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ABSTRACT 

Thomas, Jacques D. Ph.D., Purdue University, December 2011. Accommodative 
Mandatory Access Control. Major Professors: Jan Vitek and Patrick Eugster. 

In operating system access control, there is a traditional divide between discre­

tionary access control (DAC), on one side, and mandatory access control (MAC), on 

the other side. Compositions of MAC and DAC have been modeled and implemented 

as operating system access control mechanisms. With composition, two access control 

decisions (one for DAC and one for MAC) have to concur for an access request to be 

allowed. DAC is typically supported by coarse grained mechanisms, and it vulnerable 

to Trojan horse attacks, two limitations that are addressed by MAC. MAC mecha­

nisms are therefore of interest to security-conscious users and application developers 

that want to confine applications they use or develop. MAC mechanisms, however, 

can only be configured by administrative users and as such can not be used by reg­

ular users. This dissertation explores how MAC mechanisms can be made available 

to regular users of an operating system. Our approach consists in extending the 

Type Enforcement MAC model with an administrative model. We call this approach 

accommodative mandatory access control. 
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1. INTRODUCTION 

Building software of a non-trivial size is difficult and costly. Building that software so 

that it is reliable and secure is even more difficult and costly [3]. As a consequence, 

most of the software that we use on a daily basis on personal computers has flaws. 

Some of these flaws can be used to force the programs to behave in ways that the 

program’s authors did not intend. An example of such a flaw is the drive-by-download 

attack against a web browser. In drive-by-download, additional software gets installed 

on a user’s system as a result of visiting a web site that contains malicious content that 

tricks the user’s web browser into installing software. This installation is performed 

without the user’s intent and constitutes a violation of the integrity of the system. 

The software being installed can be, for instance, a keylogger that will record and 

report to a remote system the text being typed on the keyboard of the computer 

where it is installed. This remote reporting constitutes a breach of the confidentiality 

of the key strokes between the user and the program with which the user wishes to 

interact. When the recording captures the user’s credentials to online services, this 

breach of confidentiality can be used to impersonate this user on these online services, 

potentially leading to identity theft. 

In brief, software we use on a daily basis has flaws and thus can not be trusted 

to behave according to the intent with which we use it. Consequently, there should 

be means for users of personal computers to compartmentalize the applications they 

use. That is, there should be mechanisms to restrict an application’s access to the 

resources offered by the underlying operating system, including the resources that 

belong to the same user on behalf of whom the application is currently running. 

To support a safe use of untrusted applications, where applications are confined 

to a safe behavior that also preserves their usefulness, the operating system of a 
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personal computer should provide access control mechanisms that are fine-grained, 

comprehensive, backwards-compatible with existing applications, and configurable by 

regular users of the system. We will first explain how we categorize users and then 

justify these requirements. 

Personal computers are not always owned by individuals. For instance, the per­

sonal computers deployed in a company are owned by that company. In this case, the 

company often designates administrative users that are responsible for the configura­

tion of the personal computers that regular users work on. Typically, administrative 

users can change the configuration of access control mechanisms on the personal com­

puter in ways that regular users can not, because regular users are not granted the 

permission to do so. Superusers are a special case of administrative users who have 

unrestricted access to the operating system and its resources. Now that we have clar­

ified the two categories (regular and administrative) according to which we consider 

users of a personal computer, we justify the requirements already mentioned. 

Permissions should be fine-grained for several reasons. The immediate reason 

is that we want an access control mechanism that supports the principle of least 

priviledge, and hence a precise confinement of applications. Coarse permissions run 

against this goal and additionally run against our goal of having an access control 

mechanism that regular users can configure. Indeed, if permissions can only be con­

sidered at a coarse level, then the administrative permission to grant a permission is 

necessarily coarse itself. If administrative permissions can not be granted at a fine 

granularity to regular users, then they will probably not be granted to regular users 

at all. Consider for instance the setuid facility on unix. It allows for programs to 

run under another identity than that of its invoker. This is a powerful confinement 

mechanism. The permission to configure this facility, however, is coarse. Either one 

can configure it, or not. There is no notion of who can configure which programs to 

run under which identity. This administrative permission is too coarse to be granted 

to regular users of the system, hence depriving them from the ability to use this 

confinement mechanism. 
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The access control mechanism should also (a) be provided as an operating system 

facility, and (b) be comprehensive. What we mean is that this mechanism should be 

integrated with the the underlying operating system in a way that it constitutes a 

reference monitor [4]. This is necessary to provide guaranteed enforcement of access 

controls, as intuition and empirical evidence show [5]. We are considering multi-user 

time sharing systems because they represent the main trend of operating systems 

found on personal computers. As we explain in the related work (see Chapter 2), our 

work remains relevant on other kinds of operating systems (e.g. single-user multi-

programmed). By comprehensive (b), we mean that the access-control mechanism 

should offer full mediation of the interactions between a running process and both 

the underlying operating system and another process running atop the same operating 

system. In this work we do not consider the enforcement of distributed access control 

policies, policies that span several instances of an operating system. 

Finally, we want an access control mechanism that is backwards-compatible with 

existing applications. For this reason, it should be possible to deploy this mechanism 

as an overlay, without changing the application programming interface exposed by 

the operating system. Since this work starts on the premise that developing non­

trivial applications is difficult and costly, we do not think it is reasonable in the 

general case to require that applications be re-engineered in order to benefit from 

security enhancements of the underlying platform. Consequently, capability-based 

access control mechanisms are not appropriate for the use cases we are considering, 

because they change the system’s programming interface and therefore require a re-

engineering of the application being confined. We recognize that this re-engineering 

can be minimal in the case of applications that are already split in multiple specialized 

components, each running with a minimal set of permissions in its access control 

domain, a technique known as privilege separation [6]. However, such applications 

represent only a small fraction of the ones used on personal computers. Furthermore, 

it is either the case that these applications had to be re-engineered to run with 

privilege separation (e.g. sshd) or  were  recently designed from  the ground up to  run  
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that way (e.g. Google Chromium). We now present a summary of the existing work 

on access control that has directly guided the evolution of the work presented in this 

thesis. A more detailed survey of the related work is in Chapter 2. 

1.1 State of the Art 

The access control matrix model [7] was introduced by Lampson during the in­

fancy of research in access-control models and mechanisms. To this day, all access 

control models can still be modeled in terms of an access control matrix, as we show 

in the related work (see Chapter 2). Here, we would like to clarify our terminology 

concerning access control, specially since the terminology used in defining an access 

control matrix varies depending on the authors and their goals. There are two main 

access matrix models. On one hand, Lampson’s model [7] provides a unified repre­

sentation of implemented mechanisms. On the other hand, the model from Harrison, 

Ruzzo, and Ullman [8] (the HRU model) is a simplified version of Lampson’s model 

that is amenable to proving complexity results on policy analysis problems. As we 

are approaching the problem of access control from an implementor’s perspective, 

Lampson’s model fits our modeling needs better. 

In Lampson’s access control matrix model, processes run within a domain and 

permissions are attached to domains. The access requests of a process are allowed 

or denied based on the permissions of the domain in which the process runs. We 

have reproduced Lampson’s example in Fig. 1.1. In this example, domain1 owns 

and controls itself as well as domain2. This means that domain1 can change the 

permissions granted to domain1 and domain2. The access matrix model will be useful 

in tying together our presentation of the related work on access control. There are 

two things that we would like to point out and discuss further about this model: it is 

not implementable in a straightforward fashion and was designed at a time where the 

need for mandatory access control was nascent but little work had yet been performed 

on the topic. We discuss these points below. 
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Figure 1.1.: Lampson’s access control matrix model, reproduced from it original 
presentation [7]. 
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While the access control matrix is a useful model, a straightforward implementa­

tion of this model is not practical: the matrix is large and dynamic. The matrix is 

large because it contains one element per pair of principal and resource. Also, the 

matrix is dynamic because the sets of principals and resources are not static: prin­

cipals and resources can be added and removed from the system. By resource, we 

mean an entity that exists at the level of the operating system, because our focus 

is on access control provided by the operating system. A straighforward implemen­

tation would use a large amount of storage space to store the matrix. Additionally, 

this memory space would need to be compacted (respectively expanded) each time a 

resource or principal is removed from the system (respectively created in the system). 

However, the matrix is sparse and this property can be used to represent the matrix 

in compressed form. The matrix is sparse because accesses are restricted: a matrix 

that would not be sparse would represent a configuration where most principals have 

access to most resources; that is rarely the case. There are three general-purpose 

encodings of sparse matrices: by row, by column, and as a set of elements. 

Two of these encodings have been used repeatedly by implementers: access con­

trol lists and capabilities. Access control lists (ACLs) consider the columns of the 

access control matrix. That is, for a given resource, which principals are granted 

which permission on it. Capabilities take a row-oriented approach and represent the 

permissions that a given principal has on resources of the system. The third encoding, 

as a set of elements, introduces a permissions lookup procedure that is more costly 

because the permissions are stored separately from the principal and the resource, in 

a centralized repository.  Since permissions  lookup need to be fast in order to preserve  

the performance of the system, caching has been introduced in system that use this 

matrix encoding. The family of systems derived from Flask [9], which our work ex­

tends, use this implementation strategy. Regardless of the encoding chosen to store 

the access matrix, there are two main approaches concerning the modifications that 

can be made to the matrix: discretionnary and mandatory access control. 
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In discretionnary access control (DAC), there are two important notions: resources 

are owned by principals, and principals are allowed to change the ACLs on resources 

they own. In other words, ACLs on a resource are left at the discretion of the 

resource owner. System resources are considered to be owned by system principals. 

Administrative users can control system principals in order to set the permissions on 

these resources. Lampson’s access matrix, in its original exposition, describes DAC: 

a user  can,  through principals that he controls,  grant access to  any other  users on  any  

resources that he owns, by granting access to other user’s principals. This approach 

presents problems: users have to be fully trusted to properly protect the resources 

that they own. This is not acceptable on a system that processes classified data, and 

specially state secrets, as the Ware report demonstrated [10]. Furthermore, DAC is 

susceptible to a form of attack called Trojan horse, where a program that looks useful 

and innocuous on the surface abuses the permissions granted to a user’s principal. 

While the user, through a principal, is using the Trojan horse program, this program 

also uses the permissions granted to the principal to corrupt the system’s integrity 

or leak data contained on the system. The drive-by-download attack we mentioned 

earlier can be considered a Trojan horse attack: the browser, while performing a 

useful function on the surface, displaying a web page, is actually corrupting the 

system’s integrity by installing a rootkit. A variant of the drive-by download could 

post documents from the user’s local hard drive on the Internet. 

The confinement of programs with DAC is approximated in practice by having the 

confined programs run under a different identity. This identity has restricted access 

on the system, due to the ACL settings not granting much access to the principal 

running under that identity. Moreover, because the chosen identity owns very few 

resources, this limits the scope of ACL modifications that can be performed by a 

principal running under that identity, which limits the risk of privilege escalation. 

Privilege escalation is when a principal manages to broaden its allowed accesses on 

the system, beyond the set of permissions initially granted to it. To guarantee that 

programs run only under the confinement identity, they are set to change the identity 
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under which they run upon invocation. For instance, this mechanism is know as 

setuid on unix and runas on Microsoft Windows. These system facilities, however, 

lack a fine-grained permission model, and thus a fine-grained administrative model 

specifying which principal is allowed to configure which identity transitions. 

In mandatory access control (MAC), additional controls are added on top of the 

discretionary ones. The goal of MAC is to prevent the permissions granted to a 

principal from being abused by a Trojan horse. The main idea of MAC is to make 

the determination of the domain in which a process runs based on criteria that are 

not entirely based on the identity of the user on behalf of whom the process runs. 

The classic example of a MAC model is the Bell-LaPadula (BLP) model [11], 

which formalizes the handling procedures designed to preserve the confidentiality of 

classified documents [12, 13], with an explanation of the model in the context of an 

operating system. In the BLP model, security classifications are assigned to resources 

and security clearances are assigned to principals; classifications and clearances are 

drawn from the same set of labels. This set commonly comprises the following con­

fidentiality labels, in increasing order of confidentiality: public, confidential, secret, 

and top secret. A principal is allowed access to a resource if and only if its security 

clearance is superior or equal to the classification of the resource. In addition to 

confidentiality labels, categories can be assigned to resources and principals in or­

der to enforce a mandatory need-to-know policy. Examples of categories are Navy, 

Army, and  Nato. With categories, the access to a resource by a principal requires 

that access be granted to that principal for each category that the resource is la­

beled with. The combination of confidentiality labels and categories results in a 

lattice-based classification of resources and principals; we discuss this lattice struc­

ture in more details in the related work (see Chapter 2). What is important to note 

here is that this lattice structure defines a partial order on principals and resources. 

The lattice and the partial order make BLP attractive; the lattice allows for sim­

ple graphical explanations of the access control model, while the partial order yields 

simple proofs of safety. By being simple, yet useful, the BLP model has been suc­
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cessfully applied in computer systems. Transpositions of the BLP model to enforce 

integrity policies have been proposed, both by the authors of the BLP model and by 

Biba [14]. 

Some confinement problems, however, can not be described in terms of a partial 

order. The trusted labeler problem [15] is one such problem. In this case, the security 

goal is to guarantee that all documents printed from a trusted workstation will be 

properly labeled. In this context, a trusted workstation is a computer system trusted 

to properly enforce the BLP model, and proper labeling means that each page of a 

document coming out of the printer will bear the sensitivity and compartments of the 

documents in the header and footer of the page. 

Type Enforcement (TE) is a MAC model that was created to address the trusted 

labeler problem, and more generally the class of problems known as high assur­

ance pipelines. The key insight in the creation of TE was to recognize the non-

hierarchical nature of the trusted labeler problem and, as a consequence, to create a 

non-hierarchical model to solve the problem. In TE, resources and principals have 

a type attached to them; a type is a label attached to an object. While this label 

is considered for access control decisions, it is not necessarily related to the internal 

structure of the object, contrary to the notion of type in programming languages. 

The type attached to a process determines the access control domain within which it 

runs; the types that are accessible from within a domain, and the operations that can 

be invoked on them, are declared in the Domain Definition Table (DDT). By config­

uring the DDT, it is possible to create arbitrary relations between domains. With 

TE the security of each domain can be analyzed and proven individually and the final 

proof of compliance can be assembled from these infividual proofs. This composabil­

ity of proofs allows for successful divide and conquer approaches to proving security 

properties of software systems, including the trusted labeler. Moreover, if a software 

module is re-used across several software systems, its accompanying policy and proof 

module can also be re-used. 
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While the original presentation of TE does address the trusted labeler problem, 

it still shares a common limitation with BLP: all accesses are expressed in terms of 

read-like and write-like operations. We think this is a limitation because it is not 

possible to represent the diversity of interactions on a modern OS in terms of only 

read and write operations. For instance, the bind operation on a network socket is 

difficult to classify as a read or a write operation. This problem is solved by extending 

the original TE model with object classes, as shown in Flask [9]. Additionally, Flask 

demonstrates in practice the idea developed early on by the original authors of TE [16], 

namely that TE can be composed with BLP, some form of role based access control 

(RBAC, which we discuss in the related work), and identity-based access control. 

Overall, the access control mechanisms provided by Flask satisfy all but one of our 

requirements: they are not configurable by regular users of the system. Focusing on 

type enforcement, this is the point that we want to address, so that regular users can 

protect themselves from flawed software. We outline our approach in the following 

section. 

1.2 Accommodative Mandatory Access Control 

We think that there is a middle ground between DAC and fine-grained MAC 

that has not been explored sufficiently. On one hand, DAC can be configured by 

regular users but is coarse grained and vulnerable to Trojan horse attacks. On the 

other hand, MAC is fine-grained and resilient to Trojan horse attacks, but it can 

not be configured at all by regular users. It would be nice if regular users had the 

ability to configure fine-grained MAC mechanisms in order to protect themselves from 

Trojan horse attacks like the drive-by download attack mentioned earlier. This ability, 

however, should not come at the cost of other aspects of the system’s protection. For 

instance, regular users should still be prevented from tampering with parts of the 

security configuration that protect the system’s integrity. In essence there should 

be an administrative model regulating how users can configure the fine-grained MAC 
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mechanisms. This is different from traditional MAC where the ability to modify the 

security configuration is granted exclusively to designated administrative users (the 

system’s security administrators) and in an absolute manner (no restrictions on the 

modifications they can perform). With an administrative model, it is possible to split 

the administrative powers granted to administrative users; two direct benefits ensue. 

First, it is possible to provide a safety net to administrators. By granting them limited 

administrative permissions, one can limit the damage they could cause by mistake. 

Second, it is not necessary anymore to trust the administrators in absolute terms. 

Furthermore, it becomes possible to let regular users benefit from the presence of the 

MAC mechanisms and use them for the protection of their data, according to their 

own usage patterns. It is even possible to enable this scenario without additional 

configuration, by carefully defining the default scope of modifications that regular 

users can perform to the configuration of the MAC mechanisms. To summarize, a 

mandatory access control model extended with a fine-grained administrative model 

could support a wide-range of access control requirements, from DAC to MAC. We call 

this approach accommodative mandatory access control. Our thesis is the development 

of this approach. 

1.3 Thesis Statement 

It is possible to extend a MAC model and its operating system implementation 

so that regular users can reliably confine applications they use, in a way that is 

comprehensive, fine-grained, and backwards-compatible with existing applications, 

while preserving the mandatory nature of the access control configuration established 

by administrative users. 

1.4 Approach and Contributions 

Our approach to demonstrating our thesis is by construction, following the guiding 

principle that permissions have to be fine-grained at all levels. We have identified 
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three such levels which we describe later; first, we explain why permissions have to be 

fine-grained. There are two reasons why permissions should be fine grained. The first 

reason is that coarse-grained permissions prevent the application of the principle of 

least privilege (PoLP). The second reason is that coarse-grained permissions are are 

harder to grant as they require the grantee to be trusted for large sets of operations, 

which practically limits the delegation of permissions that can happen. Consequently, 

our approach consists in using or creating a fine-grained model at the three following 

levels. The first level is the base MAC access control model that we chose to extend. 

We have chosen to extend the TE model and its SELinux implementation, based 

on our survey of the related work. The second and third levels are respectively the 

administrative model for TE and the refinements to the coupling between a TE policy 

and the underlying system objects; we describe both in turn below. 

Developing our approach on TE has involved defining an administrative model 

for TE. To support the fine-grained granting of administrative permissions to users, 

the administrative model has to be able to finely characterize the permission that 

are granted. Therefore, we have designed an administrative model that relies on 

pattern matching to characterize the contents of the policy rules being modified. As 

our work addresses the lack of an administrative model for a MAC model, we have 

avoided a simple transfer of problem from the lack of an administrative model to 

the lack of model regulating changes to the administrative policy itself. We have 

done so by designing our administrative model to support a recursive nesting of 

administrative permissions. In other words, an administrative policy can be regulated 

by another administrative policy, and so on. This is a novel technique for constructing 

administrative models, for which we have also designed and implemented a prototype 

on SELinux. 

From a theoretical standpoint, an administrative model for TE could be sufficient 

to claim our thesis as demonstrated. From a practical standpoint, however, that is not 

the case. Consider the following example on SELinux, where all files under a home 

directory are labeled with the same type (user home dir t), and with a user who 
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wants to protect differently a given file located in her home directory. With just a TE 

administrative model, the policy implementation choices to treat these files differently 

would be to either relabel that file, or make a copy of the file and relabel the copy. 

Both choices present problems: relabeling the original file effectively nullifies all the 

rules that were granting access according to the original type of the file, and creating 

a copy naturally  introduce the  risk that the  contents  of the  two copies will diverge  

over time. We have conceived a scheme, which we call overlay labeling, to address 

this problem. The idea of overlay labeling is to let users add extra tags to objects, 

and let users define access control rules based on these tags. 

The overlay labeling of filesystem objects is an operation that is performed offline, 

once per overlay. Consequently, it does not affect the runtime performance of the ac­

cess control enforcement. We show how this operation can be performed such that 

the semantics of the existing security policy are preserved. The overlay labeling of 

network packets is more complicated for two reasons. First, as each packet entering 

or leaving the system has to be labeled at runtime according to the existing policy, 

the network packets are not pre-existing resources that can be labeled offline, and 

therefore the efficiency of their labeling has a direct impact on the runtime perfor­

mance. Second, the standard implementation of network packet labeling relies on 

packet classification, which determines a unique label for each packet. Overlay labels, 

however, require the ability to return multiple labels per objects. This is a fundamen­

tally different and new problem. We show how this problem can be solved by using 

a datastructure from  computational geometry,  interval trees,  which we generalize to  

multiple dimensions. We prove that, for the general case, our solution is optimal 

within a constant factor. 

An additional contribution of this thesis is the unified presentation of the ac­

cess control models that we survey in the related work section, where we extend 

the concept of the Extended Access Matrix [16] to encompass subject and object 

transitions. This unified presentation allows a characterisation of the differences 

between access control models that is more precise than what was available previ­
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ously. For instance, we show that TE is strictly more expressive than RBAC, as 

RBAC can be emulated by TE, but RBAC can not emulate TE because it lacks 

automatic role transitions. We also show that TE can not enforce low-water mark 

policies because it does not support domain transitions on read and write opera­

tions. 

1.5 Manuscript Organization 

Our manuscript is organized as follows. After a survey of the related work in 

Chapter 2, we proceed to demonstrate our thesis by construction, based on TE. In 

Chapter 3, we formalize TE and define a core administrative model for it. This core 

administrative model supports a fine-grained delegation of permissions on the TE pol­

icy, which is a necessary step to demonstrating our thesis. In practice, however, this 

model is not sufficient by itself. Indeed, the coupling of the policy to concrete system 

resources –the labeling of resources– is external to a TE policy and thus not captured 

by our core TE administrative model. Policy statements added by regular users are 

constrained to the granularity of the labeling of system resources by administrative 

users. This is why we introduce the notion of overlay labeling in Chapter 4. The 

idea is to let regular users declare and attach additional labels on system resources, 

so that they can refine the system policy to cater their needs. At the same time, user 

actions are still limited by the mandatory policy. In Chapter 5, we evaluate our work 

with case studies and compare it to existing solutions. We conclude in Chapter 6. 
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2. RELATED WORK 

Our work involves, and therefore relates to, issues both at the modeling level and at 

the implementation level. At the modeling level, our work relates to the existing work 

on access control models and administrative models. At the implementation level, 

our work relates to access control mechanisms implemented in operating systems. 

Consequently, our presentation of the related work will cover both related models 

and related implementations. This chapter is structured as follows. Section 2.1 

covers the early history of the field of access control, clarifies the kind of operating 

systems that we are considering, and presents connex work that is not as closely 

related as the work presented in the subsequent sections. Section 2.2 covers related 

access control models, and Section 2.3 covers the compositions and emulations of 

access control models.The ability for a model to emulate another one is used as a 

means to compare the relative expressive power of access control models. Section 2.4 

covers administrative models, Section 2.5 covers implementations of access control 

models found in operating systems, and Section 2.6 concludes this chapter. 

2.1 Introduction 

Before delving into the survey of the work specifically related to ours, we feel that 

that an extended introduction to this chapter can benefit our reader. This extended 

introduction will be split in three parts. First, we will recap the early history of 

research in computer systems access control. Then we will present how the access 

control matrix model can be extended to represent and compose the access control 

models that are presented in this chapter. Finally we will briefly mention work which 

is related just enough that it needs to be mentioned and remotely enough that it will 

not be surveyed further in the remaining of this chapter. We want to present this 
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work, nonetheless, to help our reader better evaluate what our work relates to, and 

how closely. We now recap the early history of the field. 

2.1.1 Early History of Computer Access Control 

Early on (and now over 40 years ago), the Department of Defense created the 

Task Force on Computer Systems Security, chaired by Willis Ware. The findings of 

the task force were summarized in a report [10] which pointed, for the first time, 

many elements of what is now common knowledge in the field of computer security. 

For example, the findings included the assessment that commodity operating systems 

were not providing protection mechanisms that were adequate for the processing of 

classified governement data, with mixed classification levels, on the same computing 

facility. The report also mentioned the use of trap doors to penetrate a system and 

characterized the evolution in operating systems functionality that lead to the ap­

parition of the need for access control within operating systems. We have reproduced 

this characterization in Figure 2.1, where we explain how our work is relevant to OSes 

with these different characteristics. 

The Ware report was followed by the Anderson report [4], which introduced the 

notion of a reference monitor (see Fig. 2.2) as the base architectural pattern used to 

enforce access control. The Anderson report was also the first one to mention trojan 

horse attacks on a computer system. Similarly to the mythical trojan horse, a trojan 

horse in a computer system is piece of software that betrays its appearance. While 

looking like a useful piece of software, a trojan horse does not do only what it looks 

like it should be doing. For instance, on smartphones, modern trojan horses that 

pose (ironically) as security software intercept the SMS messages sent by banks for 

multifactor authentication [17]. 

Around the same time, Lampson formalized the representation of the configura­

tion of existing access control mechanisms in terms of a matrix, the access control 

matrix [7] (see also Figure 1.1 in Chapter 1). This model is important, as it was de­



17 

signed to represent in a unified manner the access control mechanisms implemented 

by computer systems at the time. It is this unified representation that enables the 

common representation and therefore the comparison of access control models. When 

augmented with the notion of transitions that happen upon the execution of an op­

eration, the access matrix model can be used to represent and compose many access 

control models, as explained by Boebert et al. [16]. In our presentation of access 

control models, we will use an access matrix representation to expose the different 

access control models related to our work. We elaborate on this idea in Section 2.1.2. 

As noted by Lampson in [7], a straightforward implementation of the access matrix 

as a matrix would not be efficient in terms of space, as the matrix is sparse. It is 

therefore proposed that the matrix be implemented with a storage either by columns 

or by rows. The storage by columns (by resources) is called access control lists (ACL); 

it corresponds to storing, with each resource, the set of subjects that are allowed to 

access it, and the operations that they are allowed to perform on it. The storage by 

rows (by subjects) is called capabilities; it corresponds to storing, for each subject, 

the set of resources to which it has access, and the operations permitted on these 

resources. In other words, these two implementations correspond to encoding the 

matrix either by rows or by columns. The problem posed by both implementations is 

that, by scattering the storage of the access configuration, they make it more difficult 

to gather the access control configuration and audit it. For example, consider the 

following audit scenario: on a system that uses ACL storage, an auditor wants to 

determine all the resources that a subject has access to. In order to make this deter­

mination, the ACL attached to each and every resource of the system will have to be 

retrieved. Conversely, a capability implementation makes it costly to determine all 

the subjects that have access to a given resource. As a result, some implementations 

use a sparse matrix encoding technique to compress the access matrix and keep it 

as a whole1 . Keeping the matrix as a whole supports both of these audit scenarios 

1We have observed the use of sparse matrix encoding for the domain definition table and domain 
transition tables in the source code of SELinux. There, each non-empty cell of the matrix is stored 
in a hash table that is indexed by the subject, the object, and the class of object. The class of object 
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Batch 
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Complexity of
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Figure 2.1.: Characterization of the difficulty of providing access control for OSes, 
based on their features, reproduced from the Ware report [10]. The need for access 
control appeared with the evolution of operating systems [21]; more specifically, it 
appeared with the introduction of non-volatile storage. Until that point, the computer 
system would be essentially stateless at the beginning of each computation. With 
non-volatile storage, there is the possibility that the next computation running on 
the system can access the data of a previous computation. As explained in the Ware 
report, the problem of access control can be solved with simple procedures for batch-
processing systems by wiping the system clean between jobs, either by erasing the 
previous job’s program and data or by dismounting the storage devices on which they 
reside. With multiprogramming, the executions of the computations are interleaved. 
This requires keeping several programs and their input and output data available to 
the system at the same time. Consequently, the previous simple workaround solution 
can not be applied. Instead, access control mechanisms have to be provided by the 
OS to isolate the computation, be it for integrity or for confidentiality reasons. Time 
sharing makes the access control harder to provide, by increasing the frequency at 
which the execution switches from one program to another, and by removing the 
control of the context switches from the programs (pre-emptive scheduling). Our 
work is in the context of timesharing systems. 

efficiently, because the matrix contains all the information that is used to determine 

accesses. This information is a protection state. 

An additional early paper that has had a lasting influence on the field was the 

paper by Salzer and Schroeder [18]. This paper was intended as a tutorial paper 

but ended up becoming a classic, mostly because of the 10 design principles that 

it contains [19]. The principle of separation of mechanims and policy, which was 

highlighted during the development of early extensible systems [20], is usually added 

to this list of principles. 

is a refinement to access control rules that was introduced by Flask [9]. 
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Figure 2.2.: A reference monitor, reproduced from the original presentation of the 
concept in the Anderson report [4]. A reference monitor is the architectural element 
responsible for the enforcement, in an access control model, of the “authorized ac­
cess relationships between subjects and objects of a system. An implementation of 
the reference monitor concept is called a reference validation mechanism.” An im­
plementation of this concept requires that all interrelations of subjects and objects 
be mediated, and thus imposes the following three requirements on the design and 
implementation. First, the reference validation mechanism’s integrity must be pro­
tected; otherwise, there are no guarantees as to what the validation actually validates. 
Second, the reference validation mechanism must be invoked for every access; this is 
also refered to as enforcing full mediation. Third, the reference validation mechanism 
must be an assured piece of software; in Anderson’s words, it “must be small enough 
to be subject to analysis and tests, the completeness of which can be assured”. Mod­
ern expositions and implementations of access control models [22,23] have refined the 
notion of reference monitor into three separate entities. The policy decision point de­
cides of the fate of an access request, while the policy enforcement point is responsible 
for enforcing that decision. The policy decision point communicates with a policy 
information point to get the values it needs when evaluating the access request. 
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2.1.2 The Access Control Matrix 

The access control matrix remains the model that is the most amenable to repre­

senting, in a uniform format, diverse access control models. We want to expand this 

idea that we have expressed earlier, both in the introduction of the thesis and in the 

introduction of this chapter; we do this in what follows. 

First, we want to clarify why we chose to introduce the access control matrix by 

using the model originated by Lampson [7]. This model avoids the common confusion 

which consists in equating active entities (the entities that make access requests) with 

users. It does so by deliberately using a fairly neutral term for the active entities to 

which permissions are granted: domain, instead  of  subject. Indeed, the term “subject” 

is often equated to user identities as in [8] for instance. 

As it turns out in the context of this thesis, which extends TE, the term domain 

unfortunately has a strong connotation as well2. Consequently,  we  will  use  the  term  

subject to describe the active entities of the access control models that we present. 

This choice will make our exposition of the access control models conform with the 

usual terminology. We will, however, treat subjects as composite entities, similarly to 

the Extended Access Matrix (EAM) model [16]. By composite, we mean that subjects 

can possess a set of attributes, besides a user identity, that are used when evaluating 

access control decisions. In the BLP model [11], examples of these attributes are the 

clearance of the user identity, for the discretionnary access control, as well as the 

clearance and set of categories allowed to that user, for the mandatory access control. 

In our context, where we consider access control from the perspective of the operating 

system, a subject is a process. Consequently, these subject attributes will be attached 

to processes. In the same way that subjects are composite in order to support the 

composition of access control models, objects are composite. 

In general, complex problems are easier to analyze and solve if they can be de­

composed into simpler ones. This holds true for the composition of access controls 

2The term “domain” has a well defined meaning in the context of type enforcement, as we show 

later in this section. 



21 

where several access control mechanisms, each implementing a separate access control 

model, may be used in conjunction to regulate accesses on a system. The EAM [16] is 

the embodiement of this decomposition of the exposition (and implementation) of ac­

cess control models as separate access control matrices. The idea with the EAM is to 

describe the composition of access control models as the composition of a set of access 

control matrices, each representing one of the access control models being composed. 

The evaluation of an access control request is then performed individually on each of 

the access control matrices, passing the subject attributes that are relevant to each 

matrix’s model. For example, the mandatory access control of MLS is only concerned 

with a subject’s clearance and allowed categories, whereas the discretionary control 

of MLS is only concerned with the user’s identity. An access request is granted if and 

only if each of the evaluation allows the access request. This is the reason why we 

insisted that subjects are composite, because they store attributes that are relevant 

to multiple access control models, and that we did not want to retain the name “do­

main”, because this is precisely an attribute name that is used by domain and type 

enforcement (DTE) [24], a variant of TE (see Section 2.2.2 for a description of TE 

and its variants). 

The EAM model covers only the part of the access control decision that is con­

cerned with whether to allow an access request or not. Another part of access control 

models that is critical to the practical confinement of software is the change of type 

attribute settings that can happen when an access is allowed. An example of this 

change is the change of user identity associated that can be triggered by the setuid 

facility when a process replaces its binary program image by one constructed from a 

file that has setuid configured. In TE, these transitions are represented in terms of a 

matrix called the Domain Transiton Table (DTT). This matrix declares the domain 

in which a program should execute based on the domain of the calling program, either 

the same (not transition), or another one (domain transition). To keep with our goal 

of generality, the EAM needs to be extended with a set of subject attribute transition 

tables, one for each model that supports subject attribute transition. The subject at­
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tribute transitions can happen on different operations: reading a file of low integrity 

can downgrade the integrity of a process (in the Biba low-water mark model [14]); 

executing a setuid program can change the identity of the running process. 

Similarly to our insistance on having subjects be multi-dimensional, objects also 

need to be multi-dimensional since different access control models will consider dif­

ferent attributes of the objects. For instance, an access control model like MLS [11] 

considers two attributes on a file: the confidentiality label and the set of need-to-know 

mandatory categories. In keeping with the symmetry of the model, transitions can 

also happen on object attributes. For instance, a write to a file of high integrity by a 

process of low integrity will downgrade the integrity of the file (in the Biba low-water 

mark model); creating a file in a setuid directory will set the identity of that file to 

be the identity of the owner of the directory, instead of the user on behalf of whom 

the process is running. These transitions can also be represented in terms of a matrix, 

which would be called the object attribute transition table. 

We provide one full representation of a subject attribute transition table, the 

domain transition table for the trusted labeler example by Boebert and Kain [15], 

in Figure 2.5c. Otherwise, we have condensed the representation of these tables by 

using arrows that overlap the access control matrix. The tail of the arrow is on the 

operation causing the transition, in the matrix cell corresponding to the subject and 

object of the access request. The head of the arrow is in the cell corresponding to the 

new subject attribute (for a subject transition) or the new object attribute (for an 

object transition). Consequently, subject transitions appear as vertical arrows, and 

object transitions appear as horizontal arrows. An example covering both subject and 

object transitions is the low-water mark policy by Biba, illustrated in Figure 2.4c. 

2.1.3 Connex Work, Not Directly Related 

Our work is related to access control models, which reason on the external ac­

tions of an application, and not on information-flow models, which reason on the 
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flow of information inside an application. To reason on the internal behavior of an 

application, information-flow models and their implementation require access to the 

source code of the application being analyzed. While getting access to the source 

code may not always be practical, the main limitation lies actually in the lack of 

models and techniques that scale to the size and complexity of common applications 

like a web browser. Some hybrid models that limit the scope of source-code analysis 

to the interfaces of a program are more tractable [25]. Examples of information-flow 

and language based techniques that we will not cover further include lattice infor­

mation flow models and proof-carrying code. Lattice information flow models have 

been designed [26–28] to express what it means for a program to enforce a security 

policy. These works have focused on lattice information flow models, with the goal 

of preserving confidentiality. We are aware of two compilers that help guarantee the 

enforcement of information flow policies, by analyzing and instrumenting programs 

at compile time [29–33]. Besides a secure email client [34], few applications have been 

built with these languages as they are hard to work with. There is work in inte­

grating these approaches with OS-based security, so that the policy enforced by an 

application and the policy enforced by the operating system are tightly coupled. For 

instance, [35] works on integrating application-enforced confidentiality policies with 

their OS-enforced counterpart. In earlier work [25], some of the same authors worked 

on integrating integrity policies to enforce a simplified version of the Clark-Wilson 

model of integrity [36], which they named CW-Lite. Proof-carrying code [37, 38] 

was developed to solve the performance problem associated with the sandboxing of 

mobile code, without giving up on the safety guarantees provided by sandboxes. 

Typical properties proved in PCC are memory safety and the termination of simple 

programs. The main limitation of PCC is the size of the proofs, which causes stor­

age, transmission, and generation issues for any sizable program. Additionally, we 

do not cover inference-control models [39, 40] for two reasons. First, our work is on 

operating system security, where data is considered unstructured. Inference-control 

applies to structured data, and namely to database management systems. Second, 
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inference-control targets confidentiality policies, whereas the main focus of our work 

is integrity. 

We have introduced the base concepts of access control, with a recap of the early 

history of research in computer systems access control. We have also briefly intro­

duced research trends that are related to our work, but more remotely than what we 

will now present. In the rest of this chapter, we present the work on access control 

that is directly related to ours. 

2.2 Access Control Models 

An access control model defines how access requests are evaluated against the 

protection state. That is, when an access is attempted, how is the access request 

represented, and does the protection state of the system allow this request or not ? 

