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ABSTRACT 

Jeyaraman, Sundararaman. Ph.D., Purdue University, December 2011. Practi
cal Automatic Determination of Causal Relationships in Software Execution Traces. 
Major Professor: Mikhail Atallah. 

From the system investigator who needs to analyze an intrusion (“how did the in

truder break in?”), to the forensic expert who needs to investigate digital crimes 

(“did the suspect commit the crime?”), security experts frequently have to answer 

questions about the cause-effect relationships between the various events that occur 

in a computer system. The implications of using causality determination techniques 

with a low accuracy vary from slowing down incident response to undermining the 

evidence unearthed by forensic experts. 

This dissertation presents research done in two areas: (1) We present an empirical 

study evaluating the accuracy and performance overhead of existing causality determi

nation techniques. Our study shows that existing causality determination techniques 

are either accurate or efficient, but seldom both. (2) We propose a novel approach 

to causality determination based on coarse-grained observation of control-flow of pro

gram execution. Our evaluation shows that our approach is both practical in terms of 

low runtime overhead and accurate in terms of low false positives and false negatives. 
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1 INTRODUCTION 

This chapter provides the motivation, general background material and the contribu

tions of this dissertation. Section 1.1 describes how the questions about causality are 

fundamental to solving many information security challenges. Section 1.2 provides 

the definition of causality and related terms necessary to make our thesis statement. 

Section 1.3 provides the thesis statement, contributions and an outline of the reminder 

of the dissertation. 

1.1 Motivation 

The question of how the various events that occur in a computer system are causally 

related arises frequently in a variety of contexts in information security. In this 

section, we describe how some of the fundamental questions that arise in those fields 

are causal in nature and how the ability to reliably and practically answer those 

questions can improve the state-of-art of those fields. 

1.1.1 Intrusion analysis and forensic analysis 

The number of security incidents and intrusions have been rapidly on the rise over 

the past few years [1]. Given that it is difficult to completely secure computing 

infrastructure, and the heavy financial loss inflicted by intrusions [1], the importance 

of incidence response and recovery mechanisms can hardly be overstated. An effective 

intrusion response and recovery strategy is heavily dependent on the ability to analyze 

and answer questions regarding the events related to the intrusions in a timely and 

efficient manner. 
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Consider, by way of example, the following security incidents: 

1. The security policy	 of an organization is violated by one or more unknown 

insiders (e.g., misusing the system to send spam, send confidential material to 

outsiders); 

2.	 a digital crime is committed (e.g., storing illegal material on the system, or 

using the system to launch cyber-attacks on other systems); 

3.	 a hacker breaks into a host inside the internal network of an organization and 

installs back-doors and other malware. 

In all of the above cases, the ability to identify and reconstruct the sequence of events 

that led to each incident is critical to the success of effective response and recovery 

measures: In the first kind of incident, the system administrators of the organization 

need to determine the identity of the insiders and the underlying causes for the 

violation. It might even be the case that the insiders had no malicious intentions, but 

that the original policy had been set too tight. 

For the second kind of incident, the digital investigators and the prosecution need 

to reliably attribute the digital crime to a particular suspect. In the third kind of 

incident, the administrators need to identify the attack vector of the hacker (how 

did the break-in occur?), to secure their systems against any future attacks that use 

similar techniques. 

Questions of a similar nature also arise when a digital forensic expert examines digital 

evidence during the digital investigation process [49,50]. Collectively, answering such 

questions has been referred to as the process of “event reconstruction” [48, 49]. A 

critical component of event reconstruction is the determination of causal relationships 

between events in a computer system. The knowledge of causal relationships allows 

an investigator to accurately “backtrack” from the effect to the cause (or causes) and 

to “forward track” from a cause to all its effects. 
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Historically, intrusion analysis systems have used causality determination schemes 

that are sound, have a very low overhead, but suffer from high false-positive rates [56]. 

Examples include BackTracker introduced by King et al. [35,36] and the process-labels 

scheme introduced in Bucholz et al. [42, 43]. 

One of the milder negative consequences of a high false-positive rate is that a se

curity practitioner has to waste time and resources in investigating events that are 

completely unrelated to the security incident being investigated. At their worst, high 

false-positive rates make the evidence obtained susceptible to successful legal defense 

tactics such as the Trojan Horse defense [47]. 

Recently developed techniques such as Dynamic Taint Analysis (DTA) [57] and Vir

tual machine introspection [46] could be used to improve the precision of causality 

determination. However each of those techniques have drawbacks of their own limiting 

their deployability. The generalized version of DTA [74] results in a severe degradation 

in performance (50x slowdown [74]) making it impractical to be deployed. Virtual 

machine introspection is more precise than the traditional techniques (though not as 

precise as DTA), but requires hardware assisted virtualization to keep the CPU over

head to around 18% (in addition to the virtualization overhead) [46]. The need for 

a hypervisor and hardware assisted virtualization limits its applicability to resource 

constrained devices (e.g., smartphones). 

This leaves the developers of intrusion analysis systems with the dilemma of having 

to choose between efficiency (low-overhead) and precision for determining causal rela

tionships. In this dissertation, we provide a novel approach to causality determination 

that resolves this dilemma for analyzing certain classes of security incidents. 

1.1.2 Intrusion detection 

An Intrusion Detection System (IDS) can be informally thought of as a burglar-alarm 

for detecting security violations in a computer system. Based on their detection 
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methodologies, most of the intrusion detection systems fall into one of the following 

categories: (a) signature-based systems (b) anomaly-detection systems. Signature-

based systems require a rule-base, based on which they determine if the ongoing 

activities in a system constitute an attack or not [18]. Anomaly-detection systems 

build a model of normal behavior of the system and flag any anomalous behavior as a 

possible attack [12–17]. Both types of systems have some fundamental limitations that 

limit their usefulness and practicability. Signature-based IDSs cannot detect any novel 

attacks that are not already present in the rule-base. Also, even simple variations of 

the attacks that are present in the rule-base can go undetected. Anomaly-detection 

systems suffer from a high false-alarm rate. 

Recently, “policy-based” intrusion detection systems have been proposed as a promis

ing alternative to both anomaly and signature-based detection systems [19–22]. The 

key idea is that, an intrusion is nothing but a violation of a well-defined security 

policy e.g., Information-flow policies. The policy-based approach is very promising 

and appealing because: 

1. Most sites already have some form of a well defined high-level security policy 

e.g., Discretionary Access Control (DAC) permissions in Unix-like systems. 

2. Most of the attacks result in violations of such simple, but well defined policies. 

For example, an intruder reading the /etc/shadow file as a result of a remote 

buffer-overflow exploit in sendmail, is violating the DAC policy that states 

that non-root users cannot access /etc/shadow. If the same intruder modifies 

/var/log/syslog, she violates the policy that non-root users cannot modify 

that specific file. 

An important roadblock for the success of policy-based IDSs is the “semantic-gap” 

between the high-level policy statements and the low-level events that occur in a sys

tem. Consider the example mentioned in the previous paragraph. A policy-based IDS 

that observes the system calls that are executed in the system would observe the fol

lowing sequence of system calls related to the attack: ... receive(), execve(), 
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read(), write() ... all of which are executed by root. It is unclear how to accu

rately determine if the read() or write() actually violates the DAC policy. But if
 

the same sequence of system calls are translated into the following form:
 

Cause: receive()
 

Effects: execve(), read(), write()
 

then, it is easier to see how an outsider has “influenced” the read() and write()
 

calls, (through the packet receive()ed by sendmail) thereby potentially violating
 

the DAC policy. Causal relationships provide a convenient bridge for the semantic-gap
 

existing between the low-level events and the high-level policy statements.
 

1.1.3 Intrusion alert correlation 

A security conscious organization typically deploys a large number of intrusion detec

tion systems, that differ from each other based on a variety of factors such as place 

of deployment (network or host based), the event streams on which they operate 

(system calls or application-level logs) and methodology of detection (anomaly-based 

or signature-based). Therefore, the system administrators of an organization are 

typically overwhelmed with a profusion of intrusion-alerts emanating from diverse 

detection systems. Correlating alerts [25, 26, 28] from such heterogeneous sources 

could be useful due to the following reasons: 

1. Correlation as aggregation: 

If multiple alerts could be aggregated and identified as being a result of the same 

attack, then the number of alerts that are actually viewed by the administrators 

is reduced by a great amount. 

2. Correlation for understanding: 

An attack can be completely studied and understood only by correlating alert 

information from heterogeneous detection sensors. This could result in improved 

context-sensitivity and a decrease in the false-alarm rate. 
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3. Correlation for recognizing attack scenarios: 

There are cases where a series of attacks are first launched in preparation for 

future intrusions. If the earlier attacks could be correlated with the later ones, 

then complex attack scenarios could be reconstructed [25, 28, 29]. This could 

tremendously aid subsequent response and recovery efforts. Also, future detec

tion of similar attack scenarios becomes possible. 

Knowledge of causal relationships between the low-level events that generated the 

alerts would tremendously aid all three aforementioned functions. In fact, work by 

King et al. [36] has found that enriching intrusion alerts with some contextual infor

mation based on even a very simple notion of causality is quite valuable. 

1.2 Background and definitions 

In this section, we discuss the background concepts that are necessary for stating our 

thesis and discussing the main results of this dissertation. We use the theory provided 

by Carrier [52] as the ground work for our definitions. While our definitions do not 

have the same formalism and syntax used in [52] they remain faithful in semantics. 

1.2.1 Digital system 

A digital system is defined as a connected set of digital storage and event devices. 

Digital storage devices are physical components that can store one or more values 

and a digital event device is a physical component that can change the state of a 

storage location [52]. In this dissertation, we use the terms digital system, computer 

system, system and host interchangeably. Purely for expository purposes, we restrict 

the discussion to computer systems that run Unix-like operating systems. This is 

not a fundamental limitation as the concepts and approaches described should be 

applicable to other systems with only minor modifications. 
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1.2.2 State, event 

The state of a system is the discrete value of all its storage locations and an event is 

an occurrence that changes the state of the system. The history of a digital system 

describes the sequence of states and events between two times. For the purpose of 

this dissertation, we consider an event to be an action that is performed by a process 

(or an application) on behalf of a user. 

The rest of the dissertation focuses on a subset of events viz. system calls. We focus 

on system calls due to the following reason: The security-relevant behavior of any 

application is likely to consist of system calls. In order for a perpetrator of a security 

incident to accomplish anything meaningful (e.g., compromising system integrity), in

teraction with the operating system is necessary 1 . However, the techniques proposed 

in this dissertation are not restricted to system calls alone. They can be extended to 

any event that conforms to our definition. 

In terms of Carrier [52], a system call can be thought of as a complex event that 

is composed of many primitive events or lower level events. Henceforth, the terms 

computer event, system event, event and system call are used interchangeably. 

1.2.3 Event causality 

Historically, various theories have been proposed to formally define, explain and rea

son about what is intuitively referred to as causation or cause-effect relationships e.g., 

Regular theories [5], Counterfactual theories [7, 8], Probabilistic theories [9–11]. 

In this dissertation, we focus on the standard notion of causality as defined by Hume 

[5], Mill [6] and Lewis [8], that captures the notion of a “necessary cause”. A necessary 

cause can be expressed using the counterfactual: would E (effect) have occurred if it 

were not for C (cause)? [3, 4]. An example counterfactual query about causation in 

1There are some exceptions to this claim. E.g., denial of service attacks might not require interaction 
with the underlying operating system [23]. 
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computer events could be: Would the root kit be still installed (effect), if it were not 

for the email received by the email-server (cause)? 2 . 

Causal relationships between events are enabled by causal mechanisms [3, 4]. For 

example, consider a user Alice deleting a file foo. In this case, the executable code that 

was invoked as part of the system call unlink() is the mechanism that enables Alice 

to delete foo. Broadly, causal mechanisms that enable causality between computer 

system events are of the following two types: 

1. The operating system 

Causal relationships between system events could be enabled through various 

subsystems of the operating system, e.g., the file system, the Inter-Process Com

munication (IPC) system. Consider the example in Figure 1.1, where process-1 

and process-2 execute a sequence of system calls in the specified order. The 

write() system call of process-1 is a cause of the read() system call of process

2, because the result of the read() system call is dependent on the write() 

system call. In other words, the data that are used by read() are dependent 

on the data produced by write(). This causal relationship is enabled by the 

file system component of the OS. Similarly, other subsystems such as the pro

cess subsystem and the IPC subsystem also enable causal relationships between 

events [35]. 

Process  −1: fd = open ( foo , OWRONLY) ;
 
Process  −1: wr i t e ( fd , ‘ ‘ h e l l o ’ ’ , 5 ) ;
 
Process  −1: c l o s e ( fd ) ;
 
Process  −2: fd = open ( foo , ORDONLY) ;
 
Process  −2:  read ( fd  ,  bu f f e r  ,  4 ) ; 
  

Figure 1.1.: Example to illustrate causal relationships through the operating system 
kernel. 

