
CERIAS Tech Report 2011-26
Accommodative Mandatory Access Control

 by Jacques Daniel Thomas
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

 	

�-� 0�/!���$++(������+-)���
��!1%.! �� �� �� � � � ���

��������	����	���
��������������
�

�������������������������������

�$%.�%.�/+��!-/%"4�/$�/�/$!�/$!.%.� %..!-/�/%+*�,-!,�-! �

���$(�& 	�!��� ��" �& �4��

�*/%/(!
���" "��'�)� ��!��'"%* ����&& �"!'%"�

	"�'"% "� ����"&"#�* �+-�/$!� !#-!!�+"���

�.��,,-+1! ��4�/$!�"%*�(�!3�)%*%*#��+))%//!!��

�%"�� ��! ��'�� � � � � � � �
���$�%-�

�%"��
(��!� �#���"%� � � � � � � �

�%"�� ��'%��� (�&'�% � � � � � � �

�%"�� ��!��(�
� � � � � � � �

�+�/$!��!./�+"�)4�'*+2(! #!��* ��.�0* !-./++ ��4�/$!�./0 !*/�%*�/$!�����
����
 ���������
���
���������������
������	�
��
��������������������/$%.�/$!.%.� %..!-/�/%+*�� $!-!.�/+�/$!�,-+1%.%+*.�+"�
�0- 0!��*%1!-.%/47.�5�+(%�4�+*��*/!#-%/4�%*��!.!�-�$6��* �/$!�0.!�+"��+,4-%#$/! �)�/!-%�(���

� � � � � �
�%"�� ��! ��'��
,,-+1! ��4���&+-��-+"!..+-�.���������������������������������������

���

�%"�� �(!�� �%������% � 	%� ������ �� �"% �! ����������
,,-+1! ��4��� �
� � � � � �!� �+"�/$!��-� 0�/!��-+#-�)� � � � � ��/!�

Choose your degree

Graduate School Form 20
(Revised 9/10)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:
Accommodative Mandatory Access Control

For the degree of Doctor of Philosophy

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the
United States’ copyright law and that I have received written permission from the copyright owners for
my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless
Purdue University from any and all claims that may be asserted or that may arise from any copyright
violation.

Jacques Daniel Thomas
Printed Name and Signature of Candidate

12/05/2011
Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

ACCOMMODATIVE MANDATORY ACCESS CONTROL

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Jacques D. Thomas

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2011

Purdue University

West Lafayette, Indiana

 UMI Number: 3506071
#

All rights reserved
#

INFORMATION TO ALL USERS
#
The quality of this reproduction is dependent on the quality of the copy submitted.
#

In the unlikely event that the author did not send a complete manuscript
#
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.
#

UMI 3506071
Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
#
789 East Eisenhower Parkway
#

P.O. Box 1346
#
Ann Arbor, MI 48106 - 1346
#

ii

To Suzanne, Alice, Robert, and Daniel.

iii

ACKNOWLEDGMENTS

Several researchers have had a distinct influence on my work, through the ex­

changes I have had with them. I am thankful for these exchanges that have helped

me develop the ideas presented in this manuscript. Prof. Trent Jaeger kindly discour­

aged me from attempting a thesis on separation of duty when I was searching in that

direction; later, he provided me with useful references on operating system security.

These references, his book on operating system security [1], and his encouragements,

have helped me assess the place where my work fits in the field. With Pascal Meunier,

I had fruitful exchanges on the limits of administrative models and practical security

primitives in the context of the ReAssure project at CERIAS. These conversations

with Pascal help me stay motivated, and his questions on the usability of the admin­

istrative model I was designing stirred me in the direction of providing templates to

factor the administrative policies. Ed Finkler, Nick Hirshberg, Pascal Meunier, Steve

Plite, and Dan Trinkle have helped me refine the practical examples, based on their

experience in administering multi-tenants systems. Prof. Mikhail Atallah has helped

me with the computational geometry aspect of this work. I am thankful to Prof. Matt

Bishop for his encouragements and his coverage of access control models in his book

on computer security [2]. It is during Prof. Ninghui Li’s research seminar on access

control that I got started working on SELinux and Type Enforcement. The title of

this dissertation was found while brainstorming with Prof. Patrick Eugster. Last but

not least, Prof. Vitek has always been supportive of this endeavour, from my initial

application to Purdue, to the completion of this manuscript. I am dearly thankful

to him for his support over the years as a person, colleague, mentor, and academic

advisor.

As a teaching assistant for operating system classes, I relied heavily on the support

from the technical staff of the computer science department. I owe many thanks

iv

to the members of the technical staff for all the system troubleshooting on which

they have helped me over the years, as lab assignments would stop working from

one semester to the next after seemingly innocuous system updates. I have fond

memories of troubleshooting the system updates with Steve Plite, Dan Trinkle, and

Prof. Gustavo Rodriguez-Rivera, as well as fond memories of keeping the old Xinu

Lab on life support with Mike Motuliak, Brian Board, and Ron Castongia.

Within the Computer Science department, I enjoyed my interactions with –and

learned a lot from– S3 Lab colleagues, CERIAS colleagues, the System Lab hackers

(I miss the Mad Pizza lunches), Dr Gorman and the late Amy Ingram, and all the

students and professors that I worked with as a TA.

Many persons contributed over the years to make my stay in Lafayette an en­

joyable experience. I am thankful to all of them, including Angelo and Christina

from La Village Food Mart, Dorothée Bouquet, Edie Cassell, and Nick Hirshberg.

The following student associations have also been an important part of my social life:

Friends of Europe, the Purdue Beat Society, and the Purdue Fencing Club.

Finally, I want to acknowledge the following people that were important along the

long path that leads to eventually graduating with a PhD: Guy Batmale, Patrick

Bolton, Bill Cheswick, Julien Fourcade, Claude Gicquet, Jean-Alain Godet, Do­

minique Guérillot, Florent Gusdorf, Bruno Kerouanton, François Muller, Alan Rob­

bins, Vanessa Ruat, Christophe Schuhmann, Elvire Serres, and Haruko Takeuchi.

And, of course, I am extremely grateful to my family for their support and en­

couragements all along, even when this path lead me to the other side of the Atlantic.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . ix

ABSTRACT . xii

1. INTRODUCTION . 1

1.1 State of the Art . 4

1.2 Accommodative Mandatory Access Control 10

1.3 Thesis Statement . 11

1.4 Approach and Contributions . 11

1.5 Manuscript Organization . 14

2. RELATED WORK . 15

2.1 Introduction . 15

2.1.1 Early History of Computer Access Control 16

2.1.2 The Access Control Matrix . 20

2.1.3 Connex Work, Not Directly Related 22

2.2 Access Control Models . 24

2.2.1 Discretionary Access Control 25

2.2.2 Mandatory Access Control . 26

2.2.3 Role-Based Access Control . 35

2.3 Emulation and Composition of Access Control Models 37

2.3.1 Emulation . 37

2.3.2 Model Composition . 39

2.4 Administrative Models . 41

2.4.1 The Access Control Matrix . 41

2.4.2 Mandatory Access Control . 41

2.4.3 Role-based Access Control . 42

2.5 Operating System Access Controls . 43

2.5.1 Main Features and Limitations of unix Security 43

2.5.2 Additional unix Security Extensions 49

2.5.3 Other Systems . 51

2.5.4 Research Operating Systems Security 52

2.6 Conclusion . 53

3. ADMINISTRATIVE MODEL FOR TYPE ENFORCEMENT 54

3.1 Modeling Type Enforcement . 55

vi

Page
3.1.1	 Core Type Enforcement Model 55

3.1.2	 Type Enforcement extensions in SELinux 65

3.1.3	 Summary . 70

3.2 Comparative Modeling of RBAC . 70

3.2.1	 Modeling RBAC . 72

3.2.2	 Mapping RBAC to TE . 72

3.2.3	 Mapping TE to RBAC . 77

3.2.4	 Summary . 78

3.3 Extending TE to Contain Its Administrative Model 80

3.3.1	 Recursive Policy Statements . 80

3.3.2	 Pattern Matching Policy Statements 84

3.3.3	 Administrative Templates . 89

3.3.4	 Summary . 95

3.4 Implementation . 96

3.4.1	 Interface . 96

3.4.2	 System Integration . 99

3.4.3	 Summary . 104

3.5 Conclusion . 104

4. OVERLAY LABELING: REFINING THE POLICY COUPLING 105

4.1 Motivation . 107

4.1.1	 The Grading Program Problem 107

4.1.2	 Example Programming Assignment 108

4.1.3	 Creating Types and Domains and Configuring Accesses . . . 109

4.1.4	 Limitations in the Mapping of Types to Objects 114

4.2 Refining Filesystem Objects Labels . 115

4.2.1	 Filesystem Labeling Specifications 115

4.2.2	 Filesystem Labeling: Semantic Limitations 117

4.2.3	 Overlay Labeling of Filesystem Objects 118

4.3 Network Packets Labels . 122

4.3.1	 Overview of Packet Labeling on SELinux 124

4.3.2	 Overview of the Netfilter Framework and iptables Implemen­

tation . 126

4.3.3	 TE Packet Labeling with the Secmark SELinux Extension 132

4.3.4	 Network Packets Overlay Labeling 135

4.3.5	 Interval Trees to Support Network Packets Overlay Labeling 142

4.3.6	 Summary . 151

4.4 Predicates on Type Attributes . 151

4.4.1	 Predicates . 153

4.4.2	 Handling Policy Dynamics . 154

4.4.3	 Runtime Support . 156

4.4.4	 Motivating Example Revisited 157

4.5 Policy Dynamics: Avoiding Subversion 158

vii

Page
4.5.1 Policy Properties . 159

4.5.2 Taming Indirect Constructs: Preserving Policy Invariants . . 162

4.6 Reversibility . 164

4.6.1 Undoing Type Promotions . 164

4.6.2 Undoing Overlay Labeling . 165

4.7 Conclusion . 168

5. EVALUATION . 170

5.1 Expressive Power: Case Studies . 170

5.1.1 Review of TE and our Extensions 170

5.1.2 Subdividing a User Account: The Grading Program Problem 171

5.1.3 Hosting User-owned Web Applications 178

5.1.4 Analysis of Malware . 184

5.1.5 Summary . 188

5.2 Comparison to Previous Work . 189

5.2.1 Administrative Models . 189

5.2.2 Operating System Access Control 192

5.3 Performance . 196

5.4 Conclusion . 197

6. CONCLUSION . 199

6.1 Results . 199

6.1.1 Theoretical Results . 199

6.1.2 Practical Results . 200

6.1.3 Addressing the Thesis Statement 201

6.2 Future Work . 202

6.2.1 Technical Aspects . 202

6.2.2 Higher Level Language . 203

6.2.3 Transactions . 204

LIST OF REFERENCES . 205

APPENDIX: NETFILTER . 217

VITA . 219

viii

LIST OF TABLES

Table	 Page

3.1	 Filesystem layout, and mapping from policy modifications to filesystem
operations . 97

4.1	 Comparison of the time and space complexity of datastructures that sup­
port stabbing queries on intervals, where a stabbing query is defined as
returning all the intervals that contain the stabbing point. 142

ix

LIST OF FIGURES

Figure	 Page

1.1	 Lampson’s access control matrix model, reproduced from it original pre­
sentation [7]. 5

2.1	 Characterization of the difficulty of providing access control for OSes,

based on their features . 18

2.2	 A reference monitor, reproduced from the original presentation of the con­
cept in the Anderson report . 19

2.3	 The hierarchical part of the Bell La Padula model, with the security levels

Confidential ≤ Secret ≤ TopSecret, encoded as an access control matrix 27

2.4	 The family of integrity models proposed by Biba in [14]. 29

2.5	 The trusted labeler example, adapted from [15]. 31

2.6	 The trusted labeler example, adapted from [15], represented in terms of

an access control matrix . 34

2.7	 The Core RBAC model, reproduced from the standard [55]. 36

2.8	 The typical example used to illustrate role hierarchies, reproduced from [56] 36

2.9	 Summary of the ability of the access control models presented in this

related work to emulate one-another . 38

3.1	 TE semantics for simple accesses . 59

3.2	 TE semantics for domain transitions: TE-domain-transitions. 60

3.3	 TE semantics for filesystem type transitions: TE-object-transitions. . . 61

3.4	 Concrete syntax of the base TE model . 62

3.5	 TE semantics for accesses with type attributes: TE-type-attributes . . . 67

3.6	 Compositions of the core features of TE: TE-core 71

3.7	 Semantics for Core RBAC, as defined in the NIST standard 73

3.8	 Semantics for the recursive TE model . 82

3.9	 Semantics for the extended reflexive TE model (1/2) 86

3.9	 Semantics for the extended reflexive TE model (2/2) 87

x

Figure	 Page

3.10 Semantics for administrative templates . 93

3.11 Semantics for the administration of administrative templates 94

3.12 Layout of the virtual filesystem . 98

3.13 Integration of sefuse within SELinux, to safely expose the SELinux policy

as a virtual filesystem . 101

4.1	 Example configuration that lets the TA create domains 111

4.2	 Type Attributes. Attributes can be used in two main ways 112

4.3	 Type promotion . 120

4.4	 Overlay Labeling of Filesystem Objects 123

4.5	 Default chains in netfilter . 128

4.6	 Graphical representation of the structure of the rules from the secmark/

connsecmark example. 134

4.7	 Encoding the overlay labeling of network packets in terms of packet clas­
sification rules. 138

4.8	 Example of one-dimensional intervals that are used to illustrate the con­
struction of an interval tree . 144

4.9	 First step in the construction of an interval tree. 144

4.10 Interval tree built based on the endpoints of the intervals from Figure 4.8.

. 145

4.11 Representation of	 one non-terminal node of a one-dimensional interval

tree, which has two non-terminal children nodes 148

4.12 Generalization of interval trees, from one to two dimensions 149

4.13 Example permission graph showing how attributes are used to factor the

policy. 160

4.14 Illegal extension of an overlay label. 163

4.15 Simple example of overlapping overlay labels: the successive overlays are

successive strict refinements of the original type. 166

4.16 Removing the overlay O3, based on the configuration from Figure 4.15. 166

5.1	 Summary view of the permissions granted to the domain (grading t) used

to confine the grading program. 172

xi

Figure	 Page

5.2	 The domain of a user web application can receive permissions both from

a web application permission template and from the user domain, treated

as a permission template. 181

5.3	 Architecture of the ReAssure testbed . 185

A.1	 Packet flow inside the netfilter framework 218

xii

ABSTRACT

Thomas, Jacques D. Ph.D., Purdue University, December 2011. Accommodative
Mandatory Access Control. Major Professors: Jan Vitek and Patrick Eugster.

In operating system access control, there is a traditional divide between discre­

tionary access control (DAC), on one side, and mandatory access control (MAC), on

the other side. Compositions of MAC and DAC have been modeled and implemented

as operating system access control mechanisms. With composition, two access control

decisions (one for DAC and one for MAC) have to concur for an access request to be

allowed. DAC is typically supported by coarse grained mechanisms, and it vulnerable

to Trojan horse attacks, two limitations that are addressed by MAC. MAC mecha­

nisms are therefore of interest to security-conscious users and application developers

that want to confine applications they use or develop. MAC mechanisms, however,

can only be configured by administrative users and as such can not be used by reg­

ular users. This dissertation explores how MAC mechanisms can be made available

to regular users of an operating system. Our approach consists in extending the

Type Enforcement MAC model with an administrative model. We call this approach

accommodative mandatory access control.

1

1. INTRODUCTION

Building software of a non-trivial size is difficult and costly. Building that software so

that it is reliable and secure is even more difficult and costly [3]. As a consequence,

most of the software that we use on a daily basis on personal computers has flaws.

Some of these flaws can be used to force the programs to behave in ways that the

program’s authors did not intend. An example of such a flaw is the drive-by-download

attack against a web browser. In drive-by-download, additional software gets installed

on a user’s system as a result of visiting a web site that contains malicious content that

tricks the user’s web browser into installing software. This installation is performed

without the user’s intent and constitutes a violation of the integrity of the system.

The software being installed can be, for instance, a keylogger that will record and

report to a remote system the text being typed on the keyboard of the computer

where it is installed. This remote reporting constitutes a breach of the confidentiality

of the key strokes between the user and the program with which the user wishes to

interact. When the recording captures the user’s credentials to online services, this

breach of confidentiality can be used to impersonate this user on these online services,

potentially leading to identity theft.

In brief, software we use on a daily basis has flaws and thus can not be trusted

to behave according to the intent with which we use it. Consequently, there should

be means for users of personal computers to compartmentalize the applications they

use. That is, there should be mechanisms to restrict an application’s access to the

resources offered by the underlying operating system, including the resources that

belong to the same user on behalf of whom the application is currently running.

To support a safe use of untrusted applications, where applications are confined

to a safe behavior that also preserves their usefulness, the operating system of a

2

personal computer should provide access control mechanisms that are fine-grained,

comprehensive, backwards-compatible with existing applications, and configurable by

regular users of the system. We will first explain how we categorize users and then

justify these requirements.

Personal computers are not always owned by individuals. For instance, the per­

sonal computers deployed in a company are owned by that company. In this case, the

company often designates administrative users that are responsible for the configura­

tion of the personal computers that regular users work on. Typically, administrative

users can change the configuration of access control mechanisms on the personal com­

puter in ways that regular users can not, because regular users are not granted the

permission to do so. Superusers are a special case of administrative users who have

unrestricted access to the operating system and its resources. Now that we have clar­

ified the two categories (regular and administrative) according to which we consider

users of a personal computer, we justify the requirements already mentioned.

Permissions should be fine-grained for several reasons. The immediate reason

is that we want an access control mechanism that supports the principle of least

priviledge, and hence a precise confinement of applications. Coarse permissions run

against this goal and additionally run against our goal of having an access control

mechanism that regular users can configure. Indeed, if permissions can only be con­

sidered at a coarse level, then the administrative permission to grant a permission is

necessarily coarse itself. If administrative permissions can not be granted at a fine

granularity to regular users, then they will probably not be granted to regular users

at all. Consider for instance the setuid facility on unix. It allows for programs to

run under another identity than that of its invoker. This is a powerful confinement

mechanism. The permission to configure this facility, however, is coarse. Either one

can configure it, or not. There is no notion of who can configure which programs to

run under which identity. This administrative permission is too coarse to be granted

to regular users of the system, hence depriving them from the ability to use this

confinement mechanism.

3

The access control mechanism should also (a) be provided as an operating system

facility, and (b) be comprehensive. What we mean is that this mechanism should be

integrated with the the underlying operating system in a way that it constitutes a

reference monitor [4]. This is necessary to provide guaranteed enforcement of access

controls, as intuition and empirical evidence show [5]. We are considering multi-user

time sharing systems because they represent the main trend of operating systems

found on personal computers. As we explain in the related work (see Chapter 2), our

work remains relevant on other kinds of operating systems (e.g. single-user multi-

programmed). By comprehensive (b), we mean that the access-control mechanism

should offer full mediation of the interactions between a running process and both

the underlying operating system and another process running atop the same operating

system. In this work we do not consider the enforcement of distributed access control

policies, policies that span several instances of an operating system.

Finally, we want an access control mechanism that is backwards-compatible with

existing applications. For this reason, it should be possible to deploy this mechanism

as an overlay, without changing the application programming interface exposed by

the operating system. Since this work starts on the premise that developing non­

trivial applications is difficult and costly, we do not think it is reasonable in the

general case to require that applications be re-engineered in order to benefit from

security enhancements of the underlying platform. Consequently, capability-based

access control mechanisms are not appropriate for the use cases we are considering,

because they change the system’s programming interface and therefore require a re-

engineering of the application being confined. We recognize that this re-engineering

can be minimal in the case of applications that are already split in multiple specialized

components, each running with a minimal set of permissions in its access control

domain, a technique known as privilege separation [6]. However, such applications

represent only a small fraction of the ones used on personal computers. Furthermore,

it is either the case that these applications had to be re-engineered to run with

privilege separation (e.g. sshd) or were recently designed from the ground up to run

4

that way (e.g. Google Chromium). We now present a summary of the existing work

on access control that has directly guided the evolution of the work presented in this

thesis. A more detailed survey of the related work is in Chapter 2.

1.1 State of the Art

The access control matrix model [7] was introduced by Lampson during the in­

fancy of research in access-control models and mechanisms. To this day, all access

control models can still be modeled in terms of an access control matrix, as we show

in the related work (see Chapter 2). Here, we would like to clarify our terminology

concerning access control, specially since the terminology used in defining an access

control matrix varies depending on the authors and their goals. There are two main

access matrix models. On one hand, Lampson’s model [7] provides a unified repre­

sentation of implemented mechanisms. On the other hand, the model from Harrison,

Ruzzo, and Ullman [8] (the HRU model) is a simplified version of Lampson’s model

that is amenable to proving complexity results on policy analysis problems. As we

are approaching the problem of access control from an implementor’s perspective,

Lampson’s model fits our modeling needs better.

In Lampson’s access control matrix model, processes run within a domain and

permissions are attached to domains. The access requests of a process are allowed

or denied based on the permissions of the domain in which the process runs. We

have reproduced Lampson’s example in Fig. 1.1. In this example, domain1 owns

and controls itself as well as domain2. This means that domain1 can change the

permissions granted to domain1 and domain2. The access matrix model will be useful

in tying together our presentation of the related work on access control. There are

two things that we would like to point out and discuss further about this model: it is

not implementable in a straightforward fashion and was designed at a time where the

need for mandatory access control was nascent but little work had yet been performed

on the topic. We discuss these points below.

5

Domain 3

Domain 1

Domain 2

*ownerreadowner
control

*owner
*read
*write

write

Domain 1

wakeup

*call

Domain 3 Process 1

*read

File 2File 1

* owner
control

*owner
control

call

Domain 2

*: copy flag set

Figure 1.1.: Lampson’s access control matrix model, reproduced from it original
presentation [7].

6

While the access control matrix is a useful model, a straightforward implementa­

tion of this model is not practical: the matrix is large and dynamic. The matrix is

large because it contains one element per pair of principal and resource. Also, the

matrix is dynamic because the sets of principals and resources are not static: prin­

cipals and resources can be added and removed from the system. By resource, we

mean an entity that exists at the level of the operating system, because our focus

is on access control provided by the operating system. A straighforward implemen­

tation would use a large amount of storage space to store the matrix. Additionally,

this memory space would need to be compacted (respectively expanded) each time a

resource or principal is removed from the system (respectively created in the system).

However, the matrix is sparse and this property can be used to represent the matrix

in compressed form. The matrix is sparse because accesses are restricted: a matrix

that would not be sparse would represent a configuration where most principals have

access to most resources; that is rarely the case. There are three general-purpose

encodings of sparse matrices: by row, by column, and as a set of elements.

Two of these encodings have been used repeatedly by implementers: access con­

trol lists and capabilities. Access control lists (ACLs) consider the columns of the

access control matrix. That is, for a given resource, which principals are granted

which permission on it. Capabilities take a row-oriented approach and represent the

permissions that a given principal has on resources of the system. The third encoding,

as a set of elements, introduces a permissions lookup procedure that is more costly

because the permissions are stored separately from the principal and the resource, in

a centralized repository. Since permissions lookup need to be fast in order to preserve

the performance of the system, caching has been introduced in system that use this

matrix encoding. The family of systems derived from Flask [9], which our work ex­

tends, use this implementation strategy. Regardless of the encoding chosen to store

the access matrix, there are two main approaches concerning the modifications that

can be made to the matrix: discretionnary and mandatory access control.

7

In discretionnary access control (DAC), there are two important notions: resources

are owned by principals, and principals are allowed to change the ACLs on resources

they own. In other words, ACLs on a resource are left at the discretion of the

resource owner. System resources are considered to be owned by system principals.

Administrative users can control system principals in order to set the permissions on

these resources. Lampson’s access matrix, in its original exposition, describes DAC:

a user can, through principals that he controls, grant access to any other users on any

resources that he owns, by granting access to other user’s principals. This approach

presents problems: users have to be fully trusted to properly protect the resources

that they own. This is not acceptable on a system that processes classified data, and

specially state secrets, as the Ware report demonstrated [10]. Furthermore, DAC is

susceptible to a form of attack called Trojan horse, where a program that looks useful

and innocuous on the surface abuses the permissions granted to a user’s principal.

While the user, through a principal, is using the Trojan horse program, this program

also uses the permissions granted to the principal to corrupt the system’s integrity

or leak data contained on the system. The drive-by-download attack we mentioned

earlier can be considered a Trojan horse attack: the browser, while performing a

useful function on the surface, displaying a web page, is actually corrupting the

system’s integrity by installing a rootkit. A variant of the drive-by download could

post documents from the user’s local hard drive on the Internet.

The confinement of programs with DAC is approximated in practice by having the

confined programs run under a different identity. This identity has restricted access

on the system, due to the ACL settings not granting much access to the principal

running under that identity. Moreover, because the chosen identity owns very few

resources, this limits the scope of ACL modifications that can be performed by a

principal running under that identity, which limits the risk of privilege escalation.

Privilege escalation is when a principal manages to broaden its allowed accesses on

the system, beyond the set of permissions initially granted to it. To guarantee that

programs run only under the confinement identity, they are set to change the identity

8

under which they run upon invocation. For instance, this mechanism is know as

setuid on unix and runas on Microsoft Windows. These system facilities, however,

lack a fine-grained permission model, and thus a fine-grained administrative model

specifying which principal is allowed to configure which identity transitions.

In mandatory access control (MAC), additional controls are added on top of the

discretionary ones. The goal of MAC is to prevent the permissions granted to a

principal from being abused by a Trojan horse. The main idea of MAC is to make

the determination of the domain in which a process runs based on criteria that are

not entirely based on the identity of the user on behalf of whom the process runs.

The classic example of a MAC model is the Bell-LaPadula (BLP) model [11],

which formalizes the handling procedures designed to preserve the confidentiality of

classified documents [12, 13], with an explanation of the model in the context of an

operating system. In the BLP model, security classifications are assigned to resources

and security clearances are assigned to principals; classifications and clearances are

drawn from the same set of labels. This set commonly comprises the following con­

fidentiality labels, in increasing order of confidentiality: public, confidential, secret,

and top secret. A principal is allowed access to a resource if and only if its security

clearance is superior or equal to the classification of the resource. In addition to

confidentiality labels, categories can be assigned to resources and principals in or­

der to enforce a mandatory need-to-know policy. Examples of categories are Navy,

Army, and Nato. With categories, the access to a resource by a principal requires

that access be granted to that principal for each category that the resource is la­

beled with. The combination of confidentiality labels and categories results in a

lattice-based classification of resources and principals; we discuss this lattice struc­

ture in more details in the related work (see Chapter 2). What is important to note

here is that this lattice structure defines a partial order on principals and resources.

The lattice and the partial order make BLP attractive; the lattice allows for sim­

ple graphical explanations of the access control model, while the partial order yields

simple proofs of safety. By being simple, yet useful, the BLP model has been suc­

9

cessfully applied in computer systems. Transpositions of the BLP model to enforce

integrity policies have been proposed, both by the authors of the BLP model and by

Biba [14].

Some confinement problems, however, can not be described in terms of a partial

order. The trusted labeler problem [15] is one such problem. In this case, the security

goal is to guarantee that all documents printed from a trusted workstation will be

properly labeled. In this context, a trusted workstation is a computer system trusted

to properly enforce the BLP model, and proper labeling means that each page of a

document coming out of the printer will bear the sensitivity and compartments of the

documents in the header and footer of the page.

Type Enforcement (TE) is a MAC model that was created to address the trusted

labeler problem, and more generally the class of problems known as high assur­

ance pipelines. The key insight in the creation of TE was to recognize the non-

hierarchical nature of the trusted labeler problem and, as a consequence, to create a

non-hierarchical model to solve the problem. In TE, resources and principals have

a type attached to them; a type is a label attached to an object. While this label

is considered for access control decisions, it is not necessarily related to the internal

structure of the object, contrary to the notion of type in programming languages.

The type attached to a process determines the access control domain within which it

runs; the types that are accessible from within a domain, and the operations that can

be invoked on them, are declared in the Domain Definition Table (DDT). By config­

uring the DDT, it is possible to create arbitrary relations between domains. With

TE the security of each domain can be analyzed and proven individually and the final

proof of compliance can be assembled from these infividual proofs. This composabil­

ity of proofs allows for successful divide and conquer approaches to proving security

properties of software systems, including the trusted labeler. Moreover, if a software

module is re-used across several software systems, its accompanying policy and proof

module can also be re-used.

10

While the original presentation of TE does address the trusted labeler problem,

it still shares a common limitation with BLP: all accesses are expressed in terms of

read-like and write-like operations. We think this is a limitation because it is not

possible to represent the diversity of interactions on a modern OS in terms of only

read and write operations. For instance, the bind operation on a network socket is

difficult to classify as a read or a write operation. This problem is solved by extending

the original TE model with object classes, as shown in Flask [9]. Additionally, Flask

demonstrates in practice the idea developed early on by the original authors of TE [16],

namely that TE can be composed with BLP, some form of role based access control

(RBAC, which we discuss in the related work), and identity-based access control.

Overall, the access control mechanisms provided by Flask satisfy all but one of our

requirements: they are not configurable by regular users of the system. Focusing on

type enforcement, this is the point that we want to address, so that regular users can

protect themselves from flawed software. We outline our approach in the following

section.

1.2 Accommodative Mandatory Access Control

We think that there is a middle ground between DAC and fine-grained MAC

that has not been explored sufficiently. On one hand, DAC can be configured by

regular users but is coarse grained and vulnerable to Trojan horse attacks. On the

other hand, MAC is fine-grained and resilient to Trojan horse attacks, but it can

not be configured at all by regular users. It would be nice if regular users had the

ability to configure fine-grained MAC mechanisms in order to protect themselves from

Trojan horse attacks like the drive-by download attack mentioned earlier. This ability,

however, should not come at the cost of other aspects of the system’s protection. For

instance, regular users should still be prevented from tampering with parts of the

security configuration that protect the system’s integrity. In essence there should

be an administrative model regulating how users can configure the fine-grained MAC

11

mechanisms. This is different from traditional MAC where the ability to modify the

security configuration is granted exclusively to designated administrative users (the

system’s security administrators) and in an absolute manner (no restrictions on the

modifications they can perform). With an administrative model, it is possible to split

the administrative powers granted to administrative users; two direct benefits ensue.

First, it is possible to provide a safety net to administrators. By granting them limited

administrative permissions, one can limit the damage they could cause by mistake.

Second, it is not necessary anymore to trust the administrators in absolute terms.

Furthermore, it becomes possible to let regular users benefit from the presence of the

MAC mechanisms and use them for the protection of their data, according to their

own usage patterns. It is even possible to enable this scenario without additional

configuration, by carefully defining the default scope of modifications that regular

users can perform to the configuration of the MAC mechanisms. To summarize, a

mandatory access control model extended with a fine-grained administrative model

could support a wide-range of access control requirements, from DAC to MAC. We call

this approach accommodative mandatory access control. Our thesis is the development

of this approach.

1.3 Thesis Statement

It is possible to extend a MAC model and its operating system implementation

so that regular users can reliably confine applications they use, in a way that is

comprehensive, fine-grained, and backwards-compatible with existing applications,

while preserving the mandatory nature of the access control configuration established

by administrative users.

1.4 Approach and Contributions

Our approach to demonstrating our thesis is by construction, following the guiding

principle that permissions have to be fine-grained at all levels. We have identified

12

three such levels which we describe later; first, we explain why permissions have to be

fine-grained. There are two reasons why permissions should be fine grained. The first

reason is that coarse-grained permissions prevent the application of the principle of

least privilege (PoLP). The second reason is that coarse-grained permissions are are

harder to grant as they require the grantee to be trusted for large sets of operations,

which practically limits the delegation of permissions that can happen. Consequently,

our approach consists in using or creating a fine-grained model at the three following

levels. The first level is the base MAC access control model that we chose to extend.

We have chosen to extend the TE model and its SELinux implementation, based

on our survey of the related work. The second and third levels are respectively the

administrative model for TE and the refinements to the coupling between a TE policy

and the underlying system objects; we describe both in turn below.

Developing our approach on TE has involved defining an administrative model

for TE. To support the fine-grained granting of administrative permissions to users,

the administrative model has to be able to finely characterize the permission that

are granted. Therefore, we have designed an administrative model that relies on

pattern matching to characterize the contents of the policy rules being modified. As

our work addresses the lack of an administrative model for a MAC model, we have

avoided a simple transfer of problem from the lack of an administrative model to

the lack of model regulating changes to the administrative policy itself. We have

done so by designing our administrative model to support a recursive nesting of

administrative permissions. In other words, an administrative policy can be regulated

by another administrative policy, and so on. This is a novel technique for constructing

administrative models, for which we have also designed and implemented a prototype

on SELinux.

From a theoretical standpoint, an administrative model for TE could be sufficient

to claim our thesis as demonstrated. From a practical standpoint, however, that is not

the case. Consider the following example on SELinux, where all files under a home

directory are labeled with the same type (user home dir t), and with a user who

13

wants to protect differently a given file located in her home directory. With just a TE

administrative model, the policy implementation choices to treat these files differently

would be to either relabel that file, or make a copy of the file and relabel the copy.

Both choices present problems: relabeling the original file effectively nullifies all the

rules that were granting access according to the original type of the file, and creating

a copy naturally introduce the risk that the contents of the two copies will diverge

over time. We have conceived a scheme, which we call overlay labeling, to address

this problem. The idea of overlay labeling is to let users add extra tags to objects,

and let users define access control rules based on these tags.

The overlay labeling of filesystem objects is an operation that is performed offline,

once per overlay. Consequently, it does not affect the runtime performance of the ac­

cess control enforcement. We show how this operation can be performed such that

the semantics of the existing security policy are preserved. The overlay labeling of

network packets is more complicated for two reasons. First, as each packet entering

or leaving the system has to be labeled at runtime according to the existing policy,

the network packets are not pre-existing resources that can be labeled offline, and

therefore the efficiency of their labeling has a direct impact on the runtime perfor­

mance. Second, the standard implementation of network packet labeling relies on

packet classification, which determines a unique label for each packet. Overlay labels,

however, require the ability to return multiple labels per objects. This is a fundamen­

tally different and new problem. We show how this problem can be solved by using

a datastructure from computational geometry, interval trees, which we generalize to

multiple dimensions. We prove that, for the general case, our solution is optimal

within a constant factor.

An additional contribution of this thesis is the unified presentation of the ac­

cess control models that we survey in the related work section, where we extend

the concept of the Extended Access Matrix [16] to encompass subject and object

transitions. This unified presentation allows a characterisation of the differences

between access control models that is more precise than what was available previ­

14

ously. For instance, we show that TE is strictly more expressive than RBAC, as

RBAC can be emulated by TE, but RBAC can not emulate TE because it lacks

automatic role transitions. We also show that TE can not enforce low-water mark

policies because it does not support domain transitions on read and write opera­

tions.

1.5 Manuscript Organization

Our manuscript is organized as follows. After a survey of the related work in

Chapter 2, we proceed to demonstrate our thesis by construction, based on TE. In

Chapter 3, we formalize TE and define a core administrative model for it. This core

administrative model supports a fine-grained delegation of permissions on the TE pol­

icy, which is a necessary step to demonstrating our thesis. In practice, however, this

model is not sufficient by itself. Indeed, the coupling of the policy to concrete system

resources –the labeling of resources– is external to a TE policy and thus not captured

by our core TE administrative model. Policy statements added by regular users are

constrained to the granularity of the labeling of system resources by administrative

users. This is why we introduce the notion of overlay labeling in Chapter 4. The

idea is to let regular users declare and attach additional labels on system resources,

so that they can refine the system policy to cater their needs. At the same time, user

actions are still limited by the mandatory policy. In Chapter 5, we evaluate our work

with case studies and compare it to existing solutions. We conclude in Chapter 6.

15

2. RELATED WORK

Our work involves, and therefore relates to, issues both at the modeling level and at

the implementation level. At the modeling level, our work relates to the existing work

on access control models and administrative models. At the implementation level,

our work relates to access control mechanisms implemented in operating systems.

Consequently, our presentation of the related work will cover both related models

and related implementations. This chapter is structured as follows. Section 2.1

covers the early history of the field of access control, clarifies the kind of operating

systems that we are considering, and presents connex work that is not as closely

related as the work presented in the subsequent sections. Section 2.2 covers related

access control models, and Section 2.3 covers the compositions and emulations of

access control models.The ability for a model to emulate another one is used as a

means to compare the relative expressive power of access control models. Section 2.4

covers administrative models, Section 2.5 covers implementations of access control

models found in operating systems, and Section 2.6 concludes this chapter.

2.1 Introduction

Before delving into the survey of the work specifically related to ours, we feel that

that an extended introduction to this chapter can benefit our reader. This extended

introduction will be split in three parts. First, we will recap the early history of

research in computer systems access control. Then we will present how the access

control matrix model can be extended to represent and compose the access control

models that are presented in this chapter. Finally we will briefly mention work which

is related just enough that it needs to be mentioned and remotely enough that it will

not be surveyed further in the remaining of this chapter. We want to present this

16

work, nonetheless, to help our reader better evaluate what our work relates to, and

how closely. We now recap the early history of the field.

2.1.1 Early History of Computer Access Control

Early on (and now over 40 years ago), the Department of Defense created the

Task Force on Computer Systems Security, chaired by Willis Ware. The findings of

the task force were summarized in a report [10] which pointed, for the first time,

many elements of what is now common knowledge in the field of computer security.

For example, the findings included the assessment that commodity operating systems

were not providing protection mechanisms that were adequate for the processing of

classified governement data, with mixed classification levels, on the same computing

facility. The report also mentioned the use of trap doors to penetrate a system and

characterized the evolution in operating systems functionality that lead to the ap­

parition of the need for access control within operating systems. We have reproduced

this characterization in Figure 2.1, where we explain how our work is relevant to OSes

with these different characteristics.

The Ware report was followed by the Anderson report [4], which introduced the

notion of a reference monitor (see Fig. 2.2) as the base architectural pattern used to

enforce access control. The Anderson report was also the first one to mention trojan

horse attacks on a computer system. Similarly to the mythical trojan horse, a trojan

horse in a computer system is piece of software that betrays its appearance. While

looking like a useful piece of software, a trojan horse does not do only what it looks

like it should be doing. For instance, on smartphones, modern trojan horses that

pose (ironically) as security software intercept the SMS messages sent by banks for

multifactor authentication [17].

Around the same time, Lampson formalized the representation of the configura­

tion of existing access control mechanisms in terms of a matrix, the access control

matrix [7] (see also Figure 1.1 in Chapter 1). This model is important, as it was de­

17

signed to represent in a unified manner the access control mechanisms implemented

by computer systems at the time. It is this unified representation that enables the

common representation and therefore the comparison of access control models. When

augmented with the notion of transitions that happen upon the execution of an op­

eration, the access matrix model can be used to represent and compose many access

control models, as explained by Boebert et al. [16]. In our presentation of access

control models, we will use an access matrix representation to expose the different

access control models related to our work. We elaborate on this idea in Section 2.1.2.

As noted by Lampson in [7], a straightforward implementation of the access matrix

as a matrix would not be efficient in terms of space, as the matrix is sparse. It is

therefore proposed that the matrix be implemented with a storage either by columns

or by rows. The storage by columns (by resources) is called access control lists (ACL);

it corresponds to storing, with each resource, the set of subjects that are allowed to

access it, and the operations that they are allowed to perform on it. The storage by

rows (by subjects) is called capabilities; it corresponds to storing, for each subject,

the set of resources to which it has access, and the operations permitted on these

resources. In other words, these two implementations correspond to encoding the

matrix either by rows or by columns. The problem posed by both implementations is

that, by scattering the storage of the access configuration, they make it more difficult

to gather the access control configuration and audit it. For example, consider the

following audit scenario: on a system that uses ACL storage, an auditor wants to

determine all the resources that a subject has access to. In order to make this deter­

mination, the ACL attached to each and every resource of the system will have to be

retrieved. Conversely, a capability implementation makes it costly to determine all

the subjects that have access to a given resource. As a result, some implementations

use a sparse matrix encoding technique to compress the access matrix and keep it

as a whole1 . Keeping the matrix as a whole supports both of these audit scenarios

1We have observed the use of sparse matrix encoding for the domain definition table and domain
transition tables in the source code of SELinux. There, each non-empty cell of the matrix is stored
in a hash table that is indexed by the subject, the object, and the class of object. The class of object

18

Local Access

Multiprogramming

Remote Access

Batch

Local Access

Batch

Remote Access

Multiprogramming

Remote Access

Time Shared

Difficulty and
Complexity of

Security Controls

Figure 2.1.: Characterization of the difficulty of providing access control for OSes,
based on their features, reproduced from the Ware report [10]. The need for access
control appeared with the evolution of operating systems [21]; more specifically, it
appeared with the introduction of non-volatile storage. Until that point, the computer
system would be essentially stateless at the beginning of each computation. With
non-volatile storage, there is the possibility that the next computation running on
the system can access the data of a previous computation. As explained in the Ware
report, the problem of access control can be solved with simple procedures for batch-
processing systems by wiping the system clean between jobs, either by erasing the
previous job’s program and data or by dismounting the storage devices on which they
reside. With multiprogramming, the executions of the computations are interleaved.
This requires keeping several programs and their input and output data available to
the system at the same time. Consequently, the previous simple workaround solution
can not be applied. Instead, access control mechanisms have to be provided by the
OS to isolate the computation, be it for integrity or for confidentiality reasons. Time
sharing makes the access control harder to provide, by increasing the frequency at
which the execution switches from one program to another, and by removing the
control of the context switches from the programs (pre-emptive scheduling). Our
work is in the context of timesharing systems.

efficiently, because the matrix contains all the information that is used to determine

accesses. This information is a protection state.