This decision is made by comparing chararacteristics of the access request against the 

protection state of the system on which the access is being requested. At the level 

considered by access control models, an access request is represented as a 3-tuple 

subject, operation, resource. The subject is the active entity that is attempting to 

perform an operation on a resource. Subjects,  operations,  and  resources  are  char­

acterized differently depending on the access control model. In DAC for instance, 

subjects are fully characterized by the identity of the user on behalf of whom they 

execute3 . A common example of resource identification is the path of a file, with the 

associated read, write, and execute operations. An access request is allowed if an only 

if4 the protection state allows it. In full generality, the protection state of a system 

can be viewed as defining a set of allowed requests. The evaluation of an access con­

trol request then becomes a membership test: does the access control request belong 

to the set of allowed requests. Many techniques of set theory have been used in access 

3Because subjects are fully characterized by their identity in DAC, DAC is also known as identity 

based access control (IBAC) 
4If a request could be allowed without being allowed by the protection state, then there would be a 

violation of the definition of a reference monitor. 
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control models, to facilitate the definition of the set of allowed requests. For instance, 

regular expressions and constraints have been used to define access control rules in 

comprehension. Regular expressions support the definition by comprehension of a set 

of resources, by defining a language that contains the set of resources to which access 

should be allowed (or denied). Constraints can be used to restrict the set of accesses 

that are allowed, to simplify the reasoning on the safety of the system [8, 41]. The 

implementor, then, has to strike a balance between the expressive power built into the 

access control model and the implementability of that model. For instance, efficiently 

testing a stream of incoming access requests against a set of regular expressions can 

be costly [42]. Similarly, it may not be practical to store an infinite record of the 

accesses performed by a user, when enforcing history-based access control constraints 

like the Chinese Wall model [43]. 

A special kind of access control model is the one used to describe the accesses 

made against the protection state of the system. These models, which regulate who 

can modify which parts of the protection state, are called administrative models. An 

access control model that captures both regular access requests and administrative 

access requests can be viewed as reflexive. 

With the distinction between access control models and administrative models 

established, we will now present access control models in the remainder of this section. 

2.2.1 Discretionary Access Control 

In DAC, subjects are fully characterized by the identity of the user on behalf of 

whom they execute. This means that a process running on behalf of a user will possess 

all the permissions granted to that user, as there is no other attributes attached to 

that subject. As a result, systems that rely exclusively on DAC are vulnerable to 

trojan horse attacks. 



26 

2.2.2 Mandatory Access Control 

Until the early 1970s, it was not generally realized that two fundamentally different 

types of access control exist [44], namely DAC and MAC. Now that we have presented 

DAC, we present MAC models. We first present MAC models as they were originally 

exposed. Then, we present them in terms of an access matrix, with the transition 

extensions that we introduced in Section 2.1.2. 

Multi-Level Security – Bell La Padula 

The Anderson report [4], which introduced the concept of a reference monitor, 

is one of the earliest reports on studies to address the security needs of institutions 

that handle classified national security information, namely multilevel security. The 

findings of this report were that current systems and system development methods 

were inadequate for supporting multilevel security with high assurance. Two models 

of multi-level security have been subsequently proposed: the Bell-LaPadula policy 

model (BLP) [11], for confidentiality, and the Biba variants, where the multi-level 

rules are transposed to support integrity policies [14]. 

The BLP model [11] is a formalization of the security policy used with physical 

documents in institutions that handle classified national security information, as pre­

scribed in Executive Orders 10501 [12] (when BLP was formulated) and 13526 [13] 

(the current one at the time of this writing). 

Each document is assigned a security classification, which is composed of a security 

level and a set of categories. Security levels are a set of strictly ordered symbols that 

represent the sensitivity of a document. In other words, security levels represent the 

damage that could ensue if the document was leaked. A typical set of sensitivity 

levels is, in order: { confidential, secret, top secret}. Categories  represent  the  topics,  

projects, or organizations related to the document. Typical examples of categories are 

{NORAD, NATO, Army }. Users of the system are assigned clearances based on their 

trustworthiness. A clearance, like a security classification, is composed of a sensitivity 
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Classification 

Clearance 
Confidential Secret Top Secret 

Confidential observe/modify modify modify 

Secret observe observe/modify modify 

Top Secret observe observe observe/modify 

Figure 2.3.: The hierarchical part of the Bell La Padula model, with the security 
levels Confidential ≤ Secret ≤ TopSecret, encoded as an access control matrix 

level and a set of categories. A clearance is said to dominate a security  classification  

if the level of the clearance is superior or equal to the level of the classification, 

and if the set of categories of the classification is included in the set of categories of 

the classification. Based on this dominance relationship, the Bell La Padula model 

enforces the security goal of confidentiality with the following two rules: 

•	 Simple security: a subject is allowed to observe only documents that are domi­

nated by her clearance (no read-up). 

•	 Star property: a subject is allowed to alter only objects whose security label 

dominate her clearance (no write-down). 

More precisely, the categories are not needed to enforce confidentiality. Categories 

are used to enforce need-to-know security goals, where users should have access to 

documents only if that access is necessary for them to perform their intended duties 

within the organization. The hierarchical aspect of the Bell La Padula model can 

easily (and concisely) be encoded as an access control matrix, as shown in Figure 2.3. 

Biba 

Following the work of Bell and La Padula, Biba [14] proposed several mandatory 

access control models to protect the integrity of data. In a fashion similar to Bell­
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LaPadula, these models rely on hierarchical security levels that are assigned to objects 

(resp. users) of the system as classifications (resp. clearances). The main difference 

is that these security levels represent integrity levels. The Biba report offers several 

hierarchical models of integrity [14] that we present in turn in this section. The 

strict integrity policy is the direct transposition of the Bell La Padula model, from 

confidentiality to integrity protection, with static labels. According to Biba, the strict 

integrity policy can be considered the “complement” or “dual” of the [BlP model].5 

The following rules are the result of the transposition: 

•	 A subject can only observe objects whose integrity level dominate her own 

integrity level. 

•	 A subject can only modify objects whose integrity level are dominated by her 

integrity level. 

These rules prevent high integrity subjects from being corrupted by the observation 

of low integrity data and they prevent high integrity objects from being tampered 

with by low integrity subjects. We have represented this model in Figure 2.4b. Other 

models are also proposed in the same report (Figure 2.4c presents these models to­

gether): 

•	 low-water mark on objects: an object’s integrity level is the lowest of the in­

tegrity levels of all subjects that modified it. This policy has the problem that it 

does not prevent the modification of high integrity objects. It just records that 

such a modification happened by keeping a “low-water mark” on the object. 

•	 low-water mark on subject: if a subject observes an object whose integrity level 

is lower, then the subject’s integrity level is automatically lowered, to that of 

the object it observes. 

5Actually, integrity at large has been considered to be the dual of confidentiality in [45]. This may 
be the origin of the popular belief that confidentiality and integrity can not be jointly achieved, as 

a result  of  being dual  properties.  
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S: 	  the  set  of  subjets  s 
O:  the  set  of  objects  o. (Note:  in  Biba’s  presentation,  “the intersection of S 

and O is the null set.” As a consequence, direct interactions among subjects 
are not represented in this model, contrary to the original Bell-LaPadula 
model.) 

I:  the  set  of  integrity  levels.  The  report  suggests  that  these  levels  can  be  
compartmentalized (again, in a fashion similar to the Bell La Padula model) 
to separate different applications of the system. 

il:	 S ∪ O → I, a  function  that  returns  the  integrity  level  of  each  object  and  
subject of the system. This function and the dominance relation ≤ on 
integrity levels define a lattice. ≤:  a  subset  of  I × I, the dominance  relation on integrity levels.  

min: ℘(I) → I, a  function  that  returns  the  greatest  lower  bound  (meet)  of  the  
subset of I specified. 

(a) Base definitions 

Classification 

Clearance 
Confidential Secret Top Secret 

Confidential observe/modify observe observe 

Secret modify observe/modify observe 

Top Secret modify modify observe/modify 

(b) The strict integrity model, represented with three integrity levels as an access control matrix. 
From this figure, it is visible that the strict integrity policy is the dual of the Bell La Padula model 
for confidentiality (see Figure 2.3). 

Classification 

Clearance 
Confidential Secret Top Secret 

Confidential observe/modify modify / observe modify / observe 

Secret modify / observe observe/modify modify / observe 

Top Secret modify / observe modify / observe observe/modify 

(c) The low-water mark model with floating labels for both subjects and objects, represented as an 
access control matrix. The downgrading (label transitions) for subjects take place upon observation 
of lower integrity objects (vertical transitions). The downgrading for objects takes place when they 
are written to by a subject of lower integrity (horizontal transitions). From this figure, it is visible 
that a system implementing floating labels runs the risk of downgrading the integrity of the whole 
system over time: all the transitions lead to lower integrity subjects and objects. 

Figure 2.4.: The family of integrity models proposed by Biba in [14]. 
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Type Enforcement 

Type enforcement was created to support a use case that multi-level security can 

not address (and that was of interest) in the Secure Ada Target (SAT) [15]. Namely, 

the MLS integrity policies can not support the trusted labeler. The trusted labeler 

is an example of a non-hierarchical policy. In other words, the trusted labeler is an 

example of an application that can not be supported by a hierarchical policy. The 

trusted labeler is a mechanism which must guarantee that printed copies of classified 

documents bear their classification in the footers and headers of each page. This is 

to guarantee that information can not be leaked simply by printing it and walking 

away with it. With the headers and footers bearing the document’s classification on 

each page, security personnel can prevent the physical copies of classified documents 

from being physically exfiltrated. The SAT implementation effort was aiming for 

the A1 certification level of the U.S. Department Defense Trusted Computer System 

Evaluation Criteria (TCSEC) [46]. As a consequence, enforcement of the security 

policy had to be formally proven on the system implementation. Following the same 

reasoning as [47], SAT was built in a modular fashion, with modular and composable 

proofs of compliance. Type enforcement is what enabled the composition of proofs of 

compliance. 

We now present Type Enforcement, based on the trusted labeler example. The 

trusted labeler is an example of a high assurance pipeline that can be graphically 

represented as depicted in Figure 2.5a. A high assurance pipeline is a sequence of 

processing steps for which one can prove that, if data is output in the last step, the 

data has been processed by each of the previous processing steps, in order. Other ex­

amples of high assurance pipelines are commonly found in network guards, where data 

must be encrypted before being sent over non-trusted networks, and network access 

control must be enforced in a guaranteed fashion. The encryption module and the 

access control module are components of assured pipelines in network guards, in the 

same way that the trusted labeler was part of an assured pipeline in the SAT platform. 
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Labeller 
Process 

Printer 
Process 

User 
Process 

Unlabelled 
Data 

Labelled 
Data 

User Domain Labeller Domain Output Domain 

(a) “Unverified and potentially hostile programs are encapsulated in the User domain. The labeler 
module ../.. is encapsulated in the Labeler domain and is verified to properly translate internal labels 
to readable form, and place them in the correct positions in the data. The output module ../.. is 
encapsulated in the Output domain and is verified to not tamper with labels. None of the domains 
in the example invoke any form of privilege.” 

Object Type 

Domain 
Unlabelled Labelled 

User observe/modify null 

Labeller observe observe/modify 

Output null observe 

(b) The domain definition table for the trusted labeler 

Called domain 

Domain 
User Labeller Output 

User execute in same domain transition to Labeller 

Labeller execute in same domain transition to Output 

Output execute in same domain 

(c) The domain transition table for the trusted labeler 

Figure 2.5.: The trusted labeler example, adapted from [15]. 
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The TE model can be viewed as a hybrid of Lampson’s matrix model and the 

floating label policies proposed by Biba. From Lampson’s model, TE has retained the 

notion of granting permissions to domains, with domains being entities not directly 

connected to users. From Biba’s model, TE has retained the notion of dynamically 

changing the security context of a subject, based on the actions it takes. Whereas 

Biba’s low-water mark model would lower a subject’s integrity level upon observation 

of low integrity data, TE can transition a process into another domain when it starts 

executing another program; this is called an automatic type transition. These auto­

matic type transitions are similar to the setuid facility [48]. However, TE domains 

are a notion orthogonal to user identities. This allows for running programs under 

the super-user identity, but in a restrictive domain that actually curtails the broad 

privileges normally associated with the super-user identity. The notion of a TE do­

main is also unrelated to the notion of an MLS clearance. This allows for confining 

the trusted labeler in a way that: 

•	 guarantees it is not bypassable, 

•	 protects it from corruption by other subjects, 

•	 confines it so that there is no need to trust the labeler for more than proper 

labeling. 

These last two elements support a modular decomposition of the specification and 

proof that the labeler and its integration in the system properly enforce the mandatory 

labeling of printed documents. An additional benefit of type enforcement is that it 

can reduce the attack surface of programs, hence limiting the scope of the audit when 

assuring the code of security-relevant programs [25]. 

The original exposition of TE [15] contains a motivating example for TE, together 

with an extensive explanation of how significantly TE helps the assurance effort on 

an information system. The subsequent adaptation of TE to unix [24], Domain and 

Type Enforcement (DTE), is more intelligible these days. DTE was designed to sub­

stantially improve the security of unix systems while maintaining a high degree of 
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backward compatibility and avoiding increases in administrative overhead. The secu­

rity improvement is achieved by overlaying DTE domains on the unix domains; the 

backward compatibility and low administrative overheads are achieved by automating 

the common scenarios. We explain these points in turn. 

In the standard unix access control model, a process’s rights on an object are 

determined based on the {user, group, others} permission bits of the object, which 

user and group the object belongs to, and the user and group attributes of the process 

performing the request. In TE, that process’s rights depend on the type of the object 

it is trying to access and the domain in which the process is running. DTE overlays 

this access control on top of the unix access control. This supports a partitioning of 

the whole set of rights that are normally available to a process based on its system 

user identity. In a later article, Walker et al. [49] have shown that this partitioning of 

rights can, for instance, be used to confine system daemons that would otherwise run 

with full super-user privileges. This confinement improved the security of the system. 

With type enforcement, every system object has a type, and every process runs inside 

a domain.  DTE  limits  the administrative overhead  by  providing  mechanisms  that can  

be used to automate the system’s behavior. For instance, the labeling of filesystem 

objects is simplified by relying on the filesystem hierarchy to automatically type 

files and directories based on the type of their parent directory. For processes, they 

automatically inherit the type of their parent process, unless they execute the entry 

point of a domain 6, and  that  entry  point  is  set  to  trigger  an  automatic domain 

transition. In that case the new process will –upon invocation of the exec() system 

call– be running in the domain whose entry point it just executed. 

Using the same representation of transitions that we have used to represent the 

Biba models in terms of an access control matrix, we can represent TE as an access 

control matrix, as illustrated in Figure 2.6. 

6This notion of entry point is similar to the one defined by Lampson in [50]. 
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Object Type 

Domain 
User Code Unlabeled Data Labeler Code Labeled Data Printer Driver 

User 
execute in 

same domain 
modify / observe 

execute in Labeler 
domain (transition) 

Labeler observe 
execute in 

same domain 
modify / observe 

execute in Output 
domain (transition) 

Output observe 
execute in 

same domain 

Figure 2.6.: The trusted labeler example, adapted from [15], represented in terms of 
an access control matrix 
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2.2.3 Role-Based Access Control 

The main goal of Role-Based Access Control [51] (RBAC), is to simplify the 

administration of an automated security policy. This simplification is achieved by 

granting permissions to roles (instead of users), and assigning users to the roles they 

need in order to perform their duties, as illustrated in Figure 2.7. What makes RBAC 

attractive for security administration is the fact that duties performed by individuals 

within an organization are usually performed due to a responsibility assigned to the 

individual. Since these responsibilities are usually defined as functional roles, RBAC 

structures the security policy in a way that offers a natural mapping from a business 

organization chart to security administration. To further ease security administration, 

many extensions have been proposed to RBAC: 

•	 Role hierarchies: In an attempt to model the hierarchy of functional roles that 

appear in a company’s organization chart, RBAC has been extended with role 

hierarchies (see Figure 2.8). As pointed out in [51], there are three different 

semantics associated with role hierarchies. 

•	 Temporal constraints: In an attempt to model worker shifts, temporal exten­

sions to RBAC have been proposed: Temporal RBAC (TRBAC) [52], General­

ized TRBAC (GTRBAC) [53], and their XML encoding, X-GTRBAC [54]. The 

interaction of temporal constraints and role hierarchies has been studied in [53]. 

Figure 2.7 is a reproduction of the Core RBAC model from the RBAC stan­

dard [55]. An important notion in this model is the notion of a session. Within a 

session, a user can activate roles, which in turn activate permissions, that can then 

be used to perform tasks on the system. Some have opposed to the inclusion of the 

notion of session as a part of the RBAC standard [57]; the origin of this notion can 

be traced to the database management system origins of RBAC [58]. The session is 

used to impose dynamic separation of duties constraints on subjects, to protect the 

integrity of the data being manipulated [59]. 
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Figure 2.7.: The Core RBAC model, reproduced from the standard [55]. 

Director (DIR) 

Project Lead 1 (PL1) Project Lead 2 (PL2) 

Quality 
Engineer 1 

(QE1) 

Quality 
Engineer 2 

(QE2) 

Production 
Engineer 1 

(PE1) 

Production 
Engineer 2 

(PE2) 

Engineer 1 (E1) Engineer 2 (E2)

 Engineering Department (ED) 

Employee (E) 

Figure 2.8.: The typical example used to illustrate role hierarchies, reproduced from 
[56] 
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We consider RBAC to be a mechanism for simplifying administration, and not an 

access control model per se. For the same reason, we consider that the question of 

whether RBAC can support discretionary or mandatory access control is not a valid 

question. The representation of RBAC as an access control matrix is straightforward: 

users are replaced by roles. 

2.3 Emulation and Composition of Access Control Models 

In this section, we complete our exposition of access control models by showing 

how a given access control model can be used to emulate another one. Then we 

present how native representations of access control models can be composed, without 

resorting to emulation. 

2.3.1 Emulation 

So far, for each access control model that we have presented, we have first re­

produced its original exposition and then provided its representation in terms of an 

access control matrix. In other words, we have shown how that access control models 

could be emulated by an access control matrix. The models that use transitions, either 

on objects or on subjects, need to be extended with transition tables. Other emula­

tions have been presented before. For instance, Pitelli [60] presents an emulation of 

the Bell-LaPadula using the HRU model, and Kuhn [61] presents an encoding of an 

RBAC policy in terms of an MLS policy. The motivation for emulating RBAC with 

MLS is that it allows re-using assured MLS systems to support RBAC policies with­

out having to assure an RBAC implementation; the reverse mapping has also been 

performed Zhao and Chadwick [62], to support MLS policies on RBAC systems. We 

show in Section 3.2 that TE can emulate RBAC but not vice versa since RBAC does 

not possess a notion of one-way subject transition. Figure 2.9 presents a graphical 

summary of the model encodings referenced or introduced in this manuscript. 
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RBAC 

HRU 

BLP 

TE 

Kuhn 

Zhao and Chadwick 

Insatisfiable Trusted 
Labeler Problem 

This Manuscript
(Section 3.2) 

Matrix = DDT 

HRU is missing
domain transitions 

Pitelli 

Biba 
(strict) By Definition 

HRU 
+transitions 

By Definition 

By Definition 

This Manuscript
(Section 2.2.2) 

Biba 
(low-water mark) 

By Definition 

By Definition 

This Manuscript
(Section 2.2.2) 

TE is missing transitions
on read/write operations 

Figure 2.9.: Summary of the ability of the access control models presented in this 
related work to emulate one-another. Edges with a plain line represent a possible 
emulation, from the emulated model, to the emulating model. Edges with a dotted 
line represent impossible emulations. These results, when they are not a direct con­
sequence of the definition of a model based on another one, are either provided in 
this manuscript or come from the following articles: Kuhn [61], Pitelli [60], Zhao and 
Chadwick [62], and the trusted labeler problem by Boebert and Kain [15]. 
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A more general  form  of emulation  consists in  building  a  minimal  access control  

model, on top of which other access control models can be built. This approach has 

been proposed in the Generalized Framework for Access Control (GFAC) [22,63] (and 

demonstrated in RSBAC [64]). Jajodia et al. [65] independently proposed a similar 

model. More recently, the Policy Machine effort at NIST is following that idea as 

well [66]. 

In the next section, we present cases where native model implementations are 

composed. 

2.3.2 Model Composition 

The emulations we described in the previous section are interesting from a theo­

retical standpoint. However, these emulations may not be desirable in practice: the 

emulation of a policy by another policy engine may be slower and, more importantly, 

the encoding required for the emulation is likely a verbose enumeration of the state 

space of the emulated policy7 . By being verbose, this emulation is likely hard to 

analyze. To keep policies as tractable as possible, it is therefore desirable to compose 

policies natively, instead  of  picking  a  base  policy  and  emulating  the  other  ones  based  

on it. Besides the previous section, we have so far introduced every security model 

in isolation from the other ones, to clarify and focus their exposition. Except for the 

access matrix model, which was historically the first model, all these models were 

actually presented composed with another access control model, starting from their 

original exposition. In this section, we present examples of access control models 

compositions that were described in the literature as native compositions. 

The Bell-LaPadula model exposition [11] contains a description of the composition 

of the mandatory access control policy with a discretionary access control matrix 

model. The Biba report [14] also contains an explanation of integrating the mandatory 

access control model with a discretionary access control model, namely access control 

lists. 
7Emulating RBAC on MLS can be justified by the cost of system assurance, which is then further 

amortized by implementing RBAC on a system already assured. 
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The original exposition of Type Enforcement [15] discusses how it is supposed 

to complement a Multi-Level Secure policy on the SAT platform: “To enforce the 

mandatory access policy, the TOP compares security levels of the subject and of the 

object, and computes an initial set of access rights according to the algorithm defined 

in Section 4.1.1.4 of the TCSEC.” This section of the U.S. Department of Defense’s 

Trusted Computer System Evaluation Criteria [46] (the “Orange Book”) contains a 

description of the Bell-LaPadula security model. 

LOCK, the successor of SAT does however not have co-existing unix and TE 

policy enforcement. More precisely, since LOCK emulates unix over its type-enforced 

trusted computing base, TE can only be used to confine a whole unix emulation, and 

not just individual unix processes, according to [67]. The same authors present in [24] 

how, in their prototype, DTE complements unix security, at the process level. 

The most complete example of simultaneous native composition of policies on 

an existing system that we are aware of is the one performed in Flask [9] (now in 

SELinux), which provides simultaneous support for unix discretionary access control, 

a form of RBAC, MLS, and TE. These models  are composed natively by  combining  

the information needed for their enforcement in the same security context. Concep­

tually, the security context contains fields for each of the security model implemented 

(practically, it is a colon-separated string), to form a 4-tuple like this (user, role, 

domain, mlslabel). The notion of role supported by Flask has been slightly adapted: 

users are still assigned to roles, but instead of assigning permissions to roles, one as­

signs domains to roles. For an access control request to be allowed, each access control 

model has to allow it, based on its configuration. This can be viewed as performing a 

lookup in 4 access control matrices at the same time, one for each model. RSBAC [64] 

and TrustedBSD [68] perform a similar native composition of access control models. 
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2.4 Administrative Models 

In this section we revisit the access control models that we presented in section 

2.2 and show, for each of them, the administrative models that are available, 

2.4.1 The Access Control Matrix 

The access control matrix [7, 8, 69] models subjects performing operations on ob­

jects and subjects, with the subjects considered as objects when an operation is 

performed on them. As such, the access control matrix model can represent ad­

ministrative operations, and the permissions they depend on. A typical property of 

discretionary access control, for instance, is that the owner of a resource has the ad­

ministrative permission to grant or revoke access on this resource to other subjects. 

The ownership of a resource is indicated by an extra flag, owner in the matrix cell that 

represents the permissions of the owner on the resource. While the information used 

to encode this administrative policy fits in the access control matrix, the rule that 

decides on the interpretation of this information is not modifiable. In other words, 

while the access control matrix can be used to represent the settings of arbitrary 

administrative models, the administrative models themselves fall outside of the scope 

captured by the matrix. As such, they can not be changed. 

2.4.2 Mandatory Access Control 

Mandatory access control models were designed under the assumption that a secu­

rity officer would be tasked with determining and configuring the appropriate security 

policy for a system. For instance, “[Bell LaPadula] has no policies for the modifica­

tion of access rights. As a matter of fact, [Bell LaPadula] was originally intended 

for systems where there is no change of security levels” [70]. Similarly, the models 

presented by Biba [14] have no administrative model either. Original expositions 

of TE [15] and its integration in unix systems [67, 71, 72] did not either present an 
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administrative model. The Policy Management Server (PMS) [73] for the SELinux 

implementation of TE is the only previous attempt at defining an administrative 

model for type enforcement. Its model, however, suffers from a major limitation. 

In PMS, the administrative permissions can only be specified in terms of, either the 

object types to which access can be granted, or the subject types to which access 

can be granted. In other words, there is no way to state administrative permissions 

in terms of both the subjects and the objects for which they allow permissions to be 

administered. 

2.4.3 Role-based Access Control 

Many models have been proposed to administer RBAC. Several of these models 

[56,74,75] rely on an existing hierarchy of user roles, which is then used to define the 

scope of modifications that administrators can perform on the policy. While these 

models are well defined, it seems that according to Anita Jones’s definition of useful 

security models [76], they are not useful. In this definition, a security model is useful 

if it (quoting): 

1. accurately and concisely expresses the essence of the phenomena of interest, and 

2. tells a system designer or user something he did not know or understand without 

the model. 

The surveys reported by Li and Mao [77] show that these models can not accurately 

represent the existing administrative practices. Consequently, these models fail on the 

first part of the above definition. To remedy this problem, Li and Mao [77] propose a 

principled approach to designing an administrative model for RBAC and show that 

the resulting model, UARBAC, reflects existing practices in the field. This principled 

approach has been helpful to us in designing our administrative model for TE (see 

next Chapter). We have also used this approach to evaluate our administrative model 

(see Chapter 5). 
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2.5 Operating System Access Controls 

As we mentioned in the introduction of this chapter (see Figure 2.1), the desire for 

operating systems to offer access control mechanisms was introduced by the apparition 

of persistent data storage technologies. This desire became a necessity in order to 

take full advantage of multiprogramming (and later time sharing), without imposing 

restrictions on the programs that can be run at the same time. 

Our goal, as stated in the introduction of this thesis, is to provide access controls 

that are backwards compatible with existing applications on personal computers. 

Nowadays, personal computers all run multi-user timesharing OS’s8 [78] that rely on 

virtual memory to isolate processes [79]. Consequently, our survey of the related work 

is focused on these OS’s. We will use unix as a running example to provide a narrative 

to the security features present on these OS’s, in a way that justifies our choice of 

experimental platform. While presenting these features, we provide references to 

the original work that these features stem from. We complete this exposition with 

security extensions to unix that do not fit this narrative, as well as security features 

from other multi-user timesharing OS’s and research OS’s. 

2.5.1 Main Features and Limitations of unix Security 

The base unix model of security relies on the identity of the user to perform access 

control. The identity of a user is composed of a login name and a set of user groups 

that the user belongs to. A central notion in unix access control is the ownership 

of resources. By default, when a resource is created, its owner is set to be the user 

that created it. Additionally, resources are considered owned by a group. By default, 

the group of a resource is set, at creation time, to the effective group9 of the user 

8By extension, we consider tablet computers and smartphones. Current OS’s deployed on these 
platforms are iOS from Apple, Android from Google, and Windows Phone from Microsoft. The first 

two are multi-user operating systems. 
9A user  can  be a member  of  several  groups.  Depending  on  the implementation,  the semantics can  

vary here [80]. 
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that created it. For some resources, the owner can configure their permissions. For 

instance, the permissions to access a file can be configured by their owner. The base 

permissions are read, write, and execute (rwx permission bits, originated by Daley 

and Neuman [81]). These permissions can be assigned to three sets of users, from 

specific to general: the owner of the file, the group that owns the file, and all the 

other users of the system (these are the user, group, others categories). There are 

several problems with the base access control model embedded in the original unix. 

Most of these problems have been addressed with successive extensions to the base 

model. We present these problems and their solutions in turn, and finally discuss 

one of the currently unaddressed problems, which this research addresses. Namely, 

super-user privileges are required to configure all the interesting security features of 

unix. 

unix access control was originally specified in terms of owners and non-owners 

[48, 82]. This was later extended to include the notion of groups. Groups allow the 

sharing of resources among a work group. For instance, it is common practice to create 

a unix group for a team of developers that will share access to a code repository. By 

making all the files and directories of the repository readable and writable by the 

group, and giving no permissions to the others, it is possible to privately share the 

repository within the group. Creating user groups and managing their membership, 

however, requires superuser privileges. So, even with the group extension, it is still 

not possible for a regular user to individually specify several users that should have 

access to a file she owns. This problem, contrary to the ones we present below, has 

a solution that is available to regular users:  posix access control lists [83] enable a 

user to define which users have which kind of access on files she owns, on a file-by-file 

and user-by-user basis. File access control, nevertheless has issues relating to the 

granularity of file access permissions, which we describe next. 

Early on, it was recognized that the read and write permissions are too broad 

in certain contexts. Consider, for example, the file that is used to store encrypted 
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passwords of users ( /etc/passwd10). Users need a way to write in this file in order 

to be able to change their password. However, a direct write access right to the 

password file would allow a user to change any password in the password file. This 

would ruin the system security. The setuid facility [48] was created to solve a similar 

problem with accounting files, where the read permission was too coarse to restrict 

users to reading only their accounting data. The setuid facility relies on an extra 

permission bit on executable files, the setuid bit. If that bit is set on an executable 

file, the process resulting from the loading of that file will run under the identity of the 

owner of the file. This feature allows a user to create programs, that are executable 

by other users and run under her identity, to mediate access to her data. For instance, 

a user can change his  password (stored in  the password file,  which  is owned by  root), 

by running the passwd program, which is owned by root and has the setuid bit 

set. As we can see, the setuid facility was designed to assist in the deployment 

of access mediation with application-level semantics. It was not designed to confine 

arbitrary applications: a process, whose identity was set because of the setuid bit 

being set on its program file, can actually revert to its original process identity (the 

identity of the user that invoked the program). However, if one wants to confine an 

un-cooperative process by using setuid, one can write a wrapper program that will 

not only change the effective user identity (euid) of the  process,  but  also change  its  

real user identifity. Having to write such a wrapper, and many other subtleties make 

setuid usage a delicate exercise [84]. As a matter of fact, confining un-cooperative 

programs is different from the original setuid design goal of allowing a user to set 

up mediated access to his data. Furthermore, confining a program does actually 

require creating a new account, under which identity the program will be run. Only 

a superuser  can create accounts on  unix. 

A common  example  of how  a  cooperating process  is confined by running  under  

a specific  identity  is the way the  printing daemon  (lpd), is run under a dedicated 

10On systems with the shadow passwords package, the password file is split between the /etc/passwd 

and /etc/shadow files, and encrypted passwords are stored in /etc/shadow 
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identity (lp). The goal of such a setting is to avoid running the printing daemon 

under the super-user identity, in order to limit the damage that can be caused by 

exploiting a flaw in the printing daemon. unix, however, has permissive settings 

by default [85]. As a result the lp user has, by default, access to all the common 

executables of the system, including shells and potentially compilers. It is desirable to 

limit this access to prevent privilege escalation [6]. This can be performed by limiting 

the access to the filesystem that is granted to the printing daemon. 

A commonly documented way of limiting filesystem access is to use chroot, which 

changes the directory that a process sees as the root directory of the filesystem. How­

ever, chroot was not designed as a security feature. It was reportedly designed as a 

means of testing the compilation of bsd 4.2 [86] (by changing the root of the filesys­

tem, it was possible to clearly establish and guarantee the source code dependencies 

of the system). chroot is therefore not reliable as a security feature, which it wasn’t 

designed to be in the first place. For instance, chroot can not be used to confine 

processes that run as the superuser. The rationale for this weakness is simple: “If you 

have the ability to use chroot() you are root. If you are root you can walk happily out 

of any chroot by a thousand other means” [87]. For instance, the mknod() system call 

could be used by a root process to create device files and then access the system’s 

hard drives directly [88]. 

To enforce a proper confinement of processes, including processes running as root, 

chroot has to be supplemented with restrictions on the invocation of system calls. 

This is what the jail facility [86] provides. jail, like  chroot, requires super user 

privileges to be administered. What we also consider to be a problem is that jail is a 

system virtualization technique: jail achieves its goal of simplicity by relying on the 

simple policy of fully isolating the jails. Virtualization, while it solves the problem 

of preventing untrusted process from accessing the host system, does not solve the 

problem of mediating interactions between applications [89]. 

System call interposition has been proposed and implemented in many projects 

(e.g. Janus [90] and systrace [91]) as a means of providing a flexible access control 
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mechanism, which can be configured by regular users. This mechanism, although very 

promising in terms of flexibility, is actually very hard to get right [92]. An example of 

its weakness is its susceptibility to race conditions, as explained in [91] and practically 

demonstrated in [93]. Although system call interposition (or even library interposi­

tion) seems like an attractive mechanism to support fine-grained access control in 

userspace, without requiring superuser privileges to configure the access control, this 

mechanism can not be relied on. It is an instance of “Fortresses built on sand” [94]: 

even when a coding error does not make its implementation directly vulnerable, its 

integration in the system will [5]. 

Besides the granularity of the read and write permissions, another problem with 

unix permissions are their filesystem orientation: since unix follows the philosophy 

that everything is a file, the focus of its access control has been the protection of files, 

and the protection of all the system abstractions that can be interacted with as if they 

were files (e.g. disk device, shared memory, and filesystem directory). Unfortunately, 

this leaves out many interactions that are not covered by the file abstraction. Network 

operations like connecting a socket, for instance, do not have mappings to the read, 

write, and  execute operations. 

Moreover, while setuid helps in partitioning the system into subsystems that run 

under different identities, it remains hard to assure a system whose security rests on 

proper setuid settings [80, 95]. A good part of this problem can be explained by 

Dennis Ritchie’s saying about unix: “It was not designed from the start to be secure. 

It was designed with the necessary characteristics to make security serviceable” [85]. 

More formally, the problem in assuring setuid subsystems is that their security can 

not be efficiently modeled. Instead, all the file settings, all the potential inputs, and 

the code of the subsystem have to be analyzed [80]. 

Type Enforcement (TE) [15] offers a solution to all of the above problems (except 

the need to be superuser to configure it) while being compatible with unix semantics, 

as successfully demonstrated in [67,71,72]. TE solves the problem of the inadequacy 

of file permissions for other objects: each class of system objects can have different 
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permissions. For instance, there is a class for network sockets which has connect 

and bind permissions, in addition to the read and write permissions. TE also solves 

the problem of the modeling of the system to assess its security. In TE, processes 

run in a domain, which is a notion orthogonal to the unix notion of user identity. 

TE has a deny by default policy which facilitates the reasoning on the system: from 

a security standpoint,  it is therefore easy to tell  precisely what the allowed accesses  

are. In addition to domains, TE provides the notion of domain transitions. Domain 

transitions are very similar to the change of effective identity that setuid causes. 

The major difference is that TE domains are easier to reason about when assessing 

the security of the system, because one does not need to look at the permissions of 

each system object. Instead, system objects are abstracted in terms of types. The 

only trick is the special meaning of the word “type” when used in the context of TE, 

where a type is just a label attached to an object to indicate its security relevance 

(for instance, shadow t is used to label the shadow password file in SELinux). What 

one normally thinks of as a type is called a “class”. 

TE is an efficient mean of establishing assurance on a system, by modularizing the 

proofs of correctness, so that proofs of correctness for small elements of the system 

can be produced by humans, and then composed by humans as well. This is necessary 

for the social process of proofs to function correctly [47,96]. Also, modern integration 

of TE in unix systems ( [68, 72, 97]) provide a fine granularity of control 

Last but not least, SELinux supports labeled networking [98, 99]. Labeled net­

working consist in using packet filtering criteria [100] to determine the TE type with 

which a given network packet should be labeled. Labeling network packets enables the 

specification of TE access control rules on them, which in turns blends the network 

aspect of the protection state with the rest of the protection state. Typically, this is 

not the case: the access control rules for network traffic are written directly as part 

of the configuration of the packet filtering facility, which complicates the assessment 

of whether the network access controls for an application are appropriate. With TE, 

this assessment can be done in two divided (and therefore simpler) steps: validating 
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the labeling configuration, and then validating the accesses granted on these types. 

TE is therefore an attractive solution to practical unix security problems, except that 

it lacks an administrative model. This is what our research has produced. 

2.5.2 Additional unix Security Extensions 

In the preceding presentation of unix security, we have introduced the main com­

ponents of unix security in a manner that justifies the existence of our research. In 

the following, we correct this bias by presenting other security extensions to unix 

without which our coverage of the related work would not be complete. 

Variants of the Bell LaPadula Model 

The Bell LaPadula model of security has been integrated in “trusted” versions 

of several commercial unices, including Trusted AIX (IBM) [101], Trusted Xenix 

(Trusted Information Systems) [102], and Trusted Solaris (Sun Microsystems) [103]. 

IX [104] was a research effort to explore the implications of supporting a variant of 

the Multi Level Security model with unix as a base system. IX also supported a 

variant of the Biba model. 

Variants of the Biba Model 

Variants of the low water mark policy proposed by Biba [14] have been imple­

mented on Linux, including LOMAC [105] and UMIP [106]. IX [104] did also imple­

ment a variant of the Biba model. 

