
CERIAS Tech Report 2012-03
Real Time Text Analysis on Internet Relay Chat Conversations

 by Marvin O. Michels
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

 � � � � � � �� � � � � � � � � � �
 � � �
 � � � � � �

� � � � � � � � � � � � � � �
� � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � �

REAL TIME TEXT ANALYSIS ON INTERNET RELAY CHAT CONVERSATIONS

A Thesis

Submitted to the Faculty

of

Purdue University

by

Marvin O. Michels

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2012

Purdue University

West Lafayette, Indiana

ii

To my parents Jeff and Luetta: for raising me to overcome any obstacle in my way and
giving me everything I need to succeed in life.

To the love of my life Lyssa: for pushing me through those nights where I did not want to
push myself.

iii

ACKNOWLEDGMENTS

This research would not have been possible without the support and guidance of my

committee members: Dr. Marc Rogers, Prof. Victor Raskin, and Prof. Cristina Nita-

Rotaru. Kyle Johansen, thank you for working with me in the Summer of 2011 or this

project would have never come to pass.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES .. vi

LIST OF FIGURES.. vii

ABSTRACT.. viii

CHAPTER 1. INTRODUCTION...1

1.1. Research Question...2

1.2.Scope ...2

1.3.Significance..3

1.4.Definitions ...5

1.5.Assumptions...7

1.6.Limitations ...7

1.7.Delimitations..7

1.8.Summary..8

CHAPTER 2.LITERATURE REVIEW...9

2.1. Introduction...9

2.2. History of Internet Relay Chat ...9

2.3. Crime on Internet Relay Chat Overview ..11

2.4. Investigation Frameworks & Architectures ..19

CHAPTER 3.FRAMEWORK AND METHODOLOGY ...24

v

Page

3.1. Methodology ...24

3.2. Keyword Analysis ...27

3.3. Topic Analysis ..31

CHAPTER 4.RESULTS AND FINDINGS..33

4.1. Implementation ...33

4.2. Keyword Analysis Results...35

4.3. Topic Analysis Results ..45

CHAPTER 5. DISCUSSION...49

5.1. Keyword Analysis ...49

5.2. Natural Language Processing Issues ..50

5.3. Topic Analysis ..52

5.4. Implications for Investigators ..53

5.5. Future Work ..54

5.6. Conclusions...56

LIST OF REFERENCES...57

APPENDIX...60

vi

LIST OF TABLES

Table Page

Table 2.1 Channels and Avg. Users in “warez” channels (Michels, 2011)11

Table 3.1 Example results table ...26

Table 3.2 Parts of Speech Tags ..28

Table 3.3 Keywords...29

Table 4.1 Avg. channel return list ..35

Table 4.2 Keyword Analysis Results with one keyword...36

Table 4.3 Keyword & POST Analysis Results with one keyword37

Table 4.4 Keyword Analysis Results with two keywords ...38

Table 4.5 Keyword & POST Analysis Results with two keywords.................................38

Table 4.6 Keyword Analysis Results with three keywords ...39

Table 4.7 Keyword & POST Analysis Results with three keywords...............................39

Table 4.8 Keyword Analysis Results with four keywords ..40

Table 4.9 Keyword & POST Analysis Results with four keywords40

Table 4.10 Keyword Analysis Results with five keywords...41

Table 4.11 Keyword & POST Analysis Results with five keywords...............................41

Table 4.12 Precision T-Test ...43

vii

LIST OF FIGURES

Figure Page

Figure 1.1 Channel search for the word "exploit" from irc.netsplit.de...............................4

Figure 2.1 Channel search for common credit card trading channels (Michels, 2011).....15

Figure 3.1 Topic Analysis Flowchart ...30

Figure 4.1 Topic Analysis on #ubuntu log, part 1...44

Figure 4.2 Topic Analysis on #ubuntu log, part 2...45

Figure 4.3 Topic Analysis on LulzSec IRC log ..46

Figure 5.1 Example of Internet Language Issues ..50

Figure A.1 Implementation Code...62

viii

ABSTRACT

Michels, Marvin O. M.S., Purdue University, May 2012. Real Time Text Analysis on
Internet Relay Chat Conversations. Major Professor: Dr. Marcus K. Rogers.

Internet Relay Chat (IRC) has been and is still being used for a number of legal

and illegal activities. Investigations dealing with IRC tend to be arduous and require a

vast amount of man hours for the constant monitoring needed, whether it is from law

enforcement or just a normal user surfing through the channels. This research looked at

developing the IRC Data Gathering Tool (IRCDGT), which facilitated real-time analysis

of IRC chat messages as well as real-time updates to the investigator. This is intended to

help reduce the number of man-house needed in front of a computer for an investigation.

A crawler was developed for IRC that goes through a list of channels and reports on what

is being discussed in those channels. Normal keyword analysis statistically outperforms

keyword & POST analysis in terms of recall while there is no significant difference

between basic keyword analysis and keyword & POST analysis in terms of precision.

Topic analysis was performed in near-real time to enhance the keyword analysis. Lastly,

natural language processing seems to have issues with dealing with the language of the

Internet subculture.

1

CHAPTER 1. INTRODUCTION

While not being the premier chat program for the Internet today, Internet Relay

Chat or IRC has withstood the test of time as one of the worldwide leaders in Internet

communication tools. From IRC’s beginnings in the late 1980s, its use has spread

worldwide and is still being used to this day to provide file sharing and communication

between multiple users simultaneously. While its user base has become lessened with the

onset of instant messaging and social media, many people still use IRC today for both

legal and illegal purposes. Users still share stories, messages, pictures, music, software,

credit card numbers, identities, child pornography, etc. If it digital data, it can be shared

over IRC.

IRC is a playground for groups such as Anonymous. IRC has been used as a

recruitment ground for terrorists, both physical and cyber related. The architecture of IRC

provides a problem for investigators. There is no central server that all channels reside

in. Rather, there are multiple servers spread around the world with thousands of channels

belonging to each server. Finding those who participate in illegal activities can be a

tedious task for investigators. Even if found, monitoring the room requires a large

amount of man hours dedicated to monitoring, constant surveillance, and logging of all

messages. Most analyses on the conversation are done post-mortem on logs of the

conversation (Adams & Martell, 2008) (Dong, Hui, & He, 2006) (Elnahrawy, 2002).

2

This thesis looks to help in the reduction of man hours needed to facilitate an

investigation on IRC and perform real-time analysis on incoming messages through a tool

called the Internet Relay Chat Data Gathering Tool (IRCDGT).

1.1. Research Questions

This thesis looked at analyses that can be performed in real time on Internet Relay

Chat messages. The main question here is can a tool be developed that facilitates real-

time analysis of Internet Relay Chat channel discussions within acceptable time limits

and with acceptable accuracy? An ancillary question to be answered, can a method be

developed to find chat channels where suspicious activities are being undertaken?

1.2. Scope

There are a number of chat networks and programs available to end-users such as

AOL Instant Messenger and Skype. Each network contains a large number of users and

different structures to their networks (Courtney, 2011). Internet Relay Chat will be the

main target for this thesis, though the results found in this thesis can and should be

applied to any chat network. The real-time analyses performed in this thesis will consist

of keyword analysis, topic analysis, and keyword analysis with POST categories. The

results of the real-time analyses’ accuracy were broken down into precision, recall, and

accuracy values.

3

1.3. Significance

In 2011, Internet Relay Chat had a maximum of 764,621 users spread over 4,579

servers (Gelhausen, 2012). There are still a large number of crimes and ill-practices being

perpetrated on Internet Relay Chat and starting an investigation on Internet Relay Chat

can be tedious (Michels, 2011). Users share exploits for different systems and hacking

tools across networks, even offering tutorials on how to use said exploits. Identities,

credit card numbers, and other illegal information are traded easily. Cyber-related attacks

are planned and carried out through IRC (Arthur & Gallagher, 2011). Most

investigations require either someone monitoring the chat room at all times or waiting till

after the chatting is done and searching through large amount of chat logs and saved

messages (Brown, 2007). A reduction of dedicated man hours is needed to facilitate an

efficient investigation from not just a law-enforcement standpoint but from a business

standpoint as well.

Law enforcement does not have the only stake in monitoring IRC chats. Many

different exploits for hardware and software are shared in IRC channels. Companies can

find those holes in their products quicker by keeping an eye out in specific channels.

Unfortunately, due to the wide spread nature of users, channels, and servers of IRC, it is

hard to find those places where the exploits are being undertaken. Popular IRC Search

engines such as irc.netsplit.de or search.mibbit.com can look for phrases and keywords in

channel names and return a list of channels, but might not always return valid results.

http:search.mibbit.com

4

Figure 1.1 – Channel search for the word “exploit” from irc.netsplit.de

Out of the ten channels found in Figure 1.1, only two channels, krazyk freenode

and viruses AllNetwork, can be expressly viewed as a channel strictly for exploits. For

the other channels in Figure 1.1, it cannot be easily shown what is actually going on in

the channel though they have the word exploit in their channel name or description. The

5

channel names and descriptions cannot accurately give a description of what is going on

in each channel. This is a major problem for investigators as well.

1.4. Definitions

Accuracy: The proportion of true results in a search.

Bot: An autonomously controlled client that responds to certain commands with other

various actions.

Crawler : A section of code that peruses a network to create an index of data to be used at

the discretion of the investigator.

False Positive: Any message containing a keyword that is incorrectly identified as

suspicious will be placed as a false positive result.

False Negative: Any message containing a keyword that is not identified as suspicious

when it is supposed to be will be considered a false negative

Frequency Analysis: The process of searching through a text to find the number of

occurrences of each word.

Internet Chat Messaging Networks: A network that provides any type of communication

over the Internet.

Internet Relay Chat (IRC): A chat network developed by Jarkko Okirinen in 1989 with

capabilities for communication and file sharing.

6

Keyword Analysis: The process of searching through a text for the occurrence of certain

keywords.

Part of Speech Tagging (POST): The process of marking up a word in a text (corpus) as

corresponding to a particular part of speech, based on both its definition, as well

as its context.

Peer-To-Peer Networks (P2P Network) : a computer network in which each computer in

the network can act as a client or server for the other computers in the network,

allowing shared access to files and peripherals without the need for a central

server.

Precision: The fraction of retrieved documents that are relevant to a search.

Recall: The fraction of documents that are relevant to a search that are successfully

retrieved.

Regular Expression: A concise and flexible means to match strings of text, such as

particular characters, words, or patterns of characters.

Stemming: The reduction of a word to its root form.

Suspicious activity: Any activity performed by an individual that could warrant further

investigation.

Topic Analysis: The process of analyzing a text for its central topic.

Warez: Any copyrighted works that could be distributed illegally over the Internet.

7

1.5. Assumptions

The assumptions of the study include:

It is assumed that any user of this tool does not know a channel or channels to

being their investigation.

The users of IRC will be using the English language.

1.6. Limitations

The limitations of this study include:

The chat network for the deployment of the framework will be on Internet

Relay Chat.

To mimic a real life scenario, a single topic will be selected in order to narrow

down the keyword and topic analysis, to be determined during the actual

testing.

Password protected rooms will be skipped in the crawler module.

In the crawler module, channels that have under a certain number of users will

not be looked through.

1.7. Delimitations

The following delimitations are being made:

8

While file sharing is common on IRC, the option for file sharing will not be

implemented in this version.

The Locator Module will not be implemented in this version.

1.8. Summary

This chapter provided an overview of the research project, the scope and

significance of the study, as well as the definitions, assumptions, limitations, and

delimitations of the study. Also, definitions of terms used in the study are given.

9

CHAPTER 2. LITERATURE REVIEW

This chapter intends to give an overview of literature related to the study of

Internet Relay Chat and investigation frameworks.

2.1. Introduction

Internet Relay Chat (IRC) founds its origin in the late 1980’s and is still used

today as a large scale communication and file sharing tool. “While the user base for IRC

has dropped recently, it is still being used by many different groups ranging from

legitimate companies, groups playing “Dungeons and Dragons”, warez groups, prank

groups, hacktavist groups, illegal information brokers, and terrorists” (Michels, 2011, p.

3). These groups are still active today and still perform their legal and illegal activities.

This section will look at a brief history of IRC, an analysis of crime on IRC, and some of

the current frameworks and analyses on which this tool will be developed.

2.2. History of Internet Relay Chat

The late 1980s saw the development of one of the first internet chat networks.

Jarkko Oikarinen was working at the University of Oulu in Finland when he decided to

replace a program used on a Bulletin Board System (BBS) frequented by Oikarinen and

10

his friends. His idea was to have multiple users have multiple users communicate with

each other at the same time across the network, dubbed synchronous conferencing

(Oikarinen, 2008). After writing the initial code, Oikarinen and his friends tested their

initial server with about twenty clients with success. The code was released from the

University of Oulu which prompted servers being created at Helsinki University,

Tampere University, University of Denver, and Oregon State University. Within the first

year of code being release, there were forty servers online worldwide (Stenberg, 2011).

“Throughout many network splits and attempts at standardization, IRC would

continue to grow in the 1990s, becoming engrained into the news media starting in 1991”

(Michels, 2011, p. 6). Two major conflicts would bring IRC to the forefront of new

media. These conflicts were the Gulf War and the August Coup in Russia. During the

Gulf War, family members could communicate through IRC around the world (Stenberg,

2011). Also, live reports from the war were sent to news agencies through IRC servers.

