakeholders are the people or organizations who have a significant interest

in the results of the research. The drivers of a system-of-systems are the activ

ities of the stakeholders that determine the overall demand for the service. For

the complete navigation system-of-systems, the stakeholders are anyone who

uses a navigation system, while the drivers are the activities of the stakeholder

that require the use of navigation. These activities are the drivers and are de

fined by what the stakeholder wants to do and governs how the stakeholder will

behave. For the navigation system-of-systems, they can be social, economic,

or political. For example, a social driver could be an everyday person who

would like to meet their friend at a new location. An economic driver could be

represented by a package delivery service like FedEx or UPS looking for more

e↵ective ways to guide their delivery personnel to the package destination. Fi

nally, political drivers would be well represented by law enforcement and defense

personnel whose guidance needs could potentially be mission critical.

2. Resources of a system-of-systems are the “supplies used by the stakeholders

in the system-of-systems. The resources provide the stakeholders with a way

78

to interact with the system-of-systems. Additionally, the stakeholders have

a direct e↵ect on the resources, as their use of the resources can a↵ect their

availability. In the case of the complete navigation system-of-systems, there are

two major resource families: navigation systems and navigational pathways.

The navigation systems can be broken down into two major subclasses, the

transmitters and the receivers. The transmitters are the devices which provide

the navigation signal. These can range from global positioning system (GPS)

satellites to wireless internet access points to cell phone towers. The receivers

are the devices which receive the signal and provide the user with the navigation

instructions.

The other major class of resources is the navigational pathways. The pathways

are the various means of travel; roads, paths, sidewalks, building corridors, etc.

that allow a person to travel from one point to another. Additionally, the mode

of travel is relevant, i.e. car, bus, foot, bike, etc. There pathways are subdi

vided: free flowing pathways, such as roads, sidewalks, hallways, and anywhere

a stakeholder can travel freely; and scheduled pathways, best represented by

railroads and flights where at specific times, there is a capacity to travel from

one point to another.

3.	 Drivers may include economic disruptions which reduce the need for commercial

navigation, as well as social disruptors causing both spikes and lulls in the social

demands for a navigation system. For example, during Super Bowl Sunday,

there would be an increased demand for navigation before and after the Super

Bowl as people head to the location where they watch the football game and

return home. However, once the game started, there would be a lull in demand,

as many people would be watching the game.

There are also multiple disruptors to the resources. One of the major disrup

tors is the loss of navigation system signal, which can be caused by either the

failure of the transmitter, like a power outage, or the inability of the receiver

79

to receive the signal, like a GPS unit indoors. Competition for resources can

also cause disruptions to a network. The best example of this would be tra�c

on a highway. However, this also applies to other modes of transportation as

well. Additionally, some navigation systems, such as cellphones and wireless

internet have limited capacities. If there are too many people using the system

or obstructions to navigational pathways such as blocked or closed roads and

locked buildings, failure could occur.

4. The disruptors are anything that can cause interference with either the drivers

or the resources. There are likely multiple disruptors in an SoS.

Figure 3.12.: This figure shows the lexicon applied in this environment. This figure

is adapted from the work by DeLaurentis and Callaway [72]

Three areas of uncertainty to be addressed within the model are:

80

1. The first	 major area of uncertainty was the stochastic model of navigation

system availability. A stochastic model was chosen because it was felt to best

represent real world behavior of actual navigation systems.

2.	 Additionally, the position of the various agents and the accuracy of those posi

tions cannot be determined with absolute certainty. The number of users and

the method of transportation used was an unknown variable.

3.	 Finally, the tra�c on the navigational pathways was unknown. While tra�c

was not included as a variable, the model is flexible to allow growth. Therefore,

it was included as one of the areas of uncertainty.

3.3.1 Methodology

Agent-based modeling was implemented using MatLab as the simulation’s de

velopment platform. The model’s methodology is described in-depth in the following

chapter.

3.3.2 Design

The majority of research in navigation and localization focuses on individual

technologies or a subset of hybrid technologies. These are typically categorized into

distinct areas (e.g. robotics, assistive devices, navigation, asset tracking, gaming,

etc). It can be subdivided further into indoor versus outdoor environments or by

selected mode of transportation (e.g. walking, driving, public transportation, etc).

Currently individual localization is available based on a user’s location, net

work coverage or mode of transportation. This model was developed as an au

tonomous system to combine disparate localization technologies into a combined so

lution. The potential benefit of the system is multi-fold. It would allow directional

acuity to a person without prior knowledge of the area and possibly open up new areas

to those with a disability. There is potential for this research to be used to develop

81

an assistive device by providing location information and guidance to the visually

impaired user. Additionally, this research could be combined with environmental

knowledge such as tra�c information or emergency situations that would allow alter

nate routing possibilities. The greatest benefit is the potential to create and define

a navigational model that easily allows the addition of new technologies or disparate

systems.

By identifying and analyzing parts of the SoS, the research moved to the

formulation of the problem. A consideration of the research was to begin with simple

and individual scenarios to better understand external variables and influences. For

the initial model, a small map of the Purdue University campus in West Lafayette,

Indiana was used. This provided a discrete and manageable area to analyze the model

developed.

The uncertainty mentioned before, combined with the emergent behavior that

was expected when the multiple navigation systems and multiple users begin interact

ing with each other, led to the use of agent-based modeling (ABM) as the modeling

method of choice. This is a result of ABM being able to handle large amounts of

uncertainty and the appearance of emergent behaviors. It also allows for appropriate

modeling of human and dynamic behavior.

3.3.3 Implementation

ABM was selected for the modeling phase of the research based on its capacity

to handle, with relative ease, large amounts of uncertainty and the appearance of

emergent behaviors. The latter was expected when the multiple navigation systems

and multiple users interact. ABM allowed for appropriate modeling of human and

dynamic behavior.

The initial computational model, M
I , was created using a basic path map rep

resentation, and implementation of simple scenarios to check for expected functional

ity. As a path-planning algorithm requires a path, a method was needed to translate

82

the simulation space into a usable space within MatLab. Initially, an extremely basic

model was used with P showing the path space, 7 representing an intersection in the

path where a decision is made regarding the route, and I represents 1 which indicates

no path available. This is shown in Table: 3.2.

Table 3.2: Basic Model with Limited Data P = path, 7 = intersection, 1 =

inaccessible

1 P P P P P 1

P 1 1 1 1 1 P

7 P P P P P 7

P 1 1 1 1 1 P

1 P P P P P 1

After verifying the simple path representation in Table: 3.2 in MatLab, a

more complex representation was created by generating a Google Map of the Purdue

Campus in West Lafayette, Indiana (Fig. 3.13). This map was used as a frame of

reference for the path map created as a numbered grid, with minimal paths.

MatLab read the path map and collected coordinates at each cell along the

grid. The pathway was split at the intersections and path points sorted by coordinate.

This allowed the agents to correctly traverse each path in the proper path point

sequence. Verification was performed to ensure the correct separation of pathways

and path point coordinate sequencing.

The first computational model implemented only trivial scenarios to verify

correct functionality. The model’s assumptions are shown in Table 3.3.

The navigation system used GPS exclusively and assumed no signal loss. The

model retrieved information from the path-planning agent and directed the agents

from a fixed start point to a fixed destination using the shortest calculated path.

83

Figure 3.13.: Purdue Campus Map Red line indicates the MatLab path

Once this model was validated, the next version of the model was developed with

additional specifications.

During development of M
II

, the capability of the model was increased. This

iteration included one or more users, a single travel mode, two navigation systems

(GPS and WiFi), an increased number of paths, and stochastic variables. The as

sumptions are shown in Table: 3.4.

In this model, a cost map was created as a weighted adjacency matrix. Weights

were assigned to each link (edge) in the path to assist in pathplanning. The increase

in complexity (with the inset legend Fig. 3.14) provided context to the information

represented in the map. The model used the pathplanning agents to calculate the

cost of each pathway in order to provide the user agents the lowest cost route to

the objective. To this end, the map provided cost information by type of pathway

(e.g. highway versus side street) and mode of transportation (e.g. walking versus

driving). This allowed the pathplanning algorithm to attach meaningful significance

when determining the lowest cost pathways for the user agent to travel.

84

Table 3.3: Table of assumptions for M
I

Single user

objective

speed

sensor system

mode of transporation

agent

target

fixed

GPS

car

Fixed start point

end point

initial state

goal state

Objective single agent A[x,y] to B[x,y]

Constraints agent stays on path

path is static

lowest cost path

signal strength

no sensor switching

single transport mode

weighted (0-10)

fixed and on(1)

GPS

car

Variables user location

route cost

[x,y]

weighted

This model included GPS signal availability as a stochastic variable. Within

range of Purdue campus buildings, the landscape was treated as an urban environment

with the expectation that GPS signal loss could occur. This possibility of signal

loss was calculated as a probability, within a radius of 7 cells, with a probability

of 80%. The ability for the agent to utilize a Wifi network was included to bu↵er

location information when GPS was unavailable. The model considered Wifi as having

less complete overall information due to its lower e↵ective range. This allowed the

potential for the path to change depending on which signal was available to the user

agent.

85

Table 3.4: Table of assumptions for M
II

Single objective

mode of travel

goal

car

Multiple

Fixed

Objective

Constraints

Variables

user

speed

sensor system

start point

end point

multiple agents

agent stays on path

path may change

lowest cost path used

probabilistic sig strength

sensor switching

single transportation

user location

route cost

probabilistic sig strength

sensor system in use

agent

sensor dependent (1-4)

GPS, Wifi

initial state

goal state

fixed

sensor dependent

based on location (.80)

GPS, Wifi

car

[x,y]

weighted

based on location

GPS, Wifi

Again, once the experiment was validated, a more complex model was imple

mented, M
III

. The experimental setup for M
III contained the greatest number of

characteristics and variables. The goal was to approximate a full representation of a

street map of the Purdue area (Fig. 3.15). The coordinates were converted into a

discrete set of nodes with adjacency matrices representing pathways which the agents

could travel (Fig: 3.16). The assumptions for this model are shown in Table: 3.5.

When GPS was available, user agents traveled at their fastest speed along

their planned path, as they had full information. If GPS was lost but Wifi was still

86

Figure 3.14.: Cost Map

Figure 3.15.: Complex Cost Map

available, they traveled at a slower speed since Wifi does not provide position data as

completely as GPS. In order to minimize route loss, the agents with only Wifi would

follow a path which emphasized maintaining a Wifi connection until reaching the

destination. If neither GPS or Wifi were available, the user agent would move at the

slowest speed along its last known path until navigation signals could be reacquired.

87

Figure 3.16.: Adjacency Matrix

GPS is assumed to be available across the entire map, however near buildings

GPS was modeled with the possibility of signal loss or multipath loss. This was

modeled as a stochastic variable where an agent next to a building has an 80%

chance of signal loss, but that probability decreased linearly to zero as the distance

increased. With Wifi, the availability depended on the distribution of Wifi sources

on the map. If an agent was within the communication range of the Wifi node it

would have connection, however there was still a 30% chance of a dropped signal

when within range.

The agents used were: user agents, target agents, and pathplanning agents.

The user and target agents were randomly selected from a discrete set of possibilities.

The goal of the user agent was to follow the shortest possible path using Dijkstra’s

algorithm. The user agent would use the target agent’s broadcasted position to

intercept the target. Dijkstra’s algorithm looks for the total minimum cost pathway;

88

Table 3.5: Table of assumptions for M
III

Multiple user

objective

mode of travel

agents

target

drive, walk

speed

sensor system

sensor dependent

GPS, Wifi, RFID

Discrete Set start point

end point

quasi-random

goal state

Objective multiple agents multiple A to B

Constraints path may change

lowest cost path used

probabilistic sig strength

sensor switching

multiple transport modes

sensor dependent

weighted

based on location

GPS, Wifi, RFID

car, walk

Variables user location

route cost

probabilistic sig strength

sensor system in use

[x,y]

weighted

GPS, Wifi, RFID

the cost is the sum of the values assigned to the nodes in the Cost Map for all nodes

in the path. The path was stored in the user agents’ cache and was only recalculated

if their navigation system status changed (i.e. GPS, Wifi or RFID signal was lost

or gained). The primary goal was to travel to (or intercept if moving) the target

unless or until GPS signal was lost. If GPS was lost, and Wifi was available, the end

goal remained the target, however a higher priority interim goal was to stay in Wifi

range until GPS is regained. If both systems were unavailable, the agent would check

for RFID and use that system to correct any localization discrepancies. The agent

89

remained on its last known course, at a slower signal, until any further signals are

regained.

Targets were chosen randomly from a discrete set of predetermined locations.

The target agents were designed to move to a new destination restricted to the aca

demic campus every so often, and would update their current positions via broadcast

message. These were available to the user agents, who would change their route

accordingly.

3.3.4 Results

During each run, data as a simulation statistic based on x and y position,

GPS, Wifi and RFID signal availability, and speed, were recorded by time-step (Fig.

3.17). A more detailed look at the same data separated by individual run is shown

in Fig. 3.18.

[h!]

Figure 3.17.: Example of Simulation by Figure 3.18.: Sample of Results

Time-Step Recorded by Individual Run

90

Several components varied in each iteration of the model. Pathways between

deliverer and target agents were increasingly complex. Changes in signal strength

and signal loss along the route were incorporated. By gradually increasing the repre

sentation of the map, buildings and varied types of movement over the environment

were included. These were shown by di↵erent speeds based on mode of transportation

and size or type of pathway.

Additionally, the distribution and density of Wifi nodes throughout the map

was varied. The model used Wifi as a backup to GPS, with GPS having the proba

bility of signal loss only in proximity to buildings. The test was to determine if the

addition of Wifi nodes to the map allowed for faster and more reliable travel for the

agents.

Figure 3.19.: Agent Speed Distribution

In running the model over time it was found that the addition of only the

Wifi system did not generate a large performance gain in the agents’ behavior. Often

GPS alone was adequate, by just continuing along the known route until GPS was

available. Adjusting the probabilities that the GPS and Wifi signals would be lost, but

additional Wifi nodes were found, made an improvement of just under 20% change

in speed (Fig. 3.19). The GPS probability of loss was 80% next to buildings, 0%

when 7 units from buildings, and Wifi experienced no signal loss when within range.

91

Adding a stochastic element to the Wifi or adjusting GPS multi-path loss created

limited improvements for the agents.

These results were recorded with no assumptions on performance of the devices

used for such a system (i.e. Wifi triangulation is much less battery and computation-

ally intensive than GPS). The path-planning and agent movement was only shown

based on sensor availability. The results to date have shown that in the most GPS-

restrictive environments, such as very dense urban environments with large buildings

or natural restrictions like canyons, the navigational improvement due to addition of

available Wifi is minimal. This lines up with the goal of future work which includes

adding new individual systems and sensors to the simulation for improvement, as well

as identifying reliability measurements that can be compared between the systems.

Additionally, incorporating movement between indoor and outdoor environments will

allow for better results.

3.4 Conclusion

Table 6.1 presents the prototypes and the results from the prototypes, as

follows:

Table 3.6: Comparison of Prototypes

Prototype P
I P

II P
III

Platform Samsung Nexus S Apple iPhone Matlab Simulation

Domain Path-plan, nav Path-plan Path-plan, nav, local

ize

Method Experiment Experiment, MAS MaS predicated on

DEVS

Results Integration of GPS,

Wifi and RFID

Successful ABM, Em

bedded sensors too

noisy

Successful MaSoS

92

CHAPTER 4. METHODOLOGY

This research melds existing sensor technologies, with hand-held hardware and

software to enhance personal navigation through a densely tra�cked urban environ

ment. The research methodology of the multi-agent system-of-systems (MaSoS) and

the quantitative research design guided the development of experiments as detailed

in this chapter. Agent-based modeling was examined in the context of a MaSoS and

pointed to the research landmarks which were available to shape the experimental

e↵ort as it moved forward.

Discrete event-simulation (DEVS) is introduced and formally defined. The

methodology of DEVS (and specific permutations such as Z-DEVS) is used to con

vert the formal specifications into logical (i.e. code supporting) specifications [49].

Path-planning (through Dijkstra’s algorithm and the Nearest Neighbor algorithm) is

introduced; these serve the needs of the model created on which the simulations were

run.

This research is novel as it fuses existing sensor technologies and a frame

work to easily allow the addition of new or expanded technologies. Simulations are

implemented as agent-based models, while the prototypes described are developed

as practical applications of the research. The methodological approaches presented

replicate the research goal to achieve a previously-unexploited deployment of sensor

technologies within a methodological framework. In the future, this framework will

more readily enable testing of new or additional technologies. The refinement of this

methodology is itself an advance in the technique of agent-based modeling within a

system-of-systems environment.

The ultimate goal of the research design is to determine and quantify the rela

tionships between the variables which were tested in the simulations. The steps used

93

to develop the methodology were broken into three categories: concept, description

and refinement.

During the concept phase:

1.	 Data was collected about the specific physical environment (e.g. Purdue Uni

versity campus);

2.	 Selection of the prototype hardware, the Samsung Nexus S phone, running the

Android operating system;

3.	 Development of the prototype Java-based navigation software, to run on the

Android platform;

4.	 Preliminary understanding of constraints of this code-writing e↵ort; and

5. Identify possible issues in the hardware and software considered in isolation

from the physical environment selected.

In the description phase and during the formal specification, assumptions,

constraints, redundancies and omissions were identified and corrected. Consideration

was then given to an iterative process to repeat the last steps as necessary.

The refinement phase included:

1.	 Identify optimal, e�cient and low cost results at the end of each experiment.

2.	 Assess results from experiment with prototype in the selected physical environ

ment.

3.	 Refine concepts in Java software to enable developments in the MatLab-based

simulations.

The five objectives in developing the methodology were:

1.	 Conceptualize (through research in the literature, Chapter 2) the patterns iden

tified which would yield optimal results. It is important to note that this does

not mean ‘success on the first try’, but rather an advance which yields an al

ternative route for further experimentation.

94

2. Extract operational definitions from the literature for each key component in

the hardware and software.

3.	 Utilize established protocols for writing formal specifications of code, identifying

logical opportunities, di�culties and assumptions in the code writing e↵ort.

4.	 Construct test scenarios to validate each experiment with the chosen prototype

hardware and software.

5.	 Identify the modeling prototype that optimizes performance given the problems

and opportunities presented with hardware and software similar to the field

prototypes.

A critical and quantitative examination of the appropriateness of an agent-

based model for a navigation application in a complex campus environment is ex

plored. A formalized description of the system and the model are determined. An

agent-based model is created within an SoS to allow for the addition of new technolo

gies. This research quantifies the experiments by measuring:

1.	 which system is active and providing sensor information;

2. the speed allowed by that system;

3. the inclusiveness of each sensor system (e.g. indoor and/or outdoor).

Bonabeau [113] identifies several situations in which agent-based modeling is

useful:

•	 interactions between the agents are complex, nonlinear, discontinuous, or dis

crete; this research has discrete interactions and is run by time-step;

•	 space is crucial and the agents’ positions are not fixed;

•	 the population is heterogeneous, (i.e. each individual is potentially di↵erent);

•	 the topology of the interactions is heterogeneous and complex; the topology in

the simulation is designed to emulate a complex urban environment;

95

• the agents exhibit complex behavior, including learning and adaptation.

Agent-based modeling is therefore selected, as the defined problem involves

decentralized autonomous nodes (users), self-organized links (navigational pathways),

and human behavior.

4.1 Model

Agent-based modeling is a form of computational modeling. The goal of ABM

is to describe the evolution of a dynamic system and simulate the behavior of its

agents. To this end, Schank believes that agents, their environment and rules for

their behavior are represented in a computer program [116]. Simulation applications

are typically written in an object-oriented language (such as Java) as these types of

languages have many of the required concepts (e.g. inheritance). The simulation

is able to observe the evolution of agent and agent interactions over time with a

minimum of initial assumptions.

Due to the ability to change input elements, as well as rules, location and

time variables, the simulation will necessarily be run multiple times. Sequential runs

allow for the calculation of both mean and variance, and the possibility of the data

converging on expected values. This research has been implemented and prototyped

over a variety of platforms: Objective-C, Java and MatLab.

As initially organized the agent-based model defines the individual agents and

their internal structure; and identifies rules for acting and interacting between agents.

To define the individual agents programmatically, there is a class of agents which

includes an appropriate data-structure, methods to manipulate information and define

interactions, and communication between agents and the environment.

ABM o↵ers a computational toolkit for developing precise and specific models

of how individuals interact, and for discovering patterns of behavior and organization

that emerge from these interactions. ABM forces the user to be explicit and specific

about the assumptions made. The art of ABM is finding assumptions that introduce

96

relatively little bias and error. This activity is not predicated on specific rules, and

general experience can be helpful.

There are a variety of known limitations or weaknesses associated with agent-

based modeling. According to Bonabeau et al., “a model has to serve a purpose; a

general-purpose model cannot work. The model has to be built at the right level of

description, with just the right amount of detail to serve its purpose [113]. To achieve

this properly or e�ciently can be di�cult. It is also limited by the completeness of

knowledge of the modeler and information about the event being modeled. Addition

ally, the output of the model must be analyzed. Inexperience and incomplete inputs

can lead to incorrect interpretations of the output.

Limitations in using ABM occur when modeling human agents and their be

havior. Human agents are complex, with the potential to be irrational and subjective

in their decisions. It can be impossible to predict irrational behavior or decisions.

Fortunately, by running a simulation multiple times, it is possible to see emergent

outcomes based on many di↵erent interactions. Another issue with ABM: as the size

and complexity of the model and number of agents grows, the modeling can become

computationally- and time-intensive.

ABM is inherently suited to complex systems or system-of-system issues as it is

a “flexible tool for analysis of large-scale interacting systems [14]. According to Zhao

and DeLaurentis, ABM ‘allows for the most natural descriptions of interactions among

multiple, independent and heterogeneous entities [14]. This is especially critical as

the observable output of emergent behavior is often unexpected and counterintuitive.

ABM utilizes simple rules to control agent behavior. Agents can have many

properties: asynchronous; dynamic; independent; active; flexible; self-contained or

adaptive. One of the popular features of an ABM is its ability to use simple rules

to generate complex and emergent behavior. According to Bauer et al., the com

putational structure is parallel and is able to be implemented e�ciently on parallel

computers [43]. Some of the observable behaviors are periods and patterns (spatial

and temporal).

97

According to Macal and North [42] the popularity of agent-based modeling

can be attributed to 3 reasons:

1. the increasing need to model complex things and their interdependencies;

2. greater levels of detail are available; and

3.	 computational power is advancing rapidly enough to support more complex

simulations.

Although the rules to control agent behavior can be simple, ABM is capable

of handling agent interactions that are complex, nonlinear, discontinuous or discrete.

It is also useful when space is limited or agent position is not fixed. If each agent

is individualized, or the agent behavior is adaptable through changes, memory or

learning, then agent-based modeling can be appropriate.

4.1.1 Principles

The steps to build an ABM include:

•	 identify the agents;

•	 define the rules governing interactions; and

•	 determine the appropriate time and space.

When identifying the agents, they should have the following properties: in

ternal states; ability to interact with the environment; access to shared knowledge;

dynamic; and specific levels of interaction (i.e. global or local).

The most useful principle of ABM is the use of simple rules (as opposed to

mathematical equation modeling) that can result in complex and emergent behavior

during the simulation. Examples of simple rules used in this research are:

•	 if the agent is not located in the same building as the goal point, the nearest

exit is found;

98

•	 if a grid cell contains an obstacle (e.g. a building), the agent must plan a route

around it; or

•	 if an agent is within a specified range of a building, then with a certain proba

bility P
x

, GPS becomes unavailable at that location.

The agents modeled are dynamic and able to create real world complexity,

which is di�cult to do using only mathematical equations. The agents are also discrete

time events, situated in a specific time and space. Being observed at a discrete time

slice allows the same agent to exhibit di↵erent or altered behavior simply by observing

it at another time interval or location. ABM is able to provide an indication of the

system’s robustness as it observes agents adapting or changing to handle internal or

external changes. Characteristics of the analytical agent-based model are shown in

Table: 4.1. This table identifies the Objects, Variables, States and Dynamics of the

agents and details valid ranges of values for each. A cross-referenced notation of the

associated DEVS formalism is also noted. DEVS is formalized in Section: 4.2.