An additional early paper that has had a lasting influence on the field was the

paper by Salzer and Schroeder [18]. This paper was intended as a tutorial paper

but ended up becoming a classic, mostly because of the 10 design principles that

it contains [19]. The principle of separation of mechanims and policy, which was

highlighted during the development of early extensible systems [20], is usually added

to this list of principles.

is a refinement to access control rules that was introduced by Flask [9].

19

User
Program

in
Execution

Reference Monitor

I/O Device

Data

Program

Figure 2.2.: A reference monitor, reproduced from the original presentation of the
concept in the Anderson report [4]. A reference monitor is the architectural element
responsible for the enforcement, in an access control model, of the “authorized ac­
cess relationships between subjects and objects of a system. An implementation of
the reference monitor concept is called a reference validation mechanism.” An im­
plementation of this concept requires that all interrelations of subjects and objects
be mediated, and thus imposes the following three requirements on the design and
implementation. First, the reference validation mechanism’s integrity must be pro­
tected; otherwise, there are no guarantees as to what the validation actually validates.
Second, the reference validation mechanism must be invoked for every access; this is
also refered to as enforcing full mediation. Third, the reference validation mechanism
must be an assured piece of software; in Anderson’s words, it “must be small enough
to be subject to analysis and tests, the completeness of which can be assured”. Mod­
ern expositions and implementations of access control models [22,23] have refined the
notion of reference monitor into three separate entities. The policy decision point de­
cides of the fate of an access request, while the policy enforcement point is responsible
for enforcing that decision. The policy decision point communicates with a policy
information point to get the values it needs when evaluating the access request.

20

2.1.2 The Access Control Matrix

The access control matrix remains the model that is the most amenable to repre­

senting, in a uniform format, diverse access control models. We want to expand this

idea that we have expressed earlier, both in the introduction of the thesis and in the

introduction of this chapter; we do this in what follows.

First, we want to clarify why we chose to introduce the access control matrix by

using the model originated by Lampson [7]. This model avoids the common confusion

which consists in equating active entities (the entities that make access requests) with

users. It does so by deliberately using a fairly neutral term for the active entities to

which permissions are granted: domain, instead of subject. Indeed, the term “subject”

is often equated to user identities as in [8] for instance.

As it turns out in the context of this thesis, which extends TE, the term domain

unfortunately has a strong connotation as well2. Consequently, we will use the term

subject to describe the active entities of the access control models that we present.

This choice will make our exposition of the access control models conform with the

usual terminology. We will, however, treat subjects as composite entities, similarly to

the Extended Access Matrix (EAM) model [16]. By composite, we mean that subjects

can possess a set of attributes, besides a user identity, that are used when evaluating

access control decisions. In the BLP model [11], examples of these attributes are the

clearance of the user identity, for the discretionnary access control, as well as the

clearance and set of categories allowed to that user, for the mandatory access control.

In our context, where we consider access control from the perspective of the operating

system, a subject is a process. Consequently, these subject attributes will be attached

to processes. In the same way that subjects are composite in order to support the

composition of access control models, objects are composite.

In general, complex problems are easier to analyze and solve if they can be de­

composed into simpler ones. This holds true for the composition of access controls

2The term “domain” has a well defined meaning in the context of type enforcement, as we show

later in this section.

21

where several access control mechanisms, each implementing a separate access control

model, may be used in conjunction to regulate accesses on a system. The EAM [16] is

the embodiement of this decomposition of the exposition (and implementation) of ac­

cess control models as separate access control matrices. The idea with the EAM is to

describe the composition of access control models as the composition of a set of access

control matrices, each representing one of the access control models being composed.

The evaluation of an access control request is then performed individually on each of

the access control matrices, passing the subject attributes that are relevant to each

matrix’s model. For example, the mandatory access control of MLS is only concerned

with a subject’s clearance and allowed categories, whereas the discretionary control

of MLS is only concerned with the user’s identity. An access request is granted if and

only if each of the evaluation allows the access request. This is the reason why we

insisted that subjects are composite, because they store attributes that are relevant

to multiple access control models, and that we did not want to retain the name “do­

main”, because this is precisely an attribute name that is used by domain and type

enforcement (DTE) [24], a variant of TE (see Section 2.2.2 for a description of TE

and its variants).

The EAM model covers only the part of the access control decision that is con­

cerned with whether to allow an access request or not. Another part of access control

models that is critical to the practical confinement of software is the change of type

attribute settings that can happen when an access is allowed. An example of this

change is the change of user identity associated that can be triggered by the setuid

facility when a process replaces its binary program image by one constructed from a

file that has setuid configured. In TE, these transitions are represented in terms of a

matrix called the Domain Transiton Table (DTT). This matrix declares the domain

in which a program should execute based on the domain of the calling program, either

the same (not transition), or another one (domain transition). To keep with our goal

of generality, the EAM needs to be extended with a set of subject attribute transition

tables, one for each model that supports subject attribute transition. The subject at­

22

tribute transitions can happen on different operations: reading a file of low integrity

can downgrade the integrity of a process (in the Biba low-water mark model [14]);

executing a setuid program can change the identity of the running process.

Similarly to our insistance on having subjects be multi-dimensional, objects also

need to be multi-dimensional since different access control models will consider dif­

ferent attributes of the objects. For instance, an access control model like MLS [11]

considers two attributes on a file: the confidentiality label and the set of need-to-know

mandatory categories. In keeping with the symmetry of the model, transitions can

also happen on object attributes. For instance, a write to a file of high integrity by a

process of low integrity will downgrade the integrity of the file (in the Biba low-water

mark model); creating a file in a setuid directory will set the identity of that file to

be the identity of the owner of the directory, instead of the user on behalf of whom

the process is running. These transitions can also be represented in terms of a matrix,

which would be called the object attribute transition table.

We provide one full representation of a subject attribute transition table, the

domain transition table for the trusted labeler example by Boebert and Kain [15],

in Figure 2.5c. Otherwise, we have condensed the representation of these tables by

using arrows that overlap the access control matrix. The tail of the arrow is on the

operation causing the transition, in the matrix cell corresponding to the subject and

object of the access request. The head of the arrow is in the cell corresponding to the

new subject attribute (for a subject transition) or the new object attribute (for an

object transition). Consequently, subject transitions appear as vertical arrows, and

object transitions appear as horizontal arrows. An example covering both subject and

object transitions is the low-water mark policy by Biba, illustrated in Figure 2.4c.

2.1.3 Connex Work, Not Directly Related

Our work is related to access control models, which reason on the external ac­

tions of an application, and not on information-flow models, which reason on the

23

flow of information inside an application. To reason on the internal behavior of an

application, information-flow models and their implementation require access to the

source code of the application being analyzed. While getting access to the source

code may not always be practical, the main limitation lies actually in the lack of

models and techniques that scale to the size and complexity of common applications

like a web browser. Some hybrid models that limit the scope of source-code analysis

to the interfaces of a program are more tractable [25]. Examples of information-flow

and language based techniques that we will not cover further include lattice infor­

mation flow models and proof-carrying code. Lattice information flow models have

been designed [26–28] to express what it means for a program to enforce a security

policy. These works have focused on lattice information flow models, with the goal

of preserving confidentiality. We are aware of two compilers that help guarantee the

enforcement of information flow policies, by analyzing and instrumenting programs

at compile time [29–33]. Besides a secure email client [34], few applications have been

built with these languages as they are hard to work with. There is work in inte­

grating these approaches with OS-based security, so that the policy enforced by an

application and the policy enforced by the operating system are tightly coupled. For

instance, [35] works on integrating application-enforced confidentiality policies with

their OS-enforced counterpart. In earlier work [25], some of the same authors worked

on integrating integrity policies to enforce a simplified version of the Clark-Wilson

model of integrity [36], which they named CW-Lite. Proof-carrying code [37, 38]

was developed to solve the performance problem associated with the sandboxing of

mobile code, without giving up on the safety guarantees provided by sandboxes.

Typical properties proved in PCC are memory safety and the termination of simple

programs. The main limitation of PCC is the size of the proofs, which causes stor­

age, transmission, and generation issues for any sizable program. Additionally, we

do not cover inference-control models [39, 40] for two reasons. First, our work is on

operating system security, where data is considered unstructured. Inference-control

applies to structured data, and namely to database management systems. Second,

24

inference-control targets confidentiality policies, whereas the main focus of our work

is integrity.

We have introduced the base concepts of access control, with a recap of the early

history of research in computer systems access control. We have also briefly intro­

duced research trends that are related to our work, but more remotely than what we

will now present. In the rest of this chapter, we present the work on access control

that is directly related to ours.

2.2 Access Control Models

An access control model defines how access requests are evaluated against the

protection state. That is, when an access is attempted, how is the access request

represented, and does the protection state of the system allow this request or not ?

This decision is made by comparing chararacteristics of the access request against the

protection state of the system on which the access is being requested. At the level

considered by access control models, an access request is represented as a 3-tuple

subject, operation, resource. The subject is the active entity that is attempting to

perform an operation on a resource. Subjects, operations, and resources are char­

acterized differently depending on the access control model. In DAC for instance,

subjects are fully characterized by the identity of the user on behalf of whom they

execute3 . A common example of resource identification is the path of a file, with the

associated read, write, and execute operations. An access request is allowed if an only

if4 the protection state allows it. In full generality, the protection state of a system

can be viewed as defining a set of allowed requests. The evaluation of an access con­

trol request then becomes a membership test: does the access control request belong

to the set of allowed requests. Many techniques of set theory have been used in access

3Because subjects are fully characterized by their identity in DAC, DAC is also known as identity

based access control (IBAC)
4If a request could be allowed without being allowed by the protection state, then there would be a

violation of the definition of a reference monitor.

25

control models, to facilitate the definition of the set of allowed requests. For instance,

regular expressions and constraints have been used to define access control rules in

comprehension. Regular expressions support the definition by comprehension of a set

of resources, by defining a language that contains the set of resources to which access

should be allowed (or denied). Constraints can be used to restrict the set of accesses

that are allowed, to simplify the reasoning on the safety of the system [8, 41]. The

implementor, then, has to strike a balance between the expressive power built into the

access control model and the implementability of that model. For instance, efficiently

testing a stream of incoming access requests against a set of regular expressions can

be costly [42]. Similarly, it may not be practical to store an infinite record of the

accesses performed by a user, when enforcing history-based access control constraints

like the Chinese Wall model [43].

A special kind of access control model is the one used to describe the accesses

made against the protection state of the system. These models, which regulate who

can modify which parts of the protection state, are called administrative models. An

access control model that captures both regular access requests and administrative

access requests can be viewed as reflexive.

With the distinction between access control models and administrative models

established, we will now present access control models in the remainder of this section.

2.2.1 Discretionary Access Control

In DAC, subjects are fully characterized by the identity of the user on behalf of

whom they execute. This means that a process running on behalf of a user will possess

all the permissions granted to that user, as there is no other attributes attached to

that subject. As a result, systems that rely exclusively on DAC are vulnerable to

trojan horse attacks.

26

2.2.2 Mandatory Access Control

Until the early 1970s, it was not generally realized that two fundamentally different

types of access control exist [44], namely DAC and MAC. Now that we have presented

DAC, we present MAC models. We first present MAC models as they were originally

exposed. Then, we present them in terms of an access matrix, with the transition

extensions that we introduced in Section 2.1.2.

Multi-Level Security – Bell La Padula

The Anderson report [4], which introduced the concept of a reference monitor,

is one of the earliest reports on studies to address the security needs of institutions

that handle classified national security information, namely multilevel security. The

findings of this report were that current systems and system development methods

were inadequate for supporting multilevel security with high assurance. Two models

of multi-level security have been subsequently proposed: the Bell-LaPadula policy

model (BLP) [11], for confidentiality, and the Biba variants, where the multi-level

rules are transposed to support integrity policies [14].

The BLP model [11] is a formalization of the security policy used with physical

documents in institutions that handle classified national security information, as pre­

scribed in Executive Orders 10501 [12] (when BLP was formulated) and 13526 [13]

(the current one at the time of this writing).

Each document is assigned a security classification, which is composed of a security

level and a set of categories. Security levels are a set of strictly ordered symbols that

represent the sensitivity of a document. In other words, security levels represent the

damage that could ensue if the document was leaked. A typical set of sensitivity

levels is, in order: { confidential, secret, top secret}. Categories represent the topics,

projects, or organizations related to the document. Typical examples of categories are

{NORAD, NATO, Army }. Users of the system are assigned clearances based on their

trustworthiness. A clearance, like a security classification, is composed of a sensitivity

27

Classification

Clearance
Confidential Secret Top Secret

Confidential observe/modify modify modify

Secret observe observe/modify modify

Top Secret observe observe observe/modify

Figure 2.3.: The hierarchical part of the Bell La Padula model, with the security
levels Confidential ≤ Secret ≤ TopSecret, encoded as an access control matrix

level and a set of categories. A clearance is said to dominate a security classification

if the level of the clearance is superior or equal to the level of the classification,

and if the set of categories of the classification is included in the set of categories of

the classification. Based on this dominance relationship, the Bell La Padula model

enforces the security goal of confidentiality with the following two rules:

•	 Simple security: a subject is allowed to observe only documents that are domi­

nated by her clearance (no read-up).

•	 Star property: a subject is allowed to alter only objects whose security label

dominate her clearance (no write-down).

More precisely, the categories are not needed to enforce confidentiality. Categories

are used to enforce need-to-know security goals, where users should have access to

documents only if that access is necessary for them to perform their intended duties

within the organization. The hierarchical aspect of the Bell La Padula model can

easily (and concisely) be encoded as an access control matrix, as shown in Figure 2.3.

Biba

Following the work of Bell and La Padula, Biba [14] proposed several mandatory

access control models to protect the integrity of data. In a fashion similar to Bell­

28

LaPadula, these models rely on hierarchical security levels that are assigned to objects

(resp. users) of the system as classifications (resp. clearances). The main difference

is that these security levels represent integrity levels. The Biba report offers several

hierarchical models of integrity [14] that we present in turn in this section. The

strict integrity policy is the direct transposition of the Bell La Padula model, from

confidentiality to integrity protection, with static labels. According to Biba, the strict

integrity policy can be considered the “complement” or “dual” of the [BlP model].5

The following rules are the result of the transposition:

•	 A subject can only observe objects whose integrity level dominate her own

integrity level.

•	 A subject can only modify objects whose integrity level are dominated by her

integrity level.

These rules prevent high integrity subjects from being corrupted by the observation

of low integrity data and they prevent high integrity objects from being tampered

with by low integrity subjects. We have represented this model in Figure 2.4b. Other

models are also proposed in the same report (Figure 2.4c presents these models to­

gether):

•	 low-water mark on objects: an object’s integrity level is the lowest of the in­

tegrity levels of all subjects that modified it. This policy has the problem that it

does not prevent the modification of high integrity objects. It just records that

such a modification happened by keeping a “low-water mark” on the object.

•	 low-water mark on subject: if a subject observes an object whose integrity level

is lower, then the subject’s integrity level is automatically lowered, to that of

the object it observes.

5Actually, integrity at large has been considered to be the dual of confidentiality in [45]. This may
be the origin of the popular belief that confidentiality and integrity can not be jointly achieved, as

a result of being dual properties.

29

S: 	 the set of subjets s
O: the set of objects o. (Note: in Biba’s presentation, “the intersection of S

and O is the null set.” As a consequence, direct interactions among subjects
are not represented in this model, contrary to the original Bell-LaPadula
model.)

I: the set of integrity levels. The report suggests that these levels can be
compartmentalized (again, in a fashion similar to the Bell La Padula model)
to separate different applications of the system.

il:	 S ∪ O → I, a function that returns the integrity level of each object and
subject of the system. This function and the dominance relation ≤ on
integrity levels define a lattice. ≤: a subset of I × I, the dominance relation on integrity levels.

min: ℘(I) → I, a function that returns the greatest lower bound (meet) of the
subset of I specified.

(a) Base definitions

Classification

Clearance
Confidential Secret Top Secret

Confidential observe/modify observe observe

Secret modify observe/modify observe

Top Secret modify modify observe/modify

(b) The strict integrity model, represented with three integrity levels as an access control matrix.
From this figure, it is visible that the strict integrity policy is the dual of the Bell La Padula model
for confidentiality (see Figure 2.3).

Classification

Clearance
Confidential Secret Top Secret

Confidential observe/modify modify / observe modify / observe

Secret modify / observe observe/modify modify / observe

Top Secret modify / observe modify / observe observe/modify

(c) The low-water mark model with floating labels for both subjects and objects, represented as an
access control matrix. The downgrading (label transitions) for subjects take place upon observation
of lower integrity objects (vertical transitions). The downgrading for objects takes place when they
are written to by a subject of lower integrity (horizontal transitions). From this figure, it is visible
that a system implementing floating labels runs the risk of downgrading the integrity of the whole
system over time: all the transitions lead to lower integrity subjects and objects.

Figure 2.4.: The family of integrity models proposed by Biba in [14].

30

Type Enforcement

Type enforcement was created to support a use case that multi-level security can

not address (and that was of interest) in the Secure Ada Target (SAT) [15]. Namely,

the MLS integrity policies can not support the trusted labeler. The trusted labeler

is an example of a non-hierarchical policy. In other words, the trusted labeler is an

example of an application that can not be supported by a hierarchical policy. The

trusted labeler is a mechanism which must guarantee that printed copies of classified

documents bear their classification in the footers and headers of each page. This is

to guarantee that information can not be leaked simply by printing it and walking

away with it. With the headers and footers bearing the document’s classification on

each page, security personnel can prevent the physical copies of classified documents

from being physically exfiltrated. The SAT implementation effort was aiming for

the A1 certification level of the U.S. Department Defense Trusted Computer System

Evaluation Criteria (TCSEC) [46]. As a consequence, enforcement of the security

policy had to be formally proven on the system implementation. Following the same

reasoning as [47], SAT was built in a modular fashion, with modular and composable

proofs of compliance. Type enforcement is what enabled the composition of proofs of

compliance.

We now present Type Enforcement, based on the trusted labeler example. The

trusted labeler is an example of a high assurance pipeline that can be graphically

represented as depicted in Figure 2.5a. A high assurance pipeline is a sequence of

processing steps for which one can prove that, if data is output in the last step, the

data has been processed by each of the previous processing steps, in order. Other ex­

amples of high assurance pipelines are commonly found in network guards, where data

must be encrypted before being sent over non-trusted networks, and network access

control must be enforced in a guaranteed fashion. The encryption module and the

access control module are components of assured pipelines in network guards, in the

same way that the trusted labeler was part of an assured pipeline in the SAT platform.

31

Labeller
Process

Printer
Process

User
Process

Unlabelled
Data

Labelled
Data

User Domain Labeller Domain Output Domain

(a) “Unverified and potentially hostile programs are encapsulated in the User domain. The labeler
module ../.. is encapsulated in the Labeler domain and is verified to properly translate internal labels
to readable form, and place them in the correct positions in the data. The output module ../.. is
encapsulated in the Output domain and is verified to not tamper with labels. None of the domains
in the example invoke any form of privilege.”

Object Type

Domain
Unlabelled Labelled

User observe/modify null

Labeller observe observe/modify

Output null observe

(b) The domain definition table for the trusted labeler

Called domain

Domain
User Labeller Output

User execute in same domain transition to Labeller

Labeller execute in same domain transition to Output

Output execute in same domain

(c) The domain transition table for the trusted labeler

Figure 2.5.: The trusted labeler example, adapted from [15].

32

The TE model can be viewed as a hybrid of Lampson’s matrix model and the

floating label policies proposed by Biba. From Lampson’s model, TE has retained the

notion of granting permissions to domains, with domains being entities not directly

connected to users. From Biba’s model, TE has retained the notion of dynamically

changing the security context of a subject, based on the actions it takes. Whereas

Biba’s low-water mark model would lower a subject’s integrity level upon observation

of low integrity data, TE can transition a process into another domain when it starts

executing another program; this is called an automatic type transition. These auto­

matic type transitions are similar to the setuid facility [48]. However, TE domains

are a notion orthogonal to user identities. This allows for running programs under

the super-user identity, but in a restrictive domain that actually curtails the broad

privileges normally associated with the super-user identity. The notion of a TE do­

main is also unrelated to the notion of an MLS clearance. This allows for confining

the trusted labeler in a way that:

•	 guarantees it is not bypassable,

•	 protects it from corruption by other subjects,

•	 confines it so that there is no need to trust the labeler for more than proper

labeling.

These last two elements support a modular decomposition of the specification and

proof that the labeler and its integration in the system properly enforce the mandatory

labeling of printed documents. An additional benefit of type enforcement is that it

can reduce the attack surface of programs, hence limiting the scope of the audit when

assuring the code of security-relevant programs [25].

The original exposition of TE [15] contains a motivating example for TE, together

with an extensive explanation of how significantly TE helps the assurance effort on

an information system. The subsequent adaptation of TE to unix [24], Domain and

Type Enforcement (DTE), is more intelligible these days. DTE was designed to sub­

stantially improve the security of unix systems while maintaining a high degree of

33

backward compatibility and avoiding increases in administrative overhead. The secu­

rity improvement is achieved by overlaying DTE domains on the unix domains; the

backward compatibility and low administrative overheads are achieved by automating

the common scenarios. We explain these points in turn.

In the standard unix access control model, a process’s rights on an object are

determined based on the {user, group, others} permission bits of the object, which

user and group the object belongs to, and the user and group attributes of the process

performing the request. In TE, that process’s rights depend on the type of the object

it is trying to access and the domain in which the process is running. DTE overlays

this access control on top of the unix access control. This supports a partitioning of

the whole set of rights that are normally available to a process based on its system

user identity. In a later article, Walker et al. [49] have shown that this partitioning of

rights can, for instance, be used to confine system daemons that would otherwise run

with full super-user privileges. This confinement improved the security of the system.

With type enforcement, every system object has a type, and every process runs inside

a domain. DTE limits the administrative overhead by providing mechanisms that can

be used to automate the system’s behavior. For instance, the labeling of filesystem

objects is simplified by relying on the filesystem hierarchy to automatically type

files and directories based on the type of their parent directory. For processes, they

automatically inherit the type of their parent process, unless they execute the entry

point of a domain 6, and that entry point is set to trigger an automatic domain

transition. In that case the new process will –upon invocation of the exec() system

call– be running in the domain whose entry point it just executed.

Using the same representation of transitions that we have used to represent the

Biba models in terms of an access control matrix, we can represent TE as an access

control matrix, as illustrated in Figure 2.6.

6This notion of entry point is similar to the one defined by Lampson in [50].

34

Object Type

Domain
User Code Unlabeled Data Labeler Code Labeled Data Printer Driver

User
execute in

same domain
modify / observe

execute in Labeler
domain (transition)

Labeler observe
execute in

same domain
modify / observe

execute in Output
domain (transition)

Output observe
execute in

same domain

Figure 2.6.: The trusted labeler example, adapted from [15], represented in terms of
an access control matrix

35

2.2.3 Role-Based Access Control

The main goal of Role-Based Access Control [51] (RBAC), is to simplify the

administration of an automated security policy. This simplification is achieved by

granting permissions to roles (instead of users), and assigning users to the roles they

need in order to perform their duties, as illustrated in Figure 2.7. What makes RBAC

attractive for security administration is the fact that duties performed by individuals

within an organization are usually performed due to a responsibility assigned to the

individual. Since these responsibilities are usually defined as functional roles, RBAC

structures the security policy in a way that offers a natural mapping from a business

organization chart to security administration. To further ease security administration,

many extensions have been proposed to RBAC:

•	 Role hierarchies: In an attempt to model the hierarchy of functional roles that

appear in a company’s organization chart, RBAC has been extended with role

hierarchies (see Figure 2.8). As pointed out in [51], there are three different

semantics associated with role hierarchies.

•	 Temporal constraints: In an attempt to model worker shifts, temporal exten­

sions to RBAC have been proposed: Temporal RBAC (TRBAC) [52], General­

ized TRBAC (GTRBAC) [53], and their XML encoding, X-GTRBAC [54]. The

interaction of temporal constraints and role hierarchies has been studied in [53].

Figure 2.7 is a reproduction of the Core RBAC model from the RBAC stan­

dard [55]. An important notion in this model is the notion of a session. Within a

session, a user can activate roles, which in turn activate permissions, that can then

be used to perform tasks on the system. Some have opposed to the inclusion of the

notion of session as a part of the RBAC standard [57]; the origin of this notion can

be traced to the database management system origins of RBAC [58]. The session is

used to impose dynamic separation of duties constraints on subjects, to protect the

integrity of the data being manipulated [59].

36

Figure 2.7.: The Core RBAC model, reproduced from the standard [55].

Director (DIR)

Project Lead 1 (PL1) Project Lead 2 (PL2)

Quality
Engineer 1

(QE1)

Quality
Engineer 2

(QE2)

Production
Engineer 1

(PE1)

Production
Engineer 2

(PE2)

Engineer 1 (E1) Engineer 2 (E2)

 Engineering Department (ED)

Employee (E)

Figure 2.8.: The typical example used to illustrate role hierarchies, reproduced from
[56]

37

We consider RBAC to be a mechanism for simplifying administration, and not an

access control model per se. For the same reason, we consider that the question of

whether RBAC can support discretionary or mandatory access control is not a valid

question. The representation of RBAC as an access control matrix is straightforward:

users are replaced by roles.

2.3 Emulation and Composition of Access Control Models

In this section, we complete our exposition of access control models by showing

how a given access control model can be used to emulate another one. Then we

present how native representations of access control models can be composed, without

resorting to emulation.

2.3.1 Emulation

So far, for each access control model that we have presented, we have first re­

produced its original exposition and then provided its representation in terms of an

access control matrix. In other words, we have shown how that access control models

could be emulated by an access control matrix. The models that use transitions, either

on objects or on subjects, need to be extended with transition tables. Other emula­

tions have been presented before. For instance, Pitelli [60] presents an emulation of

the Bell-LaPadula using the HRU model, and Kuhn [61] presents an encoding of an

RBAC policy in terms of an MLS policy. The motivation for emulating RBAC with

MLS is that it allows re-using assured MLS systems to support RBAC policies with­

out having to assure an RBAC implementation; the reverse mapping has also been

performed Zhao and Chadwick [62], to support MLS policies on RBAC systems. We

show in Section 3.2 that TE can emulate RBAC but not vice versa since RBAC does

not possess a notion of one-way subject transition. Figure 2.9 presents a graphical

summary of the model encodings referenced or introduced in this manuscript.

38

RBAC

HRU

BLP

TE

Kuhn

Zhao and Chadwick

Insatisfiable Trusted
Labeler Problem

This Manuscript
(Section 3.2)

Matrix = DDT

HRU is missing
domain transitions

Pitelli

Biba
(strict) By Definition

HRU
+transitions

By Definition

By Definition

This Manuscript
(Section 2.2.2)

Biba
(low-water mark)

By Definition

By Definition

This Manuscript
(Section 2.2.2)

TE is missing transitions
on read/write operations

Figure 2.9.: Summary of the ability of the access control models presented in this
related work to emulate one-another. Edges with a plain line represent a possible
emulation, from the emulated model, to the emulating model. Edges with a dotted
line represent impossible emulations. These results, when they are not a direct con­
sequence of the definition of a model based on another one, are either provided in
this manuscript or come from the following articles: Kuhn [61], Pitelli [60], Zhao and
Chadwick [62], and the trusted labeler problem by Boebert and Kain [15].

39

A more general form of emulation consists in building a minimal access control

model, on top of which other access control models can be built. This approach has

been proposed in the Generalized Framework for Access Control (GFAC) [22,63] (and

demonstrated in RSBAC [64]). Jajodia et al. [65] independently proposed a similar

model. More recently, the Policy Machine effort at NIST is following that idea as

well [66].

In the next section, we present cases where native model implementations are

composed.

2.3.2 Model Composition

The emulations we described in the previous section are interesting from a theo­

retical standpoint. However, these emulations may not be desirable in practice: the

emulation of a policy by another policy engine may be slower and, more importantly,

the encoding required for the emulation is likely a verbose enumeration of the state

space of the emulated policy7 . By being verbose, this emulation is likely hard to

analyze. To keep policies as tractable as possible, it is therefore desirable to compose

policies natively, instead of picking a base policy and emulating the other ones based

on it. Besides the previous section, we have so far introduced every security model

in isolation from the other ones, to clarify and focus their exposition. Except for the

access matrix model, which was historically the first model, all these models were

actually presented composed with another access control model, starting from their

original exposition. In this section, we present examples of access control models

compositions that were described in the literature as native compositions.

The Bell-LaPadula model exposition [11] contains a description of the composition

of the mandatory access control policy with a discretionary access control matrix

model. The Biba report [14] also contains an explanation of integrating the mandatory

access control model with a discretionary access control model, namely access control

lists.
7Emulating RBAC on MLS can be justified by the cost of system assurance, which is then further

amortized by implementing RBAC on a system already assured.

40

The original exposition of Type Enforcement [15] discusses how it is supposed

to complement a Multi-Level Secure policy on the SAT platform: “To enforce the

mandatory access policy, the TOP compares security levels of the subject and of the

object, and computes an initial set of access rights according to the algorithm defined

in Section 4.1.1.4 of the TCSEC.” This section of the U.S. Department of Defense’s

Trusted Computer System Evaluation Criteria [46] (the “Orange Book”) contains a

description of the Bell-LaPadula security model.

LOCK, the successor of SAT does however not have co-existing unix and TE

policy enforcement. More precisely, since LOCK emulates unix over its type-enforced

trusted computing base, TE can only be used to confine a whole unix emulation, and

not just individual unix processes, according to [67]. The same authors present in [24]

how, in their prototype, DTE complements unix security, at the process level.

The most complete example of simultaneous native composition of policies on

an existing system that we are aware of is the one performed in Flask [9] (now in

SELinux), which provides simultaneous support for unix discretionary access control,

a form of RBAC, MLS, and TE. These models are composed natively by combining

the information needed for their enforcement in the same security context. Concep­

tually, the security context contains fields for each of the security model implemented

(practically, it is a colon-separated string), to form a 4-tuple like this (user, role,

domain, mlslabel). The notion of role supported by Flask has been slightly adapted:

users are still assigned to roles, but instead of assigning permissions to roles, one as­

signs domains to roles. For an access control request to be allowed, each access control

model has to allow it, based on its configuration. This can be viewed as performing a

lookup in 4 access control matrices at the same time, one for each model. RSBAC [64]

and TrustedBSD [68] perform a similar native composition of access control models.

41

2.4 Administrative Models

In this section we revisit the access control models that we presented in section

2.2 and show, for each of them, the administrative models that are available,

2.4.1 The Access Control Matrix

The access control matrix [7, 8, 69] models subjects performing operations on ob­

jects and subjects, with the subjects considered as objects when an operation is

performed on them. As such, the access control matrix model can represent ad­

ministrative operations, and the permissions they depend on. A typical property of

discretionary access control, for instance, is that the owner of a resource has the ad­

ministrative permission to grant or revoke access on this resource to other subjects.

The ownership of a resource is indicated by an extra flag, owner in the matrix cell that

represents the permissions of the owner on the resource. While the information used

to encode this administrative policy fits in the access control matrix, the rule that

decides on the interpretation of this information is not modifiable. In other words,

while the access control matrix can be used to represent the settings of arbitrary

administrative models, the administrative models themselves fall outside of the scope

captured by the matrix. As such, they can not be changed.

2.4.2 Mandatory Access Control

Mandatory access control models were designed under the assumption that a secu­

rity officer would be tasked with determining and configuring the appropriate security

policy for a system. For instance, “[Bell LaPadula] has no policies for the modifica­

tion of access rights. As a matter of fact, [Bell LaPadula] was originally intended

for systems where there is no change of security levels” [70]. Similarly, the models

presented by Biba [14] have no administrative model either. Original expositions

of TE [15] and its integration in unix systems [67, 71, 72] did not either present an

42

administrative model. The Policy Management Server (PMS) [73] for the SELinux

implementation of TE is the only previous attempt at defining an administrative

model for type enforcement. Its model, however, suffers from a major limitation.

In PMS, the administrative permissions can only be specified in terms of, either the

object types to which access can be granted, or the subject types to which access

can be granted. In other words, there is no way to state administrative permissions

in terms of both the subjects and the objects for which they allow permissions to be

administered.

2.4.3 Role-based Access Control

Many models have been proposed to administer RBAC. Several of these models

[56,74,75] rely on an existing hierarchy of user roles, which is then used to define the

scope of modifications that administrators can perform on the policy. While these

models are well defined, it seems that according to Anita Jones’s definition of useful

security models [76], they are not useful. In this definition, a security model is useful

if it (quoting):

1. accurately and concisely expresses the essence of the phenomena of interest, and

2. tells a system designer or user something he did not know or understand without

the model.

The surveys reported by Li and Mao [77] show that these models can not accurately

represent the existing administrative practices. Consequently, these models fail on the

first part of the above definition. To remedy this problem, Li and Mao [77] propose a

principled approach to designing an administrative model for RBAC and show that

the resulting model, UARBAC, reflects existing practices in the field. This principled

approach has been helpful to us in designing our administrative model for TE (see

next Chapter). We have also used this approach to evaluate our administrative model

(see Chapter 5).

43

2.5 Operating System Access Controls

As we mentioned in the introduction of this chapter (see Figure 2.1), the desire for

operating systems to offer access control mechanisms was introduced by the apparition

of persistent data storage technologies. This desire became a necessity in order to

take full advantage of multiprogramming (and later time sharing), without imposing

restrictions on the programs that can be run at the same time.

Our goal, as stated in the introduction of this thesis, is to provide access controls

that are backwards compatible with existing applications on personal computers.

Nowadays, personal computers all run multi-user timesharing OS’s8 [78] that rely on

virtual memory to isolate processes [79]. Consequently, our survey of the related work

is focused on these OS’s. We will use unix as a running example to provide a narrative

to the security features present on these OS’s, in a way that justifies our choice of

experimental platform. While presenting these features, we provide references to

the original work that these features stem from. We complete this exposition with

security extensions to unix that do not fit this narrative, as well as security features

from other multi-user timesharing OS’s and research OS’s.

2.5.1 Main Features and Limitations of unix Security

The base unix model of security relies on the identity of the user to perform access

control. The identity of a user is composed of a login name and a set of user groups

that the user belongs to. A central notion in unix access control is the ownership

of resources. By default, when a resource is created, its owner is set to be the user

that created it. Additionally, resources are considered owned by a group. By default,

the group of a resource is set, at creation time, to the effective group9 of the user

8By extension, we consider tablet computers and smartphones. Current OS’s deployed on these
platforms are iOS from Apple, Android from Google, and Windows Phone from Microsoft. The first

two are multi-user operating systems.
9A user can be a member of several groups. Depending on the implementation, the semantics can

vary here [80].

44

that created it. For some resources, the owner can configure their permissions. For

instance, the permissions to access a file can be configured by their owner. The base

permissions are read, write, and execute (rwx permission bits, originated by Daley

and Neuman [81]). These permissions can be assigned to three sets of users, from

specific to general: the owner of the file, the group that owns the file, and all the

other users of the system (these are the user, group, others categories). There are

several problems with the base access control model embedded in the original unix.

Most of these problems have been addressed with successive extensions to the base

model. We present these problems and their solutions in turn, and finally discuss

one of the currently unaddressed problems, which this research addresses. Namely,

super-user privileges are required to configure all the interesting security features of

unix.

unix access control was originally specified in terms of owners and non-owners

[48, 82]. This was later extended to include the notion of groups. Groups allow the

sharing of resources among a work group. For instance, it is common practice to create

a unix group for a team of developers that will share access to a code repository. By

making all the files and directories of the repository readable and writable by the

group, and giving no permissions to the others, it is possible to privately share the

repository within the group. Creating user groups and managing their membership,

however, requires superuser privileges. So, even with the group extension, it is still

not possible for a regular user to individually specify several users that should have

access to a file she owns. This problem, contrary to the ones we present below, has

a solution that is available to regular users: posix access control lists [83] enable a

user to define which users have which kind of access on files she owns, on a file-by-file

and user-by-user basis. File access control, nevertheless has issues relating to the

granularity of file access permissions, which we describe next.

Early on, it was recognized that the read and write permissions are too broad

in certain contexts. Consider, for example, the file that is used to store encrypted

45

passwords of users (/etc/passwd10). Users need a way to write in this file in order

to be able to change their password. However, a direct write access right to the

password file would allow a user to change any password in the password file. This

would ruin the system security. The setuid facility [48] was created to solve a similar

problem with accounting files, where the read permission was too coarse to restrict

users to reading only their accounting data. The setuid facility relies on an extra

permission bit on executable files, the setuid bit. If that bit is set on an executable

file, the process resulting from the loading of that file will run under the identity of the

owner of the file. This feature allows a user to create programs, that are executable

by other users and run under her identity, to mediate access to her data. For instance,

a user can change his password (stored in the password file, which is owned by root),

by running the passwd program, which is owned by root and has the setuid bit

set. As we can see, the setuid facility was designed to assist in the deployment

of access mediation with application-level semantics. It was not designed to confine

arbitrary applications: a process, whose identity was set because of the setuid bit

being set on its program file, can actually revert to its original process identity (the

identity of the user that invoked the program). However, if one wants to confine an

un-cooperative process by using setuid, one can write a wrapper program that will

not only change the effective user identity (euid) of the process, but also change its

real user identifity. Having to write such a wrapper, and many other subtleties make

setuid usage a delicate exercise [84]. As a matter of fact, confining un-cooperative

programs is different from the original setuid design goal of allowing a user to set

up mediated access to his data. Furthermore, confining a program does actually

require creating a new account, under which identity the program will be run. Only

a superuser can create accounts on unix.

A common example of how a cooperating process is confined by running under

a specific identity is the way the printing daemon (lpd), is run under a dedicated

10On systems with the shadow passwords package, the password file is split between the /etc/passwd

and /etc/shadow files, and encrypted passwords are stored in /etc/shadow

46

identity (lp). The goal of such a setting is to avoid running the printing daemon

under the super-user identity, in order to limit the damage that can be caused by

exploiting a flaw in the printing daemon. unix, however, has permissive settings

by default [85]. As a result the lp user has, by default, access to all the common

executables of the system, including shells and potentially compilers. It is desirable to

limit this access to prevent privilege escalation [6]. This can be performed by limiting

the access to the filesystem that is granted to the printing daemon.

A commonly documented way of limiting filesystem access is to use chroot, which

changes the directory that a process sees as the root directory of the filesystem. How­

ever, chroot was not designed as a security feature. It was reportedly designed as a

means of testing the compilation of bsd 4.2 [86] (by changing the root of the filesys­

tem, it was possible to clearly establish and guarantee the source code dependencies

of the system). chroot is therefore not reliable as a security feature, which it wasn’t

designed to be in the first place. For instance, chroot can not be used to confine

processes that run as the superuser. The rationale for this weakness is simple: “If you

have the ability to use chroot() you are root. If you are root you can walk happily out

of any chroot by a thousand other means” [87]. For instance, the mknod() system call

could be used by a root process to create device files and then access the system’s

hard drives directly [88].

To enforce a proper confinement of processes, including processes running as root,

chroot has to be supplemented with restrictions on the invocation of system calls.

This is what the jail facility [86] provides. jail, like chroot, requires super user

privileges to be administered. What we also consider to be a problem is that jail is a

system virtualization technique: jail achieves its goal of simplicity by relying on the

simple policy of fully isolating the jails. Virtualization, while it solves the problem

of preventing untrusted process from accessing the host system, does not solve the

problem of mediating interactions between applications [89].

System call interposition has been proposed and implemented in many projects

(e.g. Janus [90] and systrace [91]) as a means of providing a flexible access control

47

mechanism, which can be configured by regular users. This mechanism, although very

promising in terms of flexibility, is actually very hard to get right [92]. An example of

its weakness is its susceptibility to race conditions, as explained in [91] and practically

demonstrated in [93]. Although system call interposition (or even library interposi­

tion) seems like an attractive mechanism to support fine-grained access control in

userspace, without requiring superuser privileges to configure the access control, this

mechanism can not be relied on. It is an instance of “Fortresses built on sand” [94]:

even when a coding error does not make its implementation directly vulnerable, its

integration in the system will [5].

Besides the granularity of the read and write permissions, another problem with

unix permissions are their filesystem orientation: since unix follows the philosophy

that everything is a file, the focus of its access control has been the protection of files,

and the protection of all the system abstractions that can be interacted with as if they

were files (e.g. disk device, shared memory, and filesystem directory). Unfortunately,

this leaves out many interactions that are not covered by the file abstraction. Network

operations like connecting a socket, for instance, do not have mappings to the read,

write, and execute operations.

Moreover, while setuid helps in partitioning the system into subsystems that run

under different identities, it remains hard to assure a system whose security rests on

proper setuid settings [80, 95]. A good part of this problem can be explained by

Dennis Ritchie’s saying about unix: “It was not designed from the start to be secure.

It was designed with the necessary characteristics to make security serviceable” [85].

More formally, the problem in assuring setuid subsystems is that their security can

not be efficiently modeled. Instead, all the file settings, all the potential inputs, and

the code of the subsystem have to be analyzed [80].

Type Enforcement (TE) [15] offers a solution to all of the above problems (except

the need to be superuser to configure it) while being compatible with unix semantics,

as successfully demonstrated in [67,71,72]. TE solves the problem of the inadequacy

of file permissions for other objects: each class of system objects can have different

48

permissions. For instance, there is a class for network sockets which has connect

and bind permissions, in addition to the read and write permissions. TE also solves

the problem of the modeling of the system to assess its security. In TE, processes

run in a domain, which is a notion orthogonal to the unix notion of user identity.

TE has a deny by default policy which facilitates the reasoning on the system: from

a security standpoint, it is therefore easy to tell precisely what the allowed accesses

are. In addition to domains, TE provides the notion of domain transitions. Domain

transitions are very similar to the change of effective identity that setuid causes.