Ad-hoc Models 

Many ad-hoc extensions to the unix security have been proposed. PinUP [107] 

offers an enhancement on the protection offered by posix access control lists: it is 
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possible to also restrict which application has access to a file. PinUP is implemented 

as a Linux security module. AppArmor [108] adds mandatory access control on Linux, 

by defining application profiles. AppArmor profiles can be viewed as a refinement on 

the setuid facility, for two reasons. First, a confinement profile is applied based 

only on the application being accessed. This is similar to the way setuid attaches 

to a binary the new identity to transition a process to. Second, profiles are mostly 

focused on filesystem access restrictions. Like setuid and unix, AppArmor is limited 

in its ability to enforce fine-grained permissions on the filesystem by not being able to 

differentiate among the many kinds of objects that can live in the namespace of the 

filesystem. By applying the profile based on the access path to the application, instead 

of the information attached to the file’s inode, AppArmor can enforce a different policy 

for the same application, depending on which path it is accessed from (in the case 

of an inode linked by multiple directory entries). This can either be viewed as a 

feature or a security flaw. Keeping with the unix tradition, AppArmor offers very 

coarse controls on the network communication of an application: it can restrict which 

kinds of network connections are allowed (e.g. tcp or udp), but none of their other 

characteristics (e.g. port numbers and addresses). AppArmor offers some support 

for transitions between profiles, with its ability to require a new process to execute 

under a profiles (the ’p’ and ’P’ access modes). This support is also very similar to 

setuid, in  the  sense  that  only  one  profile  can  exist  per  program,  contrary  to  SELinux,  

where the same program can be the entrypoint to different domains, depending on 

the source domain (the domain of the process executing the entrypoint). 

Linux Security Modules 

The Linux Security Module infrastructure (LSM) [109] provides a interface that 

allows Linux loadable kernel module to extend the access controls performed by the 

standard kernel. LSM exposes a set of sites in the kernel code where access control 

decisions are performed. A module that uses LSM extends the security mechanisms of 
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Linux by registering callbacks for some of these decision points. Many access control 

developments on Linux have used this interface, including UMIP [106], AppArmor 

[108], PinUp [107], and SELinux [110]. 

2.5.3 Other Systems 

We now present the security features of other mainstream operating systems. 

Microsoft Windows 

The discretionary access control model of Microsoft Windows [111] uses access con­

trol lists attached to “securable objects”. A mandatory access control model called 

Mandatory Integrity Control (MIC) [112] can be layered on these discretionary con­

trols, and provides a protection against network attacks similar to that of UMIP [106]. 

Additionally, the administration of the discretionary permissions can be simplified by 

resorting to the RBAC features that the platform supports [113]. 

Apple OS X 

OS X, from Apple, is a BSD variant of unix. As such, it supports the unix 

discretionary access control model and setuid. The integration of TE in the Trust­

edBSD [68] project has been ported to the open source version of OS X, Darwin, 

and is named SEDarwin [114]. Since version 10.5 codenamed Leopard and released 

in 2007, OS X has been extended with a sandboxing feature, called “sandbox” that 

allows overlaying coarse-grained mandatory access control on an application at launch 

time [115]. This sanboxing is used to secure the network time protocol (NTP) daemon 

and the document indexer used by the local document search feature. 
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OpenVMS 

OpenVMS from Hewlet Packard (and originally VAX/VMS from Digital Equip­

ment Corporation) is a multi user timesharing operating system that relies on virtual 

memory to isolate processes from one another. OpenVMS offers the following secu­

rity features [116]. Protected objects, which are defined as “passive repositories that 

either contain or receive information”, have their security-relevant attributes grouped 

in a “security profile”: the owner attribute, used to determine who has discretionary 

administrative control on the object; the “protection code”, which defined for broad 

groups of users (system, owner, group, and world) the accesses that they have on the 

object (similarly to SELinux, OpenVMS uses object classes and class-specific oper­

ations); an access control list, containing access control entries, which are similar in 

spirit to (and predate) the posix access control lists [83]. OpenVMS also supports 

the implementation of protected subsystems, which rely subject identity transitions, 

similar to unix setuid. 

2.5.4 Research Operating Systems Security 

While not solved on mainstream unix systems, the problems mentioned in our 

presentation of unix security have been solved in research operating systems. These 

solutions, however, have not been transferred yet to mainstream operating systems. 

The cost of migrating (and porting) existing applications to these research systems, 

as well as the limited hardware supported by most of these systems seems to have 

been dominant factors in preventing their adoption [117]. 

Capabilities 

Capability-based operating systems solve all the granularity and delegation prob­

lems described above. Moreover, they solve efficiently the Confused Deputy prob­

lem [118]. This has been argued strongly in [119], and demonstrated in practice by 
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several systems. Two recent examples of capability-based OSes are Asbestos [120] 

and HiStar [121]. Both are built towards enforcing information flow in a distributed 

manner. The enforcement is distributed in the sense that the flow is not centrally 

decided. Instead, users of the system can decide on some of the information flow 

policy. 

Programming Languages Techniques 

While traditional OS security relies on a combination of security features provided 

by the hardware in order to guarantee the integrity of a kernel, Singularity [122] relies 

only on programming languages techniques to preserve the integrity of its kernel and 

enforce the mediation of inter-process interaction. Two techniques are relied upon. 

First, all the code loaded by the operating system is verified for type safety. This 

guarantees that a program can not perform arbitrary memory references. Second, a 

global system invariant is enforced: no process can contain a direct reference to an 

object that is owned by another process. This invariant guarantees that the system 

will mediate all all inter-process interaction. To an extent, this approach is very 

similar to the approach used in capabilities-based systems which were able to enforce 

confinement of processes without resorting to memory protection [123, 124]. 

2.6 Conclusion 

We have presented access control models, and their implementations, that relate 

to our work. In this presentation, we have shown the reasons that lead us to choose 

this research path, namely extending TE on SELinux with an administrative model, 

in order to support our thesis. The reasons were the backwards compatibility of TE 

with existing applications, the fine granularity of its permissions, and the comprehen­

siveness of the access controls offered by SELinux, inclusive of network traffic. 
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3. ADMINISTRATIVE MODEL FOR TYPE 

ENFORCEMENT 

There is little guidance in existing work on how one should go when designing an 

administrative model for an access control model. A necessary first step, which we 

present in this chapter, is to enable controlled modifications of the policy. Addition­

ally, the granularity at which accesses are controlled should be as fine as possible, 

to avoid constraining arbitrarily the possible delegations. The reasoning behind this 

approach was the following. An administrative model with controls that would be 

coarse would most likely prevent scenarios from being supported by that model. From 

a design  perspective,  a  coarse administrative grain  would also  spoil some of  the effort  

that was put in implementing fine-grained access control in SELinux. A question 

that naturally arises when considering fine-grained access control is whether a fine 

granularity of control will result in a significant performance overhead or, at least, 

a significantly superior overhead.  At the time  scale of a  running system,  however,  

changes of the security configuration are extremely rare. As a result, moderate per­

formance of our administrative model would have been acceptable. Instead, our 

performance evaluations (see Chapter 5) show that our system is an order of magni­

tude faster than current approaches when performing the small edits that are required 

when fine-tuning and debugging a security policy. 

In this chapter, we first present the specific variant of Type Enforcement im­

plemented in SELinux. We present a set of formal semantics to ease the reasoning 

and understanding of its behavior, together with the security policy language used 

to express the configuration of these mechanisms. Then, we present the administra­

tive model that we designed to control modifications of the policy. We present its 

semantics, concrete syntax, and how we integrated its implementation in the system. 
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3.1 Modeling Type Enforcement 

In this section, we first present a model for the core features of type enforcement: 

the accesses allowed within a domain, and the domain transitions. At the same time, 

we present how the notion of domain transitions is generalized as type transitions in 

SELinux. This generalization allows the treatment of domain transitions and default 

labeling of new objects within the same framework. Finally we present extensions of 

the TE model that are included in SELinux. One of these extensions, type attributes, 

is particularly useful as it supports both our comparison of TE and Core RBAC (see 

Section 3.2) and the overlay labeling that we develop in the next chapter (see Chapter 

4). Our presentation of these features is such that it enables their composition, as 

illustrated in Figure 3.4. 

3.1.1 Core Type Enforcement Model 

“The foundation of any protection system is the idea of different protection en­

vironments or contexts. Depending on the context in which a process finds itself, 

it has certain powers; different contexts have different powers” [7]. Indeed, Type 

Enforcement (TE) is based on two sets of rules: 

•	 access vector rules which specify, based on the type of a process, the operations 

that this process can perform on objects of the system. 

•	 type transition rules which specify how types are assigned to new system objects. 

This includes typing process objects. 

To properly define the access control enforced by the access control system, we 

first need to define what an access request is, and how it is presented to the access 

control system. A few preliminary definitions are required before we can define an 

access request. 

Definition 3.1.1 (Class) System resources are grouped in classes, which define the 

operations that instances of the resource support. For instance, read and write are 
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valid operations for files as well as sockets, whereas the connect operation is valid 

only on a socket object. 

Definition 3.1.2 (Object) An object is an instance of a resource class. 

Definition 3.1.3 (Object manager) An object manager is a component of the sys­

tem that manages a given class (or several classes) of resources. For instance the vir­

tual filesystem manages files, directories, and file links; the X server manages, among 

other things, the cursor, the selection, and drawable areas. Please note that this also 

illustrates that object managers can be either kernel-space components (the virtual 

filesystem) or user-space components (the X server). 

Definition 3.1.4 (Type) Each object has a type attached to it; a type is a string.1 

For instance, regular user processes have the type user t, while processes running on 

behalf of the system administrator have the type sysadm t. These are examples of 

process types; an example of a file type is httpd user content t, the type attached 

to the files of the webpage of a user. 

In TE, an object is never considered directly. Instead, an object is considered 

through its type and class. The class is used to group objects by resource kind, while 

the type is used to group objects by security domain. 

The model we are defining is an abstraction of the behavior of SELinux, where 

the notions of domain and types have been merged. As a result, automatic domain 

transitions and the default labeling of new objects have been unified as a single 

primitive: the automatic labeling of new objects. Consequently, there is no direct 

notion of a domain in SELinux. Instead, a type is considered a domain if it has the 

domain attribute. Attributes are presented in more details in Section 3.1.2. 

1Contrary to Bell-LaPadula labels, there is no partial order on TE types 
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Syntax 

In the following definitions, let T be the set of types, C be the set of object 

classes, O be the set of operations that can be performed on objects, I be the set of 

objects (instances), Γ ⊂ I × T be the relation that maps an object to its type, and 

Ξ ⊂ I × C be the relation that maps an object to its class. Type attributes can be 

used interchangeably with types in all places but one (the “new type” field of a type 

transition rule). As they play an important role in our modeling, we introduce from 

the beggining syntactic placeholders that can accept either types or type attributes. 

We call them typoids and represent them individually as θ and their set as Θ. 

Definition 3.1.5 (Access request) An access request is a 5-tuple of the form 

r(p, θ, θ ′ , c, o, i), where p ∈ I is the process, of type θ ∈ T (the source type), attempting 

to perform operation o ∈ O on an instance i ∈ I of class c ∈ C and of type θ ′ ∈ T (the 

target type). In some rules, the value of some of these fields is irrelevant. We will 

indicate that by using a “don’t care” character (‘ ’) instead of providing a value for 

the field. There is a special case for the instance (i) and target type (θ ′ ) fields: the 

creation of new objects. In this case, both of these fields refer to the parent object used 

in the creation (when the creation requires a parent). For instance, when creating new 

objects on the filesystem (files, directories, named pipes, etc.), the parent object is the 

directory where the new object is created. 

Definition 3.1.6 (TE access vector rule) An access vector rule is a 4-tuple of the 

form a(θ, θ ′ , c, o), where θ ∈ Θ (the source type) is the type of the process attempting 

to perform an operation; θ ′ ∈ Θ (the target type) is the type of the object on which 

the operation is attempted; c ∈ C is the class of the object on which the operation is 

attempted; o ∈ O is the operation being attempted. In early versions of SELinux, any 

of the fields of an access vector rule could be wildcarded to indicate that its value was 

irrelevant to the specification of the policy. This is not the case anymore, and our 

model reflect this fact. Type attributes have been introduced, to enable the designation 
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of sets of objects in access vector rules. This is reflected here by the fact that the 

source and target type of the access vector rule can both take a typoid, which can be 

either a type or a type attribute. 

Definition 3.1.7 (TE type transition rule) A type transition rule is a 4-tuple of 

the form (θc, θr, c, tn), where θc ∈ Θ (the current type) is the current type of the object; 

θr ∈ Θ (the related type) is the type of a related object; c ∈ C is the class of the related 

object; tn ∈ T (the new type) is the type the object will have after the transition. 

As with access vector rules, the source type and target types can be replaced by an 

attribute, hence our usage of typoids in the definitions of these fields. The new type, 

however, can not be replaced by a type attribute. Indeed, a type attribute designates a 

set of types, whereas a type transition must specify the single type that the object will 

bear after the type transition. 

Semantics 

In our exposition of the semantics, we are using stuck semantics to simplify the 

representation of the dynamics of the system. The access control model is viewed as 

receiving a stream of access requests, represented by the list R, out  of  which  the  first  

element, ρ, is picked for evaluation. With stuck semantics, only the allowed state 

transitions, resulting from the successful evaluation of allowed (valid) access requests, 

are represented. Denied (invalid) state transitions are implicitly represented by their 

omission. As a result, if the stream of access requests contains an invalid request, the 

system will enter a stuck state. For example (see Figure 3.2), an attempt to execute a 

file (assuming the requesting process has the execute but not the execute no trans 

permission on the file) will fail if either there is no automatic type transition that 

matches the request or if the matching type transition is not explicitly allowed. Both 

failures are implicitly represented in the semantics. 

In a nutshell, access vector rules specify the accesses that will be allowed on the 

system, while type transition rules specify how newly created objects will be typed. 
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TE-eval 

Syntax Metavariables 

′ access vector rule B= a(θ, θ , c, o) t type 

type transition rule B= n(θ, θ ′ , c, t ′′) α type attribute 
′ access request B= r(p, t, t , c, o, i) θ typoid 

R B= ρR  ∅  c class 

θ B= t  α o operation 

T B= {t} i, j, p, x instances 

A B= {α} (j is a new filesystem object; 

Θ B= {θ} p is a process; 

Γ B= i, t x is a security context) 

Ξ B= 
{(
{(i, c

)}
)} ρ access request 

Ω B= {o} a access vector rule 

Ψ B= {a} ∪ {n} n type transition rule 

Ω transition operations 

Γ object to type mapping 

Ψ policy 

Semantics 

r = r(p, s, t, c, o, i)Ω = ∅ 
o ∉ Ω 

a(s, t, c, o) ∈ Ψ Ψ ⊢ r 

) (TE-access-base) (Eval) 
Ψ ⊢ r( , s, t, c, o, Ψ, rR → Ψ, R 

Figure 3.1.: TE semantics for simple accesses. Our model follows the semantics of 
recent version of SELinux (at least past Linux kernel 2.6.30) where wildcards are not 
supported in rules anymore, but types attributes can be used instead. We describe 
type attributes in Section 3.1.2, with the other extensions that SELinux contributed 
to TE. 
We are using an explicit set of transition operations, Ω, which will allow us to extend 
this base access model with transitions in the next two semantics: transitions on 
subjects (see Figure 3.2) and transitions on objects (see Figure 3.3). 
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TE-domain-transitions 

Syntax Metavariables 

access vector rule B= 
type transition rule B= 

access request B= 
R B= 
θ B= 
T B= 
A B= 
Θ B= 
Γ B= 
Ξ B= 
Ω B= 
Ψ B= 

a(θ, θ ′ , c, o)
n(θ, θ ′ , c, t ′′)

r(p, t, t ′ , c, o, i)
ρR  ∅  

t  α 

{t}
α{
{θ
}
}

i, t{(
{(i, c

)}
)}

{o}
{a} ∪ {n} 

t 

α 

θ 

c 

o 

i, j, p, x 

ρ 

a 

n 

type 

type attribute 

typoid 

class 

operation 

instances 

(j is a new filesystem object; 

p is a process; 

x is a security context) 

access request 

access vector rule 

type transition rule 

Ω transition operations 

Γ object to type mapping 

Ψ policy 

Semantics 

′ r = r(p, t, t , file, execute, )Ω = {execute, setcurrent} 
Ψ ⊢ r′′ ′ ′′∃!t s.t. n(t, t , process, t ∈ Ψ′′ r = r( , t, t , c, o, ) a(t, t , process, transition

)) ∈ Ψ′ 
o ∉ Ω a(t, t , file, entry point) ∈ Ψ 
Ψ ⊢ r Ψ, Γ , rR → Ψ, (Γ /{(p, t)}) ∪{( p, t ′′)}, R 

(Eval)
Ψ, Γ , ρR → Ψ, Γ , R (Eval-exec-trans) 

′ r = r(p, t, t , process, setcurrent, x)′ r = r( , t, t , file, execute, ) Ψ ⊢ r ′′ Ψ ⊢ r context2type(x) =  t∄t ′′ s.t. (t, t ′ , process, t ′′) ∈ Ψ a(t, t, process, setcurrent) ∈ Ψ′ ′′ a(t, t , file, execute no trans) ∈ Ψ a(t, t , process, dyntransition) ∈ Ψ 

Ψ, Γ , ρR → Ψ, Γ , R Ψ, Γ , rR → Ψ, (Γ /{(p, t)}) ∪{( p, t ′′)}, R 
(Eval-exec-simple) (Eval-exec-dyn-trans) 

Figure 3.2.: TE semantics for domain transitions (type transitions on process ob­
jects, when they start executing a new binary): TE-domain-transitions. In SELinux, 
domain transitions are implemented as type transitions on process objects. The tran­
sition is triggered when the policy contains a type transition rule that matches the 
request by a process, of type s, to execute a file of type t. The details of a success­
ful transition upon exec() are given in rule Eval-exec-trans. Another  kind  of  
transition which does not require executing another binary, a dynamic transition, is 
possible. Dynamic transitions are represented in rule Eval-exec-dyntrans. The 
details of an allowed call to exec(), without transition, are given in rule Eval-exec­
simple. 
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TE-object-transitions 

Syntax Metavariables 

′ access vector rule B= a(θ, θ , c, o) t type 

type transition rule B= n(θ, θ ′ , c, t ′′) α type attribute 
′ access request B= r(p, t, t , c, o, i) θ typoid 

R B= ρR  ∅  c class 

θ B= t  α o operation 

T B= {t} i, j, p, x instances 

A B= α (j is a new filesystem object; 

Θ B=
{
{θ
}
} p is a process; 

Γ B= i, t x is a security context) 

Ξ B= 
{(
{(i, c

)}
)} ρ access request 

Ω B= {o} a access vector rule 

Ψ B= {a} ∪ {n} n type transition rule 

Ω transition operations 

Γ object to type mapping 

Ψ policy 

Semantics 

′ r = r(t, t , c, o, i)Ω = {create} 
o ∉ Ωfs objects = 
Ψ ⊢ ρ{dir, file, link file, socket file, fifo file} (Eval)

Ψ, Γ , ρR → Ψ, Γ , R 

′ ′ r = r( , t, t , c, create, i) r = r( , t, t , c, create, i)
c ∈ fs objects c ∈ fs objects(i, dir) ∈ Ξ (i, dir) ∈ Ξ 

′′ (i, t ′)′ ∈ Γ ′′) ∈ Ψ ′′ (i, t ′)′∈ Γ ′′) ∈ Ψ∄t s.t. n(t, t , c, t ∃!t s.t. n(t, t , c, t′ ′ a(t, t , dir, {search, write, add name})∈ Ψ a(t, t , dir, {search, write, add name})∈ Ψ′′ a(t, t, c, {create, link, write})∈ Ψ a(t, t , c, {create, link, write})∈ Ψ′′ a(t, fs t, filesystem, {associate})∈ Ψ a(t , fs t, filesystem, {associate})∈ Ψ 

Ψ, Γ , ρR → Ψ, Γ ∪ {(j, t)}, R Ψ, Γ , ρR → Ψ, Γ ∪ {(j, t ′′)}, R 
(Eval-create-simple) (Eval-create-trans) 

Figure 3.3.: TE semantics for filesystem type transitions: TE-object-transitions. 
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Access 
Vector Rule 

Typoid Class Operation 

Source 

Target 

Type 
Transition 

Rule 

Source Related New 

Type 

allow source target:class operation 

type_transition source related:class new 

Figure 3.4.: Concrete syntax of the base TE model 



63 

Formal semantics are provided in Figure 3.1 for simple accesses, in Figure 3.2 for 

domain transitions, and in Figure 3.3 for the automatic labeling of filesystem objects. 

An informal description of the semantics follows. 

Semantics 3.1.1.1 (Authorizing accesses) An access request is authorized if and 

only if the policy contains an access vector rule that matches the request. Simple 

semantics for the matching are described by the rule TE-access-base in Figure 3.1; 

semantics that accept type attributes in the access vector rules are described by the set 

of of TE-access-* rules in Figure 3.5. Example2: 

allow chkpwd t shadow  t:file { getattr open read }; 

The above example specifies that a process running in the user chkpwd t domain 

(the domain used to validate user passwords) can perform the operations getattr and 

read on files (objects of class file) of type shadow t. In other words, this example 

specifies that programs running in the user chkpwd t domain can read /etc/shadow. 

Semantics 3.1.1.2 (Automatic labeling of new objects) When a process cre­

ates a new object, the default behavior of the system is to label this new object with 

the type of the process that created it. It is always so, unless a type transition rule spec­

ifies otherwise. There are two interpretations of a type transition rule (tc, tr, c, tn): 
•	 Filesystem object labeling3: This interpretation is used to automatically 

attach a specific type to objects created on the filesystem. The meaning of the 

fields is then the following: tc is the type of the process creating the filesystem 

object; tr is the type of the directory in which the file is created; c is the class of 

object being created; tn is the type that will be assigned to the object (provided 

such a transition is allowed by an access vector rule). 

2This example is written using the concrete syntax used to write rule in the SELinux policy language. 

This concrete syntax is illustrated in Figure 3.4.
 
3by filesystem object, we mean an object that is accessible through the filesystem namespace, e.g.
 

a file,  a directory,  a  UNIX socket, a device, etc.
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Example: 

type transition passwd t tmp  t:file passwd tmp t 

The above example specifies that when a process running in the passwd t do­

main (the domain of the passwd program) creates an object of class file (a 

file) in a directory of type tmp t, then that file should be labeled with the type 

passwd tmp t. In other words, this example specifies that when files are created 

in the directory /tmp by a process that runs in the passwd t domain, these files 

should be labeled as temporary password files, of type passwd tmp t. 

•	 Domain transition: This interpretation is used to automatically attach a new 

type to a process which, after a successful call to exec(), starts executing a 

new program. In other words, this interpretation of transition rules is used 

to automatically place processes in specific domains, which depend on the type 

attached to the process (before the transition) and the type attached to the file 

being executed. tc is the type of the process that is calling exec(), the class c 

of object being created is process and tr is the type of the executable file used 

as an argument to the exec system call. 

Example: 

type transition init t apache  exec t:process apache t 

The above example specifies that when a process running in the init t domain 

(the domain of the init daemon) starts executing code based on an executable 

file of type apache exec t (the type of the executable file for the apache web 

server), then this process should automatically be transitioned to the domain 

apache t (the domain of the apache web server daemon). In other words, this 

rule specifies that when the init daemon starts the apache web server, the web 

server is automatically placed in its own confinement domain which is apache t 

Remark 1 Since Type Enforcement follows the principle of full mediation and has a 

default policy of denying accesses, type transition rules need to have matching access 
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vector rules for the specified labeling to happen. Type transitions are otherwise denied 

by default, as any other operation that is not explicitly allowed. 

For an automatic domain transition to be allowed, several permissions are actually 

required, as represented in the rule Eval-exec-trans (Figure 3.2): the type transi­

tion from the current process type to the target type of the type transition needs to be 

allowed, and the type of the program to which the transition is attached must also be 

an authorized entry point into the target domain. Please note that executing programs 

without a domain transition requires the specific exec no trans permission, which is 

separate from the execute permission, as represented in the rule Eval-exec-simple 

(Figure 3.2) 

While type transitions for filesystem objects are triggered by the addition of filesys­

tem objects in a directory, several permissions are required for the addition of the 

object in the directory to be allowed, besides the permission to add a name in the 

directory (add name). The permission to search the directory is required, as a search 

of the directory is required upon creation of the file to prevent the creation of two 

entries in the directory with the same name. The permission to write the modified 

directory is also required to save the modified directory object. 

3.1.2 Type Enforcement extensions in SELinux 

In SELinux, Type Enforcement has received several extensions. Types can be 

labeled with type attributes, to factor policy rules. Types can also be aliased, to 

facilitate backwards compatible evolutions of the security policy. Finally, SELinux 

supports a version of role-based access control adapted to TE, where a role definition 

constrains the set of domains yjsy subjects can enter when they are members of that 

role. In this section, we present how these features fit in the model of TE developed 

in the previous sections. 
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Type Attributes 

To represent type attributes, we need to extend the configuration of the system 

with a set of attributes A and two relations to map attributes to types and types to 

attributes: type2attr : T → P(A) and attr2type : A → P(T )
Definition 3.1.8 (Type Attribute) A type attribute is a string attached to a type. 

Type attributes can be used instead of types in access vector rules. 

Semantics 3.1.2.1 (Type Attribute) Type attributes are used to group types in 

the security policy. By writing access vector rules on type attributes, general aspects 

of the policy can be written once for all types that bear the same attribute. This can be 

used either to give the same access from different domains (e.g. write to the system 

log socket), or to give the same domain access to different types (e.g. logrotate can 

rotate the logs of different daemons). 

Type Aliases 

From a modeling perspective, we represent type aliases as types, and we ex­

tend the configuration of the system with a relation that maps a type to its aliases: 

type2aliases : T → P(T )
Definition 3.1.9 (Type Alias) A type alias defines a secondary name for an ex­

isting type. As such, a type alias can be used wherever a type is expected. 

Semantics 3.1.2.2 (Type Alias) Type aliases, as indicated by their name, are just 

aliases. They simply and only provide an alternative name to an already existing type. 

We have not made a separate figure to represent the semantics of type aliasing. From 

a modeling perspective, the use of type aliases when enforcing access control is the 

same as the use of type attributes described in Figure 3.5. The semantics for type 

aliases are obtained from these semantics by having α be a type alias variable and by 

substituting type2aliases for type2attributes in the rules. 
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TE-type-attributes 

Syntax 

access vector rule B=
 
type transition rule B=
 

access request B=
 
R B=
 
θ B=
 
T B=
 
A B=
 
Θ B=
 
Γ B=
 
Ξ B=
 
Ω B=
 
Ψ B=
 

Ω = ∅ 

′ r = r( , t, t 

a(θ, θ ′ , c, o) t 

n(θ, θ ′ , c, t ′′) α 

r(p, t, t ′ , c, o, i) θ 

ρR  ∅ c 

t α o 

t i, j, p, x 

α

{
{
{θ
}
}
}

i, t{(
{(i, c

)}
)} ρ 

{o} a 

{a} ∪ {n} n 

Ω 

Γ 

Ψ 

, c, o, 
o ∉ Ω 
Ψ ⊢ ρ 

(Eval)
Ψ, ρR → Ψ, R 

′ a(t, t , c, o) ∈ Ψ 

) (TE-access-base)′ Ψ ⊢ r( , t, t , c, o, 

Semantics 

) 

Metavariables 

type
 

type attribute
 

typoid
 

class
 

operation
 

instances
 

(j is a new filesystem object;
 

p is a process;
 

x is a security context)
 

access request
 

access vector rule
 

type transition rule
 

transition operations 

object to type mapping 

policy 

′ a(α, t , c, o) ∈ Ψ
 
α ∈ type2attr(t)
 

) (TE-access-attr1)′ Ψ ⊢ r( , t, t , c, o, 

′ a(t, α , c, o) ∈ Ψ 
α ′ ∈ type2attr(t ′)

) (TE-access-attr2)′ Ψ ⊢ r( , t, t , c, o, 

′ a(α, α , c, o) ∈ Ψ 
α ∈ type2attr t)
α ′ ∈ type2attr

((t ′)
) (TE-access-attr3)′ Ψ ⊢ r( , t, t , c, o, 

Figure 3.5.: TE semantics for accesses with type attributes: TE-type-attributes. Type 
attributes are described in Section 3.1.2. Type attributes are used to factor policy 
rules. 
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Roles 

To represent roles, we need to extend the configuration of the system with a set of 

of roles R, a relation to map roles to the domain they are allowed into: role2types : 
R → P(T ), and relation  that  maps  processes  to  their current role:  currentrole : P → 

R. 

Definition 3.1.10 (Role) A role is a set of types. 

Semantics 3.1.2.3 (Role) The role is one of the components of the security context 

that SELinux considers when evaluating an access control request. As in role-based 

access control, roles in SELinux define a set of functions that a user can perform. 

SELinux being built around Type Enforcement, these functions are defined as TE 

domains. 

Roles impose an additional constraint on domain transitions. For a domain tran­

sition to be allowed, the new type needs to be an element of the set of types defined by 

the current role of the process. This can be encoded by adding the extra requirement 

t ′′ ∈ role2types(currentrole(p)) 
to the rules Eval-exec-trans and Eval-exec-dyn-trans in Figure 3.2. 

Conditional Rules 

Conditional rules, sometimes referred to as “booleans” because of the booleans 

that condition their activation, are an extension that was added to SELinux to support 

a simple  policy configuration mechanism.  The  idea is that  some security decisions can  

be formulated in a “checkbox” binary style. Booleans are a representation of these 

decisions, and boolean expressions that can encompass several of these decisions are 

used to select blocks of the policy accordingly. For instance, the ping program that 

is used to check network connectivity relies on icmp sockets to perform some network 
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diagnostics. Under the regular unix access control model, the use of icmp sockets is 

considered a privileged operation, and therefore is reserved to the superuser. When 

relying only on base unix security, the decision to let regular users use ping with 

icmp sockets is performed by using the setuid facility to have ping run automatically 

as root, or not. 

With the way Type Enforcement is integrated in SELinux, if regular users are 

to use ping, then the program still needs to be installed with root as the owner 

and the setuid bit set. Conditional rules support changing at runtime (as opposed 

to installation time) the decision of whether to let regular users use ping. In the 

policy shipped with RedHat Fedora Core 10, the ability for regular users to use ping 

is guarded by the user ping boolean. 

Definition 3.1.11 (Conditional Rule) A conditional rule is a rule that is guarded 

by a boolean expression 

Semantics 3.1.2.4 (Conditional Rule) The semantics of conditional rules are the 

same as the semantics of regular rules, except that conditional rules are considered 

in the process of evaluating access requests only if their guard evaluates to true. This 

can be modeled by adding booleans (and their values) to the policy Ψ in our model and 

extending rules so that they contain a boolean expression that indicates their validity 

(unconditional rules contain the special boolean true that always evaluates to the value 

“true”). The evaluation process is then rewritten so that rules are considered only if 

the boolean expression they contain evaluates to the value “true”. 

Bounded Types 

Bounded types are a generalization of hierarchical types, which are currently sup­

ported as bounded types. The idea of bounded types is to constrain the permissions 

that a type can exert. If a type t is bounded by type tb, then a subject of type t 

can not exert more permissions than the permissions available to a subject of type 

tb. Bounded types can be represented by a relation boundingtype : T → T ∪ ⊺. In 
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that relation, types are either bounded by another type, or not. For a given type t, 

this last case is represented by inserting the (t,⊺) in the relation. 

Definition 3.1.12 (Bounded Type) A bounded type is a type whose maximum ef­

fective permissions as a subject type are bounded by the effective permissions of an­

other type. 

Semantics 3.1.2.5 (Bounded Type) Bounded types introduce recursion in the eval­

uation of permissions. For a bounded type, an access request is allowed only if the 

corresponding permission is granted to both the type and its bounding type. The bound­

ing type may itself be bounded, hence a recursive evaluation of permissions is needed. 

The recursion is defined as follow: 

(TE-bound-base) 
Ψ⊢boundr( ,⊺,t,c,o, )
Ψ ⊢ r( ,s,t,c,o, )


Ψ⊢boundr( , boundingtype(s),t,c,o, )
 
(TE-bound-bounded) 

Ψ⊢boundr( ,s,t,c,o, ) 
3.1.3 Summary 

In this section, we have presented TE formally, with formal semantics and the 

concrete syntax that is used in SELinux. To recap, we have illustrated in Figure 3.4 

how the different semantics that we have presented can be composed, to form what 

we consider the core features of TE, TE-core. In the following section, we will 

compare these features to those of Core RBAC. 

3.2 Comparative Modeling of RBAC 

In this section we model RBAC using the same formalism that we used to model 

TE. The goal is to clarify what RBAC provides with respect to the requirements of 
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TE-core 

TE-type-attributes 

TE-eval 

TE-object-transitionsTE-domain-transitions 

� = {create}
� = {execute, 
setcurrent} 

� = {execute, 
setcurrent, create} 

Figure 3.6.: Compositions of the core features of TE: TE-core. The features of TE 
that we have presented previously, TE-eval (see Figure 3.1), TE-domain-transitions 
(see Figure 3.2), TE-object-transitions (see Figure 3.3), and TE-type-attributes (see 
Figure 3.5), can be composed as illustrated here. TE-eval is the nucleus of this 
set of features, on which the other features can be added. The only thing that is 
necessary for this composition is to extend the set of operations for which the base 
evaluation rule (Eval) does not apply. When introducing domain transitions with 
TE-domain-transitions, the operations on which domain transitions can be triggered 
(execute and setcurrent) have  to be  handled by the  evaluation that is  specific  to  
these operations. Similarly, introducing transitions on filesystem objects creation in 
TE-object-transitions requires that the create operation be handled as a special case. 
We have represented the set of special-cased operations Ω for each features that we 
presented. When composing features, the union of the Ω sets of each feature has 
to be used, so that all the evaluations that are supposed to have a side effect are 
properly redirected to the evaluation rule that supports them. 
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the problem we set to solve (see Chapter 1). We first model RBAC as defined in 

the NIST standard [55]. Then we proceed to exhibit a mapping of RBAC on top of 

TE. Finally we show that the reverse mapping is not achievable. We discuss why the 

reverse mapping is not possible and the impact that this has on our requirements. 

3.2.1 Modeling RBAC 

We model Core RBAC as it is defined in the NIST standard [55], but using 

the same formalism that we use to model the core part of TE. Similarly to the 

TE semantics, we use a stuck semantics evaluation4 . There are three cases in this 

evaluation (see Figure 3.7): a regular access request, a role activation, and a role 

deactivation. 

In this model, we did not include administrative operations that can be considered 

part of the core RBAC model. These excluded operations include the creation and 

destruction of session, user, roles, and permissions. The creation of objects is not 

included in our model either, which conforms to our claim of modeling core RBAC: 

core RBAC does not model object creation either. We now proceed to constructing 

a mapping  from RBAC configurations to  TE  configurations.  

3.2.2 Mapping RBAC to TE 

Since RBAC has such a prominent place in the existing access control literature, it 

is natural to wonder how RBAC and TE compare to each other. We chose to compare 

them by showing how one model can express the other one. In this section, we show 

a mapping  from Core RBAC (as modeled in  Figure 3.7),  to TE-core  (as  modeled in  

Figure 3.6), where TE is used to emulate RBAC. In other words this mapping is such 

that an access is allowed in TE, by the TE configuration, if and only if it would have 

been allowed in RBAC by the original RBAC configuration. 

4We explain what stuck semantics are at the beginning of Section 3.1.1. 
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Syntax 

permission assignment B=
 
role activation B=
 

role assignment B=
 
access request B=
 

Act B=
 
Ass B=
 
P B=
 
Ψ B=
 

p(r, ob, op)

act(s, u, r)

ass(r, u)


r(s, ob, op)

act
{
{ass

}
}


{π}

Act ∪ Ass ∪ P 

Semantics 

ρ = r(s, ob, op)

op ∉ {activate, deactivate}


Ψ ⊢ ρ
 

Ψ, ρR → Ψ, R
 
(RBAC-Eval-base) 

ρ = r(s, ob, op)

ob = r
 

op = activate
 
ass(r, u) ∈ Ass
 
act(s, u, r) ∉ Act
 

Ψ, ρR → Ψ ∪ {act(s, u, r)}, R
 
(RBAC-eval-activate) 

Metavariables 

s session
 

u user
 

r role
 

op operation
 

ob object
 

π permission assignment 

act role activation 

ass role assignment 

Ψ policy 

ρ = r(s, ob, op)

ob = r
 

op = deactivate
 
ass(r, u) ∈ Ass
 
act(s, u, r) ∈ Act
 

Ψ, ρR → Ψ ∖ {act(s, u, r)}, R
 
(RBAC-eval-deactivate) 

p(r, ob, op) ∈ P
 
act(s, u, r) ∈ Act
 

Ψ ⊢ r(s, ob, op) (RBAC-access) 

Figure 3.7.: Semantics for Core RBAC, as defined in the NIST standard [55]. These 
semantics model access checks (RBAC-access), role activations (RBAC-eval­
activate), and role deactivations (RBAC-eval-deactivate). 
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To obtain a mapping from one access control model (RBAC) to the other one 

(TE), we need to produce a mapping from the different parts of the source model 

to the different parts of the target model. The parts that have to be mapped are 

the objects, their operations, the access control domains and their attributes, the 

permissions granted to the domains, and the state transitions. 

For the mapping of objects and operations, we map each RBAC object to a TE 

type and the operations are mapped directly. 

ob → tob 

op → oop 

The permissions granted to an RBAC session are granted based on the active 

roles of that session. We start by mapping roles and their permissions to types and 

their permissions. More precisely, we map the roles to type attributes. using type 

attributes allows us to factor the mapping of permissions as shown below. Also, please 

note that the object class is not specified in the mapped TE rule, to conform to the 

RBAC standard5 . 

p(ri, ob, op) ∈ P → a(αi, tob, , oop) ∈ Ψ 

Now that we have a mapping of role permissions to type alias permissions, we 

proceed to construct the TE subject types that mirror the RBAC sesssion states. 