The influx of people and new media stressed the servers greatly. In the August Coup, an

attempted coup by the members of the Soviet Union’s government on Mikhail Gorbachev

led to a media blackout in Russia. News was given worldwide through IRC of both of the

events. The logs on both of these events are still available today (University of North

Carolina at Chapel Hill, 1994).

While the number of users has declined since the 2000s, there are still a large

number of users on IRC performing a large number of services. Some of the largest

servers in the IRC networks still serve over thirty thousand users daily. The top four

servers still serve over fifty thousand users worldwide per day (Michels, 2011). The total

11

number of users reached a maximum of 764,621 users spread over 4,579 networks in

2012 (Gelhausen, 2012).

2.3. Crime on Internet Relay Chat Overview

The channels of IRC, while used for their original purpose of synchronous

communication, became a playground for illegal activities. These illegal activities fall

into certain categories: file sharing, hacking & hacktavist groups, illegal information

marketing, and terrorism in both the cyber realm and the physical realm.

A large quantity of the traffic on IRC has to deal with file sharing (Mutton, 2004).

Though replaced by new file sharing options like BitTorrent and P2P Networks, IRC still

has a large file sharing community, sharing all forms of files from music to software,

called “warez.” “Warez” is a term short for computer software and usually refers to any

copyrighted works that could be distributed illegally (Basamanowicz & Bouchard, 2011).

The distribution of software is usually done by a bot that joins channels and publically

promotes what that bot has to offer others. Table 2.1 shows the results of searching

through the channel lists for any channel name containing the word “warez.”

12

Table 2.1. Channels and Avg. Users in “warez” channels (Michels, 2011)

Total # of Channels with “Warez” in channel

name

Average # of users/room

EFnet 28 8

IRCnet 1 17

Quakenet 0 0

Undernet 45 20

IRCnet and Quakenet completely prohibit any type of warez sharing, while EFnet and

Undernet both lack that rule. This information was found by just searching for obvious

channel names that would contain the word “warez”. Delving deeper into the channels

and looking at their descriptions rather than just channel names reveals many other

channels with many pieces of warez being shared under the noses of the administrators of

those servers.

A study by Paul Mutton analyzed illegal activity on IRC (Mutton, 2004). Mutton

ran an IRC client for thirty-six hours in sixty of the largest channels on IRC looking

specifically for what he considered illegal activity. Upon entering these channels, a

similar message appeared in each channel, somewhat supporting the fact the users in each

channel were undertaking illegal activity in that channel. It was found that many of the

messages followed the same format:

13

If you are affiliated with any government, police, ANTI-Piracy Group, RIAA,

MPAA, FBI, movie production company/distribution company or related groups

you are violating code 431.322.12 of the Internet Privacy Act signed by Bill

Clinton in 1995, therefore you CANNOT threaten our ISP(s), person(s) or

company storing these files and cannot prosecute anyone. And you must LEAVE

NOW. (Mutton, 2004)

The interesting fact here is that the law mentioned, the Internet Privacy Act, is a fictitious

law that was created to help try to give some protection to those operators of web sites

and channels that shared illegal data (Healey, 2002). Mutton’s analysis found that around

99.9% of IRC traffic in the top sixty channels at that time was dealing with illegal file

sharing. He also claims that it is unfair to claim that all of the traffic and conversations

that occur on IRC are illegal and that many people are ruining the image of IRC with

their actions (Mutton, 2004).

IRC has been and is still used as a staging ground for the activities of groups such

as Anonymous, LulzSec, and various other hacking and hacktavist groups. These groups

use IRC as one of their meeting grounds to discuss and plan out the attacks they carry

out. These groups tend to have a decentralized power structure and no real leading

authority figures but act as a communal whole when the time arises (Anonymous

Analytics).

An example of their use of IRC came in September 2010 when the group

Anonymous began “Operation Payback”. Their attacks consisted of distributed denial of

service attacks against groups that were trying to shut down sites such as The Pirate Bay

http:431.322.12

14

and Wikileaks. An investigation into those attacks led to the arrest of a teenager who was

one of the operators of the IRC channels of the group Anonymous. Through leaked logs

of conversations, it was shown that this teenager helped in the attacks on a selection of

websites (Erensto, 2010).

In a similar situation, the IRC logs of those who helped in the attacks undertaken

by the group LulzSec in early 2011 were uploaded to the Internet in the Summer of 2011.

This log show the dates and times of the attacks planned as well as the showed some of

the inner workings of the group itself (Arthur & Gallagher, 2011). The logs shows the

reaction of members of the group after their biggest attacks on the Nintendo Corporation,

Public Broadcasting Service, InfraGard (a FBI affiliate), and eventually their attacks on

Sony which garnered them much media attention. This series of attacks led fallout

among the members, with many of them quitting and the log showing the steps that the

members took to protect themselves. This information as well as those who fell out of

favor with the group helped lead investigators to the arrest of some of the hackers

responsible (Eimiller, 2011).

The examples above show that IRC is still a playground for hacking groups with

agendas. IRC for them is a hangout that few realize exist anymore. It is the cool place to

hang out for any member, from script kiddie to those who find new flaws to exploit. It is

their meeting place. It is a safe haven for them. Their power structure somewhat leads to

some member being scorned which brings about the opening needed to find those

responsible.

15

IRC has been used for an extended period of time to distribute various types of

illegal information: stolen credit card numbers, child pornography, social security

numbers, identities, etc. In the height of the use of IRC, the group The Honeypot Project

submitted a paper in the “Know Your Enemy” series entitled “Profile: Automated Credit

Card Fraud (Spitzer, 2003). The group found IRC channels where users were trading

stolen credit card information and shares details about how exactly the users traded the

information, providing common channel naming practices, bot structures, common

commands, etc. Interestingly enough, some of these channels are still in use today and

can be found in some channel server listings such as in Figure 2.1.

16

Figure 2.1. Channel search for common credit card trading channels (Michels, 2011)

IRC is also used as the market of stolen identities. Jared Shurtz, a blogger for

TopTenReviews.com, looked at the market for identity theft and found that “once your

identity has been stolen, cybercriminals access an invitation-only Internet Relay Chat site

with around 100,000 other cybercriminals and begin auctioning off your identity – and

you are part of their online trick or treat” (Shurtz, 2011). A single identity with

identification such as name, address, phone number, social security number, etc. goes on

http:TopTenReviews.com

17

sale for about ten dollar per identity. Gaining access to these channels requires the trust

of one of the members already in, so finding those responsible for this illegal activity can

be a time-consuming exercise (Huston & Miller, 2010).

Terrorists have used IRC servers and channels in the past as a recruiting ground

and meeting place. In the book “The Art of Intrusion” famed hacker Kevin D. Mitnick

and William L. Simon tells the tale of two young hackers named Comrade and ne0h

(Mitnick, 2004). These hackers were used to hack into private and government systems

by a supposed terrorist using the name Khalid Ibrahim in the late 1990s.

Khalid began by observing the hacking scene on IRC in the late 1990s using the

promise of money and the challenges he thought up to bring ne0h and Comrade into his

ploy. He first gave the two some easy starting challenge and then moving the hackers on

to targets such as Lockheed Martin and Boeing (Mitnick, 2005). Khalid played the

hackers’ egos against them, prompting them with more and more challenges to overcome.

This led to the targeting of SIPRNET, a large network of computers used by the United

States Department of Defense as well as the United States Department of State (Mitnick,

2005). The situation became all too real for the two hackers when Indian Airlines Flight

IC-814 was hijacked by Pakistani terrorists who had ties with the Taliban. Khalid told the

hackers and members of ne0h’s hacking group that they were responsible for the

hijacking and that Khalid himself was involved, threatening to kill the hackers if they

reported him.

18

An interesting question can be brought up: If Khalid was able to do this in the

height of IRC use and the beginning of social media and instant messaging, how easy

would it be able to do today? Mitnick claims:

The combination of determined terrorists and fearless kid hackers could be

disastrous for this country. This episode left me wondering how many other

Khalids are out there recruiting kids (or even unpatriotic adults with hacking

skills) and who hunger after money, personal recognition, or the satisfaction of

successfully achieving difficult tasks. The post- Khalid recruiters may be more

secretive and not as easy to identify. (Mitnick, 2005)

With the amount of connectivity and with the onset of newer and more secretive

forms of communications, the fears of Mitnick now seem like they can happen with great

ease. “Due to the widespread use of forums and social media today, it may be easier than

ever for the Khalids out on the Internet to find those who would help them both

knowingly and unknowingly” (Michels, 2011).

While also being used as a communications tool, IRC has been and is still being

used for attacking systems through what can be referred to as cyber-terrorism. The most

popular form of this is the botnet, a collection of computers that are connected together

and used most often for malicious purposes (Kola, 2008). In the early 2000’s, a large

number of these botnets were run through IRC networks. The infected computer will

connect to an IRC network and sit in a channel, waiting for the controller of the botnet to

issue commands. The Storm botnet which plagued the Internet in 2007 had an extremely

large number of computers under its command (Francia, 2007). These botnets serve many

19

goals for their masters. The Honeypot Project categorized the uses of botnet under ten

categories:

1. Distributed denial of service attacks (DDoS)

2. Spamming

3. Sniffing traffic

4. Key logging

5. Spreading new malware

6. Installing advertisement add-ons and browser helper object

7. Google AdSense abuse

8. Attacking IRC chat networks

9. Manipulating online polls/games

10. Mass identity theft (Bacher et al., 2008)

The number of botnets itself has increased, but the number of IRC controlled botnets has

been decreasing with more advanced botnets arriving (e.g. HTTP, mobile). The question

remains: why are there still IRC botnets around? The answer is that the botnets must still

be being used by parties and making them money (Santorelli, 2010).

2.4. Investigative Frameworks, Architectures, and Current Implementations

There exist a few frameworks for the investigation of chat networks and from

there, specifically IRC. One such framework created by Dugald A. Brown discusses an

architecture for an automated IRC investigation tool called the Dugald Automated

20

Investigation Tool or DAIT. Brown looks to reduce the man hours used an in

investigation by automating some of the processes of the investigation (Brown, 2007).

His architecture is broken down into five modules: the collection module, the analysis

module, the storage module, the alert module, and the locator module. Each module

works together to help support an investigator in an investigation.

The Collection Module performs the basic functions of a client, sitting in on a

channel and listening to conversations according to the IRC Protocol document. This

module then takes any messages received, sends an unedited copy of the message to the

storage module, then parses the messages for dates, usernames, etc. and sends that data to

the analysis module.

The Storage module stores the parsed data from a message into a database.

Brown breaks down the database using nine tables to hold all the necessary information:

1.	 The Session table – records all data pertaining to the network, channel, or

private message received.

2.	 The Handles table – records the username and nickname of users.

3.	 The Users table – records the logon information of each user.

4.	 The Message table – Contains each message as well as a link to the user

in the Users table as well as the Handles table.

5.	 The Time table – records when a user logs on or off.

6.	 The Links table – records any hyperlinks that appear in a message

7.	 The LinkMsg table – relates hyperlinks to the messages in which they

appeared.

21

8.	 The ActionList table – shows any interactions between users for the use

of social behavior analysis.

9.	 The Interactions table – records the message where an action took place

as well as who performed the action and who received the action.

The Analysis Module is responsible for checking if a crime is being referenced in

the messages. Brown uses two types of analysis: keyword analysis and database analysis.

The keyword analysis looks for specific keywords (single words), key phrases (multiple

words), and regular expressions (for checking for credit card numbers in Brown’s

example). The database analysis will try to analyze the messages in the database with

respect to all other messages in the database to find possible connections in the messages.

Brown goes on to discuss three algorithms useful to the database analysis: Naïve Bayes,

K-Nearest Neighbor, and Support Vector Machines.

The Alert Module takes the data from the analysis module and sends any

discovery to the appropriate law enforcement official. The Alert Module specifically

uses email and cell phone messages to alert the appropriate individual to a suspicious

message.

The Locator Module takes any user data if available from for a suspicious

message and attempts to locate the user. Brown calls for the use of the WHOIS protocol

which can look up the location and contact information for any server or IP connected to

the Internet. Brown goes on to say that this module may not give any usable information.

22

Brown’s analyses primarily use keyword analysis on the incoming messages as

well as analyzing the database for possible connections between people. Regular

expressions were used to also indicate criminal activities such as credit card fraud and

can be expanded especially in dealing with any numerical data (Brown, 2007). Keyword

analysis is a type of analysis that is easily done in real time and has been used by other

researchers in the past. The accuracy of this analysis comes down to the list of keywords

and its robustness. More keywords in the list will give more possible hits in an

investigation while also raising the possibility of a false positive result. There needs to be

some other sort of contextual analysis to better understand how the keyword is being

used. Part of Speech Tagging (POST) is helpful here. POST helps to break down the

sentence into its grammatical parts and categorizing the information (Stanford Natural

Language Processing Group, 2012). The number of false positive hits from keyword

analysis may be lessened if combined with POST.