The scope of the characteristics are also included in the table. The variables are

position, signal, path and cost. The position of the agent is given by the Cartesian

coordinate [x,y]. The signal is a binary value and is 0 for o↵, or 1 for on. The

predicated path is a Cartesian coordinate [x,y] of the next step in the path. The cost

function is a minimalization function between 1 and 10, with 1 indicating the lowest

cost and 10 the highest.

The states are determined by time-step, transportation method, active sensor

system and speed. These are also defined with a range of values. The time-step is

given as a count of the time of each state. The transportation method is a binary

value, 0 for car, 1 for walk. The active sensor is a numeric value; 0 for GPS, 1 for

Wifi, or 2 for RFID.

Finally, the dynamics of the system are defined. The available dynamics are

a change of location, travel speed, travel mode, sensor system in use or objective.

For a change of location, the value is expressed as a Cartesian coordinate; [x,y]. A

99

Table 4.1: Table of Characteristics

ABM DEVS Scope

Objects

. agents

Model

M

Value

Variables

. position of the agent

. signal strength

. predicted path

. cost function

. GPS probabilistic avail

ability

Model

X, Y

S

Value

node[x,y]

[0,1]

node[x,y]

[1:3=car, 4:6=walk on path 8:10=walk o↵

path]

[60%, 80%]

States

. time-step

. transportation method

. active sensor system

. speed

Model

⌧

i
ext

i
ext

Value

single step = 1

[0=car,1=walk]

[0=GPS,1=Wifi,2=RFID]

[1:3=car, 4:5=bike, 6=run 7:10 = walk]

Dynamics

. change of location

. change of travel speed

. change of travel mode

. sensor system in use

. objective

Model

i
ext

S

Y

Value

node[x,y]

[1:10]

[0=car,1=walk]

0=GPS,1=Wifi, 2=RFID, 3=na

Goal[x,y] and 0 = not there, 1 = goal

change in travel speed is a range given 1 through 10. This is also a minimalization

function with the highest speed being the lowest value. According to a study on the

average walking speed [130], humans walk approximately 3.5 miles per hour. The

posted speed limit throughout the majority of the Purdue Campus is approximately

25 miles per hour. Converting this to a 1-10 scale with faster speeds being shown

as smaller numbers, the scheme is: 1 is driving, 5 is running or biking, 4 is walking

outside, 3 and 2 are walking inside, and 1 is slowly moving. The change in travel

mode is a binary value with 0 for car, 1 for walking. The sensor system deployed

100

relies on combinations of available GPS, Wifi or RFID. The final dynamic is the goal.

This is a Cartesian coordinate [x,y] and the indication that an agent has reached it

is given in binary 0 for not complete and 1 for complete.

The agent behavior is modifiable by defining the rules of interaction. As

explained below, it is expedient to limit potential agent interactions, by defining

these interactions to a states with discrete events providing transitions to new states.

This approach allows many types of interaction to be observed; emergent behavior in

particular can be recognized as di↵erent values are assigned to the relevant variables.

Bonabeau et al. [113] has identified three benefits of agent-based modeling:

•	 Emergent Systems : Agent-based modeling is able to capture emergent phenom

ena due to the interactions between individual agents. The result is often a

complex property that is di�cult to predict or even understand. An example

provided by Bonabeau et al., is a tra�c jam that results from interactions be

tween drivers, but can cause a reaction in the tra�c moving in the opposite

direction.

•	 Natural System Description: Providing an easier and more complete means to

describe agents is an additional benefit. For novice or inexperienced modelers,

describing the movement of an agent can be more natural and understandable

than detailing specific equations for dynamic movement.

•	 Flexibility : The benefit of flexibility is multi-pronged. It is easy to add or remove

agents from an agent-based model, as each agent is individual and autonomous.

Additionally, by using independent agents, it is easy to change the behavior,

description, grouping and aggregation to see what the result would be, especially

advantageous if the best configuration is not known.

101

4.2 Implementation

To begin, a simple scenario was modeled to better understand external vari

ables and influences. For the initial model, a small map of the Purdue University

campus in West Lafayette, Indiana was used, which provided a discrete and manage

able area to analyze.

Agent-based modeling was implemented using MatLab. In the work by Onggo

[50], a formalized ABM is defined as:

Definition 4.2.1 A tuple < A,E >, where A is a set of agents (A = [ak and

1 k N
agents

,) and E is the environment.

The simulation was broken into four iterative computational models for recur

ring verification of functionality:

•	 M
I a simple computational model with limited variability used to initially verify

the simulation;

•	 M
II an intermediate computational model developed with increased complexity

and the addition of more paths and single variables;

•	 M
III a more complex computational model with the greatest number of agents,

variables and paths, representing a full street map of the Purdue Campus;

•	 M
IV a single agent simulation moving from the second floor of one building to

the first floor, then outside and across campus and to another building before

moving up to the second floor. The characteristics of the system model are that

it is a discrete event simulation. It has stochastic parameters and runs in a

dynamic environment. Initially, the environment is partially-observable and is

contained within a finite state space.

The agent-model is constructed as a discrete event simulation (DEVS) using

the formal model introduced by Bernard Zeigler [48]. The purpose of the discrete-

event simulation is that the model executes on events instead of simply on time. This

102

allows the model to update only when a system state change has occurred, which

saves computation time. The model is created as an atomic two-dimensional grid of

rectangular cells. It is formalized by Zeigler as:

Definition 4.2.2

M = (X, Y, S, ⌧,i
int

, i
ext

,), (4.1)

where M is the model defined by,

• X is the set of input events;

• Y is the set of output events;

• S is the set of sequential state values;

• ⌧ is the time advance function used to determine the time of a state (e.g. S !

T1);

• i
int is the internal transition function of the system state (e.g. S ! S);

• i
ext is the external transition function from the input event (e.g. QxX ! S);

• is the output function based on the system state (e.g. S ! Y ¢);

The model can be described as having an input (X) and output (Y), in

this research this is represented by the Cartesian coordinates of the start and end

points (CC
start

, CC
end

). These are the means of communication with other mod

els. Every state (S) is associated with a time advance function (⌧), which de

termines the length of the state time. This model has a number of states (e.g.

GPS
on

, GP S
off , W ifi

on

, W ifi
off , RF ID

on

, RF ID
off , Signal, NoSignal, CostP enalty,

Speed
change

). When the transition time ends, the execution results are sent using the

output function (). The call to the internal transition function (i
int

) is made and a

state change occurs. Input events are collected and the external transition function

(i
ext

) indicates the appropriate response.

The model for the research can be represented with this formalism as:

103

•	 X ={CC
start

};

•	 Y ={CC
end

};

•	 S = {GPS
on

, GP S
off , W ifi

on

, W ifi
off , RF ID

on

, RF ID
off ,

Signal, NoSignal, CostP enalty, Speed
change

};

•	 ⌧(S) = 2s,
P

⌧(S)
since

�S;

•	 i
ext

(GP S
on

) = GP S
off ;

•	 i
ext

(GP S
off) = GP S

on

;

•	 i
ext

(W ifi
on

) = W ifi
off ;

•	 i
ext

(W ifi
off) = W ifi

on

;

•	 i
ext

(RF ID
on

) = RF ID
off ;

•	 i
ext

(RF ID
off) = RF ID

on

;

•	 i
ext

(Speed
x1) = Speed

x2 ;

•	 i
ext

(Speed
x2) = Speed

x1 ;

•	 i
ext

(Signal) = NoSignal;

•	 i
ext

(NoSignal) = CostP enalty;

•	 i
ext

(CostP enalty) = Signal;

•	 (GP S
on

), (GP S
off), (W ifi

on

), (W ifi
off), (RF ID

on

), (RF ID
off),

(Speed
x1), (Speedx2), (Signal), (NoSignal), (CostP enalty) = CC

end

;

Additionally, path-planning is done using Dijkstra’s algorithm for finding the

single-source shortest path [129]. This is formalized by Bang-Jensen and Gutin [131]

as shown :

104

V

Definition 4.2.3 Input: A weighted digraph D = (V, A, c), such that

c(a) � 0 for every a 2 A, and a vertex s 2 V.

Output: The parameter i
v for every v 2 V such that i

v = dist(s, v).

•	 Set P := ✓, Q := V , i
s := 0 and i

v := 1 for every v 2 V s.

•	 While Q is not empty do the following:

–	 Find a vertex v 2 Q such that i
v = min{i

u : u 2 Q}.

–	 Set Q := Q v, P := P [v.

–	 i
u := min{i

u

, i
v + c(v, u)} for every u 2 Q \ N + (v). ([129]).

To prove the correctness of Dijkstra’s algorithm, it su�ces to show that

the following proposition holds.

Proposition:

At any time during the execution of the algorithm, we have that:

•	 (a) For every v 2 P,i
v = dist(s, v).

•	 (b) For every u 2 Q,i
u is the distance from s to u in the subdigraph

of D induced by P [u.

Proof When P = ✓
s = dist(s, s) = 0 and the estimates i

u = 1, u 2

s, are also correct.

Assume that P = P0 and Q = Q0 are such that the statement of this

proposition holds. If Q0 = ✓, we are done. Otherwise, let v be the next

vertex chosen by the algorithm. Since Part (b) follows from Part (a) and

the way in which we update i
u in the algorithm, it sufces to prove Part(a)

only. Suppose that (a) does not hold for P = P0 [v. This means that i
v >

dist(s, v). Let W be a shortest (s, v) - path in D. Since i
v > dist(s, v),W

must contain at least one vertex from Q = Q0 v. Let u be the first

vertex on W which is not in P0. Clearly, u =6 v. By the Proposition

and the fact that u 2 W , we have dist(s, u) dist(s, v). Furthermore,

105

since the statement of this proposition holds for P0 and Q0, we obtain that

dist(s, u) = i
u

. This implies that i
u = dist(s, u) dist(s, v) < i

v

. In

particular, i
u < i

v

, which contradicts the choice of v by the algorithm.

4.2.1 Conceptual Description

Research in navigation and localization often focuses on individual technolo

gies or a subset of hybrid technologies. These are typically categorized into distinct

usage areas (e.g. robotics, assistive devices, navigation, asset tracking, gaming, etc).

They can be subdivided further into indoor versus outdoor environments or by se

lected mode of transportation (e.g. walking, driving, public transportation, etc).

Individual localization is available based on a user’s location, network coverage or

mode of transportation.

The goal of the model is to combine disparate localization technologies into a

uniform solution. There are many potential benefits: allowing directional acuity to

a person without prior knowledge of the area; opening unknown areas to those with

a disability; developing an assistive device by providing location information and

guidance to the visually impaired user; combining the research with environmental

knowledge such as tra�c information or emergency situations that would allow alter

nate routing possibilities; and the possibility of creating and defining a navigational

model that easily allows the addition of new technologies or disparate systems.

The first major area of uncertainty is the stochastic model of navigation system

availability. A stochastic model was chosen because it was felt to best represent

real world behavior of actual navigation systems. Additionally, the position of the

various agents and the accuracy of those positions cannot be determined with absolute

certainty. The number of users and the method of transportation of these users is

an unknown variable. Finally, the tra�c on the navigational pathways is unknown.

While tra�c was not included in the models developed for this research, the models

106

were intended to be flexible and to allow growth. Therefore, it is included as one of

the areas of uncertainty.

The uncertainty mentioned, combined with the emergent behavior that is ex

pected when the multiple navigation systems and multiple users begin interacting

with each other, led to using agent-based modeling (ABM) as the modeling method

of choice. This is a result of ABM being able to handle large amounts of uncertainty

and the appearance of emergent behaviors. It also allows for appropriate modeling of

human and dynamic behavior.

4.3 Data Collection

Data collection occurs during the modeling and simulations. The data is dis

crete and will be measured over time intervals from path start to finish. The data

collection will be done by logging the state of the agents at each time interval. Other

simulation details will also be logged (number of Wifi nodes and the range, number

of RFID nodes and the range, stochastic value of GPS and the total cost of the path).

A sample of a single agent is shown in Table: 5.4. In this table a small 6 step time

sequence is shown. Each t
x is equal to one tic. The first quintet identifies the starting

position of the agent. It shows if the agent is inside or outside, the Cartesian coor

dinates x and y, the floor of the building (if the agent is inside) and the building of

origin (Knoy, Lawson or outside). The second quintet shows the same information,

but indicates the current position for each time-step. The third quintet shows the

information for an intermediate destination. If the goal is di↵erent from the start po

sition (e.g. start is inside, goal is outside; or start building is Knoy, goal is Lawson).

The goal quintet is for the final destination information. State 21 shows the cost of

the path step, which is read in from the two-dimensional grid. The goal state (step

22) is a binary value indicating if the goal has been reached. Step 23, 24 and 25 show

the signal for each of the sensors (0 for no signal, 1 for signal). Step 26 is the speed

which is dependent on the location and sensor system, while step 28 collects penalties

107

incurred if there is no signal. Finally, step 29 totals the cost of each time-step by

adding step 21, 26 and 28.

Table 4.2: A sampling of the state of an agent over a

time-step

Single Agent

Object t1 t2 t3 t4 t5 t6

1 Start In/Out 1 1 1 1 1 1

2 Start X 42 42 42 42 42 42

3 Start Y 107 107 107 107 107 107

4 Start Floor 2 2 2 2 2 2

5 Start Building 1 1 1 1 1 1

6 Current In/Out 1 1 1 1 1 1

7 Current X 42 41 40 39 38 37

8 Current Y 107 107 107 108 109 108

9 Current Floor 2 2 2 2 2 2

10 Current Building 1 1 1 1 1 1

11 Intermediate In/Out 1 1 1 1 1 1

12 Intermediate X 11 11 11 11 11 11

13 Intermediate Y 75 75 75 75 75 75

14 Intermediate Floor 2 2 2 2 2 2

15 Intermediate Building 1 1 1 1 1 1

16 Goal In/Out 1 1 1 1 1 1

17 Goal X 41 41 41 41 41 41

18 Goal Y 61 61 61 61 61 61

19 Goal Floor 2 2 2 2 2 2

20 Goal Building 2 2 2 2 2 2

21 Path Cost 2 2 2 2 2 2

22 Goal State 0 0 0 0 0 0

23 GPS 0 0 0 0 0 0

24 Wifi 1 1 1 0 0 0

25 RFID 0 0 0 0 0 0

26

27

Speed

Index

8

0

8

0

8

0

10

0

10

0

10

0

Continued on next page

108

Table 4.2: (Continued) A sampling of the state of an

agent over a time-step

Object t1 t2 t3 t4 t5 t6

28 Penalty 0 0 0 2 4 6

29 Total Step Cost 0 14 14 18 18 20

4.4 Data Analysis

The data collected in the experiment is quantitative. This makes the data

suitable for analysis using a variety of statistical methods discussed below. The data

will be organized and grouped to make it more easily understandable.

4.4.1 Statistical Methods

Empirical research is a means of finding knowledge through direct observation.

The evidence or data gained by recording these experiences can then be analyzed.

An accurate analysis of the data is required to determine the probable validity of the

research and acceptance of the initial research hypothesis.

Descriptive statistics are used to observe the patterns in the data. Histograms

will be observed to visualize the data. Pearson’s Chi-Square Test of Independence

will be used to test the null hypothesis with the more rigorous of the statistical values

0.01%. Additionally, the mean, standard deviations and percentage of availability is

studied.

4.4.2 Reconciliation

Following and extending the measures in Kim et al. [94], the metrics used to

evaluate the model are divided into three categories: signal detection and coverage;

independent network reliability; and overall navigation time.

109

The proposed system relies on the availability of individual navigation systems

and the ability to move among them as appropriate, independent of user action. To

use these systems in a beneficial way, data must be collected for several of their prop

erties. Availability of the systems must be investigated; this includes geographical

availability, user equipment necessary to take advantage of the system, and frequency

of updates. The accuracy of these systems must also be known in order for prioritiza

tion, merging, and error correction of position information obtained by users. Level

of accuracy will be explored for geographical location and/or distance from naviga

tion system as well as expected error in sensor measurements (including drift in some

systems).

4.5 Summary

This chapter presented the proposed methodology, model and description for

this research. It o↵ers both theoretical and practical discussion on the model and sug

gests to reconcile the di↵erence during data collection. The methodology will include

agent-based modeling and simulation, as described both formally and semantically.

The next chapter focuses on the practical application of various systems to focus and

guide the research.

This research is novel as it looks at the fusion of existing sensor technologies

and creating a framework to allow the testing of new or additional technologies.

The development of simulations and prototypes assisted in measuring the validity

of the study. Simulations were then implemented as agent-based models, while two

prototypes are developed as practical applications of this research.

The research expanded and refined the methodology as the prototypes were

developed and tested. The methodological approaches detailed in this chapter seek to

achieve a previously unexploited deployment of existing sensor technologies within a

methodological framework that will, in the future, more readily enable testing of new

110

or additional technologies. Human localization and navigation o↵er rich opportunities

for research, as a framework for further progress in this filed has not been established.

111

CHAPTER 5. AGENT-BASED SOS RESULTS

The results of the most recent simulations, run on M
IV , a revised model, are

presented in this chapter. As previously explained, to isolate the critical variables

, selected patterns of data configurations were employed. An extraction of the con

figurations are shown in Table: 5.1, with the majority omitted for brevity. The full

table can be found in Appendix D, with the number of total simulations runs at over

14,000. The patterns derived from:

1.	 the probability of GPS loss (within a fixed distance of a building) at 60% and

80%;

2.	 a range of Wifi sensor which varied from 5, 10 or 15 cells from the node’s loca

tion. The side of each cell or ‘square in the virtual grid for indoor is approxi

mately 2 meters, while the outdoor grid has cells with each side approximately

8 meters in length. (As used in this chapter, a cell is also a measure of signal

strength: a signal of 5 cells is available to any reading device within a circle the

radius of which, indoors, is approximately 5 virtual cell widths or 10 meters.)

3. the number of sensors distributed randomly on the virtual grid was set at 0, 10,

20 or 40 for both Wifi and RFID.

Each simulation pattern was run at least 100 times to allow the data to nor

malize. The complexity and level of uncertainty in the previous model (M
III

) required

simplification; this was designed into the latest model to minimize the noise, with the

added benefit of providing sharper contrasts to choices between physical placement

of nodes (location and number), and range of Wifi and RFID signal picked up.

In this experiment (M
IV), an agent was observed moving from a fixed start

position to a fixed end position. The path was calculated for each portion of the

112

Table 5.1: Extraction of Patterns of Variables

Variable

Node Count

GPS Wifi

Range

RFID

Range

No

Runs

Wifi-RFID

00-00 60% 5 5 200

00-00 60% 10 5 200

00-00 60% 15 5 200

00-00 80% 5 5 200

00-00 80% 10 5 200

00-00 80% 15 5 200

00-10 60% 5 5 100

00-10 60% 10 5 100

00-10 60% 15 5 100

00-10 80% 5 5 100

00-10 80% 10 5 100

00-10 80% 15 5 100

simulation, but remained una↵ected by signal availability. If the signal was lost and

no other sensor system was available a cost penalty was incurred, but the agent

continued along the predetermined path. The simulation data is recorded for each

run and agent state, and then analyzed and presented later in this chapter.

Discussed in more detail later, the random distribution of sensor nodes through

out each of the grids allowed isolation of variables through the of number of nodes of

each sensor system and that sensor’s signal range. Therefore, evaluation of the most

e�cient application of fusing Wifi, RFID, and GPS to enhance personal navigation

in a dense urban environment is feasible.

113

Figure 5.1.: Five cell grid for

inside radius

Figure 5.2.: Five cell grid for

outside radius

5.1 Methodology

As a recap, the important points to discuss are the building of the agentbased

model (ABM) as a discreteevent simulation (DEVS) and the quantification of the

data collected.

In building the ABM the characteristics of the model were:

• the model has discrete interactions;

• the model is run by time intervals;

• the agent’s position is not fixed;

• the agent population is heterogeneous;

• the topology is modeled to emulate a complex urban environment; and

• the agents exhibit complex behavior.

114

Figure 5.3.: Virtual grid for Purdue Campus & Knoy 2nd Floor

5.2 Design

This model has been designed with the previous iterations in mind. Simplifi

cation is required to validate the measurements. As such, the model has been limited

to one moving agent. The system is able to function with multiple agents, but to

minimize unintended noise, the simulation models one agent per run. Each simulation

was launched with the agent leaving room 235, second floor of Maurice G. Knoy Hall

of Technology Building, Purdue Campus, 401 North Grant Street, West Lafayette,

Indiana, shown in Fig: 5.3. The destination point was room 2142C in The Richard

& Patricia Lawson Computer Science Building, Purdue Campus, 305 N. University

Street, West Lafayette, Indiana. The path-planning assumed that the agent would

leave the Knoy Hall of Technology and proceed to the Grant Street parking garage,

drive to the University Street parking garage, and then resume walking to Lawson

Computer Science. The full MatLab code is provided in Appendix B. The algorithms

are summarized by the functions 2 - 7 on the following pages.

115

public class main()

Data: plot: [x,y], timestep: {t1, . . . , tn}, type: clock

begin

for i = t1 to t
n�1 do

//create adjacency matrices

adjacency matrix = buildMatrix(current[x,y]);

//update path

path, cost = pathPlan(current[x,y], goal[x,y], adjacency matrix);

//update target state and navigation status

state(gps,wifi,rfid) = navState([x,y],t);

Path-planning utilized Dijkstra’s algorithm to determine the single-source short

est path from the current [x,y] coordinate to either the goal destination or an interme

diary goal if the end point is not on the ‘local grid’. The cost of the path was returned

from the path-planning function to allow for the summation of costs for each trip as

a measure of the cost of the run.

The sensor systems maintained an order of precedence depending on its lo

cation. When the agent was outside, the agent looked for GPS first, failing that,

it checked for Wifi and then proceeded another two time-steps on the known course

before checking for a signal again. If the agent was inside, the agent looked for Wifi

first, failing that, it checked for RFID, and then proceeded another two time-steps

on the known course before checking for either signal again. GPS was assumed un

available inside; in practice it is imprecise for indoor and elevation information. The

class Update Navigation State determines the agent’s status (e.g. indoor or outdoor)

and then calls the appropriate function. The class returns the updated status of each

navigation state.

The GPS update takes the current outdoor position and examines it in relation

to the known location of each building. If the current position is within 7 cells of

the building, the simulation assigned a probability of loss to calculate if the signal is

116

public class pathPlan()

begin
//find shortest path

if (current & goal match (i.e. building & floor)) then
//find path from current point to destination point

path, cost = dijkstra(current[x,y], goal[x,y], adjacency matrix);

return [path, cost];

else
intermediate[x,y] = find Nearest Neighbor(current[x,y], closest

exit);

//points not compatible must use an intermediate destination

path, cost = dijkstra(current[x,y], intermediate[x,y], adjacency

matrix);

return [path, cost];

public class navState([x,y],t)

begin

if (inside) then
updateWifi([x,y], wifi node locations);

updateRFID([x,y], rfid node locations);

else if (outside) then
updateGPS([x,y], building locations);

updateWifi([x,y], wifi node locations);
return updated Nav States;

available or not. Once the current user was outside of this range, GPS is assumed to

always be available. The state of the GPS signal is returned from this function (GPS

update).

The Wifi signal is designed to be updated in the next class 6. A triangle is

formed between the agent location and the nearest Wifi node. If the hypotenuse of

117

public class updateGPS([x,y],t)

begin
//determine the distance from current location to all buildings

for i = 1 to i
n do

distance =
p

(curX buildingX) + (curY buildingY)2;

//determine if the signal is lost

probability of GPS loss = GP Sprob(80%)�GP Sprob(80%)
7⇤min(distance)

if (probability of GPS loss 0) then
GPS IS available;

return GPS status;

else

if ((randomNumber * 100) < probability of GPS loss) then
GPS IS NOT available;

return GPS status;

else
GPS IS available;

return GPS status;

the triangle is within a given range (e.g. 5, 10 or 15 cells), then the signal is assumed

to be available, otherwise it is not. The function returns the state of the Wifi signal

to the calling class.

The RFID signal update is similar to the Wifi. In this class 7, a triangle is again

formed between the agent location and the nearest RFID node. If the hypotenuse of

the triangle is within a given range (e.g. 5, 10 or 15), then the signal is assumed to

be available, otherwise it is not. The function returns the state of the RFID signal

to the calling class.

