
CERIAS Tech Report 2011-22
Intrusion Detection Correlation in Computer Network Using Multi-Agent System

 by Ayman Elsayed Elsayed Taha
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

Ain Shams University

Faculty of Engineering

Computer and Systems Engineering Department

Intrusion Detection Correlation in Computer

Network Using Multi-Agent System

A Dissertation

Submitted in Partial Fulfillment of the Requirements of the

Degree of Doctor of Philosophy in Electrical Engineering

Computer and Systems Engineering Department

Submitted by

Ayman Elsayed Elsayed Taha

M. Sc., Electrical Engineering
(Computer and Systems Engineering)

Ain Shams University, 2002

Supervised by

Prof. Dr. Hani M. K. Mahdi

Prof. Dr. Ismail Abdel Ghafar Farag

Assoc. Prof. Dr. Ayman Mohamed Bahaa

Cairo, Egypt

July, 2011

Abstract

Ayman Elsayed Elsayed Taha

Intrusion Detection Correlation in Computer Network

Using Multi-Agent System

Doctor of Philosophy Dissertation

Ain Shams University, 2011

Alert and event correlation is a process in which the alerts produced by
one or more intrusion detection systems and events generated from
different systems and security tools are analyzed and correlated to provide
a more succinct and high-level view of occurring or attempted intrusions.
Current correlation techniques improve the intrusion detection results and
reduce the huge number of alerts in a summarized report, but still have
some limitations such as a high false detection rate; missing alerts in a
multi-step attack correlation; alert verifications are still limited; Zero Day
attacks still have low rates of detection; Low and Slow attacks and
Advanced Persistent Threats (APTs) cannot be detected; and some attacks
have evasion techniques against IDSs. Finally, current correlation systems
do not enable the integration of correlations from multiple information
sources and are limited to only operate in IDS alerts. Agents and multi-
agent systems have been widely used in IDSs because of their advantages.

The thesis purpose is to prove the possibility of improving both IDS
Accuracy and IDS Completeness through reducing either False Positive
or False Negative alerts using correlation between different available
information sources in the system and network environment. The
dissertation presents a modular framework for a Distributed Agent
Correlation Model (DACM) for intrusion detection alerts and events in
computer networks. The framework supports the integration of multiple
correlation techniques and enables easy implementation of new
components.

i

The framework introduces a multi-agent distributed model in
a hierarchical organization; correlates alerts from the IDS with attack
signatures from information security tools and either system or
application log files as other sources of information. Correlation between
multiple sources of information reduces both false negative and false
positive alerts, enhancing intrusion detection accuracy and completeness.
Each local agent aggregates/correlates events from its source according to
a specific pattern matching. The integration of these correlation agents
together forms a complete integrated correlation system.

The model has been implemented and tested using a set of datasets.
Agent’s proposed models and algorithms have been implemented,
analyzed, and evaluated to measure detection and correlation rates and
reduction of false positive and false negative alerts.

In conclusion, DACM enhances both the accuracy and completeness of
intrusion detection. DACM is flexible, upgradable, and platform
independent. It decreases the audit load and the time cost required to
obtain effective situational understanding; increases the coverage of the
attack space and forensics; and improves the ability to distinguish the
serious attack from the less important ones or identify the kind of needed
reaction. DACM can also be used to enhance the early detection
capability of APT. Finally, DACM can be used as a real time system with
minor modifications. We think that this is a promising approach
successfully combining correlation techniques with agent technology in
intrusion detection systems in order to provide higher security for
computer networks and internet services.

Keywords:

Intrusion Detection, Alert Correlation, Multi-Agent Systems, Learning
Agent, Reduction Rate

ii

Acknowledgements
First, thanks to Allah (God) who made me able to accomplish this work,
I sincerely express my deepest gratitude to my thesis supervisors, Dr. Hani
Mahdi, Professor of Computer Engineering, Faculty of Engineering, Ain Shams
University, and Dr. Ismail Abdel Ghafar, Professor of Computer Engineering,
Military Technical College, and Dr. Ayman Bahaa, Associate Professor of
Computer Engineering, Faculty of Engineering, Ain Shams University. I was
fortunate to have met such outstanding scholar supervisors. I like to express my
thankfulness for their kind supervision and offering unfailing support, invaluable
advices and comments and helpful and useful discussions in selecting the
interesting point and during the preparation of this thesis. I owe a special
acknowledgment to them for giving me a lot of their time during the years of
preparing this thesis. I could never had done it without their support, technical
advice and suggestions, thorough reading of all my work.

I would like to thank the Center for Education and Research of Information
Assurance and Security (CERIAS), Purdue University, USA. I appreciate the
valuable support of the CERIAS executive director Prof. Eugene Spafford, the
generous effort of his staff especially Information Assurance Research Engineer
Keith Watson, for their cooperation during my scholar visit to the Center. They
provided me with great resources to capture and collect the data needed for this
work. Special Thanks to my friend Glenn Glover who guided me to that center.

I appreciate the assistance and input from my colleagues in ORC and their support
during this work, special thanks to Ahmed Abdel Sabour and Galal Mohamed
for their help during implementing the proposed model.

I will never be able to thank my mother and my family enough for supporting me
during my whole life. I tried to accomplish this work to make them proud of me.
Finally, I am very grateful to my wife Dalia, and my lovely two kids, Asser and
Sama, for their patient support especially during my scholar visit, sacrifices,
sustained moral support, and encouragement. I always thank my God for blessing
me with such a wonderful family. I would like to dedicate this work specifically
to them and my mother and my whole family.

iii

Statement

This dissertation is submitted to Ain Shams University for the degree of
Doctor of Philosophy in Computer and Systems Engineering Department.

The work included in this thesis was carried out by the author at
Computer and Systems Engineering Department, Faculty of Engineering,
Ain Shams University.

No part of this thesis has been submitted for a degree or qualification
at other university or institution.

Date : 07 / 07 / 2011

Signature :

Name : Ayman Elsayed Elsayed Taha

iv

Table of Contents
Abstract..i

Table of Contents ...v

List of Figures ..ix

List of tables ... xii

List of Algorithms .. xiii

List of Abbreviation ..xiv

Chapter One: Introduction ..1

1.1 Intrusion Detection and Response Systems................................1

1.1.1 IDS Terminology and Parameters ..1

1.1.2 IDS Limitations ..2

1.1.3 Intrusion Detection Alerts Correlation2

1.1.4 Agents in IDS ...3

1.2 IDS Correlation Problem Definition...3

1.3 The Proposed Model...4

1.4 Methodology...5

1.5 Contributions ..5

1.6 Dissertation Organization ...6

Chapter Two: Literature Survey and Related work...............................7

2.1 The Importance of Security and Intrusion Detection7

2.1.1 Security Mechanism ...8

2.1.2 Intrusion Detection Systems...9

2.1.3 Intrusion Detection Correlation Systems..............................14

2.1.4 Recent Cyber Security Attacks...15

2.2 Basic Concepts of Data Correlation ...19

2.2.1 Alert normalization...23

2.2.2 Alert aggregation and Fusion ...24

2.2.3 Alert verification and Prioritization......................................26

2.3 Alerts Correlation Techniques..28

2.3.1 Correlation of Attack Scene ...29

2.3.2 Correlation of Pre and post conditions31

v

2.3.3	 Casual analysis Correlation based on Statistical Techniques...

..33

2.3.4	 Distributed Correlation ...34

2.4 Alert Correlation Limitations ...36

2.5	 Agents in IDS and Correlation ...37

2.6 Comprehensive Approach Model for IDS Alert Correlation ...39

Chapter Three: Distributed Agent Correlation Model...........................43

3.1	 Distributed Agent Correlation Model Description43

3.1.1	 IDSs Correlation Agents...44

3.1.2	 INFOSEC Tools Agents ...46

3.1.3	 System and Application Logs Agents48

3.1.4	 DACM Central Agent...50

3.1.5	 Formal Description for Central Agent..................................51

3.1.6	 Response Agent ..52

3.1.7	 Learning Agent ...52

3.1.8	 The Knowledge Base and Security Policy53

3.2 DACM Components ...54

3.3 DACM Knowledge Base ..55

3.3.1	 System Parameters and Role Base Tables............................55

3.3.2	 Alerts Table ..56

3.3.3	 Vulnerability Scanner ...56

3.3.4	 Performance Monitors Tables ..57

3.3.5	 Firewall Log Files Tables ...57

3.3.6	 System Audit Files Tables..58

3.3.7	 Services Log Files Tables...58

3.3.8	 Output Tables: ..58

3.4	 DACM Features..59

3.5 Implementation Scope and Performance Enhancement61

Chapter Four: DACM Design and Algorithms....................................63

4.1	 IDS Alert Correlation ...63

4.1.1	 IDS Alert Correlation Performance Analysis.......................63

4.2 Modified CAM Time..64

vi

4.2.1 Agent Based Correlation Model ...65

4.2.2 Dynamic Parallel Correlation Model....................................72

4.3 DACM Individual Agents ..76

4.3.1 IP Address Normalization ..77

4.3.2 Firewall Agent ..79

4.3.3 FTP local Agents ..81

4.3.4 SSH Agent ..85

4.3.5 Error Log Agent ...87

4.3.6 Access log Agent ..90

4.4 DACM Central Agent...95

4.5 Implementation Environment ...101

Chapter Five: DACM Results and Analysis......................................102

5.1 CRIAS Data Set..102

5.1.1 CERIAS Network Description ...102

5.1.2 Data Description ...104

5.1.3 Attacks ..106

5.1.4 Attack scenarios..106

5.2 IDS Alerts Correlation Results ...108

5.2.1 IDS correlation Model ..109

5.2.2 CAM Results ..110

5.2.3 ABCM results ...112

5.2.4 DPCM Results ..113

5.2.5 IDS Alert Correlation Techniques Performance115

5.3 DACM Components Results ..121

5.4 DACM Central Agent Results..123

5.5 DACM Evaluation and Assessment132

5.5.1 DACM Limitation ..132

5.5.2 DACM Assessment ..133

5.6 Practical Implementation Issues ...134

Chapter Six: Conclusions and Future Work ..135

6.1 Conclusions ..135

6.2 Future Work..138

vii

APPENDIX A : LARGER IMAGES OR RESULTS FIGURES139

Appendix B: DACM Agents Formal Description157

LIST OF PUBLICATIONS ..162

REFERENCES..163

viii

List of Figures
FIGURE 2.1 COMPERHENSIVE APPROACH MODEL FOR IDS ALERT

CORRELATION ...40

FIGURE 3.1DACM BLOCK DIAGRAM ..44

FIGURE 3.2 IDS CORRELATION AGENTS ...45

FIGURE 3.3 IDS ALERTS OUTPUT USING BASE FOR SNORT45

FIGURE 3.4 FIREWALL ROUTER LOG FILE ..46

FIGURE 3.5 INFOSEC TOOLS CORRELATION AGENTS..48

FIGURE 3.6 FTP LOG FILES..49

FIGURE 3.7 SYSTEM AND APPLICATION LOGS CORRELATION AGENTS49

FIGURE 3.8 STANDARD ALERT ATTRIBUTES...51

FIGURE 3.9 LEARNING AGENTS BLOCK DIAGRAM ..53

FIGURE 3.10. DACM COMPONENTS STRUCTURE..54

FIGURE 3.11 IDSS CORRELATED ALERTS TABLE ATTRIBUTES.......................56

FIGURE 3.12 VULNERABILITY SCANNER ALERT ATTRIBUTES.......................56

FIGURE 3.13 NESSUS OUTPUT FOR VULNERABILITY SCANNER.....................56

FIGURE 3.14 PERFORMANCE MONITOR ALERT ATTRIBUTES..........................57

FIGURE 3.15 FIREWALL OUTPUT LOG FILE ..57

FIGURE 3.16 FIREWALL ALERT ATTRIBUTES ..57

FIGURE 3.17 SYSTEM AUDIT ALERT ATTRIBUTES ...58

FIGURE 3.18 SERVICES LOG ALERTS ATTRIBUTES ..58

FIGURE 3.19 IMPLEMENTATION SCOPE OF DACM COMPONENTS.................62

FIGURE 4.1 ABCM CORRELATION MODEL BLOCK DIAGRAM65

FIGURE 4.2 ABCM SEQUENTIAL LEARNING PHASE ...67

FIGURE 4.3 ABCM PARALLEL LEARNING PHASE..67

FIGURE 4.4 CERIAS ABCM PARALLEL LEARNING RESULT68

FIGURE 4.5 ABCM CORRELATION PHASE ...70

FIGURE 4.6 DPCM BLOCK DIAGRAM..72

FIGURE 4.7 DPCM CORRELATION STAGES ...72

FIGURE 4.8 CERIAS DPCM CORRELATION EXAMPLE ..74

ix

FIGURE 4.9 DACM INDIVIDUAL AGENTS ..76

FIGURE 4.10 FIREWALL ROUTER LOG CONTENTS..79

FIGURE 4.11 FTP LOG FILE EXAMPLE ..81

FIGURE 4.12 FTP TRANSFER LOG FILE EXAMPLE ...83

FIGURE 4.13 SSH LOG FILE “INETDLOG” EXAMPLE ...85

FIGURE 4.14 ERROR LOG CONTENTS ...88

FIGURE 4.15 HTTP ACCESS LOG FILE ...91

FIGURE 4.16 ACCESS LOG TABLE..92

FIGURE 4.17 OSHTTP ERROR LOG FILE..92

FIGURE 4.18 MISSING EXAMPLE ...94

FIGURE 4.19 DACM CENTRAL AGENT RESULTS..96

FIGURE 5.1 CERIAS NETWORK BLOCK DIAGRAM ..103

FIGURE 5.2 SNORT IDS ALERTS ...108

FIGURE 5.3 IDS ALERT CORRELATION INTERFACE..109

FIGURE 5.4 AF CORRELATION RESULT ...110

FIGURE 5.5 TR CORRELATION RESULT ...111

FIGURE 5.6 FINAL CAM CORRELATION RESULT8..111

FIGURE 5.7 ABCM LEARNING PHASE...112

FIGURE 5.8 ABCM’S CORRELATION PHASE RESULTS......................................113

FIGURE 5.9 DPCM CORRELATION STAGES RESULT ...114

FIGURE 5.10 DPCM FINAL CORRELATION RESULT...115

FIGURE 5.11 REDUCTION RATES COMPARISON OF IDS CORRELATION

TECHNIQUES...117

FIGURE 5.12 CORRELATION TIMES COMPARISON OF IDS CORRELATION

TECHNIQUES...120

FIGURE 5.13 CORRELATION TIMES COMPARISON OF IDS CORRELATION

TECHNIQUES...121

FIGURE 5.14 SSH AGENT RESULT..122

FIGURE 5.15 ABCM RESULT FOR SPECIFIC IP AS PART OF DACM13..............122

FIGURE 5.16 DACM DAILY RESULTS ..123

x

FIGURE 5.17 DACM IP REPORT FORM ABCM IDS CORRELATED ALERTS ...125

FIGURE 5.18 DACM IP REPORT FORM HTTP ATTACK15125

FIGURE 5.19 DACM MAXIMUM PRIORITY REPORT...126

FIGURE 5.20 LOW AND SLOW ATTACK SUMMARY ..127

FIGURE 5.21 LOW AND SLOW ATTACK FOR 192.160.165.22217127

FIGURE 5.22 LOW AND SLOW ATTACK FOR 216.129.119.45128

FIGURE 5.23 DACM SUMMARY REPORT18 ...128

FIGURE 5.24 DACM SUMMARY RESULTS CHART ...131

FIGURE 5.25 DACM PERCENTAGE SUMMARY RESULTS CHART...................132

xi

LIST OF TABLES
TABLE 2.1 CYBER ATTACKERS COMPARISON ..19

TABLE 2.2 SOURCES OF INTRUSION DETECTION DATA CORRELATION21

TABLE 2.3 CAM COMPONENTS REDUCTION RATE FOR DIFFERENT

DATASETS...41

TABLE 4.1 FIREWALL ATTACK TABLE ..80

TABLE 4.2 FTP ATTACK TABLE ...83

TABLE 4.3 FTP TRANSFER ATTACK TABLE ..85

TABLE 4.4 SSH TRANSFER ATTACK TABLE..87

TABLE 4.5 HTTP ATTACK TABLE RECORD ...90

TABLE 4.6 DAILY REPORT TABLE ATTRIBUTES ...98

TABLE 5.1 SNORT IDS ALERT ATTRIBUTES..109

TABLE 5.2 ALERT CORRELATION REDUCTION RATES COMPARISON.........116

TABLE 5.3 CORRELATION TIME COMPARISON FOR IDS ALERT

CORRELATION MODELS ORDERED BY DATE OF ALERTS..........118

TABLE 5.4 CORRELATION TIME COMPARISON FOR IDS ALERT

CORRELATION MODELS ORDERED BY ALERTS COUNT.............119

TABLE 5.5 DACM SUMMARY RESULT...129

TABLE 5.6 DACM PERCENTAGE SUMMARY RESULT.......................................130

xii

1

2

3

4

5

6

7

8

9

10

11

12

List of Algorithms

ALGORITHM 4- LEARNING PHASE..69

ALGORITHM 4- ABCM CORRELATION PHASE ..71

ALGORITHM 4- DPCM ALGORITHM...75

ALGORITHM 4- SAVE IP FUNCTION..78

ALGORITHM 4- FIREWALL AGENT ...80

ALGORITHM 4- FTP AGENT ...82

ALGORITHM 4- FTP TRANSFER AGENT ..84

ALGORITHM 4- SSH AGENT..86

ALGORITHM 4- HTTP AGENT ..89

ALGORITHM 4- ACCESS LOG AGENT ...93

ALGORITHM 4- MISSING LOG AGENT..95

ALGORITHM 4- DACM CENTRAL AGENT ..97

xiii

LIST OF ABBREVIATION

ABCM : Agent Based Correlation Model

ACCL : Active Correlation Component List

AF : Alert Fusion

APT : Advanced Persistent Threat

ASR : Attack Session Reconstruction

AV : Alert Verification

CAM : Comprehensive Approach Model

DACM : Distributed Agent Correlation Model

DPCM : Dynamic Parallel Correlation Model

FTP : File Transfer Protocol

FR : Focus Recognition

IDS : Intrusion Detection system

LA : Learning Agent

LSA : Low and Slow Attack

MAS : Multi-Agent System

MSA : Multi Step Attack

RR : Reduction Rate

TR : Threat Reconstruction

SSH : Secure Shell

xiv

CHAPTER 1

INRODUCTION

Chapter One: Introduction

Recently, computer networks have evolved into a ubiquitous
infrastructure. High speed backbones and local area networks provide the
end user with huge bandwidth compared with that available a few years
ago. In addition, wireless technology is bringing connectivity to a number
of devices, from laptops to cell phones and PDAs, creating a complex,
highly dynamic network of systems. Most notably, the internet has
become a mission-critical infrastructure for governments, companies,
institutions, and millions of everyday users. Because of this increased
reliance on networked computers, security has become a primary concern.

1.1 Intrusion Detection and Response Systems

Intrusion detection is the process of recognizing computer system misuse.
Intrusion response is the process of responding to that misuse. They are
essential techniques providing an extra layer of defense when other
security mechanisms fail (e.g. identification, authentication, access
controls, cryptography, firewalls, and VPNs). Intrusion Detection
Systems (IDSs) are software and hardware systems that automate the
process of monitoring the events occurring in a computer system or
network, analyzing them for signs of security problems [1].

1.1.1 IDS Terminology and Parameters
An alert or an alarm is defined as a signal reporting that a system has
been, or is being, attacked. A True Positive (TP) alert is defined as the
case when a real attack triggers IDS to produce an alarm; this alarm is a
correct alarm. A False Positive (FP) alert is defined as the case when an
event triggers IDS to produce an alarm when no attack has actually taken
place; this alarm is a false alarm. A False Negative (FN) is defined as the
case of IDS failing to detect an actual attack. A True Negative (TN) alert
is defined as the case when no attack has taken place and no alarm is
raised [1].

1

Both false positive and false negative alerts are the main metrics of the
IDS accuracy and completeness parameters, which are calculated as
follows:

Accuracy = TP / (TP+ FP) (1.1)

Completeness = TP / (TP + FN) (1.2)

For example, IDS that produces 100 alerts for 80 real attacks where other
20 attacks were missed and 40 non-attack actions were detected as attacks
then this situation can be expressed as follows:

IDS Alerts: 100, True Positive: 60, False Positive: 40

False Negative: 20 alerts

Accuracy = 60 / (60+40) = 60 %

Completeness = 60 / (60+20) =60/80 = 75 %

1.1.2 IDS Limitations
IDSs have some limitations affecting their performance. First, IDSs are
prone to producing a large number of alerts. Second, false positives and
false negative of IDSs are inevitable. Third, IDSs can only detect single
attack but not multi-step attacks, which need network security experts to
analyze manually. These limitations lead to the use of alert correlation
techniques [2].

1.1.3 Intrusion Detection Alerts Correlation
Alert correlation [2] is a promising intrusion detection technique that
significantly improves security effectiveness by analyzing alerts from one
or more IDSs and providing a high level view of the attempted intrusions.
Correlation components are procedures that aggregate alerts according to
certain criteria; the aggregated alerts could have common features or
could represent the steps of pre-defined scenario attacks. Correlation
approaches are composed of a single component or a comprehensive set
of components. The Correlation process is performed through several

2

different stages including normalization, aggregation, verification, and
correlation.

The Reduction Rate (RR) [10] is the ratio between the number of output
alerts after correlation and the number of input alerts:

RR = (1- (Output alerts/Input alerts))*100 (1.3)

The situation where IDS produces 100 alerts as an input for correlation
system, the correlation system correlate those alerts together and
summarizes them to 60 alerts, in this example the reduction rate of that
correlation system can be calculated as follows:

Example: Input = 100 alerts, Output = 60 correlated alerts

RR = (1- 0.6) *100 = 40 %

1.1.4 Agents in IDS
An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through response
system [3]. A software agent is a computer program which works toward
goals in a dynamic environment on behalf of another entity, possibly over
an extended period of time, without continuous direct supervision or
control [3].

Agents have been widely used in IDSs [46-49] because they can be added
and removed without having to restart the IDS, thereby providing flexible
scalability. Agents are capable of performing simple functions on their
own; a group of agents working together are able to derive complex
results by exchanging information. Use of many agents reduces system
overhead and avoids single point of failure. Finally, agents provide a
multi-point detection and knowledge sharing capability.

1.2 IDS Correlation Problem Definition

The major problem with the existing correlation systems is that they do
not provide a complete correlation solution. Instead, some of them
address only a limited part of the correlation process. For instance, multi

3

step correlation does not solve the problem of the high false positive rates
of intrusion detection sensors. Other comprehensive correlation
techniques using an integrated set of correlation components still have
performance problems; giving the fact that the effectiveness of a specific
correlation technique is highly dependent on the properties of the network
and attacks on it, some of the correlation components may not of use with
a specific environment but they still consume valuable processing time.
Moreover, current correlation systems do not enable the integration of
correlations from multiple information sources and are limited to operate
in IDSs alerts. Furthermore, existing systems are not easily extended, and
most are platform dependent.

Finally, current correlation techniques improve the intrusion detection
results and reduce the huge number of alerts in a summarized report, but
still have some limitations as follows:

•	 High false detection rate;
•	 Missed alerts in a multi-step attack;
•	 Limited alert verifications;
•	 Low rates of detection for Zero Day Attacks;
•	 Failure to detect Low and Slow Attacks and Advanced Persistent

Threats; and
•	 Ineffectiveness against IDS evasion techniques.

1.3 The Proposed Model

This dissertation presents a model to prove the possibility of enhancing
both IDS Accuracy and IDS Completeness through reducing either False
Positive or False Negative alerts using correlation between different
available information sources in the system and network environment

The dissertation presents a modular framework for Distributed Agent
Correlation Model (DACM) for intrusion detection alerts and events in
computer networks. The framework supports the integration of multiple
correlation techniques, and enables easy implementation of new

4

components. The framework introduces a multi-agent distributed model
in hierarchical organization and correlates alerts from the IDS with attack
signatures from other source of information (e.g. firewalls, performance
monitors, FTP logs, and other access/error log files).

Correlation between multiple sources of information reduces both false
negative and false positive alerts, enhancing both intrusion detection
accuracy and completeness. Each local agent aggregates/correlates events
from its source according to specific pattern matching; the integration of
the correlation agents forms a complete integrated correlation system.

1.4 Methodology

This research went through several steps, studying the existing correlation
system for intrusion detection was the first step. This study allowed us to
identify the missing part and the drawback of those systems. The next
step was the presented idea to solve the current correlation system
problems and improve its performance. After that we collected a datasets
needed to test the proposed idea. This dataset was collected on networks
with a variety of services and includes real networks, networks
specifically constructed for dataset gathering, and simulated networks.
The dataset included real and attempted attacks. Then we implement a
prototype for the proposed model to prove the theory of the idea and to
assure the success of the model. The proposed prototype was constructed
from a set of individual agents for each task. The next step was
integrating those agents together to build the whole model. Finally, we
extract the model results and perform the needed analysis for these results
for purpose of assessment and presentation

1.5 Contributions

This dissertation provides solutions for the problems outlined above, and
provides the following contributions:

• Enhanced accuracy and completeness of intrusion detection;
•	 Improved flexibility, upgradability, and platform independence;

5

•	 Decreased audit load and time cost required to obtain effective
situational understanding;

•	 Increased coverage of the attack space and forensics;
•	 Improved ability to distinguish serious attacks from less important

ones;
•	 Distinguish between attacks where an immediate response is

needed from others where an alternative is acceptable; and
•	 Enhanced early detection capability for recent cyber attacks such

as Advanced Persistent Threats (APTs) and Low and Slow
Attacks.

1.6 Dissertation Organization

The remainder of this dissertation is structured as follows. Chapter 2
presents a survey of intrusion detection and related work, describing and
giving an introduction to current correlation systems and distributed
correlation techniques. Chapter 3 introduces a description of our
distributed agent correlation model and its components. Detailed
implementation of this model components and algorithms is presented in
Chapter 4. In Chapter 5, detailed experimental results of applying the
proposed model on the gathered dataset are presented. Finally, Chapter 6
presents conclusions and outlines future work.

6

CHAPTER 2

Literature Survey

and Related Work

Chapter Two: Literature Survey and Related work

In this chapter, a literature survey of security and intrusion detection, alert
correlation, recent cyber attacks, and correlation related work will be
presented.

2.1 The Importance of Security and Intrusion Detection

While computer systems in the past usually were not networked, or were
connected to a small network spanning a company or a building, today
almost every computer system is connected to the Internet. The main
concern with this situation is that the number of potential attackers that
can attack a given system has increased drastically. Whereas before an
attacker had to be physically present at the console of the computer or be
connected to the same local area network as the target computer, today's
attacker can be located almost anywhere in the world.

Another reason for the increased importance of computer security is that
today more sensitive data are stored on computers than before. For
instance medical records and bank accounts are not paper based anymore.
Another change that has happened lately is that many businesses rely on
computer systems to perform their function. As a result, a computer
system problem can shut down the whole operation. For instance, a web-
based store would not get any customers if their network connection
failed.

All these changes to the ways businesses handle data have increased the
number of potential targets for attacks and the effect of successful attacks
have become more serious. In addition, the attackers have improved their
attack techniques. It is now common to see large scale coordinated attacks
where the attacker utilizes multiple computers in order to attack a single
target.

These kinds of attacks can be challenging to defend against, as it is not
easy to identify the attacker when he is using multiple hosts. In addition,
the attacker's computers are often located on different networks. This

7

potentially makes the aggregate network throughput available to the
attacker very large and can enable the attacker to flood the victim's
network with traffic, creating a denial-of-service attack.

Computer security is an increasingly important topic. It is important to
insure that the secrecy of sensitive data is protected, the integrity of
important data is not violated, and the availability of critical systems is
guaranteed. Computer security tries to achieve all these goals.

2.1.1 Security Mechanism
Computer security offers three types of security mechanisms [66, 67] to
protect a system: authentication, authorization, and auditing. These three
mechanisms are essential for securing a system against attacks.
Authentication is the process of proving the user identity to a computer
system. The most common form of authentication is to require the user to
type in a user name and password before logging on to a computer.