2The installation of the root kit can be expressed as a series of system calls that copy the neces
sary files. Similarly, the reception of the email can be captured by system calls that received the 
corresponding network packets. 
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2. Program Address Space 

Causal relationships between two events could be enabled by the address space 

of a process (code and data) if both events are executed by the same process. 

For example, in the piece of code listed in Figure 1.2, the causal relationship 

between the read() and the write() calls is enabled by the strncpy() library 

call and the data buffers buffer1 and dest. 

f d  r =  open ( foo  ,  ORDONLY) ; 
fd  w =  open ( bar ,  OWRONLY) ; 
read ( fd  r  ,  buf f e r1  ,  10 ) ;  
read ( fd  r  ,  buf f e r2  ,  10 ) ;  
i f ( bu f f e r 1  [ 0 ]  ==  1)  {

s t rncpy ( dest  ,  buf f e r1  ,  10 ) ;  
}
wr i t e ( fd  w  ,  dest  ,  5 ) ;  

Figure 1.2.: Sample source code to illustrate causality through Program Dependences. 

In this dissertation, we focus on causation that is enabled by the process address 

space. We use program dependences (data dependences and control dependences) to 

capture causal relationships that are enabled by the process address space. We assume 

that program dependences are a conservative approximation of causal relationships 

i.e., if event C causes E, then the program statement representing E is “dependent” 

on the statement representing C. 

For example, in Figure 1.2, the causal relationship between the read() and the 

write() calls is enabled by a chain of program dependences between the two calls. 

The write() call uses a value (dest) produced by the strncpy() library call (data 

dependence). The call to strncpy() is dependent on the truth value of the if condi

tion (control dependence). The truth value of the if condition is in turn dependent 

on the read() system call. 
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1.2.4 Event reconstruction 

A security incident happens as a result of a chain of events (or multiple chains of 

events if there are multiple causes for the incident). An event chain is an ordered 

sequence of events (e0, e1, ., ek) where event ei is the cause of event ei+1 (in other 

words ei+1 is dependent on ei). The process of identifying the chain(s) of events that 

result in a security incident is called event reconstruction. 

1.3 Thesis statement 

This dissertation describes the work done to validate the following hypothesis: 

It is practical to automatically and accurately determine causal relationships between 

system calls in software execution traces. 

In this dissertation, we focus on causal relationships enabled through program depen

dences and causality determination techniques used in intrusion analysis and event 

reconstruction systems. 

1.4 Thesis contributions 

This dissertation makes the following contributions: 

•	 First, we empirically study the effectiveness of existing approaches for causality 

determination in event reconstruction systems. As part of this study: 

–	 We develop a systematic approach for evaluating the effectiveness of causal

ity determination techniques. 

–	 We develop a suite of real world applications and testcases for benchmark

ing the effectiveness of causality determination. The suite allows us to 

identify the source of inaccuracy and performance overhead of the various 

causality determination techniques that we study. 
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–	 Using our approach, we provide experimental data quantifying the accu

racy and the overhead (time, space, memory) of each technique. Some of 

our results are enlightening and surprising. For example, the rate of false 

positives is very high for all the techniques that we evaluate, sometimes as 

high as 96%. The legal ramifications of this result are substantial and this 

highlights the need for more accurate techniques. 

–	 We analyze the experimental data and shed light on the conditions that 

lead to the inaccuracies and the overhead of the techniques we evaluate. 

For example, we found that BackTracker and the Static-slicing techniques 

do not work well in applications that exhibit recursive and iterative work

flow characteristics. 

•	 Second, based on the insights that we gain from our empirical study, we describe 

a new approach to causality determination. Our approach involves developing a 

“causality prediction model” to determine causal relationships based on obser

vations of control-flow of a program. Our models provide efficient and accurate 

causality determination when the following conditions are met: (1) The pro

gram was not subject to control-flow modification or code-injection attacks and 

(2) The executable code of the program is available apriori. 

•	 Third, We evaluate the effectiveness of our approach using the same systematic 

approach we used to study the existing causality determination techniques. We 

show that our approach based on causality models has a low false-positive rate 

and low false-negative rate (less than 5%) with a low runtime overhead. 

•	 Finally, we analyze the experimental data from our evaluation and provide 

insights on improving the accuracy of causality determination even more. 
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1.5 Thesis organization 

The rest of this document is organized as follows. Chapter 2 provides a survey of 

the research literature of work that is closely related to this dissertation. Chapter 3 

presents the experimental evaluation and analysis of existing causality determination 

techniques. Based on the insights gained from the experimental evaluation, Chapter 

4 describes our approach to causality determination and its experimental evaluation 

and analysis. Chapter 5 summarizes the contributions of this dissertation and gives 

directions for future research work. 
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2 RELATED WORK 

This chapter discusses the research related to our thesis statement. 

2.1 Intrusion and forensic analysis systems 

Determination of causal relationships is critical for intrusion analysis and digital foren

sics investigations. In this section, we provide a survey of a subset of the tools available 

for intrusion and forensic analysis and the causality determination techniques used 

by them. 

2.1.1 Tools using ex post evidence 

Often, the only source of evidence available to an investigator is the hard disk image 

of a host. In addition, logs of network traffic might be available occasionally. Tools 

such as TCT [31], Sleuth Kit [30] and Guidance Softwares EnCase [34] help the 

investigators in collecting and analyzing the evidence from hard disk images. The 

primary focus of these tools is the discovery of evidence that might be of use to a 

digital forensic investigator. The investigator is still left to manually reconstruct the 

event sequences that fit the unearthed evidence. 

In addition to evidence discovery, some tools attempt to improve the ease of evi

dence analysis and event reconstruction. For example, Zeitline [32] imports logs from 

disparate sources (e.g., system MAC times, system and firewall logs, and applica

tion data) and allows the investigator to group low-level events into “super events”. 

Wireshark [33] can interpret the network traffic logs and provide a higher semantic 

view (application level view) of the network events. Despite these improvements, au
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tomatic event reconstruction is largely not possible where these tools are employed, 

primarily because of the limited nature of the available evidence. 

2.1.2 Ex ante logging 

There are scenarios where it is possible for the investigators to log events in a host 

prior to the occurrence of a security incident. For example, system administrators 

of organizations can install host-based logging mechanisms in the hosts under their 

supervision. If a security violation occurs in any of the hosts, then the corresponding 

logs can be utilized for analyzing the violation. Intrusion analysis tools such as 

BackTracker [35] and Forensix [39] use this approach of combining ex ante logging 

with ex post intrusion analysis for event reconstruction. 

BackTracker 

BackTracker is an automatic event reconstruction tool that identifies chains of events 

that could have influenced a security incident [35]. At runtime, BackTracker records 

system events that induce dependence relationships between operating system ob

jects. A dependence relationship induced by an event consists of a source object (the 

cause), a sink object (the effect) and the time interval during which the event took 

place. Once a security incident is detected, BackTracker constructs a dependence re

lationship graph using the dependence relationships inferred from the recorded events. 

The nodes of the graphs are operating system objects such as files, processes and file

names. The edges represent dependence relationships between the objects. Given a 

set of objects that are involved in a security incident (detection points), BackTracker 

reconstructs the event chains by traversing the dependence graph backwards from the 

detection points using the dependence edges. 

BackTracker takes a coarse-grained conservative approach when it comes to depen

dences between events executed by the same process (PD causal relationships). Given 
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a pair of events  Ei and Ej executed by the same process, BackTracker marks Ei to be 

the cause of Ej if Ei was an “input” event (e.g., read(), recv(), readdir()) and  

happened before Ej. This coarse-grained approach is sound (i.e., no false negatives), 

but results in many false positives [56]. Our proposed approach to causality deter

mination, takes a finer grained approach that reduces the false positives significantly 

without introducing many false negatives. 

Forensix 

Forensix is a forensics and intrusion analysis tool similar to BackTracker [39] . It uses 

the SNARE framework [40] (an event logging mechanism) for recording the events 

that happen in a system. System events are observed at the granularity of OS system 

calls. Auxiliary information such as the parameters and return values of the system 

calls are also recorded. 

There are two main differences between BackTracker and Forensix: (1) Forensix pro

vides support for tamperproof logging by streaming the system call information in 

real-time to append-only storage in a separate, hardened logging machine. (2) Unlike 

BackTracker which uses a dependence graph, Forensix facilitates reconstruction by 

providing a database query language (SQL) interface to the recorded logs, i.e., event 

reconstruction can be performed in an iterative fashion using a series of SQL queries. 

Despite these differences, the dependence relationships captured during the analysis 

phase are similar to those captured by BackTracker. Specifically, Forensix treats PD 

causal relationships in the same coarse-grained way as BackTracker and hence suffers 

from a high false positive rate when determining PD causal relationships [56]. 

Process Labels 

Though not originally intended for event reconstruction purposes, the Process Labels 

scheme proposed by Buchholz and Shields [42] and further expounded in Xuxian et 
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al. [43] and Buchholz [44], possesses the same capabilities as BackTracker. Buchholz 

and Shields propose a model of pervasive binding of processes labels to track the 

impact of principals in a system. A principal is defined as an active agent that 

performs actions in a system and interacts with other principals. Principals create, 

access and modify other principals and objects in the system. Every principal is 

associated with a unique label and labels are propagated from a cause to its effect. 

Using their model, causal relationships can be identified by tracking labels. 

For determining PD causal relationships, they use the same technique as that of 

BackTracker: “... if an output can be observed for a principal at time t, we consider 

all previous inputs of time ti ≤ t as potentially having caused the output. Thus any 

information exchange between principals (direct or indirect) has a potential effect on 

successive outputs of a principal. This approach will yield false positives as certain 

inputs may not have been the cause of an output. However, this ensures that any 

input that did cause an output will be considered” [44]. As a result, the Process 

Labels approach suffers from the same issue of high false positive rate as that of 

BackTracker [56]. 

Improved BackTracker 

Sitaraman and Venkatesan [41] propose the following improvements to BackTracker 

(we refer to their approach as Improved BackTracker): 

•	 Offset intervals. BackTracker treats files as atomic objects If a process modifies 

a file, it influences all future reads of the file regardless of which portion of the 

file is modified. This might lead to false dependences. 

To overcome this, Improved Backtracker records the arguments of the read, 

write system calls. The arguments help in observing the files at a finer granu

larity by providing the offsets at which each read and write system call operates. 

For instance, consider a process A writing to file foo from bytes 1 to 50. Con
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sider another process B that reads from foo but only the bytes 51 to 100. In 

this case, BackTracker falsely implicates the read() system call as an effect of 

the write() system call, whereas Improved BackTracker does not. 

This approach is targeted at improving the accuracy of OS enabled causal rela

tionships, while the approaches presented in this dissertation are geared towards 

improving causality determination in PD causal relationships. 

•	 Program slicing. Sitaraman and Venkatesan propose the use of static slicing 

and dynamic slicing to reduce the false positives incurred by BackTracker in 

determining PD causal relationships. 

Tracking memory mapped files 

This approach improves the precision of previously discussed BackTracker-like sys

tems by adding the ability to observe memory-mapped files at a finer granularity. The 

event reconstruction systems discussed so far do not consider read and write events 

to files that are mapped in memory. A process changing the contents of a shared 

memory-mapped file may affect the behavior of a legitimate process that reads the 

modified shared memory area later on. Memory operations cannot be logged by trac

ing system calls because a process makes use of pointers to reference its memory 

address space. 

Reconstruction systems typically establish an unconditional dependence between two 

processes that share memory, no matter what type of operations are carried out on it, 

if any, leading to false positives. Sarmoria and Chapin [45] propose a runtime monitor 

to log read and write operations in memory-mapped files. The basic concept of their 

approach is the use of page faults to monitor memory access (read and write) of 

memory-mapped files and to log those accesses. Once the accesses have been logged, 

they use a BackTracker (or more precisely the Improved Backtracker with file offsets) 

like approach to determine dependence relationships. 
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This approach is limited to improving the accuracy of determining OS enabled causal 

relationships and does not extend to PD causal relationships. 

Virtual machine introspection 

A virtual-machine monitor (VMM) is a layer of software that emulates faithfully the 

hardware of a complete computer system [38]. The abstraction created by the virtual 

machine monitor is called a virtual machine. The operating system running in the 

virtual machine is called the guest operating system [37]. Introspecting and logging 

the events that occur in the guest OS from within the VMM is suitable for creating 

logs that are resistant to malicious tampering: VMMs represent a smaller trusted 

computing base than operating system kernels. Moreover the interface between the 

guest OS and the VMM is smaller and hence easier to secure than the interface 

between applications and the guest OS. 

ReVirt [37] was the first intrusion analysis system to take advantage of VMMs to 

log system events. ReVirt creates data checkpoints and records sources of non-

determinism in a system (such as user inputs) so that the system could be replayed in 

the future. To investigate the system, the investigator would stop the replay and in

stall and execute tools to collect data about the system state. While ReVirt improves 

the completeness of the audit logs and their integrity, it still does not completely au

tomate the process of causality determination and consequently event reconstruction. 

