
1

Privacy Preserving Policy Based Content
Sharing in Public Clouds

Mohamed Nabeel, Student Member, IEEE, Ning Shang, Elisa Bertino Fellow, IEEE

Abstract—An important problem in public clouds is how to selectively share documents based on fine-grained attribute based
access control policies. An approach is to encrypt documents satisfying different policies with different keys using a public key
crytosystem such as attribute based encryption (ABE), and/or proxy re-encryption (PRE). However, such an approach has some
weaknesses: it cannot efficiently handle adding/revoking users or identity attributes, and policy changes; it requires to keep
multiple encrypted copies of the same documents; it incurs high computational cost. A direct application of a symmetric key
cryptosystem, where users are grouped based on the policies they satisfy and assigning unique keys for each group, also has
similar weaknesses. We observe that, without utilizing public key cryptography and by allowing users to dynamically derive the
symmetric keys at the time of decryption, one can address the above weaknesses. Based on this idea, we formalize a new key
management scheme called broadcast group key management (BGKM) and then give a secure construction of a BGKM scheme
called ACV-BGKM. The idea is to give some secrets to users based on the identity attributes they have and later allow them
to derive actual symmetric keys based on their secrets and some public information. A key advantage of the BGKM scheme is
that adding users/revoking users or updating access control policies can be performed efficiently by updating only some public
information. Using our BGKM construct, we propose an efficient approach for fine-grained encryption based access control for
documents stored in an untrusted cloud file storage.

Index Terms—Group Key Management, Privacy, Identity, Cloud Computing, Policy, Encryption, Access Control

✦

1 INTRODUCTION

With the advent of technologies such as cloud com­
puting, sharing data through a third-party cloud
service provider has never been more economical
and easier than now. However, such cloud providers
cannot be trusted to protect the confidentiality of
the data. In fact, data privacy and security issues
have been major concerns for many organizations
utilizing such services. Data often encode sensitive
information and should be protected as mandated by
various organizational policies and legal regulations.
Encryption is a commonly adopted approach to pro­
tect the confidentiality of the data. Encryption alone
however is not sufficient as organizations often have
to enforce fine-grained access control on the data.
Such control is often based on the attributes of users,
referred to as identity attributes, such as the roles of
users in the organization, projects on which users are
working and so forth. These systems, in general, are
called attribute based systems. Therefore, an important
requirement is to support fine-grained access control,
based on policies specified using identity attributes,
over encrypted data.

•	 A preliminary version of this paper appeared in the Proceedings of the
IEEE International Conference on Data Engineering (ICDE ’10) [1].

•	 M. Nabeel and E. Bertino are with the Department of Computer
Science, Purdue University, West Lafaytte, IN, 47907.
N. Shang is with Qualcomm Inc., San Diego, CA, 92121.

Email: nabeel@cs.purdue.edu

With the involvement of the third-party cloud ser­
vices, a crucial issue is that the identity attributes in
the access control policies (acps) often reveal privacy­
sensitive information about users and leak confiden­
tial information about the content. The confidentiality
of the content and the privacy of the users are thus
not fully protected if the identity attributes are not
protected. Further, privacy, both individual as well
as organizational, is considered a key requirement
in all solutions, including cloud services, for digi­
tal identity management [2], [3], [4], [5]. Further, as
insider threats [6] are one of the major sources of
data theft and privacy breaches, identity attributes
must be strongly protected even from accesses within
organizations. With initiatives such as cloud comput­
ing the scope of insider threats is no longer limited
to the organizational perimeter. Therefore, protecting
the identity attributes of the users while enforcing
attribute-based access control both within the orga­
nization as well as in the cloud is crucial.
An approach to support fine-grained selective

attribute-based access control before uploading the
content to the cloud is to encrypt each content portion
to which the same access control policy (or set of
policies) applies with the same key. One approach
to deliver the correct keys to the users based on
the policies they satisfy is to use a hybrid solu­
tion where the keys are encrypted using a public
key crytosystem such as attribute based encryption
(ABE) and/or proxy re-encryption (PRE). However,
such an approach has several weaknesses: it cannot

mailto:nabeel@cs.purdue.edu

2

efficiently handle adding/revoking users or identity
attributes, and policy changes; it requires to keep mul­
tiple encrypted copies of the same key; it incurs high
computational cost. Therefore, a different approach is
required.
It is worth noting that a simplistic group key

management (GKM) scheme in which the content
publisher directly delivers the symmetric keys to cor­
responding users has some major drawbacks with
respect to user privacy and key management. On one
hand, user private information encoded in the user
identity attributes is not protected in the simplistic
approach. On the other hand, such a simplistic key
management scheme does not scale well as the num­
ber of users becomes large and when multiple keys
need to be distributed to multiple users. The goal of
this paper is to develop an approach which does not
have these shortcomings.
We observe that, without utilizing public key cryp­

tography and by allowing users to dynamically derive
the symmetric keys at the time of decryption, one can
address the above weaknesses. Based on this idea, we
first formalize a new GKM scheme called broadcast
GKM (BGKM) and then give a secure construction of
BGKM scheme and formally prove its security. The
idea is to give secrets to users based on the identity
attributes they have and later allow them to derive
actual symmetric keys based on their secrets and some
public information. A key advantage of the BGKM
scheme is that adding users/revoking users or updat­
ing access control policies can be performed efficiently
and only requires updating the public information.
Our BGKM scheme satisfies the requirements of min­
imal trust, key indistinguishability, key independence,
forward secrecy, backward secrecy and collusion resistance
as described in [7] with minimal computational, space
and communication cost.
Using our BGKM scheme, we develop an attribute-

based access control mechanism whereby a user is
able to decrypt the contents if and only if its iden­
tity attributes satisfy the content provider’s policies,
whereas the content provider and the cloud learn
nothing about user’s identity attributes. The mecha­
nism is fine-grained in that different policies can be
associated with different content portions. A user can
derive only the encryption keys associated with the
portions the user is entitled to access.
The rest of the paper is organized as follows. Sec­

tion 2 formalizes the notion of BGKM and provides
our construction ACV-BGKM and security proofs.
Section 3 provides two optimizations to the basic
ACV-BGKM scheme. Section 4 provides an overview
of our overall scheme. Section 5 shows how to pre­
serve the privacy of identity attributes. Section 6
provides detailed description of our scheme. Section 7
presents experimental results on the basic and the
optimized ACV-BGKM construction which is the key
component in our scheme. Section 8 discusses related

work. Section 9 concludes the paper and outlines
future research directions.

2 BROADCAST GROUP KEY MANAGEMENT

In this section, we first list the requirements for
an effective GKM, then give an overview of BGKM
schemes and finally present our construction along
with security proofs.

2.1 Requirements for a Secure and Effective GKM

Several requirements are identified and discussed by
Challel and Seba [7] and others for effective GKM.
Generally speaking, an efficient and practical GKM
should address the following requirements.

•	 Minimal trust requires the GKM scheme to place
trust on a small number of entities.

•	 Key hiding requires that with given public infor­
mation, it is hard for anyone outside the group to
gain the shared group key. Ideally, every element
in the keyspace should have the same probability
of being the real key.

•	 Key independence requires that the leak of one
key does not compromise other keys.

•	 Backward secrecy means that a member who has
left the group cannot access any future group
keys.

•	 Forward secrecy means that a newly joining
group member cannot access any old keys.

•	 Collusion resistance requires that a set of col­
luding fraudulent users should not obtain keys
which they are not allowed to obtain individually.

•	 Low bandwidth overhead requires that the
rekeying should not incur a high volume of mes­
sages.

•	 Computational costs should be acceptable at
both the server and the group member.

•	 Storage requirements for keys and other relevant
information should be minimal.

•	 Ease of maintenance requires that a single
change of membership in the group does not
need many changes to take place for the other
group members.

•	 Other requirements include service availability,
minimal packet delays, and so on. These factors
are sometimes more affected by real-world set­
tings and implementation, and less related to the
high-level design of the GKM.

