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Abstract—Computing systems continue to be plagued by ma­
licious corruption of instructions and data. Buffer overflows, in 
particular, are often employed to disrupt the control flow of 
vulnerable processes. Existing methods of protection against these 
attacks operate by detecting corruption after it has taken place or 
by ensuring that if corruption has taken place, it cannot be used 
to hijack a process’ control flow. These methods thus still allow 
the corruption of control data to occur but rather than being 
subverted, the process may terminate or take some other defined 
error. Few methods have attempted to prevent the corruption of 
control data, and those that have only focused on preventing the 
corruption of the return address. 

We propose the use of multiple memory segments to support 
multiple stacks, heaps, .bss, and .data sections per process 
with the goal of segregating control and non-control data. By 
segregating these different forms of data, we can prevent the 
corruption of control data by overflow and address manipulation 
of memory allocated for non-control data. We show that the 
creation of these additional data segments per process can be 
implemented through modifications to the compiler. 

Index Terms—buffer overflow, memory segregation, memory 
segmentation, memory protection, multiple stacks, multiple heaps 

I. INTRODUCTION 

A single process’ memory contains several forms of data, 
non-control data as well as multiple variants of control data, 
which are used for differing aspects of that process’ operations. 
Despite this, typical systems use a memory organization 
consisting of only a single unified stack, single heap, a .bss 
section, and .data section per process for storing this data. 
This data is typically in contiguous memory within one or 
two memory segments where an error in the processing of 
access to one form of data can access not only that form 
but access and corrupt several others forms of data as well. 
Since the widespread exposure of the overflow attack in the 
Morris Worm [1] in 1987, this technique has been exploited 
by various forms of malware and tools as attackers have used 
write-what-where conditions [2] to launch buffer overflow [3] 
attacks to exploit errors in the processing of data. By exploiting 
these conditions, attackers are able to not only corrupt poorly 
processed non-control data but multiple forms of control data 
as well, such as return addresses, saved frame pointers, and 
program-defined pointers. This allows attackers to hijack the 
control flow of a process by injecting and executing their 
own code or calling preexisting functions not included in the 
original procedures of vulnerable processes as with return-to­

libc [4] and return-to-GOT [5] attacks. In addition, as these 
attacks are allowed to corrupt control data, they are able to 
disrupt the control flow of processes, causing those processes 
to crash from a segmentation fault or other error related to 
corrupted control data, thus making buffer overflow attacks 
an effective method for performing denial-of-service (DoS) 
attacks. As studies have shown [6], the use of buffer overflow 
attacks continues to be a major threat as several exploitable 
overflow vulnerabilities continue to occupy the list of most 
dangerous software errors. 

By placing different forms of data in their own stacks, 
heaps, .bss sections, and .data sections residing on separate 
memory segments, it is possible to prevent accesses to one 
form of data from accessing another form of data — a memory 
access to one memory segment cannot access the memory of 
a separate non-overlapping memory segment. This prevents 
buffer overflows and manipulation of memory items allocated 
to non-control data from corrupting control data. As a result, 
this removes the threat of a large class of control flow hijacking 
and DoS attacks. We propose modifications to the compiler 
to allocate additional non-overlapping memory segments per 
process to support the use of multiple stacks, heaps, .bss 
sections, and .data sections per process that will be used 
to segregate control and non-control data in these memory 
segments to accomplish this goal. 

II. RELATED WORK AND MOTIVATION 

We are concerned not only with the use of buffer overflows 
and memory manipulation to perform control flow hijacking 
attacks but also in their use to perform DoS attacks. Multiple 
methods exist that attempt to mitigate the buffer overflow 
problem, but they primarily focus on control flow hijacking 
attacks. 