Kannan et al. [46] propose a virtual machine introspection system that transparently 

monitors and logs data-flow in the guest OS using just the abstractions provided by 

the VMM. In addition to the logging mechanism, they also provide a mechanism 

to “query” the audit logs that facilitates quick reconstruction of events. While this 

approach is certainly superior to BackTracker like systems (and the proposed im

provements to BackTracker), in the sense that PD causal relationships are tracked at 

a finer granularity (at the level of a virtual page), there are several limitations when 

compared to our approach: (1) Causality is tracked through data dependences alone 
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and control dependences are ignored. As shown by Clause et al. [74], ignoring control 

dependences leads to a significant drop in precision. (2) Data flow is tracked through 

the granularity of a virtual machine page whose size is typically 4 KB. This leads the 

system to falsely identify causal relationships between two system calls even if they 

are not causally related. (3) The virtual machine introspection technique relies on 

the presence of hardware assisted virtualization to reduce the overhead of monitoring 

and logging. This makes the approach unsuitable for constrained embedded com

puting environments such as network devices (e.g., routers) and smartphones where 

virtualization hardware is not typically present. 

2.2 Information flow analysis 

Information flow policies specify the way information may legally flow through a 

computer system. For example, a confidentiality policy might specify the set of users 

that are allowed to access a particular information. Examples of information flow 

policies include the Bell-LaPadula model [61], the Biba model [62] and the Chinese 

wall model [63]. 

The way information flows through a system also describes causal relationships. For 

example, if a process A writes into a file foo, which is subsequently read by a process 

B, information flows from A to B and the write is a cause of the read. Hence, past 

research done in analyzing how information actually flows through a computer system 

can potentially be leveraged to determine causal relationships in the system. 

Research in the area of information flow analysis can be broadly categorized into (a) 

Static information flow analysis and (b) Dynamic information flow analysis. 

2.2.1 Static information flow analysis 

Research in static information flow analysis has focused on developing language-based 

approaches for detecting information flow policy violations [64]. Given the source code 
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of a program, these approaches try to determine if it satisfies a given information 

flow policy [65, 66]. Static information flow analyses suffer from the same drawbacks 

as using static slicing to determine causal relationships between system calls in a 

program. They tend to suffer from imprecision and a large number of false positives 

as discussed in Section 3.5. Furthermore, language-based approaches are limited in 

their applicability as they either require the programs to be written in specialized 

languages or to be manually annotated [64]. 

2.2.2 Dynamic information flow analysis 

Dynamic information flow control mechanisms [68–70] on the other hand are both 

precise and do not restrict themselves to programs written in special languages. How

ever, most of the dynamic flow control mechanisms need some form of architectural 

support [68, 69]. To precisely track information flow, dynamic flow systems have 

to examine every instruction issued by an application. The overhead involved with 

examining every instruction is so high that special architectural modifications are 

needed. The techniques we propose have a very low overhead without significantly 

sacrificing precision. 

2.2.3 Dynamic taint analysis 

Dynamic taint analysis (DTA) is one of the most commonly employed dynamic analy

sis techniques in security research. DTA runs a program and observes which computa

tions are affected by predefined taint sources such as user input. It has been employed 

in a variety of contexts such as automatic prevention of code injection attacks and 

malware analysis [57]. 

DTA can be used as a dynamic information flow analysis system. Intuitively, dynamic 

tainting tracks the information flow within a program by (1) associating one or more 

markings with some data values in the program and (2) propagating these markings 
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as data values flow through the program during execution (through both data and 

control dependences) [74]. Similarly, causality determination between system calls 

can be naturally modeled as a dynamic taint analysis problem: Each system call in a 

program is considered a source of a taint mark. The taint marks are then propagated 

by control and data dependences through the program execution. Each system call 

also acts as a sink, i.e., the taint marks that impact that system call are logged. His

torically, DTA has been formulated such that the tainting information is represented 

using a single bit. However, causality determination demands multiple taint sources 

and hence several bits of tainting information. We refer to the formulation requiring 

multiple taint sources and multiple bits of tainting information as generalized DTA. 

As it was in the case of other dynamic information flow analysis systems, the early 

DTA techniques suffered from a high CPU overhead [73]. Several attempts have 

been made to improve the runtime of DTA – [75,76,78–81]. Many of those attempts 

such as [79–81] require specialized hardware limiting their applicability. Amongst the 

purely software based approaches, the work by Chang et al. [75] is the one with the 

lowest overhead for performing DTA. They report an impressive low overhead of 13% 

for CPU intensive applications. However the formulation of DTA used by Chang et 

al. to derive the 13% is not generic enough to determine causal relationships between 

all system call pairs in a program execution. Moreover, their approach does not 

propagate taints through control-flow dependences leading to significant degradation 

of precision [74]. 

In comparison, our approach offers the generality of generalized DTA (multiple taint 

sources, control-flow dependence tracking) for a certain class of security incidents and 

has a low overhead of under 5% on the average without significantly sacrificing the 

accuracy of causality determination. 



22 

2.3 Misuse detection systems 

Host-based misuse detection systems (MDS) detect an attacker’s attempts to hijack 

processes running in a system. An anomaly based MDS achieves this by identifying 

program behaviors that deviate from a known specification of normal behavior [87]. 

Specifications of normal behavior can be either provided manually [14] or can be 

derived automatically [13, 16, 17,23,87]. 

Among those MDSs that derive their specifications automatically, some derive the 

specifications from event traces of program executions [13] while others derive the 

specifications directly from either the program source code or binary [16, 17, 23, 87]. 

Those that derive their specifications from the program source are closely related to 

our approach to causality determination. 

A major insight we gained from those MDSs is that even simple models of program 

execution (e.g., the control-flow of an application) can capture a significant portion 

of the program semantics. While data-flow definitely adds fidelity to program spec

ifications, it was surprising to note the degree of success achieved by modeling the 

control-flow alone. This inspired us to explore the relationship between control-flow 

and causality. Specifically we ask the research question “Can we make deductions 

about causal relationships in a program execution, by merely observing its control-

flow?”. As we show in Chapter 4, it is certainly possible to do so under certain 

conditions (e.g., when there are no control-flow modification attacks). 
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3 EMPIRICAL STUDY OF CAUSALITY DETERMINATION TECHNIQUES 

In this chapter, we present an empirical study of existing causality determination 

techniques. Section 3.1 provides a general introduction and motivation to study 

causality determination techniques and summarizes the contributions of this chapter. 

Section 3.2 gives the necessary background to understand this chapter. Section 3.3 

explains our methodology for evaluating causality determination techniques. Section 

3.5 presents the empirical results from our study and an analysis of the results and 

finally Section 3.6 discusses limitations of our approach and concludes. 

3.1 Introduction 

Causality determination techniques are typically employed by automated reconstruc

tion systems such as BackTracker [35, 36], Forensix [39], Improved BackTracker [41], 

the virtual machine introspection scheme [46] and the Process Labels scheme [42,43]. 

Despite the growing body of literature of causality determination schemes, there is 

hardly any work that quantifies their effectiveness. A rigorous study that quantifies 

their effectiveness is essential for the following reasons: 

•	 For a system administrator and a analyzer of security incidents, a study that 

sheds light on the accuracy and effectiveness of causality determination tech

niques is useful in choosing the right event reconstruction system for their cir

cumstances. As we shall see, techniques suited for certain programs misbehave 

in others. 

•	 For a forensic investigator, the importance of reliability and accuracy metrics 

for techniques employed in his/her analysis cannot be overstated [53]: 
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–	 All too often, individuals who are indicted for digital crime successfully 

exploit the lack of such metrics by using tactics such as the Trojan horse 

defense [47]. A forensic expert providing testimony in a court of law could 

buttress his/her conclusions by citing studies that evaluate the effective

ness of the causality determination techniques that they used in event 

reconstruction. 

–	 Event reconstruction systems often provide multiple hypotheses regard

ing the possible causes of a security incident. If false-positive rates are 

available, they can be used as priors for calculating the likelihood of each 

hypothesis, allowing investigators to order or prioritize the different hy

potheses. 

•	 For an information security researcher, such a study offers a guide in identifying 

the challenges that need to be tackled in order to build more accurate and 

efficient causality determination schemes. 

In this chapter, we present an experimental study that evaluates the effectiveness of 

causality determination techniques used by most event reconstruction systems. Our 

contributions are the following: 

•	 We develop a systematic approach for evaluating the effectiveness of causality 

determination schemes. 

•	 We develop a suite of real world applications and testcases for benchmarking 

various causality determination schemes. The suite allows us to identify the 

source of inaccuracy and performance overhead of those techniques. 

•	 Using our approach, we provide experimental data quantifying the effectiveness 

of the causality determination techniques and the overhead (time, space, mem

ory) of each technique. Some of our results are enlightening and surprising. For 

example, the rate of false positives is very high for some of the commonly used 
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techniques, sometimes as high as 96%. The legal ramifications of this result are 

substantial and this highlights the urgent need for greater accuracy. 

•	 We analyze the experimental data and shed light on the conditions that lead to 

the inaccuracies and overhead of the techniques we evaluate. For example, we 

found that BackTracker and the static slicing techniques do not work well in 

applications that exhibit recursive and iterative workflow characteristics (more 

on this in Section 3.5). 

3.2 Background 

This section presents a background on the terms used in the rest of the chapter. 

Program slicing. Intuitively, a program slice [58,59] of any statement S in a program 

is the set of other program statements that influence the execution of S and the values 

used in S. The process of building a program slice is referred to as program slicing 

or just slicing. 

Static slicing. Computing the program slice of a program statement in a static fashion 

is referred to as static slicing. Static slicing computes the parts of the program that 

could influence the given statement, over all possible execution paths of the program. 

Dynamic slicing. On the other hand, dynamic slicing computes a program slice for a 

particular execution of the program. Dynamic slicing, by definition, tracks program 

dependences in the most accurate fashion. However, the accuracy comes at a huge 

cost of space, memory and time [59]. 

3.3 Evaluation strategy 

In this section, we explain our approach for measuring the effectiveness of causality 

determination techniques. 
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3.3.1 Metrics for causality determination 

The first challenge in measuring the effectiveness of causality determination tech

niques is to decide upon a set of metrics. We propose to use the rates of false positives 

and false negatives as metrics to measure the accuracy of causality inference. False 

positives arise when two events ei and ej are implicated in a causal relationship when 

there is actually no such relationship. If the false positives of a technique are high, an 

investigator using that technique has to waste time investigating and eliminating the 

spurious relationships. In the worst case, the existence of spurious relationships could 

be leveraged by defense attorneys as part of a Trojan horse defense. Similarly, false 

negatives arise when the reconstruction process misses causal relationships between 

events. False negatives result in the investigators completely missing some (or all) of 

the actual causes of a security incident. Hence, we use both the rate of false positives 

and the rate of false negatives to evaluate the effectiveness of the techniques under 

consideration. 

3.3.2 Measurement methodology 

The next challenge in evaluating the effectiveness of causality determination tech

niques is to develop a suite of benchmarks to measure the metrics defined in Section 

3.3.1. Initially, we considered using a suite of “scenarios” – a collection of  security 

incidents along with corresponding audit logs, disk and memory images. The causal

ity determination techniques would then be used to identify causal event chains for 

each scenario and the resulting false positives and false negatives could be measured. 

In fact, previous work on intrusion analysis systems described in Chapter 2 adopted 

a combination of qualitative reasoning and scenarios to evaluate the systems therein. 

However, we quickly concluded that it is non-trivial (and very expensive) to develop 

a comprehensive benchmark suite of scenarios that is not inherently biased or inac

curate. Our conclusion is primarily based on the experience of researchers developing 
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benchmark suites for Intrusion Detection Systems. Despite many attempts, there is 

still no consensus on the best way to benchmark IDS systems [54]. 

Fortunately, the following observation allows us to develop a benchmark suite for 

causality determination techniques that is less biased and is more scientific than a 

suite of scenarios: 

Observation 1 The accuracy of reconstruction systems is predicated entirely on their 

ability to infer causal relationships enabled through program dependences. 

Because the semantics of system calls are well defined (the effect of each system call on 

system objects is well understood), it is possible to accurately determine OS-enabled 

causal relationships. On the other hand, the causality determination techniques used 

by reconstruction systems vary in their ability to infer PD causal relationships. Hence 

to make an assessment of the effectiveness of causality determination, it is sufficient 

to measure the effectiveness in inferring PD causal relationships. 

By definition, the most accurate way to determine PD causal relationships is to 

use dynamic slicing [59]. False positives arise when a particular technique infers a 

causal relationship between two events, but dynamic slicing does not. Similarly, false 

negatives arise when a particular technique fails to infer a PD relationship that is 

inferred by dynamic slicing. 

3.3.3 Causality determination techniques 

We study the effectiveness of the following causality determination techniques that 

are deployed by intrusion analysis systems described in Chapter 2: 

BackTracker 

BackTracker, Forensix and Process Labels treat PD causal relationships similarly. 