The agent is constrained by these simple rules:

1. if the agent is not located in the same building as the goal point, the nearest

exit is found;

118

public class updateWIFI([x,y],t)

begin
//determine the distance from current location to all wifi nodes

for i = 1 to i
n do

distance =
p

(curX wifiX) + (curY wifiY)2;

//determine if the signal is available

if (minimum(distance) Wifi Range (i.e. 5)) then
Wifi IS available;

return Wifi status;

else
Wifi IS NOT available;

Return Wifi status;

public class updateRFID([x,y],t)

begin
//determine the distance from current location to all rfid nodes

for i = 1 to i
n do

distance =
p

(curX rfidX) + (curY rfidY)2;

//determine if the signal is available

if (minimum(distance) RFID Range (i.e. 5)) then
RFID IS available;

return RFID status;

else
RFID IS NOT available;

return RFID status;

2. if a graph point contains an obstacle (e.g.	 a building), the agent must plan a

route around it; or

3. if an agent is within a specified range of a building, then with a certain proba

bility P
x

, GPS becomes unavailable at that location.

119

4. if the current signal is unavailable, look for an alternate signal.

5.3 Implementation

Computational Model: M
IV

The simulation was implemented in MatLab version 7.11.0.584 (R2010b). The experi

ment was performed on a MacBook Pro machine configured with a 2.5GHz Quad-core

Intel Core i7, 8GB 1333MHz DDR3 SDRAM and a 512GB Solid State Drive.

The map was parsed into coordinates (each cell in the grid was converted into

a discrete set of nodes) with adjacency matrices representing pathways which the

agents could travel. An extraction of this can be seen in Fig: 5.3 .

Table 5.2: Table of assumptions for M
IV

Objects agent

objective target

Variables position node[x,y]

mode of travel [0=car, 1=walk]

speed 1:10

sensor system in use 0=GPS,1=Wifi, 2=RFID, 3=na

signal availability [0,1]

cost 1:10

GPS probabilistic availability [60%, 80%]

States time-step single step =1

active sensor system 0=GPS, 1=Wifi, 2=RFID, 3=na

Dynamics start point Knoy 235, node[42,107]

end point Lawson 2142c, node [41,61]

� travel speed 1:10

Constraints path does not change fixed at start

lowest cost path used weighted

120

Figure 5.4.: Image of Knoy

second floor distributions showing

range of sensors

Figure 5.5.: Image of Lawson

second floor distributions showing

range of sensors

Fig.’s 5.4 and 5.5 show the distribution of sensors on both the first and last

simulation. Additionally, the range of each sensor is illustrated. The magenta is for

Wifi nodes, green for RFID. The user path is indicated by the line with the same

colors, and blue for no signal at all. Fig. 5.6 shows the distribution of Wifi sensors

over Purdue campus. The blue outlines indicate the buildings. As the GPS signal

was probabilistic within a 7 cell radius, the user’s blue line indicates when no GPS

signal was available.

The agent modeled dynamic behavior and were able to create real world com

plexity. Characteristics of the analytical agent-based model are shown in Table: 5.2.

This table identifies the variables, states and dynamics and details valid ranges of

values for each. The factors are position, mode of travel, speed, sensor system, prob

abilistic availability, signal availability and cost, and the variables being the changes

in GPS probability loss, Wifi and RFID. The position of the agent is given by the

121

Figure 5.6.: Image of Purdue showing range of sensor distributions

Cartesian coordinate [x,y]. The transportation method is a binary value, 0 for car,

1 for walk. Speed is selected from a range of 1 - 10, and the sensor system in use is

designated with numbers: 0 = GPS, 1=Wifi, 2=RFID, 3=no sensor system. Prob

abilistic availability is a percentage that the GPS is going to fail within 7 cells of a

building. The probability is run at both 60% and 80%. Signal availability is a binary

value, 0 for none, 1 for signal. The cost function is a minimalization function between

1 and 10, with 1 indicating the lowest cost and 10 the highest.

The states are determined by time-step and active sensor system. These are

also defined with a range of values. The time-step is given as a count of the time of

each state. The active sensor is a numeric value; 0 for GPS, 1 for Wifi, or 2 for RFID.

Starting point, ending point, and change in travel speed are noted in the

system. The starting point for the simulation is fixed in Knoy 235 and the end point

122

is fixed in Lawson 2142C. A change in travel speed is a range given 1 through 10.

This is also a minimalization function with the highest speed being the lowest value.

According to a study on the average walking speed [130], humans walk approximately

3.5 miles per hour. The posted speed limit throughout the majority of the Purdue

Campus is approximately 25 miles per hour. Converting this to a 1-10 scale with faster

speeds being shown as smaller numbers, the scheme is: 1 is driving, 3 is running or

biking, 4 is walking outside, 6 and 7 are walking inside, and 10 is slowly moving.

The constraints of the simulation are that the path does not change. Once

path-planning is completed, no deviation occurs on the part of the agent (to be

addressed in future research), and the lowest cost path is determined and used by a

weighted value assigned to each cell of the virtual grid.

Fig: 5.7 show a single run of the simulation when the probability of GPS loss

is 80%, range for Wifi is 10 and the range for RFID is 5. The number and distribution

of sensors is 0 Wifi and 80 RFID (per floor of each building). The RFID sensors are

shown by the black stars and are distributed randomly for each run. The colored

line indicates the path of the agent as well as which sensor system is currently active.

In these figures, green signals RFID and blue signals that there is no sensor system

available.

5.4 Results

In this section, the data is aggregated and analyzed based upon:

• which system is active and providing sensor information;

• the speed allowed by that system;

• the inclusiveness of each sensor system (e.g. indoor and/or outdoor).

These results are then viewed within the context of the hypothesis (introduced

in Chapter 1) which permits the testing of the Null Hypothesis and assumptions for

the Alternate Hypothesis.

123

Figure 5.7.: GPS ploss 80%, 0 Wifi nodes, 80 RFID nodes

• H0: Performing navigation using multiple technologies does not improve at least

one of these conditions at any time: availability, speed, or inclusiveness.

• H
a

: Performing navigation using multiple technologies will improve at least one

of these conditions at any time; availability of sensor based on location, speed of

navigation, inclusiveness of systems (i.e. outside, inside, elevation, etc.) as the

system moves autonomously through individual systems as appropriate. The

distributions and measures to evaluate can be seen in Table 5.3.

The table below introduces the distributions to examine (shown in Table: 5.3.

This is the same table from Chapter 1, but now with results to examine. The numbers

are pulled from included tables (Fig.’s: 5.8, 5.22,5.19), showing the mean of the signal

124

availability and the speed, as well as the percentage of the availability. Additionally,

Fig.’s 5.20 and 5.21 show the percentage increase for the numbers.

Table 5.3: Distributions to Evaluate Results

Navigation Availability Speed of Inclusiveness

of System of Sensor Navigation of Systems

(0 or 1) (1 - 10 /ts) (Percentage)

1 GPS

No Signal

{0,1}
{0,0}

52.35

257

12.68%

87.32%

2 GPS

Wifi

No Signal

{0,1}
{0,1}
{0,0}

40.67

59.39

142

11.56%

49.29%

34.95%

3 Wifi

No Signal

{0,1}
{0,0}

59.39

142

49.29%

50.71%

4 Wifi

RFID

No Signal

{0,1}
{0,1}
{0,0}

58.87

48.05

142

49.15%

12.83%

38.02%

5 RFID

No Signal

{0,1}
{0,0}

56.86 14.22%

85.08%

6 GPS

Wifi

RFID

No Signal

{0,1}
{0,1}
{0,1}
{0,0}

34.68

58.87

48.95

11.41%

49.15%

12.83%

26.61%

Wifi was selected at ranges of 5, 10 and 15. This signifies a radius of 5,10

and 15 cells within the virtual checkerboard. These were selected to imitate real-

world ranges for Wifi access points. Typical range for indoor access points is 150-300

feet [132], but this is subject to a host of factors besides distance (i.e. interference,

congestion, collision avoidance or multi-path signal issues). Interference can be caused

by building material or even movable items that are made of thick concrete, metal,

glass or aluminum. Florescent lights, microwave ovens, cordless phones and garage

door openers have been shown to interfere with wireless signals. Over-crowding of

125

the base station with users, or overlapping signals causing interference can also cause

shortening of the range.

RFID had the highest number of simulation runs with a range of 5. As the

project was designed with passive RFID tags in mind, this most resembled an actual

scenario. Data was obtained for RFID at ranges of 10 and 15 virtual cells for several

scenarios to obtain comparable data to the Wifi statistics.

GPS was modeled with 2 values: probability of signal loss 60% and 80%.

These numbers were based on the work of Gartner and Rehrl [133] and their software

modeling of an urban canyon.

The number of nodes cycled through 10, 20 and 40, as this provided reasonable

coverage throughout the building. Placement of the sensors was not specified. The

sensors were placed randomly by the algorithm. As the map is built from a virtual

grid, each node is initially assumed acceptable as a sensor location. Once the random

selection is made, the software performs a check to be sure that it is in an acceptable

location (i.e. no sensor was permitted to be placed in the walls). This is determined

by the cost value. Each cell contains a designation between 1 and 10 for a cost, except

for those that are unpassable, they are assigned 1. The nodes are built from the

cells of the map; each node represents a cell. Using Matlab notations, the matrix of

cells (e.g. [1,1], [1,2], [1,3]... [n,m]) is assigned a node number (e.g. node 1, node 2,

node 3... node n). Using the second floor of Knoy as an example, the virtual grid

contained a matrix of 51 columns, by 141 rows. Multiplying these returns the number

of nodes: 7446.

Approximately 14,000 simulations were run over various configurations. This

allowed each unique configuration to be run over 100 times and the data to normalize.

The mean cost value of all runs is summarized in Fig: 5.8 in the columns labeled with

Wifi, RFID and GPS. The numbers show a sum of the total cost sum for the entire

run (357 time-steps). The figure includes the cost of each step (1-10), the cost of the

speed (1-10), and a penalty for absence of a signal (2). So for example, line 1 shows

a mean for the total cost of each run when Wifi is set to 0 nodes and RFID is also

126

Figure 5.8.: Results from simulations with a range of Wifi

set to 0 nodes. The columns across the top indicate the configuration for each run

where a variable was altered.

Each run included an agent moving from a fixed starting point to a fixed

destination point. Each scenario was run with the probability of GPS signal loss at

60% or 80%. Additionally, the range of the Wifi from the base station was given

individual values of 5, 10 or 15. RFID was given values of 5, 10 or 15. Within each of

these parameters, the number of randomly placed sensors was modified from 0 Wifi

and 0 RFID, to 40 Wifi and 40 RFID. As each run completed, a summary of the total

cost was recorded. The cost included the step cost (from the twodimensional map

line 21), the speed (based on the sensor and location line 26), and a cost penalty

for losing the signal (line 28). These three are tabulated and stored in the Total Cost

(line 29). These can be seen in an extraction of agent state over several timesteps as

shown in Table: 5.4.

127

Table 5.4: A sampling of the state of an agent over a

time-step

Single Agent

Object t1 t2 t3 t4 t5 t6

1 Start In/Out 1 1 1 1 1 1

2 Start X 42 42 42 42 42 42

3 Start Y 107 107 107 107 107 107

4 Start Floor 2 2 2 2 2 2

5 Start Building 1 1 1 1 1 1

6 Current In/Out 1 1 1 1 1 1

7 Current X 42 41 40 39 38 37

8 Current Y 107 107 107 108 109 108

9 Current Floor 2 2 2 2 2 2

10 Current Building 1 1 1 1 1 1

11 Intermediate In/Out 1 1 1 1 1 1

12 Intermediate X 11 11 11 11 11 11

13 Intermediate Y 75 75 75 75 75 75

14 Intermediate Floor 2 2 2 2 2 2

15 Intermediate Building 1 1 1 1 1 1

16 Goal In/Out 1 1 1 1 1 1

17 Goal X 41 41 41 41 41 41

18 Goal Y 61 61 61 61 61 61

19 Goal Floor 2 2 2 2 2 2

20 Goal Building 2 2 2 2 2 2

21 Step Cost 2 2 2 2 2 2

22 Goal State 0 0 0 0 0 0

23 GPS 0 0 0 0 0 0

24 Wifi 1 1 1 0 0 0

25 RFID 0 0 0 0 0 0

26 Speed 8 8 8 10 10 10

27 Index 0 0 0 0 0 0

28 Penalty 0 0 0 2 4 6

29 Total Step Cost 0 14 14 18 18 20

128

Fig: 5.9 is designed to show the di↵erences of the data when either the range

of the sensor signal is changed, or the number of sensor nodes is changed. The data

is plotted to show the changes for Wifi of 10, 20 or 40 or RFID of 10, 20 or 40 when

the range of the Wifi signal moves from 5 to 10 to 15. This allowed isolation of each

variable to remove noise. The biggest gain is seen when there are 10 Wifi nodes, and

the range moves from 5 cells to 10 cells. Wifi and RFID show linear improvement as

the number of nodes are increased.

Figure 5.9.: Results from simulations with a range of Wifi and No GPS

Fig: 5.10 shows the a↵ect of the Wifi signal over onehundred runs of each

configuration. RFID was null in these runs to isolate changes in Wifi reception. The

blue lines in each graph are when the number of Wifi nodes for each map was set

to 10 (e.g. first floor Knoy had 10, second floor Knoy had 10, Purdue map had 10,

first floor Lawson had 10, and second floor Lawson had 10). The red line shows the

results for 20 Wifi nodes, green shows 40 nodes, and purple shows 80. As expected,

129

the cost of each simulation improved as the number of Wifi nodes increased. In this

graph, the Wifi range was stabilized at 5 cells.

Figure 5.10.: Results from simulations with a range of Wifi

The next graph is designed to show the opposite configuration (Fig: 5.11).

In this figure the Wifi nodes have been set to zero, while the RFID count of nodes

move between 10, 20, 40 and 80. The RFID sensor range is maintained at a 5 cell

radius. Again, there is improvement measured by time-steps of available signal, as

the number of sensors increase.

Figure 5.11.: Results from simulations with a range of RFID

The chart in fig: 5.12 compares the Wifi node distribution to the RFID across

each sensor count increment (e.g. 10, 20 and 40). In each chart the range of the Wifi

and RFID were both 5, while the number of nodes moves between the sensor count

equally. The results are approximately equal. To compare, Fig: 5.13 shows identical

data, with the exception of the Wifi range, which in this figure, has been increased

130

from a range of 5 cells to 10 cells. When the number of nodes are equal, Wifi shows

an improvement over RFID.

Figure 5.12.: Comparison of Wifi

v RFID with equal ranges

Figure 5.13.: Comparison of Wifi v

RFID with ranges of 10 v 5

The experimental setup of the next run compares the di↵erence in values over

a changing range of Wifi nodes (Fig: 5.14). The GPS probability of signal loss is

held constant at 60%, and the range of RFID sensor signal is 5, but the range of

the Wifi sensor signal changes between 5, 10 and 15. In each of the three runs,

within each graph, the average over 100 runs show improvement for each iteration as

the number of each sensor is increased. The previous result is maintained but it is

important to note that the change in Wifi range from 5 cells to 10 cells shows the

biggest performance increase.

Fig: 5.15 shows the same Wifi configuration with RFID removed. The GPS

probability of signal loss is constant at 60% and the Wifi range moves between 5,

10 and 15. For each run, an interval graph is shown with the improvement for both

number of Wifi nodes and the range.

131

Figure 5.14.: Results for the

di↵erence in the Wifi range with

10-40 Wifi and 10-40 RFID

Figure 5.15.: Results for the

di↵erence in the Wifi range with 0-40

Wifi and 0 RFID nodes

The same result can be seen in the next figure (Fig: 5.16), which emphasizes

this point by showing each Wifi distribution (e.g. 0,10, 20 and 40) for increasing Wifi

ranges (e.g. 5,10 and 15). The number of nodes as well as the range of each sensors

impact performance, but the improvement from the di↵erence of range is greater.

The di↵erence in RFID is illustrated in Fig’s: 5.17 and 5.18. Each chart plots

the di↵erence when RFID moves from 10 to 20 and 40, and between ranges 5, 10 and

15. There is an improvement based on the number of nodes as well as the range of

the signal, however the Fig: 5.17 shows more pronounced improvement (signal range)

over Fig: 5.18 (all nodes).

The next figure illustrates the absolute number of signal availability over each

run (Fig: 5.19). As the simulation progresses by time-step, the state of the agent is

logged including the measure of signal availability. During the run, time-steps 1-73

occurred within Knoy Hall of Technology. Time-steps 74 - 210 occurred outside on

the Purdue campus and time-steps 211 - 357 were logged inside Lawson Computer

132

Figure 5.16.: Results of Wifi distributions over di↵erent signal ranges

Figure 5.17.: Distribution of RFID Figure 5.18.: Distribution of RFID

across all nodes across all ranges

Science. GPS was only available during the outside portion, RFID during the inside

portion and Wifi across the entire trip.

133

For this reason, the summary of signals (1 indicates a signal, 0 for no signal)

is shown only for the time-steps they were available; out of 136 time-steps for GPS;

357 time-steps for Wifi; and 221 time-steps for RFID. The table shows the mean of

each 100 runs for each configuration: GPS loss probability 60% and Wifi range 5 or

10 or 15; and GPS loss probability of 80% and Wifi range 5 or 10 or 15. RFID is

stable at a range of 5 cells for these runs. Within each distribution above, the count

of Wifi and RFID nodes (per floor of each building) move through increments of 0,

10, 20 and 40.

Figure 5.19.: A table of the mean value for each 100 runs

Fig.’s: 5.22 and 5.23 were configured to show the percent of availability of

each signal over the time-steps. GPS was potentially available for 136 time-steps (the

number of time-steps that occurred outside), RFID for 221 time-steps (the number

of time-steps from inside the buildings) and Wifi for 357 (the time-step of the total

run). The mean of both GPS and RFID were divided by 357 and the mean of Wifi

divided by 714 and formatted as a percentage. The percentage of time with no signal

was 1 minus the sum of the three percentages.

134

Figure 5.20.: A table of the percentage increase for RFID

Fig: 5.24 shows the standard deviation among each set of runs (100 300).

Although there is fluctuation, the running of the simulations repeatedly allows the

data to normalize.

5.4.1 Statistical Analysis

Each of the simulations was distributed across patterns of configurations: Wifi

sensor range of 5 or 10 or 15 cells with the count of RFID sensors at 0; and then RFID

sensor range of 5 or 10 or 15 cells with the number of Wifi nodes set to zero. Within

these 6 categories, the simulations were run with 10, 20 and 40 sensor nodes for

each category. The simulation data is examined using histograms and Pearson’s Chi

135

Figure 5.21.: A table of the percentage increase for Wifi

Square Test of Independence. This is designed to characterize, model and analyze

the data to observe behavior.

The final comparison is Pearson’s ChiSquared Test of Independence for the

Wifi distribution. Pearson’s ChiSquared Test is defined by:

k

(O
i

E
i

)2
�2 =

X
(5.1)

E
i

i=1

where O
i

is the observed frequency, and E
i

is the expected frequency [134]. Wifi is

run for the range 5, 10 and 15 with the number of nodes set to 10, 20 and 40. RFID

is also run for a range of 5, 10 and 15 cells with the number of nodes equal to 10, 20

and 40 randomly distributed throughout each building. The scores are the timesteps

that there is a usable signal. The following hypothesis is tested:

136

Figure 5.22.: Percentage of signal availability over 100 runs at p-loss 60%

H01 = increasing the number of Wifi nodes does not cause an increased per

formance for each range that is tested.

H
A1 = increasing the number of Wifi nodes does cause an increased perfor

mance for each range that is tested.

The p value for Wifi returns 0.00009%. This is far less than the accepted

statistical value of significance of 0.05% or even 0.01%. Therefore, it can be concluded

that the null hypothesis (H01) is false , and the alternate hypothesis (H
A1) is accepted.

Pearson’s Chi-Squared Test of Independence was also run for the RFID dis

tribution. Pertaining to RFID, the hypothesis tested is:

H02 = increasing the number of RFID nodes does not cause an increased

performance for each range that is tested.

137

Figure 5.23.: Percentage of signal availability over 100 runs at p-loss 80%

H
A2 = increasing the number of RFID nodes does cause an increased perfor

mance for each range that is tested.

The p value for RFID returns 0.002%. This is also below the fields required

statistical value of 0.05% or 0.01%, so it can be concluded that this null hypothesis

(H02) is false, and this alternate hypothesis (H
A2) is accepted.

Histograms are presented in Fig:’s 5.27, 5.28 and 5.29. The histogram is a

visual depiction of the distribution of the data [135]. Relative frequency histograms

are shown for Wifi and RFID, with the same cell ranges (e.g. 5, 10 and 15) and

variable nodes (e.g. 10, 20, 40) in Fig.’s: 5.27 - 5.28. Additionally, GPS was compared

for the values 60% and 80% probability of signal loss in Fig’s: 5.29. The minimum,

maximum, mean and standard deviation are shown for each category. The categories

138

Figure 5.24.: The standard deviation of the mean

are made up of at least 100 runs each. The frequencies are spread into ‘bins’ and

then the distribution is both listed and shown in a chart. For the Wifi data, there

is discernible movement both for the increase in sensor nodes (shown in each chart),

and the range of the sensors (shown vertically in each chart). Most of the histograms

for Wifi approach a normal distribution with the exception of a few outliers.

The histograms created for the RFID distributions also show the minimum,

maximum, mean and standard deviation. The relative frequency of each 100 runs is

broken into a separate information section. Although RFID shows an improvement

for an increase in the number of sensors, it does not show the same increase for the

higher cell range for the sensor signal. The data shows a noticeable dip from the

RFID range of 10 cells, to the higher range of 15 cells. Additionally, the data appears

more sinusoidal than a normalized bell-curve.

The histogram created for the GPS distribution examines the relationship

between the random probability of signal loss for both 60% and 80%. There is no

range for the GPS signal. It is considered full-coverage outside, unless the proximity

of a building interferes. There is no consideration for nodes in this context either. As

GPS is predicated on satellites, there is little chance of adding or removing satellites

139

Figure 5.25.: Chi-Square Test of Independence for Wifi

from the equation for any type of environment. With the previous limitations, the

data from multiple runs is incorporated into Fig: 5.29. While the previous histograms

cover approximately 100 runs, GPS includes 1,000 runs for each coverage level. The

data exhibits an improvement when the probability of GPS loss is lower, but also

displays a bimodal distribution with no data in between the distributions.

5.5 Conclusion

This chapter presented the final model and the data captured during the runs

which the model simulated. Over 14,000 iterations were run resulting in identifiable

but modest changes in the three critical independent variables. These changes were

associated with (a) increase in the number of Wifi and RFID sensors, (b) increase in

140

Figure 5.26.: Chi-Square Test of Independence for RFID

range of sensors and (c) combination sensor signals into single application capable of

exploiting the incoming information via the prototype software.

An image of the simulation in action is given with Fig:’s 5.30, 5.31, 5.32 and

5.33. In the image each of the Wifi and RFID sensors location is shown, Wifi is

magenta, while RFID is black. The path of the user is shown based on the signal in

use. The legend is included (Fig: 5.31), with Wifi as magenta, RFID as green, GPS

as black and blue when there is no signal at all.

The data indicated that for a typical mid-range public building, the best im

provement in signal availability (i.e. higher time-step count) was a mid Wifi range

of 10 cells and a sensor count of 20 nodes and an RFID range of 5 cells and a sensor

count of 40 nodes. The nodes are not required to be distributed in a grid fashion,

141

Figure 5.27.: Histogram of all Wifi configurations

placement is secondary to the count and more important to the range of the sensor.

This is an improvement over previous research that uses checkerboard style RFID

placement or massive coverage to provide information. This is important as signal

interference can be detrimental when the count of the nodes is overwhelming.

The multi-story nature of the environment has been overcome as an obstacle

because the simulation creates a virtual grid of each locality (e.g. building floor). The

nominal pricing of the cost of Wifi and RFID sensor nodes, and the improvement

found by adjusting the signal suggests it is economically feasible to test this in a

real-world environment.

142

Figure 5.28.: Histogram of all RFID configurations

Figure 5.29.: Histogram for comparing the probabilities of GPS loss

143

Figure 5.31.: Sensor

Figure 5.30.: The sensor system availability on Legend

the Purdue campus

Figure 5.33.: The sensor system Figure 5.32.: The sensor system

availability in Lawson availability in Knoy

144

CHAPTER 6. CONCLUSION

6.1 Discussion

The results of the model and data were presented in the previous chapter.