In an attempt to create a tool that performs live data analysis, Daniel Cooper

created a tool that captured IRC bound packets for inspection, performing live data-

analysis on captured messages using keyword analysis as well as topic detection (Cooper,

2011). Cooper mentions in his results that both keyword analysis and topic detection

produced false positives and false negatives but gave no definitive performance metrics

for his analysis.

The notion of topic analysis has been researched before. Algorithms such as K-

Nearest Neighbor, Naïve Bayes, and Support Vector Machines have been used for the

categorizing of topics (Elnahrawy, 2002). Associative classification is added on as well

23

(Dong, Hui, & He, 2006). Cue-phrase analysis and classis frequency analysis has also

been used to determine topics from messages (Gainaru, Dumitrescu, & Trausan-Matu,

2010). The Classic Frequency analysis reads a message in a chat line by line and word

by words performing frequency analysis. After this is done, only the most used words

are kept and then stemmed, combining words that have the same root or are synonyms.

This reduces the set of words and the results are the topics in that section of the text.

These frameworks also assume that the investigator has does not need to search

the network for any other suspicious activities. When most servers easily have more than

a thousand channels (Gelhausen, 2012) searching through each channel on a server can

be time consuming for an investigator (Houston & Miller, 2010). An investigator could

go through as many channels as possible but that would be time consuming and ill-

advised. Other than going through each channel manually, there is no way to accurately

know what is going on in each channel, except with the use of automation.

24

CHAPTER 3. FRAMEWORK AND METHODOLOGY

This chapter looks at how the Dugald Automated Investigation Tool (DAIT)

architecture was used to implement the idea of the IRC Data Gathering Tool (IRCDGT)

and how the analysis module was be expanded to use other types of textual analyses.

3.1. Methodology

The DAIT features five sections: the client module, the analysis module, the

storage module, the alert module, and the locator module. Each of these modules except

for the locator module was implemented according to their specifications in the DAIT

architecture with some changes to create the IRCDGT.

The program was developed on a PC using 4.00 GB of RAM, using an AMD

Phenom II X4 945 3.00 GHz Processor running Windows 7 Ultimate 32-bit edition. The

project was implemented in C# due to the ease of implementation as well as coding

aspects. Each module corresponds to a section of code for the program.

Various open-source tools were also used to facilitate various parts of the program

not easily coded: the SharpNLP Project, a collection of natural language processing tools,

25

the Porter Stemming algorithm, and NHunspell, a spell checking, hyphenation, and

thesaurus available for the .NET languages. SharpNLP and NHunspell are used available

for use for academic research under the GNU Lesser General Public License (LGPLv3).

The Porter Stemming algorithm was coded by the specifications of the original paper by

Martin Porter (Porter, 1980).

The client module performed the basic requirements of the client such as

connecting to the server, joining channels, sending and receiving messages, and handling

private messages. The messages were displayed to the user and then sent for analysis.

The client also handled receiving multiple messages from multiple channels at the same

time. The client module received commands from another user in the same channel. The

client joined a control channel to facilitate this while another client fed commands to it.

The basic client was implemented using various tutorials online.

The Analysis module performed real-time analysis of the incoming chat

messages. As messages were received (this includes private messages as well), three

different types of analyses were performed on the messages which are explained in the

next section. Also, to facilitate dynamic keyword selection, the analysis module looked

through the storage module searching for keywords that are used frequently. In the

course of a conversation (the length of which was determined by the investigator), if a

word appeared to dominate the conversation (again, the number of times the word was

used was up to the investigator), it was saved as a possible new keyword to be searched

for in subsequent searches.

26

The Storage module was implemented using a simple Excel file to facilitate an

actual database but followed the DAIT architecture. The architecture called for storing

every message in the stream in the database. This implementation created a log of all

messages and saved all messages to that log for any post-mortem chat analysis. Only a

certain amount of messages were kept in the database to help facilitate the topic analysis.

The rest of the messages were placed in the log for later use.

The Alert module alerted the investigator to a possible suspicious message if one

appeared. This was done through the use of email, using a Gmail account to send

periodic updates to the investigator. Alerting occurred over a set period of time, usually

around every ten minutes if any suspicious messages appeared. The time period could be

changed by the investigator as well.

In order to facilitate the issues brought up in the analysis of the framework a final

module was implemented which is the Crawler module. This module consisted of two

parts: the Topic Crawler and the Channel crawler, each providing similar results.

The Topic Crawler went through the listing of each channel and its description,

performing keyword analysis on the description of each channel. This was done to help

find channels where suspicious activities from the point of view of the investigator were

being undertaken.

The Channel Crawler is similar to the Topic Crawler. The Channel Crawler

attempted to go through channels marked as suspicious during the Topic Crawler phase

on the server observing the conversations in each channel. It stayed in the channel for a

27

short time listening to messages and performing keyword and topic analysis in order to

find channels of suspicious activity. Upon finding a keyword or topic in a message, the

channel was flagged for review for the investigator and the crawler continued on to

another channel.

3.2. Keyword Analysis

Two types of analyses were examined to try to find which would work the best in

a live deployment scenario. Keyword analysis was first examined. The data from the

analysis was recorded in a table such as Table 3.1:

Table 3.1 Example results table

Positive Negative Total

Keyword/Topic present A B A+B

Keyword/Topic not present C D C+D

Total A+C B+D A+B+C+D

Area A corresponds to the true positive result, when a keyword is correctly found.

Any message containing a keyword that was not identified as suspicious when it is

supposed to be will be considered a false negative result, corresponding to a result in area

B. Any message containing a keyword that was incorrectly identified as suspicious was

28

placed as a false positive result, corresponding to a result in area C. Area D corresponded

to the true negative result, when a keyword is not found. The precision, recall, and

accuracy rates were then computed.

Precision = A / (A+B)

Recall = A / (A+C)

Accuracy = (A + D) / (A+B+C+D)

In information retrieval, precision is the fraction of retrieved documents that is

relevant to a search, recall is the fraction of documents that are relevant to a search that

are successfully retrieved, and accuracy is the proportion of all true results in a search.

High recall means that most of the relevant results were returned. High precision means

that more relevant than irreverent results were returned.

Next, Keyword analysis was implemented with POST categories attached to each

word. For example, looking for the keyword “hacking” as a verb or an adverb instead of

just the instance of the word. This analysis was carried out in the same way as the basic

keyword analysis. The POST tags are divided up into thirty-six different categories

located in Table 3.2.

29

Table 3.2 Parts of Speech Tags

Tag Description Tag Description Tag Description Tag Description

CC
Coordinating

Conjunction
LS List item marker PRP$

Possessive

pronoun
VBD Verb, past tense

CD Cardinal Number MD Modal RB Adverb VBG

Verb, gerund or

present

participle

DT Determiner NN
Noun, singular

or mass
RBR

Adverb,

comparative
VBN

Verb, past

participle

EX Existential there NNS Noun, plural RBS
Adverb,

superlative
VBP

Verb, non-3rd

person singular

present

FW Foreign Word NNP
Proper Noun,

singular
RP Particle VBZ

Verb, 3rd person

singular present

IN

Preposition or

subordinating

conjunction

NNPS
Proper Noun,

plural
SYM Symbol WDT Wh-determiner

JJ Adjective PDT Pre-determiner TO To WP Wh-pronoun

JJR
Adjective,

comparative
POS

Possessive

ending
UH Interjection WP$

Possessive wh-

pronoun

JJS
Adjective,

superlative
PRP

Personal

Pronoun
VB Verb, base form WRB Wh-adverb

30

Both the keyword analysis and the keyword & POST analysis were carried out

using a simple keyword list made of words about the operating system Ubuntu as well as

exploits for the system. This analysis was used in the topic and channel crawlers as well

as in normal chatting. The keyword list was comprised of five words and included in the

list was the part of speech attached to that word. The list of keywords is shown in Table

3.3

Table 3.3 – Keywords

Keyword Part of Speech tag

Ubuntu NN

Firmware NN

Attack NN or VB

Linux NN

Hack NN or VB

After being used to in the topic crawler and channel crawler step, the results of the

analyses was saved to an Excel file which contained the channel name, the topic of the

channel, and the keyword(s) that were found. The list was then parsed manually to find

the performance rates mentioned above, separating the true results from the false results.

31

The hypothesis for this section of the research is that the keyword analysis with

the POST categories would outperform the normal keyword analysis in precision, recall,

and accuracy. This was due to the fact that keyword analysis with POST categories

would return more specialized results in the analyses.

3.3. Real-Time Topic Analysis

Next, Topic Analysis was implemented. The classic frequency method used by

Gainaru, Dumitrescu, & Trausan-Matu (2010) was implemented due to the fact that this

type of analysis was easily converted to run well in a live-data acquisition tool and it did

not require any lengthy calculations. Figure 3.1 shows the process of topic analysis.

No Words

combined?

Yes

Message Tokenizer Frequency

Analysis

Stemming Combine words if they

are synonyms

Topics

Figure 3.1 – Topic Analysis Flowchart

32

Most topic analyses are done on a chat log post-mortem. This implementation

used a workaround for this by using a certain number of archived messages in order to

simulate the post mortem status needed for topic analysis. The analysis module did not

perform the topic analysis until a certain number of chat messages were reached, which

was called the threshold X. Once that threshold was met, topic analysis was performed

using the last X messages to try to find the topics in the conversation. From that point on,

each message was subject to topic analysis using the last X messages received. The

threshold used was thirty messages for this research. This novel approach was tested to

see if changes in the topic could be seen in real time. This required the use of a word

stemmer to bring the word to its root form as well as a thesaurus to find synonyms for the

words in order to combine them to find the general topics.

33

CHAPTER 4. RESULTS AND FINDINGS

This was a research experiment to see how keyword analysis, keyword analysis

with POST categories, and topic analysis performs in a real-time data acquisition. The

research also looked to reduce the number of hours needed for an investigator to be in

front of a computer during an investigation on Internet Relay Chat. The main result was

the Internet Relay Chat Data Gathering Tool or IRCDGT, a tool that helps provide

automated monitoring for IRC channels.

4.1. Implementation

The IRCDGT tool was implemented as described as above with the addition of

the Crawler module. Each module was created as a different method in C# using

multiple threads to facilitate real-time analysis and performs their duties independent of

each other. The program still functions as a normal IRC Client and has the ability to join

channels, receive messages, etc. The analyses were run as a message was received and

was then stored in a log. The POST tagged messages were outputted to the user as well.

The alert module sent an email out to the investigator every ten minutes. The

time in-between messages could be changed by the investigator and eventually moved to

34

sending emails every thirty minutes. This email contains a message digest of any

suspicious messages they may have come up as well as the current topics.

The crawler module was tested to see if it was actually possible to perform the

analyses in real time and deduct time needed for in investigator to actually be in front of a

computer. As the program logged on to the IRC Server, in this case irc.freenode.org, the

crawler downloaded the channel list and began to parse through it using both the keyword

analysis and the keyword & POST analysis, the results of which are explained in the next

section. Any channel that was found containing any of the keywords or combinations of

keywords was saved to a list when was then used by the channel crawler.

The channel crawler used the list generated by the topic crawler as the set of

channels to be observed. In its initial implementation, the crawler joins the first four

channels in the list, spreading out the time for the join command to the crawler does not

appear to be flooding the network. Any password protected channel was skipped. The

crawler stays in each channel for just over minute logging all messages sent from those

channels. Once that minute was up, the crawler left those channels and proceeded to the

next four channels until the list is completely was run through. At the end of the list the

messages in each channel are sent for analysis and a report is generated on all the suspect

channels from those messages showing any suspect messages and the topics that go with

them.

Initially the channel crawler did not work due to the join command being sent too

rapidly. The server thought the crawler was trying to flood the network with commands

and stopped any subsequent join commands for a short while. This was fixed by making

http:irc.freenode.org

35

the crawler stop for a few seconds before joining the next channel. The server provides a

maximum number of channels that one user can join and the program can join up to that

amount. The amount of time spent in a channel can also be changed to suit the needs of

the investigator.

The crawler module as well as the alert module provides a an investigator with a

way to not have to spend so many dedicated hours in front of the monitor looking at the

chat. As a test, the crawler module was run overnight on a set of fifty false channels

staying in each channel for a minute at four channels per run. Bots were placed in

specific channels and would replay the message “Ubuntu chat network, exploits for all.”

Looking through the fifty channels took just over twelve minutes in total and reported

back on the messages given as well as the topic.

4.2. Keyword Analysis Results

Each iteration of the keyword list was run against the topic list of irc.freenode.org.

This server was chosen due to its large channel size as well as its connection to the users

of the Ubuntu operating system. Retrieving the channel list from the server was the most

time consuming part of the research. The channel list would be downloaded every time

the analyses were run, taking upwards of 10-17 seconds for the download to complete.

The analyses on the topic descriptions took around 18 seconds to complete. The analyses

on regular incoming messages were performed un just under a tenth of a second. These

time metrics were started just before their respective actions began and ended as soon as

they were finished.

http:irc.freenode.org

36

The total number of channels found using the keyword list was recorded for each

iteration. The analyses looked for any combination of keywords after the first iteration,

i.e. on the second iteration, the crawler would return any channel with the keywords

“Ubuntu”, “firmware”, or any combination of the two.