The major difference is that TE domains are easier to reason about when assessing

the security of the system, because one does not need to look at the permissions of

each system object. Instead, system objects are abstracted in terms of types. The

only trick is the special meaning of the word “type” when used in the context of TE,

where a type is just a label attached to an object to indicate its security relevance

(for instance, shadow t is used to label the shadow password file in SELinux). What

one normally thinks of as a type is called a “class”.

TE is an efficient mean of establishing assurance on a system, by modularizing the

proofs of correctness, so that proofs of correctness for small elements of the system

can be produced by humans, and then composed by humans as well. This is necessary

for the social process of proofs to function correctly [47,96]. Also, modern integration

of TE in unix systems ([68, 72, 97]) provide a fine granularity of control

Last but not least, SELinux supports labeled networking [98, 99]. Labeled net­

working consist in using packet filtering criteria [100] to determine the TE type with

which a given network packet should be labeled. Labeling network packets enables the

specification of TE access control rules on them, which in turns blends the network

aspect of the protection state with the rest of the protection state. Typically, this is

not the case: the access control rules for network traffic are written directly as part

of the configuration of the packet filtering facility, which complicates the assessment

of whether the network access controls for an application are appropriate. With TE,

this assessment can be done in two divided (and therefore simpler) steps: validating

49

the labeling configuration, and then validating the accesses granted on these types.

TE is therefore an attractive solution to practical unix security problems, except that

it lacks an administrative model. This is what our research has produced.

2.5.2 Additional unix Security Extensions

In the preceding presentation of unix security, we have introduced the main com­

ponents of unix security in a manner that justifies the existence of our research. In

the following, we correct this bias by presenting other security extensions to unix

without which our coverage of the related work would not be complete.

Variants of the Bell LaPadula Model

The Bell LaPadula model of security has been integrated in “trusted” versions

of several commercial unices, including Trusted AIX (IBM) [101], Trusted Xenix

(Trusted Information Systems) [102], and Trusted Solaris (Sun Microsystems) [103].

IX [104] was a research effort to explore the implications of supporting a variant of

the Multi Level Security model with unix as a base system. IX also supported a

variant of the Biba model.

Variants of the Biba Model

Variants of the low water mark policy proposed by Biba [14] have been imple­

mented on Linux, including LOMAC [105] and UMIP [106]. IX [104] did also imple­

ment a variant of the Biba model.

Ad-hoc Models

Many ad-hoc extensions to the unix security have been proposed. PinUP [107]

offers an enhancement on the protection offered by posix access control lists: it is

50

possible to also restrict which application has access to a file. PinUP is implemented

as a Linux security module. AppArmor [108] adds mandatory access control on Linux,

by defining application profiles. AppArmor profiles can be viewed as a refinement on

the setuid facility, for two reasons. First, a confinement profile is applied based

only on the application being accessed. This is similar to the way setuid attaches

to a binary the new identity to transition a process to. Second, profiles are mostly

focused on filesystem access restrictions. Like setuid and unix, AppArmor is limited

in its ability to enforce fine-grained permissions on the filesystem by not being able to

differentiate among the many kinds of objects that can live in the namespace of the

filesystem. By applying the profile based on the access path to the application, instead

of the information attached to the file’s inode, AppArmor can enforce a different policy

for the same application, depending on which path it is accessed from (in the case

of an inode linked by multiple directory entries). This can either be viewed as a

feature or a security flaw. Keeping with the unix tradition, AppArmor offers very

coarse controls on the network communication of an application: it can restrict which

kinds of network connections are allowed (e.g. tcp or udp), but none of their other

characteristics (e.g. port numbers and addresses). AppArmor offers some support

for transitions between profiles, with its ability to require a new process to execute

under a profiles (the ’p’ and ’P’ access modes). This support is also very similar to

setuid, in the sense that only one profile can exist per program, contrary to SELinux,

where the same program can be the entrypoint to different domains, depending on

the source domain (the domain of the process executing the entrypoint).

Linux Security Modules

The Linux Security Module infrastructure (LSM) [109] provides a interface that

allows Linux loadable kernel module to extend the access controls performed by the

standard kernel. LSM exposes a set of sites in the kernel code where access control

decisions are performed. A module that uses LSM extends the security mechanisms of

51

Linux by registering callbacks for some of these decision points. Many access control

developments on Linux have used this interface, including UMIP [106], AppArmor

[108], PinUp [107], and SELinux [110].

2.5.3 Other Systems

We now present the security features of other mainstream operating systems.

Microsoft Windows

The discretionary access control model of Microsoft Windows [111] uses access con­

trol lists attached to “securable objects”. A mandatory access control model called

Mandatory Integrity Control (MIC) [112] can be layered on these discretionary con­

trols, and provides a protection against network attacks similar to that of UMIP [106].

Additionally, the administration of the discretionary permissions can be simplified by

resorting to the RBAC features that the platform supports [113].

Apple OS X

OS X, from Apple, is a BSD variant of unix. As such, it supports the unix

discretionary access control model and setuid. The integration of TE in the Trust­

edBSD [68] project has been ported to the open source version of OS X, Darwin,

and is named SEDarwin [114]. Since version 10.5 codenamed Leopard and released

in 2007, OS X has been extended with a sandboxing feature, called “sandbox” that

allows overlaying coarse-grained mandatory access control on an application at launch

time [115]. This sanboxing is used to secure the network time protocol (NTP) daemon

and the document indexer used by the local document search feature.

52

OpenVMS

OpenVMS from Hewlet Packard (and originally VAX/VMS from Digital Equip­

ment Corporation) is a multi user timesharing operating system that relies on virtual

memory to isolate processes from one another. OpenVMS offers the following secu­

rity features [116]. Protected objects, which are defined as “passive repositories that

either contain or receive information”, have their security-relevant attributes grouped

in a “security profile”: the owner attribute, used to determine who has discretionary

administrative control on the object; the “protection code”, which defined for broad

groups of users (system, owner, group, and world) the accesses that they have on the

object (similarly to SELinux, OpenVMS uses object classes and class-specific oper­

ations); an access control list, containing access control entries, which are similar in

spirit to (and predate) the posix access control lists [83]. OpenVMS also supports

the implementation of protected subsystems, which rely subject identity transitions,

similar to unix setuid.

2.5.4 Research Operating Systems Security

While not solved on mainstream unix systems, the problems mentioned in our

presentation of unix security have been solved in research operating systems. These

solutions, however, have not been transferred yet to mainstream operating systems.

The cost of migrating (and porting) existing applications to these research systems,

as well as the limited hardware supported by most of these systems seems to have

been dominant factors in preventing their adoption [117].

Capabilities

Capability-based operating systems solve all the granularity and delegation prob­

lems described above. Moreover, they solve efficiently the Confused Deputy prob­

lem [118]. This has been argued strongly in [119], and demonstrated in practice by

53

several systems. Two recent examples of capability-based OSes are Asbestos [120]

and HiStar [121]. Both are built towards enforcing information flow in a distributed

manner. The enforcement is distributed in the sense that the flow is not centrally

decided. Instead, users of the system can decide on some of the information flow

policy.

Programming Languages Techniques

While traditional OS security relies on a combination of security features provided

by the hardware in order to guarantee the integrity of a kernel, Singularity [122] relies

only on programming languages techniques to preserve the integrity of its kernel and

enforce the mediation of inter-process interaction. Two techniques are relied upon.

First, all the code loaded by the operating system is verified for type safety. This

guarantees that a program can not perform arbitrary memory references. Second, a

global system invariant is enforced: no process can contain a direct reference to an

object that is owned by another process. This invariant guarantees that the system

will mediate all all inter-process interaction. To an extent, this approach is very

similar to the approach used in capabilities-based systems which were able to enforce

confinement of processes without resorting to memory protection [123, 124].

2.6 Conclusion

We have presented access control models, and their implementations, that relate

to our work. In this presentation, we have shown the reasons that lead us to choose

this research path, namely extending TE on SELinux with an administrative model,

in order to support our thesis. The reasons were the backwards compatibility of TE

with existing applications, the fine granularity of its permissions, and the comprehen­

siveness of the access controls offered by SELinux, inclusive of network traffic.

54

3. ADMINISTRATIVE MODEL FOR TYPE

ENFORCEMENT

There is little guidance in existing work on how one should go when designing an

administrative model for an access control model. A necessary first step, which we

present in this chapter, is to enable controlled modifications of the policy. Addition­

ally, the granularity at which accesses are controlled should be as fine as possible,

to avoid constraining arbitrarily the possible delegations. The reasoning behind this

approach was the following. An administrative model with controls that would be

coarse would most likely prevent scenarios from being supported by that model. From

a design perspective, a coarse administrative grain would also spoil some of the effort

that was put in implementing fine-grained access control in SELinux. A question

that naturally arises when considering fine-grained access control is whether a fine

granularity of control will result in a significant performance overhead or, at least,

a significantly superior overhead. At the time scale of a running system, however,

changes of the security configuration are extremely rare. As a result, moderate per­

formance of our administrative model would have been acceptable. Instead, our

performance evaluations (see Chapter 5) show that our system is an order of magni­

tude faster than current approaches when performing the small edits that are required

when fine-tuning and debugging a security policy.

In this chapter, we first present the specific variant of Type Enforcement im­

plemented in SELinux. We present a set of formal semantics to ease the reasoning

and understanding of its behavior, together with the security policy language used

to express the configuration of these mechanisms. Then, we present the administra­

tive model that we designed to control modifications of the policy. We present its

semantics, concrete syntax, and how we integrated its implementation in the system.

55

3.1 Modeling Type Enforcement

In this section, we first present a model for the core features of type enforcement:

the accesses allowed within a domain, and the domain transitions. At the same time,

we present how the notion of domain transitions is generalized as type transitions in

SELinux. This generalization allows the treatment of domain transitions and default

labeling of new objects within the same framework. Finally we present extensions of

the TE model that are included in SELinux. One of these extensions, type attributes,

is particularly useful as it supports both our comparison of TE and Core RBAC (see

Section 3.2) and the overlay labeling that we develop in the next chapter (see Chapter

4). Our presentation of these features is such that it enables their composition, as

illustrated in Figure 3.4.

3.1.1 Core Type Enforcement Model

“The foundation of any protection system is the idea of different protection en­

vironments or contexts. Depending on the context in which a process finds itself,

it has certain powers; different contexts have different powers” [7]. Indeed, Type

Enforcement (TE) is based on two sets of rules:

•	 access vector rules which specify, based on the type of a process, the operations

that this process can perform on objects of the system.

•	 type transition rules which specify how types are assigned to new system objects.

This includes typing process objects.

To properly define the access control enforced by the access control system, we

first need to define what an access request is, and how it is presented to the access

control system. A few preliminary definitions are required before we can define an

access request.

Definition 3.1.1 (Class) System resources are grouped in classes, which define the

operations that instances of the resource support. For instance, read and write are

56

valid operations for files as well as sockets, whereas the connect operation is valid

only on a socket object.

Definition 3.1.2 (Object) An object is an instance of a resource class.

Definition 3.1.3 (Object manager) An object manager is a component of the sys­

tem that manages a given class (or several classes) of resources. For instance the vir­

tual filesystem manages files, directories, and file links; the X server manages, among

other things, the cursor, the selection, and drawable areas. Please note that this also

illustrates that object managers can be either kernel-space components (the virtual

filesystem) or user-space components (the X server).

Definition 3.1.4 (Type) Each object has a type attached to it; a type is a string.1

For instance, regular user processes have the type user t, while processes running on

behalf of the system administrator have the type sysadm t. These are examples of

process types; an example of a file type is httpd user content t, the type attached

to the files of the webpage of a user.

In TE, an object is never considered directly. Instead, an object is considered

through its type and class. The class is used to group objects by resource kind, while

the type is used to group objects by security domain.

The model we are defining is an abstraction of the behavior of SELinux, where

the notions of domain and types have been merged. As a result, automatic domain

transitions and the default labeling of new objects have been unified as a single

primitive: the automatic labeling of new objects. Consequently, there is no direct

notion of a domain in SELinux. Instead, a type is considered a domain if it has the

domain attribute. Attributes are presented in more details in Section 3.1.2.

1Contrary to Bell-LaPadula labels, there is no partial order on TE types

57

Syntax

In the following definitions, let T be the set of types, C be the set of object

classes, O be the set of operations that can be performed on objects, I be the set of

objects (instances), Γ ⊂ I × T be the relation that maps an object to its type, and

Ξ ⊂ I × C be the relation that maps an object to its class. Type attributes can be

used interchangeably with types in all places but one (the “new type” field of a type

transition rule). As they play an important role in our modeling, we introduce from

the beggining syntactic placeholders that can accept either types or type attributes.

We call them typoids and represent them individually as θ and their set as Θ.

Definition 3.1.5 (Access request) An access request is a 5-tuple of the form

r(p, θ, θ ′ , c, o, i), where p ∈ I is the process, of type θ ∈ T (the source type), attempting

to perform operation o ∈ O on an instance i ∈ I of class c ∈ C and of type θ ′ ∈ T (the

target type). In some rules, the value of some of these fields is irrelevant. We will

indicate that by using a “don’t care” character (‘ ’) instead of providing a value for

the field. There is a special case for the instance (i) and target type (θ ′) fields: the

creation of new objects. In this case, both of these fields refer to the parent object used

in the creation (when the creation requires a parent). For instance, when creating new

objects on the filesystem (files, directories, named pipes, etc.), the parent object is the

directory where the new object is created.

Definition 3.1.6 (TE access vector rule) An access vector rule is a 4-tuple of the

form a(θ, θ ′ , c, o), where θ ∈ Θ (the source type) is the type of the process attempting

to perform an operation; θ ′ ∈ Θ (the target type) is the type of the object on which

the operation is attempted; c ∈ C is the class of the object on which the operation is

attempted; o ∈ O is the operation being attempted. In early versions of SELinux, any

of the fields of an access vector rule could be wildcarded to indicate that its value was

irrelevant to the specification of the policy. This is not the case anymore, and our

model reflect this fact. Type attributes have been introduced, to enable the designation

58

of sets of objects in access vector rules. This is reflected here by the fact that the

source and target type of the access vector rule can both take a typoid, which can be

either a type or a type attribute.

Definition 3.1.7 (TE type transition rule) A type transition rule is a 4-tuple of

the form (θc, θr, c, tn), where θc ∈ Θ (the current type) is the current type of the object;

θr ∈ Θ (the related type) is the type of a related object; c ∈ C is the class of the related

object; tn ∈ T (the new type) is the type the object will have after the transition.

As with access vector rules, the source type and target types can be replaced by an

attribute, hence our usage of typoids in the definitions of these fields. The new type,

however, can not be replaced by a type attribute. Indeed, a type attribute designates a

set of types, whereas a type transition must specify the single type that the object will

bear after the type transition.

Semantics

In our exposition of the semantics, we are using stuck semantics to simplify the

representation of the dynamics of the system. The access control model is viewed as

receiving a stream of access requests, represented by the list R, out of which the first

element, ρ, is picked for evaluation. With stuck semantics, only the allowed state

transitions, resulting from the successful evaluation of allowed (valid) access requests,

are represented. Denied (invalid) state transitions are implicitly represented by their

omission. As a result, if the stream of access requests contains an invalid request, the

system will enter a stuck state. For example (see Figure 3.2), an attempt to execute a

file (assuming the requesting process has the execute but not the execute no trans

permission on the file) will fail if either there is no automatic type transition that

matches the request or if the matching type transition is not explicitly allowed. Both

failures are implicitly represented in the semantics.

In a nutshell, access vector rules specify the accesses that will be allowed on the

system, while type transition rules specify how newly created objects will be typed.

59

TE-eval

Syntax Metavariables

′ access vector rule B= a(θ, θ , c, o) t type

type transition rule B= n(θ, θ ′ , c, t ′′) α type attribute
′ access request B= r(p, t, t , c, o, i) θ typoid

R B= ρR ∅ c class

θ B= t α o operation

T B= {t} i, j, p, x instances

A B= {α} (j is a new filesystem object;

Θ B= {θ} p is a process;

Γ B= i, t x is a security context)

Ξ B=
{(
{(i, c

)}
)} ρ access request

Ω B= {o} a access vector rule

Ψ B= {a} ∪ {n} n type transition rule

Ω transition operations

Γ object to type mapping

Ψ policy

Semantics

r = r(p, s, t, c, o, i)Ω = ∅
o ∉ Ω

a(s, t, c, o) ∈ Ψ Ψ ⊢ r

) (TE-access-base) (Eval)
Ψ ⊢ r(, s, t, c, o, Ψ, rR → Ψ, R

Figure 3.1.: TE semantics for simple accesses. Our model follows the semantics of
recent version of SELinux (at least past Linux kernel 2.6.30) where wildcards are not
supported in rules anymore, but types attributes can be used instead. We describe
type attributes in Section 3.1.2, with the other extensions that SELinux contributed
to TE.
We are using an explicit set of transition operations, Ω, which will allow us to extend
this base access model with transitions in the next two semantics: transitions on
subjects (see Figure 3.2) and transitions on objects (see Figure 3.3).

60

TE-domain-transitions

Syntax Metavariables

access vector rule B=
type transition rule B=

access request B=
R B=
θ B=
T B=
A B=
Θ B=
Γ B=
Ξ B=
Ω B=
Ψ B=

a(θ, θ ′ , c, o)
n(θ, θ ′ , c, t ′′)

r(p, t, t ′ , c, o, i)
ρR ∅

t α

{t}
α{
{θ
}
}

i, t{(
{(i, c

)}
)}

{o}
{a} ∪ {n}

t

α

θ

c

o

i, j, p, x

ρ

a

n

type

type attribute

typoid

class

operation

instances

(j is a new filesystem object;

p is a process;

x is a security context)

access request

access vector rule

type transition rule

Ω transition operations

Γ object to type mapping

Ψ policy

Semantics

′ r = r(p, t, t , file, execute,)Ω = {execute, setcurrent}
Ψ ⊢ r′′ ′ ′′∃!t s.t. n(t, t , process, t ∈ Ψ′′ r = r(, t, t , c, o,) a(t, t , process, transition

)) ∈ Ψ′
o ∉ Ω a(t, t , file, entry point) ∈ Ψ
Ψ ⊢ r Ψ, Γ , rR → Ψ, (Γ /{(p, t)}) ∪{(p, t ′′)}, R

(Eval)
Ψ, Γ , ρR → Ψ, Γ , R (Eval-exec-trans)

′ r = r(p, t, t , process, setcurrent, x)′ r = r(, t, t , file, execute,) Ψ ⊢ r ′′ Ψ ⊢ r context2type(x) = t∄t ′′ s.t. (t, t ′ , process, t ′′) ∈ Ψ a(t, t, process, setcurrent) ∈ Ψ′ ′′ a(t, t , file, execute no trans) ∈ Ψ a(t, t , process, dyntransition) ∈ Ψ

Ψ, Γ , ρR → Ψ, Γ , R Ψ, Γ , rR → Ψ, (Γ /{(p, t)}) ∪{(p, t ′′)}, R
(Eval-exec-simple) (Eval-exec-dyn-trans)

Figure 3.2.: TE semantics for domain transitions (type transitions on process ob­
jects, when they start executing a new binary): TE-domain-transitions. In SELinux,
domain transitions are implemented as type transitions on process objects. The tran­
sition is triggered when the policy contains a type transition rule that matches the
request by a process, of type s, to execute a file of type t. The details of a success­
ful transition upon exec() are given in rule Eval-exec-trans. Another kind of
transition which does not require executing another binary, a dynamic transition, is
possible. Dynamic transitions are represented in rule Eval-exec-dyntrans. The
details of an allowed call to exec(), without transition, are given in rule Eval-exec­
simple.

61

TE-object-transitions

Syntax Metavariables

′ access vector rule B= a(θ, θ , c, o) t type

type transition rule B= n(θ, θ ′ , c, t ′′) α type attribute
′ access request B= r(p, t, t , c, o, i) θ typoid

R B= ρR ∅ c class

θ B= t α o operation

T B= {t} i, j, p, x instances

A B= α (j is a new filesystem object;

Θ B=
{
{θ
}
} p is a process;

Γ B= i, t x is a security context)

Ξ B=
{(
{(i, c

)}
)} ρ access request

Ω B= {o} a access vector rule

Ψ B= {a} ∪ {n} n type transition rule

Ω transition operations

Γ object to type mapping

Ψ policy

Semantics

′ r = r(t, t , c, o, i)Ω = {create}
o ∉ Ωfs objects =
Ψ ⊢ ρ{dir, file, link file, socket file, fifo file} (Eval)

Ψ, Γ , ρR → Ψ, Γ , R

′ ′ r = r(, t, t , c, create, i) r = r(, t, t , c, create, i)
c ∈ fs objects c ∈ fs objects(i, dir) ∈ Ξ (i, dir) ∈ Ξ

′′ (i, t ′)′ ∈ Γ ′′) ∈ Ψ ′′ (i, t ′)′∈ Γ ′′) ∈ Ψ∄t s.t. n(t, t , c, t ∃!t s.t. n(t, t , c, t′ ′ a(t, t , dir, {search, write, add name})∈ Ψ a(t, t , dir, {search, write, add name})∈ Ψ′′ a(t, t, c, {create, link, write})∈ Ψ a(t, t , c, {create, link, write})∈ Ψ′′ a(t, fs t, filesystem, {associate})∈ Ψ a(t , fs t, filesystem, {associate})∈ Ψ

Ψ, Γ , ρR → Ψ, Γ ∪ {(j, t)}, R Ψ, Γ , ρR → Ψ, Γ ∪ {(j, t ′′)}, R
(Eval-create-simple) (Eval-create-trans)

Figure 3.3.: TE semantics for filesystem type transitions: TE-object-transitions.

62

Access
Vector Rule

Typoid Class Operation

Source

Target

Type
Transition

Rule

Source Related New

Type

allow source target:class operation

type_transition source related:class new

Figure 3.4.: Concrete syntax of the base TE model

63

Formal semantics are provided in Figure 3.1 for simple accesses, in Figure 3.2 for

domain transitions, and in Figure 3.3 for the automatic labeling of filesystem objects.

An informal description of the semantics follows.

Semantics 3.1.1.1 (Authorizing accesses) An access request is authorized if and

only if the policy contains an access vector rule that matches the request. Simple

semantics for the matching are described by the rule TE-access-base in Figure 3.1;

semantics that accept type attributes in the access vector rules are described by the set

of of TE-access-* rules in Figure 3.5. Example2:

allow chkpwd t shadow t:file { getattr open read };

The above example specifies that a process running in the user chkpwd t domain

(the domain used to validate user passwords) can perform the operations getattr and

read on files (objects of class file) of type shadow t. In other words, this example

specifies that programs running in the user chkpwd t domain can read /etc/shadow.

Semantics 3.1.1.2 (Automatic labeling of new objects) When a process cre­

ates a new object, the default behavior of the system is to label this new object with

the type of the process that created it. It is always so, unless a type transition rule spec­

ifies otherwise. There are two interpretations of a type transition rule (tc, tr, c, tn):
•	 Filesystem object labeling3: This interpretation is used to automatically

attach a specific type to objects created on the filesystem. The meaning of the

fields is then the following: tc is the type of the process creating the filesystem

object; tr is the type of the directory in which the file is created; c is the class of

object being created; tn is the type that will be assigned to the object (provided

such a transition is allowed by an access vector rule).

2This example is written using the concrete syntax used to write rule in the SELinux policy language.

This concrete syntax is illustrated in Figure 3.4.

3by filesystem object, we mean an object that is accessible through the filesystem namespace, e.g.

a file, a directory, a UNIX socket, a device, etc.

64

Example:

type transition passwd t tmp t:file passwd tmp t

The above example specifies that when a process running in the passwd t do­

main (the domain of the passwd program) creates an object of class file (a

file) in a directory of type tmp t, then that file should be labeled with the type

passwd tmp t. In other words, this example specifies that when files are created

in the directory /tmp by a process that runs in the passwd t domain, these files

should be labeled as temporary password files, of type passwd tmp t.

•	 Domain transition: This interpretation is used to automatically attach a new

type to a process which, after a successful call to exec(), starts executing a

new program. In other words, this interpretation of transition rules is used

to automatically place processes in specific domains, which depend on the type

attached to the process (before the transition) and the type attached to the file

being executed. tc is the type of the process that is calling exec(), the class c

of object being created is process and tr is the type of the executable file used

as an argument to the exec system call.

Example:

type transition init t apache exec t:process apache t

The above example specifies that when a process running in the init t domain

(the domain of the init daemon) starts executing code based on an executable

file of type apache exec t (the type of the executable file for the apache web

server), then this process should automatically be transitioned to the domain

apache t (the domain of the apache web server daemon). In other words, this

rule specifies that when the init daemon starts the apache web server, the web

server is automatically placed in its own confinement domain which is apache t

Remark 1 Since Type Enforcement follows the principle of full mediation and has a

default policy of denying accesses, type transition rules need to have matching access

65

vector rules for the specified labeling to happen. Type transitions are otherwise denied

by default, as any other operation that is not explicitly allowed.

For an automatic domain transition to be allowed, several permissions are actually

required, as represented in the rule Eval-exec-trans (Figure 3.2): the type transi­

tion from the current process type to the target type of the type transition needs to be

allowed, and the type of the program to which the transition is attached must also be

an authorized entry point into the target domain. Please note that executing programs

without a domain transition requires the specific exec no trans permission, which is

separate from the execute permission, as represented in the rule Eval-exec-simple

(Figure 3.2)

While type transitions for filesystem objects are triggered by the addition of filesys­

tem objects in a directory, several permissions are required for the addition of the

object in the directory to be allowed, besides the permission to add a name in the

directory (add name). The permission to search the directory is required, as a search

of the directory is required upon creation of the file to prevent the creation of two

entries in the directory with the same name. The permission to write the modified

directory is also required to save the modified directory object.

3.1.2 Type Enforcement extensions in SELinux

In SELinux, Type Enforcement has received several extensions. Types can be

labeled with type attributes, to factor policy rules. Types can also be aliased, to

facilitate backwards compatible evolutions of the security policy. Finally, SELinux

supports a version of role-based access control adapted to TE, where a role definition

constrains the set of domains yjsy subjects can enter when they are members of that

role. In this section, we present how these features fit in the model of TE developed

in the previous sections.

66

Type Attributes

To represent type attributes, we need to extend the configuration of the system

with a set of attributes A and two relations to map attributes to types and types to

attributes: type2attr : T → P(A) and attr2type : A → P(T)
Definition 3.1.8 (Type Attribute) A type attribute is a string attached to a type.

Type attributes can be used instead of types in access vector rules.

Semantics 3.1.2.1 (Type Attribute) Type attributes are used to group types in

the security policy. By writing access vector rules on type attributes, general aspects

of the policy can be written once for all types that bear the same attribute. This can be

used either to give the same access from different domains (e.g. write to the system

log socket), or to give the same domain access to different types (e.g. logrotate can

rotate the logs of different daemons).

Type Aliases

From a modeling perspective, we represent type aliases as types, and we ex­

tend the configuration of the system with a relation that maps a type to its aliases:

type2aliases : T → P(T)
Definition 3.1.9 (Type Alias) A type alias defines a secondary name for an ex­

isting type. As such, a type alias can be used wherever a type is expected.

Semantics 3.1.2.2 (Type Alias) Type aliases, as indicated by their name, are just

aliases. They simply and only provide an alternative name to an already existing type.

We have not made a separate figure to represent the semantics of type aliasing. From

a modeling perspective, the use of type aliases when enforcing access control is the

same as the use of type attributes described in Figure 3.5. The semantics for type

aliases are obtained from these semantics by having α be a type alias variable and by

substituting type2aliases for type2attributes in the rules.

67

TE-type-attributes

Syntax

access vector rule B=

type transition rule B=

access request B=

R B=

θ B=

T B=

A B=

Θ B=

Γ B=

Ξ B=

Ω B=

Ψ B=

Ω = ∅

′ r = r(, t, t

a(θ, θ ′ , c, o) t

n(θ, θ ′ , c, t ′′) α

r(p, t, t ′ , c, o, i) θ

ρR ∅ c

t α o

t i, j, p, x

α

{
{
{θ
}
}
}

i, t{(
{(i, c

)}
)} ρ

{o} a

{a} ∪ {n} n

Ω

Γ

Ψ

, c, o,
o ∉ Ω
Ψ ⊢ ρ

(Eval)
Ψ, ρR → Ψ, R

′ a(t, t , c, o) ∈ Ψ

) (TE-access-base)′ Ψ ⊢ r(, t, t , c, o,

Semantics

)

Metavariables

type

type attribute

typoid

class

operation

instances

(j is a new filesystem object;

p is a process;

x is a security context)

access request

access vector rule

type transition rule

transition operations

object to type mapping

policy

′ a(α, t , c, o) ∈ Ψ

α ∈ type2attr(t)

) (TE-access-attr1)′ Ψ ⊢ r(, t, t , c, o,

′ a(t, α , c, o) ∈ Ψ
α ′ ∈ type2attr(t ′)

) (TE-access-attr2)′ Ψ ⊢ r(, t, t , c, o,

′ a(α, α , c, o) ∈ Ψ
α ∈ type2attr t)
α ′ ∈ type2attr

((t ′)
) (TE-access-attr3)′ Ψ ⊢ r(, t, t , c, o,

Figure 3.5.: TE semantics for accesses with type attributes: TE-type-attributes. Type
attributes are described in Section 3.1.2. Type attributes are used to factor policy
rules.

68

Roles

To represent roles, we need to extend the configuration of the system with a set of

of roles R, a relation to map roles to the domain they are allowed into: role2types :
R → P(T), and relation that maps processes to their current role: currentrole : P →

R.

Definition 3.1.10 (Role) A role is a set of types.

Semantics 3.1.2.3 (Role) The role is one of the components of the security context

that SELinux considers when evaluating an access control request. As in role-based

access control, roles in SELinux define a set of functions that a user can perform.

SELinux being built around Type Enforcement, these functions are defined as TE

domains.

Roles impose an additional constraint on domain transitions. For a domain tran­

sition to be allowed, the new type needs to be an element of the set of types defined by

the current role of the process. This can be encoded by adding the extra requirement

t ′′ ∈ role2types(currentrole(p))
to the rules Eval-exec-trans and Eval-exec-dyn-trans in Figure 3.2.

Conditional Rules

Conditional rules, sometimes referred to as “booleans” because of the booleans

that condition their activation, are an extension that was added to SELinux to support

a simple policy configuration mechanism. The idea is that some security decisions can

be formulated in a “checkbox” binary style. Booleans are a representation of these

decisions, and boolean expressions that can encompass several of these decisions are

used to select blocks of the policy accordingly. For instance, the ping program that

is used to check network connectivity relies on icmp sockets to perform some network

69

diagnostics. Under the regular unix access control model, the use of icmp sockets is

considered a privileged operation, and therefore is reserved to the superuser. When

relying only on base unix security, the decision to let regular users use ping with

icmp sockets is performed by using the setuid facility to have ping run automatically

as root, or not.

With the way Type Enforcement is integrated in SELinux, if regular users are

to use ping, then the program still needs to be installed with root as the owner

and the setuid bit set. Conditional rules support changing at runtime (as opposed

to installation time) the decision of whether to let regular users use ping. In the

policy shipped with RedHat Fedora Core 10, the ability for regular users to use ping

is guarded by the user ping boolean.

Definition 3.1.11 (Conditional Rule) A conditional rule is a rule that is guarded

by a boolean expression

Semantics 3.1.2.4 (Conditional Rule) The semantics of conditional rules are the

same as the semantics of regular rules, except that conditional rules are considered

in the process of evaluating access requests only if their guard evaluates to true. This

can be modeled by adding booleans (and their values) to the policy Ψ in our model and

extending rules so that they contain a boolean expression that indicates their validity

(unconditional rules contain the special boolean true that always evaluates to the value

“true”). The evaluation process is then rewritten so that rules are considered only if

the boolean expression they contain evaluates to the value “true”.

Bounded Types

Bounded types are a generalization of hierarchical types, which are currently sup­

ported as bounded types. The idea of bounded types is to constrain the permissions

that a type can exert. If a type t is bounded by type tb, then a subject of type t

can not exert more permissions than the permissions available to a subject of type

tb. Bounded types can be represented by a relation boundingtype : T → T ∪ ⊺. In

70

that relation, types are either bounded by another type, or not. For a given type t,

this last case is represented by inserting the (t,⊺) in the relation.

Definition 3.1.12 (Bounded Type) A bounded type is a type whose maximum ef­

fective permissions as a subject type are bounded by the effective permissions of an­

other type.

Semantics 3.1.2.5 (Bounded Type) Bounded types introduce recursion in the eval­

uation of permissions. For a bounded type, an access request is allowed only if the

corresponding permission is granted to both the type and its bounding type. The bound­

ing type may itself be bounded, hence a recursive evaluation of permissions is needed.

The recursion is defined as follow:

(TE-bound-base)
Ψ⊢boundr(,⊺,t,c,o,)
Ψ ⊢ r(,s,t,c,o,)

Ψ⊢boundr(, boundingtype(s),t,c,o,)

(TE-bound-bounded)

Ψ⊢boundr(,s,t,c,o,)
3.1.3 Summary

In this section, we have presented TE formally, with formal semantics and the

concrete syntax that is used in SELinux. To recap, we have illustrated in Figure 3.4

how the different semantics that we have presented can be composed, to form what

we consider the core features of TE, TE-core. In the following section, we will

compare these features to those of Core RBAC.

3.2 Comparative Modeling of RBAC

In this section we model RBAC using the same formalism that we used to model

TE. The goal is to clarify what RBAC provides with respect to the requirements of

71

TE-core

TE-type-attributes

TE-eval

TE-object-transitionsTE-domain-transitions

� = {create}
� = {execute,
setcurrent}

� = {execute,
setcurrent, create}

Figure 3.6.: Compositions of the core features of TE: TE-core. The features of TE
that we have presented previously, TE-eval (see Figure 3.1), TE-domain-transitions
(see Figure 3.2), TE-object-transitions (see Figure 3.3), and TE-type-attributes (see
Figure 3.5), can be composed as illustrated here. TE-eval is the nucleus of this
set of features, on which the other features can be added. The only thing that is
necessary for this composition is to extend the set of operations for which the base
evaluation rule (Eval) does not apply. When introducing domain transitions with
TE-domain-transitions, the operations on which domain transitions can be triggered
(execute and setcurrent) have to be handled by the evaluation that is specific to
these operations. Similarly, introducing transitions on filesystem objects creation in
TE-object-transitions requires that the create operation be handled as a special case.
We have represented the set of special-cased operations Ω for each features that we
presented. When composing features, the union of the Ω sets of each feature has
to be used, so that all the evaluations that are supposed to have a side effect are
properly redirected to the evaluation rule that supports them.

72

the problem we set to solve (see Chapter 1). We first model RBAC as defined in

the NIST standard [55]. Then we proceed to exhibit a mapping of RBAC on top of

TE. Finally we show that the reverse mapping is not achievable. We discuss why the

reverse mapping is not possible and the impact that this has on our requirements.

3.2.1 Modeling RBAC

We model Core RBAC as it is defined in the NIST standard [55], but using

the same formalism that we use to model the core part of TE. Similarly to the

TE semantics, we use a stuck semantics evaluation4 . There are three cases in this

evaluation (see Figure 3.7): a regular access request, a role activation, and a role

deactivation.

In this model, we did not include administrative operations that can be considered

part of the core RBAC model. These excluded operations include the creation and

destruction of session, user, roles, and permissions. The creation of objects is not

included in our model either, which conforms to our claim of modeling core RBAC:

core RBAC does not model object creation either. We now proceed to constructing

a mapping from RBAC configurations to TE configurations.

3.2.2 Mapping RBAC to TE

Since RBAC has such a prominent place in the existing access control literature, it

is natural to wonder how RBAC and TE compare to each other. We chose to compare

them by showing how one model can express the other one. In this section, we show

a mapping from Core RBAC (as modeled in Figure 3.7), to TE-core (as modeled in

Figure 3.6), where TE is used to emulate RBAC. In other words this mapping is such

that an access is allowed in TE, by the TE configuration, if and only if it would have

been allowed in RBAC by the original RBAC configuration.

4We explain what stuck semantics are at the beginning of Section 3.1.1.

73

Syntax

permission assignment B=

role activation B=

role assignment B=

access request B=

Act B=

Ass B=

P B=

Ψ B=

p(r, ob, op)

act(s, u, r)

ass(r, u)

r(s, ob, op)

act
{
{ass

}
}

{π}

Act ∪ Ass ∪ P

Semantics

ρ = r(s, ob, op)

op ∉ {activate, deactivate}

Ψ ⊢ ρ

Ψ, ρR → Ψ, R

(RBAC-Eval-base)

ρ = r(s, ob, op)

ob = r

op = activate

ass(r, u) ∈ Ass

act(s, u, r) ∉ Act

Ψ, ρR → Ψ ∪ {act(s, u, r)}, R

(RBAC-eval-activate)

Metavariables

s session

u user

r role

op operation

ob object

π permission assignment

act role activation

ass role assignment

Ψ policy

ρ = r(s, ob, op)

ob = r

op = deactivate

ass(r, u) ∈ Ass

act(s, u, r) ∈ Act

Ψ, ρR → Ψ ∖ {act(s, u, r)}, R

(RBAC-eval-deactivate)

p(r, ob, op) ∈ P

act(s, u, r) ∈ Act

Ψ ⊢ r(s, ob, op) (RBAC-access)

Figure 3.7.: Semantics for Core RBAC, as defined in the NIST standard [55]. These
semantics model access checks (RBAC-access), role activations (RBAC-eval­
activate), and role deactivations (RBAC-eval-deactivate).

74

To obtain a mapping from one access control model (RBAC) to the other one

(TE), we need to produce a mapping from the different parts of the source model

to the different parts of the target model. The parts that have to be mapped are

the objects, their operations, the access control domains and their attributes, the

permissions granted to the domains, and the state transitions.

For the mapping of objects and operations, we map each RBAC object to a TE

type and the operations are mapped directly.

ob → tob

op → oop

The permissions granted to an RBAC session are granted based on the active

roles of that session. We start by mapping roles and their permissions to types and

their permissions. More precisely, we map the roles to type attributes. using type

attributes allows us to factor the mapping of permissions as shown below. Also, please

note that the object class is not specified in the mapped TE rule, to conform to the

RBAC standard5 .

p(ri, ob, op) ∈ P → a(αi, tob, , oop) ∈ Ψ

Now that we have a mapping of role permissions to type alias permissions, we

proceed to construct the TE subject types that mirror the RBAC sesssion states.

First, we need a mapping from each possible session state to a type. This is achieved

by enumerating the possible session states. To that extent we first define what we

mean by the state σ(s) of a session s. Based on this definition, we can define an

5An RBAC model with object classes, such as UARBAC [77], would result in the TE object class

being used in the resulting TE access vector rules.

75

auxilliary function mid(σ(s)) that takes a session state σ(s) and generates a mapping

type identifier for it. With nr roles, these definitions and the mapping are as follows.

σ(s) = {act(s, u, r)} s.t. act(s, u, r) ∈ Act

mid(σ(s)) = (u, b1..bi..bnr bits s.t. bi = 1 ⇔ act(s, u, ri) ∈ σ(s))

σ(s) → tmid(σ(s))

With this mapping from session states to types established, we need to make sure

that the mapping types have permissions that correspond to the permissions which

would be granted to a session in that state. This is achieved by attaching to each

type that represents a session state, the set of type aliases that correspond to the

roles that are active in the session state being represented.

αi ∈ type2attr(tmid(σ(s))) ⇔ bi = 1

With this permission mapping we have a mapping that grants accesses to resources

in TE that correspond to the accesses that would be granted in RBAC. A second type

of permissions does also need to be mapped: the permissions to activate or deactivate

a role. These permissions need to be mapped to two TE permissions: the permission

for the running process to request a type transition, and the permission for that

type transition to take place. The TE permissions corresponding to the RBAC role

http:u,b1..bi

76

activations are obtained by enumerating all the valid pairs of session states that belong

to the same user, and generating for each such pair the required access vector rules:

∀(s, s ′) s.t.
σ(s) = (u, b1..bi..bnr) s.t. ∀ 1 ≤ j ≤ nr, bj = 1 ⇒ (u, ri) ∈ Ass

and σ(s ′) = (u, b ′ 1..bi′ ..b ′ nr
) s.t. ∀ 1 ≤ j ≤ nr, b ′ j = 1 ⇒ (u, ri) ∈ Ass

and hammingDistance(b1..bi..bnr , b1
′ ..b ′ i..b ′) = 1nr

then

a(tmid(σ(s)), tmid(σ(s)), process, setcurrent) ∈ ΨTE

a(tmid(σ(s ′)), tmid(σ(s ′)), process, setcurrent) ∈ ΨTE

a(tmid(σ(s)), tmid(σ(s ′)), process, dyntransition) ∈ ΨTE

a(tmid(σ(s ′)), tmid(σ(s)), process, dyntransition) ∈ ΨTE

With this mapping established, we proceed to demonstrate that an access will be

allowed in the TE configuration image if and only if it would have been allowed in

the RBAC configuration source.