The assumption is that only the real user knows the password. When the
system is presented with a user name and a matching password, it grants
the user access to the system and stores the user's identifier in protected
system memory. At a later point, if the system needs to know the identity
of the user, this information can be retrieved from the system memory.

In general, there are three possible ways of doing authentication. A user
can be authenticated based on something he knows. An example of this is
the password scenario mentioned above. Another way of doing
authentication is based on something the user has. This can be a key, or
some kind of security token like a smartcard. The third way of performing
authentication is based on something the user is. In this case, the system
scans one or more of the user biometric to identify that he is the person he
claims to be. Fingerprint, eye iris, face shape, and voice recognition fall in
this category. It is also common to combine several authentication
schemes. For instance, a system might require both a password and a

8

security card in order to complete the authentication, which is called two
factor authentication, also there are three factor authentication is used.

Authorization is the process of checking that a logged in user is
authorized to perform an operation or access a resource. If the user is not
allowed to do so, access is blocked. Authorization requires authentication
in order to function, otherwise a user might just lie to the system about
who he is in order to gain access to protected resources. Authorization is
performed by the operating system before a user is allowed to access the
resource. For example, before a file is read the user's identity is fetched
from protected storage and compared to the access control list associated
with the file to be opened. If the user is allowed to read the file, a valid
file handle is returned; otherwise, access is denied.

Auditing is the process of recording security relevant data about a user's
activities. For instance, this can be information such as what time and
from what IP a user has logged in, or information about attempted access
to resources that were denied, such as a user trying to open a file he does
not have access to. Some systems also log every system call invocation
performed by the programs run by the users. The idea of auditing is to
detect users trying to access resources they are not authorized to access,
or users trying to circumvent security mechanisms.

Cryptography is also used to secure modern systems. For instance, it is
common to encrypt sensitive traffic in transit in order to prevent outsiders
from sniffing the data. This is especially true for authentication schemes.
If, for instance, an authentication scheme relied on sending passwords in
clear text across the network, the authentication could be easily broken by
anyone able to read the communication between the server and a user
logging in.

2.1.2 Intrusion Detection Systems
Since the security mechanisms presented can fail, additional protection is
needed. In order to provide an extra layer of defense, intrusion detection

9

systems (IDSs) have been proposed. IDSs scan through audit data or
sniffs into network packets in order to find evidence of malicious
behavior. When the manifestation of a possible security violation is
found, a system administrator is alerted and presented with a report about
the incident. The system administrator then chooses how to act on the
report.

2.1.2.1 Classification of IDSs

Intrusion detection systems can be classified in several ways. It is
common to classify any IDS by the detection mode, the audit source, the
usage frequency, and the response mechanism [4].

Classification by the detection method is most common. There are two
main types of detection methods: misuse detection and anomaly
detection.

Misuse detection systems utilize a rule database that explicitly models
what is not allowed. Everything that does not match any of the rules is
allowed.

Anomaly-based systems, on the other hand, use a model of normal activity
and anything that does not match the model of normality is considered an
attack. An anomaly detector assumes that all anomalous events are signs
of an attack and that all attacks produce anomalous events. Since an
anomaly-based system does not model attacks specifically, it can detect
previously unknown attacks. Misuse-based systems, on the other hand,
can only detect attacks for which they have a rule, and cannot detect a
novel attack unless it is some variation of one of the attacks already in the
rule base.

Misuse detection systems are further divided into stateless and stateful
systems. A stateless system only looks at the current audit event when
determining if an event is malicious or not. In contrast, stateful systems
store and use information about previous audit events. When an event is

10

processed, both the current event and the sensors state are taken into
account in the detection process. One of the main advantages of stateful
systems is that they can support more complex rules than stateless
systems. This complexity comes at a cost though, since stateful sensors
consume memory in order to store the state. Stateful sensors also tend to
require more processing power than a stateless system, since the rules are
more complex.

Anomaly detectors can be either learning-based or specification-based. A
learning-based anomaly detection system utilizes a training period, during
which the system learns what the properties of normal traffic are. It is
usually assumed that the training phase does not contain any attacks;
otherwise, the system would include attacks in its normality model. When
the training phase is completed, the system switches into detection mode.
In this mode, the input data is compared to the model trained in the first
step. Any audit event that does not match the learned model is reported as
anomalous and logged.

Specification-based systems rely on a specification of what normal traffic
should look like. This specification can either be introduced to the system
manually or be automatically generated. Automatic generation of the
specification can be helpful, since it is a difficult task to manually to
specify what normal events look like. Automatic generation is also able to
produce a specification with no errors, whereas a manual specification is
more prone to include errors. Tools to automatically generate a
specification have, for instance, been utilized by systems looking for
illegal sequences of system calls. A list of all legal system call sequences
can be automatically extracted from the source code of the protected
program. During detection, the system call sequences generated by the
program are compared to the list of legal sequences.

A different way of classifying intrusion detection systems is by the source
of audit data processed. Three different categories of audit data sources

11

are common, namely network-based audit data, host-based audit data, and
application-based audit data.

Network-based sensors collect packets from the protected network in
order to perform detection. Depending on the sensor, the network data
processed can be complete packets, packet headers, or payload data.
Some network-based systems use firewall logs as input. These firewall
logs contain the headers of the network packets that have been blocked by
the firewall. Host-based sensors process audit data generated by a host's
operating system. It is very common for this type of sensor to perform
detection on the log of system calls that have been executed. Other types
of host-based systems process different types of system logs, such as
UNIX system log data [4].

Some IDSs even use the content of all the files stored on the host's hard
drive as input [5]. Application-based sensors process logs created by a
user-space application. This kind of sensor is usually used to protect
network daemons. For instance, several systems that process web logs [6]
and FTP logs.

IDS systems can also be classified by their usage frequency. Inline
systems operate in real-time and consume audit data as it is generated..
Other systems are run in offline mode, where the system is run
periodically to look for signs of attack, this is the most common mode of
operation.

It is also possible to classify intrusion detection systems by the type of
response the system performs when an attack is detected. The most
common type of response is passive where an attack occurrence is logged
or the administrator is notified by other means (e.g., SMS or email), this
is commonly called an alert. Active systems block an attack so it cannot
succeed. These systems are usually referred to as intrusion prevention
systems (IPSs). Depending on the implementation, an active system

12

could, for instance, send a reset packet to tear down the attacker's
connection or update the firewall rules so that the attacker IP is blocked.

2.1.2.2 Intrusion Detection Challenges

The main problem with most intrusion detection systems is that they
generate an enormous amount of alerts that are not caused by real attacks.
These false alerts are usually referred to as false positives. Many sites that
deploy IDSs do not even look at the intrusion reports until after a break-in
is detected by other means. The intrusion detection system in these cases
becomes more of a tool to help the administrator perform forensic work
after the break-in has occurred, than an actual security monitoring tool.

Another problem with current intrusion detection systems is that the
intrusion reports they produce do not have enough information for the
administrator to make an informed decision about how to handle the
incident. One of the reasons for this lack of information is that sensors
only operate in one domain. A network-based sensor only sees network-
based attributes like IP addresses and port numbers. The network-based
sensor has little idea of the security state of the host it is protecting. For
instance, it does not know the process id or user id of the processes that
are accepting the network connections it observes. Similarly, host-based
sensors report little information about the network characteristics of an
attack. A host-based sensor that reports a buffer overflow in a program
usually does not include the IP address of the attacker simply because the
sensor does not have access to this information.

A meaningful prioritization score is also missing from the alerts of most
IDSs. Network-based sensors usually do not discriminate between
attempted attacks and successful ones. This, in combination with the vast
amount of alerts usually produced by sensors, makes it very hard to get a
high-level picture of the security state of the protected network.

Non-contextual alerts are also a problem of existing systems. A non-
contextual alert is an intrusion detection alert generated as a response to a

13

real attack, but because of the configuration of the host, the attack cannot
succeed. An example of this is an alert warning about a web-based attack
that only works against Windows computers, while the target is a Linux
box. The main cause of this problem is that intrusion detection sensors
usually do not have enough information about the hosts they are
protecting.

Finally, IDS can only detect single attack but not multi-step attacks,
which need network security experts to analyze manually. These
challenges may also produce undetected alerts which are real attack.
These missing alerts are usually referred to as false negatives.

2.1.3 Intrusion Detection Correlation Systems
In order to alleviate some of the problems of intrusion detection systems,
alert correlation systems have been proposed. Correlation systems collect
the alerts from a number of sensors and process these alerts in order to
generate a high-level view of the current security status of the protected
system. The main goal of a correlation system is to reduce the number of
alerts a system administrator has to manually process. The correlation
system achieves this by identifying and suppressing false alerts, grouping
alerts that refer to the same incident together, and prioritizing the alerts.

Three types of correlation techniques have been proposed: multi-step
correlation, fusion-based correlation, and filter-based correlation. Multi
step correlation seeks to detect attacks that consist of multiple stages.
These kinds of attacks are very common. For instance, an attacker might
first scan ports in a host in order to identify possible vulnerabilities,
before performing the actual break-in. This attack has two stages, the first
being the scan, while the second stage is the break-in itself.

Fusion-based correlation systems utilize an alert similarity metric.
Incoming alerts are compared to each other using this metric, and alerts
that are found to be similar are grouped together. Different similarity
metrics are utilized in order to perform different kinds of fusion. Usually

14

systems like these perform multiple correlation steps, where a different
similarity function is used for each step.

Correlation systems performing filter-based correlation seek to identify
the most important alerts in the alert stream. These systems often perform
prioritization, where each alert is given a score. This score can be utilized
for ranking the alerts so the system administrator can easily get an
overview of the most critical alerts. Filter-based correlators usually
calculate the criticality of an alert by considering the importance of the
assets under attack and the probability that the attack has succeeded.

2.1.4 Recent Cyber Security Attacks
Advanced Persistent Threats (APTs) [7, 8] are a cybercrime category
directed at business and political targets. APTs require a high degree of
disappearance over a prolonged duration of operation in order to be
successful. The attack objectives therefore typically extend beyond
immediate financial gain, and compromised systems continue to be of
service even after key systems have been breached and initial goals
reached. APT can be defined using its named requirement:

Advanced – Criminal operators behind the threat utilize the full spectrum
of computer intrusion technologies and techniques. While individual
components of the attack may not be classed as particularly “advanced”
(e.g. malware components generated from commonly available Do It
Yourself (DIY) construction kits, or the use of easily procured exploit
materials), their operators can typically access and develop more
advanced tools as required. They combine multiple attack methodologies
and tools in order to reach and compromise their target.

Persistent – Criminal operators give priority to a specific task, rather than
opportunistically seeking immediate financial gain. This distinction
implies that the attackers are guided by external entities. The attack is
conducted through continuous monitoring and interaction in order to
achieve the defined objectives. It does not mean a barrage of constant

15

attacks and malware updates. In fact, a “low-and-slow” approach is
usually more successful.

Threat – means that there is a level of coordinated human involvement in
the attack, rather than a mindless and automated piece of code. The
criminal operators have a specific objective and are skilled, motivated,
organized and well funded.

A key requirement for APTs (as opposed to an “every day” botnet,
a botnet is a collection of infected computers or bots that have been taken
over by hackers and are used to perform malicious tasks or functions) is
to remain invisible for as long as possible. As such, the criminal operators
of APT technologies tend to focus on “low and slow” attacks – stealthily
moving from one compromised host to the next, without generating
regular or predictable network traffic – to hunt for their specific data or
system objectives. Tremendous effort is invested to ensure that malicious
actions cannot be observed by legitimate operators of the systems.

APT Started with low-and-slow scanning, then get in network using
malware such that it can creates backdoors and stay undetectable and
remote controlled from outside the network, these condition enables it to
get data and keep persistent. The APT Continues to Use a Repetitive and
Identifiable Targeting and Exploitation Cycle through several steps:

1. Reconnaissance (data gathering): Attackers research and identify
individuals they will target in the attacks, using public search or other
methods, and get their email addresses or instant messaging handles
(Face book, Twitter). Reconnaissance is a step which could not be
detected using current security systems.

2. Probing the network: It all typically starts with spear-phishing emails,
where the attacker targets specific users within the target company with
spoofed emails that include malicious links or malicious PDF or
Microsoft Office document attachments. That infects the employee’s

16

http://en.wikipedia.org/wiki/Hacker_(computer_security)

machine and gives the attacker a foot in the door. Detecting of this step
depends on the applicability and awareness of specific security policy and
the behavior of the employees, while some limitation of these policies
prevents the detection of this phase.

3. Establishing a backdoor: The attackers try to get domain administrative
credentials and extract them from the network. Since these credentials are
typically encrypted, they then decrypt them using pass-the-hash [9] or
other tools and gain elevated user privileges. From here, they move
“laterally” within the victim’s network, installing backdoors here and
there. They typically install malware via process injection, registry
modification, or scheduled services. The detection of this step could be
achieved partially using the host based IDS, but it is still limited without
suitable log files analysis.

4. Obtaining user credentials: Attackers get most of their access using
valid user credentials, and they access an average of 40 systems [4] on the
victim’s network using the stolen credentials. The most common type:
domain-administrator credentials. This step never been detected upon the
success of previous step.

5. Installing multiple utilities: Utility programs are installed on the
victim’s network to conduct system administration, including installing
backdoors, grabbing passwords, getting email, and listing running
processes, for instance. The detection of this step could be achieved
partially using the host based IDS, but it is still limited without suitable
log files analysis.

6. Criminal Remote Control: APTs rely on the remote control
functionality in order to navigate to specific hosts within target
organizations, exploit and manipulate local systems, and gain continuous
access to critical information. Detecting of this step could be achieved by
monitoring continuous connection with external networks. While APT

17

malware can remain stealthy at the host level, the network activity
associated with remote control is more easily identified.

7. Privilege escalation, lateral movement, and data exfiltration: Now the
attackers start grabbing emails, attachments, and files from servers via the
attacker’s computer and communication infrastructure. They typically
funnel the stolen data to staging servers, where they encrypt and compress
it, and then delete the compressed files from the staging server. Detection
of this step depends on the early detection of step 5 and 6.

8. Maintaining persistence: If the attackers find they are being detected or
remediated, then they use other methods to ensure they don’t lose their
presence in the victim’s network, including revamping their malware.
Success of APT attacks depends on their patience and resilience; they are
very sophisticated, determined, and coordinated activities. The APT
attackers are in there to stay for awhile, not to snatch and grab data.

APT can be detectable in some steps while it is hard in other ones as
described above. It will be hard to detect APT in case of insider collusion
(co-ordination) unless with robust access control policy. Some parameter
needed to have threshold values to represent attacks added with
probability factors. Network flow with the controller network needed to
be addressed.

Table 2.1 show comparisons of current cyber attackers according to their
environment: operating system and IPS they use for the attacks, how they
select the attack destination, the attack parameters, the network status
during the attack, purpose of the attacks, the investor, and the possibility
of detection of these attacks. Attackers are classified into individual
amateur, individual professional, group of professionals, and organized
cybercrime.

18

Table 2.1 Cyber Attackers Comparison
Amateur Professional Group of

Professional
Organized
Cybercrime

O/S Single Single / Multiple Single/Multiple Multiple

IP address Single Single / Multiple Multiple Multiple

Destination Random Random/
Selected

Selected Selected

Attack types Random
Blindly

Both random or
Predefined MSA

Both random or
Predefined MSA

Predefined MSA

Persistent NO No No Yes

Frequency of
Events

Fast Fast Fast, yet
distributed

Slow, patient,
and hidden

Network
traffic

Very High High High-distributed Low

Automation Manuel Manuel Manuel/Automa
ted

Automated

Funded No No No Yes

Purpose Having
fun being
hacker

Personal reasons,
gain money

Business
reasons, gain
money

Classified coun
tries information,
Big Companies
losses

Detectable Easy Hardly detectable Hardly
detectable

Undetectable
(APTs)

2.2 Basic Concepts of Data Correlation

Data correlation [10] is one of the intrusion detection analysis tools; it is
similar but differs to other terms like data aggregation and event
reconstruction. Data correlation means associating sets of events detected
through various means and applying knowledge to determine whether
they are related, and if so, in what manner and to what degree. Data
aggregation refers to the process of acquiring more and more data. Event

19

reconstruction means piecing data together to determine exactly what
events occurred and in which order. Data sources can be intrusion
detection sensors, logs, database, and so forth as shown in Table 2.2.

Previous work on intrusion correlation has mostly focused on IDSs alert
correlation. There are three famous techniques [11, 12] for alert
correlating which are Similarity-based, Pre-defined attack scenarios and
Pre-requisites and consequences of individual attack. These techniques
could be verified through correlation phases [13], and could be organized
in different architectures and components. The correlation process may be
organized from single component or comprehensive set of components.
Alert correlation phases include: normalization, aggregation and fusion,
verification, building attack scenarios techniques, and prioritization.

Normalization means that all alerts from different sensors should be
described with similar attributes. Aggregation looks for alerts that have
similar attributes between any two pairs of alerts, according to this
similarity the two alerts could be correlated. Verification either identifies
alerts that are irrelevant to the protected network or verify that if the alerts
are successful in their attacks. The idea of building attack scenarios relies
on the fact that complex attacks are usually executed in several r steps,
where the first steps prepare for the attacks executed in the later steps.

Therefore, the multi-step correlation approach tries to link alerts that are
part of different steps of the same complex attack scenario. Finally
prioritization assigns a priority to each alert. Priorities are usually
assigned to alerts depending on how important the attacked assets are.

20

Table 2.2 Sources of Intrusion Detection Data Correlation
Type of Data
Source

Major Advantages Major Disadvantages

System logging Indicates what actually
happened on targeted system

Can be tampered with or
turned off altogether;
difference in formats
can be confusing

Firewall Provide complete picture of Overwhelming volume
logging inbound and outbound traffic

at the point where the firewall
is placed in the network

of data; difference in
formats can be
confusing; limitation in
dealing with encrypted
traffic; packet fragment
reassembly issues

Packet dumps Provide a detailed analysis of
traffic going over the network

Overwhelming volume
of data (unless dumps
are for short time
periods);tedious analysis

Network- Can provide comprehend Financial expense, most
monitoring tool picture of the state of the of these tools are
output network; particularly valuable

in spotting denial of service
attacks

commercial

Target Target-monitoring tools run in False alarms; financial
monitoring the background; changes in expense of commercial
output files and directories are often

indication of attacks
tools

21

Type of Data
Source

Major Advantages Major Disadvantages

SNMP traps Easy to setup and
administer; provides
remote near-real-time
alerting; usefulness of
certain kinds of traps
(failed logins)

Many versions of SNMP
are riddled with
vulnerabilities; can flood
network

IDS output Usually reasonably
convenient to access and
easy to understand

Quality of output (hit rate,
false alarm rate) various
from one IDS to another;
limitation in dealing with
encrypted traffic and
evasion techniques;
limited throughput rate.

Database
containing data
about attack

Can provide considerable
amount of relevant data;
allows data mining

Financial cost of setting
up and maintaining
database privacy issues

Web postings Search engines can make
a wide range of
information about
incident available;
attackers who evade
intrusion detection may
reveal information about
their attack on the web

The accuracy and validity
of information posted on
the web, especially
information concerning
attacks, is dubious, false
information abounds.

There are two architectures for alert correlation system: centralized
architecture [14] and distributed architecture [15, 16]. The key process
unit of centralized architecture is Central IDS Correlation Node, which
directly processes alerts from multiple IDS sensors. The correlation
algorithm of this architecture is simple and can correlate overall alerts

22

quickly. Distributed architecture composed of a set of correlation nodes
and categorized as complete distributed architecture or hierarchical
distributed architecture. The correlation phases and components are
presented in more detail in the remainder of this chapter.

2.2.1 Alert normalization
In the correlation process alerts are received in different formats from
different sensors. Intrusion Detection Message Exchange Format
(IDMEF) [17] is an XML-based standard for intrusion detection alerts.
This standard enables a correlation system to read alerts from different
IDS sensors. IDMEF is a specification provided by the Intrusion
Detection Working Group (IDWG).

The purpose of IDMEF is to define data formats and exchange procedures
for sharing information of interest to security incident detection and
response systems. In order to make Alerts compliant with the Intrusion
Detection Message Exchange Format (IDMEF), it requires translating raw
alerts into a standardized alert format, and assigning them with a
standardized name. This format includes a comprehensive set of attributes
that can be used by the IDS when reporting alerts. IDMEF is a very useful
standard, but it has its problems. For instance, not many of the attributes
are required, and for many of the attributes that are required the value
\unknown" is accepted. As a result, many IDSs output alerts with most of
the attributes set to \unknown".

Another problem is that the IDMEF standard only specifies the syntax of
alerts; not the contents of these alerts. For instance, the attack type, which
is one of the most important attribute, does not have any standard naming
convention associated with it. As a result, different sensors call the same
attack by different names. That is, one sensor can refer to a port scan as
"port-scan" while another sensor can refer to the same attack as "scanning
activity".

23

The attributes of raw alerts need to be copied to the appropriate fields of
the alert as defined by the attribute mappings in the normalization
database. The attributes of the standardized alert contain alerted type,
analyzer time, attacker nodes, attack graph, consequence, name, priority,
etc.

RFC4765 [18] describes a data model to represent information exported
by security incident detection systems and explains the rationale for using
this model. An implementation of the data model in the Extensible
Markup Language (XML) is presented; an XML Document Type
Definition is also developed.

One fact should be taken care is that time difference among each network
sensors exists in an alert fusion system. All the clocks of the sensors used
in the fusion system have to be synchronized. This can be achieved by
using the Network Time Protocol (NTP). NTP is a protocol for
synchronizing the clocks of computer client or server to another server or
reference time source over packet-switched, variable-latency data
networks.

2.2.2 Alert aggregation and Fusion
The goal of the alert aggregation is to aggregate large overlap alerts.
Aggregation is the grouping of alerts that both are close in time and have
similar features. It fuses together different “views” of the same event.
Each alert usually has several attributes associated with it, for example,
source and target IP addresses.

The similarity-based alert correlation approaches could provide a way to
identify what sets of correlated alerts may be further integrated based on
the similarity between their attributes. These approaches perform alert
correlation through measuring the similarity between alerts attributes to
discover the relationships among these alerts. For example, the model
proposed in [19] presents a correlation process utilizing an alert similarity
metric. The correlation process is carried out in three phases.

24

The first phase aggregates low-level events using the concept of attack
threads. Alerts are clustered together if they are similar with respect to a
similarity metric. The metric for the thread phase requires that the sensor
field, attack class, attack name, source, and target in the alerts are the
same. The idea is to cluster alerts that are part of the same ongoing attack.
The next correlation step utilizes a different similarity metric. The
requirement that the sensor field is the same is dropped; in addition, the
requirement that the alert name is the same is relaxed. The idea of this
step is that detection of the same attack by multiple sensors should be
fused. The third and last correlation step utilizes another similarity
function. This metric relaxes the requirement that the attack class should
be the same. The idea of this correlation step is to merge alerts
representing different attack steps, in an attempt to provide a higher-level
view of the security state of the system.

In [20], a system that performs both aggregation and correlation of
intrusion detection alerts produced by a number of different sensors has
been proposed. A detailed semantic alert model is presented, and adapter
modules are developed to map proprietary alert formats into this model.
The pre-processed alerts are first correlated. Two different types of
correlation are performed: duplicate removal, and consequence
correlation. Duplicates are instances of the same attack as detected by two
different sensors, and are detected utilizing rules read from a
configuration file. Consequences are rules specifying that one event
should be followed by another type of event. After correlation,
aggregation is performed.

The aggregation phase clusters together alerts with similar attributes.
Three different attributes are utilized in the aggregation phase: source,
target, and attack class. The aggregation phase identifies hosts that are
sources of attacks, hosts that are the target of attacks, and popular attack
classes. For example, if alerts were generated for DDoS attack packets,

25

they would be either similar in destination and attack class in destination,
if two alerts are similar in source and target IP addresses, it may be
possible that the corresponding attacks are launched by the same attacker.

In [21], a real time aggregation and correlation system named Alertclu is
described. Using similarity-based alert clustering analyzing technology,
Alertclu can improve the aggregation of intrusion detection system
outputs and allow one to seamlessly incorporate additional information.
In addition, Alertclu supports the operators by classifying alerts into true
positives and false positives. The results of experiments show that the
proposed system is able to reduce the numerous redundant alerts and
effectively reduces the analyst operators’ workload.

2.2.3 Alert verification and Prioritization
The purpose of the verification component is to take a single alert and
determine the success of the attack that corresponds to this alert. The idea
is that alerts that correspond to failed attacks should be appropriately
tagged and their influence on the correlation process should be decreased.
In general scenario, the alert corresponding to the worm attack is
identified as unsuccessful attack action for a UNIX/Linux service,
because it is an exploit for Microsoft Windows. Thus, the alert is tagged
as non relevant and excluded from further correlation. Alert verification
using vulnerability analysis information has been advocated as an
important tool to reduce the noise in the alert stream produced by
intrusion detection sensors in [22].

Alert verification can be performed using both passive alert verification
and active alert verification techniques. Passive alert verification depends
on a priori information gathered about the hosts, the network topology,
and the installed services. This technique periodically performs
vulnerability scans and updates a database of network assets. This
database is then accessed by the correlation system when processing the

26

alerts. If an alert is received and the database indicates that the attacked
service is not vulnerable the alert is suppressed.

The advantage of passive techniques is not necessary to perform
additional tests, and do not interfere with the normal operation of the
network. The disadvantage of passive mechanisms is the potential
difference between the status stored in the knowledge base and the actual
security status of the network and does not support dynamic mechanisms
for alert verification. Instead, they rely on information about the security
configuration of the protected network that was collected at an earlier
time using vulnerability scanning tools.

Active verification techniques need to look for evidence of the success of
an attack by checking information at the victim machine and perform the
vulnerability scans as the alerts arrive and do not rely on a database.
Scanners are usually adopted in active verification techniques. For
example, when a Windows DCOM RPC buffer overrun attack is detected
by an detection system, a scanner will be activated. If the scanner script
that checks for this particular vulnerability (“Microsoft RPC Interface
Buffer Overrun KB824146”) reports that the host that was attacked does
not run the Windows RPC service, this alert can be ignored.

Unfortunately, active actions are visible on the network and scanning
could possibly have an adverse effect on one’s own machines. It is
important to pay attention that scan test run by a vulnerability scanner
could crash a service. Port scanning also consumes network bandwidth
and resources at the scanned host. One also has to make sure that the
alerts generated in response to the activity of the vulnerability scanner are
excluded from the correlation process in order to avoid going in an
infinite loop of alert detection - scanner execution.

The purpose of alert prioritization is to classify alerts based on their
severity and take appropriate actions for dealing with each alert class.
Alert prioritization component should take into account various domain

27

information in addition to alert types. Security policy, network topology,
vulnerability analysis of the network services and installed software, and
asset profiles are some of factors affecting priority of alerts. The
prioritization is performed by considering the importance of the asset
under attack and the likelihood that the attack will succeed.

The model in [23] relies on a formal description of sensor capabilities in
terms of scope and positioning to determine if an alert is a false positive.
More precisely, the model is used to verify if all sensors that could have
been able to detect an attack agreed during the detection process,
assuming that inconsistent detections denote the presence of a false alarm.
While this approach benefits from a sound formal basis, it suffers from
the limitation that false alerts can only be detected for those cases in
which multiple sensors are able to detect the same attack and can
participate in the voting process.

Unfortunately, many real-world intrusion detection systems do not
provide enough detection redundancy to make this process applicable.
The model can be seen as a formal model for representing security related
information including vulnerabilities, security tools, alerts and
information system characteristics. Although it provides the formalism for
modeling security related information, specific mechanisms are still
required for prioritizing alerts.

2.3 Alerts Correlation Techniques

Alert correlation focuses on discovering the relationships between
individual alerts raised by security incident detection systems and other
security systems. Alert correlation has to do with the recognition of
logically linked alerts, and is dedicated to disclose the logical association
between network attack activities by analyzing their corresponding alerts.

Generally, the method of alert correlation deals with meta-alert which is
generated by alert aggregation. The main approach of alert correlation can
be divided into three classifications: correlation of attack scene,

28

correlation of prerequisites and consequences, and causal analysis
correlation based on a statistical technique.