The three independent variables (number of sensors, range of sensors, signal combi

nations) produced identifiable and statistically significant improvements over previ

ous research. The systems were combined into a classic system-of-systems framework

using multi-agent organization that allowed the utilization of current technologies,

while providing a common interface. This interface allowed accessibility irrespective

of transportation type, location, connectivity or immediate environment. The original

goals of the research were:

• Examine use of agent-based model

This was interspersed throughout the entire research.

• Formalize theoretical description of SoS

This was accomplished in the Methodology Chapter.

• Perform ABM

This occurred in the Prototype, Methodology and Agent-based SoS Results

Chapters.

• Implement prototypes

Each prototype is detailed and discussed in the Prototype and Agent-based

SoS Chapters.

The literature review of each topic included both the state of the art (in

appropriate areas), as well as work with relevance to this research. Due to the in

terdisciplinary and lengthy research available to the area, the review was broken into

145

several subtopics, which included mobile devices, indoor localization, modeling and

simulation, complex systems and path-planning. The purpose of the review was to

identify current trends as well as areas open for improvement.

The data illustrated the best percentage increase in signal availability (i.e.

higher time-step count) was a mid Wifi range of 10 cells and a sensor count of 20

nodes and an RFID range of 5 cells and a sensor count of 40 nodes. The nodes are

not required to be distributed in a grid fashion, placement is secondary to the count

and more important to the range of the sensor. This is an improvement over previous

research that uses checkerboard style RFID placement or massive coverage to provide

information. This is important as signal interference can be detrimental when the

count of the nodes is overwhelming. The multi-story nature of the environment was

handled as the simulation creates a virtual grid of each locality (e.g. building floor),

while it is economically feasible to test this in a real-world environment.

6.2 Conclusion

Location-based services and navigation is a relevant topic that is pertinent to

most digital device users. With this as motivation, this research studied the idea

of a multi-agent system-of-systems (MaSoS) for navigation in a heterogeneous en

vironment. An example would be moving through di↵erent environments that au

tonomously select available sensor systems to aid in localization. Experiments were

designed to critically examine whether an agent or multi-agent system is appropri

ate for a navigation application. The system was formally defined and implemented

through both application and model.

Typically localization and navigation are available based on the device at hand,

a user’s location, network coverage or mode of transportation. This study converged

these ideas into a model for an autonomous system. The models and prototypes con

structed combined disparate localization technologies into the possibility of a single

framework solution. This research quantified measures of the system by looking at

146

the availability of sensor systems based on location, and the cost of movement using

that system. The research expanded and refined the methodology as the prototypes

were developed and tested. This approach attempted to achieve a previously unex

ploited deployment of existing sensor technologies within a methodological framework

to more readily enable testing of new or additional technologies.

The research was separated into three prototypes (P
I - PIII

). The first pro

totype studied the application of several ideas into a workable prototype, the second

prototype included an applied e↵ort and a modeling e↵ort, and the third was strictly

a model to improve the data collection process.

P
I

, the Android Prototype, was implemented on an existing and publicly avail

able device. This limited the need for additional equipment. The use of an existing

device and ISO standardized equipment allowed the system to be open-source and

configurable. The system was able to track a user across campus and within the

building as well as provide the current floor-plan based on the user’s location.

P
II

, the iPhone, combined development of an applied system and the concept

of a simulation. The application explored the embedded sensors of an unaugmented

smart-phone. Using these sensors results in a known squaring error (due to the double

integration). An attempt was made to categorize human movement to reset the error

during each step. Unfortunately, human locomotion was too complex to be reliable

and this e↵ort was set aside. The experiment was still useful as familiarity with the

environment and sensors was gained.

Additionally, the first multi-agent-based model was successfully run from the

environment. The simulation was implemented as a proof-of-concept. The system

was designed to be multi-agent and easily adaptable to a variety of environments and

scenarios. The basic system worked well and simulated an indoor environment.

P
III

, was a simulation performed in MatLab. Within the environment, a model

was developed to study the behavior of agent and multi-agent systems. The Purdue

campus environment was used to represent an urban canyon. As the system was run

as a simulation, agent behavior and emergent activities were explored. The simulation

147

provided isolation of noise with respect to the environment and allowed control to

be maintained over each variable. The model was constrained by not recording any

assumptions on the system performance of an actual device. The simulation provided

a framework for adding additional sensors to the system. The results proved that

navigation is improved by the addition of sensor nodes, up to an upper bound, but

that the greater improvement came from adjusting the range of the sensor signal.

6.2.1 Contribution of Research

The contribution of the research is in the study of the mechanics of an agent-

based system of navigation in a complex environment. The details of switching be

tween individual navigation systems and transport modes was examined specifically.

Additionally, the inclusion of multiple environments (e.g. outdoor, indoor and multi-

floor) was handled through a virtual grid creation method that did not include massive

sensor coverage.

This research was novel as it examined fusion of existing sensor technologies

with a generic framework to allow the testing of new or additional technologies.

Additionally, the system looked at publicly available mobile devices, existing network

and sensor networks, and the possibility of new technologies. The development of

simulations and prototypes assisted in measuring the validity of the study.

6.3 Future Work

The agents, the environment, and the supporting systems were all programmed

in a modular format to allow for future research avenues. A number of extensions are

immediately available, while others would take careful consideration. Some extensions

are exceedingly simple such as allowing the agent to select the mode of transporta

tion, randomly selecting start and end coordinates, or having multiple agents moving

simultaneously.

148

Table 6.1: Comparison of Prototypes

P
I P

II P
III

M
I - MIII

P
III

M
IV

Platform Android Nexus S Apple iPhone MatLab Sim MatLab Sim

Domain Path-plan, navi

gate

Path-plan Path-plan, navi

gate, localize

Path-plan, navi

gate, localize

Method Experiment Experiment,

MAS

MaS predicated

on DEVS

MaSoS

Results Integration of

GPS, Wifi and

RFID

Successful ABM,

Embedded sen

sors too noisy

Successful ABM

with GPS and

Wifi

Successful Ma-

SoS with GPS,

Wifi and RFID

Others concentrate more on the structure of the environment, such as the pos

sibility of combining the low-level metric map with a higher abstract or topographical

map to interconnect them.

Some of the challenges of the simulation could be addressed such as having

the sensor system recalculate the path, strictly on the information available by the

current sensor system. Part of solving this problem is creating an adjacency matrix

that does not hop over unknown locations.

Some of the additions would solve real-world issues with the simulation. Cre

ating an accuracy measure of the sensor systems as an additional measure of the cost

of a route would provide a more realistic weight of the path cost.

Some changes that could provide interesting avenues are in the area of the

agent behavior. Introducing both cooperative and competing agents would allow for

the study of the system dynamics. Allowing the agents to share information and

make decisions would be a closer representation of human behavior and provide the

opportunity for the agent to be more intelligent and autonomous. Sharing information

o↵ers the opportunity to incorporate additional information about environments that

149

other agents are experiencing, or to setup a type of social component that allows for

the agents to see or locate other agents.

Agents making decisions would allow more complex behavior such as agents

leaving the planned path. Additionally, real-world applications immediately exist

for such a device. In the case of the Purdue campus, a hand-held device could

be provided to visitors who are able to move about the campus without human

interaction. Pertinent information could be provided (if desired) o↵ering historical

information about the campus.

Moving the study into mobile devices, networking, and security is also of

interest. Resources are always a valuable and constrained item. Studying the e↵ect

of the implementation on live devices and networks will allow for further measures

to be recorded. In the current environment, security is always relevant. There is a

broad area to review in terms of the user, agent, sensor, network and the security of

each.

The potential value of the extension of this research includes:

1. allowing directional acuity without a priori knowledge;

2.	 enhancing navigation for persons with disabilities; and

3.	 integrating environmental knowledge (i.e. tra�c congestion avoidance, weather

information integration or emergency preparedness) at the point of entry to the

user.

LIST OF REFERENCES

150

LIST OF REFERENCES

[1] M. Maier, “Architecting principles for system-of-systems,” Systems Engineering,
vol. 1, pp. 267–284, February 1999.

[2] D. A. DeLaurentis, W. A. Crossley, and M. Mane, “A taxonomy to guide sys
tem of systems decision-making in air transportation problems,” AIAA
Journal of Aircraft, vol. in press, 2011.

[3] NPD, “http://www.connected-intelligence.com/,” Feb. 2012.

[4] S. P. Hall and E. Anderson, “Operating systems for mobile computing,” J. Com
put. Small Coll., vol. 25, no. 2, pp. 64–71, 2009.

[5] F. Lin and W. Ye,	 “Operating system battle in the ecosystem of smartphone
industry,” in IEEC ’09: Proceedings of the 2009 International Symposium
on Information Engineering and Electronic Commerce, (Washington, DC,
USA), pp. 617–621, IEEE Computer Society, 2009.

[6] E. Oliver, “A survey of platforms for mobile networks research,” SIGMOBILE
Mob. Comput. Commun. Rev., vol. 12, no. 4, pp. 56–63, 2008.

[7] S. Hoseinitabatabaei, A. Gluhak, and R. Tafazolli, “udirect: A novel approach
for pervasive observation of user direction with mobile phones,” in Per
vasive Computing and Communications (PerCom), 2011 IEEE Interna
tional Conference on, pp. 74 –83, march 2011.

[8] M. Derawi, C. Nickel, P. Bours, and C. Busch, “Unobtrusive user-authentication
on mobile phones using biometric gait recognition,” in Intelligent Infor
mation Hiding and Multimedia Signal Processing (IIH-MSP), 2010 Sixth
International Conference on, pp. 306 –311, oct. 2010.

[9] C.	 Barthold, K. Pathapati Subbu, and R. Dantu, “Evaluation of gyroscope-
embedded mobile phones,” in Systems, Man, and Cybernetics (SMC),
2011 IEEE International Conference on, pp. 1632 –1638, oct. 2011.

[10] M. Anvaari and S. Jansen, “Evaluating architectural openness in mobile software
platforms,” in ECSA ’10: Proceedings of the Fourth European Conference
on Software Architecture, (New York, NY, USA), pp. 85–92, ACM, 2010.

[11] G. Kim and B. Hong, “Rfid-based onion skin location estimation technique in in
door environment,” in Grid and Distributed Computing (D. Slezak, T.-h.
Kim, S. S. Yau, O. Gervasi, and B.-H. Kang, eds.), vol. 63 of Commu
nications in Computer and Information Science, pp. 164–175, Springer
Berlin Heidelberg, 2009.

http:Rev.,vol.12
http:Coll.,vol.25
http:http://www.connected-intelligence.com

151

[12] F. Manzoor, Y. Huang, and K. Menzel, “Passive rfid-based indoor positioning
system, an algorithmic approach,” in 2010 IEEE International Conference
on RFID-Technology and Applications (RFID-TA), pp. 112 –117, jun.
2010.

[13] Y. Zhao, Y. Liu, and L. M. Ni, “Vire: Active rfid-based localization using virtual
reference elimination.”

[14] J. Zhao and D. DeLaurentis, “Issues and opportunities for agent-based modeling
in air transportation,” in First Conference on Infrastructure Systems and
Services: Building Networks for a Brighter Future (INFRA), pp. 1–6,
November 2008.

[15] J. Zhao and Q. Li, “A method for modeling drivers’ behavior rules in agent-based
tra�c simulation,” in Geoinformatics, 2010 18th International Confer
ence on, pp. 1 –4, june 2010.

[16] A. Pradhan, E.	 Ergen, and B. Akinci, “Technological assessment of radio fre
quency identification technology for indoor localization,” Journal of Com
puting in Civil Engineering, vol. 23, no. 4, pp. 230–238, 2009.

[17] F.-j. Zhu, Z.-h. Wei, B.-j. Hu, J.-g. Chen, and Z.-m. Guo, “Analysis of indoor po
sitioning approaches based on active rfid,” in WiCOM’09: Proceedings of
the 5th International Conference on Wireless communications, network
ing and mobile computing, (Piscataway, NJ, USA), pp. 5182–5185, IEEE
Press, 2009.

[18] L.	 Ni, Y. Liu, Y. C. Lau, and A. Patil, “Landmarc: indoor location sensing
using active rfid,” in Pervasive Computing and Communications, 2003.
(PerCom 2003). Proceedings of the First IEEE International Conference
on, pp. 407 – 415, march 2003.

[19] J. Yuan, X. Wang, L. Dong, N. Li, F. Wang, Y. Huang, F. Sun, and Y. Wang,
“Isilon-an intelligent system for indoor localization and navigation based
on rfid and ultrasonic techniques,” in Intelligent Control and Automation
(WCICA), 2010 8th World Congress on, pp. 6625 –6630, july 2010.

[20] D. Hahnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose, “Mapping and
localization with rfid technology,” in In Proceedings of IEEE International
Conference on Robots and Automation (ICRA’04), 2004.

[21] K. Yelamarthi, D. Haas, D. Nielsen, and S. Mothersell, “Rfid and gps integrated
navigation system for the visually impaired,” in 2010 53rd IEEE Interna
tional Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1149
–1152, aug. 2010.

[22] R. Mau, N. A. Melchior, M. Makatchev, and A. Steinfeld, “Blindaid: An elec
tronic travel aid for the blind,” 2008.

[23] S. Willis and S. Helal, “Rfid information grid for blind navigation and wayfind
ing,” in ISWC ’05: Proceedings of the Ninth IEEE International Sympo
sium on Wearable Computers, (Washington, DC, USA), pp. 34–37, IEEE
Computer Society, 2005.

http:Engineering,vol.23

152

[24] N. Ahmed, S.	 Butler, and U. Ramachandran, “Guardianangel: An rfid-based
indoor guidance and monitoring system,” in 2010 8th IEEE Interna
tional Conference on Pervasive Computing and Communications Work
shops (PERCOM Workshops), pp. 546 –551, mar. 2010.

[25] S. R. Gandhi, “A real time indoor navigation and monitoring system for firefight
ers and visually impaired,” Master’s thesis, University of Massachusetts,
Amherst, May 2011.

[26] I. Constandache, R. Choudhury, and I. Rhee, “Towards mobile phone localization
without war-driving,” in In Proceedings of 2010 IEEE InfoCom, pp. 1 –9,
mar. 2010.

[27] C.-H. Hsu and C.-H. Yu, “An accelerometer based approach for indoor localiza
tion,” in Symposia and Workshops on Ubiquitous, Autonomic and Trusted
Computing UIC-ATC ’09, pp. 223 –227, jul. 2009.

[28] A. Parnandi,	 K. Le, P. Vaghela, A. Kolli, K. Dantu, S. Poduri, and G. S.
Sukhatme, “Coarse in-building localization with smartphones,” in Mo
bile Computing, Applications, and Services, vol. 35 of Lecture Notes of
the Institute for Computer Sciences, Social Informatics and Telecommu
nications Engineering, pp. 343–354, Springer Berlin Heidelberg, 2010.

[29] A.	 Ofstad, E. Nicholas, R. Szcodronski, and R. R. Choudhury, “Aampl: ac
celerometer augmented mobile phone localization,” in MELT ’08: Pro
ceedings of the first ACM international workshop on Mobile entity local
ization and tracking in GPS-less environments, (New York, NY, USA),
pp. 13–18, ACM, 2008.

[30] A. Amanatiadis, D. Chrysostomou, D. Koulouriotis, and A. Gasteratos, “A fuzzy
multi-sensor architecture for indoor navigation,” in Imaging Systems and
Techniques (IST), 2010 IEEE International Conference on, pp. 452 –457,
July 2010.

[31] M.	 Kourogi, T. Ishikawa, Y. Kameda, J. Ishikawa, K. Aoki, and T. Kurata,
“Pedestrian dead reckoning and its applications,” in Let’s Go Out: Re
search in Outdoor Mixed and Augmented Reality, Oct. 2009.

[32] A.	 Dekel and E. Schiller, “Drec: exploring indoor navigation with an un
augmented smart phone,” in MobileHCI ’10: Proceedings of the 12th
international conference on Human computer interaction with mobile de
vices and services, (New York, NY, USA), pp. 393–394, ACM, 2010.

[33] M.	 Hynes, H. Wang, and L. Kilmartin, “O↵-the-shelf mobile handset environ
ments for deploying accelerometer based gait and activity analysis algo
rithms,” in Engineering in Medicine and Biology Society, 2009. EMBC
2009. Annual International Conference of the IEEE, pp. 5187 –5190, sep.
2009.

[34] J. Liu,	 R. Chen, L. Pei, W. Chen, T. Tenhunen, H. Kuusniemi, T. Kroger,
and Y. Chen, “Accelerometer assisted robust wireless signal positioning
based on a hidden markov model,” in In Proceedings of 2010 IEEE/ION
Position Location and Navigation Symposium (PLANS), pp. 488 –497,
may. 2010.

153

[35] N. A. of Sciences, “John von neumann.”

[36] A. B. Ulam, “Adam b. ulam.”

[37] J. Conway and R. Guy, The book of numbers. Copernicus, 1996.

[38] Nobelprize.org, “The sveriges riksbank prize in economic sciences in memory of
alfred nobel 2005.”

[39] J. M. Epstin and R. L. Axtell, “Growing artificial societies: Social science from
the bottom up,” in The MIT Press, 1996.

[40] H. V. D. Parunak, R. Savit, and R. L. Riolo, “Agent-based modeling vs. equation-
based modeling: A case study and users’ guide,” in Proceedings of the
First International Workshop on Multi-Agent Systems and Agent-Based
Simulation, (London, UK), pp. 10–25, Springer-Verlag, 1998.

[41] C. M. Macal and M. J. North, “Turotial on agent-based modeling and simula
tion,” in Winter Simulation Conference, pp. 2–15, 2005.

[42] C. M. Macal and M. J. North, “Tutorial on agent-based modeling and simulation
part 2: how to model with agents,” in Proceedings of the 38th conference
on Winter simulation, WSC ’06, pp. 73–83, Winter Simulation Confer
ence, 2006.

[43] A. L.	 Bauer, C. A. Beauchemin, and A. S. Perelson, “Agent-based modeling
of host-pathogen systems: The successes and challenges,” Information
Sciences, vol. 179, no. 10, pp. 1379 – 1389, 2009. Including Special Issue
on Artificial Imune Systems.

[44] D.	 Sallach, N. Collier, T. Howe, and M. North, “Repast (modeling toolkit),”
2006.

[45] A. Getchell, “Agent-based modeling.” Working Paper, 2008.

[46] C. Nikolai and G. Madey, “Tools of the trade: A survey of various agent based
modeling platforms,” Journal of Artificial Societies and Social Simulation,
vol. 12, no. 2, p. 2, 2009.

[47] B.	 L. Heath, The History, Philosophy, and Practice of Agent-Based Model
ing and the Development of the Conceptual Model for Simulation Dia
gram. PhD thesis, Wright State University, http://etd.ohiolink.edu/send
pdf.cgi/Heath2010.

[48] B.	 Zeigler, Multifacetted Modeling and Discrete Event Simulation. Academic
Press, 1984.

[49] M. K. Traore, “Combining devs and logic,” in In the Open International Con
ference on Modeling and Simulation, OICMS 2005, 2005.

[50] B.	 S. S. Onggo, “Running agent-based models on a discrete-event simulator,”
in The European Multidisciplinary Society for Modelling and Simulation
Technology.

http://etd.ohiolink.edu/send
http:Nobelprize.org

154

[51] R. Duboz, D. Versmisse, G. Quesnel, A. Muzy, and E. Ramat, Specification of
Dynamic Structure Discrete Event Multiagent Systems, vol. 38, p. 103.
Society for Computer Simulation; 1999, 2006.

[52] D.	 Gianni, “Bringing discrete event simulation concepts into multi-agent sys
tems,” in Computer Modeling and Simulation, 2008. UKSIM 2008. Tenth
International Conference on, pp. 186 –191, april 2008.

[53] D.	 D. Bochtis, C. G. Sørensen, and S. G. Vougioukas, “Original paper: Path
planning for in-field navigation-aiding of service units,” Comput. Electron.
Agric., vol. 74, pp. 80–90, October 2010.

[54] J. M. Usher and L. Strawderman,	 “Simulating operational behaviors of pedes
trian navigation,” Comput. Ind. Eng., vol. 59, pp. 736–747, November
2010.

[55] X. Wei, M. Xiong, X. Zhang, and D. Chen, “A hybrid simulation of large crowd
evacuation,” in Parallel and Distributed Systems (ICPADS), 2011 IEEE
17th International Conference on, pp. 971 –975, dec. 2011.

[56] J. Falco, M. Idiago, A. Delgado, A. Marco, A. Asensio, and D. Cirujano, “In
door navigation multi-agent system for the elderly and people with dis
abilities,” in Trends in Practical Applications of Agents and Multiagent
Systems (Y. Demazeau, F. Dignum, J. Corchado, J. Bajo, R. Corchuelo,
E. Corchado, F. Fernández-Riverola, V. Julián, P. Pawlewski, and
A. Campbell, eds.), vol. 71 of Advances in Soft Computing, pp. 437–442,
Springer Berlin / Heidelberg, 2010.

[57] A. P. Y. Morere, “A multi-agent control structure for intelligent wheelchair and
aide navigation for disabled people,” in In Proc. of the 2004 International
Symposium on Robotics (ISR 2004), p. 64, March 2004.

[58] M. Wooldridge, An Introduction to MultiAgent Systems. John Wiley and Sons
Ltd., 2002.

[59] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pearson
Education, 2003.

[60] G. Weiss, Multi-agent Systems: A modern approach to distributed artificial in
telligence. Cambridge, MA: MIT Press, 1999.

[61] C. Tao and S. Huang,	 “An extensible multi-agent based tra�c simulation sys
tem,” in Measuring Technology and Mechatronics Automation, 2009.
ICMTMA ’09. International Conference on, vol. 3, pp. 713 –716, April
2009.

[62] T. Abdelaziz, M. Elammari, and C. Branki, “Masd: Towards a comprehensive
multi-agent system development methodology,” in On the Move to Mean
ingful Internet Systems: OTM 2008 Workshops (R. Meersman, Z. Tari,
and P. Herrero, eds.), vol. 5333 of Lecture Notes in Computer Science,
pp. 108–117, Springer Berlin / Heidelberg, 2008.

http:Agric.,vol.74

155

[63] C. Bernon, M.-P. Gleizes, S. Peyruqueou, and G. Picard, “Adelfe: A methodol
ogy for adaptive multi-agent systems engineering,” in Engineering Soci
eties in the Agents World III (P. Petta, R. Tolksdorf, and F. Zambonelli,
eds.), vol. 2577 of Lecture Notes in Computer Science, pp. 70–81, Springer
Berlin / Heidelberg, 2003.

[64] B. An, V. Lesser, and K. Sim, “Strategic agents for multi-resource negotiation,”
Autonomous Agents and Multi-Agent Systems, pp. 1–40, 2010.

[65] E. Matson, “Embedding intelligent agents to enable physical robotic and sensor
organizations,” in Computational Intelligence in Robotics and Automation
(CIRA), 2009 IEEE International Symposium on, pp. 309 –315, Decem
ber 2009.

[66] E. T. Matson, “Transition process distinction in multiagent organization,” in
Web Intelligence and Intelligent Agent Technologies, 2009. WI-IAT ’09.
IEEE/WIC/ACM International Joint Conferences on, vol. 2, pp. 527 –
532, September 2009.

[67] E. Argente, V. Julian, and V. Botti, “Mas modeling based on organizations,” in
Agent-Oriented Software Engineering IX (M. Luck and J. Gomez-Sanz,
eds.), vol. 5386 of Lecture Notes in Computer Science, pp. 16–30, Springer
Berlin / Heidelberg, 2009.

[68] M. Wood and S. DeLoach, “An overview of the multiagent systems engineering
methodology,” in Agent-Oriented Software Engineering (P. Ciancarini and
M. Wooldridge, eds.), vol. 1957 of Lecture Notes in Computer Science,
pp. 1–53, Springer Berlin / Heidelberg, 2001.

[69] W. Oyenan and S. DeLoach, “Design and evaluation of a multiagent autonomic
information system,” in Intelligent Agent Technology, 2007. IAT ’07.
IEEE/WIC/ACM International Conference on, pp. 182 –188, Nov 2007.

[70] M.	 Cardoso Silva, A. Bicharra Garcia, and A. Conci, “A multi-agent system
for dynamic path planning,” in Social Simulation (BWSS), 2010 Second
Brazilian Workshop on, pp. 47 –51, oct. 2010.