Some architectural and operating system approaches [7,8,9] 
attempt to prevent the execution of code injected during an 
overflow by designating pages of memory as non-executable. 
While these have been effective against attacks dependent on 
injecting code to memory located in non-executable pages, 
such as the stack, heap, .bss section, and .data section, these 
methods require the enforcement of specific rules for program 
layout with regards to separating code and data and are 
unable to protect memory pages containing both code and 
data. Additionally, these approaches do nothing to prevent 
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the corruption of control data by buffer overflows. This has 
not only enabled attackers to still circumvent these methods 
[4,10] and failed to prevent buffer overflows from performing 
DoS attacks but causes successful mitigations of control flow 
hijacking attacks to result in the corrupted process crashing 
from attempts to execute memory on non-executable pages 
— transforming mitigated control hijacking attacks into DoS 
attacks. 

Other compiler-based methods [16,17,18] are designed to 
protect control data such as program-defined pointers and the 
return address by detecting when they have been corrupted 
so these protections can then terminate the corrupted process, 
thus preventing the hijacking of the control flow of the process. 
These methods do not actually protect the data itself but rather 
protect the process control flow from being hijacked by noting 
changes to one or more data values. As such, these methods 
can not only be circumvented [20,21,22], but they do nothing 
to prevent the corruption of control data, thereby failing to 
prevent overflows from causing DoS attacks. 

Ryan Riley et al [23] proposed an operating system level 
change to the translation lookaside buffers to create a split 
memory that separates code and data into different memory 
spaces. Using this method, even though an attacker can use 
a buffer overflow to inject code into memory, the system 
will never use that same memory when fetching instructions 
for execution. However, similar to the previously mentioned 
methods and noted by those authors, this method does not 
prevent the corruption of control data and when successful at 
stopping an attack it results in the crash of the process, thus 
leading to a DoS. 

Address Space Layout Randomization (ASLR) [15] is an­
other method at the operating system level that combats buffer 
overflow attacks by randomizing the positions of key areas 
of the process’ memory, such as the stack, the heap, and 
libraries. By randomizing these positions, buffer overflow 
attacks attempting to perform control flow hijacking via return­
to-libc [4], return-to-GOT [5], and other return-to type attacks 
are made increasingly difficult to succeed as attackers must 
guess the locations of all the memory required by their attacks. 
Often such attacks will guess incorrectly for at least one such 
position, causing the program to attempt an illegal access of 
memory that forces the process to crash. However, any control 
data on the stack remains easily accessible by buffer overflows 
on the stack as does any control data on the heap by buffer 
overflows on the heap. Thus, as with the previously mentioned 
methods, ASLR fails to prevent the corruption of control data 
as well and as such fails to prevent the use of buffer overflows 
as methods of performing DoS attacks, and, it, too, transforms 
successfully mitigated control flow hijacking attacks into DoS 
attacks. 

Another compiler-based method, SSP [19], implements 
the same class of protections as the previously mentioned 
compiler-based methods, but adds an extra layer of protection 
in that it rearranges program-defined pointers on the stack 
so that they reside at lower addresses in memory than local 
variable buffers thereby preventing the overflow of those 

buffers from directly corrupting the program-defined pointers. 
Unfortunately, this extra layer cannot be used to rearrange 
control data such as the return address, saved frame pointer, 
program-defined pointers on the heap or program-defined 
pointers located inside of objects or structs. As such, SSP must 
resort to the same tactics as the previously discussed compiler-
based methods for protecting these instances of control data; 
detecting when they have been corrupted and terminating 
the process. Thus, SSP can be circumvented similarly to the 
other compiler-based methods [20,22] and fails to prevent the 
corruption of the previously mentioned control data, making 
it ineffective in preventing buffer overflow based DoS attacks 
that target these forms of control data and transforming 
control-hijacking attacks into DoS attacks if they corrupt these 
forms of control data. 

