
CERIAS Tech Report 2011-24
Practical Automatic Determination of Causal Relationships in Software Execution Traces

 by Sundararaman Jeyaraman
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

Sundararaman Jeyaraman By

Entitled
PRACTICAL AUTOMATIC DETERMINATION OF CAUSAL RELATIONSHIPS
IN SOFTWARE EXECUTION TRACES

Doctor of Philosophy For the degree of

Is approved by the final examining committee:

Mikhail Atallah

 Chair

Eugene H. Spafford

Samuel S. Wagstaff, Jr.

H. E. Dunsmore

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Mikhail Atallah Approved by Major Professor(s): ____________________________________

Approved by: Sunil Prabhakar 11/22/2011
Head of the Graduate Program Date

Choose your degree

Graduate School Form 20
(Revised 9/10)

PURDUE UNIVERSITY

GRADUATE SCHOOL

Research Integrity and Copyright Disclaimer

Title of Thesis/Dissertation:
PRACTICAL AUTOMATIC DETERMINATION OF CAUSAL RELATIONSHIPS
IN SOFTWARE EXECUTION TRACES

For the degree of Doctor of Philosophy

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University
Executive Memorandum No. C-22, September 6, 1991, Policy on Integrity in Research.*

Further, I certify that this work is free of plagiarism and all materials appearing in this
thesis/dissertation have been properly quoted and attributed.

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with the
United States’ copyright law and that I have received written permission from the copyright owners for
my use of their work, which is beyond the scope of the law. I agree to indemnify and save harmless
Purdue University from any and all claims that may be asserted or that may arise from any copyright
violation.

Sundararaman Jeyaraman

Printed Name and Signature of Candidate

12/01/2011

Date (month/day/year)

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

http://www.purdue.edu/policies/pages/teach_res_outreach/c_22.html

PRACTICAL AUTOMATIC DETERMINATION OF CAUSAL RELATIONSHIPS

IN SOFTWARE EXECUTION TRACES

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Sundararaman Jeyaraman

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2011

Purdue University

West Lafayette, Indiana

ii

To my dearest Velumma

iii

ACKNOWLEDGMENTS

I would like to sincerely thank my advisor, Professor Mike Atallah, who has been a

source of inspiration, a gentle and guiding presence during my long tenure as a grad

uate student. I would like to thank Professors Eugene Spafford, Suresh Jagannathan,

Dongyan Xu, Cristina Nita-Rotaru and Chris Clifton: It was a pleasure and honor

working with and learning from you.

I am greatly indebted to a great many colleagues who made my stay tolerable and en

joyable: Umut Topkara, Mercan Topkara, Rick Kennell, Abhilasha Bhargav-Spantzel,

Mahesh Tripunitara, Pattie Chambers, Brian Carrier, Florian Buchholz, Ed Cates,

Adam Hammer, Dr. William Gorman and Sandra Freeman.

I have been most fortunate to have an extraordinary support network of friends and

family, who were instrumental in my finishing the dissertation and defending it: Velu,

Amma, SK, Meena, Ram, Mukesh, Ramki, Shri, Eas, Lakshmi. Thanks for being part

of my life and helping me get this proverbial monkey off my back.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . ix

ABSTRACT . xi

1 INTRODUCTION . 1

1.1 Motivation . 1

1.1.1 Intrusion analysis and forensic analysis 1

1.1.2 Intrusion detection . 3

1.1.3 Intrusion alert correlation 5

1.2 Background and definitions . 6

1.2.1 Digital system . 6

1.2.2 State, event . 7

1.2.3 Event causality . 7

1.2.4 Event reconstruction . 10

1.3 Thesis statement . 10

1.4 Thesis contributions . 10

1.5 Thesis organization . 12

2 RELATED WORK . 13

2.1 Intrusion and forensic analysis systems 13

2.1.1 Tools using ex post evidence 13

2.1.2 Ex ante logging . 14

2.2 Information flow analysis . 19

2.2.1 Static information flow analysis 19

2.2.2 Dynamic information flow analysis 20

2.2.3 Dynamic taint analysis . 20

v

Page

2.3 Misuse detection systems . 22

3 EMPIRICAL STUDY OF CAUSALITY DETERMINATION TECHNIQUES 23

3.1 Introduction . 23

3.2 Background . 25

3.3 Evaluation strategy . 25

3.3.1 Metrics for causality determination 26

3.3.2 Measurement methodology 26

3.3.3 Causality determination techniques 27

3.4 Experimental evaluation . 28

3.4.1 The benchmarks . 28

3.4.2 Implementation of the causality determination techniques . . 31

3.5 Results . 32

3.6 Limitations and future work . 39

3.7 Conclusion . 40

4	 CAUSALITY DETECTION THROUGH CONTROL-FLOW MONITOR
ING . 41

4.1 Introduction . 41

4.2 General approach . 43

4.3 Building causal models . 44

4.4 Control-flow properties . 45

4.4.1 Callsite . 45

4.4.2 Callstack . 46

4.4.3 Dynamic callstack . 48

4.5 Augmented audit logs and offline analysis 50

4.6 Experimental evaluation and results 50

4.6.1 False positives . 52

4.6.2 False negatives . 60

4.6.3 F-measure . 64

4.6.4 Impact of training data . 66

4.6.5 Runtime overhead . 71

4.7 Discussion . 79

vi

Page

4.7.1 Signals . 79

4.7.2 Multi-threaded applications 79

4.7.3 Address space layout randomization 80

4.7.4 Dynamically linked libraries 80

4.7.5 Control-flow modification and code-injection attacks 81

4.7.6 Unknown applications . 81

4.7.7 Causality through data-flow 82

4.7.8 Improving false negative rate 82

4.7.9 Causality modeling . 82

4.8 Conclusion . 83

5 CONCLUSIONS AND FUTURE WORK 84

5.1 Conclusions and contributions . 84

5.2 Future work . 86

5.2.1 Increasing coverage . 86

5.2.2 Improving causality determination accuracy 87

5.2.3 Alternate notions of causality 87

LIST OF REFERENCES . 89

VITA . 96

vii

LIST OF TABLES

Table	 Page

3.1	 List of the applications in the benchmark suite 29

3.2	 List of the system calls considered in this study 30

3.3	 The rate of false positives for BackTracker. Avg and Std stand for average

and standard deviation, respectively. 33

3.4	 The rate of false positives for static slicing. We were unable to obtain

the results for GnuPG in the case of static slicing owing to limitations

of CodeSurfer. Avg and Std stand for average and standard deviation,

respectively. 34

3.5	 Time overhead associated with dynamic taint analysis. Time overhead is

the ratio of the dynamic slicing time to the normal application execution

time. Avg and Std stand for average and standard deviation respectively. 35

3.6	 Memory overhead associated with dynamic taint analysis. Memory is

presented in MiBs. 36

4.1	 Dependence model for listing in Figure 4.1 45

4.2	 An example of a causal model using callstack information 48

4.3	 An example of a causal model using the dynamic callstack information.

We use “*” in the superscript as a wildcard to indicate that the instance

information does not matter. 49

4.4	 List of the applications in the benchmark suite 51

4.5	 The F-measure of Backtracker, Static slicing, Callsite, Callstack and Dy
namic callstack models. We were unable to obtain the results for GnuPG

in the case of static slicing owing to limitations of codesurfer. 65

viii

Table	 Page

4.6	 Runtime CPU overhead of building the callsite, callstack and dynamic
callstack causal models from causal traces. The overhead is presented in
terms of the real time in seconds consumed by the model building process
for each of the models. The size of the causal trace is given in terms of
number of system calls. 72

4.7	 Memory overhead of building the callsite, callstack and dynamic callstack
causal models from causal traces. The overhead is presented in units of
KiB consumed by the model building process. The size of the causal trace
is given in terms of number of system calls. The table contains the peak
memory used up by the process during its lifetime, broken down into: (a)
baseline memory usage when the program is loaded by the perl interpreter
(b) memory usage due to model building and storage. 73

4.8	 Runtime overhead of online monitoring and audit log generation for the
callsite, callstack and dynamic callstack causal models. The overhead is
measured in terms of additional % of elapsed time taken by each applica
tion when the online monitoring and audit log generation is added. . . 76

4.9	 Runtime CPU overhead of analyzing audit logs and determining causal
ity using the callsite, callstack and dynamic callstack causal models from
causal traces. The overhead is presented in terms of the real time in
seconds consumed by the causality determination programs. The size of
the audit logs is given in terms of number of system calls 78

4.10 Memory overhead of determining causality using the callsite, callstack and
dynamic callstack causal models in audit logs. The overhead is presented
in units of KiB consumed by the causality detection program. The table
contains the peak memory used up by the program during its lifetime, bro
ken down into: (a) baseline memory usage when the program is loaded by
the perl interpreter (b) memory usage due to model storage and causality
detection. 78

ix

LIST OF FIGURES

Figure	 Page

1.1	 Example to illustrate causal relationships through the operating system

kernel. 8

1.2	 Sample source code to illustrate causality through Program Dependences. 9

3.1	 The directory structure used in the discussion of ls 38

4.1	 Sample source code to illustrate causality through Program Dependences. 45

4.2	 Sample source code to illustrate causal models using callstack information 47

4.3	 Sample source code to illustrate causal models using the dynamic callstack

information . 49

4.4	 The hierarchical directory structure used in the discussion of ls 54

4.5	 Source code snippet that captures the behavior of ls -r. The snip
pet was derived from the original source of ls (ls.c) available in the

coreutils-4.5.3 package. We have simplified and modified the source

considerably to highlight only the relevant portions. 55

4.6	 The control-flow and data-flow trace of a sample execution of the code

listed in Figure 4.5. Data-flow is depicted through colored arrows. . . . 56

4.7	 Rate of false positives of causal models using Callsite, Callstack and Dy
namic Callstack for GnuPG, wget, ls, find. 57

4.8	 Rate of false positives of causal models using Callsite, Callstack and Dy
namic Callstack for gzip, wc, grep, cp. 58

4.9	 Rate of false positives of causal models using Callsite, Callstack and Dy
namic Callstack for tar along with the average false positive rate across

all the applications. 59

4.10 Rate of false negatives of the Callsite, Callstack and Dynamic Callstack

models for GnuPG, wget, ls, find. 61

x

Figure Page

4.11 Rate of false negatives of the Callsite, Callstack and Dynamic Callstack
models for gzip, wc, grep, cp. 62

4.12 Rate of false negatives of the Callsite, Callstack and Dynamic Callstack
causal models for tar and the average false negative rate across all the
applications. 63

4.13 Impact of the size of training data on the effectiveness of causal models. We
list the results for the dynamic callstack model (the callsite and callstack
models display the same trends) for the applications GnuPG, wget, ls
and find. The X-axis refers to the size of training data in terms of the
number of system calls. 68

4.14 Impact of the size of training data on the effectiveness of causal models. We
list the results for the dynamic callstack model (the callsite and callstack
models display the same trends) for the applications gzip, wc, grep and
cp. The X-axis refers to the size of training data in terms of the number
of system calls. 69

4.15 Impact of the size of training data on the effectiveness of causal models. We
list the results for the dynamic callstack model (the callsite and callstack
models display the same trends) for the tar. The X-axis refers to the size
of training data in terms of the number of system calls. 70

xi

ABSTRACT

Jeyaraman, Sundararaman. Ph.D., Purdue University, December 2011. Practi
cal Automatic Determination of Causal Relationships in Software Execution Traces.
Major Professor: Mikhail Atallah.

From the system investigator who needs to analyze an intrusion (“how did the in

truder break in?”), to the forensic expert who needs to investigate digital crimes

(“did the suspect commit the crime?”), security experts frequently have to answer

questions about the cause-effect relationships between the various events that occur

in a computer system. The implications of using causality determination techniques

with a low accuracy vary from slowing down incident response to undermining the

evidence unearthed by forensic experts.

This dissertation presents research done in two areas: (1) We present an empirical

study evaluating the accuracy and performance overhead of existing causality determi

nation techniques. Our study shows that existing causality determination techniques

are either accurate or efficient, but seldom both. (2) We propose a novel approach

to causality determination based on coarse-grained observation of control-flow of pro

gram execution. Our evaluation shows that our approach is both practical in terms of

low runtime overhead and accurate in terms of low false positives and false negatives.

1

1 INTRODUCTION

This chapter provides the motivation, general background material and the contribu

tions of this dissertation. Section 1.1 describes how the questions about causality are

fundamental to solving many information security challenges. Section 1.2 provides

the definition of causality and related terms necessary to make our thesis statement.

Section 1.3 provides the thesis statement, contributions and an outline of the reminder

of the dissertation.

1.1 Motivation

The question of how the various events that occur in a computer system are causally

related arises frequently in a variety of contexts in information security. In this

section, we describe how some of the fundamental questions that arise in those fields

are causal in nature and how the ability to reliably and practically answer those

questions can improve the state-of-art of those fields.

1.1.1 Intrusion analysis and forensic analysis

The number of security incidents and intrusions have been rapidly on the rise over

the past few years [1]. Given that it is difficult to completely secure computing

infrastructure, and the heavy financial loss inflicted by intrusions [1], the importance

of incidence response and recovery mechanisms can hardly be overstated. An effective

intrusion response and recovery strategy is heavily dependent on the ability to analyze

and answer questions regarding the events related to the intrusions in a timely and

efficient manner.

2

Consider, by way of example, the following security incidents:

1. The security policy	 of an organization is violated by one or more unknown

insiders (e.g., misusing the system to send spam, send confidential material to

outsiders);

2.	 a digital crime is committed (e.g., storing illegal material on the system, or

using the system to launch cyber-attacks on other systems);

3.	 a hacker breaks into a host inside the internal network of an organization and

installs back-doors and other malware.

In all of the above cases, the ability to identify and reconstruct the sequence of events

that led to each incident is critical to the success of effective response and recovery

measures: In the first kind of incident, the system administrators of the organization

need to determine the identity of the insiders and the underlying causes for the

violation. It might even be the case that the insiders had no malicious intentions, but

that the original policy had been set too tight.

For the second kind of incident, the digital investigators and the prosecution need

to reliably attribute the digital crime to a particular suspect. In the third kind of

incident, the administrators need to identify the attack vector of the hacker (how

did the break-in occur?), to secure their systems against any future attacks that use

similar techniques.

Questions of a similar nature also arise when a digital forensic expert examines digital

evidence during the digital investigation process [49,50]. Collectively, answering such

questions has been referred to as the process of “event reconstruction” [48, 49]. A

critical component of event reconstruction is the determination of causal relationships

between events in a computer system. The knowledge of causal relationships allows

an investigator to accurately “backtrack” from the effect to the cause (or causes) and

to “forward track” from a cause to all its effects.

3

Historically, intrusion analysis systems have used causality determination schemes

that are sound, have a very low overhead, but suffer from high false-positive rates [56].

Examples include BackTracker introduced by King et al. [35,36] and the process-labels

scheme introduced in Bucholz et al. [42, 43].

One of the milder negative consequences of a high false-positive rate is that a se

curity practitioner has to waste time and resources in investigating events that are

completely unrelated to the security incident being investigated. At their worst, high

false-positive rates make the evidence obtained susceptible to successful legal defense

tactics such as the Trojan Horse defense [47].

Recently developed techniques such as Dynamic Taint Analysis (DTA) [57] and Vir

tual machine introspection [46] could be used to improve the precision of causality

determination. However each of those techniques have drawbacks of their own limiting

their deployability. The generalized version of DTA [74] results in a severe degradation

in performance (50x slowdown [74]) making it impractical to be deployed. Virtual

machine introspection is more precise than the traditional techniques (though not as

precise as DTA), but requires hardware assisted virtualization to keep the CPU over

head to around 18% (in addition to the virtualization overhead) [46]. The need for

a hypervisor and hardware assisted virtualization limits its applicability to resource

constrained devices (e.g., smartphones).

This leaves the developers of intrusion analysis systems with the dilemma of having

to choose between efficiency (low-overhead) and precision for determining causal rela

tionships. In this dissertation, we provide a novel approach to causality determination

that resolves this dilemma for analyzing certain classes of security incidents.

1.1.2 Intrusion detection

An Intrusion Detection System (IDS) can be informally thought of as a burglar-alarm

for detecting security violations in a computer system. Based on their detection

4

methodologies, most of the intrusion detection systems fall into one of the following

categories: (a) signature-based systems (b) anomaly-detection systems. Signature-

based systems require a rule-base, based on which they determine if the ongoing

activities in a system constitute an attack or not [18]. Anomaly-detection systems

build a model of normal behavior of the system and flag any anomalous behavior as a

possible attack [12–17]. Both types of systems have some fundamental limitations that

limit their usefulness and practicability. Signature-based IDSs cannot detect any novel

attacks that are not already present in the rule-base. Also, even simple variations of

the attacks that are present in the rule-base can go undetected. Anomaly-detection

systems suffer from a high false-alarm rate.