We first prove thatΨ RBAC ⊢ req(s, ob, op)⇒ ΨTE ⊢ r(, tmid(σ(s)), tob, , oop,) If
an access req(s, ob, op) is allowed in the source configuration, then by definition of

our mapping, there will be

1. a type tob representing object ob

2. an operation oop representing operation op

3. a type tmid(σ(s)) to represent the state of session s

4. at least one role with the necessary permission that is active in session s. Let

ri be that role (i.e. p(ri, tob, oop) ∈ P)

5. a type attribute αi representing role ri

http:hammingDistance(b1..bi
http:�(s)=(u,b1..bi

77

6. an access vector rule a(αi, tob, , oop) granting the corresponding permission to

αi

7.	 a binding from this type attribute αi to the type tmid(σ(s)) that represents the
session state: αi ∈ type2attr(tmid(σ(s)))

By application of TE-access-attr1 (see Figure 3.5),Ψ TE ⊢ r(, tmid(σ(s)), tob, , op,).
Proving the converse is done by observing that, by construction, our mapping from

an RBAC configuration to a TE configuration is bijective: each element of the TE

configuration exists if and only if there is a corresponding element in the RBAC con­

figuration, and the accesses and domain transitions allowed in TE strictly reflect the

accesses and role activations allowed in RBAC. We have therefore exhibited a map­

ping from RBAC to TE such that the allowed behavior in the TE model is a strict

emulation of the allowed behavior in the TE model. ◻

3.2.3 Mapping TE to RBAC

In this section we argue that a mapping from TE to Core RBAC can not be

constructed, by outlining its tentative construction. Similarly to the mapping in the

other direction, the following elements have to be mapped: the types, the object

classes, their operations, the access control domains and their attributes, the per­

missions granted to the domains, and the domain transitions. We start by mapping

types to roles.

ti → rti

When we map the RBAC permissions to TE access vector rules, there needs to be

one permission assignment for each object that is labeled with the target type. This

78

is because the RBAC standard does not specify a way to group resources, contrary

to the seminal work by Baldwin [58].

a(ti,tj,c,o) ∈ ΨTE → ∀obk ∈ tj, p(rti ,obk,opo) ∈ P

As in the mapping from RBAC to TE, we have not mapped object classes but

remark that this extension can be performed easily, as shown in UARBAC [77].

The domain transitions are the part of the mapping that poses problem. The

problem is twofold, based on the fact that the semantics of role activation are not

amenable to emulating the semantics of domain transitions. First, domain transitions

are atomic and the set of permissions available to a domain after the transition can

be completely disjoint from the set of permissions available to the domain before

the transition. This disjointness is not supported atomically by RBAC, which offer

only a role activation (which adds permissions) or a role deactivation (which removes

permissions) as atomic primitives. In other words, RBAC is missing a role transition

which would replace an active role by another one6. Second, TE domain transitions

are unidirectional: the permission for a process to transfer from one domain to another

is directional. The fact that a process is allowed to transition from a domain to

another one does not imply the authorization to transition back. In RBAC, however,

domain transitions are all reversible: the user to role assignment determines the set

of roles that a user can activate and deactivate at will. For these reasons, we consider

that Core RBAC is not capable of emulating TE. Core RBAC can be extended, and

then probably be able to emulate TE; that is beyond what the standard covers.

3.2.4 Summary

In order to compare RBAC and TE, we have provided a model of Core RBAC

using the same formalism that is used in the rest of this chapter to model TE. In

6Flask, on the other hand, offers only role transitions and forces the set of active roles to be a

singleton.

79

this formalism, we have constructed a mapping from Core RBAC to TE-core which

shows that TE is capable, in theory, of emulating Core RBAC. In practice, though,

this mapping would only work for RBAC configurations with a small number of roles.

Indeed, for nu users and nr roles, our mapping generates up to nu ×2nr domains which

are connected by up to nu × 2nr × nr transitions. This quickly becomes intractable

as the numbers of roles and users grow. This limitation can be avoided altogether

by composing TE with RBAC, as we showed in our survey of the related work (see

Section 2.3.2). This composition of access control models is how the family of systems

derived from Flask offers access control mechanisms that are expressive in practice.

The mapping of TE-core to Core RBAC can not be achieved because Core RBAC

lacks unidirectional role transitions, which are an integral part of TE and a key feature

to confine applications. An analogy with the real world should make our point clearer:

when a criminal is convicted and jailed, that person can not decide on her own to

leave the jail. Neither should a regular process be allowed to change its confinement

at will, regardless of the user on behalf of whom the process runs. We are sure that

Core RBAC can be extended to support unidirectional role transitions. For instance,

the work by Nyanchama and Osborn on MAC atop RBAC [125] showed how Core

RBAC (before it was standardized) can be extended to provide acyclic information

flow. Once again, we think that model composition is the solution that makes sense

in practice.

We have compared TE and RBAC and observed that RBAC does not offer uni­

directional domain transitions. Since these unidirectional transitions are essential to

the confinement of applications, the remainder of this thesis focuses on TE. In the

next section, we proceed to extend TE so that it contains its own administrative

model.

80

3.3 Extending TE to Contain Its Administrative Model

In Section 3.1, we presented the core features of TE and its extensions, as they

are embodied in SELinux. We now present how TE can be extended to support

recursive policy statements. That is, we present an extension of the TE model (as

it was modeled above) in which a TE policy can contain statements that regulate

modifications that can be made to the same policy in which they are contained.

This extension is exposed in two steps. First, we explain the necessary reification of

policy statements (see Section 3.3.1). New objects classes and their operations are

added to the model and the evaluation semantics are modified accordingly. We show

that this first step is a necessary but not sufficient extension for TE to contain its

own administrative model with support for fine-grained delegation of administrative

permissions. Consequently, we then expose an additional extension, with consists

in pattern-matching the policy statements in order to address this limitation (see

Section 3.3.2).

3.3.1 Recursive Policy Statements

We now describe how the TE model can be extended to support simple recursive

policy statements. These recursive policy statements express under which conditions

the policy can be modified, and hence support the definition of an administrative

policy.

Syntax

At the syntax level, supporting recursive policy statements requires adding two

classes of objects to represent the policy statements we presented in the TE model

(see Section 3.1): the av rule class to represent access vector rules and the tr rule

class to represent transition rules.

81

These classes support two operations that enable administration of the security

policy: insert for the creation of a policy statement, and remove for the deletion of

a policy statement.

Semantics

This simple recursive extension of TE does not change the structure of access re­

quests, access vector rules, or type transition rules, so the semantics of the evaluation

of an access request according to the policy of the system remain unchanged, except

for the case of access requests on access vector rules. Indeed, allowing to delete or

create an access vector rule has the side effect of modifying the policy, as shown in

the rules Eval-insert and Eval-remove (Figure 3.8). Supporting this extension

to the semantics requires a modification of the implementation of the access control

mechanisms so that the two newly introduced av rule and tr rule object classes

can be represented and manipulated. We discuss this extension at the end of this

chapter (see Section 3.4).

With the addition of the av rule and tr rule object classes, it is now possible

to write access vector rules like the following.

allow webmaster t webapp t:av rule { insert remove };

This rule specifies that a webmaster can create and delete access vector rules that

have the type webapp t.

Limits

The recursive extension that we explained does actually suffer from a serious

limitation: there is no clear intuition on how to represent the security relevance of

a given av rule or tr rule object through a sinlge type. For instance, there are at

least two different ways to type av rule objects: use the source type or use the target

type. As we explain below, none of these alternatives is satisfactory.

82

TE-recursive

Syntax Metavariables

access vector rule B= a(s, t, c, o) s, t types

type transition rule B= n(s, t, c, s ′) c class

access request B= r(s, t, c, o, i) o operation

R B= rR ∅ i instance

Ψ B= {a} ∪ {n} r access request

a access vector rule

n type transition rule

Ψ policy

Semantics

r = r(s, t, c, o, i)
Ψ ⊢ r

c ∉ {av rule, tr rule}
o ∉ {execute, create, setcurrent}

Ψ, rR → Ψ, R
(Eval-base)

r = r(s, t, c, o, i)
Ψ ⊢ r

c ∈ {av rule, tr rule}
o = insert

Ψ, rR → Ψ ∪ {i}, R
(Eval-insert)

r = r(s, t, c, o, i)
Ψ ⊢ r

c ∈ {av rule, tr rule}

r = r(s, t, c, o, i)
a(s ′ , t ′ , c ′ , o ′) ∈ Ψ
match type s, s ′
match type

((t, t ′
))

match class(c, c ′)
match op(o, o ′)

Ψ ⊢ r
(TE-base)

match type(t, t) (Match-T-eq)
match type(t,) (Match-T-wild)
match type(c, c) (Match-C-eq)
match type(c,) (Match-C-wild)
match type(o, o) (Match-O-eq)
match type(o,) (Match-O-wild)

o = remove

Ψ, rR → Ψ ∖ {i}, R
(Eval-remove)

Figure 3.8.: Semantics for the recursive TE model. Please note that the base rule
for the evaluation of access requests is now (Eval-base). It excludes the cases of
execute and create operations. These operations are still allowed according to the
semantics defined in Figures 3.2 and 3.3. Additionaly, the Eval-base rule now
excludes operations on the av rule and tr rule classes of objects, since the insert
and remove operations on these classes have the side effect of modifying the policy.
These modifications are reflected in the Eval-insert and Eval-remove rules.

83

If we use the source type, meaning that an av rule object will have the same type

as the source type it contains, then the previous example (see Section 3.3.1) can be

interpreted as meaning “the webmaster has administrative rights to add and remove

permissions to the web application domain”. However, such a statement presents a

serious limitation: it does not specify which permissions the webmaster can add or

remove to the web application domain. A malicious webmaster could use this lack of

specification to get full privilege access on the machine.

If we use the target type, meaning that an av rule object will have the same type

as the target type it contains, then the same example can be interpreted as meaning

“the webmaster has administrative rights to add or remove permissions to perform

operations on objects of type webapp t.” However, yet again, such a statement

presents a serious limitation: it does not specify who the webmaster can grant these

permissions to. Moreover, under these semantics it is hard to identify who is granted

administrative rights on the web application domain or, for that matter, who is given

administrative rights to any security domain.

A similar limitation of Type Enforcement was also pointed out by Spencer et

al. [9] in the context of filesystem access control, when considering the relabeling of

files (the operation that changes the security type attached to a file). In this case,

the decision depends on more than two types: three types have to be considered, as

the decision depends on the subject requesting the relabeling, the current type of the

file, and the desired type of the file. Fortunately in this case, the decision rule can

be properly encoded by three separate permissions: a permission for the subject to

relabel from the original type, a permission for the subject to relabel to the desired

type, and a permission for the original type of the file to be changed to the desired

type. This solution, however, can not be adapted to our problem.

Another alternative, which would use types to enumerate the possible combina­

tions of source types and target types would not be practical as it would introduce

a proliferation of types. While this solution could work in theory, it would not work

in practice (similarly to the emulation of RBAC with TE which we showed in Sec­

84

tion 3.2.2). We have therefore extended the simple recursive model with support for

recursive pattern matching on rules, which we present below.

3.3.2 Pattern Matching Policy Statements

To remedy the limitations that were presented above, we have extended the re­

cursive TE model with support for pattern matching the contents of permission and

transition objects (defined below). This feature enables the definition of fine-grained

administrative policies.

Definition 3.3.1 (Permission object) An object which is an instance of the

av rule class is called a permission object, for brevity, as it does represent a per­

mission in the policy.

Definition 3.3.2 (Transition object) An object which is an instance of the

tr rule class is called a transition object, for brevity, as it does represent a type

transition in the policy.

Syntax

Definition 3.3.3 (TE-Pattern access vector rule) A TE-Pattern access vector

rule has the same overall structure as an access vector rule from the core TE model

(see Section 3.1.1): it is a 4-tuple of the form (s, t, p, o) where s, t, and o can take

the same values that they would in an access vector rule. The difference is with the

p field which can contain either an object class specification (as in a regular access

vector rule), or a policy statement pattern, to constrain the content of permission or

transition objects that can be manipulated.

Definition 3.3.4 (Permission pattern) A permission pattern is a recursive struc­

ture with the same fields as a TE-Pattern access vector rule. In the base case, the

p field of the pattern contains a class specification. In the recursive case, the p field

85

contains another permission pattern. Any of the fields of a permission pattern can be

wildcarded.

Definition 3.3.5 (Transition pattern) A transition pattern is a structure with the

same fields as a TE type transition rule. Any of the fields of a transition pattern can

be wildcarded.

Semantics

The semantics are summarized in Figure 3.9.

Semantics 3.3.2.1 (Authorizing accesses) As previously, an access request is au­

thorized if and only if the policy contains an access vector rule that matches the re­

quest; the main extension to the semantics is the addition of the rules that support

the recursive pattern-matching of permission objects: TE-pattern, Perm-patt­

nested, and Pattern-nested-rec (fig. 3.9).

With this extended recursive model, it is now possible to specify precisely that the

webmaster can manage all permissions that grant access to objects of type webapp t:

allow webmaster t :av rule(,webapp t, ,) { create delete };

Please note that in the above rule we omitted to specify the type of the permission ob­

jects that the webmaster can manipulate; such a specification is not useful, as pointed

out in Section 3.3.1.

Semantics 3.3.2.2 (Automatic labeling of new objects) The semantics for

type transition rules remain unchanged.

Proof of termination

We now proceed to demonstrate that the evaluation of an access request in the

extended recursive model does still terminate in finite time, despite its recursive

86

TE-recursive-pattern

Syntax Metavariables

access vector rule B= a(s, t, c, o) a(s, t, p, o) s, t types

type transition rule B= n(s, t, c, s ′) c class

access vector pattern B= avp(s, t, c, o) avp(s, t, p, o) o operation

type trans pattern B= ttp(s, t, c, s ′) i instance

rule pattern B= access vector pattern r access request

type trans pattern a access vector rule

access request B= r(s, t, c, o, i) n type transition rule

R B= rR ∅ p rule pattern

Ψ B= {a} ∪ {n} Ψ policy

Semantics

r = r(s, t, c, o, i)
Ψ ⊢ r

c ∉ {av rule, tr rule}
Ψ, rR → Ψ, R

(Eval-base)

r = r(s, t, c, o, i)
Ψ ⊢ r

c ∈ {av rule, tr rule}
o = insert

Ψ, rR → Ψ ∪ {i}, R
(Eval-insert)

r = r(s, t, c, o, i)
c ∈ {av rule, tr rule}∃p s.t. (a(s, t, p, o) ∈ Ψ∧match(i, p))

Ψ ⊢ r
(TE-pattern)

i = n(s, t, c, s ′
is in(ttp(s, t, c, o)), p)

match(i, p) (Patt-ttr-base)

r = r(s, t, c, o, i)
Ψ ⊢ r

c ∈ {av rule, tr rule}
i = a(s, t, c, o)

is in(avp(s, t, c, o), p)
match(i, p) (Patt-avr-base)

o = remove

Ψ, rR → Ψ ∖ {i}, R
(Eval-remove) i = a(s, t, p ′ , o)′ is in(avp(s, t, p , o), p)

(Patt-avr-nested)r = r(s, t, c, o, i) match(i, p)
c ∉ {av rule, tr rule}′ ′ ′ a(s , t , c , o ′) ∈ Ψ′ ′ ′ is in(avp(s, t, c, o), avp(s , t , c , o ′))

Ψ ⊢ r
(TE-base)

Figure 3.9.: Semantics for the extended reflexive TE model (1/2)

87

TE-recursive-pattern

Semantics (cont.d)

′ p = ttp(s, t, c, o) p = avp(s, t, p , o)′ ′ ′ ′ ′ ′′′ p ′′ = ttp(s , t , c , o ′) p ′′ = avp(s , t , p , o ′)′ ′ match type s, s match type s, s

match type

((t, t ′
)) match type

((t, t ′
))

match class(c, c is in(p ′ , p ′′′)
′)

match op(o, o ′) match op(o, o ′)

(Pattern-inc-ttr) (Pattern-inc-avr-rec)
is in(p, p ′′) is in(p, p ′′)

p = avp(s, t, c, o)′ ′ ′ ′)p ′′ = avp(s , t , c , o match type(t, t) (Match-T-eq)′ match type s, s match type(t,) (Match-T-wild)

match type

((t, t ′
)) match class(c, c) (Match-C-eq)
′)
match class(c, c match class(c, (Match-C-wild)′)match op(o, o match op(o, o)) (Match-O-eq)

(Pattern-inc-avr-base)′′) match op(o,) (Match-O-wild)is in(p, p

Figure 3.9.: Semantics for the extended reflexive TE model (2/2)

88

nature. Showing this property is important, as otherwise the administrative extension

would not guarantee that modifications to the policy can be made in a timely fashion.

Moreover, it would potentially be possible to use these extensions for denial of service

attacks, by loading the system with non-terminating policy administration jobs.

Definition 3.3.6 (Depth of a permission pattern) A permission pattern where

the p field contains a class specification is said to have depth 0; otherwise the depth

of a pattern is equal to the depth of the pattern it contains, plus one.

Lemma 3.3.2.1 The nesting of patterns can not form a cycle.

Proof [Proof of Lemma 3.3.2.1] Since there is no way to name patterns, there is

no way to reference patterns, and hence no way to form a cycle with the nesting of

patterns.

Corollary 3.3.2.2 (Corollary of Lemma 3.3.2.1) The depth of a pattern is fi­

nite.

Theorem 3.3.2.3 The evaluation of an access request terminates in a finite number

of evaluation steps.

Proof [Proof of Theorem 3.3.2.3]

Let r = r(s,t,c,o, i) be the access request being evaluated (granted or denied).

Let a be the access vector rule against which the access request is being evaluated.

There are two cases:

′ ′ ′ 1. a = a(s ,t ,c ,o ′)
In this case, the evaluation proceeds through the rule TE-base, which trig­

gers one evaluation of the rule Pattern-inc-avr-base, which terminates after

matching the elements of a and r one by one.

′ ′ ′ 2. a = a(s ,t ,p ,o ′)
We prove this case by induction on the depth of the pattern contained in an

access vector rule.

89

• Base case: p ′ is a pattern of depth 0.

This means that we have either p = p(s ′′ , t ′′ , c ′′ , o ′′) or p = p(s ′′ , t ′′ , , o ′′)
Either cases will be evaluated through the rules TE-Pattern, Patt-avr­

nested, and if i is a permission, then Pattern-inc-avr-base, which

terminates after matching the elements of i and p one by one.

′ • Induction hypothesis: if p is a pattern of depth (n − 1) (n ≥ 1), the
evaluation terminates.

• Induction: if p ′ is a pattern of depth n, it contains by definition a pattern

of depth (n−1). The evaluation of the access request will be reduced, after

application of the rules TE-Pattern, Patt-avr-nested and Pattern-

inc-avr-rec, to the same evaluation that would be performed for a pat­

tern of depth (n − 1), which terminates.

The result of this theorem is strengthened by the fact that, in practice, we do not

expect a policy to contain patterns of a depth exceeding two: depth zero corresponds

to base permissions, depth two to administrative permissions (which constitute the

administrative policy), and depth three to administrative permissions on the admin­

istrative policy. Beyond depth three, we lose the security intuition on the meaning of

permissions.

3.3.3 Administrative Templates

With the previous extension, it is now possible to precisely define which adminis­

trative permissions are granted to which user of the system. This precision, however,

comes at a price: many administrative rules are necessary to grant administrative

privileges. For instance, 451 type enforcement access vectors are used in the defini­

tion of the domain of the webalizer application (a log analysis application). The same

90

number of administrative rules is required to grant a user the administrative right to

create a similar domain.

It is a direct consequence of the fine granularity of the administrative permissions

that, for each permission that is to be granted, there needs to be an administrative

permission to authorize the granting of this permission. Having an administrative

policy whose size is comparable to the size of the underlying policy is not an attractive

perspective, specially in the case of TE, where the underlying policy can be large.

Our approach to mitigating this problem consists in using parts of the policy as

templates for other parts of the policy, in a fashion similar to the use of bounded types

(see Section 3.1.2). Bounded types are used to define the access boundary of a type

based on the access boundary of another type. We propose to use the access boundary

of a type to define administrative boundaries. For instance, consider a webmaster

that is allowed to deploy and configure log analysis tools. One could say that the

webmaster is allowed to grant, to a specific domain, all the permissions granted to the

webalizer domain. By doing so, all the efforts put into the definition of the webalizer

domain can be reused to define similar boundaries for similar applications.

We have introduced two kinds of templates, for which we provide definitions and

semantics below. The first kind of template, based on all the permissions of a do­

main, is an administrative domain template. The second kind of template, based on

the permissions that a domain has on a resource of a given (TE) type, is called an

administrative resource template.

Using Administrative Templates

Definition 3.3.7 (Administrative domain template) An administrative domain

template is a 3-tuple (s, dref, dtarget), where dref is the domain used as a reference for

the template, dtarget is the target domain to which the template can be applied, and s

is the subject that can apply part of the template.

Semantics 3.3.3.1 (Administrative domain template) Administrative

templates offer an additional means of granting administrative access to the policy.

91

Consequently, the semantics of the extended reflexive model (see Figure 3.9) are aug­

mented, as illustrated in Figure 3.10. These semantics indicate that a subject can can

add permission to a domain dtarget if:

•	 There is a domain dref that possesses this permission

•	 There is an administrative template that indicates that s can grant permissions

from domain dref to domain dtarget.

The granting of administrative permissions according to administrative domain tem­

plates is embodied by the rule Admin-dtmpl (see Figure 3.10).

We use the following concrete syntax to represent an administrative domain tem­

plate. This syntax is deliberately chosen to be similar to the definition of type bound­

aries, as the concepts are similar.

admin_domain_template admin referencedomain targetdomain1\

[targetdomain2 ...]

Definition 3.3.8 (Administrative resource template) An administrative re­

source template is a 5-tuple (s, dref, tref, dtarget, ttarget), where dref and tref are the

reference domain and target type for the template, and dtarget and ttarget are the do­

main and target type to which the template is applied, and s is the subject to which

the template administrative permissions are granted.

Semantics 3.3.3.2 (Administrative resource template) Administrative resour­

ce templates offer an additional means of granting administrative access to the policy.

Consequently, the semantics of the extended reflexive model (see Figure 3.9) are aug­

mented, as illustrated in Figure 3.10. These semantics indicate that a subject can can

add a permission to a domain dtarget if:

•	 There is a domain dref that possesses this permission on a type tref

•	 There is an administrative resource template that indicates that s can grant

permissions that domain dref has on type tref to domain dtarget on type dtarget.

92

The granting of administrative permissions according to administrative domain tem­

plates is embodied by the rule Admin-rtmpl (see Figure 3.10).

We use the following concrete syntax to represent an administrative resource tem­

plate.

admin_resource_template admin referencedomain referencetarget \

targetdomain targettarget

Administering Administrative Templates

To support the formulation of precise administrative rules on the insertion and

removal of administrative templates, the model needs to be extended so that ad­

ministrative templates are manipulable objects, whose manipulation is regulated by

administrative rules. This extension is similar to the extension that handles tr rule

objects; we present it below.

Definition 3.3.9 (Administrative template object) Administrative domain

(resp. resource) template rules are represented as instances of the admin tmpl

(resp. admin rtmpl) class, and are called administrative domain (resp. resource) tem­

plate objects when they are being manipulated by administrative operations.

Semantics 3.3.3.3 (Administering administrative templates) Similarly to

av rule and tr rule objects, admin dtmpl (resp. admin rtmpl) objects support two

operations: insert and remove. Similarly to tr rule objects, the allowed manipula­

tions of these objects are declared with rules that can contain simple (non-recursive)

patterns that specify their allowed content. The detailed semantics are provided in

Figure3.11.

http:Figure3.11

93

TE-admin-template

Syntax Metavariables

access vector rule B= a(s, t, c, o) a(s, t, p, o) s, t, d types

type transition rule B= n(s, t, c, s ′ c class

admin domain rule B= adr(s, t, t ′
)
) o operation

admin resource rule B= arr(s, d, t, d ′ , t ′) i instance

access vector pattern B= avp(s, t, c, o) avp(s, t, p, o) r access request

type trans pattern B= ttp(s, t, c, s ′) a access vector rule

admin domain pattern B= adp(s, t, t ′) n type transition rule

admin resource pattern B= arp(s, d, t, d ′ , t ′) b admin domain rule

rule pattern B= access vector pattern l admin resource rule

type trans pattern p rule pattern

admin domain rule Ψ policy

admin resource rule

access request B= r(s, t, c, o, i)
R B= rR ∅

Ψ B= {a} ∪ {n} ∪ {b} ∪ {l}
Semantics

r = r(s, t, c, o, i)
o ∈ {insert, remove}′ ′ ′ i = a(d , t , c , o ′)

adr(s, d, d ′) ∈ Ψ′ ′ a(d, t , c , o ′) ∈ Ψ
(Admin-dtmpl)

Ψ ⊢ r

r = r(s, t, c, o, i)
o ∈ {insert, remove}′ ′ ′ i = a(d , t , c , o ′)

arr(s, dref, tref, dtarget, ttarget) ∈ Ψ
′ a(dref, tref, c , o ′) ∈ Ψ
(Admin-rtmpl)

Ψ ⊢ r

Figure 3.10.: Semantics for administrative templates: additional rule that allow ad­
ministrative operations if there is an administrative template based on which the
administrative operation can be allowed.

94

TE-admin-template-admin

Syntax Metavariables

access vector rule B= a s, t, c, o a s, t, p, o s, t, d types

permission pattern B= p

(
(s, t, c, o

)
) p

(
(s, t, p, o

)
) c class

access request B= r(s, t, c, o, i) o operation

R B= rR ∅ i instance

Ψ B= {a} a access vector rule
′ ′′ p, p , p permission pattern

r access request

Ψ policy

Semantics

i = adr(s, t, t ′)
is in(adp(s, t, t ′), p)

match(i, p) (Dpatt-bound-base)

p = arp(s, d, t, d ′ , t ′)
p ′′ = arp(s ′ , d ′′ , t ′′ , d ′′′ , t ′′′)

match type(s, s ′)′′)match type(d, d
i = arr(s, d, t, d ′ , t ′) match class(d ′ , d ′′′)match type(t, t ′′)

is in(arp(s, d, t, d ′ , t ′), p) match class(t ′ , t ′′′)
′′)match(i, p) is in(p, p

(Rpatt-bound-base) (Rpattern-inc-bound)

p = adp(s′ , t′′, t ′)′′′)p ′′ = adp(s , t , c
match type(s, s ′)′′)match type t, t′ ′′′)match class

((t , t
(Dpattern-inc-bound)′′)is in(p, p

Figure 3.11.: Semantics for the administration of administrative templates. While the
semantics of Figure 3.10 cover the granting of permissions based on administrative
templates, these semantics cover the how administrative templates themselves are
manipulated. The above semantics are both a generalization of Figure 3.10 and an
extension of the semantics from Figure 3.9 (where we introduced the pattern-matching
extension).

95

Proof of Termination

The administrative templates are supported by the introductions of six rules.

The Admin-dtmpl, Dpattern-inc-bound, Dpatt-bound-base, Admin-rtmpl,

Rpattern-inc-bound, and Rpatt-bound-base rules introduce six new base cases.

These base cases do not change the termination of the recursive evaluation of per­

missions; they just contribute additional base cases to the evaluation. Consequently,

the results of the proof of termination still hold.

3.3.4 Summary

In this section, we have presented an administrative model for TE, which is con­

structed as an extension of TE. The construction has proceeded in two steps. First

we have reified TE policy elements, exposing them as objects that are visible at the

TE level of the model, so that their manipulation can be subjected to TE access

controls. We have shown that this simple extension has obvious limitations. Then,

we have shown how these limitations can be addressed by introducing recursive pat­

tern matching on the policy constructs. This pattern matching supports the precise

expression of fine-grained administrative permissions. Furthermore, it supports an

administrative policy on the administrative policy itself (and so on), hence avoiding a

fixed administrative policy on the administrative policy. Finally, we have introduced

administrative templates to support the factorization of the administrative policy,

by using existing permissions on a given domain as blueprints for administrative

permissions on another domain. For both the recursive pattern matching and the ad­

ministrative template, we have shown that the evaluation of access control decisions

always terminates in a finite number of steps.

96

3.4 Implementation

We have integrated the administrative extensions to TE (presented above) in a

prototype on SELinux. In this section, we describe this integration. It has involved

deciding on the interface through which to expose the reified elements of the TE

policy, so that they can be manipulated. We have chosen to use a virtual filesystem,

which we present in Section3.4.1. Another important aspect of the implementation is

integrating the implementation of this new interface with the rest of the system in a

way that preserves the security guarantees of the system. We present this integration

in Section 3.4.2, where we argue that this integration constitues an extension of the

trusted computing (TCB) base of the system, in the form of a TCB subsystem. As

such, we show that this integration does not weaken the security guarantees of the

system, per se.

3.4.1 Interface

We have chosen to expose the policy in terms of a virtual filesystem. That is, the

elements of the policy are exposed as virtual files and directories, whose manipulations

are regulated by the administrative policy. The administrative policy itself is also

exposed inside the same virtual filesystem.

There are several reasons for our choice of using the filesystem interface to expose

the policy. The UNIX filesystem API is well understood and supported by many

utilities. As a result, standard command-line utilities can be used to interact with

our interface (e.g. ls for listing policy elements). Being able to re-use file manip­

ulation command line utilities, which have been stable for years, to administer the

policy is a big win from an assurance perspective: no extra tool has to be developed

to interact with the policy through the filesystem interface. Moreover, having the

interface to the policy be textual eases the development and debugging, since the

same file manipulation utilities can also be relied on during the development of the

interface to test and diagnose the interface. This increases assurance that the system

will behave according to its specification.

97

Yet another advantage of using a filesystem interface is that remote administration

can be enabled by exporting the virtual filesystem over a network file system. The

filesystem can then be remotely mounted at the administration point. Using a network

filesystem for remote administration avoids the design, development, and debug of a

protocol and its accompanying libraries and daemons. This is again an advantage from

an assurance perspective. One important requirement that is placed on the network

filesystem is that it preserves the type labels so that only authorized domains can

access the administrative filesystem. This will be addressed by an upcoming extension

to NFSv4. (There is currently an IETF draft and a Linux implementation of labeled

extensions for NFSv47, which addresses this issue of transporting security labels over

NFSv4).

Table 3.1: Filesystem layout, and mapping from policy modifications to filesystem
operations

Policy modification FS path FS operation

add access vector rule avr /avr/ creat(avr, mode)
remove access vector rule avr /avr/ unlink(avr)

add type transition rule ttr /ttr/ creat(ttr, mode)
remove type transition rule ttr /ttr/ unlink(ttr)

add administrative rule meta /meta/ creat(meta, mode)
remove administrative rule meta /meta/ unlink(meta)

add conditional a.v.r. avr with guard guard /cond/guard/ creat(avr, mode)
remove conditional a.v.r. avr with guard guard /cond/guard/ unlink(avr)

add type name /type/ creat(name, mode)
remove type name /type/ unlink(name)

add attribute name /attr/ mkdir(name, mode)
remove attribute name /attr/ remove(name)

attach attribute name1 to type name2 /attr/name1/ creat(name2, mode)
detach attribute name1 from type name2 /attr/name1/ unlink(name2)

create type name1 with attribute name2 /attr/name2/ creat(name1, mode)
remove type name1 with attribute name2 /type/ unlink(name1)

7http://www.ietf.org/internet-drafts/draft-quigley-nfsv4-sec-label-00.txt

98

/avr unconditional access vector rules

/ttr unconditional type transition rules

conditional rules guarded by guard "guard1"/guard1
/sefuse /cond

... ...

/type

/attr
/attrm TE types with attribute "attrm"

/meta administrative rules

Figure 3.12.: Layout of the virtual filesystem

/guardn conditional rules guarded by guard "guardn"

TE types

/attr1 TE types with attribute "attr1"

99

We now explain the mapping of operations from the administrative model to

virtual filesystem interface. Paraphrasing the discussion of the Plan 9 filesystem [126],

object-oriented readers may approach the rest of this [explanation] as a study in how

to make objects look like files. The mapping from policy modifications to filesystem

operations, together with the layout of the filesystem, are summarized in Table 3.1;

the arborescence of the filesystem is represented in Figure 3.12.

We have chosen to expose each policy statement as either a file or a directory. The

rationale for that choice is easier to explain by considering the alternative: any group­

ing of policy statements within a virtual file would force a stateful implementation of

the interface.

Indeed, if several statements are grouped within the same virtual file, then adding

or removing a statement from the group, or modifying any of these statements, re­

quires to open() the file first and then perform the modification. From an implemen­

tation perspective, this means that the interface is stateful: an open file descriptor has

to be maintained for the whole duration of the edit. There are many reasons to avoid

such statefulness. Our main motivation was to keep the implementation simple so

that it can be inspected easily. Another reason was the desire to support concurrent

edits of the policy. In that case, any un-necessary increase of the granularity of edits

must be avoided, hence our decision to expose each policy statement as a virtual file.

As mentioned earlier, the policy and the administrative policy can both be ac­

cessed and edited using the same interface. We feel it is important that, in the same

way that the administrative model is recursive, and therefore supports an arbitrary

stacking of administrative policies, that the interface to the administrative policy also

supports the edition of administrative rules of any depth.

3.4.2 System Integration

The virtual filesystem is supported by a userspace server, which we named sefuse,

as it uses FUSE [127] to communicate with the kernel when handling the virtual

100

filesystem operations. FUSE is a kernel extension included in the mainstream Linux

kernel since the kernel version 2.6.14. This extension allows filesystems to be im­

plemented in userspace by relaying filesystem calls out of the kernel, to userspace

daemons.

Our prototype is implemented with support for the SELinux binary policy format

version 24. The binary policy is loaded by sefuse when it is started. Policy modifi­

cations are propagated to the kernel by serializing the in-memory policy and loading

it into the kernel. sefuse supports the modification of access vector rules, as well as

the edition of recursive administrative permissions. The integration of our prototype

is illustrated in Figure 3.13. As one can see from the figure, sefuse loads the same

policy that is loaded in the kernel at boot time. At boot time, the policy is loaded in

the kernel by writing it to the load pseudo file in the selinuxfs virtual filesystem,

which is mounted under the /selinux path. sefuse uses the same mechanism to

propagate policy changes into the kernel. The modified policy is also serialized to

disk when the daemon shuts down, so that it will be used for the next boot. The ad­

ministrative policy is stored separately from the policy; it is also loaded when sefuse

starts and serialized back when sefuse shuts down. As sefuse, the administrative

policy is protected from the rest of the system by being only accessible form within

the sefuse domain.

The initial decision to implement the prototype with FUSE was made because it

allowed for a much easier development (easier debugging essentially) than if we had

developed the filesystem directly as a kernel component. This is also acceptable from

a security standpoint, as we explain below. In this explanation, we list the hypotheses

that we rely on to claim that our implementation is dependable. For each hypothesis

we make, we explain why we think it is reasonable.

Hypothesis 3.4.2.1 The implementation and configuration of Type Enforcement in

SELinux constitutes a reference monitor.

SELinux was not designed from the start as a secure system: it was not designed

first as a whole and then implemented according to its design. Instead, SELinux is

101

SELinux policy loaded

SELinux policy loaded
from disk at system

boot time

Linux Kernel

SELinux ModuleSELinux Module

Active SELinux
Policy FUSE

Module

sefuse domain

/selinux Virtual filesystem

load
booleans/

...

Interface to
load the policy

in the SELinux module

Propagation of
the modifications

sefuse daemon

Exposed SELinux
Policy

Exposed
Administrative

Policy

/sefuse Virtual filesystem

ttr/
avr/
...

policy

meta/ administrative
policy

Stored
Administrative

Policy
Administrative policy stored

to disk
when sefuse shuts down

Administrative policy loaded from
disk when

sefuse shuts down
Stored

SELinux
Policy

SELinux policy stored
to disk

when sefuse shuts down

from disk
when sefuse starts up

Figure 3.13.: Integration of sefuse within SELinux, to safely expose the SELinux
policy as a virtual filesystem

102

a security extension that was retrofitted into the Linux kernel. As a result, there

is no causal link from a model of a reference monitor to its implementation –this

implementation being SELinux– that can be used to prove that the implementation

of Type Enforcement in SELinux constitutes a reference monitor. Since it is not

practically possible to prove that SELinux constitutes a reference monitor we explain

why we think it is reasonable that our implementation assumes so, for each aspect

of the definition of a reference monitor. For full mediation, the work of Zhang et

al. [128, 129] provides a strong indication that the hooks of the Linux Security Mod­

ule framework [109] are invoked on every access path where they should be. This

indicates that the current implementation of SELinux as a security module is invoked

to mediate accesses on all the access paths. For the tamper-proof aspect, SELinux is

a security mechanism implemented inside a monolithic kernel, the Linux kernel. As

a consequence, the integrity of the mechanisms of SELinux relies on the integrity of

the Linux kernel. Assuring the integrity of a kernel of this size (a little less than 9

million lines of code for version 2.6.24 [130]) is not a tractable problem. It is there­

fore not possible to guarantee this integrity. The access control enforced by SELinux,

however, helps reduce the attack surface of the kernel. Considering the assurability,

the SELinux module shipped with version 2.6.24 of the Linux kernel is comprised of

16,3K significant lines of code8. There is no publicly documented effort on assuring

the code of the SELinux security module. The above hypothesis has to be relied on

but cannot be proven.

Property 3.4.2.1 On SELinux, implementing the administrative model for Type En­

forcement in userspace is not weaker, from a security standpoint, than implementing

it in the kernel.

sefuse can be protected from the rest of the system using TE confinement. This

method of securely extending the operating system with userspace extensions, by

8This count of lines of codes was obtained using sloccount, available at http://www.dwheeler.

com/sloccount/

http://www.dwheeler

103

relying on TE for protection, has been successfully demonstrated in LOCK [131]. A

similar approach was successfully taken by Stern in the development of the Extended

Access Control Subsystem on top of Trusted Xenix [132]. Formally, what we did is

that we implemented a TCB subset [133] to regulate accesses to the security policy

of SELinux.

Hypothesis 3.4.2.2 Once the system is booted, only sefuse, running in its own

isolated domain, is allowed to load the security policy in the kernel.

If this hypothesis on the base security policy of the system is satisfied, then it is

guaranteed that the only modification to the policy allowed at runtime are mediated

by our administrative model. This hypothesis can be evaluated by searching for the

load policy permission in the security policy.

Hypothesis 3.4.2.3 Our implementation of the administrative model is correct.

Although no formal audit of our code has been performed so far, we have preserved

the auditability of our code by keeping it small and clear.

Property 3.4.2.2 Provided the administrative policy allows only changes that pre­

serve the security goals of the system, our integration of an administrative model in

SELinux does not weaken the system security.

This property holds, provided hypotheses 3.4.2.2 and 3.4.2.3 hold. What we are

interested in stating with this property is that the addition to SELinux of admin­

istrative mechanisms that implement the administrative model described in Section

3.3 does not by itself weaken the security guarantees that the system can offer. In­

deed, the mechanisms that we have implemented can be configured to implement

many administrative policies, from one administrative policy that grants absolutely

no modification rights to the base policy, to an administrative policy that grants all

administrative rights to any subject of the system.

104

3.4.3 Summary

We have presented the design and integration of our prototype implementation

of the administrative model from Section 3.3. By using a virtual filesystem abstrac­

tion, this prototype allows common filesystem tools to be used to interact with both

the base TE policy and the administrative policy. When analyzing aspects of the

policy, we have found this interface convenient for read-only consultations of the pol­

icy. Our development platform was SELinux (on RedHat Fedora Core 10), where

this prototype is implemented as a trusted subsystem. We have shown under which

assumptions the implementation can be considered to be a reference monitor. The

main assumption is that the Linux kernel’s integrity has to be relied on.

3.5 Conclusion

In this chapter, we have formally modeled TE, using stuck semantics. In this

model, we have isolated a core set of TE features (TE-core) that the rest of our work

relies on. Our modeling has been performed in a modular fashion, where we have

shown how the different features of TE can be composed together. We have then

shown, by first modeling Core RBAC and then comparing Core RBAC and TE-core,

that Core RBAC can not be used to address the confinement problems that we set to

address. This justifies our choice of TE over RBAC as the base access control model,

that we then extend with an administrative model. The administrative model for TE

that we presented is able to precisely express which rules a given subject is allowed to

modify. Moreover, this administrative model is recursive by nature, which allows the

definition of an administrative policy on the administrative policy itself, and so on.

This is an improvement other most existing RBAC administrative models, where the

administrative policy requires on fully trusted subject for its configuration. Finally,

we have presented the design of a prototype implementation of this model that was

performed on RedHat Fedora Core 10.

105

4. OVERLAY LABELING: REFINING THE POLICY

COUPLING

The original motivation for the work presented in this thesis was to let users refine

the security policy of the operating system on which they work, and on which they

are not administrative users. In other words, this idea was to let users themselves

decide which of their ambient permissions they wish to extend to applications that

run on their behalf. In the related work, we have argued why the security mechanisms

provided on stock unix systems (and by analogy on other systems that rely on identity

based access control) do not provide a satisfactory answer to this problem (see Section

2.5.1). In the previous chapter, we have introduced an administrative model that

supports fine-grained delegation of administrative permissions on the TE policy.

This administrative model is a necessary step towards enabling users to refine the

TE policy of the system. However, this administrative model is not sufficient by

itself to support all the refinements to the policy that are necessary to support the

fine-granularity of access controls that we set to achieve. Here is a concise example

to motivate this chapter; we elaborate on it when we expose the grading program

problem (see Section 4.1), which was the original motivation for this thesis.

While the administrative model we defined for TE supports the precise specifi­

cation of allowed manipulations on TE constructs, it has no notion of which type

is associated to which system objects. This is a reasonable design decision for the

administrative model as it is also the case that the TE policy has no notion of this

coupling, either. The implication, however, is that user policies are limited to using

the existing labeling of objects. Since users do not have control on the system label­

ing decisions, their policies are limited to being expressed in terms of system-defined

labels. For instance, most binaries installed on the system are labeled with a unique

106

type: bin t. As a result, /usr/bin/gcc (the compiler) and /bin/ls (the utility to

list files) can not be treated differently by the TE policy, which reasons on objects

only through their types. The only workaround is for the user to make a copy of

one of the programs and relabel that copy. This workaround isn’t satisfactory as it

results in wasted disk space, and updates to the original program won’t propagate

to the copy. Missing updates are particularly a problem when the updates address

security or functionality issues. The labeling of network packets suffers from a similar

limitation, without even a workaround.

