
CERIAS Tech Report 2011-15
Improving Internet Infrastructure: BGP Predictability and Cloud DNS Performance

 by Ravish Khosla
Center for Education and Research
Information Assurance and Security

Purdue University, West Lafayette, IN 47907-2086

IMPROVING INTERNET INFRASTRUCTURE: BGP PREDICTABILITY AND

CLOUD DNS PERFORMANCE

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Ravish Khosla

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2011

Purdue University

West Lafayette, Indiana

ii

Dedicated to my parents for their endless love and support.

iii

ACKNOWLEDGMENTS

This dissertation and my graduate degree would not be possible without the con

tribution of several people. I would like to thank my advisors Dr. Sonia Fahmy and

Dr. Y. Charlie Hu for their assistance throughout my PhD. Both of them provided

me support in many ways, helping me define my research projects while providing

valuable feedback. I would also like to thank other members of my advisory commit

tee Dr. Xiaojun Lin and Dr. Ramana R. Kompella for their time in supervising my

graduate research.

One of the important aspects of my graduate career is learning in the true sense

of the word - for which I am indebted to professors and teaching assistants of all

my courses and to Purdue University for providing the necessary infrastructure and

the environment for learning. My interaction with people at Purdue has certainly

provided me with valuable experiences.

Special thanks are due to the department of Electrical and Computer engineer

ing at Purdue University for providing me a teaching assistantship, which not only

funded the early part of my graduate education but also provided me an invaluable

opportunity to interact with smartest brains from all around the world. The staff at

the ECE Graduate Office, Matt Golden and Michelle Wagner, have been invaluable,

especially in my final semester.

The contribution of my family in my graduate education has been immense, since

they have supported me in every step of the way by providing valuable guidance and

encouragement. All my friends at Purdue have also contributed either by balancing

my life or by providing me obstacles crossing which made me a stronger person.

Finally, I believe that the weather at West Lafayette, which has cheered me up on

numerous occasions, has been an unlikely contributing factor in my success.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . x

ABBREVIATIONS . xii

ABSTRACT . xiv

1 INTRODUCTION . 1

1.1 Internet Availability . 2

1.2 Internet Predictability . 5

1.3 Challenges . 6

1.4 Scope of the Dissertation . 8

1.5 Problem Statement . 9

1.6 Contributions . 10

1.7 Outline . 12

2 BACKGROUND AND RELATED WORK 14

2.1 Internet Infrastructure . 14

2.1.1 Routing . 15

2.1.2 Domain Name System (DNS) 17

2.2 Internet Dependability . 18

2.2.1 Routing Dependability . 19

2.2.2 DNS Dependability . 25

2.3 Internet Predictability . 26

2.4 Internet Evolution . 28

2.4.1 Data Centers . 29

2.4.2 Cloud Computing . 32

2.5 Statistical Techniques in Networking 34

v

Page

3 PREDICTING PREFIX AVAILABILITY 37

3.1 Motivation . 37

3.2 Availability Prediction Problem . 41

3.3 Datasets . 42

3.4 Methodology . 44

3.4.1 Discretizing Availability . 46

3.4.2 Computing Attributes . 50

3.4.3 Demarcating Availability using Attributes 51

3.4.4 Learning and Evaluation . 54

3.5 Model Evaluation . 56

3.5.1 Simple Prediction . 57

3.5.2 Naive Bayes Model . 60

3.5.3 Decision Trees . 64

3.5.4 Learning Duration . 67

3.5.5 Classification Attributes . 71

3.5.6 Additional Attributes . 73

3.5.7 Predictability of Prefixes . 74

3.5.8 Larger Test Datasets . 78

3.6 Chapter Summary . 79

4 BGP MOLECULES: UNDERSTANDING PREFIX FAILURES 81

4.1 Motivation . 81

4.2 Datasets . 83

4.2.1 Extracting AS-Specific Information 84

4.3 Metrics . 85

4.3.1 Baseline State Correlation Coefficient 87

4.3.2 Failure Correlation Coefficient 89

4.4 Constructing BGP Molecules . 89

4.4.1 On a Per AS Basis . 91

vi

Page

4.4.2 Using AS Paths . 94

4.4.3 On a Geographical Basis . 97

4.4.4 Hybrid Scheme . 98

4.5 Predicting Failures using BGP Molecules 99

4.5.1 Failure Prediction Methodology 99

4.5.2 Evaluating Prediction Quality 100

4.5.3 Näıve Prediction . 101

4.5.4 Using BGP Atoms . 102

4.5.5 Using BGP Molecules Constructed by AS Paths 103

4.5.6 Using BGP Molecules Constructed by Hybrid Scheme 105

4.6 Improving CDN Availability . 106

4.6.1 Akamai CDN Primer . 106

4.6.2 Experiments . 108

4.6.3 Availability of Akamai’s CDN 111

4.6.4 Constructing Inverse BGP Molecules 112

4.6.5 Improving availability of Akamai’s CDN 114

4.6.6 Latency-aware scheme . 116

4.7 Chapter Summary . 117

5 DNS IN THE CLOUD . 120

5.1 Motivation . 120

5.2 DNS of Content Distribution Networks 122

5.3 Technique for Geolocating Cloud Data Centers 124

5.4 Measurement Study of Google DNS 126

5.4.1 Insight into Google’s Network 128

5.4.2 Geolocating Google Data Centers 131

5.4.3 Methodology . 134

5.4.4 DNS Caching . 136

5.4.5 DNS Query Resolution Time 137

vii

Page

5.4.6 DNS Lookup Results . 138

5.4.7 Redirection Performance of Google Public DNS 141

5.4.8 Performance of Google Search 144

5.5 Content Retrieval using Cloud-based DNS 146

5.5.1 Preliminary Measurements 149

5.5.2 Demonstrating the Problem 151

5.5.3 Causes . 155

5.5.4 Solutions Overview . 157

5.5.5 Solution 1: Changes to DNS 158

5.5.6 Solution 2: Cooperation among Clouds 159

5.5.7 Solution 3: Increasing DNS Data Centers 160

5.5.8 Solution 4: Hybrid Approach 160

5.6 Chapter Summary . 164

6 CONCLUSIONS AND OPEN ISSUES 166

6.1 Key Results . 166

6.2 Visions of the Future Internet and Open Issues 168

6.2.1 Future Internet Model . 168

6.2.2 Will Multiple Clouds Co-Exist? 169

6.2.3 Evolution to a Cloud-Centric Internet 170

6.2.4 Lightning among the Clouds 172

6.2.5 Cloud Connectivity and Routing 173

6.2.6 Cloud Neutrality . 174

6.2.7 Data Transfer among the Clouds 175

6.2.8 Cloud Security and Privacy 176

6.3 Future Work . 177

LIST OF REFERENCES . 180

VITA . 197

viii

LIST OF TABLES

Table	 Page

2.1	 Various facets of routing dependability and relevant research 24

3.1	 Availability statistics of January 2009 for different values of tl. 48

3.2	 Percentage difference of mean availability between the training and test

sets for different tl, tl/(tl + tp)=0.1 . 48

3.3	 Class distributions when discretizing availability 49

3.4	 Attribute statistics of each class for learning period of tl = 19 days . . 52

3.5	 Confusion Matrix with class label high as positive and class label low as

negative . 55

3.6	 Results of the simple prediction model 58

3.7	 Results with Näıve Bayes model and % change from simple model . . . 63

3.8	 Paired t-test results of comparing AUC of Näıve Bayes model and the

simple model . 64

3.9	 Results with bagged decision trees and % change from Näıve Bayes model 68

3.10 Percentage change in performance metrics with subsets of attributes for tl

= 30 days, tl/(tl + tp) = 0.1. All percentage changes are w.r.t. results of

the corresponding models from Table 3.7 and Table 3.9 72

3.11 Results for predictable and poorly predictable combinations obtained from

bagged decision tree model . 77

3.12 Percentage change in performance metrics of a large prediction dataset

from Table 3.7 and Table 3.9 for tl = 30 days, tl/(tl + tp) = 0.1. 78

4.1	 Effect of failure prediction window on failure predictability using AS paths

constructed molecules . 104

4.2	 Failure predictability performance of BGP molecules constructed using

three schemes; failure prediction window=300 seconds. 105

4.3	 Components of the 2353 prefixes of interest in our 316 AS sample and

prediction results of hybrid prediction scheme. Failure prediction win
dow=300 seconds. 107