Recently, “policy-based” intrusion detection systems have been proposed as a promis

ing alternative to both anomaly and signature-based detection systems [19–22]. The

key idea is that, an intrusion is nothing but a violation of a well-defined security

policy e.g., Information-flow policies. The policy-based approach is very promising

and appealing because:

1. Most sites already have some form of a well defined high-level security policy

e.g., Discretionary Access Control (DAC) permissions in Unix-like systems.

2. Most of the attacks result in violations of such simple, but well defined policies.

For example, an intruder reading the /etc/shadow file as a result of a remote

buffer-overflow exploit in sendmail, is violating the DAC policy that states

that non-root users cannot access /etc/shadow. If the same intruder modifies

/var/log/syslog, she violates the policy that non-root users cannot modify

that specific file.

An important roadblock for the success of policy-based IDSs is the “semantic-gap”

between the high-level policy statements and the low-level events that occur in a sys

tem. Consider the example mentioned in the previous paragraph. A policy-based IDS

that observes the system calls that are executed in the system would observe the fol

lowing sequence of system calls related to the attack: ... receive(), execve(),

5

read(), write() ... all of which are executed by root. It is unclear how to accu

rately determine if the read() or write() actually violates the DAC policy. But if

the same sequence of system calls are translated into the following form:

Cause: receive()

Effects: execve(), read(), write()

then, it is easier to see how an outsider has “influenced” the read() and write()

calls, (through the packet receive()ed by sendmail) thereby potentially violating

the DAC policy. Causal relationships provide a convenient bridge for the semantic-gap

existing between the low-level events and the high-level policy statements.

1.1.3 Intrusion alert correlation

A security conscious organization typically deploys a large number of intrusion detec

tion systems, that differ from each other based on a variety of factors such as place

of deployment (network or host based), the event streams on which they operate

(system calls or application-level logs) and methodology of detection (anomaly-based

or signature-based). Therefore, the system administrators of an organization are

typically overwhelmed with a profusion of intrusion-alerts emanating from diverse

detection systems. Correlating alerts [25, 26, 28] from such heterogeneous sources

could be useful due to the following reasons:

1. Correlation as aggregation:

If multiple alerts could be aggregated and identified as being a result of the same

attack, then the number of alerts that are actually viewed by the administrators

is reduced by a great amount.

2. Correlation for understanding:

An attack can be completely studied and understood only by correlating alert

information from heterogeneous detection sensors. This could result in improved

context-sensitivity and a decrease in the false-alarm rate.

6

3. Correlation for recognizing attack scenarios:

There are cases where a series of attacks are first launched in preparation for

future intrusions. If the earlier attacks could be correlated with the later ones,

then complex attack scenarios could be reconstructed [25, 28, 29]. This could

tremendously aid subsequent response and recovery efforts. Also, future detec

tion of similar attack scenarios becomes possible.

Knowledge of causal relationships between the low-level events that generated the

alerts would tremendously aid all three aforementioned functions. In fact, work by

King et al. [36] has found that enriching intrusion alerts with some contextual infor

mation based on even a very simple notion of causality is quite valuable.

1.2 Background and definitions

In this section, we discuss the background concepts that are necessary for stating our

thesis and discussing the main results of this dissertation. We use the theory provided

by Carrier [52] as the ground work for our definitions. While our definitions do not

have the same formalism and syntax used in [52] they remain faithful in semantics.

1.2.1 Digital system

A digital system is defined as a connected set of digital storage and event devices.

Digital storage devices are physical components that can store one or more values

and a digital event device is a physical component that can change the state of a

storage location [52]. In this dissertation, we use the terms digital system, computer

system, system and host interchangeably. Purely for expository purposes, we restrict

the discussion to computer systems that run Unix-like operating systems. This is

not a fundamental limitation as the concepts and approaches described should be

applicable to other systems with only minor modifications.

7

1.2.2 State, event

The state of a system is the discrete value of all its storage locations and an event is

an occurrence that changes the state of the system. The history of a digital system

describes the sequence of states and events between two times. For the purpose of

this dissertation, we consider an event to be an action that is performed by a process

(or an application) on behalf of a user.

The rest of the dissertation focuses on a subset of events viz. system calls. We focus

on system calls due to the following reason: The security-relevant behavior of any

application is likely to consist of system calls. In order for a perpetrator of a security

incident to accomplish anything meaningful (e.g., compromising system integrity), in

teraction with the operating system is necessary 1 . However, the techniques proposed

in this dissertation are not restricted to system calls alone. They can be extended to

any event that conforms to our definition.

In terms of Carrier [52], a system call can be thought of as a complex event that

is composed of many primitive events or lower level events. Henceforth, the terms

computer event, system event, event and system call are used interchangeably.

1.2.3 Event causality

Historically, various theories have been proposed to formally define, explain and rea

son about what is intuitively referred to as causation or cause-effect relationships e.g.,

Regular theories [5], Counterfactual theories [7, 8], Probabilistic theories [9–11].

In this dissertation, we focus on the standard notion of causality as defined by Hume

[5], Mill [6] and Lewis [8], that captures the notion of a “necessary cause”. A necessary

cause can be expressed using the counterfactual: would E (effect) have occurred if it

were not for C (cause)? [3, 4]. An example counterfactual query about causation in

1There are some exceptions to this claim. E.g., denial of service attacks might not require interaction
with the underlying operating system [23].

8

computer events could be: Would the root kit be still installed (effect), if it were not

for the email received by the email-server (cause)? 2 .

Causal relationships between events are enabled by causal mechanisms [3, 4]. For

example, consider a user Alice deleting a file foo. In this case, the executable code that

was invoked as part of the system call unlink() is the mechanism that enables Alice

to delete foo. Broadly, causal mechanisms that enable causality between computer

system events are of the following two types:

1. The operating system

Causal relationships between system events could be enabled through various

subsystems of the operating system, e.g., the file system, the Inter-Process Com

munication (IPC) system. Consider the example in Figure 1.1, where process-1

and process-2 execute a sequence of system calls in the specified order. The

write() system call of process-1 is a cause of the read() system call of process

2, because the result of the read() system call is dependent on the write()

system call. In other words, the data that are used by read() are dependent

on the data produced by write(). This causal relationship is enabled by the

file system component of the OS. Similarly, other subsystems such as the pro

cess subsystem and the IPC subsystem also enable causal relationships between

events [35].

Process −1: fd = open (foo , OWRONLY) ;

Process −1: wr i t e (fd , ‘ ‘ h e l l o ’ ’ , 5) ;

Process −1: c l o s e (fd) ;

Process −2: fd = open (foo , ORDONLY) ;

Process −2: read (fd , bu f f e r , 4) ;

Figure 1.1.: Example to illustrate causal relationships through the operating system
kernel.

2The installation of the root kit can be expressed as a series of system calls that copy the neces
sary files. Similarly, the reception of the email can be captured by system calls that received the
corresponding network packets.

9

2. Program Address Space

Causal relationships between two events could be enabled by the address space

of a process (code and data) if both events are executed by the same process.

For example, in the piece of code listed in Figure 1.2, the causal relationship

between the read() and the write() calls is enabled by the strncpy() library

call and the data buffers buffer1 and dest.

f d r = open (foo , ORDONLY) ;
fd w = open (bar , OWRONLY) ;
read (fd r , buf f e r1 , 10) ;
read (fd r , buf f e r2 , 10) ;
i f (bu f f e r 1 [0] == 1) {

s t rncpy (dest , buf f e r1 , 10) ;
}
wr i t e (fd w , dest , 5) ;

Figure 1.2.: Sample source code to illustrate causality through Program Dependences.

In this dissertation, we focus on causation that is enabled by the process address

space. We use program dependences (data dependences and control dependences) to

capture causal relationships that are enabled by the process address space. We assume

that program dependences are a conservative approximation of causal relationships

i.e., if event C causes E, then the program statement representing E is “dependent”

on the statement representing C.

For example, in Figure 1.2, the causal relationship between the read() and the

write() calls is enabled by a chain of program dependences between the two calls.

The write() call uses a value (dest) produced by the strncpy() library call (data

dependence). The call to strncpy() is dependent on the truth value of the if condi

tion (control dependence). The truth value of the if condition is in turn dependent

on the read() system call.

10

1.2.4 Event reconstruction

A security incident happens as a result of a chain of events (or multiple chains of

events if there are multiple causes for the incident). An event chain is an ordered

sequence of events (e0, e1, ., ek) where event ei is the cause of event ei+1 (in other

words ei+1 is dependent on ei). The process of identifying the chain(s) of events that

result in a security incident is called event reconstruction.

1.3 Thesis statement

This dissertation describes the work done to validate the following hypothesis:

It is practical to automatically and accurately determine causal relationships between

system calls in software execution traces.

In this dissertation, we focus on causal relationships enabled through program depen

dences and causality determination techniques used in intrusion analysis and event

reconstruction systems.

1.4 Thesis contributions

This dissertation makes the following contributions:

•	 First, we empirically study the effectiveness of existing approaches for causality

determination in event reconstruction systems. As part of this study:

–	 We develop a systematic approach for evaluating the effectiveness of causal

ity determination techniques.

–	 We develop a suite of real world applications and testcases for benchmark

ing the effectiveness of causality determination. The suite allows us to

identify the source of inaccuracy and performance overhead of the various

causality determination techniques that we study.

11

–	 Using our approach, we provide experimental data quantifying the accu

racy and the overhead (time, space, memory) of each technique. Some of

our results are enlightening and surprising. For example, the rate of false

positives is very high for all the techniques that we evaluate, sometimes as

high as 96%. The legal ramifications of this result are substantial and this

highlights the need for more accurate techniques.

–	 We analyze the experimental data and shed light on the conditions that

lead to the inaccuracies and the overhead of the techniques we evaluate.

For example, we found that BackTracker and the Static-slicing techniques

do not work well in applications that exhibit recursive and iterative work

flow characteristics.

•	 Second, based on the insights that we gain from our empirical study, we describe

a new approach to causality determination. Our approach involves developing a

“causality prediction model” to determine causal relationships based on obser

vations of control-flow of a program. Our models provide efficient and accurate

causality determination when the following conditions are met: (1) The pro

gram was not subject to control-flow modification or code-injection attacks and

(2) The executable code of the program is available apriori.

•	 Third, We evaluate the effectiveness of our approach using the same systematic

approach we used to study the existing causality determination techniques. We

show that our approach based on causality models has a low false-positive rate

and low false-negative rate (less than 5%) with a low runtime overhead.

•	 Finally, we analyze the experimental data from our evaluation and provide

insights on improving the accuracy of causality determination even more.

12

1.5 Thesis organization

The rest of this document is organized as follows. Chapter 2 provides a survey of

the research literature of work that is closely related to this dissertation. Chapter 3

presents the experimental evaluation and analysis of existing causality determination

techniques. Based on the insights gained from the experimental evaluation, Chapter

4 describes our approach to causality determination and its experimental evaluation

and analysis. Chapter 5 summarizes the contributions of this dissertation and gives

directions for future research work.

13

2 RELATED WORK

This chapter discusses the research related to our thesis statement.

2.1 Intrusion and forensic analysis systems

Determination of causal relationships is critical for intrusion analysis and digital foren

sics investigations. In this section, we provide a survey of a subset of the tools available

for intrusion and forensic analysis and the causality determination techniques used

by them.

2.1.1 Tools using ex post evidence

Often, the only source of evidence available to an investigator is the hard disk image

of a host. In addition, logs of network traffic might be available occasionally. Tools

such as TCT [31], Sleuth Kit [30] and Guidance Softwares EnCase [34] help the

investigators in collecting and analyzing the evidence from hard disk images. The

primary focus of these tools is the discovery of evidence that might be of use to a

digital forensic investigator. The investigator is still left to manually reconstruct the

event sequences that fit the unearthed evidence.

In addition to evidence discovery, some tools attempt to improve the ease of evi

dence analysis and event reconstruction. For example, Zeitline [32] imports logs from

disparate sources (e.g., system MAC times, system and firewall logs, and applica

tion data) and allows the investigator to group low-level events into “super events”.

Wireshark [33] can interpret the network traffic logs and provide a higher semantic

view (application level view) of the network events. Despite these improvements, au

14

tomatic event reconstruction is largely not possible where these tools are employed,

primarily because of the limited nature of the available evidence.

2.1.2 Ex ante logging

There are scenarios where it is possible for the investigators to log events in a host

prior to the occurrence of a security incident. For example, system administrators

of organizations can install host-based logging mechanisms in the hosts under their

supervision. If a security violation occurs in any of the hosts, then the corresponding

logs can be utilized for analyzing the violation. Intrusion analysis tools such as

BackTracker [35] and Forensix [39] use this approach of combining ex ante logging

with ex post intrusion analysis for event reconstruction.

BackTracker

BackTracker is an automatic event reconstruction tool that identifies chains of events

that could have influenced a security incident [35]. At runtime, BackTracker records

system events that induce dependence relationships between operating system ob

jects. A dependence relationship induced by an event consists of a source object (the

cause), a sink object (the effect) and the time interval during which the event took

place. Once a security incident is detected, BackTracker constructs a dependence re

lationship graph using the dependence relationships inferred from the recorded events.

The nodes of the graphs are operating system objects such as files, processes and file

names. The edges represent dependence relationships between the objects. Given a

set of objects that are involved in a security incident (detection points), BackTracker

reconstructs the event chains by traversing the dependence graph backwards from the

detection points using the dependence edges.

BackTracker takes a coarse-grained conservative approach when it comes to depen

dences between events executed by the same process (PD causal relationships). Given

15

a pair of events Ei and Ej executed by the same process, BackTracker marks Ei to be

the cause of Ej if Ei was an “input” event (e.g., read(), recv(), readdir()) and

happened before Ej. This coarse-grained approach is sound (i.e., no false negatives),

but results in many false positives [56]. Our proposed approach to causality deter

mination, takes a finer grained approach that reduces the false positives significantly

without introducing many false negatives.

Forensix

Forensix is a forensics and intrusion analysis tool similar to BackTracker [39] . It uses

the SNARE framework [40] (an event logging mechanism) for recording the events

that happen in a system. System events are observed at the granularity of OS system

calls. Auxiliary information such as the parameters and return values of the system

calls are also recorded.

There are two main differences between BackTracker and Forensix: (1) Forensix pro

vides support for tamperproof logging by streaming the system call information in

real-time to append-only storage in a separate, hardened logging machine. (2) Unlike

BackTracker which uses a dependence graph, Forensix facilitates reconstruction by

providing a database query language (SQL) interface to the recorded logs, i.e., event

reconstruction can be performed in an iterative fashion using a series of SQL queries.

Despite these differences, the dependence relationships captured during the analysis

phase are similar to those captured by BackTracker. Specifically, Forensix treats PD

causal relationships in the same coarse-grained way as BackTracker and hence suffers

from a high false positive rate when determining PD causal relationships [56].

Process Labels

Though not originally intended for event reconstruction purposes, the Process Labels

scheme proposed by Buchholz and Shields [42] and further expounded in Xuxian et

16

al. [43] and Buchholz [44], possesses the same capabilities as BackTracker. Buchholz

and Shields propose a model of pervasive binding of processes labels to track the

impact of principals in a system. A principal is defined as an active agent that

performs actions in a system and interacts with other principals. Principals create,

access and modify other principals and objects in the system. Every principal is

associated with a unique label and labels are propagated from a cause to its effect.

Using their model, causal relationships can be identified by tracking labels.

For determining PD causal relationships, they use the same technique as that of

BackTracker: “... if an output can be observed for a principal at time t, we consider

all previous inputs of time ti ≤ t as potentially having caused the output. Thus any

information exchange between principals (direct or indirect) has a potential effect on

successive outputs of a principal. This approach will yield false positives as certain

inputs may not have been the cause of an output. However, this ensures that any

input that did cause an output will be considered” [44]. As a result, the Process

Labels approach suffers from the same issue of high false positive rate as that of

BackTracker [56].

Improved BackTracker

Sitaraman and Venkatesan [41] propose the following improvements to BackTracker

(we refer to their approach as Improved BackTracker):

•	 Offset intervals. BackTracker treats files as atomic objects If a process modifies

a file, it influences all future reads of the file regardless of which portion of the

file is modified. This might lead to false dependences.