In other words, without a way for users to extend the labeling of objects that they

are not allowed to relabel, whatever TE policy they may write is constrained to the

granularity with which these objects are currently labeled on the system. Allowing

the users to relabel system objects would not be the correct solution, as it would let

users break the existing semantics of the system policy. We have designed a solution

that supports overlay labeling of filesystem objects and network packets.

This chapter starts by a presentation of the grading program problem (see Section

4.1), which concludes by a demonstration of how this problem is only partially solved

with the administrative model from Chapter 3. The two following sections present

the labeling of filesystem objects (see Section 4.2) and the labeling of network packets

(see Section 4.3). In each of these two sections, we present how the labeling can be ex­

tended to support overlay labeling. Then, we present how the infrastructure designed

for overlay labels can be re-used to support the grouping of object by predicates ex­

pressed on type attributes (see Section 4.4). Finally, we address issues that concern

the correctness of these designs: whether they can be used to subvert the system

policy (see Section 4.5), and whether their usage is reversible (i.e. is the deployment

of an overlay label a destructive operation ?) (see Section 4.6).

107

4.1 Motivation

4.1.1 The Grading Program Problem

The grading program problem1 is a historical motivating example for protection

systems [69], where an automatic grading program is used to evaluate the functionality

of a student’s assignment submitted for grading. The core of the problem is trust (or

lack thereof) between the grading program and the graded program, also know as the

mutually suspicious subsystems problem [135]. While the submission being graded is

a software conceived by the student, prepared for submission on his/her account, the

grading is done by the teaching assistant (TA), who runs the grading program (and

hence the student submission as well) in his TA account.

The execution of the grading program needs to take place in a confined environ­

ment in order to:

• Enforce the assignment restrictions

System programming assignments consist in having the students program fea­

tures that are otherwise provided by the same system on which the students

develop their programs. It is therefore necessary to confine the execution of the

submitted programs, to make sure that they do indeed implement the features

they should, as opposed to delegate the processing to the features offered by the

host system. A common example of such cheating is when a student, instead

of implementing a filesystem per the assignment specifications, programs stubs

that call their corresponding routines from the filesystem of the host OS.

• Protect the TA account from the submitted program

The submitted program may (and regularly is) misbehaved, in which case the

TA account needs to be protected from accidental damage. This is an instance of

the debugging problem [7,69], and it is partially addressed by memory protection

1This presentation of the grading problem is slightly different from the original presentation in [134],

but the core of the problem remains the same

108

and quota mechanisms. The submitted program can even be malicious, in which

case it constitutes a trojan horse [4].

The first point, enforcing the assignment restrictions, is already addressed by

existing techniques of library interposition that were developed for goals including

intrusion detection. Moreover, this part has more to do with detection than preven­

tion: it is not a security issue that the submitted program uses system libraries it

shouldn’t. What really matters is to detect such uses, so that the students do not get

credit for relaying calls to the proper system library when the goal of the assignment

was to have them implement the library itself. In short, the first part of the grading

problem does neither justify nor require new access control research, thus we do not

address it; we focus on the second part instead, protecting the TA account from the

submitted program.

4.1.2 Example Programming Assignment

We now present a programming assignment that will provide some substance to

the administrative operations we introduce later in this section: refining the labeling

on the filesystem, and creating domains. The networking aspects, although introduced

here, will be covered in another section (see Section 4.3).

The assignment consists in programming a simple HTTP server, as required in

undergraduate network programming classes (e.g. CS422 at Purdue’s department of

Computer Science). The features that must be implemented by this server are the

following. It must be capable of serving static files and support directory browsing.

It must also support CGI scripts, and loadable modules (shared libraries instead of

scripts).

The corresponding restrictions that have to be enforced on the assignment are:

1. The access of the HTTP server to the filesystem should be restricted so that

it can not serve the whole content of the TA’s home directory. More precisely,

the server should serve only the static content located within the directory

109

designated for static content. Since the electronic grade sheets are stored in the

TA’s account, the server could otherwise potentially deliver the grade sheets of

the whole class. This would be a legal issue in the USA (FERPA act [136]).

2.	 The filesystem access restrictions should be discriminating enough to let CGI

scripts access common command-line utilities (e.g. the programs from GNU

coreutils package: expr, echo, printf, test, ...), while still enforcing the con­

finement explained above. For instance, one of the example scripts provided to

the students uses the cal command-line tool to generate textual calendars.

3. The network accesses of the server should also be restricted.	 Incoming access

should be restricted so that only connections coming from machines used in

the grading tests are passed to the server. The benefit of this restriction is to

further limit the exposure of the server to external attacks. The server should

be prevented from initiating remote connections, so that a trojan web server will

not be able to spontaneously submit files from the grading system to another

system. This is useful when the testcases are not publicly released.

We now present how the administrative policy, based on the administrative model

from the previous chapter, can be configured to let the TA set up a TE configuration

that enforces these restrictions. More precisely, we will show how far these restrictions

can be enforced. The parts that can not be enforced are the motivation for the

following two sections (see Sections 4.2 and 4.3).

4.1.3 Creating Types and Domains and Configuring Accesses

We will now show how the TA can set up a confinement domain in which the

grading can safely be run.

The first step in setting up the confinement domain is to create the domain itself.

In order to do that, the TA must create the domain type (say, grading t), and attach

the domain attribute to it. Let us focus on the type creation first. The problem with

110

allowing the creation of new types is that it is hard to write rules on how they can

be manipulated, until they exist. And at that point, they do not need to be created

anymore.

Our solution to this problem is to let users create types “through” types attributes.

In other words, an attribute is given as a part of the request by the user to create a

type. If the user is allowed to create types that bear this attribute, then the request is

satisfied: the type is created and the specified attribute is attached to the type. The

next step is for the TA to turn the newly created type into a domain, by attaching

the domain attribute to the grading t type. This operation is also allowed by a rules

that specifies that the TA can attach the domain attribute to types that bear a given

attribute.

We are starting to see that type attributes are an important part of the admin­

istrative policy 2 . As illustrated in Figure 4.2, type attributes can be used to group

types. These groups can then be used instead of types in the specification of access

vector rules. This is how administrative permissions are granted to the TA to let him

create the type for the domain and then attach the domain attribute to it. The policy

statements and administrative rules needed to let the TA create a grading domain

are reproduced in Figure 4.1.

Once the TA has created a grading domain, the next step is to declare the entry

point(s) of the grading domain, as well as setting up automatic domain transitions

on these entry points, and allowing them. That is, the TA has to designate which

type(s) of executable files can be used to enter the grading domain. One way to

do this is to create a type to label the grading script, say grading exec t. Then,

with the grading script relabeled to the grading exec t type, set a domain transition

2Type attributes were also used when constructing the emulation of RBAC on top of TE (see Section

3.2.2).
3In the reference policy, this permission is granted by attaching the file type attribute to a type.
The reference policy contains a rule specifying that types bearing this attribute can be used to label
filesystem objects. A variation of the rule we presented could let the TA attach the file type

attribute to the types he has created.

4Besides the permission to activate a swap file or a quota file.

111

Existing policy elements
type ta_t; The type associated with

the TA processes
type ta_file_t; The type associated with

the TA files
attribute ta_type; Attribute for tagging the

types created by the TA
Existing policy rules

allow ta_t ta_type:file { relabelto relabelfrom } The TA can relabel to and
from types that bear the
ta_type attribute

allow ta_t ta_file_t:file { relabelto relabelfrom } The TA can relabel to and
from the type normally as­
sociated with his home di­
rectory (ta_file_t)

Existing administrative rules
allow ta_t ta_type:type create;

allow ta_t ta_type:attribute(domain) attach;

allow ta_type self:filesystem associate;

allow ta_t *:av_rule({ta_t ta_type}, ta_type, \
file , ~ { swapon quotaon }) \
{ insert remove }

allow ta_t *:tr_rule({ta_t ta_type}, {ta_t ta_type},\
* , {ta_t ta_type}) \
{ insert remove }

The TA can create types
“through” the ta_type at­
tribute
The TA can turn types
with the ta_type at­
tribute into domains
The types created by the
TA (with the ta_type at­
tribute) can be used to la­
bel filesystem objects3

The TA can grant himself
and his domains almost
any permission4on files of
the type he has created
The TA can set up type
and domain transitions be­
tween any of the types he
has created

Figure 4.1.: Example configuration that lets the TA create domains

112

Object Types

Permission

Subject Attribute Object Attribute

Permission

Subject Types Object Types

(c) In the general case, both the subject
and object of a TE rule can be expressed
using attributes.

Figure 4.2.: Type Attributes. Attributes can be used in two main ways. By tag­
ging/untagging a subject type with an attribute, permissions can be added/removed
to that type, if the attribute is used in rules like (a) (and more generally like (c)).
The same tagging mechanism can be used to make an object type accessible, if the
attribute used for tagging is already used in a rule like (b) (and more generally like
(c)).

Subject Attribute Object Type

Permission

Subject Types

(a) Type attributes can be used
to group subjects and their per­
missions. In this case, a sub­
ject can be seen as having permis­
sions “through” one of its type at­
tributes.

Subject Type Object Attribute

(b) Type attributes can also be
used to group objects, and there­
fore the access rules that regulate
their accessibility. In this case, an
object can be seen as being accessi­
ble “through” its attribute.

113

from the ta t domain to the grading t domain upon execution of executables of the

grading exec t type. Contrary to the original design in Flask [9], SELinux does

not require an extra permission to connect the type being from and the type being

relabeled to. If needed, one could use the validate trans statement to constrain

the set of allowed relabelings. We have not addressed this issue; neither does the

SELinux reference policy.

As a result of creating the grading domain, creating the type for the grading

domain executable entry point, and setting up the necessary type transition and

access vector rules, the following statements are added to the policy:

type grading_exec_t

typeattribute grading_exec_t ta_type

allow grading_exec_t self:filesystem { associate } ;

allow ta_t grading_exec_t:file { read getattr execute } ;

allow grading_t grading_exec_t:file { entrypoint } ;

type_transition ta_t grading_exec_t:process grading_t

allow ta_t grading_t:process transition

Additionally, the TA can set up filesystem type transitions so that the log files cre­

ated during the run of the grading are automatically typed with the grading_log_t

type, and accessible in append-only mode from within the grading domain. This

would result in the following additional statements in the policy:

type grading_log_t

typeattribute grading_exec_t ta_type

allow grading_log_t self:filesystem { associate } ;

allow grading_t grading_log_t:file { create link append } ;

allow grading_t grading_log_t:dir { search write add_name } ;

type_transition grading_t grading_log_t:dir grading_log_t

114

4.1.4 Limitations in the Mapping of Types to Objects

We have just showed that the administrative model we designed in Chapter 3 can

support delegated administration of the TE policy, even when it involves the creation

of new types and domains. However, the granularity at which regular users can write

policy statements is still limited, from a system perspective, by the granularity of the

mapping from types to objects. This mapping is defined outside of the TE policy.

As a consequence, even if the users can have a fine control on the TE policy,

they may be forced to give up the principle of least privilege due to the granularity

at which system-owned objects are labeled. For instance, the cgi scripts that the

example assignment has to support only need access to a few of the system binaries

(e.g. date). Furthermore, they should not be allowed to run the mail command under

the TA’s identity. Indeed, although the grading program runs inside the grading t

domain, it still runs under the TA’s unix identity. This means that emails sent from

within the grading domain would be sent under the TA’s identity. Unfortunately,

both date and mail are labeled with the same bin t type, which prevents from

distinguishing them within the policy. Similarly, although network packets can be

labeled, the specification of the labeling is also done outside of the TE policy.

The only partial workaround is for the TA to make a copy of the subset of system-

owned files that he wishes to let the confined grading environment have access to.

This workaround introduces duplicates of system files, which is a known issue with bsd

jails [86]. Having these duplicates introduce the need for reconciling them (conflict­

resolution for data files; propagation of the system updates for executables), and

wastes disk space. There is no workaround for network packets that does not involve

re-writing firewalling code, which is notoriously hard to get right [137].

In the next two sections we explain, in turn, how we addressed this problem for

filesystem objects labels and for network packets labels. Our solution preserves the

semantics of the existing system policy.

115

4.2 Refining Filesystem Objects Labels

As we explained in Chapter 3, the TE policy considers an object only through the

type the type attached to the object and the type attributes attached to this type. In

the SELinux terminology, attaching a type to an object is called labeling the object.

The labeling of persistent filesystem objects is an important part of the deployment

of a TE policy on SELinux. This labeling couples the policy, expressed in terms of

types, to the concrete files that are used during the boot process, to boot the system in

a trusted state. More generally, the type attached to each file and directory determines

which parts of the filesystem a process can read to, write from, and execute code from.

These are essential aspects when one wants to practically assure a system.

Two antagonistic goals are at play when defining the labeling of the filsesystem.

On one hand, one wants to define as few labeling rules as possible, to keep the set

of rules tractable. On the other hand, one wants to define very precise labeling rules

to enforce a fine grained-policy. However, every new rule potentially conflicts with

an existing rule (and raises the need for a means of resolving rule conflicts). Also, a

finer-grained policy yields a larger set of labeling rules, which is harder to audit.

In the rest of this section, we will present how the filesystem labeling works in

SELinux and why the standard implementation does not let users extend the labeling.

Then we present our solution that lets users extend the labeling so that they can write

policy statements at a granularity level of their choosing. In other words, our solution

lets users define finer, coarser, or simply different groupings of objects.

4.2.1 Filesystem Labeling Specifications

SELinux relies on a filesystem labeling specification that indicates which label

should be attached to which filesystem object. On a Fedora 10 distribution that uses

the targeted policy, the current specifications can be found in the file /etc/selinux/

targeted/contexts/files/file_contexts. Each line of this file is composed of

three tab-separated fields. In order, these fields are:

116

1. filesystem path pattern:	 an extended posix 1003.2 regular expression, which

can specify one or several paths on the filesystem (regular expression branches

’|’ are supported in extended regular expressions).

2.	 an optional object class specification, that indicates the class of filesystem ob­

ject the specification is supposed to cover. The class uses the same one-letter

encoding used by the ls utility when using its long output format. If the class

option is used, it should be prefixed with a dash sign (’-’). For example, one

would pass “--” to limit the specification to regular files, “-d” for directories,

and “-b” for block special files, “-c” for character special files, “-l” for symbolic

links, “-s” for socket links, and “-p” for named pipes.

3. security context:	 either “<<none>>” or a full security context in the same

form as displayed by the “-Z” option of ls. “<<none>>” indicates that the

matching filesystem objects should not be labeled. This form of security context

is used to avoid labeling objects that are automatically labeled by the system

(e.g. the /selinux virtual filesystem). A full security context looks as follows,

taking the context of /bin/ls as an example on a Fedora 10 system:

system u:object r:bin t:s0

This context consists of four colon-separated fields: a TE user (system u for all

filesystem objects), a TE role (object r for all filesystem objects), a TE type

(bin t is attached to most system binaries), and an MLS context (s0 means

sensitivity level 0, which is the default MLS context applied all over the system

when the MLS policy is not activated, which is the case here). In the following,

when we refer to labeling or relabeling a filesystem object, we are actually

refering to the setting of the type field in the security context of that filesystem

object. All other fields keep their default values that we just presented.

This file is used primarily by the setfiles utility (and the fixfiles utility wrap­

per script), which is used to label the filesystem in two main cases. When SELinux

117

is deployed on a system that did not have SELinux active, the filesystem needs to be

labeled so that filesystem objects are properly labeled and the policy can be enforced.

The second case is to restore the file contexts to their proper values, on a system where

SELinux was previously deployed but temporarily disabled. Indeed, when SELinux

is disabled, so are the type transition rules that would normally guarantee a proper

labeling of newly created filesystem objects (this default behavior is the result of type

transition rules, which were described in Figure 3.3, Chapter 3).

4.2.2 Filesystem Labeling: Semantic Limitations

To motivate the next part of this section, we now present the stock semantics of

filesystem labeling on SELinux and how they prevent the realization of the grading

example.

When setfiles decides how to label a file according to the labeling specifications,

it reads rules from the specification file and labels each file according to the last rule

that matches it. This means that the last matching rule determines entirely how the

file will be considered from the perspective of the TE policy. Moreover, since a file

can be labeled with only one security context, and a security context can contain only

one type, then a file can only have one type attached to it, even if one were to use

other means of applying the labels than running setfiles.

Let us consider the grading program example again. Typically the whole subtree

of the filesystem starting in the TA home directory will be labeled with the type

user home dir t5 . What we would like to be feasible is the following. The TA would

label a subset of his home directory with a type that indicates that this part of the

filesystem is used for grading student submissions, say grading files t. The TA

would then define a grading domain, say grading t in which the grading program

would run. This domain’s filesystem write accesses would be limited to this subset of

the filesystem to protect the TA account from accidental damage. This scenario can be

5There are few exceptions, for instance to protect the ssh configuration files and keys.

118

handled with stock SELinux and our administrative model from Chapter 3, provided

the TA is granted the proper administrative priviliges on the grading files t and

grading t types.

However, an important part of the filesystem access restrictions cannot be handled

by a stock SELinux system, even with the administrative extensions from Chapter

3. The limitation of having a single type attached to an object is problematic when

a user, here the TA, would like to refine the accesses granted on these objects. As

explained in Section 4.1.4, existing solutions are not satisfactory as they involve either

duplicating or relabeling files, both of which are problematic. We present our solution

to this problem in the next section.

4.2.3 Overlay Labeling of Filesystem Objects

Now that we have presented the limitations of filesystem labeling in a stock

SELinux system, we present our solution to this problem. A satisfactory solution

should allow users to overlay labels of their choice on top of system types and create

policy statements that refer to these labels, without breaking the system policy state­

ments that refer to the existing (system) labels. Our solution uses type attributes to

support multiple labels per filesystem objects.

Our solution rests on the observation that type attributes can be used instead of

types in most policy statements6 . Based on this observation, our solution consists in

“promoting” policy types. In type promotion, a synthetic type is generated to replace

the original type from the policy and the original type name becomes an attribute

of the synthetic type. This process is illustrated in Figure 4.3. After type promotion

the access control decisions of the policy are bound to type attributes, and not types

anymore. At this point, it becomes possible to relabel objects without breaking the

semantics of the system policy, as long as the promoted type are properly handled.

Type promotion can be performed at different times: it can be performed on

demand, or it can be performed ahead of time. We chose to perform ahead of time type

6Our solution also handles the special case of the field that specifies the new type in a type transition.

119

promotion. This yields a simpler algorithm and offers better performance guarantees:

only the objects belonging to the new overlay need to be relabeled. The pathological

case with on demand type promotion is when the creation of an overlay necessitates

the relabeling of a significant fraction of the filesystem objects, as this will potentially

take a very long time.

The next two parts of this section present in more details how type promotion is

performed and, assuming all filesystem types have been promoted, how to handle the

request by a user to overlay his own labeling on filesystem types.

Type Promotion

The process of promoting a type involves two aspects: promoting the type in the

TE policy, which we describe first, and adjusting the filesystem labeling to effect the

policy changes, which we describe last.

Promoting a type in the policy consists of the following steps, which are illustrated

in Figure 4.3:

•	 generate a synthetic type: generate a type name that does not yet exist in the

policy, and add it to the policy

•	 attach attributes of the promoted type to the synthetic type

•	 replace the promoted type by an attribute of the same name

•	 attach this attribute to the synthetic type

Since most fields of TE rules can accept types and types attributes interchangeably

(see Section 3.1.2) the rest of the policy is unaffected by the type promotion, except

for type transition rules. Indeed, the field that specifies the new type of an object

(after the transition) only accept types. Indeed, a type attribute refers to the set of

types that bear it whereas a type transition rule specifies the single new type that

will be attached to an object. As a result, the following extra step needs to be taken

when promoting a type:

120

Objects Types Attributes	6 Objects Types Attributes

bin_t

bin_t

ls

ps

.

.

.

file_type

exec_type

non_security_file_type

S_bin_t

ls

ps

file_type

exec_type

non_security_file_type

Type Promotion
.
.
.

Figure 4.3.: Type promotion consists in generating a synthetic type name (here,
S bin t) to replace an existing type (here, bin t), which becomes an attribute of the
new synthetic type. Type promotion is necessary to support overlay labeling. The
type promotion algorithm is provided in Algorithm 1.

•	 if there are type transition rules which define transitions to the promoted type,

they need to be replaced by type transitions to the synthetic type.

The adjustments to the filesystem labels are performed using the same mechanism

that is used to deploy the initial labeling or fix a corrupted one. A copy of the origi­

nal filesystem labeling specification (\tt/etc/selinux/targeted/contexts/files/

file_contexts) is made. In this file, for each promoted type, and for each context

that refers to it, the type component of the context is replaced by the synthetic type

that was generated as part of the type promotion. This file is then a specification

of how to correct the filesystem labeling, now that types have been promoted. This

specification can be used by the same tool that is used for labeling filesystem objects:

fixfiles.

Creation of a Label Overlay

We now present how the request by a user to overlay his own labeling on filesystem

types is handled, provided all filesystem types have been previously promoted.

A user requests the creation of a label overlay by providing a regular expression

that determines the filesystem objects to relabel, and a string that will be used as

the name of the type attribute that will materialize the overlay.

121

Algorithm 1 Promote type xxx

synth type ← new synth type()

policy.types ← policy.types ∪ {synth type}

for all attri ∈ xxx.attributes do

synth type.attributes ← synth type.attributes ∪ {attri}

end for
policy.types ← policy.types ∖ {xxx}

policy.attributes ← policy.attributes ∪ {xxx}

synth type.attributes ← synth type.attributes ∪ {xxx}

for all ttri ∈ policy.type transition rules do

if ttr.target type = xxx then

ttr.target type ← synth type

end if

end for

122

The overlay labeling involves the following steps, which are formally presented in

Algorithm 2 and illustrated by an example in Figure 4.4:

•	 create a type attribute for the overlay, and add it to the policy

•	 create the synthetic types required to represent the overlay: the regular expres­

sion will cover a non-empty set of filesystem objects (otherwise, there is nothing

to do). Since this set of objects is non-empty, the set of existing types used to

label these objects will itself be non-empty. These existing types are actually

synthetic types themselves, since the type promotion was performed ahead of

time. For each of these existing types, a new synthetic type needs to be created

to represent the intersection of the existing type and the overlay label. The new

synthetic type will bear the overlay attribute and all the attributes of the ex­

isting type, hence materializing the intersection of the overlay and the existing

type.

•	 relabel the filesystem objects designated by the regular expression: each desig­

nated object is relabeled with the synthetic type that represents the intersection

of its current type and the overlay.

Please note that, contrary to type promotion, the overlay labeling does not involve

any adjustment of the type transition rules. This is not an oversight. By leaving type

transition rules unchanged, overlay labeling preserves the system policy that governs

how new objects are supposed to be labeled upon creation. Indeed, overlay labeling

is supposed to let users attach additional labels on objects for which they do not have

administrative privileges. It should not let users change the default labeling rules for

types on which they do not have administrative privileges.

4.3 Network Packets Labels

Network packets are one of the classes of objects to which access is regulated by

SELinux. Network packets can therefore have a type attached to them, and this type

123

Regular Expression:

/bin/z.*

/bin/zcat

/bin/zsh

bin_t

S_bin_t

file_type

exec_type

non_security_file_type

shell_exec_t

S_shell_exec_t

file_type

exec_type

non_security_file_type

/bin/tcsh

/bin/bash

.

.

.

.

.

.

/bin/ls

/bin/ps

.

.

.

.

.

.

z_stars
Overlay
Labeling
Request

/bin/zcat

/bin/zsh

bin_t
S_bin_t

file_type

exec_type

non_security_file_type

shell_exec_t

S_shell_exec_t

file_type

exec_type

non_security_file_type

/bin/tcsh

/bin/bash

.

.

.

/bin/ls

/bin/ps

.

.

.

z_stars

S_bin_z_stars_t

S_shell_z_stars_t

Figure 4.4.: Overlay Labeling of Filesystem Objects. In this example, the user re­
quests to label all files that match regular expression /bin/z.* with the label z stars,
which happens to match /bin/zcat and /bin/zsh.

Algorithm 2 Overlay labeling of files that match the regular expression regex with
attribute attr
Require: attr ∉ policy.attributes
policy.attributes ← policy.attributes ∪ {attr}

synth types ← ∅ {Track the synthetic types that get generated}

for all filei ∈ regex.matches do

typei ← filei.type
if synth types[typei] = null then {Construct a synthetic type if needed}
stn ← new synth name()
synth types[typei] ← stn
policy.types ← policy.types ∪ {stn}
for all attri ∈ typei.attributes do
stn.attributes ← stn.attributes ∪ {attri}

end for
stn.attributes ← stn.attributes ∪ {attr}

else
stn ← synth types[typei]

end if
{Relabel the object with the synthetic type}
filei.type ← stn

end for

124

is used when evaluating access control according to the TE policy. As for filesystem

objects, we find it desirable to let users overlay their own labels on network packets,

provided that this feature can be supported while preserving the semantics of the

system policy. In the context of the grading program problem, this feature is useful

to let the TA confine submitted web servers to listening to a given port number, and

to let them access only packets that come from the machine used to send them test

requests.

In this section, we first present the mechanisms that are available on SELinux for

the labeling of packets. Then, we present how the packet filtering features of SELinux

are used to support the packet labeling. After introducing formally the problem of

overlay labeling of network packets, we show that an encoding on top of the normal

labeling infrastructure would have poor performance. We then present our solution,

based on interval trees.

4.3.1 Overview of Packet Labeling on SELinux

SELinux provides several mechanisms to specify and apply labeling decisions to

network packets. We provide an overview of these mechanisms and the policies they

support.

There are two main cases in the operation of a networked SELinux system, when

considering a given network connection. The system at the other end of the connec­

tion either supports labeled networking, or it doesn’t. If it does, then the labeling can

be done according to a mapping of the remote peer labels (and therefore its labeling

policy) to the local labels (defined by the local labeling policy). If the remote sys­

tem does not support labeled networking, then the labeling decision has to be made

according to the local policy exclusively.

125

Peer Labeling

Peer labeling is used for implementing a distributed trusted application, as it

supports verifying the distributed deployment of the application along the lines of

the trusted network interpretation [138] of the “Orange Book” or the shared reference

monitor [139]. There are several means of configuring peer labeling. Currently, two

mechanisms are available for peer labeling, Netlabel and labeled IPSec extensions.

Netlabel [140] supports the transfer of labeling information by using the Com­

mercial IP Security Option (CIPSO) [141] extension of the IPv4 protocol. There the

domains are only defined in MLS terms: a sensitivity level and a set of categories.

Very few environments offer the physical network security required for a direct de­

ployment of CIPSO. Since CIPSO consists in a set of options in IP packet headers, it

is vulnerable to the same spoofing issues as the IP protocol. This issue can be worked

around by protecting CIPSO-labeled traffic inside a VPN tunnel, or by using labeled

IPSec extensions.

Labeled IPSec extensions [98] have been developed to support the transmission of

peer labels inside IPSec Security Associations (SAs). The labeled IPSec extensions

support the exchange of full SELinux security contexts, but are currently conflicting

with another IPSec extension: Explicit Congestion Notification (ECN). The Internet

Key Exchange (IKE) negociation establishes the context of each child SA, which

establishes the context of the remote peer (a process in a given domain). The Labeled

IPSec extension was submitted as a draft to the IETF on July 10th 2009 7 .

As our work does not cover the enforcement of distributed security policies, we

will not be covering peer labeling further.

Local Labeling

Local labeling is useful in all the cases not covered by peer labeling. Actually,

most installations of SELinux fall in this category. First, most installations lack the

7http://tools.ietf.org/id/draft-jml-ipsec-ikev2-security-context-01.txt

126

physical network security required for CIPSO deployment. Second, the deployment

of either VPN tunnels to protect CIPSO traffic or IPSec peering (with the labeled

extensions) is difficult on systems that are not under the same administrative domains.

Indeed a pre-requisite to peer labeling is to agree on either the same labeling scheme

or a mapping from one scheme to the other.

Secmark is the current mechanism for local labeling. It is built on top the

netfilter framework [142], as an extension of the packet mangling features. Practically,

this means means that the labeling rules for packets are written as part of the packet

filtering rules. This mechanism replaces the original packet labeling that was dropped

when SElinux transitioned from being an external patch to being a security module

shipped with the standard Linux kernel, where it is integrated on top of the of the

Linux Security Module framework [109]. The older mechanisms, which relied on the

specification of network security contexts within the security policy, were supported

with the compat net backward-compatible code. compat net has been dropped out

of the Linux kernel as of version 2.6.30 [99].

Our Choice

Our works supports overlay labeling of network packets on locally-defined labels.

More specifically, since the compat net support is officialy phased out [99], our so­

lution builds on top of the SECMARK functionnality. While we do not specifically

address overlay labeling for peer-defined or peer-negociated labels, we believe that

the techniques we develop for overlay labeling in this section and the previous one

are applicable to these scenarios.

4.3.2 Overview of the Netfilter Framework and iptables Implementation

Netfilter is the packet filtering framework embedded in the last three major ver­

sions of the Linux kernel (3.0.x, 2.6.x, and 2.4.x series). iptables is the standard

tool for used for configuring netfilter. SELinux uses an extension of iptables, sec­

127

mark (described in the next section), to apply local labeling rules to packets. In this

section, we present the functionalities offered by iptables, and the semantics of the

rules matching. We do not discuss the new nftables filtering framework as is still in

an early stage of development and not yet integrated in the standard Linux kernel.

Since netfilter is a framework, it does not provide functionnality by itself. Instead,

it exposes an API through which packet processing extensions can register functions

that will be invoked to process packets. iptables is a packet processing extension

built on top of netfilter. This extension exposes several tables, which correspond to

different aspects of the processing of packets, e.g. filter for packet filtering, nat

for network address translation, and mangle to alter packets. For each table, several

default chains are available, corresponding to the different steps in the processing of

a packets that are relevant for that table. These steps are illustrated in Figure 4.5;

our focus is the mangle table because it is the table that is used for labeling packets8 .

iptables is supplied with a tool, called iptables, which is used to edit the list of

rules contained in chains. Rules can be added, removed, and inserted in each chain.

Each consists of a set of matching specifications (e.g. a range of source IP addresses

and a destination TCP port) and a target, wich specifies what should be done to

a packet that matches the rule. A packet can leave a chain in one of the following

ways: a matching rules specifies a final decision for the packet, the end of the chain

is reached, or the packet is sent to another (user-defined) chain. When a packet is

sent to another chain, it may or may not return to the current chain, depending on

whether a final decision is reached in the chain the packet is sent to.

Inside a given chain, the semantics of the rules matching is that the first matching

rule is applied. If the target of the rule indicates a final target, the decision is applied

and processing stops at this rule. There are several kinds of final targets. ACCEPT

and DROP are built in targets, to respectively accept or silently drop a packet. An

8A full discussion of netfilter is beyond the scope of this work. A detailed diagram of the flow of
packets through the netfilter framework can be found in Figure A.1, for reference. That diagram
shows which default chain is available for each table, as well as the order in which these chains are

invoked as a packet flows through the system.

128

PREROUTING POSTROUTING
Routing
Decision

INPUT OUTPUT

Processes

FORWARD

Routing Decision
and Connection

Tracking

Connection
Tracking

Incoming
Traffic

Outgoing
Traffic

Figure 4.5.: Default chains in netfilter: input, forward, output, pre-routing and post-
routing. These five chains are available to the netfilter mangle table, which is used
for packet labeling. The filter table, which is applied after the mangle table, does
not have the pre-routing and post-routing chains. With filtering, which embodies
traditional network firewall techniques [100], the access-control decision is made ex­
clusively according to filtering rules. With labeling, the decision can be delegated to
another component. For instance, packets labeled with security contexts are decided
upon by the SELinux enforcement mechanisms, based on the policy of the system.
The chains of interest to confine processes are the input and output chains, where
packets can either be filtered or labeled.

129

extension of iptables, REJECT, can be used to precisely define how the rejection of

the packet should be manifested (e.g. sending an ICMP “port unreachable” packet

or a TCP reset packet). The QUEUE target can be used to send packets directly to

user-space. In some cases, RETURN can be constitute a final target, as discussed

below.

The end of a chain can be reached in two ways: either processing reached the last

rule, which doesn’t match, or the current rule matches, and its target is RETURN.

Two things can happen when the processing of a packet reaches the end of a chain. If

the current chain is a built-in chain, then the default chain policy (either ACCEPT

or DROP) is applied. If the current chain is a user-defined chain (explained below),

it can not have a default policy. In this case, processing returns to the calling chain,

and processing resumes in the calling chain, after the rule whose target was to call

the current chain.

Here is a simple example of how the filtering of ICMP packets can be configured

with iptables9:

iptables -A OUTPUT -o eth0 -p icmp -m state \

--state NEW,ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -i eth0 -p icmp -m state \

--state ESTABLISHED,RELATED -j ACCEPT

The first rule authorizes (-j ACCEPT) any ICMP packet (-p icmp) to be sent

by the machine (-A OUTPUT) on interface eth0 (-o eth0). The second rule au­

thorizes only icmp packets that either are in response to a previous ICMP packet

(--state ESTABLISHED) or are related to another connection (--state RELATED)

being tracked by the connection-tracking subsystem. The connection-tracking sup­

ported by the CONNTRACK netfilter module is critical to supporting this precise

filtering of ICMP packets. Prior to CONNTRACK, the solution consisted in allowing

9This example is based on the simple firewalling script by James Stephens, available at http:
//www.sns.ias.edu/~jns/. ICMP packets are used for network diagnostics, for instance by the

ping command.

www.sns.ias.edu/~jns/.ICMP

130

only ICMP “echo reply” packets to enter the system. However, some attacks took

advantage of this common rule for Denial of Service (DoS) purposes, for instance the

smurf attack. The rule presented in the above example avoids this problem.

We mentioned user-defined chains briefly above. User-defined chains can be used

to support function call semantics in the structure of the firewalling rules. That is,

the filtering of a packet can be delegated by one chain to another. This is done by

using the called chain as a target of a filtering rule in the calling chain. By putting

final targets in the rules of the called chain, this feature allows structuring the rules

as a call tree. The advantage of using this tree structure to group rules is that it

limits the number of rules that have to be be processed every time a packet flows

through the system.

For example, the following set of iptables commands create a new chain

(ssh-chain), to which the processing of all ssh-related packets (TCP traffic going to

or from port 22) is delegated:

iptables -N ssh-chain

iptables -t filter -A INPUT -p tcp --sport 22 -j ssh-chain

iptables -t filter -A OUTPUT -p tcp --dport 22 -j ssh-chain

This structuring of rules can be used to support the encoding of decision trees, as

we will see later. To support custom traffic shaping, iptables also supports adding

arbitrary 32bit marks on packets. This feature is provided by the MARK extension.

The idea behind this feature is to decouple packet classification (the grouping of pack­

ets in service classes) from the enforcement of a differentiated quality of service policy

on these packets. The MARK extension can be coupled with connection tracking for

faster classification of packets that are part of an ongoing connection (this extension

is called CONNMARK and is coupled with CONNTRACK). In this case, the first

packet that initiates the connection is used to determine the mark attached to the

connection. Following packets, which are identified as part of the same connection,

are marked based on the mark attached to the connection. The advantage of this

131

approach is that the potentially complex process of deciding which mark to attach

to a packet is only performed explicitly once, when a connection is initiated. Follow­

ing packets of the same connection are classified much quicker by recalling the mark

attached to the connection.

Here is an example set of rules10 that splits connections in two categories for a

simple load balancing scheme. This set of rules uses three user-defined chains: one

for restoring the mark on established connections (RESTOREMARK); the two others

(CONNMARK1 and CONNMARK2) are used to set marks on new connections.

iptables -t mangle -N CONNMARK1

iptables -t mangle -A CONNMARK1 -j MARK --set-mark 1

iptables -t mangle -A CONNMARK1 -j CONNMARK --save-mark

iptables -t mangle -A CONNMARK1 -j LOG \

--log-prefix ’iptables-mark1: ’ --log-level info

iptables -t mangle -N CONNMARK2

iptables -t mangle -A CONNMARK2 -j MARK --set-mark 2

iptables -t mangle -A CONNMARK2 -j CONNMARK --save-mark

iptables -t mangle -A CONNMARK2 -j LOG

--log-prefix ’iptables-mark2: ’ --log-level info

iptables -t mangle -N RESTOREMARK

iptables -t mangle -A RESTOREMARK -j CONNMARK --restore-mark

iptables -t mangle -A RESTOREMARK -j LOG \

--log-prefix ’restore-mark: ’ --log-level info

restore the fwmark on packets that belong to an existing connection

iptables -t mangle -A PREROUTING -i eth0 -p tcp \

10This example is an excerpt from http://www.sysresccd.org/wiki/index.php?
title=Sysresccd-networking_en_Iptables-and-netfilter-load-balancing-using­

connmark&printable=yes

http://www.sysresccd.org/wiki/index.php

132

-m state --state ESTABLISHED,RELATED -j RESTOREMARK

if the mark is zero if means the packet does not belongs to an

existing connection

iptables -t mangle -A PREROUTING -p tcp -m state --state NEW \

-m statistic --mode nth --every 2 --packet 0 -j CONNMARK1

iptables -t mangle -A PREROUTING -p tcp -m state --state NEW \

-m statistic --mode nth --every 2 --packet 1 -j CONNMARK2

In the next section we present how the packet marking infrastructure is used in

SELinux for attaching security contexts to network packets.

4.3.3 TE Packet Labeling with the Secmark SELinux Extension

The secmark and connsecmark targets of iptables are the Linux Security

Module counterpart of the mark and connmark extensions. The secmark and

connsecmark targets are used to decouple packet labeling from access control en­

forcement on these packets, in the same way that mark and connmark are used to

decouple packet classification from service differentiation.

The secmark and connsecmark targets can only be used in the mangle table.

Figure 4.5 shows the default chains available in the mangle table, and where these

chains are placed in the flow of network packets.

Supporting the overlay labeling of network packets involves the evaluation of po­

tentially large combinations of criteria, in order to determine which synthetic type

to attach to a packet. The fact that targets can trigger a jump to or a return from

user-defined chains could potentially be used to encode the overlay labeling rules for

network packets in terms of a decision tree materialized by a set of iptables chains,

where each chain would correspond to a decision. Such an encoding is discussed in

Section 4.3.4. In the remainder of this section, we present an example of how the

labeling of packets, together with an access vector rule in the TE policy, can be used

to enforce access control on network traffic.

133

The following example demonstrates the use of the secmark and connsecmark

features available for the labeling of network connections, applied to the labeling of

both control and data connections of FTP11. We explain the meaning of these rules

contained below, and provide a graphical illustration of their meaning in Figure 4.6.

1 # Ensure the FTP helper is loaded

2 modprobe ip_conntrack_ftp

3

4 # Create a chain for connection setup marking

5 iptables -t mangle -N SEL_FTPD

6

7 # Accept incoming connections, label SYN packets, and copy

8 # labels to connections.

9 iptables -t mangle -A INPUT -p tcp --dport 21 -m state --state NEW \

10 -j SEL_FTPD

11 iptables -t mangle -A SEL_FTPD -j SECMARK \

12 --selctx system_u:object_r:ftpd_packet_t:s0

13 iptables -t mangle -A SEL_FTPD -j CONNSECMARK --save

14 iptables -t mangle -A SEL_FTPD -j ACCEPT

15

16 # Common rules which copy connection labels to established

17 # and related packets.

18 iptables -t mangle -A INPUT -m state --state ESTABLISHED,RELATED \

19 -j CONNSECMARK --restore

20 iptables -t mangle -A OUTPUT -m state --state ESTABLISHED,RELATED \

21 -j CONNSECMARK --restore

The content of this script is as follows. Line 2 ensures that the kernel module for

ftp connection tracking is loaded. Line 5 creates a new iptable chain in which the

11This example is reproduced from an article on James Morris’s blog, available at http://james­

morris.livejournal.com/11010.html

http://james

134

Dest Port == 21
AND

syn flag set
AND

not in a tracked
connection

Yes Label packet

Save label to
connection context

Accept Packet

SEL_FTPD chain

Restore State for
Established
Connections

INPUT chain

prior rules

Restore State for
Established
Connections

OUTPUT chain

Figure 4.6.: Graphical representation of the structure of the rules from the secmark/
connsecmark example.

rules for the labeling of FTP packets will be grouped (SEL_FTPD). Line 9 adds a rule

in the mangle chain of the input table that redirects the processing of FTP packets

(selected by the value of their destination port) for which only the syn flag is set to

that new chain, and instructs the connection tracking module to consider this packet

as creating a new connection (this is indeed the beginning of a new connection if only

the syn flag is set).

Line 11, a label is applied to the new packet. Line 13, that labeled is saved in

the connection context. Line 14, the packet is accepted. Line 18 and 20, which are

only reached if the rule on line 9 does not match, are used to label FTP packets of

ongoing FTP connections, based on the label that was applied to the initial packet of

each connection and save in the connection state (Line 9 to detect the initial packet,

Line 11 to label the initial packet, and Line 13 to store the labeling to the connection

state).

The structure of this set of rules (illustrated in Figure 4.6) assumes that the default

policy of the input and output chains is to accept packets. Otherwise, it would

135

not make much sense to accepts only the first packet of a connection (Line 14), and

then reject all the following packets of that connection. Instead of singling out the

first packet of a connection as the only one accepted, the purpose of the accept rule

in Line 14 is actually to provide an early exit of the firewall chain, to optimise the

filtering time.

This example assumes an accept-by-default policy, whereas secure configuration

examples of firewall rules usually put a strong emphasis on using deny-by-default

policy structures [100]. Accept-by-default is actually a reasonable choice in the case

of SELinux, since processes are denied by default access to network packets.

