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Abstract—An important problem in public clouds is how to selectively share documents based on fine-grained attribute based 
access control policies. An approach is to encrypt documents satisfying different policies with different keys using a public key 
crytosystem such as attribute based encryption (ABE), and/or proxy re-encryption (PRE). However, such an approach has some 
weaknesses: it cannot efficiently handle adding/revoking users or identity attributes, and policy changes; it requires to keep 
multiple encrypted copies of the same documents; it incurs high computational cost. A direct application of a symmetric key 
cryptosystem, where users are grouped based on the policies they satisfy and assigning unique keys for each group, also has 
similar weaknesses. We observe that, without utilizing public key cryptography and by allowing users to dynamically derive the 
symmetric keys at the time of decryption, one can address the above weaknesses. Based on this idea, we formalize a new key 
management scheme called broadcast group key management (BGKM) and then give a secure construction of a BGKM scheme 
called ACV-BGKM. The idea is to give some secrets to users based on the identity attributes they have and later allow them 
to derive actual symmetric keys based on their secrets and some public information. A key advantage of the BGKM scheme is 
that adding users/revoking users or updating access control policies can be performed efficiently by updating only some public 
information. Using our BGKM construct, we propose an efficient approach for fine-grained encryption based access control for 
documents stored in an untrusted cloud file storage. 
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1 INTRODUCTION 

With the advent of technologies such as cloud com­
puting, sharing data through a third-party cloud 
service provider has never been more economical 
and easier than now. However, such cloud providers 
cannot be trusted to protect the confidentiality of 
the data. In fact, data privacy and security issues 
have been major concerns for many organizations 
utilizing such services. Data often encode sensitive 
information and should be protected as mandated by 
various organizational policies and legal regulations. 
Encryption is a commonly adopted approach to pro­
tect the confidentiality of the data. Encryption alone 
however is not sufficient as organizations often have 
to enforce fine-grained access control on the data. 
Such control is often based on the attributes of users, 
referred to as identity attributes, such as the roles of 
users in the organization, projects on which users are 
working and so forth. These systems, in general, are 
called attribute based systems. Therefore, an important 
requirement is to support fine-grained access control, 
based on policies specified using identity attributes, 
over encrypted data. 
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With the involvement of the third-party cloud ser­
vices, a crucial issue is that the identity attributes in 
the access control policies (acps) often reveal privacy­
sensitive information about users and leak confiden­
tial information about the content. The confidentiality 
of the content and the privacy of the users are thus 
not fully protected if the identity attributes are not 
protected. Further, privacy, both individual as well 
as organizational, is considered a key requirement 
in all solutions, including cloud services, for digi­
tal identity management [2], [3], [4], [5]. Further, as 
insider threats [6] are one of the major sources of 
data theft and privacy breaches, identity attributes 
must be strongly protected even from accesses within 
organizations. With initiatives such as cloud comput­
ing the scope of insider threats is no longer limited 
to the organizational perimeter. Therefore, protecting 
the identity attributes of the users while enforcing 
attribute-based access control both within the orga­
nization as well as in the cloud is crucial. 
An approach to support fine-grained selective 

attribute-based access control before uploading the 
content to the cloud is to encrypt each content portion 
to which the same access control policy (or set of 
policies) applies with the same key. One approach 
to deliver the correct keys to the users based on 
the policies they satisfy is to use a hybrid solu­
tion where the keys are encrypted using a public 
key crytosystem such as attribute based encryption 
(ABE) and/or proxy re-encryption (PRE). However, 
such an approach has several weaknesses: it cannot 

mailto:nabeel@cs.purdue.edu


2 

efficiently handle adding/revoking users or identity 
attributes, and policy changes; it requires to keep mul­
tiple encrypted copies of the same key; it incurs high 
computational cost. Therefore, a different approach is 
required. 
It is worth noting that a simplistic group key 

management (GKM) scheme in which the content 
publisher directly delivers the symmetric keys to cor­
responding users has some major drawbacks with 
respect to user privacy and key management. On one 
hand, user private information encoded in the user 
identity attributes is not protected in the simplistic 
approach. On the other hand, such a simplistic key 
management scheme does not scale well as the num­
ber of users becomes large and when multiple keys 
need to be distributed to multiple users. The goal of 
this paper is to develop an approach which does not 
have these shortcomings. 
We observe that, without utilizing public key cryp­

tography and by allowing users to dynamically derive 
the symmetric keys at the time of decryption, one can 
address the above weaknesses. Based on this idea, we 
first formalize a new GKM scheme called broadcast 
GKM (BGKM) and then give a secure construction of 
BGKM scheme and formally prove its security. The 
idea is to give secrets to users based on the identity 
attributes they have and later allow them to derive 
actual symmetric keys based on their secrets and some 
public information. A key advantage of the BGKM 
scheme is that adding users/revoking users or updat­
ing access control policies can be performed efficiently 
and only requires updating the public information. 
Our BGKM scheme satisfies the requirements of min­
imal trust, key indistinguishability, key independence, 
forward secrecy, backward secrecy and collusion resistance 
as described in [7] with minimal computational, space 
and communication cost. 
Using our BGKM scheme, we develop an attribute-

based access control mechanism whereby a user is 
able to decrypt the contents if and only if its iden­
tity attributes satisfy the content provider’s policies, 
whereas the content provider and the cloud learn 
nothing about user’s identity attributes. The mecha­
nism is fine-grained in that different policies can be 
associated with different content portions. A user can 
derive only the encryption keys associated with the 
portions the user is entitled to access. 
The rest of the paper is organized as follows. Sec­

tion 2 formalizes the notion of BGKM and provides 
our construction ACV-BGKM and security proofs. 
Section 3 provides two optimizations to the basic 
ACV-BGKM scheme. Section 4 provides an overview 
of our overall scheme. Section 5 shows how to pre­
serve the privacy of identity attributes. Section 6 
provides detailed description of our scheme. Section 7 
presents experimental results on the basic and the 
optimized ACV-BGKM construction which is the key 
component in our scheme. Section 8 discusses related 

work. Section 9 concludes the paper and outlines 
future research directions. 

2 BROADCAST GROUP KEY MANAGEMENT 

In this section, we first list the requirements for 
an effective GKM, then give an overview of BGKM 
schemes and finally present our construction along 
with security proofs. 

2.1 Requirements for a Secure and Effective GKM 

Several requirements are identified and discussed by 
Challel and Seba [7] and others for effective GKM. 
Generally speaking, an efficient and practical GKM 
should address the following requirements. 

•	 Minimal trust requires the GKM scheme to place 
trust on a small number of entities. 

•	 Key hiding requires that with given public infor­
mation, it is hard for anyone outside the group to 
gain the shared group key. Ideally, every element 
in the keyspace should have the same probability 
of being the real key. 

•	 Key independence requires that the leak of one 
key does not compromise other keys. 

•	 Backward secrecy means that a member who has 
left the group cannot access any future group 
keys. 

•	 Forward secrecy means that a newly joining 
group member cannot access any old keys. 

•	 Collusion resistance requires that a set of col­
luding fraudulent users should not obtain keys 
which they are not allowed to obtain individually. 

•	 Low bandwidth overhead requires that the 
rekeying should not incur a high volume of mes­
sages. 

•	 Computational costs should be acceptable at 
both the server and the group member. 

•	 Storage requirements for keys and other relevant 
information should be minimal. 

•	 Ease of maintenance requires that a single 
change of membership in the group does not 
need many changes to take place for the other 
group members. 