They simply consider processes as black boxes. Their causality determination policy 
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is simple: Any input event is a cause for future events. Henceforth, we refer to this 

technique as simply the BackTracker technique. 

Static slicing 

This is an improvement employed by Improved BackTracker. The inference policy 

can be summarized thus: An event C is a cause of another event E if, the program 

statement SC corresponding to C belongs to the backward static slice of the program 

statement SE. 

Dynamic slicing 

This is another improvement employed by Improved BackTracker. This is the dy

namic variant of static slicing. An event C is considered a cause of another event 

E if, the instruction IC corresponding to C belongs to the backward dynamic slice 

of the instruction IE. Dynamic slicing, by definition, is the most accurate technique 

for detecting PD relationships and hence does not have any false-negatives or false-

positives. 

3.4 Experimental evaluation 

3.4.1 The benchmarks 

Our benchmark suite consists of a collection of open source applications and a suite 

of testcases for each application. Table 3.1 provides a short description of each of the 

applications in our test suite. The application that is smallest in terms of lines of code 

(LOC) is ls with 2,939 LOC. GnuPG is the largest application with 68,081 LOC. We 

have taken care to include both CPU-intensive applications (e.g., gzip) that do not  

frequently execute system calls, and system call-intensive applications such as wget. 
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Table 3.1: List of the applications in the benchmark suite
 

Application Description Lines of code 

GnuPG 1.4.2 GNU replacement for 
PGP 

68,081 

gnu wget 1.10 Program for retrieving 
files through HTTP(S), 
FTP 

22,268 

find (findutils 4.2.25) 

ls (coreutils 4.5.3) 
cp (coreutils 4.5.3) 
wc (coreutils 4.5.3) 

Search for files in a direc
tory hierarchy 
List directory contents 
Copy files 
Print the number of bytes, 
words and lines in a file 

19,217 

2,939 
3,321 
3,226 

tar 1.15.1 
gzip 1.3.3 

grep 2.5.1 

Archiving software 
A popular data compres
sion program 
Search files for a given in

8,425 
4,296 

7,485 
put pattern 

For each application in our suite, we develop a set of testcases (test suite), designed 

to maximize the coverage of the functionality of the respective application. Some of 

the applications, have publicly available regression test suites, e.g., GnuPG. In such  

cases, we borrow those regression test suites. If no such suite is publicly available 

for an application (e.g., gzip, wget), we develop our own test suite. In this study, 

we consider causal relationships between the system calls listed in Table 3.2. All the 

tests were run on a 2.8 GHz Pentium 4 Linux workstation with 512 MB RAM and 1 

GB swap space. The number of system calls that were executed by each application 

as well as the number of instructions executed are presented as part of Table 3.1. 
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Table 3.2: List of the system calls considered in this study
 

File I/O Network I/O
 

open socket 
open64 connect 
opendir select 
read send 
write recv 
seek recvfrom 
chdir 
getdents 
access 
close 
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3.4.2 Implementation of the causality determination techniques 

BackTracker 

Identifying causal relationships using the BackTracker technique is straightforward. 

We implement this functionality as a simple table lookup. 

Static slicing 

We use CodeSurfer [55], a program analysis tool for implementing the static slicing 

technique. Every system call executed by an application has a corresponding callsite 

in its source code. The callsite could be either a direct invocation of the system call 

or an indirect invocation through a library call. We use CodeSurfer to obtain static 

program slices of all such callsites in the source code of an application. 

Dynamic slicing 

We implement dynamic slicing through its functional equivalent of generalized DTA 

[74]. A brief description of our implementation of generalized DTA is as follows: 

For every memory location (main memory, registers etc.,) potentially accessed by the 

instructions executed by a program, an alternate memory called shadow memory1is 

maintained. The shadow memory for any location A contains information about the 

set of system calls the current value of location A is dependent on. 

For each system call instruction, the program is instrumented to generate a unique 

label for each specific instance of the system call. The label contains information 

about the system call type, the program counter value and the specific instance of 

the system call. The uniquely generated label is propagated to the shadow memory 

1This is very similar to the shadow memory used by Taintbochs [72]. But, the information stored 
in the shadow memory is different. 
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locations corresponding to all the locations that are modified by this system call. 

Additionally, for each system call, the program is instrumented to log the labels 

stored in the shadow memory locations corresponding to the read operands of the 

system call. 

For instructions that are not system calls, the program is instrumented to propagate 

the label set information from the read operands of the instruction to the write 

operands. For example, if an instruction adds two registers and writes the result into a 

third register, the instrumented code performs a union of the label sets corresponding 

to the read registers and propagates them to the shadow memory of the write register. 

In addition to tracking causality through program data-flow as explained, we also 

track causality through control-flow dependences the same way as Dytan [74]. 

3.5 Results 

For each application in the benchmark suite, we run the testcases in the applications 

test suite. Each testcase produces a trace of system calls. For every pair of system 

calls (Sa, Sb) present in a trace, we use BackTracker, static slicing and dynamic slicing 

to determine if Sa is a cause of Sb as explained in Section 3.3. We calculate the rate 

of false positives and false negatives as explained in Section 3.3.1. 

A total of 110,882 system calls and approximately 11 billion instructions are executed 

as part of the testcases. We report the rate of false positives and false negatives 

for BackTracker and static slicing in Table 3.3 and Table 3.4 respectively. Both 

techniques are conservative in their inference of causality and hence result in a 0% 

false-negative rate. The false-positive rate and the false-negative rate for the dynamic 

slicing technique are 0 by definition. 

The time and memory overhead associated with dynamic slicing is reported in Table 

3.5. Both static slicing and Back Tracker had negligible dynamic runtime overhead 
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(O(1) table lookups). Static slicing incurred a one-time cost for computing the static 

backward slices of the callsites, which was well within previously reported results [60]. 

Table 3.3: The rate of false positives for BackTracker. Avg and Std stand for average 
and standard deviation, respectively. 

Application System calls Instructions False Positives 
Avg Std 

GnuPG 45,762 9,735,745,189 95.60 12.88 
wget 49,239 168,432,151 31.78 28.99 
find 2602 11,640,606 59.34 27.27 
tar 7659 109,540,215 93.01 20.16 
gzip 1775 824,574,115 35.32 30.43 
wc 266 441,862,104 36.61 43.35 
ls 2936 17,563,651 85.01 20.79 
cp 464 3,511,599 67.44 31.21 
grep 101 332,571 48.30 41.58 
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Table 3.4: The rate of false positives for static slicing. We were unable to obtain the 
results for GnuPG in the case of static slicing owing to limitations of CodeSurfer. Avg 
and Std stand for average and standard deviation, respectively. 

Application System calls Instructions False Positives 
Avg Std 

GnuPG 45,762 9,735,745,189 
wget 49,239 168,432,151 64.94 12.44 
find 2602 11,640,606 52.99 25.13 
tar 7659 109,540,215 92.59 22.92 
gzip 1775 824,574,115 30.21 38.41 
wc 266 441,862,104 36.75 43.51 
ls 2936 17,563,651 83.23 25.92 
cp 464 3,511,599 54.74 41.08 
grep 101 332,571 14.13 28.76 



35 

Table 3.5: Time overhead associated with dynamic taint analysis. Time overhead is 
the ratio of the dynamic slicing time to the normal application execution time. Avg 
and Std stand for average and standard deviation respectively. 

Application Avg Std Minimum Maximum Overhead 

GnuPG 787.489 585.39 49.96 4953.9 8458 
wget 162.808 65.55 31.32 427.72 4933 
find 49.97 5.82 40.45 74.26 648.96 
tar 38.40 30.95 15.06 263.1 12,802 
gzip 180.91 478.55 28.02 2530.32 32,894 
wc 178.06 303.92 36.68 1132.69 28,719 
ls 38.32 18.73 17.47 78.60 22,153 
cp 15.54 4.32 10.44 32.35 10,502 
grep 28.15 9.85 16.26 53.76 53.31 
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Table 3.6: Memory overhead associated with dynamic taint analysis. Memory is 
presented in MiBs. 

Application Avg Std Minimum Maximum 

GnuPG 450.25 78.34 275.23 788.87 
wget 431.56 84.73 274.50 638.01 
find 313.99 22.78 275.03 378.9 
tar 308.95 27.86 276.29 385.97 
gzip 431.98 96.91 3.61 502.62 
wc 345.46 21.86 274.21 357.22 
ls 310.56 47.57 3.71 393.20 
cp 23.62 .87 22.36 25.29 
grep 159.30 156.10 4.14 384.85 
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We note some significant results: 

1. The rate of false positives is high for both techniques.	 For BackTracker, the 

maximum false-positive rate is in the case of GnuPG 95.6%. For static slicing, 

it is 92.59% in the case of tar. 

2. Contrary to plausible expectations [41], in	 most applications (except grep), 

static slicing does not provide a significantly better precision than BackTracker. 

In some cases such as wget it is actually much worse than BackTracker. 

Based on our analysis of the results for wget and ls we believe that the im

provements provided by static slicing are limited when the program exhibits an 

“iterative” behavior with the same set of system calls repeating multiple times. 

However, one must exercise caution while interpreting the results for static 

slicing. It is well known that the results of static slicing depend on a variety 

of parameters (e.g., context-sensitivity, precision of pointer-analysis) [60]. We 

used the tool CodeSurfer with its default settings for static slicing. Alternate 

settings of CodeSurfer and alternate implementations of static slicing might 

produce different results. 

3. The rate of false positives varies significantly across applications. For instance, 

in the case of BackTracker, the rate of false positives varies from 31.78% (wget) 

to 95.6% (GnuPG). This suggests that the nature of an application plays a crucial 

rule in determining its amenability to causality inference. 

We find that that the iterativeand recursive workflow nature of certain applica

tions could result in high false positives. For instance, consider the application 

ls. A high-level overview of ls can be given as follows: When the ls command 

is executed, it iterates over a list of directories (supplied through command 

line). For each directory, ls extracts the files residing in the directory and prints 

the files. This is an example of iterative workflow. The extraction of informa



38 

tion about a file from a directory involves a readdir() system call and printing 

information about a file involves a write() call. 

Now, consider the case of the ls command being invoked with the arguments 

dir1 dir2 over the directory structure presented in Figure 3.1. In this case, both 

BackTracker and static slicing declare the readdir() calls associated with dir1 

to be causes of the write() calls associated with both dir1 and dir2, though 

there is no actual causal relationship (as determined by dynamic slicing). 

dir1 dir2 dir3 
| | | 

|----| |--------| | 
f1 f2 f3 f4 f5 

Figure 3.1.: The directory structure used in the discussion of ls 

4. Dynamic slicing (or generalized DTA) has	 a lower CPU overhead for I/O

intensive applications such as wget (4,933x) when compared to CPU intensive 

applications such as gzip (32,894x). The overhead in Table 3.5 was calculated 

by adding the results from the user and sys components of the Unix time com

mand. However, the user and sys components measure only the CPU usage 

of a process and do not take into account the time waiting for completion of 

I/O. If we account for the time taken for I/O completion (provided by the real 

component of time), the overhead for wget drops dramatically to 45x. 

The reasons are two-fold: (a) The worst-case time complexity of dynamic slicing 

for a given trace T is O(nm), where n is the number of instructions executed in 

the trace and m is the number of system calls in the trace. For I/O-intensive 

applications, the increase in m is easily offset by the dramatic decrease in n. For  

instance, in the case of wget, every trace has an average n of approximately 3 

million and m of approximately 1000. On the other hand, gzip has an average n 

of approximately 8 million and m of 177. The difference in the m values is very 
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small when compared to the difference in n; (b) For I/O-intensive applications 

the wall-clock time of completion is dominated by the I/O waiting time which 

mitigates the effect of the dynamic slicing CPU overhead. 

3.6 Limitations and future work 

•	 In this study we did not evaluate the virtual machine introspection approach 

used in Krishnan et al. [46]. Their approach tracks PD causal relationships at 

the granularity of data-flow through virtual memory pages. We believe that 

this approach has the potential to be more precise than both BackTracker and 

static slicing but less precise than dynamic slicing. One avenue for future work 

would be to extend our study to include this approach. 

•	 The suigte of applications in our benchmark might not be a good representa

tive of applications that are frequently encountered during security incidents. 

For example, our benchmark does not contain any multi-threaded server ap

plications. In future work, we would like to expand the benchmark to a more 

comprehensive one. 

•	 We were also constrained by the fact that our applications should be compatible 

with both PIN and CodeSurfer. We found that CodeSurfer was the bottleneck 

due to its limitations in handling applications of large size (greater than 100 

KLOC). For instance, the version of CodeSurfer we used could not handle the 

slicing queries for GnuPG. Also, as indicated in Section 3.5, the results of static 

slicing vary depending on the precision of the underlying program analyses. A 

more comprehensive analysis of this effect is needed before arriving at conclu

sions regarding the effectiveness of static slicing as a causality determination 

technique. 