First, we need a mapping from each possible session state to a type. This is achieved 

by enumerating the possible session states. To that extent we first define what we 

mean by the state σ(s) of a session s. Based on this definition, we can define an 

5An RBAC model with object classes, such as UARBAC [77], would result in the TE object class 

being used in the resulting TE access vector rules. 
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auxilliary function mid(σ(s)) that takes a session state σ(s) and generates a mapping 

type identifier for it. With nr roles, these definitions and the mapping are as follows. 

σ(s) = {act(s, u, r)} s.t. act(s, u, r) ∈ Act
 
mid(σ(s)) = (u, b1..bi..bnr bits s.t. bi = 1 ⇔ act(s, u, ri) ∈ σ(s))


σ(s) → tmid(σ(s))
 

With this mapping from session states to types established, we need to make sure 

that the mapping types have permissions that correspond to the permissions which 

would be granted to a session in that state. This is achieved by attaching to each 

type that represents a session state, the set of type aliases that correspond to the 

roles that are active in the session state being represented. 

αi ∈ type2attr(tmid(σ(s))) ⇔ bi = 1 

With this permission mapping we have a mapping that grants accesses to resources 

in TE that correspond to the accesses that would be granted in RBAC. A second type 

of permissions does also need to be mapped: the permissions to activate or deactivate 

a role.  These permissions need to  be mapped  to  two  TE permissions:  the permission  

for the running process to request a type transition, and the permission for that 

type transition to take place. The TE permissions corresponding to the RBAC role 

http:u,b1..bi
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activations are obtained by enumerating all the valid pairs of session states that belong 

to the same user, and generating for each such pair the required access vector rules: 

∀(s, s ′) s.t. 
σ(s) = (u, b1..bi..bnr ) s.t. ∀ 1 ≤ j ≤ nr, bj = 1 ⇒ (u, ri) ∈ Ass 

and σ(s ′) = (u, b  ′ 1..bi′ ..b ′ nr 
) s.t. ∀ 1 ≤ j ≤ nr, b  ′ j = 1 ⇒ (u, ri) ∈ Ass 

and hammingDistance(b1..bi..bnr , b1
′ ..b ′ i..b ′ ) = 1nr 

then 

a(tmid(σ(s)), tmid(σ(s)), process, setcurrent) ∈ ΨTE  

a(tmid(σ(s ′)), tmid(σ(s ′)), process, setcurrent) ∈ ΨTE  

a(tmid(σ(s)), tmid(σ(s ′)), process, dyntransition) ∈ ΨTE  

a(tmid(σ(s ′)), tmid(σ(s)), process, dyntransition) ∈ ΨTE  

With this mapping established, we proceed to demonstrate that an access will be 

allowed in the TE configuration image if and only if it would have been allowed in 

the RBAC configuration source. 

We first prove thatΨ RBAC ⊢ req(s, ob, op)⇒ ΨTE  ⊢ r( , tmid(σ(s)), tob, , oop, ) If 
an access req(s, ob, op) is allowed in the source configuration, then by definition of 

our mapping, there will be 

1. a type tob representing object ob 

2. an operation oop representing operation op 

3. a type tmid(σ(s)) to represent the state of session s 

4. at least one role with the necessary permission that is active in session s. Let 

ri be that role (i.e. p(ri, tob, oop) ∈ P ) 

5. a type attribute αi representing role ri 

http:hammingDistance(b1..bi
http:�(s)=(u,b1..bi
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6. an access vector rule a(αi, tob, , oop) granting the corresponding permission to 

αi 

7.	 a binding from this type attribute αi to the type tmid(σ(s)) that represents the 
session state: αi ∈ type2attr(tmid(σ(s)))

By application of TE-access-attr1 (see Figure 3.5),Ψ TE  ⊢ r( , tmid(σ(s)), tob, , op, ). 
Proving the converse is done by observing that, by construction, our mapping from 

an RBAC configuration to a TE configuration is bijective: each element of the TE 

configuration exists if and only if there is a corresponding element in the RBAC con­

figuration, and the accesses and domain transitions allowed in TE strictly reflect the 

accesses and role activations allowed in RBAC. We have therefore exhibited a map­

ping from RBAC to TE such that the allowed behavior in the TE model is a strict 

emulation of the allowed behavior in the TE model. ◻ 

3.2.3 Mapping TE to RBAC 

In this section we argue that a mapping from TE to Core RBAC can not be 

constructed, by outlining its tentative construction. Similarly to the mapping in the 

other direction, the following elements have to be mapped: the types, the object 

classes, their operations, the access control domains and their attributes, the per­

missions granted to the domains, and the domain transitions. We start by mapping 

types to roles. 

ti → rti 

When we map the RBAC permissions to TE access vector rules, there needs to be 

one permission assignment for each object that is labeled with the target type. This 
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is because the RBAC standard does not specify a way to group resources, contrary 

to the seminal work by Baldwin [58]. 

a(ti,tj,c,o) ∈ ΨTE  → ∀obk ∈ tj, p(rti ,obk,opo) ∈ P 

As in the mapping from RBAC to TE, we have not mapped object classes but 

remark that this extension can be performed easily, as shown in UARBAC [77]. 

The domain transitions are the part of the mapping that poses problem. The 

problem is twofold, based on the fact that the semantics of role activation are not 

amenable to emulating the semantics of domain transitions. First, domain transitions 

are atomic and the set of permissions available to a domain after the transition can 

be completely disjoint from the set of permissions available to the domain before 

the transition. This disjointness is not supported atomically by RBAC, which offer 

only a role activation (which adds permissions) or a role deactivation (which removes 

permissions) as atomic primitives. In other words, RBAC is missing a role transition 

which would replace an active role by another one6. Second,  TE  domain  transitions  

are unidirectional: the permission for a process to transfer from one domain to another 

is directional. The fact that a process is allowed to transition from a domain to 

another one does not imply the authorization to transition back. In RBAC, however, 

domain transitions are all reversible: the user to role assignment determines the set 

of roles that a user can activate and deactivate at will. For these reasons, we consider 

that Core RBAC is not capable of emulating TE. Core RBAC can be extended, and 

then probably be able to emulate TE; that is beyond what the standard covers. 

3.2.4 Summary 

In order to compare RBAC and TE, we have provided a model of Core RBAC 

using the same formalism that is used in the rest of this chapter to model TE. In 

6Flask, on the other hand, offers only role transitions and forces the set of active roles to be a 

singleton. 
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this formalism, we have constructed a mapping from Core RBAC to TE-core which 

shows that TE is capable, in theory, of emulating Core RBAC. In practice, though, 

this mapping would only work for RBAC configurations with a small number of roles. 

Indeed, for nu users and nr roles, our mapping generates up to nu ×2nr domains which 

are connected by up to nu × 2nr × nr transitions. This quickly becomes intractable 

as the numbers of roles and users grow. This limitation can be avoided altogether 

by composing TE with RBAC, as we showed in our survey of the related work (see 

Section 2.3.2). This composition of access control models is how the family of systems 

derived from Flask offers access control mechanisms that are expressive in practice. 

The mapping of TE-core to Core RBAC can not be achieved because Core RBAC 

lacks unidirectional role transitions, which are an integral part of TE and a key feature 

to confine applications. An analogy with the real world should make our point clearer: 

when a criminal is convicted and jailed, that person can not decide on her own to 

leave the jail. Neither should a regular process be allowed to change its confinement 

at will, regardless of the user on behalf of whom the process runs. We are sure that 

Core RBAC can be extended to support unidirectional role transitions. For instance, 

the work by Nyanchama and Osborn on MAC atop RBAC [125] showed how Core 

RBAC (before it was standardized) can be extended to provide acyclic information 

flow. Once again, we think that model composition is the solution that makes sense 

in practice. 

We have compared TE and RBAC and observed that RBAC does not offer uni­

directional domain transitions. Since these unidirectional transitions are essential to 

the confinement of applications, the remainder of this thesis focuses on TE. In the 

next section, we proceed to extend TE so that it contains its own administrative 

model. 
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3.3 Extending TE to Contain Its Administrative Model 

In Section 3.1, we presented the core features of TE and its extensions, as they 

are embodied in SELinux. We now present how TE can be extended to support 

recursive policy statements. That is, we present an extension of the TE model (as 

it was modeled above) in which a TE policy can contain statements that regulate 

modifications that can be made to the same policy in which they are contained. 

This extension is exposed in two steps. First, we explain the necessary reification of 

policy statements (see Section 3.3.1). New objects classes and their operations are 

added to the model and the evaluation semantics are modified accordingly. We show 

that this first step is a necessary but not sufficient extension for TE to contain its 

own administrative model with support for fine-grained delegation of administrative 

permissions. Consequently, we then expose an additional extension, with consists 

in pattern-matching the policy statements in order to address this limitation (see 

Section 3.3.2). 

3.3.1 Recursive Policy Statements 

We now describe how the TE model can be extended to support simple recursive 

policy statements. These recursive policy statements express under which conditions 

the policy can be modified, and hence support the definition of an administrative 

policy. 

Syntax 

At the syntax level, supporting recursive policy statements requires adding two 

classes of objects to represent the policy statements we presented in the TE model 

(see Section 3.1): the av rule class to represent access vector rules and the tr rule 

class to represent transition rules. 
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These classes support two operations that enable administration of the security 

policy: insert for the creation of a policy statement, and remove for the deletion of 

a policy  statement.  

Semantics 

This simple recursive extension of TE does not change the structure of access re­

quests, access vector rules, or type transition rules, so the semantics of the evaluation 

of an access request according to the policy of the system remain unchanged, except 

for the case of access requests on access vector rules. Indeed, allowing to delete or 

create an access vector rule has the side effect of modifying the policy, as shown in 

the rules Eval-insert and Eval-remove (Figure 3.8). Supporting this extension 

to the semantics requires a modification of the implementation of the access control 

mechanisms so that the two newly introduced av rule and tr rule object classes 

can be represented and manipulated. We discuss this extension at the end of this 

chapter (see Section 3.4). 

With the addition of the av rule and tr rule object classes, it is now possible 

to write access vector rules like the following. 

allow webmaster t webapp  t:av rule { insert remove }; 

This rule specifies that a webmaster can create and delete access vector rules that 

have the type webapp t. 

Limits 

The recursive extension that we explained does actually suffer from a serious 

limitation: there is no clear intuition on how to represent the security relevance of 

a given  av rule or tr rule object through a sinlge type. For instance, there are at 

least two different ways to type av rule objects: use the source type or use the target 

type. As we explain below, none of these alternatives is satisfactory. 
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TE-recursive 

Syntax Metavariables 

access vector rule B= a(s, t, c, o) s, t types 

type transition rule B= n(s, t, c, s ′) c class 

access request B= r(s, t, c, o, i) o operation 

R B= rR  ∅ i instance 

Ψ B= {a} ∪ {n} r access request 

a access vector rule 

n type transition rule 

Ψ policy 

Semantics 

r = r(s, t, c, o, i)
Ψ ⊢ r 

c ∉ {av rule, tr rule}
o ∉ {execute, create, setcurrent}

Ψ, rR → Ψ, R 
(Eval-base) 

r = r(s, t, c, o, i)
Ψ ⊢ r 

c ∈ {av rule, tr rule}
o = insert 

Ψ, rR → Ψ ∪ {i}, R 
(Eval-insert) 

r = r(s, t, c, o, i)
Ψ ⊢ r 

c ∈ {av rule, tr rule} 

r = r(s, t, c, o, i)
a(s ′ , t ′ , c ′ , o ′) ∈ Ψ 
match type s, s ′ 
match type

((t, t ′
))

match class(c, c ′)
match op(o, o ′)

Ψ ⊢ r 
(TE-base) 

match type(t, t) (Match-T-eq) 
match type(t, ) (Match-T-wild) 
match type(c, c) (Match-C-eq) 
match type(c, ) (Match-C-wild) 
match type(o, o) (Match-O-eq) 
match type(o, ) (Match-O-wild) 

o = remove 

Ψ, rR → Ψ ∖ {i}, R 
(Eval-remove) 

Figure 3.8.: Semantics for the recursive TE model. Please note that the base rule 
for the evaluation of access requests is now (Eval-base). It excludes the cases of 
execute and create operations. These operations are still allowed according to the 
semantics defined in Figures 3.2 and 3.3. Additionaly, the Eval-base rule now 
excludes operations on the av rule and tr rule classes of objects, since the insert 
and remove operations on these classes have the side effect of modifying the policy. 
These modifications are reflected in the Eval-insert and Eval-remove rules. 
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If we use the source type, meaning that an av rule object will have the same type 

as the source type it contains, then the previous example (see Section 3.3.1) can be 

interpreted as meaning “the webmaster has administrative rights to add and remove 

permissions to the web application domain”. However, such a statement presents a 

serious limitation: it does not specify which permissions the webmaster can add or 

remove to the web application domain. A malicious webmaster could use this lack of 

specification to get full privilege access on the machine. 

If we use the target type, meaning that an av rule object will have the same type 

as the target type it contains, then the same example can be interpreted as meaning 

“the webmaster has administrative rights to add or remove permissions to perform 

operations on objects of type webapp t.” However, yet again, such a statement 

presents a serious limitation: it does not specify who the webmaster can grant these 

permissions to. Moreover, under these semantics it is hard to identify who is granted 

administrative rights on the web application domain or, for that matter, who is given 

administrative rights to any security domain. 

A similar  limitation  of Type Enforcement  was  also  pointed  out  by  Spencer  et  

al. [9] in the context of filesystem access control, when considering the relabeling of 

files (the operation that changes the security type attached to a file). In this case, 

the decision depends on more than two types: three types have to be considered, as 

the decision depends on the subject requesting the relabeling, the current type of the 

file, and the desired type of the file. Fortunately in this case, the decision rule can 

be properly encoded by three separate permissions: a permission for the subject to 

relabel from the original type, a permission for the subject to relabel to the desired 

type, and a permission for the original type of the file to be changed to the desired 

type. This solution, however, can not be adapted to our problem. 

Another alternative, which would use types to enumerate the possible combina­

tions of source types and target types would not be practical as it would introduce 

a proliferation of types.  While  this solution could  work in  theory,  it would  not work  

in practice (similarly to the emulation of RBAC with TE which we showed in Sec­
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tion 3.2.2). We have therefore extended the simple recursive model with support for 

recursive pattern matching on rules, which we present below. 

3.3.2 Pattern Matching Policy Statements 

To remedy the limitations that were presented above, we have extended the re­

cursive TE model with support for pattern matching the contents of permission and 

transition objects (defined below). This feature enables the definition of fine-grained 

administrative policies. 

Definition 3.3.1 (Permission object) An object which is an instance of the 

av rule class is called a permission object, for brevity, as it does represent a per­

mission in the policy. 

Definition 3.3.2 (Transition object) An object which is an instance of the 

tr rule class is called a transition object, for brevity, as it does represent a type 

transition in the policy. 

Syntax 

Definition 3.3.3 (TE-Pattern access vector rule) A TE-Pattern access vector 

rule has the same overall structure as an access vector rule from the core TE model 

(see Section 3.1.1): it is a 4-tuple of the form (s, t, p, o) where s, t, and o can take 

the same values that they would in an access vector rule. The difference is with the 

p field which can contain either an object class specification (as in a regular access 

vector rule), or a policy statement pattern, to constrain the content of permission or 

transition objects that can be manipulated. 

Definition 3.3.4 (Permission pattern) A permission pattern is a recursive struc­

ture with the same fields as a TE-Pattern access vector rule. In the base case, the 

p field of the pattern contains a class specification. In the recursive case, the p field 
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contains another permission pattern. Any of the fields of a permission pattern can be 

wildcarded. 

Definition 3.3.5 (Transition pattern) A transition pattern is a structure with the 

same fields as a TE type transition rule. Any of the fields of a transition pattern can 

be wildcarded. 

Semantics 

The semantics are summarized in Figure 3.9. 

Semantics 3.3.2.1 (Authorizing accesses) As previously, an access request is au­

thorized if and only if the policy contains an access vector rule that matches the re­

quest; the main extension to the semantics is the addition of the rules that support 

the recursive pattern-matching of permission objects: TE-pattern, Perm-patt­

nested, and Pattern-nested-rec (fig. 3.9). 

With this extended recursive model, it is now possible to specify precisely that the 

webmaster can manage all permissions that grant access to objects of type webapp t: 

allow webmaster t :av rule( ,webapp t, , ) { create delete }; 

Please note that in the above rule we omitted to specify the type of the permission ob­

jects that the webmaster can manipulate; such a specification is not useful, as pointed 

out in Section 3.3.1. 

Semantics 3.3.2.2 (Automatic labeling of new objects) The semantics for 

type transition rules remain unchanged. 

Proof of termination 

We now proceed to demonstrate that the evaluation of an access request in the 

extended recursive model does still terminate in finite time, despite its recursive 
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TE-recursive-pattern 

Syntax Metavariables 

access vector rule B= a(s, t, c, o) a(s, t, p, o) s, t types 

type transition rule B= n(s, t, c, s ′) c class 

access vector pattern B= avp(s, t, c, o) avp(s, t, p, o) o operation 

type trans pattern B= ttp(s, t, c, s ′) i instance 

rule pattern B= access vector pattern r access request 

type trans pattern a access vector rule 

access request B= r(s, t, c, o, i) n type transition rule 

R B= rR  ∅ p rule pattern 

Ψ B= {a} ∪ {n} Ψ policy 

Semantics 

r = r(s, t, c, o, i)
Ψ ⊢ r 

c ∉ {av rule, tr rule}
Ψ, rR → Ψ, R 

(Eval-base) 

r = r(s, t, c, o, i)
Ψ ⊢ r 

c ∈ {av rule, tr rule}
o = insert 

Ψ, rR → Ψ ∪ {i}, R 
(Eval-insert) 

r = r(s, t, c, o, i)
c ∈ {av rule, tr rule}∃p s.t. (a(s, t, p, o) ∈ Ψ∧match(i, p))

Ψ ⊢ r 
(TE-pattern) 

i = n(s, t, c, s ′ 
is in(ttp(s, t, c, o)), p)

match(i, p) (Patt-ttr-base) 

r = r(s, t, c, o, i)
Ψ ⊢ r 

c ∈ {av rule, tr rule} 
i = a(s, t, c, o)

is in(avp(s, t, c, o), p)
match(i, p) (Patt-avr-base) 

o = remove 

Ψ, rR → Ψ ∖ {i}, R 
(Eval-remove) i = a(s, t, p ′ , o)′ is in(avp(s, t, p , o), p) 

(Patt-avr-nested)r = r(s, t, c, o, i) match(i, p)
c ∉ {av rule, tr rule}′ ′ ′ a(s , t , c , o ′) ∈ Ψ′ ′ ′ is in(avp(s, t, c, o), avp(s , t , c , o ′))

Ψ ⊢ r 
(TE-base) 

Figure 3.9.: Semantics for the extended reflexive TE model (1/2) 
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TE-recursive-pattern 

Semantics (cont.d) 

′ p = ttp(s, t, c, o) p = avp(s, t, p , o)′ ′ ′ ′ ′ ′′′ p ′′ = ttp(s , t , c , o ′) p ′′ = avp(s , t , p , o ′)′ ′ match type s, s match type s, s
 
match type

((t, t ′
)) match type

((t, t ′
))


match class(c, c is in(p ′ , p ′′′)
′)

match op(o, o ′) match op(o, o ′)


(Pattern-inc-ttr) (Pattern-inc-avr-rec)
is in(p, p ′′) is in(p, p ′′)

p = avp(s, t, c, o)′ ′ ′ ′)p ′′ = avp(s , t , c , o match type(t, t) (Match-T-eq)′ match type s, s match type(t, ) (Match-T-wild)
 
match type

((t, t ′
)) match class(c, c) (Match-C-eq)
′)
match class(c, c match class(c, (Match-C-wild)′)match op(o, o match op(o, o)) (Match-O-eq)

(Pattern-inc-avr-base)′′) match op(o, ) (Match-O-wild)is in(p, p 

Figure 3.9.: Semantics for the extended reflexive TE model (2/2) 
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nature. Showing this property is important, as otherwise the administrative extension 

would not guarantee that modifications to the policy can be made in a timely fashion. 

Moreover, it would potentially be possible to use these extensions for denial of service 

attacks, by loading the system with non-terminating policy administration jobs. 

Definition 3.3.6 (Depth of a permission pattern) A permission  pattern  where  

the p field contains a class specification is said to have depth 0; otherwise the depth 

of a pattern is equal to the depth of the pattern it contains, plus one. 

Lemma 3.3.2.1 The nesting of patterns can not form a cycle. 

Proof [Proof of Lemma 3.3.2.1] Since there is no way to name patterns, there is 

no way to reference patterns, and hence no way to form a cycle with the nesting of 

patterns. 

Corollary 3.3.2.2 (Corollary of Lemma 3.3.2.1) The depth of a pattern is fi­

nite. 

Theorem 3.3.2.3 The evaluation of an access request terminates in a finite number 

of evaluation steps. 

Proof [Proof of Theorem 3.3.2.3] 

Let r = r(s,t,c,o, i) be the access request being evaluated (granted or denied). 

Let a be the access vector rule against which the access request is being evaluated. 

There are two cases: 

′ ′ ′ 1. a = a(s ,t ,c ,o ′)
In this case, the evaluation proceeds through the rule TE-base, which trig­

gers one evaluation of the rule Pattern-inc-avr-base, which terminates after 

matching the elements of a and r one by one. 

′ ′ ′ 2. a = a(s ,t ,p ,o ′)
We prove this case by induction on the depth of the pattern contained in an 

access vector rule. 
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• Base case: p ′ is a pattern of depth 0. 

This means that we have either p = p(s ′′ , t ′′ , c ′′ , o ′′) or p = p(s ′′ , t ′′ , , o ′′)
Either cases will be evaluated through the rules TE-Pattern, Patt-avr­

nested, and  if  i is a permission, then Pattern-inc-avr-base, which 

terminates after matching the elements of i and p one by one. 

′ • Induction hypothesis: if p is a pattern of depth (n − 1) (n ≥ 1), the 
evaluation terminates. 

• Induction: if p ′ is a pattern of depth n, it  contains  by  definition  a  pattern  

of depth (n−1). The evaluation of the access request will be reduced, after 

application of the rules TE-Pattern, Patt-avr-nested and Pattern-

inc-avr-rec, to the same evaluation that would be performed for a pat­

tern of depth (n − 1), which terminates. 

The result of this theorem is strengthened by the fact that, in practice, we do not 

expect a policy to contain patterns of a depth exceeding two: depth zero corresponds 

to base permissions, depth two to administrative permissions (which constitute the 

administrative policy), and depth three to administrative permissions on the admin­

istrative policy. Beyond depth three, we lose the security intuition on the meaning of 

permissions. 

3.3.3 Administrative Templates 

With the previous extension, it is now possible to precisely define which adminis­

trative permissions are granted to which user of the system. This precision, however, 

comes at a price: many administrative rules are necessary to grant administrative 

privileges. For instance, 451 type enforcement access vectors are used in the defini­

tion of the domain of the webalizer application (a log analysis application). The same 
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number of administrative rules is required to grant a user the administrative right to 

create a similar domain. 

It is a direct consequence of the fine granularity of the administrative permissions 

that, for each permission that is to be granted, there needs to be an administrative 

permission to authorize the granting of this permission. Having an administrative 

policy whose size is comparable to the size of the underlying policy is not an attractive 

perspective, specially in the case of TE, where the underlying policy can be large. 

Our approach to mitigating this problem consists in using parts of the policy as 

templates for other parts of the policy, in a fashion similar to the use of bounded types 

(see Section 3.1.2). Bounded types are used to define the access boundary of a type 

based on the access boundary of another type. We propose to use the access boundary 

of a type to define administrative boundaries. For instance, consider a webmaster 

that is allowed to deploy and configure log analysis tools. One could say that the 

webmaster is allowed to grant, to a specific domain, all the permissions granted to the 

webalizer domain. By doing so, all the efforts put into the definition of the webalizer 

domain can be reused to define similar boundaries for similar applications. 

We have introduced two kinds of templates, for which we provide definitions and 

semantics below. The first kind of template, based on all the permissions of a do­

main, is an administrative domain template. The second kind of template, based on 

the permissions that a domain has on a resource of a given (TE) type, is called an 

administrative resource template. 

Using Administrative Templates 

Definition 3.3.7 (Administrative domain template) An administrative domain 

template is a 3-tuple (s, dref, dtarget), where dref is the domain used as a reference for 

the template, dtarget is the target domain to which the template can be applied, and s 

is the subject that can apply part of the template. 

Semantics 3.3.3.1 (Administrative domain template) Administrative 

templates offer an additional means of granting administrative access to the policy. 
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Consequently, the semantics of the extended reflexive model (see Figure 3.9) are aug­

mented, as illustrated in Figure 3.10. These semantics indicate that a subject can can 

add permission to a domain dtarget if: 

•	 There is a domain dref that possesses this permission 

•	 There is an administrative template that indicates that s can grant permissions 

from domain dref to domain dtarget. 

The granting of administrative permissions according to administrative domain tem­

plates is embodied by the rule Admin-dtmpl (see Figure 3.10). 

We use the following concrete syntax to represent an administrative domain tem­

plate. This syntax is deliberately chosen to be similar to the definition of type bound­

aries, as the concepts are similar. 

admin_domain_template admin referencedomain targetdomain1\ 

[targetdomain2 ...] 

Definition 3.3.8 (Administrative resource template) An administrative re­

source template is a 5-tuple (s, dref, tref, dtarget, ttarget), where dref and tref are the 

reference domain and target type for the template, and dtarget and ttarget are the do­

main and target type to which the template is applied, and s is the subject to which 

the template administrative permissions are granted. 

Semantics 3.3.3.2 (Administrative resource template) Administrative resour­

ce templates offer an additional means of granting administrative access to the policy. 

Consequently, the semantics of the extended reflexive model (see Figure 3.9) are aug­

mented, as illustrated in Figure 3.10. These semantics indicate that a subject can can 

add a permission to a domain dtarget if: 

•	 There is a domain dref that possesses this permission on a type tref 

•	 There is an administrative resource template that indicates that s can grant 

permissions that domain dref has on type tref to domain dtarget on type dtarget. 
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The granting of administrative permissions according to administrative domain tem­

plates is embodied by the rule Admin-rtmpl (see Figure 3.10). 

We use the following concrete syntax to represent an administrative resource tem­

plate. 

admin_resource_template admin referencedomain referencetarget \ 

targetdomain targettarget 

Administering Administrative Templates 

To support the formulation of precise administrative rules on the insertion and 

removal of administrative templates, the model needs to be extended so that ad­

ministrative templates are manipulable objects, whose manipulation is regulated by 

administrative rules. This extension is similar to the extension that handles tr rule 

objects; we present it below. 

Definition 3.3.9 (Administrative template object) Administrative domain 

(resp. resource) template rules are represented as instances of the admin tmpl 

(resp. admin rtmpl) class, and are called administrative domain (resp. resource) tem­

plate objects when they are being manipulated by administrative operations. 

Semantics 3.3.3.3 (Administering administrative templates) Similarly to 

av rule and tr rule objects, admin dtmpl (resp. admin rtmpl) objects support two 

operations: insert and remove. Similarly to tr rule objects, the allowed manipula­

tions of these objects are declared with rules that can contain simple (non-recursive) 

patterns that specify their allowed content. The detailed semantics are provided in 

Figure3.11. 

http:Figure3.11
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TE-admin-template 

Syntax Metavariables 

access vector rule B= a(s, t, c, o) a(s, t, p, o) s, t, d types 

type transition rule B= n(s, t, c, s ′ c class 

admin domain rule B= adr(s, t, t ′
)
) o operation 

admin resource rule B= arr(s, d, t, d ′ , t ′) i instance 

access vector pattern B= avp(s, t, c, o) avp(s, t, p, o) r access request 

type trans pattern B= ttp(s, t, c, s ′) a access vector rule 

admin domain pattern B= adp(s, t, t ′) n type transition rule 

admin resource pattern B= arp(s, d, t, d ′ , t ′) b admin domain rule 

rule pattern B= access vector pattern l admin resource rule 

type trans pattern p rule pattern 

admin domain rule Ψ policy 

admin resource rule 

access request B= r(s, t, c, o, i)
R B= rR  ∅ 

Ψ B= {a} ∪ {n} ∪ {b} ∪ {l} 
Semantics 

r = r(s, t, c, o, i)
o ∈ {insert, remove}′ ′ ′ i = a(d , t , c , o ′)

adr(s, d, d ′) ∈ Ψ′ ′ a(d, t , c , o ′) ∈ Ψ 
(Admin-dtmpl)

Ψ ⊢ r 

r = r(s, t, c, o, i)
o ∈ {insert, remove}′ ′ ′ i = a(d , t , c , o ′)


arr(s, dref, tref, dtarget, ttarget) ∈ Ψ
′ a(dref, tref, c , o ′) ∈ Ψ 
(Admin-rtmpl)

Ψ ⊢ r 

Figure 3.10.: Semantics for administrative templates: additional rule that allow ad­
ministrative operations if there is an administrative template based on which the 
administrative operation can be allowed. 
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TE-admin-template-admin 

Syntax Metavariables 

access vector rule B= a s, t, c, o a s, t, p, o s, t, d types 

permission pattern B= p

(
(s, t, c, o

)
) p

(
(s, t, p, o

)
) c class 

access request B= r(s, t, c, o, i) o operation 

R B= rR  ∅ i instance 

Ψ B= {a} a access vector rule 
′ ′′ p, p , p permission pattern 

r access request 

Ψ policy 

Semantics 

i = adr(s, t, t ′)
is in(adp(s, t, t ′), p)

match(i, p) (Dpatt-bound-base) 

p = arp(s, d, t, d ′ , t ′)
p ′′ = arp(s ′ , d ′′ , t ′′ , d ′′′ , t ′′′)

match type(s, s ′)′′)match type(d, d 
i = arr(s, d, t, d ′ , t ′) match class(d ′ , d ′′′)match type(t, t ′′)

is in(arp(s, d, t, d ′ , t ′), p) match class(t ′ , t ′′′)
′′)match(i, p) is in(p, p 

(Rpatt-bound-base) (Rpattern-inc-bound) 

p = adp(s′ , t′′, t ′)′′′)p ′′ = adp(s , t , c 
match type(s, s ′)′′)match type t, t′ ′′′)match class

((t , t 
(Dpattern-inc-bound)′′)is in(p, p 

Figure 3.11.: Semantics for the administration of administrative templates. While the 
semantics of Figure 3.10 cover the granting of permissions based on administrative 
templates, these semantics cover the how administrative templates themselves are 
manipulated. The above semantics are both a generalization of Figure 3.10 and an 
extension of the semantics from Figure 3.9 (where we introduced the pattern-matching 
extension). 
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Proof of Termination 

The administrative templates are supported by the introductions of six rules. 

The Admin-dtmpl, Dpattern-inc-bound, Dpatt-bound-base, Admin-rtmpl, 

Rpattern-inc-bound, and  Rpatt-bound-base rules introduce six new base cases. 

These base cases do not change the termination of the recursive evaluation of per­

missions; they just contribute additional base cases to the evaluation. Consequently, 

the results of the proof of termination still hold. 

3.3.4 Summary 

In this section, we have presented an administrative model for TE, which is con­

structed as an extension of TE. The construction has proceeded in two steps. First 

we have reified TE policy elements, exposing them as objects that are visible at the 

TE level of the model, so that their manipulation can be subjected to TE access 

controls. We have shown that this simple extension has obvious limitations. Then, 

we have shown how these limitations can be addressed by introducing recursive pat­

tern matching on the policy constructs. This pattern matching supports the precise 

expression of fine-grained administrative permissions. Furthermore, it supports an 

administrative policy on the administrative policy itself (and so on), hence avoiding a 

fixed administrative policy on the administrative policy. Finally, we have introduced 

administrative templates to support the factorization of the administrative policy, 

by using existing permissions on a given domain as blueprints for administrative 

permissions on another domain. For both the recursive pattern matching and the ad­

ministrative template, we have shown that the evaluation of access control decisions 

always terminates in a finite number of steps. 
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3.4 Implementation 

We have integrated the administrative extensions to TE (presented above) in a 

prototype on SELinux. In this section, we describe this integration. It has involved 

deciding on the interface through which to expose the reified elements of the TE 

policy, so that they can be manipulated. We have chosen to use a virtual filesystem, 

which we present in Section3.4.1. Another important aspect of the implementation is 

integrating the implementation of this new interface with the rest of the system in a 

way that preserves the security guarantees of the system. We present this integration 

in Section 3.4.2, where we argue that this integration constitues an extension of the 

trusted computing (TCB) base of the system, in the form of a TCB subsystem. As 

such, we show that this integration does not weaken the security guarantees of the 

system, per se. 

3.4.1 Interface 

We have chosen to expose the policy in terms of a virtual filesystem. That is, the 

elements of the policy are exposed as virtual files and directories, whose manipulations 

are regulated by the administrative policy. The administrative policy itself is also 

exposed inside the same virtual filesystem. 

There are several reasons for our choice of using the filesystem interface to expose 

the policy. The UNIX filesystem API is well understood and supported by many 

utilities. As a result, standard command-line utilities can be used to interact with 

our interface (e.g. ls for listing policy elements). Being able to re-use file manip­

ulation command line utilities, which have been stable for years, to administer the 

policy is a big win from an assurance perspective: no extra tool has to be developed 

to interact with the policy through the filesystem interface. Moreover, having the 

interface to the policy be textual eases the development and debugging, since the 

same file manipulation utilities can also be relied on during the development of the 

interface to test and diagnose the interface. This increases assurance that the system 

will behave according to its specification. 
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Yet another advantage of using a filesystem interface is that remote administration 

can be enabled by exporting the virtual filesystem over a network file system. The 

filesystem can then be remotely mounted at the administration point. Using a network 

filesystem for remote administration avoids the design, development, and debug of a 

protocol and its accompanying libraries and daemons. This is again an advantage from 

an assurance perspective. One important requirement that is placed on the network 

filesystem is that it preserves the type labels so that only authorized domains can 

access the administrative filesystem. This will be addressed by an upcoming extension 

to NFSv4. (There is currently an IETF draft and a Linux implementation of labeled 

extensions for NFSv47, which addresses this issue of transporting security labels over 

NFSv4). 

Table 3.1: Filesystem layout, and mapping from policy modifications to filesystem 
operations 

Policy modification FS path FS operation 

add access vector rule avr /avr/ creat(avr, mode) 
remove access vector rule avr /avr/ unlink(avr) 

add type transition rule ttr /ttr/ creat(ttr, mode) 
remove type transition rule ttr /ttr/ unlink(ttr) 

add administrative rule meta /meta/ creat(meta, mode) 
remove administrative rule meta /meta/ unlink(meta) 

add conditional a.v.r. avr with guard guard /cond/guard/ creat(avr, mode) 
remove conditional a.v.r. avr with guard guard /cond/guard/ unlink(avr) 

add type name /type/ creat(name, mode) 
remove type name /type/ unlink(name) 

add attribute name /attr/ mkdir(name, mode) 
remove attribute name /attr/ remove(name) 

attach attribute name1 to type name2 /attr/name1/ creat(name2, mode) 
detach attribute name1 from type name2 /attr/name1/ unlink(name2) 

create type name1 with attribute name2 /attr/name2/ creat(name1, mode) 
remove type name1 with attribute name2 /type/ unlink(name1) 

7http://www.ietf.org/internet-drafts/draft-quigley-nfsv4-sec-label-00.txt 
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/avr unconditional access vector rules 

/ttr unconditional type transition rules 

conditional rules guarded by guard "guard1"/guard1 
/sefuse /cond 

... ... 

/type 

/attr 
/attrm TE types with attribute "attrm" 

/meta administrative rules 

Figure 3.12.: Layout of the virtual filesystem 

/guardn conditional rules guarded by guard "guardn" 

TE types 

/attr1 TE types with attribute "attr1" ... ... 
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We now explain the mapping of operations from the administrative model to 

virtual filesystem interface. Paraphrasing the discussion of the Plan 9 filesystem [126], 

object-oriented readers may approach the rest of this [explanation] as a study in how 

to make objects look like files. The mapping from policy modifications to filesystem 

operations, together with the layout of the filesystem, are summarized in Table 3.1; 

the arborescence of the filesystem is represented in Figure 3.12. 

We have chosen to expose each policy statement as either a file or a directory. The 

rationale for that choice is easier to explain by considering the alternative: any group­

ing of policy statements within a virtual file would force a stateful implementation of 

the interface. 

Indeed, if several statements are grouped within the same virtual file, then adding 

or removing a statement from the group, or modifying any of these statements, re­

quires to open() the file first and then perform the modification. From an implemen­

tation perspective, this means that the interface is stateful: an open file descriptor has 

to be maintained for the whole duration of the edit. There are many reasons to avoid 

such statefulness. Our main motivation was to keep the implementation simple so 

that it can be inspected easily. Another reason was the desire to support concurrent 

edits of the policy. In that case, any un-necessary increase of the granularity of edits 

must be avoided, hence our decision to expose each policy statement as a virtual file. 

As mentioned earlier, the policy and the administrative policy can both be ac­

cessed and edited using the same interface. We feel it is important that, in the same 

way that the administrative model is recursive, and therefore supports an arbitrary 

stacking of administrative policies, that the interface to the administrative policy also 

supports the edition of administrative rules of any depth. 

3.4.2 System Integration 

The virtual filesystem is supported by a userspace server, which we named sefuse, 

as it uses FUSE [127] to communicate with the kernel when handling the virtual 
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filesystem operations. FUSE is a kernel extension included in the mainstream Linux 

kernel since the kernel version 2.6.14. This extension allows filesystems to be im­

plemented in userspace by relaying filesystem calls out of the kernel, to userspace 

daemons. 