Some literature exists on methods [26,27] using a theme 
similar to our own, namely the use of multiple stacks per 
process. However, both these sets of research only focus on 
the use of one additional stack and the use of that stack in 
only protecting the return address from corruption. While these 
methods illustrate the security gained by segregating this one 
piece of control data from non-control data, they neglect to 
discuss means by which other control data such as stack frame 
pointers and program-defined pointers may be secured despite 
the abundance of literature illustrating the instances of corrupt­
ing these forms of control data by attackers [12,14,24]. Thus, 
while these methods provide protection against the corruption 
of the return address, any buffer overflow attacks targeting the 
saved stack frame pointer, program-defined pointers, or other 
forms of control data can still successfully perform control 
flow hijacking and DoS attacks. 

It is this pervasive lack of capability amongst existing meth­
ods to comprehensively prevent the corruption of control data 
by buffer overflows and the resulting failure of those methods 
to prevent the use of buffer overflows for DoS attacks that 
provides the motivation for our work. Note that our compiler 
approach is orthogonal to the previously mentioned methods 
that rely on the detection of the corruption of control data 
or rendering that corruption non-threatening as our approach 
takes measures to prevent the actual corruption of control data. 
Our approach is also distinct from those previously mentioned 
methods that attempt to prevent corruption in that we provide a 
comprehensive method to protect all control data on the stack 
or heap rather than only the return address or only program-
defined pointers on the stack. 

III. IMPLEMENTING SEGREGATED MEMORY 

Buffer overflows are able to corrupt control data through 
the exploitation of the improper processing of non-control 
data buffers. As modern systems provide processes with a 
single unified stack, heap, .bss section, and .data section per 
process for data, they force processes to place control data in 
memory locations contiguous to those of non-control data and 
accessible by the same memory accesses intended to access 
only non-control data. This enables an exploit of an instruction 
intended to access non-control data to access control data as 
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well, often resulting in the corruption of that control data. 
For this reason, we believe this problem can be mitigated 
by segregating control data and non-control data into separate 
typed sections in their own memory segments that will place 
them in non-contiguous memory locations. As the number 
of memory segments, stacks, heaps, .bss sections, and .data 
sections used by a program’s processes can be altered during 
compilation to be supported by the OS during runtime, we 
propose this be implemented at the compiler level. 

A. Using Memory Segmentation 

As an example, consider the Intel architecture. It allows 
systems to support thousands of memory segments available 
both globally and locally amongst their processes [9]. Despite 
this, modern operating systems use few such segments, with 
Linux using only six types of memory segments: kernel code, 
kernel data, user code, user data, task-state, and default local 
descriptor table [11]. The use of a memory segment requires 
its segment descriptor be loaded into one of six available 
segment registers (which allow segment descriptors to be 
swapped in and out) and that instructions accessing memory 
allocated to that segment use the segment selector as part 
of their logical address — a requirement already imposed 
under the unified stack, heap, .bss section, and .data section 
implementation, as memory segmentation is still being used 
(only to a lesser extent). As segment descriptors are typically 
created by compilers, linkers, loaders, or the operating system, 
but not application programs [9] and segment selectors are 
visible to an application program as part of a pointer variable 
but the values of selectors are usually assigned or modified by 
link editors or linking loaders, not application programs [9], 
we believe the compiler could be modified to create additional 
memory segments used by a program’s processes in a manner 
transparent to that program and its process(es.) We could then 
use these additional segments to support the additional stacks, 
heaps, .bss, and .data we desire. Each segment’s characteristics 
and permissions are designated in the segment descriptors cre­
ated by the compiler and thus can be used to further customize 
each segment for our needs, including growth direction and 
restricting the bounds on memory accesses to each memory 
segment preventing overflows from one segment into another. 
Additionally, as memory segments are resizable, processes are 
not forced to waste memory for the sake of data segregation. 

B. Memory Segment Usage 

As illustrated in Figure 1, the compiler needs only to 
create and modify code to support five new memory segments 
in addition to the two original memory segments for data 
usually found in unified implementations. This provides us 
with a sufficient number of memory segments to support 
the four stacks, three heaps, three .bss sections, and three 
.data sections we desire for our proposed implementation of 
memory segregation. 