•	 The testcases developed for each application were designed to exercise maximum 

coverage of each applications source code. However, we have not studied the 
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coverage statistics of the testcases. In future work, we would like to obtain the 

coverage statistics and use them for improving the testcases. 

•	 Program dependences are not the only means through which causal relation

ships can be enabled between events that occur in the same process. Re

search in information-flow has proven that causality can be enabled through 

implicit dependences which are not captured using program dependences alone 

[68]. Exploring the impact of implicit dependences and the relation between 

information-flow and causal relationship is another promising area for future 

inquiry. 

3.7 Conclusion 

In this study, we propose an approach to evaluate the effectiveness of automatic 

causality determination techniques We use our approach to evaluate a suite of causal

ity determination techniques and conclude that Back Tracker, Forensix and Process 

Labels have a very high rate of false positives. Based on our preliminary analysis, we 

posit that the recursive and iterative workflow structure of applications is a crucial 

reason for the high rate of false positives. Additionally, we also document the time 

and memory overhead of generalized DTA (dynamic slicing). 
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4 CAUSALITY DETECTION THROUGH CONTROL-FLOW MONITORING 

In the previous chapter, we studied the effectiveness of causality determination tech

niques used by existing reconstruction systems. Based on the insights gained from 

that study, in this chapter we propose a new approach for causality determining by 

monitoring the control-flow of a program. Section 4.1 provides the motivation and in

troduces our approach. Section 4.2 describes the framework of our approach. Sections 

4.3, 4.4 and 4.5 provide a detailed exposition of the various aspect of our approach. 

Section 4.6 presents experimental evaluation and results. Section 4.7 discusses the 

general applicability and limitations of our approach and Section 4.8 concludes. 

4.1 Introduction 

Identifying cause-effect relationships between system calls is a fundamental feature of 

automatic intrusion analysis and event reconstruction systems. Based on the results 

from Chapter 3, it is clear that existing causality determination techniques leave secu

rity practitioners and researchers in a dilemma of having to choose between accuracy 

and efficiency. On one hand, techniques such as BackTracker and static slicing have 

very low runtime overhead, but are very imprecise. On the other hand, techniques 

such as dynamic slicing and generalized DTA are precise but have runtime overheads 

that make them impractical for deployment. 

In this chapter, we describe a novel approach to causality determination that resolves 

this dilemma for analyzing certain classes of security incidents. Broadly speaking, 

our approach provides efficient and highly accurate causality determination when the 

following conditions are met: 
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1. The incident does	 not involve control-flow modification or code-injection at

tacks. 

2. The executable binaries of the processes that were involved in the incident are 

available apriori. 

We note that a wide range of security incidents, such as unauthorized data access by 

malicious insiders, unintentional data leakage, and storage of illegal material in en

terprise computer systems do not involve sophisticated tactics such as code-injection 

and control-flow modification of programs. They typically involve executing pro

grams that are benign in their own right (e.g., email clients, archiving software, web 

browsers) but in a way that violates security policy. In such cases, our approach is 

able to determine causal relationships between system calls both accurately and effi

ciently. In the presence of control-flow modification attacks or unknown applications, 

we can be at least as accurate and efficient as Backtracker. 

Our approach involves developing a “causality prediction model” for programs, a run

time monitor that generates augmented audit logs and an offline analyzer that uses 

the audit logs in conjunction with the prediction model to determine causal relation

ships. We exploit the fact that the control-flow of a program is a good predictor of 

causal relationships. We evaluate the effectiveness of three control-flow properties 

viz., program counter, call stack and dynamic call stack in predicting causal rela

tionships. Based on our evaluation, our most accurate model, the dynamic call stack 

model has a low false-positive rate and false-negative rate (both under 5%) and a low 

runtime overhead. 

Our approach is not a panacea and is not meant to be a replacement for other causality 

detection techniques such as generalized DTA. It is an attractive addition to the 

toolkit of causality detection techniques at the disposal of intrusion analysis and 

reconstruction systems. We envision that an intrusion analysis system could leverage 

our approach wherever applicable and apply heavy-weight schemes such as generalized 
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DTA in a more selective manner (e.g., in applications that are targets of control-flow 

modification attacks and previously unseen malware). 

The primary contributions of this chapter are fourfold: 

•	 First, we describe a new approach for determining causal relationships that 

leverages the control-flow properties of a program. We propose the usage of 

three control-flow properties viz., program counter, call stack and dynamic call 

stack to predict causal relationships between system calls. 

•	 Second, we evaluate the performance of our approach over a broad suite of open 

source applications. Our evaluation reveals that causality determination by 

leveraging control-flow information is both efficient (less than 5% of additional 

time for program exectuion) and accurate (false-positive rate and false-negative 

rate under 5%). 

•	 Third, we analyze the experimental results and explain the sources of false-

positives and false-negatives in our approach (e.g., causal flow through data

flow and coverage in our testsuite) and point out ways to improve the accuracy 

of our models. 

•	 Finally, we discuss the limitations and applicability of our approach and suggest 

future avenues of research. 

4.2 General approach 

We would like to determine causal relationships between system calls executed by a 

program. To that end, we propose a three-stage approach: 

1. First, we build a model of causal relationships between every pair of system call 

in a program. The models consist of control-flow properties that predict the 

causal relationships. 
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2. Second, we instrument the program to generate augmented audit logs containing 

the control-flow properties for the system calls executed by the program. 

3. Finally, we analyze the audit logs using the causal model to determine the causes 

of the system calls. 

In the following sections, we describe each of the aforementioned steps in greater 

detail. 

4.3 Building causal models 

In the past, several host-based intrusion detection systems have used simple aspects 

of the control-flow of a program to derive high-fidelity specifications of valid program 

behavior( [82–87]). Similar to those approaches, our philosophy is to see how far 

we can use simple control-flow properties to predict causal relationships between the 

system calls of a program. 

A causal model of a program is a specification of the causal relationships between every 

pair of system calls in that program. It lists the control-flow conditions that must 

occur for each causal relationship to happen. Control-flow conditions are properties 

of the dynamic control-flow trace of a program. For example, in the source code 

snippet in Figure 4.1, the write() system call in line 8 is an effect of the read() 

system call in line 3 but not the read() system call in line 4. This could be modeled 

as a condition based on the program counter of the read() and write() system calls 

(see Table 4.1). The conditions are expressed as logical formulae using control-flow 

properties. 

Causal models are built by scanning “causal traces” of a program. For a given exe

cution of the program, the causal trace contains the actual causes of system calls in 

that execution and the control-flow properties of the system calls. We use generalized 

DTA to generate the causal traces: Each system call acts as a new “taint source” 

and as a “taint sink”. We execute the program over a set of training test cases and 
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collect the taint information along with the control-flow properties for each system 

call executed in the training. The taint information provides the actual causes of a 

system call. 

1 

2 f d  r =  open ( foo  ,  ORDONLY) ; 
3 fd  w =  open ( bar  ,  OWRONLY) ; 
4 read (  f d  r  ,  buf f e r1  ,  10 ) ;  
5 read (  f d  r  ,  buf f e r2  ,  10 ) ;  
6 

7 

i f (  bu f f e r 1  [ 0 ]  ==  1)  {
s t rncpy ( dest  ,  buf f e r1  ,  10 ) ;  

8 

9 

}
wr i t e  ( fd  w  ,  dest  ,  5 ) ;  

Figure 4.1.: Sample source code to illustrate causality through Program Dependences. 

Table 4.1: Dependence model for listing in Figure 4.1 

Dependence Relationship Control-flow conditions
 

Dep
read −→ write PC(read) = 3  

4.4 Control-flow properties 

In the following subsections, we discuss the three control-flow properties that we 

evaluate. 

4.4.1 Callsite 

The first and the simplest control-flow property that we evaluate is the callsite of 

a system call. We model the callsite using the program counter (PC) value of the 

system callsite. Let us say system call C at callsite PC(C) is an actual cause of 

system call E at callsite PC(E) during the training phase. After the training phase, 
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given two system call instances Ci and Ej, the callsite causal model predicts Ci to be 

the cause of Ej if PC(Ci) =  PC(C) ∧ PC(Ej) =  PC(E). Table 4.1 provides an example 

of a causal model that is based on the callsites of the system calls. 

4.4.2 Callstack 

The next control-flow property that we evaluate is the callstack when a system call 

is invoked. When a system call A is executed its callstack CS(A) is the list of return 

addresses of currently actively routines { An, An−1 . . . A0} , where  n is the number of 

frames in the callstack and An is the program counter of the system call A. 

The callstack of a program contains information about the past and current states 

of the program. It captures more of the program semantics than just the program 

counter of a system call. This allows us to predict causal relationships more accurately 

than by just using the program counter. For example, consider the source code 

snippet in Figure 4.2. The read() system call in line 6 is the cause of the write() 

system call in line 13 only if the read() is executed under the context of function g() 

(g() → readfile() → read()). It is not a cause when executed under the context of 

function f() (f() → readfile() → read()). The call stack helps differentiate between 

the the two cases – read() is a cause of write() only if CS(read) is  { 6, 27, 41} and 

not if it is  { 6, 34, 40} . 

The causal model using callstack information for the code snippet in Fig 4.2 is pre

sented in Table 4.2. The first column lists the causal relationships and the sec

ond column lists the control-flow conditions that must be satisfied for the depen

dence relationship to hold. If a causal relationship is not present in the model, e.g., 
Cause

write −→ write then it is assumed that such a relationship could never happen. 
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#define  BUFSIZE 100 

void r e a d f i l e  (char ∗ f ,  char ∗b) 
  
{
 

int  f d  r =  open ( f  ,  ORDONLY) ;
 
read ( fd  r , b , BUFSIZE ) ;
 
c l o s e ( f d  r ) ; 
  

} 

void w r i t e f i l e (char ∗ f ,  char ∗b) 
  
{
 

fd  w =  open ( f  ,  OWRONLY) ;
 
wr i t e ( fd  w ,  b ,  BUFSIZE ) ; 
  
c l o s e ( fd  w ) ; 
  

} 

void prntsc rn (char ∗b) 
  
{
 

wr i t e ( stdout  ,  b ,  BUFSIZE ) ;  
} 

void g ( )  
{ 

char b [BUFSIZE ] ; 

r e a d f i l e ( ” foo ”  ,  b ) ; 
  
w r i t e f i l e ( ”bar”  ,  b ) ; 
  
return ;
 

} 

void f ( )  
{ 

r e a d f i l e ( ” foo ”  ,  b ) ; 
  
prntsc rn (b ) ; 
  
return ;
 

} 

int  main ( ) {

f ( ) ; 
  
g ( ) ; 
  
return ; 

} 

Figure 4.2.: Sample source code to illustrate causal models using callstack information 
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Table 4.2: An example of a causal model using callstack information 

Causal Relationship	 Control-flow conditions
 

Cause
open −→ read	 CS(open) =  {6, 27, 41} ∧ CS(open) =  {6, 34, 40} 

Cause
read −→ write	 (CS(read) =  {7, 27, 41} ∧ CS(write) =  {14, 28, 41}) ∨ 

(CS(read) =  {7, 34, 40} ∧ CS(write) =  {20, 35, 40}) 

4.4.3 Dynamic callstack 

The final and the most complex control-flow property that we evaluate is the dy

namic callstack. A dynamic callstack contains information about not only the return 

addresses of active routines, but also the instance information of each of the re

turn addresses. We define the dynamic call stack of system call A as DCS(A) =  
j{ Ai , A . . . A1} where n is the number of frames in the callstack, Ai is the ith inn n−1 0 n 

stance of the program counter An of the system call A, and  A0 represents the return 

address of the main() function. 

The dynamic callstack has more information about the history and the current state 

of the program than the callstack alone. Specifically, the dynamic callstack allows 

us to differentiate between the same system call executed in different iterations of a 

loop. Consider the code snippet in Figure 4.3 that prints out the list of files for a list 

of directories (modeled loosely after ls). The readdir() system call in line 6 is a 

cause of the  write() system call in line 7 only if they are both executed within the 

same “instance” of the printfiles() function. For instance, consider two directories 

dir1, dir2 whose files are being listed out by the program. The write calls that 

belong to dir1 should not be considered an effect of the readdir() system calls for 

dir2 and vice versa. The dynamic callstack causal model allows us to capture this 

constraint. The dynamic callstack causal model for the code snippet in Fig 4.3 is 

provided in Table 4.3. 
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1
 

2 void p r i n t f i l e s  ( pend ingd i r ) 
  
3 {

4 struct  d i r en t  ∗ f ; 
  
5 DIR ∗ dr  =  opendir  ( pendingdir−>name ) ;
 
6 while ( ( f  =  r eaddd i r ( dr ) ) )  {

7 wr i t e ( stdout  ,  f−>d name ) ;
 
8 }

9 }


10 

11 void main ( ) 
12 {

13 . . . 
  