ix

Table	 Page

4.4	 Akamai CNAMEs studied in this section with the actual CNAME used 109

4.5	 Results of all variants of content distribution schemes 117

5.1	 Continent Distribution of the PlanetLab Nodes 128

5.2	 Web sites resolved for comparing Google public DNS and native DNS . 136

5.3	 Statistics of diff=TTLgDNS − TTLnDNS 138

(QT imegDNS −QT imenDNS)×100
5.4	 Statistics of % diff= 139

QT imenDNS

5.5	 Statistics of difference between RTTgDNS and RTTnDNS for same and

different servers . 140

5.6	 Akamai CNAMEs studied in this section with their respective nameservers 150

5.7	 Solutions for obtaining good client performance when accessing Akamai
like content using cloud-based DNS . 159

x

LIST OF FIGURES

Figure	 Page

2.1	 Routing in the Internet with the bold arrows indicating traffic flow from

the source to the destination . 16

2.2	 Example resolution of a DNS query through a recursive DNS resolver . 18

3.1	 ROC plots for the simple prediction model. 59

3.2	 Näıve Bayes learning curves for tl=30 days, tl/(tl + tp)=0.9 61

3.3	 ROC plots for Näıve Bayes and simple model for tl=30 days, tl/(tl +tp)=0.1 64

3.4	 Decision trees for tl = 30 days, tl/(tl + tp) = 0.1 constructed with 200

training instances. 66

3.5	 Learning curve for bagged decision trees, tl = 30 days, tl/(tl + tp) = 0.1 67

3.6	 Effect of percentage learning duration tl/(tl+tp) on prediction performance

for different values of tl . 69

3.7	 Effect of learning duration tl on prediction performance for different values

of tl/(tl + tp) . 70

3.8	 CDF of class label prediction probability for incorrectly classified instances

using Näıve Bayes . 76

4.1	 Partial histogram of the number of prefixes originated by an AS 85

4.2	 Comparison of partial histograms of the number of prefixes in an AS in

the random sample vs. for all ASes . 88

4.3	 Expanded histogram of the baseline failure correlation coefficient. First

bin frequency is 0.827. 90

4.4	 AS state correlation coefficient histogram. 91

4.5	 Comparison of partial histograms of the baseline state correlation coeffi
cient with the AS one. Last bin, between 0.9 and 1, is 0.876 (AS), 0.847

(Baseline). 92

4.6	 Histogram of the AS failure correlation coefficient. 93

4.7	 Average AS failure coefficient w.r.t. AS geographical spread 94

xi

Figure	 Page

4.8	 Variation of average failure correlation coefficient of each bin with AS path

correlation coefficient . 96

4.9	 Variation of average failure correlation coefficient with geographical dis
tance between prefixes . 98

4.10 Example of failure prediction using BGP molecules, t0=1235877308 Unix

time, Each label has {time,(list of prefix indices which fail at that time)} 100

5.1	 Steps taken by a client in obtaining content server for an Akamai-hosted

website . 123

5.2	 CDFs of hops and delays from traceroutes to Google Front Ends 131

5.3	 CDF of the ratio VGFE RTT/GFE RTT 133

5.4	 CDF of the ratio VGDNS RTT/GDNS RTT 135

5.5	 CDFs of percentage of closer VGDNS nodes and the latency improvement

possible by moving to the closest VGDNS node 143

5.6	 CDF of maximum improvement possible using another GFE rather than

the one returned . 145

5.7	 CDFs of Google search times and RTT 147

5.8	 CDF of Google Response Time as reported through all GFEs, Median=669

ms; GFE Native DNS Response Time=267ms; GFE public DNS Response

Time=465.49ms . 148

5.9	 Comparison of DNS lookup of a1507.b.akamai.net through local DNS and

Google Public DNS . 152

5.10 Quantifying performance degradation using cloud-based DNS w.r.t. local

DNS for CNAME a{x}.c.akamai.net 154

5.11 Comparing distances of Akamai content servers from the resolution node

for client and Google DNS . 156

5.12 CDF of gC−G, the distance between client and VGDNS 158

5.13 Example of a hybrid approach for looking up Akamai content servers using

Google DNS, showing IPs and the RTTs from client 161

6.1	 Comparison of the current and future Internet models 171

http:a{x}.c.akamai.net
http:a1507.b.akamai.net

xii

ABBREVIATIONS

BGP Border Gateway Protocol

AS Autonomous System

ASN Autonomous System Number

TCP Transmission Control Protocol

IP Internet Protocol

OSPF Open Shortest Path First

RIP Routing Information Protocol

IS-IS Intermediate System to Intermediate System

MRAI Minimum Route Advertisement Interval

MED Multi-Exit Discriminator

IANA Internet Assigned Numbers Authority

DNS Domain Name System

URI Uniform Resource Identifier

ISP Internet Service Provider

MTTF Mean Time To Failure

MTTR Mean Time To Repair

RTT Round Trip Time

TTL Time To Live

CNAME Canonical Name

ROC Receiver Operating Characteristic

AUC Area Under the ROC Curve

TP True Positive

FP False Positive

TN True Negatives

xiii

FN False Negatives

CDF Cumulative Distribution Function

GDNS Google DNS

GFE Google Front End

VGFE Virtual Google Front End

DDoS Distributed Denial of Service

CDN Content Distribution Network

GTM Global Traffic Management

PSTN Public Switched Telephone Network

xiv

ABSTRACT

Khosla, Ravish. Ph.D., Purdue University, December 2011. Improving Internet
Infrastructure: BGP Predictability and Cloud DNS Performance. Major Professors:
Sonia Fahmy and Y. Charlie Hu.

The Internet has witnessed explosive growth over the last few decades, steadily

evolving into a worldwide communication medium capable of supporting myriads of

applications. While several efforts have been undertaken to improve the reliability

of best-effort Internet communication, their adoption has been virtually nonexistent

due to the lack of incentive for change and the presence of heterogeneous networks

not controlled by a single entity. Moreover, the Internet structure is rapidly evolving

into a flatter one composed of large organizations or clouds which hampers any efforts

of retrofitting the existing Internet.

In this dissertation, we study two of the most important components of the In

ternet infrastructure, namely Routing and Domain Name System (DNS). We aim to

find predictability in Internet routing, specifically the existence of Internet routes to

prefixes, collection of IP addresses. We hypothesize that the Internet under Border

Gateway Protocol (BGP), the de-facto interdomain routing protocol, while seemingly

unpredictable, has a structure whereby prefix similarity can be exploited to success

fully predict availability of Internet routes and route failures. We build data mining

based prediction models using real-world routing data and find that this is indeed

the case and the future availability of a prefix can be predicted by observing it for a

limited time period and using the learned models. We also formulate BGP molecules

which are the set of Internet prefixes that have similar propensity to become un

reachable from portions of the Internet, i.e. to fail. We use these molecules in four

http:andDomainNameSystem(DNS).We

xv

failure prediction schemes, among which a hybrid scheme achieves 91% predictability

of failures with 99.3% coverage of prefixes in the Internet.

We study how DNS as an Internet infrastructure has evolved by investigating

cloud-based DNS, which is the result of moving DNS services to the cloud. We perform

a case-study of a recently launched cloud-based DNS, namely Google external DNS.