Our prototype is implemented with support for the SELinux binary policy format 

version 24. The binary policy is loaded by sefuse when it is started. Policy modifi­

cations are propagated to the kernel by serializing the in-memory policy and loading 

it into the kernel. sefuse supports the modification of access vector rules, as well as 

the edition of recursive administrative permissions. The integration of our prototype 

is illustrated in Figure 3.13. As one can see from the figure, sefuse loads the same 

policy that is loaded in the kernel at boot time. At boot time, the policy is loaded in 

the kernel by writing it to the load pseudo file in the selinuxfs virtual filesystem, 

which is mounted under the /selinux path. sefuse uses the same mechanism to 

propagate policy changes into the kernel. The modified policy is also serialized to 

disk when the daemon shuts down, so that it will be used for the next boot. The ad­

ministrative policy is stored separately from the policy; it is also loaded when sefuse 

starts and serialized back when sefuse shuts down. As sefuse, the  administrative  

policy is protected from the rest of the system by being only accessible form within 

the sefuse domain. 

The initial decision to implement the prototype with FUSE was made because it 

allowed for a much easier development (easier debugging essentially) than if we had 

developed the filesystem directly as a kernel component. This is also acceptable from 

a security standpoint,  as we explain below.  In this  explanation,  we list the hypotheses  

that we rely on to claim that our implementation is dependable. For each hypothesis 

we make, we explain why we think it is reasonable. 

Hypothesis 3.4.2.1 The implementation and configuration of Type Enforcement in 

SELinux constitutes a reference monitor. 

SELinux was not designed from the start as a secure system: it was not designed 

first as a whole and then implemented according to its design. Instead, SELinux is 
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SELinux policy loaded 

SELinux policy loaded 
from disk at system

boot time 

Linux Kernel 

SELinux ModuleSELinux Module 

Active SELinux 
Policy FUSE 

Module 

sefuse domain 

/selinux Virtual filesystem 

load 
booleans/ 

... 

Interface to 
load the policy

in the SELinux module 

Propagation of
the modifications 

sefuse daemon 

Exposed SELinux
Policy 

Exposed
Administrative 

Policy 

/sefuse Virtual filesystem 

ttr/ 
avr/ 
... 

policy 

meta/ administrative 
policy 

Stored 
Administrative 

Policy 
Administrative policy stored

to disk 
when sefuse shuts down 

Administrative policy loaded from
disk when 

sefuse shuts down 
Stored 

SELinux 
Policy 

SELinux policy stored 
to disk 

when sefuse shuts down 

from disk 
when sefuse starts up 

Figure 3.13.: Integration of sefuse within SELinux, to safely expose the SELinux 
policy as a virtual filesystem 
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a security extension  that was  retrofitted into the  Linux kernel.  As a result,  there  

is no causal link from a model of a reference monitor to its implementation –this 

implementation being SELinux– that can be used to prove that the implementation 

of Type Enforcement in SELinux constitutes a reference monitor. Since it is not 

practically possible to prove that SELinux constitutes a reference monitor we explain 

why we think it is reasonable that our implementation assumes so, for each aspect 

of the definition of a reference monitor. For full mediation, the  work  of  Zhang  et  

al. [128, 129] provides a strong indication that the hooks of the Linux Security Mod­

ule framework [109] are invoked on every access path where they should be. This 

indicates that the current implementation of SELinux as a security module is invoked 

to mediate accesses on all the access paths. For the tamper-proof aspect, SELinux is 

a security mechanism  implemented inside a monolithic  kernel,  the Linux kernel.  As  

a consequence,  the integrity  of the  mechanisms  of SELinux relies  on the integrity of  

the Linux kernel. Assuring the integrity of a kernel of this size (a little less than 9 

million lines of code for version 2.6.24 [130]) is not a tractable problem. It is there­

fore not possible to guarantee this integrity. The access control enforced by SELinux, 

however, helps reduce the attack surface of the kernel. Considering the assurability, 

the SELinux module shipped with version 2.6.24 of the Linux kernel is comprised of 

16,3K significant lines of code8. There  is  no  publicly  documented  effort  on  assuring  

the code of the SELinux security module. The above hypothesis has to be relied on 

but cannot be proven. 

Property 3.4.2.1 On SELinux, implementing the administrative model for Type En­

forcement in userspace is not weaker, from a security standpoint, than implementing 

it in the kernel. 

sefuse can be protected from the rest of the system using TE confinement. This 

method of securely extending the operating system with userspace extensions, by 

8This count of lines of codes was obtained using sloccount, available at http://www.dwheeler. 

com/sloccount/ 

http://www.dwheeler
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relying on TE for protection, has been successfully demonstrated in LOCK [131]. A 

similar approach was successfully taken by Stern in the development of the Extended 

Access Control Subsystem on top of Trusted Xenix [132]. Formally, what we did is 

that we implemented a TCB subset [133] to regulate accesses to the security policy 

of SELinux. 

Hypothesis 3.4.2.2 Once the system is booted, only sefuse, running in its own 

isolated domain, is allowed to load the security policy in the kernel. 

If this hypothesis on the base security policy of the system is satisfied, then it is 

guaranteed that the only modification to the policy allowed at runtime are mediated 

by our administrative model. This hypothesis can be evaluated by searching for the 

load policy permission in the security policy. 

Hypothesis 3.4.2.3 Our implementation of the administrative model is correct. 

Although no formal audit of our code has been performed so far, we have preserved 

the auditability of our code by keeping it small and clear. 

Property 3.4.2.2 Provided the administrative policy allows only changes that pre­

serve the security goals of the system, our integration of an administrative model in 

SELinux does not weaken the system security. 

This property holds, provided hypotheses 3.4.2.2 and 3.4.2.3 hold. What we are 

interested in stating with this property is that the addition to SELinux of admin­

istrative mechanisms that implement the administrative model described in Section 

3.3 does not by itself weaken the security guarantees that the system can offer. In­

deed, the mechanisms that we have implemented can be configured to implement 

many administrative policies, from one administrative policy that grants absolutely 

no modification rights to the base policy, to an administrative policy that grants all 

administrative rights to any subject of the system. 
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3.4.3 Summary 

We have presented the design and integration of our prototype implementation 

of the administrative model from Section 3.3. By using a virtual filesystem abstrac­

tion, this prototype allows common filesystem tools to be used to interact with both 

the base TE policy and the administrative policy. When analyzing aspects of the 

policy, we have found this interface convenient for read-only consultations of the pol­

icy. Our development platform was SELinux (on RedHat Fedora Core 10), where 

this prototype is implemented as a trusted subsystem. We have shown under which 

assumptions the implementation can be considered to be a reference monitor. The 

main assumption is that the Linux kernel’s integrity has to be relied on. 

3.5 Conclusion 

In this chapter, we have formally modeled TE, using stuck semantics. In this 

model, we have isolated a core set of TE features (TE-core) that the rest of our work 

relies on. Our modeling has been performed in a modular fashion, where we have 

shown how the different features of TE can be composed together. We have then 

shown, by first modeling Core RBAC and then comparing Core RBAC and TE-core, 

that Core RBAC can not be used to address the confinement problems that we set to 

address. This justifies our choice of TE over RBAC as the base access control model, 

that we then extend with an administrative model. The administrative model for TE 

that we presented is able to precisely express which rules a given subject is allowed to 

modify. Moreover, this administrative model is recursive by nature, which allows the 

definition of an administrative policy on the administrative policy itself, and so on. 

This is an improvement other most existing RBAC administrative models, where the 

administrative policy requires on fully trusted subject for its configuration. Finally, 

we have presented the design of a prototype implementation of this model that was 

performed on RedHat Fedora Core 10. 
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4. OVERLAY LABELING: REFINING THE POLICY 

COUPLING 

The original motivation for the work presented in this thesis was to let users refine 

the security policy of the operating system on which they work, and on which they 

are not administrative users. In other words, this idea was to let users themselves 

decide which of their ambient permissions they wish to extend to applications that 

run on their behalf. In the related work, we have argued why the security mechanisms 

provided on stock unix systems (and by analogy on other systems that rely on identity 

based access control) do not provide a satisfactory answer to this problem (see Section 

2.5.1). In the previous chapter, we have introduced an administrative model that 

supports fine-grained delegation of administrative permissions on the TE policy. 

This administrative model is a necessary step towards enabling users to refine the 

TE policy of the system. However, this administrative model is not sufficient by 

itself to support all the refinements to the policy that are necessary to support the 

fine-granularity of access controls that we set to achieve. Here is a concise example 

to motivate this chapter; we elaborate on it when we expose the grading program 

problem (see Section 4.1), which was the original motivation for this thesis. 

While the administrative model we defined for TE supports the precise specifi­

cation of allowed manipulations on TE constructs, it has no notion of which type 

is associated to which system objects. This is a reasonable design decision for the 

administrative model as it is also the case that the TE policy has no notion of this 

coupling, either. The implication, however, is that user policies are limited to using 

the existing labeling of objects. Since users do not have control on the system label­

ing decisions, their policies are limited to being expressed in terms of system-defined 

labels. For instance, most binaries installed on the system are labeled with a unique 
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type: bin t. As a result, /usr/bin/gcc (the compiler) and /bin/ls (the utility to 

list files) can not be treated differently by the TE policy, which reasons on objects 

only through their types. The only workaround is for the user to make a copy of 

one of the programs and relabel that copy. This workaround isn’t satisfactory as it 

results in wasted disk space, and updates to the original program won’t propagate 

to the copy. Missing updates are particularly a problem when the updates address 

security or functionality issues. The labeling of network packets suffers from a similar 

limitation, without even a workaround. 

In other words, without a way for users to extend the labeling of objects that they 

are not allowed to relabel, whatever TE policy they may write is constrained to the 

granularity with which these objects are currently labeled on the system. Allowing 

the users to relabel system objects would not be the correct solution, as it would let 

users break the existing semantics of the system policy. We have designed a solution 

that supports overlay labeling of filesystem objects and network packets. 

This chapter starts by a presentation of the grading program problem (see Section 

4.1), which concludes by a demonstration of how this problem is only partially solved 

with the administrative model from Chapter 3. The two following sections present 

the labeling of filesystem objects (see Section 4.2) and the labeling of network packets 

(see Section 4.3). In each of these two sections, we present how the labeling can be ex­

tended to support overlay labeling. Then, we present how the infrastructure designed 

for overlay labels can be re-used to support the grouping of object by predicates ex­

pressed on type attributes (see Section 4.4). Finally, we address issues that concern 

the correctness of these designs: whether they can be used to subvert the system 

policy (see Section 4.5), and whether their usage is reversible (i.e. is the deployment 

of an overlay label a destructive operation ?) (see Section 4.6). 
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4.1 Motivation 

4.1.1 The Grading Program Problem 

The grading program problem1 is a historical motivating example for protection 

systems [69], where an automatic grading program is used to evaluate the functionality 

of a student’s assignment submitted for grading. The core of the problem is trust (or 

lack thereof) between the grading program and the graded program, also know as the 

mutually suspicious subsystems problem [135]. While the submission being graded is 

a software conceived by the  student,  prepared for  submission  on his/her  account,  the  

grading is done by the teaching assistant (TA), who runs the grading program (and 

hence the student submission as well) in his TA account. 

The execution of the grading program needs to take place in a confined environ­

ment in order to: 

• Enforce the assignment restrictions 

System programming assignments consist in having the students program fea­

tures that are otherwise provided by the same system on which the students 

develop their programs. It is therefore necessary to confine the execution of the 

submitted programs, to make sure that they do indeed implement the features 

they should, as opposed to delegate the processing to the features offered by the 

host system. A common example of such cheating is when a student, instead 

of implementing a filesystem per the assignment specifications, programs stubs 

that call their corresponding routines from the filesystem of the host OS. 

• Protect the TA account from the submitted program 

The submitted program may (and regularly is) misbehaved, in which case the 

TA account needs to be protected from accidental damage. This is an instance of 

the debugging problem [7,69], and it is partially addressed by memory protection 

1This presentation of the grading problem is slightly different from the original presentation in [134], 

but the core of the problem remains the same 
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and quota mechanisms. The submitted program can even be malicious, in which 

case it constitutes a trojan horse [4]. 

The first point, enforcing the assignment restrictions, is already addressed by 

existing techniques of library interposition that were developed for goals including 

intrusion detection. Moreover, this part has more to do with detection than preven­

tion: it is not a security issue that the submitted program uses system libraries it 

shouldn’t. What really matters is to detect such uses, so that the students do not get 

credit for relaying calls to the proper system library when the goal of the assignment 

was to have them implement the library itself. In short, the first part of the grading 

problem does neither justify nor require new access control research, thus we do not 

address it; we focus on the second part instead, protecting the TA account from the 

submitted program. 

4.1.2 Example Programming Assignment 

We now present a programming assignment that will provide some substance to 

the administrative operations we introduce later in this section: refining the labeling 

on the filesystem, and creating domains. The networking aspects, although introduced 

here, will be covered in another section (see Section 4.3). 

The assignment consists in programming a simple HTTP server, as required in 

undergraduate network programming classes (e.g. CS422 at Purdue’s department of 

Computer Science). The features that must be implemented by this server are the 

following. It must be capable of serving static files and support directory browsing. 

It must also support CGI scripts, and loadable modules (shared libraries instead of 

scripts). 

The corresponding restrictions that have to be enforced on the assignment are: 

1. The access of the HTTP server to the filesystem should be restricted so that 

it can not serve the whole content of the TA’s home directory. More precisely, 

the server should serve only the static content located within the directory 
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designated for static content. Since the electronic grade sheets are stored in the 

TA’s account, the server could otherwise potentially deliver the grade sheets of 

the whole class. This would be a legal issue in the USA (FERPA act [136]). 

2.	 The filesystem access restrictions should be discriminating enough to let CGI 

scripts access common command-line utilities (e.g. the programs from GNU 

coreutils package: expr, echo, printf, test, ...), while  still  enforcing  the  con­

finement explained above. For instance, one of the example scripts provided to 

the students uses the cal command-line tool to generate textual calendars. 

3. The network accesses of the server should also be restricted.	 Incoming access 

should be restricted so that only connections coming from machines used in 

the grading tests are passed to the server. The benefit of this restriction is to 

further limit the exposure of the server to external attacks. The server should 

be prevented from initiating remote connections, so that a trojan web server will 

not be able to spontaneously submit files from the grading system to another 

system. This is useful when the testcases are not publicly released. 

We now present how the administrative policy, based on the administrative model 

from the previous chapter, can be configured to let the TA set up a TE configuration 

that enforces these restrictions. More precisely, we will show how far these restrictions 

can be enforced. The parts that can not be enforced are the motivation for the 

following two sections (see Sections 4.2 and 4.3). 

4.1.3 Creating Types and Domains and Configuring Accesses 

We will now show how the TA can set up a confinement domain in which the 

grading can safely be run. 

The first step in setting up the confinement domain is to create the domain itself. 

In order to do that, the TA must create the domain type (say, grading t), and attach 

the domain attribute to it. Let us focus on the type creation first. The problem with 
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allowing the creation of new types is that it is hard to write rules on how they can 

be manipulated, until they exist. And at that point, they do not need to be created 

anymore. 

Our solution to this problem is to let users create types “through” types attributes. 

In other words, an attribute is given as a part of the request by the user to create a 

type. If the user is allowed to create types that bear this attribute, then the request is 

satisfied: the type is created and the specified attribute is attached to the type. The 

next step is for the TA to turn the newly created type into a domain, by attaching 

the domain attribute to the grading t type. This operation is also allowed by a rules 

that specifies that the TA can attach the domain attribute to types that bear a given 

attribute. 

We are starting to see that type attributes are an important part of the admin­

istrative policy 2 . As illustrated in Figure 4.2, type attributes can be used to group 

types. These groups can then be used instead of types in the specification of access 

vector rules. This is how administrative permissions are granted to the TA to let him 

create the type for the domain and then attach the domain attribute to it. The policy 

statements and administrative rules needed to let the TA create a grading domain 

are reproduced in Figure 4.1. 

Once the TA has created a grading domain, the next step is to declare the entry 

point(s) of the grading domain, as well as setting up automatic domain transitions 

on these entry points, and allowing them. That is, the TA has to designate which 

type(s) of executable files can be used to enter the grading domain. One way to 

do this is to create a type to label the grading script, say grading exec t. Then, 

with the grading script relabeled to the grading exec t type, set a domain transition 

2Type attributes were also used when constructing the emulation of RBAC on top of TE (see Section 

3.2.2). 
3In the reference policy, this permission is granted by attaching the file type attribute to a type. 
The reference policy contains a rule specifying that types bearing this attribute can be used to label 
filesystem objects. A variation of the rule we presented could let the TA attach the file type 

attribute to the types he has created. 

4Besides the permission to activate a swap file or a quota file. 
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Existing policy elements 
type ta_t; The type associated with 

the TA processes 
type ta_file_t; The type associated with 

the TA files 
attribute ta_type; Attribute for tagging the 

types created by the TA 
Existing policy rules 

allow ta_t ta_type:file { relabelto relabelfrom } The TA can relabel to and 
from types that bear the 
ta_type attribute 

allow ta_t ta_file_t:file { relabelto relabelfrom } The TA can relabel to and 
from the type normally as­
sociated with his home di­
rectory (ta_file_t) 

Existing administrative rules 
allow ta_t ta_type:type create; 

allow ta_t ta_type:attribute(domain) attach; 

allow ta_type self:filesystem associate; 

allow ta_t *:av_rule({ta_t ta_type}, ta_type, \ 
file , ~ { swapon quotaon } ) \  
{ insert remove } 

allow ta_t *:tr_rule({ta_t ta_type}, {ta_t ta_type},\ 
* , {ta_t ta_type} ) \ 
{ insert remove } 

The TA can create types 
“through” the ta_type at­
tribute 
The TA can turn types 
with the ta_type at­
tribute into domains 
The types created by the 
TA (with the ta_type at­
tribute) can be used to la­
bel filesystem objects3 

The TA can grant himself 
and his domains almost 
any permission4on files of 
the type he has created 
The TA can set up type 
and domain transitions be­
tween any of the types he 
has created 

Figure 4.1.: Example configuration that lets the TA create domains 
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Object Types 

Permission 

Subject Attribute Object Attribute 

Permission 

Subject Types Object Types 

(c) In the general case, both the subject 
and object of a TE rule can be expressed 
using attributes. 

Figure 4.2.: Type Attributes. Attributes can be used in two main ways. By tag­
ging/untagging a subject type with an attribute, permissions can be added/removed 
to that type, if the attribute is used in rules like (a) (and more generally like (c)). 
The same tagging mechanism can be used to make an object type accessible, if the 
attribute used for tagging is already used in a rule like (b) (and more generally like 
(c)). 

Subject Attribute Object Type 

Permission 

Subject Types 

(a) Type attributes can be used 
to group subjects and their per­
missions. In this case, a sub­
ject can be seen as having permis­
sions “through” one of its type at­
tributes. 

Subject Type Object Attribute 

(b) Type attributes can also be 
used to group objects, and there­
fore the access rules that regulate 
their accessibility. In this case, an 
object can be seen as being accessi­
ble “through” its attribute. 
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from the ta t domain to the grading t domain upon execution of executables of the 

grading exec t type. Contrary to the original design in Flask [9], SELinux does 

not require an extra permission to connect the type being from and the type being 

relabeled to. If needed, one could use the validate trans statement to constrain 

the set of allowed relabelings. We have not addressed this issue; neither does the 

SELinux reference policy. 

As a result of creating the grading domain, creating the type for the grading 

domain executable entry point, and setting up the necessary type transition and 

access vector rules, the following statements are added to the policy: 

type grading_exec_t 

typeattribute grading_exec_t ta_type 

allow grading_exec_t self:filesystem { associate } ; 

allow ta_t grading_exec_t:file { read getattr execute } ; 

allow grading_t grading_exec_t:file { entrypoint } ; 

type_transition ta_t grading_exec_t:process grading_t 

allow ta_t grading_t:process transition 

Additionally, the TA can set up filesystem type transitions so that the log files cre­

ated during the run of the grading are automatically typed with the grading_log_t 

type, and accessible in append-only mode from within the grading domain. This 

would result in the following additional statements in the policy: 

type grading_log_t
 

typeattribute grading_exec_t ta_type
 

allow grading_log_t self:filesystem { associate } ;
 

allow grading_t grading_log_t:file { create link append } ;
 

allow grading_t grading_log_t:dir { search write add_name } ;
 

type_transition grading_t grading_log_t:dir grading_log_t
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4.1.4 Limitations in the Mapping of Types to Objects 

We have just showed that the administrative model we designed in Chapter 3 can 

support delegated administration of the TE policy, even when it involves the creation 

of new types and domains. However, the granularity at which regular users can write 

policy statements is still limited, from a system perspective, by the granularity of the 

mapping from types to objects. This mapping is defined outside of the TE policy. 

As a consequence, even if the users can have a fine control on the TE policy, 

they may be forced to give up the principle of least privilege due to the granularity 

at which system-owned objects are labeled. For instance, the cgi scripts that the 

example assignment has to support only need access to a few of the system binaries 

(e.g. date). Furthermore, they should not be allowed to run the mail command under 

the TA’s identity. Indeed, although the grading program runs inside the grading t 

domain, it still runs under the TA’s unix identity. This means that emails sent from 

within the grading domain would be sent under the TA’s identity. Unfortunately, 

both date and mail are labeled with the same bin t type, which prevents from 

distinguishing them within the policy. Similarly, although network packets can be 

labeled, the specification of the labeling is also done outside of the TE policy. 

The only partial workaround is for the TA to make a copy of the subset of system-

owned files that he wishes to let the confined grading environment have access to. 

This workaround introduces duplicates of system files, which is a known issue with bsd 

jails [86]. Having these duplicates introduce the need for reconciling them (conflict­

resolution for data files; propagation of the system updates for executables), and 

wastes disk space. There is no workaround for network packets that does not involve 

re-writing firewalling code, which is notoriously hard to get right [137]. 

In the next two sections we explain, in turn, how we addressed this problem for 

filesystem objects labels and for network packets labels. Our solution preserves the 

semantics of the existing system policy. 
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4.2 Refining Filesystem Objects Labels 

As we explained in Chapter 3, the TE policy considers an object only through the 

type the type attached to the object and the type attributes attached to this type. In 

the SELinux terminology, attaching a type to an object is called labeling the object. 

The labeling of persistent filesystem objects is an important part of the deployment 

of a TE policy on SELinux. This labeling couples the policy, expressed in terms of 

types, to the concrete files that are used during the boot process, to boot the system in 

a trusted state.  More generally,  the type attached to each file and directory determines  

which parts of the filesystem a process can read to, write from, and execute code from. 

These are essential aspects when one wants to practically assure a system. 

Two antagonistic goals are at play when defining the labeling of the filsesystem. 

On one hand, one wants to define as few labeling rules as possible, to keep the set 

of rules tractable. On the other hand, one wants to define very precise labeling rules 

to enforce a fine grained-policy. However, every new rule potentially conflicts with 

an existing rule (and raises the need for a means of resolving rule conflicts). Also, a 

finer-grained policy yields a larger set of labeling rules, which is harder to audit. 

In the rest of this section, we will present how the filesystem labeling works in 

SELinux and why the standard implementation does not let users extend the labeling. 

Then we present our solution that lets users extend the labeling so that they can write 

policy statements at a granularity level of their choosing. In other words, our solution 

lets users define finer, coarser, or simply different groupings of objects. 

4.2.1 Filesystem Labeling Specifications 

SELinux relies on a filesystem labeling specification that indicates which label 

should be attached to which filesystem object. On a Fedora 10 distribution that uses 

the targeted policy, the current specifications can be found in the file /etc/selinux/ 

targeted/contexts/files/file_contexts. Each line of this file is composed of 

three tab-separated fields. In order, these fields are: 
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1. filesystem path pattern:	 an extended posix 1003.2 regular expression, which 

can specify one or several paths on the filesystem (regular expression branches 

’|’ are supported in extended regular expressions). 

2.	 an optional object class specification, that indicates the class of filesystem ob­

ject the specification is supposed to cover. The class uses the same one-letter 

encoding used by the ls utility when using its long output format. If the class 

option is used, it should be prefixed with a dash sign (’-’). For example, one 

would pass “--” to  limit the  specification to  regular files,  “-d” for directories,  

and “-b” for  block special files,  “-c” for character special files,  “-l” for symbolic  

links, “-s” for  socket  links, and “-p” for  named pipes.  

3. security context:	 either “<<none>>” or  a full  security  context in the  same  

form as displayed by the “-Z” option of  ls. “<<none>>” indicates that the  

matching filesystem objects should not be labeled. This form of security context 

is used to avoid labeling objects that are automatically labeled by the system 

(e.g. the /selinux virtual filesystem). A full security context looks as follows, 

taking the context of /bin/ls as an example on a Fedora 10 system: 

system u:object r:bin t:s0 

This context consists of four colon-separated fields: a TE user (system u for all 

filesystem objects), a TE role (object r for all filesystem objects), a TE type 

(bin t is attached to most system binaries), and an MLS context (s0 means 

sensitivity level 0, which is the default MLS context applied all over the system 

when the MLS policy is not activated, which is the case here). In the following, 

when we refer to labeling or relabeling a filesystem object, we are actually 

refering to the setting of the type field in the security context of that filesystem 

object. All other fields keep their default values that we just presented. 

This file is used primarily by the setfiles utility (and the fixfiles utility wrap­

per script), which is used to label the filesystem in two main cases. When SELinux 
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is deployed on a system that did not have SELinux active, the filesystem needs to be 

labeled so that filesystem objects are properly labeled and the policy can be enforced. 

The second case is to restore the file contexts to their proper values, on a system where 

SELinux was previously deployed but temporarily disabled. Indeed, when SELinux 

is disabled, so are the type transition rules that would normally guarantee a proper 

labeling of newly created filesystem objects (this default behavior is the result of type 

transition rules, which were described in Figure 3.3, Chapter 3). 

4.2.2 Filesystem Labeling: Semantic Limitations 

To motivate the next part of this section, we now present the stock semantics of 

filesystem labeling on SELinux and how they prevent the realization of the grading 

example. 

When setfiles decides how to label a file according to the labeling specifications, 

it reads rules from the specification file and labels each file according to the last rule 

that matches it. This means that the last matching rule determines entirely how the 

file will be considered from the perspective of the TE policy. Moreover, since a file 

can be labeled with only one security context, and a security context can contain only 

one type, then a file can only have one type attached to it, even if one were to use 

other means of applying the labels than running setfiles. 

Let us consider the grading program example again. Typically the whole subtree 

of the filesystem starting in the TA home directory will be labeled with the type 

user home dir t5 . What we would like to be feasible is the following. The TA would 

label a subset of his home directory with a type that indicates that this part of the 

filesystem is used for grading student submissions, say grading files t. The TA 

would then define a grading domain, say grading t in which the grading program 

would run. This domain’s filesystem write accesses would be limited to this subset of 

the filesystem to protect the TA account from accidental damage. This scenario can be 

5There are few exceptions, for instance to protect the ssh configuration files and keys. 
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handled with stock SELinux and our administrative model from Chapter 3, provided 

the TA is granted the proper administrative priviliges on the grading files t and 

grading t types. 

However, an important part of the filesystem access restrictions cannot be handled 

by a stock SELinux system, even with the administrative extensions from Chapter 

3. The limitation of having a single type attached to an object is problematic when 

a user, here the TA, would like to refine the accesses granted on these objects. As 

explained in Section 4.1.4, existing solutions are not satisfactory as they involve either 

duplicating or relabeling files, both of which are problematic. We present our solution 

to this problem in the next section. 

4.2.3 Overlay Labeling of Filesystem Objects 

Now that we have presented the limitations of filesystem labeling in a stock 

SELinux system, we present our solution to this problem. A satisfactory solution 

should allow users to overlay labels of their choice on top of system types and create 

policy statements that refer to these labels, without breaking the system policy state­

ments that refer to the existing (system) labels. Our solution uses type attributes to 

support multiple labels per filesystem objects. 

Our solution rests on the observation that type attributes can be used instead of 

types in most policy statements6 . Based on this observation, our solution consists in 

“promoting” policy types. In type promotion, a synthetic type is generated to replace 

the original type from the policy and the original type name becomes an attribute 

of the synthetic type. This process is illustrated in Figure 4.3. After type promotion 

the access control decisions of the policy are bound to type attributes, and not types 

anymore. At this point, it becomes possible to relabel objects without breaking the 

semantics of the system policy, as long as the promoted type are properly handled. 

Type promotion can be performed at different times: it can be performed on 

demand, or it can be performed ahead of time. We chose to perform ahead of time type 

6Our solution also handles the special case of the field that specifies the new type in a type transition. 
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promotion. This yields a simpler algorithm and offers better performance guarantees: 

only the objects belonging to the new overlay need to be relabeled. The pathological 

case with on demand type promotion is when the creation of an overlay necessitates 

the relabeling of a significant fraction of the filesystem objects, as this will potentially 

take a very long time. 

The next two parts of this section present in more details how type promotion is 

performed and, assuming all filesystem types have been promoted, how to handle the 

request by a user to overlay his own labeling on filesystem types. 

Type Promotion 

The process of promoting a type involves two aspects: promoting the type in the 

TE policy, which we describe first, and adjusting the filesystem labeling to effect the 

policy changes, which we describe last. 

Promoting a type in the policy consists of the following steps, which are illustrated 

in Figure 4.3: 

•	 generate a synthetic type: generate a type name that does not yet exist in the 

policy, and add it to the policy 

•	 attach attributes of the promoted type to the synthetic type 

•	 replace the promoted type by an attribute of the same name 

•	 attach this attribute to the synthetic type 

Since most fields of TE rules can accept types and types attributes interchangeably 

(see Section 3.1.2) the rest of the policy is unaffected by the type promotion, except 

for type transition rules. Indeed, the field that specifies the new type of an object 

(after the transition) only accept types. Indeed, a type attribute refers to the set of 

types that bear it whereas a type transition rule specifies the single new type that 

will be attached to an object. As a result, the following extra step needs to be taken 

when promoting a type: 
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Figure 4.3.: Type promotion consists in generating a synthetic type name (here, 
S bin t) to replace  an existing type  (here,  bin t), which becomes an attribute of the 
new synthetic type. Type promotion is necessary to support overlay labeling. The 
type promotion algorithm is provided in Algorithm 1. 

•	 if there are type transition rules which define transitions to the promoted type, 

they need to be replaced by type transitions to the synthetic type. 

The adjustments to the filesystem labels are performed using the same mechanism 

that is used to deploy the initial labeling or fix a corrupted one. A copy of the origi­

nal filesystem labeling specification (\tt/etc/selinux/targeted/contexts/files/ 

file_contexts) is  made.  In this  file,  for  each promoted type,  and for each  context  

that refers to it, the type component of the context is replaced by the synthetic type 

that was generated as part of the type promotion. This file is then a specification 

of how to correct the filesystem labeling, now that types have been promoted. This 

specification can be used by the same tool that is used for labeling filesystem objects: 

fixfiles. 

Creation of a Label Overlay 

We now present how the request by a user to overlay his own labeling on filesystem 

types is handled, provided all filesystem types have been previously promoted. 

A user  requests the creation  of a  label  overlay  by  providing  a  regular  expression  

that determines the filesystem objects to relabel, and a string that will be used as 

the name of the type attribute that will materialize the overlay. 
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Algorithm 1 Promote type xxx 

synth type ← new synth type()

policy.types ← policy.types ∪ {synth type}

for all attri ∈ xxx.attributes do
 
synth type.attributes ← synth type.attributes ∪ {attri}

end for 
policy.types ← policy.types ∖ {xxx}

policy.attributes ← policy.attributes ∪ {xxx}

synth type.attributes ← synth type.attributes ∪ {xxx}

for all ttri ∈ policy.type transition rules do
 
if ttr.target type = xxx then
 
ttr.target type ← synth type
 

end if
 
end for
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The overlay labeling involves the following steps, which are formally presented in 

Algorithm 2 and illustrated by an example in Figure 4.4: 

•	 create a type attribute for the overlay, and add it to the policy 

•	 create the synthetic types required to represent the overlay: the regular expres­

sion will cover a non-empty set of filesystem objects (otherwise, there is nothing 

to do). Since this set of objects is non-empty, the set of existing types used to 

label these objects will itself be non-empty. These existing types are actually 

synthetic types themselves, since the type promotion was performed ahead of 

time. For each of these existing types, a new synthetic type needs to be created 

to represent the intersection of the existing type and the overlay label. The new 

synthetic type will bear the overlay attribute and all the attributes of the ex­

isting type, hence materializing the intersection of the overlay and the existing 

type. 

•	 relabel the filesystem objects designated by the regular expression: each desig­

nated object is relabeled with the synthetic type that represents the intersection 

of its current type and the overlay. 

Please note that, contrary to type promotion, the overlay labeling does not involve 

any adjustment of the type transition rules. This is not an oversight. By leaving type 

transition rules unchanged, overlay labeling preserves the system policy that governs 

how new objects are supposed to be labeled upon creation. Indeed, overlay labeling 

is supposed to let users attach additional labels on objects for which they do not have 

administrative privileges. It should not let users change the default labeling rules for 

types on which they do not have administrative privileges. 

4.3 Network Packets Labels 

Network packets are one of the classes of objects to which access is regulated by 

SELinux. Network packets can therefore have a type attached to them, and this type 
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Figure 4.4.: Overlay Labeling of Filesystem Objects. In this example, the user re­
quests to label all files that match regular expression /bin/z.* with the label z stars, 
which happens to match /bin/zcat and /bin/zsh. 

Algorithm 2 Overlay labeling of files that match the regular expression regex with 
attribute attr 
Require: attr ∉ policy.attributes 
policy.attributes ← policy.attributes ∪ {attr}

synth types ← ∅ {Track the synthetic types that get generated}

for all filei ∈ regex.matches do
 
typei ← filei.type 
if synth types[typei] =  null then {Construct a synthetic type if needed}
stn ← new synth name()
synth types[typei] ← stn 
policy.types ← policy.types ∪ {stn}
for all attri ∈ typei.attributes do 
stn.attributes ← stn.attributes ∪ {attri}

end for 
stn.attributes ← stn.attributes ∪ {attr}

else 
stn ← synth types[typei]

end if 
{Relabel the object with the synthetic type}
filei.type ← stn 

end for 
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is used when evaluating access control according to the TE policy. As for filesystem 

objects, we find it desirable to let users overlay their own labels on network packets, 

provided that this feature can be supported while preserving the semantics of the 

system policy. In the context of the grading program problem, this feature is useful 

to let the TA confine submitted web servers to listening to a given port number, and 

to let them access only packets that come from the machine used to send them test 

requests. 

In this section, we first present the mechanisms that are available on SELinux for 

the labeling of packets. Then, we present how the packet filtering features of SELinux 

are used to support the packet labeling. After introducing formally the problem of 

overlay labeling of network packets, we show that an encoding on top of the normal 

labeling infrastructure would have poor performance. We then present our solution, 

based on interval trees. 

4.3.1 Overview of Packet Labeling on SELinux 

SELinux provides several mechanisms to specify and apply labeling decisions to 

network packets. We provide an overview of these mechanisms and the policies they 

support. 

There are two main cases in the operation of a networked SELinux system, when 

considering a given network connection. The system at the other end of the connec­

tion either supports labeled networking, or it doesn’t. If it does, then the labeling can 

be done according to a mapping of the remote peer labels (and therefore its labeling 

policy) to the local labels (defined by the local labeling policy). If the remote sys­

tem does not support labeled networking, then the labeling decision has to be made 

according to the local policy exclusively. 
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Peer Labeling 

Peer labeling is used for implementing a distributed trusted application, as it 

supports verifying the distributed deployment of the application along the lines of 

the trusted network interpretation [138] of the “Orange Book” or the shared reference 

monitor [139]. There are several means of configuring peer labeling. Currently, two 

mechanisms are available for peer labeling, Netlabel and labeled IPSec extensions. 

Netlabel [140] supports the transfer of labeling information by using the Com­

mercial IP Security Option (CIPSO) [141] extension of the IPv4 protocol. There the 

domains are only defined in MLS terms: a sensitivity level and a set of categories. 

Very few environments offer the physical network security required for a direct de­

ployment of CIPSO. Since CIPSO consists in a set of options in IP packet headers, it 

is vulnerable to the same spoofing issues as the IP protocol. This issue can be worked 

around by protecting CIPSO-labeled traffic inside a VPN tunnel, or by using labeled 

IPSec extensions. 

Labeled IPSec extensions [98] have been developed to support the transmission of 

peer labels inside IPSec Security Associations (SAs). The labeled IPSec extensions 

support the exchange of full SELinux security contexts, but are currently conflicting 

with another IPSec extension: Explicit Congestion Notification (ECN). The Internet 

Key Exchange (IKE) negociation establishes the context of each child SA, which 

establishes the context of the remote peer (a process in a given domain). The Labeled 

IPSec extension was submitted as a draft to the IETF on July 10th 2009 7 . 

As our work does not cover the enforcement of distributed security policies, we 

will not be covering peer labeling further. 

Local Labeling 

Local labeling is useful in all the cases not covered by peer labeling. Actually, 

most installations of SELinux fall in this category. First, most installations lack the 

7http://tools.ietf.org/id/draft-jml-ipsec-ikev2-security-context-01.txt 
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physical network security required for CIPSO deployment. Second, the deployment 

of either VPN tunnels to protect CIPSO traffic or IPSec peering (with the labeled 

extensions) is difficult on systems that are not under the same administrative domains. 

Indeed a pre-requisite to peer labeling is to agree on either the same labeling scheme 

or a mapping from one scheme to the other. 