To overcome this, Improved Backtracker records the arguments of the read,

write system calls. The arguments help in observing the files at a finer granu

larity by providing the offsets at which each read and write system call operates.

For instance, consider a process A writing to file foo from bytes 1 to 50. Con

17

sider another process B that reads from foo but only the bytes 51 to 100. In

this case, BackTracker falsely implicates the read() system call as an effect of

the write() system call, whereas Improved BackTracker does not.

This approach is targeted at improving the accuracy of OS enabled causal rela

tionships, while the approaches presented in this dissertation are geared towards

improving causality determination in PD causal relationships.

•	 Program slicing. Sitaraman and Venkatesan propose the use of static slicing

and dynamic slicing to reduce the false positives incurred by BackTracker in

determining PD causal relationships.

Tracking memory mapped files

This approach improves the precision of previously discussed BackTracker-like sys

tems by adding the ability to observe memory-mapped files at a finer granularity. The

event reconstruction systems discussed so far do not consider read and write events

to files that are mapped in memory. A process changing the contents of a shared

memory-mapped file may affect the behavior of a legitimate process that reads the

modified shared memory area later on. Memory operations cannot be logged by trac

ing system calls because a process makes use of pointers to reference its memory

address space.

Reconstruction systems typically establish an unconditional dependence between two

processes that share memory, no matter what type of operations are carried out on it,

if any, leading to false positives. Sarmoria and Chapin [45] propose a runtime monitor

to log read and write operations in memory-mapped files. The basic concept of their

approach is the use of page faults to monitor memory access (read and write) of

memory-mapped files and to log those accesses. Once the accesses have been logged,

they use a BackTracker (or more precisely the Improved Backtracker with file offsets)

like approach to determine dependence relationships.

18

This approach is limited to improving the accuracy of determining OS enabled causal

relationships and does not extend to PD causal relationships.

Virtual machine introspection

A virtual-machine monitor (VMM) is a layer of software that emulates faithfully the

hardware of a complete computer system [38]. The abstraction created by the virtual

machine monitor is called a virtual machine. The operating system running in the

virtual machine is called the guest operating system [37]. Introspecting and logging

the events that occur in the guest OS from within the VMM is suitable for creating

logs that are resistant to malicious tampering: VMMs represent a smaller trusted

computing base than operating system kernels. Moreover the interface between the

guest OS and the VMM is smaller and hence easier to secure than the interface

between applications and the guest OS.

ReVirt [37] was the first intrusion analysis system to take advantage of VMMs to

log system events. ReVirt creates data checkpoints and records sources of non-

determinism in a system (such as user inputs) so that the system could be replayed in

the future. To investigate the system, the investigator would stop the replay and in

stall and execute tools to collect data about the system state. While ReVirt improves

the completeness of the audit logs and their integrity, it still does not completely au

tomate the process of causality determination and consequently event reconstruction.

Kannan et al. [46] propose a virtual machine introspection system that transparently

monitors and logs data-flow in the guest OS using just the abstractions provided by

the VMM. In addition to the logging mechanism, they also provide a mechanism

to “query” the audit logs that facilitates quick reconstruction of events. While this

approach is certainly superior to BackTracker like systems (and the proposed im

provements to BackTracker), in the sense that PD causal relationships are tracked at

a finer granularity (at the level of a virtual page), there are several limitations when

compared to our approach: (1) Causality is tracked through data dependences alone

19

and control dependences are ignored. As shown by Clause et al. [74], ignoring control

dependences leads to a significant drop in precision. (2) Data flow is tracked through

the granularity of a virtual machine page whose size is typically 4 KB. This leads the

system to falsely identify causal relationships between two system calls even if they

are not causally related. (3) The virtual machine introspection technique relies on

the presence of hardware assisted virtualization to reduce the overhead of monitoring

and logging. This makes the approach unsuitable for constrained embedded com

puting environments such as network devices (e.g., routers) and smartphones where

virtualization hardware is not typically present.

2.2 Information flow analysis

Information flow policies specify the way information may legally flow through a

computer system. For example, a confidentiality policy might specify the set of users

that are allowed to access a particular information. Examples of information flow

policies include the Bell-LaPadula model [61], the Biba model [62] and the Chinese

wall model [63].

The way information flows through a system also describes causal relationships. For

example, if a process A writes into a file foo, which is subsequently read by a process

B, information flows from A to B and the write is a cause of the read. Hence, past

research done in analyzing how information actually flows through a computer system

can potentially be leveraged to determine causal relationships in the system.

Research in the area of information flow analysis can be broadly categorized into (a)

Static information flow analysis and (b) Dynamic information flow analysis.

2.2.1 Static information flow analysis

Research in static information flow analysis has focused on developing language-based

approaches for detecting information flow policy violations [64]. Given the source code

20

of a program, these approaches try to determine if it satisfies a given information

flow policy [65, 66]. Static information flow analyses suffer from the same drawbacks

as using static slicing to determine causal relationships between system calls in a

program. They tend to suffer from imprecision and a large number of false positives

as discussed in Section 3.5. Furthermore, language-based approaches are limited in

their applicability as they either require the programs to be written in specialized

languages or to be manually annotated [64].

2.2.2 Dynamic information flow analysis

Dynamic information flow control mechanisms [68–70] on the other hand are both

precise and do not restrict themselves to programs written in special languages. How

ever, most of the dynamic flow control mechanisms need some form of architectural

support [68, 69]. To precisely track information flow, dynamic flow systems have

to examine every instruction issued by an application. The overhead involved with

examining every instruction is so high that special architectural modifications are

needed. The techniques we propose have a very low overhead without significantly

sacrificing precision.

2.2.3 Dynamic taint analysis

Dynamic taint analysis (DTA) is one of the most commonly employed dynamic analy

sis techniques in security research. DTA runs a program and observes which computa

tions are affected by predefined taint sources such as user input. It has been employed

in a variety of contexts such as automatic prevention of code injection attacks and

malware analysis [57].

DTA can be used as a dynamic information flow analysis system. Intuitively, dynamic

tainting tracks the information flow within a program by (1) associating one or more

markings with some data values in the program and (2) propagating these markings

21

as data values flow through the program during execution (through both data and

control dependences) [74]. Similarly, causality determination between system calls

can be naturally modeled as a dynamic taint analysis problem: Each system call in a

program is considered a source of a taint mark. The taint marks are then propagated

by control and data dependences through the program execution. Each system call

also acts as a sink, i.e., the taint marks that impact that system call are logged. His

torically, DTA has been formulated such that the tainting information is represented

using a single bit. However, causality determination demands multiple taint sources

and hence several bits of tainting information. We refer to the formulation requiring

multiple taint sources and multiple bits of tainting information as generalized DTA.

As it was in the case of other dynamic information flow analysis systems, the early

DTA techniques suffered from a high CPU overhead [73]. Several attempts have

been made to improve the runtime of DTA – [75,76,78–81]. Many of those attempts

such as [79–81] require specialized hardware limiting their applicability. Amongst the

purely software based approaches, the work by Chang et al. [75] is the one with the

lowest overhead for performing DTA. They report an impressive low overhead of 13%

for CPU intensive applications. However the formulation of DTA used by Chang et

al. to derive the 13% is not generic enough to determine causal relationships between

all system call pairs in a program execution. Moreover, their approach does not

propagate taints through control-flow dependences leading to significant degradation

of precision [74].

In comparison, our approach offers the generality of generalized DTA (multiple taint

sources, control-flow dependence tracking) for a certain class of security incidents and

has a low overhead of under 5% on the average without significantly sacrificing the

accuracy of causality determination.

22

2.3 Misuse detection systems

Host-based misuse detection systems (MDS) detect an attacker’s attempts to hijack

processes running in a system. An anomaly based MDS achieves this by identifying

program behaviors that deviate from a known specification of normal behavior [87].

Specifications of normal behavior can be either provided manually [14] or can be

derived automatically [13, 16, 17,23,87].

Among those MDSs that derive their specifications automatically, some derive the

specifications from event traces of program executions [13] while others derive the

specifications directly from either the program source code or binary [16, 17, 23, 87].

Those that derive their specifications from the program source are closely related to

our approach to causality determination.

A major insight we gained from those MDSs is that even simple models of program

execution (e.g., the control-flow of an application) can capture a significant portion

of the program semantics. While data-flow definitely adds fidelity to program spec

ifications, it was surprising to note the degree of success achieved by modeling the

control-flow alone. This inspired us to explore the relationship between control-flow

and causality. Specifically we ask the research question “Can we make deductions

about causal relationships in a program execution, by merely observing its control-

flow?”. As we show in Chapter 4, it is certainly possible to do so under certain

conditions (e.g., when there are no control-flow modification attacks).

23

3 EMPIRICAL STUDY OF CAUSALITY DETERMINATION TECHNIQUES

In this chapter, we present an empirical study of existing causality determination

techniques. Section 3.1 provides a general introduction and motivation to study

causality determination techniques and summarizes the contributions of this chapter.

Section 3.2 gives the necessary background to understand this chapter. Section 3.3

explains our methodology for evaluating causality determination techniques. Section

3.5 presents the empirical results from our study and an analysis of the results and

finally Section 3.6 discusses limitations of our approach and concludes.

3.1 Introduction

Causality determination techniques are typically employed by automated reconstruc

tion systems such as BackTracker [35, 36], Forensix [39], Improved BackTracker [41],

the virtual machine introspection scheme [46] and the Process Labels scheme [42,43].

Despite the growing body of literature of causality determination schemes, there is

hardly any work that quantifies their effectiveness. A rigorous study that quantifies

their effectiveness is essential for the following reasons:

•	 For a system administrator and a analyzer of security incidents, a study that

sheds light on the accuracy and effectiveness of causality determination tech

niques is useful in choosing the right event reconstruction system for their cir

cumstances. As we shall see, techniques suited for certain programs misbehave

in others.

•	 For a forensic investigator, the importance of reliability and accuracy metrics

for techniques employed in his/her analysis cannot be overstated [53]:

24

–	 All too often, individuals who are indicted for digital crime successfully

exploit the lack of such metrics by using tactics such as the Trojan horse

defense [47]. A forensic expert providing testimony in a court of law could

buttress his/her conclusions by citing studies that evaluate the effective

ness of the causality determination techniques that they used in event

reconstruction.

–	 Event reconstruction systems often provide multiple hypotheses regard

ing the possible causes of a security incident. If false-positive rates are

available, they can be used as priors for calculating the likelihood of each

hypothesis, allowing investigators to order or prioritize the different hy

potheses.

•	 For an information security researcher, such a study offers a guide in identifying

the challenges that need to be tackled in order to build more accurate and

efficient causality determination schemes.

In this chapter, we present an experimental study that evaluates the effectiveness of

causality determination techniques used by most event reconstruction systems. Our

contributions are the following:

•	 We develop a systematic approach for evaluating the effectiveness of causality

determination schemes.

•	 We develop a suite of real world applications and testcases for benchmarking

various causality determination schemes. The suite allows us to identify the

source of inaccuracy and performance overhead of those techniques.

•	 Using our approach, we provide experimental data quantifying the effectiveness

of the causality determination techniques and the overhead (time, space, mem

ory) of each technique. Some of our results are enlightening and surprising. For

example, the rate of false positives is very high for some of the commonly used

25

techniques, sometimes as high as 96%. The legal ramifications of this result are

substantial and this highlights the urgent need for greater accuracy.

•	 We analyze the experimental data and shed light on the conditions that lead to

the inaccuracies and overhead of the techniques we evaluate. For example, we

found that BackTracker and the static slicing techniques do not work well in

applications that exhibit recursive and iterative workflow characteristics (more

on this in Section 3.5).

3.2 Background

This section presents a background on the terms used in the rest of the chapter.

Program slicing. Intuitively, a program slice [58,59] of any statement S in a program

is the set of other program statements that influence the execution of S and the values

used in S. The process of building a program slice is referred to as program slicing

or just slicing.

Static slicing. Computing the program slice of a program statement in a static fashion

is referred to as static slicing. Static slicing computes the parts of the program that

could influence the given statement, over all possible execution paths of the program.

Dynamic slicing. On the other hand, dynamic slicing computes a program slice for a

particular execution of the program. Dynamic slicing, by definition, tracks program

dependences in the most accurate fashion. However, the accuracy comes at a huge

cost of space, memory and time [59].

3.3 Evaluation strategy

In this section, we explain our approach for measuring the effectiveness of causality

determination techniques.

26

3.3.1 Metrics for causality determination

The first challenge in measuring the effectiveness of causality determination tech

niques is to decide upon a set of metrics. We propose to use the rates of false positives

and false negatives as metrics to measure the accuracy of causality inference. False

positives arise when two events ei and ej are implicated in a causal relationship when

there is actually no such relationship. If the false positives of a technique are high, an

investigator using that technique has to waste time investigating and eliminating the

spurious relationships. In the worst case, the existence of spurious relationships could

be leveraged by defense attorneys as part of a Trojan horse defense. Similarly, false

negatives arise when the reconstruction process misses causal relationships between

events. False negatives result in the investigators completely missing some (or all) of

the actual causes of a security incident. Hence, we use both the rate of false positives

and the rate of false negatives to evaluate the effectiveness of the techniques under

consideration.

3.3.2 Measurement methodology

The next challenge in evaluating the effectiveness of causality determination tech

niques is to develop a suite of benchmarks to measure the metrics defined in Section

3.3.1. Initially, we considered using a suite of “scenarios” – a collection of security

incidents along with corresponding audit logs, disk and memory images. The causal

ity determination techniques would then be used to identify causal event chains for

each scenario and the resulting false positives and false negatives could be measured.

In fact, previous work on intrusion analysis systems described in Chapter 2 adopted

a combination of qualitative reasoning and scenarios to evaluate the systems therein.

However, we quickly concluded that it is non-trivial (and very expensive) to develop

a comprehensive benchmark suite of scenarios that is not inherently biased or inac

curate. Our conclusion is primarily based on the experience of researchers developing

27

benchmark suites for Intrusion Detection Systems. Despite many attempts, there is

still no consensus on the best way to benchmark IDS systems [54].

Fortunately, the following observation allows us to develop a benchmark suite for

causality determination techniques that is less biased and is more scientific than a

suite of scenarios:

Observation 1 The accuracy of reconstruction systems is predicated entirely on their

ability to infer causal relationships enabled through program dependences.

Because the semantics of system calls are well defined (the effect of each system call on

system objects is well understood), it is possible to accurately determine OS-enabled

causal relationships. On the other hand, the causality determination techniques used

by reconstruction systems vary in their ability to infer PD causal relationships. Hence

to make an assessment of the effectiveness of causality determination, it is sufficient

to measure the effectiveness in inferring PD causal relationships.

By definition, the most accurate way to determine PD causal relationships is to

use dynamic slicing [59]. False positives arise when a particular technique infers a

causal relationship between two events, but dynamic slicing does not. Similarly, false

negatives arise when a particular technique fails to infer a PD relationship that is

inferred by dynamic slicing.

3.3.3 Causality determination techniques

We study the effectiveness of the following causality determination techniques that

are deployed by intrusion analysis systems described in Chapter 2:

BackTracker

BackTracker, Forensix and Process Labels treat PD causal relationships similarly.

They simply consider processes as black boxes. Their causality determination policy

28

is simple: Any input event is a cause for future events. Henceforth, we refer to this

technique as simply the BackTracker technique.

Static slicing

This is an improvement employed by Improved BackTracker. The inference policy

can be summarized thus: An event C is a cause of another event E if, the program

statement SC corresponding to C belongs to the backward static slice of the program

statement SE.

Dynamic slicing

This is another improvement employed by Improved BackTracker. This is the dy

namic variant of static slicing. An event C is considered a cause of another event

E if, the instruction IC corresponding to C belongs to the backward dynamic slice

of the instruction IE. Dynamic slicing, by definition, is the most accurate technique

for detecting PD relationships and hence does not have any false-negatives or false-

positives.

3.4 Experimental evaluation

3.4.1 The benchmarks

Our benchmark suite consists of a collection of open source applications and a suite

of testcases for each application. Table 3.1 provides a short description of each of the

applications in our test suite. The application that is smallest in terms of lines of code

(LOC) is ls with 2,939 LOC. GnuPG is the largest application with 68,081 LOC. We

have taken care to include both CPU-intensive applications (e.g., gzip) that do not

frequently execute system calls, and system call-intensive applications such as wget.