2.2 Broadcast GKM

In order to provide forward and backward secrecy,
rekey operations should be performed whenever the
users in the group change. Typical GKM schemes
require O(n) [8], [9] or at least O(log n) [10], [11]
private communication channels to perform the rekey
operation. In comparison, BGKM schemes make rekey
a one-off process [12], [13], [14]. In such schemes,

http:management.On

3

rekeying is performed with a single broadcast without
using private communication channels. It should be
noted that even though BGKM schemes have some
similarity with secret sharing (SS) schemes, they are
constructed for different purposes. “k out of n” SS
schemes [15], [16] are constructed to split a secret
among n users and allow to recover the secret by
combining at least k secret shares. On the contrary,
BGKM schemes allow each valid user to recover the
secret by using only their secret share. Also, colluding
users, who individually cannot recover the secret,
are not able to recover the secret collectively. Unlike
conventional GKM schemes, BGKM schemes do not
give users the private keys. Instead users are given
a secret which is combined with public information
to obtain the actual private keys. Such schemes have
the advantage that it requires a private communi­
cation only once for the initial secret sharing and
the subsequent rekeying operations are performed
using one broadcast message. Further, such schemes
can provide forward and backward security by only
changing the public information and without affecting
secret shares given to existing users. Based on our
preliminary work [17], we propose a provably secure
BGKM scheme, called ACV-BGKM (Access Control
Vector BGKM), and formalize the notion of BGKM.
Further we prove the security of ACV-BGKM.
Definition 1 (BGKM): In general, a BGKM scheme

consists of the following five algorithms:
•	 Setup(ℓ): It initializes the BGKM scheme using

a security parameter ℓ. It also initializes the set
of used secrets S, the secret space SS and the
key space KS . All the parameters are collectively
denoted as Param.

•	 SecGen(): It selects a random bit string s ∈/ S
uniformly at random from the secret space SS,
adds s to S and outputs s.

•	 KeyGen(S): It chooses a group key K uniformly
at random from the key space KS and outputs the
public information PI computed from the secrets
in S and the group key K.

•	 KeyDer(s, PI): It takes the user’s secret s and the
public information PI to output the group key.
The derived group key is equal to K if and only
if s ∈ S.

•	 Update(S) Whenever the set S changes, a new
′ group key K is generated. Depending on the

construction, it either executes the KeyGen algo­
rithm again or incrementally updates the output
of the last KeyGen algorithm.

Now we provide some basic notions and formally
define security.
Negligible functions
We call a function f : N → R negligible if for every
positive polynomial p(·) there exists an N such that
for all n > N , we have f(n) < 1/p(n) [18].
Random oracle model
The random oracle model is a paradigm introduced

by Bellare and Rogaway [19] for design and analy­
sis of certain cryptographic protocols. Intuitively, a
random oracle is a mathematical function that can
be queried by anyone, and maps every query to a
uniformly randomly chosen response from its output
domain. In practice, random oracles can be used to
model cryptographic hash functions in many crypto­
graphic schemes.
A BGKM scheme should allow a valid group mem­

ber to derive the shared group key, and prohibit
anyone outside the group from doing so. Formally
speaking, a BGKM scheme should satisfy the follow­
ing security properties. It must be correct, sound, key
hiding, and forward/backward key protecting. Let
Svr be the group controller.

1Definition 2 (Correctness): Let Usr be a current
group member with a secret. Let K and PI be Svr’s
output of the KeyGen algorithm. Let K ′ be Usr’s
output of the KeyDer algorithm. A BGKM scheme
is correct if Usr can derive the correct group key K
with overwhelming probability, i.e.,

Pr[K = K ′] ≥ 1− f(k),

where f is a negligible function in k.
Definition 3 (Soundness): Let Usr be an individual

without a valid secret. A BGKM scheme is sound if
the probability that Usr can obtain the correct group
key K by substituting the secret with a value val that
is not one of the valid secrets and then following the
key derivation phase KeyDer is negligible.
We define the following security game to define the

key hiding requirement.
Definition 4 (KeyHideA,Π): 1) The Svr, as the

challenger, runs the KeyGen algorithm of the
BGKM scheme Π and gives the parameters
Param to the adversary A.

2) A selects two random keys K1,K2 ∈ KS and
give to the Svr.

3) The Svr flips a random coin b ∈ {0, 1} and selects
Kb as the group key and runs the KeyGen
algorithm.

4) The Svr gives the public information PI of the
output of the KeyGen algorithm to A.

5) A outputs a guess b ′ of b.
6) The output of the game is defined to be 1 if b ′ =

b, and 0 otherwise. We write KeyHideA,Π = 1 if
the output is 1 and in this case we say that A
wins the game.

The advantage of A in this game is defined as
Pr[KeyHideA,Π = 1]− 1/2.

Definition 5 (Key hiding): A BGKM scheme is key
hiding if given PI , any party which does not have
a valid secret cannot distinguish the real group key
from a randomly chosen value in the keyspace KS

1. In what follows we use the term Usr; however in practice the
steps are carried out by the client software transparently to the
actual end user.

4

with nonnegligible probability. More specifically, a
BGKM scheme, Π, is key hiding if for any adversary
A as a probabilistic interactive Turing machine [20],
has a negligible advantage in the key hiding security
game 4:

Pr[KeyHideA,Π = 1] ≤ 1/2 + f(k),

where f is a negligible function in k.
Definition 6 (Forward/backward key protecting):

Suppose Svr runs an Update algorithm to generate
Param for a new shared group key K ′ , and a previous
member Usr is no longer a group member after the
Update algorithm. Let K be a previous shared group
key which can be derived by Usr with a secret.
A BGKM scheme is backward key protecting if an
adversary with knowledge of the secret, K, and the

′ new PI cannot distinguish the new key K from a
random value in the keyspace KS with nonnegligible
probability. Similarly, a BGKM scheme is forward key
protecting if a new group member Usr after running
the Update algorithm cannot learn anything about
the previous group keys.

2.3 Our Construction

We now provide our construction of BGKM, the ACV-
BGKM scheme, under a client-server architecture. The
ACV-BGKM scheme satisfies the requirements of min­
imal trust, key indistinguishability, key independence,
forward secrecy, backward secrecy and collusion resistance
as described in Section 2.1.
ACV-BGKM algorithms are executed with a trusted

key server Svr and a group of users Usri, i =
1, 2, . . . , n.
Setup(ℓ): Svr initializes the following parameters: an
ℓ-bit prime number q, a cryptographic hash function
H(·) : {0, 1}∗ → Fq , where Fq is a finite field with
q elements, the keyspace KS = Fq , the secret space
SS = {0, 1}ℓ and the set of issued secrets S = ∅.
SecGen(Usri): Svr chooses the secret si ∈ SS uni­
formly at random for Usri such that si ∈/ S and adds
si to S.
KeyGen(S): Svr picks a random K ∈ KS as the group
key. Svr chooses n random bit strings z1, z2, . . . , zn ∈
{0, 1}ℓ . Svr creates an n × (n + 1) Fq-matrix

 

1 a1,1 a1,2 . . . a1,n
 1 a2,1 a2,2 . . . a2,n 

 

A =
 

,
.

 

1 an,1 an,2 . . . an,n

where

ai,j = H(si||zj), 1 ≤ i ≤ n, 1 ≤ j ≤ n, si ∈ S. (1)

Svr then solves for a nonzero (n + 1)-dimensional
column Fq-vector Y such that AY = 0. Note that such
a nonzero Y always exists as the nullspace of matrix

A is nontrivial by construction. Here we require that
Svr chooses Y from the nullspace of A uniformly at
random. Svr constructs an (n + 1)-dimensional Fq ­
vector

TX = K · e1 + Y,

where e1 = (1, 0, . . . , 0) is a standard basis vector of
F
n+1 , vT denotes the transpose of vector v, and k is q

the chosen group key. The vector X is called an ACV ,
access control vector. Svr lets PI = (X, (z1, z2, . . . , zn)),
and outputs public PI and private K.
KeyDer(si, PI): Using its secret si and the public
information PI , Usri computes ai,j , 1 ≤ j ≤ n, as
in formula (1) and sets an (n + 1)-dimensional row
Fq-vector vi = (1, ai,1, ai,2, . . . , ai,n). Usri derives the

′ group key as K = vi · X .

Update(S): It runs the KeyGen(S) algorithm and out­

′ puts the new public information PI and the new
group key K ′ .

2.4 Security Analysis

In the security analysis of ACV-BGKM, we will model
the cryptographic hash function H as a random or­
acle. We further assume q = O(2k) is a sufficiently
large prime power. We first present two lemmas with
their proofs and then prove the theorems introduced
in Section 2.1.
The following lemmas are useful for the security

analysis of ACV-BGKM. Lemma 1 says that in a vector
space V over a large finite field, the probability that a
randomly chosen vector is in a pre-selected subspace,
strictly smaller than V , is very small. Lemma 2 will
be used in the proof of Theorem 2.
Lemma 1: Let F = Fq be a finite field of q elements.