A novel technique for geolocating data centers of cloud providers is developed and

used to show that a query to Google DNS may not be redirected to the geographically

closest Google data center. We also study Akamai-hosted content retrieval through

cloud-based DNS and find that the client perceives worse performance as compared

to the use of local DNS to retrieve content. The reasons for this poor performance

are investigated and we explore the design space of methods for cloud-based DNS

systems to be used by clients retrieving content. Client-side, cloud-side, and hybrid

approaches are presented and compared, with the goal of achieving the best client

perceived performance. Our work yields valuable insight into Akamai’s DNS system,

revealing previously unknown features.

Finally, we present our vision of the evolution of the current Internet to the future

cloud-based Internet, while specifying the lightning or interaction among clouds. We

posit that while the cloud offers several advantages for hosting services, blindly using

the cloud for every service can cause poor performance. Instead, a carefully balanced

approach can usher a smooth transition from current Internet systems to the cloud-

based Internet of tomorrow.

1

1. INTRODUCTION

The Internet was formed in the 1970s and 80s as a medium to interconnect heteroge

neous networks and facilitate communication and information sharing among people

all over the world. Indeed, the Internet has experienced exponential growth over the

past couple of decades with around two billion Internet users as of March 2011 [1],

which is around 30% of the world’s population. Several applications have been de

veloped to run over the Internet from communication based applications like voice

and video communication, video streaming, news delivery, interactive gaming, file

sharing, to critical applications like Internet banking, trading in financial markets,

business transactions, patient monitoring in hospitals and air traffic control which re

quire high availability, reliability and security [2]. With the advent of mobile devices,

Internet connectivity on the move is gaining pace, with mobile users set to overtake

fixed Internet users in a few years [3]. The Internet itself is rapidly evolving especially

with the move to cloud computing in recent times. The goal of ubiquitous commu

nication seems achievable, and a well-functioning healthy Internet is an important

requirement for achieving the goal. This dissertation sheds light on the Internet in

frastructure which is the backbone of the Internet, enabling all applications that run

on it.

We now define some terms used throughout this dissertation that are used to study

the “health” of the Internet. Availability is defined as the readiness for correct service

or more precisely as the percentage of time a system is online and functional over

the operating time duration of interest [4,5]. We define predictability as the ability to

successfully predict the quality of service (QoS) metric of availability in the future.

2

1.1 Internet Availability

Reliable interconnectivity of the entire world at all times is the basic function that

the Internet is expected to perform. Yet, this is not the case since the Internet exhibits

frequent and numerous failures that reduce its availability as illustrated below.

Border Gateway Protocol (BGP) (Section 2.1.1) is the de-facto interdomain rout

ing protocol in the Internet and is used for advertising existence of routes to Internet

prefixes, which are collection of IP addresses. BGP is prone to several routing patholo

gies, which cause routing instability in the form of unnecessary announcements and

withdrawals of routes to prefixes. Craig Labovitz et al. conducted a study in late

1990’s of routing updates in backbone routers in the Internet and found that routing

messages exchanged are dominated by pathological updates which do not represent

real routing changes [6,7]. They found that the majority of Internet backbone paths

exhibit a mean-time to failure (MTTF) of 25 days or less, and a mean-time to repair

(MTTR) of twenty minutes or less [6]. Our previous work [8] examined Internet rout

ing data for the months of March to November 2007 (obtained from RouteViews [9])

and computed the MTTF to be between one and two months and MTTR to be be

tween one and two days with median time to repair to be 17 minutes to one hour.

This shows that routing failures happen less frequently in today’s Internet; however,

the recovery time is fairly large on the average. Another follow-up study to Labovitz’s

work [10] conducted in 2007 found that pathological BGP updates account for a lesser

but still significant proportion (16%) of all routing dynamics. Such routing instability

reduces the availability of advertised paths to portions of the Internet.

There have also been several failures in the Internet, some of which are mentioned

below:

• April 1997 – A misconfigured router maintained by a Virginia service provider

injected an incorrect routing map into the global Internet claiming that it pro

vided optimal routes to all Internet destinations. This caused many Inter

net providers to divert traffic to that service provider and the resulting con

3

gestion and router overload shut down the Internet backbone for around two

hours [6, 11].

• August 1998 – Connections to “.net” Internet servers failed for many hours

because of a misconfigured Internet database server [6].

• November 1998 – A malformed routing control message led to persistent, patho

logical oscillations and communication failures between most Internet core back

bone routers for a period of several hours [6].

• April 2001 – AS3561 propagated improper route announcements from one of its

downstream customers which led to global connectivity problems [12].

• September 2001 – Code Red/Nimda worm attack caused significant BGP session

resets and routing instability to a significant portion of the Internet [13].

• October 2002 – Improper router filtering rules caused the internal routers of

WorldCom to become overloaded and crash, which caused repeated announce

ments and withdrawals [14]. This caused significant destabilization of the In

ternet, causing many customers to experience high response times and packet

loss to many websites.

• October 2002 – A series of Distributed Denial of Service (DDoS) attacks were

launched against all thirteen root Domain Name Servers and popular websites

which caused some of them to go offline [14].

• December 2006 – Earthquakes in Taiwan caused widespread outages to several

countries in the region which lasted for around 51 days [15].

• January 2008 – Undersea cables in the Mediterranean Sea were cut which caused

significant disruptions and increase in web latencies to much of the Middle East,

Asia, and North Africa for a period of several weeks [15–17].

4

• February 2008 – An Internet prefix belonging to YouTube was mistakenly an

nounced by a telecom operator in Pakistan, causing an outage for over two

hours [15].

• The authors of [18] studied the reachability of a particular set of prefixes be

longing to the U.S. Department of Defense (DoD). They found significantly high

global unreachability (when none of the Internet hosts in their study can reach

a prefix) durations with 17% of unreachability durations being longer than one

hour.

• Significant numbers of attacks take place on popular websites and other Internet

infrastructure on a daily basis. Moore et al. [19] observed between three and five

thousand DDoS attacks per week in 2001. An Internet security report released

by Arbor Networks in 2011 states that DDoS attacks have gone mainstream in

2010, increasing 1000% since 2005, crossing 100 Gbps for the first time ever [20].

Typical availability values of systems in our daily lives are “four-nines” (99.99%)

or higher [5]. The US Public Switched Telephone Network (PSTN) was found to have

better than 99.999% availability during a two year period in the 1990s [21]. AT&T,

one of the dominant telecom providers in the US, expected its switches to fail for no

more than two hours in 40 years [22], with implied availability greater than five nines

or 99.999%. Aviation is also considered as one of the critical industries in our daily

lives. The aircraft accident rate in 2010 was one accident for every 1.6 million flights

or better than six nines (99.9999%), the lowest in aviation history [23].

There have been several studies which quantify availability values of Internet

routes. Labovitz et al.’s work on Internet backbone showed that only 25-35% of

Internet routes have availability greater than 99.99% [6]. 10% of routes even ex

hibited an availability of less than 95% [6]. V. Paxson conducted end-to-end route

measurements between 37 Internet sites and found that routing pathologies occur

with a probability of 1.5% to 3.4%, leading to an availability lesser than 99% [24]. In

a more recent study, Andersen et al. showed that an average Internet path experi

5

ences an outage lasting more than 30 minutes with probability 0.1%-0.4% [5]. Also,

they found web server availability to be less than 99.7% [5].

The results presented above show that the Internet is unreliable since routing

failures happen often and its availability numbers are lower compared to most reliable

systems.

1.2 Internet Predictability

While the metric of availability is certainly very important in evaluating a com

puter system, we posit that its predictability is at least as important as the metrics

themselves. Predicting the value of or a bound on the availability enables the sys

tem owner to evaluate the claimed availability of the system and to take appropriate

measures, if necessary, to increase its value. A system with 99.9% availability may be

looked down upon if it is expected to function with a five-nines availability; however,

it will be considered perfect if it meant to function at that availability level. Similarly,

predictable downtime of a service is usually much more acceptable than a sudden,

unpredictable one.