2.3.1 Correlation of Attack Scene
The methods in [24] studies the relationship between contextual attack
behaviors and use the method of correlation rule matching based on the
causality relationship between two contextual attack steps to construct
attack scenarios. This method is similar to the way of misuse detection.
The predefined attack scenarios based approaches correlate alerts based
on known scenario templates. The templates are patterns of known
sequences of attacks consisting of individual attack steps. Then, they
match agent alerts to attack steps in the scenario templates.

In [25], a new method of mining multi-stage attack behaviors pattern was
proposed in order to recognize attacker's high level strategies and predict
upcoming attack intentions. Authors applied a reformative algorithm to
mine frequent attack sequence patterns from history alert data. They also
used correlativity between two contextual elements in the attack sequence
to correlate attack behaviors and identify potential attack intentions.

In [26] event correlation and attack scenario construction based on
association with network attack graphs is proposed. It handles missed
detections through the analysis of network vulnerability dependencies.
The attack graph provides the necessary context for intrusion events, and
provides the graph distances upon which the correlations are based.
Online event processing depends on pre-computed attack graph distances
only, and requires only a lookup and 4 arithmetic operations. To compute
attack graph distances (offline), a model of attacker exploits and network
vulnerabilities have been built.

The network vulnerability model has been created automatically from
output of the Nessus [27] vulnerability scanner. The model then computes
the distance of the shortest path between each pair of exploits in the attack
graph. These distances are a concise measure of exploit relatedness,

29

which could be used for subsequent online causal correlation of intrusion
detection events. From the online stream of intrusion events, individual
event paths have been built based on attack graph reachability. The
inverse distance between each event in a path is a measure of correlation.

The approach proposed in [28] consists of a number of phases including
alert clustering, alert merging, and intention recognition. In the first two
phases, alerts are clustered and merged using a similarity function. The
intention recognition phase is referenced in their model, but has not been
implemented. An interesting aspect of this approach is the attempt to
generate correlation rules automatically. While it may seem appealing,
this technique could generate a number of spurious correlation rules that,
instead of reducing the number of alerts and increasing the abstraction
level of the reports, could introduce the correlation of alerts that are
“close" or “similar" by pure chance, in this way increasing the noise in the
alert stream.

Some approaches [29, 30] specify attack scenarios through attack
languages. In [30] attack scenarios through chronicle language are
modeled. A chronicle is a set of events that are connected by temporal
constraints. The key of this method is how to construct the scenario
templates by the patterns of correlated alerts. Several algorithms were
developed for the mining of sequential patterns. It proposes a multi-alarm
misuse correlation component based on the chronicles formalism.

In [31] State Transition Analysis Technique (STAT) has been provided to
model and detect security incidents in large-scale, heterogeneous
networks. In [32] propose a completely decentralized approach to solve
the task of event correlation and information fusing of the data gathered
from multiple points within the network is proposed. The system models
an intrusion as a pattern of events that can occur at different hosts and
consists of collaborating sensors deployed at various locations throughout
the protected network installation. They present a specification language

30

to define intrusions as distributed patterns and a mechanism to specify
their simple building blocks.

The peer-to-peer algorithm to detect these patterns and its prototype
implementation, called Quicksand, is developed. These methods can
potentially uncover the causal relationship between alerts, but they need
to define the specification of attacks and the results rely on the precision
of correlation rules. Such limitations make the methods hard to
implement.

2.3.2 Correlation of Pre and post conditions
Pre and post conditions (also called prerequisites and consequences) are
defined for individual attacks. The prerequisites and consequences based
approaches [33, 34] model each attack through describing its prerequisites
and its consequences. Intuitively, the prerequisite of an attack is the
necessary condition to launch an attack successfully, and the consequence
of an attack is the possible outcome if an attack succeeds.

Alerts are connected (or correlated) when the post condition of one alert
matches the precondition of a later one. This allows for the specification
of complex chains of attacks without having to explicitly model complex
scenarios. For an example of an attack that can be correlated using this
technique, consider an attack where the intruder first breaks into a host in
the Demilitarized Zone (DMZ) of a company. A demilitarized zone is a
computer network that sits between the internal network and the Internet
and acts as a security buffer. After breaking into this host, the attacker
performs another attack starting from the compromised host. Both steps
of the attack are detected by intrusion detection sensors and alerts are sent
to the correlation system.

Upon receiving the first alert, the correlation system utilizes a rule that
says no precondition is needed to attack a host in the DMZ and the
postcondition is that the attacker has access to the attacked host. The
second attack step triggers a rule that has a precondition that says that

31

attacks originating from the DMZ require access to the DMZ host. The
postcondition of this rule is that the attacker has access to an internal host.
These two alerts will now be joined, since the postcondition of the first
attack (access to a DMZ host) matches the precondition of the second
attack.

Another example of a technique that uses pre and postconditions to
identify causal relationships between alerts is presented in [35]. In this
paper, attack conditions are expressed using capabilities and concepts.
Capabilities are used to describe both information that the attacker must
know to perform a certain attack (e.g., a user name and password for a
valid account), or a condition that represents a necessary context for an
attack (e.g., a particular configuration of the network). Concepts are used
to model fragments of complex attacks (e.g., a denial-of-service attack
against a specific host) and both their requisites and their impact on the
security of the protected network are expressed in terms of capabilities.

By composing the capability provided by a concept with the capability
required by another concept it is possible to recognize complex attack
scenarios (e.g., a remote shell connection spoofing that relies on a denial
of-service attack).

The correlation method [36] uses logical formulas to represent the
prerequisites and consequences of attacks. A logical formula is a logical
combination of predicates. The prerequisites, consequences and attributes
of attacks are formalized as meta-alert types (or alert types). A hyper-alert
type (or alert type) is a triple (fact, prerequisite, consequence), where the
fact is a set of alert attribute names associated with the corresponding
domains, the prerequisite is a logical formula, and the consequence is a
set of logical formulas.

The usefulness of the system has been demonstrated by showing how it
could significantly reduce the number of false alarms reported by a
detection system while negligibly reducing the valid alarms. Their tool is

32

most logically used as an off-line forensic tool for mining old stored alerts
after a new vulnerability is found.

2.3.3 Casual analysis Correlation based on Statistical Techniques
In [37] the proposed model focuses on discovering novel attack strategies
via analysis of security alerts. In alert correlation, the developed
correlation system was based on two hypotheses of attack step
relationship. The first hypothesis is that some attack steps are directly
related because an earlier attack enables or positively affects the later one.
They developed a probabilistic-based correlation engine that incorporates
domain knowledge to correlate alerts with direct causal relationship.

The second hypothesis is that some related attack steps, even though they
do not have obvious or direct (or known) relationship in terms of security
and performance measures, still exhibit statistical and temporal patterns.
Two correlation engines have been developed to discover attack transition
patterns based on statistical analysis and temporal pattern analysis,
respectively. Based on the correlation results of these correlation engines,
they construct attack scenarios and conduct attack path analysis. The
security analysts are presented with aggregated information on attack
strategies from the integrated correlation system.

Alert fusion is more complex when taking into account anomaly detection
systems, because no information on the type or classification of the
observed attack is available to the fusion algorithms. The model proposed
in [38] generated high level correlated alerts from low level sensor data
and then conducted causal analysis based on a statistical technique,
known as the Granger Causality Test (GCT), to discover new patterns of
attack relationships. They used time series analysis methods to find
implicit relationships in alert data. They grouped alerts sharing all
attributes together allowing a small time window in the order of few
seconds. This grouped alerts issued on the same attack. In next step they
grouped alerts with identical attribute values apart from the sensor. This

33

step aggregated together alerts related to the same attack issued from
heterogeneous sensors, again a small difference in time stamps is allowed.

2.3.4 Distributed Correlation
The model proposed in [39] describes a mission-impact-based approach
to the analysis of security alerts produced by spatially distributed
heterogeneous information security (INFOSEC) devices, such as
firewalls, intrusion detection systems, authentication services, and
antivirus software. The intent of their work is to deliver an automated
capability to reduce the time and cost of managing multiple INFOSEC
devices through a strategy of topology analysis, alert prioritization, and
common attribute-based alert aggregation.

This approach relies on a knowledge base that describes the security-
relevant characteristics of a protected network to prioritize the alerts
through computing rank of the alerts and clustering them based on the
ranks. The knowledge base is called Incident Handling Fact Base, which
provides some critical information regarding alert codes, their
descriptions, and dependencies of alert types to their required OS
versions, hardware platforms, network services and vulnerabilities. Using
this knowledge base a simple form of passive alert verification could be
performed where alerts representing attacks against non-existent services
are discarded.

The information about network assets is gathered using Nmap [40] and
contains only information that is gathered by this specific tool (e.g., IP
addresses, installed operating systems, and open ports). The prioritization
is performed by considering the importance of the asset under attack and
the likelihood that the attack will succeed. They developed a prototype
system called the Mission Impact Intrusion Report Correlation System, or
M-Correlator. M-Correlator is capable of receiving security alert reports
from a variety of INFOSEC devices. It is intended to provide analysts (at
all experience levels) a powerful capability to automatically fuse together

34

and isolate those INFOSEC alerts that represent the greatest threat to the
health and security of their networks.

In [41] a novel intrusion detection system for grid systems is presented. It
is intended to identify potential attackers who try to modify or
compromise the applications sent to execution by various users or target
different resource groups within the Grid. The system makes use of a
number of available local intrusion detection systems which send data to a
grid-level intrusion detection system that takes decisions based on an
overview of the entire Grid.

These IDS can correlate the information received from the local systems,
as well as monitoring data from the Grid System, using statistical
methods, to identify attacks that cannot be detected at a local level.
Another contribution of this paper is the classification of threats based on
the intent of the attacker. This paper also demonstrates that these types of
attacks can be detected using the proposed complex intrusion detection
system.

The model in [42] is proposed to achieve alert correlation which supplies
information about the vulnerabilities. They used a hyper-alert type to
encode their knowledge about each type of attacks. The proposal has a
relational database that implements parts and the corresponding tables are
automatically generated from data sources. IDS and vulnerability scanner
fill the database with events.

In [43] it is analyzed how the control and estimation methods can be
applied to correlate distributed events for network security. Based on
those methods, a Process Query System has been implemented which can
scan and correlate distributed network events according to users’ high-
level description of dynamic processes.

35

2.4 Alert Correlation Limitations

Most of the approaches based on pre and post conditions focus on the
modeling and detection of multi-step attacks to provide a high-level view
of the “attack history" associated with a security compromise. It is
assumed that the analyzed event stream is composed only of well-defined,
relevant alerts, and that real attacks trigger more than a single alert. As a
result, these systems can focus on clusters of related alerts and discard all
alerts that have not been correlated.

Unfortunately, this assumption has not been substantiated by
experimental data or supported by a rigorous analysis. In practice, it is
often necessary to filter out irrelevant alerts that may generate spurious
attack histories. This view is supported by [44] on alert correlation, which
states that false alerts generated by IDSs have a negative impact [on
correlation].

A limitation of approaches that are based on pre and postconditions is the
need to manually define these conditions for all alerts. In addition, when
only dependencies between alerts are modeled (as opposed to complete
scenarios), it is not possible to monitor the evolution of a particular
scenario instance from state to state in real-time, possibly anticipating the
further progress of an intrusion. In addition, it requires that all the
relevant preconditions and postconditions are modeled. If a relevant
precondition or postcondition is not modeled, some causal relationships
between alerts could go undetected.

Given the large number of attacks and the platform-specific nature of pre
and postconditions, effective alert reduction would require a substantial
modeling effort, similar to the effort required to develop complete attack
rule sets for misuse-based detection systems. Another problem is the
assumption that only attacks that are carried out in multiple steps are
important. While it is reasonable to give high priority to alerts that have

36

been detected as part of a multi-step attack, it is not wise to disregard all
alerts that are not part of a multi-step attack.

2.5 Agents in IDS and Correlation

Agent is as a distinct software process being able to accomplish some
work without manual intervention and supervision in certain condition
[45]. It is self-adaptable, intelligent and collaborative. An Agent not only
works independently, but also can accomplish some missions and
cooperate with other Agents. Further, an Agent can be controlled to
perceive the change of environment and act to the environment back.
Agents are autonomous that can act independent from other agents and
perform different tasks. They are also robust and fault-tolerant to
changing environments.

There are two kinds of agents: static agents and mobile agents. A static
agent was the first proposed agent technology which is applied in the area
of intrusion detection. A static agent, that is to say, the agent that resides
in a fixed position or some fixed platforms. A mobile agent is an entity
capable to move from a node to another over the network in order to
perform the work locally. It permits to spread dynamically the server
interfaces managed on the different sites. It guarantees a big resistance to
network breakdowns; it also permits savings of bandwidth since
negotiations between mobile agent and server consist in local message
exchanges that don’t pass by the network [46].

In an agent based IDS idea, there is no central node, therefore no central
point of failure. Overcoming the deficiency of centralized structure is the
major reason for using agents in the intrusions detection field. The agents
usefulness includes also reduction of the network load, overcoming of
network latency and support for disconnected operations.

In [47], a lightweight and adaptive mobile agent-based intrusion detection
system (LAMAIDS) is presented. The presented model detects intrusion
from outside the network as well as from inside. A main machine, being a

37

typical intrusion detection system residing at a secure location, creates
mobile IDS agents and dispatches them into the network. The mobile IDS
agents are equipped with lightweight IDS capabilities and decision-
making. On each hop, the agents sniff the network traffic and look for
abnormal activities using a set of rules supplied by the main machine.
Simulation results based on real-world scenarios demonstrate significant
improvements in terms of detection rate, network overhead, and
adaptability, scalability, and fault tolerance.

In [48], a novel hybrid model for Mobile Agent based Distributed
Intrusion Detection System was proposed. The proposed model has new
features such as robustness, capability of detecting intrusion against the
IDS itself and capability of updating itself to detect new pattern of
intrusions. In addition, the proposed model is also capable of tackling
some of the weaknesses of centralized Intrusion Detection System
models.

In [49] a distributed intrusion detection system model based on agents is
proposed. This system adopts the way which combines static agent and
mobile agents, Host-based Intrusion Detection System (IDS) and
Network-based Intrusion Detection System. The system uses mobile
agent for decentralized data collection, data analysis and response, and
has certain dynamic learning capability.

In [50, 51], an autonomous agent has been trained to observe system
behavior and flag any anomalous activity. In this prototype, agent
monitors the network traffic and been subjected to training phase to detect
the malicious behavior in the network by human operator. In [52],
distributed agent architecture have been used for intrusion detection, the
model proposed a mobile agent based model for intrusion detection
system, called MAFIDS, including new metrics issued from emergent
indicators of the agent synergy and a proposed event correlation engine.
The model implementation showed its capabilities to detect the SYN

38

flooding attack in a short time and lower false alarm rate by comparing it
to SNORT [53]. The idea was to take advantage from agent technology to
overcome two major problems of other IDS: a longer detection, higher
false alarm rate.

In [54, 55], distributed agent approach for alarm correlation was proposed
to identify the root causes of network failures and fault identification. The
proposed model presented a new distributed alarm correlation approach
that effectively tackles the aforementioned data deficiencies. According to
the proposed approach, the managed network is first divided into a
disjoint set of management domains and each domain is assigned an
intelligent agent, the intelligent agent perceives each network entity in its
domain as a source of information and assigns weights for emitted alarms
by these entities. Based on their weights, the observed alarms are then
correlated by their respective agent into a single local fuzzy composite
alarm. Since local composite alarms constitute only partial views of the
managed network, they are correlated, by a higher management entity,
into a global alarm that accurately reflects a comprehensive view of the
managed network.

2.6 Comprehensive Approach Model for IDS Alert Correlation

Comprehensive approach model for real-time alert correlation [56 - 58]
has been produced as integrated solution. It consists of a set of correlation
components which cover different correlation techniques as shown in
Figure 2.1. The alert correlation module is composed of a set of
procedures which can be arranged in different ways. Some procedures
process data of an alert and the others implement correlation methods by
combining alerts using individual filters.

Six main components have been implemented depending on five types of
filters: Fusion, One2One, Network-Host, One2Many, and Many2One.
The correlation components which effectively reduce alerts are: Alert
Fusion (AF) which combines duplicate alerts that represent the

39

independent detection of the same attack by different IDS. Alert
Verification (AV) which takes a single alert and determines the success of
the attack corresponding to that alert. Thread Reconstruction (TR) which
combines a series of alerts that refer to attacks launched by a single
attacker against a single target. Attack Session Reconstruction (ASR)
associates network-based alerts with host-based alerts that are related to
the same attack.

Figure 2.1 comperhensive approach model for IDS alert correlation

Focus Recognition (FR) which identifies the hosts that could be the
source or the target of a substantial number of attacks. More specifically,
this component aggregates the alerts associated with a single host
attacking multiple victims (called a one2many scenario), and a single
victim that is targeted by multiple attackers (called a many2one scenario).
Multi-Step Attack (MSA) which identifies common attack patterns such
as recon-breakin-escalate or island-hopping attacks {attacker breaks into a
host and uses it as a launch for more attacks}. The victim in one alert
becomes the attacker in the following one. There are more additional two
components: impact analysis, and prioritization, that depend on the nature
and the policy of the protected network. However, both of them are not
evaluated in this approach.

40

The study and analysis of components reduction rate of the model is
shown in Table 2.3. The rows represent different CAM components
reduction rate values, while the columns represent the different used
datasets. The table shows that TR and FR components have the highest
Reduction Rate (RR) percentage, are considered the most effective
components used for all datasets. Both AF and MSA have lower RR
values, yet they are still used for the most of datasets. Each of AV and
ASR does not have any effect except on one dataset only. It is concluded
that the affected correlation components are six (AF, AV, TR, ASR, FR,
MSA), but not all of such components are used for all different dataset
(The average is 3.7 component).

Table 2.3 CAM Components Reduction Rate for Different Datasets

The performance of IDS correlation is measured by reduction rate and
correlation time. The correlation time for each component is calculated by
the count of input alerts and the correlation time for each alert. The
sequence order of correlation components affects the correlation process
performance; the total time needed for the whole process depends on the
number of processed alerts in each component. Table 2.3 shows analysis
result of the effectiveness of each component on the different analyzed
datasets. The last row shows the total count of effective components

41

whose reduction rate is more than zero value. Such count differs
according to the dataset, and varies from minimum two components in
the case of “Rome AFRL” dataset to five in the case of” Treasure hunt”.
The RR for each component varies from 0 to 99.91 % depending on the
component algorithm and selected dataset.

Different reduction rates of each component simply affect the following
component input of alert stream, i.e. the arrangement order of the
components is a primary concern for each dataset to obtain faster
correlation process. Different RR of a single component in different
dataset is varying because of the difference of attack scenario, and target
networks used for each dataset.

42

CHAPTER 3

Distributed Agent

Correlation Model

Chapter Three: Distributed Agent Correlation Model

As stated earlier, alert correlation is a major required mechanism to
provide useful and comprehensive output of IDS. Although several
techniques have been proposed to carry such a mechanism there is still a
lot of work to enhance, both the performance and quality of such
techniques. Whereas having an additional source of information about a
particular event is useful when the uncertainty of the source, the accuracy,
and the scope of that event is considered. In this chapter a novel model is
proposed to enhance both the performance and quality of the correlation
task. Agents, learning, and multi sources output correlation are used to
achieve this task. In the rest of this chapter a description, component, and
features of the proposed model will be illustrated.

3.1 Distributed Agent Correlation Model Description

Distributed Agent Correlation Model (DACM) is a multi-agent
distributed correlation model in a hierarchical organization. It correlates
alerts from IDS’s and from other sources of information. Data sources for
correlation are IDSs, system and application log files for different
services provided by the system, and security tools. Examples of security
tools are firewalls, vulnerability scanners, and performance monitors,
while examples of application and system log files are audit system logs,
FTP logs, SSH logs, http/https logs, and OS log files.

Figure 3.1 shows the block diagram of DACM. The figure shows that
DACM has its inputs from different information sources. DACM core
correlates these input data using a set of local and central agents
depending on the learning capability as well as knowledge base and
security policy. Finally, DACM produces the output as a report for
security administrator or automated response capability. DACM phases
include: collection, storage, analysis, presentation, sharing, and reaction.
The details of each agent will be described in the rest of this chapter while
the detailed implementation will be described in the next chapter.

43

Figure 3.1DACM Block Diagram

DACM core agents consist of a set of correlation agents for different
sources of information. These agents are grouped into three main
classifications: IDS's correlation agents for both network based and host
based IDSs, INFOSEC tool agents for different available security tools in
the system, and system and application log agents for different auditing
logs of operating system and available serves and application.

3.1.1 IDSs Correlation Agents
IDS alert correlation consists of a set of correlation components within a
certain structure. IDS sensors could be network based IDS or host based
IDS, each of them produces its own alerts. Network based IDS has local
correlation agents to correlate its alerts, on the other hand host based IDS
has its own correlation agent. The main IDS correlation agent correlates
the output of network based correlation agent and host based correlation
agent together and produce IDS’s correlated alerts. Figure 3.2 shows a

44

Network Based IDS

Network Based IDS

Network Based IDS

block diagram of IDS's correlation agents for IDS sensors of network
based and host based IDS's.

Main IDS

Correlation Agent

NIDS Agent

HIDS Agent

Network Based IDS

Host Based IDS

Figure 3.2 IDS Correlation Agents

Figure 3.3 shows an example of the output of snort IDS as network based
IDS using Basic Analysis and Security Engine (BASE) tools [59]
interface, the output shows alert attributes discovered by snort for
intrusion attempts.

Figure 3.3 IDS alerts Output using BASE for Snort

Details of the used correlation techniques for IDSs correlation agents are

45

presented in section 4.2 in next chapter.

3.1.2 INFOSEC Tools Agents
Information Security tools are software which concern and analyze the
information exchange within network traffic to determine which of this
traffic trying to access resources as illegitimate behavior. A firewall is one
of the most famous tools which consists of software and/or hardware
devices. A firewall [60] is a secure internet gateway that is used to
interconnect a private network to the Internet. It is used as a technological
barrier designed to prevent unauthorized or unwanted communications
between computer networks or hosts, depending on a set of access control
lists within the network hosts and resources. Figure 3.4 shows the content
of firewall router log files which shows the blocked list of IPs trying to
access the website without authorized privileges or access control policy.

Figure 3.4 Firewall router log file1

1 Larger image of Figure 3.4is included in Appendix A

46

Local Agent to correlate (aggregate) firewall router log files entries and
group these entries for each blocked IP per day. Correlation is based on
grouping the same blocked IP into a single record, a number of attempts
field is added as an aggregation attribute.
A vulnerability scanner [61] is a computer program designed to assess
computers, computer systems, networks or applications for weaknesses.
There are a number of types of vulnerability scanners available today,
distinguished from one another by a focus on particular targets. Types of
vulnerability scanners could be Port Scanner, Network Enumerator,
Network Vulnerability Scanner, Web Application Security Scanner,
Database Security Scanner , and Computer Worm. A system monitor is
hardware and/or software based system used to monitor resources and
performance in a computer system. DACM has INFSEC agent to
correlate the output of these tools according to specific behavior.

Other local agents correlate vulnerability scanner outputs according to
scanner type. Mainly the vulnerability that is related to the same target
port and grouped together, and the IP/Port combination are used to
identify this alert.

Performance monitor tools provide and view information about the use of
hardware (CPU, memory, disk, and network) and software (file handles
and modules) resources in real time. It displays basic system resource
usage information, and displays column lists of processes, services,
associated handles and associated modules; charts of CPU usage. It also
displays overall physical memory consumption and separate consumption
of every process; charts of used physical memory. It views disk usage
through displaying processes with disk activity, storage, charts of disk
usage (KB/sec), and disk queue length. Finally, it displays processes with
network activity, TCP connections, and listening ports.

Performance monitor tools allow network administrators to proactively
discover and address end-to-end network performance issues, measure the

47

http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Application_software
http://en.wikipedia.org/wiki/Port_scanner
http://en.wikipedia.org/wiki/Network_enumerator
http://en.wikipedia.org/w/index.php?title=Network_vulnerability_scanner&action=edit&redlink=1
http://en.wikipedia.org/wiki/Web_application_security_scanner
http://en.wikipedia.org/w/index.php?title=Database_security_scanner&action=edit&redlink=1
http://en.wikipedia.org/wiki/Computer_worm

Network Based IDS

Network Based IDS

Network Based IDS

Network Based IDS

Network Based IDS

Network Based IDS

amount and type of traffic on a particular network, and locate and
diagnose congestion and latency problems for network troubleshooting by
using real-time and historical reports

Local agent correlates/aggregates performance monitor outputs according
to specific use of profile matching. This agent type analyzes the network
performance monitoring tool outputs. Normal network performance
thresholds values are defined in different intervals during the day
resulting in a performance profile. This profile is constructed by
supervised learning and stored in the knowledge base. If the monitored
performance exceeds the threshold, an alert is generated. Multiple alerts
for the same performance metric and period are grouped together;
performance metric is used for traffic rate, usage ratio, congestion rate
and so on. Figure 3.5 show block diagram of INFOSEC tools agents.

Firewall Routers Vulnerability Scanners Performance Monitors

VS Agent FW Agent PM Agent

Figure 3.5 INFOSEC Tools Correlation Agents

3.1.3 System and Application Logs Agents
System logs consist of audit log files and application log files. Audit logs
contain activities within each system user about his/her transaction with
system files, where application log files contain the entries associated
with specific services and hosts within the computer system or network.
These logs may be either access log or error log within each running
application or service. DACM includes local agents to correlate each
system log file contents according to specific pattern matches and
comparing attack profiles which were previously generated during
learning period. These patterns and profiles are generated from a

48

Network Based IDS

Network Based IDS

Network

Network

Network Based

Network

B d IDS

Network

supervised learning process where normal and abnormal log patterns are
identified by an operator or by the learning agent.

Figure 3.6 shows the contents of FTP log file as one of possible
application logs which can be used within a network. Log file shows the
complete session instruction for a specific user and his action since the
FTP session opened and his transaction till the end of the session.
Detailed description of the log content and whether these contents
represent malicious or normal behavior will be described in chapter 4.
Figure 3.7 block diagram of different agents for system and application
logs files.

Figure 3.6 FTP Log Files2

SSH Agent SA Agent HTTP Agent FTP Agent

System Audit files SSH log files B d IDS
B d IDS

FTP log files HTTP log files IDS
B d IDS

Figure 3.7 System and Application Logs Correlation Agents

2 Larger image of Figure 3.6 is included in Appendix A

49

Service and application logs have formal description in which they
represent mathematical relation to determine the attack signature in their
log files, FTP Agent3 as an example of these agents can be formally
described as follows:

AFTP ∈ FTP alerts
FTP Entry (IP, Date, Time, Command, User) ∈ FTP Log
{S}: set of unauthorized FTP commands; {U}: set of unauthorized users
∀ Entry ∈ FTP Log
If command (FTP Entry) ∈ {S} or user (FTP Entry) ∈ {U}
Then FTP Entry is malicious, Produces AFTP
FTP Entry (IP, Date, Time, Command, User) FTP Attack Table
Else
Read next FTP Entry

3.1.4 DACM Central Agent
Main central agent correlates alerts from IDS’s with outputs from other
local agents from other information sources. This agent is the heart of the
model it provides better understanding of the network. Each local agent
aggregates/correlates events from its source and modifies it to standard
alert format and stores these results in its own table for main agent. Each
agent has specific function and data to extract depending on its source of
information and taking into account the network nature like impact
analysis and prioritization. The output correlation of the central agent
represents the final intrusion reports provided to security admin. These
reports include even summary results or detailed intrusion attempts.

Standard alerts representation is used where the alert name and attributes
are stored in a table as illustrated in Figure 4.8. Correlation between alerts
from different sources is done based on a similarity function for the
source of attack, attack type, and near time stamps.

3 Formal description other individuals agents and central agent are presented in
Appendix B

50

sid cid Sig_id sig_name timestamp ip_src ip_dst proto sport dport

Figure 3.8 Standard Alert Attributes

3.1.5 Formal Description for Central Agent
Formal description is a method of presenting software systems in a way to
facilitate further analysis for several metrics as completeness and
correctness. In this section, a formal description for the central agent4 is
given as an example to show the mathematical formula used in the agent.