[71] K.-H. C.	 Wang and A. Botea, “Tractable multi-agent path planning on grid
maps,” in Proceedings of the 21st international jont conference on Ar
tifical intelligence, (San Francisco, CA, USA), pp. 1870–1875, Morgan
Kaufmann Publishers Inc., 2009.

[72] D.	 DeLaurentis and R. K. C. Callaway, “A system-of-systems perspective for
public policy decisions,” Review of Policy Research, vol. 21, no. 6, pp. 829–
837, 2004.

[73] D.	 DeLaurentis, “Understanding transportation as a system-of-systems design
problem,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit AAIA,
vol. 123, pp. 10–13, January 2005.

[74] R. V. Scha↵, D. DeLaurentis, and M. D. Abraham, “E↵ective decision-making for
dod humanitarian infrastructure projects using agent-based modeling,” in
IEEE SMC International Conference on System-of-Systems Engineering,
San Antonio, TX, April 2007.

156

[75] D. DeLaurentis, “A taxonomy-based perspective for systems of systems design
methods,” in Systems, Man and Cybernetics, 2005 IEEE International
Conference on, vol. 1, pp. 86 – 91 Vol. 1, Oct 2005.

[76] M. Jamshidi, “System of systems engineering - new challenges for the 21st cen
tury,” IEEE Aerospace and Electronic Systems Magazine, vol. 23, pp. 4 –
19, May 2008.

[77] V. Mahulkar,	 S. McKay, D. Adams, and A. Chaturvedi, “System-of-systems
modeling and simulation of a ship environment with wireless and intelli
gent maintenance technologies,” Systems, Man and Cybernetics, Part A:
Systems and Humans, IEEE Transactions on, vol. 39, pp. 1255 –1270,
November 2009.

[78] M. Mane and D. A. DeLaurentis,	 “System integration and risk propogation in
aeronautical systems-of-systems,” in The 27th Congress of International
Council of the Aeronautical Sciences (ICAS), Nice, France, September
2010.

[79] A. Ozkil, Z. Fan, J. Xiao, J. Kristensen, S. Dawids, K. Christensen, and
H. Aanaes, “Practical indoor mobile robot navigation using hybrid maps,”
in Mechatronics (ICM), 2011 IEEE International Conference on, pp. 475
–480, april 2011.

[80] N. MacMillan, R. Allen, D. Marinakis, and S. Whitesides, “Range-based naviga
tion system for a mobile robot,” in Computer and Robot Vision (CRV),
2011 Canadian Conference on, pp. 16 –23, may 2011.

[81] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge University
Press, 2006. Available at http://planning.cs.uiuc.edu/.

[82] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic determi
nation of minimum cost paths,” IEEE Transactions on Systems Science
and Cybernetics, vol. 4, pp. 100–107, February 1968.

[83] T. Yuksel and A. Sezgin, “An implementation of a path-planning algorithms for
mobile robots on a grid based map.” 2008.

[84] L.	 Rampant, “Application of dynamic graphs for the fastest route search in
a transport network,” Master’s thesis, Technical University of Ostrava,
2011.

[85] H. Wu, A. Marshall, and W. Yu, “Path planning and following algorithms in an
indoor navigation model for visually impaired,” in Second International
Conference on Internet Monitoring and Protection, ICIMP 2007, pp. 38
–38, jul. 2007.

[86] J.-H. Zhou	 and H.-Y. Lin, “A self-localization and path planning technique
for mobile robot navigation,” in Intelligent Control and Automation
(WCICA), 2011 9th World Congress on, pp. 694 –699, june 2011.

[87] J. Sun and X. Li, “Indoor evacuation routes planning with a grid graph-based
model,” in Geoinformatics, 2011 19th International Conference on, pp. 1
–4, june 2011.

http:http://planning.cs.uiuc.edu

157

[88] B.	 Dasarathy, “Nearest neighbor (nn) norms: Nn pattern classification tech
niques,” IEEE Computer Society Press, 1991.

[89] V. de Almeida and R. Guting, “Using dijkstra’s algorithm to incrementally find
the k-nearest neighbors in spatial network databases.,” in In SAC ’06:
Proceedings of the 2006 ACM symposium on Applied computing, pp. 58–
62, ACM, 2006.

[90] K.	 Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is ”nearest
neighbor” meaningful?,” in In Int. Conf. on Database Theory, pp. 217–
235, 1999.

[91] C. Sommer, Approximate Shortest Path and Distance Queries in Networks. PhD
thesis, University of Tokyo, 2010.

[92] Wikipedia, “Comparison of agent-based modeling software,” 2012.

[93] J. Wang, M.	 Tian, T. Zhao, and W. Yan, “A gps-free wireless mesh network
localization approach,” in CMC ’09: Proceedings of the 2009 WRI Inter
national Conference on Communications and Mobile Computing, (Wash
ington, DC, USA), pp. 444–453, IEEE Computer Society, 2009.

[94] A. Kim,	 M. Kim, E. Puchaty, M. Sevcovic, and D. Delaurentis, “A system
of-systems framework for the improved capability of insurgent tracking
missions involving unmanned aerial vehicles,” in System of Systems En
gineering (SoSE), 2010 5th International Conference on, pp. 1 –6, June
2010.

[95] S. Carcieri, S.	 Morris, and B. D. Perry, “Rfid technology to aid in navigation
and organization for the blind and partially sighted thesis,” 2009.

[96] C. Hekimian-Williams, B. Grant, X. Liu, Z. Zhang, and P. Kumar, “Accurate
localization of rfid tags using phase di↵erence,” in RFID, 2010 IEEE
International Conference on, pp. 89 –96, 2010.

[97] S. Saab and S. Nakad, “A standalone rfid indoor positioning system using passive
tags,” Industrial Electronics, IEEE Transactions on, vol. PP, no. 99, pp. 1
–1, 2010.

[98] F. Camps,	 S. Harasse, and A. Monin, “Numerical calibration for 3-axis ac
celerometers and magnetometers,” pp. 217 –221, jun. 2009.

[99] J. A. Hesch,	 F. M. Mirzaei, G. L. Mariottini, and S. I. Roumeliotis, “A 3d
pose estimator for the visually impaired,” in IROS’09: Proceedings of
the 2009 IEEE/RSJ international conference on Intelligent robots and
systems, (Piscataway, NJ, USA), pp. 2716–2723, IEEE Press, 2009.

[100] I. C. Lopes, B. Vaidya, and J. J. P. C. Rodrigues, “Sensorfall - an accelerometer
based mobile application,” pp. 1 –6, dec. 2009.

[101] P. Silva, M. Paralta, R. Caldeirinha, J. Rodrigues, and C. Serodio, “Traceme
indoor real-time location system,” pp. 2721 –2725, nov. 2009.

158

[102] X. Sun	 and S. Koenig, “The fringe-saving a* search algorithm: a feasibility
study,” in IJCAI’07: Proceedings of the 20th international joint confer
ence on Artifical intelligence, (San Francisco, CA, USA), pp. 2391–2397,
Morgan Kaufmann Publishers Inc., 2007.

[103] X. Sun, W. Yeoh, and S. Koenig, “Dynamic fringe-saving a*,” in AAMAS ’09:
Proceedings of The 8th International Conference on Autonomous Agents
and Multiagent Systems, (Richland, SC), pp. 891–898, International Foun
dation for Autonomous Agents and Multiagent Systems, 2009.

[104] X. Sun, W. Yeoh, and S. Koenig, “Moving target d* lite,” in AAMAS ’10: Pro
ceedings of the 9th International Conference on Autonomous Agents and
Multiagent Systems, (Richland, SC), pp. 67–74, International Foundation
for Autonomous Agents and Multiagent Systems, 2010.

[105] M. Lin, A. Sud, J. Van den Berg, R. Gayle, S. Curtis, H. Yeh, S. Guy, E. Ander
sen, S. Patil, J. Sewall, and D. Manocha, “Real-time path planning and
navigation for multi-agent and crowd simulations,” in Motion in Games
(A. Egges, A. Kamphuis, and M. Overmars, eds.), vol. 5277 of Lecture
Notes in Computer Science, pp. 23–32, Springer Berlin / Heidelberg, 2008.

[106] D. Ashlock, T. Manikas, and K. Ashenayi, “Evolving a diverse collection of robot
path planning problems,” in IEEE Congress on Evolutionary Computa
tion, CEC2006, (Vancouver, BC), pp. 1837–1844, 2006.

[107] J. Bruce and M.	 Veloso, “Real-time randomized path planning for robot nav
igation,” in In 2002 IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 3, pp. 2383–2388, 2002.

[108] S.Hasegawa and A.Kashihara,	 “Open-ended navigation path planning in self-
directed learning on the web,” in IADIS International Conference on Cog
nition and Exploratory Learning in Digital Age (CELDA2004), (Lisbon,
Portugal), pp. 487–490, 2004.

[109] S. DeLoach, “Engineering organization-based multiagent systems,” in Software
Engineering for Multi-Agent Systems IV (A. Garcia, R. Choren, C. Lu
cena, P. Giorgini, T. Holvoet, and A. Romanovsky, eds.), vol. 3914 of
Lecture Notes in Computer Science, pp. 109–125, Springer Berlin / Hei
delberg, 2006.

[110] S.	 DeLoach and J. Valenzuela, “An agent-environment interaction model,” in
Agent-Oriented Software Engineering VII (L. Padgham and F. Zam
bonelli, eds.), vol. 4405 of Lecture Notes in Computer Science, pp. 1–18,
Springer Berlin / Heidelberg, 2007.

[111] S.	 DeLoach, W. Oyenan, and E. Matson, “A capabilities-based model for
adaptive organizations,” Autonomous Agents and Multi-Agent Systems,
vol. 16, pp. 13–56, February 2008.

[112] E. Oliver, “A survey of mobile database caching strategies.” CS 648 - Database
Systems Implementation course project, August 2007.

[113] E.	 Bonabeau, “Agent-based modeling; methods and techniques for simulating
human systems,” in Colloqium Paper: Adaptive Agents, Intelligence, and
Emergent Human Organization; Capturing Complexity through Agent-
Based Modeling, vol. 99, pp. 7280–7287, PNAS, 2002.

159

[114] C. Castle and A. Crooks, “Principles and Concepts of Agent-Based Modelling
for Developing Geospatial Simulations,” September 2006.

[115] N. Gilbert, “Agent-based models,” in Not Sure, 2008.

[116] J. Schank, “Agent-based modeling,” agent-based-models.com, March 2010.

[117] E. Matson and R. Bhatnagar, “Properties of capability based agent organization
transition,” in Proceedings of the IEEE/WIC/ACM international confer
ence on Intelligent Agent Technology, IAT ’06, (Washington, DC, USA),
pp. 59–65, IEEE Computer Society, 2006.

[118] E.	 Matson, A. Smith, and J. Dietz, “Application of adaptive wireless sensor
organizations to secure spatial domains,” in Technologies for Homeland
Security, 2009. HST ’09. IEEE Conference on, pp. 67 –72, May 2009.

[119] D.	 DeLaurentis, “Appropriate modeling and analysis for systems of systems:
Case study synopses using a taxonomy,” in System of Systems Engineer
ing, 2008. SoSE ’08. IEEE International Conference on, pp. 1 –6, June
2008.

[120] P.-C. DeLaurentis and D. DeLaurentis, “Consideration of system of systems and
service systems as complimentary approaches for healthcare problems,”
in System of Systems Engineering (SoSE), 2010 5th International Con
ference on, pp. 1 –6, June 2010.

[121] M.	 Jamshidi, “Control of system of systems,” in Industrial Informatics, 2009.
INDIN 2009. 7th IEEE International Conference on, pp. 1 –16, June 2009.

[122] M. Mane and D. DeLaurentis, “Impact of programmatic system interdependen
cies on system-of-systems development,” in System of Systems Engineer
ing, 2009. SoSE 2009. IEEE International Conference on, pp. 1 –6, June
2009.

[123] M. Mane and D. DeLaurentis, “Network-level metric measuring delay propaga
tion in networks of interdependent systems,” in System of Systems En
gineering (SoSE), 2010 5th International Conference on, pp. 1 –6, June
2010.

[124] T. Ender, R. Leurck, B. Weaver, P. Miceli, W. Blair, P. West, and D. Mavris,
“Systems-of-systems analysis of ballistic missile defense architecture e↵ec
tiveness through surrogate modeling and simulation,” Systems Journal,
IEEE, vol. 4, pp. 156 –166, June 2010.

[125] O. Sindiy, D. DeLaurentis, K. Akaydin, and D. Smith, “Improved decision sup
port in space exploration via system-of-systems analysis,” in System of
Systems Engineering, 2007. SoSE ’07. IEEE International Conference on,
pp. 1 –6, April 2007.

[126] N. Forum, “http://www.nfc-forum.org/home/,” 2011.

[127] ISO, “http://www.iso.org/iso/home.html,” 2011.

[128] A. C. API, “Coremotion reference,” October 2010.

http://www.iso.org/iso/home.html
http://www.nfc-forum.org/home

160

[129] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, “Dijkstra’s algorithm,”
in Introduction to Algorithms 2nd edition, ch. 24, pp. 595–599, MIT Press,
1959.

[130] R.	 L. Knoblauch, M. T. Pietrucha, and M. Nitzburg, “Field studies of pedes
trian walking speed and start-up time,” Transportation Research Board,
no. 1538, 2005.

[131] J. Bang-Jensen and G. Z. Gutin, “Distances,” in Digraphs, Springer Monographs
in Mathematics, pp. 87–126, Springer London, 2009.

[132] Cisco, “20 myths of wi-fi interference,” 2012.

[133] G.	 Gartner and K. Rehrl, Location based services and telecartography II: from
sensor fusion to context models. No. v. 2 in Lecture notes in geoinforma
tion and cartography, Springer, 2008.

[134] R. L. Plackett, “Karl pearson and the chi-squared test,” International Statistical
Review / Revue Internationale de Statistique, vol. 51, no. 1, pp. pp. 59–72,
1983.

[135] B. Chalmer, Understanding statistics. Statistics Textbooks and Monographs, M.
Dekker, 1986.

[136] M.	 Youssef, M. Yosef, and M. El-Derini, “Gac: Energy-e�cient hy
brid gps-accelerometer-compass gsm localization,” in in Arxiv preprint
arXiv:1004.3174, 2010.

[137] W. Kang, S.	 Son, and J. Stankovic, “Design, implementation, and evaluation
of a qos-aware real-time embedded database,” in In Submission to IEEE
Transactions on Computers, 2010.

[138] S.-W. Lee	 and W. Kim, “On flash-based dbmss: Issues for architectural re
examination,” in In Proceedings of Journal of Object Technology, vol. 6,
pp. 39–49, 2007.

[139] BlackBerry, “http://na.blackberry.com/eng/developers/,” October 2010.

[140] A. iPhone,	 “http://developer.apple.com/devcenter/ios/index.action,” October
2010.

[141] Android, “http://developer.android.com,” September 2010.

[142] Apple, “http://developer.apple.com/,” October 2010.

[143] O. H. Alliance, “http://www.openhandsetalliance.com/,” 2010.

[144] M. Corporation, “http://developer.windowsphone.com/,” October 2010.

[145] P. W. Schroeder and D. Burton, “Microsoft backtracks on accessiility in new mo
bile operating system, commits to accessibility in future windows phone
platform.”

http:http://developer.windowsphone.com
http:http://www.openhandsetalliance.com
http:http://developer.apple.com
http:http://developer.android.com
http://developer.apple.com/devcenter/ios/index.action
http://na.blackberry.com/eng/developers

161

GLOSSARY

Signal Metrics A variety of metrics are used to obtain signal information of

the tag. It can be done through RSS (received signal strength), TOA (time of arrival)

or TDOA (time di↵erence of arrival).

Received Signal Strength RSS is variable depending on the environment. It

can su↵er from multi-path attenuation. It is often measured using a probabilistic or

deterministic scheme.

Time of Arrival TOA requires an initial clock synchronization between devices

and line of sight between devices. A trilateral positional technique is used to determine

the position.

Time Di↵erence of Arrival TDOA is an improved version of TOA. Therefore

it also requires clock synchronization and line of sight between devices. It also uses

trilateral positioning. The benefit of TDOA is improved performance when the access

points are located at a significant distance from the controlling base station.

Fingerprinting: Each of the metrics above is then processed using finger

printing, a method that helps define the location more accurately. Fingerprinting is

a form of pattern matching. It is accomplished by measuring the signal strength at

di↵erent identified locations. Each RSS measurement should be unique based on the

deployment of RFID tags. One of the hurdles of this technology is the requirement

of pre-mapping and measuring buildings to create an accurate map. It performs best

in a static environment, although this can be unrealistic in a utilized building.

Embedded Sensors: Some of the issues encountered when using embedded

sensors are that they are mass-produced, are typically cheap and inaccurate. Addi

tionally, as the mobile device is often making minor changes in orientation due to

162

human walking locomotion, the sensor points can accumulate exponential errors due

to the additional noise.

Accelerometer: The accelerometer in a mobile phone is a sensor used to

measure the acceleration of the device relative to free-fall. This is most commonly

used to detect the device orientation so the phone can perform auto-rotation of the

screen.

Compass: The compass in a mobile phone is a sensor used to ”measure the

magnetic field strength applied to the three axes of the compass” [136]. The result

of this measurement is the ability to estimate the angle between the device and true

north.

Distributed: In a distributed database, there is a database management sys

tem (DBMS) that controls the data across multiple locations. The distribution is

transparent to the user and the control system must take responsibility for maintain

ing the integrity and replication of all data. There are many reasons a distributed

database could be used: reliability; availability; performance increase; local auton

omy; modularity; intermittent network connection; load distribution. The disad

vantages of using a distributed database architecture are: the complexity involved;

maintaining data integrity; and concurrency control.

Embedded: An embedded database in the context of a mobile phone is a

database that is integrated with the application and delivers its functionality as part

of the application. In addition, it is expected to provide indexing, concurrency control,

logging and transactional guarantees [137]. For practicality it must maintain a small

footprint as the device has constrained resources, i.e. less storage space and limited

memory.

Shadow: A shadow database is very similar to a distributed database. To deal

with the issues of a client/server database accessed via mobile device, a small version

or copy of the database is cached locally on the mobile device. In this manner, when

the network is unavailable or any other connectivity issues arise, the user simply uses

the data available locally. Updates will resume once the connection is reestablished.

163

This inevitably gives rise to the issue of maintaining data synchronization between

the systems.

Flash: Finally, and most relevant to this discussion, is the use of NAND flash

technology as the storage medium of choice. Flash storage has the following charac

teristics: low power consumption; non-volatile; electronic (no moving parts with long

seek and rotational delays); shock resistance; high performance; physical stability;

small size (fewer gates, ergo, smaller and denser); light weight; and portability [138].

APPENDICES

164

Appendix: A

.1 Sensors

A number of sensors are available to aid in localization. A small subset are

discussed in this chapter.

.2 Database

Mobile devices have limited resources for data storage. They also have many

constraints not found on a server or workstation. When selecting a data storage strat

egy it is important to consider hardware features such as battery; memory; processor;

and available storage space.

The issues with NAND flash technology that complicates it’s use as the plat

form of database management systems are two fold.

•	 Asymmetric read (30 mili-second) and write (300 micro-second) speeds.

•	 Properties of the write operation: the entire block must be erased before new

data can be written if it is to overwrite existing data [138].

•	 There exists a physical limit to the number of writes that can be done during the

lifetime of the medium, approximately 100,000 writes before the block is listed as

bad. For this reason, a maintenance function, wear-leveling or block-recycling,

is utilized to balance the write operations across the chip.

.3 Mobile Platforms

Due to the constrained environment encountered when developing applica

tions for smartphones, additional thought must given to available resources and their

165

management. As noted, accessing database systems from mobile devices gives rise

to distinct categories of databases: distributed; embedded; and shadow. Connection

constraints on mobile devices cause additional considerations: intermittent connec

tivity; packet delay or loss; bandwidth changes; network identification changes (i.e.

if the device changes from 3G to Wifi it may appear to be coming from a new de

vice.) Finally, these finite resources include limited power due to battery limitations;

constrained memory; and generally less powerful computational ability.

The discussion of the big four mobile operating systems (BlackBerry [139],

iPhone [140], Android [141] and Windows Mobile) in North America is presented

with the focus on the functionality available in the operating system, while avoiding

most discussions about specific hardware implementations.

This paper includes a look at the categories from Oliver’s 2008 work [6]: in

terface selection; bluetooth; background processing; energy monitor; power saving

control; memory management; persistent storage; and location sensing. That work is

extended to include: development language; development environment; code signing;

testing, emulation and tools; application deployment; and a brief look at compatible

hardware.

.3.1 BlackBerry

In 1999, Research In Motion (RIM) introduced the Blackberry, a proprietary

mobile phone. It originally functioned as a two-way pager, but is now one of the most

widely deployed enterprise cell phones in North America. The BlackBerry achieved

a dedicated following due in large part to its mini QWERTY keyboard. Version 6.0

of the operating system was released in the third quarter of 2010. The information

provided is based on that version of the operating system. More information can be

found at the Blackberry website [139].

166

Interface Selection: A Network API is available to view and select from avail

able connections. Connections that currently have coverage can be selected from an

array, or the API can determine whether a particular option currently has coverage.

Bluetooth: A Bluetooth API allows the application to access the Bluetooth

serial port and initiate a scan for a server or client connection to a computer or other

Bluetooth enabled device. Before the connection, there is a pairing procedure that

requires the server device to receive text data from the client device. For the devices

to communicate, they must both enter a shared key.

Background Processing: A service module can be set to start automatically

when the device powers on that can send and receive messages in the background.

Energy Monitoring: There are a large number of APIs available to check

various states of the battery: current level; charging status; temperature; etc.

Power Saving Control: Applications may control the screen status, back-light

functionality, shutdown or wake the device [6].

Memory Management: A Java Virtual Machine (JVM) is used to manage

memory. The JVM performs multiple tasks including: allocating memory, garbage

collection, and automatic paging of data between SRAM and flash memory.

Persistent Storage: A number of methods are available to implement persis

tent storage: the file system; a database; and the persistent store. A developer can

store data in files and folders using the FileConnection API. There is a Database API

for a SQLite relational database. The PersistentStore API permits saving objects

between device restarts.

Location Sensing: Location data is available through the Location Services.

When the service is on, sensor data from the internal and external GPS receivers or

geo-location is available. The Location Service has methods such as setLocationOn(),

which permit the Location Service to be turned on programmatically. In keeping with

best practices, it is important to prompt the user for permission to turn on location

services.

167

Development Language: Java is the development language which includes the

ability to execute in a protected run-time environment. The benefit to using Java as

the development platform is it allows platform independence and is widely known.

Development Environment: The Java Development Kit (JDK) is available

for application development. There is a plug-in for Eclipse, which is a popular devel

opment environment.

Code Signing: A Signing Authority Tool manages the code signing system

using public-private key cryptography. The private key (used by the system) uses a

password, whilte the public key (used by each API file) is appended individually. The

typical sequence is the developer registers with the signing authority tool and then

uses the tool to request a code signature.

Testing, Emulation and Tools: Emulators for all of the current smart phone

systems of Blackberry are provided. These can be downloaded at BlackBerry by

selecting the phone model, carrier and operating system version.

Application Deployment: Not to be outdone by other vendors, a BlackBerry

App World has been launched. It is an online storefront that allows users to find,

buy and download applications directly to the phone. As of October, 2010, the

website has a limited time o↵er declaring ’registration and submission fees are waived.’

Submitted applications must comply with the Vendor Guidelines and follow the terms

and conditions of the BlackBerry SDK License Agreement.

Hardware: BlackBerry OS is designed to run only on OEM BlackBerry smart

phones.

Accessibility: The accessibility functionality of the Blackberry is broken down

into two subsections; hearing and vision.

•	 Hearing Blackberry lists a number of options for the hearing impaired user: push-

delivery messaging; text messaging; instant messaging; visual cue, vibration and

extended vibration options; closed captioning of media content; compatibility

with hearing aids; and sound-isolating headsets.

168

•	 Vision Blackberry has provided a number of accessibility functionality for the

visually impaired users; audible cues; vibration and extended vibration options;

customizable fonts, reverse contrast, grey scale, grid layout settings, bright high

resolution display, and browser zoom; key-tone and audio clicks (to audibly

confirm when the track pad or trackball is pressed or used); assignable event

sounds for device status updates; assignable ringtones; voice and speed dialing,

including a built-in speakerphone; keyboard nib to find the numeric keypad by

touch; and individual keys with a tactile feel.