29

Table 3.1: List of the applications in the benchmark suite

Application Description Lines of code

GnuPG 1.4.2 GNU replacement for
PGP

68,081

gnu wget 1.10 Program for retrieving
files through HTTP(S),
FTP

22,268

find (findutils 4.2.25)

ls (coreutils 4.5.3)
cp (coreutils 4.5.3)
wc (coreutils 4.5.3)

Search for files in a direc
tory hierarchy
List directory contents
Copy files
Print the number of bytes,
words and lines in a file

19,217

2,939
3,321
3,226

tar 1.15.1
gzip 1.3.3

grep 2.5.1

Archiving software
A popular data compres
sion program
Search files for a given in

8,425
4,296

7,485
put pattern

For each application in our suite, we develop a set of testcases (test suite), designed

to maximize the coverage of the functionality of the respective application. Some of

the applications, have publicly available regression test suites, e.g., GnuPG. In such

cases, we borrow those regression test suites. If no such suite is publicly available

for an application (e.g., gzip, wget), we develop our own test suite. In this study,

we consider causal relationships between the system calls listed in Table 3.2. All the

tests were run on a 2.8 GHz Pentium 4 Linux workstation with 512 MB RAM and 1

GB swap space. The number of system calls that were executed by each application

as well as the number of instructions executed are presented as part of Table 3.1.

30

Table 3.2: List of the system calls considered in this study

File I/O Network I/O

open socket
open64 connect
opendir select
read send
write recv
seek recvfrom
chdir
getdents
access
close

31

3.4.2 Implementation of the causality determination techniques

BackTracker

Identifying causal relationships using the BackTracker technique is straightforward.

We implement this functionality as a simple table lookup.

Static slicing

We use CodeSurfer [55], a program analysis tool for implementing the static slicing

technique. Every system call executed by an application has a corresponding callsite

in its source code. The callsite could be either a direct invocation of the system call

or an indirect invocation through a library call. We use CodeSurfer to obtain static

program slices of all such callsites in the source code of an application.

Dynamic slicing

We implement dynamic slicing through its functional equivalent of generalized DTA

[74]. A brief description of our implementation of generalized DTA is as follows:

For every memory location (main memory, registers etc.,) potentially accessed by the

instructions executed by a program, an alternate memory called shadow memory1is

maintained. The shadow memory for any location A contains information about the

set of system calls the current value of location A is dependent on.

For each system call instruction, the program is instrumented to generate a unique

label for each specific instance of the system call. The label contains information

about the system call type, the program counter value and the specific instance of

the system call. The uniquely generated label is propagated to the shadow memory

1This is very similar to the shadow memory used by Taintbochs [72]. But, the information stored
in the shadow memory is different.

32

locations corresponding to all the locations that are modified by this system call.

Additionally, for each system call, the program is instrumented to log the labels

stored in the shadow memory locations corresponding to the read operands of the

system call.

For instructions that are not system calls, the program is instrumented to propagate

the label set information from the read operands of the instruction to the write

operands. For example, if an instruction adds two registers and writes the result into a

third register, the instrumented code performs a union of the label sets corresponding

to the read registers and propagates them to the shadow memory of the write register.

In addition to tracking causality through program data-flow as explained, we also

track causality through control-flow dependences the same way as Dytan [74].

3.5 Results

For each application in the benchmark suite, we run the testcases in the applications

test suite. Each testcase produces a trace of system calls. For every pair of system

calls (Sa, Sb) present in a trace, we use BackTracker, static slicing and dynamic slicing

to determine if Sa is a cause of Sb as explained in Section 3.3. We calculate the rate

of false positives and false negatives as explained in Section 3.3.1.

A total of 110,882 system calls and approximately 11 billion instructions are executed

as part of the testcases. We report the rate of false positives and false negatives

for BackTracker and static slicing in Table 3.3 and Table 3.4 respectively. Both

techniques are conservative in their inference of causality and hence result in a 0%

false-negative rate. The false-positive rate and the false-negative rate for the dynamic

slicing technique are 0 by definition.

The time and memory overhead associated with dynamic slicing is reported in Table

3.5. Both static slicing and Back Tracker had negligible dynamic runtime overhead

33

(O(1) table lookups). Static slicing incurred a one-time cost for computing the static

backward slices of the callsites, which was well within previously reported results [60].

Table 3.3: The rate of false positives for BackTracker. Avg and Std stand for average
and standard deviation, respectively.

Application System calls Instructions False Positives
Avg Std

GnuPG 45,762 9,735,745,189 95.60 12.88
wget 49,239 168,432,151 31.78 28.99
find 2602 11,640,606 59.34 27.27
tar 7659 109,540,215 93.01 20.16
gzip 1775 824,574,115 35.32 30.43
wc 266 441,862,104 36.61 43.35
ls 2936 17,563,651 85.01 20.79
cp 464 3,511,599 67.44 31.21
grep 101 332,571 48.30 41.58

34

Table 3.4: The rate of false positives for static slicing. We were unable to obtain the
results for GnuPG in the case of static slicing owing to limitations of CodeSurfer. Avg
and Std stand for average and standard deviation, respectively.

Application System calls Instructions False Positives
Avg Std

GnuPG 45,762 9,735,745,189
wget 49,239 168,432,151 64.94 12.44
find 2602 11,640,606 52.99 25.13
tar 7659 109,540,215 92.59 22.92
gzip 1775 824,574,115 30.21 38.41
wc 266 441,862,104 36.75 43.51
ls 2936 17,563,651 83.23 25.92
cp 464 3,511,599 54.74 41.08
grep 101 332,571 14.13 28.76

35

Table 3.5: Time overhead associated with dynamic taint analysis. Time overhead is
the ratio of the dynamic slicing time to the normal application execution time. Avg
and Std stand for average and standard deviation respectively.

Application Avg Std Minimum Maximum Overhead

GnuPG 787.489 585.39 49.96 4953.9 8458
wget 162.808 65.55 31.32 427.72 4933
find 49.97 5.82 40.45 74.26 648.96
tar 38.40 30.95 15.06 263.1 12,802
gzip 180.91 478.55 28.02 2530.32 32,894
wc 178.06 303.92 36.68 1132.69 28,719
ls 38.32 18.73 17.47 78.60 22,153
cp 15.54 4.32 10.44 32.35 10,502
grep 28.15 9.85 16.26 53.76 53.31

36

Table 3.6: Memory overhead associated with dynamic taint analysis. Memory is
presented in MiBs.

Application Avg Std Minimum Maximum

GnuPG 450.25 78.34 275.23 788.87
wget 431.56 84.73 274.50 638.01
find 313.99 22.78 275.03 378.9
tar 308.95 27.86 276.29 385.97
gzip 431.98 96.91 3.61 502.62
wc 345.46 21.86 274.21 357.22
ls 310.56 47.57 3.71 393.20
cp 23.62 .87 22.36 25.29
grep 159.30 156.10 4.14 384.85

37

We note some significant results:

1. The rate of false positives is high for both techniques.	 For BackTracker, the

maximum false-positive rate is in the case of GnuPG 95.6%. For static slicing,

it is 92.59% in the case of tar.

2. Contrary to plausible expectations [41], in	 most applications (except grep),

static slicing does not provide a significantly better precision than BackTracker.

In some cases such as wget it is actually much worse than BackTracker.

Based on our analysis of the results for wget and ls we believe that the im

provements provided by static slicing are limited when the program exhibits an

“iterative” behavior with the same set of system calls repeating multiple times.

However, one must exercise caution while interpreting the results for static

slicing. It is well known that the results of static slicing depend on a variety

of parameters (e.g., context-sensitivity, precision of pointer-analysis) [60]. We

used the tool CodeSurfer with its default settings for static slicing. Alternate

settings of CodeSurfer and alternate implementations of static slicing might

produce different results.

3. The rate of false positives varies significantly across applications. For instance,

in the case of BackTracker, the rate of false positives varies from 31.78% (wget)

to 95.6% (GnuPG). This suggests that the nature of an application plays a crucial

rule in determining its amenability to causality inference.

We find that that the iterativeand recursive workflow nature of certain applica

tions could result in high false positives. For instance, consider the application

ls. A high-level overview of ls can be given as follows: When the ls command

is executed, it iterates over a list of directories (supplied through command

line). For each directory, ls extracts the files residing in the directory and prints

the files. This is an example of iterative workflow. The extraction of informa

38

tion about a file from a directory involves a readdir() system call and printing

information about a file involves a write() call.

Now, consider the case of the ls command being invoked with the arguments

dir1 dir2 over the directory structure presented in Figure 3.1. In this case, both

BackTracker and static slicing declare the readdir() calls associated with dir1

to be causes of the write() calls associated with both dir1 and dir2, though

there is no actual causal relationship (as determined by dynamic slicing).

dir1 dir2 dir3
| | |

|----| |--------| |
f1 f2 f3 f4 f5

Figure 3.1.: The directory structure used in the discussion of ls

4. Dynamic slicing (or generalized DTA) has	 a lower CPU overhead for I/O

intensive applications such as wget (4,933x) when compared to CPU intensive

applications such as gzip (32,894x). The overhead in Table 3.5 was calculated

by adding the results from the user and sys components of the Unix time com

mand. However, the user and sys components measure only the CPU usage

of a process and do not take into account the time waiting for completion of

I/O. If we account for the time taken for I/O completion (provided by the real

component of time), the overhead for wget drops dramatically to 45x.

The reasons are two-fold: (a) The worst-case time complexity of dynamic slicing

for a given trace T is O(nm), where n is the number of instructions executed in

the trace and m is the number of system calls in the trace. For I/O-intensive

applications, the increase in m is easily offset by the dramatic decrease in n. For

instance, in the case of wget, every trace has an average n of approximately 3

million and m of approximately 1000. On the other hand, gzip has an average n

of approximately 8 million and m of 177. The difference in the m values is very

39

small when compared to the difference in n; (b) For I/O-intensive applications

the wall-clock time of completion is dominated by the I/O waiting time which

mitigates the effect of the dynamic slicing CPU overhead.

3.6 Limitations and future work

•	 In this study we did not evaluate the virtual machine introspection approach

used in Krishnan et al. [46]. Their approach tracks PD causal relationships at

the granularity of data-flow through virtual memory pages. We believe that

this approach has the potential to be more precise than both BackTracker and

static slicing but less precise than dynamic slicing. One avenue for future work

would be to extend our study to include this approach.

•	 The suigte of applications in our benchmark might not be a good representa

tive of applications that are frequently encountered during security incidents.

For example, our benchmark does not contain any multi-threaded server ap

plications. In future work, we would like to expand the benchmark to a more

comprehensive one.

•	 We were also constrained by the fact that our applications should be compatible

with both PIN and CodeSurfer. We found that CodeSurfer was the bottleneck

due to its limitations in handling applications of large size (greater than 100

KLOC). For instance, the version of CodeSurfer we used could not handle the

slicing queries for GnuPG. Also, as indicated in Section 3.5, the results of static

slicing vary depending on the precision of the underlying program analyses. A

more comprehensive analysis of this effect is needed before arriving at conclu

sions regarding the effectiveness of static slicing as a causality determination

technique.

•	 The testcases developed for each application were designed to exercise maximum

coverage of each applications source code. However, we have not studied the

40

coverage statistics of the testcases. In future work, we would like to obtain the

coverage statistics and use them for improving the testcases.

•	 Program dependences are not the only means through which causal relation

ships can be enabled between events that occur in the same process. Re

search in information-flow has proven that causality can be enabled through

implicit dependences which are not captured using program dependences alone

[68]. Exploring the impact of implicit dependences and the relation between

information-flow and causal relationship is another promising area for future

inquiry.

3.7 Conclusion

In this study, we propose an approach to evaluate the effectiveness of automatic

causality determination techniques We use our approach to evaluate a suite of causal

ity determination techniques and conclude that Back Tracker, Forensix and Process

Labels have a very high rate of false positives. Based on our preliminary analysis, we

posit that the recursive and iterative workflow structure of applications is a crucial

reason for the high rate of false positives. Additionally, we also document the time

and memory overhead of generalized DTA (dynamic slicing).

41

4 CAUSALITY DETECTION THROUGH CONTROL-FLOW MONITORING

In the previous chapter, we studied the effectiveness of causality determination tech

niques used by existing reconstruction systems. Based on the insights gained from

that study, in this chapter we propose a new approach for causality determining by

monitoring the control-flow of a program. Section 4.1 provides the motivation and in

troduces our approach. Section 4.2 describes the framework of our approach. Sections

4.3, 4.4 and 4.5 provide a detailed exposition of the various aspect of our approach.

Section 4.6 presents experimental evaluation and results. Section 4.7 discusses the

general applicability and limitations of our approach and Section 4.8 concludes.

4.1 Introduction

Identifying cause-effect relationships between system calls is a fundamental feature of

automatic intrusion analysis and event reconstruction systems. Based on the results

from Chapter 3, it is clear that existing causality determination techniques leave secu

rity practitioners and researchers in a dilemma of having to choose between accuracy

and efficiency. On one hand, techniques such as BackTracker and static slicing have

very low runtime overhead, but are very imprecise. On the other hand, techniques

such as dynamic slicing and generalized DTA are precise but have runtime overheads

that make them impractical for deployment.

In this chapter, we describe a novel approach to causality determination that resolves

this dilemma for analyzing certain classes of security incidents. Broadly speaking,

our approach provides efficient and highly accurate causality determination when the

following conditions are met:

42

1. The incident does	 not involve control-flow modification or code-injection at

tacks.

2. The executable binaries of the processes that were involved in the incident are

available apriori.

We note that a wide range of security incidents, such as unauthorized data access by

malicious insiders, unintentional data leakage, and storage of illegal material in en

terprise computer systems do not involve sophisticated tactics such as code-injection

and control-flow modification of programs. They typically involve executing pro

grams that are benign in their own right (e.g., email clients, archiving software, web

browsers) but in a way that violates security policy. In such cases, our approach is

able to determine causal relationships between system calls both accurately and effi

ciently. In the presence of control-flow modification attacks or unknown applications,

we can be at least as accurate and efficient as Backtracker.

Our approach involves developing a “causality prediction model” for programs, a run

time monitor that generates augmented audit logs and an offline analyzer that uses

the audit logs in conjunction with the prediction model to determine causal relation

ships. We exploit the fact that the control-flow of a program is a good predictor of

causal relationships. We evaluate the effectiveness of three control-flow properties

viz., program counter, call stack and dynamic call stack in predicting causal rela

tionships. Based on our evaluation, our most accurate model, the dynamic call stack

model has a low false-positive rate and false-negative rate (both under 5%) and a low

runtime overhead.

Our approach is not a panacea and is not meant to be a replacement for other causality

detection techniques such as generalized DTA. It is an attractive addition to the

toolkit of causality detection techniques at the disposal of intrusion analysis and

reconstruction systems. We envision that an intrusion analysis system could leverage

our approach wherever applicable and apply heavy-weight schemes such as generalized

43

DTA in a more selective manner (e.g., in applications that are targets of control-flow

modification attacks and previously unseen malware).

The primary contributions of this chapter are fourfold:

•	 First, we describe a new approach for determining causal relationships that

leverages the control-flow properties of a program. We propose the usage of

three control-flow properties viz., program counter, call stack and dynamic call

stack to predict causal relationships between system calls.

•	 Second, we evaluate the performance of our approach over a broad suite of open

source applications. Our evaluation reveals that causality determination by

leveraging control-flow information is both efficient (less than 5% of additional

time for program exectuion) and accurate (false-positive rate and false-negative

rate under 5%).

•	 Third, we analyze the experimental results and explain the sources of false-

positives and false-negatives in our approach (e.g., causal flow through data

flow and coverage in our testsuite) and point out ways to improve the accuracy

of our models.

•	 Finally, we discuss the limitations and applicability of our approach and suggest

future avenues of research.

4.2 General approach

We would like to determine causal relationships between system calls executed by a

program. To that end, we propose a three-stage approach:

1. First, we build a model of causal relationships between every pair of system call

in a program. The models consist of control-flow properties that predict the

causal relationships.

44

2. Second, we instrument the program to generate augmented audit logs containing

the control-flow properties for the system calls executed by the program.

3. Finally, we analyze the audit logs using the causal model to determine the causes

of the system calls.

In the following sections, we describe each of the aforementioned steps in greater

detail.

4.3 Building causal models

In the past, several host-based intrusion detection systems have used simple aspects

of the control-flow of a program to derive high-fidelity specifications of valid program

behavior([82–87]). Similar to those approaches, our philosophy is to see how far

we can use simple control-flow properties to predict causal relationships between the

system calls of a program.