In the context of the Internet, one can certainly calculate the availability of the

Internet either by studying historical data, for example through RouteViews [9], or

by conducting measurement studies (Section 2.2). However, that does not necessarily

mean that one would be able to predict these metrics in the future. In fact, Inter

net failures are usually not predictable as can be inferred by the failure incidents

mentioned in Section 1.1. While some of the failures are caused by unpredictable

natural events unrelated to the Internet like earthquakes and undersea cable cuts, a

substantial number of failures are caused by reaction of Border Gateway Protocol to

frequently occurring events like connection failures between Internet hosts, routing

misconfiguration and changes in routing policy of an organization which is part of

the Internet. Some failures are caused by no external events but by mere routing

pathologies or oscillations in BGP itself. We contend that the Internet is far too

6

important a system to not be sufficiently predictable and predictability is required to

ensure satisfactory performance of Internet applications. This dissertation advances

us towards the goal of Internet predictability.

1.3 Challenges

There are several challenges in predicting Internet availability. The Internet, by

definition, is a collection of heterogeneous networks, owned by different organizations

which set their own routing policies based primarily on their business interests [25].

These policies may interact in unpredictable manner causing loss of advertised reach-

ability between two Internet hosts even when a physical link exists between them.

For example, two ISPs A and B may be connected through their customer C, but

will not be able to reach each other through C, since C does not provide transit

service for its providers [26]. This connectivity loss can also happen on a transient

basis, when a primary path between two hosts, which provides reachability, fails and

the backup path cannot be traversed due to routing policies [27]. The Internet is

comprised of around 39,000 Autonomous Systems (ASes) [28], hence the complexity

of interactions between them is unpredictable, espcially because business agreements

between organizations which shape routing policies are publicly unknown.

Failures of paths themselves are usually unpredictable, as the failures may be

caused by optical fiber cuts, router reboots or congestion which can be difficult to

predict. A study of link failures in Internet backbone by Iannaccone et al. found

that about half of link failures cannot be attributed to scheduled maintenance [29]

and hence are usually unpredictable. In fact, it is difficult to find the actual reasons

behind a link failure [29]. The authors of [29] found that 10% of link failures last

longer than 20 minutes, which is very high as compared to low downtime required for

ensuring high availability. Failures may not be recoverable either due to non-existence

of backup paths, or the backup paths may share the same physical infrastructure,

resulting in correlated failures of both the primary and the backup paths [5]. Even

7

when the link failures recover in milli-seconds [30], it may take several minutes before

BGP converges to a new valid route [31] and this unpredictable convergence time

adds to uncertainty in availability [5]. Path exploration by BGP is the reason for

slow convergence of BGP to alternate routes [32] and several route oscillations may

occur before an alternate path is found. This problem is exacerbated by configurable

BGP parameters like Minimum Route Advertisement Interval (MRAI), which rate

limits advertisements sent by a BGP host [33]. BGP route flap damping [34] is

another mechanism to reduce propagation of unstable routing information, which

can exacerbate routing convergence sometimes by upto an hour [35]. Due to the

interaction of these flexible mechanisms and the diversity of routing policies, BGP is

not guaranteed to converge [36].

Another reason for the unpredictability of the Internet’s availability is the po

tential for unexpected failures caused by external attacks or misconfigurations. As

pointed out in Section 1.1, routing misconfiguration is widespread and it causes sub

stantial loss to Internet availability. The potential of anyone to announce any Internet

prefixes without authentication can lead to prefix hijacks [15], which will cause reach-

ability failure to the intended destination. Other security attacks, like DDoS attacks

launched from large numbers of Internet hosts are unpredictable and often cause

widespread damage. Worms in the Internet can lead to surges in routing messages

causing routers to overload and crash, which also lead to loss of reachability [13]. The

magnitude of such surges is impossible to predict as it depends on the extent of worm

infection of Internet hosts, which in turn depends on their security characteristics

like operating system, security software etc. Attacks on DNS infrastructure, e.g. [14],

can lead to an unpredictable amount of damage in resolving DNS queries critical at

ensuring availability and the damage again depends on the extent and sophistication

of the attack and the security properties of DNS servers.

It should also be pointed out that complete loss of reachability is not the only way

Internet availability is reduced. Even when the Internet infrastructure announces a

path to a particular host, the path may experience high latency and intermittent

8

availability. Such problems can be caused by network congestion, either due to short

term traffic spikes (flash crowds e.g. those that caused Target’s website to crash [37])

or a long term increase in traffic, for example by file sharing applications [5].

Finally, one of the important challenges in predicting Internet availability is its

constant evolution. Not only is the Internet growing in terms of the number of Au

tonomous Systems (ASes) and announced prefixes [28], the Internet itself is changing

in its structure. For example, most of the inter-domain traffic has migrated to large

content providers [38]. This has in turn led to a flatter Internet where content is

being delivered directly to the customers from the large content providers bypassing

the traditional Internet backbone [38]. Mergers and acquisitions of various technol

ogy leaders contribute towards the Internet evolution as well. Depeering, especially

of Tier-1 ASes, can lead to substantial changes in Internet routing and can happen

due to disputes, like the one between Cogent and Level3 [39]. Also, the recent trends

in cloud computing of moving software and services to the cloud is proof of rapid

Internet evolution [40]. Even Internet infrastructure services like the Domain Name

System (DNS) are being offered through the cloud by providers like Google [41] and

OpenDNS [42].

In summary, there are several challenges in ensuring Internet predictability, which

places restrictions on the applications which can be supported through the Internet.

This has led to private backbones being setup by organizations for providing services

and content [38]. For example, Labovitz et al. found that Google migrated the

majority of its video and search traffic to its own backbone and direct interconnects

with consumer networks [38]. This dissertation seeks to overcome these challenges

and provide predictability to the steadily evolving Internet infrastructure.

1.4 Scope of the Dissertation

In this dissertation, we study the predictability of inter-domain routing, which is a

critical component of the Internet infrastructure. We do not aim to predict the events

9

that affect the availability but rather the behavior of the Internet in response to the

events as reflected in the availability metric. Specifically, we predict availability of

Internet routes to arbitrary destinations by using statistical models which are learned

using availability information of other random destinations. Neither do we predict

other properties of inter-domain routing like stability, convergence, safety, security

and integrity nor do we aim to find causes of failures, in which sufficient research

already exists (Section 2.2.1). This dissertation also does not study failure diagnosis

which has been studied in the literature as well.

The second part of this dissertation focuses on studying another integral part of

the Internet infrastructure, namely Domain Name System (DNS). We do not study

native DNS provided by the Internet Service Provider (ISP) as it has existed in the

Internet for the last few decades. Instead, we study the evolved DNS in the form of

cloud-based DNS. The impact of this evolution on applications like content retrieval

is also studied. We do not study other evolving features of the Internet for example,

the move to mobile Internet and multimedia content.

1.5 Problem Statement

This dissertation aims to study the predictability of the Internet infrastructure and

the implications of its evolution. Specifically, we propose the following hypotheses.

• It is possible to predict the long-term availability of a prefix by observing it

for a short period of time, using statistical models which are constructed by

studying properties of other prefixes in the Internet. We also hypothesize that

prefix characteristics which correlate with its availability can be found.

• We hypothesize that there are patterns in the reachability failures of various

Internet destinations as represented by prefixes. While the causes for failures

may be unpredictable, for any given prefix of interest, it is possible to find other

prefixes in the Internet that have tendency to fail along with it.

10

• It is possible to use these patterns in reachability failures to improve the server

selection schemes used in the Internet, which can improve the availability of the

services.