.3.2 iPhone OS

The Apple iPhone Operating System is a proprietary system introduced in

June, 2007. It is a Unix-based system that is derived from Mac OS X. As of March

11, 2011 version 4.3 will be released. Copious information can be found at the Apple

developer website [142].

Interface Selection: The System Configuration framework allows the appli

cation to monitor the network state of the interfaces. The SCNetworkReachability

API allows an application to determine the status of a system’s current network

configuration.

Bluetooth: Bluetooth is supported and available programmatically on the

iPhone. Before using it, a common pairing procedure is required.

Background Processing: With the release of iOS version 4.0, background

processing of third party applications is now o�cially supported.

Energy Monitor: Status information is available by registering selectors to

receive notification regarding battery state changes.

Power Saving Control: The iPhone OS provides APIs to query a number of

statuses of the device: battery capacity; battery state; voltage; charging status; etc.

Low Level Memory Management: The iOS does not provide memory man

agement (i.e. garbage collection.) Instead, it utilizes an object reference counter

169

captured via a retain count. Each object is initialized with a retain count of one:

when the retain count of any object drops to zero, the object is deallocated and

memory is returned to the system. One important caveat is that the retain count is

implemented programmatically. Incorrect handling can result in potentially serious

memory leaks.

Persistent Storage: Apple o↵ers Core Data as a framework for managing

persistent storage. The framework o↵ers a number of features so that the programmer

does not have to implement, or optimize them separately. It is a mature code base

that is highly optimized and regularly tested by Apple. The relational database engine

SQLite, an embedded SQL database, is also provided by the OS.

Location Sensing: The Core Location framework uses available hardware to

determine the device’s current location. It does this through a combination of cellular,

Wifi and GPS services.

Development Language: The programming language for the iPhone is Objective-

C and lower-level c. The API has the following abstraction layers: Cocoa Touch; Me

dia; Core Services and Core OS. The iPhone uses the model view controller (MVC)

design pattern, while allowing preference and data storage in XML format.

Development Environment: The iPhone SDK is o↵ered for download through

the Apple Developer Portal. A standard development license will cost 99.00 dollars.

The SDK includes Xcode, an integrated development environment (IDE), Instruments

and an iPhone simulator. In an academic environment, the SDK is available at no

cost through the University.

Testing, Emulation and Tools: While the SDK provides a simulator to run an

application, there is also a rich set of development tools included: Interface Builder;

Instruments; and Shark.

•	 Interface Builder allows the developer to drag and drop preconfigured compo

nents onto the interface. The standard control components include switches,

text fields, buttons, custom views, and many more. The interface contents are

saved to a nib file, which is a custom resource file format.

170

•	 Instruments is used to analyze the applications performance. Data is gathered

from a running application and then presented in a graphical display called the

timeline. Available performance monitors are: memory usage, disk activity,

network activity, and graphics performance. Each of the metrics can be dis

played individually or simultaneously allowing a better visual representation of

the overall behavior of an application.

•	 Shark is a tool for sampling or tracing a single application or all running ap

plications. Some of the available operations are: statistical sampling over time,

system-level tracing, memory tracing, static analysis, level two cache profiling,

processor bandwidth analysis and java code analysis.

Application Deployment: The Apple iPhone Application Store has revolu

tionized the way third party applications are available to the consumer. This is the

standard to which all others strive. Before an application can be approved for sale,

the developer should be sure that it follows the technical, design, and content specifi

cations detailed in the App Store Review Guidelines and Human Interface Guidelines.

Apple rejects applications that do not conform to these guidelines.

Hardware: The iOS is limited to run on the iPhone, iPod Touch and the iPad

platforms only.

Accessibility: To enable comparison, Apples accessibility is also presented for

both hearing and vision.

•	 Hearing Apple o↵ers a variety of hearing impaired accessibility options; text

messaging; instant messaging; visual cue and vibrating options; open or closed

captions and subtitling for media content; TTY support with an appropriate

adapter; hearing aid-compatible induction ear loop; and visual voicemail (to

see all your messages at once). Mono audio allows both left and right channel

sources to be combined to both ears and sound-isolating headsets are available.

•	 Vision The iPhone also comes with a wealth of features for the vision impaired;

audible and vibration options; changeable fonts and font sizes; assignable ring

171

tones; audible caller ID; built-in speakerphone; and audible alerts for phone

functionality.

Perhaps the most complete o↵ering is VoiceOver, a gesture-based screen reader

included with the iPhone. This is an adaptation of the Mac software for the

iPhone. Since it is a touch screen, a user can point anywhere on the screen

to hear an audible indication of the item. Once the finger is pointing at the

appropriate item, the user can double-tap, drag or flick to control the screen.

VoiceOver is a fully customizable experience with support for twenty-one lan

guages. A user can adjust the speaking rate for personal preferences. Computer

activity is indicated by distinct sounds to distinguish what is happening, i.e.;

opening an application; updating a screen or presenting a dialog box. The vol

ume of background activities (such as music) is automatically lowered when

VoiceOver is active, so that the words are clear.

Due to a flat touch screen, there is no built-in tactile feedback for typing. In

stead, VoiceOver will echo each character as it types, or can echo the word if

preferred, in any native application. Word prediction and spelling correction

are also available to assist in typing. For built-in applications, VoiceOver is

available to perform many typical functions: place and receive calls, messaging,

weather, Internet browsing, etc. For those that prefer a tactile feel, wireless

Braille displays are available to control the phone.

.3.3 Android

Google purchased Android, Inc. in July 2005. The first phone with the Google

backed AOS was presented on January 5th, 2010. The Google-backed AOS is an

open-source ”software stack for mobile devices” [141]. It is managed through the Open

Handset Alliance. [143] The current version at the time of writing is 2.3 (Gingerbread)

for smartphones and 3.0 (Honeycomb) for tablet versions. Android utilizes Linux

Kernel version 2.6 as a base. Android is made up of an operating system (implemented

172

in c), middleware and applications. The main five components of the operating system

are the Linux Kernel, Libraries, the Runtime environment, Application framework

and applications.

Interface Selection: A connectivity manager class returns the state of net

work connectivity. It also notifies applications of any status changes. The class is

responsible for: monitoring Wifi, GPRS UMTS, etc.; sending notifications when the

network connectivity changes; and attempting automatic network fail-over.

Bluetooth: The application framework provides support for a bluetooth class.

The functionality allows an application to: scan for other bluetooth devices; check

for paired devices; establish RFCOMM channels; service discovery data transfer; and

connection management.

Background Processing: Background processing is permitted, and has little

impact on the user experience. Processes can be terminated if memory runs low. at

any time to reclaim memory for a foreground, visible, or service process. Typically,

many processes run in the background. To maintain ordered chaos, the processes are

kept in a LRU (least recently used) list. This allows the lease recently used process

to be killed first. If a developer implements the methods correctly (including current

state), killing a process should not, in theory, have any negative impact on the user

experience.

Energy Monitor: A battery manager class allows the status of the battery to

be obtained.

Power Saving Control: Power saving controls are included in the platform.

Third party applications may query the battery level, AC charging state, schedule

and configure energy saving features. The developer may put the device to sleep or

maintain a specific power level.

Memory Management: Android uses its own run time and VM to manage

application memory. Rather than a traditional Java Virtual Machine (JVM), Android

uses a custom VM. The VM is designed to e�ciently run multiple instances on a single

173

device. This scheme allows the application to relinquish all responsibility for memory

and process management to the Android run time and Dalvik garbage collector.

Persistent Storage: Persistent storage is available as an embedded SQLite

database or conventional file I/O.

Location Sensing: GPS and cell tower triangulation (as signal permits) are

available as localization techniques.

Development Language: Applications are written in Java and bundled by the

aapt tool. This file is used to distribute and install the application on mobile devices.

Development Environment: Google provides an SDK, a downloadable pack

age that includes system files, APIs, add-ons and development or debugging tools.

As Android is programmed using Java, many Java Development Tools (JDT) are in

cluded. A plug-in for Eclipse is also provided, called the Android Development Tools

(ADT). ADT includes the Dalvik Debug Monitor Server (DDMS) which has many ca

pabilities: capture screenshots; manage port-forwarding; set breakpoints; view thread

and process information.

Code Signing: Code signing is a requirement for applications. A digital

signature is required, with the private key held by the application developer. Trust

relationships are established through certification, however self-signing of certificates

is permitted.

Testing, Emulation and Tools: The Android SDK includes a large set of

tools to debug and test applications including: Traceview; Mksdcard; UI/Application

Exerciser Monkey; Dalvik Debug Monitor Service; QEMU-based emulator; and the

Android Debug Bridge.

•	 Traceview is a GUI provided interface to view trace file data. This includes

viewing the results of method calls and their run times to help you profile the

performance of the application.

•	 Mksdcard allows the developer to create a disk image for the emulator to simulate

an external storage device, i.e. an SD Card.

174

•	 The User Interface and Application Exerciser Monkey allows the developer to

generate streams of events, clicks and touches.

•	 The Dalvik Debug Monitor Service (DDMS) is a virtual machine whose func

tionality allows management and debugging of processes through the emulator

or device. The management allows a developer to select specific processes for

generating traces, and viewing heap or thread information for the selected pro

cess.

•	 A QEMU-based emulator is included with Android SDK. The emulator lets

you prototype, develop, and test Android applications without using a physical

device. All functionality is available on the emulator, except for placing actual

phone calls (obviously.)

•	 The emulator makes use of the Android Virtual Devices (AVD). This allows a

developer to setup di↵erent configurations of hardware and software to test their

application against.

•	 The Android Debug Bridge (ADB) o↵ers device management cooperation to the

emulator: moving and syncing files; port forwarding; and a UNIX shell. It also

permits command line access to the device or the simulated device.

Application Deployment: Android Market enables developers to easily publish

and distribute their applications directly to users of Android-compatible phones. To

publish applications to the Android Market, a developer must: create a developer

profile; pay a 25.00 dollar registration fee; and agree to the Android Market Developer

Distribution Agreement.

Hardware: Multiple hardware vendors o↵er the Google AOS on their hard

ware, as it is managed through the Open Handset Alliance consortium (to which

many hardware vendors belong.)

Accessibility: Accessibility functionality is harder to track down on Google

Android, as often features change depending on the hardware platform. The func

tionality is subcategorized into hearing and vision.

175

•	 Hearing Android supports many standard functions such as messaging, vibration

and visual cues.

•	 Vision There are a variety of tools available for the Android platform. A stan

dardized Text-To-Speech API is part of the Android SDK and works in the

following languages: English; French; Italian; Spanish; and German. A set of

accessibility APIs exist to create screen readers. Auditory and haptic options

are available using forces, vibrations and motions for tactile feedback; Talk-

Back; SoundBack; and KickBack. Eyes-Free, provides UI enhancements for the

touch-screen for better accessibility. Like the iPhone, there is an application,

the vOICe, which contains advanced accessibility features, although it is CPU

and battery intensive. The phone can be controlled via voice commands. If the

Text-To-Speech library is installed, the vOICe functions as a complete screen-

reader. The compass provides heading changes while moving, in addition to a

talking locator that speaks the street names and intersections close to the user.

Additionally, walking directions are available via Google Navigation. The cam

era view is used with an auditory system table to provide live feedback about

the current environment. It may be augmented with special fish-eye lenses for

a broader view. The vOICe software is currently hampered more by the limita

tions of the hardware platform, and it will continue to evolve as the hardware

permits.

.3.4 Windows Phone 7

Microsoft announced Windows Phone 7 in February, 2010 at Mobile World

Congress in Spain. The public release date for Windows Phone 7 was October 11,

2010 with the first device appearing in November, 2010. Technical specifications

shown below are found at [144].

Interface Selection: Interface selection and status is available through the

GetIsNetworkAvailable method.

176

Bluetooth: The o�cial word is that the Bluetooth API’s continue to be

unavailable to developers through the first version release.

Background Processing: Background processing is permitted by native appli

cations, however third party applications will not have this ability. This is similar to

earlier version of the Apple iOS. It is expected as the platform improves battery life,

network utilization and application predictability that this support will eventually be

available for third party applications.

Energy Monitor: There is currently no API available to access this informa

tion.

Power Saving Control: There is currently no API available to power up or

down any portion of the phone.

Memory Management: Windows Phone 7 is built on managed code and comes

with built-in garbage collection.

Persistent Storage: There is no access to the file system. The only available

space is the isolated (and sandboxed) storage.

Location Sensing: GPS data is available through the Location service, a

managed API that can use input from Wifi or GPS.

Development Language: C# is the only currently support development lan

guage. Microsoft admits to interest in developing in Visual Basic, C++ or other .Net

apps, and support for these may be added over time.

Development Environment: The development environment provided is Vi

sual Studio 2010 Express, an integrated development environment (IDE). It includes

Silverlight and XNA frameworks. It also includes standard IDE functions: designing;

debugging; packaging, etc.

Code Signing: If the submitted application passes certificating testing (bar

ring any failures), the code signing process is automatic. Microsoft uses Authenticode

certificates which must be installed and available for applications to run on mobile

devices.

177

Testing, Emulation and Tools: The set of tools bundled together include: the

Windows Phone Emulator; XNA Game Studio; and Expression Blend.

•	 The Emulator provides a virtualized environment to run developed applications

prior to live testing.

•	 The XNA Game Studio extends Visual Studio’s XNA framework to allow game

designers to create games for Windows Phone or Xbox 360. It includes tools for

easier inclusion of graphic and audio content into games.

•	 Expression Blend is meant to aid in creative Silverlight-based applications using

XAML-based interfaces.

Application Deployment: A Windows Live ID is required and is available for

sign-up with no cost. Developers must agree to and sign the application provider

agreement. There is an annual subscription fee of 99.00 dollars (the same as the

Apple Developer fee).

Developers can publish application via Windows Phone Marketplace. Re

quirements include submitting a .xap file containing all the relevant materials for

certification. The certification process verifies the applications behavior.

Once the package has satisfied the Windows Phone Marketplace certification

requirements, the developer is notified and can publish the application to the Win

dows Phone Marketplace through the developer portal. Applications are then made

available for consumers to download in the Windows Phone Marketplace. Credit card

and mobile-operator billing operations are supported.

Hardware: The Windows Phone 7 system does not require a proprietary

system for deployment, however Microsoft does have a list of minimum system re

quirements that manufacturers must agree to. They wants to enforce a consistent set

of hardware capabilities for Windows Phone 7, such that the hardware will be made

up of common and identifiable hardware elements.

Accessibility: The accessibility features of the Windows Phone 7 are listed

below.

178

•	 Hearing For those with hearing impairments, TTY and specific hearing aid sup

port is available.

•	 Vision For visual assistance, Windows Phone 7 o↵ers the following customiza

tions: ability to adjust brightness and contrast; customizable visual schemes,

speech recognition and many standard phone functions can be controlled by

voice. Other than these brief o↵erings, due to the complete overhaul of the un

derlying operating system, much of the previous accessibility available in earlier

versions, is no longer applicable. Reworking the functionality is expected to be

a ”multi-year process.” [145]

.3.5 Summary of Mobile Devices

The top four mobile devices in North America that were discussed above, are

summarized in Fig: 2.3.

(Note: A version of portions of this chapter was presented at the conference

ASEE Global Colloquium on Engineering Education 2011 in June, 2011. It was au

thored by Teresa A. Shanklin and Kyle D. Lutes)

179

Appendix: B

.4 Matlab Source Code

Main.m

%main.m

%Agent Based Model - Indoor Navigation

clc; close all; %clear all;

p=0;

num=100;

for p=1:num

global fig1 fig2 fig3 NoWifi NoRfid Targ Path

CMap1 Nav1 CMap2 Nav2 CMap3

Nav3 CMap4 Nav4 CMap5 Nav5 test

GPSProb WifiDist RfidDist;

warning(’off’,’MATLAB:xlsread:Mode’);

NoWifi = 80;

NoRfid = 80;

GPSProb = 60;

WifiDist = 10;

RfidDist = 5;

180

build1NodeMapKNOY1;

build2NodeMapKNOY2;

build3NodeMapPUMAP;

build1NodeMapLWSN1;

build2NodeMapLWSN2;

% Parameters

Targ.num = 1; %Number of targets

Targ.End = 0;

SpeedTotal = 0;

TimeTotal = 0;

Total = 0;

% Setup Initial Conditions

initializeTargArray();

initializeGoalArray();

findShortestPath(Targ.State(7:8),Targ.State(12:13),

CMap2.node,CMap2.adjmat);

%Targ.History = cell(1,Targ.num);

History = Targ.State(1:29);

fprintf(’Agents intialized...\n’);

loadFigures();

% Iteration

t=1;

k=1;

181

while (Targ.End ~= Targ.num)

t = t+ 1;

if (mod(t,2) == 0)

updateTargState(t);

end

%update position

updatePos(t);

Targ.State(29) = Targ.State(21) + Targ.State(26) + Targ.State(28);

% Save history

History = [History, Targ.State(1:29)];

SpeedTotal = SpeedTotal + Targ.State(26);

TimeTotal = TimeTotal + Targ.State(28);

Total= Total + Targ.State(29);

% ***********PLOT****************

%Record system state at time ’t’

%getPlotFrame();

%frameArray(t) = getframe;

end

dt = sprintf(’Run%d’, p);

dt = horzcat(dt, datestr(now, ’--mm-dd-yy--HH:MM:SS’));

file = horzcat(horzcat(’/Matlab/Sim/hist-’,dt),’.csv’);

182

xlswrite(file, History,1)

Details0 = {

Total,

SpeedTotal,

TimeTotal,

NoWifi,

NoRfid,

GPSProb,

WifiDist,

RfidDist};

if (p == 1)

Details = Details0;

else

Details2 = Details;

Details = horzcat(Details2, Details0);

end

figure(fig3);

subplot(1,2,1);

figFrame = getframe;

file= horzcat(horzcat(’/Matlab/Sim/LWSN1-’,dt),’.png’);

imwrite(figFrame.cdata, file);

subplot(1,2,2);

figFrame = getframe;

file= horzcat(horzcat(’/Matlab/Sim/LWSN2-’,dt),’.png’);

imwrite(figFrame.cdata, file);

183

figure(fig2);

figFrame = getframe;

file = horzcat(horzcat(’/Matlab/Sim/PU-’,dt),’.png’);

imwrite(figFrame.cdata, file);

figure(fig1);

subplot(1,2,2);

figFrame = getframe;

file = horzcat(horzcat(’/Matlab/Sim/KNOY2-’,dt),’.png’);

imwrite(figFrame.cdata, file);

subplot(1,2,1);

figFrame = getframe;

file = horzcat(horzcat(’/Matlab/Sim/KNOY1-’,dt),’.png’);

imwrite(figFrame.cdata, file);

clear global fig1 fig2 fig3 NoWifi NoRfid Targ CMap1

Nav1 CMap2 Nav2 CMap3 Nav3 CMap4

Nav4 CMap5 Nav5 test;

clear History Total dt figFrame file frameArray t Details0

Details1 GPSProb RfidDist WifiDist k;

close(gcf);

close(gcf);

close(gcf);

p= p+1;

fprintf(’Run number \%d\n’, p);

end\

184

Details1 = {...

’Total’,...

’SpeedTotal’,...

’TimeTotal’,...

’NumWifi’,...

’NumRfid’,...

’GPSProb’,...

’WifiDist’,...

’RfidDist’,...

};

Details1 = reshape(Details1,8,1);

Details3 = horzcat(Details1, Details);

dt = datestr(now, ’--mm-dd-yy--HH:MM:SS’);

file = horzcat(horzcat(’/Matlab/Sim/hist-Summary-’,dt),’.csv’);

cell2csv(file, Details3, ’,’);

beep;

%Offer the choice of saving the movie to file

choiceSaveMovie(frameArray);

185

build1NodeMapKNOY1

function build1NodeMapKNOY1

% Read in xls file and convert to a node list

global NoWifi NoRfid CMap1 Nav1;

[num,txt,CMap1] = xlsread(’Matlab/CMap’,’KNOY_1flr’,’’,’basic’);

CMap1 = CMap1(1:146, 1:51);

fprintf(’Excel cost map read in...\n’);

numNodes = size(CMap1,1)*size(CMap1,2);

rowL = size(CMap1,2);

CMap1.node = Inf(numNodes,3);

row = 1;

col = 1;

for i = 1:(numNodes-1)

CMap1.node(i,:) = [col row CMap1{row,col}];

col = col + 1;

if col > rowL

row = row + 1; %Move to next row

col = 1;

end

end

% Find buildings

b = find(CMap1.node(:,3)==’B’);

186

Nav1.buildings = CMap1.node(b,1:2);

CMap1.node(b,3) = Inf; %set to infinity - cannot travel

%Find doors

d = find(CMap1.node(:,3)==’D’);

Nav1.doors = CMap1.node(d,1:2);

%Find move to next flr

n = find(CMap1.node(:,3)==’N’);

Nav1.nextflr = CMap1.node(n,1:2);

%Find WIFI Sources

w = find(CMap1.node(:,3) == ’W’);

Nav1.wifi = CMap1.node(w,1:2);

%Find RFID Sources

r = find(CMap1.node(:,3) == ’R’);

Nav1.rfid = CMap1.node(r,1:2);

%Find outside of buildings

o = find(CMap1.node(:,3)==’O’);

Nav1.outside = CMap1.node(o,1:2);

CMap1.node(o,3) = Inf; %set to infinity - this is inside map

CMap1.node(CMap1.node(:,3)==’I’,3) = 4;

CMap1.node(CMap1.node(:,3)==’D’,3) = 4;

CMap1.node(CMap1.node(:,3)==’N’,3) = 4;

CMap1.node(CMap1.node(:,3)==’W’,3) = 4;

CMap1.node(CMap1.node(:,3)==’R’,3) = 4;

187

%Log/Maintenance

fprintf(’Node database generated...\n’);

% Build weighted adjacency matrix

CMap1.adjmat = Inf(numNodes);

adjmatWiFi = Inf(numNodes);

fprintf(’Building weighted adjacency matrix...’);

nbor = [-(rowL+1),-rowL,-rowL+1,-1,1,rowL-1,rowL,rowL+1];

for k = 1:numNodes

switch mod(k,rowL)

case 1

nbor = [-rowL,-rowL+1,1,rowL,rowL+1];

case 0

nbor = [-(rowL+1),-rowL,-1,rowL-1,rowL];

otherwise

nbor = [-(rowL+1),-rowL,-rowL+1,-1,1,rowL-1,rowL,rowL+1];

end

for j = 1:length(nbor)

if k + nbor(j) <= numNodes && k + nbor(j)>0

CMap1.adjmat(k,k+nbor(j)) = CMap1.node(k+nbor(j),3);

end

end

188

Nav1.wifi = zeros(NoWifi,2);

for k=1:NoWifi

infCheck = Inf;

found = 0;

ran_num = randi(numNodes);

while (found == 0)

if (CMap1.node(ran_num,3) == infCheck)

%make sure the start space is valid

ran_num = randi(numNodes);

else

found = 1;

targetObj = CMap1.node(ran_num,:);

end

end

Nav1.wifi(k,:) = targetObj(1:2); %cur xPosition

end

Nav1.rfid = zeros(NoRfid,2);

for k=1:NoRfid

infCheck = Inf;

found = 0;

ran_num = randi(numNodes);

while (found == 0)

if (CMap1.node(ran_num,3) == infCheck)

%make sure the start space is valid

ran_num = randi(numNodes);

else

found = 1;

targetObj = CMap1.node(ran_num,:);

189

end

end

Nav1.rfid(k,:) = targetObj(1:2); %cur xPosition

end

fprintf(’Done\n’);

end

190

build1NodeMapLWSN1

function build1NodeMapLWSN1

global NoWifi NoRfid CMap4 Nav4;

% Read in xls file and convert to a node list

[num,txt,CMap1] = xlsread(’/Matlab/CMap’,’LWSN_1flr’,’’,’basic’);

CMap1 = CMap1(1:127, 1:45);

fprintf(’Excel cost map read in...\n’);

numNodes = size(CMap1,1)*size(CMap1,2);

rowL = size(CMap1,2);

CMap4.node = Inf(numNodes,3);

row = 1;

col = 1;

for i = 1:(numNodes-1)

CMap4.node(i,:) = [col row CMap1{row,col}];

col = col + 1;

if col > rowL

row = row + 1; %Move to next row

col = 1;

end

end

% Find buildings

b = find(CMap4.node(:,3)==’B’);

191

Nav4.buildings = CMap4.node(b,1:2);