Let V be an n-dimensional F -vector space, and W be
an m-dimensional F -subspace of V , where m ≤ n. Let
v be an F -vector uniformly randomly chosen from V .
Then the probability that v ∈ W is 1/qn−m .

Proof: The proof is straightforward. We show it
here for completeness. Let {v1, v2, . . . , vm} be a basis
of W . Then it can be extended to a basis of V by
adding another n −m basis vector vm+1, . . . , vn. Any
vector v ∈ V can be written as

v = α1 · v1 + . . . + αn · vn, αi ∈ F, 1 ≤ i ≤ n,

and v ∈ W if and only if αi = 0 for m + 1 ≤ i ≤
n. When v is uniformly randomly chosen from V , if
follows

Pr[v ∈ W] = 1/qn−m .

Lemma 2: Let F = Fq be a finite field of q ele­
(2) (n)

ments. Let vi = (1, v , . . . , v), i = 1, . . . ,m, and i i

1 ≤ m < n, be n-dimensional F -vectors. Let v =
(2) (n))(1, v , . . . , v be an n-dimensional F -vector with

v(j), j ≥ 2 independently and uniformly randomly

http:largeprimepower.We

� �

�

5

chosen from F . Then the probability that v is linearly
dependent of {vi, 1 ≤ i ≤ m} is no more than 1/qn−m .

(2) (n)
Proof: Let wi = (v , . . . , v), 1 ≤ i ≤ m, and w = i i

(v(2), . . . , v(n)). All wi span an F -subspace W whose
dimension is at most m in an (n − 1)-dimensional F -
vector space. w is a uniformly randomly chosen (n −
1)-dimensional F -vector. By Lemma 1,

1/qn−1−dim(W) ≤ 1/qn−1−mPr[w ∈ W] = .

It follows that

Pr[v is linearly dependent of {vi : 1 ≤ i ≤ m}]

= Pr[v = α1 · v1 + . . . + αm · vm for some αi ∈ F]

m m

= Pr αi = 1 ∧ w = αi · vi for some αi ∈ F
i=1 i=1

m

= Pr αi = 1 · Pr[w ∈ W]
i=1

≤ 1/q · 1/qn−1−m = 1/qn−m .

Theorem 1: ACV-BGKM is correct.
Proof: The correctness of ACV-BGKM can be eas­

ily seen: Knowing its secret si and the public values
z1, z2, . . . , zn, a group member Usri can compute one
row of matrix A as

vi = (1, ai,1, ai,2, . . . , ai,n),

where ai,j , 1 ≤ j ≤ n are as in formula (1). Therefore
vi · Y = 0 for ACV Y , and thus the group key can be
derived with probability 1 as

()

T T vi · X = vi · K · e1 + Y = K · vi · e = K. 1

Theorem 2: ACV-BGKM is sound.
Proof: Let Y be a given access control vector.

Let

{vi, 1 ≤ i ≤ n}

be a basis of the nullspace of Y .
Let

(2) (n+1)),v = (1, v , . . . , v

where

(i+1) v = H(val||zi), 1 ≤ i ≤ n.

Usr can derive the group key using v by following the
KeyDer phase if and only if v is linearly dependent
of vi, 1 ≤ i ≤ n. When val is not a valid IST and
H is a random oracle, v is indistinguishable from a
vector whose first entry is 1 and the other entries
are independently and uniformly chosen from Fq . By
Lemma 2, the probability that v is linearly dependent
of {vi, 1 ≤ i ≤ n} is no more than 1/qn+1−n = 1/q,
which is negligible. This proves the soundness of
ACV-BGKM.
Theorem 3: ACV-BGKM is key hiding.

Proof: Let PI= (X, (z1, . . . , zn)) be the public in­
formation broadcast from Svr. This is the only piece
of information seen by the adversary that is related
to the group key. By construction, X must be linearly

Tindependent of the standard basis vector e1 , i.e., X
has a nonzero entry after the first position. For any
K ∈ KS = Fq , let

TY = X −K · e .1

Then it is clear that all Fq-vectors v such that v · Y = 0
form an n-dimensional Fq-vector space, say W . It
follows that the n basis vectors of W can be chosen
in such a way that they all have nonvanishing first
entries. Therefore, the number of vectors v with 1
as their first entry such that v · X = K is qn−1, for
all K ∈ KS . When the cryptographic hash function
H(·) is modeled as a random oracle and a valid
IST is unknown, every such a vector v assumes the
same probability when computed as specified in the
KeyDer algorithm. This implies that every K ∈ KS
has the same probability, 1/q, to be the designated
group key in the view of the adversary. The key
hiding property of ACV-BGKM follows as a direct
consequence. Note that ACV-BGKM is key hiding
against a computationally unbounded adversary.
It is clear that “forward/backward key protecting”

is a stronger condition than “key hiding.” However,
we will use the proof of the latter to show the former.
Theorem 4: ACV-BGKM is forward/backward key

protecting.
Proof: (Sketch) We first consider the backward key

protecting property of ACV-BGKM. Suppose that after
the Update algorithm, an adversary has one secret s
from the previous session S0 which do not propagate
to the new session S1. As the choices of s and the
nullspace of the ACV in session S0 can be viewed as
(statistically) jointly independent of the determination
of the nullspace of the ACV in session S1, when H
is modeled as a random oracle and by design of the
Update algorithm, Usr cannot learn the group key for
session S1 with non-negligible probability due to the
key hiding property of ACV-BGKM.
Similarly, ACV-BGKM is forward key protecting.
Other related GKM security aspects mentioned in

Section 1 are briefly discussed as follows.
Minimal trust. In order to protect the shared group
key from an adversary outside of the group, ACV­
BGKM only requires to use a private channel once
between Svr and each Usr, during the SecGen algo­
rithm. The security of the ephemeral private channels
needs to be guaranteed. Any other communications,
including the ones for key issuance and rekeying, are
executed via an open broadcast channel.
Key independence. It is clear that the group keys (of
different sessions) are independent by ACV-BGKM
construction. Furthermore, the secrets are also inde­
pendent of each other, because they are randomly
generated.

6

Collusion resistance. For BGKM, it only makes sense
to consider collusion attacks from outside the group.
The case that a valid group member passes its secret
or the derived group key to others is not addressed by
BGKM. Similar to the analysis for ACV-BGKM’s for-
ward/backward key protecting property, ACV-BGKM
is resistant to polynomially computationally bounded
adversaries. In particular, colluding group members
are not able to get the secrets of other members to
derive group keys of earlier or later sessions.

3 IMPROVEMENTS TO BASIC ACV-BGKM

In this section, we improve the performance of our ba­
sic ACV-BGKM scheme using two techniques: bucke­
tization and subset cover.

3.1 Bucketization

The proposed key management scheme works effi­
ciently even when there are thousands of users. How­
ever, as the upper bound n of the number of involved
users gets large, solving the linear system AY = 0
over a large finite field Fq becomes the most compu­
tationally expensive operation in our scheme. Solv­
ing this linear system with the method of Gaussian-
Jordan elimination [21] takes O(n3) time. Although
this computation is executed at the Svr, which is usu­
ally capable of carrying on computationally expensive
operations, when n is very large, e.g., n = 100, 000, the
resulting costs may be too high for the Svr. Due to the
non-linear cost associated with solving a linear sys­
tem, we can reduce the overall computational cost by
breaking the linear system in to a set of smaller linear
systems. We follow a two-level approach. In this case,
the Svr divides all the involved Usrs into multiple
“buckets” (say m) of a suitable size (e.g., 1000 each),
computes an intermediate key for each bucket by
executing the KeyGen algorithm, and then computes
the actual group key for all the users by executing the
KeyGen algorithm with the intermediate keys as the
secrets. Note that the intermediate key generation can
be parallelized as each bucket is independent. The Svr
executes m+1 KeyGen algorithms of smaller size. The
complexity of the KeyGen algorithm is proportional
to O(n3/m2 + m3). It can be shown that the optimal

3/5solution is achieved when m reaches close to n .

Each intermediate key is associated with a marker
so that Usrs can identify if they have derived a valid
intermediate key. For deriving the actual group key,
Usrs are required to execute m+1 KeyDer algorithms
in the worst case and 2 in the best case. Since the
KeyDer algorithm is linear in n, in general, the buck­
etization optimization still improves the performance
of the KeyDer algorithm. The complexity of the Key-
Gen algorithm is proportional to O(n/m+m), but the
average case runs faster.