• There exist solutions that can be applied to cloud-based DNS so that a client’s

performance while using cloud DNS is comparable to that when using native

DNS provided by its ISP.

1.6 Contributions

In this dissertation, we study two components of the Internet infrastructure which

enable worldwide communication, namely interdomain routing and DNS. Our work

sheds light on the time dimension of the infrastructure by considering both short-

term prefix failures and long term availability metric. The key contributions of this

dissertation are as follows:

• We study which characteristics of an Internet prefix correlate with its availability

(Chapter 3). We then use the information to build statistical models to predict

long term availability of a prefix by observing its characteristics for a short

period of time. The models are learned by observing characteristics of unrelated

prefixes for a learning period. To our knowledge, this is the first work that uses

prefix characteristics to predict availability.

• We coin the term BGP molecules which are set of Internet prefixes which have

similar propensity to become unreachable or fail as a prefix of interest (Chap

ter 4). We investigate various metrics that quantify the propensity of a prefix

to fail. Four failure prediction schemes are developed with and without the use

of BGP molecules among which a hybrid scheme achieves 91% predictability of

failures with 99.3% coverage of prefixes in the Internet.

• We present an application of BGP molecules in increasing control-plane avail

ability of a Content Distribution Network in Section 4.6. We perform a case

11

study of Akamai’s CDN, using experiments to demonstrate that a significant

percentage of queries for Akamai-hosted content exhibit lower than five-nines

availability over a period of a few weeks. Our scheme based on BGP molecules

not only results in a near-perfect availability for all content queries, but also

has the potential of reducing client-perceived latency to the servers returned.

• We develop a novel technique for geolocating data centers of cloud providers

that use IP anycast (Section 5.3). The use of IP anycast implies that various

data centers use the same IP address, hence conventional IP geolocation schemes

cannot be used. Our technique is measurement based and lightweight and does

not require setting up of any infrastructure.

• We perform a measurement study of one of the cloud-based DNS systems,

namely Google external DNS (Section 5.4). Our study reveals that Google does

not necessarily redirect its clients to its nearest data center. Our study also in

cludes resolution of various websites through native DNS and Google DNS and

comparing the results returned. We also perform Google searches using Google

DNS and native DNS and find that the servers returned using Google DNS

appear to be chosen using server load as primary criterion. This study provides

insight into one of the major cloud providers of cloud-based DNS, which is an

evolution of the traditonal native DNS.

• We study Akamai-hosted content retrieval using cloud-based DNS and demon

strate its poor performance as compared to the use of native DNS (Section 5.5).

Our study uses Google DNS as an example of cloud DNS and diagnoses the

reasons for the poor performance by using our geolocation technique for cloud

providers (Section 5.3). We propose various solutions to this problem that would

enable cloud DNS to perform comparably to native DNS, including a hybrid

client-cloud approach that a client can use in today’s Internet. To our knowl

edge, this is the first approach that tackles the problem of identifying nearby

12

Akamai content servers while leveraging cloud-based DNS. Our work yields valu

able insight into Akamai’s DNS system, revealing previously unknown features.

• Finally, we extrapolate the current Internet trends to develop a model of futur

istic cloud-based Internet (Section 6.2). We investigate the cloud interactions

under our model, exploring how performance and economic incentives can drive

these interactions. We also investigate whether moving all services to the cloud

is a good idea. Our work sheds light on the future of the Internet and the

transition from the current Internet to the cloud-based Internet of tomorrow.

1.7 Outline

This dissertation is organized as follows. Chapter 2 explains the current Inter

net infrastructure and the Internet evolution currently underway. The chapter also

presents existing research relevant to our dissertation.

Chapter 3 presents our work on predicting prefix availability using statistical mod

els. We investigate which features of a prefix correlate with its availability and their

relative importance in predicting it. We compare three different prediction models

while investigating various time durations over which the models are learned.

Chapter 4 discusses our new prefix grouping BGP molecules and presents various

metrics that can be used in constructing them. The chapter also evaluates various

failure prediction techniques that can be used to predict unreachability incidences of a

prefix of interest. We also present a novel application of BGP molecules in improving

the availability of Content Distribution Networks.

Chapter 5 presents the impact of the DNS evolution in the Internet to cloud-

based DNS. We study DNS used by content providers like Akamai and cloud DNS

providers like Google. Our scheme to geolocate data centers of cloud providers which

use IP anycast is presented and is used in the measurement study of Google DNS.

The chapter also studies performance of Akamai-hosted content retrieval using cloud

13

based DNS and presents various techniques to improve client performance while using

cloud DNS.

Finally, Chapter 6 presents our vision of the future Internet and its unique chal

lenges, while concluding the dissertation. The chapter also presents future work on

the predictability of Internet infrastructure and its evolution.

14

2. BACKGROUND AND RELATED WORK

The Internet relies on several components to ensure successful worldwide commu

nication. In this chapter, we describe two of those components which are relevant

to this dissertation, namely routing and Domain Name System (DNS). This chapter

also presents a summary of research that relates to this dissertation. Specifically,

we present literature that deals with dependability properties of the Internet like its

availability and its predictability. We also present work on studying properties of

routing and DNS, as well as Internet evolution, which includes cloud computing and

the move of DNS services to the cloud. Finally, since this dissertation uses statisti

cal techniques, this chapter also presents literature on the use of such techniques in

networking research.

2.1 Internet Infrastructure

The Internet is an interconnection of various networks all over the world. These

networks are owned and managed by several organizations and are hence called Au

tonomous Systems (ASes). ASes are assigned Autonomous System Numbers (ASNs)

by the Internet Assigned Numbers Authority (IANA) [43]. Each AS owns a block of

IP addresses, categorized as prefixes. A prefix is a collection of a particular number

of IP addresses with its length denoting the number of bits in the prefix, and the

remaining bits for the IP addresses it aggregates. For example, a prefix with length

24 (/24 prefix) aggregates 8 bits of the 32 bit IP address length or 256 IP addresses.

The IP addresses are also allocated to ASes by IANA. As of this writing in Septem

ber 2011, there are about 39,000 Autonomous Systems (ASes) in the Internet with

around 375,000 prefixes [28]. Around 16,500 ASes originate only one prefix, whereas

the highest number of prefixes originated by an AS is 3563 [28].

15

For using a service hosted on the Internet anywhere in the world, a host has to

know two pieces of information - who (which IP address) to reach and how to reach

it. The first piece is provided by Domain Name System (DNS) which translates URIs

to IP addresses in the Internet. Routing provides the other piece of the puzzle by

enabling a host to reach an IP address. Hence, two of the most important components

of the Internet infrastructure are routing and DNS and we study them in subsequent

subsections.

2.1.1 Routing

Routing in the Internet aims to provide a means for any host to reach any other IP

address in the Internet, i.e. it provides reachability to an IP address. There are two

major types of routing in the Internet - interdomain and intradomain. Intradomain

routing is implemented within an AS, and the AS can choose any routing protocol it

wishes to within its domain. The intradomain routing protocols used can be either

link-state, e.g. Open Shortest Path First (OSPF) [44] and Intermediate System to In

termediate System (IS-IS) [45], or distance vector, e.g. Routing Information Protocol

(RIP) [46]. Interdomain routing is implemented between ASes, so that any host in the

world can connect to any other IP address located in any other AS. Border Gateway

Protocol (BGP) [47] is the de-facto interdomain routing protocol in the Internet.

Figure 2.1 depicts the existence of interdomain and intradomain routing in the

Internet between two communicating entities, an end-host (source) which contacts a

server (destination). The end-host gains access to the Internet through an Internet

Service Provider (ISP) labeled AS 1 in the figure, which can connect to one or more

ASes. In this particular example, the traffic from the source to the destination tra

verses the ASes 1 and 5 enroute to the destination (as shown by the bold arrows).