A causal model of a program is a specification of the causal relationships between every

pair of system calls in that program. It lists the control-flow conditions that must

occur for each causal relationship to happen. Control-flow conditions are properties

of the dynamic control-flow trace of a program. For example, in the source code

snippet in Figure 4.1, the write() system call in line 8 is an effect of the read()

system call in line 3 but not the read() system call in line 4. This could be modeled

as a condition based on the program counter of the read() and write() system calls

(see Table 4.1). The conditions are expressed as logical formulae using control-flow

properties.

Causal models are built by scanning “causal traces” of a program. For a given exe

cution of the program, the causal trace contains the actual causes of system calls in

that execution and the control-flow properties of the system calls. We use generalized

DTA to generate the causal traces: Each system call acts as a new “taint source”

and as a “taint sink”. We execute the program over a set of training test cases and

45

collect the taint information along with the control-flow properties for each system

call executed in the training. The taint information provides the actual causes of a

system call.

1

2 f d r = open (foo , ORDONLY) ;
3 fd w = open (bar , OWRONLY) ;
4 read (f d r , buf f e r1 , 10) ;
5 read (f d r , buf f e r2 , 10) ;
6

7

i f (bu f f e r 1 [0] == 1) {
s t rncpy (dest , buf f e r1 , 10) ;

8

9

}
wr i t e (fd w , dest , 5) ;

Figure 4.1.: Sample source code to illustrate causality through Program Dependences.

Table 4.1: Dependence model for listing in Figure 4.1

Dependence Relationship Control-flow conditions

Dep
read −→ write PC(read) = 3

4.4 Control-flow properties

In the following subsections, we discuss the three control-flow properties that we

evaluate.

4.4.1 Callsite

The first and the simplest control-flow property that we evaluate is the callsite of

a system call. We model the callsite using the program counter (PC) value of the

system callsite. Let us say system call C at callsite PC(C) is an actual cause of

system call E at callsite PC(E) during the training phase. After the training phase,

46

given two system call instances Ci and Ej, the callsite causal model predicts Ci to be

the cause of Ej if PC(Ci) = PC(C) ∧ PC(Ej) = PC(E). Table 4.1 provides an example

of a causal model that is based on the callsites of the system calls.

4.4.2 Callstack

The next control-flow property that we evaluate is the callstack when a system call

is invoked. When a system call A is executed its callstack CS(A) is the list of return

addresses of currently actively routines { An, An−1 . . . A0} , where n is the number of

frames in the callstack and An is the program counter of the system call A.

The callstack of a program contains information about the past and current states

of the program. It captures more of the program semantics than just the program

counter of a system call. This allows us to predict causal relationships more accurately

than by just using the program counter. For example, consider the source code

snippet in Figure 4.2. The read() system call in line 6 is the cause of the write()

system call in line 13 only if the read() is executed under the context of function g()

(g() → readfile() → read()). It is not a cause when executed under the context of

function f() (f() → readfile() → read()). The call stack helps differentiate between

the the two cases – read() is a cause of write() only if CS(read) is { 6, 27, 41} and

not if it is { 6, 34, 40} .

The causal model using callstack information for the code snippet in Fig 4.2 is pre

sented in Table 4.2. The first column lists the causal relationships and the sec

ond column lists the control-flow conditions that must be satisfied for the depen

dence relationship to hold. If a causal relationship is not present in the model, e.g.,
Cause

write −→ write then it is assumed that such a relationship could never happen.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

47

#define BUFSIZE 100

void r e a d f i l e (char ∗ f , char ∗b)

{

int f d r = open (f , ORDONLY) ;

read (fd r , b , BUFSIZE) ;

c l o s e (f d r) ;

}

void w r i t e f i l e (char ∗ f , char ∗b)

{

fd w = open (f , OWRONLY) ;

wr i t e (fd w , b , BUFSIZE) ;

c l o s e (fd w) ;

}

void prntsc rn (char ∗b)

{

wr i t e (stdout , b , BUFSIZE) ;
}

void g ()
{

char b [BUFSIZE] ;

r e a d f i l e (” foo ” , b) ;

w r i t e f i l e (”bar” , b) ;

return ;

}

void f ()
{

r e a d f i l e (” foo ” , b) ;

prntsc rn (b) ;

return ;

}

int main () {

f () ;

g () ;

return ;

}

Figure 4.2.: Sample source code to illustrate causal models using callstack information

48

Table 4.2: An example of a causal model using callstack information

Causal Relationship	 Control-flow conditions

Cause
open −→ read	 CS(open) = {6, 27, 41} ∧ CS(open) = {6, 34, 40}

Cause
read −→ write	 (CS(read) = {7, 27, 41} ∧ CS(write) = {14, 28, 41}) ∨

(CS(read) = {7, 34, 40} ∧ CS(write) = {20, 35, 40})

4.4.3 Dynamic callstack

The final and the most complex control-flow property that we evaluate is the dy

namic callstack. A dynamic callstack contains information about not only the return

addresses of active routines, but also the instance information of each of the re

turn addresses. We define the dynamic call stack of system call A as DCS(A) =
j{ Ai , A . . . A1} where n is the number of frames in the callstack, Ai is the ith inn n−1 0 n

stance of the program counter An of the system call A, and A0 represents the return

address of the main() function.

The dynamic callstack has more information about the history and the current state

of the program than the callstack alone. Specifically, the dynamic callstack allows

us to differentiate between the same system call executed in different iterations of a

loop. Consider the code snippet in Figure 4.3 that prints out the list of files for a list

of directories (modeled loosely after ls). The readdir() system call in line 6 is a

cause of the write() system call in line 7 only if they are both executed within the

same “instance” of the printfiles() function. For instance, consider two directories

dir1, dir2 whose files are being listed out by the program. The write calls that

belong to dir1 should not be considered an effect of the readdir() system calls for

dir2 and vice versa. The dynamic callstack causal model allows us to capture this

constraint. The dynamic callstack causal model for the code snippet in Fig 4.3 is

provided in Table 4.3.

49

1

2 void p r i n t f i l e s (pend ingd i r)

3 {

4 struct d i r en t ∗ f ;

5 DIR ∗ dr = opendir (pendingdir−>name) ;

6 while ((f = r eaddd i r (dr))) {

7 wr i t e (stdout , f−>d name) ;

8 }

9 }

10

11 void main ()
12 {

13 . . .

14 while (pend ingd i r) {

15 p r i n t f i l e s (pend ingd i r) ;

16 pendingd i r = pendingdir−>next ;

17 }

18 }

Figure 4.3.: Sample source code to illustrate causal models using the dynamic call-
stack information

Table 4.3: An example of a causal model using the dynamic callstack information.
We use “*” in the superscript as a wildcard to indicate that the instance information
does not matter.

Causal Relationship Control-flow conditions

opendir
Cause−→ readdir DCS(opendir) = {5∗ , 15j }∧DCS(readdir) = {6∗ , 15j }

readdir
Cause−→ write DCS(write) = {7∗ , 15j } ∧DCS(readdir) = {6∗ , 15j }

opendir
Cause−→ write DCS(write) = {7 ∗ , 15j } ∧DCS(opendir) = {5 ∗ , 15j }

50

4.5 Augmented audit logs and offline analysis

An online monitor generates audit logs of system calls executed by applications. In

addition to the information found in traditional “c2 compliant” audit logs [88], the

monitor also logs the control-flow properties of system calls. Given the augmented

audit logs of system calls for a program, we can generate the list of “causes” for each

system call as follows:

•	 Let CM be the causal model of the program. CM could be the callsite, callstack

or the dynamic call stack model.

•	 For each system call Si in the audit log

–	 Let C (Si) be the set of causes of Si

–	 Let the control-flow property of Si be CFP (Si). CFP could be the callsite,

callstack or dynamic callstack depending on the type of CM

–	 For each system call Sj in the audit log where j varies from 0 to i

∗	 Let the control-flow feature of Sj be CFP (Sj)

∗	 If CM (CFP (Si), CFP (Sj)) evaluates to TRUE then add Sj to C (Si)

–	 Print out C (Si)

The time complexity of the analysis algorithm is O(N 2M) where N is the number

of system calls in a program’s audit log and M is the maximum size of the logical

formulae used in CM .

4.6 Experimental evaluation and results

In this section we measure the performance of our causal models (the callsite, callstack

and dynamic callstack models) in identifying causal relationships using a suite of

51

Table 4.4: List of the applications in the benchmark suite

Application Description Lines of code (LOC)

GnuPG 1.4.2 GNU replacement for PGP 68,081
gnu wget 1.10 Program for retrieving files 22,268

through HTTP(S), FTP
find (findutils 4.2.25) Search for files in a directory 19,217

hierarchy
ls (coreutils 4.5.3) List directory contents 2,939
cp (coreutils 4.5.3) Copy files 3,321
wc (coreutils 4.5.3) Print the number of bytes, 3,226

words and lines in a file
tar 1.15.1 Archiving software 8,425
gzip 1.3.3 A popular data compression 4,296

program
grep 2.5.1 Search files for a given input 7,485

pattern

open source applications described in Table 4.4. We focus on measuring the following

metrics: false-positives, false-negatives and runtime overhead.

For each application, we develop a set of testcases designed to exercise as much of

their respective functionality as possible. Some of the applications (e.g., GnuPG) have

a well defined regression testsuite. We reuse those tests where available and develop

our own testcases otherwise [56]. We divide those testcases equally into a “training

set” and a “test set”. The training set is used to obtain the causal traces and build

the causal models as described in Section 4.3. After the causal models are built, we

use the test set to obtain the performance metrics for each of the model. All the tests

were run on a 2.8 GHz Pentium 4 Linux workstation with 512 MB RAM and 1 GB

swap space.

52

4.6.1 False positives

False positives occur when a causal model predicts that a system call Si is a cause of

another system call Sj when in reality it is not. The rate of false positives is calcu

lated using the following formula:

Number of false causal predictions
Rate of false positives =	 ∗ 100

Total number of causal relationships

The false positives are calculated by comparing the results of causality determination

against those of dynamic slicing: False positives arise when a particular causal model

infers a causal relationship between two events, but dynamic slicing does not. In

Figures 4.7, 4.8 and 4.9 we present the rate of false positives of the causal models in

comparison to the BackTracker [35, 36] and static slicing techniques. We make the

following observations:

1. Observing the control-flow of a program enhances the ability to predict causal

relationships in that program. In general, the more we observe the control-flow,

the better the accuracy of prediction:

•	 Even the simplest of our causal models viz. the callsite model, has a

dramatically lower false positive rate when compared to both BackTracker

and static slicing. The callsite model has a false positive rate of 19.61%. In

comparison, BackTracker has an average false positive rate of 55.97% and

the static slicing model has an average false positive rate of 45.33%. At its

best, the callsite model has a false positive rate of 1.51% for the program

grep and at its worst the model has a false positive rate of 50.01% for the

program ls.

•	 As expected, with the additional context and state provided by the pro

gram callstack, the callstack model improves upon the callsite model with

53

an average false-positive rate of 10.54%. It has a very low false-positive

rate for applications such as GnuPG, find and grep. In the worst case, it

suffers from a false-positive rate of 43.48% for the program ls.

•	 The dynamic callstack model further improves upon the accuracy of the

callstack model with an average false-positive rate of 4.45%. For most of

the applications in our benchmark, the false-positive rate of the dynamic

callstack model is less than 5% with zero false-positives for applications

grep, wc. As it is with the other causal models, the worst case of false-

positives occurs for ls (21.45%).

2. The rate of false-positives varies significantly from one application to another

for all our causal models. Applications such as grep bring out the best in

all our causal models while applications such as ls bring out the worst. The

nature of the application has a significant impact on the accuracy of causality

determination.

We investigated the test cases of ls to understand the reasons for the large

number of false positives for that program. Our analysis revealed that most of

the false positives for ls resulted from testcases that exercised the “recursive”

option for ls (ls -r) (similar to the cases of BackTracker and static slicing).

A high-level overview of ls can be given as follows (reproduced from Section 3.5:

When the ls command is executed, it iterates over a list of directories supplied

through command line. For each directory, ls extracts the files residing in the

directory and prints the files. The extraction of information about a file from

a directory involves a readdir() system call and printing information about a

file involves a write() system call. Figure 4.5 captures this functionality in the

form of source code derived from ls.

Now consider the case of the command ls -r being executed over the directory

structure illustrated in Fig 4.4. Based on our analysis of the source code of ls

we know that a readdir() call associated with one directory (say “foo”) can

54

be a cause of the readdir() call associated with another directory (say “bar”)

only if “bar” is a descendant of “foo” in the directory hierarchy. Our causal

models fail to capture this “descendant of” relationship and spuriously label

the readdir() calls associated with the subdirectory “dir2” to be causes of the

readdir() and write() calls associated with subdirectory “dir3”.

The “descendant of” relationship is enabled primarily through the data-flow of

the program. The Figure 4.6 lists the execution trace of ls -r (corresponding

to the source code in Figure 4.5) over the directory structure in Figure 4.4.

In Figure 4.6, the control-flow that immediately follows readdir(‘‘dir2’’)

is identical to that following readdir(‘‘dir3’’). Similarly the control-flow

that precedes write(‘‘f1’’) is identical to that preceding write(‘‘f3’’).

However their respective data-flows (marked as colored arrows in Figure 4.6)

are distinct. In order to eliminate false positives in this case the data-flow must

be observed.

dir1
|

|---------|
dir2 dir3
| |

|----| |--------|
f1 f2 f3 f4

Figure 4.4.: The hierarchical directory structure used in the discussion of ls

55

1

2 // Queues a d i r e c t o r y to the pending d i r e c t o r i e s queue

3 void queue d i r e c t o ry (char ∗ d i r)
4 {

5 new−>name = d i r ;

6 // Data f l ow to e s t a b l i s h parent−c h i l d r e l a t i o n s h i p

7 new−>next = pendingd i r ;

8 pendingd i r = new ;

9 }

10

11 // Prin t s the names o f the f i l e s in the g iven d i r e c t o r y

12 void p r i n t d i r (pend ingd i r)

13 {

14 struct d i r en t ∗ f ;

15 DIR ∗ dr = opendir (pendingdir−>name) ;

16 while ((f = r eaddd i r (dr))) {

17 wr i t e (stdout , f−>d name) ;

18 i f (i s d i r (f)) {

19 queue d i r e c t o ry (f) ;

20 }

21 }

22 }

23

24 void main ()
25 {

26 . . .

27 while (pend ingd i r) {

28 th i spend = pendingd i r ;
29 p r i n t d i r (th i spend) ;

30 pendingd i r = pendingdir−>next ;

31 }

32 }

Figure 4.5.: Source code snippet that captures the behavior of ls -r. The snippet
was derived from the original source of ls (ls.c) available in the coreutils-4.5.3
package. We have simplified and modified the source considerably to highlight only
the relevant portions.

										

56

��������	
	����������
����������	
	����������������
�����������������

���������������
���������������	
�������������

								�����������������������
���	
	������
���������	
	 ����������
����������	
	 ���

���������������
�������������

								�����������������������
���	
	������
���������	
	 ����������
����������	
	 ���

��������	
	����������
����������	
	����������������
�����������������

���������������
�������������
�����������
���������� ��
�������� ��

��������	
	����������
����������	
	����������������
�����������������

���������������
�������������
�����������
�������������
�����������

Figure 4.6.: The control-flow and data-flow trace of a sample execution of the code
listed in Figure 4.5. Data-flow is depicted through colored arrows.

57

95.6 100
100

20

0

Backtracker Static Analysis Callsite Callstack Dynamic Backtracker Static Analysis Callsite Callstack Dynamic
Callstack Callstack

20

90
 90

80
 80

R
a

te
 o

f
F

a
ls

e
 P

o
s
it

iv
e

s

R
a

te
 o

f
F

a
ls

e
 P

o
s
it

iv
e

s

R
a

te
 o

f
F

a
ls

e
 P

o
s
it

iv
e

s

R
a

te
 o

f
F

a
ls

e
 P

o
s
it

iv
e

s

64.9470
 70

30

3.34

0

10.33
16.98

60
 60

50
 50

40.3

40
 40
 31.78
30

10
 10
2.88 2.88

(a) GnuPG (b) wget

100
 100

90
 90

80
 80

70
 70
61.58 59.34
60
 60
 52.9950.5 50.01

20
 20

9.31

10
 10
 1.69 1.2
0 0

Backtracker Static Analysis Callsite Callstack Dynamic Backtracker Static Analysis Callsite Callstack Dynamic
Callstack Callstack

(c) ls (d) find

Figure 4.7.: Rate of false positives of causal models using Callsite, Callstack and
Dynamic Callstack for GnuPG, wget, ls, find.