Ai ∈ 𝐼𝐼𝐼𝐼𝐼𝐼 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎, Af ∈ 𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 , AL ∈ 𝑎𝑎𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ;

Ai (source, time, destination, type) ∈ 𝐼𝐼𝐼𝐼𝐼𝐼 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
AF (source, time, destination) ∈ 𝐹𝐹𝐹𝐹𝑎𝑎𝑎𝑎𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
AL (source, time, destination, type) ∈ 𝐿𝐿𝑙𝑙𝑙𝑙𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
∀ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 Ai

Ai Is verified alerts w.r.t. AF

If source (Ai) = source (AF) And Destination (Ai) = Destination (AF)
And |Time (Ai) – Time (AF)| <= Tthreshold

Where Tthreshold is the minimum allowed difference time

Ai Is verified alerts w.r.t. AL

If source (Ai) = source (AL) And Destination (Ai) = Destination (AL)
And |Time (Ai) – Time (AL)| <= Tthreshold

Where Tthreshold is the minimum allowed difference time

Ai Is IDS only
If attributes (Ai) < > attributes (AL) OR
Attributes (Ai) < > attributes (AF)

Ai Is Low and Slow attack

4 Formal description of Other individuals agents and central agent are presented in
Appendix B

51

Ai is IDS only and Count (source [Ai]) = 1 per day
And days (source [Ai]) > 3
∀ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 AL,

AL is negative alert w.r.t. AI

If source (Ai) = source (AL) and
Time (Ai) < > Time (AL)
Or attributes (AL) < > attributes (Ai)

AL is reconnaissance
If count (AL) > ATh

Where Al is access count of specific IP / day and
ATH : allowed threshold access per day

3.1.6 Response Agent
The response agent is responsible for the suitable action against the
attacker. The response agent interacts with the main central agent to
respond depending on the final report. The final report contains summary
of correlated attacks and the response agent suggests suitable response
against these attacks. The attack response matches are included in specific
tables according to the knowledge base in the system depending on
historical behavior or learning systems. The implementation of the
response agent is not included in this thesis and could be considered as
important topic for future work.

3.1.7 Learning Agent
The proposed model has learning capability through learning agent which
learns the precondition and post condition of new attacks as well as
needed learning from other sources, in log files which of the log contents
could be considered as attack signatures and which is considered normal
signature. The model support adaptive learning by providing the contents
which has not been previously indicated as either an attack or a normal
signature. These contents are classified into three different types; similar
to attack, similar to normal and unknown. Later, the system administrator
can convert any of these types to either a normal or an attack signature.

52

Network Based IDS

Network Based IDS

Network Based IDS

Network Based IDS

Network Based IDS

Network Based IDS

To enhance learning capability and trace attacker behavior, honey pot
agent could be used to learn new attacks and build attack profiles for
more accurate knowledge base. A honey pot [62] is a trap set to detect or
deflect attempts at unauthorized use of information systems. It consists of
a computer, data, or a network site that appears to be part of a network but
which is actually isolated and protected, and which seems to contain
information that would be of value to attackers. In addition, learning
capability could be extended to include learned attacks through sharing
information with other external knowledge bases of similar systems.

Supervised Training Manuel Training Honey Pots

MT Agent ST Agent HP Agent

Figure 3.9 Learning Agents Block Diagram

3.1.8 The Knowledge Base and Security Policy
The knowledge base and security policy information represents the
network nature and the needed authorization and behavioral profiles
information. This information could be used by the individual local agents
and the central agent to discover the related attacks. These information are
saved in database tables which include preconditions and post conditions
for multi step attacks, specific learning parameters, normal and attack
profiles, attacks response matching, and access control lists which
mention system users and their privileges. Some threshold values for
profile matching, such as performance measure, time of use, and network
reconnaissance measures, are also saved in the knowledge base.

53

3.2 DACM Components

DACM components structure is shown in Figure 3.10, it consists of two
levels. In the first level a set of agents is presented. This set represents
model components, some of which represent local correlation components
within IDS, other INFOSEC tools, or system log files. And the learning
agent represents the learning capability in the model. Each correlation
agent reads data from its source and matches it according to a specific
template. A template is a particular pattern used in pattern recognition; it
could be a characteristic pattern of attack by an individual or group of
attackers. DACM agent’s algorithms are smart to avoid correlating
important alerts; the new unknown alerts will be moved to second phase
for further correlation and more analysis.

Figure 3.10. DACM Components Structure

54

In the second level, the main correlation agent is considered as the central
agent of the model. This agent correlates the outputs of other agents to
provide the whole picture of the network to the security administrator. It
can also provide the response agent with the suitable automated response
action against the detected attacks according to predefined rules.

3.3 DACM Knowledge Base

The model has a central database which consists of set of tables
representing knowledge base and alerts results from different detectors
and finally output tables for the security administrator. The output tables
include final correlated alerts results and other decision tables for more
learning and enhance the knowledge base tables.

3.3.1 System Parameters and Role Base Tables
The system parameters and role base tables include the required
information for agent to distinguish between the attack signature in
related log files and information sources. For example if we have FTP
service within a network , it is needed to determine which permission is
allowed for FTP users, could they read files or also they can add, store,
modify, and delete files to FTP directory. The FTP write files command
will be considered signature for attack if the users are not allowed to write
files and could be considered normal behaviors if they are allowed to
write files to FTP directory.

Threshold values for system parameters determine which cases could be
malicious and which could be normal, network performance monitor
measure could be 80 % or more during daily work hours, but if this
measure is the same during the weekend or after midnight at 2:00 AM, so
it is a signature that something wrong in network traffic is happening.
Network asset tables include the network assets, operating systems and
ports.

55

3.3.2 Alerts Table
Alerts tables are divided into two kinds: one for individual alerts which
will be kept for long time for low and slow attack detection and another
table for correlated alerts, both tables have the same structures as shown
in Figure 3.11, the attributes are: Sensor ID, Alert id, attack type,
Timestamp, Source IP, Destination IP, and Correlation type

Sensor
ID

Alert
ID

Attack
Class

Timestamp Source
IP

Destination
IP

Correlation
Type

Figure 3.11 IDSs Correlated Alerts Table Attributes

3.3.3 Vulnerability Scanner
Port scan output reports determine which port could be vulnerable to
attack as a destination port in alerts, scanning for vulnerable ports within
the network will be executed periodically. Result will be saved to
vulnerable ports table as shown in Figure 3.12, it includes: Date, Time,
Port ID, protocol, Port status (open, warning, closed), Port service.

Date Time Port ID Protocol Port Status

Figure 3.12 Vulnerability Scanner Alert Attributes

The integration between this table and alerts tables verify the vulnerable
ports with destination ports in alerts and triage between the false positive
and accurate alerts. Figure 3.13 shows an example of Nessus tool output

poly-app-1.cerias.purdue.edu general/icmp Security notes found
Nmap scan report for kargad.cerias.purdue.edu
(128.10.252.9)
Host is up (0.0010s latency).
Not shown: 978 filtered ports
PORT STATE SERVICE
22/tcp open ssh
80/tcp open http
113/tcp closed auth
443/tcp open https

Figure 3.13 Nessus Output for vulnerability scanner

56

http://poly-app-1.cerias.purdue.edu/
https://mail.google.com/mail/?ui=2&ik=e2f549c738&view=att&th=1294bc19bf2d93e2&attid=0.1&disp=inline&zw#0.1_poly-app-1_cerias_purdue_edu_general_icmp
http:kargad.cerias.purdue.edu

3.3.4 Performance Monitors Tables
Asset performance increase or decrease compared with threshold values
(performance-time) compared with normal system behavior or even by
some special cases of system stress without attacks. Figure 3.14 shows
performance monitor alert attributes: Asset ID (CPU, Memory, DISK IO,
and Network IO), Date and time, Performance (%), Performance Type
(high-low-normal) compared with threshold values for normal behavior.

Asset ID Date Time Performance %

Figure 3.14 Performance monitor Alert Attributes

3.3.5 Firewall Log Files Tables
Firewall log file contains blocked IP packets according to specific access
control lists, depending on network security policy. Firewall log agent
read blocked IP packets within a specific time compared with other
source of information; like IDS or other log files. Figure 3.15 shows an
example of log entry of firewall log file.

May 9 00:02:21 cisco3.cerias.purdue.edu 592997:
592983: .May 9 00:02:20.515 EDT: %SEC-6
IPACCESSLOGP: list 120 denied tcp
94.125.182.255(6665) -> 128.10.244.160(1094), 1
packet

Figure 3.15 Firewall Output log file

The log agent stores its result in a table with attributes shown in Figure
3.16 which includes: date, time, service, source IP, source port, target IP,
and target port.

Date Time Service Source IP SPort Target IP TPort

Figure 3.16 Firewall Alert Attributes

57

http:cisco3.cerias.purdue.edu

3.3.6 System Audit Files Tables
These tables include data about; write files, copy files, and move files to
external network. These data are compared with specific profiles
depending on access control policy and time of events. This comparison
is helpful against indoor and outdoor attacks. The audit table could
include a set of attributes for such activities as shown in Figure 3.17.
These attributes are: the date, action type (write-copy-move), file type, file
name, file location, user ID, user password, and user IP.

Date Command type
File User

Type Name Location Name Password IP

Figure 3.17 System Audit Alert Attributes

3.3.7 Services Log Files Tables
Internet web sites provide different services for their users. FTP and SSH
are examples of these services. Web site users explore and use different
pages and web forms, users' activities through websites are saved in error
log files and access log files. Users' activities could be normal behavior or
malicious behavior. Depending on learning period, a set of attack profiles
and normal profiles have been implemented. These service and
applications log agents read these logs and compare them with the related
profiles. When it matches any attack profiles, it stores the related attack
into its result tables as shown in Figure 3.18. The alert attributes includes:
date, time, service, type of attack, and attacker IP address.

Date Time Service Attack Type IP Address

Figure 3.18 Services Log Alerts Attributes

3.3.8 Output Tables:
Output tables summarize correlated alerts from different sources to
address attacks from different IPs within a period. It includes the
attacker's IP, date, and the detailed attacks from this IP. These alerts could
be received from different agents such as an IDS agent, a firewall agent,

58

SSH attack, an error log attack, and its scanning activity for the network.
Output tables also include summarized information about false negative
alerts and verified alerts.

Supervised learning decisions table contains unknown behavior with
related log from IDS and other logs for the same IP to support adaptive
learning capability.

3.4 DACM Features

The main purpose of the proposed model is to enhance the IDS accuracy
and completeness by reducing both false positive and false negative
alerts. It gives better situation understanding within the protected
network. For example, in such attacks which are composed of many steps
such as Multi-Step Attacks (MSA) or Attack Session Reconstruction
(ASR); if any alert of the attack steps was missed it will be just partially
matched not fully matched. As a result, the detection of the actual attack
scenario or type will be limited. DACM could be used to detect missed
alerts to reduce false negative alerts (missed alarms).

The learning agent learns the precondition and post condition of multi
step attacks. For example, alerts Al1, Al2 and Al3 represent three steps of
multistep attack. Alert 1 has both precondition and post condition pairs
AL1 (P1, S1), Alert 2 Al2 (P2, S2) where p2=s1, and Alert3 Al3 (P3, S3)
where p3=s2. IDS may miss critical events that prevent matching the
proper attack scenario which produces false negative alert. In case of
detection alerts Al1, Al3 provides us with only a partial match of the
multistep attack not the complete detection of MSA attack. Using DACM
will help detect Al2 from other sources (firewall, Log file, etc…).
DACM will enhance the partial match correlation assurance and help in
detecting related attacks which did not have explicit relations.

The model may detect zero day attacks when detecting anomalous
behavior compared with specific profiles using different sources of
information. DACM enhances Alert Verification (AV) through

59

correlation of alerts from IDS’s and other tools which reduce false
positive alerts. It also determines potentially malicious sources of traffic
compared with legitimate ones.

DACM has a chance of early discovery of the Advanced Persistent Threat
(APT). APT has the same sequence of normal attacks but should be
delayed and coordinated within a long period of time. Detecting the
gathering of data is the initial in APT steps, through the access log files.
DACM will keep individual alerts within a long period of time in special
tables for detecting low and slow attacks. Keeping these individual alerts
for a specific period depends on the attacked service. For example, for
port 80 we would have these alerts running for three months instead of a
year if the SSH service was the one being attacked. Later, correlating
individual events and alerts from different resources occurring over a long
period of time and comparing it with normal behavior should detect low
and slow attacks. DACM may detect suspicious behavior with less
precision than in specific attack detection (often in the grey area between
attacks), network problems, and user misconduct.

Using multiple sources of information will help in detection of an
unknown worm that generates abnormal traffic and a number of atypical
connections to formerly unused ports and destinations. In addition, it
enables detection of suspicious access, such as a user making a persistent
connection to an administrative port for the first time. Excessive traffic
with anomalous destinations and uses, and unknown attacks can be
identified according to anomalous activity generated by the attacker. That
of which can be detected by monitoring indicators of general user activity
such as ports, services, traffic, times, etc. for all users (indoor and
outdoor).

DACM can detect malicious connections in comparison to legitimate
ones. The existence of the same source IP address in firewall log file,
IDS, and other log files within the same time period indicates that it is a

60

malicious connection. We now have to block this connection as a source.
DACM can determine a potentially malicious source of traffic compared
with legitimate ones. Repeated port scans and network traffic in different
times for a long period, and sources IPs or output packets for specific IPs
without host names may indicates these IPs as malicious sources of
traffic.

DACM decreases the time cost required to obtain effective situational
understanding. It also increases the coverage of the attack space and
improves the ability to distinguish the serious attacks from the less
important ones. It also distinguishes between the ones that require
immediate reaction and others where an alternative is acceptable.

3.5 Implementation Scope and Performance Enhancement

The implemented model does not include all the previous described
agents; it includes a set of agents representing the different types of
correlation because of the nature of collected data and the scope of this
research. The implemented model includes the required component to
prove the research concept. Network based IDS correlation agents have
been implemented as an example of an IDS correlation agent while a host
based IDS correlation agent was not implemented. A firewall agent has
been implemented as an example of INFOSEC tools agent while
vulnerability scanner and performance monitor agents were not
implemented.

Correlation agents for error and access log files for different services
within the network have been implemented as an example for system log
files, while the system audit files correlation agent was not implemented.
Supervised training with support of system admin has been implemented
as an example of learning capability, while learning using honey pot was
not implemented. Finally response agent was considered out of the
current scope for this research. It will be an interesting research topic for
future work. Analysis of packet dump of the network during the period of

61

collecting data was performed manually with Wire Shark tool [63];
automation of capture data packets correlation was considered out of
scope for current model implementation. Figure 3.19 shows the
highlighted implemented components in this work from entire DACM
components.

Several algorithms, parallelization, and enhancement are presented in
detail in the next chapter for the sake of performance enhancement.

Figure 3.19 Implementation Scope of DACM Components

62

CHAPTER 4

DACM Design

and Algorithms

Chapter Four: DACM Design and Algorithms

In this chapter different individual agents and central agent
implementation will be demonstrated. Different agent’s algorithms for
alerts and events correlation are presented.

4.1 IDS Alert Correlation

In this section, two IDS alerts correlation techniques are presented to
enhance the correlation process presented in Comprehensive Approach
Model (CAM) [56 - 58]. CAM results showed that the average time used
to process one alert by different components varies depending on used
dataset. Some components need more time to process one alert in a
dataset while it needs shorter time to process one alert in another different
dataset.

4.1.1 IDS Alert Correlation Performance Analysis
Comprehensive approach model [56 - 58] for IDS alert correlation was
produced as integrated correlation components which include different
sequential correlation components. Figure 2.1 showed CAM correlation
components. Results of the reduction rate for each component against
different datasets in CAM are presented in Table 2.3. This analysis
showed that the sequence order of the correlation is not ideal and many
components have not been used for most of the datasets which increases
the correlation time needed to obtain effective correlation report for
security administrator.

The correlation performance is measured by reduction rate and correlation
time, the optimum correlation process has highest reduction rate in lowest
correlation time.

Consider a N input alerts and O output alerts as a result of the correlation
process, the reduction rate is defined as:

Reduction Rate (RR) = 1- O
N

For component (i), RRi: Reduction rate by Component i is defined as:
63

RRi = 1- (Oi/Ni)

The Total Reduction Rate:

nRR = ∏i=1 RRi (4.1)

Equation 4.1 represents the total reduction rate of the model components.

For the ith component, Ti: is the total time taken by component i to

perform correlation and is a function of the count of input alert and time

taken to analyze each alert.

Ti = f (ci,Ni)

nTotal correlation time: T = ∑i=1 Ti (4.2)

The correlation time used in CAM model is represented in equation 4.2
which represent the sum of correlation time of all components even if
they do not have effective reduction rate value.

4.2 Modified CAM Time

To eliminate the use of components with zero reduction rate affect, and to
have optimum order of correlation components such that the components
with higher reduction rates can be used before other components with
lower reduction rate, we will assume the activity variable Xi is a Boolean
variable that could be zero or one as follows

= ൜0, RRi = 0 �Xi 1, RRi > 0
Giving the condition that RRi > RRi+1,

The above condition determines the sequence of correlation components,
with the minimum total correlation time. This sequence requires the
components which have higher reduction rate to be used first before the
components with lower reduction rate values. Modifying each component
time Ti by its activity variable Xi eliminates component with zero
reduction rate.

64

nTopt = ∑i=1 Ti Xi (4.3)

Equation 4.3 represents optimum total correlation time depending on the
used components and datasets. The correlation time will be calculated for
effective components which have reduction rate greater than zero value.
The enhancing of the correlation process can be obtained by calculating
the reduced time. It can be represented by the difference in time between
calculated T in equation 4.2 and calculated Topt in equation 4.3 as follows:

Tdiff=T-Topt (4.4)

4.2.1 Agent Based Correlation Model
Figure 4.1 shows the proposed model which presents an Agent Based
Correlation Model (ABCM) for Intrusion Detection Alerts. In this model
Learning Agent (LA) learns the nature and characteristics of normalized
alerts produced by different IDSs within a network, and then it selects the
suitable correlation components that can be used and their proper order.

The model provides minimum correlation time for all datasets whatever
their nature. ABCM consists of two phases, learning phase and
correlation phase. The input of ABCM is normalized and pre-processed
alerts while the output goes to a set of selected correlation components
called Active Correlation Components List (ACCL).

Normalized Alerts ABCM
Impact analysis and

Prioritization
Intrusion Reports

Figure 4.1 ABCM correlation model block diagram

The selection of added components in ACCL depends on agent learning,
the output alerts correlated by ACCL is directed to the last two
components of correlation process. This model is based on the real-time
CAM [56 - 58]. However, instead of using sequence of all correlation

65

components, it uses an optimal ordered set of specific effective
correlation components depending on agent learning.

4.2.1.1 Learning Phase

During the learning phase, LA learns the output of each component and
the dataset nature. Based on this learning beside a set of rules and
knowledge base as well, LA can determine the active correlation
components and their proper order. Each correlation component has
specific criteria to aggregate and correlate alerts. The knowledge base for
learning is formed by the criteria for each component in addition to the
RR obtained by each component

The learning phase starts through the execution of initial correlation
process as sequential learning as shown in Figure 4.2. In sequential
learning, the initial components sequence order could be as described in
Comprehensive Approach Model [56 - 58], or it could be random
sequence order. Figure 4.2 shows that LA learning depends on initial
inputs. These inputs are: the learning parameters which could be a period
of time (t) or specific number of alerts (N); the normalized pre-processed
alerts; and a pre generated knowledge base. Each component aggregates
and merges its input alerts according to component algorithm and criteria.
Alerts attributes (source, attack type, destination) are used as the basis of
merging alerts.

RR can be calculated through comparing output alerts with input alerts.
Depending on the value of RR for each component, LA builds ACCL
which contains the components with RR higher than zero value. The
learning phase could be processed in parallel learning as a separate
process; parallel learning is shown in Figure 4.3.

66

Figure 4.2 ABCM sequential learning Phase

The correlation of all components has been done in parallel and learning
agent to get the correlation result of each component separately. The
learning parameters determine learning period or count of learned alerts.

Learned alerts have been selected randomly during learning phase, and
they are excluded in correlation process.

Figure 4.3 ABCM Parallel learning Phase

67

Figure 4.4 shows the learning result of 2866 alerts which represent a ratio
of 10 % of collected alerts in one day (28866) of CERIAS dataset
described in chapter 5. Learning results show that ACCL contains
components: FR with RR of 92.87 %, TR with RR of 91.82 %, and MSA
with RR of 2.17 % while component AF has zero reduction rates.

Figure 4.4 CERIAS ABCM Parallel learning Result

Algorithm 4.1 describes the learning phase process; LA builds ACCL in
descending order of the component reduction rate. The normalized pre-
processed alerts go through their basic correlation path. By the end of the
correlation process of each component, LA reads RR of each component.
If the RR is higher than zero, the component data will be added to the
ACCL which includes serial, component name, and RR value. By the end
of correlation of the last component, ACCL will be having a specific set
of components with different RR values. The agent sorts these
components in descending order of their RR, and it also disables
components with zero RR values.

Moreover, LA updates the knowledge base using the new criteria of
merging alerts in each correlation component. Learning phase should be

68

enough for studying the nature of alerts in the network. Such phase
continues depending on the learning parameter (t or N) and/or assuring no
changes of the alerts nature.

Algorithm 4-1 Learning Phase
Algorithm 4.1 Learning Phase

Inputs: (IS) normalized and pre-processed stream of alerts, IP: number of input alerts,

learning parameter (Alerts number N)

Output: (ACCL), set of active correlation components (RRc > 0)

Initialization: Empty ACCL (Ser, CC, RR) ACCL (0, ,0), k=6 (maximum number of

correlation components), m=0

For alerts in N

While k > 1 do // For each component do

OSc CORRc(IS);
OPc no of alerts in OSc
RRc (1-OPc/IP)*100
if RRc > 0 then

begin
ACCl(Ser) ser+1;

ACCL(RR) RRc;
ACCL(CC) CC;

end
Else
// For each component with RRc=0

begin
Disable component;
m m+1;

end
end if / / end if RR>0

k-1;
loop
end while

sort ACCL(RR, descending);
end for
return ACCL;

k

LA could be a part of the correlation process by eliminating some alerts
depending on the network nature (alerts against windows server while
maintaining UNIX server).

69

4.2.1.2 Correlation Phase

By the end of learning phase, ACCL contains only effective correlation
components in descending order of their RR. In the correlation phase, the
flow of normalized alerts stream will be controlled by the agent. Alerts
are directed to the first component in ACCL which has the highest RR
during the learning phase. The output of the first component will be the
input of the second one which has the second highest RR, and so on till
they reach the last component in ACCL.

Figure 4.5 describes correlation phase of the normalized pre-processed
alerts. Alerts are correlated using one path of many alternative paths.
These alternative paths represent different suggested ACCLs which have
been implemented previously during the learning phase. For example, the
analysis of sample of CERIAS dataset correlation shows that ACCL has
only FR and TR (Highlighted Boxes in Figure 4.5) with RR values
(FR=92.87, TR=91.82, and MSA=2.17), While the other three
components AF, AV, , and ASR have no effect on that dataset.

Figure 4.5 ABCM Correlation Phase

Algorithm 4.2 shows the correlation phase process; the inputs of the
algorithm are: ACCL, and array of alerts which represent the remainder
alerts after excluding the learned alerts in the learning phase.

The correlated alerts OCc are considered to be the output of the
algorithm. The agent uses the first component in ACCL to correlate the

70

http:MSA=2.17
http:TR=91.82
http:FR=92.87

input alerts, and then it moves the pointer of ACCL to the next
component, the next components correlates the output alerts of first
component, the loop continues till using all components in ACCL.

Algorithm 4-2 ABCM Correlation Phase

Algorithm 4.2 Correlation Phase

Inputs: (IS) normalized and preprocessed stream of alerts, IP: number of input alerts,

ACCL (Ser, CC, RR)

Output: (OS) correlated stream of alerts,

Begin

While ACCL (ser) > 0 (is not empty) do

// loop for all components in ACCL

Begin
CORRc(IS) using ACCL(CC);

next ACCL(CC);

// next lowest RR component in ACCL

Loop // all components in ACCL have been used

end while

OS OSc of last component in ACCL
end
return OS;

OSc CORRc(IS);
OPc no of alerts in OSc
RRc (1-IP/OPc)*100
ACCL(CC)

The total correlation time by ABCM is calculated as follows:
TABCM = Tlearning + Tcorrelation where Tcorrelation of ACCL components as
optimal serial sequence without unneeded components and in proper
order is as follow:

nTcorrelation = ∑ tjj=1

Where n is the count of ACCL components.
Total TABCM is much lower than total correlation time by CAM.

71

4.2.2 Dynamic Parallel Correlation Model
This novel model presents a Dynamic Parallel Correlation Model
(DPCM) for Intrusion Detection Alerts; the model dynamically selects
optimum correlation components arrangement order and provides
minimum correlation (for all datasets, whatever their nature is). DPCM is
a part of the entire correlation process as shown in Figure 4.6. The input
of DPCM is a stream of normalized alerts while the output of DPCM will
be the input of the rest of correlation components process.

Figure 4.6 DPCM Block Diagram

DPCM Impact analysis and

Prioritization
Intrusion Report Normalized Alerts

The input of DPCM is normalized and pre-processed alerts. Figure 4.7
shows that DPCM is composed of a set of correlation stages, each stage
contains k parallel correlation components (k=6) (AF-AV-TR-ASR-FR-
MSA), the input of every stage is directed to all active components in this
stage simultaneously.

Figure 4.7 DPCM Correlation Stages

The model assures that alerts go through only effective correlation
components. The correlation criteria are different for each correlation
component, since all components have their independent correlation and
they can work in parallel independent of each other.

72

The components arrangement will be dynamically changed in descending
order depending on the RR of each component. This model is based on
the real-time correlation model. However, instead of using sequence of all
correlation components, a set of correlation stage will be used. Each stage
contains all effective correlation components in parallel manner.

DPCM creates a thread for each correlation component to perform
synchronous correlation; all threads access alerts data at the same time,
each thread process its dedicated correlation method and creates a list of
correlated alerts. The counts of threads depend on the count of active
component (k) in each stage. Using threads optimize processor and
memory usage, all threads on the same process can access list of variables
in memory at the same time, no need for semaphores to read variable.

Algorithm 4.3 shows the contents of DPCM algorithm which describes
how it works, the input is a stream of normalized alerts (IS) and the
output is a correlated stream of alerts (OS). In the program initialization,
all components have been set to active state (k=6) and set zero value for
count of components with zero RR values (m=0). The program reads the
inputs stream alerts in the first correlation stage and reads the RR ratio of
alerts obtained by each component. Depending on these RR results the
program decides which components will be used in the next stage. The
output of component with highest RR will be the input of the next
correlation stage. The component with higher RR and components with
zero values RR (m) will be disabled in the next stage.

The active components in next correlation stage will be calculated again
by k=k-(1+m). In next stage the active components will reduce the input
alerts stream each with a specific RR ratio. The loop continue till k=1
where all correlation stages used either by going through all six stages or
specific set of them depending on values of (m) during the flow of alerts.

Each component in the correlation stages aggregates and merges its input
alerts according to component algorithm and criteria. Alerts attributes

73

(source, attack type, destination) are used as the basis of merging alerts.
RR can be calculated through comparing output alerts with input alerts.

Figure 4.8 shows CERIAS alert dataset sample correlation using DPCM.
All active components in first stage simultaneously correlate the input of
normalized alerts stream. The results of first stage shows that three
components (AV, ASR, and AF) have zero RRc values (m=3).
Component TR have highest RR value (FR=92 %) and RR values of
(TR=90 %, MSA=0.38 %). With k=6, and m= 3 number of active
components in next stage is k=6-(1+3) = 2. In next stage the algorithm
disables highest RR (FR) and zeros RR components (AV, ASR, and AF).
The active correlation components in second correlation stage are TR and
MSA.

Figure 4.8 CERIAS DPCM Correlation Example

Both components will correlate the output of TR component from first
stage. The RR of active components in second stage will be calculated
again with values (TR=66 %, MSA=0.3%). The output of this stage is the
correlated alerts by TR component {higher RR than MSA}. The program
passes the output correlated alerts from TR to next stage and disable FR
in next sage and recalculate k=2-(1+0)=1. The third stage has only MSA
active component with RR = 0.03%. It correlates its input alerts and
recalculates k = 1- (1+0) = 0.