The path chosen is one of the many possible paths (AS1-AS2-AS4 is another path)

and is determined by BGP, the interdomain routing protocol. The figure shows also

sample internal topology of an AS, which contains several routers interconnected to

16

one another. Traffic enters through a router and exits through another, and the ac

tual sequence of routers traversed within the AS is determined by the intradomain

routing protocol.

Fig. 2.1. Routing in the Internet with the bold arrows indicating
traffic flow from the source to the destination

BGP communicates routes to Internet prefixes throughout the Internet through

BGP sessions between border routers of ASes, as shown by the lines interconnecting

various ASes in Figure 2.1. There are two types of messages used by BGP, namely

Announcements and Withdrawals. Announcements announce routes from an AS to

a prefix with some attributes whereas withdrawals withdraw those routes. There

are several attributes of announcements, of which AS path and next hop are most

important. AS path denotes the sequence of ASes that need to be traversed from the

AS originating the advertisement to reach the destination prefix. Next hop is the next

hop IP address enroute to the destination prefix. There are also other attributes like

Local Preference, Community, MED and Aggregator [47] which are used in various

ways to apply routing policies [25]. Upon receipt of an announcement or a withdrawal,

a BGP peer, which runs a BGP session, evaluates the message and uses its attributes

17

in a BGP decision process to decide whether the new message gives it a more desirable

path to reach the destination prefix [25]. The BGP decision process is influenced by

various policies of the AS where the BGP peer is located. In case the existing path to

the prefix is changed, the peer may decide to announce the new path depending upon

its route export policies. Thus BGP is a policy based path vector protocol exhibiting

significant flexibility in the choice of the path to a prefix, thereby satisfying business

and traffic engineering considerations of an AS [25].

2.1.2 Domain Name System (DNS)

The Domain Name System [48] is an integral part of the Internet infrastructure,

since it provides translation of human readable names like “purdue.edu” to an IP

address. The DNS resolution process of converting a name to an IP address starts

with the client contacting its local DNS resolver with the DNS query. If the resolver

does not know the result of the query (by caching a previous result), it then contacts

top-level root nameservers, which are provided to it by configuration through a re

liable source like a system administrator. The top-level nameservers then delegate

the query to other nameservers which are authoritative for their respective domains

till the required IP address is found or an error is encountered. The multiple queries

can be initiated automatically by a recursive DNS resolver or they can be initiated

by the client itself if the resolver is non-recursive. Figure 2.2 shows an example of a

recursive query for “cs.purdue.edu” initiated by a host. The query which is directed

to the host’s DNS resolver first goes to the root nameserver which delegates it to

the authoritative nameserver of “.edu” domain, which returns “purdue.edu” name-

servers. These “purdue.edu” nameservers then redirect the query to “cs.purdue.edu”

authoritative nameservers which return the IP address of “cs.purdue.edu” to the DNS

resolver which forwards the result to the client.

The DNS mechanism uses extensive caching at various levels to prevent repetitive

queries, thereby saving time and network traffic. Thus, after returning the IP address

http:cs.purdue.edu
http:purdue.edu
http:purdue.edu
http:cs.purdue.edu
http:purdue.edu

18

Fig. 2.2. Example resolution of a DNS query through a recursive DNS resolver

of “cs.purdue.edu” to the host, the DNS resolver in Figure 2.2 caches the reply for a

certain period of time to serve future requests. Any of the nameservers shown in the

figure can also cache the results to reduce the number of DNS queries. Due to the

critical nature of DNS servers, especially the root nameservers, they are replicated to

make the system resilient to failures and attacks [49].

2.2 Internet Dependability

There exists a vast body of literature on studying Internet availability, some of

which have been mentioned in Section 1.1. In this section, we present work related

to both routing and DNS dependability.

http:cs.purdue.edu

19

2.2.1 Routing Dependability

Analyzing the resilience of the Internet to failures and malicious attacks has been

the subject of extensive research. Wu et al. develop a realistic failure model of the

Internet, trying to locate the reliability bottlenecks using simulations on Internet

topologies [27]. Their results indicate that the Internet may not be as resilient as is

often thought to be. This is because of the policy based nature of BGP which does

not gurantee reachability even if two nodes in the Internet are physically connected.

Similar results are obtained by the authors of [50], who construct an AS graph model

and define Internet resilience by the graph-theoretic metrics of strongly connected

components and the proportion of nodes that can be reached in the graph. Other

papers which analyze network robustness based on graph-theoretic properties are [51,

52]. The authors of [53] develop both static and dynamic graph-theoretic models of

the Internet, considering Internet growth. Their results indicate that the Internet is

robust to failures only if the failures are random, which confirms the results of [50]

that targeted attacks can cause significant harm to the Internet.

Studies on routing availability have found that the availability numbers are low,

with a significant number of routes exhibiting availability of less than 95% [6] and very

few routes have availability numbers greater than 99.99% [5,6,24]. The mean-time to

failure (MTTF) of Internet routes is usually found to be of the order of several days

and the mean-time to repair (MTTR) is found to be under one hour [6, 8]. Dahlin

et al. use HTTP and traceroute datasets between source-destination pairs and find

average availability between 93% and 99.6% [54]. They also find that failure durations

are heavy-tailed and can last for as long as 100,000 seconds (around a day).

Routing dynamics and convergence has also been studied extensively in the lit

erature. Pathological routing messages constitute a significant percentage of routing

updates exchanged [6, 7, 10], which leads to unhealthy routing dynamics. BGP is

known to suffer from slow convergence which can last several minutes [31, 35] due

to path exploration [32] and configurable BGP parameters (Section 1.3). Zhao et

20

al. studied the routing performance of a set of DoD prefixes and found that there

were periods when the prefixes seemed to be globally unreachable [18]. These periods

were significant, with only about 16% shorter than two minutes and 17% longer than

an hour. The authors also found that in periods of routing stress like the Nimda

worm attack, the updates contributed by these prefixes could be upto 13 times those

of a typical Internet prefix due to certain BGP attributes [18]. During the Code

Red/Nimda attack in 2001, a 30-fold increase in BGP updates by around 3% of the

prefixes was observed, which was caused by extensive session resets and slow con

vergence of BGP [13]. Similar results were observed during the 2003 Slammer worm

attack, where upto 100 times the normal number of updates were logged from a cou

ple of ASes [55]. These results show the unhealthy nature of BGP dynamics, not just

under stress but also in normal routing conditions. However, it is worth noting from

these studies that only a few prefixes of the Internet contribute significant number of

updates. This observation is confirmed by authors of [56]; their results indicate that

0.1% of the prefixes in the routing table contribute 10% of the routing updates. Pop

ular destinations of the Internet which receive high traffic volume are usually much

more stable in routing than the prefixes which receive less traffic [57].

The impact of BGP instability has also been a topic of recent studies. The authors

of [58] design an online system that not only identifies significant routing disruptions

(by correlating updates), but also estimates their impact on the flow of traffic by

assigning a weight or a popularity index to each prefix and computing the total weight

of prefixes that are affected by an event. Agarwal et al. [59] investigate whether BGP

dynamics affect intra-domain traffic fan-out, by studying traffic within a tier-1 ISP

network. The authors correlate the BGP routing table changes with packet traces

and conclude that the traffic fanout is virtually unaffected by the routing changes.

Wang et al. [60] inject routing changes on the PlanetLab testbed and investigate the

changes in the end-to-end performance by active probing using the metrics of packet

loss, delay and reordering. They find that routing failures contribute to end-to-end

packet loss. Further, they find that iBGP configurations, MRAI timer values, and

21

failure locations have a significant impact on routing failures. A related problem

(addressed in [61]) is how instabilities in the control plane affect the data plane. A

measurement study is conducted to test the interaction between the planes by looking

at the traffic towards a sink behind a BGP beacon with the beacon going up and down

at regular intervals. The authors find that the data plane metrics of delay, drop, jitter

and reordering are not significantly affected by changes in the control plane.