•	 Other requirements include service availability, 
minimal packet delays, and so on. These factors 
are sometimes more affected by real-world set­
tings and implementation, and less related to the 
high-level design of the GKM. 

2.2 Broadcast GKM 

In order to provide forward and backward secrecy, 
rekey operations should be performed whenever the 
users in the group change. Typical GKM schemes 
require O(n) [8], [9] or at least O(log n) [10], [11] 
private communication channels to perform the rekey 
operation. In comparison, BGKM schemes make rekey 
a one-off process [12], [13], [14]. In such schemes, 

http:management.On


3 

rekeying is performed with a single broadcast without 
using private communication channels. It should be 
noted that even though BGKM schemes have some 
similarity with secret sharing (SS) schemes, they are 
constructed for different purposes. “k out of n” SS 
schemes [15], [16] are constructed to split a secret 
among n users and allow to recover the secret by 
combining at least k secret shares. On the contrary, 
BGKM schemes allow each valid user to recover the 
secret by using only their secret share. Also, colluding 
users, who individually cannot recover the secret, 
are not able to recover the secret collectively. Unlike 
conventional GKM schemes, BGKM schemes do not 
give users the private keys. Instead users are given 
a secret which is combined with public information 
to obtain the actual private keys. Such schemes have 
the advantage that it requires a private communi­
cation only once for the initial secret sharing and 
the subsequent rekeying operations are performed 
using one broadcast message. Further, such schemes 
can provide forward and backward security by only 
changing the public information and without affecting 
secret shares given to existing users. Based on our 
preliminary work [17], we propose a provably secure 
BGKM scheme, called ACV-BGKM (Access Control 
Vector BGKM), and formalize the notion of BGKM. 
Further we prove the security of ACV-BGKM. 
Definition 1 (BGKM): In general, a BGKM scheme 

consists of the following five algorithms: 
•	 Setup(ℓ): It initializes the BGKM scheme using 

a security parameter ℓ. It also initializes the set 
of used secrets S, the secret space SS and the 
key space KS . All the parameters are collectively 
denoted as Param. 

•	 SecGen(): It selects a random bit string s ∈/ S 
uniformly at random from the secret space SS, 
adds s to S and outputs s. 

•	 KeyGen(S): It chooses a group key K uniformly 
at random from the key space KS and outputs the 
public information PI computed from the secrets 
in S and the group key K. 

•	 KeyDer(s, PI): It takes the user’s secret s and the 
public information PI to output the group key. 
The derived group key is equal to K if and only 
if s ∈ S. 

•	 Update(S) Whenever the set S changes, a new 
′ group key K is generated. Depending on the 

construction, it either executes the KeyGen algo­
rithm again or incrementally updates the output 
of the last KeyGen algorithm. 

Now we provide some basic notions and formally 
define security. 
Negligible functions 
We call a function f : N → R negligible if for every 
positive polynomial p(·) there exists an N such that 
for all n > N , we have f(n) < 1/p(n) [18]. 
Random oracle model 
The random oracle model is a paradigm introduced 

by Bellare and Rogaway [19] for design and analy­
sis of certain cryptographic protocols. Intuitively, a 
random oracle is a mathematical function that can 
be queried by anyone, and maps every query to a 
uniformly randomly chosen response from its output 
domain. In practice, random oracles can be used to 
model cryptographic hash functions in many crypto­
graphic schemes. 
A BGKM scheme should allow a valid group mem­

ber to derive the shared group key, and prohibit 
anyone outside the group from doing so. Formally 
speaking, a BGKM scheme should satisfy the follow­
ing security properties. It must be correct, sound, key 
hiding, and forward/backward key protecting. Let 
Svr be the group controller. 

1Definition 2 (Correctness): Let Usr be a current 
group member with a secret. Let K and PI be Svr’s 
output of the KeyGen algorithm. Let K ′ be Usr’s 
output of the KeyDer algorithm. A BGKM scheme 
is correct if Usr can derive the correct group key K 
with overwhelming probability, i.e., 

Pr[K = K ′ ] ≥ 1− f(k), 

where f is a negligible function in k. 
Definition 3 (Soundness): Let Usr be an individual 

without a valid secret. A BGKM scheme is sound if 
the probability that Usr can obtain the correct group 
key K by substituting the secret with a value val that 
is not one of the valid secrets and then following the 
key derivation phase KeyDer is negligible. 
We define the following security game to define the 

key hiding requirement. 
Definition 4 (KeyHideA,Π): 1) The Svr, as the 

challenger, runs the KeyGen algorithm of the 
BGKM scheme Π and gives the parameters 
Param to the adversary A. 

2) A selects two random keys K1,K2 ∈ KS and 
give to the Svr. 

3) The Svr flips a random coin b ∈ {0, 1} and selects 
Kb as the group key and runs the KeyGen 
algorithm. 

4) The Svr gives the public information PI of the 
output of the KeyGen algorithm to A. 

5) A outputs a guess b ′ of b. 
6) The output of the game is defined to be 1 if b ′ = 

b, and 0 otherwise. We write KeyHideA,Π = 1 if 
the output is 1 and in this case we say that A 
wins the game. 

The advantage of A in this game is defined as 
Pr[KeyHideA,Π = 1]− 1/2. 

Definition 5 (Key hiding): A BGKM scheme is key 
hiding if given PI , any party which does not have 
a valid secret cannot distinguish the real group key 
from a randomly chosen value in the keyspace KS 

1. In what follows we use the term Usr; however in practice the 
steps are carried out by the client software transparently to the 
actual end user. 
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with nonnegligible probability. More specifically, a 
BGKM scheme, Π, is key hiding if for any adversary 
A as a probabilistic interactive Turing machine [20], 
has a negligible advantage in the key hiding security 
game 4: 

Pr[KeyHideA,Π = 1] ≤ 1/2 + f(k), 

where f is a negligible function in k. 
Definition 6 (Forward/backward key protecting): 

Suppose Svr runs an Update algorithm to generate 
Param for a new shared group key K ′ , and a previous 
member Usr is no longer a group member after the 
Update algorithm. Let K be a previous shared group 
key which can be derived by Usr with a secret. 
A BGKM scheme is backward key protecting if an 
adversary with knowledge of the secret, K, and the 

′ new PI cannot distinguish the new key K from a 
random value in the keyspace KS with nonnegligible 
probability. Similarly, a BGKM scheme is forward key 
protecting if a new group member Usr after running 
the Update algorithm cannot learn anything about 
the previous group keys. 

2.3 Our Construction 

We now provide our construction of BGKM, the ACV-
BGKM scheme, under a client-server architecture. The 
ACV-BGKM scheme satisfies the requirements of min­
imal trust, key indistinguishability, key independence, 
forward secrecy, backward secrecy and collusion resistance 
as described in Section 2.1. 
ACV-BGKM algorithms are executed with a trusted 

key server Svr and a group of users Usri, i = 
1, 2, . . . , n. 
Setup(ℓ): Svr initializes the following parameters: an 
ℓ-bit prime number q, a cryptographic hash function 
H(·) : {0, 1}∗ → Fq , where Fq is a finite field with 
q elements, the keyspace KS = Fq , the secret space 
SS = {0, 1}ℓ and the set of issued secrets S = ∅. 
SecGen(Usri): Svr chooses the secret si ∈ SS uni­
formly at random for Usri such that si ∈/ S and adds 
si to S. 
KeyGen(S): Svr picks a random K ∈ KS as the group 
key. Svr chooses n random bit strings z1, z2, . . . , zn ∈ 
{0, 1}ℓ . Svr creates an n × (n + 1) Fq-matrix 

  

1 a1,1 a1,2 . . . a1,n 
 1 a2,1 a2,2 . . . a2,n  

 

A = 
 . . . . .  