The first new memory segment, the control stack segment, 
contains only a stack for pushing and popping control data 
related to the call stack, such as return addresses, saved frame 

pointers, saved stack pointers, saved segment selectors, saved 
values for EFLAGS, and longjmp buffers, along with any other 
related registers. These values and a process’ use of them 
remain largely the same as these values are still pushed and 
popped to and from a stack in response to CALL, RET, and 
longjmp type instructions as well as for interrupt and error 
handling. The only differences that exist for this stack are the 
use of multiple stack pointers and stack frame pointers which 
will need to be pushed and popped to and from this stack in 
support of the process’ use of the multiple stacks. 

The second new memory segment, the pointer stack seg­
ment, contains only a stack containing program-defined point­
ers. Again, this stack is used in the same manner as the unified 
stack in traditional systems to push and pop data values to and 
from as they are needed. However, continuing in the idea of 
memory segregation, this stack is used only for pushing and 
popping pointer values. Closely related to this is the third new 
memory segment, the pointer data segment which contains a 
heap, .bss section, and .data section. These, similar to their 
counterparts in modern unified implementations, store static, 
global, and heap allocated data, but, as this is the pointer data 
segment, it only does so for pointers that are meant to be 
allocated statically, globally, or in a heap. 

The fourth and fifth new memory segments, the anonymous 
stack segment and anonymous data segment, operate similarly 
to the pointer stack segment and pointer data segment respec­
tively. However, the existence of these two memory segments 
is only an exercise in completeness. As previously mentioned, 
the allocation of data to the various data segments depends 
upon parsing by the compiler. In the event that the compiler 
is unable to decipher from its parse whether a given memory 
allocation is for call stack, pointer, or non-control data, which 
will be discussed more in later sections, such allocations are 
made either to the anonymous stack segment or the anonymous 
data segment, depending on whether the allocation was to a 
stack, heap, .bss., or .data section. 

With the five new data segments handling their respective 
segregated forms of data, we are left with the two memory 
data segments used for data in unified implementations. Given 
the forms of data handled by the previously mentioned five 
segments, these two segments are left handling the remaining 
form of data, the non-control data. As such, we will refer 
to these two data segments hereafter as the non-control stack 
segment and non-control data segment. Similar to the behavior 
of the newly created stacks and their unified stack counterparts, 
these memory segments are used to store non-control data 
intended for the stack, heap, .bss, or .data section respectively 
with the non-control stack segment handling the former one 
and the non-control data segment handling the latter three. 

C. Handling Multiple Stacks 

As previously touched upon in the discussion on the control 
stack segment, each of these stacks we propose requires its 
own stack pointer and stack frame pointer as the process 
must be capable of tracking the top of each stack as well 
as have a reference point within each stack from which to 
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Fig. 1. Segregated Memory Segments 

access memory relatively. That is, when pushing, popping, 
or generally accessing data from a stack, the process must 
ensure it uses the stack pointer and/or stack frame pointer for 
that stack. This requirement of four stack pointers and four 
stack frame pointers largely differs from the requirement of 
a single stack pointer and stacker frame pointer in modern 
systems, placing additional demands on hardware, and, as 
such, warrants additional discussion. 

While current Intel architectures only support a single 
dedicated register for the stack pointer (ESP) and stack frame 
pointer (EBP), this does not prevent us from using four stack 
pointers and stack frame pointers per process as processes are 
allowed to load and store the values of the ESP and EBP 
registers at will. Thus, the multiple stack pointers and stack 
frame pointers required by our proposed implementation can 
be pushed and popped to and from the control stack segment 
as part of instructions added by the compiler to swap these 
pointers in and out of the ESP and EBP registers as they are 
needed. Other general-purpose registers can be used as well 
to support the use of our multiple stack pointers and stack 
frame pointers. However, this lack of custom hardware support 
and additional demands on general-purpose registers does 
suggest an overhead for this implementation under current 
Intel architectures. We do, however, believe that, as each stack 
may not be in use by each function of a process, it may be 
possible to reduce this overhead by restricting the need to 
handle these additional stack pointers and stack frame pointers 
to only those functions of the process that use those particular 
stacks. That is, the prologue and epilogue of each function 
would be customized to only handle the stacks used by that 
function. 