50
 50
43.48

40
 40

30
 30
21.45

58

100
 100

90
 90

80
 80

R
a

te
 o

f
F

a
ls

e
 P

o
s
it

iv
e

s

R
a

te
 o

f
F

a
ls

e
 P

o
s
it

iv
e

s

R
a

te
 o

f
F

a
ls

e
 P

o
s
it

iv
e

s

R
a

te
 o

f
F

a
ls

e
 P

o
s
it

iv
e

s

70

60

50

35.3240

70

60

50

36.61 36.7540

30.21

30

18.46

20
 20

9.87 9.02

30

10
 10

0.8 0

0 0

Backtracker Static Analysis Callsite Callstack Dynamic Backtracker Static Analysis Callsite Callstack Dynamic
Callstack Callstack

(a) gzip (b) wc

100
 100

90
 90

80
 80

9.72

67.4470

60

48.3

50

70

60
 54.74

30

16.6320

50

5.8310
 10
 2.411.51 1.51 0
0 0

Backtracker Static Analysis Callsite Callstack Dynamic Backtracker Static Analysis Callsite Callstack Dynamic
Callstack Callstack

(c) grep (d) cp

Figure 4.8.: Rate of false positives of causal models using Callsite, Callstack and
Dynamic Callstack for gzip, wc, grep, cp.

40
 40

30

20
 14.13

59

100 93.014 92.59

R
a

te
 o

f
F

a
ls

e
 P

o
s
it

iv
e

s

R
a

te
 o

f
F

a
ls

e
 P

o
s
it

iv
e

s

90

80

70

60
 53.7

50

40

30

20
 13.32 10.85

10

0

Backtracker Static Analysis Callsite Callstack Dynamic
Callstack

(a) tar

100

90

80

70

60

50

40

30

20

10

0

Backtracker Static Analysis Callsite Callstack Dynamic
Callstack

(b) Average

Figure 4.9.: Rate of false positives of causal models using Callsite, Callstack and
Dynamic Callstack for tar along with the average false positive rate across all the
applications.

55.97

45.33

19.61

10.54
4.45

60

4.6.2 False negatives

False negatives occur when a causal model misses an actual causal relationship. The

rate of false negatives is calculated using the following formula:

Number of missed predictions
Rate of false negatives = ∗ 100

Total number of causal relationships

False negatives arise when a particular technique fails to infer a causal relationship

that is inferred by dynamic slicing. We list the false negatives of the causal models

in Figures 4.10, 4.11 and 4.12. All our causal models suffer from false-negatives. The

callsite model has the lowest average rate of false-negatives with 0.85%. The callstack

and the dynamic callstack models have higher rates of false-negatives at 4.65% and

4.93% respectively. The rate of false negatives increases as the complexity of the

observed control-flow feature rises: Callsite < Callstack < Dynamic Callstack.

Our causal models miss actual causal relationships between system calls when: (1)

System calls that were not present in the training data are encountered in the test

data. (2) System calls are associated with previously unobserved control-flow proper

ties. Both can be attributed to the incompleteness in the training data. In general, the

more complete the training data, the lower the false negatives are. Refer to Section

4.6.4 for a detailed discussion on the impact of training data on false negatives.

61

3 7 6.336.232.6 2.6
62.5

R
a

te
 o

f
F

a
ls

e
 N

e
g

a
ti

v
e

s

R
a

te
 o

f
F

a
ls

e
 N

e
g

a
ti

v
e

s

0.5 1
0.030.01

0 0

Callsite Callstack Dynamic Callstack Callsite Callstack Dynamic Callstack

(a) GnuPG (b) wget

4.73 4.73 75
6.034.5

6

R
a

te
 o

f
F

a
ls

e
 N

e
g

a
ti

v
e

s

R
a

te
 o

f
F

a
ls

e
 N

e
g

a
ti

v
e

s

5
2

4
1.5

3
1

2

4

3.5

3

2.5

2

1.5

1

2.11

Callsite Callstack Dynamic Callstack

5

4

3

2

0.08

3.59

Callsite Callstack Dynamic Callstack

1
0.5

0
 0

(c) ls (d) find

Figure 4.10.: Rate of false negatives of the Callsite, Callstack and Dynamic Callstack
models for GnuPG, wget, ls, find.

62

4.5 1
3.85 3.85 0.94

0.5 0.1
0 0 0 0

0 0

Callsite Callstack Dynamic Callstack Callsite Callstack Dynamic Callstack

(a) gzip (b) wc

0.83.5
R

a
te

 o
f

F
a

ls
e

 N
e

g
a

ti
v

e
s

R
a

te
 o

f
F

a
ls

e
 N

e
g

a
ti

v
e

s

R
a

te
 o

f
F

a
ls

e
 N

e
g

a
ti

v
e

s

R
a

te
 o

f
F

a
ls

e
 N

e
g

a
ti

v
e

s

0.73
0.6

2.5
0.5

2
0.4

1.5 0.3
1 0.2

3 14
2.66 2.66

11.69 11.692.5 122.5

Callsite Callstack Dynamic Callstack

2.92

Callsite Callstack Dynamic Callstack

10

8

6

4

2

1.5

1

0.5 2

0 0

(c) grep (d) cp

Figure 4.11.: Rate of false negatives of the Callsite, Callstack and Dynamic Callstack
models for gzip, wc, grep, cp.

63

7

6

5

4

3

2

1

0
R

a
te

 o
f

F
a

ls
e

 N
e

g
a

ti
v

e
s

R
a

te
 o

f
F

a
ls

e
 N

e
g

a
ti

v
e

s

0.01

6.49 6.49

Callsite Callstack Dynamic Callstack

(a) tar

6

4.93
4.65

4

3

2

5

0.851

0

Callsite Callstack Dynamic Callstack

(b) Average

Figure 4.12.: Rate of false negatives of the Callsite, Callstack and Dynamic Callstack
causal models for tar and the average false negative rate across all the applications.

64

4.6.3 F-measure

A straightforward comparison between our causal models and previous approaches

based solely on either false positives or false negatives is not possible: Our approach

to causality detection is neither sound nor complete, i.e., it suffers from both false

positives and false negatives whereas the previous approaches for causality determi

nation (BackTracker, Static slicing) are all complete, i.e., they do not suffer from

false-negatives 1 .

The F-measure is a metric used to combine the false positive rate and the false

negative rate in the field of information retrieval [91] and is defined as the weighted

harmonic mean of precision and recall :

Precision . Recall
F = 2.

Precision + Recall

(1 − False Positive Rate)(1 − False Negative Rate)
= 2.

1 − False Positive Rate + 1 − False Negative Rate

The value of F varies between 1 to 0, with 1 being the best score and 0 being the worst.

We employ the F-measure as a metric to effect a straightforward comparison between

our approaches and previous approaches. We list the F-measure for our causal models

along that of Backtracker and static slicing in Table 4.5. For all applications in the

benchmark suite, our causal models have better F values than both Backtracker and

Static slicing.

1Dynamic taint analysis is both sound and complete. However it is not a practical technique for
causality determination due to its runtime overhead. Hence we ignore dynamic taint analysis in
this discussion. Similarly we do not consider the virtual machine introspection technique in this
discussion.

65

Table 4.5: The F-measure of Backtracker, Static slicing, Callsite, Callstack and Dy
namic callstack models. We were unable to obtain the results for GnuPG in the case
of static slicing owing to limitations of codesurfer.

Application Backtracker Static slicing Callsite Callstack Dynamic callstack

GnuPG 0.08 0.75 0.97 0.97
wget 0.81 0.52 0.91 0.92 0.95
ls 0.66 0.56 0.66 0.71 0.86
find 0.58 0.64 0.95 0.97 0.96
gzip 0.79 0.82 0.95 0.93 0.98
wc 0.78 0.77 0.9 0.95 1
grep 0.68 0.92 0.98 0.98 0.99
cp 0.49 0.62 0.9 0.91 0.93
tar 0.13 0.14 0.63 0.9 0.91

Average 0.64 0.66 0.87 0.92 0.95

66

4.6.4 Impact of training data

The choice of training data plays a significant role in determining the accuracy of

dynamic analysis techniques such as ours. While we have reused existing regression

suites where applicable, we had to build our own testcases for many applications.

As our approach involves building causal models using the control-flow properties

observed in the training data, the quality of the training data is of paramount impor

tance. In this section, we attempt to answer the questions such as:

1. Is our training data sufficient?

2. If not, does adding additional testcases improve the effectiveness of the causal

models?

We plot the metrics for model effectiveness (false positives and false negatives) for

training data of different sizes in order to understand the relationship between our

model accuracy and the completeness of the training data. For each training set size,

we choose five random subsets from the original training set of the same size and

average the results across them. Figures 4.13, 4.14 and 4.15 list the results for the

dynamic callstack model. We omit the results from the causal models as the trends

were similar in nature. Some observations:

1. As the size of the training data increases, the false negatives decrease sharply.

However the false positives slightly increase with training data size (though at

a slower rate than the drop in false negatives). While the rise in false positives

is surprising at first blush, upon reflection, this is to be expected:

During the testing phase, if a system call is a “miss” in the causal model, then all

the causal relationships involving the system call are flagged as false negatives.

These causal relationships will not contribute towards the false positives. With a

small training set the “misses” are higher, resulting in higher false negatives and

lower false positives. As the training set increases, the number of misses drops

67

resulting in lower false negatives. But the number of false positives increases

simultaneously as some of the new “hits” will result in false positives.

2. The impact of the training set size is not monotonic on both false positives and

false negatives. Occasionally we see that when the training set is increased,

the false negatives also increase (e.g., consider the graph for grep in Figure

4.14). Upon investigation, we realized that this is an artifact of our experimen

tal methodology of choosing five random training sets and averaging the results

across them. Some testcases have a higher marginal impact on model effective

ness (decrease false negatives more) than others. If a training set TSi includes

more high-impact testcases than a training set TSj, then the false negatives

of the models built using TSi will be lower than those built using TSj even if

|TSi| < |TSj|. This effect is more pronounced in applications whose training

data has a low number of system calls (e.g., grep).

3. For many applications (e.g., wc, ls, the false negatives begin to level off when

the size of the training set reaches a limit. However for other applications (e.g.,

wget, cp and tar), the false negatives continue to drop even as the maximum

size of the training set is reached. This implies that, for those applications

the coverage of the training data could be improved by adding additional test

cases. In fact, some of the applications that suffer from the highest rate of false

negatives in our causal models (cp and tar with 11.69% and 6.49% respectively)

could potentially benefit from additional testcases to the training data.

68

12

10

8

6

4

2

False Positive Rate

False Negative Rate

8

7

6

5

4

3

2

1

False Positive Rate

False Negative Rate

0

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 0 5000 10000 15000 20000 25000 30000 35000 40000 45000

0

of System Calls # of System Calls

(a) GnuPG (b) wget

25

20

15

10

5

0

False Negative Rate

itive Rate False Pos

8

7

6

5

4

3

2

1

0

False Negative Rate

False Positive Rate

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500

of System Calls # of System Calls

(c) ls (d) find

Figure 4.13.: Impact of the size of training data on the effectiveness of causal models.
We list the results for the dynamic callstack model (the callsite and callstack models
display the same trends) for the applications GnuPG, wget, ls and find. The X-axis
refers to the size of training data in terms of the number of system calls.

69

10 False Positive Rate 5 False Positive Rate
9 False Negative Rate 4.5 False Negative Rate
8 4
7 3.5
6 3

5 2.5

24
1.53

12
0.5

0
1

0
0 50 100 150 200 2500 200 400 600 800 1000 1200 1400 1600 1800

of System Calls # of System Calls

(a) gzip (b) wc

18 20

16

14

12

10

8

6

4

2

0

False Positive Rate

False Negative Rate

18

16

14

12

10

8

6

4

2

0

False Positive Rate

False Negative Rate

0 20 40 60 80 100 0 100 200 300 400 500

of System Calls # of System Calls

(c) grep (d) cp

Figure 4.14.: Impact of the size of training data on the effectiveness of causal models.
We list the results for the dynamic callstack model (the callsite and callstack models
display the same trends) for the applications gzip, wc, grep and cp. The X-axis
refers to the size of training data in terms of the number of system calls.

70

70

60

50

40

30

20

10

0

0 1000 2000 3000 4000 5000

of System Calls

6000 7000 8000

False Positive Rate

False Negative Rate

(a) tar

Figure 4.15.: Impact of the size of training data on the effectiveness of causal models.
We list the results for the dynamic callstack model (the callsite and callstack models
display the same trends) for the tar. The X-axis refers to the size of training data in
terms of the number of system calls.

71

4.6.5 Runtime overhead

In this section we discuss the performance overhead of the different stages of our

approach to causality determination:

1. Model building phase.

2. Online monitoring and audit log generation.

3. Analyzing the audit logs to determine causal relationships.

Model building

The model building phase can be broken down into two sub-phases: causal trace

generation and the actual building of the models using the causal traces. Causal trace

generation has exactly the same performance characteristics as that of generalized

DTA as described in Section 3.5. Here we discuss the performance of the actual

model building phase.

We present the runtime CPU overhead of model building in Table 4.6. The model

building algorithms are implemented as perl scripts and the control-flow conditions

are internally stored as text strings. We measure the CPU overhead using the real

time spent by the model building programs for building each of our causal models.

The real time is the total time taken for the process to complete (includes time spent

by the processes in the user mode, in the system mode and time waiting for I/O

completion).

We present the memory overhead of the model building program in Table 4.7. We

measure the peak memory used by our model building perl scripts. We breakdown

the memory usage into the baseline usage introduced by the perl interpreter for merely

running our programs and the overhead introduced by model building. The measure

ments presented in Tables 4.6 and 4.7 represent averages taken across five different

72

Table 4.6: Runtime CPU overhead of building the callsite, callstack and dynamic
callstack causal models from causal traces. The overhead is presented in terms of the
real time in seconds consumed by the model building process for each of the models.
The size of the causal trace is given in terms of number of system calls.

Application Causal trace size Callsite Callstack Dynamic Callstack

GnuPG 24996 11.92 13.73 955.43
wget 30163 96.36 97 7894
ls 967 0.5 0.53 7.79
find 1647 1.14 1.98 101.6
gzip 1071 0.86 0.91 23.15
wc 203 0.04 0.06 0.1
grep 56 0.1 0.19 0.11
cp 262 0.13 0.13 0.13
tar 818 0.51 0.53 3.15

runs of model building. All the runs were on a lightly loaded 2.8 GHz Pentium 4

Linux workstation with 512 MB RAM and 1 GB swap space.

In general, bigger the causal trace, the longer the model building takes. The callsite

and the callstack models take roughly the same time to build for all the applications

in our benchmark suite. The dynamic callstack model is the most expensive model to

build, sometimes taking 80x more time than the callstack model (e.g., wget). The ad

ditional overhead is primarily due to our naive implementation of adding new clauses

to the logical formulae in the causal models. Unsurprisingly the memory overhead of

the causal models depends on the complexity of the respectively models – the more

complex the model, the greater the overhead. Our model building implementation

uses an inefficient text representation for storing the causal models. Potential for

substantial memory savings exists if the causal models are stored using a compact

binary representation.

73

Table 4.7: Memory overhead of building the callsite, callstack and dynamic callstack
causal models from causal traces. The overhead is presented in units of KiB consumed
by the model building process. The size of the causal trace is given in terms of number
of system calls. The table contains the peak memory used up by the process during
its lifetime, broken down into: (a) baseline memory usage when the program is loaded
by the perl interpreter (b) memory usage due to model building and storage.

Application Causal trace size Baseline Callsite Callstack Dynamic Callstack

GnuPG 24996 3596 7712 14120 28948
wget 30163 3596 8952 12708 14736
ls 967 3596 596 752 1040
find 1647 3592 1076 1692 2964
gzip 1071 3592 596 884 1176
wc 203 3596 272 380 392
grep 56 3596 848 1164 1480
cp 262 3592 444 572 852
tar 818 3592 1992 3020 4308

74

Online monitoring

We use Pin, the binary instrumentation tool [89] to implement the audit log gener

ation mechanism. As Pin has a baseline overhead by itself and because the online

monitoring can be implemented without Pin (using a combination of the operating

system kernel instrumentation and custom binary instrumentation), we discard the

overhead introduced by Pin in our results. In order to discard the overhead intro

duced by Pin, we estimate the overhead using a Pin extension that does nothing

(“nullpin”).

Table 4.8 lists the runtime overhead of generating the augmented audit logs that

contain additional control-flow information. The callsite and callstack models increase

the runtime of the applications being monitored by a modest average of 2.64% and

3.06% respectively. However the dynamic callstack model incurs a relatively high

monitoring overhead of 47%.