CMap4.node(b,3) = Inf; %set to infinity - cannot travel

%Find doors

d = find(CMap4.node(:,3)==’D’);

Nav4.doors = CMap4.node(d,1:2);

%Find move to next flr

n = find(CMap4.node(:,3)==’N’);

Nav4.nextflr = CMap4.node(n,1:2);

%Find outside of buildings

o = find(CMap4.node(:,3)==’O’);

Nav4.outside = CMap4.node(o,1:2);

CMap4.node(o,3) = Inf; %set to infinity - this is inside map

CMap4.node(CMap4.node(:,3)==’I’,3) = 4;

CMap4.node(CMap4.node(:,3)==’D’,3) = 4;

CMap4.node(CMap4.node(:,3)==’N’,3) = 4;

CMap4.node(CMap4.node(:,3)==’W’,3) = 4;

CMap4.node(CMap4.node(:,3)==’R’,3) = 4;

%Log/Maintenance

fprintf(’Node database generated...\n’);

% Build weighted adjacency matrix

CMap4.adjmat = Inf(numNodes);

fprintf(’Building weighted adjacency matrix...LWSN 1’);

192

nbor = [-(rowL+1),-rowL,-rowL+1,-1,1,rowL-1,rowL,rowL+1];

for k = 1:numNodes

switch mod(k,rowL)

case 1

nbor = [-rowL,-rowL+1,1,rowL,rowL+1];

case 0

nbor = [-(rowL+1),-rowL,-1,rowL-1,rowL];

otherwise

nbor = [-(rowL+1),-rowL,-rowL+1,-1,1,rowL-1,rowL,rowL+1];

end

for j = 1:length(nbor)

if k + nbor(j) <= numNodes && k + nbor(j)>0

CMap4.adjmat(k,k+nbor(j)) = CMap4.node(k+nbor(j),3);

end

end

end

%SETUP WIFI

Nav4.wifi = zeros(NoWifi,2);

for k=1:NoWifi

infCheck = Inf;

found = 0;

ran_num = randi(numNodes);

while (found == 0)

if (CMap4.node(ran_num,3) == infCheck)

193

%make sure the start space is valid

ran_num = randi(numNodes);

else

found = 1;

targetObj = CMap4.node(ran_num,:);

end

end

Nav4.wifi(k,:) = targetObj(1:2); %cur xPosition

end

Nav4.rfid = zeros(NoRfid,2);

for k=1:NoRfid

infCheck = Inf;

found = 0;

ran_num = randi(numNodes);

while (found == 0)

if (CMap4.node(ran_num,3) == infCheck)

%make sure the start space is valid

ran_num = randi(numNodes);

else

found = 1;

targetObj = CMap4.node(ran_num,:);

end

end

Nav4.rfid(k,:) = targetObj(1:2); %cur xPosition

end

fprintf(’Done\n’);

end

194

build2NodeMapKNOY2

function build2NodeMapKNOY2

global NoWifi NoRfid CMap2 Nav2;

% Read in xls file and convert to a node list

[num,txt,CMap2] = xlsread(’/Matlab/CMap’,’KNOY_2flr’,’’,’basic’);

CMap2 = CMap2(1:146, 1:51);

fprintf(’Excel cost map read in...\n’);

%% Build node database from

%node = [x y cost]

numNodes = size(CMap2,1)*size(CMap2,2);

rowL = size(CMap2,2);

CMap2.node = Inf(numNodes,3);

row = 1; col = 1;

for i = 1:(numNodes-1)

CMap2.node(i,:) = [col row CMap2{row,col}];

col = col + 1;

if col > rowL

row = row + 1; %Move to next row

col = 1;

195

end

end

% Find buildings

b = find(CMap2.node(:,3)==’B’);

Nav2.buildings = CMap2.node(b,1:2);

CMap2.node(b,3) = Inf;

%Find doors

d = find(CMap2.node(:,3)==’D’);

Nav2.doors = CMap2.node(d,1:2);

%Find move to next flr

n = find(CMap2.node(:,3)==’N’);

Nav2.nextflr = CMap2.node(n,1:2);

%Find outside of buildings

o = find(CMap2.node(:,3)==’O’);

Nav2.outside = CMap2.node(o,1:2);

CMap2.node(o,3) = Inf;

CMap2.node(CMap2.node(:,3)==’I’,3) = 4;

CMap2.node(CMap2.node(:,3)==’D’,3) = 4;

CMap2.node(CMap2.node(:,3)==’N’,3) = 4;

CMap2.node(CMap2.node(:,3)==’R’,3) = 4;

%Log/Maintenance

fprintf(’Node database generated...\n’);

196

%% Build weighted adjacency matrix

CMap2.adjmat = Inf(numNodes);

fprintf(’Building weighted adjacency matrix... KNOY2’);

nbor = [-(rowL+1),-rowL,-rowL+1,-1,1,rowL-1,rowL,rowL+1];

for k = 1:numNodes

switch mod(k,rowL)

case 1

nbor = [-rowL,-rowL+1,1,rowL,rowL+1];

case 0

nbor = [-(rowL+1),-rowL,-1,rowL-1,rowL];

otherwise

nbor = [-(rowL+1),-rowL,-rowL+1,-1,1,rowL-1,rowL,rowL+1];

end

for j = 1:length(nbor)

if k + nbor(j) <= numNodes && k + nbor(j)>0

CMap2.adjmat(k,k+nbor(j)) = CMap2.node(k+nbor(j),3);

end

end

end

%WIFI

Nav2.wifi = zeros(NoWifi,2);

for k=1:NoWifi

infCheck = Inf;

197

found = 0;

ran_num = randi(numNodes);

while (found == 0)

if (CMap2.node(ran_num,3) == infCheck)

%make sure the start space is valid

ran_num = randi(numNodes);

else

found = 1;

targetObj = CMap2.node(ran_num,:);

end

end

Nav2.wifi(k,:) = targetObj(1:2); %cur xPosition

end

Nav2.rfid = zeros(NoRfid,2);

for k=1:NoRfid

infCheck = Inf;

found = 0;

ran_num = randi(numNodes);

while (found == 0)

if (CMap2.node(ran_num,3) == infCheck)

%make sure the start space is valid

ran_num = randi(numNodes);

else

found = 1;

targetObj = CMap2.node(ran_num,:);

end

end

Nav2.rfid(k,:) = targetObj(1:2); %cur xPosition

198

end

fprintf(’Done\n’);

end

199

build2NodeMapLWSN2

function build2NodeMapLWSN2

global NoWifi NoRfid CMap5 Nav5;

% Read in xls file and convert to a node list

[num,txt,CMap1] = xlsread(’/Matlab/CMap’,’LWSN_2flr’,’’,’basic’);

CMap1 = CMap1(1:131, 1:48);

fprintf(’Excel cost map read in...\n’);

numNodes = size(CMap1,1)*size(CMap1,2);

rowL = size(CMap1,2);

CMap5.node = Inf(numNodes,3);

row = 1;

col = 1;

for i = 1:(numNodes-1)

CMap5.node(i,:) = [col row CMap1{row,col}];

col = col + 1;

if col > rowL

row = row + 1; %Move to next row

col = 1;

end

end

% Find buildings

b = find(CMap5.node(:,3)==’B’);

200

Nav5.buildings = CMap5.node(b,1:2);

CMap5.node(b,3) = Inf; %set to infinity - cannot travel

%Find doors

d = find(CMap5.node(:,3)==’D’);

Nav5.doors = CMap5.node(d,1:2);

%Find move to next flr

n = find(CMap5.node(:,3)==’N’);

Nav5.nextflr = CMap5.node(n,1:2);

%Find outside of buildings

o = find(CMap5.node(:,3)==’O’);

Nav5.outside = CMap5.node(o,1:2);

CMap5.node(o,3) = Inf; %set to infinity - this is inside map

CMap5.node(CMap5.node(:,3)==’I’,3) = 4;

CMap5.node(CMap5.node(:,3)==’D’,3) = 4;

CMap5.node(CMap5.node(:,3)==’N’,3) = 4;

CMap5.node(CMap5.node(:,3)==’W’,3) = 4;

CMap5.node(CMap5.node(:,3)==’R’,3) = 4;

%Log/Maintenance

fprintf(’Node database generated...\n’);

%% Build weighted adjacency matrix

CMap5.adjmat = Inf(numNodes);

fprintf(’Building weighted adjacency matrix... LWSN2’);

201

nbor = [-(rowL+1),-rowL,-rowL+1,-1,1,rowL-1,rowL,rowL+1];

for k = 1:numNodes

switch mod(k,rowL)

case 1

nbor = [-rowL,-rowL+1,1,rowL,rowL+1];

case 0

nbor = [-(rowL+1),-rowL,-1,rowL-1,rowL];

otherwise

nbor = [-(rowL+1),-rowL,-rowL+1,-1,1,rowL-1,rowL,rowL+1];

end

for j = 1:length(nbor)

if k + nbor(j) <= numNodes && k + nbor(j)>0

CMap5.adjmat(k,k+nbor(j)) = CMap5.node(k+nbor(j),3);

end

end

end

%WIFI

Nav5.wifi = zeros(NoWifi,2);

for k=1:NoWifi

infCheck = Inf;

found = 0;

ran_num = randi(numNodes);

while (found == 0)

if (CMap5.node(ran_num,3) == infCheck)

%make sure the start space is valid

ran_num = randi(numNodes);

202

else

found = 1;

targetObj = CMap5.node(ran_num,:);

end

end

Nav5.wifi(k,:) = targetObj(1:2); %cur xPosition

end

Nav5.rfid = zeros(NoRfid,2);

for k=1:NoRfid

infCheck = Inf;

found = 0;

ran_num = randi(numNodes);

while (found == 0)

if (CMap5.node(ran_num,3) == infCheck)

%make sure the start space is valid

ran_num = randi(numNodes);

else

found = 1;

targetObj = CMap5.node(ran_num,:);

end

end

Nav5.rfid(k,:) = targetObj(1:2); %cur xPosition

end

fprintf(’Done\n’);

end

203

build3NodeMapPUMAP

function build3NodeMapPUMAP

global NoWifi NoRfid CMap3 Nav3;

% Read in xls file and convert to a node list

[num,txt,CMap3] = xlsread(’/Matlab/CMap’,’PUmap1’,’’,’basic’);

CMap3 = CMap3(1:84, 1:88); %row by column

fprintf(’Excel cost map read in...\n’);

numNodes = size(CMap3,1)*size(CMap3,2);

rowL = size(CMap3,2);

CMap3.node = Inf(numNodes,3);

row = 1; col = 1;

for i = 1:(numNodes-1)

CMap3.node(i,:) = [col row CMap3{row,col}];

col = col + 1;

if col > rowL

row = row + 1; %Move to next row

col = 1;

end

end

% Find buildings

b = find(CMap3.node(:,3)==’B’);

204

Nav3.buildings = CMap3.node(b,1:2);

CMap3.node(b,3) = Inf;

%Find doors

d = find(CMap3.node(:,3)==’D’);

Nav3.doors = CMap3.node(d,1:2);

%Find inside

n = find(CMap3.node(:,3)==’N’);

Nav3.nextflr = CMap3.node(n,1:2);

%show roads

r = find(CMap3.node(:,3) == 1);

r2= find(CMap3.node(:,3) == 2);

r = sort(vertcat(r,r2));

Nav3.road = CMap3.node(r,1:2);

CMap3.node(CMap3.node(:,3)==’I’,3) = 4;

CMap3.node(CMap3.node(:,3)==’D’,3) = 4;

CMap3.node(CMap3.node(:,3)==’P’,3) = 10;

%Log/Maintenance

fprintf(’Node database generated...\n’);

%% Build weighted adjacency matrix

CMap3.adjmat = Inf(numNodes);

fprintf(’Building weighted adjacency matrix...PUMap’);

205

nbor = [-(rowL+1),-rowL,-rowL+1,-1,1,rowL-1,rowL,rowL+1];

for k = 1:numNodes

switch mod(k,rowL)

case 1

nbor = [-rowL,-rowL+1,1,rowL,rowL+1];

case 0

nbor = [-(rowL+1),-rowL,-1,rowL-1,rowL];

otherwise

nbor = [-(rowL+1),-rowL,-rowL+1,-1,1,rowL-1,rowL,rowL+1];

end

for j = 1:length(nbor)

if k + nbor(j) <= numNodes && k + nbor(j)>0

CMap3.adjmat(k,k+nbor(j)) =

CMap3.node(k+nbor(j),3);

end

end

end

%WIFI

Nav3.wifi = zeros(NoWifi,2);

for k=1:NoWifi

infCheck = Inf;

found = 0;

ran_num = randi(numNodes);

while (found == 0)

if (CMap3.node(ran_num,3) == infCheck)

%make sure the start space is valid

206

ran_num = randi(numNodes);

else

found = 1;

targetObj = CMap3.node(ran_num,:);

end

end

Nav3.wifi(k,:) = targetObj(1:2); %cur xPosition

end

Nav3.rfid = zeros(NoRfid,2);

for k=1:NoRfid

infCheck = Inf;

found = 0;

ran_num = randi(numNodes);

while (found == 0)

if (CMap3.node(ran_num,3) == infCheck)

%make sure the start space is valid

ran_num = randi(numNodes);

else

found = 1;

targetObj = CMap3.node(ran_num,:);

end

end

Nav3.rfid(k,:) = targetObj(1:2); %cur xPosition

end

fprintf(’Done\n’);

end

207

findShortestPath.m

function findShortestPath(currentPos,targetPos,node,adjmat)

global Path;

tic

currentRowPoss = find(node(:,1)==currentPos(1));

currentCol = find(node(currentRowPoss,2)==currentPos(2));

currentNode = currentRowPoss(currentCol);

targetRowPoss = find(node(:,1)==targetPos(1));

targetCol = find(node(targetRowPoss,2)==targetPos(2));

targetNode = targetRowPoss(targetCol);

if node(currentNode,3) == Inf || node(targetNode,3) == Inf

error(’Coordinate out of bounds for pathways %d %d %d or

%d %d %d’, node(currentNode,1), node(currentNode,2),

node(currentNode,3), node(targetNode,1), node(targetNode,2),

node(targetNode,3));

end

%Find shortest path

fprintf(’Searching shortest path from node %d %d to node %d %d ...’,

node(currentNode,1), node(currentNode,2), node(targetNode,1),

node(targetNode,2));

[sPath, cost] = dijkstra(currentNode, targetNode, adjmat);

Path = sPath;

end

208

flrCheck.m

function [updatedPath] = flrCheck(Targ,CMap1, CMap2,

CMap3, CMap4, CMap5, Nav1, Nav2, Nav3, Nav4, Nav5)

for k = 1: Targ.num

currentPos = Targ.State(7:8,k);

objectivePos = Targ.State(17:18,k);

doorPos = Targ.Goals(1:2,k);

outsideDoorPos = Targ.Goals(3:4,k);

grantParking = Targ.Goals(5:6,k);

universityParking = Targ.Goals(7:8,k);

lwsnDoorPos = Targ.Goals(9:10,k);

insideDoorPos = Targ.Goals(11:12,k);

%%%%%%%%%%%

%%

%% START INSIDE /MOVE OUTSIDE/ END INSIDE

%%

%%%%%%%%%%%

if ((Targ.State(1,k)== 1 && Targ.State(16,k) == 1) &&

(Targ.State(5,k) ~= Targ.State(20,k)))

%START IN - MOVE OUT - END IN

if (Targ.State(4,k) == 2)

%start on 2 flr KNOY - find nearest down

idx=knnsearch(currentPos(2,1), Nav2.nextflr(:,2), 1);

tempPos = Nav2.nextflr(idx(1,1),:);

209

interPos = reshape(tempPos,2,1);

tempPath1 = findShortestPath(currentPos,interPos,

CMap2.node,CMap2.adjmat);

newTempPos = Nav1.nextflr(idx(1,1),:);

%KNOY 1st flr - move to door

newCurPos = reshape(newTempPos,2,1);

tempPath2 = findShortestPath(newCurPos, doorPos,

CMap1.node, CMap1.adjmat);

%move outside from knoy to lawson

tempPath3 = findShortestPath(outsideDoorPos,

lwsnDoorPos, CMap3.node, CMap3.adjmat);

idx=knnsearch(insideDoorPos(2,1), Nav4.nextflr(:,2),1);

%move from LWSN door to nearest up

tempPos1 = Nav4.nextflr(idx(1,1),:);

interPos1 = reshape(tempPos1,2,1);

tempPath4 = findShortestPath(insideDoorPos, interPos1,

CMap4.node, CMap4.adjmat);

newTempPos2 = Nav5.nextflr(idx(1,1),:);

%move from LWSN 2nd flr to end point

newCurPos2 = reshape(newTempPos2,2,1);

tempPath5 = findShortestPath(newCurPos2, objectivePos,

CMap5.node, CMap5.adjmat);

Targ.Path{k} = horzcat(tempPath1, 0, tempPath2, 0,

tempPath3, 0, tempPath4, 0, tempPath5);

210

end

end

end

updatedPath = Targ.Path;

end

211

getPlotFrame.m

function getPlotFrame()

global fig1 fig2 fig3 Targ;

%Plots the system at the current time step

%Preferences

pathStreaks = 0;

%Turning path streaks on will show the path taken for

%each agent, turning it off will show only current

%positions at each time step

if pathStreaks == 1;

hold on;

else

hold off;

end

if (Targ.State(6,1) == 1)

if (Targ.State(10,1) == 1) %KNOY

if (Targ.State(9,1) == 1)

1flr = Targ.State;

TF1 = isempty(1flr);

TF2 = 0;

%%%%%%%%%%%%%%%%%

%% INSIDE KNOY

%%%%%%%%%%%%%%%%%

212

figure(fig1);

hold on;

subplot(1,2,1);

if (~TF1)

if (Targ.State(24) == 1)

plot(1flr(7,:),1flr(8,:),’m.’, ’MSize’,20);

elseif (Targ.State(25) == 1)

plot(1flr(7,:),1flr(8,:),’g.’, ’MSize’,20);

else

plot(1flr(7,:),1flr(8,:),’b.’, ’MSize’,20);

end

end

hold on;

title({’Agent Based Model of Deliveries’; ’KNOY 1- flr’});

xlabel(’X-Position’); ylabel(’Y-Position’);

else

2flr = Targ.State;

TF2 = isempty(2flr);

TF1 = 1;

%%%%%%%%%%%%%%%%%

%% 2nd FLOOR KNOY

%%%%%%%%%%%%%%%%%

figure(fig1);

hold on;

213

subplot(1,2,2);

if (~TF2)

if (Targ.State(24) == 1)

plot(2flr(7,:),2flr(8,:),’m.’, ’MSize’,20);%wifi

elseif (Targ.State(25) == 1)

plot(2flr(7,:),2flr(8,:),’g.’, ’MSize’,20);%rfid

else

plot(2flr(7,:),2flr(8,:),’b.’, ’MSize’,20);%n/a

end

end

title({’Agent Based Model of Deliveries’; ’KNOY 2nd flr’});

xlabel(’X-Position’); ylabel(’Y-Position’);

end

else

%%%LWSN

if (Targ.State(9,1) == 1)

1flr = Targ.State;

TF1 = isempty(1flr);

%TF2 = 0;

%%%%%%%%%%%%%%%%%

%% INSIDE 1st FLOOR LWSN

%%%%%%%%%%%%%%%%%

figure(fig3);

hold on;

subplot(1,2,1);

if (~TF1)

214

if (Targ.State(24) == 1)

plot(1flr(7,:),1flr(8,:),’m.’, ’MSize’,20);%wifi

elseif (Targ.State(25) == 1)

plot(1flr(7,:),1flr(8,:),’g.’, ’MSize’,20);%rfid

else

plot(1flr(7,:),1flr(8,:),’b.’, ’MSize’,20);%n/a

end

end

hold on;

title({’Agent Based Model of Deliveries’; ’LWSN 1- flr’});

xlabel(’X-Position’); ylabel(’Y-Position’);

else

2flr = Targ.State;

TF2 = isempty(2flr);

TF1 = 1;

%%%%%%%%%%%%%%%%%

%% 2nd FLOOR LWSN

%%%%%%%%%%%%%%%%%

figure(fig3);

hold on;

subplot(1,2,2);

if (~TF2)

if (Targ.State(24) == 1)

plot(2flr(7,:),2flr(8,:),’m.’, ’MSize’,20);%wifi

elseif (Targ.State(25) == 1)

plot(2flr(7,:),2flr(8,:),’g.’, ’MSize’,20);%rfid

215

else

plot(2flr(7,:),2flr(8,:),’b.’, ’MSize’,20);%n/a

end

end

title({’Agent Based Model of Deliveries’; ’LWSN 2nd flr’});

xlabel(’X-Position’); ylabel(’Y-Position’);

end

end

else

%%%%%%%%%%%%%%%%%

%% OUTSIDE

%%%%%%%%%%%%%%%%%

outside = Targ.State;

TF3 = isempty(outside);

figure(fig2);

hold on;

if(~TF3)

if (Targ.State(23) == 1)

%GPS

plot(outside(7,:),outside(8,:),’k.’, ’MSize’,20);

elseif (Targ.State(24) == 1)

%wifi

plot(outside(7,:),outside(8,:),’m.’, ’MSize’,20);

else

%n/a

plot(outside(7,:),outside(8,:),’b.’, ’MSize’,20);

end

216

end

title({’Agent Based Model of Deliveries’; ’Purdue Campus Map’});

xlabel(’X-Position’); ylabel(’Y-Position’);

hold off;

end

217

initializeGoalArray.m

function initializeGoalArray()

%Function initializes the states of the various intermediate goals

global Targ;

%%%KNOY 1st

Targ.Goals(1) = 4 ;

Targ.Goals(2) = 54 ;

%%%OUTSIDE KNOY

Targ.Goals(3) = 68 ;

Targ.Goals(4) = 23 ;

%%%GRANT STREET PARKING

Targ.Goals(5) = 76 ;

Targ.Goals(6) = 57 ;

%%%UNIVERSITY STREET PARKING

Targ.Goals(7) = 22 ;

Targ.Goals(8) = 41 ;

%%%OUTSIDE LWSN

Targ.Goals(9) = 21 ;

Targ.Goals(10) = 28 ;

%%%INSIDE LWSN DOOR

Targ.Goals(11) = 38 ;

Targ.Goals(12) = 123 ;

218

%%%LAWSON 1st STAIR

Targ.Goals(13) = 9;

Targ.Goals(14) = 101;

%%%LAWSON 2nd STAIR

Targ.Goals(15) = 8;

Targ.Goals(16) = 106;

end

219

initializeTargetArray.m

function initializeTargArray()

%Function initializes the states of the targets

global Targ;

k = 1;

%%%START

Targ.State(1,k) = 1 ; %Start In/Out (1/0)

Targ.State(2,k) = 42; %Start X

Targ.State(3,k) = 107; %Start Y

Targ.State(4,k) = 2 ; %Start flr (0/1/2)

Targ.State(5,k) = 1; %Start Building (0 - OUTSIDE, 1 - KNOY,

2 - LWSN)

%%%CURRENT

Targ.State(6,k) = 1 ; %Current In/Out (1/0)

Targ.State(7,k) = 42; %Current X

Targ.State(8,k) = 107; %Current Y

Targ.State(9,k) = 2 ; %Current flr (0/1/2)

Targ.State(10,k) = 1; %Current Building (0 - OUTSIDE, 1 - KNOY,

2 - LWSN)

%%%INTERMEDIATE

Targ.State(11,k) = 1; %Intermediate In/Out (1/0)

Targ.State(12,k) = 11; %Intermediate X

Targ.State(13,k) = 75; %Intermediate Y

Targ.State(14,k) = 2; %Intermediate flr (0/1/2)

220

Targ.State(15,k) = 1; %Intermediate Building (0-OUTSIDE, 1-KNOY,

2 - LWSN)

%%%GOAL

Targ.State(16,k) = 1; %Goal In/Out (1/0)

Targ.State(17,k) = 41; %Goal X OLD 41

Targ.State(18,k) = 61; %Goal Y OLD 13

Targ.State(19,k) = 2; %Goal flr (0/1/2)

Targ.State(20,k) = 2; %Goal Building (0-OUTSIDE,1-KNOY,2-LWSN)

%%%MISC

Targ.State(21,k) = 0 ; %Step Cost (1-10)

Targ.State(22,k) = 0 ; %Goal State (0/1)