D. Handling Multiple Heaps 

The handling of multiple heaps is a simpler task than 
that of handling multiple stacks. Multiple operating systems 
such as Microsoft Windows [28], IBM’s AIX [29], and 
Linux [30] support memory allocators that use multiple heaps. 

While these allocators were initially supported to remove the 
bottleneck of heap memory allocation from multi-threaded 
programs, their implementations do not restrict the use of 
multiple heaps to the use of multiple threads. As such, they can 
be leveraged by the compiler to support the multiple heaps per 
process required by our implementation whereby the compiler 
uses their operating system’s respective multi-heap allocator 
by default and replaces instructions in code to mono-heap 
memory allocator functions with their multi-heap counterparts. 

E. Handling Complex Objects (or Structs) 

Complex objects (or structs), are by definition, those which 
contain both pointers and primitive datatypes (non-control 
data). The use of such complex objects would appear to 
be counterintuitive, if not impossible, under the proposed 
segregated memory segments as the object would require 
the pointers and non-control data be stored in contiguous 
memory locations within the same memory segment, but that 
is in direct conflict with the segregated memory segments that 
require they be stored in separate memory segments. However, 
as illustrated in Figure 2, there is a simple answer to this 
predicament. As the goal of the complex object is to retain the 
relationships amongst its pointers and primitive datatypes, the 
primitive datatypes can be replaced with pointers referencing 
primitive datatypes. This retains the relationships between 
the complex object’s pointers and primitive datatypes while 
ensuring the object is now completely composed of pointers 
and can thus be allocated to the pointer stack segment or 
pointer data segment while its primitive datatypes are likewise 
allocated to the non-control stack segment or non-control data 
segment. 

Unfortunately, this is not the end of the complications. As 
illustrated in Figure 3, in the case of object inheritance or other 
forms of overloading, there may exist a complex object that 
is a child of a non-complex object. This presents a problem 
as, if we only replaced the primitive datatypes in the memory 
representation of the complex child object, but do not do the 
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class NonComplex {
int val;
// …

};

class Complex : public NonComplex {
char * ptr;
// …

};

Fig. 3. Inheritance with complex child object and non-complex parent object 
in C++ 

same for the non-complex parent object, then, when given a 
pointer to a parent object, we may be referencing either a non-
complex parent object or a complex child object. Hence, we 
would be forced to distinguish between the two as indirection 
is required to access the primitive datatypes of the complex 
child object but not for the non-complex parent object. The 
simple solution to handle such cases if for the compiler to 
replace all primitive datatypes of non-complex objects that 
are inherited by complex objects in the same manner in which 
those complex objects’ primitive datatypes are replaced. This 
allows indirection to be used whether in reference to the 
values of the complex object or its non-complex parent object 
without the need to know which is being accessed. While this 
provides some additional complexity, requiring identification 
of complex objects and tracing of their inheritances, it handles 
the issue during compilation and avoids the challenge of 
distinguishing between objects in memory during run-time. 

The last complication brought about by this modification 
of objects in memory is the use of complex objects from 
shared libraries. As these libraries, by definition, can be shared 
amongst multiple processes, the sharing of such a library 
containing complex objects could prove disastrous if shared 
by a process employing the unified approach and a process 
employing our proposed memory segregation approach as each 
process would expect different forms in memory of the shared 
complex objects. Fortunately, this too is a trivial matter. Just as 
modern 64-bit systems contain both 32-bit and 64-bit versions 
of various shared libraries in order to support the needs of 
their various processes, so too can systems contain unified 
and memory-segregated versions of their shared libraries that 
contain complex objects. 