Table 4.1 – Avg. channel return list

of

Keywords

Channels found under

Keyword

Channels found under

Keyword & POST

Total

Channels

1 314 46 12276

2 333 59 12275

3 327 62 11517

4 934 340 11484

5 1174 369 11497

Table 4.1 shows how many channels were returned were return These results

provided a reduction of between 87%-99% of channels to be searched. Doing this

manually would be extremely time consuming to an investigator. The topic lists

generated from the analyses were saved and then parsed manually to find the precision,

recall, and accuracy rates.

37

Under one keyword:

Table 4.2 – Keyword Analysis Results with one keyword

Basic Keyword Analysis Positive Negative

Keyword present 260 53

Keyword not present 0 11962

Precision =.8307

Recall = 1

Accuracy =.99

The basic keyword searches for all ten iterations contained no false negative

results as seen in Table 4.2. This is due to the fact the channel list was parsed and every

instance of the keyword was found and returned as a possible channel to review. This

does not take into account the fact that channels can be created/removed after the channel

list is downloaded. This automatically makes the recall value for the basic keyword

analysis 1.

38

Table 4.3 – Keyword & POST Analysis Results with one keyword

Keyword & POST Analysis Positive Negative

Keyword/Tag present 39 7

Keyword/Tag not present 221 12005

Precision =.81

Recall =.15

Accuracy = .98

The Keyword & POST analysis did contain false negative results as seen in Table

4.3. This was due to the part of speech tagging analyzing the topic for a channel and not

finding the correct tag for the keyword whereas in the basic keyword analysis the channel

was a true positive result. This continues out through the other iterations as show in

Tables 4.4 through 4.11.

39

Under two keywords:

Table 4.4 – Keyword Analysis Results with two keywords

Basic Keyword Analysis Positive Negative

Keyword present 273 60

Keyword not present 0 11943

Precision =.8222

Recall = 1

Accuracy =.99

Table 4.5 – Keyword & POST Analysis Results with two keywords

Keyword & POST Analysis Positive Negative

Keyword/Tag present 59 17

Keyword/Tag not present 234 11975

Precision =.77

Recall = .20

Accuracy = .98

40

Under three keywords:

Table 4.6 – Keyword Analysis Results with three keywords

Basic Keyword Analysis Positive Negative

Keyword present 252 77

Keyword not present 0 11188

Precision = .76

Recall = 1

Accuracy =.99

Table 4.7 – Keyword & POST Analysis Results with three keywords

Keyword & POST Analysis Positive Negative

Keyword/Tag present 40 20

Keyword/Tag not present 253 11204

Precision =.66

Recall = .13

Accuracy = .98

41

Under four keywords:

Table 4.8 – Keyword Analysis Results with four keywords

Basic Keyword Analysis Positive Negative

Keyword present 262 672

Keyword not present 0 10550

Precision = .28

Recall = 1

Accuracy =.98

Table 4.9 – Keyword & POST Analysis Results with four keywords

Keyword & POST Analysis Positive Negative

Keyword/Tag present 43 297

Keyword/Tag not present 263 11484

Precision = .12

Recall = .14

Accuracy = .99

42

Under five keywords:

Table 4.10 – Keyword Analysis Results with five keywords

Basic Keyword Analysis Positive Negative

Keyword present 396 672778

Keyword not present 0 10323

Precision = .33

Recall = 1

Accuracy =.93

Table 4.11 – Keyword & POST Analysis Results with five keywords

Keyword & POST Analysis Positive Negative

Keyword/Tag present 68 303

Keyword/Tag not present 406 10720

Precision = .18

Recall = .14

Accuracy = .93

43

The large jump in numbers from the third keyword to the fourth keyword was due

to the fact that many channels descriptions contained the word “linux” in their

descriptions. Few of the channels fit into the category of a channel to be looked at

though.

Statistical analysis of the results was performed on the data by the use of a t-test.

Microsoft Excel was used to carry out the test. Recall was tested first, then precision.

The hypothesis for the recall value is shown below:

Recall

H0: The Keyword analysis would outperform Keyword & POST analysis in terms

of recall.

Ha: The Keyword analysis would not outperform Keyword & POST analysis in

terms of recall.

Due to keyword analysis always having a recall value of 1, it was easily shown

that keyword analysis outperformed keyword analysis with POST. The t-test for

precision was performed in the same manner. The hypothesis are recorded below and

results are shown in Table 4.12:

Precision

H0: The Keyword analysis would outperform Keyword & POST analysis in terms

of precision.

Ha: The Keyword analysis would not outperform Keyword & POST analysis in

terms of precision.

44

Table 4.12 Precision T-Test

of Keywords

Precision for

normal keyword

Precision for

keyword & POST

T-Value P-Value

1 .83 .81

.46 0.66

2 .82 .77

3 .76 .66

4 .28 .12

5 .33 .18

Means .60 .51

Standard

Deviation

.27 .34

There was no significant difference in precision between the normal Keyword

Analysis (M=.60, SD=.27) and Keyword Analysis with POST (M=.51, SD=.34); t(8)=

.46, p = 0.66.

45

4.3. Topic Analysis Results

As was explained in section three, the topic analysis section was created and run.

The threshold value worked in near real time, since there had to be small log of messages

in order for this algorithm to work. Once that threshold was reached the topic for the last

X messages including the last message was outputted to the user. The POST tagging was

also used here to separate out certain types of words that would not make sense as the

topic, such as symbols. The threshold value could be changed by the investigator as well.

This analysis was tested on two different logs, a public log from the #ubuntu channel on

irc.freenode.org as seen in Figure 4.1 and 4.2 and the IRC log from the hacking group

LulzSec that was put onto the internet in the summer of 2011.

Figure 4.1 – Topic Analysis on #ubuntu log, part 1

http:irc.freenode.org

46

Figure 4.2 – Topic Analysis on #ubuntu log, part 2

Over the course of time on the #ubuntu channel, after the threshold is of thirty

messages was passed, the topic was updated after each message, indicated by the blue

arrow. The POST tags were correctly most of the time on the sentence, with a few

manageable errors shown by the red arrow above. The topic analysis correctly identified

one of the topics in the above conversation, the Linux command “bash” and “ssh”, as

well as one user talking about how he is going to use it in a web applet, another topic that

appeared. Many other words and symbols appear such as the word on, run, “:”, what,

you, etc., clogging up the topic list. Here the POST tags and the stemmer don’t have

much issue with the Internet Language here. This is not the case for the other log.

The log from the LulzSec leak did not have as much success as the earlier log.

The topics were more spread out over the course of the conversation and POST tagger

47

did not work as intended, becoming confused on some of the terms commonly used on

the internet (lol, wtf, etc.) and tagging many of the words wrong. This type of error in

tagging occurred when dealing with commands that were discussed in the conversation or

the use of internet lingo and memes.

Figure 4.3 – Topic analysis on LulzSec IRC log

The topics gathered from this log were the words “I” and “wa” above as shown in

Figure 4.3. While not technically wrong since the use of the word “I” was used during

the log, this gives us no idea as to who “I” is referring to or what is the actual topic at

48

hand. "Wa" is not a word at all, but is a product of the stemmer reducing the word “was”

to “wa”. Once again, the POST tagger did not handle some of the internet lingo

correctly.

49

CHAPTER 5. DISCUSSION

5.1. Keyword Analysis

The normal keyword analysis statistically outperformed the keyword & POST

analysis in recall while there was no significant difference between the two analyses in

precision. The POST tags made the results more restrictive for that analysis and actually

kept out channels that could be searched, lowering the number of false positive results

but bringing about more false negative results. Recall stayed at 1 for the normal keyword

analysis because it always returned all relevant results to that keyword search. The

precision scores were close with both analyses with normal keyword analysis staying just

higher than keyword & POST. This is once again due to the fact of the more restrictive

search results that the keyword & POST analysis brings about.

Something to keep in mind here is that all of this analysis is just on the textual

data contained by the channel on the server. The topic may be a good indicator as to

what is going on in the channel, but users can change the topic to something more

inconspicuous. The crawler module helps to find out what exactly is going on in a

suspicious channel, but users not wanting their conversations to be found have a myriad

of options to help them stay anonymous. Operators can set passwords to their channels,

make their channels invite only, set a limit on the number of users, make the channel

50

secret or private, or all of the above if they wanted to. Other than knowing the password

to the room or obtaining server admin rights, it will be very hard to actually know what is

going on. Under the assumption that the investigator has no channel to begin an

investigation, this tool provides a basic starting area for an investigation.

5.2. Natural Language Processing Issues

There seems to be some issues regarding the internet lingo and natural language

processing. The SharpNLP library had trouble dealing with the use of internet terms,

commands, and basic internet speech. The distinction to make here is that the language

spoken on the Internet is not English, but a subset of English. The stemmer also had

issues with the Internet language reducing some words that should not have been

reduced.

The language of the Internet is a subset of English and can be difficult to

understand at times. Most written and spoken English messages follow set grammatical

rules and are comprised of full sentences (subject, verb, object), are usually comprised of

one tense (past, present, or future), and contains correct punctuation. Any message in the

Internet language is hardly ever a full sentence (lol), can combine multiple tenses into

one sentence (I can has cheeseburger), may not have any punctuation, may replace letters

with numbers or symbols (1337), or may not make any sense all. Typos run rampant and

often become a normal part of the language (teh) and acronyms run rampant. One might

say that this language is not natural at all but a twisted version of English.

51

Figure 5.1 – Example of Internet Language Issues

Figure 5.1 shows an example of this. The red arrow points to an http document

that was broken up when tokenizing the sentence, a function of the SharpNLP library

here. This should be considered as one large object, not broken up into smaller pieces.

The blue arrow shows part of the POST tags for the word “lol”. Is “lol” really being used

as a noun here? It seems to be used as a verb here. The fact that is can be questioned

means something is amiss. This type of error was not uncommon throughout this

research.

52

In order to properly understand that language of the internet, there needs to be

more work done in the linguistic patterns of the Internet language. Finding those

patterns, if they exist, could greatly affect natural language processing for the better. Any

program that uses natural language processing (web searches, keyword searches, etc.)

could benefit from this knowledge. The libraries used in this research could not handle

some of the internet language and produced errors. While some of these errors can be

handled easily, such as expanding acronyms such as “lol” out, there will still be a greater

need to expand on the language of the internet. The continued use of natural language

processing on the any textual document that contains the internet language will be needed

due to the ever changing world of the Internet and its users.

5.3. Topic Analysis

While the approach for finding the topic worked, the results were not all that

spectacular. There were two reasons for the lack of substantial results, one being the

stemmer developed and the other being the thesaurus. The stemmer did work extremely

well, but reduced some words when it should not have, i.e. happy changed to happi. The

stemmer cannot achieve perfection. While extra rules may balance it out, it still will

make errors (Porter, 2006). There are newer versions of this stemmer out now, and the

use of them may future versions on this tool better. These changes to words led to

entirely new words showing in the topic analysis.

The use of the thesaurus brought about some issues as well. While not the fault of

the actual thesaurus, the list of synonyms brought about issues when trying to determine

53

the actual topic. The POST tags were initially used to try to find in what context was the

word being used. This did not work due to the fact that the POST was having issues

dealing with Internet lingo and so many of the terms encountered did not have any

synonyms to compare with. The meanings of the word would get lost in the synonyms of

the other words and reappear in the topics as something completely different. This point

brings back the topic of the Internet Language. Most modern dictionaries do not have

any definitions, meanings, or synonyms for words that are specific to the Internet

Language. There needs to be a change way one looks at the language to include this

growing subset of English.

5.4. Implications for Investigators

The analyses used in this took should be the first step for any type of textual

analysis in dealing with internet chat networks. The automation of these keyword

searches can greatly reduce the number of man hours needed in front of a screen, leaving

time for other activities, jobs, or whatever needs to be done. These analyses can help

with the needle in a haystack problem that occurs on IRC. Only this time, we are not

searching through a haystack, it is more of a hay field.

Investigator is a board term here that is not just meant to be a law enforcement

official. This tool is not meant specifically for law enforcement, though this can be used

by law enforcement. A company trying to find new flaws or exploits can scour networks

to try to find those flaws or exploits or a normal person can use this to find a channel to

talk about their hobbies. The hardest part of using a tool like this knowing where to

54

begin searching for suspicious activity. If you know what you are interested in, the

keyword search provides a decent starting place to begin your search.

5.5. Future Work

There are many ways to take this research forward. There are a few bugs dealing

with making the whole program multi-threaded safe. Ways to improve the keyword

analysis should be sought as well. Luckily, the analysis should always provide high

precision and accuracy due to the fact that you will get every channel for your keyword

no matter what. The improvement here is to get access to even more channels. The best

way around that is to become a server admin on a server. The server admin can see

invisible users and has the ability to see secret and private channels and can add them to

the list of channels to be searched.

In dealing with the topic analysis, other types of topic analysis should be analyzed

to see if they can run in real-time or in this case as close to real time as possible. Instead

of the unsupervised classification used here, can a supervised approach be used in near-

real time using classification techniques? There are many techniques out there to use.

Algorithms such as K-Nearest Neighbor, Naïve Bayes, and Support Vector Machines

have been used for the categorizing of topics (Elnahrawy, 2002). Associative

classification can be used as well (Dong, Hui, & He, 2006).