74

http:MSA=0.38

Algorithm 4-3 DPCM Algorithm

Algorithm 4.3 DPCM Algorithm
Inputs: (IS) normalized and preprocessed stream of alerts, IP: input alerts
Output: (OS) correlated stream of alerts, OP: number of output correlated alerts
Initialization: k=6 (maximum number of correlation stages), m=0 (component with zero
RR), all components in active state.
Begin
While k > 1 do

Begin // For each component in active list
Begin

OSc CORRc(IS);
OPc no of alerts in OSc
RRc 100 (1-IP/OPC)

End
if RRc = 0 then

Begin
disable component;
m m+1;

End
Else

End if
output of component with max RRc

k-(1+m)
disable component with max RRc

end loop
end

OS
k

This means there are no more active components or correlation stages
anymore. The correlated alerts produced by the third stage are the final
output of DPCM process. DPCM uses just three components instead of
six. The optimum components order was FR, TR then MSA and was
dynamically selected in descending order depending on their RR. The
total correlation time by DPCM is calculated as follows:

nTDPCM = ∑i=1 Ti Xi

75

Where Xi represents the active correlation stages, these stages contain
only effective correlation components and have dynamic descending
order of its reduction rates. Total TDPM correlation time is optimum
compared with total correlation time by CAM.

4.3 DACM Individual Agents

In this section DACM correlation agents design and algorithm will be
presented, block diagram of DACM components shown in Figure 4.9.

Figure 4.9 DACM Individual Agents

DACM is composed from a set of correlation agents; each agent
correlates alerts or events from its information source. Different agent’s
sources of information including IDS alerts, firewall log file, other
services log files. Log files may be error log files or access log files, and
finally a set of knowledge base which include network security policy and

76

needed threshold values to determine behavioral profiles and attacks
signatures.

4.3.1 IP Address Normalization
Different source of information have been used for retrieving attack
signatures, the detected IP address has different format in each source.
IDS alerts include decimal format for source and destination IPs, while
INFOSEC tools and other application log files include standard 32 bit
representation “Standard IPs”. Normalizing IPs together is a necessary
process for correlation such information together, this process indicates
that every IP address has a unique ID in the system. Algorithm 4.4
performs save IP function to create IPs table, this algorithm transfers any
used decimal or standard IP to a unique ID which represents it and could
be used within the system. IPs table consists of three fields which are:
ID, Decimal IP, and Standard (256 base) IP. ID is a unique id for each IP;
Decimal IP is the IP address in decimal format retrieved from IDS alerts
where Standard IP is the IP address in standard 32 bit format retrieved
from INFOSEC tools and System Log files.

The algorithm read IP address from information sources and creates a
record with a unique ID for this IP. If the IP address in decimal format, a
convert process could be used to convert it to standard IP and insert a
record of this IP in IPS table. If the IP address in standard format, it
check if this IP is already has a unique ID, if so it return this ID, if not it
creates a new record to assign new ID for this sting IP.

Convert IP function convert the decimal format detected from IDS to a
standard format (base 256), the standard IP is composed of 4 parts from
left to right. If we have a decimal IP address = “1812014676”, we need to
convert it to standard IP address; convert function starts by initiating a
loop from 1 to 4, and dividing the decimal format number to (256) ^ (4
i) which produce 108 as first part of standard IP address, looping to i =2

77

and repeating steps from 2 to 9 till i=4 which produce IP in sting format
(base 256) = “108.1.38.84”.

Algorithm 4-4 Save IP Function

Algorithm 4.4 Save IP function
Input: IP standard variable or decimal ip
Output: IP record number
Begin
If format (IP) =decimal Then

IP_standard = Convert (IP_decimal, IP_standard);
Else

IP_decimal = null;
End if // Check if the ip existing in IP table
Result = Select standard IP from `IPS` table where IP (base256) =Standard IP

If result is true then

return ID;

return ;

Else // result is false
ID= max (ID) + 1;
Insert into IPS values (ID, IP_decimal, IP_standard);
Return ID;

End if
End;
Return ID.
Convert (IP_decimal, IP_standard)

For i = 1 To 4

num = Int(IP_decimal / 256 ^ (4 - i))

IP_decimal= IP_decimal - (num * 256 ^ (4 - i))

If i = 1 Then

IP_Standard = num
Else

IP_Standard = IP_Standard & "." & num
End If

Next I

End for

Return IP_Standard

78

http:108.1.38.84

4.3.2 Firewall Agent
Firewall agent read the contents of router log file, this log file contains list
of blocked IP which tried to attack the network, it extracts the data
indicating the attack such as date and time of attack trial, the destination
protocol, source IP and source port, and destination IP and port. Figure
4.10 shows an example of router log blocked IP entry, the entry include
the blocked trial attributes and other detailed information about the
protected server and router.

Jun 16 22:13:45 cisco3.cerias.purdue.edu 316500: 316485: Jun 16
22:13:44.639 EDT: %SEC-6-IPACCESSLOGP: list rsrchin denied
udp 108.1.38.84(50184) (Port-channel1 001f.9ed2.ba40) ->
128.10.247.62(54045), 1 packet

Figure 4.10 Firewall router log contents

Algorithm 4.5 shows the agent process to read the log contents and
convert it to a record in the attack table. The input is the router log file,
and the output is the attack table record.

The algorithm has some initial variables to be used as static split
variables; these variables are static contents in the router log entry. The
algorithm starts reading the file contents and checks each line contents; it
splits with server name as first static variable then it reads the date and
time from the first part of the splitting and continues splitting the second
part with other splitting variables to get the other required attributes of
attacks such as source IP and Port, protocol, destination IP, and Port.

The algorithm reaches the end of the line and stores the extracted
attributes into the related record in the firewall attack table as shown in
Table 4.1.

79

http:cisco3.cerias.purdue.edu

Algorithm 4-5 Firewall Agent

Algorithm 4.5 Firewall Agent

Input: router log file.

Output: fill data to database table 'attacks'

Initialization:

set server name = "cisco3.cerias.purdue.edu"

Set SP1 = " %SEC-6-IPACCESSLOGP: " ,

Set SP2 = " -> ""

Begin

While not EOF

For each line

Read line contents;

Split line with static variables name;

read date and time;

read source IP and port;

read protocol type;

read destination IP and port;

ignore unwanted variables;

Store to attack table (date, time, source IP, source Port, protocol,

destination IP , destination Port);.

End for;

End While;

Return ‘attack’ table.

Table 4.1 Firewall attack table

Date Time Protocol Source IP SPort Destination IP DPort

Jun 16 22:13:45 udp 108.1.38.84 50184 128.10.247.62 54045

80

http:cisco3.cerias.purdue.edu

4.3.3 FTP local Agents
The first FTP agent algorithm reads the contents of the log file which
contains ftp service logs and error messages and requests associated with
FTP commands as shown in Figure 4.11. Local FTP agent reads complete
session for the user activity in the log file to check the command type
tried by the user.

Jun 12 02:59:17 omelas proftpd[27814] ftp.cerias.purdue.edu
(::ffff:117.198.209.80[::ffff:117.198.209.80]): FTP session opened.
[12/Jun/2010:02:59:17 -0400] ::ffff:117.198.209.80 ::ffff:117.198.209.80 331 USER - -
"USER anonymousJun 12 02:59:18 omelas proftpd[27814] ftp.cerias.purdue.edu
(::ffff:117.198.209.80[::ffff:117.198.209.80]): ANON anonymous: Login successful.
[12/Jun/2010:01:59:18 -0500] ::ffff:117.198.209.80 ::ffff:117.198.209.80 230 PASS - -
"PASS anon@localhost
[12/Jun/2010:01:59:18 -0500] ::ffff:117.198.209.80 ::ffff:117.198.209.80 250 CWD - -
"CWD /pub/papers/Everything[
[12/Jun/2010:01:59:18 -0500]::ffff:117.198.209.80::ffff:117.198.209.80 200 TYPE - -
"TYPE I
[12/Jun/2010:01:59:19 -0500] ::ffff:117.198.209.80 ::ffff:117.198.209.80 550 STOR
"STOR hi.exe
Jun 12 02:00:05 omelas proftpd[27708] ftp.cerias.purdue.edu
(::ffff:117.198.209.80[::ffff:117.198.209.80]): FTP session closed.

Figure 4.11 FTP log file example

Algorithm 4.6 shows the FTP agent process to read the log contents and
check if it contains any FTP command which violates the network
security policy. In case of finding an evidence of that violation, it extracts
this log entry and inserts it to a record in FTP attack table. The input is the
log file which contains user’s commands in FTP server, and the output is
the FTP attack table.

81

http:ffff:117.198.209.80[::ffff:117.198.209.80
http:ftp.cerias.purdue.edu
http:ffff:117.198.209.80
http:ffff:117.198.209.80
http:0500]::ffff:117.198.209.80::ffff:117.198.209.80
http:ffff:117.198.209.80
http:ffff:117.198.209.80
http:ffff:117.198.209.80
http:ffff:117.198.209.80
http:ffff:117.198.209.80[::ffff:117.198.209.80
http:ftp.cerias.purdue.edu
http:ffff:117.198.209.80
http:ffff:117.198.209.80
http:ffff:117.198.209.80[::ffff:117.198.209.80
http:ftp.cerias.purdue.edu

Algorithm 4-6 FTP Agent

Algorithm 4.6 FTP agent

Input: FTP (proftpd) log

Output: fill data to database table ' Ftp'

Initialization: User select not allow events (DELE, MKD, STOR, STOU, RMD, ALLO,

APPE);

User type ftp server (ftp.cerias.purdue.edu)

While not EOF

For each line

Read line contents ;

Read command type

If command type in list

Then

Store to ftp table (date, time, source IP, event , Description) ;

Else

End if ;

loop;

End for;

End While;

Return ‘ftp’ table.

The algorithm has initial list which contains the list of prohibited
commands in the FTP server. The algorithm starts reading the file
contents and checks each line contents; it splits line contents and read the
date, time, source, and command type. After reading command type the
algorithm check if that the command is included in the not allowed
command list; if yes then it stores a record in the ftp attack table. This
record includes the date, time, source IP, command, and description of
this command. In case of the command is an allowed command, the
algorithm continue reading the next line till the end of the user session
and the file contents.

82

http:ftp.cerias.purdue.edu

Table 4.2 shows the related record indicating that attack and its detailed
information as well as command description.

Table 4.2 FTP attack table

Date Time Protocol Source IP Event Description

Jun 16 22:13:45 FTP 117.198.209.80 STOR STOR hi.exe

FTP transfer agent algorithm detects malicious behavior during transfer
FTP files. The log file contains a listing of files transferred over FTP,
normally the third column should say ftp for all users which indicates
FTP user trying to transfer file, while if we have a "root" username and
the commands do not appear to be standard as shown in Figure 4.12, it
indicates a malicious trial to FTP transfer using root access.

[11/Jun/2010:01:02:50 -0400]::ffff:66.199.234.66 root POST

[11/Jun/2010:01:02:50 -0400]::ffff:66.199.234.66 root: USER-AGENT:

[11/Jun/2010:01:02:50 -0400]::ffff:66.199.234.66 root HOST: -

[11/Jun/2010:01:02:50 -0400]::ffff:66.199.234.66 root ACCEPT:

[11/Jun/2010:01:02:50 -0400]::ffff:66.199.234.66 root REFERER:

[11/Jun/2010:01:02:50 -0400]::ffff:66.199.234.66 root PROXY-CONNECTION:

[11/Jun/2010:01:02:50 -0400]::ffff:66.199.234.66 root COOKIE:

[11/Jun/2010:01:02:50 -0400]::ffff:66.199.234.66 root CONTENT-LENGTH:

[11/Jun/2010:01:02:50 -0400]::ffff:66.199.234.66 root CONTENT-TYPE:

Figure 4.12 FTP Transfer log file example

Algorithm 4.7 shows FTP transfer algorithm, it reads the log file as an
input while it stores its output in FTP transfer attack table. The algorithm
starts by reading the log contents line by line and it splits the line contents
to get the required attributes and ignore unwanted characters. In each line
it checks the username and file transferred format.

83

Algorithm 4-7 FTP Transfer Agent

Algorithm 4.7 FTP Transfer Agent

Input: xfer log file.

Output: fill data to database table ' Ftp'

Initialization : set username = " root "

While EOF

For each line N

Read line contents;

Search for username in the line in third column

If username = “root”

then

split line contents and ignore unwanted characters

read date;

read time;

read IP;

return process name;

Store to database (date , time , Ip , event , Process name);

Else

End if;

End for

End while

Return ‘FTP’ Table

If the username is FTP and transferred file has the required standard
format then it is legitimate user. If the username is root, on ftp transfer
file is not standard or trying to get proxy-connection as shown in Figure
4.12, so it is an evidence of malicious FTP transfer and stores related
record in FTP transfer attack table. This record includes date, time, source
IP, event, and process name as shown in Table 4.3

84

Table 4.3 FTP Transfer Attack Table

Date Time Source IP Event Description

Jun 11 01:02:50 66.199.234.66 Transfer PROXY-CONNECTION

4.3.4 SSH Agent
SSH (secure shell) agent is an example of service agents. SSH agent reads
the contents of SSH service log file that records service usage and error
messages from the service and child processes. It shows the attackers’
attempts to access SSH service with root user or invalid username or
password.

The log includes error messages associated with SSH which identifies IPs
and hostnames of people asking to guess users passwords. SSH agent
reads the log contents and checks the error messages indicating illegal
trials to access SSH through guessing user names and passwords or trying
to hide the user browser identification. Figure 4.13 shows an example of
some error messages in the log file which shows trial of IP
“222.186.24.122” to guess user root password or guessing a user name
and password for user “oracle”.

Jun 12 18:23:00 basm.cerias.purdue.edu sshd[16678]: Failed password for root from
222.186.24.122 port 34507 ssh2
Jun 12 18:23:09 basm.cerias.purdue.edu sshd[16686]: Invalid user oracle from
222.186.24.122
Jun 12 18:23:09 basm.cerias.purdue.edu sshd[16686]: error: Could not get shadow
information for NOUSER
Jun 12 18:23:09 basm.cerias.purdue.edu sshd[16686]: Failed password for invalid user
oracle from 222.186.24.122 port 34748 ssh2
Jun 12 18:23:12 basm.cerias.purdue.edu sshd[16688]: Failed password for invalid user
test from 222.186.24.122 port 34800 ssh2

Figure 4.13 SSH log file “Inetdlog” example

The SSH agent reads those messages and store their attributes to SSH
attack table which contains the date, time, source IP, source Port, and

85

http:basm.cerias.purdue.edu
http:basm.cerias.purdue.edu
http:basm.cerias.purdue.edu
http:basm.cerias.purdue.edu
http:basm.cerias.purdue.edu

description. Algorithm 4.8 shows the SSH agent process to read the log
contents and check if it contains any error messages which violates the
network security policy and extracts this log entry and inserts it to a
record in SSH attack table.

Algorithm 4-8 SSH Agent

Algorithm 4.8 SSH agent

Input: SSH (BASMSSH-inetd) log

Output: fill data to database table ' SSH'

Initialization: user type server name “basm.cerias.purdue.edu”

user type unwanted string " Invalid , Failed password, Did not receive

identification"

While not EOF

For each line

Read line contents; Read message string

If message string in list

Then

split line contents and ignore unwanted characters

read date; read time;

read IP; read sport;

read error message;

Store to SSH table (date, time, source IP, Sport , error

message) ;

Else

End if ;

loop;

End for;

End While;

Return ‘SSH’ table .

The input is the log file which contains users messages in SSH server, and
the output is the SSH attack table. The algorithm has initial list which

86

http:basm.cerias.purdue.edu

contains error messages which indicate malicious behavior within SSH.
The algorithm starts reading the file contents and checks each line
contents; it splits the line contents and reads the date, time, source, and
error message. After reading the error message the algorithm checks if
that message is included in the not allowed command list; if yes then it
stores a record in SSH attack table. This record includes the date, time,
source IP, source port, and the error message as shown in Table 4.4. In
case the error message indicates allowed access, the algorithm continues
reading the next line till the end of the file contents.

TABLE 4.4 SSH Transfer attack table

Date Time Source IP SPort Description

Jun 16 22:13:45 222.186.24.122 34442 Failed password for root

4.3.5 Error Log Agent
Error log agent reads the contents of the file associated with http and https
services. The purpose of the error log agent is to identify attack signatures
stored in the http or https error log files by reading these files and
comparing their contents with either attack profile or normal profile.
These profiles were previously created during the supervised learning
period to distinguish which of these log entries was produced by attack
and which was produced by normal usage.

Figure 4.14 shows an example of attack profile for IP address
“108.1.38.84” during learning period. In case of detecting a new profile
in the log files, error log agent checks the similarity of this profile to one
of known profiles and identify the new profile as similar to attack or
similar to normal.

Later the user administrator can assure this similarity and change the type
of profile to attack profile or normal profile.

87

http:108.1.38.84

[Tue Jun 22 22:45:24 2010] [error] [client 108.1.38.84] PHP 1. {main}()

/var/www/www.cerias.purdue.edu/htdocs/education/k-12/shared/submit_link.php:0,

referer: http://www.cerias.purdue.edu/education/k-12/K-5_Resources/

[Tue Jun 22 22:45:24 2010] [error] [client 108.1.38.84] PHP 2. Form->outputForm()

/var/www/www.cerias.purdue.edu/htdocs/education/k-12/shared/submit_link.php:98,

referer: http://www.cerias.purdue.edu/education/k-12/K-5_Resources/

[Tue Jun 22 22:45:24 2010] [error] [client 108.1.38.84] PHP 3.ListField->pHtmlField()

/var/www/shared/cerias/class.formdata.php:60,referer: http://www.cerias.purdue.edu

/education/k-12/K-5_Resources/

[Tue Jun 22 22:45:24 2010] [error] [client 108.1.38.84] PHP 4. ListField

>pScrollingList() /var/www/www.cerias.purdue.edu/htdocs/education/k

12/lib/class.formdata.scrollinglist-k12.php:222,

referer:http://www.cerias.purdue.edu/education/k-12/K-5_Resources/

[Tue Jun 22 22:45:24 2010] [error] [client 108.1.38.84] PHP 5. renderGroupList()

/var/www/www.cerias.purdue.edu/htdocs/education/k-12/lib/class.formdata.scrollinglist

k12.php:299,referer: http://www.cerias.purdue.edu/education/k-12/K-5_Resources/

[Tue Jun 22 22:45:24 2010] [error] [client 108.1.38.84] PHP 6. renderOptions()

/var/www/www.cerias.purdue.edu/htdocs/education/k-12/lib/submit_link.func.

php:159,referer:http://www.cerias.purdue.edu/education/k-12/K-5_Resources/

Figure 4.14 Error Log Contents

Algorithm 4.9 shows the error agent process to read the log contents and
check if it contains any attack signatures which violates the network
security policy and extracts this log entry and inserts it to a record in http
attack table. The input is the “errorlog” log file which contains user’s
messages in http and https server, and the output is the http attack table.

The algorithm starts reading the file contents and checks each user session
and its error sequence contents; it splits lines contents and read the date,
time, source, and error sequence.

88

http://www.cerias.purdue.edu/
http:108.1.38.84
http://www.cerias.purdue.edu/education/k-12/K-5_Resources
http:108.1.38.84
http:108.1.38.84
http:108.1.38.84
http://www.cerias.purdue.edu/education/k-12/K-5_Resources
http:108.1.38.84
http://www.cerias.purdue.edu/education/k-12/K-5_Resources
http:108.1.38.84

Algorithm 4-9 HTTP Agent

Algorithm 4.9 http Agent

Input: http or https error log file, error sequence table.

Output: fill data to database table ' http attack'

Initialization: user select type of file type : 1 – http , 2 – https

While not EOF

For each line

Read line contents;

Get first error line

Repeat until error sequence end;

Read date;

Read time;

Read ip address;

Read error sequence;

Check the error sequence in http_error_sequence table ;

If match

then

get error sequence code ;

get sequence type;

else

check similarity;

end if;

End for;

End While ;

Return ' http_attack ' table

After reading the whole error sequence for one user the algorithm gets the
error sequence code and retrieve its type from error sequence table.
Finally the algorithm stores a record indicating the user error sequence in
the http attack table. This record includes the date, time, source IP, error
sequence code, and profile type as shown in Table 4.5.

89

The following is the algorithm for the check similarity function in
algorithm 4.9
Check similarity

If error sequence subset of other known error sequence

Then

Error type is similar to type;

Insert to http_error_sequence table ;

Else

Error type is unknown;

Insert to http_error_sequence table ;

End if;

example: A - " {main}(),include() "

B-" {main}(),include(),PageDef->show(),CPL:: checkInternalIP() "

If error B stored as normal behaviour the error A is part of B then A

will have type “similar to normal “

Table 4.5 shows the result of malicious behavior by IP 108.1.38.84.
Sequence “6” is the error sequence code stored in http error sequence
profile and type “1” represent that the type of this profile is an attack
profile.

Table 4.5 HTTP Attack Table Record

Date Time Source IP Sequence Code Type

Jun 16 22:13:45 108.1.38.84 6 1

4.3.6 81BAccess log Agent
On the contrary of other individual agents, access log agent does not
indicate attack signatures or malicious behavior by external users, it
indicates users who are trying to gather information and check the website
contents or the operating environment of the network. Access log agent
reads the contents of “access log” files about access messages associated
with http and https services.

90

http:108.1.38.84

The purpose of the access log agent is to identify reconnaissance activities
against the network which allows early detection of expected attacks.
Figure 4.15 shows an example of access log http service log file; it
contains historical access of the user through the system.

202.251.144.65 - - [11/Jun/2010:00:00:38 -0400] "GET /images/body_bg.png HTTP/1.1"

302 208 "http://www.cerias.purdue.edu/site/search/site? q=microsphere+"

"Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; SLCC1; .NET CLR

2.0.50727; Media Center PC 5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729;

OfficeLiveConnector.1.5; OfficeLivePatch.1.3)"

202.251.144.65 - - [11/Jun/2010:00:00:38 -0400] "GET /images/feed-icon16x16.png

HTTP/1.1" 302 214 "http://www.cerias.purdue.edu/site/search/site? q=microsphere+"

"Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0; SLCC1; .NET CLR

2.0.50727; Media Center PC 5.0; .NET CLR 3.5.30729; .NET CLR 3.0.30729;

OfficeLiveConnector.1.5; OfficeLivePatch.1.3)"

Figure 4.15 http access log file

Algorithm 4.10 shows the access agent process to read the log contents
and aggregates different user access within the website link. The input is
the “access log” files which contain user’s access in http, https, OS, and
FTP services, and the output is the access table.

The algorithm starts reading the file contents and checks each line which
contains user session and its access messages which include date, IP, and
the accessed resource. For each user IP, the algorithm checks if there is a
record for this IP in the same day, if yes it increases the count of the
access for the user IP by one, if no it creates a record in the access table
per day.

Figure 4.16 shows an example of the access table records created from
access log entries. Access table record include date, source IP, count of
access per day and type of access.

91

http://www.cerias.purdue.edu/site/search/site
http:202.251.144.65
http://www.cerias.purdue.edu/site/search/site
http:202.251.144.65

Figure 4.16 Access Log Table

While access log agent indicates the external user access to the contents
of the web site, Missing log agent indicates the external user scan of the
network files which represent their trial to identify the server Operating
system or looking for the availability of specific services. Missing log
agent reads the contents of the OS error log and FTP error log files. The
purpose of missing log agent is to identify scan activities against the
network which allows early detection of expected attacks. Figure 4.17
shows an example of an OS http error log http service log file; it contains
user trials to look for specific files within the system

[Fri Jun 11 00:01:16 2010] [error] [client 66.249.71.230] File does not exist:

/var/ftp/osmirrors/pub/FreeBSD/ports/sun4v/packages-stable/python/pyne-1.1.0_6.tbz

[Fri Jun 11 00:01:31 2010] [error] [client 66.249.71.230] File does not exist:

/var/ftp/osmirrors/pub/FreeBSD/ports/sun4v/packages/python/trac-TracGantt

0.3.2a_4.tbz

[Fri Jun 11 00:01:34 2010] [error] [client 67.218.116.168] File does not exist:

/var/ftp/osmirrors/pub/debian/pool

Figure 4.17 OSHTTP error log file

92

Algorithm 4-10 Access Log Agent

Algorithm 4.10 Access agent

Input: Access log files .

Output: fill data to database table 'Access’

Initialization: User select file type

1 – http , 2 – https , 3 – os mirror , 4 – ftp

While Not EOF

For each line

Read line contents;

Read date;

Read source IP;

check ` access ` table if date and IP is inserted

if true then

update total = total + 1;

else

Store to database (date , Ip , 1,type) .

End if;

End for

End while

Return ' Access' table .

Algorithm 4.11 shows the missing agent process to read the log contents
and aggregates different user scans within the website files. The input is
the “error log” files which contain user’s access in http, https, OS, and
FTP services, and the output is the missing table. Initial scan messages
list include the messages indicating that the users are trying to access
unauthorized files or looking to specific files names which show the used
operating system

The algorithm starts reading the file contents and checks each line which
contains user session and its error messages which include the date, IP,
and error. For each user IP, the algorithm check if this message is in scan

93

messages list, if yes it will check if there is a record for this IP in the same
day. In case if the user has previous record with the same day, the
algorithm increases the count of the scan for the user IP by one, if no it
creates a record in the missing table per day. Figure 4.18 shows an
example of the missing table records created from missing log entries.
Missing table record include the date, source IP, count of scan per day
and type of scanned services.

Figure 4.18 Missing example

Threshold values have been set for the normal count of access links
within the web site and the count of missing files in knowledge base
tables. We can use these threshold values to distinguish between the
normal accesses or scan files and the reconnaissance activity for the
attack purpose in both access missing tables.

94

Algorithm 4-11 Missing Log Agent

Algorithm 4.11 Missing Log Agent

Input: FTP and OS mirror Error log files.

Output: fill data to database table ' missing

Initialization: Set scan message list = “permission denied, file does not exist”

While not EOF

For each line

Read line contents;

Read date;

Read source IP;

Read message;

If message in scan message list

check ` access ` table if date and IP is inserted

if true then

update total = total + 1;

else

Store to database (date , Ip , 1,type) .

End if;

Else

End if

End for

End while

Return ‘missing’ table.

4.4 DACM Central Agent

DACM central agent has access to the result tables of different individual
agents; it aggregates these results together into unified table which
includes those results together in relation with the attacker IP. Figure 4.19
show that different individual agents stored their results in central
database tables. Central agent gets that database to produce a set of useful
reports which summarize different attacks against the network together.

95

Those results shown in the figure includes daily report, IP report, severity
alerts, single alerts, false negative alerts, reconnaissance alerts, summary
date report, and sever IPs report.

By the end of the individual agent results, table IPs contains all different
IPs which has been stored in attack tables or access or missing tables with
a unique ID representing that IP address.

Figure 4.19 DACM Central Agent results

DACM central agent performs its function through two steps, the first
step is to aggregate all different results from individual agent results into
daily table which includes different attacks and activities for different IPs.
The second step is the analysis of these attacks together to represent the
whole picture of the situation in the network and improve the detection
rate and to produce the correlation results of such different agents
together.

Algorithm 4.12 show the first step process, the agent loops through IPS
table, for each record, it selects the ID for the IP address and select related

96

attacks and activity for that IP from different result tables and insert that
record in new table called daily.

Algorithm 4-12 DACM Central Agent

Algorithm 4.12 Daily agent

Input: All other agents’ results tables.

Output: fill data to database table ' daily' and ' daily_res'

Step 1

Loop through IPS table

Insert new record in ' daily' table with

Select IP from IPS, // where IP = IP in related tables

Date as current system data, // where date = date in related

tables

Count `abcm_res` , // IDS correlated alerts

Count `attacks_res`, // firewall contents for IP

Count `ftp`, // FTP attack table

count `ftptransfer`, // FTP transfer attack table

count `http_attack`,// http attack table

Count `ssh`, // ssh attack table

Sum `access`, // acces count for that IP

Where count > access threshold value

sum `missing`, // scan count for that IP

Where count > scan threshold value

End loop

Step 2 : For IP in daily table select IP,

Date, Count `abcm_res` , Sum `access`,

Count `attacks_res`, Count `ftp`,

Count `ftptransfer`, Count `http_attack`,

Sum `missing`, Count `ssh`, Alert type

Table 4.6 shows the daily table fields. These fields are Date, IP, count of
alerts for this IP from IDS correlated alerts in that day, count of appeals of

97

this IP in firewall blocked IPs log, related FTP and FTP transfer attacks,
related http attacks, related SSH attacks, and related access or scan
activities count for that IP which exceed the allowed threshold values for
normal access or scan activities. In addition an analysis result field called
type to show the IP behavior and conclusion in the system.