, 
. . . . . 

 . . . . .  

1 an,1 an,2 . . . an,n 

where 

ai,j = H(si||zj), 1 ≤ i ≤ n, 1 ≤ j ≤ n, si ∈ S. (1) 

Svr then solves for a nonzero (n + 1)-dimensional 
column Fq-vector Y such that AY = 0. Note that such 
a nonzero Y always exists as the nullspace of matrix 

A is nontrivial by construction. Here we require that 
Svr chooses Y from the nullspace of A uniformly at 
random. Svr constructs an (n + 1)-dimensional Fq ­
vector 

TX = K · e1 + Y, 

where e1 = (1, 0, . . . , 0) is a standard basis vector of 
F
n+1 , vT denotes the transpose of vector v, and k is q 

the chosen group key. The vector X is called an ACV , 
access control vector. Svr lets PI = (X, (z1, z2, . . . , zn)), 
and outputs public PI and private K. 
KeyDer(si, PI): Using its secret si and the public 
information PI , Usri computes ai,j , 1 ≤ j ≤ n, as 
in formula (1) and sets an (n + 1)-dimensional row 
Fq-vector vi = (1, ai,1, ai,2, . . . , ai,n). Usri derives the 

′ group key as K = vi · X .
 
Update(S): It runs the KeyGen(S) algorithm and out­

′ puts the new public information PI and the new 
group key K ′ . 

2.4 Security Analysis 

In the security analysis of ACV-BGKM, we will model 
the cryptographic hash function H as a random or­
acle. We further assume q = O(2k) is a sufficiently 
large prime power. We first present two lemmas with 
their proofs and then prove the theorems introduced 
in Section 2.1. 
The following lemmas are useful for the security 

analysis of ACV-BGKM. Lemma 1 says that in a vector 
space V over a large finite field, the probability that a 
randomly chosen vector is in a pre-selected subspace, 
strictly smaller than V , is very small. Lemma 2 will 
be used in the proof of Theorem 2. 
Lemma 1: Let F = Fq be a finite field of q elements. 

Let V be an n-dimensional F -vector space, and W be 
an m-dimensional F -subspace of V , where m ≤ n. Let 
v be an F -vector uniformly randomly chosen from V . 
Then the probability that v ∈ W is 1/qn−m . 

Proof: The proof is straightforward. We show it 
here for completeness. Let {v1, v2, . . . , vm} be a basis 
of W . Then it can be extended to a basis of V by 
adding another n −m basis vector vm+1, . . . , vn. Any 
vector v ∈ V can be written as 

v = α1 · v1 + . . . + αn · vn, αi ∈ F, 1 ≤ i ≤ n, 

and v ∈ W if and only if αi = 0 for m + 1 ≤ i ≤ 
n. When v is uniformly randomly chosen from V , if 
follows 

Pr[v ∈ W ] = 1/qn−m . 

Lemma 2: Let F = Fq be a finite field of q ele­
(2) (n)

ments. Let vi = (1, v , . . . , v ), i = 1, . . . ,m, and i i 

1 ≤ m < n, be n-dimensional F -vectors. Let v = 
(2) (n))(1, v , . . . , v be an n-dimensional F -vector with 

v(j), j ≥ 2 independently and uniformly randomly 
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chosen from F . Then the probability that v is linearly 
dependent of {vi, 1 ≤ i ≤ m} is no more than 1/qn−m . 

(2) (n)
Proof: Let wi = (v , . . . , v ), 1 ≤ i ≤ m, and w = i i 

(v(2), . . . , v(n)). All wi span an F -subspace W whose 
dimension is at most m in an (n − 1)-dimensional F -
vector space. w is a uniformly randomly chosen (n − 
1)-dimensional F -vector. By Lemma 1, 

1/qn−1−dim(W ) ≤ 1/qn−1−mPr[w ∈ W ] = . 

It follows that 

Pr[v is linearly dependent of {vi : 1 ≤ i ≤ m}] 

= Pr[v = α1 · v1 + . . . + αm · vm for some αi ∈ F ] 
  

m m

= Pr αi = 1 ∧ w = αi · vi for some αi ∈ F
i=1 i=1 

  

m

= Pr αi = 1 · Pr[w ∈ W ] 
i=1 

≤ 1/q · 1/qn−1−m = 1/qn−m . 

Theorem 1: ACV-BGKM is correct. 
Proof: The correctness of ACV-BGKM can be eas­

ily seen: Knowing its secret si and the public values 
z1, z2, . . . , zn, a group member Usri can compute one 
row of matrix A as 

vi = (1, ai,1, ai,2, . . . , ai,n), 

where ai,j , 1 ≤ j ≤ n are as in formula (1). Therefore 
vi · Y = 0 for ACV Y , and thus the group key can be 
derived with probability 1 as 

( )

T T vi · X = vi · K · e1 + Y = K · vi · e = K. 1 

Theorem 2: ACV-BGKM is sound. 
Proof: Let Y be a given access control vector. 

Let 

{vi, 1 ≤ i ≤ n} 

be a basis of the nullspace of Y . 
Let 

(2) (n+1)),v = (1, v , . . . , v

where 

(i+1) v = H(val||zi), 1 ≤ i ≤ n. 

Usr can derive the group key using v by following the 
KeyDer phase if and only if v is linearly dependent 
of vi, 1 ≤ i ≤ n. When val is not a valid IST and 
H is a random oracle, v is indistinguishable from a 
vector whose first entry is 1 and the other entries 
are independently and uniformly chosen from Fq . By 
Lemma 2, the probability that v is linearly dependent 
of {vi, 1 ≤ i ≤ n} is no more than 1/qn+1−n = 1/q, 
which is negligible. This proves the soundness of 
ACV-BGKM. 
Theorem 3: ACV-BGKM is key hiding. 

Proof: Let PI= (X, (z1, . . . , zn)) be the public in­
formation broadcast from Svr. This is the only piece 
of information seen by the adversary that is related 
to the group key. By construction, X must be linearly 

Tindependent of the standard basis vector e1 , i.e., X 
has a nonzero entry after the first position. For any 
K ∈ KS = Fq , let 

TY = X −K · e .1 

Then it is clear that all Fq-vectors v such that v · Y = 0 
form an n-dimensional Fq-vector space, say W . It 
follows that the n basis vectors of W can be chosen 
in such a way that they all have nonvanishing first 
entries. Therefore, the number of vectors v with 1 
as their first entry such that v · X = K is qn−1, for 
all K ∈ KS . When the cryptographic hash function 
H(·) is modeled as a random oracle and a valid 
IST is unknown, every such a vector v assumes the 
same probability when computed as specified in the 
KeyDer algorithm. This implies that every K ∈ KS 
has the same probability, 1/q, to be the designated 
group key in the view of the adversary. The key 
hiding property of ACV-BGKM follows as a direct 
consequence. Note that ACV-BGKM is key hiding 
against a computationally unbounded adversary. 
It is clear that “forward/backward key protecting” 

is a stronger condition than “key hiding.” However, 
we will use the proof of the latter to show the former. 
Theorem 4: ACV-BGKM is forward/backward key 

protecting. 
Proof: (Sketch) We first consider the backward key 

protecting property of ACV-BGKM. Suppose that after 
the Update algorithm, an adversary has one secret s 
from the previous session S0 which do not propagate 
to the new session S1. As the choices of s and the 
nullspace of the ACV in session S0 can be viewed as 
(statistically) jointly independent of the determination 
of the nullspace of the ACV in session S1, when H 
is modeled as a random oracle and by design of the 
Update algorithm, Usr cannot learn the group key for 
session S1 with non-negligible probability due to the 
key hiding property of ACV-BGKM. 
Similarly, ACV-BGKM is forward key protecting. 
Other related GKM security aspects mentioned in 