In order to obtain the dynamic callstack, the instance information for each of the

return addresses in the runtime stack at the time of system call execution has to

be maintained. To achieve this, we instrument all the function call statements in a

binary and track their instance information. This naive tracking of all callsites leads

to the high overhead of the dynamic callstack model monitoring.

However, it is sufficient to track the instance information of only those callsites that

are present in the dynamic callstacks of system calls. Tracking other callsites is

unnecessary as those callsites are not present in the dynamic callstacks observed at

system call execution time. Furthermore, it is sufficient to track those callsites that

were present in the dynamic callstacks observing during the training phase. If a

callsite is newly observed in a dynamic callstack during online monitoring, such a

callstack will result in a “miss” during offline analysis and hence need not be tracked.

We obtain the smaller set of callsites from the causal traces used for model building

and manually instrument them for instance tracking in the application binaries. For

this version of the dynamic callstack monitor (henceforth referred to as “dynamic

75

callstack monitor (optimized)”), the runtime overhead drops to a respectable 4.66%.

However as the optimization required custom instrumentation of the binaries of the

applications, we report both the optimized and unoptimized results.

Finally, the memory overhead associated with all of our models was negligible when

we discount the memory overhead associated with Pin. The low memory overhead is

due to the fact that we do not store our causal models in-memory – our online monitor

merely generates the control-flow properties and it is the offline analyzer that uses

the causal models.

76

Table 4.8: Runtime overhead of online monitoring and audit log generation for the
callsite, callstack and dynamic callstack causal models. The overhead is measured
in terms of additional % of elapsed time taken by each application when the online
monitoring and audit log generation is added.

Application Callsite Callstack Dynamic Callstack Dynamic Callstack (optimized)

GnuPG 8.3 10.4 87.6 11.2
wget
ls

1
3.2

1
3.5

46.1
26.2

2.9
4.5

find 1.5 1.7 43.5 3.5
gzip
wc

1.4
1

1.8
1.6

37.3
41.3

3.3
3.3

grep
cp
tar

1.5
4.9
1

1.6
4.9
1

50.4
47.5
43.1

3.7
6.7
2.81

Average 2.64 3.06 47 4.66

77

Audit log analysis

We implemented the causality determination algorithm described in Section 4.5 as

a perl script that takes the audit logs and the causal models as input and outputs

the list of causes for each system call in the audit log for a specified causal model.

The analysis was performed in a lightly loaded 2.8 GHz Pentium 4 Linux workstation

with 512 MB RAM and 1 GB swap space.

We present the CPU overhead of the log analysis program in Table 4.9. We use the

real time consumed by the analysis process as the metric to measure CPU overhead.

The analysis time is influenced both by the number of system calls in the audit

logs and the size of the logical formulae expressing the control-flow conditions in a

model: We observe that typically the bigger the audit log, the longer it takes to

analyze the log. Similarly if the causal model contains more control-flow conditions

(as is typically the case for the dynamic callstack model as it is more specific than

the other two models), the analysis time is longer. Log analysis for wget takes the

longest, 9180 seconds for analyzing 19076 system calls.

We present the memory overhead of the log analysis program in Table 4.10. The

memory overhead is determined by the size of the causal model. The callsite model

is the smallest of the three causal models, followed by the callstack model and the

dynamic callstack model in that order.

78

Table 4.9: Runtime CPU overhead of analyzing audit logs and determining causality
using the callsite, callstack and dynamic callstack causal models from causal traces.
The overhead is presented in terms of the real time in seconds consumed by the
causality determination programs. The size of the audit logs is given in terms of
number of system calls

Application Audit log size Callsite Callstack Dynamic Callstack

GnuPG 20766 51.47 67.66 674.86
wget 19076 192.84 211.44 9180.78
ls 1969 5.84 5.97 63.67
find 955 1.36 1.75 18.85
gzip 704 0.93 1.04 6.81
wc 63 0.06 0.07 0.13
grep 45 0.11 0.1 0.21
cp 202 0.19 0.21 0.55
tar 6841 330.66 370.39 490.62

Table 4.10: Memory overhead of determining causality using the callsite, callstack
and dynamic callstack causal models in audit logs. The overhead is presented in units
of KiB consumed by the causality detection program. The table contains the peak
memory used up by the program during its lifetime, broken down into: (a) baseline
memory usage when the program is loaded by the perl interpreter (b) memory usage
due to model storage and causality detection.

Application Audit log size Baseline Callsite Callstack Dynamic Callstack

GnuPG 20766 3596 11440 22268 41484
wget 19076 4000 12468 17268 20576
ls 1969 3592 1124 1604 2140
find 955 3592 1444 2428 4068
gzip 704 3592 756 1332 1784
wc 63 3596 544 700 740
grep 45 3596 1164 1796 2228
cp 202 3592 576 704 1212
tar 904 3596 6972 9908 14168

79

4.7 Discussion

4.7.1 Signals

Unix processes have the ability to register routines to handle signals generated by

the kernel [92]. Signal handling routines introduce asynchronous control flow that is

typically not observed during program execution. Our causal models do not model

the signal handling mechanism. Hence the presence of signal handling routines can

increase both the false positives and false negatives generated by our causal models:

•	 When a signal is observed during the training phase, the system calls that are

executed in the context of the signal handler result in the “loosening” of the

control flow conditions due to the addition of disjunctional clauses to the logical

formulae. This makes the causal model more general and permissive thereby

increasing the false positives.

•	 When a signal is observed for the first time during the testing phase, the control-

flow conditions associated with any system call executed within the signal han

dler will not be recognized by the causal model resulting in false negatives. One

way to mitigate the false negatives is to take special care to include test cases

that trigger signals and the signal handlers to be executed. Currently our test

cases are not designed to generate and handle signals as part of their normal

operation.

4.7.2 Multi-threaded applications

The way our causal models are currently implemented, they are agnostic to the pres

ence of different threads of execution within a program. This could potentially result
Cause

in false positives. For example, consider a causal relationship open −→ read that

exists only if both the open() and read() calls are executed in the context of the

80

same thread. If during the testing phase open() and read() are executed in two dif

ferent threads of control, but with the rest of the control-flow conditions the same as

that of the training phase, our causal models will falsely implicate open() as a cause

of read(). Our models have to become thread-aware to overcome this limitation.

4.7.3 Address space layout randomization

Randomizing the address-space layout of a software program, known as ASLR (Ad

dress Space Layout Randomization) [93] is a popular technique used to prevent at

tackers from using the same exploit code effectively against all instantiations of the

program containing the same flaw. The attacker must either craft a specific exploit

for each instance of a randomized program or perform brute force attacks to guess

the address-space layout. A popular implementation of ASLR for Linux is PaX [94]

which randomizes the base address of the stack, heap, code, and mmap()ed segments

of ELF executables and dynamic libraries at load and link time.

As a result of the address space randomization, the addresses used in the text segment

of a program will vary from one instantiation of the program to another. This could

make the causal models useless if the control-flow properties (such the callsite and

return address values) found in the training phase are used as is. Hence we propose

the following: During the training phase, the random value that is added to the

base address of memory segments is also logged and is used to derive the “relative”

addresses of the control-flow properties. Similarly the online monitor would log the

random value for each program instantiation in the audit log which can be then used

to derive the relative addresses of the control-flow properties in the audit log.

4.7.4 Dynamically linked libraries

For a statically linked application, addresses of the libc wrappers around system

calls is fixed at compile/link time. However for dynamically linked applications, the

81

program counter values of system calls (and hence the callsite values of the system

calls) will vary from one system to the other. This makes it difficult to use the

program counter values of system call invocations during the training phase directly

in our causal models. To overcome this challenge, we use the program counter value of

the call instruction into the .plt (procedure linkage table) section [95] of the binary

as a proxy for the program counter value of the actual system call. This makes our

causal models independent of dynamically linked libraries.

4.7.5 Control-flow modification and code-injection attacks

Our approach works very well when the control-flow of the program is consistent

between the training phase and the deployment. However when a program is subject

to attacks that modify its control-flow (e.g., buffer overflows, format string attacks)

it will exhibit control-flow that is not captured in the causal model. This results in

false-negatives. One way to mitigate this limitation is to fall back to a “happened

before” model of causality – we conservatively assume that all previously executed

system calls were causes. Alternatively, we could fall-back to a Backtracker [35] or

the static slicing model.

4.7.6 Unknown applications

Our approach relies on the availability of the application binary a-priori. False-

negatives result when faced with a binary for which a causal model is not available.

This situation could arise when an attacker downloads malware after gaining privi

leged access to a system. Similar to control-flow modification attacks, we propose to

fall-back to either a “happened-before” model of causality or a Backtracker or static

slicing model. An interesting avenue of research is to develop causal models that are

resilient to obfuscation and slight variation in the control-flow. Obfuscation resilient

82

models could be built based on known variants of malware and those models could

be used to detect causality in any future variation of the malware.

4.7.7 Causality through data-flow

In our experimental evaluation, we noticed that most of the false-positives of our

causal models arose while predicting causality that is at least partially enabled through

the data-flow of a program. The example of ls discussion in Section 3.5 illustrates

this issue. This is an inherent limitation to any approach that considers only the

control-flow of a program. Extending our causal models to selectively track data flow

to obtain clues about causality is another interesting opportunity for future research.

4.7.8 Improving false negative rate

False-negatives occur in our approach when a control-flow property is encountered

during deployment that was not encountered during the training phase. The rate of

false-negatives depends on the completeness of our training test cases. One way to

improve the coverage of the test cases is to leverage the testcases used for testing an

application during its development lifecycle. Software vendors could release their test

cases (or better the causal models themselves) along with the software. Another way

to improve the coverage of the testcases is to continuously sample a stream of real

world inputs similar to the cooperative bug isolation technique proposed by Liblit [96].

4.7.9 Causality modeling

All the existing approaches for causality determination take a “binary” approach to

causality. Either a system call is a cause or not. There is no notion of how “strong”

the impact of a cause is on an effect. This limitation arises from using program

dependence as a proxy for causality. Using program dependences does not capture

83

all the dimensions of causality. While it captures the notion of a “necessary” cause,

it ignores the aspect of the “sufficiency” of a cause [3, 4].

Sufficiency. How sufficient is a cause for the production of an effect? It is a measure

of the ability of a cause to produce an effect in situations where the effect is actually

absent. The measure of sufficiency is important especially in cases where there are

multiple events that are equally necessary to produce an effect. Consider an exam

ple where an intruder exploited the crackaddr vulnerability [2] present in sendmail

resulting in a root shell being spawned. The crackaddr vulnerability can be success

fully exploited only in a few operating systems e.g., Slackware 8.0 [2]. Traditional

causation would identify many causes: the attacker actually launching the attack, the

presence of crackaddr vulnerability and the presence of Slackware 8.0. It does not

discriminate or rank the causes. In some cases, it is reasonable that the spawning of

the root shell is more attributable to the actions of the attacker than say the presence

of Slackware 8.0. Sufficient causation helps capture precisely this notion. It helps in

ranking the necessary causes, if more than one were responsible for a particular effect.

Other researches have explored using alternate notions of causality such as channel

capacity to quantitatively measure causality. Studying ways to quantify causality and

developing new techniques to practically quantify the same is an important area of

future research.

4.8 Conclusion

Past approaches for determining causality have either had high fidelity or low over

head, but seldom both. We propose a practical approach for tracking causality that

has both the properties. Our approach has a very low rate of false-positives (4.45%)

and false-negatives (4.93%). And it is suitable for practical deployment as it has a

very low CPU overhead (4.66%). We believe that our approach is an attractive ad

dition to the toolkit of causality determination mechanisms employed by intrustion

analysis and forensics systems.

84

5 CONCLUSIONS AND FUTURE WORK

This dissertation builds evidence to support the thesis that it is possible to practically

and automatically determine causal relationships between system calls in software ex

ecution traces. This chapter summarizes our conclusions, contributions and provides

directions for future work.

5.1 Conclusions and contributions

This dissertation makes the following contributions:

•	 We empirically study the effectiveness of existing approaches for causality de

termination in event reconstruction systems. As part of this study:

–	 We develop a systematic approach for evaluating the effectiveness of causal

ity determination techniques.

–	 We develop a suite of real world applications and testcases for benchmark

ing the effectiveness of causality determination. The suite allows us to

identify the source of inaccuracy and performance overhead of the various

causality determination techniques that we study.

–	 Using our approach, we provide experimental data quantifying the accu

racy and the overhead (time, space, memory) of each technique.

–	 We conclude that generalized DTA, while being the most accurate tech

nique to determine causal relationships, suffers from a high CPU overhead

and is impractical to be deployed widely.

85

–	 We conclude that the rate of false positives is very high for all the tech

niques (BackTracker and static slicing) that we evaluate, sometimes as

high as 96%. This could have legal ramifications (Trojan Horse Defense)

and highlights the need for more accurate techniques.

–	 We analyze the experimental data and shed light on the conditions that

lead to the inaccuracies and the overhead of the techniques we evaluate.

For example, we found that BackTracker and the static slicing techniques

do not work well in applications that exhibit recursive and iterative work

flow characteristics.

•	 Based on the insights that we gain from our empirical study, we describe a new

approach to causality determination:

–	 Our approach involves developing a “causality prediction model” to deter

mine causal relationships based on observations of control-flow of a pro

gram. Our approaches provides efficient and accurate causality determi

nation when the following conditions are met: (1) The program was not

subject to control-flow modification or code-injection attacks and (2) The

executable code of the program is available apriori.

–	 Experimental evaluation of our new approach shows that the causality de

termination through control-flow monitoring has a low false-positive rate

(4.5%), a low false-negative rate (4.93%) and a low runtime overhead

(4.66%).

•	 Finally, we analyze the experimental data from our evaluation and provide in

sights on improving the accuracy of causality determination even more. Specifi

cally we note how recursive workloads of programs limits the accuracy of purely

control-flow based causal models.

86

5.2 Future work

There are several interesting dimensions in which our work can be extended:

5.2.1 Increasing coverage

Additional intrusion analysis systems

An empirical study of causality determination techniques has to periodically updated

as newer techniques are proposed and deployed. For example, virtual machine in

trospection is a promising new technique for logging event information (Krishnan et

al. [46]). While we can qualitatively argue that this approach is more precise than

BackTracker but less precise than dynamic slicing, it would be helpful to have the

actual metrics and performance overhead.

Additional operating systems

One of the goals of our empirical study of causality determination schemes and our

causal models is to provide reliability metrics for the intrusion analysis and digital

forensics community. Our study was done in Linux with a benchmark consisting of

applications used in Unix-like operating systems. However, intrusion analysts and

digital investigators have to deal with a heterogeneous set of operating systems in

addition to Unix-like systems (e.g., Windows and its many flavors, OS X). With

the advent of smart phones, the landscape of operating systems has become even

more diverse (iOS, WebOS, Android etc.,). Extending our empirical study to provide

reliability metrics on causality determination techniques in other operating systems

is an important and interesting challenge.

The first challenge is to survey the set of event reconstruction systems used in those

operating environments and the causality determination techniques employed by those

87

systems. Second, we need to customize our benchmarking suite for each operating

system by adding applications typically used in that operating system. Finally, we

need to evaluate the effectiveness of the existing causality determination techniques

to obtain the reliability metrics.

5.2.2 Improving causality determination accuracy

As we discussed in chapters 3 and 4, both existing and our newly proposed causality

determination techniques struggle in the face of “recursive” workloads. Our current

models do not sufficiently model the program semantics in the face of recursive work

loads.

One potential way to improve the accuracy of our models is to observe additional

control-flow. Consider the source code listed in Figure 4.5 from Chapter 4. The if

condition in line 18 provides a clue as to if the readdir() call in line 16 is involved

in a recursive causal relationship. If the if branch is taken, then readdir() will be

involved in a recursive relationship, otherwise not. Identifying additional control-flow

properties that can be observed to increase accuracy, but without impacting runtime

performance is an interesting avenue for research.

Another potential way to improve model accuracy is to observe data-flow of the

program. Observing data-flow increases both the runtime overhead and the size of the

audit logs. Care must to taken to identify the subset of data-flow that increases model

accuracy but does not impact runtime overhead and audit log size. Automatically

identifying such a subset is an interesting research problem.

5.2.3 Alternate notions of causality

As previously mentioned in Chapter 4, program dependences are not an exact measure

of causality. While program dependences capture the aspect of necessary causes, they

fail to inform how sufficient the causes are. A richer notion of causality is needed

88

to capture the sufficiency of a cause. Channel capacity has been proposed as an

interesting alternative to quantify the influence a cause has over an effect in program

execution traces [90]. Exploring such alternate measures of causality and developing

practical techniques for their measurement is a future opportunity for research.