There also needs to be a move toward a better understanding of the Internet

Language in order to keep natural language processing libraries up to date. There exist

55

other natural language processing libraries such as Princeton’s WordNet (Princeton

University) or the Natural Language Toolkit which can be tested against collections of

messages using the Internet language. The creation of a language processor for this

Internet language may be needed for future work if the other libraries cannot hold up.

The Locator module should be implemented, but only for those in a law

enforcement background. Unfortunately, the data in the locator module might not give

an investigator anything of value. The use of software such as Tor can anonymize the

information about where a user is, which is usually either their IP address or their

hostname. People also use proxies to hide where they really are as well. The

implementation of this would not hurt though due to fact that if the correct data is given

the module will get a location for a user.

These chats also contain a wealth of user information by just looking at the

interactions between users. Social networks can be inferred over multiple users as well

as show relationships between those users. The bot pieSpy developed by Paul Mutton

draws out the social relationship between users. While the average users using this tool

will not have much use for this type of additional tool, this would work well for law

enforcement.

A Graphical User Interface is the next step for this tool as well. This can be done

easily with the use of C# and the .NET language. This would negate the use of the

command channel and make it easier to send actual messages to specific channels.

56

5.6. Conclusions

IRC is not going anywhere soon and there are still a lot of users on all of those

different servers using IRC for whatever goals they have. Finding that needle in the

haystack that is an IRC can become much easier now. The reason for this research was

twofold: first, to put performance metrics on the simpler types of analyses that are

overlooked, and second, to try and reduce the number of man-hours needed in front of a

computer by the use of automation. Automation is a means to help an investigation, not

necessarily replace one.

 LIST OF REFERENCES

57

LIST OF REFERENCES

Adams, P.H., Martell, C.H. (2008). Topic Detection and Extraction in Chat. Retrieved
from http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber= 4597251&url=
http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4
597251

Anonymous Analytics. (n.d.) Anonymous Analytics. Retrieved from
http://anonanalytics.com/

Arthur, C. & Gallagher, R. (June, 2011). LulzSec IRC leak: the full record. [Web log
post]. Retrieved from http://www.guardian.co.uk/technology/2011/jun/24/
lulzsec-irc-leak-the-full-record

Bacher, A., Holz, T., Kotter, M., Wicherski, G. (August, 2008). Know your Enemy:
Tracking Botnet. Retrieved from http://www.honeynet.org/papers/bots

Basamanowicz, J., Bouchard, M. (2011). Overcoming the Warez Paradox: Online Piracy
Groups and Situational Crime Prevention. Policy & Internet: Vol.3: Iss. 2. doi:
10.2202/1944-2866.1125

Brown, D.A., (2007). Architecture for an Automated IRC Investigation Tool, Masters
Abstracts Internations. Vol.46, no. 4. 2007

Cooper, D., (2011). Live Data Analysis of Chat Rooms. Retrieved from
http://www.tdfcon.org.uk/papers/DC.pdf

Courtney, J., (September, 2011). Skype Usage InfographicL Insightful July 2011
Statistics. Retrieved from http://voiceontheweb.biz/skype-world/skype-
ecosystem/video-calling/skype-usage-infographic-insightful-july-2011-statistics/\

Dong, H., Hui, S.C., He, Y. (2006) Structural Analysis of Chat Messages for Topic
Detection. Retrieved from
http://www.cnts.ua.ac.be/~walter/educational/material/chatMsgAnalysis06.pdf

http://www.cnts.ua.ac.be/~walter/educational/material/chatMsgAnalysis06.pdf
http://voiceontheweb.biz/skype-world/skype
http://www.tdfcon.org.uk/papers/DC.pdf
http://www.honeynet.org/papers/bots
http://www.guardian.co.uk/technology/2011/jun/24
http:http://anonanalytics.com
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber

58

Eimiller, L. (September, 2011). Member of Hacking Group LulzSec Arrested for June
2011 Intrusion of Sony Pictures Computer Systems. Retrieved from
http://www.fbi.gov/losangeles/press-releases/2011/member-of-hacking-group-
lulzsec-arrested-for-june-2011-intrusion-of-sony-pictures-computer-systems

Elnahrawy, E. (2002). Log-Based Chat Room Monitoring Using Text Categorization: A
Comparative Study. Retrieved from
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0
CIcBEBYwAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdo
wnload%3Fdoi%3D10.1.1.114.2582%26rep%3Drep1%26type%3Dpdf&ei=QCR
yT6aVConh0QH35MjcAQ&usg=AFQjCNGiCimWS0iBHxhY_y7IT75Eapxrqw

Engen, V. (2000). The Great Split. Retrieved from
http://www.irc.org/history_docs/TheGreatSplit.html

Enersto. (2010). Anonymous’ Operation Payback IRC Operator Arrested. [Web log
post]. Retrieved from http://torrentfreak.com/anonymous-operation-payback-irc-
operator-arrested-101210/

Francia, R. (October, 2007). Storm Word network shrinks to about one-tenth of its
former size. Retrieved from
http://tech.blorge.com/Structure:%20/2007/10/21/2483/

Gainaru, A., Dumitrescu, S.D., Trausan-Matu, S. (July, 2010). Toolkit for automatic
analysis of chat conversations. Retrieved from
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5509066

Gelhausen, A., (2012). Internet Relay Chat. Retrieved from http://irc.netsplit.de/

Healey, J. (November, 2002). Some Web Sites are Posting a ‘Keep out’ Sign to Law
Enforcement. Retrieved from http://articles.latimes.com/2002/nov/19/business/fi-
dvd19

Houston, B., Miller, M. (2010). Beware the Darknet. Retrieved from
www.procysive.com/info_wp/Beware_the_Darknet.pdf

Kola, M.K., (2008). Botnets: Overview and Case Study. Retrieved from
https://www.mercy.edu/ias/kola.pdf

NHunspell. (2010). NHunspell. Retrieved from http://nhunspell.sourceforge.net/

Michels, M. (December, 2011). Internet Relay Chat: Do We Need To Worry About It?.
Retrieved from web.ics.purdue.edu/~michels/IRC.docx

http:http://nhunspell.sourceforge.net
https://www.mercy.edu/ias/kola.pdf
www.procysive.com/info_wp/Beware_the_Darknet.pdf
http://articles.latimes.com/2002/nov/19/business/fi
http://irc.netsplit.de
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5509066
http://tech.blorge.com/Structure:%20/2007/10/21/2483
http://torrentfreak.com/anonymous-operation-payback-irc
http://www.irc.org/history_docs/TheGreatSplit.html
http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0
http://www.fbi.gov/losangeles/press-releases/2011/member-of-hacking-group

59

Mitnick, Kevin D. (2005). The Art of Intrustion: The Real Stories Behind the Exploits of

Hackers, Intruders and Deceivers. Indianapolis, IN: Wiley Publishing.

Mutton, P. (2004). IRC Analysis. Retrieved from http://www.jibble.org/irc-analysis/

Oikarinen, J., (April, 2008). Founding IRC. Retrieved from
http://www.mirc.com/jarkko.html

Oikarinen, J., (May, 1993). Internet Relay Chat Protocol. Retrieved from http://www.rfc-
editor.org/rfc/rfc1459.txt

Porter, M.F. (1980) An Algorithm for Suffix Stripping. Retrieved from
http://tartarus.org/~martin/PorterStemmer/def.txt

Princeton University. (2010). About Wordnet. Retrieved from
http://wordnet.princeton.edu

Santorelli, S. (November, 2010). Episode 77: Dead Botnets [Video file]. Retrieved from
http://www.youtube.com/watch?v=vYTM9s15yk4

SharpNLP. (December 13, 2006). SharpNLP – open source natural language processing
tools. Retrieved from http://sharpnlp.codeplex.com/

Shurtz, J. (October, 2011). Horrifying Ways Cybercriminals Use Your Identity. [Web log
post]. Retrieved from http://identity-theft-protection-services-
review.toptenreviews.com/horrifying-ways-cybercriminals-use-your-
identity.html

Spitzer, L. (June, 2003) Know Your Enemy: Automated Credit Card Fraud. Retrieved
from http://www.honeynet.org/papers/profiles

Stanford Natural Language Processing Group. (March, 2012). Stanford Log-linear Part-
Of-Speech Tagger. Retrieved from http://nlp.stanford.edu/software/tagger.shtml.

Stenberg, D. (March, 2011). History of IRC. Retrieved from
http://daniel.haxx.se/irchistory.html

Ubuntu IRC Logs. (2012). #ubuntu.txt. Retrieved from
http://irclogs.ubuntu.com/2012/04/18/%23ubuntu.txt

United States v. Rogelio Jackett, Jr., No. 1:11-cr-00096-AJT (2011).

http://irclogs.ubuntu.com/2012/04/18/%23ubuntu.txt
http://daniel.haxx.se/irchistory.html
http://nlp.stanford.edu/software/tagger.shtml
http://www.honeynet.org/papers/profiles
http://identity-theft-protection-services
http:http://sharpnlp.codeplex.com
http://www.youtube.com/watch?v=vYTM9s15yk4
http:http://wordnet.princeton.edu
http://tartarus.org/~martin/PorterStemmer/def.txt
http://www.rfc
http://www.mirc.com/jarkko.html
http://www.jibble.org/irc-analysis

 APPENDIX

60

APPENDIX

Figure A.1 – Implementation Code

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Net.Sockets;
using System.IO;
using System.Net;
using System.Net.Mail;
using System.Threading;
using System.Windows.Forms;
using OpenNLP.Tools.Tokenize;
using OpenNLP.Tools.PosTagger;
using OpenNLP.Tools.Util;
using NHunspell;
using System.Diagnostics;

struct IRCConfig
{

public string server;
public int port;
public string nick;
public string name;
public List<IRCChannel> channels;
public List<IRCChannel> currentChannels;
public string modelPath;
public string actual_server;
public List<string> keywords;
public List<keywordPOST> keywordsPOST;
public List<message> alerts;

}

struct IRCChannel
{

public string name;
public string users;
public int numUsers;
public string topic;
public List<message> messages;

http:System.Net
http:System.IO

61

public int numberOfMessages;

public string keywordsFound;

public string currentTopics;

}

struct keywordPOST
{

public string keyword;
public List<string> tag;

}

struct message
{

public string user;
public string server;
public string channel;
public string userMessage;
public string timeFromUTC;
public int foundWith;
public string keywordsFound;

}

struct user
{

string nickname;
string username;

}

namespace ConsoleApplication1
{

class Program
{

static void Main(string[] args)
{

Console.WindowHeight = 70;

Console.WindowWidth = 100;

IRCConfig conf = new IRCConfig();

conf.name = "Insert User Name Here"; //Username

conf.nick = "Insert Nick Name Here"; //Nickname

conf.port = 6667;

conf.server = "Insert Server Name Here"; //Server to Connect To

conf.channels = new List<IRCChannel>();

conf.alerts = new List<message>();

62

string mModelPath =
System.IO.Path.GetDirectoryName(System.Reflection.Assembly.GetExecutingAssembly().GetN
ame().CodeBase);

mModelPath = new System.Uri(mModelPath).LocalPath + @"\Models\";

conf.modelPath = mModelPath;

new IRCDGT(conf);

Console.WriteLine("Finished Running");

Console.ReadLine();

}

}

class IRCDGT
{

TcpClient IRCConnection = null;

public IRCConfig config;

NetworkStream ns = null;

StreamReader sr = null;

StreamWriter sw = null;

StreamWriter writer;

EnglishMaximumEntropyTokenizer tokenizer = null;

EnglishMaximumEntropyPosTagger posTagger = null;

List<message> messages = null;

//The message threshold for topic analysis

const int MESSTHRESH = 20;

//The time until the next message digest

const int TIMEUNTILNEXTDIGEST = 15;

//The maximum number of channels to join during the channel crawling

const int CHANSTOJOIN = 3;

DateTime nextCheck = DateTime.Now.AddMinutes(TIMEUNTILNEXTDIGEST);

public string MAXCHANNEL;

/*
* Name: IRCDGT
* Description: Class that performs all work dealing with IRC Channel
*

*/

public IRCDGT(IRCConfig config)

{

config.keywords = new List<string>();

config.currentChannels = new List<IRCChannel>();

//Read in keyword list

63

Console.WriteLine("Reading keyword list\n__________");
try
{

using (StreamReader sr = new StreamReader("keywords.csv"))
{

String line = sr.ReadLine();

while ((line = sr.ReadLine()) != null)

{

string[] split = line.Split(',');

for (int i = 0; i < split.Length; i++)

{

if (!split[i].Equals(""))
{

Console.WriteLine(split[i]);

config.keywords.Add(split[i]);

}

}

}

}

}
catch (Exception e)
{

Console.WriteLine("The file could not be read:");
Console.WriteLine(e.Message);

}

//Read in keyword & POST list

Console.WriteLine("\nReading keyword&POST list\n__________");

config.keywordsPOST = new List<keywordPOST>();

try

{

keywordPOST kPOST;

using (StreamReader sr = new StreamReader("keywordsPOST.csv"))
{

String line = sr.ReadLine();

while ((line = sr.ReadLine()) != null)

{

kPOST = new keywordPOST();

kPOST.tag = new List<string>();

string[] split = line.Split(',');

for (int i = 0; i < split.Length; i++)