For the FTP daemon to have access to the ftp packets, the following access vector

rule needs to be added to the TE policy:

allow ftpd_t ftpd_packet_t:packet { recv send };

The recv permission is checked when the process tries to get the data from

the socket, which triggers a read of the socket buffer, by hooking into the

socket sock recv skb() hook. The send permission is checked by hooking into

the output access control hook of netfilter: NF_INET_POST_ROUTING.

Now that we have introduced the features available in SELinux to perform network

packet labeling, and enforce access control based on these labels, we return to the

problem of supporting overlay labels for network packets.

4.3.4 Network Packets Overlay Labeling

In this section we study the problem of overlay network packet labeling. That is,

how to attach several labels on network packets, without altering the semantics of

the existing firewalling rules of the system. We start by defining the problem, show

its ties to known NP-hard problems, and provide an approximate solution.

136

Problem Definition

The overlay labeling of packets that we want to support is a variant of the packet

classification problem. The common part of the two problems involves reaching a

decision about a network packet based on the content of (some of) its header fields.

More formally, the common part of these problems can be stated as follows.

Each packet has d header fields: f1, . . . , fd, with their respective values v1, . . . , vd.

The binary representation of each of these fields has a length li (with 1 ≤ i ≤ d), hence
the following relation for these fields: ∀i ∈ 1 . . . d,0 ≤ vi ≤ 2li − 1

There is a set L of labels that can be attached to packets.

A packet classification rule is a (d + 1)-tuple of the form (r1, . . . , rd, l), where,
r1, . . . , rd are respectively ranges on the f1, . . . , fd header fields (∀i ∈ 1 . . . d, ri =
(xi, yi)s.t.0 ≤ xi ≤ yi ≤ 2li − 1) and l ∈ L is the label that should be attached to a

packet that fits simultaneously in all these ranges. The matching is formally defined

as: ∀i ∈ 1 . . . d, xi ≤ vi ≤ yi.
A more visual description is the following. The d header fields define a d-dimension

space, in which points are packets. Classification rules are d-dimensional axis-parallel

boxes; the label can be represented as a color on the box. The classification problem

is therefore to determine which box(es) a point is contained in, in order to decide on

the label(s) that should be attached to a packet.

Now that we have presented the core of these problems, we can highlight their

respective differences. Our problem, the overlay labeling problem, is to find all the

labeling rules that match a given packet. The packet classification problem is to

decide, given a set of prioritized packet classification rules, which rule best matches

the incoming packet. This difference has consequences. For instance, the complexity

analysis has to take into account the size of the set of rules that are found to match

the incoming packet. Indeed, for n classification rules there may be O(n) rules that
match a given packet, in degenerate cases with a thick overlap of rules.

For a practical deployment, we actually have to support a mixture of packet

classification and overlay labeling rules. Indeed, existing system labeling rules are

137

defined in terms of packet classification, with the first matching rule having a higher

priority.

Simple Encoding atop iptables, and its Limitation

As we just above, there is a difference between packet classification and overlay

labeling. What iptables does is packet classification. The rules are evaluated in

order, and the first rule that matches is applied. Thiscan be worked around by

separating labeling rules from filtering rules and placing labeling rules first. This

way, the packet filtering decisions are evaluated after all the labeling decisions have

been applied. Another limitation to address is that secmark, only support attaching

one label per packet, so only the label corresponding to the last matching labeling

rule is applied to a packet. This limitation of one label per packet can be overcome

by using indirection techniques similar to what we developed to support the overlay

labeling of filesystem objects (see Section 4.2.3).

An encoding of network packets overlay labeling atop existing iptables rules

can be constructed, as illustrated in Figure 4.7. The construction is to some extent

similar to overlay labeling for filesystem types. Type promotions is necessary for

network packets overlay labeling and is performed ahead of time as well. What’s

more, the packet labeling rules themselves need to be modified, such that they can

be extended to support the later deployment of overlay labels. This modification

consists in replacing each individual labeling rule with a chain whose last (default)

rule performs the same labeling (step 0 in Figure 4.7).

With this modification, an overlay label can later be deployed by inserting a rule

for the the overlay labeling in each chain, and by adding another rule whose criteria

is the overlay criteria, and whose target jumps to a chain whose default behavior is to

label packets with the overlay label. Step 1 in Figure 4.7 represents the deployment of

an overlay label that specifies that packets matching condition c3 should be labeled

with label t3.

138

System
Rules

<c1> <t1>

<c2> <t2>

User-Submitted
Rules

<c3> <t3>

<c4> <t4>

<c1> <t1><default>

<c2> <t2><default>

0

<c1>

<t1><default>

<c3> <t1&t3><default>

1 Add the first
user-submitted rule

Pre-process
System Rules

<c1>

Legend:

Packet matching criteria <c1>

<t1> Target: label with type <t1>

Rule: pairing of a matching
criteria and a target

Chain of rules

<c2>

<t2><default>

<c3> <t2&t3><default>

<c1>

<default>

<c3>

<c4>

<t1>

<t1&t3><default>

<c4> <t1&t3&t4>

<t1&t4><default>

<default>

<c2>

<default>

<c3>

<c4>

<t2>

<t2&t3><default>

<c4> <t2&t3&t4>

<t2&t4><default>

<default>

2 Add the second
user-submitted rule

<c3> <t3><default>

<c3>

<t3><default>

<c4> <t3&t4><default>

<c4> <t4><default>

Figure 4.7.: Encoding the overlay labeling of network packets in terms of packet
classification rules. This approach has a linear complexity for the runtime processing
of packets, as one can verify by looking at the linear increase of the depth of the tree
of filtering rules. However, the cost of adding a new rule to the tree is exponential
in terms of the number of rules, which prevents the solution from being applicable in
practice.

139

This encoding, however, scales poorly. Supposing there are m system-defined

labeling rules and n overlay labeling rules. We see that the addition of the first

overlay rule requires the addition of m + 1 chains and m + 1 synthetic types, yielding

2m + 1 chains and their associated types. By induction one can show that, with the

deployment of n overlay labels, this encoding results in the creation of (m.2n +∑n
i=1 2

n)
labeling chains and synthetic types. Since we expect our system to support at least

a few hundred overlay labeling rules, this encoding is impractical.

What this scheme does, essentially, is encode the overlay labeling directly as a

decision tree. This encoding can likely be optimized, but the optimization of decision

trees is an NP-complete problem [143]. There is another approach to our problem

which is tractable, as we show next. This approach, however, will require new packet

classification mechanisms.

Solution

The problem of classifying a packet with multiple labels according to n d-dimen­

sional criteria can be solved using techniques from computational geometry. There are

several similar problems in computational geometry, e.g. windowing queries, range

queries, and stabbing queries. Mapping our problem in terms of a stabbing query

in d dimensions yields an efficient and scalable solution, which we present below.

Besides the seminal articles that introduced the data structures mentioned and ref­

erenced below, we want to acknowledge the following materials as instrumental in

helping us piece together this solution. We have used lecture materials from An­

toine Vigneron [144], “Foundations of Multimensional and Metric Data Structures”

by Hanan Samet [145], and“Data Structures and Algorithms 3: Multi-Dimensional

Searching and Computational Geometry” by Kurt Melhorn [146]. We found the de­

scription of interval trees in [147], [148] and [149] to be misleading, as pointed by

Hanan Samet [145].

140

Stabbing queries The problem that we are solving has a direct mapping to the

stabbing problem, which is defined as follows. In a d-dimensional space, given a set of

n axis-parallel boxes12 and a query point in that d-dimensional space, find all the k

boxes that contain the query point.

Many data-structures have been proposed to support stabbing queries in one di­

mension: interval tree [148, 150], segment tree [151], priority search tree [152], and

interval skip lists [153]. Each of these data structures support stabbing queries in

time O(log n + k), where k is the number of returned intervals. However, they offer a

different trade-off between space and time complexity for the storage and update of

the rules. We discuss this point later.

These data structures are commonly generalized to d > 1 dimensions by recursively

nesting them. The idea is the following: the top-level data structure is used to index

on one dimension. Each nodes of the top-level data structure points to another

data structure that indexes on the d − 1 remaining dimensions. The nesting ends on

the data-structure that indexes the last dimension. The query complexity for this

generalization is therefore O(logd x+k), as can be proved by induction on the number

of dimensions.

Proof of complexity for the multi-dimensional generalization of the stab­

bing problem

• Base case: with one dimension, the complexity is O(log n + k), as demonstrated

in [148, 150–153]

• Induction: with d > 1 dimensions: the longest path that can be traversed in

the data structure that represents the d-th dimension is of length log n, since

there are n intervals (corresponding to n isothetic boxes) indexed in this dimen­

sion. Along that path, for each node that contains stabbed intervals the d − 1

dimensional data structure attached to the node is queried. So there can be

12Formally, axis-parallel boxes are called isothetic boxes

141

at most logn such queries. Hence a total number of visited nodes of at most

O((log n).(logd−1 n)) = O(logd n). Since there can up to n isothetic boxes found

along this path, the total complexity is therefore O(logd n + k), with k ≤ n

We now present the data structures available for efficiently performing stabbing

queries and justify our choice.

Choice of a Supporting Data Structure Our criteria for selecting a base data

structure to support the stabbing queries were the following, by order of importance

1. Query time: for psychological acceptability, it is important that introducing our

mechanisms does not degrade the performance of the system too much.

2. Storage space: the data structures used for labeling packets should fit in mem­

ory.

3. Update time: it is desirable to use a dynamic data structure in order to minimize

the cost of updates. In other words, we would like to avoid rebuilding the data

structure from scratch after each update. There are general techniques to turn

static data structures into dynamic ones [154]; not all of them are practically

implementable. The rationale for this criteria is that, although changes to the

security policy are not that frequent, it is still better if they can be effected

quickly to avoid disrupting network traffic too much.

Similarly to the packet classification vs. packet overlay labeling issues, data struc­

tures that support efficient queries on intervals (or ranges, or segments) overlaps do

not all interpret the problem the same way. Some structures are more efficient than

others depending on whether one wants to determine if there is an overlap, how many

overlaps there are, any first found overlap, the first found overlap with priorities, or all

the overlaps. We are interested in the later problem: finding all the overlay labeling

rules that match a given packet.

142

In Table 4.1, we have summarized the performance of computational geometry

datastructures that we have surveyed for solving this problem. We have chosen the

interval trees created by Edelsbrunner [150].

Table 4.1: Comparison of the time and space complexity of datastructures that sup­
port stabbing queries on intervals, where a stabbing query is defined as returning all
the intervals that contain the stabbing point.

Datastructure Query Time Storage Space Update Time
Segment Tree [151] O(log n + k)

O(min(n, k log n)) O(n O log n
Interval Tree [148] O n

2)
O log n

Interval Tree [150] O log n + k O n O

(((log n

)))
Priority Tree [152] O log n + k O n N/A
Interval Skip List [153] O

(((log n + k

))) O

((((n

)))) O(log n)

4.3.5 Interval Trees to Support Network Packets Overlay Labeling

In this section, we describe interval trees (as formulated by Edeslbrunner [150]),

the datastructure that we have chosen to support the overlay labeling of network

packets. First, we give a high level decription of the construction of interval trees,

which we use as a basis to present how the stabbing query works atop an interval tree,

in details. Then, we revisit the construction of the interval tree in details. Finally,

we present a generalization of this datastructure to multiple dimensions.

The construction of an interval tree consists in recursively chosing a median point

to divide the set of intervals in three sets: 1/ those that overlap the median point,

2/ those to the left of it, and 3/ those to the right of it. The intervals from the first

set are attached to the current node. The intervals to the left (resp. right) of the

median point are split in a similar fashion in the left (resp. right) sub-tree. As a

result of this divide-and-conquer approach on n intervals, the height of the tree is at

most log n. As each interval is stored exacty once in exactly one node of the tree, the

storage space requirement is O(n).

143

Assuming the interval tree is already constructed, we now explain how a stabbing

query is evaluated and the complexity of this evaluation.

Search

The search proceeds as follows. The stabbing point ps is compared with the

median point pm of the current node. Three cases are possible:

•	 ps = pm: this is the simplest case: all the intervals attached to the current node

are stabbed by ps. All the intervals attached to the current node are returned;

the search is over.

• ps < pm: stabbed intervals have to be searched for in two sets: the intervals

attached to the current node, and the intervals stored in the left subtree. To

search for stabbed intervals in the current node, we can exploit the fact that all

the intervals attached to the current node end after the stabbing point. This is

true because these intervals are stabbed by the median point, pm (and ps < pm).
If these intervals start before the stabbing point ps, then they are stabbed by

it. By keeping a list of the attached intervals sorted, in increasing order, by

their starting point, the test works as follows. The current point pi in this list

is compared to ps. If pi ≤ ps, then the corresponding interval is stabbed by ps.

This continues until a point pi is found that satisfies pi>ps. The cost of this test
is O(1) if no interval is stabbed; otherwise, it is O(k), where k is the number

of stabbed intervals.

• ps > pm: this case is similar to the ps < pm case, except that a list of intervals,

sorted by their enpoints in decreasing order, is used to find the stabbed intervals

in the current node.

From this description of the search, one can infer that a given search traverses at

most log n nodes. On each node, the test for stabbed intervals either takes O(1) time

when it fails, or O(k) when k intervals are stabbed. Consequently the complexity of

144

0 1 2 3 4 5 6 7 8 9 10 11 12

A: [1;4]

B: [3;8]

C: [6;11]

D: [7:10]

Figure 4.8.: Example of one-dimensional intervals that are used to illustrate the con­
struction of an interval tree. The are three intervals: A: [1;4], B: [3;8], C: [6;11], and
D: [7;10]. On the x axis, the circled coordinates indicate the values that correspond
to a least one interval endpoint.

2 5 7.5 10.5

3.5 9

7

1 3 4 6 7 8 10 11

Figure 4.9.: First step in the construction of an interval tree. A binary search tree is
built based on the endpoints of the intervals from Figure 4.8.

a stabbing query in the interval tree is O(log n + k), with k being the total number

of intervals returned by the stabbing query.

It is possible to optimize the search in an interval tree by keeping track of the

active nodes of the tree. Active nodes are the ones where intervals are stored. By

adding an extra set of pointers to the nodes of an interval tree, it is possible to reduce

the time taken by the search by limiting the search to explore only active nodes. In

the following subsection, we presented how an interval tree can be constructed. After

this presentation, we show how the marking of active nodes and the setting of their

pointers to active nodes can be done, while inserting intervals into the interval tree,

and without degrading the complexity of interval insertion.

145

7

2 5 7.5 10.5

3.5 9

763 8 10 11

41

1 3 4 6 7 8 10 11

Figure 4.10.: Interval tree built based on the endpoints of the intervals from Figure
4.8.

146

Construction

We now explain how an interval tree is constructed, and we illustrate this con­

struction based on the example of Figure 4.8. The first step in the construction of an

interval tree involves sorting the endpoints of the intervals (the circled nodes in Figure

4.8). Based on this list, a binary search tree that contains the interval endpoints as

leave nodes can be constructed; the key value of inner nodes can picked anywhere

between the two values of their child nodes. It is customary to use the median value.

We have done mostly so in the example (see Figure 4.9). The next step consists in

inserting the intervals one by one in the search tree. Intervals get attached to the

first encountered node whose key is comprised between the endpoints of the interval.

For instance, consider interval A. interval A’s endpoints (1 and 4) are both lower

values than the tree’s root key, so the insertion continues in the left subtree of the

root, whose key value is 3.5. This value is contained in A. As a result, A is attached

to that node. This requires adding A’s beginning point (1) to the list of beginning

points sorted in increasing order, and adding A’s ending point (4) to the list of ending

points sorted in decreasing order. The result of inserting intervals from Figure 4.8

into the tree from Figure 4.9 are illustrated in Figure 4.10.

The cost of the construction of a one-dimensional interval tree is therefore com­

posed of the following elements:

•	 the cost of constructing the binary sort tree, which is the cost of sorting the

endpoints of the intervals: O(n log n)
•	 the cost of locating the node where each interval must be stored. For each inter­

val, this is the cost of a search in the binary search tree, O(log n). Cumulatively,

the cost is O(n log n).
•	 the cost of inserting the endpoints of an interval at the node where the interval

is stored. If a list is used the cumulative cost is O(k2), where k is the upper

bound on the number of intervals that can end up being stored on a given node.

147

This is not acceptable as the overlapping of segments can be arbitrarily thick

and therefore k can be comparable to n. The solution is to use a sort tree to

index the elements of the lists containing the endpoints, as illustrated in figure

4.11. With this trick, the cumulative cost of storing the endpoints of an interval

in a node is reduced to O(k log k), while still preserving the time complexity of

the stabbing queries (the linked list can be used to return the attached intervals

in O(k)).
Consequently, the cost of constructing the interval tree is O(n log n).

An additional feature of interval trees, in their most optimized form, is to mark

nodes that are active and maintain a doubly-linked list of active nodes. Nodes are con­

sidered active if they have at least one interval attached to them. This optimization

allows faster queries in practice on a sparsely populated interval tree ; the theoretical

bound remains unchanged. As noted by Melhorn in [146], if the set of base nodes on

which the interval tree is built contains only endpoints of the intervals stored in the

tree, “then the mark bits and the doubly linked list is [sic] not needed.” Since we plan

on building the interval tree based on the endpoints of the packet selection criteria,

this remark applies and an implementation of overlay labeling for network packets

does not need to implement this optimization. Overlay labeling, however, use multi­

dimensional criteria. We present the generalization from one to several dimensions in

the next section.

Generalization to Higher Dimensions

Interval trees can be generalized, from storing 1-dimensional intervals, to storing

d-dimensional intervals (isothetic boxes). This is possible because the d-dimensional

stabbing query is decomposable as a search problem on each of the dimensions, the

final answer being the join of the answers on each dimension.

Consequently, it is tempting to implement a straightforward decomposition of the

storage and the search for intervals in d separate 1-dimensional interval trees. The

148

LT RT

Root
Val i

RSRSHLS LSH

Left
Val j

Right
Val k

Figure 4.11.: Representation of one non-terminal node of a one-dimensional interval
tree, which has two non-terminal children nodes. The node contains 3 sets of pointers.
LT and RT point to the children nodes in the primary structure, and hence the heads
of the left and right subtrees in the primary structure. LSH and RSH point to the
heads of the left and right search trees in the secondary datastructure, where the
endpoints of intervals that contain value i are stored. These pointers are used when
inserting or deleting intervals from the interval tree. LS and RS respectively point to
the leftmost interval starting point in LSH and to the rightmost interval ending point
in RSH. These additional pointers are used to accelerate the lookup of interssected
intervals.

149

Right

Val k

Left

Val j

RTLT

RSRSHLS LSH

Right

Val k

Left

Val j

RTLT

RSRSHLS LSH

Root
Val i

Right
Val k

Left
Val j

RTLT

RSRSHLS LSH

Root

Val i

Right

Val k
Left

Val j

RTLT

RSRSHLS LSH

ND

Root

Val i

Righ

t

Val k

Left

Val j

RTLT

RSRSHLS LSH

Root

Val i

Righ

t

Val k

Left

Va l j

RTLT

RSRSHLS LSH

ND

ND

Indexing on the first dimension Indexing on the second dimension

Figure 4.12.: Generalization of interval trees, from one to two dimensions. In addition
to the three sets of pointers described in Figure 4.11 , each node of the primary
structure also contains a pointer ND (“next dimension”) to an interval tree that
indexes, according to the other dimension, the intervals attached to that node.

150

interval trees get queried separately, and the final result is assembled by keeping only

the intervals that are returned in every query. This would result in simpler code

and simpler datastructures than nesting the datastructures (which we illustrate in

Figure 4.12). Also, it would seem to offer a great time complexity: d.(O(k) + log n).
However, degenerate cases can force this solution to run in O(n), when any of the

1-dimensional queries returns a number of elements comparable to n.

For instance, if all the overlay labeling criteria specify traffic coming from the same

network interface, then each packet will be matched on that dimension, forcing the

labeling to run in O(n), even when the other criteria do not overlap at all. Because

of the possibility of such degenerate cases, a simple join strategy is not adequate.

The nesting of interval trees, on the other hand, guarantees that only the relevant

intervals will be looked at.

We present a 2-dimensional nesting (see Figure 4.12); it generalizes easily to more

dimensions. With a 2-dimensional interval tree, the main tree is built based on the

endpoints of intervals in the first dimension. The nodes of the main tree, instead of

pointing directly to intervals, point to a 1-dimensional interval tree. In this tree, the

interval endpoints are sorted and stored according to the second dimension. Also,

when intervals are stabbed in this last dimension, it means that they were stabbed in

the previous dimension, so they can be returned in the result of the stabbing query.

The direct advantage of this nesting is that intervals are returned if and only if

they are stabbed in each and every dimension. This property makes the performance

more resilient to degenerate configurations, where O(n) intervals overlap on a given

dimension. It is actually possible to construct an adversarial set of rules such that

there are always O(n) intervals stabbed in each dimension of the query. The con­

struction relies on the fact that each dimension is finite. The idea is to partition

each dimension in d intervals, and then use the cartesian product of these intervals

to partition the space. This results in 4 squares when d = 2, 27 cubes when d = 3,
and more generally dd partitions for a given d. Then, the n rules are created as an

equal distribution of these hypercubes. The result of this construction is that, on each

151

dimension, a stabbing query will return n/d (and thus O(n)) elements. Therefore,

the complexity of the search can be forced to be O(log(n/d)) + k on each dimension.

Based on the generalization of the search to multiple dimensions that we presented

earlier (see Section 4.3), this means that the multi-dimensional search can be forced

to run in O(logd(n/d) + k. In the general case, there is therefore no better solution

than the one we proposed (within a constant factor)13 .

4.3.6 Summary

In this section, we have presented the problem of the overlay labeling of network

packets. After explaining how the labeling of network packets works on SELinux we

have showed that, contrary to filesystem overlay labeling, the existing mechanisms can

not be used to support network overlay labels in practice. The problem of overlay

labeling of network packets can, however, be mapped to the problem of stabbing

queries, from the field of computational geometry. Finally, we have presented a

detailed explanation of how a multi-dimensional generalization of interval trees offers

a solution that has an optimal complexity for the general case.

4.4 Predicates on Type Attributes

In this chapter, we have presented methods to let the user refine the coupling

between the abstract TE policy and the concrete system objects on which the policy is

being enforced. In order to support this refinement of the labeling, we have introduced

the notion of type promotion, where a type is promoted to being an attribute of a

synthetic type. Type promotion changes the type enforcement access vector rules,

from being expressed on types, to being expressed on type attributes. The goal

of this section is to show how this reasoning on type attributes can be re-used to

support expressing the policy at a higher level of specification. Those higher level

13The construction used in this proof is due to Prof. Mikhail Atallah.

152

specifications can in turn be used to either express new higher level properties on the

policy, or to refactor existing ones.

To motivate this section, we start by presenting an example of refactoring that

can be applied to the SELinux reference policy. There, all types that are to be

applied to files are labeled with the attribute file_type. Two additional attributes,

security_file_type and non_security_file_type, are then used to distinguish

file types that are relevant to the security of the system (e.g. /etc/shadow) from

the ones that aren’t. All accesses to files that are considered security-relevants are

systematically audited. Accesses to other files are not necessarily audited.

We find it error-prone to rely on every file type to bear either the

security_file_type or the non_security_file_type attribute. We think that us­

ing either a blacklist or a whitelist approach to identify security-relevant files would

yield a more assurable policy. Otherwise, the policy has to be analyzed to guarantee

that all types that bear the file_type attribute either bear the security_file_type

or the non_security_file_type attribute.

A blacklist consists in explicitly listing the files that should not be included in

the allowed accesses. A whitelist contains the complement set of the blacklist, files

for which accesses are explicitly allowed. Using either a blacklist or a whitelist ap­

proach guarantees that every file type, whether it is considered security relevant or

not, will belong to exactly one of the two sets. This contrasts with the current

mechanism, where checking must be performed on the policy to guarantee the same

property. Indeed, a file type that does not bear either the security_file_type or

the non_security_file_type security attribute will not be considered to belong to

either category. Using a blacklist or a whitelist approach will guarantee that the file

belongs to at least and at most one of the categories.

To support blacklists and whitelists in a direct manner, we need a

means of representing and reasoning on the fact that a type does not pos­

sess a given attribute. To continue our example, this consists in using

either the security_file_type attribute and the expression of its absence

153

(!security_file_type), or the non_security_file_type attribute and the expres­

sion of its absence (!non_security_file_type).

Conjunction and disjunction operators would also provide a useful language

construct for refactoring the policy. For instance, the security_file_type

could be replaced by a more generic security_relevant attribute. Then,

the files that need systematic auditing would be specified by the predicate

(security_relevant AND file_type). The rest of this section presents the syntax,

semantics, and design of system support for type attribute predicates.

4.4.1 Predicates

Now that we have illustrated why we think that type attribute predicates are

a useful extension, we present their syntax and how they can be integrated. The

description of the system integration in this section rests on simplifying assumptions:

the policy is static and predicates are not allowed to reference one another. We discuss

how to handle dynamic changes of the policy in the next section. Avoiding infinite

evaluation loops that can arise when predicates can reference one another is discussed

in the subsequent section.

Language and Interpretation The language of type attribute predicates is struc­

tured as follows. Type attribute predicates are propositions, from propositional calcu­

lus. The atomic formulas are the type attributes. More complex formulas are formed

by connecting these atomic formulas with the conjunction or disjunction logical op­

erators, or by prefixing the formulas with the negation operator.

For a given type, the interpretation of a predicate is simple: each of the atomic

formulas evaluates to true if the corresponding attribute is attached to the type;

it evaluates to false otherwise. The interpretation of the logical connectors is the

standard one.

154

Deployment We now describe how type attribute predicates can be deployed atop

a security policy, that we assume static for now. As we have showed for filesystem

and network overlay labeling, it is possible to use the support of type attributes to

encode additional labeling schemes, provided the original types have been promoted.

The same technique is used to support type attribute predicates.

The idea is to first create a type attribute that will be used to represent the fact

that the predicate is satisfied. Then, for each existing type, the system evaluates if

the attributes that are attached to it are such that the predicate is satisfied. If so,

the attribute that represents the type attribute predicate, the materializing attribute,

is attached to that type. These modifications are confined to the policy; no object

needs to be relabeled.

In the next two section, we describe how this simple scheme is extended to support

policy dynamics and to efficiently evaluate the predicates without entering infinite

evaluation loops.

4.4.2 Handling Policy Dynamics

We have presented how, given a static policy, predicates can be used to define

overlay labels. A question that naturally arises at this point is whether and how this

kind of overlay label can support a dynamic policy. For instance, what should be done

when a type is added to the policy ? More precisely, which predicate overlay labels

should be associated with this type upon its creation ? Also, which actions should

be taken when the attributes of a type are modified, by either adding or removing

attributes to the type ?

Essentially, our system needs to support triggers on the policy database, so that

any modifications to the policy types and attributes is immediately accompanied by

the appropriate updates to predicates. For each modification, the companion update

is as follows.

155

Type Creation: A type can be created in two ways: either directly, or through a

type attribute. As a consequence, the type has either one or no type attribute attached

to it upon creation. The system looks up the existing predicates to figure out which

ones apply to the new type. The search is narrowed by using the fact only predicates

based on negative clauses or based on the type attribute attached to the type can

be satisfied. For each predicate that matches the new type, the corresponding type

attribute must be attached to the type. Because our system supports the negation

operator, it could potentially enter an infinite evaluation loop. We show in section

4.4.3 how we address this problem.

Attribute Creation: Creating an attribute has no consequence from the perspec­

tive of predicates. Predicates can only refer to existing type attributes. Consequently,

there can not be a predicate refering to a type attribute before this attribute is cre­

ated.

Attribute Attachment: When an attribute is attached to a type, the system

needs to evaluate only the predicates that reference that attribute. For each of these

predicates, one of three cases can happen:

•	 the additional attribute enables the satisfaction of the predicate, which was not

previously statisfied. In that case, the corresponding type attribute must be

attached to the type.

•	 the additional attribute invalidates the satisfaction of the predicate, which was

previously statisfied. This case is only possible with predicates that use the

negation operator. In that case, the corresponding type attribute must be

detached from the type.

•	 the additional attribute has no impact on the satisfaction of the predicate. This

can happen for instance when the disjunction operator is used; in this case no

additional action needs to be taken by the system.

156

Attribute Detachment: When an attribute is detached from a type, the required

operations are the reverse of the ones carried out for attribute attachment. For each

predicate that references the attribute being detached, one of three cases can happen:

•	 the removal of the attribute invalidates the satisfaction of the predicate, which

was previously statisfied. In that case, the corresponding type attribute must

be attached to the type.

•	 the removal of the attribute enables the satisfaction of the predicate, which

was previously unstatisfied. This case is only possible with predicates that use

the negation operator. In that case, the corresponding type attribute must be

attached to the type.

•	 the additional attribute has no impact on the satisfaction of the predicate. This

can happen for instance when the disjunction operator is used; in this case no

additional action needs to be taken by the system.

Attribute Deletion: When an attribute is deleted, it must first be detached from

each type it was attached to. Detaching an attribute from a type is described above.

4.4.3 Runtime Support

In order to efficiently support predicates on type attributes, the system needs to

be extended. The system needs to maintain, for each type attribute, a list of the

predicates in which it is referenced. This is required to support efficient attribute

attachment and detachment, as explained in the previous section.

Predicates on type attributes can lead to a serious evaluation problem if predicates

are allowed to reference the type attributes that materialize predicates: the evaluation

may not terminate. Consider the following two predicates:

A := !B

B := !A

157

By referencing one another, these predicates create an infinite evaluation loop. To

prevent this problem, predicates are prohibited from refering to type attributes that

are used to represent predicates. Therefore, the system needs to maintain an addi­

tional flag for each type attribute, indicating whether it is used as a marker for a

predicate. When a user attempts to create a predicate, the system can use this flag

to ensure that the predicate does not reference other predicates.

This problem (introducing loops through the usage of negation) is well know in

logic programming. There are two main ways of solving it. The first solution is to

give up the negation operator, which we are not willing to do. The second solution is

to use stratification [155]. The principle of stratified logic is to assign a rank to each

predicate, with the following constraints:

•	 A predicate must have a rank superior or equal to the rank of each predicate

that it references positively.

•	 A predicate must have a rank strictly superior to the rank of each of the predi­

cates that it references negatively.

Effectively, stratification prevents the use of negation to build circular dependencies

among predicates. The design we have presented does not implement a stratified

predicate evaluation strategy. It does, however, prevent the formation of these circular

dependencies and offer the negation operator.

4.4.4 Motivating Example Revisited

We now revisit our motivating example and show how type attribute predicates

can be used to write simple yet expressive access control rules.

In Section 4.2.3, we presented filesystem overlay labeling. It enables users that do

not have the administrative right to relabel some file to single out a set of files in order

to treat them separately for access control. In the introduction of this chapter, we

considered a property like the following: “This domain has access to system binaries,

except compilers.”

158

This property can be expressed simply with predicates. Provided that the com­

piler is labeled, say, compiler t, the group of files that are “system binaries, except

compilers” can be concisely designated by the predicate (bin t AND !compiler t).

On a standard SELinux, even with filesystem overlay labels, this property would

be cumbersome to express: in TE, there are no negative permissions14 . As a result,

the user would have to explicitly designate all the system binaries, except the com­

pilers, with an overlay label. While this is effectively how the above predicate will be

deployed on the system, predicates shift the burden from the user to the system.

In essence, the predicates support the specification of groups of objects in terms

of set operations: intersection, union, and complement. This flexible means of desig­

nating object can ease both the refactoring of the existing policy and the expression

of new properties.

4.5 Policy Dynamics: Avoiding Subversion

This chapter has discussed several use cases of overlay labeling, and how to ef­

ficiently support these use cases. For filesystem and network overlay labeling, the

motivation was to support refinements of the coupling between the abstract TE pol­

icy and the concrete set of objects managed by the system on which the policy is

deployed. For the designation of objects based on type attribute predicates, the goal

was to enable a higher-level specification of the policy.

Overlay labeling, however useful, can be dangerous if not properly regulated.

Indeed, a simple implementation of overlay labeling could allow a user to grant per­

missions, to himself or other users, that he would never be entitled to grant without

overlay labeling. The gist of the problem is the following. A (malicious) user defines

an overlay label, and then proceeds to give away access rights to object bearing this

label. Suppose that the overlay label happens to cover types for which the user does

not have the administrative authority to grant access. The user could try to work

14SELinux has a notion of explicit deny, with the neverallow access vector rules. The rules are

enforced at compile time only, to prevent errors in the written policy.

159

around this restriction by adding rules to the policy that grant access, expressed in

terms of the overlay label instead of the base type.

This problem has to be dealt with under two angles. By restricting the span of

types that user-defined overlays can cover, so that overlays defined by a given user can

only cover types that he has some privileges on, one can prevent a user from defining

overlays that could only be used in attempts to subvert the policy. By restricting the

content of rules that can be formulated based on these overlays, one can prevent a

user from adding rules (that refer to overlay labels) which subvert the policy.

The remaining of this section is organized as follows. We first define which invari­

ants we want to preserve on the policy. Then we present the infrastructure required

to keep track of policy dynamics, in order to preserve policy invariants and hence

avoid subversion. Finally, we present the enforcement of these invariants.

4.5.1 Policy Properties

The properties that we want to preserve correspond to the notion that the intent

of the base system policy must be preserved. More precisely, the system-defined type

transition and access vector rules must have precedence on the user-defined ones.

Administrative users can modify the system policy according to the administrative

privileges that are granted to them. Regular users, however, should be prevented

from modifying either the TE policy or its coupling with the underlying system in a

way that violates the system policy.

This means that regular users can not grant permissions they do not possess

themselves. Users that are extended administrative privileges can additionally per­

form the operations that require these privileges (including granting permissions, if

applicable), but no more than that. Below, we introduce definitions that are then

used to formally define the invariants that should be preserved.

Definition 4.5.1 (Access contour of a domain) A domain’s access contour is the

set of all non-administrative permissions granted to a domain. This contour can be

160

Domain 2

Type 1

Type 2

Type 3

Attribute 2

4

5

6

7

8

3

Domain 2

Type 1

Type 2

Type 3

4

5

6

7 8

3

78

Attribute 1Domain 1 Domain 1

1

2

1

1

2

2

Figure 4.13.: Example permission graph showing how attributes are used to factor
the policy. The left part of the figure is a representation of how attributes can be
used to factor the expression of permissions given to domains. The right part is a
representation of the permissions effectively granted. Attribute 1 is used to factor the
assignment of Permission 1 and Permission 2 on Type 1 to Domain 1 and Domain 2,
by grouping the domains under the same attribute. Attribute 2 is used to factor
the assignment of Permission 7 and Permission 8 on Type 2 and Type 3 by grouping
Type 2 and Type 3 under the same attribute. These two usages of attributes can be
combined.

defined in simple graph terms. For each type that a domain has access to, and for

each permission that the domain has on that type, there is an edge from the domain

to the type.

As illustrated in the first graph of Figure 4.13, attributes are commonly used to

factor the policy. These attributes are expanded according to Algorithm 3 to yield

the access contour graph, the second graph in Figure 4.13.

Definition 4.5.2 (Access contour inclusion) The access contour of one domain

d1 is included in the access contour of domain d2 if, for each permission that d1

possesses, d2 possesses the same permission. In graph terms, this means that if we

replace d1 by d2 in d1’s access graph, the resulting graph is a sub-graph of d2’s access

graph.

For example, in Figure 4.13, the access contour of Domain 1 is included in the

access contour of Domain 2.

161

Algorithm 3 Expansion of type attributes, to obtain the access contour of a domain d
contour ← ∅
{Expansion of domain attributes}
source labels ← {d}

for all attri ∈ d.attributes do

source labels ← source labels ∪ {attri}

end for
{Expansion of accessible type attributes}
for all labeli ∈ source labels do

for all a(labeli, t, c, o) ∈ Ψ do

if t ∈ policy.attributes then {Expand attributes if needed}

for all typei ∈ t.types do

contour ← contour ∪ a(d, typei, c, o)

end for

else

contour ← contour ∪ a(d, t, c, o)

end if

end for

end for

162

Based on these definitions, we can reformulate rigorously the definition of the

policy invariants that have to be preserved. Regular users can grant permissions,

within the access contour of their domain, to domains they have created. These are

implicit administrative permissions granted to users in order to let them segregate

applications that run on their behalf. Any attempt at granting permissions that does

not satisfy this contraint must be authorized by an explicit administrative permission.

If not, it should be rejected.

4.5.2 Taming Indirect Constructs: Preserving Policy Invariants

When a user attempts to add a permission, the system needs to determine whether

the user is employing his implicit right to partition his user account, or if the user is

actually attempting to perform an administrative operation that must be explicitly

authorized.

Since our extension with overlay labels adds another level of indirection, addi­

tional controls have to be performed when evaluating the request by a user to add a

permission to the policy. Indeed, overlay labeling requires the promotion of base types

to attributes and the creation of synthetic types. These operations, if not tracked,

tend to obufscate the permissions specified in the original security policy.

Type promotion (see Section 4.2.3) replaces a type by a synthetic type, to which

all attributes of the original type get attached, and a new attribute that represents

the promoted type. This attribute is also attached to the synthetic type. When type

promotion is performed, the permissions are adjusted to preserve the semantics of

the original policy, while reflecting the promotion. This adjustment was described in

Algorithm 1.

What we are concerned with here is to guarantee that, although the system ex­

tends implicit administrative permissions to its users, the original policy intent can

not be modified without exerting explicit administrative permissions.

Overlay labels, since they are encoded as type attributes, can be analyzed using

the same notion of access contour as defined above. A user is implicitly allowed to

163

Off-Limits
Type

Domain

Type 1
Type 2

Type 3

Overlay LabelPermissions
Domain

Type 1 Type 2

Type 3

Permissions

Off-Limits
Type

Extended Overlay Label

Figure 4.14.: Illegal extension of an overlay label. The overlay is extended to cover a
type on which the user that extends the overlay has neither direct access nor admin­
istrative rights. This implicit extension of rights must be prevented by the system.

create a permission to a given overlay label, if this permission fits in the user’s access

contour. The addition of any permission that does not fit in the user’s access contour

must be explicitly authorized by an administrative permission.

It would be desirable to let users redefine overlay labels, as opposed to just creation

and deletion of the overlays. This way, the rules that refer to the overlay label would

not have to be first dropped, and then re-created every time the overlay label is

redefined. However, care should be taken to drop rules that, after expansion of the

overlay label, result in permissions that overlap the access contour. This case is

illustrated in Figure 4.14.

This feature, however, is better left out of the core system. It is simpler to support

only creation and deletion of overlay labels, with a deletion of all the rules that refer

to an overlay when the overlay is deleted. This way, permissions that would become

illegal as a result of widening the overlay are simply rejected when they are added

back to the overlay label. While the overlay is being expanded, permissions that

were referring to the overlay can be cached by a helper program. It would help such

a program if the administrative interface was transactional. With a transactional

interface, the transaction corresponding to a rejected redefinition of an overlay label

would simply be rolled back.

164

4.6 Reversibility

Finally, we address reversibility, which is an important factor of psychological

acceptability for administrative models [77]. Type promotions and overlay labeling

are not naturally reversible operations. To support reversibility of these operations,

the system must actually keep a record of them, so that they can be undone. For

instance, once a type has been promoted, it simply becomes an attribute of a synthetic

type. At this point, there is no way to tell this attribute apart from the other type

attributes of the original type, which are also attached to the synthetic type as a

result of type promotion.

In this section, we present how type promotions and the deployment of overlay

labels can be undone. For each of these operations, we start by presenting the meta­

data that the system needs to maintain in order to support these undo operations.

Then we show how these undo operations can be carried out.

4.6.1 Undoing Type Promotions

Property 4.6.1.1 To support reversible type promotions, it is necessary and suffi­

cient to keep track of the names of the promoted types.

Reversing a type promotion requires two operations. First, the type attribute

that represents the promoted type needs to be removed from the policy. Second,

every policy statement that references the synthetic type that was generated for the

type promotion needs to be replaced by a statement that references the name of

the original type. These statements include, the type declaration, the attachment of

attributes to the type, type transition rules, and access vector rules. Since types and

type attributes share the same namespace, the removal of the type attribute must

happen before the synthetic type name is replaced by the original type name.

The above explanation shows why it is sufficient to keep track of the names of the

promoted types. The necessity of storing this information stems from concerns for

correctness. If the system does not verify that the name for which a type demotion

165

is requested does indeed correspond to a promoted type, then the system could be

fouled in performing the above operation with an attribute that does not represent a

promoted type. Also, undoing type promotion should only be performed after all the

overlay labels have been undone.

4.6.2 Undoing Overlay Labeling

Property 4.6.2.1 To support reversible overlay labeling, it is necessary and suffi­

cient to keep track of the following information for each overlay label: its name, its

deployment criteria (a regular expression for a filesystem overlay label; packet filter­

ing criteria for a network overlay label), and, for each synthetic type that had to be

generated, its name and the name of the type it was derived from.

In our demonstration of this property, we first consider the case of reversing non-

overlapping overlay labels. Then, we consider the case of overlapping overlay labels.

Assuming non-overlapping overlay labels, the reversal of an overlay label proceeds

as follows. Given the name of the overlay label, we can find all the types that the

overlay label is attached to; these types are synthetic. For each of these synthetic

types, the attribute that represents the overlay label has to be removed and the objects

that bear the synthetic type have to be relabeled to bear their original synthetic type

(the one they bore before the overlay label was deployed). This requires two pieces

of information: the parenthood relation between synthetic types, in order to know

which type to relabel to, and the regular expression that was used to deploy the

overlay label, in order to locate the objects that need to be relabeled.

The preceding explanation showed why the recording of synthetic types deriva­

tions, as well as the recording of their deployment criteria are necessary conditions.