3.2 Subset Cover

The bucketization approach becomes inefficient as the
bucket size increases. The issue is that the bucketi­
zation still utilizes the basic ACV-BGKM scheme. In
our basic ACV-BGKM scheme, as each user is given
a single secret, it makes the complexity of PI and all
algorithms proportional to n, the number of users in
the group. We utilize the result from previous research
on broadcast encryption [22], [23] to improve the
complexity to sub-linear in n. Based on that, one can
make the complexity sub-linear in the number of users
by giving more than one secret during SecGen for
each attribute users possess. The secrets given to each
user overlaps with different subsets of users. During
the KeyGen, Svr identifies the minimum number of
subsets to which all the users belong and uses one
secret per the identified subset. During KeyDer, a
user identifies the subset it belongs to and uses the
corresponding secret to derive the group key. Group
dynamics are handled by making some of the secrets
given to users invalid.
We give a high-level description of the basic subset-

cover approach. In the basic scheme, n users are orga­
nized as the leaves of a balanced binary tree of height
log n. A unique secret is assigned to each vertex in the
tree. Each user is given log n secrets that correspond
to the vertices along the path from its leaf node to
the root node. In order to provide backward secrecy
when a single user is revoked, the updated tree is
described by log n subtrees formed after removing
all the vertices along the path from the user leaf
node to the root node. To rekey, Svr executes Update
using the log n secrets corresponding to the roots of
these subtrees. Naor et al. [22] improve this technique
to simultaneously revoke r users and describe the
exiting users using r log (n/r) subtrees. Since then,
there have been many improvements to the basic
scheme. We implement Naor et al.’s complete subset
scheme [22] in our experiments.
In our experimental results in Section 7, we show

that combining the bucketization and the subset cover
techniques, we can very efficiently execute ACV­
BGKM algorithms and can support very large user
groups.

4 OVERVIEW OF OUR SCHEME

As shown in Figure 1, our scheme for policy based
content sharing in the cloud involves four main en­
tities: the Data Owner (Owner), the Users (Usrs) , the
Identity Providers (IdPs), and the Cloud Storage Service
(Cloud). The interactions are numbered in the figure.
Our approach is based on three main phases: identity
token issuance, identity token registration, and document
management.
1) Identity token issuance

IdPs issue identity tokens for certified identity at­
tributes to Usrs. An identity token is a Usr’s identity

http:thegroup.We

7

Owner� Cloud�

User�

(1) Register�
identity tokens�

(2) Secrets�

(3) Selectively encrypt�
& upload�

(5) Download to re-encrypt�

(4) Download &�
decrypt�

User� IdP�

(1) Identity attribute�

(2) Identity token�

Fig. 1. Overall System Architecture

in a specified electronic format in which the involved
identity attribute value is represented by a semanti­
cally secure cryptographic commitment.2 We use the
Pedersen commitment scheme and it is described in
Section 5.1. Identity tokens are used by Usrs during
the registration phase.
2) Identity token registration

In order to be able to decrypt the documents that
will be downloaded from the Cloud, Usrs have to
register at the Owner. During the registration, each
Usr presents its identity tokens and receives from the
Owner a set of secrets for each identity attribute based
on the SecGen algorithm of the ACV-BGKM scheme.
These secrets are later used by Usrs to derive the keys
to decrypt the subdocuments for which they satisfy
the access control policy using the KeyDer algorithm
of the ACV-BGKM scheme. The Owner delivers the
secrets to the Usrs using a privacy-preserving ap­
proach based on the OCBE protocols [24] with the
Usrs. The OCBE protocols ensure that a Usr can obtain
secrets if and only if the Usr’s committed identity
attribute value (within Usr’s identity token) satisfies
the matching condition in the Owner’s access control
policy, while the Owner learns nothing about the
identity attribute value. Note that not only the Owner
does not learn anything about the actual value of Usrs’
identity attributes but it also does not learn which
policy conditions are verified by which Usrs, thus
the Owner cannot infer the values of Usrs’ identity
attributes. Thus Usrs’ privacy is preserved in our
scheme. We give more details about the OCBE pro­
tocols in Section 5.2.
3) Document Management

The Owner groups the acps into policy configurations
(PCs). The documents are divided into subdocuments
based on the PCs. The Owner generates the keys
based on the acps in each PC using the KeyGen

2. A cryptographic commitment allows a user to commit to a
value while keeping it hidden and preserving the user’s ability to
reveal the committed value later.

algorithm of the ACV-BGKM scheme and selectively
encrypts the subdocuments. These encrypted subdoc­
uments are then uploaded to the Cloud. Usrs down­
load encrypted subdocuments from the Cloud. The
KeyDer algorithm of the ACV-BGKM scheme allows
Usrs to derive the key K for a given PC using their
secrets in an efficient and secure manner. With this
scheme, our approach efficiently handles new users
and revocations to provide forward and backward
secrecy. The system design also ensures that acps
can be flexibly updated and enforced by the Owner
without changing any information given to Usrs.

5 PRESERVING PRIVACY

As mentioned in Section 4, we utilize cryptographic
techniques to protect the privacy of the identity at­
tributes of the users from the Svr while executing
the SecGen algorithm. Our technique makes sure that
Usrs receive secrets only for valid identity attributes
while the Svr does not learn the actual identity at­
tribute values. We now give you an overview of the
two crytographic constructs, Pedersen commitments
and OCBE protocols, that we use in this regard.

5.1 Pedersen commitment

First introduced in [25], the Pedersen Commitment
scheme is an unconditionally hiding and computa­
tionally binding commitment scheme which is based
on the intractability of the discrete logarithm problem.
We describe how it works as follows.
Pedersen Commitment
Setup
A trusted third party T chooses a finite cyclic group
G of large prime order p so that the computational
Diffie-Hellman problem is hard in G. Write the group
operation in G as multiplication. T chooses two gen­
erators g and h of G such that it is hard to find
the discrete logarithm of h with respect to g, i.e., an
integer α such that h = gα. Note that T may or may
not know the number α. T publishes (G, p, g, h) as the
system’s parameters.
Commit
The domain of committed values is the finite field Fp

of p elements, which can be implemented as the set
of integers Fp = {0, 1, . . . , p − 1}. For a party U to
commit a value x ∈ Fp, U chooses r ∈ Fp at random,
and computes the commitment c = gxhr ∈ G.
Open
U shows the values x and r to open a commitment c.

xhrThe verifier checks whether c = g .

5.2 OCBE Protocols

The Oblivious Commitment-Based Envelope (OCBE)
protocols, proposed by Li and Li [24], provide the
capability of delivering information to qualified users
in an oblivious way. There are three communications

8

parties involved in OCBE protocols: a receiver R, a
sender S, and a trusted third party T. The OCBE
protocols make sure that the receiver R can decrypt
a message sent by S if and only if R’s committed
value satisfies a condition given by a predicate in
S’s acp, while S learns nothing about the committed
value. Note that S does not even learn whether R is
able to correctly decrypt the message or not. The sup­
ported predicates by OCBE are comparison predicates
>,≥, <,≤,= and =.
The OCBE protocols are built with several crypto­

graphic primitives:
1) The Pedersen commitment scheme.
2) A semantically secure symmetric-key encryption

algorithm E , for example, AES, with key length
k-bits. Let EKey[M] denote the encrypted message
M under the encryption algorithm E with sym­
metric encryption key Key.

3) A cryptographic hash function H(·). When we
write H(α) for an input α in a certain set, we
adopt the convention that there is a canonical
encoding which encodes α as a bit string, i.e., an
element in {0, 1}∗, without explicitly specifying
the encoding.

Given the notations as above, we summarize the
OCBE protocol for only ≥ (GE-OCBE) predicate (due
to space limitation) as follows. The OCBE protocols
for other predicates can be derived and described in
a similar fashion. The protocols’ description is tailored
to our work, and is stated in a slightly different way
than in [24].
The GE-OCBE Protocol works in a bit-by-bit fash­

ion, for attribute values of at most ℓ bits long, where
ℓ is a system parameter which specifies an upper
bound for the bit length of attribute values such that
2ℓ < p/2. The GE-OCBE protocol is more complex
in terms of description and computation compared to
EQ-OCBE (=). It works as follows.
Parameter generation
T runs a Pedersen commitment setup protocol to
generate system parameters Param = (G, g, h), and
outputs the order of G, p. In addition, T chooses
another parameter ℓ, which specifies an upper bound
for the length of attribute values, such that 2ℓ < p/2.
T outputs V = {0, 1, . . . , 2ℓ−1} ⊂ Fp, and P = {GEx0 :
x0 ∈ V}, where

GEx0 : V → {true, false}

is a predicate such that GEx0 (x) is true if and only if
x ≥ x0.
Commitment
T chooses an integer x ∈ V for R to commit. T then
randomly chooses r ∈ Fp, and computes the Pedersen
commitment c = gxhr . T sends x, r, c to R, and sends
c to S.
Similarly, an offline alternative also works here.