{

if (i == 0)
kPOST.keyword = split[i];

else

{

64

if (!split[i].Equals(""))

kPOST.tag.Add(split[i]);

}

}

Console.Write(kPOST.keyword + "\\");

foreach (string tagged in kPOST.tag)

Console.Write(tagged + " ");

Console.WriteLine();

config.keywordsPOST.Add(kPOST);

}

}

}

catch (Exception e)

{

Console.WriteLine("The file could not be read:");

Console.WriteLine(e.Message);

}

//Configure the TCP client to connect to the IRC server

this.config = config;

try

{

IRCConnection = new TcpClient(config.server, config.port);

}

catch

{

Console.WriteLine("Connection Error");

}

try
{

DateTime now = DateTime.Now;
writer = new StreamWriter(config.server + "_" + now.Day + "-" + now.Month + "-" +

now.Year + ".txt");
messages = new List<message>();
Console.WriteLine();

ns = IRCConnection.GetStream();

sr = new StreamReader(ns);

sw = new StreamWriter(ns);

sendData("USER", config.nick + " swivvet.com " + " swivvet.com" + " :" +

config.name);
sendData("NICK", config.nick);
IRCActions();

http:swivvet.com
http:swivvet.com

65

}

catch

{

Console.WriteLine("Communication error");

}

finally

{

if (sr != null)

sr.Close();

if (sw != null)

sw.Close();

if (ns != null)

ns.Close();

if (IRCConnection != null)

IRCConnection.Close();

//update all keywords
using (System.IO.StreamWriter file = new System.IO.StreamWriter("keywords.csv"))
{

file.WriteLine("Keyword updated from " + DateTime.Now);

foreach (string kword in this.config.keywords)

{

file.WriteLine(kword);

}

}

writer.Close();

}

}

/*
* Name: sendData
* Description: sends data to the IRC server

*

*/

public void sendData(string cmd, string param)
{

if (param == null)
{

sw.WriteLine(cmd);

sw.Flush();

writer.WriteLine(cmd);

Console.WriteLine(cmd);

}

else

{

66

sw.WriteLine(cmd + " " + param);

sw.Flush();

writer.WriteLine(cmd + " " + param);

Console.WriteLine(cmd + " " + param);

}

}

/*
* Name: IRCActions

* Description: recieves data from the server and performs various actions depending

* on the data.

*

*/

public void IRCActions()
{

string[] ex;

string data;

bool shouldRun = true;

bool gotchannels = true;

bool quittime = false;

tokenizer = new EnglishMaximumEntropyTokenizer(config.modelPath +

"EnglishTok.nbin");
posTagger = new EnglishMaximumEntropyPosTagger(config.modelPath +

"EnglishPOS.nbin");

while (shouldRun)
{

if (quittime == true)

{

sendData("QUIT", "LATER"); //if the command is quit, send the QUIT command to
the server with a quit message

shouldRun = false; //turn shouldRun to false - the server will stop sending us data so
trying to read it will not work and result in an error. This stops the loop from running and we will
close off the connections properly

}

else

{

data = sr.ReadLine();

char[] charSeparator = new char[] { ' ' };

ex = data.Split(charSeparator, 5);

//returns the pong command to a ping request

if (ex[0] == "PING")

{

config.actual_server = ex[1];

sendData("PONG", ex[1]);

}

67

//grabs the channel list once connected to the server, then move on to other
commands

else if (gotchannels == false)
{

gotchannels = true;

IRCChannel channel;

Stopwatch myWatch = new Stopwatch();

myWatch.Start();

sendData("LIST", null);

bool moreChannels = true;

data = sr.ReadLine();

Console.WriteLine(data);

charSeparator = new char[] { ' ' };

ex = data.Split(charSeparator, 5);

//shows all users in a channel
while (!(ex[1].Equals("319") || ex[1].Equals("321") || ex.Equals("322")))
{

data = sr.ReadLine();

Console.WriteLine(data);

charSeparator = new char[] { ' ' };

ex = data.Split(charSeparator, 5);

}

//keeps reading channel listing until finished

while (moreChannels == true)

{

data = sr.ReadLine();

//Console.WriteLine(data);

charSeparator = new char[] { ' ' };

ex = data.Split(charSeparator, 5);

channel = new IRCChannel();

channel.name = ex[3].ToLower();

channel.users = ex[4].Substring(0, ex[4].IndexOf(' ')).ToLower();

channel.topic = ex[4].Substring(ex[4].IndexOf(' ')).ToLower();

config.channels.Add(channel);

if (ex[1].Equals("323"))

{

moreChannels = false;

}

}

//topic crawl in a new thread

Thread topicCrawler = new Thread(new ThreadStart(TopicCrawl));

68

topicCrawler.Start();

myWatch.Stop();

Console.WriteLine("Elapsed Time for Getting List :" +
myWatch.Elapsed.TotalSeconds.ToString());

//join the controlling channel

sendData("JOIN", "#controller");

IRCChannel newChan = new IRCChannel();

newChan.name = "#lordsonly";

newChan.messages = new List<message>();

newChan.numberOfMessages = 0;

newChan.numUsers = 0;

config.currentChannels.Add(newChan);

}

else

{

//Check if time for next message digest

if (DateTime.Now > nextCheck)

{

Thread update = new Thread(latestAlert);

update.Start();

}

//checks for end of message of the day

if (ex[1].Equals("376"))

{

Console.WriteLine(data);

Console.WriteLine("End of Messages");

config.actual_server = ex[0];

gotchannels = false;

}

//adds user names to channel description

else if (ex[1].Equals("353"))

{

string chan = ex[4].Substring(0, ex[4].IndexOf(' '));

for (int i = 0; i < config.currentChannels.Count; i++)
{

if (chan.Equals(config.currentChannels[i].name))
{

IRCChannel replacer = config.currentChannels[i]; //change to
nick,username

replacer.users = replacer.users + ex[4].Substring(ex[4].IndexOf(' ') + 2);
string[] users = replacer.users.Split(' ');

for (int j = 0; j < users.Length; j++)

69

{

if (!users[j].Equals(' '))

replacer.numUsers++;

}

config.currentChannels.RemoveAt(i);

config.currentChannels.Insert(i, replacer);

}

}

Console.WriteLine(" USERS in channel " + chan + " : " + ex[4]);
}
else if (ex[1].Equals("372")) //Displays the server's Message of the Day
{

Console.WriteLine(data);
}
else if (ex[1] == "PART")
{

//User quit channel
}
else if (ex[1] == "QUIT")
{

//user quit server
}
else if (ex[1] == "JOIN") //user joins a channel
{

string username = ex[0].Substring(0, ex[0].IndexOf("@"));

for (int i = 0; i < config.currentChannels.Count; i++)
{

if (ex[2].Equals(config.currentChannels[i].name))

{

IRCChannel replacer = config.currentChannels[i];
replacer.users = replacer.users + username;
replacer.numUsers++;

config.currentChannels.RemoveAt(i);

config.currentChannels.Insert(i, replacer);

}

}

}
else if (ex[1] == "PRIVMSG") //Deals with any message from a user
{

Stopwatch myWatch = new Stopwatch();

myWatch.Start();

writer.WriteLine(data);

writer.Flush();

70

Console.WriteLine("\nMESSAGE RECIEVED\n__________\nUSER :" + ex[0]
+ "\nMESSAGE TYPE : " + ex[1] + "\nCHANNEL : " + ex[2]);

string[] tokens;

if (ex[3].Equals(":!join") || ex[3].Equals(":!say") || ex[3].Equals(":!quit") ||
ex[3].Equals(":!chancrawl") || ex[3].Equals(":!part")) //commands first

{

//Command messages

string command = ex[3];

switch (command)

{

case ":!part":
sendData("PART", ex[2]);
foreach (IRCChannel chan in config.currentChannels)
{

if (chan.name.Equals(ex[2]))

config.currentChannels.RemoveAt(config.currentChannels.IndexOf(chan));
}

break;
case ":!chancrawl":

channelCrawl();

break;

case ":!join":
sendData("JOIN", ex[4]);
IRCChannel newChan = new IRCChannel();
newChan.name = ex[4];
newChan.messages = new List<message>();
newChan.numberOfMessages = 0;
newChan.numUsers = 0;
config.currentChannels.Add(newChan);
break;

case ":!say":
sendData("PRIVMSG", ex[2] + " " + ex[4]);
break;

case ":!quit":

sendData("QUIT", ex[4]);

shouldRun = false;

break;

}

}

else

{

//Tokenize the message and send for analysis

String mess;

message saveMe = new message();

71

if (ex.Length < 5)
{

Console.WriteLine("MESSAGE: " + ex[3].Substring(1) + "\n");
mess = ex[3].Substring(1);
tokens = tokenizer.Tokenize(ex[3].Substring(1));

}

else

{

Console.WriteLine("MESSAGE: " + ex[3].Substring(1) + " " + ex[4] +
"\n");

mess = ex[3].Substring(1) + " " + ex[4];
tokens = tokenizer.Tokenize(ex[3].Substring(1) + " " + ex[4]);

}

//Pass 1 - Keyword Analysis

saveMe.userMessage = mess;

saveMe.foundWith = 0;

saveMe.keywordsFound = "";

bool kfound = false;

bool kPOST = false;

foreach (string keyword in config.keywords)
{

foreach (string tok in tokens)

{

if (tok.Equals(keyword))
{

if (!kfound)

{

saveMe.server = config.server;

saveMe.user = ex[0];

saveMe.channel = ex[2];

saveMe.userMessage = mess;

saveMe.timeFromUTC = DateTime.UtcNow.ToLongDateString();

saveMe.foundWith = 1;

saveMe.keywordsFound = saveMe.keywordsFound + keyword +

",";
}

}

}

}

//Pass 2 - Keyword analysis with tags

string[] tags = Analyze(tokens);

72

foreach (keywordPOST keyword in config.keywordsPOST)
{

foreach (string tagged in keyword.tag)
{

for (int i = 0; i < tokens.Length; i++)
{

if (tokens[i].Equals(keyword.keyword) && tagged.Contains(tags[i]))
{

if (!kPOST)
{

saveMe.server = config.server;
saveMe.user = ex[0];
saveMe.channel = ex[2];
saveMe.userMessage = mess;
saveMe.timeFromUTC =

DateTime.UtcNow.ToLongDateString();
saveMe.foundWith = 2;
saveMe.keywordsFound = saveMe.keywordsFound +

keyword.keyword + "\\" + tagged + ",";
}

}
}

}
}

if (saveMe.foundWith != 0)

{

config.alerts.Add(saveMe);

}

//Pass 3 - Dynamic Topic Analysis

for (int i = 0; i < config.currentChannels.Count; i++)
{

if (ex[2].Equals(config.currentChannels[i].name))
{

if (config.currentChannels[i].messages.Count > MESSTHRESH)
{

config.currentChannels[i].messages.RemoveAt(0);
config.currentChannels[i].messages.Add(saveMe);

}

else

{

IRCChannel replacer = config.currentChannels[i];
replacer.messages.Add(saveMe);
replacer.numberOfMessages++;

config.currentChannels.RemoveAt(i);

73

config.currentChannels.Insert(i, replacer);
}

}
}

for (int i = 0; i < config.currentChannels.Count; i++)
{

if (config.currentChannels[i].messages.Count >= MESSTHRESH)
{

Thread topic = new Thread(topicAnalysis);
topic.Start();

}
}

}

myWatch.Stop();

Console.WriteLine("Elapsed Time for Single Message: " +

myWatch.Elapsed.TotalSeconds.ToString() + "\n");
}
else
{

DateTime now = DateTime.UtcNow;
Console.Write(now + ": " + data);
Console.WriteLine();

}

}

}

}

}

/*
* Name: Analyze
* Description: Analyze a message for its POS tags

*

*/

public string[] Analyze(string [] mess)

{

string[] tags = posTagger.Tag(mess);

Console.WriteLine("POS Tagging\n----------");

for (int l = 0; l < mess.Length; l++)

{

Console.Write(mess[l] + "\\" + tags[l] + " ");

}

Console.WriteLine();

74

return tags;

}

/*
* Name: mVal
* Description: computes the m-value of a word. Used in stemming

*

*/

public int mVal(string word)

{

bool cons = false;

bool vowel = false;

int m = 0;

for (int i = 0; i < word.Length; i++)
{

if (i == 0)

{

if (word[i].Equals('a') || word[i].Equals('e') || word[i].Equals('i') || word[i].Equals('o') ||
word[i].Equals('u'))

vowel = true;
else

cons = true;

}

else

{

if (word[i].Equals('a') || word[i].Equals('e') || word[i].Equals('i') || word[i].Equals('o') ||
word[i].Equals('u'))

{

vowel = true;

cons = false;

}

else if (vowel == true && cons == false)

{

cons = true;

vowel = false;

m++;

}

else

{

cons = true;

vowel = false;

}

}

}

return m;
}

75

/*
* Name: stemmer
* Description: Stems a given word to its root form

*

*/

public string stemmer(string _word)

{

string word = _word;

int m = 0;

m = mVal(word);

//Step 1a

if (word.EndsWith("sses"))

word = word.Replace("sses", "ss");

else if (word.EndsWith("ies"))

word = word.Replace("ies", "i");

else if (word.EndsWith("ss"))

word = word.Replace("ss", "ss");

else if (word.EndsWith("s"))

word = word.Replace("s", "");