Table 4.6 Daily Report Table Attributes

IP Date Type ABCM Firewall FTP FTP

root

Http

attack

SSH Access Scan

Daily report algorithm aggregates that related attacks together for better
understanding of current situation for different attacks, and summarizes
wide range of activity for each attacker IP.

Algorithm 4.12 performs the second step to show the conclusion and
better analysis of that aggregated alerts in step1. Step 2 determines the
behavior type for each IP. Step 2 loops through daily table to determine
the alert type by comparing the count of alerts from different sources to
indicate the alert type according to a set of rules shown in the following
pseudo code for each set of types.

The alert type for each IP will be determined according to different alert
and attacks from that IP.

False negative alerts with respect to IDS are real alerts while it was not
detected by these IDS. The alert type could be false negative in case that
the IP attacks are not detected in the IDS alerts while they were detected
from other sources of attacks such as FTP, SSH, and HTTP attacks. It
could be considered false negative alerts where the IP attack is detected in
IDS alert and detected in other sources but in different times.

98

False negative and verified alerts pseudo code

For each IP

If Count `abcm_res` = 0

and { OR Count `attacks_res` >= 1

OR Count `ftp` >= 1

OR count `ftptransfer` >= 1

OR count `http_attack` >= 1

OR Count `ssh` >= 1 }

Then

Alert type = False Negative

Else

For each alerts

If time (alert) <> time (alerts from other attacks)

Then

Alert type = False Negative

Else

Alert type= Verified alerts

End if

End if;

False negative and verified alerts conditions are shown in false negative
and verified alerts pseudo code; if the alerts were detected in IDS
correlated alerts and detected in the same window time from other sources
of attacks such as FTP, SSH, and HTTP attacks, then the alerts are
considered verified alerts or severe alerts. Verified alerts assure that the
alerts were detected using different sources of information which reduce
false positive alerts.

Alert type is a single IDS alert if only one alert was detected from IDS
and have not been detected by other sources of information in that
window time. Such kind of an alert could be stored to indicate the
probability of low and slow attack.

99

Case : single alert // single alerts for Low and Slow attacks

If Count `abcm_res` = 1 and

Count `attacks_res` = 0 and

Count `ftp` = 0 and

count `ftptransfer` = 0 and

count `http_attack` = 0 and

Count `ssh` = 0 ;

Then

Alert type = Single alert;

End if;

Alert type is Reconnaissance alert if there is no alerts detected either from
IDS or from other sources of information in that time, but there is system
access and/or scan which exceed the threshold allowed values. Such kinds
of reconnaissance indicate it is gathering data about the system before
being attacked. Such kinds of alert type enable the early detection of those
trials of attacks.

Case : Reconnaissance // no attacks, gathering data or systemscan

If Count `abcm_res` = 0 and {

Count `attacks_res` = 0

and Count `ftp` = 0

and count `ftptransfer` = 0

and count `http_attack` = 0

and Count `ssh` = 0 }

and { sum `missing` >= minimum value

OR Sum `access`>= minimum value }

then

Alert type = Reconnaissance alert.

Else

End if

Alert type is IDS only when many alerts were only detected by IDS and
have not been detected by other sources of information in that time. Such

100

kinds of alerts indicate that no other sources were able to detect that
attack which may help in improving the logging capability.

Case: IDS alerts only

If Count of `abcm_res` > 1 and

{ Count `attacks_res` = 0 and

Count `ftp` = and

count `ftptransfer` = 0 and

count `http_attack` = 0 and

Count `ssh` = 0

} and

{

OR sum `missing` <= minimum value

OR Sum `access` <= minimum value

}

Then

Alert type = IDS only alert;

Else

End if ;

End loop

Return ' daily' and ' daily_res' tables

4.5 Implementation Environment

DACM have been implemented using Mysql database for storing alerts
tables and correlated alerts results as well as result tables of different
agents, it also used to store knowledge base and learning criteria.
Borland6 C++ programming language have been used to implement IDS
alert correlation agent, while Microsoft Visual Basic 6 used to implement
central agent and other correlation agents for security tools and log files.
Finally, we used Windows7 Ultimate 64-bit operating system over Dell
studio laptop with Intel Core2Duo CPU-9300-2.5GHz – 6MB cache
processor, and 2GB RAM for testing the implemented model.

101

CHAPTER 5

DACM Results

and Analysis

Chapter Five: DACM Results and Analysis

This chapter presents detailed DACM results for individual agents and the
central agent. The chapter is organized into six sections. Section one
provides a description of the CERIAS dataset that was gathered and tested
to implement DACM. Section 2 provides detailed results for the CAM,
ABCM, and DPCM IDS alert correlation techniques and their
performance/time metrics. Section 3 provides results for the individual
agents from other sources of information. Section 4 summarizes DACM
central agent results. Section five evaluates DACM performance measure
and assessment. Finally, section six addresses some DACM
implementation consideration.

5.1 CRIAS Data Set

The dataset used to implement DACM was collected by the author during
a visiting scholar trip to the Center for Education and Research in
Information Assurance and Security (CERIAS) [64] from April - July
2010. CERIAS, part of Purdue University, is considered to be one of the
leading information security research centers in the world.

This section describes the data collection environment, the CERIAS
network from border router to the web server, and the contents of the
collected datasets; it also includes a description of simulated attacks and
attack scenarios.

5.1.1 CERIAS Network Description
The CERIAS network shown in Figure 5.1 is described as follow:

1. CERIAS is connected to the Purdue Data Network and the rest of the
world through an ITaP router.

2. The ITaP router connects to the CERIAS network bridging firewall.
This firewall blocks IP addresses of known attack sites, compromised
machines, and sources of disruption. The firewall also blocks non
routable IP addresses as defined in RFC 5735 [65] (Special-Use IPv4
Addresses).

102

Internet

254 Subnet

Figure 5.1 CERIAS Network Block Diagram

252 Subnet

CISCO 7513 router

CERIAS Bridge Firewall

ITaP Router

Switch

VPN
server

CERIAS

visitor

Project web
server

OS Mirror
Archive

FTP
server

Primary
website

IDS Agent

Firewall
Agent

Switch

CERIAS Bridge Firewall

Access
log Agent

FTP log
Agent

http/https
log Agent

NTP time
server

103

3. The bridging firewall is connected to a Cisco 7513 router. This router
uses a variety of ACLs to protect the CERIAS subnets. The web server
lives on the 129.10.252.0/24 subnet which is used as an internet DMZ
network. Basically, the DMZ has limited network access both internally
and externally. From outside the CERIAS network, only network
connections for NTP, HTTP, and HTTPS are allowed. From inside the
DMZ, the web server is not allowed access to the internal subnets.

4. The web server itself has been configured to resist attacks. It uses a
recent supported version of Apache 2, uses mod_security2 for
application-level firewall protection, and each component has been
configured to security best practices for protection from attacks.

5.1.2 Data Description
Data was collected 11-28 June 2010 and consisted of three main sources:
Snort [49] alerts, network packet data, and application and system log
messages.

The snort sensors monitored network traffic on the 128.10.254.0/24 and
128.10.252.0/24 subnets. The 254 subnet is a network for CERIAS
visitors, the CERIAS VPN server, and two public NTP timeservers; there
is limited firewall protection for this subnet. The 252 subnet has the
CERIAS primary web site (kargad), as well as the project web server
(blackmesa), and the CERIAS Security Tool Archive and the OS Mirror
Web and FTP site (omelas). Snort captured almost 800,000 alerts in this
period. The alerts were stored in database tables within a MySQL
database and are accessed through the ACIDBASE [55] web interface.
The environment was Ubuntu 10.04 Linux-based OS.

We used Wireshark [59] to capture network packets traffic for CERIAS
website (kargad) which contains detailed packet information. We also
retrieved the output of Nessus [23], a network vulnerability scanner, and
Nmap [36], a network mapping utility, to check for known network
vulnerabilities and network port status.

104

Finally, we collected log files for CERIAS services as follows:

Archive FTP: FTP log messages from the ftp.cerias.purdue.edu and

osmirror.cerias.purdue.edu sites.

Proftpd: error messages and requests associated with FTP.

Xferlog: a listing of files transferred over FTP.

Archive HTTP: HTTP log messages from the ftp.cerias.purdue.edu and

osmirror.cerias.purdue.edu sites.

FTP HTTP: http requests and error messages for ftp.cerias.purdue.edu.

OSMIRROR HTTP: http requests and error messages for

osmirror.cerias.purdue.edu.

BASM SSH

Inetdlog: Service and error messages from the inetd and child processes;

this log includes error messages associated with SSH. IPs and hostnames

of people asking to guess users passwords.

CERIAS HTTP:

access_log: HTTP requests.

error_log: Errors associated with HTTP requests.

https_access_log: HTTPS (SSL) requests.

https_error_log: HTTPS (SSL) errors associated with HTTPS.

Firewall Router: Log messages containing a list of blocked network

packets from the outside world. We can identify the blocked IPs and

compare it with the IPs listed in other resources during the same time

period to assure their behavior.

While our model includes performance data, they were not collected

during the data collection process (experiment) as necessary performance

monitoring tools were not available.

105

ftp://ftp.cerias.purdue.edu/
ftp://ftp.cerias.purdue.edu/
ftp://ftp.cerias.purdue.edu/
http:osmirror.cerias.purdue.edu
http:osmirror.cerias.purdue.edu
http:osmirror.cerias.purdue.edu

5.1.3 Attacks
Some attacks were conducted during the capture data period to add to the
normal attack behavior. The simulated attacks were conducted to assure
that the captured data contained LOW and Slow attacks. The simulated
attack data is as follows:

Nmap: port scan of web server; we used the version check option to
determine the name and version of the service “nmap –sV”; we looked to
port 80 and 443 (http and https) service.

Nikto: Configuration scan of the web server, we attempted to evade IDS
detection by slowing the scan speed down, “nikto.pl -Tuning 3b -Pause 5
–evasion”.

Using a Firefox plug-in called tamper data, we attempted to send bad data
to a form in the CERIAS web site in order to exploit vulnerabilities in the
form processing script.

5.1.4 Attack scenarios
In collecting the above data, we attempted several attack scenarios.

While we collected some signatures from these trials, the scenarios were

not completed successfully because of CERIAS security.

Scenario 1

- An attacker uses a regular web browser to browse a web site for
forms which he/she can use to attack the system. (One of these
forms may have vulnerabilities that could be exploited by the
attacker).

- The attacker uses a variety of techniques to determine the
vulnerability of the forms:

o	 Putting too much data in the form to check how the script
responds

o	 Altering the URL components to see how the script
responds.

- If the script has a vulnerability, the attacker will attempt to:

106

http:nikto.pl

o	 Corrupt the database and disrupt the website;
o	 Extract information from the database;
o	 Alter information in the database;
o	 Run a command in the system to gain illegal access or

disrupt the system behavior.
- The attacker tries to determine what other systems are accessible

and attempts to do reconnaissance to determine which of these
systems could be compromised.

-	 The attacker will bring over utilities (attack tools to current
compromised machine) to compromise other accessible machines.

- Attack accessible machines and compromise them.
Scenario 2

- The attacker probes the CERIAS FTP server looking for
vulnerabilities and configuration errors.

o Assumption: FTP server has a buffer overflow problem.
- The attacker uses buffer overflow to gain access to the FTP server.
- The attacker uses that access to bring over attack tools.
- Those tools are then used to gain higher level access to the FTP

server operating system:
o	 The attacker could delete the FTP archive; corrupt/modify

the contents; or use the ftp as a distribution point for illegal
software.

o	 Determine other accessible systems to attack them.
Scenario 3

- The attacker identifies an available CERIAS SSH servers.
- He/she discovers the user id for a CERIAS employee.
- He/she uses a SSH brute force tool to guess the password for the

user id identified in step2.
o Assumption: the attacker gets a correct password.

-	 The attacker uses the account and password to get illegal access to
other CERIAS systems.

107

- The attacker brings over attack tools to attack other systems.
Scenario 4

- Assumption. One of the projects runs student code that has a
vulnerability.

- An attacker discovers the vulnerability and exploits the code in the
project server and uses it to gain access on the system.

Scenario 5
- Attacker sends Phishing Email to the user.
- The user accesses the phishing site and enters his/her identity.
- The attacker uses the account and password to get illegal access to

other CERIAS systems.
- The attacker brings over attack tools to attack other systems.

5.2 IDS Alerts Correlation Results

Over a period of 18 days, Snort collected 858,000 alerts in the CERIAS
dataset; alerts were divided to be correlated through those days. The alerts
were correlated using CAM [56–58], ABCM, and DPCM. Figure 5.2
shows the total number of alerts and the 18 tables which represent daily
alerts.

Figure 5.2 Snort IDS alerts5

5 larger image of Figure 5.2 is included in Appendix A
108

Table 5.1 presents sample alerts. The collected alert data included sensor
id, alert id, signature, timestamp, source IP, destination IP, protocol,
source port, and destination port.

Table 5.1 SNORT IDS alert Attributes

Sid Cid Sig_Name Timestamp IP_src IP_dst Proto Sport Dport

6 16 ICMP PING
speedera 6/11/2010 9:14 3460811837 2148204039 1

6 20 EXPLOIT ntpdx
overflow attempt 6/11/2010 9:21 1656885345 2148204039 17 123 123

7 28 WEB-MISC /doc/
access 6/11/2010 21:42 1131319090 2148203530 6 59285 80

7 30 WEB-MISC
robots.txt access 6/11/2010 21:47 3475949512 2148203529 6 19427 80

5.2.1 IDS correlation Model
We implemented an integrated interface to correlate the alerts using the
three different techniques and compare their reduction rate and correlation
time. Figure 5.3 shows the IDS correlation models’ interface. We ran the
three models against the alerts from the 18 days and got the reduction rate
and correlation time for each model.

Figure 5.3 IDS alert correlation Interface6

6 Larger image of Figure 5.3 is included in Appendix A

109

5.2.2 CAM Results
As an example, the 28,664 alerts from day 11 were tested, and we ran
CAM to correlate those alerts. Figure 5.4 shows the results of correlation
with component alert fusion (AF), producing a 0 % reduction rate in 166
seconds of correlation time. The AF component has no affect in reducing
the number of alerts while still consuming high processing time.

Figure 5.4 AF correlation result7

Figure 5.5 shows that the Threat Reconstruction correlation component
produced 1,960 alerts compared with 28,664 input alerts. This is a
93.16% reduction in the output alert rate with 8.5 seconds of processing
time.

7 Larger image of Figure 5.4 is included in Appendix A

110

Figure 5.5 TR Correlation Result
The final correlation result for the 28,644 alerts in our sample test was
obtained using the FR and MSA correlation components. As show in
Figure 5.6, the final reduction rate using CAM is 97.4 % with a total
processing time of 175 seconds. The sequence components results
indicate that only the TR, FR, and MSA components are effective. The
effective correlation components have a total correlation time of
approximately 11 seconds, while AF has a correlation time 166 seconds
without any alert reduction. CAM thus has 166 seconds of wasted time.

Figure 5.6 Final CAM Correlation Result

111

5.2.3 ABCM results
Agent based correlation Model runs
through Learning and Correlation
Phases. The Learning Phase creates
ACCL to determine which component
can be used and in which order. The
Learning Phase results presented in
Figure 5.7 show that ACCL will be
composed of FR, TR, and MSA
components. The learning time was 3
seconds for 2866 alerts (10 % of the
total number). The order of ACCL
depends on the reduction rate of each
component in ACCL. FR has the
highest reduction rate followed by TR;
MSA was the lowest reduction rate.

Figure 5.7 ABCM Learning Phase8

In the Correlation Phase, only the effective correlation components in
ACCL will be used to correlate the alerts. The input to the first
correlation component in ACCL will be the rest of the alerts after removal
of the learned alerts. As shown in Figure 5.8, the FR component has a
reduction rate of 93% for the 25,798 input alerts and produces 1,785
correlated alerts for the second component in ACCL. The TR component
has a reduction rate of 65% for the 1,785 input alerts and produces 615
correlated alerts for the third component in ACCL. The MSA component
has a reduction rate of 0.4% for those 615 input alerts and produces 612
correlated alerts as the final correlated alerts. The 612 final correlated
alerts represent a reduction rate of 97% for the 25,798 input alerts. The
total correlation time for the sequence of correlation using ACCL

8 Larger image of Figure 5.7 is included in Appendix A
112

components is 7 seconds, which produces total learning and correlation
time of 10 seconds. Thus the Learning Phase enhanced the correlation
process compared with CAM by eliminating the time consumed for the
AF component.

Figure 5.8 ABCM’s Correlation Phase Results9

5.2.4 DPCM Results
In DPCM, correlation is done in correlation stages, with each stage
including a set of correlation components instead of an individual
component. Figure 5.9 shows the DPCM correlation for 11 June of
28,664 alerts as same example correlated by CAM and ABCM. All
correlation components in the first stage have been used and produced
different reduction rates for each of them. Components AV, ASR, and AF
have 0% reduction rates and will be disabled in the next stage. Since the

9 Larger image of Figure 5.8 is included in Appendix A
113

FR Component has the highest reduction rate in the first correlation stage,
its output will be the input to the next stage and it will be disabled in the
next stage. In the second correlation stage, TR and MSA correlate the
output of the FR component from the first stage. Since TR has a higher
reduction rate than MSA, the correlated alerts output of the TR
component will be the input to the third stage. In the third stage the TR
component will be disabled, and only the MSA component is active.

Figure 5.9 DPCM Correlation Stages Result10

The output of the third stage, represented by the MSA output, is the
output correlated alerts done by DPCM. This is 625 alerts out of the total
input of 28,664 alerts. Figure 5.9 shows the total result of the DPCM
correlation process. The DPCM reduction rate is 97.8% while consuming
336 seconds of processing time for the total correlation time by the
different correlation stages.

The correlation time for each stage depends on the longest correlation
component in that stage. The DPCM reduction rate is more accurate than
ABCM with no need for a learning process, while having a longer
correlation time in comparison with CAM and ABCM.

10 Larger image of Figure 5.9 is included in Appendix A
114

DPCM is also expected to have a lower time than CAM exactly as ABCM
if a fully parallel architecture is used to implement it. The time produced
here is because a single processor with multi-threading is used to
implement DPCM.

Figure 5.10 DPCM Final Correlation Result11

5.2.5 IDS Alert Correlation Techniques Performance
This section compares the performance of three different IDS correlation
techniques against the 18 days of alerts gathered in the CERIAS dataset.
Table 5.2 summarizes the reduction rates for CAM, DPCM, and ABCM.
There were 838,348 total alerts collected over 18 days. There was an
average of 46,574 daily alerts, with a minimum of 11,788 alerts (20 June),
and maximum of 152,240 alerts collected (18 June).

The total output of correlated alerts by CAM was 17,741 alerts out of
838,348 input alerts, representing a 97.88% total reduction rate. The total
output of correlated alerts by ABCM was 16,218 alerts out of 754,505
alerts after excluding learned alerts from correlation, representing a total
reduction rate of 97.88%. The total output correlated alerts by DPCM
was 17,004 of 838,348 and a total reduction rate of 97.97%.

11 Larger image of Figure 5.10 is included in Appendix A
115

Table 5.2 Alert Correlation Reduction Rates Comparison

Day I/P alerts
CAM DPCM ABCM

O/P RR O/P RR alert
learned O/P RR

11 28664 725 97.47 625 97.82 2866 619 97.60

12 46703 1076 97.70 979 97.90 4670 961 97.71

13 54759 1060 98.06 935 98.29 5475 909 98.16

14 34303 1184 96.55 1178 96.57 3430 1050 96.60

15 51823 944 98.18 870 98.32 5182 832 98.22

16 49609 1095 97.79 1010 97.96 4960 997 97.77

17 34879 982 97.18 905 97.41 3487 881 97.19

18 152240 1083 99.29 1077 99.29 15224 1044 99.24

19 15175 531 96.50 513 96.62 1517 497 96.36

20 11788 354 97.00 346 97.06 1178 312 97.06

21 49336 1164 97.64 1143 97.68 4933 1118 97.48

22 39786 1146 97.12 1139 97.14 3978 1035 97.11

23 27753 1214 95.63 1171 95.78 2775 1067 95.73

24 70686 1192 98.31 1174 98.34 7086 1140 98.21

25 36072 1117 96.90 1106 96.93 3607 1003 96.91

26 57598 1055 98.17 1036 98.20 5759 1018 98.04

27 52035 1083 97.92 1075 97.93 5203 1039 97.78

28 25139 736 97.07 722 97.13 2513 696 96.92

116

Figure 5.11 shows a graph of the daily reduction rate for CAM, DPCM,
and ABCM. The x-axis represents the daily alert count, and the Y-axis
represents the reduction rate percentage of each model for those daily
alerts. The results showed that the reduction rates of the three models are
very close to each other with minor differences. While they are almost
equal, DPCM has the highest reduction rate, followed by CAM, and then
ABCM.

Reduction Rate Percentage %

95.00

96.00

97.00

98.00

99.00

100.00

CAM

DPCM

ABCM

Alerts Count

28
66

4
46

70
3

54
75

9
34

30
3

51
82

3
49

60
9

34
87

9
15

22
40

15
17

5
11

78
8

49
33

6
39

78
6

27
75

3
70

68
6

36
07

2
57

59
8

52
03

5
25

13
9

Figure 5.11 Reduction Rates Comparison of IDS Correlation Techniques

Table 5.3 summarizes the correlation times for CAM, DPCM, and
ABCM. It shows the daily alerts ordered by the date of the alerts, while
Table 5.4 shows the same results ordered by the alert count and
correlation time for each technique.

117

Table 5.3 Correlation Time Comparison for IDS Alert Correlation
Models ordered by date of alerts

Day Alerts Count CAM Time ABCM Time DPCM Time

11 28664 195 10 367

12 46703 436 28 842

13 54759 620 35 1159

14 34303 233 23 434

15 51823 447 35 982

16 49609 504 39 1130

17 34879 325 24 526

18 152240 6048 103 10082

19 15175 52 9 102

20 11788 27 3 50

21 49336 457 32 889

22 39786 375 34 738

23 27753 171 18 281

24 70686 940 44 1863

25 36072 278 20 543

26 57598 652 39 1260

27 52035 564 27 1120

28 25139 141 15 272

118

Table 5.4 Correlation Time Comparison for IDS Alert Correlation Models
ordered by alerts count

Day Alerts Count CAM Time ABCM Time DPCM Time

20 11788 27 3 50

19 15175 52 9 102

28 25139 141 15 272

23 27753 171 18 281

11 28664 195 10 367

14 34303 233 23 434

17 34879 325 24 526

25 36072 278 20 543

22 39786 375 34 738

12 46703 436 28 842

21 49336 457 32 889

16 49609 504 39 1130

15 51823 447 35 982

27 52035 564 27 1120

13 54759 620 35 1159

26 57598 652 39 1260

24 70686 940 44 1863

18 152240 6048 103 10082

119

Figure 5.12 shows a chart of the daily correlation time for CAM, DPCM,
and ABCM. The X-axis shows the daily alerts count; the Y-axis
represents the correlation time in seconds. The results show that the
correlation time increased linearly with increasing alerts count until the
range of 70,000 alerts, while it increased exponentially in case of 152,240
alerts. The chart shows that ABCM has the lowest correlation time
compared with CAM and DPCM techniques. DPCM has the highest
correlation time compared with CAM and ABCM. DPCM timing
depends on the correlation time of each stage, while CAM and ABCM
timing depends on the correlation time of each component. The
correlation time of each stage depends on the longest correlation time of
the active components in that stage. The chart shows results varying from
3 seconds in the case of ABCM for minimum alerts count, to more than
10,000 seconds for DPCM technique in the case of 152,240 as maximum
alert count. Detailed correlation times for alert counts less than 70,000
alerts (dashed red rectangular in Figure 5.11) will be shown in a separate
chart.

Correlation time (Sec)

0

2000

4000

6000

8000

10000

12000

0 20000 40000 60000 80000 100000 120000 140000 160000

CAM

DPCM

ABCM

Alerts Count

Figure 5.12 Correlation Times Comparison of IDS Correlation

Techniques

120

Figure 5.13 presents a graph of correlation times for different IDS
correlation techniques with excluding of maximum number of alerts of
152,240 alerts to show the detailed differences in correlation time for each
technique for alerts less than 70,000 alerts.

Correlation time (Sec)
2000

1800

1600

1400

1200

1000

800

600

400

200 Alerts Count
0

0 10000 20000 30000 40000 50000 60000 70000 80000

CAM

DPCM

ABCM

Figure 5.13 Correlation Times Comparison of IDS Correlation Techniques

ABCM has the lowest correlation time because it uses only effective
components in ACCL, while CAM has a higher correlation time because
it consumes time in ineffective components; DPCM has a higher
correlation time because the use of stages increased every stage time
compared with the use of components in the single processor environment
used.

5.3 DACM Components Results

This section presents the result of different individual agents. These
results depend on some parameters like previous period or certain IP
address. Figure 5.14 shows SSH agent result which includes detected
malicious activity within SSH service. The detected attacks described by
ID, source IP, Date, Time, process ID, user, and description.

121

The SSH agent detects users who are trying to guess the username or
password for SSH services or try to hide their browser information to
prevent the system from identifying them.

Figure 5.14 SSH Agent Result12

Other similar agent’s results for different services such as Firewall, FTP,
FTP transfer, error log attack, access log, and system scan could be
presented in such way. ABCM correlation for IDS alerts is included as
IDS agent result to integrate with other agents results. Figure 5.15 shows
ABCM results as a module in DACM including correlated alerts for
specific IP address (98.194.16.97).

Figure 5.15 ABCM Result for Specific IP as part of DACM13

12 Larger images of Figures 5.14 and 5.15 are included in Appendix A

122

http:98.194.16.97

ABCM correlated alerts include source IP, date, time, alert signature, and
destination. Each agent result includes ID, Date, and Time, Source IP, and
attack description. Three common attributes of all alerts from different
agent result date, time, and attacker or source IP, these attributes could be
used to integrate attacks done by same IP in same time. Integrating such
kind of alerts together with IDS correlated alerts conclude the current
situation of attempted intrusion to the system

5.4 DACM Central Agent Results

DACM central agent has rich valuable information from different
individual agent’s result. Using this information together, the central
agent provides valuable reports summarizing the improvement in IDS
capability. Figure 5.16 shows the daily report of DACM which concludes
alerts and show their total classification. Daily alerts report is described
by alert ID, source IP, Date, alert type, count of alerts from IDS correlated
alerts for source IP. It also include other alerts from other source SSH,
Firewall, for that source IP , and finally it conclude access log and system
scan alerts which exceeds the allowed threshold value.

Figure 5.16 DACM Daily Results13

13 Larger Image of Figure 5.16 is included in Appendix A

123

The alert type is driven from the integration of different agent’s result for
the same IP. False Negative alerts during the whole period of test were
4819 alerts. The alerts were not detected by IDS through its correlated
alerts and discovered by other agent’s results. The false negative alerts
show which agent detected it from FTP, SSH, and http attack. Severity
alerts during the whole period of the test were 337 alerts. The alerts were
detected by IDS through its correlated alerts and also discovered by other
agents result. The severity alerts show which other agent detects it from
firewall, FTP, SSH, and http attack added to IDS alerts.

IDS alerts during the whole period of the test were 1375 alerts. The alerts
were detected more than one time for the same IP by only IDS through its
correlated alerts and not discovered by any of the other agents’ results
Single alerts during the whole period of test were 4578 alerts. The alerts
were detected by only IDS through its correlated alerts just one time
during the whole period of test and never repeated and not discovered by
any of the other agents’ results. Single alerts are stored for a while to be
analyzed for detection of low and slow attack. Total IDS alerts were 6953
which is equal to IDS only alerts added to single alerts.