Interaction

•	 R makes a data request to S.

•	 Based on the request, S sends to R a predicate
GEx0 ∈ P .

•	 Upon receiving this predicate, R sends to S a
xhrPedersen commitment c = g .

•	 Let d = (x − x0) (mod p). R picks r1, . . . , rℓ−1 ∈
ℓ−1
L

Fp, and sets r0 = r − 2iri. If GEx0 (x) is true,
i=1

let dℓ−1 . . . d1d0 be d’s binary representation, with
d0 the lowest bit. Otherwise if GEx0 is false,
R randomly chooses dℓ−1, . . . , d1 ∈ {0, 1}, and

ℓ−1
L

sets d0 = d − 2idi (mod p). R computes ℓ
i=1

di hricommitments ci = g for 0 ≤ i ≤ ℓ − 1, and
sends all of them to S.

ℓ−1
T

−x0•	 S checks that cg = (ci)
2i
. S randomly

i=0
chooses ℓ bit strings k0, . . . , kℓ−1, and sets k =
H(k0 I . . . I kℓ−1). S picks y ∈ F ∗, and computes p

η = hy, C = Ek[M], where M is the message
containing requested data. For each 0 ≤ i ≤ ℓ− 1
and j = 0, 1, S computes σj = (cig

−j)y, Cj = i i

H(σj)⊕ ki. S sends to R the tuple i

(η, C0
0, C0

1 , . . . , Cℓ
0
−1, Cℓ

1
−1, C).

Open
After R receives the tuple
(η, C0

0, C0
1 , . . . , C0 , C1 , C) from S as above, Rℓ−1 ℓ−1

computes σ ′ = ηri , and k ′ = H(σi
′) ⊕ Cdi , for i	 i i

0 ≤ i ≤ ℓ−1. R then computes k ′ = H(k ′ I . . . I k ′),0 ℓ−1

and decrypts C using key k ′ .

EQ-OCBE protocol is simpler and more efficient
compared GE-OCBE protocol. The OCBE protocol for
the ≤ predicates (LE-OCBE) can be constructed in a
similar way as GE-OCBE. Other OCBE protocols (for
 =, <,> predicates) can be built on EQ-OCBE, GE­
OCBE and LE-OCBE.
All these OCBE protocols guarantee that the re­

ceiver R can decrypt the message sent by S if and only
if the corresponding predicate is evaluated as true at
R’s committed value, and that S does not learn

6 OUR SCHEME

In this section we describe our scheme in detail. As
introduced in Section 4, our scheme has three phases:
identity token issuance, identity token registration
and document management. We did not consider the
technical details and privacy in Section 4. In this
section we make our scheme privacy preserving using
the techniques introduced in Section 5. We explain
our approach using the ACV-BGKM scheme with the
subset cover optimization as a key building block.

6.1 Identity Token Issuance

The IdP runs a Pedersen commitment setup algorithm
to generate system parameters Param = (G, g, h). The

9

IdP publishes Param as well as the order p of the
finite group G. The IdP also publishes its public key
for the digital signature algorithm it is using. Such
parameters are used by the IdP to issue identity tokens
to Usrs. We assume that the IdP first checks the valid
of identity attributes Usrs hold 3. Usrs present to the
IdP their identity attributes to receive identity tokens as
follows. For each identity attribute shown by a Usr,
the IdP encodes the identity attribute value as x ∈ Fp

in a standard way, and issues the Usr an identity
token. An identity token is a tuple

IT = (nym, id-tag, c, σ),

where nym is a pseudonym for uniquely identifying
the Usr in the system, id-tag is the tag of the identity

xhrattribute under consideration, c = g is a Pedersen
commitment for the value x, and σ is the IdP’s digital
signature for nym, id-tag and c. The IdP passes values
x and r to the Usr for the Usr’s private use. We require
that all identity tokens of the same Usr have the same
nym,4 so that the Usr and its identity tokens can be
uniquely matched with a nym. Once the identity to­
kens are issued, they are used by Usrs for proving the
satisfiability of the Pub’s acps; Usrs keep their identity
attribute values hidden, and never disclose them in
clear during the interactions with other parties.
Example 1: Suppose a Usr Bob presents his driver’s

license to IdP to receive an identity token for his
age. IdP assigns Bob a pseudonym pn-1492. IdP
deduces from the birth date on Bob’s driver’s
license that Bob’s age is x = 28. The IdP randomly
chooses a value r = 9270, and computes a Pedersen
commitment c = gxhr . The IdP then digitally signs
the message containing Bob’s pseudonym, a tag for
“age” and the commitment c. The identity token Bob
receives from the IdP may look like this:
IT = (pn-1492, age, 6267292101, 949148425702313975).

6.2 Identity Token Registration

We assume that the Owner defines a set of acps
denoted as ACPB that specifies which subdocuments
Usrs are authorized to access. Access control policies
are formally defined as follows.
Definition 7: (Attribute Condition).

An attribute condition cond is an expression of the
form: “nameA op l”, where nameA is the name of
an identity attribute A, op is a comparison operator
such as =, <, >, ≤, ≥, =, and l is a value that can be
assumed by attribute A.
Definition 8: (Access control policy).

An access control policy (acp) is a tuple (s, o,D)

3. The IdP can verify the validity of Usr’s identity either in a
traditional way, e.g., through a on-the-spot registration, or digitally
over computer networks. We will not dive into the details of
identity validity check in this paper.

4. In practice, this can be achieved by requesting the Usr to
present a strong identifier that correlates with the identity being
registered. Again, we will not discuss this process in this paper.

where: o denotes a set of portions (subdocuments)
{D1, . . . , Dt} of document D; and s is a Boolean
formula of attribute conditions cond1, . . . , condn that

5must be satisfied by a Usr to have access to o.
Example 2: The acp

′′ (“level ≥ 58 ′′ ∧ “role = nurse ,

{physical exam, treatment plan}, “EHR.xml”)

states that a Usr of level no lower than 58 and holding
a nurse position has access to the subdocuments
“physical exam” and “treatment plan” of document
EHR.xml.
Different acps can apply to the same subdocuments

because such subdocuments may have to be accessed
by different categories of Usrs. We denote the set of
acps that apply to a subdocument as policy configura­
tion.
Definition 9: (Policy configuration).

A policy configuration (PC) for a subdocument D1

of a document D is a set of policies {acp1, . . . , acpk}
where acpi, i = 1, . . . , k is an acp (s, o,D) such that
D1 ∈ o.

There can be multiple subdocuments in D which
have the same PC. For each PC of D, the Owner
randomly chooses a key K for a symmetric key en­
cryption algorithm (e.g, AES), and uses K to encrypt
all subdocuments associated with this policy config­
uration. Therefore, if a Usr satisfies acp1, . . . , acp ,m

Owner must make sure that the Usr can derive all
the symmetric keys to decrypt those subdocuments to
which a policy configuration containing at least one
acpi(i = 1, . . . ,m) applies.
As in our ACV-BGKM based scheme the actual

symmetric keys are not delivered along with the
encrypted documents, a Usr has to register its identity
tokens at the Owner in order to derive the symmetric
encryption key from the PI stored at the Cloud.
The SecGen algorithm of the ACV-BGKM scheme
and the OCBE techniques are used to register user
identity tokens in a privacy preserving manner. Dur­
ing the registration, a Usr receives a set of secrets,
based on the identity attribute names corresponding
to the attribute names in the identity tokens. Note
that secrets are generated by the Owner only based
on the names of identity attributes and not on their
values. Therefore, a Usr may receive an encrypted set
of secrets corresponding to a condition which has a
value that the Usr’ identity attribute does not satisfy.
However, in this case, the Usr will not be able to
extract the secrets from the message delivering it as
shown in Section 5.2. Proper secrets are later used
by a Usr to compute symmetric decryption keys for
particular subdocuments of the encrypted documents,
as discussed in the document management phase.
The delivery of secrets are performed in such a way

5. In what follow we use the dot notation to denote the different
components of an acp.

10

that the Usr can correctly receive secrets if and only
if the Usr has an identity token whose committed
identity attribute value satisfies an attribute condition
in Owner’s acp, while the Owner does not learn any
information about the Usr’s identity attribute value
and does not learn whether Usr has been able to
obtain the CSS.