Recording the names of overlay labels is also necessary, for the same reason that it

is necessary for safe reversal of type promotions. If the system does not verify that

the name for which the removal of an overlay is requested does indeed correspond to

a overlay label, then the system could be fouled in performing the above operation

S

,

Overlay O1

Overlay O2

Synth.
type

SO2

166

Logical View Internal Representation
(

Type t

Overlay O1

Overlay O2

Overlay O3

Attributes: attr_t

Synth.
type

S1

Synth.
type

SO1

Synth.
type

SO2

Synth.
type

SO3

Attributes: attr_t, t

Attributes: attr_t, t, O1

Attributes: attr_t, t, O1, O2

Attributes: attr_t, t, O1, O2, O3

Figure 4.15.: Simple example of overlapping overlay labels: the successive overlays
are successive strict refinements of the original type.

Logical View Internal Representation

Type t

O3

Attributes: attr_t

Synth.
type

S1

Synth.
type

SO1

Synth.
type

SO3

Attributes: attr_t, t

Attributes: attr_t, t, O1

Attributes: attr_t, t, O1, O2, O3

Overlay O1

Overlay

Ov 2

Overlay O3

OvOveverrlalayyy OOO2O2

SySynSyntnthh.
typtypepee

SOSOSOSO222

O1, O2, O3OOO2O2O2O2,O2,O222,,,

Overlay O2 is
removed from the

system

2OOOO2O2O2

Type SO2 and attribute O2
are removed from the system.

Objects of type SO2 are
relabeled to SO1

22

SO3 is
reparented to

SO1
attribu

Figure 4.16.: Removing the overlay O3, based on the configuration from Figure 4.15.

with an attribute that does not represent a overlay label.

We now show that this property holds even in the case of overlapping labels. We

illustrate this with a simplified case of overlay labeling (see Figure 4.15), where each

167

successive overlay only refines a single (overlay) type. We show how our solution

applies to this simplified case, and how it generalizes to overlays that refine several

(overlay) types and to types that are refined by several overlays. In other words,

our solution generalizes to the branching cases but we start by considering only the

straight line case first.

Given the example configuration from Figure 4.15, suppose that we want to remove

the overlay O2 from the system, the questions to answer are the following. For objects

that are labeled with the type SO2, which type should they be relabeled to ? How

do we find these objects ? The type SO3 was derived from SO2; which type should

it be now considered a derivation of ? Which adjustments need to be performed on

type attributes ?

The adjustments to the policy, illustrated in figure 4.16 are as follows. Since

overlays are internally represented by attaching attributes to types, the attribute

that corresponds to the overlay label must be removed from the system. This involves

detaching that attributes from all the types that bear it. Also, since the creation of

a synthetic type, SO2 in our example, is required to separately label the objects that

are covered by the overlay, that type needs to be removed from the system. This

operation could be done by iterating over all the types of the policy. However, it can

be carried more efficiently if the system keeps a bi-directional track of parenthood

relations among synthetic types. In that case, all the types that bear the overlay

attributes can be efficiently located, as they are children types of the synthetic type

being removed (e.g. SO3 is a child type of SO2). When that type is removed from

the system, the objects that bore that type need to be relabeled. They are relabeled

to the type they would have had if the overlay had never been created, SO1 in our

example.

To summarize, removing the O2 overlay from Figure 4.16 requires using the fol­

lowing information: the name of the attribute that materializes the overlay (O2), the

synthetic type that was created to materialize the overlay (SO2), the parent type of

that synthetic type (SO1), the child synthetic type (SO3) that what created to label

168

objects from O2 that are covered by overlay O3, and the criteria that was used to

deploy the O2 overlay. In the above, we have shown why how each of these items is

necessary to perform one of the actions needed to reverse the deployment of an over­

lay label. As the reversal of the deployment does not need additional infortmation,

these items are also sufficient.

The operation of removing an overlay label from the policy generalizes to over­

lapping overlays that cover several types and to overlays that are covered by several

overlays. This generalization is presented in Algorithm 4.

Algorithm 4 Remove overlay O

{Reparent types as needed and remove the overlay attribute.}
for all typei ∈ O.synth types do
for all typechild ∈ typei.children types do

typechild.parent type ← typei.parent type

remove attribute recursively(typechild,O.attribute)

end for

end for

{Relabel object to the parent type. (only for filesystem overlays)}
for all objecti ∈ locate objects(O.deployment criteria) do

if objecti.typeinO.synth types then

objecti.type ← objecti.type.parent type

end if

end for

{Remove the synthetic types from the policy.}
for all typei ∈ O.synth types do

policy.types ← policy.types/{typei}

end for

4.7 Conclusion

In this chapter we have motivated the need to let users refine the labeling of

objects on a TE system, and presented solutions to address this problem. The need

for labeling refinements stems from the need to enforce the principle of least privilege.

If regular users are able to create and configure TE domains (using the administrative

model from Chapter 3) but can not specify exactly which objects a domain has

169

access to, due to a coarse labeling, then our work would not address the fine-grained

requirement that is part of our thesis statement. The solutions we presented are the

following.

Filesystem label overlays are a technique that we designed, based on using type

attributes, to let users overlay arbitrary labels on system objects. This technique is

itself based on another technique that we designed, called type promotion, which is

used to support the later deployment of overlay labels.

Network label overlays are similar to filesystem label overlays, only for network

packets. Developing this technique was more involved that for filesystem overlay

labels, as a straightforward solution has an exponential space usage, and optimizing

that space usage is NP-complete. Our solution relies on applying a datastructure

from computational geometry, interval trees. We have proved that the complexity of

this solution is optimal within a constant factor in the general case.

Predicate overlay labels are a technique to specify the TE policy at a higher level,

based on predicate logic expressed over the attributes attached to types. It can be

supported the overlay labeling mechanisms developped for filesystem overlay labels.

We have concluded this chapter by exposing how these overlay labeling techniques

can be reversed, and how it is possible to contain the use of overlay labels to prevent

them from being misused in order to subvert the policy of a system.

170

5. EVALUATION

In the two previous chapters, we have presented and motivated our extensions to TE

and to the labeling mechanisms offered by SELinux. In this chapter, we evaluate

these extensions. First, we demonstrate the expressive power of our mechanisms by

analyzing concrete use cases. Then we show why current mechanisms do not fulfill the

users needs, whereas our extensions do. We do this by comparing our mechanisms

to related models and implementations. Finally, we provide benchmarking results

gathered on our proof-of-concept implementation.

5.1 Expressive Power: Case Studies

In this section, we present three case studies that are all tied to real security needs

that we have either directly experienced or that were reported to us by colleagues.

There was no fully satisfactory solution for any of these scenario. We show how each

scenario can be addressed by our extensions and we explain why the set of existing

solutions was not satisfactory.

5.1.1 Review of TE and our Extensions

Before proceeding to the case studies, we provide a review of TE and our ex­

tensions. A domain is the unit of confinement: processes run within a domain. In

SELinux’s version of TE, processes are in a domain by virtue of their type being

the type of the domain. (As a reminder, domains are types that bear the domain

attribute.) Consequently, permissions are granted to types. These permissions are

expressed in terms of operations that can be performed on objects of a given class and

type. The class of an object is directly determined by the class of system resource

171

that the object belongs to (e.g. file, directory, socket). The object type, however, is

determined according to the local deployment of the TE policy. This is where over­

lay labeling comes in handy by supporting refinements of the grouping of objects,

while preserving the semantics of the original deployment of the policy. The final

step in the configuration of a domain is to make it reachable from other domains.

This involves configuring programs as entrypoints of domain and setting up auto­

matic domain transitions. The entrypoints of a domain are the programs through

which the domain can be entered. Based on the current type of a process (i.e. its

domain) and the type attached to the program it attempts to execute an automatic

domain transition determines the type that will be attached to the process after it

starts executing the new program. The domain transition, however, will only happen

if three conditions are met. The transition must be allowed by the policy, the process

has to be allowed to execute the program, and the program must be declared as an

entrypoint of the transition’s target domain.

5.1.2 Subdividing a User Account: The Grading Program Problem

In this section, we revisit the grading problem that we introduced in Section

4.1 to motivate the introduction of overlay labels. We provide a more complete

treatment of this example, in which we also illustrate the rationale for the introduction

of administrative templates in Section 3.3.3. The remainder of this section covers the

grading program case study, following the presentation order that was used for the

previous review on TE and our extensions.

Properly addressing the grading program problem requires several features. The

user deploying a grading program should be able to create and configure a new con­

finement domain, which includes configuring the entrypoints of the domain. Then,

the user should be able to decide which resources are accessible from within that

domain. These operations (and their authorization) can be specified as follows.

172

student_submission_t

Grading

script

Grading

logs

grading_logs_t

Web

content

web_content_t

grading
process

web
server

web
client

Automatic
transition

grading_t

read

append

Allowed network
connections

grading_script_t

execute
entrypoint

Student

program

execute

Student
program

grading_cgi_bin_t

execute

Figure 5.1.: Summary view of the permissions granted to the domain (grading t)
used to confine the grading program.

173

Creating a domain

Creating a domain involves two operations, and therefore two permissions: creat­

ing a new type, and then attaching the domain attribute to that type. Our preferred

solution is to allow the creation of types through attributes. This way, types are

automatically labeled with an attribute that can be used to refer to them in the pol­

icy. This comes handy when one wants to specify that a given user (here, the TA)

is allowed to create domains. As we explained in the TE recap, creating a domain

involves two operation. The creation of types through attributes allows to connect

the two rules needed to allow the creation of a domain. Without such a means of

connecting the two rules, the policy would have to be somewhat hard-coded: the

names of the domain that a user is allowed to created would have to be explicitly

mentioned in the policy. By using attributes, this restriction is avoided. The two

rules to allow the TA to create a grading domain are the following.

1 allow ta_t ta_type:type create;

2 allow ta_t ta_type:attribute(domain) attach;

First, the TA is allowed to create types through an attribute (ta types in this exam­

ple) that is attached to his account1 . Second, the TA is allowed to attach the domain

attribute to types that were created through the type attached to his account. To cre­

ate a domain named grading t in accordance with these permissions, the TA would

perform the following operations on the virtual filesystem:

1 create /sefuse/attrs/ta_type/grading_t

2 create /sefuse/attrs/domain/grading_t

The first operation will create the type grading t through the ta type attribute; the

second will attach the domain attribute to this new type, making it a domain. Once

1Our system does not directly handle the assignment to accounts of attributes through which the
users can create types. We consider this step to be part of account provisioning, which falls outside

the scope of our work.

174

a domain is created, the next step is to assign permissions to that domain, which

requires some preliminary relabeling of objects.

Labeling Objects

Since all TE permissions are expressed in terms of types, the TA has to assign

separate labels to objects. These labels need to be different when the granted permis­

sions have to differ. For instance, the web server should have have only read access

to the static content it serves, and the web client should only have append access to

its logs. Consequently, the static web content has to be labeled with a type that is

different form the type that labels the logs.

As illustrated in Figure 5.1, the static web content is labeled with the type

web content t and the grading logs are labeled with the type grading logs t. The

TA needs to be allowed to perform this labeling of objects. Authorizing the TA to

change the label of files requires two permissions, relabelfrom and relabelto, for

each relabeling operation.

For instance the following permissions allow the TA to relabel regular files in his

home directory, labeled ta home t, with the type associated the static web content,

web content t.

1 allow ta_t ta_home_t: file relabelfrom

2 allow ta_t web_content_t: file relabelto

Type attributes can be used to factor the relabeling rules between the standard label

of the TA’s home directory and any type that the TA has created.

1 allow ta_t { ta_home_t ta_type }: file { relabelfrom relabelto }

2 allow ta_t { ta_type ta_type }: file { relabelfrom relabelto }

The first rule2 allows the TA to relabel files from (resp. to) the type of his home

directory files to (resp. from) any type that he has created through the ta type

2SELinux supports a compact notation for access vector rules, where each field can contain a set
of elements of the expected kind, separated by spaces and surrounded by curly braces. Internally,
these rules are expanded to the simple format of rules that we modeled in Chapter 3. We use this

format here and in following examples to compactly represent access vector rules.

175

attribute. The second rule allows the TA to relabel any object, currently labeled

with a type he created, with another type he created. The relabeling is performed

using the standard SELinux chcon “change security context”) utility.

Assigning permissions to a domain

There are two ways to let a user assign permissions to a domain. The straightfor­

ward approach is to grant the administrative permissions one by one. For instance,

the following rules state that the TA can grant the permission to read files from his

account (labeled ta home t to types he has created through the ta type attribute:

1 allow ta_t _:av_rule(ta_type, ta_home_t, file, getattr) insert

2 allow ta_t _:av_rule(ta_type, ta_home_t, file, open) insert

3 allow ta_t _:av_rule(ta_type, ta_home_t, file, read) insert

Clearly, granting the administrative permissions one-by-one can be tedious. This is

one of the main reasons why we have introduced the notion of administrative tem­

plates in our model (see Section 3.3.3). Instead of having an administrator essentially

create one administrative rule for each administrative permission that he wishes to

grant the user, an administrator can grant the user the permission to add permissions

to a domain, provided that another (template) domain possesses the same permis­

sions. For instance, the following rule allows a user to grant any permissions from his

default domain to a domain that he has created.

1 admin_domain_template ta_t ta_t ta_type

As they allow the factorization of the administrative policy, administrative templates

make it easier for the admin to both define and reason on the administrative policy.

For the grading program, the TA wants to grant several permissions to the domain

where the grading program will be confined, grading t.

1 allow grading_t grading_script_t : file { read gettatr execute \

2 entrypoint open }

176

3 allow grading_t web_content_t : file { read getattr open }

4 allow grading_t grading_logs_t : file { append getattr open }

The network access control permissions are covered in the next case study, where

we analyze the deployment of web applications.

Fine grained grouping of objects

The deployment of the policy, and hence the granularity at which the system

groups objects under types, sometimes forces a coarse granularity on the policy that

can be expressed on objects. This is due to the fact that the TE policy can only

be expressed in terms of the types and attributes attached to objects. We have

introduced overlay labels in Chapter 4 to circumvent this limitation. Overlay labels

allow users to refine the grouping of system objects in an arbitrary fashion.

For instance, the web server that students implement has to support some Com­

mon Gateway Interface (CGI [156]) features. Some of the CGI scripts that the server

runs rely on system binaries (e.g. cal to provide a textual calendar). This means

that the web server has to be allowed to execute some of these system binaries. As

most system binaries are labeled with the same type (bin t), giving access from the

grading domain (grading t) to the default type of system binaries (bin t) would

result in un-necessarily broad permissions.

Instead, the TA can use a filesystem overlay label to group together binaries that

are referenced from the CGI scripts used for grading.

1 fs_overlay /usr/bin/cal grading_cgi_bin_t

2 fs_overlay /bin/date grading_cgi_bin_t

3 fs_overlay /bin/echo grading_cgi_bin_t

The grading domain can then be granted execute access to this subset of the system

binaries, instead of access to all system binaries.

1 allow grading_t grading_cgi_bin_t : file { getattr open read \

2 execute_no_trans }

177

Defining the domain entrypoints

The entrypoints of a domain are sensitive by nature. These programs are, in

essence, the gatekeepers of a domain: they are trusted to restrict how the permissions

granted to the domain are used, by offering a limited set of operations that can be

performed. For instance, the passwd program limits how the read/write permission

on the /etc/shadow file (where password hashes are stored) granted to the passwd t

domain can be used.

Contrary to this example, there is no need for an administrator to worry about

the entry points that a user sets for domains that are strictly sub-domains of his

user account. Indeed, allowing the creation of sub-domains enables security-conscious

users to better protect the permissions they are entrusted with, by confining programs

to which they do not want to extend all of their ambient permissions. In other words,

we consider that restricting the entry points that a user can set to one of his account

sub-domains would be counter-productive, as it could discourage users from using the

account sub-domain feature3 .

Therefore, we think that a user should be able to set any executable file as an

entrypoint to a sub-domain of his account, as long as it is executable from their

user account. In the grading program problem, a practical approximation is to allow

the TA to set any file labeled bin t or ta types as an entrypoint to a domain that

bears the attribute ta types. The corresponding administrative permissions are the

following.

1 allow ta_t _:av_rule(ta_types bin_t:file entrypoint) insert

2 allow ta_t _:av_rule(ta_types ta_types:file entrypoint) insert

3We think, however, that administrative control on the entrypoints of domain remains a good idea

in other cases, for instance in the case of web applications, which we discuss next.

178

Setting up automatic domain transitions

To finalize the setup of the grading domain, the TA needs to set up an automatic

domain transition so that the grading script will be automatically placed in the grad­

ing domain upon execution. The type transition rule to enter the grading domain

upon execution of the grading script looks as follows.

1 type_transition ta_t grading_script_t : process grading_t

The following administrative permissions lets the TA perform this operation. The

first one allows exactly this operation, whereas the second is a generalized version

that uses attributes.

1 allow ta_t _:tr_rule(ta_t, grading_script_t, process, grading_t) insert

2 allow ta_t _:tr_rule(ta_t, ta_types, process, ta_types) insert

Summary

We have shown how our extensions allow a regular user (here, the TA) to define

subdomains within their user account to confine applications that they decide not

to trust (here, student submissions). These subdomains have permissions that are a

strict subset of the permissions of the user account. We restricted our presentation

to covering overlay labels for filesystem objects. In the next section, we use the

deployment of web applications as an example to present the usage of network packets

overlay labels and how users can be allowed to grant permissions that they do not

possess.

5.1.3 Hosting User-owned Web Applications

When we revisited the grading program problem, we showed how a user can create

domains and grant them a subset of the user account permissions. Here, we look at an

extension of this scenario: confining web applications on a web server. There are two

179

main reasons to confine web applications: protecting the host systems, and shielding

applications from one another. The confinement is desirable to address the threat of

an application behaving maliciously. This malicious behavior usually results from the

application having a security flaw that gets exploited. We postpone presenting the

confinement of hostile applications to section 5.1.4.

The attentive administrator of a web hosting site can follow recommended security

guidelines (e.g. [157]) and achieve a setup where the host system is protected from

vulnerabilities in the hosted web applications. In other words, the host system can

not get corrupted through a hijacked web application, but that is not what we are

interested in solving.

We are interested in solving the other motivation for confining web applications:

to isolate them from one another. More specifically, we will show in the following

how our extensions enable the confinement of web applications, even when they run

in the same unix user account. The cheapest solution for hosting a web site is virtual

hosting, where not only the physical machine, but also the operating system instance

and the web server daemon are shared by several users. For instance, this is how

personal web pages are currently supported at Purdue University and several other

academic institutions (e.g. Stanford University and the University of North Carolina

at Chapel Hill 4). To ensure that web applications installed by one user can not

access the data of other users, these sites resort to using a feature of the Apache

web server that runs the applications under the user identity. This feature is called

suExec [157], as the web server process executes the user application after calling the

setuid system call, to set its identity to that of the user that installed the application.

Consequently, the application can only access data that is normally available to the

user on behalf of whom it is running.

The suExec solution has also been extended to support the same feature for

PHP applications [158]. These solutions, however, suffer from the same limitation

4See http://www.stanford.edu/services/web/cgi/security.html and http://help.unc.edu/

3136.

http:http://help.unc.edu
http://www.stanford.edu/services/web/cgi/security.html

180

that we highlighted in the previous section: they do not offer means for a regular

system user to further refine the confinement of her application. All the applications

installed in the same user account run with the same user privileges, and therefore

can compromise one-another.

Our extensions can be used to remedy this situation. The situation in this case

study is more complicated than the previous case study, as the domains in which the

web applications are to be confined requires privileges that a normal user application

would not have. Indeed, regular user applications are not allowed to talk with the

web server. On the other hand, web applications must be allowed to do so if they are

to serve web requests.

We expose the use of our extensions in two steps. First, we cover how the system

administrator (or the web administrator) can extend some of his administrative priv­

ileges, in a controlled fashion, to a user that wants to install a web application. Then,

we show how this user can further refine the permissions granted to this application

in order to enforce a fine-grained confinement. Refining the permissions is important

to reduce the attack surface of web applications, and to reduce the exposure of the

user’s account to an application that would be hijacked.

Subdomains with Additional Privileges

A user-deployed web application needs to receive a subset of the user’s permissions

and a subset of the webserver’s permissions in order to be functional. The user’s

permissions are needed for the application to perform operations within the user’s

account: access data, perform computing tasks, and store back some application state.

The webserver’s permissions are needed for the application to handle a connection

received by the webserver, on a port normally reserved to the webserver, and accepted

through a file descriptor that belongs to the webserver.

The permissions that the user-deployed web application need to answer requests

received by the web server are the following.

181

httpd_t user_t user_home_t

user_webapp_t

subset of permissionssubset of permissions

Network
connections

User

data

Access to
user data

Figure 5.2.: The domain of a user web application can receive permissions both
from a web application permission template and from the user domain, treated as a
permission template.

182

1 allow user_webapp_t httpd_t : fd use

2 allow user_webapp_t netif_type : netif { ingress egress }

3 allow user_webapp_t port_type : tcp_socket { recv_mesg send_mesg }

4 allow user_webapp_t http_server_packet_t : packet { send recv }

The first rule allows read access to open file descriptors passed by the web server to the

web application (this is the mechanism by which a web server hands over the request

handling to child processes). The second rule allows ingoing and outgoing traffic of

the web application domain to go through network interfaces. The third rule allows

a bidirectional flow of data over a TCP socket. The name bind and name connect

have deliberately been omitted from this rule, as in this case we do not want to let

the web application, either bind sockets to ports, or initiate remote connections. The

fourth rule allows the datagrams to be sent and received on the socket by the web

application.

To set each permission, the user needs an administrative permission that allows the

setting of this permission. Each of these administrative permissions have to be granted

by an administrator. It is desirable for the administrator to have a means of factoring

the administrative policy, as noted in the previous case study. We have designed our

administrative templates so that they can be composed. This composability allows

the granting of administrative permissions from several templates, to the same user,

and on the same domain. For instance, the above permissions can be used as a

template that lets the user assign the same permissions to one of his domains, with

the following administrative template.

1 admin_domain_template user_t user_webapp_t user_types

This template can be coupled with another template that lets the user grant per­

missions from his main domain to a domain he has created through the user types

attribute.

1 admin_domain_template user_t user_t user_types

183

This composition of administrative templates in a non-hierarchical way is pow­

erful. The Policy Management Server proposed by Tresys [73] can not handle this

scenario.

Refining the Permissions

The networking permissions granted to the user webapp t domain in the example

above are broad: while they do not allow the domain to create new sockets, the domain

is allowed to communicate with any host that the webserver accepted a connection

from, since the connections are passed by means of an open file descriptor which

corresponds to an unknown (as far as the application is concerned) endpoint. This

file descriptor corresponds to the socket on which the web server accepted the client

connection. The file descriptor is left open when the web server forks a new process

which starts executing the user’s web application.

As we mentioned in the introduction of this case study, it is desirable for the user

to grant only a refined subset of the permissions of her user account to a domain in

which a web application will run. In the case of an online journal (a blog), several

refinements are interesting.

If the blog is used to convey proprietary information, it is desirable to restrict the

network permissions of the domain so that it can only communicate with hosts on

the internal network. This can be done using the following network overlay label.

1 net_overlay --source 10.0.0.0/24 intranet

2 net_overlay --dest 10.0.0.0/24 intranet

3 allow intranet_blog intranet : packet { send recv }

The first two rules define the intranet network packets overlay overlay label that

labels packets sent or received on the internal network. The last rule allows the

intranet blog domain to send and receive packets that bear the intranet label.

Another way to refine the permissions granted to a web application is to use

predicate overlays. For instance, if the user wants to grant execute access to all

184

executables except the compiler, the following two overlay labels can be used (by

default, the compiler is labeled like other regular executables with the bin t type).

1 fs_overlay /usr/bin/gcc compiler

2 predicate bin_not_compiler (bin_t AND NOT compiler)

The first overlay label attaches an additional attribute compiler to the GCC compiler

binary, located at /usr/bin/gcc. This is a filesystem overlay label (see Section 4.2.3).

The second overlay label expresses the fact that if a an object is labeled with the bin t

attribute5 and not with the compiler attribute, then it should be labeled with the

bin not compiler attribute. This second overlay is a predicate overlay (see Section

4.4).

5.1.4 Analysis of Malware

The analysis of malware, and more generaly performing experiments with poten­

tially hostile software is a use case that was reported to us by Pascal Meunier, in

the context of the ReAssure project6 (see Figure 5.3). ReAssure is a network testbed

that was designed from the ground up to offer a strong confinement in order to safely

support any kind of experiments, including the manipulation of viruses, worms, and

botnet software.

In the previous case studies, we have illustrated how a user can create new domains

and grant them a subset of the permissions he possesses on his account. We have

then showed how a user can be allowed to grant permissions that he does not have in

his own account, e.g. handle connections received by the web server. Finally, we have

showed how a user can refine the labeling of filesystem and network packet objects

on the system in order to define permissions as precisely as he wishes.

5When using overlays, bin t will be an attribute, and not a type as it would be in the standard
policy, since overlay labels rely on a previous pass of type promotion. Please refer to Section 4.2.3 for

an explanation as to why, when using overlay labels, bin t is an attribute and not a type anymore.

6http://reassure.cerias.purdue.edu

http:6http://reassure.cerias.purdue.edu

185

Multiple Links Experimental
per Node Network Switch

Experimental Serial Control Connection

Network

IPMI Control Loop Web + Image Server

Experimental Development Machine

Machines

Firewall
Control

Network Switch

Control
Internet

Network

Figure 5.3.: Architecture of the ReAssure testbed. The testbed consist of a set of
machines on which the experiments are run (left). There are two physical networks.
The control network (bottom) is used to deploy images from the image server (right)
to the experimental machines, and to remotely connect to them. The experimental
network (top) can be configured to emulate any arbitrary topology; the experiments
run on this network.

186

In this case study, we show how SELinux and our extensions can help in experi­

ments with malware. Then we show how a user could share administrative permissions

on a domain. In the context of this case study, this would allow the sharing of an

experiment.

Experimenting with Malware

Since SELinux was designed with assurance in mind, it includes logging mecha­

nisms. All denied accesses are logged by default. Additionaly, granted accesses can

also be logged. When performing behavioral analysis of malware, this audit log is

useful in determining the operations that the malware is attempting. It is up to the

experimenter to decide which operations to allow.

SELinux, however, relies on the integrity of the Linux kernel as a whole. Conse­

quently, SELinux’s protection is not sufficient when experimenting with malware that

loads code in the kernel. Such experiments can be performed by either running the

experiment in a virtual machine, or by protecting the kernel with access control per­

formed by an underlying hypervisor [159,160]. The hypervisor approach falls outside

the scope of this work. The problem with virtual machines is that they are themselves

vulnerable to attacks, as illustrated by the CVE-2005-4459 and CVE-2009-1244 vul­

nerabilities [161]. These attacks allow arbitrary code execution on the host platform

of a virtual machine. Since ReAssure relies on the administrative network to be free

of attacks, it is important to guarantee that an attacked virtual machine will not be

able to send network traffic on the administrative network. The ability to finely con­

fine applications, including their network traffic, that we demonstrated with the web

application case study can be applied in this case as well to increase the assurance

that the application is contained.

187

Sharing Experiments

By default, experiments deployed on the testbed are private. A feature being

investigated with the ReAssure project is to have several users of the testbed collab­

orate on and share an experiment. In the following, the experimenter that created

the experiment will be called Alice and the experimenter with whom Alice decides to

share her experiment will be called Bob, for brevity.

An experiment can be shared in different ways. Alice can let Bob access or modify

resources of the experiment, by granting Bob access to files used by the experiment.

This can be expressed using an administrative template.

1 admin_domain_template alice_t alice_t bob_t

A deeper level of sharing is for Alice to let Bob run the experiment, which involves

the ability for Bob to execute at least one of the entrypoints of the experiment, an

automatic type transition from Bob’s domain to the experiment domain, and the

permission that allows this transition. The above administrative template already

allows Alice to grant Bob the permission to execute the entrypoint of the experiment.

Two additional administrative permissions are required for Alice to be able to share

her experiment with Bob in this way.

1 allow alice_t _:tr_rule(bob_t, experiment_exec_t, \

2 process, experiment_t) insert

3 allow alice_t _:av_rule(bob_t, experiment_t, \

4 process, transition) insert

Finally, if Alice decides to share all her administrative rights on the experiment

with Bob, she can do that by inserting the following administrative template in the

policy.

1 admin_resource_template bob_t alice_t experiment_t bob_t experiment_t

If Alice wanted to share only a subset of her administrative permissions on the ex­

periment, she could create a template domain, bob permissions, that has only these

188

permissions on the experiment. Then she would create an administrative template

that grants these permissions to bob.

1 admin_resource_template bob_t bob_permissions experiment_t bob_t \

2 experiment_t

Alice could be allowed to create these administrative templates by the following per­

missions.

1 allow alice_t _:admin_resource_template(bob_t, alice_t, experiment_t, \

2 bob_t experiment_t) insert

3 allow alice_t _:admin_resource_template(bob_t, bob_permissions, \

4 experiment_t, bob_t experiment_t) insert

5.1.5 Summary

The common trait of the case studies we have presented is that users can explicitly

manipulate TE permissions, domains, and domain transitions. The specification of

these manipulations can be arbitrarily coarse or fine-grained. Moreover, a wide range

of manipulations can be specified. At one extreme, no manipulations are allowed

except to the system administrator; this extreme corresponds to the situation on

SELinux without our extensions. At the other extreme, any user of the system is

permitted arbitrary manipulations of permissions; this extreme is not useful. Between

these extremes, many scenarios can be supported, from letting users segregate the

applications they use into domains to which they grant only a chosen subset of their

user permissions, to delegating permissions on the policy that covers system services.

189

5.2 Comparison to Previous Work

In this section, we compare our work to closely related work.

5.2.1 Administrative Models

The domain and resource templates are comparable to the notion of administrative

roles in RBAC administrative models: they are abstraction that support the grouping

of administrative permissions, which can then be granted to subjects of the system,

enabling to grant the corresponding permissions.

ARBAC

Our model differs from the ARBAC family of administrative models [56,75] in the

following aspects.

First, we do not introduce additional policy constructs without a means of admin­

istering them. The administrative permissions that we introduced in Section 3.3 are

recursive. The rationale and implication of this design is that, for any permission,

a permission can be defined to regulate its creation or removal. Consequently, when

we introduced administrative templates in Section 3.3.3, we introduced the accom­

panying administrative permissions that regulate their creation and deletion. This

approach ensures that the administrative policy supported by our mechanisms is not

hardcoded in them, but actually a policy as well, whose modifications can also be

regulated by an administrative policy. The goal of this last point is to allow changes

to the administrative policy, while constraining them. The motivation behind this

goal is to allow the enforcement of the principle of least privilege in the granting of

administrative rights as well as regular rights. The ARBAC model does not address

this aspect.

Second, administrative permissions can be specified at different granularities. In

the PRA97 part of the ARBAC97 model, the assignement of permissions to roles is

190

regulated according the can assignp and can revokep administrative relations. While

these relations take into account the role to (or from) which the permissions can be

assigned (or revoked), as well as preconditions on the roles to which the operation is

applied, they do not take into account which permission can be granted.

UARBAC

UARBAC [77] is another administrative model for RBAC. It differs from ARBAC

by relying on a principled approach to its design, as opposed to ARBAC which “was

developed in a piecemeal manner” [56]. Using a principled approach to design is

commendable. We thus evaluate how our extensions satisfy the requirements enun­

ciated in [77] as a consequence of the principles being followed. We consider each

requirement in turn, substituting TE for RBAC when needed.

1. “Support decentralized administration and scale well to large [TE] systems.”

Our administrative model support the definition of permissions on administra­

tive permissions themselves. Consequently, any administrative permissions can

be delegated, which supports the decentralized administration. The support of

permissions templates allows the grouping of permissions, which is turns sup­

ports the scaling of the administration to large sites. Moreover, type attribute

predicates can be used to further factor the policy by expressing some of its

properties at a higher level.

2. “Be policy neutral in defining administrative domains.”

Our administrative model does not impose any constraints on administrative

permissions, besides well-formedness. The creation of types through attributes

is used simply as a means of tagging new types to tie them in the administrative

policy and allow post-creation administrative operations on them.

191

3. “Apparently equivalent sequences of operations should have the same effect.”

Granting administrative permissions through administrative templates is equiv­

alent to granting each administrative permission referenced by the template.

4. “Support reversibility.”

All operations from our administrative model are reversible, except the destruc­

tion of policy elements, which is the case in UARBAC as well. The algorithms

for reverting type promotion and overlay labeling are provided in Section 4.6.

5. “Predictability.”

We have designed all the administrative operations to be as straightforward

as possible. By offering indirect means of granting administrative permissions,

however, we may have introduced some slight chance of surprising users. For

instance, if administrative permissions are defined according to a template, any

change to the template domain can impact the users whose administrative per­

missions are based on the template. This is an area where our design could

be improved, one possible way being to support immutable administrative tem­

plates, which in turn would require to extend TE with explicit negative permis­

sions that override positive permissions (see our discussion on negative permis­

sions in Section 4.4.4, where we discuss the support for the negation operator

in predicate attributes).

6. “Using [TE] to administer [TE]”

Our original design followed the path of Tresys’s PMS [73], in trying to attach a

type to policy constructs. This would have allowed the administration of TE to

be defined exclusively in terms of TE rules. However, as argued in Section 3.3.1,

this is not a practical solution. Consequently, we have expressed our model as

an extension to TE that adds support for pattern matching policy objects.

192

5.2.2 Operating System Access Control

In this section, we compare the mechanims offered by our work, on SELinux, with

other work on operating system access control.

Traditional Mechanisms

As discussed in the introduction and the related work sections, traditional dis­

cretionnary access-control mechanisms on unix (setuid [48], chroot, and jail) can

be used to enforce some confinement on processes, towards applying the principle

of least priviledge. However, superuser privileges are still needed to configure such

confinement. Moreover, the permissions to choose from are sometimes coarser than

the permissions of the API accesses they control, as noted in the case of the socket

API.

While they are not configurable by regular users, these mechanisms can still be

used to deploy effective countermeasure to privilege escalation, by using privilege sep­

aration [6] which was proven effective in practice. The scheme of using file descriptors

as capacities described in [6] is also used with Type Enforcement deployments, where

is it easier to audit due to the finer grain of the policy used to confine the different

components of the application.

Systrace

Systrace [91] performs access control by allowing the specification allowed system

call patterns, which are enforced by system call interposition. This allows for a re­

finement of the ambiant permissions that are granted to a process. Using system call

interposition has many pitfalls [92], one of which is its handling of file aliasing: if a file

is pointed to by two different hard links, the access decision performed based on the

file path may be different, depending on the path provided to the system call. This

handling of aliasing can be viewed both as a feature and a way to bypass the con­

193

finement; we are concerned about the second view7. Systrace provides an additional

primitive that fall outside of this category: privilege elevation. The idea of privilege

elevation is that, even for system daemons, only a few system calls require elevated

privileges. Instead of exerting these privileges in a separate daemon, as in privilege

separation [6], the privileges of the current process can be temporarily elevated just

for the operation that requires elevated priviledges. For instance the bind operation

to a priviledged port, say port 80 for a web server, requires root priviledges. With

systrace, a web server can be run unpriviledged and have its priviledges elevated just

for the bind operation on port 80. This is not a mechanisms that is supported in our

work.

AppArmor

One of the main goals of AppArmor [108] was usability. Recent analyses by Chen

et al. [162] tend to confirm that this goal was met. By refusing the abstraction

afforded by type labeling, to preserve usability by keeping the familiar pathnames,

AppArmor makes it harder to compose proofs for an audit of a platform. Also, by

exposing only a restricted set of permissions (again for usability), AppArmor forces

some level of granularity on the permissions that it can regulate. What we consider

the worst example of this coarse granularity is the fact that network communications

can only be restricted in terms of families of protocols (e.g. ethernet and bluetooth

at layer 2, IPV4 at layer 3, and TCP at layer 4); there is not notion of endpoints!

While the network access control can indeed be enforced by firewalling features of

the OS, AppArmor does not offer a means of coupling this filtering directly with the

application. For instance, there is no way to guarantee that only the web server can

listen on port 80.

AppArmor transitions between profiles (a notion similar to TE domains and do­

main transitions) are also more restricted than the domain transitions supported by

7The presentation of systrace extensively discusses how the problem of aliasing through symbolic
links (symlinks, typically created by running ln -s) is addressed. It does not address the problem

of aliasing through hard links (created by running ln, without the -s flag).

194

TE. AppArmor profiles are entered based only on the path name of the application

being executed, as opposed to TE, where the source (type) is also considered. So Ap­

pArmor will support only one profile per path name, regardless of the calling profile,

whereas SELinux will be able to offer different transitions (and resulting permissions)

to subjects that invoke the same applications from different domains.

TrustedBSD, SEDarwin, and RSBAC

TrustedBSD [68], SEDarwin [114], and RSBAC [64] can all be used to compose

a form of mandatory access control with unix discretionnary access controls. Trust­

edBSD and SEDarwin provide an implementation of TE, and RSBAC could be ex­

tended with one. We have chosen SELinux as a base for our work instead because

SELinux’s integration at the level of the whole system is more mature, for instance

with SELinux being enabled by default on RedHat Fedora Core distributions, starting

with Fedora Core 3 (released in November 2004).

Capsicum

Capsicum [163] is an extension of the unix API with capabilities, implemented

on FreeBSD, which aims at offering a gradual migration path for applications to be

modified to use capabilities. The capabilities are implemented as wrapped unix file

descriptors, and the system offers two execution modes for processes: vanilla unix

or capability mode. At runtime, a unix application can transition to capability

mode and have its access permissions refined by the capability mechanisms. As such,

applications need to be modified to benefit from this confinement mechanism, but

the modifications can be minimal (2 additional lines of code to confine tcpdump,

for instance [163]). The comparison of Capsicum to TE [163] points that TE can

not offer a comparable solution because TE application policies can not be adjusted

dynamically due to the lack of an administrative model for the TE policy and object

labeling. Our work addresses this point.

195

Distributed Information Flow Control

The distributed information flow control (DIFC) model [28], was originally de­

signed as a model of security within a programming language model, and has been

implemented in the Jif compiler [30]. More recently, DIFC has been used as a model

of operating system security. We compare our work to the results of two operating

systems that implement DIFC, Histar and Flume.

HiStar [121] is a capability-based OS built in a modular fashion that limits the

size of the trusted computing base, and with DIFC built in from the ground up. This

makes the access control mechanisms provided by HiStar more amenable to verifica­

tion than the ones provided by SELinux, which is built on a large monolithic kernel

where the TE mechanisms were retrofitted (see Section 3.4.2 where we discuss the

assurance on SELinux extended with our administrative model and its implementa­

tion). HiStar, however, provides a modified system API, hence depriving users of

backwards compatibility with the applications they use.

Flume [164] is an extension of Linux and OpenBSD with additional mediation

that supports DIFC. This work was performed to address the practical limitations of

HiStar, which include limited support for harware diversity and the need for appli­

cations to be significantly rewritten to run atop a different system API. Flume still

requires that the applications be modified, but to a lesser extent. Similarly to our

work, Flume is built as an extension that is mostly written in user-space for ease of

development and portability. The main limitation of Flume compared to our work

is the need to modify applications and the performance degradation Flume’s imple­

mentation introduces (43 % slower on read workloads and 34 % on write workloads).

With the exeption of network overlay labeling, for which there is no implemen­

tation at this time, our extensions do not result in additional inline computation

during access checks. This property stems from the fact that our extensions only

modify the TE policy (for all administrative operations), and object labels (when

deploying filesystem overlay labels); the enforcement mechanisms of SELinux remain

196

unmodified. As shown in [165], the additional cost of the access controls performed

by SELinux is low (at most 4 % overhead on macrobenchmarks), hence offering better

performance than the performance reported for Flume [164].

Pinup

PinUP [107] simplifies the DIFC model to focus on which applications can access

which files. By doing so, PinUP is able to preserve the unix API and thus the is able

to run unmodified applications. PinUp does not cover network access controls. Also,

it does not offer differentiated accesses to applications depending on the context from

which they were invoked, besides identifying the user invoking the application. This

means that a subverted web browser, which is not granted access to high value files,

could invoke a trusted text editor that has access to these files and use this editor to

access the files8 . To prevent this kind of attack, the context in which applications can

be called has to be restricted. The TE model can capture the calling context, which

is identified by the domain attempting to execute an application.

5.3 Performance

As explained previously, our administrative model does not interfere with the code

path of system calls (see Section 5.2.2, where we discuss the relative performance of

SELinux and Flume). Access control is still performed according to the SELinux

standard implementation as a Linux Security Module. Consequently, our adminis­

trative model has no additional impact on the performance of the system. Moreover,

single edits of the policy are faster through the virtual filesystem than when using

the policy module mechanism provided by SELinux. This result correlates with the

performance observations on Adage [166] authorization system, where the binary rep­

resentation of the security policy was also edited in an incremental fashion to improve

8For instance, a terminal-based editor like vi can be “remote-controlled” by an expect script.

197

the responsiveness of the administrative interface. Contrastingly, the policy module

system currently supported by SELinux involve an expensive recompilation of the

whole policy every time a policy module is loaded or unloaded.

The responsiveness of the filesystem could be further enhanced by migrating the

implementation from user space to kernel space. Such a migration may prove nec­

essary to support acceptable performance when implementing overlay network labels

(described in Section 4.3). Indeed, the labeling of a network connection can require

the creation of a new synthetic type. Currently the virtual filesystem updates the

policy in the kernel by serializing the policy that resides in user space, and loading it

in the kernel by a write to the /selinux/load virtual file exposed by the SELinux

kernel module. The cost of this operation is on the order of a second, with a the

example policy provided with RedHat Fedora Core 10, on a Pentium 4 running at

1.4GHz9. This update time may not be an acceptable overhead for the on-demand

generation of synthetic types that will be required to support network packets overlay

labels; it seems acceptable otherwise.