Section 1 are briefly discussed as follows. 
Minimal trust. In order to protect the shared group 
key from an adversary outside of the group, ACV­
BGKM only requires to use a private channel once 
between Svr and each Usr, during the SecGen algo­
rithm. The security of the ephemeral private channels 
needs to be guaranteed. Any other communications, 
including the ones for key issuance and rekeying, are 
executed via an open broadcast channel. 
Key independence. It is clear that the group keys (of 
different sessions) are independent by ACV-BGKM 
construction. Furthermore, the secrets are also inde­
pendent of each other, because they are randomly 
generated. 
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Collusion resistance. For BGKM, it only makes sense 
to consider collusion attacks from outside the group. 
The case that a valid group member passes its secret 
or the derived group key to others is not addressed by 
BGKM. Similar to the analysis for ACV-BGKM’s for-
ward/backward key protecting property, ACV-BGKM 
is resistant to polynomially computationally bounded 
adversaries. In particular, colluding group members 
are not able to get the secrets of other members to 
derive group keys of earlier or later sessions. 

3 IMPROVEMENTS TO BASIC ACV-BGKM 

In this section, we improve the performance of our ba­
sic ACV-BGKM scheme using two techniques: bucke­
tization and subset cover. 

3.1 Bucketization 

The proposed key management scheme works effi­
ciently even when there are thousands of users. How­
ever, as the upper bound n of the number of involved 
users gets large, solving the linear system AY = 0 
over a large finite field Fq becomes the most compu­
tationally expensive operation in our scheme. Solv­
ing this linear system with the method of Gaussian-
Jordan elimination [21] takes O(n3) time. Although 
this computation is executed at the Svr, which is usu­
ally capable of carrying on computationally expensive 
operations, when n is very large, e.g., n = 100, 000, the 
resulting costs may be too high for the Svr. Due to the 
non-linear cost associated with solving a linear sys­
tem, we can reduce the overall computational cost by 
breaking the linear system in to a set of smaller linear 
systems. We follow a two-level approach. In this case, 
the Svr divides all the involved Usrs into multiple 
“buckets” (say m) of a suitable size (e.g., 1000 each), 
computes an intermediate key for each bucket by 
executing the KeyGen algorithm, and then computes 
the actual group key for all the users by executing the 
KeyGen algorithm with the intermediate keys as the 
secrets. Note that the intermediate key generation can 
be parallelized as each bucket is independent. The Svr 
executes m+1 KeyGen algorithms of smaller size. The 
complexity of the KeyGen algorithm is proportional 
to O(n3/m2 + m3). It can be shown that the optimal 

3/5solution is achieved when m reaches close to n . 

Each intermediate key is associated with a marker 
so that Usrs can identify if they have derived a valid 
intermediate key. For deriving the actual group key, 
Usrs are required to execute m+1 KeyDer algorithms 
in the worst case and 2 in the best case. Since the 
KeyDer algorithm is linear in n, in general, the buck­
etization optimization still improves the performance 
of the KeyDer algorithm. The complexity of the Key-
Gen algorithm is proportional to O(n/m+m), but the 
average case runs faster. 

3.2 Subset Cover 

The bucketization approach becomes inefficient as the 
bucket size increases. The issue is that the bucketi­
zation still utilizes the basic ACV-BGKM scheme. In 
our basic ACV-BGKM scheme, as each user is given 
a single secret, it makes the complexity of PI and all 
algorithms proportional to n, the number of users in 
the group. We utilize the result from previous research 
on broadcast encryption [22], [23] to improve the 
complexity to sub-linear in n. Based on that, one can 
make the complexity sub-linear in the number of users 
by giving more than one secret during SecGen for 
each attribute users possess. The secrets given to each 
user overlaps with different subsets of users. During 
the KeyGen, Svr identifies the minimum number of 
subsets to which all the users belong and uses one 
secret per the identified subset. During KeyDer, a 
user identifies the subset it belongs to and uses the 
corresponding secret to derive the group key. Group 
dynamics are handled by making some of the secrets 
given to users invalid. 
We give a high-level description of the basic subset-

cover approach. In the basic scheme, n users are orga­
nized as the leaves of a balanced binary tree of height 
log n. A unique secret is assigned to each vertex in the 
tree. Each user is given log n secrets that correspond 
to the vertices along the path from its leaf node to 
the root node. In order to provide backward secrecy 
when a single user is revoked, the updated tree is 
described by log n subtrees formed after removing 
all the vertices along the path from the user leaf 
node to the root node. To rekey, Svr executes Update 
using the log n secrets corresponding to the roots of 
these subtrees. Naor et al. [22] improve this technique 
to simultaneously revoke r users and describe the 
exiting users using r log (n/r) subtrees. Since then, 
there have been many improvements to the basic 
scheme. We implement Naor et al.’s complete subset 
scheme [22] in our experiments. 
In our experimental results in Section 7, we show 

that combining the bucketization and the subset cover 
techniques, we can very efficiently execute ACV­
BGKM algorithms and can support very large user 
groups. 

4 OVERVIEW OF OUR SCHEME 

As shown in Figure 1, our scheme for policy based 
content sharing in the cloud involves four main en­
tities: the Data Owner (Owner), the Users (Usrs) , the 
Identity Providers (IdPs), and the Cloud Storage Service 
(Cloud). The interactions are numbered in the figure. 
Our approach is based on three main phases: identity 
token issuance, identity token registration, and document 
management. 
1) Identity token issuance 

IdPs issue identity tokens for certified identity at­
tributes to Usrs. An identity token is a Usr’s identity 

http:thegroup.We
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Fig. 1. Overall System Architecture 

in a specified electronic format in which the involved 
identity attribute value is represented by a semanti­
cally secure cryptographic commitment.2 We use the 
Pedersen commitment scheme and it is described in 
Section 5.1. Identity tokens are used by Usrs during 
the registration phase. 
2) Identity token registration 

In order to be able to decrypt the documents that 
will be downloaded from the Cloud, Usrs have to 
register at the Owner. During the registration, each 
Usr presents its identity tokens and receives from the 
Owner a set of secrets for each identity attribute based 
on the SecGen algorithm of the ACV-BGKM scheme. 
These secrets are later used by Usrs to derive the keys 
to decrypt the subdocuments for which they satisfy 
the access control policy using the KeyDer algorithm 
of the ACV-BGKM scheme. The Owner delivers the 
secrets to the Usrs using a privacy-preserving ap­
proach based on the OCBE protocols [24] with the 
Usrs. The OCBE protocols ensure that a Usr can obtain 
secrets if and only if the Usr’s committed identity 
attribute value (within Usr’s identity token) satisfies 
the matching condition in the Owner’s access control 
policy, while the Owner learns nothing about the 
identity attribute value. Note that not only the Owner 
does not learn anything about the actual value of Usrs’ 
identity attributes but it also does not learn which 
policy conditions are verified by which Usrs, thus 
the Owner cannot infer the values of Usrs’ identity 
attributes. Thus Usrs’ privacy is preserved in our 
scheme. We give more details about the OCBE pro­
tocols in Section 5.2. 
3) Document Management 