Significant work also exists on diagnosing the causes of poor Internet dependabil

ity in an effort to improve dependability. Studies such as [58, 62, 63] aim at finding

the root cause of BGP dynamics. Caesar et al. [62] designed an Internet Health Mon

itoring System to analyze routing updates and identify the cause and location of the

routing change that led to the update(s). The system correlates the updates observed

in three dimensions: prefixes, time, and views. Updates which are likely caused by

a single event are grouped together and classified into one of the equivalence classes

of events. Feldmann et al. perform a similar study to locate the origin of a routing

instability [63]. They also correlate the updates to identify the instability cause as

either internal to an AS or at the edge between the two given ASes, using simula

tions to validate the results. Diagnosing the root cause based on BGP data alone

can be error-prone. As pointed out in [64], several routing changes are not visible to

eBGP, e.g., internal changes within an AS. Partially incomplete BGP data can lead

to incorrect diagnosis. The authors of [64] propose a troubleshooting service to be im

plemented in the network using an Omni server for each AS. However, this approach

requires the participation and cooperation of ASes which may not be practically pos

sible. Identifying BGP updates caused by “major” events (which affect reachability

to many ASes) in the presence of noise from other BGP updates caused by minor

events is studied in [65]. The authors use Principal Component Analysis (PCA) to

extract clusters of ASes whose prefixes are likely affected by the same events, which

enables them to cluster update streams. The WhyHigh tool [66] diagnoses the high

latency to Google’s data centers using active measurements correlated with BGP

routing data. The tool found inter-domain routing inefficiencies and packet queuing

22

as the primary causes of latency inflation. Saxena et al. [67] analyze and compare

the content distribution frameworks of YouTube, Dailymotion, and Metacafe, based

on measurements from geographically distributed PlanetLab nodes. They investigate

the variation in service delay with the user’s geographical location, and with video

characteristics such as age and popularity. Hubble is a Internet monitoring system

that detects data plane reachability problems [68]. It uses BGP feeds and active

measurements to pinpoint routing problems in real-time.

The tremendous interest in studying and diagnosing problems related to Internet

dependability naturally leads to several pieces of work that present suggestions on

improving the dependability [5]. Availability of paths between two hosts can be

improved by using routing over multiple paths. Systems which use multiple path

routing include Detour [69], Resilient Overlay Network (RON) [5], NATRON [70]

and Scalable One-hop Source Routing (SOSR) [71]. Multi-homing or the use of

multiple local links has been shown to improve communication latency [72]. Various

multi-homing strategies have been discussed in the literature [73, 74]. Caching and

prefetching of content e.g. web objects has also been shown to increase availability

[54,75,76]. The authors of [77] propose to use BGP policy relaxation to enable BGP

to use the physical links which are policy disallowed to recover from Internet failures.

They also suggest to use Internet Exchange Points (IXPs) to forge new BGP sessions

between ASes on the fly, as needed by routing failures. This implies creation of new

AS relationships as required to recover from failures and may not be viable given

the business decisions behind AS relationships. Wang et al. propose that reliability

should be provided as an Interdomain service by having different networks providing

redundancy for each other as mutual backup [78]. The authors develop algorithms

to efficiently utilize network resources in case of failures and validate their technique

through simulations on real world data.

As the size of the Internet grows steadily [28], Internet routing scalability is an

important research topic [79]. There are two facets to routing scalability, namely

routing table size and the rate of BGP updates. Bu et al. study BGP routing table

23

growth using RouteViews [9] and find that multi-homing, load balancing, address

fragmentation, and failure to aggregate aggregatable addresses are the top causes of

increasing BGP routing table size [80]. Out of these causes, address fragmentation

contributes most to the routing table size whereas the contribution of load balancing

grows the fastest, followed by multihoming. The fastest growing prefixes in the routing

table have lengths greater than 17 and less than 25, and hence serve local rather than

global interests. These results are similar to those obtained by a six year study of

routing table growth [81]. Controlling the rate of routing table growth has been

the subject of many research works, with suggestions ranging from applying policy

filters [82], using forgetful routing [83] to changing the routing strategy itself [84,85].

Huston et al. predict that the rate of BGP updates (churn) will increase at a

rate faster than the BGP routing table size [86], which makes the scalability problem

important. Elmokashfi et al. study the increasing rate of BGP churn in the Inter

net [87] and find that the updates have increased by 200% in a three year period

of 2005-2007. The authors also perform what-if studies and study their scalability

implications. Their results indicate that increased connectivity at the Internet core

is the primary reason for increasing number of BGP updates, hence a flat Internet

core is much more scalable than a vertically deep core [87]. A recent 2010 study by

Elmokashfi et al. [88] analyzed five years of routing data to investigate the causes of

BGP churn and identified baseline and daily peak churn as the two churn components.

They found that the baseline churn increases at a slower rate than the BGP routing

table growth rate, whereas the peak churn is an order of magnitude higher than the

baseline churn.

Inter-domain routing security is certainly a very important factor in ensuring

Internet dependability. Techniques to trace and prevent Distributed Denial of Service

(DDoS) attacks [89–93] can improve the reliability of the Internet infrastructure.

Butler et al. survey various attacks on BGP and the proposed solutions to enhance

BGP security [94]. The authors indicate that while the solutions have not been

24

implemented due to the scale and complexity of the Internet, significant progress has

been made in ensuring a reliable Internet in the future.

Table 2.1 summarizes the various facets of routing dependability discussed in this

subsection.

Table 2.1

Various facets of routing dependability and relevant research

Routing Dependability Facet Relevant Research

Internet robustness

to failures and attacks

Graph-theoretic approaches [50–53],

Simulations on Internet models [27]

Measurement studies of

Internet availability

Route Availability [6, 24],

Web server availability [5, 54]

Routing dynamics

and convergence

Pathological routing messages [6, 7, 10],

Slow convergence [31, 32, 35],

Specific events [13, 18, 55]

Impact of BGP instability On intra-domain traffic [59],

On data plane metrics [58, 60, 61]

Diagnosis of routing failures Locating root cause of BGP

dynamics [58, 62, 63, 65], Internet monitoring

and troubleshooting systems [62, 64, 66, 68]

Increasing routing dependability Multiple path routing [5, 69–71,78],

Multihoming [73, 74],

BGP policy relaxation [77]

Routing scalability Routing table scalability [80–85]

Routing message scalability [86–88]

Routing security Preventing DDoS attacks [89–93],

Enhancing BGP security [94]

25

2.2.2 DNS Dependability

DNS dependability has also been the subject of several studies. Jung et al. stud

ied DNS performance using a measurement study and found that around a quarter

of lookups give no answer, while a significant fraction (13%) yield a negative re

sponse [95]. The median lookup duration is found to be less than 100 ms but the

performance degrades with higher number of referrals. The authors of [96] measured

dependability characteristics of DNS through measurements. They found that the

majority of DNS servers are highly available, however a significant fraction had “one

9” or less availability. Average recovery time was found to be of the order of hours.

Liston et al. [97] conducted a large-scale study of DNS performance as observed

by clients and found that performance metrics like mean response time vary widely

depending upon the client location whereas system adminstrator controlled metrics

like TTLs exhibit low variation. This work underscored the need for a well-formulated

study to prevent bias in DNS dependability studies.

Even though redundancy is built into the DNS system [49], operational choices

and configuration errors create dependency among redundant servers decreasing its

robustness [98]. The authors suggest proper operational choices e.g. placing redun

dant DNS servers in different geographical locations and mechanisms for detecting

and eliminating DNS configuration errors to achieve DNS reliability.