Targ.State(23,k) = 0 ; %GPS (0/1)

Targ.State(24,k) = 0 ; %WiFi (0/1)

Targ.State(25,k) = 0 ; %RFID (0/1)

Targ.State(26,k) = 8 ; %Speed (1-10)

Targ.State(27,k) = 0; %IDX (only for searching nearest nbor)

Targ.State(28,k) = 0; %Pause? (NUMBER TO PAUSE 0 = NONE)

Targ.State(29,k) = 0; %Add up step cost, speed and pause cost

end

221

loadFigures.m

function loadFigures()

global fig1 fig2 fig3 Nav1 Nav2 Nav3 Nav4 Nav5; % fig3;

load(’KNOY1flr.mat’);

load(’KNOY2flr.mat’);

load(’PUmap1.mat’);

load(’LWSN1flr.mat’);

load(’LWSN2flr.mat’);

knoy1 = KNOY1flr;

knoy2 = KNOY2flr;

pumap = PUmap1;

lwsn1 = LWSN1flr;

lwsn2 = LWSN2flr;

clear KNOY1flr KNOY2flr; %PUmap LWSN1flr LWSN2flr;

fig3 = figure(’Position’,[8 112 695 822]);

fig2 = figure(’Position’,[703 112 978 822]);

fig1 = figure(’Position’,[8 112 695 822]);

%%%%%%%%%%%%%

%

% FIGURE 1 - KNOY 1 & 2

%

%%%%%%%%%%%%%

222

figure(fig1);

subplot(1,2,1), imagesc([0 50], [0 145], knoy1);

yLimits = round(get(gca,’YLim’));

%# Get the y axis limits

yTicks = yLimits(2)-get(gca,’YTick’);

%# Get the y axis tick values and subtract them from the upper limit

set(gca,’YTickLabel’,num2str(yTicks.’));

%’# Convert the tick values to strings and update the y axis labels

axis image;

hold on;

subplot(1,2,1);

plot(Nav1.wifi(:,1),Nav1.wifi(:,2),’m*’, ’MSize’, 15)

plot(Nav1.rfid(:,1),Nav1.rfid(:,2),’k*’, ’MSize’, 15)

subplot(1,2,2), imagesc([0 50],[0 145],knoy2);

yLimits = round(get(gca,’YLim’));

%# Get the y axis limits

yTicks = yLimits(2)-get(gca,’YTick’);

%# Get the y axis tick values and subtract them from the upper limit

set(gca,’YTickLabel’,num2str(yTicks.’));

%’# Convert the tick values to strings and update the y axis labels

axis image;

hold on;

subplot(1,2,2);

plot(Nav2.wifi(:,1),Nav2.wifi(:,2),’m*’, ’MSize’, 15)

plot(Nav2.rfid(:,1),Nav2.rfid(:,2),’k*’, ’MSize’, 15)

%%%%%%%%%%%%%

223

%

% FIGURE 2 - PUMAP

%

%%%%%%%%%%%%%

figure(fig2);

imagesc([0 115], [0 82], pumap);

yLimits = round(get(gca,’YLim’));

%# Get the y axis limits

yTicks = yLimits(2)-get(gca,’YTick’);

%# Get the y axis tick values and subtract them from the upper limit

set(gca,’YTickLabel’,num2str(yTicks.’));

%’# Convert the tick values to strings and update the y axis labels

axis image;

hold on;

plot(Nav3.wifi(:,1),Nav3.wifi(:,2),’m*’, ’MSize’, 15)

%%%%%%%%%%%%%

%

% FIGURE 3 - LWSN 1 & 2

%

%%%%%%%%%%%%%

figure(fig3);

subplot(1,2,1), imagesc([0 45], [0 130], lwsn1);

yLimits = round(get(gca,’YLim’));

%# Get the y axis limits

yTicks = yLimits(2)-get(gca,’YTick’);

%# Get the y axis tick values and subtract them from the upper limit

set(gca,’YTickLabel’,num2str(yTicks.’));

224

%’# Convert the tick values to strings and update the y axis labels

axis image;

hold on;

subplot(1,2,1);

plot(Nav4.wifi(:,1),Nav4.wifi(:,2),’m*’, ’MSize’, 15)

plot(Nav4.rfid(:,1),Nav4.rfid(:,2),’k*’, ’MSize’, 15)

subplot(1,2,2), imagesc([0 45],[0 132],lwsn2);

yLimits = round(get(gca,’YLim’));

%# Get the y axis limits

yTicks = yLimits(2)-get(gca,’YTick’);

%# Get the y axis tick values and subtract them from the upper limit

set(gca,’YTickLabel’,num2str(yTicks.’));

%’# Convert the tick values to strings and update the y axis labels

axis image;

hold on;

subplot(1,2,2);

plot(Nav5.wifi(:,1),Nav5.wifi(:,2),’m*’, ’MSize’, 15)

plot(Nav5.rfid(:,1),Nav5.rfid(:,2),’k*’, ’MSize’, 15)

225

updateGPS.m

function GPSavailable = updateGPS(x,y,buildings)

global GPSProb;

%Finds signal strength for GPS at given x,y position

a = [x*ones(length(buildings),1),y*ones(length(buildings),1)];

b = (a-buildings).^2;

dist = sqrt(b(:,1) + b(:,2));

buildingNear = min(dist);

probGPSloss = GPSProb - GPSProb/7*buildingNear;

if probGPSloss <= 0

GPSavailable = 1;

else

if rand*100 < probGPSloss

GPSavailable = 0;

else

GPSavailable = 1;

end

end

226

updateRfid.m

function rfidAvailable = updateRfid(x,y,rfid)

%Finds signal strength for RFID at given x,y position

global RfidDist;

TF = isempty(rfid);

if ~TF

a = [x*ones(length(rfid),1),y*ones(length(rfid),1)];

b = (a-rfid).^2;

dist = sqrt(b(:,1) + b(:,2));

rfidNear = min(dist);

if rfidNear <= RfidDist

rfidAvailable = 1;

else

rfidAvailable = 0;

end

else

rfidAvailable = 0;

end

end

227

updateWifi.m

function wifiAvailable = updateWifi(x,y,wifi)

%Finds signal strength for Wifi at given x,y position

global WifiDist;

TF = isempty(wifi);

if ~TF

a = [x*ones(length(wifi),1),y*ones(length(wifi),1)];

b = (a-wifi).^2;

dist = sqrt(b(:,1) + b(:,2));

wifiNear = min(dist);

if wifiNear <= WifiDist;

wifiAvailable = 1;

else

wifiAvailable = 0;

end

else

wifiAvailable = 0;

end

end

228

updateNavState.m

function navState = updateNavState(currPos, InOut, Nav)

%Updates the Nav systems state of an agent

%based on its x,y position

navState = zeros(2,1);

x=currPos(1);

y=currPos(2);

if (InOut == 0)

navState(1) = updateGPS(x,y, Nav.buildings);

navState(2) = updateWifi(x,y, Nav.wifi);

else

navState(1) = updateWifi(x,y, Nav.wifi);

navState(2) = updateRFID(x,y,Nav.rfid);

end

229

updatePos.m

function updatePos(t)

global Targ Path CMap1 CMap2 CMap3 CMap4 CMap5;

%% Check if GOAL is reached

if (Targ.State(6:10) == Targ.State(16:20))

Targ.State(22) = 1;

Targ.End = 1;

%% GOAL not reached

else

%% Check if INTER GOAL reached

if (Targ.State(6:10) == Targ.State(11:15))

%% STILL IN KNOY

if (Targ.State(10) == 1)

%% RESET TO KNOY 1st flr

if (Targ.State(9) == 2)

%% Set CURR POS

Targ.State(9) = 1;

%% SET INTER POS

Targ.State(12:13) = Targ.Goals(1:2);

Targ.State(14) = 1;

%% MOVE TO OUTSIDE

else

Targ.State(6) = 0; %move outside

Targ.State(7:8) = Targ.Goals(3:4);

Targ.State(9) = 0;

Targ.State(10) = 0;

%% SET INTER POS

230

Targ.State(11) = 0;

Targ.State(12:13) = Targ.Goals(5:6);

Targ.State(14) = 0;

Targ.State(15) = 0;

end

elseif ((Targ.State(10) == 0))

%% MOVE TO 2ND GARAGE

Targ.State(7:8) = Targ.Goals(5:6);

Targ.State(10) = 3;

%% SET INTER POS

Targ.State(12:13) = Targ.Goals(7:8);

Targ.State(15) = 3;

elseif (Targ.State(10) == 3)

%% MOVE TO OUTSIDE LWSN

Targ.State(7:8) = Targ.Goals(7:8);

Targ.State(10) = 4;

%% SET INTER POS

Targ.State(12:13) = Targ.Goals(9:10);

Targ.State(15) = 4;

elseif(Targ.State(10) == 4)

%% MOVE TO INSIDE LWSN

Targ.State(6) = 1; %move inside

Targ.State(7:8) = Targ.Goals(11:12);

Targ.State(9) = 1;

Targ.State(10) = 2;

%% SET INTER POS

Targ.State(11) = 1;

Targ.State(12:13) = Targ.Goals(13:14);

Targ.State(14) = 1;

231

Targ.State(15) = 2;

elseif(Targ.State(10) == 2)

Targ.State(7:8) = Targ.Goals(15:16);

Targ.State(9) = 2;

%% SET INTER POS

Targ.State(12:13) = Targ.State(17:18);

Targ.State(14) = 1;

end

else

%% CURRENT BLDG KNOY

if (Targ.State(10) == 1)

switch (Targ.State(9))

%% CURRENTLY 1- FLOOR KNOY

case 1

Targ.State(7:8) = CMap1.node((Path(1,t)),1:2);

Targ.State(21) = CMap1.node((Path(1,t)),3);

%% CURRENTLY 2nd FLOOR KNOY

case 2

Targ.State(7:8) = CMap2.node((Path(1,t)),1:2);

Targ.State(21) = CMap2.node((Path(1,t)),3);

end

%% CURRENT BLDG OUTSIDE

elseif ((Targ.State(10) == 0) || (Targ.State(10) == 3)

|| (Targ.State(10) == 4))

Targ.State(7:8) = CMap3.node((Path(1,t)),1:2);

Targ.State(21) = CMap3.node((Path(1,t)),3);

else

switch (Targ.State(9))

%% CURRENTLY 1- FLOOR LWSN

232

case 1

Targ.State(7:8) = CMap4.node((Path(1,t)),1:2);

Targ.State(21) = CMap4.node((Path(1,t)),3);

%% CURRENTLY 2nd FLOOR LWSN

case 2

Targ.State(7:8) = CMap5.node((Path(1,t)),1:2);

Targ.State(21) = CMap5.node((Path(1,t)),3);

end

end

end

end

end

233

updateTargState.m

function updateTargState(t)

%Function updates the target state based

%on current state and objectives

global Targ Nav1 Nav2 Nav3 Nav4 Nav5;

updatedState = Targ.State;

updatedState(21) = 0;

updatedState(26) = 0;

updatedState(28) = 0;

%%%%%

%%

%Update nav system

%%

%%%%%

%outside update GPS/WIFI

if ((Targ.State(10) == 0) || (Targ.State(10) == 3)

|| (Targ.State(10) == 4))

Nav= Nav3;

updatedState(23:24) = updateNavState(Targ.State(7:8),

Targ.State(6), Nav);

if (updatedState(23) == 1) %if GPS

updatedState(26) = 1;

elseif (updatedState(24) == 1) %if wifi

updatedState(26) = 3;

else

234

updatedState(26) = 10; %if nothing - slow...

updatedState(28) = Targ.State(28) + 2;

end

elseif (Targ.State(10) == 1) %inside update WIFI/RFID

if (Targ.State(9) == 1)

Nav = Nav1;

else

Nav = Nav2;

end

updatedState(24:25) = updateNavState(Targ.State(7:8),

Targ.State(6), Nav);

if (updatedState(24) == 1) %if WiFi

updatedState(26) = 5;

elseif (updatedState(25) == 1) %if RFID

updatedState(26) = 7;

else

updatedState(26) = 10; %if nothing - slow...

updatedState(28) = Targ.State(28) + 2;

end

elseif (Targ.State(10) == 2) %inside update WIFI/RFID

if (Targ.State(9) == 1)

Nav = Nav4;

else

Nav = Nav5;

end

updatedState(24:25) = updateNavState(Targ.State(7:8),

Targ.State(6), Nav);

if (updatedState(24) == 1) %if WiFi

updatedState(26) = 5;

235

elseif (updatedState(25) == 1) %if RFID

updatedState(26) = 7;

else

updatedState(26) = 10; %if nothing - slow...

updatedState(28) = Targ.State(28) + 2;

end

end

Targ.State = updatedState;

end

236

Appendix: C

.5 Patterns of Variables for M
IV

Variable

Node Count

GPS Wifi Range RFID Range No Runs

Wifi-Rfid

00-00 60% 5 5 200

00-00 60% 10 5 200

00-00 60% 15 5 200

00-00 80% 5 5 200

00-00 80% 10 5 200

00-00 80% 15 5 200

00-10 60% 5 5 200

00-10 60% 10 5 200

00-10 60% 15 5 200

00-10 80% 5 5 200

00-10 80% 10 5 200

00-10 80% 15 5 200

00-10 60% 5 10 100

00-10 60% 10 15 100

00-20 60% 5 5 200

00-20 60% 10 5 200

00-20 60% 15 5 200

00-20 80% 5 5 200

00-20 80% 10 5 200

237

00-20 80% 15 5 200

00-20 60% 5 10 100

00-20 60% 10 15 100

00-40 60% 5 5 200

00-40 60% 10 5 200

00-40 60% 15 5 200

00-40 80% 5 5 200

00-40 80% 10 5 200

00-40 80% 15 5 200

00-40 60% 5 10 100

00-40 60% 10 15 100

00-80 60% 5 5 100

00-80 60% 10 5 100

00-80 60% 15 5 100

00-80 80% 5 5 100

00-80 80% 10 5 100

00-80 80% 15 5 100

10-00 60% 5 5 100

10-00 60% 10 5 100

10-00 60% 15 5 100

10-00 80% 5 5 100

10-00 80% 10 5 100

10-00 80% 15 5 100

10-10 60% 5 5 100

10-10 60% 10 5 100

10-10 60% 15 5 100

10-10 80% 5 5 100

10-10 80% 10 5 100

238

10-10 80% 15 5 100

10-20 60% 5 5 100

10-20 60% 10 5 100

10-20 60% 15 5 100

10-20 80% 5 5 100

10-20 80% 10 5 100

10-20 80% 15 5 100

10-40 60% 5 5 100

10-40 60% 10 5 100

10-40 60% 15 5 100

10-40 80% 5 5 100

10-40 80% 10 5 100

10-40 80% 15 5 100

20-00 60% 5 5 100

20-00 60% 10 5 100

20-00 60% 15 5 100

20-00 80% 5 5 100

20-00 80% 10 5 100

20-00 80% 15 5 100

20-10 60% 5 5 100

20-10 60% 10 5 100

20-10 60% 15 5 100

20-10 80% 5 5 100

20-10 80% 10 5 100

20-10 80% 15 5 100

20-20 60% 5 5 100

20-20 60% 10 5 100

20-20 60% 15 5 100

239

20-20 80% 5 5 100

20-20 80% 10 5 100

20-20 80% 15 5 100

20-40 60% 5 5 100

20-40 60% 10 5 100

20-40 60% 15 5 100

20-40 80% 5 5 100

20-40 80% 10 5 100

20-40 80% 15 5 100

10-00 60% 5 5 100

10-00 60% 10 5 100

10-00 60% 15 5 100

10-00 80% 5 5 100

10-00 80% 10 5 100

10-00 80% 15 5 100

40-10 60% 5 5 100

40-10 60% 10 5 100

40-10 60% 15 5 100

40-10 80% 5 5 100

40-10 80% 10 5 100

40-10 80% 15 5 100

40-20 60% 5 5 100

40-20 60% 10 5 100

40-20 60% 15 5 100

40-20 80% 5 5 100

40-20 80% 10 5 100

40-20 80% 15 5 100

40-40 60% 5 5 100

240

40-40 60% 10 5 100

40-40 60% 15 5 100

40-40 80% 5 5 100

40-40 80% 10 5 100

40-40

80-00

80%

60%

15

5

5

5

100

100

80-00 60% 10 5 100

80-00 60% 15 5 100

80-00 80% 5 5 100

80-00 80% 10 5 100

80-00 80% 15 5 100

80-80 60% 5 5 100

80-80 60% 10 5 100

80-80 60% 15 5 100

80-80 80% 5 5 100

80-80 80% 10 5 100

80-80 80% 15 5 100

VITA

241

VITA

Teresa A. Shanklin

Education

•	 Ph.D. Computer and Information Technology

Purdue University, West Lafayette, Indiana

May, 2012

•	 M.S. Information Assurance

Iowa State University, Ames, Iowa

December, 2006

•	 B.S. Computer Science, Minor: Mathematics

Regis University, Denver, Colorado

May, 2005

Refereed Publications

•	 T. Shanklin, B. Loulier, E. Matson, Embedded Sensors for Indoor Positioning,

IEEE Sensor Applications Symposium 2011. February, 2011, San Antonio,

Texas

•	 K. Lutes, T. Shanklin. So You Want To Teach an iPhone Course, ASEE Global

Colloquium on Engineering Education 2011. June, 2011, Las Vegas, Nevada

•	 T. Shanklin, B. Loulier, E. Matson and E. Dietz, An Applied Multi-agent

System Simulation for Path-Planning on a Mobile Device, 2012 Springer 10th

International Conference on Practical Applications of Agents and Multiagent

Systems, PAAMS 2012, Salamanca, Spain

Submitted

242

•	 T. Shanklin, E. Matson, C. Tytler, G. Lo, J. Altchuler, A Multi-agent

System-of-Systems Model to Navigate a Complex Campus Environment,

SummerSim 2012, Genoa, Italy

•	 T. Shanklin, B. Marshall, E. Matson Data Fusion from Embedded Sensors on

Smart Phones for Improved Localization, ACM SIGMOBILE 18th Annual

International Conference on Mobile Computing and Networking 2012,

MOBICOM 2012, Istanbul, Turkey

•	 T. Shanklin, B. Marshall, E. Matson Agent-Based Model and Simulation for

Multi-Sensor Navigation, 2012 The Journal of Ambient Intelligence and Smart

Environments, Technical Journal

Teaching

•	 CIT 155: Introduction to Object Oriented Programming. F08, S09, F09

(teaching assistant). C#

•	 CIT 295: Object-Oriented Programming. F11 (teaching assistant). JAVA

•	 CIT 315: Systems Programming. S12 (teaching assistant). C

Awards

•	 Grad Cohort Scholarship Recipient 2010.

•	 Grace Hopper Scholarship Recipient 2010.

•	 Purdue Research Fellowship Award. 2010-2011.

Professional Experience

•	 Graduate Research Assistant. S09.

Professor Rick Mislan

Northrup Grumman Cybersecurity Research Consortium

Research into fast forensics, improving the speed and fidelity of forensics in

the field on cell phones, PDAs and similar devices.

243

•	 Purdue Research Fellowship Award. F10-S11. (research assistant)

Professor Brandeis Marshall

Project, Seeing iPhone

Research into viability of using embedded sensors on Apple iPhone to

provide indoor localization and navigation for visually impaired users.

•	 Owner, Shanklin Computers Services and GTM Process, Inc. Fairbanks, AK

2001 - March, 2010

Write customized software program for contract clients (State of Alaska/

Lockheed Martin)

Provide various computer security services for contract clients: application

& network security.

Maintain company security including disaster recovery and data integrity.

Create custom application for business including database.

•	 Systems Administrator, SMI/ NOAA/ Lockheed Martin, Fairbanks, AK

2001 - 2005

Assessed computer and network security vulnerabilities, and reported

findings to senior management with recommendations for corrective action.

Collaborated on security issues with System Security O�cer at NOAA

headquarters in Suitland, MD.

Configured and managed user access, passwords, permissions, and

restrictions on Windows local and wide area networks.

Configured system backups, verified backup data integrity and initiated

backup/recovery strategy.

Installed, configured and maintained a variety of security equipment,

including Cisco routers, firewalls and VPNs.

Authored local station security procedures, and ensured compliance and

reporting for NOAA and Department of Commerce policies.

•	 Lead Systems Administrator, Aschenbrenner Law O�ces, Fairbanks, AK

244

1994 - 2000

Development of custom software program, providing automated document

creation through Access database.

Improved program utilized for State of Alaska reporting purposes by

modifying and improving existing custom code to meet changing needs and

requirements.

Upgraded and enhanced network; transitioned from peer-to-peer COAX, to

Cat3 cabling with Novell 2.6 server then 3.1 and Windows 3.1. Migrated

system to Windows NT, 2000, 2003 network with Cat5.

Setup and configured Cisco routers and Cisco PIX between Fairbanks and

Anchorage o�ces using VPN technology.

Boosted e�ciency and reduced errors by creating new legal database to

automate creation of numerous forms and document.

Responsible for all system security, including disaster recovery.

Afliations

•	 Institute of Electrical and Electronics Engineers (IEEE), Student Member

•	 Association for Computing Machinery (ACM), Student Member

•	 Information Systems Audit and Control Association (ISACA), Member

•	 International Information Systems Security Certification Consortium, Inc.

(ISC)2, Member

•	 Phi Kappa Phi Honor Society, Member

•	 Center for Education and Research in Information Assurance and Security

(CERIAS)

•	 Purdue M2M Lab

Industry Certifications

• CISA - Certified Information Systems Auditor

245

• CISSP - ISC Systems Security Professional

• GSEC-GIAC Security Essentials

• MCSE - Microsoft Systems Engineer, NT

• GCIH-GIAC Incident Handler

• MCP - Microsoft Professional, W2K

• GREM-GIAC Reverse Engineer Malware

• CCNA-Cisco Network Associate

• GISP-GIAC Security Professional

• CompTIA A+

• GCFW-GIAC Firewall Analysis

• MCT Microsoft Trainer

• GCFA-GIAC Forensic Analyst

Technical Industry Training

• Cisco Secure IDS

• Linux Administration

• Cisco Secure PIX Firewall Advanced

• Cisco Router Programming

• Sans Firewalls, Perimeter & VPNs

• MCT-Train the Trainer

• Sans Hacker Techniques & Incident Handling

• Cisco Interconnecting Network Devices

• Sans +STM Traning Program for CISSP Exam

• Cisco Interconnecting Network Devices

• Sans Reverse Engineering Malware

246

• Windows Internetworking TCP/IP

• Sans System Forensics

• Windows NT Enterprise Technology

• SANS Training for CISA Exam

• Copper & Fiber Cabling

• Black Hat Malware Analysis

• Sans Drive and Data Recovery Forensics

• Advance Memory Forensic in Incident Response

	Table of Contents
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	ABSTRACT
	Chapter 1. Introduction
	Motivation
	Statement of Purpose
	Definable Goals
	Organization

	Chapter 2. Literature Review
	Mobile Devices
	Discussion of Mobile Devices and their Environment

	Indoor Localization
	RFID
	Embedded Sensors
	Discussion on Indoor Localization

	Modeling and Simulation
	Agent-Based Modeling
	Simulation
	Discussion of Modeling and Simulation

	Complex Systems
	Multi-agent System
	System-of-Systems
	Discussion of Complex Systems

	Path-Planning
	Dijkstra
	Nearest Neighbor
	Discussion on Path-Planning

	Contribution and Summary

	Chapter 3. Path-planning and Navigation
	PI: Path-planning on the Samsung Nexus S
	Methodology
	Design
	Implementation

	PII:Path-planning on the Apple iPhone
	Methodology
	Design
	Implementation

	PIII: MatLab Implementation & Simulation
	Methodology
	Design
	Implementation
	Results

	Conclusion

	Chapter 4. Methodology
	Model
	Principles

	Implementation
	Conceptual Description

	Data Collection
	Data Analysis
	Statistical Methods
	Reconciliation

	Summary

	Chapter 5. Agent-Based SoS Results
	Chapter 6. Conclusion
	Discussion
	Conclusion
	Contribution of Research

	Future Work

	LIST OF REFERENCES
	GLOSSARY
	Appendix: A
	Sensors
	Database
	Mobile Platforms
	BlackBerry
	iPhone OS
	Android
	Windows Phone 7
	Summary of Mobile Devices

	Appendix: B
	Matlab Source Code

	Appendix: C
	Patterns of Variables for MIV

	VITA