LIST OF REFERENCES

89

LIST OF REFERENCES

[1] 2010 E-Crime watch survey.	 Available at: http://www.cert.org/archive/
pdf/ecrimesummary10.pdf

[2] SANS critical vulnerability analysis Vol. 2. No. 9. March 10, 2003. Available
at: http://www.sans.org/newsletters/cva/vol2_9.php

[3] Judea Pearl. Reasoning with	 cause and effect. In Proceedings of the Inter
national Joint Conference on Artificial Intelligence, San Francisco, Morgan
Kaufman, pages 1437–1449. 1999.

[4] Judea Pearl. Causality: Models, reasoning, and inference. Cambridge: Cam
bridge University Press. 2000.

[5] D. Hume. An enquiry concerning human understanding. 1748.

[6] J.S. Mill. System of logic. Volume 1. John W. Parker, London, 1843.

[7] D. Lewis. Counterfactuals. Oxford: Blackwell. 1973.

[8] D. Lewis. Philosophical papers: Volume II. Oxford: Oxford University Press.
1986.

[9] H. Reichenbach. The direction of time. University of California Press, Berkeley
and Los Angeles, 1956.

[10] P.	 Suppes. A probabilistic theory of causality. Amsterdam: North-Holland
Publishing Company. 1970.

[11] P.	 Sprites, C. Glymour, and R. Scheines. Causation, prediction and search.
Second edition. Cambridge, MA: M.I.T. Press. 2000.

[12] J. P. Anderson. Computer security threat monitoring and surveillance. Tech
nical report, James P. Anderson Company, Fort Washington, Pennsylvania,
April 1980.

[13] S. Forrest, S.	 Hofmeyr, A. Somayaji, and T. Longstaff. A sense of self for
UNIX processes. In Proceedings of 1996 IEEE Symposium on Security and
Privacy, 1996.

[14] C. Ko. Execution monitoring of security-critical programs in distributed sys
tems: A specification-based approach. PhD thesis, U.C. Davis, September
1996.

http://www.sans.org/newsletters/cva/vol2_9.php
http://www.cert.org/archive

90

[15] T. Lane and C. E. Brodley. Temporal sequence learning and data reduction for
anomaly detection. ACM Transactions on Information and System Security,
2(3):295 331, 1999.

[16] J. Giffin, S. Jha, and B. Miller. Efficient context-sensitive intrusion detection.
11th Annual Network and Distributed Systems Security Symposium, 2004.

[17] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly detection
using call stack information. IEEE Symposium on Security and Privacy, May
2003.

[18] M. Bernaschi, E. Gabrielli, and L.	 V. Mancini. Operating system enhance
ments to prevent the misue of system calls. In Proceedings of the Seventh
ACM Conference on Computer and Communications Security, pages 174–183,
Athens, Greece.

[19] J. Zimmermann, L. Mi and C.	 Bidan. Experimenting with a policy-based
HIDS based on an information flow control model. In Proceedings of the 19th
Annual Computer Security Applications Conference, 2003.

[20] J. Zimmermann, L. Mi and C.	 Bidan. An improved reference flow control
model for policy-based intrusion detection. In Proceedings of the European
Symposium on Research in Computer Security (ESORICS), 2003.

[21] C. Ko and T. Redmond. Non-interference and intrusion detection. IEEE Sym
posium on Security and Privacy, May 2002.

[22] J. Zimmermann, L. Mi and C. Bidan. Introducing reference flow control for
detecting intrusion at the os level. In Proceedings of the Fifth International
Symposium on Recent Advances in Intrusion Detection, pages 292–306, Octo
ber 2002.

[23] D. Wagner and D. Dean. Intrusion detection via static analysis. IEEE Sym
posium on Security & Privacy, 2001.

[24] A. Hdtdld, C. Sdrs, R. Addams-Moring and T. Virtanen. Event data exchange
and intrusion alert correlation in heterogeneous networks. In Proceedings of
the Eigth Colloquium for Information Systems Security Education, West Point,
NY, June 2004

[25] P.	 Ning, Y. Cui and D. S. Reeves. Analysing intensive intrusion alerts via
correlation. In Proceedings of Recent Advances in Intrusion Detection 2002,
Lecture Notes in Computer Science 2516, pages 74–94; Springer-Verlag; 2002.

[26] A. Valdes and K. Skinner. Probabilistic alert correlation. In	 Proceedings of
Recent Advances in Intrusion Detection 2001, Lecture Notes in Computer
Science 2212, pages 54–68, Springer-Verlag; 2001.

[27] F. Cuppens and A. Miige. Alert correlation in a cooperative intrusion detection
framework. IEEE Symposium on Security and Privacy, May 2002.

[28] X. Qin and W. Lee. Statistical causality of INFOSEC alert data. In Proceedings
of Recent Advances in Intrusion Detection 2003, Lecture Notes in Computer
Science 2820, pages 73–94; Springer-Verlag; 2003.

91

[29] P.	 Ning, Y. Cui and D. S. Reeves. Constructing attack scenarios through
correlation of intrusion alerts. In Proceedings of the Ninth ACM Conference
on Computer and Communications Security, 2002.

[30] The sleuth kit. http://www.sleuthkit.org

[31] The coroners toolkit. http://www.porcupine.org/forensics/tct.html

[32] Buchholz Florian, Falk Courtney.	 Design and implementation of Zeitline: a
forensic timeline editor. Digital Forensics Research Workshop (2005).

[33] Wireshark. http://www.wireshark.org/

[34] Guidance EnCase. http://www.guidancesoftware.com/

[35] King, S.	 T and Chen, P. M. Backtracking intrusions. In Proceedings of the
2003 Symposium on Operating Systems (SOSP) (October 2003).

[36] King, S. T., Mao, Z. M., Lucchetti, D. G., and Chen, P. M. Enriching intrusion
alerts through multi-host causality. In Proceedings of Network and Distributed
System Security Symposium (2005).

[37] G.W. Dunlap, S.T. King, S. Cinar, M.A. Basrai, and P.M. Chen. ReVirt:
enabling intrusion analysis through virtual-machine logging and replay. In
Proceedings of the Fifth Symposium on Operating Systems Design and Imple
mentation, 2002.

[38] Robert P.	 Goldberg. Survey of virtual machine research. IEEE Computer,
pages 34-45, June 1974.

[39] Ashvin Goel, Wu-chang Feng, David Maier, Wu-chi Feng, Jonathan Walpole.
Forensix: a robust, high-performance reconstruction system. In Distributed
Computing Systems Workshops (2005).

[40] Purdie L, Cora G. SNARE	 system iNtrusion analysis & reporting environ
ment. http://www.intersectalliance.com/projects/Snare/.

[41] Sitaraman S, Venkatesan S.	 Forensic analysis of file system intrusions using
improved Backtracking. In Third IEEE international workshop on information
assurance (IWIA05) (2005).

[42] Buchholz F, Shields C. Providing process origin information to aid in computer
forensic investigations. Technical report, CERIAS TR 2004-48, 2004.

[43] Xuxian Jiang, AAron Walters, Florian Buchholz, Dongyan Xu, Yi-Min Wang,
Eugene H. Spafford. Provenance-aware tracing of worm break-in and contam
inations: A process coloring approach. In Proceedings of IEEE International
Conference on Distributed Computing Systems (ICDCS 2006) (July 2006).

[44] Florian Buchholz. Pervasive binding of labels to system processes. PhD Dis
sertation. Purdue University (2005).

[45] Sarmoria Christian G, Chapin Steve J. Monitoring access to shared memory-
mapped files. Digital Forensics Research Workshop. 2005.

http://www.intersectalliance.com/projects/Snare
http:http://www.guidancesoftware.com
http:http://www.wireshark.org
http://www.porcupine.org/forensics/tct.html
http:http://www.sleuthkit.org

92

[46] Srinivas Krishnan, Kevin Snow, Fabian Monrose. Trail of bytes: efficient sup
port for forensic analysis. In Proceedings of the 17th ACM Conference on
Computer and Communications Security (CCS) (2010).

[47] Brenner Susan,	 Carrier Brian, Henninger Jef. The Trojan defense in cy
bercrime cases. Santa Clara Computer and High Technology Law Journal
2004;21(1).

[48] B. D. Carrier and E.	 H. Spafford. Defining event reconstruction of a digital
crime scene. Journal of Forensic Sciences, 49(6), 2004.

[49] B. D. Carrier and E. H. Spafford. An event-based digital forensic investigation
framework. In Proceedings of the 2004 Digital Forensic Research Workshop,
2004.

[50] F. Buchholz and E. H. Spafford. On the role of file system metadata in digital
forensics. Technical Report, CERIAS TR 2004-56, 2004.

[51] F. Buchholz and C.	 Shields. Providing process origin information to aid in
computer forensic investigations. Technical Report, CERIAS TR 2004-48,
2004.

[52] Brian D.	 Carrier. A hypothesis-based approach to digital forensic investiga
tions. PhD Dissertation. Purdue University (2006).

[53] Palmer Gary. A road map for digital forensic research. Digital Forensics Re
search Workshop, 2001.

[54] M. J. Ranum. Experiences Benchmarking Intrusion Detection Systems. NFR
Security White Paper, December, 2001.

[55] CodeSurfer,	 Available at: http://www.grammatech.com/products/
codesurfer/index.html.

[56] Sundararaman Jeyaraman, Mikhail J. Atallah. An empirical study of auto
matic event reconstruction systems. In Digital Forensics Research Workshop,
(2005).

[57] Edward	 J. Schwartz, Thanassis Avgerinos, David Brumley. All you ever
wanted to know about dynamic taint analysis and forward symbolic execution
(but might have been afraid to ask). In Proceedings of the IEEE Symposium
on Security and Privacy (2010).

[58] M. Weiser. Program slices: formal, psychological, and practical investigations
of an automatic program abstraction method. PhD thesis, University of Michi
gan, Ann Arbor, 1979.

[59] Zhang X, Gupta R, Zhang Y. Precise dynamic slicing algorithms. In Proceed
ings of the 25th International Conference on Software Engineering (2003).

[60] Binkley David, Harman Mark. A large-scale empirical study of forward and
backward static slice size and context sensitivity. In Proceedings of the 19th
IEEE International Conference on Software Maintenance (2003).

[61] D. Bell and L. LaPadula. Secure computer systems: mathematical foundations
and model. MITRE Report MTR 2547 v2, 1973.

http://www.grammatech.com/products

93

[62] K. Biba. Integrity considerations for secure computer systems. Technical Re
port MTR-3153, MITRE Corporation, Bedford, MA, 1977.

[63] D. Brewer and M.	 Nash. The chinese wall security policy. In Proceedings of
the 1989 IEEE Symposium on Security and Privacy. May 1989.

[64] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1), 2003.

[65] C. Bodei, P. Degano, H. Riis Nielson, and F. Nielson. Security analysis using
flow logics. In Current Trends in Theoretical Computer Science, G. Paun, G.
Rozenberg, and A. Salomaa, Eds., pages 525–542. World Scientific, 2000.

[66] D. E. Denning and P. J. Denning. Certification of programs for secure infor
mation flow. Comm. of the ACM, vol. 20, no. 7, pages 504–513, July 1977.

[67] D. E. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

[68] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, J. A. Blome,
G. A. Reis, M. Vachharajani, and D. I. August. RIFLE: An architectural
framework for user-centric information-flow security. In Proceedings of the 37th
International Symposium on Microarchitecture (MICRO) December, 2004.

[69] G. E. Suh, J. W. Lee, D. Zhang and S. Devadas. Secure program execution
via dynamic information flow tracking. In Proceedings of the 11th Interna
tional Conference on Architectural Support for Programming Languages and
Operating Systems, pages 85–96, 2004.

[70] Y. Beres and C. I. Dalton, Dynamic label binding at run-time. In Proceedings
of the 2003 Workshop on New Security Paradigms, pages 39–46, 2003.

[71] Sean Peiset, Matt Bishop and Keith Marzullo. Computer forensics in forensis.
ACM Operating System Review 42 (2008).

[72] J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, M. Rosenblum. Understand
ing data lifetime via whole system simulation. In Proceedings of the 13th
USENIX Security Symposium, 2004.

[73] James Newsome and Dawn Song. Dynamic taint analysis for automatic de
tection, analysis, and signature generation of exploits on commodity software.
In Proceedings of the Network and Distributed System Security Symposium,
February 2005.

[74] James Clause, Wanchun Li, and Alessandro Orso. Dytan:	 a generic dynamic
taint analysis framework. In International Symposium on Software Testing
and Analysis (2007).

[75] Walter Chang and Calvin Lin. Efficient and extensible security enforcement
using dynamic data flow analysis. In Proceedings of the ACM Conference on
Computer and Communications Security, pages 39-50 (2008)

[76] Feng Qin, Cheng Wang, Zhenmin Li, Ho-Seop Kim, Yuanyuan Zhou,	 and
Youfeng Wu. Lift: A low-overhead practical information flow tracking system
for detecting security attacks. In Proceedings of the 39th Annual IEEE/ACM
Symposium on Microarchitecture (2006).

94

[77] W. Xu, S.	 Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: A
practical approach to defeat a wide range of attacks. In Proceedings of the
15th USENIX Security Symposium, pages 121-136 (2006).

[78] L. C. Lam and T.-C. Chiueh. A general dynamic information flow tracking
framework for security applications. In Proceedings of the 22nd Annual Com
puter Security Applications Conference, pages 463-472 (2006).

[79] J. R. Crandall and F. T. Chong. Minos: Control data attack prevention or
thogonal to memory model. In Proceedings of the 37th International Sympo
sium on Microarchitecture, pages 221-232 (2004).

[80] M. Dalton, H.	 Kannan, and C. Kozyrakis. Raksha: A flexible information
flow architecture for software security. In Proceedings of the 34th International
Symposium on Computer Architecture, pages 482-493 (2007).

[81] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program execution
via dynamic information flow tracking. In Proceedings of the 11th Interna
tional Conference on Architectural Support for Programming Languages and
Operating Systems, pages 85-96 (2004).

[82] S. A. Hofmeyr, S. Forrest,	 and A. Somayaji. Intrusion detection using se
quences of system calls. Journal of Computer Security, 6(3):151180 (1998).

[83] D. Wagner and D.	 Dean. Intrusion detection via static analysis. In IEEE
Symposium on Security and Privacy (2001).

[84] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based
method for detecting anomalous program behaviors. In IEEE Symposium on
Security and Privacy (2001).

[85] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly detection
using call stack information. In IEEE Symposium on Security and Privacy
(2003).

[86] H. Feng, J.	 Giffin, Y. Huang, S. Jha, W. Lee, and B. Miller. Formalizing
sensitivity in static analysis for intrusion detection. In IEEE Symposium on
Security and Privacy (2004).

[87] Rajeev Gopalakrishna, Eugene Spafford,	 and Jan Vitek. Efficient intrusion
detection using automaton inlining. In Proceedings of the IEEE Symposium
on Security and Privacy (2005).

[88] Department of Defense. Orange book summary (TCSEC). Trusted Computer
System Evaluation Criteria, DOD 5200.28 STD (1985).

[89] C. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood. Pin: Building customized program anal
ysis tools with dynamic instrumentation. In Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design and Implementation
(PLDI 2005), pages 190-200 (2005).

[90] Newsome, J.,	 Mccamant, S., and Song, D. Measuring channel capacity to
distinguish undue influence. In ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security (2009).

95

[91] C. J. Van Rijsbergen. Information retrieval. Butterworth-Heinemann, Newton,
MA, 1979.

[92] M. Bach.	 The design of the UNIX operating system. Prentice Hall, ISBN
0-13-201799-7.

[93] Hovav Shacham, Mattew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu,
and Dan Boneh. On the effectiveness of address space randomization. In ACM
Computer and Communication Security Symposium 2004.

[94] T. Durden. Bypassing PaX ASLR protection. Phrack Magazine, 59(9), June
2002.

[95] System V application binary interface. Edition 4.1 (1997-03-18).

[96] Ben Liblit. Cooperative bug isolation. PhD Dissertation. University of Cali
fornia, Berkeley. 2005.

VITA

96

VITA

Sundararaman Jeyaraman obtained his Bachelors in Engineering (B.E.) degree from

the College of Engineering Guindy, Anna University, Chennai, India in 2000. He

received the M.S. and Ph.D degrees in Computer Sciences from Purdue University in

2007 and 2011 respectively. His interests are information assurance, systems security,

network security and WAN optimization. He is currently working at Cisco Systems,

San Jose, California, where he is learning how to engineer complex systems.