F. Parsing for Segregation 

The task of the compiler to parse code to decipher where 
to allocate memory for data is already partially handled as 
modern compilers already parse code to decipher whether 
memory for a given piece of data should be allocated to 
a stack, heap, .bss section, or .data section. Thus, the only 
additional functionality required is that of identifying between 
non-control data, pointers, and control data related to the call 
stack so that memory for such forms of data is allocated not 
only to the correct data structure but to the correct memory 
segment as well. Identifying control data for the call stack is 
arguably the simplest of the three as their use is tightly coupled 
with the use of CALL, RET, and longjmp instructions as 
well as those instructions for interrupt and error handling. We 
believe distinguishing between program-defined pointers and 
non-control data is an equally trivial task in most instances, 
particularly with C-like programming languages in which 
pointers are designated in the language by one or more opera­
tors (e.g., *). Even with the use of memory allocation functions 
such as malloc and realloc, the task should not be overly 
complex as the use of these functions is often accompanied 
by an assignment to a typed value or a cast to a typed value. 
However, it must be noted that the use of void pointers without 
casts to typed values does increase the complexity, potentially 
resulting in forcing the compiler to allocate the data on the 
anonymous stack segment or anonymous data segment. We 
suspect that given sufficient static analysis capabilities, the 
compiler could yield a known type for these pointers, but that 
is a topic for future investigation. 

IV. COMBATING MEMORY CORRUPTION 

To illustrate the merits of our proposed method of memory 
segmentation, we discuss its effects on the types of attacks 
used by the buffer overflow benchmark originally put forth 
by Wilander et al [20]. This benchmark uses two separate 
techniques, two separate buffer locations, and four attack 
targets, with two such targets existing in two forms, to create 
a total of 20 unique attacks. The two separate techniques used 
are to either overflow the buffer all the way to the attack 
target or overflow the buffer to redirect a pointer to the 
target. The two locations describe the positions in memory 
of the buffer that will be overflowed; either on the stack 
or the heap/BSS/data segment. The four targets used are the 
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return address, the saved frame pointer, function pointers, and 
longjmp buffers, with the longjmp buffers as either variables 
or function parameters. 

As the buffers used in this benchmark are memory allocated 
to contain primitive datatypes, which are non-control data, 
under our proposed implementation the buffer in each attack 
would be allocated to the non-control stack segment or non-
control data segment. Furthermore, as the targets are return ad­
dresses, saved frame pointers, function pointers, and longjmp 
buffers, under our proposed implementation, the target in each 
attack would be allocated to the control stack segment, pointer 
stack segment, or pointer data segment. Similarly, for the 
attacks in which the technique is to overflow the buffer to 
redirect a point to the target, any such pointer would be 
allocated to the pointer stack segment or pointer data segment. 
Thus, as is illustrated in Figure 4, the attacks employed by this 
benchmark would be blocked by our proposed memory seg­
mentation as the buffer overflows occur in memory segments 
separate from those of their attack targets and any pointers they 
could use to reference those attack targets, preventing them 
from accessing those targets or pointers with the overflows of 
their buffers in the non-control stack segment and non-control 
data segment. 

We believe this provides an accurate assessment of the 
impact of our proposed implementation on buffer overflow 
attacks on production systems as memory buffers are most 
often allocated to contain primitive datatypes; the use of a 
buffer allocated for program-defined pointers, return addresses, 
saved frame pointers or other control data is unusual (if 
not nonexistant) in production systems. It should be further 
emphasized that not only would our proposed memory seg­
mentation mitigate these attacks, but they would prevent the 
corruption of control data by these attacks — restricting all 
corruption to non-control data. Thus, with no control data 

corrupted, it is more likely for an attacked process to continue 
functioning instead of resulting in a crash and fresh restart. 
Thus, given adequate functionality to handle the level of 
corruption of non-control data, the process could proceed as 
if merely given invalid inputs. It could even detect and alarm 
on the attempt to corrupt its control flow! 