14 while ( pend ingd i r )  {

15 p r i n t f i l e s  ( pend ingd i r  ) ; 
  
16 pendingd i r  =  pendingdir−>next  ; 
  
17 }

18 }
 

Figure 4.3.: Sample source code to illustrate causal models using the dynamic call-
stack information 

Table 4.3: An example of a causal model using the dynamic callstack information. 
We use “*” in the superscript as a wildcard to indicate that the instance information 
does not matter. 

Causal Relationship Control-flow conditions
 

opendir 
Cause−→ readdir DCS(opendir) =  {5∗ , 15j }∧DCS(readdir) =  {6∗ , 15j } 

readdir 
Cause−→ write DCS(write) =  {7∗ , 15j } ∧DCS(readdir) =  {6∗ , 15j } 

opendir 
Cause−→ write DCS(write) =  {7 ∗ , 15j } ∧DCS(opendir) =  {5 ∗ , 15j } 
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4.5 Augmented audit logs and offline analysis 

An online monitor generates audit logs of system calls executed by applications. In 

addition to the information found in traditional “c2 compliant” audit logs [88], the 

monitor also logs the control-flow properties of system calls. Given the augmented 

audit logs of system calls for a program, we can generate the list of “causes” for each 

system call as follows: 

•	 Let CM be the causal model of the program. CM could be the callsite, callstack 

or the dynamic call stack model. 

•	 For each system call Si in the audit log 

–	 Let C (Si) be the set of causes of Si 

–	 Let the control-flow property of Si be CFP (Si). CFP could be the callsite, 

callstack or dynamic callstack depending on the type of CM 

–	 For each system call Sj in the audit log where j varies from 0 to i 

∗	 Let the control-flow feature of Sj be CFP (Sj) 

∗	 If CM (CFP (Si), CFP  (Sj)) evaluates to TRUE then add Sj to C (Si) 

–	 Print out C (Si) 

The time complexity of the analysis algorithm is O(N 2M ) where  N is the number 

of system calls in a program’s audit log and M is the maximum size of the logical 

formulae used in CM . 

4.6 Experimental evaluation and results 

In this section we measure the performance of our causal models (the callsite, callstack 

and dynamic callstack models) in identifying causal relationships using a suite of 
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Table 4.4: List of the applications in the benchmark suite
 

Application Description Lines of code (LOC) 

GnuPG 1.4.2 GNU replacement for PGP 68,081 
gnu wget 1.10 Program for retrieving files 22,268 

through HTTP(S), FTP 
find (findutils 4.2.25) Search for files in a directory 19,217 

hierarchy 
ls (coreutils 4.5.3) List directory contents 2,939 
cp (coreutils 4.5.3) Copy files 3,321 
wc (coreutils 4.5.3) Print the number of bytes, 3,226 

words and lines in a file 
tar 1.15.1 Archiving software 8,425 
gzip 1.3.3 A popular data compression 4,296 

program 
grep 2.5.1 Search files for a given input 7,485 

pattern 

open source applications described in Table 4.4. We focus on measuring the following 

metrics: false-positives, false-negatives and runtime overhead. 

For each application, we develop a set of testcases designed to exercise as much of 

their respective functionality as possible. Some of the applications (e.g., GnuPG) have  

a well defined regression testsuite. We reuse those tests where available and develop 

our own testcases otherwise [56]. We divide those testcases equally into a “training 

set” and a “test set”. The training set is used to obtain the causal traces and build 

the causal models as described in Section 4.3. After the causal models are built, we 

use the test set to obtain the performance metrics for each of the model. All the tests 

were run on a 2.8 GHz Pentium 4 Linux workstation with 512 MB RAM and 1 GB 

swap space. 
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4.6.1 False positives 

False positives occur when a causal model predicts that a system call Si is a cause of 

another system call Sj when in reality it is not. The rate of false positives is calcu

lated using the following formula: 

Number of false causal predictions 
Rate of false positives =	 ∗ 100 

Total number of causal relationships 

The false positives are calculated by comparing the results of causality determination 

against those of dynamic slicing: False positives arise when a particular causal model 

infers a causal relationship between two events, but dynamic slicing does not. In 

Figures 4.7, 4.8 and 4.9 we present the rate of false positives of the causal models in 

comparison to the BackTracker [35, 36] and static slicing techniques. We make the 

following observations: 

1. Observing the control-flow of a program enhances the ability to predict causal 

relationships in that program. In general, the more we observe the control-flow, 

the better the accuracy of prediction: 

•	 Even the simplest of our causal models viz. the callsite model, has a 

dramatically lower false positive rate when compared to both BackTracker 

and static slicing. The callsite model has a false positive rate of 19.61%. In 

comparison, BackTracker has an average false positive rate of 55.97% and 

the static slicing model has an average false positive rate of 45.33%. At its 

best, the callsite model has a false positive rate of 1.51% for the program 

grep and at its worst the model has a false positive rate of 50.01% for the 

program ls. 

•	 As expected, with the additional context and state provided by the pro

gram callstack, the callstack model improves upon the callsite model with 
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an average false-positive rate of 10.54%. It has a very low false-positive 

rate for applications such as GnuPG, find and grep. In the worst case, it 

suffers from a false-positive rate of 43.48% for the program ls. 

•	 The dynamic callstack model further improves upon the accuracy of the 

callstack model with an average false-positive rate of 4.45%. For most of 

the applications in our benchmark, the false-positive rate of the dynamic 

callstack model is less than 5% with zero false-positives for applications 

grep, wc. As it is with the other causal models, the worst case of false-

positives occurs for ls (21.45%). 

2. The rate of false-positives varies significantly from one application to another 

for all our causal models. Applications such as grep bring out the best in 

all our causal models while applications such as ls bring out the worst. The 

nature of the application has a significant impact on the accuracy of causality 

determination. 

We investigated the test cases of ls to understand the reasons for the large 

number of false positives for that program. Our analysis revealed that most of 

the false positives for ls resulted from testcases that exercised the “recursive” 

option for ls (ls -r) (similar to the cases of BackTracker and static slicing). 

A high-level overview of ls can be given as follows (reproduced from Section 3.5: 

When the ls command is executed, it iterates over a list of directories supplied 

through command line. For each directory, ls extracts the files residing in the 

directory and prints the files. The extraction of information about a file from 

a directory involves a readdir() system call and printing information about a 

file involves a write() system call. Figure 4.5 captures this functionality in the 

form of source code derived from ls. 

Now consider the case of the command ls -r being executed over the directory 

structure illustrated in Fig 4.4. Based on our analysis of the source code of ls 

we know that a readdir() call associated with one directory (say “foo”) can 
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be a cause of the readdir() call associated with another directory (say “bar”) 

only if “bar” is a descendant of “foo” in the directory hierarchy. Our causal 

models fail to capture this “descendant of” relationship and spuriously label 

the readdir() calls associated with the subdirectory “dir2” to be causes of the 

readdir() and write() calls associated with subdirectory “dir3”. 

The “descendant of” relationship is enabled primarily through the data-flow of 

the program. The Figure 4.6 lists the execution trace of ls -r (corresponding 

to the source code in Figure 4.5) over the directory structure in Figure 4.4. 

In Figure 4.6, the control-flow that immediately follows readdir(‘‘dir2’’) 

is identical to that following readdir(‘‘dir3’’). Similarly the control-flow 

that precedes write(‘‘f1’’) is identical to that preceding write(‘‘f3’’). 

However their respective data-flows (marked as colored arrows in Figure 4.6) 

are distinct. In order to eliminate false positives in this case the data-flow must 

be observed. 

dir1 
| 

|---------| 
dir2 dir3 
| | 

|----| |--------| 
f1 f2 f3 f4 

Figure 4.4.: The hierarchical directory structure used in the discussion of ls 
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1
 

2 // Queues a d i r e c t o r y to the pending d i r e c t o r i e s queue
 
3 void queue  d i r e c t o ry  (char ∗ d i r )  
4 {

5 new−>name = d i r ;
 
6 //  Data  f l ow  to  e s t a b l i s h  parent−c h i l d  r e l a t i o n s h i p 
  
7 new−>next  =  pendingd i r  ; 
  
8 pendingd i r  =  new ; 
  
9 }


10
 

11 //  Prin t s  the  names  o f  the  f i l e s  in  the  g iven  d i r e c t o r y 
  
12 void p r i n t  d i r ( pend ingd i r ) 
  
13 {

14 struct  d i r en t  ∗ f ; 
  
15 DIR ∗ dr  =  opendir  ( pendingdir−>name ) ;
 
16 while ( ( f  =  r eaddd i r ( dr ) ) )  {

17 wr i t e ( stdout  ,  f−>d name ) ;
 
18 i f  ( i s d i r  (  f  ) )  {

19 queue  d i r e c t o ry ( f ) ; 
  
20 }

21 }

22 }

23 

24 void main ( ) 
25 {

26 . . . 
  
27 while ( pend ingd i r )  {

28 th i spend  =  pendingd i r  ;  
29 p r i n t  d i r ( th i spend ) ; 
  
30 pendingd i r  =  pendingdir−>next  ; 
  
31 }

32 }
 

Figure 4.5.: Source code snippet that captures the behavior of ls -r. The snippet 
was derived  from  the original source of ls (ls.c) available in the coreutils-4.5.3 
package. We have simplified and modified the source considerably to highlight only 
the relevant portions. 
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4.6.2 False negatives 

False negatives occur when a causal model misses an actual causal relationship. The 

rate of false negatives is calculated using the following formula: 

Number of missed predictions 
Rate of false negatives = ∗ 100 

Total number of causal relationships 

False negatives arise when a particular technique fails to infer a causal relationship 

that is inferred by dynamic slicing. We list the false negatives of the causal models 

in Figures 4.10, 4.11 and 4.12. All our causal models suffer from false-negatives. The 

callsite model has the lowest average rate of false-negatives with 0.85%. The callstack 

and the dynamic callstack models have higher rates of false-negatives at 4.65% and 

4.93% respectively. The rate of false negatives increases as the complexity of the 

observed control-flow feature rises: Callsite < Callstack < Dynamic Callstack. 

Our causal models miss actual causal relationships between system calls when: (1) 

System calls that were not present in the training data are encountered in the test 

data. (2) System calls are associated with previously unobserved control-flow proper

ties. Both can be attributed to the incompleteness in the training data. In general, the 

more complete the training data, the lower the false negatives are. Refer to Section 

4.6.4 for a detailed discussion on the impact of training data on false negatives. 
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models for GnuPG, wget, ls, find. 



62 

4.5 1 
3.85 3.85 0.94 

0.5 0.1
0 0 0 0 

0 0 

Callsite Callstack Dynamic Callstack Callsite Callstack Dynamic Callstack 

(a) gzip (b) wc 

0.83.5 
R

a
te

 o
f 

F
a

ls
e

 N
e

g
a

ti
v

e
s
 

R
a

te
 o

f 
F

a
ls

e
 N

e
g

a
ti

v
e

s
 

R
a

te
 o

f 
F

a
ls

e
 N

e
g

a
ti

v
e

s
 

R
a

te
 o

f 
F

a
ls

e
 N

e
g

a
ti

v
e

s
 

0.73 
0.6 

2.5 
0.5 

2 
0.4 

1.5 0.3 
1 0.2 

3 14 
2.66 2.66 

11.69 11.692.5 122.5 

Callsite Callstack Dynamic Callstack 

2.92 

Callsite Callstack Dynamic Callstack 

10 

8 

6 

4 

2 

1.5 

1 

0.5 2 

0 0 

(c) grep (d) cp 

Figure 4.11.: Rate of false negatives of the Callsite, Callstack and Dynamic Callstack 
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4.6.3 F-measure 

A straightforward comparison between our causal models and previous approaches 

based solely on either false positives or false negatives is not possible: Our approach 

to causality detection is neither sound nor complete, i.e., it suffers from both false 

positives and false negatives whereas the previous approaches for causality determi

nation (BackTracker, Static slicing) are all complete, i.e., they do not suffer from 

false-negatives 1 . 

The F-measure is a metric used to combine the false positive rate and the false 

negative rate in the field of information retrieval [91] and is defined as the weighted 

harmonic mean of precision and recall : 

Precision . Recall 
F = 2. 

Precision + Recall 

(1 − False Positive Rate)(1 − False Negative Rate) 
= 2. 

1 − False Positive Rate + 1 − False Negative Rate 

The value of F varies between 1 to 0, with 1 being the best score and 0 being the worst. 

We employ the F-measure as a metric to effect a straightforward comparison between 

our approaches and previous approaches. We list the F-measure for our causal models 

along that of Backtracker and static slicing in Table 4.5. For all applications in the 

benchmark suite, our causal models have better F values than both Backtracker and 

Static slicing. 

1Dynamic taint analysis is both sound and complete. However it is not a practical technique for 
causality determination due to its runtime overhead. Hence we ignore dynamic taint analysis in 
this discussion. Similarly we do not consider the virtual machine introspection technique in this 
discussion. 
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Table 4.5: The F-measure of Backtracker, Static slicing, Callsite, Callstack and Dy
namic callstack models. We were unable to obtain the results for GnuPG in the case 
of static slicing owing to limitations of codesurfer. 