Secmark is the current mechanism for local labeling. It is built on top the 

netfilter framework [142], as an extension of the packet mangling features. Practically, 

this means means that the labeling rules for packets are written as part of the packet 

filtering rules. This mechanism replaces the original packet labeling that was dropped 

when SElinux transitioned from being an external patch to being a security module 

shipped with the standard Linux kernel, where it is integrated on top of the of the 

Linux Security Module framework [109]. The older mechanisms, which relied on the 

specification of network security contexts within the security policy, were supported 

with the compat net backward-compatible code. compat net has been dropped out 

of the Linux kernel as of version 2.6.30 [99]. 

Our Choice 

Our works supports overlay labeling of network packets on locally-defined labels. 

More specifically, since the compat net support is officialy phased out [99], our so­

lution builds on top of the SECMARK functionnality. While we do not specifically 

address overlay labeling for peer-defined or peer-negociated labels, we believe that 

the techniques we develop for overlay labeling in this section and the previous one 

are applicable to these scenarios. 

4.3.2 Overview of the Netfilter Framework and iptables Implementation 

Netfilter is the packet filtering framework embedded in the last three major ver­

sions of the Linux kernel (3.0.x, 2.6.x, and 2.4.x series). iptables is the standard 

tool for used for configuring netfilter. SELinux uses an extension of iptables, sec­
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mark (described in the next section), to apply local labeling rules to packets. In this 

section, we present the functionalities offered by iptables, and  the  semantics  of  the  

rules matching. We do not discuss the new nftables filtering framework as is still in 

an early stage of development and not yet integrated in the standard Linux kernel. 

Since netfilter is a framework, it does not provide functionnality by itself. Instead, 

it exposes an API through which packet processing extensions can register functions 

that will be invoked to process packets. iptables is a packet processing extension 

built on top of netfilter. This extension exposes several tables, which correspond to 

different aspects of the processing of packets, e.g. filter for packet filtering, nat 

for network address translation, and mangle to alter packets. For each table, several 

default chains are available, corresponding to the different steps in the processing of 

a packets that are relevant for that table. These steps are illustrated in Figure 4.5; 

our focus is the mangle table because it is the table that is used for labeling packets8 . 

iptables is supplied with a tool, called iptables, which  is  used  to  edit  the  list  of  

rules contained in chains. Rules can be added, removed, and inserted in each chain. 

Each consists of a set of matching specifications (e.g. a range of source IP addresses 

and a destination TCP port) and a target, wich specifies what should be done to 

a packet that matches  the rule.  A  packet can leave a chain in one of the  following  

ways: a matching rules specifies a final decision for the packet, the end of the chain 

is reached, or the packet is sent to another (user-defined) chain. When a packet is 

sent to another chain, it may or may not return to the current chain, depending on 

whether a final decision is reached in the chain the packet is sent to. 

Inside a given chain, the semantics of the rules matching is that the first matching 

rule is applied. If the target of the rule indicates a final target, the decision is applied 

and processing stops at this rule. There are several kinds of final targets. ACCEPT 

and DROP are built in targets, to respectively accept or silently drop a packet. An 

8A full discussion of netfilter is beyond the scope of this work. A detailed diagram of the flow of 
packets through the netfilter framework can be found in Figure A.1, for reference. That diagram 
shows which default chain is available for each table, as well as the order in which these chains are 

invoked as a packet flows through the system. 
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Figure 4.5.: Default chains in netfilter: input, forward, output, pre-routing and post-
routing. These five chains are available to the netfilter mangle table, which is used 
for packet labeling. The filter table, which is applied after the mangle table, does 
not have the pre-routing and post-routing chains. With filtering, which embodies 
traditional network firewall techniques [100], the access-control decision is made ex­
clusively according to filtering rules. With labeling, the decision can be delegated to 
another component. For instance, packets labeled with security contexts are decided 
upon by the SELinux enforcement mechanisms, based on the policy of the system. 
The chains of interest to confine processes are the input and output chains, where 
packets can either be filtered or labeled. 
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extension of iptables, REJECT,  can  be  used  to  precisely  define  how  the  rejection  of  

the packet should be manifested (e.g. sending an ICMP “port unreachable” packet 

or a TCP reset packet). The QUEUE target can be used to send packets directly to 

user-space. In some cases, RETURN can be constitute a final target, as discussed 

below. 

The end of a chain can be reached in two ways: either processing reached the last 

rule, which doesn’t match, or the current rule matches, and its target is RETURN. 

Two things can happen when the processing of a packet reaches the end of a chain. If 

the current chain is a built-in chain, then the default chain policy (either ACCEPT 

or DROP) is applied. If the current chain is a user-defined chain (explained below), 

it can not have a default policy. In this case, processing returns to the calling chain, 

and processing resumes in the calling chain, after the rule whose target was to call 

the current chain. 

Here is a simple example of how the filtering of ICMP packets can be configured 

with iptables9: 

iptables -A OUTPUT -o eth0 -p icmp -m state \ 

--state NEW,ESTABLISHED,RELATED -j ACCEPT 

iptables -A INPUT -i eth0 -p icmp -m state \ 

--state ESTABLISHED,RELATED -j ACCEPT 

The first rule authorizes (-j ACCEPT) any ICMP packet (-p icmp) to  be  sent  

by the machine (-A OUTPUT) on interface  eth0 (-o eth0). The second rule au­

thorizes only icmp packets that either are in response to a previous ICMP packet 

(--state ESTABLISHED) or  are related to another connection (--state RELATED) 

being tracked by the connection-tracking subsystem. The connection-tracking sup­

ported by the CONNTRACK netfilter module is critical to supporting this precise 

filtering of ICMP packets. Prior to CONNTRACK, the solution consisted in allowing 

9This example is based on the simple firewalling script by James Stephens, available at http: 
//www.sns.ias.edu/~jns/. ICMP  packets  are  used  for  network  diagnostics,  for  instance  by  the  

ping command. 

www.sns.ias.edu/~jns/.ICMP
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only ICMP “echo reply” packets to enter the system. However, some attacks took 

advantage of this common rule for Denial of Service (DoS) purposes, for instance the 

smurf attack. The rule presented in the above example avoids this problem. 

We mentioned user-defined chains briefly above. User-defined chains can be used 

to support function call semantics in the structure of the firewalling rules. That is, 

the filtering of a packet can be delegated by one chain to another. This is done by 

using the called chain as a target of a filtering rule in the calling chain. By putting 

final targets in the rules of the called chain, this feature allows structuring the rules 

as a call tree. The advantage of using this tree structure to group rules is that it 

limits the number of rules that have to be be processed every time a packet flows 

through the system. 

For example, the following set of iptables commands create a new chain 

(ssh-chain), to which the processing of all ssh-related packets (TCP traffic going to 

or from port 22) is delegated: 

iptables -N ssh-chain 

iptables -t filter -A INPUT -p tcp --sport 22 -j ssh-chain 

iptables -t filter -A OUTPUT -p tcp --dport 22 -j ssh-chain 

This structuring of rules can be used to support the encoding of decision trees, as 

we will see later. To support custom traffic shaping, iptables also supports adding 

arbitrary 32bit marks on packets. This feature is provided by the MARK extension. 

The idea behind this feature is to decouple packet classification (the grouping of pack­

ets in service classes) from the enforcement of a differentiated quality of service policy 

on these packets. The MARK extension can be coupled with connection tracking for 

faster classification of packets that are part of an ongoing connection (this extension 

is called CONNMARK and is coupled with CONNTRACK). In this case, the first 

packet that initiates the connection is used to determine the mark attached to the 

connection. Following packets, which are identified as part of the same connection, 

are marked based on the mark attached to the connection. The advantage of this 
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approach is that the potentially complex process of deciding which mark to attach 

to a packet is only performed explicitly once, when a connection is initiated. Follow­

ing packets of the same connection are classified much quicker by recalling the mark 

attached to the connection. 

Here is an example set of rules10 that splits connections in two categories for a 

simple load balancing scheme. This set of rules uses three user-defined chains: one 

for restoring the mark on established connections (RESTOREMARK); the two others 

(CONNMARK1 and CONNMARK2) are used to set  marks  on new connections.  

iptables -t mangle -N CONNMARK1 

iptables -t mangle -A CONNMARK1 -j MARK --set-mark 1 

iptables -t mangle -A CONNMARK1 -j CONNMARK --save-mark 

iptables -t mangle -A CONNMARK1 -j LOG \ 

--log-prefix ’iptables-mark1: ’ --log-level info 

iptables -t mangle -N CONNMARK2 

iptables -t mangle -A CONNMARK2 -j MARK --set-mark 2 

iptables -t mangle -A CONNMARK2 -j CONNMARK --save-mark 

iptables -t mangle -A CONNMARK2 -j LOG 

--log-prefix ’iptables-mark2: ’ --log-level info 

iptables -t mangle -N RESTOREMARK 

iptables -t mangle -A RESTOREMARK -j CONNMARK --restore-mark 

iptables -t mangle -A RESTOREMARK -j LOG \ 

--log-prefix ’restore-mark: ’ --log-level info 

# restore the fwmark on packets that belong to an  existing connection  

iptables -t mangle -A PREROUTING -i eth0 -p tcp \ 

10This example is an excerpt from http://www.sysresccd.org/wiki/index.php? 
title=Sysresccd-networking_en_Iptables-and-netfilter-load-balancing-using­

connmark&printable=yes 

http://www.sysresccd.org/wiki/index.php
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-m state --state ESTABLISHED,RELATED -j RESTOREMARK 

# if  the mark  is zero  if means  the packet  does not  belongs to  an  

# existing connection  

iptables -t mangle -A PREROUTING -p tcp -m state --state NEW \ 

-m statistic --mode nth --every 2 --packet 0 -j CONNMARK1 

iptables -t mangle -A PREROUTING -p tcp -m state --state NEW \ 

-m statistic --mode nth --every 2 --packet 1 -j CONNMARK2 

In the next section we present how the packet marking infrastructure is used in 

SELinux for attaching security contexts to network packets. 

4.3.3 TE Packet Labeling with the Secmark SELinux Extension 

The secmark and connsecmark targets of iptables are the Linux Security 

Module counterpart of the mark and connmark extensions. The secmark and 

connsecmark targets are used to decouple packet labeling from access control en­

forcement on these packets, in the same way that mark and connmark are used to 

decouple packet classification from service differentiation. 

The secmark and connsecmark targets can only be used in the mangle table. 

Figure 4.5 shows the default chains available in the mangle table, and where these 

chains are placed in the flow of network packets. 

Supporting the overlay labeling of network packets involves the evaluation of po­

tentially large combinations of criteria, in order to determine which synthetic type 

to attach to a packet. The fact that targets can trigger a jump to or a return from 

user-defined chains could potentially be used to encode the overlay labeling rules for 

network packets in terms of a decision tree materialized by a set of iptables chains, 

where each chain would correspond to a decision. Such an encoding is discussed in 

Section 4.3.4. In the remainder of this section, we present an example of how the 

labeling of packets, together with an access vector rule in the TE policy, can be used 

to enforce access control on network traffic. 
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The following example demonstrates the use of the secmark and connsecmark 

features available for the labeling of network connections, applied to the labeling of 

both control and data connections of FTP11. We explain the meaning of these rules 

contained below, and provide a graphical illustration of their meaning in Figure 4.6. 

1 # Ensure the FTP  helper is  loaded  

2 modprobe ip_conntrack_ftp 

3 

4 # Create a chain  for connection setup marking  

5 iptables -t mangle -N SEL_FTPD 

6 

7 # Accept incoming  connections, label  SYN packets,  and copy  

8 # labels to connections.  

9 iptables -t mangle -A INPUT -p tcp --dport 21 -m state --state NEW \ 

10 -j SEL_FTPD 

11 iptables -t mangle -A SEL_FTPD -j SECMARK \ 

12 --selctx system_u:object_r:ftpd_packet_t:s0 

13 iptables -t mangle -A SEL_FTPD -j CONNSECMARK --save 

14 iptables -t mangle -A SEL_FTPD -j ACCEPT 

15 

16 # Common rules which copy connection labels  to established  

17 # and  related packets.  

18 iptables -t mangle -A INPUT -m state --state ESTABLISHED,RELATED \ 

19 -j CONNSECMARK --restore 

20 iptables -t mangle -A OUTPUT -m state --state ESTABLISHED,RELATED \ 

21 -j CONNSECMARK --restore 

The content of this script is as follows. Line 2 ensures that the kernel module for 

ftp connection tracking is loaded. Line 5 creates a new iptable chain in which the 

11This example is reproduced from an article on James Morris’s blog, available at http://james­

morris.livejournal.com/11010.html 

http://james
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Figure 4.6.: Graphical representation of the structure of the rules from the secmark/ 
connsecmark example. 

rules for the labeling of FTP packets will be grouped (SEL_FTPD). Line 9 adds a rule 

in the mangle chain of the input table that redirects the processing of FTP packets 

(selected by the value of their destination port) for which only the syn flag is set to 

that new chain, and instructs the connection tracking module to consider this packet 

as creating a new connection (this is indeed the beginning of a new connection if only 

the syn flag is set). 

Line 11, a label is applied to the new packet. Line 13, that labeled is saved in 

the connection context. Line 14, the packet is accepted. Line 18 and 20, which are 

only reached if the rule on line 9 does not match, are used to label FTP packets of 

ongoing FTP connections, based on the label that was applied to the initial packet of 

each connection and save in the connection state (Line 9 to detect the initial packet, 

Line 11 to label the initial packet, and Line 13 to store the labeling to the connection 

state). 

The structure of this set of rules (illustrated in Figure 4.6) assumes that the default 

policy of the input and output chains is to accept packets. Otherwise, it would 
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not make much sense to accepts only the first packet of a connection (Line 14), and 

then reject all the following packets of that connection. Instead of singling out the 

first packet of a connection as the only one accepted, the purpose of the accept rule 

in Line 14 is actually to provide an early exit of the firewall chain, to optimise the 

filtering time. 

This example assumes an accept-by-default policy, whereas secure configuration 

examples of firewall rules usually put a strong emphasis on using deny-by-default 

policy structures [100]. Accept-by-default is actually a reasonable choice in the case 

of SELinux, since processes are denied by default access to network packets. 

For the FTP daemon to have access to the ftp packets, the following access vector 

rule needs to be added to the TE policy: 

allow ftpd_t ftpd_packet_t:packet { recv send }; 

The recv permission is checked when the process tries to get the data from 

the socket, which triggers a read of the socket buffer, by hooking into the 

socket sock recv skb() hook. The send permission is checked by hooking into 

the output access control hook of netfilter: NF_INET_POST_ROUTING. 

Now that we have introduced the features available in SELinux to perform network 

packet labeling, and enforce access control based on these labels, we return to the 

problem of supporting overlay labels for network packets. 

4.3.4 Network Packets Overlay Labeling 

In this section we study the problem of overlay network packet labeling. That is, 

how to attach several labels on network packets, without altering the semantics of 

the existing firewalling rules of the system. We start by defining the problem, show 

its ties to known NP-hard problems, and provide an approximate solution. 
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Problem Definition 

The overlay labeling of packets that we want to support is a variant of the packet 

classification problem. The common part of the two problems involves reaching a 

decision about a network packet based on the content of (some of) its header fields. 

More formally, the common part of these problems can be stated as follows. 

Each packet has d header fields: f1, . . . , fd, with their respective values v1, . . . , vd. 

The binary representation of each of these fields has a length li (with 1 ≤ i ≤ d), hence 
the following relation for these fields: ∀i ∈ 1 . . . d,0 ≤ vi ≤ 2li − 1 

There is a set L of labels that can be attached to packets. 

A packet classification rule is a (d + 1)-tuple of the form (r1, . . . , rd, l), where, 
r1, . . . , rd are respectively ranges on the f1, . . . , fd header fields (∀i ∈ 1 . . . d, ri = 
(xi, yi)s.t.0 ≤ xi ≤ yi ≤ 2li − 1) and l ∈ L is the label that should be attached to a 

packet that fits simultaneously in all these ranges. The matching is formally defined 

as: ∀i ∈ 1 . . . d, xi ≤ vi ≤ yi. 
A more visual  description  is the following.  The  d header fields define a d-dimension 

space, in which points are packets. Classification rules are d-dimensional axis-parallel 

boxes; the label can be represented as a color on the box. The classification problem 

is therefore to determine which box(es) a point is contained in, in order to decide on 

the label(s) that should be attached to a packet. 

Now that we have presented the core of these problems, we can highlight their 

respective differences. Our problem, the overlay labeling problem, is to find all the 

labeling rules that match a given packet. The packet classification problem is to 

decide, given a set of prioritized packet classification rules, which rule best matches 

the incoming packet. This difference has consequences. For instance, the complexity 

analysis has to take into account the size of the set of rules that are found to match 

the incoming packet. Indeed, for n classification rules there may be O(n) rules that 
match a given packet, in degenerate cases with a thick overlap of rules. 

For a practical deployment, we actually have to support a mixture of packet 

classification and overlay labeling rules. Indeed, existing system labeling rules are 
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defined in terms of packet classification, with the first matching rule having a higher 

priority. 

Simple Encoding atop iptables, and  its  Limitation  

As we just above, there is a difference between packet classification and overlay 

labeling. What iptables does is packet classification. The rules are evaluated in 

order, and the first rule that matches is applied. Thiscan be worked around by 

separating labeling rules from filtering rules and placing labeling rules first. This 

way, the packet filtering decisions are evaluated after all the labeling decisions have 

been applied. Another limitation to address is that secmark, only  support  attaching  

one label per packet, so only the label corresponding to the last matching labeling 

rule is applied to a packet. This limitation of one label per packet can be overcome 

by using indirection techniques similar to what we developed to support the overlay 

labeling of filesystem objects (see Section 4.2.3). 

An encoding of network packets overlay labeling atop existing iptables rules 

can be constructed, as illustrated in Figure 4.7. The construction is to some extent 

similar to overlay labeling for filesystem types. Type promotions is necessary for 

network packets overlay labeling and is performed ahead of time as well. What’s 

more, the packet labeling rules themselves need to be modified, such that they can 

be extended to support the later deployment of overlay labels. This modification 

consists in replacing each individual labeling rule with a chain whose last (default) 

rule performs the same labeling (step 0 in Figure 4.7). 

With this modification, an overlay label can later be deployed by inserting a rule 

for the the overlay labeling in each chain, and by adding another rule whose criteria 

is the overlay criteria, and whose target jumps to a chain whose default behavior is to 

label packets with the overlay label. Step 1 in Figure 4.7 represents the deployment of 

an overlay label that specifies that packets matching condition c3 should be labeled 

with label t3. 
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Figure 4.7.: Encoding the overlay labeling of network packets in terms of packet 
classification rules. This approach has a linear complexity for the runtime processing 
of packets, as one can verify by looking at the linear increase of the depth of the tree 
of filtering rules. However, the cost of adding a new rule to the tree is exponential 
in terms of the number of rules, which prevents the solution from being applicable in 
practice. 
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This encoding, however, scales poorly. Supposing there are m system-defined 

labeling rules and n overlay labeling rules. We see that the addition of the first 

overlay rule requires the addition of m + 1 chains  and  m + 1 synthetic types,  yielding  

2m + 1 chains and  their associated types.  By induction  one can  show that,  with the  

deployment of n overlay labels, this encoding results in the creation of (m.2n +∑n
i=1 2

n)
labeling chains and synthetic types. Since we expect our system to support at least 

a few  hundred  overlay labeling  rules, this encoding  is impractical.  

What this scheme does, essentially, is encode the overlay labeling directly as a 

decision tree. This encoding can likely be optimized, but the optimization of decision 

trees is an NP-complete problem [143]. There is another approach to our problem 

which is tractable, as we show next. This approach, however, will require new packet 

classification mechanisms. 

Solution 

The problem of classifying a packet with multiple labels according to n d-dimen­

sional criteria can be solved using techniques from computational geometry. There are 

several similar problems in computational geometry, e.g. windowing queries, range 

queries, and stabbing queries. Mapping our problem in terms of a stabbing query 

in d dimensions yields an efficient and scalable solution, which we present below. 

Besides the seminal articles that introduced the data structures mentioned and ref­

erenced below, we want to acknowledge the following materials as instrumental in 

helping us piece together this solution. We have used lecture materials from An­

toine Vigneron [144], “Foundations of Multimensional and Metric Data Structures” 

by Hanan Samet [145], and“Data Structures and Algorithms 3: Multi-Dimensional 

Searching and Computational Geometry” by Kurt Melhorn [146]. We found the de­

scription of interval trees in [147], [148] and [149] to be misleading, as pointed by 

Hanan Samet [145]. 
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Stabbing queries The problem that we are solving has a direct mapping to the 

stabbing problem, which is defined as follows. In a d-dimensional space, given a set of 

n axis-parallel boxes12 and a query point in that d-dimensional space, find all the k 

boxes that contain the query point. 

Many data-structures have been proposed to support stabbing queries in one di­

mension: interval tree [148, 150], segment tree [151], priority search tree [152], and 

interval skip lists [153]. Each of these data structures support stabbing queries in 

time O(log n + k), where k is the number of returned intervals. However, they offer a 

different trade-off between space and time complexity for the storage and update of 

the rules. We discuss this point later. 

These data structures are commonly generalized to d > 1 dimensions by recursively  

nesting them. The idea is the following: the top-level data structure is used to index 

on one dimension. Each nodes of the top-level data structure points to another 

data structure that indexes on the d − 1 remaining dimensions.  The nesting ends on  

the data-structure that indexes the last dimension. The query complexity for this 

generalization is therefore O(logd x+k), as can be proved by induction on the number 

of dimensions. 

Proof of complexity for the multi-dimensional generalization of the stab­

bing problem 

• Base case: with one dimension, the complexity is O(log n + k), as  demonstrated  

in [148, 150–153] 

• Induction: with d > 1 dimensions:  the longest path  that  can be traversed in  

the data structure that represents the d-th dimension is of length log n, since 

there are n intervals (corresponding to n isothetic boxes) indexed in this dimen­

sion. Along that path, for each node that contains stabbed intervals the d − 1 

dimensional data structure attached to the node is queried. So there can be 

12Formally, axis-parallel boxes are called isothetic boxes 
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at most logn such queries. Hence a total number of visited nodes of at most 

O((log n).(logd−1 n)) = O(logd n). Since  there  can  up  to  n isothetic boxes found 

along this path, the total complexity is therefore O(logd n + k), with k ≤ n 

We now present the data structures available for efficiently performing stabbing 

queries and justify our choice. 

Choice of a Supporting Data Structure Our criteria for selecting a base data 

structure to support the stabbing queries were the following, by order of importance 

1. Query time: for psychological acceptability, it is important that introducing our 

mechanisms does not degrade the performance of the system too much. 

2. Storage space: the data structures used for labeling packets should fit in mem­

ory. 

3. Update time: it is desirable to use a dynamic data structure in order to minimize 

the cost of updates. In other words, we would like to avoid rebuilding the data 

structure from scratch after each update. There are general techniques to turn 

static data structures into dynamic ones [154]; not all of them are practically 

implementable. The rationale for this criteria is that, although changes to the 

security policy are not that frequent, it is still better if they can be effected 

quickly to avoid disrupting network traffic too much. 

Similarly to the packet classification vs. packet overlay labeling issues, data struc­

tures that support efficient queries on intervals (or ranges, or segments) overlaps do 

not all interpret the problem the same way. Some structures are more efficient than 

others depending on whether one wants to determine if there is an overlap, how many 

overlaps there are, any first found overlap, the first found overlap with priorities, or all 

the overlaps. We are interested in the later problem: finding all the overlay labeling 

rules that match a given packet. 
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In Table 4.1, we have summarized the performance of computational geometry 

datastructures that we have surveyed for solving this problem. We have chosen the 

interval trees created by Edelsbrunner [150]. 

Table 4.1: Comparison of the time and space complexity of datastructures that sup­
port stabbing queries on intervals, where a stabbing query is defined as returning all 
the intervals that contain the stabbing point. 

Datastructure Query Time Storage Space Update Time 
Segment Tree [151] O(log n + k)

O(min(n, k log n)) O(n O log n 
Interval Tree [148] O n 

2) 
O log n 

Interval Tree [150] O log n + k O n O

(((log n

)))
Priority Tree [152] O log n + k O n N/A 
Interval Skip List [153] O

(((log n + k

))) O

((((n

)))) O(log n) 

4.3.5 Interval Trees to Support Network Packets Overlay Labeling 

In this section, we describe interval trees (as formulated by Edeslbrunner [150]), 

the datastructure that we have chosen to support the overlay labeling of network 

packets. First, we give a high level decription of the construction of interval trees, 

which we use as a basis to present how the stabbing query works atop an interval tree, 

in details. Then, we revisit the construction of the interval tree in details. Finally, 

we present a generalization of this datastructure to multiple dimensions. 

The construction of an interval tree consists in recursively chosing a median point 

to divide the set of intervals in three sets: 1/ those that overlap the median point, 

2/ those to the left of it, and 3/ those to the right of it. The intervals from the first 

set are attached to the current node. The intervals to the left (resp. right) of the 

median point are split in a similar fashion in the left (resp. right) sub-tree. As a 

result of this divide-and-conquer approach on n intervals, the height of the tree is at 

most log n. As each interval is stored exacty once in exactly one node of the tree, the 

storage space requirement is O(n). 
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Assuming the interval tree is already constructed, we now explain how a stabbing 

query is evaluated and the complexity of this evaluation. 

Search 

The search proceeds as follows. The stabbing point ps is compared with the 

median point pm of the current node. Three cases are possible: 

•	 ps = pm: this  is  the  simplest  case: all  the  intervals  attached  to  the  current  node  

are stabbed by ps. All the intervals attached to the current node are returned; 

the search is over. 

• ps < pm: stabbed intervals have to be searched for in two sets: the intervals 

attached to the current node, and the intervals stored in the left subtree. To 

search for stabbed intervals in the current node, we can exploit the fact that all 

the intervals attached to the current node end after the stabbing point. This is 

true because these intervals are stabbed by the median point, pm (and ps < pm). 
If these intervals start before the stabbing point ps, then  they  are  stabbed  by  

it. By keeping a list of the attached intervals sorted, in increasing order, by 

their starting point, the test works as follows. The current point pi in this list 

is compared to ps. If pi ≤ ps, then  the  corresponding  interval  is  stabbed  by  ps. 

This continues until a point pi is found that satisfies pi>ps. The cost of this test 
is O(1) if no interval is stabbed; otherwise, it is O(k), where k is the number 

of stabbed intervals. 

• ps > pm: this  case  is  similar  to  the  ps < pm case, except that a list of intervals, 

sorted by their enpoints in decreasing order, is used to find the stabbed intervals 

in the current node. 

From this description of the search, one can infer that a given search traverses at 

most log n nodes. On each node, the test for stabbed intervals either takes O(1) time 

when it fails, or O(k) when k intervals are stabbed. Consequently the complexity of 
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A: [1;4] 

B: [3;8] 

C: [6;11] 

D: [7:10] 

Figure 4.8.: Example of one-dimensional intervals that are used to illustrate the con­
struction of an interval tree. The are three intervals: A: [1;4], B: [3;8], C: [6;11], and 
D: [7;10]. On the x axis, the circled coordinates indicate the values that correspond 
to a least one interval endpoint. 

2 5 7.5 10.5 

3.5 9 

7 

1 3 4 6 7 8 10 11 

Figure 4.9.: First step in the construction of an interval tree. A binary search tree is 
built based on the endpoints of the intervals from Figure 4.8. 

a stabbing  query in the  interval  tree is  O(log n + k), with k being the total number 

of intervals returned by the stabbing query. 

It is possible to optimize the search in an interval tree by keeping track of the 

active nodes of the tree. Active nodes are the ones where intervals are stored. By 

adding an extra set of pointers to the nodes of an interval tree, it is possible to reduce 

the time taken by the search by limiting the search to explore only active nodes. In 

the following subsection, we presented how an interval tree can be constructed. After 

this presentation, we show how the marking of active nodes and the setting of their 

pointers to active nodes can be done, while inserting intervals into the interval tree, 

and without degrading the complexity of interval insertion. 
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Figure 4.10.: Interval tree built based on the endpoints of the intervals from Figure 
4.8. 
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Construction 

We now explain how an interval tree is constructed, and we illustrate this con­

struction based on the example of Figure 4.8. The first step in the construction of an 

interval tree involves sorting the endpoints of the intervals (the circled nodes in Figure 

4.8). Based on this list, a binary search tree that contains the interval endpoints as 

leave nodes can be constructed; the key value of inner nodes can picked anywhere 

between the two values of their child nodes. It is customary to use the median value. 

We have done mostly so in the example (see Figure 4.9). The next step consists in 

inserting the intervals one by one in the search tree. Intervals get attached to the 

first encountered node whose key is comprised between the endpoints of the interval. 

For instance, consider interval A. interval A’s endpoints (1 and 4) are both lower 

values than the tree’s root key, so the insertion continues in the left subtree of the 

root, whose key value is 3.5. This value is contained in A. As a result, A is attached 

to that node. This requires adding A’s beginning point (1) to the list of beginning 

points sorted in increasing order, and adding A’s ending point (4) to the list of ending 

points sorted in decreasing order. The result of inserting intervals from Figure 4.8 

into the tree from Figure 4.9 are illustrated in Figure 4.10. 

The cost of the construction of a one-dimensional interval tree is therefore com­

posed of the following elements: 

•	 the cost of constructing the binary sort tree, which is the cost of sorting the 

endpoints of the intervals: O(n log n)
•	 the cost of locating the node where each interval must be stored. For each inter­

val, this is the cost of a search in the binary search tree, O(log n). Cumulatively, 

the cost is O(n log n). 
•	 the cost of inserting the endpoints of an interval at the node where the interval 

is stored. If a list is used the cumulative cost is O(k2), where k is the upper 

bound on the number of intervals that can end up being stored on a given node. 
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This is not acceptable as the overlapping of segments can be arbitrarily thick 

and therefore k can be comparable to n. The solution is to use a sort tree to 

index the elements of the lists containing the endpoints, as illustrated in figure 

4.11. With this trick, the cumulative cost of storing the endpoints of an interval 

in a node is reduced to O(k log k), while still preserving the time complexity of 

the stabbing queries (the linked list can be used to return the attached intervals 

in O(k)). 
Consequently, the cost of constructing the interval tree is O(n log n). 

An additional feature of interval trees, in their most optimized form, is to mark 

nodes that are active and maintain a doubly-linked list of active nodes. Nodes are con­

sidered active if they have at least one interval attached to them. This optimization 

allows faster queries in practice on a sparsely populated interval tree ; the theoretical 

bound remains unchanged. As noted by Melhorn in [146], if the set of base nodes on 

which the interval tree is built contains only endpoints of the intervals stored in the 

tree, “then the mark bits and the doubly linked list is [sic] not needed.” Since we plan 

on building the interval tree based on the endpoints of the packet selection criteria, 

this remark applies and an implementation of overlay labeling for network packets 

does not need to implement this optimization. Overlay labeling, however, use multi­

dimensional criteria. We present the generalization from one to several dimensions in 

the next section. 

Generalization to Higher Dimensions 

Interval trees can be generalized, from storing 1-dimensional intervals, to storing 

d-dimensional intervals (isothetic boxes). This is possible because the d-dimensional 

stabbing query is decomposable as a search problem on each of the dimensions, the 

final answer being the join of the answers on each dimension. 

Consequently, it is tempting to implement a straightforward decomposition of the 

storage and the search for intervals in d separate 1-dimensional interval trees. The 



 

   

148 

LT RT 

Root 
Val i 

RSRSHLS LSH 

Left 
Val j 

Right 
Val k 

Figure 4.11.: Representation of one non-terminal node of a one-dimensional interval 
tree, which has two non-terminal children nodes. The node contains 3 sets of pointers. 
LT and RT point to the children nodes in the primary structure, and hence the heads 
of the left and right subtrees in the primary structure. LSH and RSH point to the 
heads of the left and right search trees in the secondary datastructure, where the 
endpoints of intervals that contain value i are stored. These pointers are used when 
inserting or deleting intervals from the interval tree. LS and RS respectively point to 
the leftmost interval starting point in LSH and to the rightmost interval ending point 
in RSH. These additional pointers are used to accelerate the lookup of interssected 
intervals. 
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Figure 4.12.: Generalization of interval trees, from one to two dimensions. In addition 
to the three sets of pointers described in Figure 4.11 , each node of the primary 
structure also contains a pointer ND (“next dimension”) to an interval tree that 
indexes, according to the other dimension, the intervals attached to that node. 
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interval trees get queried separately, and the final result is assembled by keeping only 

the intervals that are returned in every query. This would result in simpler code 

and simpler datastructures than nesting the datastructures (which we illustrate in 

Figure 4.12). Also, it would seem to offer a great time complexity: d.(O(k) + log n). 
However, degenerate cases can force this solution to run in O(n), when any of the 

1-dimensional queries returns a number of elements comparable to n. 

For instance, if all the overlay labeling criteria specify traffic coming from the same 

network interface, then each packet will be matched on that dimension, forcing the 

labeling to run in O(n), even when the other criteria do not overlap at all. Because 

of the possibility of such degenerate cases, a simple join strategy is not adequate. 

The nesting of interval trees, on the other hand, guarantees that only the relevant 

intervals will be looked at. 

We present a 2-dimensional nesting (see Figure 4.12); it generalizes easily to more 

dimensions. With a 2-dimensional interval tree, the main tree is built based on the 

endpoints of intervals in the first dimension. The nodes of the main tree, instead of 

pointing directly to intervals, point to a 1-dimensional interval tree. In this tree, the 

interval endpoints are sorted and stored according to the second dimension. Also, 

when intervals are stabbed in this last dimension, it means that they were stabbed in 

the previous dimension, so they can be returned in the result of the stabbing query. 

The direct advantage of this nesting is that intervals are returned if and only if 

they are stabbed in each and every dimension. This property makes the performance 

more resilient to degenerate configurations, where O(n) intervals overlap on a given 

dimension. It is actually possible to construct an adversarial set of rules such that 

there are always O(n) intervals stabbed in each dimension of the query. The con­

struction relies on the fact that each dimension is finite. The idea is to partition 

each dimension in d intervals, and then use the cartesian product of these intervals 

to partition the space. This results in 4 squares when d = 2, 27 cubes when d = 3, 
and more generally dd partitions for a given d. Then, the n rules are created as an 

equal distribution of these hypercubes. The result of this construction is that, on each 
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dimension, a stabbing query will return n/d (and thus O(n)) elements.  Therefore,  

the complexity of the search can be forced to be O(log(n/d)) + k on each dimension. 

Based on the generalization of the search to multiple dimensions that we presented 

earlier (see Section 4.3), this means that the multi-dimensional search can be forced 

to run in O(logd(n/d) +  k. In the general case, there is therefore no better solution 

than the one we proposed (within a constant factor)13 . 

4.3.6 Summary 

In this section, we have presented the problem of the overlay labeling of network 

packets. After explaining how the labeling of network packets works on SELinux we 

have showed that, contrary to filesystem overlay labeling, the existing mechanisms can 

not be used to support network overlay labels in practice. The problem of overlay 

labeling of network packets can, however, be mapped to the problem of stabbing 

queries, from the field of computational geometry. Finally, we have presented a 

detailed explanation of how a multi-dimensional generalization of interval trees offers 

a solution  that has an  optimal  complexity  for the general  case.  

4.4 Predicates on Type Attributes 

In this chapter, we have presented methods to let the user refine the coupling 

between the abstract TE policy and the concrete system objects on which the policy is 

being enforced. In order to support this refinement of the labeling, we have introduced 

the notion of type promotion, where a type is promoted to being an attribute of a 

synthetic type. Type promotion changes the type enforcement access vector rules, 

from being expressed on types, to being expressed on type attributes. The goal 

of this section is to show how this reasoning on type attributes can be re-used to 

support expressing the policy at a higher level of specification. Those higher level 

13The construction used in this proof is due to Prof. Mikhail Atallah. 
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specifications can in turn be used to either express new higher level properties on the 

policy, or to refactor existing ones. 

To motivate this section, we start by presenting an example of refactoring that 

can be applied to the SELinux reference policy. There, all types that are to be 

applied to files are labeled with the attribute file_type. Two additional attributes, 

security_file_type and non_security_file_type, are  then  used  to  distinguish  

file types that are relevant to the security of the system (e.g. /etc/shadow) from  

the ones that aren’t. All accesses to files that are considered security-relevants are 

systematically audited. Accesses to other files are not necessarily audited. 

We find it error-prone to rely on every file type to bear either the 

security_file_type or the non_security_file_type attribute. We think that us­

ing either a blacklist or a whitelist approach to identify security-relevant files would 

yield a more assurable policy. Otherwise, the policy has to be analyzed to guarantee 

that all types that bear the file_type attribute either bear the security_file_type 

or the non_security_file_type attribute. 

A blacklist  consists in  explicitly  listing  the  files that  should  not  be included  in  

the allowed accesses. A whitelist contains the complement set of the blacklist, files 

for which accesses are explicitly allowed. Using either a blacklist or a whitelist ap­

proach guarantees that every file type, whether it is considered security relevant or 

not, will belong to exactly one of the two sets. This contrasts with the current 

mechanism, where checking must be performed on the policy to guarantee the same 

property. Indeed, a file type that does not bear either the security_file_type or 

the non_security_file_type security attribute will not be considered to belong to 

either category. Using a blacklist or a whitelist approach will guarantee that the file 

belongs to at least and at most one of the categories. 