To enable Usrs registration, the Owner first chooses
the OCBE parameters: an ℓ ′ -bit prime number q, a
cryptographic hash function H(·) whose output bit
length is no shorter than ℓ ′ , and a semantically secure
symmetric-key encryption algorithm with key length
ℓ ′ bits. The Owner publishes these parameters. The
Owner also constructs a subset cover tree with n leaf
nodes corresponding to each Usr for each distinct at­
tribute condition in acps. Let SCj be the subset cover
for the attribute condition condj . Then for an acp in
ACPB that a subscriber Usri under pseudonym nymi

wants to satisfy, it selects and registers an identity
token IT = (nymi, id-tag, c, σ) with respect to each
attribute condition condj in acp. Note that Usri does
not register only for the attribute condition which
the Usri’s identity token satisfies; to assure privacy,
Usri registers its identity token for more attribute
conditions whose identity attribute name matches the
id-tag contained in the identity token. In this way,
the Owner cannot infer from Usri’s registration which
condition Usri is actually interested in. Such measures
greatly reduce the leaking of identity attributes due to
insider threats.

The Owner checks if id-tag matches the name of
the identity attribute in condj , and verifies the IdP’s
signature σ using the IdP’s public key. If either of the
above steps fails, the Owner aborts the interaction.
Otherwise, the Owner selects the corresponding se­
crets from the subset cover SCj for Usri. The Owner
then starts an OCBE session as a sender (S) to obliv­
iously transfer these secrets to Usri who acts as a
receiver (R). The Owner maintains a matrix T to store
if secrets are delivered to each Usri for each condj .
Upon the completion of the OCBE session the Owner
performs the following actions:

•	 If nymi does not exist in the matrix, it first creates
a row for it.

•	 It sets ri,j cell of T with respect to nymi and
condj .

We remark that all secrets are independent, so
the above secret delivery process can be executed in
parallel. Matrix T is used by the Owner to execute the
KeyGen algorithm of the ACV-BGKM scheme.

Example 3: Matrix 1 shows an example of matrix
T . A Usr under pseudonym pn-0012 who has an
identity token with respect to identity tag role reg­
isters for all attribute conditions (“role = doc” and
“role = nur” are shown in Table 1) involving identity
attribute role. This Usr does not register for attribute

conditions “level ≥ 59”, “YoS ≥ 5” 6 and “YoS < 5”,
either because it does not hold an identity token
with identity tag level or YoS, thus cannot register, or
because it chooses not to register as it only needs to
access subdocuments whose associated acp does not
require conditions for these attributes. A drawback
of registering only for the conditions required is that
it may allow an attacker to infer certain attributes
about the Usr with high confidence. To protect against
such attacks the Usr may choose to register for more
than one condition as explained earlier. Note that
the Usr under pn-0829 registers for both conditions
YoS ≥ 5 and YoS < 5, which are mutually exclusive
and thus both cannot be satisfied by any Usr. The
registration for both conditions is crucial for privacy
in that it prevents the Pub from inferring from the
Usr’s registration behavior which condition the Usr is
actually interested in. A Usr under pn-1492 registers
for all five attribute conditions.

TABLE 1

A table of CSSs maintained by the Pub

nym level ≥ 59 YoS ≥ 5 YoS < 5 role = doc role = nur . . .

pn-0012 ⊥ ⊥ ⊥ 1 1 . . .

pn-0829 1 1 1 ⊥ ⊥ . . .

pn-1492 1 1 1 1 1 . . .

. . .

6.3 Document Management

Recall that the Owner encrypts all subdocuments with
the same PC applicable with the same symmetric key.
Therefore, the Owner execute the KeyGen algorithm
of the ACV-BGKM for each PC. For a given PC, the
Owner first identifies the secrets to be considered as
follows.

•	 The Owner first converts each acp into DNF
(Disjunctive Normal Form). For each unique con­
junctive term, it executes the remaining steps.

�φi
•	 Let ith conjunctive term be j=1 condj , where

the term has φi conditions. The Owner iterates
through the secrets matrix T , and finds the set
of users who satisfy all the conditions in each
conjunctive term.

•	 At the end of the previous step, the Owner has the
list of Usrs who satisfy the PC, their association
with the subset covers SCi for each applicable
condi. The Owner identifies the covers in each
SCi and the secrets corresponding the covers.
The Owner aggregates by concatenating secrets
in the order of the conditions in the conjunctive
terms to produce a single secret for each user
satisfying the conjunctive terms. For example, if
the conjunctive term is cond1 ∧ cond3 and Usr5
satisfies the term, the Owner obtains the cover
secrets s1 and s3 from SC1 for Usr5 and SC3 for
Usr5 respectively. The aggregated secret is s1||s3.

6. YoS means “years of service”.

11

The set of aggregated secrets from the above algo­
rithm is used as the input to the KeyGen algorithm
which produces the public information PI and the
symmetric group key k. The Owner creates an index
of the public information tuples and associate with
the encrypted subdocuments, and uploads them to the
Cloud.
If a Usr with nymi wants to view the subdocument

D1, it first downloads the encrypted subdocument
along with the PI . It then picks an acpk that it satisfies
and derive the key using the KeyDer algorithm.
Now we look at how to handle system dynamics

such as adding/revoking credentials and acp updates.
When a new user Usr registers at the Owner, the

Owner delivers corresponding secrets to Usr, and
updates the matrix T . The Owner then performs
a rekey process for all involved subdocuments (or
equivalently, policy configurations) using the Update
algorithm. When Owner uploads new documents, it
also uploads the updated PI index.
During credential revocations, the conditions under

which a Usr needs to be revoked is out of the scope of
this paper. We assume that the Owner will be notified
when a Usr with a pseudonym nymi is revoked from
those who may satisfy condj . In this case, the Owner
simply reset the value ri,j from matrix T , and per­
forms a rekey process for all involved subdocuments.
Allowing particular secrets to be deleted from T
enables a fine-tuned user management.
A Usr’s credentials may have to be updated over

time for various reasons such as promotions, change
of responsibilities, etc. In this case, the Usr with a
pseudonym nymi submits updated credential condj to
the Owner. The Owner simply resets the old ri,j entry
and set a new entry in the matrix T , and performs a
rekey process only for the subdocuments involved.
When a Usr with a pseudonym nymi needs to be

removed, the Owner removes the row corresponding
to nymi from the matrix T , and performs a rekey
process only for the subdocuments involved.
Note that in all cases of new subscription, credential

revocation, credential update and subscription revoca­
tion, the rekey process does not introduce any cost to
Usrs in that except for those whose identity attributes
are added, updated or revoked, no Usr needs to di­
rectly communicate with the Owner to update secrets–
new encryption/decryption keys can be derived by
using the original secrets and updated public values
stored at the Cloud. The ability to derive the secret
encryption/decryption keys using public values is
a key point to achieve transparency in subscription
handling. Most of the existing GKM scheme fails to
achieve this objective.

7 EXPERIMENTAL RESULTS

In this section, we present experimental results for the
optimized ACV-BGKM scheme which is the heart of

our scheme. We refer the reader to our preliminary
work [17] for the experimental results on the OCBE
protocols and the basic ACV-BGKM scheme.
The experiments were performed on a machine run­

ning GNU/Linux kernel version 2.6.32 with an Intel R@
CoreTM 2 Duo CPU T9300 2.50GHz and 4 Gbytes
memory. Only one processor was used for computa­
tion. The code is built with 32-bit gcc version 4.4.3,
optimization flag -O2. For the ACV-BGKM scheme,
we use V. Shoup’s NTL library [26] version 5.4.2 for
finite field arithmetic, and SHA-1 implementation of
OpenSSL [27] version 0.9.8 for cryptographic hashing.
We implemented the ACV-GKM scheme with both

the bucketization and the subset cover optimizations.
We utilized the complete subset algorithm introduced
by Naor et. al. [22] for the subset cover. We assumed
that 5% of the users satisfying a given PC are revoked.
With the bucketization optimization, we assumed the
average case for the KeyDer algorithm where Usrs
require to derive half of the intermediate keys before
deriving the group key. For the experiments involving
fixed number of buckets, 10 buckets are utilized. All
finite field arithmetic operations in our scheme are
performed in an 512-bit prime field.
Figure 2 reports the average time spent to execute

the KeyGen algorithm of the ACV-BGKM scheme
without any optimizations, with bucketization, and
with subset cover optimization for different group
sizes. The bucketization outperforms the base scheme
as it divides the non-linear KeyGen algorithm into
smaller and more efficient computations. Subset-cover
optimization provides even better performance as
it reduces the effective group size considerably by
sharing secrets among multiple Usrs. As shown in
Figure 3, the KeyDer algorithm has similar results.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 100 200 300 400 500 600 700 800 900 1000

T
im

e
(in

 s
ec

on
ds

)

Base
Bucketization
Subset Cover

Group Size

Fig. 2. Average time to generate keys

Figure 4 shows the average time to execute the
KeyGen algorithm for 2500 and 5000 user groups with
an increasing number of buckets. When more buckets
are utilized, the size of the problem the KeyGen has
to solve reduces and, hence, the bucketization pro­
vides a better performance. However, as mentioned
in Section 3.1, the performance starts to degrade as
the number of buckets is greater than the the optimal
number of buckets. For n = 2500 and 5000, the opti­
mal number of buckets are around 100 and 150 respec­
tively. These values are consistent with the theoretical

http:cover.We
http:version2.6.32
http:thispaper.We

12

T
im

e
(in

 m
s)

100 200 300 400 500 600 700 800 900 1000

Group Size

Base
Bucketization
Subset Cover

Fig. 3. Average time to derive keys

minimum overhead. Under similar settings, Figure 5
shows the time to execute the KeyDer algorithm. The
key derivation time slowly increases as the number
of buckets increases because the complexity of the
second level KeyDer function increases.