The Owner groups the acps into policy configurations 
(PCs). The documents are divided into subdocuments 
based on the PCs. The Owner generates the keys 
based on the acps in each PC using the KeyGen 

2. A cryptographic commitment allows a user to commit to a 
value while keeping it hidden and preserving the user’s ability to 
reveal the committed value later. 

algorithm of the ACV-BGKM scheme and selectively 
encrypts the subdocuments. These encrypted subdoc­
uments are then uploaded to the Cloud. Usrs down­
load encrypted subdocuments from the Cloud. The 
KeyDer algorithm of the ACV-BGKM scheme allows 
Usrs to derive the key K for a given PC using their 
secrets in an efficient and secure manner. With this 
scheme, our approach efficiently handles new users 
and revocations to provide forward and backward 
secrecy. The system design also ensures that acps 
can be flexibly updated and enforced by the Owner 
without changing any information given to Usrs. 

5 PRESERVING PRIVACY 

As mentioned in Section 4, we utilize cryptographic 
techniques to protect the privacy of the identity at­
tributes of the users from the Svr while executing 
the SecGen algorithm. Our technique makes sure that 
Usrs receive secrets only for valid identity attributes 
while the Svr does not learn the actual identity at­
tribute values. We now give you an overview of the 
two crytographic constructs, Pedersen commitments 
and OCBE protocols, that we use in this regard. 

5.1 Pedersen commitment 

First introduced in [25], the Pedersen Commitment 
scheme is an unconditionally hiding and computa­
tionally binding commitment scheme which is based 
on the intractability of the discrete logarithm problem. 
We describe how it works as follows. 
Pedersen Commitment 
Setup 
A trusted third party T chooses a finite cyclic group 
G of large prime order p so that the computational 
Diffie-Hellman problem is hard in G. Write the group 
operation in G as multiplication. T chooses two gen­
erators g and h of G such that it is hard to find 
the discrete logarithm of h with respect to g, i.e., an 
integer α such that h = gα. Note that T may or may 
not know the number α. T publishes (G, p, g, h) as the 
system’s parameters. 
Commit 
The domain of committed values is the finite field Fp 

of p elements, which can be implemented as the set 
of integers Fp = {0, 1, . . . , p − 1}. For a party U to 
commit a value x ∈ Fp, U chooses r ∈ Fp at random, 
and computes the commitment c = gxhr ∈ G. 
Open 
U shows the values x and r to open a commitment c. 

xhrThe verifier checks whether c = g . 

5.2 OCBE Protocols 

The Oblivious Commitment-Based Envelope (OCBE) 
protocols, proposed by Li and Li [24], provide the 
capability of delivering information to qualified users 
in an oblivious way. There are three communications 
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parties involved in OCBE protocols: a receiver R, a 
sender S, and a trusted third party T. The OCBE 
protocols make sure that the receiver R can decrypt 
a message sent by S if and only if R’s committed 
value satisfies a condition given by a predicate in 
S’s acp, while S learns nothing about the committed 
value. Note that S does not even learn whether R is 
able to correctly decrypt the message or not. The sup­
ported predicates by OCBE are comparison predicates 
>,≥, <,≤,=  and =. 
The OCBE protocols are built with several crypto­

graphic primitives: 
1) The Pedersen commitment scheme. 
2) A semantically secure symmetric-key encryption 

algorithm E , for example, AES, with key length 
k-bits. Let EKey[M ] denote the encrypted message 
M under the encryption algorithm E with sym­
metric encryption key Key. 

3) A cryptographic hash function H(·). When we 
write H(α) for an input α in a certain set, we 
adopt the convention that there is a canonical 
encoding which encodes α as a bit string, i.e., an 
element in {0, 1}∗, without explicitly specifying 
the encoding. 

Given the notations as above, we summarize the 
OCBE protocol for only ≥ (GE-OCBE) predicate (due 
to space limitation) as follows. The OCBE protocols 
for other predicates can be derived and described in 
a similar fashion. The protocols’ description is tailored 
to our work, and is stated in a slightly different way 
than in [24]. 
The GE-OCBE Protocol works in a bit-by-bit fash­

ion, for attribute values of at most ℓ bits long, where 
ℓ is a system parameter which specifies an upper 
bound for the bit length of attribute values such that 
2ℓ < p/2. The GE-OCBE protocol is more complex 
in terms of description and computation compared to 
EQ-OCBE (=). It works as follows. 
Parameter generation 
T runs a Pedersen commitment setup protocol to 
generate system parameters Param = (G, g, h), and 
outputs the order of G, p. In addition, T chooses 
another parameter ℓ, which specifies an upper bound 
for the length of attribute values, such that 2ℓ < p/2. 
T outputs V = {0, 1, . . . , 2ℓ−1} ⊂ Fp, and P = {GEx0 : 
x0 ∈ V}, where 

GEx0 : V → {true, false} 

is a predicate such that GEx0 (x) is true if and only if 
x ≥ x0. 
Commitment 
T chooses an integer x ∈ V for R to commit. T then 
randomly chooses r ∈ Fp, and computes the Pedersen 
commitment c = gxhr . T sends x, r, c to R, and sends 
c to S. 
Similarly, an offline alternative also works here. 

Interaction 

•	 R makes a data request to S. 

•	 Based on the request, S sends to R a predicate 
GEx0 ∈ P . 

•	 Upon receiving this predicate, R sends to S a 
xhrPedersen commitment c = g . 

•	 Let d = (x − x0) (mod p). R picks r1, . . . , rℓ−1 ∈ 
ℓ−1 
L

Fp, and sets r0 = r − 2iri. If GEx0 (x) is true, 
i=1 

let dℓ−1 . . . d1d0 be d’s binary representation, with 
d0 the lowest bit. Otherwise if GEx0 is false, 
R randomly chooses dℓ−1, . . . , d1 ∈ {0, 1}, and 

ℓ−1 
L

sets d0 = d − 2idi (mod p). R computes ℓ 
i=1 

di hricommitments ci = g for 0 ≤ i ≤ ℓ − 1, and 
sends all of them to S. 

ℓ−1 
T

−x0•	 S checks that cg = (ci)
2i 
. S randomly 

i=0 
chooses ℓ bit strings k0, . . . , kℓ−1, and sets k = 
H(k0 I . . . I kℓ−1). S picks y ∈ F ∗, and computes p

η = hy, C = Ek[M ], where M is the message 
containing requested data. For each 0 ≤ i ≤ ℓ− 1 
and j = 0, 1, S computes σj = (cig

−j)y, Cj = i i 

H(σj)⊕ ki. S sends to R the tuple i

(η, C0
0, C0

1 , . . . , Cℓ
0 
−1, Cℓ

1 
−1, C). 

Open 
After R receives the tuple 
(η, C0

0, C0
1 , . . . , C0 , C1 , C) from S as above, Rℓ−1 ℓ−1

computes σ ′ = ηri , and k ′ = H(σi
′ ) ⊕ Cdi , for i	 i i 

0 ≤ i ≤ ℓ−1. R then computes k ′ = H(k ′ I . . . I k ′ ),0 ℓ−1

and decrypts C using key k ′ . 