Application Backtracker Static slicing Callsite Callstack Dynamic callstack 

GnuPG 0.08 0.75 0.97 0.97 
wget 0.81 0.52 0.91 0.92 0.95 
ls 0.66 0.56 0.66 0.71 0.86 
find 0.58 0.64 0.95 0.97 0.96 
gzip 0.79 0.82 0.95 0.93 0.98 
wc 0.78 0.77 0.9 0.95 1 
grep 0.68 0.92 0.98 0.98 0.99 
cp 0.49 0.62 0.9 0.91 0.93 
tar 0.13 0.14 0.63 0.9 0.91 

Average 0.64 0.66 0.87 0.92 0.95 
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4.6.4 Impact of training data 

The choice of training data plays a significant role in determining the accuracy of 

dynamic analysis techniques such as ours. While we have reused existing regression 

suites where applicable, we had to build our own testcases for many applications. 

As our approach involves building causal models using the control-flow properties 

observed in the training data, the quality of the training data is of paramount impor

tance. In this section, we attempt to answer the questions such as: 

1. Is our training data sufficient? 

2. If not, does adding additional testcases improve the effectiveness of the causal 

models? 

We plot the metrics for model effectiveness (false positives and false negatives) for 

training data of different sizes in order to understand the relationship between our 

model accuracy and the completeness of the training data. For each training set size, 

we choose five random subsets from the original training set of the same size and 

average the results across them. Figures 4.13, 4.14 and 4.15 list the results for the 

dynamic callstack model. We omit the results from the causal models as the trends 

were similar in nature. Some observations: 

1. As the size of the training data increases, the false negatives decrease sharply. 

However the false positives slightly increase with training data size (though at 

a slower rate than the drop in false negatives). While the rise in false positives 

is surprising at first blush, upon reflection, this is to be expected: 

During the testing phase, if a system call is a “miss” in the causal model, then all 

the causal relationships involving the system call are flagged as false negatives. 

These causal relationships will not contribute towards the false positives. With a 

small training set the “misses” are higher, resulting in higher false negatives and 

lower false positives. As the training set increases, the number of misses drops 
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resulting in lower false negatives. But the number of false positives increases 

simultaneously as some of the new “hits” will result in false positives. 

2. The impact of the training set size is not monotonic on both false positives and 

false negatives. Occasionally we see that when the training set is increased, 

the false negatives also increase (e.g., consider the graph for grep in Figure 

4.14). Upon investigation, we realized that this is an artifact of our experimen

tal methodology of choosing five random training sets and averaging the results 

across them. Some testcases have a higher marginal impact on model effective

ness (decrease false negatives more) than others. If a training set TSi includes 

more high-impact testcases than a training set TSj, then the false negatives 

of the models built using TSi will be lower than those built using TSj even if 

|TSi| < |TSj|. This effect is more pronounced in applications whose training 

data has a low number of system calls (e.g., grep). 

3. For many applications (e.g., wc, ls, the false negatives begin to level off when 

the size of the training set reaches a limit. However for other applications (e.g., 

wget, cp and tar), the false negatives continue to drop even as the maximum 

size of the training set is reached. This implies that, for those applications 

the coverage of the training data could be improved by adding additional test 

cases. In fact, some of the applications that suffer from the highest rate of false 

negatives in our causal models (cp and tar with 11.69% and 6.49% respectively) 

could potentially benefit from additional testcases to the training data. 
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Figure 4.13.: Impact of the size of training data on the effectiveness of causal models. 
We list the results for the dynamic callstack model (the callsite and callstack models 
display the same trends) for the applications GnuPG, wget, ls and find. The X-axis 
refers to the size of training data in terms of the number of system calls. 
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Figure 4.14.: Impact of the size of training data on the effectiveness of causal models. 
We list the results for the dynamic callstack model (the callsite and callstack models 
display the same trends) for the applications gzip, wc, grep and cp. The X-axis 
refers to the size of training data in terms of the number of system calls. 
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Figure 4.15.: Impact of the size of training data on the effectiveness of causal models. 
We list the results for the dynamic callstack model (the callsite and callstack models 
display the same trends) for the tar. The X-axis refers to the size of training data in 
terms of the number of system calls. 
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4.6.5 Runtime overhead 

In this section we discuss the performance overhead of the different stages of our 

approach to causality determination: 

1. Model building phase. 

2. Online monitoring and audit log generation. 

3. Analyzing the audit logs to determine causal relationships. 

Model building 

The model building phase can be broken down into two sub-phases: causal trace 

generation and the actual building of the models using the causal traces. Causal trace 

generation has exactly the same performance characteristics as that of generalized 

DTA as described in Section 3.5. Here we discuss the performance of the actual 

model building phase. 

We present the runtime CPU overhead of model building in Table 4.6. The model 

building algorithms are implemented as perl scripts and the control-flow conditions 

are internally stored as text strings. We measure the CPU overhead using the real 

time spent by the model building programs for building each of our causal models. 

The real time is the total time taken for the process to complete (includes time spent 

by the processes in the user mode, in the system mode and time waiting for I/O 

completion). 

We present the memory overhead of the model building program in Table 4.7. We 

measure the peak memory used by our model building perl scripts. We breakdown 

the memory usage into the baseline usage introduced by the perl interpreter for merely 

running our programs and the overhead introduced by model building. The measure

ments presented in Tables 4.6 and 4.7 represent averages taken across five different 
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Table 4.6: Runtime CPU overhead of building the callsite, callstack and dynamic 
callstack causal models from causal traces. The overhead is presented in terms of the 
real time in seconds consumed by the model building process for each of the models. 
The size of the causal trace is given in terms of number of system calls. 

Application Causal trace size Callsite Callstack Dynamic Callstack 

GnuPG 24996 11.92 13.73 955.43 
wget 30163 96.36 97 7894 
ls 967 0.5 0.53 7.79 
find 1647 1.14 1.98 101.6 
gzip 1071 0.86 0.91 23.15 
wc 203 0.04 0.06 0.1 
grep 56 0.1 0.19 0.11 
cp 262 0.13 0.13 0.13 
tar 818 0.51 0.53 3.15 

runs of model building. All the runs were on a lightly loaded 2.8 GHz Pentium 4 

Linux workstation with 512 MB RAM and 1 GB swap space. 

In general, bigger the causal trace, the longer the model building takes. The callsite 

and the callstack models take roughly the same time to build for all the applications 

in our benchmark suite. The dynamic callstack model is the most expensive model to 

build, sometimes taking 80x more time than the callstack model (e.g., wget). The ad

ditional overhead is primarily due to our naive implementation of adding new clauses 

to the logical formulae in the causal models. Unsurprisingly the memory overhead of 

the causal models depends on the complexity of the respectively models – the more 

complex the model, the greater the overhead. Our model building implementation 

uses an inefficient text representation for storing the causal models. Potential for 

substantial memory savings exists if the causal models are stored using a compact 

binary representation. 
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Table 4.7: Memory overhead of building the callsite, callstack and dynamic callstack 
causal models from causal traces. The overhead is presented in units of KiB consumed 
by the model building process. The size of the causal trace is given in terms of number 
of system calls. The table contains the peak memory used up by the process during 
its lifetime, broken down into: (a) baseline memory usage when the program is loaded 
by the perl interpreter (b) memory usage due to model building and storage. 

Application Causal trace size Baseline Callsite Callstack Dynamic Callstack 

GnuPG 24996 3596 7712 14120 28948 
wget 30163 3596 8952 12708 14736 
ls 967 3596 596 752 1040 
find 1647 3592 1076 1692 2964 
gzip 1071 3592 596 884 1176 
wc 203 3596 272 380 392 
grep 56 3596 848 1164 1480 
cp 262 3592 444 572 852 
tar 818 3592 1992 3020 4308 
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Online monitoring 

We use Pin, the binary instrumentation tool [89] to implement the audit log gener

ation mechanism. As Pin has a baseline overhead by itself and because the online 

monitoring can be implemented without Pin (using a combination of the operating 

system kernel instrumentation and custom binary instrumentation), we discard the 

overhead introduced by Pin in our results. In order to discard the overhead intro

duced by Pin, we estimate the overhead using a Pin extension that does nothing 

(“nullpin”). 

Table 4.8 lists the runtime overhead of generating the augmented audit logs that 

contain additional control-flow information. The callsite and callstack models increase 

the runtime of the applications being monitored by a modest average of 2.64% and 

3.06% respectively. However the dynamic callstack model incurs a relatively high 

monitoring overhead of 47%. 

In order to obtain the dynamic callstack, the instance information for each of the 

return addresses in the runtime stack at the time of system call execution has to 

be maintained. To achieve this, we instrument all the function call statements in a 

binary and track their instance information. This naive tracking of all callsites leads 

to the high overhead of the dynamic callstack model monitoring. 

However, it is sufficient to track the instance information of only those callsites that 

are present in the dynamic callstacks of system calls. Tracking other callsites is 

unnecessary as those callsites are not present in the dynamic callstacks observed at 

system call execution time. Furthermore, it is sufficient to track those callsites that 

were present in the dynamic callstacks observing during the training phase. If a 

callsite is newly observed in a dynamic callstack during online monitoring, such a 

callstack will result in a “miss” during offline analysis and hence need not be tracked. 

We obtain the smaller set of callsites from the causal traces used for model building 

and manually instrument them for instance tracking in the application binaries. For 

this version of the dynamic callstack monitor (henceforth referred to as “dynamic 
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callstack monitor (optimized)”), the runtime overhead drops to a respectable 4.66%. 

However as the optimization required custom instrumentation of the binaries of the 

applications, we report both the optimized and unoptimized results. 

Finally, the memory overhead associated with all of our models was negligible when 

we discount the memory overhead associated with Pin. The low memory overhead is 

due to the fact that we do not store our causal models in-memory – our online monitor 

merely generates the control-flow properties and it is the offline analyzer that uses 

the causal models. 
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Table 4.8: Runtime overhead of online monitoring and audit log generation for the 
callsite, callstack and dynamic callstack causal models. The overhead is measured 
in terms of additional % of elapsed time taken by each application when the online 
monitoring and audit log generation is added. 

Application Callsite Callstack Dynamic Callstack Dynamic Callstack (optimized) 

GnuPG 8.3 10.4 87.6 11.2 
wget 
ls 

1 
3.2 

1 
3.5 

46.1 
26.2 

2.9 
4.5 

find 1.5 1.7 43.5 3.5 
gzip 
wc 

1.4 
1 

1.8 
1.6 

37.3 
41.3 

3.3 
3.3 

grep 
cp 
tar 

1.5 
4.9 
1 

1.6 
4.9 
1 

50.4 
47.5 
43.1 

3.7 
6.7 
2.81 

Average 2.64 3.06 47 4.66 
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Audit log analysis 

We implemented the causality determination algorithm described in Section 4.5 as 

a perl script that takes the audit logs and the causal models as input and outputs 

the list of causes for each system call in the audit log for a specified causal model. 

The analysis was performed in a lightly loaded 2.8 GHz Pentium 4 Linux workstation 

with 512 MB RAM and 1 GB swap space. 

We present the CPU overhead of the log analysis program in Table 4.9. We use the 

real time consumed by the analysis process as the metric to measure CPU overhead. 

The analysis time is influenced both by the number of system calls in the audit 

logs and the size of the logical formulae expressing the control-flow conditions in a 

model: We observe that typically the bigger the audit log, the longer it takes to 

analyze the log. Similarly if the causal model contains more control-flow conditions 

(as is typically the case for the dynamic callstack model as it is more specific than 

the other two models), the analysis time is longer. Log analysis for wget takes the 

longest, 9180 seconds for analyzing 19076 system calls. 

We present the memory overhead of the log analysis program in Table 4.10. The 

memory overhead is determined by the size of the causal model. The callsite model 

is the smallest of the three causal models, followed by the callstack model and the 

dynamic callstack model in that order. 
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Table 4.9: Runtime CPU overhead of analyzing audit logs and determining causality 
using the callsite, callstack and dynamic callstack causal models from causal traces. 
The overhead is presented in terms of the real time in seconds consumed by the 
causality determination programs. The size of the audit logs is given in terms of 
number of system calls 

Application Audit log size Callsite Callstack Dynamic Callstack 

GnuPG 20766 51.47 67.66 674.86 
wget 19076 192.84 211.44 9180.78 
ls 1969 5.84 5.97 63.67 
find 955 1.36 1.75 18.85 
gzip 704 0.93 1.04 6.81 
wc 63 0.06 0.07 0.13 
grep 45 0.11 0.1 0.21 
cp 202 0.19 0.21 0.55 
tar 6841 330.66 370.39 490.62 

Table 4.10: Memory overhead of determining causality using the callsite, callstack 
and dynamic callstack causal models in audit logs. The overhead is presented in units 
of KiB consumed by the causality detection program. The table contains the peak 
memory used up by the program during its lifetime, broken down into: (a) baseline 
memory usage when the program is loaded by the perl interpreter (b) memory usage 
due to model storage and causality detection. 