 0 50 100 150 200 250 300 350 400

2500 Users
2500 Users

0

 10

 20

 30

 40

 50

 60

 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(in

 s
ec

on
ds

)

Group Size

Subset Cover
Bucketization

Both

Fig. 6. Average time to generate keys with the two
optimizations

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200 400 600 800 1000 1200 1400 1600 1800 2000

T
im

e
(in

 m
s)

Group Size

Subset Cover
Bucketization

Both

Fig. 7. Average time to derive keys with the two
optimizations

140

 120

 100

 80

 60

 40

 20

 0

T
im

e
(in

 s
ec

on
ds

)

450

 400

 350

 300

 250

 200

 150

 100

 50

 0

Number of Buckets
Group Key Management (GKM): Section 2.2 dis-

Fig. 4. Average time to generate keys with different cusses previous research efforts on the traditional

bucket sizes GKM and the BGKM. Additionally, a recent research
effort introduces a related BGKM approach based
on access control polynomials [14]. This approach

200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
(in

 m
s)

Number of Buckets

5000 Users
2500 Users

Fig. 5. Average time to derive keys with different bucket
sizes

We closely analyzed the two optimizations. Fig­
ure 6 shows the average time to execute the KeyGen
algorithm with the bucketization, the subset cover
and both where the bucketization is applied after
the subset cover technique. Both techniques together
provides a huge performance improvement. Under
the similar setting, as shown in Figure 7, the KeyGen
also performs much better compared to the individual
optimizations.

8 RELATED WORK

Approaches closely related to our work have been in­
vestigated in different areas: group key management,
attribute based encryption, selective publication and
broadcast of documents, and secure data outsourcing.

encodes secrets given to users at registration phase
in a special polynomial of order at least n in such
a way that users can derive the secret key from
this polynomial. The special polynomials used in this
approach represent only a small subset of domain of
all the polynomials of order n, and the security of
the approach is neither fully analyzed nor proven.
Further, it appears that the security of the scheme
weakens as n increases.

Attribute Based Encryption (ABE): ABE [28] is an­
other approach for implementing encryption-based
access control to documents. Under such an approach,
users are able to decrypt subdocuments if they satisfy
certain policies. ABE has two variations: KP-ABE (Key
Policy ABE) where encrypted documents are associ­
ated with attributes and user keys with policies [29];
CP-ABE (Ciphertext Policy ABE) where user keys are
associated with attributes and encrypted documents
with policies [30]. In either cases the cost of key
management is minimized by using attributes that
can be associated with users. Further, an ABE based
approach supports expressive acps. However, such an
approach suffers from some major drawbacks. When­
ever the group dynamic changes, the rekeying opera­
tion requires to update the private keys given to exist­
ing members in order to provide backward/forward
secrecy. This in turn requires establishing private com­
munication channels with each group member which

13

is not desirable in a large group setting. Further, in
applications involving stateless members where it is
not possible to update the initially given private keys
and the only way to revoke a member is to exclude it
from the public information, an ABE based approach
does not work. Another limitation is that whenever
the group membership policy changes, new private
keys must be re-issued to members of the group. Our
constructions address these shortcomings.
Selective Dissemination: The database and security
communities have carried out extensive research con­
cerning techniques for the selective dissemination of
documents based on access control policies [31], [32],
[33]. These approaches fall in the following two cate­
gories.
1) Encryption of different subdocuments with dif­

ferent keys, which are provided to users at
the registration phase, and broadcasting the en­
crypted subdocuments to all users [31], [32].

2) Selective multicast of different subdocuments
to different user groups [33], where all sub-
documents are encrypted with one symmetric
encryption key.

The latter approaches assume that the users are
honest and do not try to access the subdocuments
to which they do not have access authorization.
Therefore, these approaches provide neither backward
nor forward key secrecy. In the former approaches,
users are able to decrypt the subdocuments for which
they have the keys. However, such approaches re­
quire all [31] or some [32] keys be distributed in
advance during user registration phase. This require­
ment makes it difficult to assure forward and back­
ward key secrecy when user groups are dynamic
with frequent join and leave operations. Further, the
rekey process is not transparent, thus shifting the
burden of acquiring new keys on existing users when
others leave or join. Having identified these problems,
our preliminary work [17], proposes an approach to
make rekey transparent to users by not distributing
actual keys during the registration phase. However,
the security of the approach is not analyzed and it
cannot handle large user groups.
Secure Data Outsourcing: With the increasing utiliza­
tion of cloud computing services, there has been a
real need to access control the encrypted documents
stored in an untrusted third party. Our work falls into
this category. There has been some recent research
efforts [34], [35] to construct privacy preserving access
control systems by combining oblivious transfer and
anonymous credentials. The goal of such work is sim­
ilar to ours but we identify the following limitations.
Each transfer protocol allows one to access only one
record from the database, whereas our approach does
not have any limitation on the number of records that
can be accessed at once since we separate the access
control from the authorization. Another drawback is
that the size of the encrypted database is not constant

with respect to the original database size. Redundant
encryption of the same record is required to support
acps involving disjunctions. However, our approach
encrypts each data item only once as we have made
the encryption independent of acps. Yu et al. [36] pro­
posed an approach based on ABE utilizing PRE (Proxy
Re-Encryption) to handle the revocation problem of
ABE. While it solves the revocation problem to some
extent, it does not preserve the privacy of the identity
attributes as in our approach.

9	 CONCLUSIONS

We formalized the notion of broadcast group key
management (BGKM) and proved the security of
our BGKM scheme, ACV-BGKM scheme. Further, we
proposed optimizations to significantly improve the
performance of the ACV-BGKM scheme. Based on our
BGKM scheme, we have proposed an approach to
support attribute-based access control while preserv­
ing privacy of users’ identity attributes for sharing
documents in an untrusted cloud storage service. Our
approach is supported by a new group key manage­
ment scheme which is secure and allows qualified
users to efficiently extract decryption keys for the por­
tions of documents they are allowed to access, based
on the subscription information they have received
from the data owner. The scheme efficiently handles
joining and leaving of guaranteed, with guaranteed
security. Experimental results show that users effi­
ciently derive decryption keys, and the data owner
can efficiently large number of users.
As future work, we plan to add traitor tracing

and privacy preserving querying capabilities to our
approach.

ACKNOWLEDGMENTS

The work reported in this paper has been partially
supported by the MURI award FA9550-08-1-0265 from
the Air Force Office of Scientific Research.

REFERENCES

[1]	 N. Shang, M. Nabeel, F. Paci, and E. Bertino, “A privacy-
preserving approach to policy-based content dissemination,”
in ICDE ’10: Proceedings of the 2010 IEEE 26th International
Conference on Data Engineering, 2010.

[2]	 “Liberty Alliance,” http://www.projectliberty.org/.
[3]	 “OpenID,” http://openid.net/.
[4]	 “Windows CardSpace,” http://msdn.microsoft.com/en-us/

library/aa480189.aspx.
[5]	 “Higgins Open Source Identity Framework,” http://www.

eclipse.org/higgins/.
[6]	 R. Richardson, “CSI Computer Crime and Security Survey,”

http://www.ppclub.org/CSIsurvey2008.pdf, Computer Secu­
rity Institute, Tech. Rep., 2008.