Firewall alerts represent summarized information in daily result report.
The count of firewall alerts during the whole period of test was 74378
alerts. The alerts were detected only by firewall locked address within the
test period. Reconnaissance alerts conclude the trial of gathering data
about the network through unhallowed access of system or trying to scan
the system to discover the operating system. The count of reconnaissance
alerts during the whole period of test was 1273 alerts. Different detailed
reports for each alert type could be displayed within specific period or IP
address as a report parameter.

DACM agent has different reports to trace a specific IP address to
conclude the trial and attack signature for this IP in different source of
information. Figures 5.17 and 5.18 show an example of IP report which

124

show that IP “108.1.38.84” was detected by ABCM correlation as IDS
alerts and the same IP appeared in the firewall agent result as blocked IP,
also it was detected by http attack in the same time window in one case.

Figure 5.17 DACM IP Report form ABCM IDS correlated alerts14

In other cases it was detected in http attack while not detected in IDS
because of the use of IDS evasion technique. In other cases it was
detected only in IDS and was not detected by http attack because of the
attack nature.

Figure 5.18 DACM IP Report form HTTP attack15

14 Larger images of Figures 5.17 and 5.18 are included in Appendix A

125

http:108.1.38.84

DACM decreases the audit load and the time cost required to obtain
effective situational understanding of the network through displaying the
most repeated IPs as sources for different attacks. Figure 5.19 shows
maximum priority report, which display the most common IPs which
were detected by different agent’s results or by DACM central agent. The
reports shows the top 10 IPs which have the highest count of repeated
alerts for different alerts type and/or reconnaissance activity.

Figure 5.19 DACM Maximum Priority Report15

DACM detects low and slow attacks which occur over several days, and
classify them depending on their source of detection. Figure 5.20 shows
Low and Slow summary report within the test period, it includes source
IP of low and slow attack and count of daily detected single alerts for that
IP.

Figure 5.21 shows the detailed low and slow attacks for IP
192.160.165.222. DACM detected 16 single alerts for this IP in 16
different days. Figure 5.22 shows other low and slow attacks and other
reconnaissance activity for same IP. The IP 216.129.119.45 has 9

15 Larger Image of Figure 5.19 is included in Appendix A

126

http:216.129.119.45

individual single alerts and system access and scan greater than threshold
values.

Figure 5.20 Low and Slow Attack Summary16

Figure 5.21 Low and Slow Attack for 192.160.165.22217

16 Larger Images of Figures 5.20 and 5.21 are included in Appendix A

127

DACM summarizes the total daily alerts and classify them depending on
their source of detection. Figure 5.23 shows DACM summary report, it
includes daily alerts count of the test period, count of alerts detected by
IDS which are correlated by ABCM and other alerts which were missed
from IDS and detected by other agents such SSH, FTP, and http attacks.

Figure 5.22 Low and Slow Attack for 216.129.119.4517

Figure 5.23 DACM Summary Report18

17 Larger Images of Figures 5.22 and 5.23 are included in Appendix A

128

Third column shows the total alerts detected by DACM which is
calculated from addition of IDS alerts to other agent’s alerts. DACM
enhances IDS completeness through detecting the false negative alerts
which were missed from the IDS alerts. Table 5.5 summarizes daily alerts
count and number of IDS detection and missed alerts from IDS which
have been detected by other log agents, and the total of them.

Table 5.5 DACM Summary Result

Day Alerts IDS Detection Other logs Detection DACM

11 28664 277 339 616

12 46703 393 241 634

13 54759 380 290 670

14 34303 449 304 753

15 51823 449 300 749

16 49609 458 322 780

17 34879 373 357 730

18 152240 469 342 811

19 15175 248 248 496

20 11788 166 288 454

21 49336 444 306 750

22 39786 414 354 768

23 27753 427 370 797

24 70686 451 317 768

25 36072 411 322 733

26 57598 421 266 687

27 52035 389 224 613

28 25139 334 248 582

129

The minimum alerts count was 11788 alerts in day 20; the detected
correlated alerts from IDS were 166 alerts. DACM detected 288 alerts
from other log agents in the same day. The maximum alerts count was
152240 alerts in day 18; the detected correlated alerts from IDS were 469
alerts. DACM detected 342 alerts from other log agents in the same day.

Table 5.6 DACM Percentage Summary Result

Day Alerts IDS % Other Logs % DACM %

11 28664 45 55 100

12 46703 62 38 100

13 54759 57 43 100

14 34303 60 40 100

15 51823 60 40 100

16 49609 59 41 100

17 34879 51 49 100

18 152240 58 42 100

19 15175 50 50 100

20 11788 37 63 100

21 49336 59 41 100

22 39786 54 46 100

23 27753 54 46 100

24 70686 59 41 100

25 36072 56 44 100

26 57598 61 39 100

27 52035 63 37 100

28 25139 57 43 100

130

Table 5.6 summarizes the percentage of detection of daily alerts count and
number of IDS detection to the percentage of missed alerts from IDS
which have been detected by other log agents, and the total of both of
them. The average percentage alerts for DIS alerts percentage was 56%
and was 44% percentages for missed alerts in case of average daily alerts
of 46574 alerts.
Figure 5.24 shows a graph chart of number of IDS detection as IDS and
missed alerts from IDS which have been detected by other log agents as
other log, and the total for both of them as DACM. The x-axis represents
the daily IDS alerts count while the y-axis represents the count of
detected alerts. The graph shows that the use of other agents in DACM
enhances the detection rate of missed alerts.

Detected Alerts

0

100

200

300

400

500

600

700

800

900

28
66

4
46

70
3

54
75

9
34

30
3

51
82

3
49

60
9

34
87

9
15

22
40

15
17

5
11

78
8

49
33

6
39

78
6

27
75

3
70

68
6

36
07

2
57

59
8

52
03

5
25

13
9

IDS

Other logs

DACM

Daily Alerts

Figure 5.24 DACM Summary Results Chart

Figure 5.25 shows a graph chart of percentages of IDS detection in blue
color and missed alerts from IDS which have been detected by other log

131

agents in red color, and the total for both of them in green color. The x-
axis represents the daily IDS alerts count while the y-axis represents the
percentage of count of detected alerts to the total detected alerts by
DACM. Total detected alerts by DACM represent the complete unit for
both kinds of detection. The graph shows that the use of other agents in
DACM enhances the detection rate of missed alerts by 44% compared
with the case of using just IDS correlation.

Result Ratio

0.00

0.20

0.40

0.60

0.80

1.00

1.20

IDS

Other Logs

DACM

Daily Alerts

28
66

4
46

70
3

54
75

9
34

30
3

51
82

3
49

60
9

34
87

9
15

22
40

15
17

5
11

78
8

49
33

6
39

78
6

27
75

3
70

68
6

36
07

2
57

59
8

52
03

5
25

13
9

Figure 5.25 DACM Percentage Summary Results Chart

5.5 DACM Evaluation and Assessment

In this section we will present summary of the model assessment and
implementation issues, DACM capabilities, DACM limitation, and
needed consideration for implementation will be presented.

5.5.1 DACM Limitation
Additional DACM learning is needed to build more accurate behavioural
profiles which determine attack signatures in system and application log
files. Multi-step attack scenarios also need more learning to build pre
condition and post-condition tables for such attacks. DACM alerts are

132

considered on an equal footing, and aren’t considered the influencing
factors of different alerts on the same information system. Research is
needed to distinguish between such alerts and assign weights for each
alert type depending on its source of information and influence of the
provided service. The assurance and quality of information from different
agents is needed to avoid existing of fake agents and limiting the practical
implementation.

The implemented model could be attacked by someone who knows the
model idea by one of the following methods: Modification of log records,
changing his behaviour to avoid learned profiles, sending malicious data,
generating false alerts, or compromise a system to generate large amount
of data to hide his activity.

5.5.2 DACM Assessment
DACM improves IDS capability through the use of different sources of
information. False positive alerts are reduced because of the verification
of alerts detected by IDS from other sources like firewalls, different log
attacks, or http attacks. False negative alerts are reduced because missed
alerts from IDSs are detected from other logs such as SSH, FTP, and http
attacks. DACM enables early detection of trials to gather data which
represent the first phase of advanced persistent threat and individual alerts
for Low and Slow attack.

Previous correlation techniques were limited to the use of IDS alerts for
correlation and enhancing correlation component performance. Few
techniques [35, 36] used vulnerability scanners to assure alert verification.

Using the simplicity of the relationship between individual agents, it is an
easy and simple task for each individual agent to correlate its alerts and
shares its output with other agents. This approach reduces the overhead
and enables the ideal use of system resources such as memory and CPU.
DACM enables minimum correlation time of ABCM as IDS alerts
correlation technique and allows continuous adaptive learning to update

133

ACCL, assuring the use of suitable correlation components for different
datasets.

The DACM central agent accesses the results tables of other agents from
central database, reducing network traffic compared with the case of
accessing them from multiple machines or accessing the information
source itself. DACM is ready for real time operation with minor
modification in agent programs; the current proposed prototype was
implemented after collecting the dataset, so it was not possible to run it as
a real time model.

5.6 Practical Implementation Issues

The implementation of DACM model must reflect that the DACM is real
time system; faster hardware produces better results in suitable time. The
structure of the model can be unified hierarchical system or can be
divided into group of smaller distributed systems. The structure nature
must consider the communication overhead and the number of nodes and
information source (500 IDS, 300 log file, 100 Firewall, etc).

The expected time to implement such system will depend on the
availability of qualified engineers and programmers to build the needed
learning systems, and the availability of the proper hardware. DACM is
platform independent; it can be implemented using windows, Linux, or
UNIX operating system. It also can be implemented on network of PCs or
sun workstation.

DACM is scalable system, but more scalability analysis is needed to
determine the maximum number of monitored nodes. The larger numbers
of nodes will require complex communication design and high rate of
sending data which may affect the system performance. The central agent
performance may be affected with huge number of nodes, the idea of
implementing multiple hierarchical small systems and exchange data
between each subsystem central agent may be better for huge number of
nodes.

134

CHAPTER 6

Conclusions

and Future Work

Chapter Six: Conclusions and Future Work
6.1 Conclusions

This dissertation proved that it is possible to enhance both IDS Accuracy
and IDS Completeness through reducing either False Positive or False
Negative alerts using correlation between different available information
sources in the system and network environment. The dissertation
presented a Distributed Agent Correlation Model (DACM) providing a
scalable alert correlation for large scale networks. The model utilizes
multiple distributed agents to provide an integrated correlation solution.
The model can be extended by creating new correlation agents, and can
be tailored to a protected network by selecting what agents to use and
configuring each individual agent’s parameters. DACM correlates alerts
from IDSs with other information source such as INFOSEC tools and
system and application log files.

A collection of datasets was used to evaluate the correlation system. The
datasets were collected on networks with a variety of services and
includes real networks, networks specifically constructed for dataset
gathering, and simulated networks. The collected datasets are real-world
datasets, with real attacks in addition to some simulated attacks to build
behavioral profiles, since no cooperation from the attacker can be
assumed. The intentions of the attackers were deduced from the gathered
datasets.

Agent’s proposed models and algorithms have been implemented,
analyzed, and evaluated to measure detection and correlation rate and
reduction of false positive and false negative alerts.

This dissertation proposed two alternative models to enhance the IDS
alert correlation process: an Agent Based Correlation Model (ABCM) and
a Dynamic Parallel Correlation Model (DPCM).

The ABCM works through a learning phase and correlation phase. During
the learning phase, Learning Agent (LA) learns the nature of the alert

135

datasets and effective correlation components and their Reduction Rate
(RR) and builds an Active Correlation Component List (ACCL). The
ACCL contains the effective correlation components in descending order
of their RR. Depending on the learning phase, the agent controls the
correlation process during the correlation phase using the implemented
ACCL. The order of correlation starts with components with higher RRs
in ACCL followed by lower RRs until correlation by the last component
in ACCL.

DPCM has parallel processing correlation to assure using the suitable
component and its order. It consists of correlation stages with each stage
consisting of a set of correlation components. The proposed model
dynamically selects the optimum order of the needed correlation
components depending on the working environment. The input to each
stage is the output of the correlation component with the highest RR in
the previous stage. In the next stage, the higher RR component and
components which have zero value RRs will be disabled. The optimal
components order minimize the number of processed alerts in each stage
by starting from higher to lower reduction rate components. ABCM is
scalable regarding the number of correlation components in ACCL, while
DPCM is scalable regarding the number of correlation components in
each stage. Using threads in PDCM optimizes usage of memory and
processor during correlation process.

The results showed that ABCM and DPCM have similar RRs as CAM,
while ABCM has the lowest correlation time and DPCM has the highest
correlation time. That means ABCM maintains the same correlation
accuracy provided by CAM in less time and less number of components.
While it has the longest time in our single processor implementation,
DPCM is expected to have the lower time if fully parallel architecture is
used. DPCM has the highest reduction rate with minor differences than
ABCM and CAM.

136

Firewall log file was used as INFOSEC tools information example,
firewall agent reads router log files and summarizes the blocked IP in
firewall tables. SSH, FTP, and error logs were used as system and
application log files information example, these logs agents read the
related log files, and extract the attack signature in each file to its output
tables. Each agent has a previously learned pattern to determine the
normal versus attack behavior in the log file contents. Access log agents
and OS log agents determine when other users are trying to gather
information about the protected network contents or the services provided
and the used operating systems.

The DACM central agent correlates the output of ABCM as IDS alert
correlation with other agent’s output. The results show that DACM
enhances both the accuracy and the completeness of intrusion detections
by reducing false positive and false negative alerts through the integration
of these alerts from multiple information sources. DACM supports an
adaptive continuous learning capability by providing profiles which have
never been learned as normal or attack behavior to the system
administrator to classify these profiles.

DACM decreases the audit load and the time cost required to obtain
effective situational understanding of the network. DACM is scalable for
large scale networks; many different agents can be added to expand the
area of detection by different attacks. The results show that DACM
provides 44% better intrusion detection than other IDS techniques
through the detection of new attacks which were not detected by IDSs. It
also showed that DACM detected low and slow attacks and
reconnaissance trials by external users. These reconnaissance trials are a
signature of early detection of Advanced Persistent Threats. DACM can
be used to detect Zero Day Attacks through detection of any malicious
behavior compared with normal network behavior.

137

Finally, DACM could be used as a real time system with minor
modifications to the current implementation to allow continuous online
correlation for individual and central agents. The model presented in this
dissertation is a promising approach which combines use of correlation
techniques and agent technology.

6.2 Future Work

This dissertation introduces several directions for future research
including extending the model by implementing other agents for network
security tools, system audit logs, and host based IDS; enhancing the
learning capability with more accurate behavioral profiles for detecting
coordinated attacks and multi-step attacks; and in preparing different
scenarios to include those kinds of attacks and generating the datasets to
be utilized in building the knowledge base for learning. Studying
distributed wide area networks and worldwide correlation would improve
the intrusion detection and early detection of new attacks.

Expanding the model to include automated responses would address the
need for immediate responses to attacks; the automated response agent
would depend on the correlated alert results and select the proper
response from among the available network capabilities. While DACM
depends on the knowledge base and network security policy, studying
indoor risk analysis and security assurance appears as a critical point for
future research. Finally, measuring the performance, trustworthiness, and
assurance of distributed agents is a challenge to the problem of the
probability of the existence of fake agents.

138

APPENDIX A

Larger Images of

Results Figures

A
-1 L

arger Im
age of Figure 3.4 Firew

all router log file

139

A
-2 L

arger Im
age of Figure 3.6 FT

P L
og File

140

A
-3 L

arger Im
age of Figure 5.2 Snort ID

S A
lerts

141

A
-4 L

arger Im
age of Figure 5.3

ID
S A

lerts C
orrelation Interface

142

A
-

5 L
arger Im

age of Figure 5.7 A
B

C
M

 L
earning Phase R

esult

143

 A
-6 L

arger Im
age of Figure 5.8 A

B
C

M
 C

orrelation Phase R
esult

144

A
-7 L

arger Im
age of Figure 5.9 D

PC
M

 C
orrelation Stages R

esult

145

A
-8 L

arger Im
age of Figure 5.10 D

PC
M

 Final C
orrelation R

esult

146

 A
-9 L

arger Im
age of Figure 5.14 SSH

 A
gent R

esult

SSH Attack Alerts for Different IPs

147

A
-10 L

arger Im
age of Figure 5.15 A

B
C

M
 R

esult for Specific IP in
D

A
C

M

IDS ABCM Correlated Alerts of: 98.194.16.97

148

A
-11 L

arger Im
age of Figure 5.16

D
A

C
M

 D
aily R

eport

149

A
-12 L

arger Im
age of Figure 5.17 D

A
C

M
 IP R

eport form
 A

B
C

M

ID
S C

orrelated A
lerts

o

IP Report ABCM Correlated Alerts of: 108.1.38.84

150

A
-13 L

arger Im
age of Figure 5.18 D

A
C

M
 IP R

eport form
 H

T
T

P
A

ttack

IP Report Http Attacks Alerts of: 108.1.38.84

151

A
-14 L

arger Im
age of Figure 5.19 D

A
C

M
 M

axim
um

 Priority R
eport

152

A
-15 L

arger Im
age of Figure 5.20 L

ow
 and Slow

 A
ttacks

Low and Slow Alerts of Different IPs

153

A
-16 L

arger Im
age of Figure 5.21 L

ow
 and Slow

 A
ttack for

192.160.165.222

Low and Slow Alerts of: 192.160.165.222

154

A
-17 L

arger Im
age of Figure 5.22 L

ow
 and Slow

 A
ttack for

216.129.119.45

Low and Slow Alerts of: 216.129.119.45

155

A
-18 L

arger Im
age of Figure 5.23

D
A

C
M

 Sum
m

ary R
eport

156

APPENDIX B

DACM Agents Formal

Description

Appendix B: DACM Agents Formal Description

B-1: IDS Alert Correlation

∋ܦܵ ݈ܽ݁ݎݐݏ Ai (sensor, ID, source, timestamp, destination, type) ܫ

∋ܦܵ ݈ܽ݁ݎݐݏ i+1A (sensor, ID, source, timestamp, destination, type) ܫ
Ai and Ai+1 could be correlated using different correlation components,
these components represents specific criteria in which they use to
correlate the alerts, the criteria of each component will be described in
mathematical relation of the alerts attributes. Correlation components
used in [56 - 58] were formally described as follows:
Alert Fusion Correlation Component can be described as follows:

Ai, Ai+1 will be correlated together
If source (Ai) =source (Ai+1) and
Destination (Ai) =destination (Ai+1) and
Type (Ai) =type (Ai+1) and
|Time (Ai) – Time (AF)| <= T threshold and
Sensor (Ai) <> sensor (Ai+1)
Where T threshold is the minimum allowed difference time

Threat Reconstruction Correlation Component can be described as
follows:

Ai , Ai+1 will be correlated together
If source (Ai) =source (Ai+1) and
Destination (Ai) =destination (Ai+1) and
Type (Ai) =type (Ai+1) and
Sensor (Ai) = sensor (Ai+1) and
|Time (Ai) – Time (AF)| <= T window

Where T window is the minimum allowed difference time to correlate two
alerts from same source

157

Focus Recognition Correlation Component can be described as follows:

Ai , Ai+1 will be correlated together
If (source (Ai) < > source (Ai+1) and
Destination (Ai) =destination (Ai+1) and
Type (Ai) =type (Ai+1) and
Sensor (Ai) = sensor (Ai+1) and
|Time (Ai) – Time (AF)| <= T window)
Or
If (source (Ai) = source (Ai+1) and
Destination (Ai) < > destination (Ai+1) and
Type (Ai) =type (Ai+1) and
Sensor (Ai) = sensor (Ai+1) and
|Time (Ai) – Time (AF)| <= T window)
Where T window is the minimum allowed difference time to correlate two
alerts from same source

Multi Step Attack Correlation Component can be described as follows:

Ai , Ai+1 will be correlated together
If Destination (Ai) = source (Ai+1) and
Time (Ai) < Time (Ai+1)

B-2: InfoSec Tools Agents

Firewall Agent can be described as follows:

AFW ∈ Firewall alerts

Firewall Entry (IP, Date, Time, Destination, Port) ∈ Firewall Log

∀ Entry ∈ Firewall Log

Firewall Entry (IP, Date, Time, Destination, Port) Firewall
Attack Table
Read next FTP Entry

158

Vulnerability Scanner Agent can be described as follows:

AVS ∈ Vulnerability Scanner alerts
Vulnerability Scanner Entry (Date, Time, Port, service, Status)
∈ Vulnerability Scanner Log
∀ Entry ∈ Vulnerability Scanner Log
If status (Vulnerability Scanner Entry) is open
Then Port (Vulnerability Scanner Entry) is vulnerable, Produces AVS

Vulnerability Scanner Entry (Date, Time, Port, Service, Status)
Vulnerability Scanner Alert Table

Else
Read Vulnerability Scanner Entry

B-3: Service and Application Logs Agents Formal Description

FTP Agent can be described as follows:

AFTP ∈ FTP alerts

FTP Entry (IP, Date, Time, Command, User) ∈ FTP Log

{S}: set of unauthorized FTP commands; {U}: set of unauthorized users

∀ Entry ∈ FTP Log

If command (FTP Entry) ∈ {S} Or user (FTP Entry) ∈ {U}

Then FTP Entry is malicious, Produces AFTP

FTP Entry (IP, Date, Time, Command, User)
 FTP Attack Table
Else
Read next FTP Entry

SSH Agent can be described as follows:

ASSH ∈ FTP alerts
SSH Entry (Date, Time, Source IP, Sport, error message) ∈ SSH Log
{S}: list of error messages associated with attack signatures
∀ Entry ∈ SSH Log
If error message (SSH Entry) ∈ {S}
Then SSH Entry is malicious, Produces ASSH

159

SSH Entry ((Date, Time, Source IP, Sport, error message)
SSH Attack Table

Else
Read next SSH Entry

HHTP and HTTPS Agents can be described as follows:

A HTTP ∈ HTTP alerts , A HTTPS ∈ HTTPS alerts
HTTP Entry (Date, Time, Source IP, error sequence messages) ∈

SSH Log
{S}: list of error sequence messages associated with attack profiles
{N}: list of error sequence messages associated with normal profiles
∀ Entry ∈ HTTP/HTTPS Log
If error sequence messages (HTTP Entry) ∈ {S}
Then HTTP Entry is malicious, Produces AHTTP/HTTPS
HTTP Entry ((Date, Time, Source IP, Sport, error sequence message)

HTTP/HTTPS Attack Tables
Else
If error sequence messages (HTTP Entry) ∈ {N}
Read next HTTP Entry
B-4: DACM Central Agent can be described as follows:
Ai ∈ IDS alerts, Af ∈ Firewall alerts , AL ∈ log alerts ;
Ai (source, time, destination, type) ∈ IDS alerts
AF (source, time, destination) ∈ Firewall alerts
AL (source, time, destination, type) ∈ Logs alerts
∀ alert Ai
Ai Is verified alerts w.r.t. AF

If source (Ai) = source (AF) And Destination (Ai) = Destination (AF)
And |Time (Ai) – Time (AF)| <= Tthreshold

Where Tthreshold is the minimum allowed difference time
Ai Is verified alerts w.r.t. AL

If source (Ai) = source (AL) And Destination (Ai) = Destination (AL)
And |Time (Ai) – Time (AL)| <= Tthreshold

160

Where Tthreshold is the minimum allowed difference time

Ai Is IDS only
If attributes (Ai) < > attributes (AL) OR
Attributes (Ai) < > attributes (AF)
Ai Is Low and Slow attack
Ai is IDS only and Count (source [Ai]) = 1 per day
And days (source [Ai]) > 3
∀ alert AL,
AL is negative alert w.r.t. AI

If source (Ai) = source (AL) and
Time (Ai) < > Time (AL)
Or attributes (AL) < > attributes (Ai)
AL is reconnaissance
If count (AL) > ATh

Where Al is access count of specific IP / day and
ATH : allowed threshold access per day

161

REFERENCES

LIST OF PUBLICATIONS

1- Ayman E. Taha, Ismail Abdel Ghaffar, Ayman M. Bahaa Eldin, Hani
M. K. Mahdi, “Agent Based Correlation Model for Intrusion Detection
Alerts”, pp 89-94 proceeding of IEEE International Conference on
Intelligence and Security Informatics (ISI 2010), May 2010, Vancouver,
Canada.

2- Ismail Abdel Ghaffar, Ayman E. Taha, Ayman M. Bahaa Eldin , Hani
M. K. Mahdi, “Towards Implementing Agent Based Correlation Model
for Real-Time Intrusion Detection Alerts”, proceeding of 7th International
Conference on Electrical Engineering, ICEENG 2010, May 2010, MTC,
Cairo, Egypt.

3- Ayman M. Bahaa Eldin , Hani M. K. Mahdi, Ayman E. Taha, Ismail
Abdel Ghaffar, “Dynamic Parallel correlation Model for intrusion
detection alerts”, poster in Annual Information Security Symposium of
Center of Education and Research of Information Assurance and Security
(CERIAS), Purdue University, March 2010, west Lafayette, Indiana,
USA.

4- Ayman E. Taha, Ayman M. Bahaa Eldin, Ismail Abdel Ghaffar, Hani
M. K. Mahdi, “Distributed Agents Correlation Model for intrusion
detection in computer network” , Computers & Security Journal ,
Elsevier, In Progress.

162

REFERENCES

[1] Karen Scarfone, Peter Mell , “Guide to Intrusion Detection and
Prevention Systems (IDPS),” National Institute of Standards and
Technology ,NIST Special Publication 800-94, Computer
Security, February 2007.

[2] Tianning Zang, Xiaochun Yun, Yongzheng Zhang, “A Survey of
Alert Fusion Techniques for Security Incident,” Proceeding of
the Ninth International Conference on Web-Age Information
Management IEEE, November, 2008.

[3] Agent Maíra Gatti, Arndt von Staa , “Testing & Debugging
Multi-Agent Systems: A State of the Art Report,” ISSN: 0103
9741, February, 2006

[4] H. Debar, M. Dacier, and A. Wespi. “Towards taxonomy of
intrusion detection systems,” Computer Networks,” vol.31,
No.8, pp. 805-822, 1999

[5] Gene H. Kim and Eugene H. Spafford. “The Design and
Implementation of Tripwire: A File System Integrity Checker,”
Technical report, Purdue University, November, 1993.

[6] G.Vigna, W.Robertson, V.Kher, and R.A. Kemmerer. “A
Stateful Intrusion Detection System for World-Wide Web
Servers.” In Proceedings of the Annual Computer Security
Applications Conference (ACSAC 2003), pp. 34-43, Las Vegas,
NV, December, 2003.

[7] Mandiant, “M-TRENDS, the advanced persistent threat”, http:
//www.princeton.edu/~yctwo-/files/readings/M-Trends.pdf,
June, 2010.

[8] Advanced Persistent Threats (APTs), http://www.damballa.com/
knowledge/advanced-persistent-threats.php, June, 2010.

[9] Bashar Ewaida , “Pass-the-hash attacks: Tools and Mitigation,”
Technical paper, SANS Institute InfoSec Reading Room,
January, 2010.

[10] Carl Endorf , Gene Schultz , Jim Mellander,”Intrusion Detection
and Prevention,” McGraw-Hill, ISBN: 978-0072229547,
December, 2003.

[11] Robiah Yusof, Siti Rahayu Selamat, and Shahrin Sahib
“Intrusion alert correlation technique analysis for heterogeneous
log,” IJCSNS International Journal of Computer Science and
Network Security, vol.8, No.9, September 2008.

163

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Carl%20Endorf
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Gene%20Schultz
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Jim%20Mellander
http:http://www.damballa.com
www.princeton.edu/~yctwo-/files/readings/M-Trends.pdf

[12] Zhai, Y., Ning, P., & Xu, J. “Integrating IDS alert correlation
and OS-level dependency tracking.” North Carolina State
University, North Carolina, 2005.

[13	 Tianning Zang, Xiaochun Yun, Yongzheng Zhang, ”A Survey
of Alert Fusion Techniques for Security Incident”, The Ninth
International Conference on Web-Age Information Management,
July 2008

[14] C. Mu, H. Huang, and S. Tian, “A survey of intrusion-detection
alert aggregation and correlation techniques,” Journal of
Computer Research and Development, vol. 43, pp. 1-8, 2006.