Application Audit log size Baseline Callsite Callstack Dynamic Callstack 

GnuPG 20766 3596 11440 22268 41484 
wget 19076 4000 12468 17268 20576 
ls 1969 3592 1124 1604 2140 
find 955 3592 1444 2428 4068 
gzip 704 3592 756 1332 1784 
wc 63 3596 544 700 740 
grep 45 3596 1164 1796 2228 
cp 202 3592 576 704 1212 
tar 904 3596 6972 9908 14168 
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4.7 Discussion 

4.7.1 Signals 

Unix processes have the ability to register routines to handle signals generated by 

the kernel [92]. Signal handling routines introduce asynchronous control flow that is 

typically not observed during program execution. Our causal models do not model 

the signal handling mechanism. Hence the presence of signal handling routines can 

increase both the false positives and false negatives generated by our causal models: 

•	 When a signal is observed during the training phase, the system calls that are 

executed in the context of the signal handler result in the “loosening” of the 

control flow conditions due to the addition of disjunctional clauses to the logical 

formulae. This makes the causal model more general and permissive thereby 

increasing the false positives. 

•	 When a signal is observed for the first time during the testing phase, the control-

flow conditions associated with any system call executed within the signal han

dler will not be recognized by the causal model resulting in false negatives. One 

way to mitigate the false negatives is to take special care to include test cases 

that trigger signals and the signal handlers to be executed. Currently our test 

cases are not designed to generate and handle signals as part of their normal 

operation. 

4.7.2 Multi-threaded applications 

The way our causal models are currently implemented, they are agnostic to the pres

ence of different threads of execution within a program. This could potentially result 
Cause

in false positives. For example, consider a causal relationship open −→ read that 

exists only if both the open() and read() calls are executed in the context of the 



80 

same thread. If during the testing phase open() and read() are executed in two dif

ferent threads of control, but with the rest of the control-flow conditions the same as 

that of the training phase, our causal models will falsely implicate open() as a cause 

of read(). Our models have to become thread-aware to overcome this limitation. 

4.7.3 Address space layout randomization 

Randomizing the address-space layout of a software program, known as ASLR (Ad

dress Space Layout Randomization) [93] is a popular technique used to prevent at

tackers from using the same exploit code effectively against all instantiations of the 

program containing the same flaw. The attacker must either craft a specific exploit 

for each instance of a randomized program or perform brute force attacks to guess 

the address-space layout. A popular implementation of ASLR for Linux is PaX [94] 

which randomizes the base address of the stack, heap, code, and mmap()ed segments 

of ELF executables and dynamic libraries at load and link time. 

As a result of the address space randomization, the addresses used in the text segment 

of a program will vary from one instantiation of the program to another. This could 

make the causal models useless if the control-flow properties (such the callsite and 

return address values) found in the training phase are used as is. Hence we propose 

the following: During the training phase, the random value that is added to the 

base address of memory segments is also logged and is used to derive the “relative” 

addresses of the control-flow properties. Similarly the online monitor would log the 

random value for each program instantiation in the audit log which can be then used 

to derive the relative addresses of the control-flow properties in the audit log. 

4.7.4 Dynamically linked libraries 

For a statically linked application, addresses of the libc wrappers around system 

calls is fixed at compile/link time. However for dynamically linked applications, the 
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program counter values of system calls (and hence the callsite values of the system 

calls) will vary from one system to the other. This makes it difficult to use the 

program counter values of system call invocations during the training phase directly 

in our causal models. To overcome this challenge, we use the program counter value of 

the call instruction into the .plt (procedure linkage table) section [95] of the binary 

as a proxy for the program counter value of the actual system call. This makes our 

causal models independent of dynamically linked libraries. 

4.7.5 Control-flow modification and code-injection attacks 

Our approach works very well when the control-flow of the program is consistent 

between the training phase and the deployment. However when a program is subject 

to attacks that modify its control-flow (e.g., buffer overflows, format string attacks) 

it will exhibit control-flow that is not captured in the causal model. This results in 

false-negatives. One way to mitigate this limitation is to fall back to a “happened

before” model of causality – we conservatively assume that all previously executed 

system calls were causes. Alternatively, we could fall-back to a Backtracker [35] or 

the static slicing model. 

4.7.6 Unknown applications 

Our approach relies on the availability of the application binary a-priori. False-

negatives result when faced with a binary for which a causal model is not available. 

This situation could arise when an attacker downloads malware after gaining privi

leged access to a system. Similar to control-flow modification attacks, we propose to 

fall-back to either a “happened-before” model of causality or a Backtracker or static 

slicing model. An interesting avenue of research is to develop causal models that are 

resilient to obfuscation and slight variation in the control-flow. Obfuscation resilient 
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models could be built based on known variants of malware and those models could 

be used to detect causality in any future variation of the malware. 

4.7.7 Causality through data-flow 

In our experimental evaluation, we noticed that most of the false-positives of our 

causal models arose while predicting causality that is at least partially enabled through 

the data-flow of a program. The example of ls discussion in Section 3.5 illustrates 

this issue. This is an inherent limitation to any approach that considers only the 

control-flow of a program. Extending our causal models to selectively track data flow 

to obtain clues about causality is another interesting opportunity for future research. 

4.7.8 Improving false negative rate 

False-negatives occur in our approach when a control-flow property is encountered 

during deployment that was not encountered during the training phase. The rate of 

false-negatives depends on the completeness of our training test cases. One way to 

improve the coverage of the test cases is to leverage the testcases used for testing an 

application during its development lifecycle. Software vendors could release their test 

cases (or better the causal models themselves) along with the software. Another way 

to improve the coverage of the testcases is to continuously sample a stream of real 

world inputs similar to the cooperative bug isolation technique proposed by Liblit [96]. 

4.7.9 Causality modeling 

All the existing approaches for causality determination take a “binary” approach to 

causality. Either a system call is a cause or not. There is no notion of how “strong” 

the impact of a cause is on an effect. This limitation arises from using program 

dependence as a proxy for causality. Using program dependences does not capture 
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all the dimensions of causality. While it captures the notion of a “necessary” cause, 

it ignores the aspect of the “sufficiency” of a cause [3, 4]. 

Sufficiency. How sufficient is a cause for the production of an effect? It is a measure 

of the ability of a cause to produce an effect in situations where the effect is actually 

absent. The measure of sufficiency is important especially in cases where there are 

multiple events that are equally necessary to produce an effect. Consider an exam

ple where an intruder exploited the crackaddr vulnerability [2] present in sendmail 

resulting in a root shell being spawned. The crackaddr vulnerability can be success

fully exploited only in a few operating systems e.g., Slackware 8.0 [2]. Traditional 

causation would identify many causes: the attacker actually launching the attack, the 

presence of crackaddr vulnerability and the presence of Slackware 8.0. It  does  not  

discriminate or rank the causes. In some cases, it is reasonable that the spawning of 

the root shell is more attributable to the actions of the attacker than say the presence 

of Slackware 8.0. Sufficient causation helps capture precisely this notion. It helps in 

ranking the necessary causes, if more than one were responsible for a particular effect. 

Other researches have explored using alternate notions of causality such as channel 

capacity to quantitatively measure causality. Studying ways to quantify causality and 

developing new techniques to practically quantify the same is an important area of 

future research. 

4.8 Conclusion 

Past approaches for determining causality have either had high fidelity or low over

head, but seldom both. We propose a practical approach for tracking causality that 

has both the properties. Our approach has a very low rate of false-positives (4.45%) 

and false-negatives (4.93%). And it is suitable for practical deployment as it has a 

very low CPU overhead (4.66%). We believe that our approach is an attractive ad

dition to the toolkit of causality determination mechanisms employed by intrustion 

analysis and forensics systems. 
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5 CONCLUSIONS AND FUTURE WORK 

This dissertation builds evidence to support the thesis that it is possible to practically 

and automatically determine causal relationships between system calls in software ex

ecution traces. This chapter summarizes our conclusions, contributions and provides 

directions for future work. 

5.1 Conclusions and contributions 

This dissertation makes the following contributions: 

•	 We empirically study the effectiveness of existing approaches for causality de

termination in event reconstruction systems. As part of this study: 

–	 We develop a systematic approach for evaluating the effectiveness of causal

ity determination techniques. 

–	 We develop a suite of real world applications and testcases for benchmark

ing the effectiveness of causality determination. The suite allows us to 

identify the source of inaccuracy and performance overhead of the various 

causality determination techniques that we study. 

–	 Using our approach, we provide experimental data quantifying the accu

racy and the overhead (time, space, memory) of each technique. 

–	 We conclude that generalized DTA, while being the most accurate tech

nique to determine causal relationships, suffers from a high CPU overhead 

and is impractical to be deployed widely. 
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–	 We conclude that the rate of false positives is very high for all the tech

niques (BackTracker and static slicing) that we evaluate, sometimes as 

high as 96%. This could have legal ramifications (Trojan Horse Defense) 

and highlights the need for more accurate techniques. 

–	 We analyze the experimental data and shed light on the conditions that 

lead to the inaccuracies and the overhead of the techniques we evaluate. 

For example, we found that BackTracker and the static slicing techniques 

do not work well in applications that exhibit recursive and iterative work

flow characteristics. 

•	 Based on the insights that we gain from our empirical study, we describe a new 

approach to causality determination: 

–	 Our approach involves developing a “causality prediction model” to deter

mine causal relationships based on observations of control-flow of a pro

gram. Our approaches provides efficient and accurate causality determi

nation when the following conditions are met: (1) The program was not 

subject to control-flow modification or code-injection attacks and (2) The 

executable code of the program is available apriori. 

–	 Experimental evaluation of our new approach shows that the causality de

termination through control-flow monitoring has a low false-positive rate 

(4.5%), a low false-negative rate (4.93%) and a low runtime overhead 

(4.66%). 

•	 Finally, we analyze the experimental data from our evaluation and provide in

sights on improving the accuracy of causality determination even more. Specifi

cally we note how recursive workloads of programs limits the accuracy of purely 

control-flow based causal models. 
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5.2 Future work 

There are several interesting dimensions in which our work can be extended: 

5.2.1 Increasing coverage 

Additional intrusion analysis systems 

An empirical study of causality determination techniques has to periodically updated 

as newer techniques are proposed and deployed. For example, virtual machine in

trospection is a promising new technique for logging event information (Krishnan et 

al. [46]). While we can qualitatively argue that this approach is more precise than 

BackTracker but less precise than dynamic slicing, it would be helpful to have the 

actual metrics and performance overhead. 

Additional operating systems 

One of the goals of our empirical study of causality determination schemes and our 

causal models is to provide reliability metrics for the intrusion analysis and digital 

forensics community. Our study was done in Linux with a benchmark consisting of 

applications used in Unix-like operating systems. However, intrusion analysts and 

digital investigators have to deal with a heterogeneous set of operating systems in 

addition to Unix-like systems (e.g., Windows and its many flavors, OS X). With 

the advent of smart phones, the landscape of operating systems has become even 

more diverse (iOS, WebOS, Android etc.,). Extending our empirical study to provide 

reliability metrics on causality determination techniques in other operating systems 

is an important and interesting challenge. 

The first challenge is to survey the set of event reconstruction systems used in those 

operating environments and the causality determination techniques employed by those 
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systems. Second, we need to customize our benchmarking suite for each operating 

system by adding applications typically used in that operating system. Finally, we 

need to evaluate the effectiveness of the existing causality determination techniques 

to obtain the reliability metrics. 

5.2.2 Improving causality determination accuracy 

As we discussed in chapters 3 and 4, both existing and our newly proposed causality 

determination techniques struggle in the face of “recursive” workloads. Our current 

models do not sufficiently model the program semantics in the face of recursive work

loads. 

One potential way to improve the accuracy of our models is to observe additional 

control-flow. Consider the source code listed in Figure 4.5 from Chapter 4. The if 

condition in line 18 provides a clue as to if the readdir() call in line 16 is involved 

in a recursive causal relationship. If the if branch is taken, then readdir() will be 

involved in a recursive relationship, otherwise not. Identifying additional control-flow 

properties that can be observed to increase accuracy, but without impacting runtime 

performance is an interesting avenue for research. 

Another potential way to improve model accuracy is to observe data-flow of the 

program. Observing data-flow increases both the runtime overhead and the size of the 

audit logs. Care must to taken to identify the subset of data-flow that increases model 

accuracy but does not impact runtime overhead and audit log size. Automatically 

identifying such a subset is an interesting research problem. 

5.2.3 Alternate notions of causality 

As previously mentioned in Chapter 4, program dependences are not an exact measure 

of causality. While program dependences capture the aspect of necessary causes, they 

fail to inform how sufficient the causes are. A richer notion of causality is needed 
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to capture the sufficiency of a cause. Channel capacity has been proposed as an 

interesting alternative to quantify the influence a cause has over an effect in program 

execution traces [90]. Exploring such alternate measures of causality and developing 

practical techniques for their measurement is a future opportunity for research. 
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