To support blacklists and whitelists in a direct manner, we need a 

means of representing and reasoning on the fact that a type does not pos­

sess a given attribute. To continue our example, this consists in using 

either the security_file_type attribute and the expression of its absence 
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(!security_file_type), or the non_security_file_type attribute and the expres­

sion of its absence (!non_security_file_type). 

Conjunction and disjunction operators would also provide a useful language 

construct for refactoring the policy. For instance, the security_file_type 

could be replaced by a more generic security_relevant attribute. Then, 

the files that need systematic auditing would be specified by the predicate 

(security_relevant AND file_type). The rest of this section presents the syntax, 

semantics, and design of system support for type attribute predicates. 

4.4.1 Predicates 

Now that we have illustrated why we think that type attribute predicates are 

a useful extension,  we present their syntax and how they can be integrated.  The  

description of the system integration in this section rests on simplifying assumptions: 

the policy is static and predicates are not allowed to reference one another. We discuss 

how to handle dynamic changes of the policy in the next section. Avoiding infinite 

evaluation loops that can arise when predicates can reference one another is discussed 

in the subsequent section. 

Language and Interpretation The language of type attribute predicates is struc­

tured as follows. Type attribute predicates are propositions, from propositional calcu­

lus. The atomic formulas are the type attributes. More complex formulas are formed 

by connecting these atomic formulas with the conjunction or disjunction logical op­

erators, or by prefixing the formulas with the negation operator. 

For a given type, the interpretation of a predicate is simple: each of the atomic 

formulas evaluates to true if the corresponding attribute is attached to the type; 

it evaluates to false otherwise. The interpretation of the logical connectors is the 

standard one. 
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Deployment We now describe how type attribute predicates can be deployed atop 

a security policy, that we assume static for now. As we have showed for filesystem 

and network overlay labeling, it is possible to use the support of type attributes to 

encode additional labeling schemes, provided the original types have been promoted. 

The same technique is used to support type attribute predicates. 

The idea is to first create a type attribute that will be used to represent the fact 

that the predicate is satisfied. Then, for each existing type, the system evaluates if 

the attributes that are attached to it are such that the predicate is satisfied. If so, 

the attribute that represents the type attribute predicate, the materializing attribute, 

is attached to that type. These modifications are confined to the policy; no object 

needs to be relabeled. 

In the next two section, we describe how this simple scheme is extended to support 

policy dynamics and to efficiently evaluate the predicates without entering infinite 

evaluation loops. 

4.4.2 Handling Policy Dynamics 

We have presented how, given a static policy, predicates can be used to define 

overlay labels. A question that naturally arises at this point is whether and how this 

kind of overlay label can support a dynamic policy. For instance, what should be done 

when a type is added to the policy ? More precisely, which predicate overlay labels 

should be associated with this type upon its creation ? Also, which actions should 

be taken when the attributes of a type are modified, by either adding or removing 

attributes to the type ? 

Essentially, our system needs to support triggers on the policy database, so that 

any modifications to the policy types and attributes is immediately accompanied by 

the appropriate updates to predicates. For each modification, the companion update 

is as follows. 
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Type Creation: A type can be created in two ways: either directly, or through a 

type attribute. As a consequence, the type has either one or no type attribute attached 

to it upon creation. The system looks up the existing predicates to figure out which 

ones apply to the new type. The search is narrowed by using the fact only predicates 

based on negative clauses or based on the type attribute attached to the type can 

be satisfied. For each predicate that matches the new type, the corresponding type 

attribute must be attached to the type. Because our system supports the negation 

operator, it could potentially enter an infinite evaluation loop. We show in section 

4.4.3 how we address this problem. 

Attribute Creation: Creating an attribute has no consequence from the perspec­

tive of predicates. Predicates can only refer to existing type attributes. Consequently, 

there can not be a predicate refering to a type attribute before this attribute is cre­

ated. 

Attribute Attachment: When an attribute is attached to a type, the system 

needs to evaluate only the predicates that reference that attribute. For each of these 

predicates, one of three cases can happen: 

•	 the additional attribute enables the satisfaction of the predicate, which was not 

previously statisfied. In that case, the corresponding type attribute must be 

attached to the type. 

•	 the additional attribute invalidates the satisfaction of the predicate, which was 

previously statisfied. This case is only possible with predicates that use the 

negation operator. In that case, the corresponding type attribute must be 

detached from the type. 

•	 the additional attribute has no impact on the satisfaction of the predicate. This 

can happen for instance when the disjunction operator is used; in this case no 

additional action needs to be taken by the system. 
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Attribute Detachment: When an attribute is detached from a type, the required 

operations are the reverse of the ones carried out for attribute attachment. For each 

predicate that references the attribute being detached, one of three cases can happen: 

•	 the removal of the attribute invalidates the satisfaction of the predicate, which 

was previously statisfied. In that case, the corresponding type attribute must 

be attached to the type. 

•	 the removal of the attribute enables the satisfaction of the predicate, which 

was previously unstatisfied. This case is only possible with predicates that use 

the negation operator. In that case, the corresponding type attribute must be 

attached to the type. 

•	 the additional attribute has no impact on the satisfaction of the predicate. This 

can happen for instance when the disjunction operator is used; in this case no 

additional action needs to be taken by the system. 

Attribute Deletion: When an attribute is deleted, it must first be detached from 

each type it was attached to. Detaching an attribute from a type is described above. 

4.4.3 Runtime Support 

In order to efficiently support predicates on type attributes, the system needs to 

be extended. The system needs to maintain, for each type attribute, a list of the 

predicates in which it is referenced. This is required to support efficient attribute 

attachment and detachment, as explained in the previous section. 

Predicates on type attributes can lead to a serious evaluation problem if predicates 

are allowed to reference the type attributes that materialize predicates: the evaluation 

may not terminate. Consider the following two predicates: 

A := !B  

B := !A  
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By referencing one another, these predicates create an infinite evaluation loop. To 

prevent this problem, predicates are prohibited from refering to type attributes that 

are used to represent predicates. Therefore, the system needs to maintain an addi­

tional flag for each type attribute, indicating whether it is used as a marker for a 

predicate. When a user attempts to create a predicate, the system can use this flag 

to ensure that the predicate does not reference other predicates. 

This problem (introducing loops through the usage of negation) is well know in 

logic programming. There are two main ways of solving it. The first solution is to 

give up the negation operator, which we are not willing to do. The second solution is 

to use stratification [155]. The principle of stratified logic is to assign a rank to each 

predicate, with the following constraints: 

•	 A predicate must have a rank superior or equal to the rank of each predicate 

that it references positively. 

•	 A predicate must have a rank strictly superior to the rank of each of the predi­

cates that it references negatively. 

Effectively, stratification prevents the use of negation to build circular dependencies 

among predicates. The design we have presented does not implement a stratified 

predicate evaluation strategy. It does, however, prevent the formation of these circular 

dependencies and offer the negation operator. 

4.4.4 Motivating Example Revisited 

We now revisit our motivating example and show how type attribute predicates 

can be used to write simple yet expressive access control rules. 

In Section 4.2.3, we presented filesystem overlay labeling. It enables users that do 

not have the administrative right to relabel some file to single out a set of files in order 

to treat them separately for access control. In the introduction of this chapter, we 

considered a property like the following: “This domain has access to system binaries, 

except compilers.” 
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This property can be expressed simply with predicates. Provided that the com­

piler is labeled, say, compiler t, the  group  of  files  that  are  “system  binaries, except  

compilers” can be concisely designated by the predicate (bin t AND  !compiler  t). 

On a standard SELinux, even with filesystem overlay labels, this property would 

be cumbersome to express: in TE, there are no negative permissions14 . As a result, 

the user would have to explicitly designate all the system binaries, except the com­

pilers, with an overlay label. While this is effectively how the above predicate will be 

deployed on the system, predicates shift the burden from the user to the system. 

In essence, the predicates support the specification of groups of objects in terms 

of set operations: intersection, union, and complement. This flexible means of desig­

nating object can ease both the refactoring of the existing policy and the expression 

of new properties. 

4.5 Policy Dynamics: Avoiding Subversion 

This chapter has discussed several use cases of overlay labeling, and how to ef­

ficiently support these use cases. For filesystem and network overlay labeling, the 

motivation was to support refinements of the coupling between the abstract TE pol­

icy and the concrete set of objects managed by the system on which the policy is 

deployed. For the designation of objects based on type attribute predicates, the goal 

was to enable a higher-level specification of the policy. 

Overlay labeling, however useful, can be dangerous if not properly regulated. 

Indeed, a simple implementation of overlay labeling could allow a user to grant per­

missions, to himself or other users, that he would never be entitled to grant without 

overlay labeling. The gist of the problem is the following. A (malicious) user defines 

an overlay label, and then proceeds to give away access rights to object bearing this 

label. Suppose that the overlay label happens to cover types for which the user does 

not have the administrative authority to grant access. The user could try to work 

14SELinux has a notion of explicit deny, with the neverallow access vector rules. The rules are 

enforced at compile time only, to prevent errors in the written policy. 
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around this restriction by adding rules to the policy that grant access, expressed in 

terms of the overlay label instead of the base type. 

This problem has to be dealt with under two angles. By restricting the span of 

types that user-defined overlays can cover, so that overlays defined by a given user can 

only cover types that he has some privileges on, one can prevent a user from defining 

overlays that could only be used in attempts to subvert the policy. By restricting the 

content of rules that can be formulated based on these overlays, one can prevent a 

user from adding rules (that refer to overlay labels) which subvert the policy. 

The remaining of this section is organized as follows. We first define which invari­

ants we want to preserve on the policy. Then we present the infrastructure required 

to keep track of policy dynamics, in order to preserve policy invariants and hence 

avoid subversion. Finally, we present the enforcement of these invariants. 

4.5.1 Policy Properties 

The properties that we want to preserve correspond to the notion that the intent 

of the base system policy must be preserved. More precisely, the system-defined type 

transition and access vector rules must have precedence on the user-defined ones. 

Administrative users can modify the system policy according to the administrative 

privileges that are granted to them. Regular users, however, should be prevented 

from modifying either the TE policy or its coupling with the underlying system in a 

way that violates the system policy. 

This means that regular users can not grant permissions they do not possess 

themselves. Users that are extended administrative privileges can additionally per­

form the operations that require these privileges (including granting permissions, if 

applicable), but no more than that. Below, we introduce definitions that are then 

used to formally define the invariants that should be preserved. 

Definition 4.5.1 (Access contour of a domain) A domain’s access contour is the 

set of all non-administrative permissions granted to a domain. This contour can be 
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Figure 4.13.: Example permission graph showing how attributes are used to factor 
the policy. The left part of the figure is a representation of how attributes can be 
used to factor the expression of permissions given to domains. The right part is a 
representation of the permissions effectively granted. Attribute 1 is used to factor the 
assignment of Permission 1 and Permission 2 on Type 1 to Domain 1 and Domain 2, 
by grouping the domains under the same attribute. Attribute 2 is used to factor 
the assignment of Permission 7 and Permission 8 on Type 2 and Type 3 by grouping 
Type 2 and Type 3 under the same attribute. These two usages of attributes can be 
combined. 

defined in simple graph terms. For each type that a domain has access to, and for 

each permission that the domain has on that type, there is an edge from the domain 

to the type. 

As illustrated in the first graph of Figure 4.13, attributes are commonly used to 

factor the policy. These attributes are expanded according to Algorithm 3 to yield 

the access contour graph, the second graph in Figure 4.13. 

Definition 4.5.2 (Access contour inclusion) The access contour of one domain 

d1 is included in the access contour of domain d2 if, for each permission that d1 

possesses, d2 possesses the same permission. In graph terms, this means that if we 

replace d1 by d2 in d1’s access graph, the resulting graph is a sub-graph of d2’s access 

graph. 

For example, in Figure 4.13, the access contour of Domain 1 is included in the 

access contour of Domain 2. 
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Algorithm 3 Expansion of type attributes, to obtain the access contour of a domain d 
contour ← ∅  
{Expansion of domain attributes}
source labels ← {d}

for all attri ∈ d.attributes do
 
source labels ← source labels ∪ {attri}


end for 
{Expansion of accessible type attributes}
for all labeli ∈ source labels do
 
for all a(labeli, t, c, o) ∈ Ψ do
 
if t ∈ policy.attributes then {Expand attributes if needed}

for all typei ∈ t.types do
 
contour ← contour ∪ a(d, typei, c, o)


end for
 
else
 
contour ← contour ∪ a(d, t, c, o)

end if
 
end for
 

end for
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Based on these definitions, we can reformulate rigorously the definition of the 

policy invariants that have to be preserved. Regular users can grant permissions, 

within the access contour of their domain, to domains they have created. These are 

implicit administrative permissions granted to users in order to let them segregate 

applications that run on their behalf. Any attempt at granting permissions that does 

not satisfy this contraint must be authorized by an explicit administrative permission. 

If not, it should be rejected. 

4.5.2 Taming Indirect Constructs: Preserving Policy Invariants 

When a user attempts to add a permission, the system needs to determine whether 

the user is employing his implicit right to partition his user account, or if the user is 

actually attempting to perform an administrative operation that must be explicitly 

authorized. 

Since our extension with overlay labels adds another level of indirection, addi­

tional controls have to be performed when evaluating the request by a user to add a 

permission to the policy. Indeed, overlay labeling requires the promotion of base types 

to attributes and the creation of synthetic types. These operations, if not tracked, 

tend to obufscate the permissions specified in the original security policy. 

Type promotion (see Section 4.2.3) replaces a type by a synthetic type, to which 

all attributes of the original type get attached, and a new attribute that represents 

the promoted type. This attribute is also attached to the synthetic type. When type 

promotion is performed, the permissions are adjusted to preserve the semantics of 

the original policy, while reflecting the promotion. This adjustment was described in 

Algorithm 1. 

What we are concerned with here is to guarantee that, although the system ex­

tends implicit administrative permissions to its users, the original policy intent can 

not be modified without exerting explicit administrative permissions. 

Overlay labels, since they are encoded as type attributes, can be analyzed using 

the same notion of access contour as defined above. A user is implicitly allowed to 



163 

Off-Limits 
Type 

Domain 

Type 1 
Type 2 

Type 3 

Overlay LabelPermissions 
Domain 

Type 1 Type 2 

Type 3 

Permissions 

Off-Limits 
Type 

Extended Overlay Label 

Figure 4.14.: Illegal extension of an overlay label. The overlay is extended to cover a 
type on which the user that extends the overlay has neither direct access nor admin­
istrative rights. This implicit extension of rights must be prevented by the system. 

create a permission to a given overlay label, if this permission fits in the user’s access 

contour. The addition of any permission that does not fit in the user’s access contour 

must be explicitly authorized by an administrative permission. 

It would be desirable to let users redefine overlay labels, as opposed to just creation 

and deletion of the overlays. This way, the rules that refer to the overlay label would 

not have to be first dropped, and then re-created every time the overlay label is 

redefined. However, care should be taken to drop rules that, after expansion of the 

overlay label, result in permissions that overlap the access contour. This case is 

illustrated in Figure 4.14. 

This feature, however, is better left out of the core system. It is simpler to support 

only creation and deletion of overlay labels, with a deletion of all the rules that refer 

to an overlay when the overlay is deleted. This way, permissions that would become 

illegal as a result of widening the overlay are simply rejected when they are added 

back to the overlay label. While the overlay is being expanded, permissions that 

were referring to the overlay can be cached by a helper program. It would help such 

a program if the administrative interface was transactional. With a transactional 

interface, the transaction corresponding to a rejected redefinition of an overlay label 

would simply be rolled back. 
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4.6 Reversibility 

Finally, we address reversibility, which is an important factor of psychological 

acceptability for administrative models [77]. Type promotions and overlay labeling 

are not naturally reversible operations. To support reversibility of these operations, 

the system must actually keep a record of them, so that they can be undone. For 

instance, once a type has been promoted, it simply becomes an attribute of a synthetic 

type. At this point, there is no way to tell this attribute apart from the other type 

attributes of the original type, which are also attached to the synthetic type as a 

result of type promotion. 

In this section, we present how type promotions and the deployment of overlay 

labels can be undone. For each of these operations, we start by presenting the meta­

data that the system needs to maintain in order to support these undo operations. 

Then we show how these undo operations can be carried out. 

4.6.1 Undoing Type Promotions 

Property 4.6.1.1 To support reversible type promotions, it is necessary and suffi­

cient to keep track of the names of the promoted types. 

Reversing a type promotion requires two operations. First, the type attribute 

that represents the promoted type needs to be removed from the policy. Second, 

every policy statement that references the synthetic type that was generated for the 

type promotion needs to be replaced by a statement that references the name of 

the original type. These statements include, the type declaration, the attachment of 

attributes to the type, type transition rules, and access vector rules. Since types and 

type attributes share the same namespace, the removal of the type attribute must 

happen before the synthetic type name is replaced by the original type name. 

The above explanation shows why it is sufficient to keep track of the names of the 

promoted types. The necessity of storing this information stems from concerns for 

correctness. If the system does not verify that the name for which a type demotion 
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is requested does indeed correspond to a promoted type, then the system could be 

fouled in performing the above operation with an attribute that does not represent a 

promoted type. Also, undoing type promotion should only be performed after all the 

overlay labels have been undone. 

4.6.2 Undoing Overlay Labeling 

Property 4.6.2.1 To support reversible overlay labeling, it is necessary and suffi­

cient to keep track of the following information for each overlay label: its name, its 

deployment criteria (a regular expression for a filesystem overlay label; packet filter­

ing criteria for a network overlay label), and, for each synthetic type that had to be 

generated, its name and the name of the type it was derived from. 

In our demonstration of this property, we first consider the case of reversing non-

overlapping overlay labels. Then, we consider the case of overlapping overlay labels. 

Assuming non-overlapping overlay labels, the reversal of an overlay label proceeds 

as follows. Given the name of the overlay label, we can find all the types that the 

overlay label is attached to; these types are synthetic. For each of these synthetic 

types, the attribute that represents the overlay label has to be removed and the objects 

that bear the synthetic type have to be relabeled to bear their original synthetic type 

(the one they bore before the overlay label was deployed). This requires two pieces 

of information: the parenthood relation between synthetic types, in order to know 

which type to relabel to, and the regular expression that was used to deploy the 

overlay label, in order to locate the objects that need to be relabeled. 

The preceding explanation showed why the recording of synthetic types deriva­

tions, as well as the recording of their deployment criteria are necessary conditions. 

Recording the names of overlay labels is also necessary, for the same reason that it 

is necessary for safe reversal of type promotions. If the system does not verify that 

the name for which the removal of an overlay is requested does indeed correspond to 

a overlay label,  then  the system could be fouled in performing the above  operation  
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Figure 4.16.: Removing the overlay O3, based on the configuration from Figure 4.15. 

with an attribute that does not represent a overlay label. 

We now show that this property holds even in the case of overlapping labels. We 

illustrate this with a simplified case of overlay labeling (see Figure 4.15), where each 
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successive overlay only refines a single (overlay) type. We show how our solution 

applies to this simplified case, and how it generalizes to overlays that refine several 

(overlay) types and to types that are refined by several overlays. In other words, 

our solution generalizes to the branching cases but we start by considering only the 

straight line case first. 

Given the example configuration from Figure 4.15, suppose that we want to remove 

the overlay O2 from the system, the questions to answer are the following. For objects 

that are labeled with the type SO2, which type should they be relabeled to ? How 

do we find these objects ? The type SO3 was derived from SO2; which type should 

it be now considered a derivation of ? Which adjustments need to be performed on 

type attributes ? 

The adjustments to the policy, illustrated in figure 4.16 are as follows. Since 

overlays are internally represented by attaching attributes to types, the attribute 

that corresponds to the overlay label must be removed from the system. This involves 

detaching that attributes from all the types that bear it. Also, since the creation of 

a synthetic  type,  SO2 in our example,  is required to separately  label  the objects that  

are covered by the overlay, that type needs to be removed from the system. This 

operation could be done by iterating over all the types of the policy. However, it can 

be carried more efficiently if the system keeps a bi-directional track of parenthood 

relations among synthetic types. In that case, all the types that bear the overlay 

attributes can be efficiently located, as they are children types of the synthetic type 

being removed (e.g. SO3 is a child type of SO2). When that type is removed from 

the system, the objects that bore that type need to be relabeled. They are relabeled 

to the type they would have had if the overlay had never been created, SO1 in our 

example. 

To summarize, removing the O2 overlay from Figure 4.16 requires using the fol­

lowing information: the name of the attribute that materializes the overlay (O2), the 

synthetic type that was created to materialize the overlay (SO2), the parent type of 

that synthetic type (SO1), the child synthetic type (SO3) that what created to label 
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objects from O2 that are covered by overlay O3, and the criteria that was used to 

deploy the O2 overlay. In the above, we have shown why how each of these items is 

necessary to perform one of the actions needed to reverse the deployment of an over­

lay label. As the reversal of the deployment does not need additional infortmation, 

these items are also sufficient. 

The operation of removing an overlay label from the policy generalizes to over­

lapping overlays that cover several types and to overlays that are covered by several 

overlays. This generalization is presented in Algorithm 4. 

Algorithm 4 Remove overlay O 

{Reparent types as needed and remove the overlay attribute.}
for all typei ∈ O.synth types do 
for all typechild ∈ typei.children types do
 
typechild.parent type ← typei.parent type
 
remove attribute recursively(typechild,O.attribute)


end for
 
end for
 
{Relabel object to the parent type. (only for filesystem overlays)}
for all objecti ∈ locate objects(O.deployment criteria) do
 
if objecti.typeinO.synth types then
 
objecti.type ← objecti.type.parent type
 

end if
 
end for
 
{Remove the synthetic types from the policy.}
for all typei ∈ O.synth types do
 
policy.types ← policy.types/{typei}


end for 

4.7 Conclusion 

In this chapter we have motivated the need to let users refine the labeling of 

objects on a TE system, and presented solutions to address this problem. The need 

for labeling refinements stems from the need to enforce the principle of least privilege. 

If regular users are able to create and configure TE domains (using the administrative 

model from Chapter 3) but can not specify exactly which objects a domain has 
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access to, due to a coarse labeling, then our work would not address the fine-grained 

requirement that is part of our thesis statement. The solutions we presented are the 

following. 

Filesystem label overlays are a technique that we designed, based on using type 

attributes, to let users overlay arbitrary labels on system objects. This technique is 

itself based on another technique that we designed, called type promotion, which is 

used to support the later deployment of overlay labels. 

Network label overlays are similar to filesystem label overlays, only for network 

packets. Developing this technique was more involved that for filesystem overlay 

labels, as a straightforward solution has an exponential space usage, and optimizing 

that space usage is NP-complete. Our solution relies on applying a datastructure 

from computational geometry, interval trees. We have proved that the complexity of 

this solution is optimal within a constant factor in the general case. 

Predicate overlay labels are a technique to specify the TE policy at a higher level, 

based on predicate logic expressed over the attributes attached to types. It can be 

supported the overlay labeling mechanisms developped for filesystem overlay labels. 

We have concluded this chapter by exposing how these overlay labeling techniques 

can be reversed, and how it is possible to contain the use of overlay labels to prevent 

them from being misused in order to subvert the policy of a system. 
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5. EVALUATION 

In the two previous chapters, we have presented and motivated our extensions to TE 

and to the labeling mechanisms offered by SELinux. In this chapter, we evaluate 

these extensions. First, we demonstrate the expressive power of our mechanisms by 

analyzing concrete use cases. Then we show why current mechanisms do not fulfill the 

users needs, whereas our extensions do. We do this by comparing our mechanisms 

to related models and implementations. Finally, we provide benchmarking results 

gathered on our proof-of-concept implementation. 

5.1 Expressive Power: Case Studies 

In this section, we present three case studies that are all tied to real security needs 

that we have either directly experienced or that were reported to us by colleagues. 

There was no fully satisfactory solution for any of these scenario. We show how each 

scenario can be addressed by our extensions and we explain why the set of existing 

solutions was not satisfactory. 

5.1.1 Review of TE and our Extensions 

Before proceeding to the case studies, we provide a review of TE and our ex­

tensions. A domain is the unit of confinement: processes run within a domain. In 

SELinux’s version of TE, processes are in a domain by virtue of their type being 

the type of the domain. (As a reminder, domains are types that bear the domain 

attribute.) Consequently, permissions are granted to types. These permissions are 

expressed in terms of operations that can be performed on objects of a given class and 

type. The class of an object is directly determined by the class of system resource 
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that the object belongs to (e.g. file, directory, socket). The object type, however, is 

determined according to the local deployment of the TE policy. This is where over­

lay labeling comes in handy by supporting refinements of the grouping of objects, 

while preserving the semantics of the original deployment of the policy. The final 

step in the configuration of a domain is to make it reachable from other domains. 

This involves configuring programs as entrypoints of domain and setting up auto­

matic domain transitions. The entrypoints of a domain are the programs through 

which the domain can be entered. Based on the current type of a process (i.e. its 

domain) and the type attached to the program it attempts to execute an automatic 

domain transition determines the type that will be attached to the process after it 

starts executing the new program. The domain transition, however, will only happen 

if three conditions are met. The transition must be allowed by the policy, the process 

has to be allowed to execute the program, and the program must be declared as an 

entrypoint of the transition’s target domain. 

5.1.2 Subdividing a User Account: The Grading Program Problem 

In this section, we revisit the grading problem that we introduced in Section 

4.1 to motivate the introduction of overlay labels. We provide a more complete 

treatment of this example, in which we also illustrate the rationale for the introduction 

of administrative templates in Section 3.3.3. The remainder of this section covers the 

grading program case study, following the presentation order that was used for the 

previous review on TE and our extensions. 

Properly addressing the grading program problem requires several features. The 

user deploying a grading program should be able to create and configure a new con­

finement domain, which includes configuring the entrypoints of the domain. Then, 

the user should be able to decide which resources are accessible from within that 

domain. These operations (and their authorization) can be specified as follows. 
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Creating a domain 

Creating a domain involves two operations, and therefore two permissions: creat­

ing a new type, and then attaching the domain attribute to that type. Our preferred 

solution is to allow the creation of types through attributes. This way, types are 

automatically labeled with an attribute that can be used to refer to them in the pol­

icy. This comes handy when one wants to specify that a given user (here, the TA) 

is allowed to create domains. As we explained in the TE recap, creating a domain 

involves two operation. The creation of types through attributes allows to connect 

the two rules needed to allow the creation of a domain. Without such a means of 

connecting the two rules, the policy would have to be somewhat hard-coded: the 

names of the domain that a user is allowed to created would have to be explicitly 

mentioned in the policy. By using attributes, this restriction is avoided. The two 

rules to allow the TA to create a grading domain are the following. 

1 allow ta_t ta_type:type create; 

2 allow ta_t ta_type:attribute(domain) attach; 

First, the TA is allowed to create types through an attribute (ta types in this exam­

ple) that is attached to his account1 . Second, the TA is allowed to attach the domain 

attribute to types that were created through the type attached to his account. To cre­

ate a domain named grading t in accordance with these permissions, the TA would 

perform the following operations on the virtual filesystem: 

1 create /sefuse/attrs/ta_type/grading_t 

2 create /sefuse/attrs/domain/grading_t 

The first operation will create the type grading t through the ta type attribute; the 

second will attach the domain attribute to this new type, making it a domain. Once 

1Our system does not directly handle the assignment to accounts of attributes through which the 
users can create types. We consider this step to be part of account provisioning, which falls outside 

the scope of our work. 
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a domain is  created,  the  next step is  to assign permissions  to that domain,  which  

requires some preliminary relabeling of objects. 

Labeling Objects 

Since all TE permissions are expressed in terms of types, the TA has to assign 

separate labels to objects. These labels need to be different when the granted permis­

sions have to differ. For instance, the web server should have have only read access 

to the static content it serves, and the web client should only have append access to 

its logs. Consequently, the static web content has to be labeled with a type that is 

different form the type that labels the logs. 

As illustrated in Figure 5.1, the static web content is labeled with the type 

web content t and the grading logs are labeled with the type grading logs t. The 

TA needs to be allowed to perform this labeling of objects. Authorizing the TA to 

change the label of files requires two permissions, relabelfrom and relabelto, for 

each relabeling operation. 

For instance the following permissions allow the TA to relabel regular files in his 

home directory, labeled ta home t, with the type associated the static web content, 

web content t. 

1 allow ta_t ta_home_t: file relabelfrom 

2 allow ta_t web_content_t: file relabelto 

Type attributes can be used to factor the relabeling rules between the standard label 

of the TA’s home directory and any type that the TA has created. 

1 allow ta_t { ta_home_t ta_type }: file { relabelfrom relabelto } 

2 allow ta_t { ta_type ta_type }: file { relabelfrom relabelto } 

The first rule2 allows the TA to relabel files from (resp. to) the type of his home 

directory files to (resp. from) any type that he has created through the ta type 

2SELinux supports a compact notation for access vector rules, where each field can contain a set 
of elements of the expected kind, separated by spaces and surrounded by curly braces. Internally, 
these rules are expanded to the simple format of rules that we modeled in Chapter 3. We use this 

format here and in following examples to compactly represent access vector rules. 
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attribute. The second rule allows the TA to relabel any object, currently labeled 

with a type he created, with another type he created. The relabeling is performed 

using the standard SELinux chcon “change security context”) utility. 

Assigning permissions to a domain 

There are two ways to let a user assign permissions to a domain. The straightfor­

ward approach is to grant the administrative permissions one by one. For instance, 

the following rules state that the TA can grant the permission to read files from his 

account (labeled ta home t to types he has created through the ta type attribute: 

1 allow ta_t _:av_rule(ta_type, ta_home_t, file, getattr) insert 

2 allow ta_t _:av_rule(ta_type, ta_home_t, file, open) insert 

3 allow ta_t _:av_rule(ta_type, ta_home_t, file, read) insert 

Clearly, granting the administrative permissions one-by-one can be tedious. This is 

one of the main reasons why we have introduced the notion of administrative tem­

plates in our model (see Section 3.3.3). Instead of having an administrator essentially 

create one administrative rule for each administrative permission that he wishes to 

grant the user, an administrator can grant the user the permission to add permissions 

to a domain, provided that another (template) domain possesses the same permis­

sions. For instance, the following rule allows a user to grant any permissions from his 

default domain to a domain that he has created. 

1 admin_domain_template ta_t ta_t ta_type 

As they allow the factorization of the administrative policy, administrative templates 

make it easier for the admin to both define and reason on the administrative policy. 

For the grading program, the TA wants to grant several permissions to the domain 

where the grading program will be confined, grading t. 

1 allow grading_t grading_script_t : file { read gettatr execute \ 

2 entrypoint open } 
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3 allow grading_t web_content_t : file { read getattr open } 

4 allow grading_t grading_logs_t : file { append getattr open } 

The network access control permissions are covered in the next case study, where 

we analyze the deployment of web applications. 

Fine grained grouping of objects 

The deployment of the policy, and hence the granularity at which the system 

groups objects under types, sometimes forces a coarse granularity on the policy that 

can be expressed on objects. This is due to the fact that the TE policy can only 

be expressed in terms of the types and attributes attached to objects. We have 

introduced overlay labels in Chapter 4 to circumvent this limitation. Overlay labels 

allow users to refine the grouping of system objects in an arbitrary fashion. 

For instance, the web server that students implement has to support some Com­

mon Gateway Interface (CGI [156]) features. Some of the CGI scripts that the server 

runs rely on system binaries (e.g. cal to provide a textual calendar). This means 

that the web server has to be allowed to execute some of these system binaries. As 

most system binaries are labeled with the same type (bin t), giving access from the 

grading domain (grading t) to the  default type  of  system binaries  (bin t) would  

result in un-necessarily broad permissions. 

Instead, the TA can use a filesystem overlay label to group together binaries that 

are referenced from the CGI scripts used for grading. 

1 fs_overlay /usr/bin/cal grading_cgi_bin_t 

2 fs_overlay /bin/date grading_cgi_bin_t 

3 fs_overlay /bin/echo grading_cgi_bin_t 

The grading domain can then be granted execute access to this subset of the system 

binaries, instead of access to all system binaries. 

1 allow grading_t grading_cgi_bin_t : file { getattr open read \ 

2 execute_no_trans } 
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Defining the domain entrypoints 

The entrypoints of a domain are sensitive by nature. These programs are, in 

essence, the gatekeepers of a domain: they are trusted to restrict how the permissions 

granted to the domain are used, by offering a limited set of operations that can be 

performed. For instance, the passwd program limits how the read/write permission 

on the /etc/shadow file (where password hashes are stored) granted to the passwd t 

domain can be used. 

Contrary to this example, there is no need for an administrator to worry about 

the entry points that a user sets for domains that are strictly sub-domains of his 

user account. Indeed, allowing the creation of sub-domains enables security-conscious 

users to better protect the permissions they are entrusted with, by confining programs 

to which they do not want to extend all of their ambient permissions. In other words, 

we consider that restricting the entry points that a user can set to one of his account 

sub-domains would be counter-productive, as it could discourage users from using the 

account sub-domain feature3 . 

Therefore, we think that a user should be able to set any executable file as an 

entrypoint to a sub-domain of his account, as long as it is executable from their 

user account. In the grading program problem, a practical approximation is to allow 

the TA to set any file labeled bin t or ta types as an entrypoint to a domain that 

bears the attribute ta types. The corresponding administrative permissions are the 

following. 

1 allow ta_t _:av_rule(ta_types bin_t:file entrypoint) insert 

2 allow ta_t _:av_rule(ta_types ta_types:file entrypoint) insert 

3We think, however, that administrative control on the entrypoints of domain remains a good idea 

in other cases, for instance in the case of web applications, which we discuss next. 
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Setting up automatic domain transitions 

To finalize the setup of the grading domain, the TA needs to set up an automatic 

domain transition so that the grading script will be automatically placed in the grad­

ing domain upon execution. The type transition rule to enter the grading domain 

upon execution of the grading script looks as follows. 

1 type_transition ta_t grading_script_t : process grading_t 

The following administrative permissions lets the TA perform this operation. The 

first one allows exactly this operation, whereas the second is a generalized version 

that uses attributes. 

1 allow ta_t _:tr_rule(ta_t, grading_script_t, process, grading_t) insert 

2 allow ta_t _:tr_rule(ta_t, ta_types, process, ta_types) insert 

Summary 

We have shown how our extensions allow a regular user (here, the TA) to define 

subdomains within their user account to confine applications that they decide not 

to trust (here, student submissions). These subdomains have permissions that are a 

strict subset of the permissions of the user account. We restricted our presentation 

to covering overlay labels for filesystem objects. In the next section, we use the 

deployment of web applications as an example to present the usage of network packets 

overlay labels and how users can be allowed to grant permissions that they do not 

possess. 

5.1.3 Hosting User-owned Web Applications 

When we revisited the grading program problem, we showed how a user can create 

domains and grant them a subset of the user account permissions. Here, we look at an 

extension of this scenario: confining web applications on a web server. There are two 
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main reasons to confine web applications: protecting the host systems, and shielding 

applications from one another. The confinement is desirable to address the threat of 

an application behaving maliciously. This malicious behavior usually results from the 

application having a security flaw that gets exploited. We postpone presenting the 

confinement of hostile applications to section 5.1.4. 

The attentive administrator of a web hosting site can follow recommended security 

guidelines (e.g. [157]) and achieve a setup where the host system is protected from 

vulnerabilities in the hosted web applications. In other words, the host system can 

not get corrupted through a hijacked web application, but that is not what we are 

interested in solving. 

We are interested in solving the other motivation for confining web applications: 

to isolate them from one another. More specifically, we will show in the following 

how our extensions enable the confinement of web applications, even when they run 

in the same unix user account. The cheapest solution for hosting a web site is virtual 

hosting, where not only the physical machine, but also the operating system instance 

and the web server daemon are shared by several users. For instance, this is how 

personal web pages are currently supported at Purdue University and several other 

academic institutions (e.g. Stanford University and the University of North Carolina 

at Chapel Hill 4). To ensure that web applications installed by one user can not 

access the data of other users, these sites resort to using a feature of the Apache 

web server that runs the applications under the user identity. This feature is called 

suExec [157], as the web server process executes the user application after calling the 

setuid system call, to set its identity to that of the user that installed the application. 

Consequently, the application can only access data that is normally available to the 

user on behalf of whom it is running. 

The suExec solution has also been extended to support the same feature for 

PHP applications [158]. These solutions, however, suffer from the same limitation 

4See http://www.stanford.edu/services/web/cgi/security.html and http://help.unc.edu/ 

3136. 

http:http://help.unc.edu
http://www.stanford.edu/services/web/cgi/security.html
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that we highlighted in the previous section: they do not offer means for a regular 

system user to further refine the confinement of her application. All the applications 

installed in the same user account run with the same user privileges, and therefore 

can compromise one-another. 

Our extensions can be used to remedy this situation. The situation in this case 

study is more complicated than the previous case study, as the domains in which the 

web applications are to be confined requires privileges that a normal user application 

would not have. Indeed, regular user applications are not allowed to talk with the 

web server. On the other hand, web applications must be allowed to do so if they are 

to serve web requests. 

We expose the use of our extensions in two steps. First, we cover how the system 

administrator (or the web administrator) can extend some of his administrative priv­

ileges, in a controlled fashion, to a user that wants to install a web application. Then, 

we show how this user can further refine the permissions granted to this application 

in order to enforce a fine-grained confinement. Refining the permissions is important 

to reduce the attack surface of web applications, and to reduce the exposure of the 

user’s account to an application that would be hijacked. 

Subdomains with Additional Privileges 

A user-deployed web application needs to receive a subset of the user’s permissions 

and a subset of the webserver’s permissions in order to be functional. The user’s 

permissions are needed for the application to perform operations within the user’s 

account: access data, perform computing tasks, and store back some application state. 