//Step 1b
string stem;
bool secondStep = false;
if (m > 0)
{

if (word.EndsWith("eed"))
word = word.Replace("eed", "ee");

}

if (word.EndsWith("ed"))
{

stem = word.Replace("ed", "");
if (stem.Contains('a') || stem.Contains('e') || stem.Contains('i') || stem.Contains('o') ||

stem.Contains('u'))
{

word = word.Replace("ed", "");
secondStep = true;

}
}
else if (word.EndsWith("ing"))
{

stem = word.Replace("ing", "");
if (stem.Contains('a') || stem.Contains('e') || stem.Contains('i') || stem.Contains('o') ||

stem.Contains('u'))
{

word = word.Replace("ing", "");
secondStep = true;

76

}

}

if (secondStep)
{

m = mVal(word);

if (word.EndsWith("at"))
word = word.Replace("at", "ate");

else if (word.EndsWith("bl"))
word = word.Replace("bl", "ble");

else if (word.EndsWith("iz"))
word = word.Replace("iz", "ize");

else if (word[word.Length - 1].Equals(word[word.Length - 2]))
{

if (!(word[word.Length - 1].Equals('s') || word[word.Length - 1].Equals('l') ||
word[word.Length - 1].Equals('z')))

word = word.Substring(0, word.Length - 1);
}
else if (m == 1)
{

if (word.Length >= 3)
{

if (!(word[word.Length - 3].Equals('a') || word[word.Length - 3].Equals('e') ||
word[word.Length - 3].Equals('i') || word[word.Length - 3].Equals('o') || word[word.Length -
3].Equals('u')))

{
if (word[word.Length - 2].Equals('a') || word[word.Length - 2].Equals('e') ||

word[word.Length - 2].Equals('i') || word[word.Length - 2].Equals('o') || word[word.Length -
2].Equals('u'))

{
if (!(word[word.Length - 1].Equals('a') || word[word.Length - 1].Equals('e') ||

word[word.Length - 1].Equals('i') || word[word.Length - 1].Equals('o') || word[word.Length -
1].Equals('u')))

{
if (!(word[word.Length - 1].Equals('w') || word[word.Length -

1].Equals('x') || word[word.Length - 1].Equals('y')))
{

word = word + 'e';
}

}
}

}
}

}
}

//Step 1c

77

if (word.EndsWith("y"))
{

stem = word.Replace("y", "");
if (stem.Contains('a') || stem.Contains('e') || stem.Contains('i') || stem.Contains('o') ||

stem.Contains('u'))
{

word = word.Replace("y", "i");
}

}

//step 2
m = mVal(word);
if (m > 0)
{

if (word.EndsWith("ational"))
word = word.Replace("ational", "ate");

else if (word.EndsWith("logi"))
word = word.Replace("logi", "log");

else if (word.EndsWith("tional"))
word = word.Replace("tional", "tion");

else if (word.EndsWith("enci"))
word = word.Replace("enci", "ence");

else if (word.EndsWith("anci"))
word = word.Replace("anci", "ance");

else if (word.EndsWith("izer"))
word = word.Replace("izer", "ize");

else if (word.EndsWith("bli"))
word = word.Replace("bli", "ble");

else if (word.EndsWith("alli"))
word = word.Replace("alli", "al");

else if (word.EndsWith("entli"))
word = word.Replace("entli", "ent");

else if (word.EndsWith("eli"))
word = word.Replace("eli", "e");

else if (word.EndsWith("ousli"))
word = word.Replace("ousli", "ous");

else if (word.EndsWith("ization"))
word = word.Replace("ization", "ize");

else if (word.EndsWith("ation"))
word = word.Replace("ation", "ate");

else if (word.EndsWith("ator"))
word = word.Replace("ator", "ate");

else if (word.EndsWith("alism"))
word = word.Replace("alism", "al");

else if (word.EndsWith("iveness"))
word = word.Replace("iveness", "ive");

else if (word.EndsWith("fulness"))
word = word.Replace("fulness", "ful");

else if (word.EndsWith("ousness"))

78

word = word.Replace("ousness", "ous");
else if (word.EndsWith("aliti"))

word = word.Replace("aliti", "al");
else if (word.EndsWith("iviti"))

word = word.Replace("iviti", "ive");
else if (word.EndsWith("biliti"))

word = word.Replace("biliti", "ble");
}

//step 3
m = mVal(word);

if (m > 0)
{

if (word.EndsWith("icate"))
word = word.Replace("icate", "ic");

else if (word.EndsWith("ative"))
word = word.Replace("ative", "");

else if (word.EndsWith("alize"))
word = word.Replace("alize", "al");

else if (word.EndsWith("iciti"))
word = word.Replace("iciti", "ic");

else if (word.EndsWith("ical"))
word = word.Replace("ical", "ic");

else if (word.EndsWith("ful"))
word = word.Replace("ful", "");

else if (word.EndsWith("ness"))
word = word.Replace("ness", "");

}

//step 4

m = mVal(word);

if (m > 1)
{

if (word.EndsWith("al"))
word = word.Replace("al", "");

else if (word.EndsWith("ance"))
word = word.Replace("ance", "");

else if (word.EndsWith("ence"))
word = word.Replace("ence", "");

else if (word.EndsWith("er"))
word = word.Replace("er", "");

else if (word.EndsWith("ic"))
word = word.Replace("ic", "");

else if (word.EndsWith("able"))
word = word.Replace("able", "");

else if (word.EndsWith("ement"))

79

word = word.Replace("ement", "");

else if (word.EndsWith("ment"))

word = word.Replace("ment", "");

else if (word.EndsWith("ent"))

word = word.Replace("ent", "");

else if (word.EndsWith("sion"))

word = word.Replace("sion", "");

else if (word.EndsWith("tion"))

word = word.Replace("tion", "");

else if (word.EndsWith("ou"))

word = word.Replace("ou", "");

else if (word.EndsWith("ism"))

word = word.Replace("ism", "");

else if (word.EndsWith("ate"))

word = word.Replace("ate", "");

else if (word.EndsWith("iti"))

word = word.Replace("iti", "");

else if (word.EndsWith("ous"))

word = word.Replace("ous", "");

else if (word.EndsWith("tion"))

word = word.Replace("ive", "");

else if (word.EndsWith("ive"))

word = word.Replace("ou", "");

}

//Step 5a skipping

//Step 5b

m = mVal(word);

if (m > 1)
{

if (word[word.Length - 1].Equals(word[word.Length - 2]))
{

if (!word[word.Length - 1].Equals('l'))

word = word.Substring(0, word.Length - 1);

}

}

return word;
}

/*
* Name: TopicCrawl
* Description: performs keyword and keyword & POST analysis on
* the channel list retrieved earlier.

*

*/

public void TopicCrawl()

80

{

List<IRCChannel> suspectChannels = new List<IRCChannel>();
List<IRCChannel> suspectChannelsPOST = new List<IRCChannel>();

int numberofChannels = 0;

int numberofPOSTChannels = 0;

string[] tokens;

string[] tags;

bool found = false;

IRCChannel suspectChannel;

Stopwatch myWatch = new Stopwatch();

myWatch.Start();

//Pass 1 - Keyword Analysis

for (int i = 0; i < config.channels.Count; i++)

{

found = false;

suspectChannel = config.channels[i];

for (int j = 0; j < config.keywords.Count; j++)
{

if (config.channels[i].topic.Contains(config.keywords[j]))
{

found = true;
suspectChannel.keywordsFound = suspectChannel.keywordsFound + "," +

config.keywords[j];
}

}

if (found)
{

suspectChannels.Add(suspectChannel);

numberofChannels++;

}

}

//Pass 2 - Keyword w/ POST

for (int i = 0; i < config.channels.Count; i++)

{

tokens = tokenizer.Tokenize(config.channels[i].topic); //tokenize
tags = posTagger.Tag(tokens); //tag

foreach (keywordPOST keyword in config.keywordsPOST)
{

found = false;

suspectChannel = config.channels[i];

81

foreach (string tagged in keyword.tag)
{

for (int j = 0; j < tokens.Length; j++)
{

if (tokens[j].Equals(keyword.keyword) && tagged.Contains(tags[j]))
{

if (!found)
{

found = true;
suspectChannel.keywordsFound = suspectChannel.keywordsFound + " " +

keyword.keyword + "\\" + tags[j];
}

}
}

if (found)
{

suspectChannelsPOST.Add(suspectChannel);
numberofPOSTChannels++;

}
}

}
}
myWatch.Stop();

Console.WriteLine("Elapsed Time for topic crawling : " +
myWatch.Elapsed.TotalSeconds.ToString());

MessageBox.Show("Keyword Analysis on Topic Description\r\nFound " +
numberofChannels.ToString() + " channels with keywords in it out of " + config.channels.Count
+

"\r\n\r\nKeyword Analysis w/ POST on Topic Description\r\nFound " +
numberofPOSTChannels.ToString() + " channels with keywords in it out of " +
config.channels.Count);

//Output text to file

using (System.IO.StreamWriter file = new System.IO.StreamWriter(config.server +
"_topicCrawlerAnalysis_" + DateTime.Today.Day + "_" + DateTime.Today.Month + "_" +
DateTime.Now.Year + ".csv"))

{
file.WriteLine("Channel Name,, Keyword(s), Topic");

foreach (IRCChannel chan in suspectChannels)
{

file.WriteLine(chan.name + "," + chan.keywordsFound + "," + chan.topic);
}

}

82

using (System.IO.StreamWriter file = new System.IO.StreamWriter(config.server +
"_topicCrawlerAnalysisPOST_" + DateTime.Today.Day + "_" + DateTime.Today.Month + "_" +
DateTime.Now.Year + ".csv"))

{

file.WriteLine("Channel Name,, Keyword(s), Topic");

foreach (IRCChannel chan in suspectChannelsPOST)
{

file.WriteLine(chan.name + ",," + chan.keywordsFound + "," + chan.topic);
}

}

Console.WriteLine("CHECKED!");

}

/*
* Name: pingpong
* Description: automatically sends the PONG command every minute

*

*/

public void pingpong()

{

while (true)
{

sendData("PONG", config.actual_server);

Thread.Sleep(60000);

}

}

/*
* Name: latestalert
* Description: sends a message digest of all suspicious messages

*

*/

public void latestAlert()

{

Console.WriteLine("MESSAGE DIGEST INCOMING");

var fromAddress = new MailAddress("insert_from_email_address@here.com",
"investigator");

var toAddress = new MailAddress("insert_to_email_address@here.com", "investigator");
const string fromPassword = "insert password here";
const string subject = "Message Digest";

string body = "";

if (config.alerts.Count != 0)

{

mailto:MailAddress("insert_to_email_address@here.com
mailto:MailAddress("insert_from_email_address@here.com

83

foreach (message mess in config.alerts)

{

body = body + "\r\n\nUser: " + mess.user + "\r\nServer: " + mess.server +
"\r\nChannel: " + mess.channel + "\r\nMessage: " + mess.userMessage +

"\r\nTime: " + mess.timeFromUTC;
}

}

else

{

body = body + "No alerts at this present time\n";

}

body = body + "\n\nCurrent Topics:\r\n";

foreach (IRCChannel chan in config.currentChannels)

{

body = body + "\r\n" + chan.currentTopics;

}

var smtp = new SmtpClient
{

Host = "smtp.gmail.com", //change if not using gmail
Port = 587,
EnableSsl = true,
DeliveryMethod = SmtpDeliveryMethod.Network,
UseDefaultCredentials = false,
Credentials = new NetworkCredential(fromAddress.Address, fromPassword)

};

using (var message = new MailMessage(fromAddress, toAddress)
{

Subject = subject,

Body = body

})

{

smtp.Send(message);

}

nextCheck = DateTime.Now.AddMinutes(TIMEUNTILNEXTDIGEST);
Console.WriteLine("DONE");

}

/*
* Name: topicAnalysis
* Description: performs topicAnalysis outside of normal chatting. Used
* in channel crawling

*

*/

http:smtp.gmail.com

84

public void topicAnalysis()

{

MyThes thesaurus = new MyThes("th_en_us_new.dat");

List<string> words = new List<string>();

List<int> freq = new List<int>();

bool nextWord = false;

try

{

foreach (IRCChannel chan in config.currentChannels)
{

if (chan.messages.Count >= MESSTHRESH)

{

foreach (message mess in chan.messages)
{

string[] tokens = tokenizer.Tokenize(mess.userMessage);
string[] tags = posTagger.Tag(tokens);

for (int i = 0; i < tokens.Length; i++)

{

int index = i;

if (!(tags[i].Contains("CD") || tags[i].Contains('.') || tags[i].Contains("DT") ||
tags[i].Contains("DT") || tags[i].Contains("LS") || tags[i].Contains("MD") || tags[i].Contains(
"SYM") || tags[i].Contains("TO") || tags[i].Contains("UH")))

{

if (words.Contains(tokens[i]))

{

index = words.IndexOf(tokens[i]);
freq[index] = freq[index] + 1;

}
else
{

if (tokens[i].Length != 1 || tokens[i].Length != 2)
{

words.Add(tokens[i]);
freq.Add(1);