5.4 Conclusion

On the theoretical side, our work is aligned with the direction of the work on

administrative models. Our model follows a principled approach that avoids pit­

falls from previous administrative models. For instance, our model avoids relying on

administrative hierarchies, which are a limiting factor for ARBAC as well as PMS.

On the practical side, we have compared our work to existing mechanisms available

on unix systems, as well as to the work on DIFC and recent work that attempts

to make capabilities support as backwards-compatible with existing applications as

possible. The existing mechanisms on unix are not administrable by regular users

and are often coarse-grained as well. The work on DIFC modifies the system API,

9The example policy we used, once compiled, expands to 278925 access vector rules, out of which
187604 are allow rules and 91321 are audit rules. There are 7955 are type transition rules, 2555

types, and 219 attributes in this policy.

198

which necessitates a refactoring of applications. Also, the current work on DIFC is

either not available on a current mainstream OS (needed for backwards compatibility

with existing applications), or introduces a significant degradation of performance.

Measurements of the performance of our prototype indicate that there is no such

degradation of performance, and the system API is not modified.

Therefore, we find that our work compares favorably to existing work, for the

goals it is striving to achieve (see our thesis statement in Section 1.3). Furthermore,

the publications that present the Flume [164] and Capsicum [163] systems, which

have similar goals, explictly mention that implementations of TE (SELinux or Trust­

edBSD) would compare favorably to their systems, provided they were extended with

an administrative model. We consider this an additional justification of our approach.

199

6. CONCLUSION

In this chapter, we reflect back on the work that was presented in this thesis. We

first look at what this work accomplished on a theoretical aspect and on a practical

aspect, and how this addresses our thesis statement. Then, we conclude by outlining

future directions in which this work could be extended.

6.1 Results

As we mentioned in our survey of the related work, our work relates to access

control models and administrative models on the theoretical side, and relates to their

implementations on the practical side. Therefore we consider our results from both

perspectives.

6.1.1 Theoretical Results

In Chapter 3, we have formalized a significant subset of the TE features, which we

named TE-core. This model was build in a way that the features can be selected and

composed around the TE-base nucleus, which provides the basic evaluation of access

vector rules. We have modeled Core RBAC using the same formalism that we used to

model TE-core. With these two models, we have shown that a reduction from Core

RBAC to TE-core exists, by constructing one, and that it is not possible to construct

a reduction from TE-core to Core RBAC. Showing this inequal expressive power is a

new result.

In our survey of existing access control models (see Section 2.2), we have collected

several other results on the relative expressive power of access control models, defined

in terms of model reductions. These results were previously scattered in the existing

200

litterature. The summary figure that compares the expressive power of the surveyed

models (see Figure 2.9) is a contribution in its own right. This figure incorporates

our contribution to these results, the comparison of TE-core and Core RBAC. Fur­

thermore, our unified representation of access control models, base on extending the

Extended Access Matrix [16] with subject transitions and object transitions supports

the fine characterization of differences between access control models. For instance,

it shows that a low-water mark model of integrity [14,105,106] can not be encoded in

terms of a TE policy because TE does not support either object transitions or subject

transitions on read or write operations.

The packet classification that returns all the applicable labels for a given network

packet, which we developed to address the need for overlay labeling on network pack­

ets, is a new problem. The complexity of our solution is optimal and consists in a

novel application of computational geometry to network packet classification.

Additionally, our administrative model allows the delegated administration of the

system’s security policy. The delegation of administrative privileges can be specified

at the level of individual policy statements, hence supporting arbitrary schemes of

delegation. For concision, delegation can also be specified by analogy with exist­

ing permissions of the policy, using the administrative templates described in Sec­

tion 3.3.3.

6.1.2 Practical Results

In essence, we have managed to “Make least priviledge a right (not a privilege)”

[117], without modifying the unix API on Linux, a popular version of unix. We

have done so by designing an administrative model for the SELinux implementation

of Type Enforcement (TE) that is part of the standard Linux kernel distribution. This

administrative model can allow a user to turn any of her unix permissions, which

are normally ambient and coarse-grained permissions permissions, into fine-grained

explicit permissions, whose assignment to domains can be controlled.

201

We have developed a proof-of-concept implementation of the administrative model

presented in Chapter 3, which exposes the system’s TE policy through a virtual

filesystem. This implementation relies on the FUSE infrastructure, which is also

part of the standard linux kernel distribution. Consequently, our implementation is

usable on all recent Linux systems (past version 2.6.28 of the kernel, and provided

the SELinux feature is activated).

As noted in chapter 4, an administrative model that covers only the TE policy is

not sufficient to allow users of the system to configure confinement units that enforce

the principle of least privilege. This limitation owes to the fact that TE reasons only

on the labels attached to system object. Consequently, we have designed a set of

techniques to allow users to refine the labeling of system objects, while preserving

the semantics of the system policy. These techniques, however, have not yet been

implemented.

6.1.3 Addressing the Thesis Statement

As we have shown in our survey of the related work, TE can be composed with

discretionnary access control, without changing the application programming inter­

face that existing programs depend on, and therefore without breaking the backwards

compatibility with existing applications. In our survey, we have also shown that the

access control mechanisms offered by TE are fine-grained. The comprehensiveness

of the access controls is an implementation issue more than a modeling one. The

support by SELinux of a coupling between the network-level labeling and the local

application-level security policies provides such a comprehensiveness. Finally, admin­

istrative templates provide a model and mechanism by which users can be granted

the ability to subdivide their permissions among many domains. These permissions

can be granted without modifying any other aspect of the configuration of the MAC

mechanisms, and we have provided algorithms that can be used to prevent a subver­

sion fo the system policy.

202

The type of operating system for which we set to demonstrate our thesis was the

one that currently runs on most personal computers: a multi-user time-sharing sys­

tem where the unit of confinement is the process and processes are isolated by means

of a virtual memory manager. Our work is actually applicable to many other types of

systems. Fundamentally, our work is the extension of a reference monitor. The base

mechanism that supports the implementation of a reference monitor is memory pro­

tection. The memory protection can be provided by means of memory segmentation,

virtual memory, or even by using a type-safe language that prevents raw memory

accesses by compile-time or run-time verification of the memory accesses. If a system

is not multi-user, our work remains useful as we have shown in addressing the grading

problem. Our understanding of early work in access control, including the thesis by

Schroeder on the mutually suspicious subsystems [135], is that with proper support

at the hardware level, access control can even be performed within a single program.

While our understanding of TE is that it was designed to enforce inter-process ac­

cess controls, there is no fundamental reason that precludes its implementation for

intra-process access control.

6.2 Future Work

6.2.1 Technical Aspects

The implementation of our administrative model is currently in user-space. There­

fore, all policy modifications are transmitted to the kernel by reloading a whole policy.

Currently, this operation takes on the order of a second to complete. (The time taken

to modify the security policy is orders of magnitude smaller.) While this is not a

problem for the interactive editing of the policy by users, it will be a problem when

implementing the network labeling refinements described in Section 4.3. Indeed, each

combination of overlay labels is supported by a distinct type. In our design, we pro­

pose to create these types on demand. That is, when a new connection is created

and no synthetic type has yet been created to represent the combination of overlay

203

labels attached to this connection, then the system must create a new synthetic type1 .

We do not think that systematic delays of the order of a second are acceptable with

network connections. Therefore, as a preliminary step to supporting network overlay

labels efficiently, the implementation of the administrative model would have to be

moved to kernel space, where the active policy would be directly modified.

In its current userspace implementation, the administrative server is confined in

a way that limits its exposure to attacks and the damage it can cause, were it to fail.

The Linux kernel does not offer internal access control mechanisms to isolate its com­

ponents. As a result, a failure of a kernel-space implementation of the administrative

server could corrupt the whole kernel.

Another improvement we are considering is to allow predicates to reference other

predicates, with some constraints to avoid the problem of cyclic dependencies between

predicates. This can be supported using the same stratification techniques that are

used in the implementation of deductive logic systems [155].

6.2.2 Higher Level Language

Our work addressed one of the main perceived shortcomings of SELinux, its lack of

an administrative model. One major shortcoming remains, the fact that the SELinux

policy language is low level, sometimes at an even lower level than system calls. For

instance, consider that the removal of a file from a directory is invoked with one system

call, unlink(), but requires three permissions: unlink on the file, and remove name

and write on the directory containing the file. We are hopeful that our work, by

“democratizing” the power of SELinux, will expose this problem to a larger base of

users, hence increasing the chances that user-friendly higher level policy languages

will be designed on top of SELinux.

1It is practically impossible to pre-generate all the possible combinations of labels, except for a

trivial number of network packets overlay labeling rules.

204

6.2.3 Transactions

We would like to extend our administrative model and implementation to support

transactions on the security policy. That is, we would like to replace the system of

policy modules currently supported by SELinux with the notion of a group of policy

modifications done as an atomic unit. Then, we would also like to use the isolation

analysis of a transactional system to track the dependencies among policy modifi­

cations. This would allow for a seamless support of cascading revoke operations. A

cascading revocation of rights is when, upon removal of an administrative permission,

all the permissions that were granted based on it are removed from the policy. Cascad­

ing revocations could be supported by re-using the dependency analysis performed by

the transactional system. The transaction validation, before commit, would also be

the natural extension point to enforce custom policy invariants, similar to the work by

Fraser and Badger on preserving continuous operation during policy reconfiguration,

by preserving high-level policy invariants [167].

LIST OF REFERENCES

205

LIST OF REFERENCES

[1] Trent Jaeger. Operating System Security. Morgan and Claypool, 2008.

[2] Matt Bishop. Computer Security: Art and Science. Addison Wesley, 2003.

[3] Clifford J. Berg. High-Assurance Design: Architecting Secure and Reliable En­
terprise Applications. Addison Wesley, October 2005.

[4] James P. Anderson.	 Computer security technology planning study. Technical
Report ESD-TR-73-51, volumes I and II, Air Force Electronic Systems Division,
Hanscom AFB, Bedford, MA 01731, October 1972.

[5] Peter A. Loscocco, Stephen D. Smalley, Patrick A. Muckelbauer, Ruth C. Tay­
lor, S. Jeff Turner, and John F. Farrell. The inevitability of failure: The flawed
assumption of security in modern computing environments. In 21st National
Information Systems Security Conference, October 1998.

[6] Niels Provos, Markus Friedl, and Peter Honeyman. Preventing privilege esca­
lation. In 12th USENIX Security Symposium, 2003.

[7] Butler W. Lampson.	 Protection. In Proceedings of the Fifth Princeton Sym­
posium on Information Sciences and Systems, pages 437–443, March 1971.
Reprinted in Operating Systems Review, 8, 1, January 1974, pages 18-24.

[8] Michael A. Harrison, Walter L.	 Ruzzo, and Jeffrey D. Ullman. Protection in
operating systems. Communications of the ACM, 19(8):461–471, August 1976.

[9] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David Andersen,
and Jay Lepreau. The Flask security architecture: System support for diverse
security policies. In Proceedings of the 8th USENIX Security Symposium, Au­
gust 1999.

[10] Willis H. Ware.	 Security controls for computer systems (U): Report of de­
fense science board task force on computer security. Technical Report Rand
Report R609-1, Rand Corporation, for the Office of the Director of Defense
Research and Engineering, February 1970. Available at http://csrc.nist.
gov/publications/history/.

[11] D.	 Elliott Bell and Leonard J. La Padula. Secure computer system: Unified
exposition and Multics interpretation. Technical Report ESD-TR-75-306, also
referenced as MTR-2997, Mitre Corporation (work commissioned by Electronic
Systems Divisions, AFSC, Hanscom Air Force Base), The MITRE Corporation,
Box 208, Bedford, MA 01730; Hanscom Air Force Base, Bedford, MA 01731,
March 1976.

http://csrc.nist

206

[12] President of the United States.	 Executive order 10501 of November 5, 1953:
Safeguarding official information in the interests of the defense of the United
States, 1953. Available at http://en.wikisource.org/wiki/Executive_
Order_10501.

[13] President	 of the United States. Executive order 13526 of December 29,
2009: Classified national security information, 2009. Available at http:
//en.wikisource.org/wiki/Executive_Order_13526.

[14] K.J. Biba. Integrity considerations for secure computer systems. Technical Re­
port ESD-TR-76-732, also referenced as MTR-3153, Mitre Corporation (work
commissioned by Electronic Systems Divisions, AFSC, Hanscom Air Force
Base), The MITRE Corporation, Box 208, Bedford, MA 01730; Hanscom Air
Force Base, Bedford, MA 01731, April 1977.

[15] W.E. Boebert and R.Y. Kain. A practical alternative to hierarchical integrity
policies. In Proceedings of the Eighth National Computer Security Conference,
1985.

[16] W.E. Boebert, R.Y. Kain, and W.D. Young. The extended access matrix model
of computer security. ACM SIGSOFT Software Engineering Notes, 10(4):119–
125, 1985.

[17] Dan Goodin.	 Android banking trojan intercepts security texts. The Regis­
ter, September 2011. http://www.theregister.co.uk/2011/09/14/spyeye_
targets_android_phones/.

[18] Jerome H. Saltzer and Michael D. Schroeder.	 The protection of information in
computer systems. In Proceedings of the IEEE, volume 63, September 1975.

[19] Jerome H. Saltzer. 2010 National Computer System Security Award, presented
at the IEEE 2010 Symposium on Security and Privacy, acceptance speech, May
2010.

[20] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy/mechanism
separation in Hydra. In Proceedings of the Fifth ACM Symposium on Operating
Systems Principles, pages 132 – 140, 1975.

[21] Per Brinch Hansen. Classic Operating Systems. Springer, 2001.

[22] Leonard J. LaPadula. Information Security: An Integrated Collection of Essays,
chapter Essay 9: Rule-Set Modeling of a Trusted Computer System. IEEE
Computer Society Press, 1995.

[23] Tim	 Moses. eXtensible Access Control Markup Language 2 (XACML
2). http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0­
core-spec-os.pdf, February 2005.

[24] Lee Badger,	 Daniel F. Sterne, David L. Sherman, Kenneth M. Walker, and
Sheila A. Haghighat. Practical domain and type enforcement for unix. In
Proceedings of the 1995 IEEE Symposium on Security and Privacy, 1995.

[25] Umesh	 Shankar, Trent Jaeger, and Reiner Sailer. Toward automated
information-flow integrity verification for security-critical applications. In Pro­
ceedings of the 13th Annual Network and Distributed Systems Security Sympo­
sium, February 2006.

http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0
http://www.theregister.co.uk/2011/09/14/spyeye
http://en.wikisource.org/wiki/Executive

207

[26] Dorothy E. Denning. A lattice model of secure information flow.	 Communica­
tions of the ACM, 19(5):236–243, 1976.

[27] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure
information flow. Communications of the ACM, 20(7):504–513, July 1977.

[28] Andrew C. Myers and Barbara Liskov.	 Complete, safe information flow with
decentralized labels. In Proceedings of the IEEE Symposium on Security and
Privacy, May 1998.

[29] Andrew C. Myers. Mostly-Static Decentralized Information Flow Control. PhD
thesis, MIT, 1999. Technical Report MIT/LCS/TR-783.

[30] Jif: Java + information flow website. http://www.cs.cornell.edu/jif/.

[31] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In
Proceedings of the 26th ACM Symposium on Principles of Programming Lan­
guages (POPL 99), 1999.

[32] Vincent Simonet. FlowCaml website.	 http://cristal.inria.fr/~simonet/
soft/flowcaml/index.en.html.

[33] François Pottier and Vincent Simonet. Information flow inference for ML. ACM
Transactions on Programming Languages and Systems, January 2003.

[34] Boniface Hicks, Kiyan Ahmadizadeh, and Patrick McDaniel.	 From languages
to systems: Understanding practical application development in security-typed
languages. In 22nd Annual Computer Security Applications Conference, De­
cember 2006.

[35] Boniface	 Hicks, Sandra Rueda, Trent Jaeger, and Patrick McDaniel. From
trusted to secure: Building and executing applications that enforce system se­
curity. In Proceedings of the USENIX Annual Technical Conference, June 2007.

[36] D. Clark and D. R. Wilson. A comparison of commercial and military computer
security policies. In Proceedings of the 1987 IEEE Symposium on Security and
Privacy, 1987.

[37] George C. Necula and Peter Lee. Safe kernel extensions without run-time check­
ing. In Proceedings of the Second Symposium on Operating Systems Design and
Implementation (OSDI ’96), 1996.

[38] George C. Necula.	 Proof-carrying code. In Proceedinggs of the 24th Annual
Symposium on Principles of Programming Languages (POPL ’97), 1997.

[39] T.F. Lunt, D.E. Denning, R.R. Schell, M. Heckman, and W.R. Shockley.	 The
SeaView security model. IEEE Transactions on Software Engineering, 16(6),
June 1990.

[40] Latanya Sweeney.	 k-anonymity: a model for protecting privacy. International
Journal on Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):557–
570, 2002.

[41] Trent Jaeger and Jonathon Tidswell.	 Practical safety in flexible access control
models. ACM Transaction on Information and System Security, 4(2):158–190,
2001.

http://cristal.inria.fr/~simonet
http://www.cs.cornell.edu/jif

208

[42] Jeff Atwood. Coding horror, programming and human factors, regular expres­
sions. http://www.codinghorror.com/blog/2006/01/regex-performance.
html, January 2006.

[43] David F.C. Brewer and Michael J. Nash.	 The chinese wall security policy. In
Proceedings of the 1989 IEEE Symposium on Security and Privacy, 1989.

[44] Morrie Gasser.	 Building a Secure Computer System. Van Nostrand Reinhold
Company, New York, 1988. Available at http://www.acsac.org/secshelf/
book002.html.

[45] Andrew C. Myers,	 Andrei Sabelfeld, and Steve Zdancewic. Enforcing ro­
bust declassification and qualified robustness. Journal of Computer Security,
14(2):157–196, 2006.

[46] US Department of Defense.	 Trusted Computer System Evaluation Criteria,
DoD 5200.28-STD. National Computer Security Center, National Computer
Security Center, Ft. Meade, MD 20755, December 1985. Also known as the
“Orange Book”, DoD 5200.28-STD, superseded by DoD Directive 8500.1.

[47] Richard A. De Millo, Richard J. Lipton, and Alan J. Perlis. Social processes and
proofs of theorems and programs. Communications of the ACM, 22(5):271–280,
1979.

[48] Dennis M. Ritchie. Protection of data file contents. US Patent 4,135,240, 1973.
Patent for the unix setuid facility.

[49] Kenneth M.	 Walker, Daniel F. Sterne, M. Lee Badger, Michael J. Petkac,
David L. Shermann, and Karen A. Oostendorp. Confining root programs with
domain and type enforcement (DTE). In Proceedings of the Sixth USENIX
UNIX Security Symposium, 1996.

[50] Butler W. Lampson.	 Dynamic protection structures. In Proceedings of the
AFIPS Fall Joint Computer Conference, 1969.

[51] David Ferraiolo, D. Richard Kuhn, and Ramaswamy Chandramouli. Role-based
Access Control. Artech House, 2003.

[52] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari. TRBAC: A temporal
role-based access control model. ACM Transactions on Information and System
Security, 4(3), 2001.

[53] James B. D.	 Joshi, Elisa Bertino, and Arif Ghafoor. Hybrid role hierarchy
for generalized temporal role based access control model. In Proceedings of
the 26th Annual International Computer Software and Applications Conference
(COMPSAC02), 2002.

[54] Rafae Bhatti, Arif Ghafoor, Elisa Bertino, and James B. D. Joshi. X-GTRBAC:
an XML-based policy specification framework and architecture for enterprise-
wide access control. ACM Transactions on Information and System Security,
8(2), 2005.

[55] ANSI. Role based access control, February 2004. Standard INCITS 359-2004.

http://www.acsac.org/secshelf
http://www.codinghorror.com/blog/2006/01/regex-performance

209

[56] Ravi Sandhu and Venkata Bhamidipati Qamar Munawer. The ARBAC97 model
for role-based administration of roles. ACM Transactions on on Information
and System Security (TISSEC), 2(1), February 1999.

[57] Ninghui Li, Ji-Won Byun, and Elisa Bertino. A critique of the ANSI standard
on role-based access control. IEEE Security & Privacy, November/December
2007.

[58] Robert W. Baldwin. Naming and grouping privileges to simplify security man­
agement in large databases. In Proceedings of the 1990 IEEE Symposium on
Security and Privacy, 1990.

[59] David Ferraiolo, Rick Kuhn, and Ravi Sandhu.	 Comments on a critique of
the ANSI standard on role-based access control. IEEE Security & Privacy,
November/December 2007.

[60] P. Pitelli. The Bell-LaPadula computer security model represented as a special
case of the Harrison-Ruzzo-Ullmann model. In NBS-NCSC National Computer
Security Conference, pages 118–121, 1987.

[61] D. Richard Kuhn. Role based access control on MLS without kernel changes.
In 3rd ACM Workshop on Role Based Access Control, 1998.

[62] Gansen Zhao and David W Chadwick. On the modeling of Bell-LaPadula secu­
rity policies using RBAC. In Workshop on Enabling Technologies: Infrastruc­
ture for Collaborative Enterprises – WETICE, 2008.

[63] M. D. Abrams, L. J. LaPadula, K. E. Eggers, and I. M. Olson.	 A generalized
framework for access control: An informal description. In Proceedings of the
13th National Computer Security Conference, 1990.

[64] Amon Ott. Mandatory Rule Set Based Access Control in Linux: A Multi-policy
Security Framework and Role Model Solution for Access Control in Networked
Linux Systems. Shaker Verlag GmbH, Aachen, Germany, 2007. Amon Ott’s
dissertation on RSBAC.

[65] Sushil Jajodia, Pierangela Samarati, V. S. Subrahmanian, and Elisa Bertino. A
unified framework for enforcing multiple access control policies. ACM SIGMOD
Record, 26(2):474 – 485, June 1997.

[66] David F. Ferraiolo, Serban Gavrila, Vincent Hu, and D. Richard Kuhn. Com­
posing and combining policies under the policy machine. In SACMAT ’05:
Proceedings of the Tenth ACM Symposium on Access Control Models and Tech­
nologies, pages 11–20, 2005.

[67] Lee Badger,	 Daniel F. Sterne, David L. Sherman, Kenneth M. Walker, and
Sheila A. Haghighat. A domain and type enforcement unix prototype. In
Proceedings of the Fifth USENIX UNIX Security Symposium, 1995.

[68] Robert Watson, Wayne Morrison, Chris Vance, and Brian Feldman. The Trust­
edBSD MAC framework: Extensible kernel access control for FreeBSD 5.0. In
Proceedings of the FREENIX Track: 2003 USENIX Annual Technical Confer­
ence (FREENIX ’03), 2003.

210

[69] G. Scott Graham and Peter J. Denning. Protection – principles and practice.
In Proceedings of the AFIPS Spring Joint Computer Conference, volume 40,
pages 417–429, 1972.

[70] Dieter Gollmann. Computer Security. John Wiley & Sons, Ltd, 1999.

[71] Serge E. Hallyn and Phil Kearns. Domain and type enforcement for Linux. In
4th Annual Linux Showcase and Conference, 2000.

[72] Peter A. Loscocco and Stephen D.	 Smalley. Meeting critical security objec­
tives with Security-Enhanced Linux. In Proceedings of the 2001 Ottawa Linux
Symposium, 2001.

[73] Karl MacMillan, Joshua Brindle, Frank Mayer, Dave Caplan, and Jason Tang.
Design and implementation of the SELinux policy management server. In Pro­
ceedings of the 2006 SELinux Symposium, 2006.

[74] Jason Crampton and George Loizou.	 Administrative scope: A foundation for
role-based administrative models. ACM Transactions on Information and Sys­
tem Security, 6(2):201–231, 2003.

[75] Ravi Sandhu and Qamar Muna.	 The ARBAC99 model for administration of
roles. In Proceedings of the 15th Annual Computer Security Applications Con­
ference, 1999.

[76] Anita K. Jones. Foundations of Secure Computation, chapter Protection Mech­
anism Models: Their Usefulness, pages 237–254. Academic Press, Inc, 1978.

[77] Ninghui Li and Ziqing Mao. Administration in role-based access control. In
ASIACCS ’07: Proceedings of the 2nd ACM Symposium on Information, Com­
puter and Communications Security, pages 127–138, 2007.

[78] Fernando J. Corbató, Marjorie Merwin-Daggett, and Robert C. Daley. An ex­
perimental time-sharing system. In Proceedings of the May 1-3, 1962, Spring
Joint Computer Conference, AIEE-IRE ’62 (Spring), pages 335–344. ACM,
1962.

[79] A. Bensoussan, C. T. Clingen, and R. C. Daley.	 The Multics Virtual Memory:
Concepts and Design. Communications of the ACM, 15(5):308–318, 1972.

[80] Steve Bunch.	 The setuid feature in unix and security. In Proceedings of the
10th National Computer Security Conference, 1987.

[81] R. C. Daley and P. G. Neumann. A general-purpose file system for secondary
storage. In Proceedings of the November 30–December 1, 1965, Fall Joint Com­
puter Conference, part I, AFIPS ’65 (Fall, part I), pages 213–229. ACM, 1965.
This paper introduces the read, write, execute, and append protection bits.

[82] Dennis M. Ritchie and Ken Thompson. The unix time-sharing system. Com­
munications of the ACM, 17(7), July 1974.

[83] Andreas Grünbacher. POSIX access control lists on Linux. In Proceedings of
the USENIX 2003 Annual Technical Conference, FREENIX Track, 2003.

[84] Hao Chen, David Wagner, and Drew Dean.	 Setuid demystified. In Proceedings
of the 11th USENIX Security Symposium, 2002.

211

[85] Simson Garfinkel, Gene Spafford, and Alan Schwartz. Practical unix and In­
ternet Security. O’Reilly, 3rd edition edition, 2003. Contains the quote from
Dennis Ritchie about unix security: “It was not designed from the start to
be secure. It was designed with the necessary characteristics to make security
serviceable” (page 23), from an interview with Simson Garfinkel in 1990.

[86] Poul-Henning Kamp and Robert N. M. Watson. Jails: Confining the omnipotent
root. In SANE 2000, 2000. This article documents the history and motivation
for the chroot system call. It also describes jails which, contrary to chroot,
is designed for security.

[87] Alan	 Cox. Abusing chroot. http://kerneltrap.org/Linux/Abusing_
chroot, September 2007. Summary of a thread on the Linux kernel mailing
list, discussing the (in)security of chroot.

[88] Poul-Henning Kamp.	 Rethinking /dev and devices in the unix kernel. In
Proceedings of the BSDCon 2002 Conference, 2002.

[89] Steven M. Bellovin.	 Virtual machines, virtual security? Communications of
the ACM, 49(10), October 2006.

[90] Ian Goldberg, David Wagner, Randi Thomas, and Eric Brewer.	 A secure en­
vironment for untrusted helper applications (confining the wily hacker). In
Proceedings of the 6th USENIX Security Symposium, 1996.

[91] Niels Provos. Improving host security with system call policies. In 12th USENIX
Security Symposium, 2003.

[92] Tal Garfinkel. Traps and pitfalls: Practical problems in system call interposition
based security tools. In Proceedings Network and Distributed Systems Security
Symposium, February 2003.

[93] Robert N. M. Watson.	 Exploiting concurrency vulnerabilities in system call
wrappers. In First USENIX Workshop on Offensive Technologies (WOOT’07),
August 2007.

[94] Dixie B. Baker. Fortresses built upon sand. In Proceedings of the 1996 Workshop
on New Security Paradigms, 1996.

[95] D.J.	 Thomsen and J.T. Haigh. A comparison of type enforcement and unix
setuid implementation of well-formed transactions. In Proceedings of the Sixth
Annual Computer Security Applications Conference, pages 304 – 312, December
1990.

[96] W. D. Young, W.	 E. Boebert, and R. Y. Kain. Proving a computer system
secure. Scientific Honeyweller, 1985.

[97] Opensolaris	 project: Flexible mandatory access control (FMAC). http:
//opensolaris.org/os/project/fmac/.

[98] Trent Jaeger, David H. King, Kevin R. Butler, Serge Hallyn, Joy Latten, and
Xiaolan Zhang. Leveraging IPsec for mandatory per-packet access control. In
SecureComm 2006, 2006.

http://kerneltrap.org/Linux/Abusing

212

[99] Paul Moore. Transitioning to secmark. http://paulmoore.livejournal.com/
4281.html, May 2009.

[100] William R. Cheswick, Steven M. Bellovin, and Aviel D. Rubin.	 Firewalls and
Internet Security: Repelling the Wily Hacker. Addison-Wesley Professional,
2003.

[101] Brad Gough, Christian Karpp, Rajeev Mishra, Liviu Rosca, Jacqueline Wil­
son, and Chris Almond. AIX V6 Advanced Security Features Introduction
and Configuration. IBM Redbooks, September 2007. available at http:
//www.redbooks.ibm.com/abstracts/sg247430.html.

[102] V.D. Gligor, C.S. Chandersekaran, R.S. Chapman, L.J. Dotterer, M.S. Hetch,
Wen-Der Jiang, A. Johri, G.L. Luckenbaugh, and N. Vasudevan. Design and
implementation of secure Xenix. IEEE Transactions on Software Engineering,
February 1987.

[103] Sun	 Microsystems. TrustedSolaris 8 operating environment, a techni­
cal overview. http://www.sun.com/software/whitepapers/wp-ts8/ts8-wp.
pdf, 2000.

[104] M. D. McIlroy and J. A. Reeds. The ix multilevel-secure unix system. Technical
Report CSTR #163, AT&T Bell Laboratories, 1992.

[105] Timothy Fraser.	 LOMAC: Low water-mark integrity protection for COTS en­
vironments. In 2000 IEEE Symposium on Security and Privacy, 2000.

[106] Ninghui Li, Ziqing Mao, and Hong Chen. Usable mandatory integrity protection
for operating systems. In Proceedings of IEEE Symposium on Security and
Privacy, May 2007.

[107] William Enck, Patrick McDaniel, and Trent Jaeger. PinUP: pinning user files
to known applications. In 2008 Annual Computer Security Applications Con­
ference (ACSAC 2008), 2008.

[108] Novell	 Inc. AppArmor. http://www.novell.com/linux/security/
apparmor/.

[109] Chris Wright, Crispin Cowan, Stephen Smalley, James Morris, and Greg Kroah-
Hartman. Linux security module framework. In Ottawa Linux Symposium 2002,
2002.

[110] Security-Enhanced Linux. www.nsa.gov/research/selinux.

[111] Microsoft Corporation.	 Access control model. http://msdn.microsoft.com/
en-us/library/aa374876%28VS.85%29.aspx, December 2009. accessed De­
cember 5th 2009.

[112] Microsoft Corporation. Mandatory integrity control. http://msdn.microsoft.
com/en-us/library/bb648648%28VS.85%29.aspx, December 2009. accessed
December 5th 2009.

[113] Microsoft Corporation.	 Role-based access control. http://msdn.microsoft.
com/en-us/library/aa379318%28VS.85%29.aspx, December 2009. accessed
December 5th 2009.

http://msdn.microsoft
http://msdn.microsoft
http:http://msdn.microsoft.com
www.nsa.gov/research/selinux
http://www.novell.com/linux/security
http://www.sun.com/software/whitepapers/wp-ts8/ts8-wp
www.redbooks.ibm.com/abstracts/sg247430.html
http:http://paulmoore.livejournal.com

213

[114] Sparta Inc. SEDarwin. http://sedarwin.org/, 2007.

[115] Apple Inc.	 SANDBOX INIT(3). System manual page for OS X 10.5, also
available at http://developer.apple.com/mac/library/DOCUMENTATION/
Darwin/Reference/ManPages/man3/sandbox_init.3.html, July 2007.

[116] Hewlett Packard Inc.	 HP OpenVMS Guide to System Security: OpenVMS
Version 8.4, June 2010. http://h71000.www7.hp.com/doc/84final/ba554_
90015/ba554_90015.pdf.

[117] Maxwell Krohn,	 Petros Efstathopoulos, Cliff Frey, Frans Kaashoek, Eddie
Kohler, David Mazières, Robert Morris, Michelle Osborne, Steve VanDeBogart,
and David Ziegler. Make least privilege a right (not a privilege). In Proceedings
of the 10th Workshop on Hot Topics in Operating Systems (HotOS 2005), 2005.

[118] Norm Hardy.	 The confused deputy: (or why capabilities might have been in­
vented). ACM SIGOPS Operating Systems Review, 22(4), October 1988.

[119] Mark Miller, Ka-Ping Yee, and Jonathan S. Shapiro.	 Capability myths demol­
ished. Technical Report SRL2003-02, Johns Hopkins University, Department of
Computer Sciences, Systems Research Laboratory, 2003.

[120] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David
Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris.
Labels and event processes in the Asbestos operating system. In Proceedings of
the 20th Symposium on Operating Systems Principles (SOSP 2005), 2005.

[121] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières.
Making information flow explicit in HiStar. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation, 2006.

[122] Galen C. Hunt and James R. Larus. Singularity: Rethinking the software stack.
ACM SIGOPS Operating Systems Review, April 2007.

[123] Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D. Lazowska.
Sharing and protection in a single-address-space operating system. ACM Trans­
actions on Computer Systems (TOCS), 12:271–307, November 1994.

[124] Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, and Stephen Russell.	 The
Mungi single-address-space operating system. Software Practice and Experi­
ence, 28(9):901–928, July 1998.

[125] Matunda Nyanchama and Sylvia Osborn.	 Modeling mandatory access control
in role-based security systems. In Demurjian and Dobson, editors, Database
Security IX: Status and Prospects. Chapman and Hall, 1995.

[126] Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and Phil Winterbot­
tom. The use of name spaces in Plan 9. Operating Systems Review, 27(2):72–76,
April 1993. Reprinted from Proceedings of the 5th ACM SIGOPS European
Workshop, Mont Saint-Michel, 1992, Paper number 34.

[127] FUSE: Filesystem in userspace. http://fuse.sourceforge.net.

[128] Xiaolan Zhang, Antony Edwards, and Trent Jaeger.	 Using CQUAL for static
analysis of authorization hook placement. In Proceedings of the USENIX secu­
rity conference, 2002.

http:http://fuse.sourceforge.net
http://h71000.www7.hp.com/doc/84final/ba554
http://developer.apple.com/mac/library/DOCUMENTATION
http://sedarwin.org/,2007

214

[129] Trent Jaeger, Antony Edwards, and Xiaolan Zhang.	 Consistency analysis of
authorization hook placement in the Linux security modules framework. ACM
Transaction on Information and System Security, 7(2):175–204, 2004.

[130] Greg Kroah-Hartman,	 Jonathan Corbet, and Amanda McPherson. Linux
kernel development (April 2008). http://www.linuxfoundation.org/
publications/linuxkerneldevelopment.php, 2008.

[131] William E. Boebert and Richard Y. Kain. A further note on the confinement
problem. In 30th Annual 1996 International Carnahan Conference, 1996.

[132] D. Sterne.	 A TCB subset for integrity and role-based access control. In Pro­
ceedings of the 15th National Computer Security Conference, pages 680–696,
1992.

[133] W.R. Shockley and R.R. Shell.	 TCB subsets for incremental evaluation. In
Proceedings of the Third Aerospace Computer Security Conference, pages 131–
139, 1987.

[134] George E Forsythe and Niklaus Wirth. Automatic grading programs. Technical
Report CS-TR-65-17, Stanford University, Department of Computer Science,
February 1965.

[135] Michael D. Schroeder.	 Cooperation of Mutually Suspicious Subsystems in a
Computer Utility. PhD thesis, Massachusets Institute of Technology, Depart­
ment of Electrical Engineering, 1972.

[136] Family educational rights and privacy act (FERPA). 34 C.F.R § 99.1. Available
from the US Department of Education at http://www2.ed.gov/policy/gen/
reg/ferpa/index.html, 1974.

[137] Thomas Ptacek and Timothy Newsham.	 Insertion, evasion, and denial of ser­
vice: Eluding network intrusion detection. Available at http://www.insecure.
org/stf/secnet_ids/secnet_ids.pdf, 1998. Secure Networks, Inc. White pa­
per.

[138] US Department of Defense.	 Trusted Network Interpretation. NCSC-TG-005.
National Computer Security Center, 1987. Also known as the “Red Book”,
provides an interpretation of the Trusted Computer System Evaluation Criteria
for networks and network components.

[139] Jonathan M. McCune, Trent Jaeger, Stefan Berger, Ramón Cáceres, and Reiner
Sailer. Shamon: A system for distributed mandatory access control. In Proceed­
ings of the 2006 Annual Computer Security Applications Conference, December
2006.

[140] NetLabel	 – Explicit labeled networking for Linux. http://netlabel.
sourceforge.net/.

[141] IETF CIPSO Working Group. Commercial IP security option (CIPSO 2.2), July
1992. Copies of this expired IETF draft are available on several websites, includ­
ing NetLabel’s website http://netlabel.sourceforge.net/files/draft­
ietf-cipso-ipsecurity-01.txt.

http://netlabel.sourceforge.net/files/draft
http:sourceforge.net
http://netlabel
http://www.insecure
http://www2.ed.gov/policy/gen
http:http://www.linuxfoundation.org

215

[142] Netfilter	 – Firewalling, NAT, and packet mangling for Linux. http://www.
netfilter.org/.

[143] Laurent Hyafil and Ronald L.	 Rivest. Constructing optimal binary decision
trees is NP-complete. Information Processing Letters, 5(1):15–17, May 1976.

[144] Antoine Vigneron. Computational geometry slides.	 Available at http://w3.
jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html, 2004.

[145] Hanan Samet.	 Foundations of Multimensional and Metric Data Structures.
Morgan Kaufmann, 2006.

[146] Kurt Mehlhorn. Data Structures and Algorithms 3: Multi-Dimensional Search­
ing and Computational Geometry. Springer, 1984.

[147] Interval tree. http://en.wikipedia.org/wiki/Interval_tree, 2009.

[148] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms, Second Edition. The MIT Press, 2001.

[149] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.	 Com­
putational Geometry. Springer, third edition, 2008.

[150] H. Edelsbrunner.	 A new approach to rectangle intersections, part I and II.
International Journal of Computer Mathematics, pages 209–229, 1983.

[151] J.L. Bentley. Solutions to Klees rectangle problems. Technical report, Carnegie-
Mellon University, 1977.

[152] Edward M. McCreight.	 Priority search trees. SIAM Journal on Computing,
14(2):257–276, 1985.

[153] Eric N. Hanson and Theodore Johnson. The interval skip list: A data structure
for finding all intervals that overlap a point. Technical Report UF-CIS-92-016,
Computer and Information Sciences Department, University of Florida, June
1992.

[154] Mark Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture
Notes in Computer Science. Springer, 1983.

[155] John Wylie Lloyd.	 Foundations of Logic Programming. Springer, second ex­
tended edition, 1993.

[156] NCSA. The common gateway interface. http://hoohoo.ncsa.illinois.edu/
cgi/overview.html.

[157] Ivan Ristic. Apache Security. O’Reilly Media, 2005.

[158] suPHP. http://www.suphp.org/.

[159] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: a tiny
hypervisor to provide lifetime kernel code integrity for commodity OSes. In
Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems
Principles, 2007.

http:http://www.suphp.org
http:http://hoohoo.ncsa.illinois.edu
http://en.wikipedia.org/wiki/Interval_tree,2009
http://w3
http:netfilter.org
http://www

216

[160] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-transparent prevention of
kernel rootkits with VMM-based memory shadowing. In Proceedings of 11th
International Symposium on Recent Advances in Intrusion Detection (RAID
2008), September 2008.

[161] Common vulnerabilities and exposures (CVE). http://cve.mitre.org/.

[162] Hong Chen, Ninghui Li, and Ziqing Mao.	 Analyzing and comparing the pro­
tection quality of security enhanced operating systems. In 6th Network and
Distributed System Security Symposium (NDSS), 2009.

[163] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway.
Capsicum: Practical capabilities for unix. In Proceedings of the 19th USENIX
Security Symposium, August 2010.

[164] Maxwell	 Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans
Kaashoek, Eddie Kohler, and Robert Morris. Information flow control for
standard OS abstractions. In Proceedings of the Twenty-First ACM SIGOPS
Symposium on Operating Systems principles (SOSP 2007), 2007.

[165] Peter A. Loscocco and Stephen D. Smalley.	 Integrating flexible support for se­
curity policies into the Linux operating system. In Proceedings of the FREENIX
Track: 2001 USENIX Annual Technical Conference (FREENIX ’01), 2001.

[166] Mary Ellen Zurko, Rich Simon, and Tom Sanfilippo. A user-centered, modular
authorization service built on an RBAC foundation. In Proceedings of the 1999
IEEE Symposium on Security and Privacy, 1999.

[167] Timothy Fraser and Lee Badger. Ensuring continuity during dynamic security
policy reconfiguration in DTE. In Proceedings of the 1998 IEEE Symposium on
Security and Privacy, 1998.

http:http://cve.mitre.org

APPENDIX

217

APPENDIX: NETFILTER

The Linux netfilter packet manipulation framework includes more features than what

we presented in Chapter 4. For instance, netfilter supports network address transla­

tion (NAT), and the manipulation of link-level packet (ebtables). For reference, we

include the reference diagram of packet flow inside netfilter (see Figure A.1). This dia­

gram illustrates the different hooks that the netfilter framework offers for customizing

packet processing.

218

Figure A.1.: Packet flow inside the netfilter framework

VITA

219

VITA

Jacques Thomas studied first at Université Pierre et Marie Curie in Paris, where

he obtained a Bachelor of Science degree in 1999 and a Master of Science degree in

computer science in 2002. The Master of Science degree was obtained while attending

the Magistère d’Informatique Appliquée d’Ile de France program (MIAIF) within the

University. Jacques Thomas then entered the Ph.D. program in the Purdue Computer

Science department in 2003. He as been working at Amazon since 2010.