[7]	 Y. Challal and H. Seba, “Group key management protocols: A
novel taxonomy,” International Journal of Information Technology,
vol. 2, no. 2, pp. 105–118, 2006.

[8]	 H. Harney and C. Muckenhirn, “Group key management pro­
tocol (gkmp) specification,” Network Working Group, United
States, Tech. Rep., 1997.

http://www.ppclub.org/CSIsurvey2008.pdf
http://www
http://msdn.microsoft.com/en-us
http:http://openid.net
http:http://www.projectliberty.org

14

[9]	 H. Chu, L. Qiao, K. Nahrstedt, H. Wang, and R. Jain, “A se­
cure multicast protocol with copyright protection,” SIGCOMM
Comput. Commun. Rev., vol. 32, no. 2, pp. 42–60, 2002.

[10] C. Wong and S. Lam, “Keystone: a group key management
service,” in International Conference on Telecommunications, ICT,
2000.

[11] A. Sherman and D. McGrew, “Key establishment in large
dynamic groups using one-way function trees,” Software Engi­
neering, IEEE Transactions on, vol. 29, no. 5, pp. 444–458, May
2003.

[12] G. Chiou and W. Chen, “Secure broadcasting using the secure
lock,” Software Engineering, IEEE Transactions on, vol. 15, no. 8,
pp. 929–934, Aug 1989.

[13] S. Berkovits, “How to broadcast a secret,” in EUROCRYPT ’91:
Proceedings of the 10th annual international conference on Advances
in Cryptology. Berlin, Heidelberg: Springer-Verlag, 1991, pp.
535–541.

[14] X. Zou, Y. Dai, and E. Bertino, “A practical and flexible
key management mechanism for trusted collaborative com­
puting,” INFOCOM 2008. The 27th Conference on Computer
Communications. IEEE, pp. 538–546, April 2008.

[15] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22,
no. 11, pp. 612–613, 1979.

[16] E. F. Brickell, “Some ideal secret sharing schemes,” in EU­
ROCRYPT ’89: Proceedings of the workshop on the theory and
application of cryptographic techniques on Advances in cryptology.
New York, NY, USA: Springer-Verlag New York, Inc., 1990,
pp. 468–475.

[17] N. Shang, M. Nabeel, F. Paci, and E. Bertino, “A privacy-
preserving approach to policy-based content dissemination,”
in ICDE ’10: Proceedings of the 2010 IEEE 26th International
Conference on Data Engineering, 2010.

[18] O. Goldreich, Foundations of Cryptography: Basic Tools. New
York, NY, USA: Cambridge University Press, 2000.

[19] M. Bellare and P. Rogaway, “Random oracles are practical:
a paradigm for designing efficient protocols,” in CCS ’93:
Proceedings of the 1st ACM conference on Computer and communi­
cations security. New York, NY, USA: ACM, 1993, pp. 62–73.

[20] S. Goldwasser, S. Micali, and C. Rackoff, “The knowledge com­
plexity of interactive proof-systems,” in STOC ’85: Proceedings
of the seventeenth annual ACM symposium on Theory of computing.
New York, NY, USA: ACM, 1985, pp. 291–304.

[21] D. Dummit and R. Foote, “Gaussian-Jordan elimination,” in
Abstract Algebra, 2nd ed. Wiley, 1999, p. 404.

[22] D. Naor, M. Naor, and J. B. Lotspiech, “Revocation and
tracing schemes for stateless receivers,” in Proceedings of the
21st Annual International Cryptology Conference on Advances in
Cryptology, ser. CRYPTO ’01. London, UK: Springer-Verlag,
2001, pp. 41–62.

[23] D. Halevy and A. Shamir, “The lsd broadcast encryption
scheme,” in Proceedings of the 22nd Annual International Cryp­
tology Conference on Advances in Cryptology, ser. CRYPTO ’02.
London, UK: Springer-Verlag, 2002, pp. 47–60.

[24] J. Li and N. Li, “OACerts: Oblivious attribute certificates,”
IEEE Transactions on Dependable and Secure Computing, vol. 3,
no. 4, pp. 340–352, 2006.

[25] T. Pedersen, “Non-interactive and information-theoretic secure
verifiable secret sharing,” in CRYPTO ’91: Proceedings of the
11th Annual International Cryptology Conference on Advances in
Cryptology. London, UK: Springer-Verlag, 1992, pp. 129–140.

[26] V. Shoup, “NTL library for doing number theory,” http://
www.shoup.net/ntl/.

[27] “OpenSSL the open source toolkit for SSL/TLS,” http://www.
openssl.org/.

[28] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in
Eurocrypt 2005, LNCS 3494. Springer-Verlag, 2005, pp. 457–
473.

[29] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-based
encryption for fine-grained access control of encrypted data,”
in CCS ’06: Proceedings of the 13th ACM conference on Computer
and communications security. New York, NY, USA: ACM, 2006,
pp. 89–98.

[30] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in SP ’07: Proceedings of the 2007
IEEE Symposium on Security and Privacy. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 321–334.

[31] E. Bertino and E. Ferrari, “Secure and selective dissemination
of XML documents,” ACM Trans. Inf. Syst. Secur., vol. 5, no. 3,
pp. 290–331, 2002.

[32] G. Miklau and D. Suciu, “Controlling access to published
data using cryptography,” in VLDB ’2003: Proceedings of the
29th international conference on Very large data bases. VLDB
Endowment, 2003, pp. 898–909.

[33] A. Kundu and E. Bertino, “Structural signatures for tree data
structures,” Proc. VLDB Endow., vol. 1, no. 1, pp. 138–150, 2008.

[34] S. Coull, M. Green, and S. Hohenberger, “Controlling access to
an oblivious database using stateful anonymous credentials,”
in Irvine: Proceedings of the 12th International Conference on Prac­
tice and Theory in Public Key Cryptography. Berlin, Heidelberg:
Springer-Verlag, 2009, pp. 501–520.

[35] J. Camenisch, M. Dubovitskaya, and G. Neven, “Oblivious
transfer with access control,” in CCS ’09: Proceedings of the 16th
ACM conference on Computer and communications security. New
York, NY, USA: ACM, 2009, pp. 131–140.

[36] S. Yu, C. Wang, K. Ren, and W. Lou, “Attribute based data
sharing with attribute revocation,” in Proceedings of the 5th
ACM Symposium on Information, Computer and Communications
Security, ser. ASIACCS ’10. New York, NY, USA: ACM, 2010,
pp. 261–270.

Mohamed Nabeel is a PhD candidate at the department of computer
science, Purdue university. He is also a member of the Center for
Education and Research in Information Assurance and Security
(CERIAS), IEEE and ACM. His research interests are in data privacy,
distributed system security and applied cryptography. His PhD thesis
topic is “Fine Grained Content Sharing using Attribute Based Group
Key Management”. His research adviser is prof. Elisa Bertino. He has
published in the areas of privacy preserving content dissemination
and group key management. He received the Fulbright fellowship
in 2006, Purdue Cyper Center research grant in 2010 and Purdue
research foundation grant in 2011.

Ning Shang is a product security engineer at Qualcomm Inc. He
received his PhD degree in mathematics from Purdue University,
West Lafayette, Indiana. Before coming to Qualcomm, he was a post-
doc researcher in the Department of Computer Science at Purdue
University and a software development engineer at Microsoft. His
research interests include algorithmic number theory, curve-based
cryptography, and design and implementation of security systems.

Elisa Bertino is Professor of Computer Science at Purdue Univer­
sity, and serves as research director of the Center for Education
and Research in Information Assurance and Security (CERIAS) and
Interim Director of Cyber Center (Discovery Park). Previously, she
was a faculty member and department head at the Department of
Computer Science and Communication of the University of Milan.
Her main research interests include security, privacy, digital identity
management systems, database systems, distributed systems, and
multimedia systems. She is currently serving as chair of the ACM
SIGSAC and as a member of the editorial board of the following
international journals: IEEE Security & Privacy, IEEE Transactions
on Service Computing, ACM Transactions on Web. She also served
as editor in chief of the VLDB Journal and editorial board mem­
ber of ACM TISSEC and IEEE TDSC. She co-authored the book
”Identity Management - Concepts, Technologies, and Systems”. She
is a fellow of the IEEE and a fellow of the ACM. She received
the 2002 IEEE Computer Society Technical Achievement Award
for outstanding contributions to database systems and database
security and advanced data management systems and the 2005
IEEE Computer Society Tsutomu Kanai Award for pioneering and
innovative research contributions to secure distributed systems.

http:openssl.org
www.shoup.net/ntl