[15] Donghai Tian, Hu Changzhen, Yang Qi, and Wang Jianqiao
“Hierarchical Distributed alert correlation model,” 2009 Fifth
International Conference on Information Assurance and
Security, pp. 765-768, August, 2009.

[16] Chenfeng VincentZhou, ChristopherLeckie, Shanika
Karunasekera, “Decentralized multi-dimensional alert correlation
for collaborative intrusion detection,” scienceDirect, Journal of
Network and Computer Applications, vol. 32, pp. 1106–1123,
February, 2009.

[17] D. Curry and H. Debar, “Intrusion Detection Message Exchange
Format: Extensible Markup Language (XML) Document Type
Definition,” draft-ietf-idwg-idmef-xml-10.txt+, January, 2003.

[18] The Intrusion Detection Message Exchange Format [Online],
Available: http://www.ietf.org/rfc/rfc4765.txt`, January, 2010.

[19] D. Andersson, M. Fong, and A. Valdes. “Heterogeneous Sensor
Correlation: A Case Study of Live Traffic Analysis.”, In
Proceedings of the 3rd Annual IEEE Information Assurance
Workshop, United States Military Academy West Point, New
York, June 2002.

[20] H. Debar and A. Wespi, “Aggregation and correlation of
intrusion detection alerts,” Proceeding of International
Symposium. Recent Advances in Intrusion Detection, pp. 85-103,
October, 2001.

[21] Tian Zhihong, Qin Baoshan, Ye Jianwei, Zhang Hongli,
“Alertclu: A Realtime Alert Aggregation and Correlation
System,” International Conference on Cyber worlds 2008, pp

164

http://www.ietf.org/rfc/rfc4765.txt

778-781, September, 2008.

[22] R. Gula. Correlating IDS Alerts with Vulnerability Information.
Technical report, Tenable Network Security, December 2002.

[23] B. Morin and H. Debar., “Correlation of Intrusion Symptoms: an
Application of Chronicles,” In Proceedings of the International
Symposium on Recent Advances in Intrusion Detection,
Pittsburgh, PA, September, 2003.

[24] D. Xu, and P. Ning, “Alert Correlation through Triggering
Events and Common Resources”, Proceedings of the 20th Annual
Computer Security Applications Conference (ACSAC ‘04),
December, 2004.

[25] Wang Li Li Zhi-tang Lei Jie, “Learning attack strategies through
mining and correlation of security alarms”, Proceeding of 10th
IFIP/IEEE International Symposium on Integrated Network
Management, pp. 713-717, May, 2007

[26] Steven Noel, Eric Robertson, Sushil Jajodia, “Correlating
Intrusion Events and Building Attack Scenarios Through Attack
Graph Distances”, Proceedings of the 20th Annual Computer
Security Applications Conference (ACSAC’04), December, 2004

[27] Nessus Vulnerabilty Scanner, http://www.nessus.org/, June, 2010

[28] F. Cuppens and A. Miege, Alert correlation in a cooperative
intrusion detection framework, In Proceedings of The 2002 IEEE
Symposium on Security and Privacy, Oakland, CA, May 2002.

[29] S. T. Eckmann, G. Vigna, and R.A. Kemmere, “STATL: An
Attack Language for State-based Intrusion Detection,” Journal of
Computer Security, 10(1/2), pp. 71–104, 2002.

[30] B. Morin and H. Debar, Correlation of intrusion symptoms: an
application of chronicles, In Proceedings of The 6th
International Conference on Recent Advances in Intrusion
Detection (RAID’03), September 2003.

[31] R.A. Kemmer, G. Vigna, A Model-Based Real- Time Intrusion
Detection System for Large Scale heterogeneous Networks,
California Univeristy, Santa Barbara, Department of Computer
Science, Technical Report [Online], August 2003, Available:
http://www.stormingmedia.us/42/4280/A428024.html

[32] C. Krugel, T. Tuth, and C. Kerer, “Decenlralized event

165

http://www.stormingmedia.us/42/4280/A428024.html
http:http://www.nessus.org

correlation for intrusion detection,” In International Conference
on Information Security and Cryptology (IUSC), December,
2001.

[33] P. Ning, Y. Cui, D. S. Reeves, and D. Xu, “Techniques and tools
for analyzing intrusion alerts,” ACM Transactions on
Information and Systems Security, vol. 7, pp. 274-318, 2004.

[34] P. Ning, Y. Cui, and D. S Reeves, Analyzing intensive intrusion
alerts via correlation, In Proceedings of The 5th International
Symposium on Recent Advances in Intrusion Detection (RAID
2002), pp. 74–94, Zurich, Switzerland, October, 2002.

[35] S. Templeton and K. Levitt, “A requires/provides model for
computer attacks,” In Proceedings of New Security Paradigms
Workshop, pp. 31–38. ACM Press, September, 2000.

[36] P. Ning, Y. Cui, and D. S Reeves, “Constructing attack scenarios
through correlation of intrusion alerts,” In Proceedings of The
9th ACM Conference on Computer and Communications
Security, pp. 245–254, Washington, D.C., November, 2002.

[37] Xinzhou Qin, “A Probabilistic-Based Framework for INFOSEC
Alert Correlation”, Ph.D. Thesis, College of Computing, Georgia
Institute of Technology, Georgia, USA, August, 2005.

[38] X. Qin and W. Lee, “Statistical Causality Analysis of INFOSEC
Alert Data. In Proceedings of The 6th International Symposium
on Recent Advances in Intrusion Detection (RAID 2003), vol.
2820 of Lecture Notes in Computer Science, Springer–Verlag.
Heidelberg, Germany, pp. 73–93, 2003.

[39] P. Porras, M. Fong, and A. Valdes, “A Mission-Impact-Based
Approach to INFOSEC Alarm Correlation,” In Proceedings of
the. International Symposium. The Recent Advances in Intrusion
Detection, pp. 95-114, Zurich, Switzerland, October 2002.

[40] Nmap- Network Mapper, Security Scanner For Network
Exploration & Hacking. http://nmap.org/, June, 2010

[41] Catalin Leordeanu, Levni Arif and Valentin Cristea, “Correlation
of Intrusion Detection Information in Grid Environments,” 2010
International Conference on Complex, Intelligent and Software
Intensive Systems, pp. 463-468, February, 2010.

[42] Wen Long, Yang Xin, Yixian Yang “Vulnerabilities Analyzing

166

http:http://nmap.org

Model for Alert Correlation in Distributed Environment,” 2009
IITA International Conference on Services Science, Management
and Engineering, pp. 408-411, November, 2009.

[43] Guofei Jiang, Member, George Cybenko, “Temporal and Spatial
Distributed Event Correlation for Network Security,”
Proceedings of the American Control Conference, 30 June-2
July, 2004

[44] P. Ning and D. Xu. “Learning Attack Strategies from Intrusion
Alert,” In Proceedings of the ACM Conference on Computer and
Communications Security (CCS '03), Washington, DC, October
2003.

[45] V. Honavar and L. Miller and J. S. K. Wong, “Distributed
knowledge networks,” IEEE Information Technology
Conference, Syracuse, pp. 87-90, 1998.

[46] Dalila Boughaci, Habiba drias, Ahmed Bendib, “A Distributed
Intrusion Detection Framework based on Autonomous and
Mobile Agents,” Proceedings of the International Conference on
Dependability of Computer Systems IEEE.

[47] Mohamad Eid, Hassan Artail, Ayman Kayssi, and Ali Chehab,
“A Lightweight Adaptive Mobile Agent-based Intrusion
Detection System LAMAIDS,” International Journal of Network
Security, Vol.6, No.2, pp. 145–157, March, 2008

[48] Amir Vahid Dastjerdi, and Kamalrulnizam Abu Bakar, “A Novel
Hybrid Mobile Agent Based Distributed Intrusion Detection
System,” Proceedings of world academy of science, engineering
and technology, vol. 35, ISSN 2070-3740, November, 2008.

[49] Jianxiao Liu , Lijuan Li , “A Distributed Intrusion Detection
System Based on Agents,” 2008 IEEE Pacific-Asia Workshop on
Computational Intelligence and Industrial Application, pp. 553
557, December, 2008.

[50] Mark Crosbie, Gene Spafford, “Active Defense of computer
system using autonomous agent,” Technical report no 95-008,
COAST group, computer science department, Purdue University,
February, 1995.

[51] Jai Sundar Balasubramaniyan, Eugene Spafford, Diego
Zamboniy, “An Architecture for Intrusion Detection using
Autonomous Agents,” COAST Technical Report 98/05, COAST

167

Laboratory, Purdue University, June 11, 1998

[52] Farah Barika KTATA, Nabil EL KADHI, Khaled GHEDIRA,
“Distributed agent architecture for intrusion detection based on
new metrics,” Proceeding 2009 Third International Conference
on Network and System Security, pp. 321-327, October, 2009.

[53] Snort – the open source network intrusion prevention and
detection system. http://www.snort.org, 2010.

[54]	 Abduljalil A. Mohamed, Otman Basir, “Fusion Based Approach
for Distributed Alarm Correlation in Computer Networks,” 2010
Second International Conference on Communication Software
and Networks, pp. 318-324, February, 2010.

[55] A.A Mohamed and O. Basir, “An Adaptive Multi-Agent
Approach for Distributed Alarm Correlation and Fault
Identification,” Parallel and Distributed Computing and
Networks, February, 2010.

[56] F.Valeur, G.Vigna, C. Kruegel, and R.A.Kemmerer,
“Comprehensive approach to intrusion detection alert
correlation,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, pp. 146-69, July-September, 2004.

[57] F. Valeur, “Real-time Intrusion Detection Alert Correlation,”
Ph.D. Thesis, University of California Santa Barbara, Santa
Barbara, California, USA, 2006.

[58] Christopher Kruegel, Fredrik Valeur, Giovanni Vigna, “Intrusion
Detection and Correlation Challenges and Solutions,” ISBN: 0
387-23398-9, Springer, 2005.

[59] Basic Analysis and Security Engine (BASE), http://base.securei
deas.net/about.php, June, 2010.

[60] David W Chadwick, “Network Firewall Technologies,”
Technical Report, IS Institute, University of Salford, Salford, M5
4WT, England.

[61] Avi Kak, “Port Scanning, Vulnerability Scanning, Packet
Sniffing, and Intrusion Detection,” Lecture Notes on “Computer
and Network Security,” Purdue University, April, 2011.

[62] Franck.Veysset, Laurent.Butti, “Honey pot technologies,” First
Conference, France Télécom R&D, June, 2006.

168

http://base.securei
http:http://www.snort.org

[63] Wireshark, Network protocol analyzer, http://www.wireshark
.org, June, 2010.

[64] Center of Education and Research for Information Assurance and
Security (CERIAS), http://www.cerias.purdue.edu, June, 2011.

[65] M. Cotton,L.Vegoda, "Special Use IPv4 Addresses," Internet
Engineering Task Force (IETF),ISSN: 20701721, http://tools.iet
f.org/html//rfc5735, June, 2010.

[66]	 Vijay Ahuja, “Network and internet security”, AP professional,
1996.

[67]	 William Stallings, “Network and internetworking security
principles and practices”, Prentice Hall, New Jersy, 1995.

169

http://tools.iet
http:http://www.cerias.purdue.edu
http://www.wireshark

 شـــــكر

 .العمل ھذا اتمام من نىمكن بما لى لتوفيقه وتعالى سبحانه الله أشكر بداية

 سةدنھ استاذ مھدى كمال ھانى د.أ الرسالة لمشرفى العميق شكرى عن بصدق اعبر ان اود

شمس،عينجامعةالھندسةكليه،نظموالالحاسباتھندسةقسم، الحاسبات
 يرومد العمليات وبحوث الحاسبات ھندسة بقسم الحاسبات ھندسة استاذ لغفارا عبد اسماعيل د.أ

 سةدنھ سمق ، الحاسبات ھندسة مساعد استاذ الدين بھاء محمد مناي د و العسكرية الفنية الكلية

 من نخبةال ھذه باشراف محظوظا كنت لقد . شمس عين جامعة الھندسة كليه ، ظموالن الحاسبات

 رااختي فى ونافعة مفيدة مناقشات ، بثمن تقدر لا وملاحظات نصائح بتقديم قاموا لقد ، الاساتذة
 من الكثير نيومنح فقد خاص كربش جميعا لھم دينم انا .العمل ھذا تنفيذ واثناء البحث موضوع

 المشورة قديم وت مدعمھ وندب رسالةلا ھذه لأتم كنأ فلم .الرسالة ھذه ادعدإ سنوات خلال موقتھ

 .لالعم مراحل لجميع الدقيقة والمراجعة ،المفيدة والاقتراحات العلمية

سرئي سبافورد وجيني دكتور تاذسا الرسالة ومراجعة المناقشة لجنة لاعضاء كرشلا تقديم اود
 توركد واستاذ الامريكية المتحدة بالولايات بوردو بجامعة المعلومات تامين وابحاث تعليم مركز

 مسش عين جامعة الھندسة بكلية والنظم الحاسبات ھندسة بقسم الاستاذ رورىدك ھشام ياسر

 من عديدبال مدادىاب قامو فقد ،العربية مصر ةيبجمھور الالكترونى التعليم جامعة رئيسو

 .القيمة والارشادات اتوالتوجيھ مدروسةال الملاحظات

 دةالمتح بالولايات بوردو بجامعة المعلومات ينمات وابحاث تعليم لمركز الشكر تقديم اود
 العمل لطاقم السخى والجھد سبافورد يوجين الدكتور المركز لمدير القيم الدعم اقدر .الامريكية

 العلمية تىزيار لالخ المثمر تعاونھمل واتسون ثكي لمعلوماتا تامين ابحاث مھندس خاصة

 .العمل ھذا لاتمام اللازمة علميةلا والمواد البيانات لجمع عظيمة مصادر من وفروه ماو للمركز

 لزملائى خاص وشكر العمل ھذا خلال العمليات بحوث بمركز بالعمل زملائى ودعم مجھود اقدر

 .المقترح النموذج ناءب فى لمساعدتھم محمد وجلال الصبور عبد احمد

 ھاكل حياتى خلال لى وتشجيعھم الدائم لدعمھم وعائلتى لامى المناسب الشكر قديمت استطيع لا
 ايدال لزوجتى انالامتن منتھى فى انا اخيرا بى، فخورين لاجعلھم العمل ھذا تقديم احاول وانى

 خارج سفرى لالخ وخاصة الدراسة فترة خلال وتضحيتھم لصبرھم وسما سرآ الاحباء واطفالى

 على دائما الله وأشكر ، الدائم المعنوى ودعمھم تشجيعھمل واشكرھم ، العلمية ادةمال لجمع البلاد

 .عائلتى افراد يعوجم مىأ والى اليھم العمل ھذا اھداء ودأ النھاية فى و .الرائعة الاسرة هھذ منحى

 جودو على الدالة التحذيرات وتجميع بترابط تقوم حيث ھرمى، تسلسل فى موزعة متعددون

 الحفظ وملفات الشبكات تامين ادوات من وايضا الاختراق اكتشاف وانظمة ائلسو من اختراق

 واكتمال كفاء سنيح اتالمعلوم ذهھ من التحذيرات وتكامل ترابط .المختلفة خدماتوال للتطبيقات

 كل يقوم .الايجابية او السلبية اطئةالخ التحذيرات عدد تقليل خلال من بالشبكة اقالاختر اكتشاف

 نماذج باستخدام لديه المتاحة المعلومات خلال من الاختراق تشافاك دلائل بتجميع عميل او وكيل

 ابطرت تظام تكوين معلوماتال ھذه تكامل ويتيح الھجوم بصمات على التعرف له تتيح مطابقة

 .متكامل
 شبكة من تجميعھا تم اختراقات بيانات قاعدة على النظام وتجربة ذجانمال بناء الرسالة تناولت

 بتحليل الطالب قام .الأمريكية المتحدة بالولايات بوردو بجامعة المعلومات تأمين اثأبح مركز

 معدلات حيث من تحليليا ودراستھا نھام لكل الأداء وتقييم المقترحة والنماذج االخوارزمات

 الإنذارات تقليل ومعدلات الترابط ومعدلات الخطأ ونسبة الاختراقات على يحالصح التعرف

 .النظام أداء كذلكو الكاذبة
 امظن واكتمال كفاءة يحسن ونالمتعدد الوكلاء مباستخدا الموزع الارتباط نموذج استخدام خلاصة

 لليق انه كما معين، تشغيل نظام على يعتمد ولا بمرونة التطوير نيةمكاا يتيح الاختراق، اكتشاف

 اكتشاف امكانية يتيح جذالنمو استخدام .بالشبكة المتكامل الموقف لفھم المطلوب والمجھود الوقت

 لالخ من اھمية الاقل او لخطيرةا التحذيرات بين الفرز على قدرةال ويتيح الھجوم وسائل من اكبر

 فعل رد المطلوب التحذيرات فرز ويتيح المصدر لنفس المختلفة الوسائل فى اتريذحتلا تنوع

 .ھذا الى حتاجت لا التى الاخرى او لھا سريع
 الھجوم وتھديد البطىء الھجوم مثل الحديثة الھجوم لوسائل المبكر الاكتشاف امكانية النظام يتيح

 استطلاع المستخدمين بعض ولةمحا او لةصفلمنا اتريذحتلا اكتشاف خلال من صلالمتوا المتقدم

 معد النظام .الھجوم محاولة قبل به جودةالمو الثغرات لتحديد مبرر وغير فيه مبالغ بشكل الشبكة

 رىفوال الترابط لتنفيذ البسيطة التعديلات بعض الى اجيحت يثح قىقيالح يتالتوق فى للعمل

 .للتحذيرات
 التحزيرات ترابط اتتقني استخدام بين يجمع الذى واعد نھجو نموذج تقدم الرسالة أن نعتقد نحن

 وخدمات للشبكات عالية ينمات اتخدم توفير أجل من الاختراق لاكتشاف المتعددون والوكلاء

 .الانترنت

 مفتاحية كلمات

 التقليل معدل ، المتعلم الوكيل ، الوكلاء متعددة الأنظمة ، التحزيرات ترابط ، الاختراق اكتشاف

ملخص

طه السيد السيد أيمن

الحواسب شبكات فى الاختراق اكتشاف اساليب ترابط

المتعددون العملاء امنظ باستخدام

دكتوراه رسالة

٢٠١١ ھندسةال كلية – شمس عين جامعة

 اكثر او نظام من اتريذحتلا تحلل التى الاداة ھى الاختراق اكتشاف دلائل او تحذيرات ترابط

 .الاختراق لمحاولات الشاملة الرؤية يمثل تصرخم يرتقر وتقدمالاختراق اكتشاف لانظمة
 حذيراتالت تقليل خلال من ختراقلاا اكتشاف نتائج حسنت التحذيرات لترابط ليةالحا التقنيات

 المعدل مثل القصور اوجه بعض بھا زال لا ولكن مختصرة يرارتق فى وتقديمھا عنھا رةالصاد

 خطوات عدة خلال من الھجوم تمثل التى التحذيرات حدا فقد و الخاطئة التحذيرات من العالى

 ثلم اكتشافھا يتم لا الحديثة الھجوم اساليب بعض يوجد كما .التحذيرات بعض من والتاكد متتالية

 تالتقني الھجوم اتودا بعض استخدام وايضا صللمتواا متقدمال الھجوم وتھديد البطىء الھجوم
 ترابط على تعتمد الحالية التقنيات اخيرا .الاختراق اكتشاف لانظمة والمناورة تفاءالاخ من يمكنھا

 المعلومات مصادر جميع بين املكالت على تعتمد ولا فقط الاختراق اكتشاف أنظمة تحذيرات

 .التشغيل ونظم للتطبيقات لحفظا وملفات ينالتام وسائل مثل بالشبكة ةالمتاح

 حيث ، الاختراق اكتشاف لانظمة موسع بشكل نوالمتعدد الوكلاء او العملاء مةانظ استخدام تم

 التوسع مرونة يةامكان يتيح مما النظام تشغيل اعادة الى الحاجة وندب وكيل حذف او فةاضا يتم

 نتائج تستنتج ولكنھا امكانياته على اعتمادا بسيطة وظيفة بتنفيذ وكيل كل قومي .نظامال نياتامكا فى

 استخدام لليق المتعددون الوكلاء او العملاء نظمةا استخدام .المعلومات ذهھ تبادل عند معقدة

 اخيرا وفشلھا، يةكزمر وظيفة استخدام حالة فى العمل عن التوقف النظام ويجنب النظام امكانيات

 .المعلومات وتبادل للاختراق المتعدد لاكتشافا تتيح
 خلال من الاختراق اكتشاف انظمة واكتمال كفاءة تحسين امكانية اثبات الى الرسالة ھذه تھدف

 مصادر مختلف بين ابطرتال باستخدام وذلك يةوالسلب الايجابية الانذارات عددو معدل تقليل

 .مستخدمةلا الحواسب وشبكات التشغيل ببيئة او بالنظام احةتالم المعلومات
 العملاء انظمة باستخدام الموزع الاختراق اكتشاف ترابط لنموذج نمطى اطار الرسالة ھذه تقدم

 عمدي الاطار ھذا .الحواسب شبكات فى الاختراق اكتشاف ودلائل لتحذيرات ونعددالمت الوكلاء او

 وكلاء الاطار يقدم .بسھولةًبلامستق جديدة كوناتم بناء من مكنيو متعددة ترابط نياتتق تكامل

 شمس عين جامعة

 الھندسة يةكل

 العنوان صفحة

 طه السيد السيد أيمن : الباحث اسم

 الكھربية الھندسة فى الفلسفة دكتوراه : جةردلا اسم

 والنظم الحاسبات ھندسة : له التابع القسم

 شمس عين جامعة – الھندسة كلية : الكلية اسم

 .العسكرية الفنية الكلية- ١٩٩٢ : التخرج سنة

 ٢٠١١ : المنح سنة

 شمس عين جامعة

 الھندسة يةكل

 الرسالة بمقدم تعريف

 الباحث إسم

 الميلاد تاريـخ

 الميلاد محل

 الدراسى المؤھل

 لھا المانحة الجھة

 الأولى العلمية الدرجة

 لھا المانحة الجھة

 المنح تاريخ

 الحالية الوظيفة

 البحث مقدم اسم

 التوقيع

 التاريخ

 طه السيد السيد ايمن :

: ١٩٧٠ / ٨ / ٦

 القاھرة :

 الكھربية الھندسة بكالوريوس :

 العسكرية الفنية الكلية :

 – الكھربية الھندسة ماجستير :

 والنظم الحاسبات ھندسة –

 والنظم الحاسبات ھندسة

 شمس عين جامعة – الھندسة كلية :

: ٢٠٠٢

 المسلحة القوات – المعلومات نظم بإدارة مھندس عقيد :

 طه السيد السيد ايمن :

:

: ٢٠١١ / ٧ / ٧

 شمس عين جامعة

 الھندسة كلية

 والنظم الحاسبات ھندسة قسم

 هدكتورا رسالة

 طه السيد السيد أيمن : الباحث اسم

ѧѧبѧالحواس ѧѧبكاتشѧѧ ѧىѧف ѧѧراقѧالاخت ѧѧافاكتشѧѧ ѧاليباسѧѧ ѧرابطتѧ : الرسالة عنوان

 المتعددون العملاء نظام باستخدام

 الكھربية الھندسة دكتوراه : الدرجة

 رافشالإ لجنة

 الوظيفة الاسم

 والنظم الحاسبات سةھند بقسم أستاذ دىمھ كمال محمد ھانى .د.أ

 شمس عين جامعة- الھندسة كلية

 الحاسبات ھندسة أستاذ رجف الغفار عبد اسماعيل .د.أ

 يةركسعال الفنية الكلية

 والنظم الحاسبات ھندسة بقسم مساعد أستاذ الدين بھاء مدمح أيمن .د

 شمس عين جامعة- الھندسة كلية

 //:البحــــث تاريخ

 العليا الدراسات

الجامعة مجلس موافقةالكلية مجلس موافقة

 / / / /

 الھندسة كلية- شمس ينع جامعة

 والنظم الحاسبات ھندسة قسم

باستخدام الحواسب شبكات فى الاختراق اكتشاف اساليب ترابط

المتعددون العملاء نظام

رسالة

الكھربية سةدنلھا فى لدكتوراها درجة على للحصول مقدمة

)والنظم الحاسبات ھندسة(

من مقدمة

 طه السيد السيد أيمن

 الكھربية الھندسة ماجستير

)والنظم الحاسبات ھندسة(

 ٢٠٠٢ – شمس عين جامعة

 اشراف تحت

 مھدى كمال محمد ھانى .د.أ

 فرج الغفار عبد اسماعيل .د.أ

 ينالد بھاء محمد أيمن .د

 مصر- القاھرة

 ٢٠١١- يوليو

	Abstract
	Table of Contents
	List of Algorithms
	Chapter One: Introduction
	1.1 Intrusion Detection and Response Systems
	1.1.1 IDS Terminology and Parameters
	1.1.2 IDS Limitations
	1.1.3 Intrusion Detection Alerts Correlation
	1.1.4 Agents in IDS

	1.2 IDS Correlation Problem Definition
	1.3 The Proposed Model
	1.4 Methodology
	1.5 Contributions
	1.6 Dissertation Organization

	Chapter Two: Literature Survey and Related work
	2.1 The Importance of Security and Intrusion Detection
	2.1.1 Security Mechanism
	2.1.2 Intrusion Detection Systems
	2.1.2.1 Classification of IDSs
	2.1.2.2 Intrusion Detection Challenges

	2.1.3 Intrusion Detection Correlation Systems
	2.1.4 Recent Cyber Security Attacks

	2.2 Basic Concepts of Data Correlation
	2.2.1 Alert normalization
	2.2.2 Alert aggregation and Fusion
	2.2.3 Alert verification and Prioritization

	2.3 Alerts Correlation Techniques
	2.3.1 Correlation of Attack Scene
	2.3.2 Correlation of Pre and post conditions
	2.3.3 Casual analysis Correlation based on Statistical Techniques
	2.3.4 Distributed Correlation

	2.4 Alert Correlation Limitations
	2.5 Agents in IDS and Correlation
	2.6 Comprehensive Approach Model for IDS Alert Correlation

	 Distributed Agent Correlation Model
	3.1 Distributed Agent Correlation Model Description
	3.1.2 INFOSEC Tools Agents
	3.1.3 System and Application Logs Agents
	3.1.4 DACM Central Agent
	3.1.5 Formal Description for Central Agent
	3.1.6 Response Agent
	3.1.7 Learning Agent
	3.1.8 The Knowledge Base and Security Policy

	3.3 DACM Knowledge Base
	3.3.1 System Parameters and Role Base Tables
	3.3.2 Alerts Table
	3.3.3 Vulnerability Scanner
	3.3.4 Performance Monitors Tables
	3.3.5 Firewall Log Files Tables
	3.3.6 System Audit Files Tables
	3.3.7 Services Log Files Tables
	3.3.8 Output Tables:

	3.4 DACM Features
	3.5 Implementation Scope and Performance Enhancement

	Chapter Four: DACM Design and Algorithms
	4.1 IDS Alert Correlation
	4.1.1 IDS Alert Correlation Performance Analysis

	4.2 Modified CAM Time
	4.2.1 Agent Based Correlation Model
	4.2.1.1 Learning Phase

	4.3 DACM Individual Agents
	4.3.1 IP Address Normalization
	4.3.2 Firewall Agent
	4.3.3 FTP local Agents
	4.3.4 SSH Agent
	4.3.5 Error Log Agent
	4.3.6 Access log Agent

	4.4 DACM Central Agent
	4.5 Implementation Environment

	Chapter Five: DACM Results and Analysis
	5.1 CRIAS Data Set
	5.1.1 CERIAS Network Description
	5.1.2 Data Description
	5.1.3 Attacks
	5.1.4 Attack scenarios

	5.2 IDS Alerts Correlation Results
	5.2.2 CAM Results
	ABCM results
	5.2.4 DPCM Results
	5.2.5 IDS Alert Correlation Techniques Performance

	5.3 DACM Components Results
	/
	/
	5.5 DACM Evaluation and Assessment
	5.5.1 DACM Limitation
	5.5.2 DACM Assessment

	5.6 Practical Implementation Issues

	Chapter Six: Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