EQ-OCBE protocol is simpler and more efficient 
compared GE-OCBE protocol. The OCBE protocol for 
the ≤ predicates (LE-OCBE) can be constructed in a 
similar way as GE-OCBE. Other OCBE protocols (for
 =, <,> predicates) can be built on EQ-OCBE, GE­
OCBE and LE-OCBE. 
All these OCBE protocols guarantee that the re­

ceiver R can decrypt the message sent by S if and only 
if the corresponding predicate is evaluated as true at 
R’s committed value, and that S does not learn 

6 OUR SCHEME 

In this section we describe our scheme in detail. As 
introduced in Section 4, our scheme has three phases: 
identity token issuance, identity token registration 
and document management. We did not consider the 
technical details and privacy in Section 4. In this 
section we make our scheme privacy preserving using 
the techniques introduced in Section 5. We explain 
our approach using the ACV-BGKM scheme with the 
subset cover optimization as a key building block. 

6.1 Identity Token Issuance 

The IdP runs a Pedersen commitment setup algorithm 
to generate system parameters Param = (G, g, h). The 
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IdP publishes Param as well as the order p of the 
finite group G. The IdP also publishes its public key 
for the digital signature algorithm it is using. Such 
parameters are used by the IdP to issue identity tokens 
to Usrs. We assume that the IdP first checks the valid 
of identity attributes Usrs hold 3. Usrs present to the 
IdP their identity attributes to receive identity tokens as 
follows. For each identity attribute shown by a Usr, 
the IdP encodes the identity attribute value as x ∈ Fp 

in a standard way, and issues the Usr an identity 
token. An identity token is a tuple 

IT = (nym, id-tag, c, σ), 

where nym is a pseudonym for uniquely identifying 
the Usr in the system, id-tag is the tag of the identity 

xhrattribute under consideration, c = g is a Pedersen 
commitment for the value x, and σ is the IdP’s digital 
signature for nym, id-tag and c. The IdP passes values 
x and r to the Usr for the Usr’s private use. We require 
that all identity tokens of the same Usr have the same 
nym,4 so that the Usr and its identity tokens can be 
uniquely matched with a nym. Once the identity to­
kens are issued, they are used by Usrs for proving the 
satisfiability of the Pub’s acps; Usrs keep their identity 
attribute values hidden, and never disclose them in 
clear during the interactions with other parties. 
Example 1: Suppose a Usr Bob presents his driver’s 

license to IdP to receive an identity token for his 
age. IdP assigns Bob a pseudonym pn-1492. IdP 
deduces from the birth date on Bob’s driver’s 
license that Bob’s age is x = 28. The IdP randomly 
chooses a value r = 9270, and computes a Pedersen 
commitment c = gxhr . The IdP then digitally signs 
the message containing Bob’s pseudonym, a tag for 
“age” and the commitment c. The identity token Bob 
receives from the IdP may look like this: 
IT = (pn-1492, age, 6267292101, 949148425702313975). 

6.2 Identity Token Registration 

We assume that the Owner defines a set of acps 
denoted as ACPB that specifies which subdocuments 
Usrs are authorized to access. Access control policies 
are formally defined as follows. 
Definition 7: (Attribute Condition). 

An attribute condition cond is an expression of the 
form: “nameA op l”, where nameA is the name of 
an identity attribute A, op is a comparison operator 
such as =, <, >, ≤, ≥, =, and l is a value that can be 
assumed by attribute A. 
Definition 8: (Access control policy). 

An access control policy (acp) is a tuple (s, o,D) 

3. The IdP can verify the validity of Usr’s identity either in a 
traditional way, e.g., through a on-the-spot registration, or digitally 
over computer networks. We will not dive into the details of 
identity validity check in this paper. 

4. In practice, this can be achieved by requesting the Usr to 
present a strong identifier that correlates with the identity being 
registered. Again, we will not discuss this process in this paper. 

where: o denotes a set of portions (subdocuments) 
{D1, . . . , Dt} of document D; and s is a Boolean 
formula of attribute conditions cond1, . . . , condn that 

5must be satisfied by a Usr to have access to o. 
Example 2: The acp 

′′ (“level ≥ 58 ′′ ∧ “role = nurse , 

{physical exam, treatment plan}, “EHR.xml”) 

states that a Usr of level no lower than 58 and holding 
a nurse position has access to the subdocuments 
“physical exam” and “treatment plan” of document 
EHR.xml. 
Different acps can apply to the same subdocuments 

because such subdocuments may have to be accessed 
by different categories of Usrs. We denote the set of 
acps that apply to a subdocument as policy configura­
tion. 
Definition 9: (Policy configuration). 

A policy configuration (PC) for a subdocument D1 

of a document D is a set of policies {acp1, . . . , acpk} 
where acpi, i = 1, . . . , k is an acp (s, o,D) such that 
D1 ∈ o. 

There can be multiple subdocuments in D which 
have the same PC. For each PC of D, the Owner 
randomly chooses a key K for a symmetric key en­
cryption algorithm (e.g, AES), and uses K to encrypt 
all subdocuments associated with this policy config­
uration. Therefore, if a Usr satisfies acp1, . . . , acp ,m

Owner must make sure that the Usr can derive all 
the symmetric keys to decrypt those subdocuments to 
which a policy configuration containing at least one 
acpi(i = 1, . . . ,m) applies. 
As in our ACV-BGKM based scheme the actual 

symmetric keys are not delivered along with the 
encrypted documents, a Usr has to register its identity 
tokens at the Owner in order to derive the symmetric 
encryption key from the PI stored at the Cloud. 
The SecGen algorithm of the ACV-BGKM scheme 
and the OCBE techniques are used to register user 
identity tokens in a privacy preserving manner. Dur­
ing the registration, a Usr receives a set of secrets, 
based on the identity attribute names corresponding 
to the attribute names in the identity tokens. Note 
that secrets are generated by the Owner only based 
on the names of identity attributes and not on their 
values. Therefore, a Usr may receive an encrypted set 
of secrets corresponding to a condition which has a 
value that the Usr’ identity attribute does not satisfy. 
However, in this case, the Usr will not be able to 
extract the secrets from the message delivering it as 
shown in Section 5.2. Proper secrets are later used 
by a Usr to compute symmetric decryption keys for 
particular subdocuments of the encrypted documents, 
as discussed in the document management phase. 
The delivery of secrets are performed in such a way 

5. In what follow we use the dot notation to denote the different 
components of an acp. 
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that the Usr can correctly receive secrets if and only 
if the Usr has an identity token whose committed 
identity attribute value satisfies an attribute condition 
in Owner’s acp, while the Owner does not learn any 
information about the Usr’s identity attribute value 
and does not learn whether Usr has been able to 
obtain the CSS. 

To enable Usrs registration, the Owner first chooses 
the OCBE parameters: an ℓ ′ -bit prime number q, a 
cryptographic hash function H(·) whose output bit 
length is no shorter than ℓ ′ , and a semantically secure 
symmetric-key encryption algorithm with key length 
ℓ ′ bits. The Owner publishes these parameters. The 
Owner also constructs a subset cover tree with n leaf 
nodes corresponding to each Usr for each distinct at­
tribute condition in acps. Let SCj be the subset cover 
for the attribute condition condj . Then for an acp in 
ACPB that a subscriber Usri under pseudonym nymi 

wants to satisfy, it selects and registers an identity 
token IT = (nymi, id-tag, c, σ) with respect to each 
attribute condition condj in acp. Note that Usri does 
not register only for the attribute condition which 
the Usri’s identity token satisfies; to assure privacy, 
Usri registers its identity token for more attribute 
conditions whose identity attribute name matches the 
id-tag contained in the identity token. In this way, 
the Owner cannot infer from Usri’s registration which 
condition Usri is actually interested in. Such measures 
greatly reduce the leaking of identity attributes due to 
insider threats. 