}

}

}

}

}//end foreach

//get rid of anything under a low frequency - 10th of threshold
for (int i = 0; i < freq.Count; i++)

85

{

if (freq[i] <= (MESSTHRESH / 10))

{

freq.RemoveAt(i);

words.RemoveAt(i);

i--;

}

if (freq[i] >= (MESSTHRESH * .25))

{

//prompt for addition to keyword list

}

}

//These next steps repeat until no synonyms can be found

//stem + synonyms

for (int i = 0; i < words.Count; i++)

{

words[i] = stemmer(words[i]);

}

//look up synonyms

ThesResult tr;

List<string> firstWordMean;

List<string> secWordMean;

bool noSynonyms = false;

while (!noSynonyms)
{

noSynonyms = true;

for (int i = 0; i < words.Count; i++)

{

for (int j = i + 1; j < words.Count; j++)
{

tr = thesaurus.Lookup(words[i]);
firstWordMean = new List<string>();

if (tr == null)
{

//nothing in the thesaurus, keep checking other words for possible match
on basic word

}
else
{

//collect all meanings and synonyms

foreach (ThesMeaning mean in tr.Meanings)
{

86

foreach (string syn in mean.Synonyms)
{

if (!syn.Contains(' '))
firstWordMean.Add(syn.ToLower());

}
}

secWordMean = new List<string>();

tr = thesaurus.Lookup(words[j]);

if (tr == null)

{

//nothing in the thesaurus, keep checking other words for possible
match on basic word

}
else
{

foreach (ThesMeaning mean in tr.Meanings)
{

foreach (string syn in mean.Synonyms)
{

if (!syn.Contains(' '))
secWordMean.Add(syn.ToLower());

}
}

}

//compare words

nextWord = false;

foreach (string secWord in secWordMean) //checking if basic word is in
synonym or meaning list

{
if (words[i].Equals(secWord) && !nextWord)
{

//successful match of first word to either meaning or syn of second
word

words[i] = secWord;

freq[i] = freq[i] + freq[j];

words.RemoveAt(j);

freq.RemoveAt(j);

j--;

//Console.WriteLine("Successful Synonym Match 1: " + words[i] +
" " + words[j] + " from " + secWord);

nextWord = true;

87

noSynonyms = false;
}

}

foreach (string firWord in firstWordMean)
{

if (words[j].Equals(firWord) && !nextWord)
{

//successful match of second wordd to either meaning or syn of first
word

words[i] = firWord;

freq[i] = freq[i] + freq[j];

words.RemoveAt(j);

freq.RemoveAt(j);

j--;

//Console.WriteLine("Successful Synonym Match 2: " + words[i] +

" " + words[j] + " from " + firWord);

nextWord = true;
noSynonyms = false;

}

}

foreach (string firWord in firstWordMean)
{

foreach (string secWord in secWordMean)
{

if (firWord.Equals(secWord) && !nextWord)
{

//successful match of one of the first words meanings or
synonyms to either the meaning or syn of second word

words[i] = secWord;

freq[i] = freq[i] + freq[j];

words.RemoveAt(j);

freq.RemoveAt(j);

j--;

//Console.WriteLine("Successful Synonym Match 3: " + words[i]

+ " " + words[j] + " from " + firWord + " to " + secWord);

nextWord = true;
noSynonyms = false;

}

}

}

}

}

}

88

}

Console.WriteLine("Current Topic(s): ");

writer.Write("Current Topic(s): ");

IRCChannel chan2 = chan;

chan2.currentTopics = "";

for (int i = 0; i < words.Count; i++)
{

Console.Write(words[i] + "\\" + freq[i] + ", ");
writer.Write(words[i] + "\\" + freq[i] + ", ");
chan2.currentTopics = chan2.currentTopics + words[i] + "\\" + freq[i] + ", ";

}

int replace = config.currentChannels.IndexOf(chan);

config.currentChannels.RemoveAt(replace);

config.currentChannels.Insert(replace, chan2);

Console.WriteLine();

writer.WriteLine();

//if no synonyms found the noMore = true;

}
}

}

catch (Exception e)

{

}
}

/*
* Name: listenForData
* Description: Listens to the server for all data from the server. Used
* in channel crawling
*
*/
public void listenForData()
{

while (true)
{

string data = sr.ReadLine();

char[] charSeparator = new char[] { ' ' };

string[] ex = data.Split(charSeparator, 5);

String mess = "";

String[] tokens = null;

89

message saveMe = new message();

if (ex.Length == 3 || ex[1].Equals("353") || ex[1].Equals("366"))

{

Console.WriteLine(data);

}

else if (ex[1].Equals("475"))

{

Console.WriteLine("Channel password protected, skipping");

}

else

{

Console.WriteLine("\nMESSAGE RECIEVED\n__________\nUSER :" + ex[0] +
"\nMESSAGE TYPE : " + ex[1] + "\nCHANNEL : " + ex[2]);

if (ex.Length < 5)
{

//Console.WriteLine("MESSAGE: " + ex[3].Substring(1) + "\n");

mess = ex[3].Substring(1);

tokens = tokenizer.Tokenize(ex[3].Substring(1));

}

else

{

// Console.WriteLine("MESSAGE: " + ex[3].Substring(1) + " " + ex[4] + "\n");

mess = ex[3].Substring(1) + " " + ex[4];

tokens = tokenizer.Tokenize(ex[3].Substring(1) + " " + ex[4]);

}

//Pass 1 - Keyword Analysis

saveMe.userMessage = mess;

saveMe.foundWith = 0;

bool kfound = false;

bool kPOST = false;

foreach (string keyword in config.keywords)
{

foreach (string tok in tokens)

{

if (tok.Equals(keyword))
{

if (!kfound)

{

saveMe.server = config.server;

saveMe.user = ex[0];

saveMe.channel = ex[2];

saveMe.userMessage = mess;

saveMe.timeFromUTC = DateTime.UtcNow.ToLongDateString();

90

saveMe.foundWith = 1;

}

}

}

}

//Pass 2 - Keyword analysis with tags

string[] tags = Analyze(tokens);

foreach (keywordPOST keyword in config.keywordsPOST)
{

foreach (string tagged in keyword.tag)

{

for (int i = 0; i < tokens.Length; i++)
{

if (tokens[i].Equals(keyword.keyword) && tagged.Contains(tags[i]))
{

if (!kPOST)
{

saveMe.server = config.server;
saveMe.user = ex[0];
saveMe.channel = ex[2];
saveMe.userMessage = mess;
saveMe.timeFromUTC = DateTime.UtcNow.ToLongDateString();
saveMe.foundWith = 2;

}

}

}

}

}

for (int i = 0; i < config.currentChannels.Count; i++)
{

if (ex[2].Equals(config.currentChannels[i].name))

{

IRCChannel replacer = config.currentChannels[i];
replacer.messages.Add(saveMe);
replacer.numberOfMessages++;

config.currentChannels.RemoveAt(i);
config.currentChannels.Insert(i, replacer);

}
}

}
}

}

91

/*
* Name: channelCrawl
* Description: Listens to the server for all data from the server. Used
* in channel crawling
*
*/
public void channelCrawl()
{

string data;

Thread pp = new Thread(pingpong);

pp.Start();

Thread listen = new Thread(listenForData);

listen.Start();

using (System.IO.StreamReader file = new System.IO.StreamReader("channellist.csv"))
{

data = file.ReadLine();

while (!file.EndOfStream)
{

string[] channelName = new string[CHANSTOJOIN];

for (int i = 0; (i < CHANSTOJOIN) && (!file.EndOfStream); i++)

{

data = file.ReadLine();

channelName[i] = data.Substring(0, data.IndexOf(','));

sendData("JOIN", channelName[i]);

IRCChannel newChan = new IRCChannel();

newChan.name = channelName[i]; ;

newChan.messages = new List<message>();

newChan.numberOfMessages = 0;

newChan.numUsers = 0;

config.currentChannels.Add(newChan);

Thread.Sleep(2000);

}

DateTime end = DateTime.Now.AddMinutes(1);

while (DateTime.Now < end)

{

}

for (int i = 0; i < CHANSTOJOIN; i++)

{

if (channelName[i] != null || channelName[i] != "")

sendData("PART", channelName[i]);

}

}

92

}

listen.Abort();

pp.Abort();

Thread analysis = new Thread(CrawlerAnalysis);

analysis.Start();

}

/*
* Name: CrawlerAnalysis
* Description: Performs the analysis on all of the channels observed.

*

*/

public void CrawlerAnalysis()

{

List<IRCChannel> chans = config.currentChannels;

MyThes thesaurus = new MyThes("th_en_us_new.dat");

List<string> words;

List<int> freq;

string report = "";

bool nextWord = false;

StreamWriter writer = new StreamWriter("channelCralwerAnalysis" +

DateTime.Today.DayOfYear + ".txt");

foreach (IRCChannel chan in chans)
{

words = new List<string>();

freq = new List<int>();

writer.WriteLine("-----------\r\nAnalysis of Channel " + chan.name);

writer.WriteLine("Messages: " + chan.messages.Count);

foreach (message mess in chan.messages)
{

if (mess.foundWith > 0)

{

writer.WriteLine("User: " + mess.user + "\r\nServer: " + mess.server +
"\r\nChannel: " + mess.channel);

writer.WriteLine("Message: " + mess.userMessage + "\r\nKeywords found: " +
mess.keywordsFound + "\r\nTime: " + mess.timeFromUTC);

}

string[] tokens = tokenizer.Tokenize(mess.userMessage);
string[] tags = posTagger.Tag(tokens);

for (int i = 0; i < tokens.Length; i++)

{

int index = i;

93

if (tags[i].Contains("NN") || tags[i].Contains("VB"))
{

if (words.Contains(tokens[i]))

{

index = words.IndexOf(tokens[i]);
freq[index] = freq[index] + 1;

}

else

{

if (tokens[i].Length != 1)
{

words.Add(tokens[i]);

freq.Add(1);

}
}

}
}

}

writer.WriteLine("\r\n\r\nTopic Analysis for " + chan.name);

//get rid of anything under certain frequency
for (int i = 0; i < freq.Count; i++)
{

if (freq[i] <= (MESSTHRESH / 10))
{

freq.RemoveAt(i);

words.RemoveAt(i);

i--;

}
}

//These next steps repeat until no synonyms can be found

//stem + synonyms
for (int i = 0; i < words.Count; i++)
{

words[i] = stemmer(words[i]);
}

//look up synonyms

ThesResult tr;

List<string> firstWordMean;

List<string> secWordMean;

for (int i = 0; i < words.Count; i++)

{

for (int j = i + 1; j < words.Count; j++)
{

94

tr = thesaurus.Lookup(words[i]);

firstWordMean = new List<string>();

if (tr == null)
{

//nothing in the thesaurus, keep checking other words for possible match on
basic word

}
else
{

//collect all meanings and synonyms

foreach (ThesMeaning mean in tr.Meanings)
{

foreach (string syn in mean.Synonyms)

{

if (!syn.Contains(' '))
firstWordMean.Add(syn.ToLower());

}
}

secWordMean = new List<string>();

tr = thesaurus.Lookup(words[j]);

if (tr == null)

{

//nothing in the thesaurus, keep checking other words for possible match on
basic word

}
else
{

foreach (ThesMeaning mean in tr.Meanings)
{

foreach (string syn in mean.Synonyms)
{

if (!syn.Contains(' '))
secWordMean.Add(syn.ToLower());

}
}

}

//compare words

nextWord = false;

foreach (string secWord in secWordMean) //checking if basic word is in
synonym or meaning list

{

95

if (words[i].Equals(secWord) && !nextWord)
{

//successful match of first word to either meaning or syn of second word

words[i] = secWord;

freq[i] = freq[i] + freq[j];

words.RemoveAt(j);

freq.RemoveAt(j);

j--;

//Console.WriteLine("Successful Synonym Match 1: " + words[i] + " " +
words[j] + " from " + secWord);

nextWord = true;
}

}

foreach (string firWord in firstWordMean)
{

if (words[j].Equals(firWord) && !nextWord)
{

//successful match of second wordd to either meaning or syn of first word

words[i] = firWord;

freq[i] = freq[i] + freq[j];

words.RemoveAt(j);

freq.RemoveAt(j);

j--;

//Console.WriteLine("Successful Synonym Match 2: " + words[i] + " " +
words[j] + " from " + firWord);

nextWord = true;
}

}

foreach (string firWord in firstWordMean)
{

foreach (string secWord in secWordMean)
{

if (firWord.Equals(secWord) && !nextWord)
{

//successful match of one of the first words meanings or synonyms to
either the meaning or syn of second word

words[i] = secWord;

freq[i] = freq[i] + freq[j];

words.RemoveAt(j);

freq.RemoveAt(j);

j--;

96

//Console.WriteLine("Successful Synonym Match 3: " + words[i] + " " +
words[j] + " from " + firWord + " to " + secWord);

nextWord = true;

}

}

}

}

}

}

//report on crawling results

for (int i = 0; i < words.Count; i++)

{

writer.Write(words[i] + "\\" + freq[i] + ", ");

}

writer.WriteLine("\r\n\r\n");

}

writer.Close();

Console.WriteLine("Cralwer has finished. Resuming normal logging");
}

}
}

	marvinforms.pdf
	ETDForm9
	GSForm20