V. LIMITATIONS 

For the sake of completeness, we will discuss the limita­
tions of our proposed method of memory segmentation. First, 
self-modifying code contains instructions in which memory 
allocated to non-control data is written directly to memory 
containing instructions, control stack data, and/or pointers; 
such code blurs the lines between control and non-control data 
and as such our method would be ill-suited for protecting 
such code. Second, while our method prevents the direct 
corruption of control data, such as pointers, by non-control 
data overflows, it does not prevent the corruption of non-
control data used as offsets of pointers used for indirection. 
As such, it may be possible for an attacker to corrupt such 
an offset to corrupt an address resulting from the calculation 
of the pointer and corrupt offset. Furthermore, as the current 
memory segmentation technology on some architectures relies 
on logical addresses provided from memory to select which 
memory segment to use for memory accesses, an attack 
could result in an alteration that would result in use of an 
unexpected memory segment, thus potentially changing a write 
intended for non-control data to instead write to control data. 
Fortunately, address space layout randomization [15] could be 
combined with our proposed memory segregation to aid in 
preventing this type of attack, although it would likely cause 
such an attack to result in a segmentation fault, forcing the 
process to crash. Third, as our method makes no claims as 
to the protection of non-control data, it is unable to protect 
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against non-control data attacks [13]. Fourth, our method is 
largely dependent on the success of the compiler in parsing 
from code the forms of data used to allocate them to the correct 
memory segments. As the inability to decipher the form of 
a particular instance of data when allocating memory for it 
results in its allocation to either the anonymous stack segment 
or anonymous data segment, if such was to happen to both an 
instance of control data and an exploitable non-control data 
buffer such that the buffer appeared in lower memory than the 
control data, as illustrated in Figure 5, then that buffer could be 
overflowed to corrupt that control data. However, given a small 
enough number of anonymous instances of data, this could 
be prevented by allocated each instance to its own memory 
segment instead of using the anonymous stack segment and 
anonymous data segment. Last of all, our method outlined here 
is, at least in this form, dependent on a particular hardware 
and software platform combination. 

VI. FUTURE WORK 

The most logical place for future work is the completion 
of a working prototype. As previously discussed, this involves 
adjustments to the compiler. In addition, as was previously 
mentioned in our limitations, the corruption of an offset could 
potentially affect the selection of the memory segment used 
for a given memory access as this selection is dependent on 
the logical address supplied. To remedy this situation, it may 
be possible to handle the selection of memory segments in an­
other manner, possibly, with hardware support, using only the 
currently executing instruction. Lastly, our proposed method 
for memory segregation shows potential for mitigating buffer 
overflows by restricting what they can corrupt and potentially 
mitigates these attacks without requiring the corrupted process 
to terminate. As such, additional research is warranted in other 
methods that may be combined with ours to further reduce 
the corruption possible from buffer overflows to not only 
control data but non-control data as well. We believe that by 
reducing the corruption possible from a buffer overflow we can 
increase the probability of a process successfully recovering 
from buffer overflow attacks, thus mitigating the use of buffer 
overflows for DoS attacks. 

VII. CONCLUSION 

In this paper we presented a concept for not only preventing 
control hijacking via buffer overflow attacks but for preventing 
the actual corruption of control data targeted by buffer over­
flows. We discussed making modifications to the compiler, so 
that processes could be recompiled to use multiple additional 
memory segments used to allocate memory to multiple segre­
gated stacks, heaps, .bss sections, and .data sections, thereby 
enabling the segregation of control and non-control data in 
memory. Using an existing buffer overflow benchmark, we 
illustrated that the use of memory segregation would be an 
effective method for preventing the corruption of control data 
and thus in preventing the control flow hijacking and DoS 
attacks from buffer overflows. Finally, we have shown that it 
is possible to mitigate buffer overflow attacks by limiting what 
can be corrupted by a buffer overflow. 
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