The Owner checks if id-tag matches the name of 
the identity attribute in condj , and verifies the IdP’s 
signature σ using the IdP’s public key. If either of the 
above steps fails, the Owner aborts the interaction. 
Otherwise, the Owner selects the corresponding se­
crets from the subset cover SCj for Usri. The Owner 
then starts an OCBE session as a sender (S) to obliv­
iously transfer these secrets to Usri who acts as a 
receiver (R). The Owner maintains a matrix T to store 
if secrets are delivered to each Usri for each condj . 
Upon the completion of the OCBE session the Owner 
performs the following actions: 

•	 If nymi does not exist in the matrix, it first creates 
a row for it. 

•	 It sets ri,j cell of T with respect to nymi and 
condj . 

We remark that all secrets are independent, so 
the above secret delivery process can be executed in 
parallel. Matrix T is used by the Owner to execute the 
KeyGen algorithm of the ACV-BGKM scheme. 

Example 3: Matrix 1 shows an example of matrix 
T . A Usr under pseudonym pn-0012 who has an 
identity token with respect to identity tag role reg­
isters for all attribute conditions (“role = doc” and 
“role = nur” are shown in Table 1) involving identity 
attribute role. This Usr does not register for attribute 

conditions “level ≥ 59”, “YoS ≥ 5” 6 and “YoS < 5”, 
either because it does not hold an identity token 
with identity tag level or YoS, thus cannot register, or 
because it chooses not to register as it only needs to 
access subdocuments whose associated acp does not 
require conditions for these attributes. A drawback 
of registering only for the conditions required is that 
it may allow an attacker to infer certain attributes 
about the Usr with high confidence. To protect against 
such attacks the Usr may choose to register for more 
than one condition as explained earlier. Note that 
the Usr under pn-0829 registers for both conditions 
YoS ≥ 5 and YoS < 5, which are mutually exclusive 
and thus both cannot be satisfied by any Usr. The 
registration for both conditions is crucial for privacy 
in that it prevents the Pub from inferring from the 
Usr’s registration behavior which condition the Usr is 
actually interested in. A Usr under pn-1492 registers 
for all five attribute conditions. 

TABLE 1
 
A table of CSSs maintained by the Pub
 

nym level ≥ 59 YoS ≥ 5 YoS < 5 role = doc role = nur . . . 

pn-0012 ⊥ ⊥ ⊥ 1 1 . . . 

pn-0829 1 1 1 ⊥ ⊥ . . . 

pn-1492 1 1 1 1 1 . . .
 

. . .
 . . . . . . . . . . . . . . . . . . 

6.3 Document Management 

Recall that the Owner encrypts all subdocuments with 
the same PC applicable with the same symmetric key. 
Therefore, the Owner execute the KeyGen algorithm 
of the ACV-BGKM for each PC. For a given PC, the 
Owner first identifies the secrets to be considered as 
follows. 

•	 The Owner first converts each acp into DNF 
(Disjunctive Normal Form). For each unique con­
junctive term, it executes the remaining steps. 

�φi 
•	 Let ith conjunctive term be j=1 condj , where 

the term has φi conditions. The Owner iterates 
through the secrets matrix T , and finds the set 
of users who satisfy all the conditions in each 
conjunctive term. 

•	 At the end of the previous step, the Owner has the 
list of Usrs who satisfy the PC, their association 
with the subset covers SCi for each applicable 
condi. The Owner identifies the covers in each 
SCi and the secrets corresponding the covers. 
The Owner aggregates by concatenating secrets 
in the order of the conditions in the conjunctive 
terms to produce a single secret for each user 
satisfying the conjunctive terms. For example, if 
the conjunctive term is cond1 ∧ cond3 and Usr5 
satisfies the term, the Owner obtains the cover 
secrets s1 and s3 from SC1 for Usr5 and SC3 for 
Usr5 respectively. The aggregated secret is s1||s3. 

6. YoS means “years of service”. 
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The set of aggregated secrets from the above algo­
rithm is used as the input to the KeyGen algorithm 
which produces the public information PI and the 
symmetric group key k. The Owner creates an index 
of the public information tuples and associate with 
the encrypted subdocuments, and uploads them to the 
Cloud. 
If a Usr with nymi wants to view the subdocument 

D1, it first downloads the encrypted subdocument 
along with the PI . It then picks an acpk that it satisfies 
and derive the key using the KeyDer algorithm. 
Now we look at how to handle system dynamics 

such as adding/revoking credentials and acp updates. 
When a new user Usr registers at the Owner, the 

Owner delivers corresponding secrets to Usr, and 
updates the matrix T . The Owner then performs 
a rekey process for all involved subdocuments (or 
equivalently, policy configurations) using the Update 
algorithm. When Owner uploads new documents, it 
also uploads the updated PI index. 
During credential revocations, the conditions under 

which a Usr needs to be revoked is out of the scope of 
this paper. We assume that the Owner will be notified 
when a Usr with a pseudonym nymi is revoked from 
those who may satisfy condj . In this case, the Owner 
simply reset the value ri,j from matrix T , and per­
forms a rekey process for all involved subdocuments. 
Allowing particular secrets to be deleted from T 
enables a fine-tuned user management. 
A Usr’s credentials may have to be updated over 

time for various reasons such as promotions, change 
of responsibilities, etc. In this case, the Usr with a 
pseudonym nymi submits updated credential condj to 
the Owner. The Owner simply resets the old ri,j entry 
and set a new entry in the matrix T , and performs a 
rekey process only for the subdocuments involved. 
When a Usr with a pseudonym nymi needs to be 

removed, the Owner removes the row corresponding 
to nymi from the matrix T , and performs a rekey 
process only for the subdocuments involved. 
Note that in all cases of new subscription, credential 

revocation, credential update and subscription revoca­
tion, the rekey process does not introduce any cost to 
Usrs in that except for those whose identity attributes 
are added, updated or revoked, no Usr needs to di­
rectly communicate with the Owner to update secrets– 
new encryption/decryption keys can be derived by 
using the original secrets and updated public values 
stored at the Cloud. The ability to derive the secret 
encryption/decryption keys using public values is 
a key point to achieve transparency in subscription 
handling. Most of the existing GKM scheme fails to 
achieve this objective. 