The webserver’s permissions are needed for the application to handle a connection 

received by the webserver, on a port normally reserved to the webserver, and accepted 

through a file descriptor that belongs to the webserver. 

The permissions that the user-deployed web application need to answer requests 

received by the web server are the following. 
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httpd_t user_t user_home_t 

user_webapp_t 
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Figure 5.2.: The domain of a user web application can receive permissions both 
from a web application permission template and from the user domain, treated as a 
permission template. 
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1 allow user_webapp_t httpd_t : fd use
 

2 allow user_webapp_t netif_type : netif { ingress egress }
 

3 allow user_webapp_t port_type : tcp_socket { recv_mesg send_mesg }
 

4 allow user_webapp_t http_server_packet_t : packet { send recv }
 

The first rule allows read access to open file descriptors passed by the web server to the 

web application (this is the mechanism by which a web server hands over the request 

handling to child processes). The second rule allows ingoing and outgoing traffic of 

the web application domain to go through network interfaces. The third rule allows 

a bidirectional flow of data over a  TCP socket. The name bind and name connect 

have deliberately been omitted from this rule, as in this case we do not want to let 

the web application, either bind sockets to ports, or initiate remote connections. The 

fourth rule allows the datagrams to be sent and received on the socket by the web 

application. 

To set each permission, the user needs an administrative permission that allows the 

setting of this permission. Each of these administrative permissions have to be granted 

by an administrator. It is desirable for the administrator to have a means of factoring 

the administrative policy, as noted in the previous case study. We have designed our 

administrative templates so that they can be composed. This composability allows 

the granting of administrative permissions from several templates, to the same user, 

and on the same domain. For instance, the above permissions can be used as a 

template that lets the user assign the same permissions to one of his domains, with 

the following administrative template. 

1 admin_domain_template user_t user_webapp_t user_types 

This template can be coupled with another template that lets the user grant per­

missions from his main domain to a domain he has created through the user types 

attribute. 

1 admin_domain_template user_t user_t user_types 
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This composition of administrative templates in a non-hierarchical way is pow­

erful. The Policy Management Server proposed by Tresys [73] can not handle this 

scenario. 

Refining the Permissions 

The networking permissions granted to the user webapp t domain in the example 

above are broad: while they do not allow the domain to create new sockets, the domain 

is allowed to communicate with any host that the webserver accepted a connection 

from, since the connections are passed by means of an open file descriptor which 

corresponds to an unknown (as far as the application is concerned) endpoint. This 

file descriptor corresponds to the socket on which the web server accepted the client 

connection. The file descriptor is left open when the web server forks a new process 

which starts executing the user’s web application. 

As we mentioned in the introduction of this case study, it is desirable for the user 

to grant only a refined subset of the permissions of her user account to a domain in 

which a web application will run. In the case of an online journal (a blog), several 

refinements are interesting. 

If the blog is used to convey proprietary information, it is desirable to restrict the 

network permissions of the domain so that it can only communicate with hosts on 

the internal network. This can be done using the following network overlay label. 

1 net_overlay --source 10.0.0.0/24 intranet 

2 net_overlay --dest 10.0.0.0/24 intranet 

3 allow intranet_blog intranet : packet { send recv } 

The first two rules define the intranet network packets overlay overlay label that 

labels packets sent or received on the internal network. The last rule allows the 

intranet blog domain to send and receive packets that bear the intranet label. 

Another way to refine the permissions granted to a web application is to use 

predicate overlays. For instance, if the user wants to grant execute access to all 
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executables except the compiler, the following two overlay labels can be used (by 

default, the compiler is labeled like other regular executables with the bin t type). 

1 fs_overlay /usr/bin/gcc compiler 

2 predicate bin_not_compiler ( bin_t AND NOT compiler ) 

The first overlay label attaches an additional attribute compiler to the GCC compiler 

binary, located at /usr/bin/gcc. This  is  a  filesystem  overlay  label  (see  Section  4.2.3).  

The second overlay label expresses the fact that if a an object is labeled with the bin t 

attribute5 and not with the compiler attribute, then it should be labeled with the 

bin not compiler attribute. This second overlay is a predicate overlay (see Section 

4.4). 

5.1.4 Analysis of Malware 

The analysis of malware, and more generaly performing experiments with poten­

tially hostile software is a use case that was reported to us by Pascal Meunier, in 

the context of the ReAssure project6 (see Figure 5.3). ReAssure is a network testbed 

that was designed from the ground up to offer a strong confinement in order to safely 

support any kind of experiments, including the manipulation of viruses, worms, and 

botnet software. 

In the previous case studies, we have illustrated how a user can create new domains 

and grant them a subset of the permissions he possesses on his account. We have 

then showed how a user can be allowed to grant permissions that he does not have in 

his own account, e.g. handle connections received by the web server. Finally, we have 

showed how a user can refine the labeling of filesystem and network packet objects 

on the system in order to define permissions as precisely as he wishes. 

5When using overlays, bin t will be an attribute, and not a type as it would be in the standard 
policy, since overlay labels rely on a previous pass of type promotion. Please refer to Section 4.2.3 for 

an explanation as to why, when using overlay labels, bin t is an attribute and not a type anymore. 

6http://reassure.cerias.purdue.edu 

http:6http://reassure.cerias.purdue.edu
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Figure 5.3.: Architecture of the ReAssure testbed. The testbed consist of a set of 
machines on which the experiments are run (left). There are two physical networks. 
The control network (bottom) is used to deploy images from the image server (right) 
to the experimental machines, and to remotely connect to them. The experimental 
network (top) can be configured to emulate any arbitrary topology; the experiments 
run on this network. 
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In this case study, we show how SELinux and our extensions can help in experi­

ments with malware. Then we show how a user could share administrative permissions 

on a domain. In the context of this case study, this would allow the sharing of an 

experiment. 

Experimenting with Malware 

Since SELinux was designed with assurance in mind, it includes logging mecha­

nisms. All denied accesses are logged by default. Additionaly, granted accesses can 

also be logged. When performing behavioral analysis of malware, this audit log is 

useful in determining the operations that the malware is attempting. It is up to the 

experimenter to decide which operations to allow. 

SELinux, however, relies on the integrity of the Linux kernel as a whole. Conse­

quently, SELinux’s protection is not sufficient when experimenting with malware that 

loads code in the kernel. Such experiments can be performed by either running the 

experiment in a virtual machine, or by protecting the kernel with access control per­

formed by an underlying hypervisor [159,160]. The hypervisor approach falls outside 

the scope of this work. The problem with virtual machines is that they are themselves 

vulnerable to attacks, as illustrated by the CVE-2005-4459 and CVE-2009-1244 vul­

nerabilities [161]. These attacks allow arbitrary code execution on the host platform 

of a virtual machine. Since ReAssure relies on the administrative network to be free 

of attacks, it is important to guarantee that an attacked virtual machine will not be 

able to send network traffic on the administrative network. The ability to finely con­

fine applications, including their network traffic, that we demonstrated with the web 

application case study can be applied in this case as well to increase the assurance 

that the application is contained. 
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Sharing Experiments 

By default, experiments deployed on the testbed are private. A feature being 

investigated with the ReAssure project is to have several users of the testbed collab­

orate on and share an experiment. In the following, the experimenter that created 

the experiment will be called Alice and the experimenter with whom Alice decides to 

share her experiment will be called Bob, for brevity. 

An experiment can be shared in different ways. Alice can let Bob access or modify 

resources of the experiment, by granting Bob access to files used by the experiment. 

This can be expressed using an administrative template. 

1 admin_domain_template alice_t alice_t bob_t 

A deeper level of sharing is for Alice to let Bob run the experiment, which involves 

the ability for Bob to execute at least one of the entrypoints of the experiment, an 

automatic type transition from Bob’s domain to the experiment domain, and the 

permission that allows this transition. The above administrative template already 

allows Alice to grant Bob the permission to execute the entrypoint of the experiment. 

Two additional administrative permissions are required for Alice to be able to share 

her experiment with Bob in this way. 

1 allow alice_t _:tr_rule(bob_t, experiment_exec_t, \ 

2 process, experiment_t) insert 

3 allow alice_t _:av_rule(bob_t, experiment_t, \ 

4 process, transition) insert 

Finally, if Alice decides to share all her administrative rights on the experiment 

with Bob, she can do that by inserting the following administrative template in the 

policy. 

1 admin_resource_template bob_t alice_t experiment_t bob_t experiment_t 

If Alice wanted to share only a subset of her administrative permissions on the ex­

periment, she could create a template domain, bob permissions, that  has  only  these  
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permissions on the experiment. Then she would create an administrative template 

that grants these permissions to bob. 

1 admin_resource_template bob_t bob_permissions experiment_t bob_t \ 

2 experiment_t 

Alice could be allowed to create these administrative templates by the following per­

missions. 

1 allow alice_t _:admin_resource_template(bob_t, alice_t, experiment_t, \ 

2 bob_t experiment_t) insert 

3 allow alice_t _:admin_resource_template(bob_t, bob_permissions, \ 

4 experiment_t, bob_t experiment_t) insert 

5.1.5 Summary 

The common trait of the case studies we have presented is that users can explicitly 

manipulate TE permissions, domains, and domain transitions. The specification of 

these manipulations can be arbitrarily coarse or fine-grained. Moreover, a wide range 

of manipulations can be specified. At one extreme, no manipulations are allowed 

except to the system administrator; this extreme corresponds to the situation on 

SELinux without our extensions. At the other extreme, any user of the system is 

permitted arbitrary manipulations of permissions; this extreme is not useful. Between 

these extremes, many scenarios can be supported, from letting users segregate the 

applications they use into domains to which they grant only a chosen subset of their 

user permissions, to delegating permissions on the policy that covers system services. 
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5.2 Comparison to Previous Work 

In this section, we compare our work to closely related work. 

5.2.1 Administrative Models 

The domain and resource templates are comparable to the notion of administrative 

roles in RBAC administrative models: they are abstraction that support the grouping 

of administrative permissions, which can then be granted to subjects of the system, 

enabling to grant the corresponding permissions. 

ARBAC 

Our model differs from the ARBAC family of administrative models [56,75] in the 

following aspects. 

First, we do not introduce additional policy constructs without a means of admin­

istering them. The administrative permissions that we introduced in Section 3.3 are 

recursive. The rationale and implication of this design is that, for any permission, 

a permission  can be  defined  to regulate its  creation or removal.  Consequently,  when  

we introduced administrative templates in Section 3.3.3, we introduced the accom­

panying administrative permissions that regulate their creation and deletion. This 

approach ensures that the administrative policy supported by our mechanisms is not 

hardcoded in them, but actually a policy as well, whose modifications can also be 

regulated by an administrative policy. The goal of this last point is to allow changes 

to the administrative policy, while constraining them. The motivation behind this 

goal is to allow the enforcement of the principle of least privilege in the granting of 

administrative rights as well as regular rights. The ARBAC model does not address 

this aspect. 

Second, administrative permissions can be specified at different granularities. In 

the PRA97 part of the ARBAC97 model, the assignement of permissions to roles is 
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regulated according the can assignp and can revokep administrative relations. While 

these relations take into account the role to (or from) which the permissions can be 

assigned (or revoked), as well as preconditions on the roles to which the operation is 

applied, they do not take into account which permission can be granted. 

UARBAC 

UARBAC [77] is another administrative model for RBAC. It differs from ARBAC 

by relying on a principled approach to its design, as opposed to ARBAC which “was 

developed in a piecemeal manner” [56]. Using a principled approach to design is 

commendable. We thus evaluate how our extensions satisfy the requirements enun­

ciated in [77] as a consequence of the principles being followed. We consider each 

requirement in turn, substituting TE for RBAC when needed. 

1. “Support decentralized administration and scale well to large [TE] systems.” 

Our administrative model support the definition of permissions on administra­

tive permissions themselves. Consequently, any administrative permissions can 

be delegated, which supports the decentralized administration. The support of 

permissions templates allows the grouping of permissions, which is turns sup­

ports the scaling of the administration to large sites. Moreover, type attribute 

predicates can be used to further factor the policy by expressing some of its 

properties at a higher level. 

2. “Be policy neutral in defining administrative domains.” 

Our administrative model does not impose any constraints on administrative 

permissions, besides well-formedness. The creation of types through attributes 

is used simply as a means of tagging new types to tie them in the administrative 

policy and allow post-creation administrative operations on them. 
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3. “Apparently equivalent sequences of operations should have the same effect.” 

Granting administrative permissions through administrative templates is equiv­

alent to granting each administrative permission referenced by the template. 

4. “Support reversibility.” 

All operations from our administrative model are reversible, except the destruc­

tion of policy elements, which is the case in UARBAC as well. The algorithms 

for reverting type promotion and overlay labeling are provided in Section 4.6. 

5. “Predictability.” 

We have designed all the administrative operations to be as straightforward 

as possible. By offering indirect means of granting administrative permissions, 

however, we may have introduced some slight chance of surprising users. For 

instance, if administrative permissions are defined according to a template, any 

change to the template domain can impact the users whose administrative per­

missions are based on the template. This is an area where our design could 

be improved, one possible way being to support immutable administrative tem­

plates, which in turn would require to extend TE with explicit negative permis­

sions that override positive permissions (see our discussion on negative permis­

sions in Section 4.4.4, where we discuss the support for the negation operator 

in predicate attributes). 

6. “Using [TE] to administer [TE]” 

Our original design followed the path of Tresys’s PMS [73], in trying to attach a 

type to policy constructs. This would have allowed the administration of TE to 

be defined exclusively in terms of TE rules. However, as argued in Section 3.3.1, 

this is not a practical solution. Consequently, we have expressed our model as 

an extension to TE that adds support for pattern matching policy objects. 
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5.2.2 Operating System Access Control 

In this section, we compare the mechanims offered by our work, on SELinux, with 

other work on operating system access control. 

Traditional Mechanisms 

As discussed in the introduction and the related work sections, traditional dis­

cretionnary access-control mechanisms on unix (setuid [48], chroot, and  jail) can  

be used to enforce some confinement on processes, towards applying the principle 

of least priviledge. However, superuser privileges are still needed to configure such 

confinement. Moreover, the permissions to choose from are sometimes coarser than 

the permissions of the API accesses they control, as noted in the case of the socket 

API. 

While they are not configurable by regular users, these mechanisms can still be 

used to deploy effective countermeasure to privilege escalation, by using privilege sep­

aration [6] which was proven effective in practice. The scheme of using file descriptors 

as capacities described in [6] is also used with Type Enforcement deployments, where 

is it easier to audit due to the finer grain of the policy used to confine the different 

components of the application. 

Systrace 

Systrace [91] performs access control by allowing the specification allowed system 

call patterns, which are enforced by system call interposition. This allows for a re­

finement of the ambiant permissions that are granted to a process. Using system call 

interposition has many pitfalls [92], one of which is its handling of file aliasing: if a file 

is pointed to by two different hard links, the access decision performed based on the 

file path may be different, depending on the path provided to the system call. This 

handling of aliasing can be viewed both as a feature and a way to bypass the con­
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finement; we are concerned about the second view7. Systrace  provides  an  additional  

primitive that fall outside of this category: privilege elevation. The idea of privilege 

elevation is that, even for system daemons, only a few system calls require elevated 

privileges. Instead of exerting these privileges in a separate daemon, as in privilege 

separation [6], the privileges of the current process can be temporarily elevated just 

for the operation that requires elevated priviledges. For instance the bind operation 

to a priviledged port, say port 80 for a web server, requires root priviledges. With 

systrace, a web server can be run unpriviledged and have its priviledges elevated just 

for the bind operation on port 80. This is not a mechanisms that is supported in our 

work. 

AppArmor 

One of the main goals of AppArmor [108] was usability. Recent analyses by Chen 

et al. [162] tend to confirm that this goal was met. By refusing the abstraction 

afforded by type labeling, to preserve usability by keeping the familiar pathnames, 

AppArmor makes it harder to compose proofs for an audit of a platform. Also, by 

exposing only a restricted set of permissions (again for usability), AppArmor forces 

some level of granularity on the permissions that it can regulate. What we consider 

the worst example of this coarse granularity is the fact that network communications 

can only be restricted in terms of families of protocols (e.g. ethernet and bluetooth 

at layer 2, IPV4 at layer 3, and TCP at layer 4); there is not notion of endpoints! 

While the network access control can indeed be enforced by firewalling features of 

the OS, AppArmor does not offer a means of coupling this filtering directly with the 

application. For instance, there is no way to guarantee that only the web server can 

listen on port 80. 

AppArmor transitions between profiles (a notion similar to TE domains and do­

main transitions) are also more restricted than the domain transitions supported by 

7The presentation of systrace extensively discusses how the problem of aliasing through symbolic 
links (symlinks, typically created by running ln -s) is addressed. It does not address the problem 

of aliasing through hard links (created by running ln, without  the  -s flag). 



194 

TE. AppArmor profiles are entered based only on the path name of the application 

being executed, as opposed to TE, where the source (type) is also considered. So Ap­

pArmor will support only one profile per path name, regardless of the calling profile, 

whereas SELinux will be able to offer different transitions (and resulting permissions) 

to subjects that invoke the same applications from different domains. 

TrustedBSD, SEDarwin, and RSBAC 

TrustedBSD [68], SEDarwin [114], and RSBAC [64] can all be used to compose 

a form of  mandatory access control with  unix discretionnary access controls. Trust­

edBSD and SEDarwin provide an implementation of TE, and RSBAC could be ex­

tended with one. We have chosen SELinux as a base for our work instead because 

SELinux’s integration at the level of the whole system is more mature, for instance 

with SELinux being enabled by default on RedHat Fedora Core distributions, starting 

with Fedora Core 3 (released in November 2004). 

Capsicum 

Capsicum [163] is an extension of the unix API with capabilities, implemented 

on FreeBSD, which aims at offering a gradual migration path for applications to be 

modified to use capabilities. The capabilities are implemented as wrapped unix file 

descriptors, and the system offers two execution modes for processes: vanilla unix 

or capability mode. At runtime, a unix application can transition to capability 

mode and have its access permissions refined by the capability mechanisms. As such, 

applications need to be modified to benefit from this confinement mechanism, but 

the modifications can be minimal (2 additional lines of code to confine tcpdump, 

for instance [163]). The comparison of Capsicum to TE [163] points that TE can 

not offer a comparable solution because TE application policies can not be adjusted 

dynamically due to the lack of an administrative model for the TE policy and object 

labeling. Our work addresses this point. 
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Distributed Information Flow Control 

The distributed information flow control (DIFC) model [28], was originally de­

signed as a model of security within a programming language model, and has been 

implemented in the Jif compiler [30]. More recently, DIFC has been used as a model 

of operating system security. We compare our work to the results of two operating 

systems that implement DIFC, Histar and Flume. 

HiStar [121] is a capability-based OS built in a modular fashion that limits the 

size of the trusted computing base, and with DIFC built in from the ground up. This 

makes the access control mechanisms provided by HiStar more amenable to verifica­

tion than the ones provided by SELinux, which is built on a large monolithic kernel 

where the TE mechanisms were retrofitted (see Section 3.4.2 where we discuss the 

assurance on SELinux extended with our administrative model and its implementa­

tion). HiStar, however, provides a modified system API, hence depriving users of 

backwards compatibility with the applications they use. 

Flume [164] is an extension of Linux and OpenBSD with additional mediation 

that supports DIFC. This work was performed to address the practical limitations of 

HiStar, which include limited support for harware diversity and the need for appli­

cations to be significantly rewritten to run atop a different system API. Flume still 

requires that the applications be modified, but to a lesser extent. Similarly to our 

work, Flume is built as an extension that is mostly written in user-space for ease of 

development and portability. The main limitation of Flume compared to our work 

is the need to modify applications and the performance degradation Flume’s imple­

mentation introduces (43 % slower on read workloads and 34 % on write workloads). 

With the exeption of network overlay labeling, for which there is no implemen­

tation at this time, our extensions do not result in additional inline computation 

during access checks. This property stems from the fact that our extensions only 

modify the TE policy (for all administrative operations), and object labels (when 

deploying filesystem overlay labels); the enforcement mechanisms of SELinux remain 
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unmodified. As shown in [165], the additional cost of the access controls performed 

by SELinux is low (at most 4 % overhead on macrobenchmarks), hence offering better 

performance than the performance reported for Flume [164]. 

Pinup 

PinUP [107] simplifies the DIFC model to focus on which applications can access 

which files. By doing so, PinUP is able to preserve the unix API and thus the is able 

to run unmodified applications. PinUp does not cover network access controls. Also, 

it does not offer differentiated accesses to applications depending on the context from 

which they were invoked, besides identifying the user invoking the application. This 

means that a subverted web browser, which is not granted access to high value files, 

could invoke a trusted text editor that has access to these files and use this editor to 

access the files8 . To prevent this kind of attack, the context in which applications can 

be called has to be restricted. The TE model can capture the calling context, which 

is identified by the domain attempting to execute an application. 

5.3 Performance 

As explained previously, our administrative model does not interfere with the code 

path of system calls (see Section 5.2.2, where we discuss the relative performance of 

SELinux and Flume). Access control is still performed according to the SELinux 

standard implementation as a Linux Security Module. Consequently, our adminis­

trative model has no additional impact on the performance of the system. Moreover, 

single edits of the policy are faster through the virtual filesystem than when using 

the policy module mechanism provided by SELinux. This result correlates with the 

performance observations on Adage [166] authorization system, where the binary rep­

resentation of the security policy was also edited in an incremental fashion to improve 

8For instance, a terminal-based editor like vi can be “remote-controlled” by an expect script. 
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the responsiveness of the administrative interface. Contrastingly, the policy module 

system currently supported by SELinux involve an expensive recompilation of the 

whole policy every time a policy module is loaded or unloaded. 

The responsiveness of the filesystem could be further enhanced by migrating the 

implementation from user space to kernel space. Such a migration may prove nec­

essary to support acceptable performance when implementing overlay network labels 

(described in Section 4.3). Indeed, the labeling of a network connection can require 

the creation of a new synthetic type. Currently the virtual filesystem updates the 

policy in the kernel by serializing the policy that resides in user space, and loading it 

in the kernel by a write to the /selinux/load virtual file exposed by the SELinux 

kernel module. The cost of this operation is on the order of a second, with a the 

example policy provided with RedHat Fedora Core 10, on a Pentium 4 running at 

1.4GHz9. This  update  time  may  not  be  an  acceptable  overhead  for  the  on-demand  

generation of synthetic types that will be required to support network packets overlay 

labels; it seems acceptable otherwise. 

5.4 Conclusion 

On the theoretical side, our work is aligned with the direction of the work on 

administrative models. Our model follows a principled approach that avoids pit­

falls from previous administrative models. For instance, our model avoids relying on 

administrative hierarchies, which are a limiting factor for ARBAC as well as PMS. 

On the practical side, we have compared our work to existing mechanisms available 

on unix systems, as well as to the work on DIFC and recent work that attempts 

to make capabilities support as backwards-compatible with existing applications as 

possible. The existing mechanisms on unix are not administrable by regular users 

and are often coarse-grained as well. The work on DIFC modifies the system API, 

9The example policy we used, once compiled, expands to 278925 access vector rules, out of which 
187604 are allow rules and 91321 are audit rules. There are 7955 are type transition rules, 2555 

types, and 219 attributes in this policy. 
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which necessitates a refactoring of applications. Also, the current work on DIFC is 

either not available on a current mainstream OS (needed for backwards compatibility 

with existing applications), or introduces a significant degradation of performance. 

Measurements of the performance of our prototype indicate that there is no such 

degradation of performance, and the system API is not modified. 

Therefore, we find that our work compares favorably to existing work, for the 

goals it is striving to achieve (see our thesis statement in Section 1.3). Furthermore, 

the publications that present the Flume [164] and Capsicum [163] systems, which 

have similar goals, explictly mention that implementations of TE (SELinux or Trust­

edBSD) would compare favorably to their systems, provided they were extended with 

an administrative model. We consider this an additional justification of our approach. 
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6. CONCLUSION 

In this chapter, we reflect back on the work that was presented in this thesis. We 

first look at what this work accomplished on a theoretical aspect and on a practical 

aspect, and how this addresses our thesis statement. Then, we conclude by outlining 

future directions in which this work could be extended. 

6.1 Results 

As we mentioned in our survey of the related work, our work relates to access 

control models and administrative models on the theoretical side, and relates to their 

implementations on the practical side. Therefore we consider our results from both 

perspectives. 

6.1.1 Theoretical Results 

In Chapter 3, we have formalized a significant subset of the TE features, which we 

named TE-core. This model was build in a way that the features can be selected and 

composed around the TE-base nucleus, which provides the basic evaluation of access 

vector rules. We have modeled Core RBAC using the same formalism that we used to 

model TE-core. With these two models, we have shown that a reduction from Core 

RBAC to TE-core exists, by constructing one, and that it is not possible to construct 

a reduction from TE-core  to Core RBAC. Showing this inequal expressive power is a  

new result. 

In our survey of existing access control models (see Section 2.2), we have collected 

several other results on the relative expressive power of access control models, defined 

in terms of model reductions. These results were previously scattered in the existing 
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litterature. The summary figure that compares the expressive power of the surveyed 

models (see Figure 2.9) is a contribution in its own right. This figure incorporates 

our contribution to these results, the comparison of TE-core and Core RBAC. Fur­

thermore, our unified representation of access control models, base on extending the 

Extended Access Matrix [16] with subject transitions and object transitions supports 

the fine characterization of differences between access control models. For instance, 

it shows that a low-water mark model of integrity [14,105,106] can not be encoded in 

terms of a TE policy because TE does not support either object transitions or subject 

transitions on read or write operations. 

The packet classification that returns all the applicable labels for a given network 

packet, which we developed to address the need for overlay labeling on network pack­

ets, is a new problem. The complexity of our solution is optimal and consists in a 

novel application of computational geometry to network packet classification. 

Additionally, our administrative model allows the delegated administration of the 

system’s security policy. The delegation of administrative privileges can be specified 

at the level of individual policy statements, hence supporting arbitrary schemes of 

delegation. For concision, delegation can also be specified by analogy with exist­

ing permissions of the policy, using the administrative templates described in Sec­

tion 3.3.3. 

6.1.2 Practical Results 

In essence, we have managed to “Make least priviledge a right (not a privilege)” 

[117], without modifying the unix API on Linux, a popular version of unix. We  

have done so by designing an administrative model for the SELinux implementation 

of Type Enforcement (TE) that is part of the standard Linux kernel distribution. This 

administrative model can allow a user to turn any of her unix permissions, which 

are normally ambient and coarse-grained permissions permissions, into fine-grained 

explicit permissions, whose assignment to domains can be controlled. 



201 

We have developed a proof-of-concept implementation of the administrative model 

presented in Chapter 3, which exposes the system’s TE policy through a virtual 

filesystem. This implementation relies on the FUSE infrastructure, which is also 

part of the standard linux kernel distribution. Consequently, our implementation is 

usable on all recent Linux systems (past version 2.6.28 of the kernel, and provided 

the SELinux feature is activated). 

As noted in chapter 4, an administrative model that covers only the TE policy is 

not sufficient to allow users of the system to configure confinement units that enforce 

the principle of least privilege. This limitation owes to the fact that TE reasons only 

on the labels attached to system object. Consequently, we have designed a set of 

techniques to allow users to refine the labeling of system objects, while preserving 

the semantics of the system policy. These techniques, however, have not yet been 

implemented. 

6.1.3 Addressing the Thesis Statement 

As we have shown in our survey of the related work, TE can be composed with 

discretionnary access control, without changing the application programming inter­

face that existing programs depend on, and therefore without breaking the backwards 

compatibility with existing applications. In our survey, we have also shown that the 

access control mechanisms offered by TE are fine-grained. The comprehensiveness 

of the access controls is an implementation issue more than a modeling one. The 

support by SELinux of a coupling between the network-level labeling and the local 

application-level security policies provides such a comprehensiveness. Finally, admin­

istrative templates provide a model and mechanism by which users can be granted 

the ability to subdivide their permissions among many domains. These permissions 

can be granted without modifying any other aspect of the configuration of the MAC 

mechanisms, and we have provided algorithms that can be used to prevent a subver­

sion fo the system policy. 
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The type of operating system for which we set to demonstrate our thesis was the 

one that currently runs on most personal computers: a multi-user time-sharing sys­

tem where the unit of confinement is the process and processes are isolated by means 

of a virtual memory manager. Our work is actually applicable to many other types of 

systems. Fundamentally, our work is the extension of a reference monitor. The base 

mechanism that supports the implementation of a reference monitor is memory pro­

tection. The memory protection can be provided by means of memory segmentation, 

virtual memory, or even by using a type-safe language that prevents raw memory 

accesses by compile-time or run-time verification of the memory accesses. If a system 

is not multi-user, our work remains useful as we have shown in addressing the grading 

problem. Our understanding of early work in access control, including the thesis by 

Schroeder on the mutually suspicious subsystems [135], is that with proper support 

at the hardware level, access control can even be performed within a single program. 

While our understanding of TE is that it was designed to enforce inter-process ac­

cess controls, there is no fundamental reason that precludes its implementation for 

intra-process access control. 

6.2 Future Work 

6.2.1 Technical Aspects 

The implementation of our administrative model is currently in user-space. There­

fore, all policy modifications are transmitted to the kernel by reloading a whole policy. 

Currently, this operation takes on the order of a second to complete. (The time taken 

to modify the security policy is orders of magnitude smaller.) While this is not a 

problem for the interactive editing of the policy by users, it will be a problem when 

implementing the network labeling refinements described in Section 4.3. Indeed, each 

combination of overlay labels is supported by a distinct type. In our design, we pro­

pose to create these types on demand. That is, when a new connection is created 

and no synthetic type has yet been created to represent the combination of overlay 
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labels attached to this connection, then the system must create a new synthetic type1 . 

We do not think that systematic delays of the order of a second are acceptable with 

network connections. Therefore, as a preliminary step to supporting network overlay 

labels efficiently, the implementation of the administrative model would have to be 

moved to kernel space, where the active policy would be directly modified. 

In its current userspace implementation, the administrative server is confined in 

a way that limits its exposure to attacks  and the damage it can cause, were it to fail. 

The Linux kernel does not offer internal access control mechanisms to isolate its com­

ponents. As a result, a failure of a kernel-space implementation of the administrative 

server could corrupt the whole kernel. 

Another improvement we are considering is to allow predicates to reference other 

predicates, with some constraints to avoid the problem of cyclic dependencies between 

predicates. This can be supported using the same stratification techniques that are 

used in the implementation of deductive logic systems [155]. 

6.2.2 Higher Level Language 

Our work addressed one of the main perceived shortcomings of SELinux, its lack of 

an administrative model. One major shortcoming remains, the fact that the SELinux 

policy language is low level, sometimes at an even lower level than system calls. For 

instance, consider that the removal of a file from a directory is invoked with one system 

call, unlink(), but  requires  three  permissions:  unlink on the file, and remove name 

and write on the directory containing the file. We are hopeful that our work, by 

“democratizing” the power of SELinux, will expose this problem to a larger base of 

users, hence increasing the chances that user-friendly higher level policy languages 

will be designed on top of SELinux. 

1It is practically impossible to pre-generate all the possible combinations of labels, except for a 

trivial number of network packets overlay labeling rules. 
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6.2.3 Transactions 

We would like to extend our administrative model and implementation to support 

transactions on the security policy. That is, we would like to replace the system of 

policy modules currently supported by SELinux with the notion of a group of policy 

modifications done as an atomic unit. Then, we would also like to use the isolation 

analysis of a transactional system to track the dependencies among policy modifi­

cations. This would allow for a seamless support of cascading revoke operations. A 

cascading revocation of rights is when, upon removal of an administrative permission, 

all the permissions that were granted based on it are removed from the policy. Cascad­

ing revocations could be supported by re-using the dependency analysis performed by 

the transactional system. The transaction validation, before commit, would also be 

the natural extension point to enforce custom policy invariants, similar to the work by 

Fraser and Badger on preserving continuous operation during policy reconfiguration, 

by preserving high-level policy invariants [167]. 
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Sailer. Shamon: A system for distributed mandatory access control. In Proceed­
ings of the 2006 Annual Computer Security Applications Conference, December 
2006. 

[140] NetLabel	 – Explicit labeled networking for Linux. http://netlabel. 
sourceforge.net/. 

[141] IETF CIPSO Working Group. Commercial IP security option (CIPSO 2.2), July 
1992. Copies of this expired IETF draft are available on several websites, includ­
ing NetLabel’s website http://netlabel.sourceforge.net/files/draft­
ietf-cipso-ipsecurity-01.txt. 

http://netlabel.sourceforge.net/files/draft
http:sourceforge.net
http://netlabel
http://www.insecure
http://www2.ed.gov/policy/gen
http:http://www.linuxfoundation.org


215 

[142] Netfilter	 – Firewalling, NAT, and packet mangling for Linux. http://www. 
netfilter.org/. 

[143] Laurent Hyafil and Ronald L.	 Rivest. Constructing optimal binary decision 
trees is NP-complete. Information Processing Letters, 5(1):15–17,  May  1976.  

[144] Antoine Vigneron. Computational geometry slides.	 Available at http://w3. 
jouy.inra.fr/unites/miaj/public/vigneron/cs4235/slides.html, 2004.  

[145] Hanan Samet.	 Foundations of Multimensional and Metric Data Structures. 
Morgan Kaufmann, 2006. 

[146] Kurt Mehlhorn. Data Structures and Algorithms 3: Multi-Dimensional Search­
ing and Computational Geometry. Springer,  1984.  

[147] Interval tree. http://en.wikipedia.org/wiki/Interval_tree, 2009.  

[148] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 
Introduction to Algorithms, Second Edition. The MIT Press, 2001. 

[149] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.	 Com­
putational Geometry. Springer,  third  edition,  2008.  

[150] H. Edelsbrunner.	 A new approach to rectangle intersections, part I and II. 
International Journal of Computer Mathematics, pages 209–229, 1983.  

[151] J.L. Bentley. Solutions to Klees rectangle problems. Technical report, Carnegie-
Mellon University, 1977. 

[152] Edward M. McCreight.	 Priority search trees. SIAM Journal on Computing, 
14(2):257–276, 1985. 

[153] Eric N. Hanson and Theodore Johnson. The interval skip list: A data structure 
for finding all intervals that overlap a point. Technical Report UF-CIS-92-016, 
Computer and Information Sciences Department, University of Florida, June 
1992. 

[154] Mark Overmars. The Design of Dynamic Data Structures, volume  156  of  Lecture 
Notes in Computer Science. Springer,  1983.  

[155] John Wylie Lloyd.	 Foundations of Logic Programming. Springer,  second  ex­
tended edition, 1993. 

[156] NCSA. The common gateway interface. http://hoohoo.ncsa.illinois.edu/ 
cgi/overview.html. 

[157] Ivan Ristic. Apache Security. O’Reilly  Media,  2005.  

[158] suPHP. http://www.suphp.org/. 

[159] Arvind Seshadri, Mark Luk, Ning Qu, and Adrian Perrig. SecVisor: a tiny 
hypervisor to provide lifetime kernel code integrity for commodity OSes. In 
Proceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems 
Principles, 2007.  

http:http://www.suphp.org
http:http://hoohoo.ncsa.illinois.edu
http://en.wikipedia.org/wiki/Interval_tree,2009
http://w3
http:netfilter.org
http://www


216 

[160] Ryan Riley, Xuxian Jiang, and Dongyan Xu. Guest-transparent prevention of 
kernel rootkits with VMM-based memory shadowing. In Proceedings of 11th 
International Symposium on Recent Advances in Intrusion Detection (RAID 
2008), September  2008.  

[161] Common vulnerabilities and exposures (CVE). http://cve.mitre.org/. 

[162] Hong Chen, Ninghui Li, and Ziqing Mao.	 Analyzing and comparing the pro­
tection quality of security enhanced operating systems. In 6th Network and 
Distributed System Security Symposium (NDSS), 2009.  

[163] Robert N. M. Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. 
Capsicum: Practical capabilities for unix. In Proceedings of the 19th USENIX 
Security Symposium, August 2010. 

[164] Maxwell	 Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans 
Kaashoek, Eddie Kohler, and Robert Morris. Information flow control for 
standard OS abstractions. In Proceedings of the Twenty-First ACM SIGOPS 
Symposium on Operating Systems principles (SOSP 2007), 2007.  

[165] Peter A. Loscocco and Stephen D. Smalley.	 Integrating flexible support for se­
curity policies into the Linux operating system. In Proceedings of the FREENIX 
Track: 2001 USENIX Annual Technical Conference (FREENIX ’01), 2001.  

[166] Mary Ellen Zurko, Rich Simon, and Tom Sanfilippo. A user-centered, modular 
authorization service built on an RBAC foundation. In Proceedings of the 1999 
IEEE Symposium on Security and Privacy, 1999.  

[167] Timothy Fraser and Lee Badger. Ensuring continuity during dynamic security 
policy reconfiguration in DTE. In Proceedings of the 1998 IEEE Symposium on 
Security and Privacy, 1998.  

http:http://cve.mitre.org


APPENDIX
 



217 

APPENDIX: NETFILTER 

The Linux netfilter packet manipulation framework includes more features than what 

we presented in Chapter 4. For instance, netfilter supports network address transla­

tion (NAT), and the manipulation of link-level packet (ebtables). For reference, we 

include the reference diagram of packet flow inside netfilter (see Figure A.1). This dia­

gram illustrates the different hooks that the netfilter framework offers for customizing 

packet processing. 
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Figure A.1.: Packet flow inside the netfilter framework 



VITA
 



219 

VITA 
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