7 EXPERIMENTAL RESULTS 

In this section, we present experimental results for the 
optimized ACV-BGKM scheme which is the heart of 

our scheme. We refer the reader to our preliminary 
work [17] for the experimental results on the OCBE 
protocols and the basic ACV-BGKM scheme. 
The experiments were performed on a machine run­

ning GNU/Linux kernel version 2.6.32 with an Intel R@ 
CoreTM 2 Duo CPU T9300 2.50GHz and 4 Gbytes 
memory. Only one processor was used for computa­
tion. The code is built with 32-bit gcc version 4.4.3, 
optimization flag -O2. For the ACV-BGKM scheme, 
we use V. Shoup’s NTL library [26] version 5.4.2 for 
finite field arithmetic, and SHA-1 implementation of 
OpenSSL [27] version 0.9.8 for cryptographic hashing. 
We implemented the ACV-GKM scheme with both 

the bucketization and the subset cover optimizations. 
We utilized the complete subset algorithm introduced 
by Naor et. al. [22] for the subset cover. We assumed 
that 5% of the users satisfying a given PC are revoked. 
With the bucketization optimization, we assumed the 
average case for the KeyDer algorithm where Usrs 
require to derive half of the intermediate keys before 
deriving the group key. For the experiments involving 
fixed number of buckets, 10 buckets are utilized. All 
finite field arithmetic operations in our scheme are 
performed in an 512-bit prime field. 
Figure 2 reports the average time spent to execute 

the KeyGen algorithm of the ACV-BGKM scheme 
without any optimizations, with bucketization, and 
with subset cover optimization for different group 
sizes. The bucketization outperforms the base scheme 
as it divides the non-linear KeyGen algorithm into 
smaller and more efficient computations. Subset-cover 
optimization provides even better performance as 
it reduces the effective group size considerably by 
sharing secrets among multiple Usrs. As shown in 
Figure 3, the KeyDer algorithm has similar results.
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Fig. 2. Average time to generate keys 

Figure 4 shows the average time to execute the 
KeyGen algorithm for 2500 and 5000 user groups with 
an increasing number of buckets. When more buckets 
are utilized, the size of the problem the KeyGen has 
to solve reduces and, hence, the bucketization pro­
vides a better performance. However, as mentioned 
in Section 3.1, the performance starts to degrade as 
the number of buckets is greater than the the optimal 
number of buckets. For n = 2500 and 5000, the opti­
mal number of buckets are around 100 and 150 respec­
tively. These values are consistent with the theoretical 
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minimum overhead. Under similar settings, Figure 5 
shows the time to execute the KeyDer algorithm. The 
key derivation time slowly increases as the number 
of buckets increases because the complexity of the 
second level KeyDer function increases.
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bucket sizes GKM and the BGKM. Additionally, a recent research 
effort introduces a related BGKM approach based 
on access control polynomials [14]. This approach 
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We closely analyzed the two optimizations. Fig­
ure 6 shows the average time to execute the KeyGen 
algorithm with the bucketization, the subset cover 
and both where the bucketization is applied after 
the subset cover technique. Both techniques together 
provides a huge performance improvement. Under 
the similar setting, as shown in Figure 7, the KeyGen 
also performs much better compared to the individual 
optimizations. 

8 RELATED WORK 

Approaches closely related to our work have been in­
vestigated in different areas: group key management, 
attribute based encryption, selective publication and 
broadcast of documents, and secure data outsourcing.

encodes secrets given to users at registration phase 
in a special polynomial of order at least n in such 
a way that users can derive the secret key from 
this polynomial. The special polynomials used in this 
approach represent only a small subset of domain of 
all the polynomials of order n, and the security of 
the approach is neither fully analyzed nor proven. 
Further, it appears that the security of the scheme 
weakens as n increases. 

Attribute Based Encryption (ABE): ABE [28] is an­
other approach for implementing encryption-based 
access control to documents. Under such an approach, 
users are able to decrypt subdocuments if they satisfy 
certain policies. ABE has two variations: KP-ABE (Key 
Policy ABE) where encrypted documents are associ­
ated with attributes and user keys with policies [29]; 
CP-ABE (Ciphertext Policy ABE) where user keys are 
associated with attributes and encrypted documents 
with policies [30]. In either cases the cost of key 
management is minimized by using attributes that 
can be associated with users. Further, an ABE based 
approach supports expressive acps. However, such an 
approach suffers from some major drawbacks. When­
ever the group dynamic changes, the rekeying opera­
tion requires to update the private keys given to exist­
ing members in order to provide backward/forward 
secrecy. This in turn requires establishing private com­
munication channels with each group member which 
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is not desirable in a large group setting. Further, in 
applications involving stateless members where it is 
not possible to update the initially given private keys 
and the only way to revoke a member is to exclude it 
from the public information, an ABE based approach 
does not work. Another limitation is that whenever 
the group membership policy changes, new private 
keys must be re-issued to members of the group. Our 
constructions address these shortcomings. 
Selective Dissemination: The database and security 
communities have carried out extensive research con­
cerning techniques for the selective dissemination of 
documents based on access control policies [31], [32], 
[33]. These approaches fall in the following two cate­
gories. 
1) Encryption of different subdocuments with dif­

ferent keys, which are provided to users at 
the registration phase, and broadcasting the en­
crypted subdocuments to all users [31], [32]. 

2) Selective multicast of different subdocuments 
to different user groups [33], where all sub-
documents are encrypted with one symmetric 
encryption key. 

The latter approaches assume that the users are 
honest and do not try to access the subdocuments 
to which they do not have access authorization. 
Therefore, these approaches provide neither backward 
nor forward key secrecy. In the former approaches, 
users are able to decrypt the subdocuments for which 
they have the keys. However, such approaches re­
quire all [31] or some [32] keys be distributed in 
advance during user registration phase. This require­
ment makes it difficult to assure forward and back­
ward key secrecy when user groups are dynamic 
with frequent join and leave operations. Further, the 
rekey process is not transparent, thus shifting the 
burden of acquiring new keys on existing users when 
others leave or join. Having identified these problems, 
our preliminary work [17], proposes an approach to 
make rekey transparent to users by not distributing 
actual keys during the registration phase. However, 
the security of the approach is not analyzed and it 
cannot handle large user groups. 
Secure Data Outsourcing: With the increasing utiliza­
tion of cloud computing services, there has been a 
real need to access control the encrypted documents 
stored in an untrusted third party. Our work falls into 
this category. There has been some recent research 
efforts [34], [35] to construct privacy preserving access 
control systems by combining oblivious transfer and 
anonymous credentials. The goal of such work is sim­
ilar to ours but we identify the following limitations. 
Each transfer protocol allows one to access only one 
record from the database, whereas our approach does 
not have any limitation on the number of records that 
can be accessed at once since we separate the access 
control from the authorization. Another drawback is 
that the size of the encrypted database is not constant 

with respect to the original database size. Redundant 
encryption of the same record is required to support 
acps involving disjunctions. However, our approach 
encrypts each data item only once as we have made 
the encryption independent of acps. Yu et al. [36] pro­
posed an approach based on ABE utilizing PRE (Proxy 
Re-Encryption) to handle the revocation problem of 
ABE. While it solves the revocation problem to some 
extent, it does not preserve the privacy of the identity 
attributes as in our approach. 

9	 CONCLUSIONS 

We formalized the notion of broadcast group key 
management (BGKM) and proved the security of 
our BGKM scheme, ACV-BGKM scheme. Further, we 
proposed optimizations to significantly improve the 
performance of the ACV-BGKM scheme. Based on our 
BGKM scheme, we have proposed an approach to 
support attribute-based access control while preserv­
ing privacy of users’ identity attributes for sharing 
documents in an untrusted cloud storage service. Our 
approach is supported by a new group key manage­
ment scheme which is secure and allows qualified 
users to efficiently extract decryption keys for the por­
tions of documents they are allowed to access, based 
on the subscription information they have received 
from the data owner. The scheme efficiently handles 
joining and leaving of guaranteed, with guaranteed 
security. Experimental results show that users effi­
ciently derive decryption keys, and the data owner 
can efficiently large number of users. 
As future work, we plan to add traitor tracing 

and privacy preserving querying capabilities to our 
approach. 
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