The DNS infrastructure is the constant target of malicious attacks because of its

inherent importance in the proper functioning of the Internet. Popular attacks on

the DNS infrastructure include attacks against all thirteen root DNS servers in 2002

and 2007, attacks against Akamai DNS infrastructure in 2004 and against UltraDNS

in 2009 [14, 99]. [99] lists major attacks on the worldwide DNS infrastructure since

1996.

There have been several efforts to secure or propose changes to the DNS infras

tructure to make it resilient to attacks and misconfigurations, thereby increasing its

dependability. Park et al. [100] present a cooperative DNS lookup service, CoDNS,

26

which can augment existing nameservers by creating a pool of peer nodes that aid in

lookups in case of failure of local DNS. [101–103] propose solutions to attacks on the

DNS infrastructure. RFC 3833 [104] analyzes various threats to the DNS system, and

describes how DNSSEC [105], the security extension of DNS, handles these problems.

The authors of [106] present a comprehensive taxonomy of attacks on DNS infrastruc

ture identifying four major categories of DNS attacks, namely DNS hacking, routing

table poisoning, packet mistreating and Denial of Service. They also present various

current and futuristic solutions for securing DNS.

2.3 Internet Predictability

While significant work exists on analyzing Internet dependability, relatively fewer

studies have studied Internet predictability, which is the focus of this dissertation.

In this section, we present work related to Internet predictability and point out the

uniqueness of our work.

Predictability of network performance has been extensively studied, e.g., in [24,54,

107]. These studies focused on end-to-end loss, delay, and throughput, as measured

by active probes. Several network distance estimation techniques have been proposed

in the literature, e.g. IDMaps [108], GNP [109], Vivaldi [110], Meridian [111], Plan

etSeer [112] and non-metric approaches [113, 114]. These techniques use embedded

coordinate system, constructed using measurements, to predict the latency between

arbitrary nodes by using their corresponding vector distance in the coordinate space.

However, these techniques suffer from being agnostic to the Internet structure, which

lends them incapable of predicting detour routes or paths which do not follow the

coordinate system [115]. There have also been research efforts in predicting TCP

throughput of bulk file transfers, e.g. [107, 116–119]. All these techniques predict

network properties in the data plane which is orthogonal to our work of predicting

properties in the control plane (Chapters 3 and 4).

27

An information plane for distributed services, iPlane [115, 120, 121] has been de

veloped at University of Washington for detecting data plane reachability problems

and predicting data plane paths and their properties. iPlane is a measurement in

frastructure that continuously performs measurements to maintain an Internet atlas

annotated with path attributes. The atlas is used to predict paths between two arbi

trary Internet hosts and subsequently its properties like latency, bandwidth and loss

rate. iPlane Nano [121] is a lightweight version of iPlane which runs as a peer-to-peer

application on client machines for performance prediction. The work in this disserta

tion on predicting Internet properties like availability (Chapter 3) differs from iPlane

in several respects. We predict BGP advertised control plane prefix availability as

opposed to predicting data plane metrics between end hosts in the Internet. In this

sense, our work is complementary to iPlane. Furthermore, iPlane only provides an

estimate of the availability in the data plane through loss rates, which may not be

indicative of the advertised availability of a prefix. In fact, iPlane Nano [121] claims

loss rate stationarity by stating that 66% of paths which were lossy at a time instant

were lossy 6 hours later. Not only is this at a low granularity (since failures happen

in order of seconds) but also this does not tell us anything about the availability

of a particular path, let alone of a prefix when viewed from various vantage points.

iPlane probes an end host (.1) of a prefix (known to be responsive to ICMP or UDP

probes) once per day, collecting reachability samples for the end host. Even if one

assumes that the end host’s availability is the same as that of the prefix and that

one can find a responsive end host in a prefix, the low-frequency availability samples

collected are not sufficient to predict availability. Our approach of observing updates

in the control plane has the advantage that, barring collection errors, all updates

are recorded showing every up or down state change of a prefix, thus providing a

continuous estimate of availability without the need for a new infrastructure.

There have been a couple of research papers on predicting reachability failures of

Internet prefixes in the data plane. Feamster et al. [122] correlate BGP dynamics with

active probing measurements in an aim to understand the relationship between the

28

data plane and the control plane. They find that BGP messages correlate with only

half of the data plane failures, however BGP traffic is a good indicator that a failure

has recently occurred or is about to occur. Their results indicate that a combination

of observing BGP traffic and reactive routing can avoid many data plane failures.

Zhang et al. [123] predict the impact of routing changes on the data plane. They

aim to predict reachability problems based on problematic ASes on the AS paths of

the routing updates observed for a prefix. Their results indicate that a majority of

prefixes became unreachable after routing changes. Overall, their prediction model

performs fairly well, achieving a 90% accuracy at predicting data plane failures with

a false positive rate of less than 15%. These works are complementary to failure

prediction as described in our dissertation in Chapter 4. This is because we focus

on predicting control plane failures, i.e. loss of advertised reachability of a prefix,

without taking into account any of its failures in its past. Success of our control plane

failure prediction mechanism coupled with the results of [122, 123] imply that our

technique will also be fairly reliable at predicting data plane failures.

2.4 Internet Evolution

Any study on the Internet cannot ignore its dynamic nature. The Internet is an

ever-changing collection of heterogeneous networks. One of the aspects of the change

is that the Internet is continuously growing with new networks being added on a

regular basis [28]. For instance, the number of ASes has grown from around 2000

in 1996 to around 39000 in September 2011. The Internet inter-domain traffic grew

at an annualized rate of 44.5% from 2007 to 2009 and was estimated to be around

39 Tbps in 2009 [38]. Dhamdhere et al. [124] studied the Internet evolution for a

period of ten years from 1998 to 2007. They found that the Internet’s growth has

been in two phases - with exponential growth of ASes and links observed upto mid

2001 and linear growth thereafter. However, the average AS path length observed in

routing tables has remained about the same at 4.2 hops. The authors also observed

29

that the Internet changes not only with the birth of new ASes and death of existing

ones but also by rewiring, i.e. change of connectivity of existing ASes. In fact, at

least 75% of all link births and deaths are attributed to AS rewiring with the highest

rewiring occurring in Content Providers and Access Providers. This indicates that

the Internet is continuously evolving with ASes changing their connectivity to best

meet their business needs.

Recent years have seen the emergence of large data centers, especially of content

providers like Akamai, Google, Facebook, Microsoft and Yahoo [125]. The decrease

in price of transit traffic [126] coupled with the dominance of services and content

on the Internet has led to rewiring of the Internet [38, 127]. This has led to signifi

cant changes, e.g. content providers building their own global networks for carrying

their traffic, cable Internet service providers like Comcast offering wholesale national

transit, and transit ISPs doubling up as Content Distribution Networks (CDNs) [38].

Labovitz et al. studied the Internet over a two year period of 2007 to 2009 and found

that content providers like Google and Comcast are now in the top 10 contributors of

inter-domain traffic, along with traditional Tier-1 ISPs [38]. The authors also found

that thirty out of approximately thirty thousand ASes contribute a disproportionate

30% of Internet inter-domain traffic, of which Google is the largest and fastest grow

ing. Other results of [38] indicate that Google migrated the majority of its video and

search traffic away from transit providers to its own network infrastructure which

directly interconnects with consumer networks. The consequence of these emerging

Internet trends is that the Internet is getting flatter with content increasingly being

delivered directly from the providers to the customers bypassing the traditional Inter

net backbone of Tier-1 providers like Sprint, Level3 and Global Crossing [38,125,127].

2.4.1 Data Centers

The emergence of large data centers has led to substantial research in the network

ing issues faced by these data centers. Traffic characteristics of data centers need to

30

be studied for purposes such as data center design, traffic engineering, load balancing,

and estimating popularity of content and services. Traffic inside a distributed query

processing cluster is studied in [128]. The authors study both macroscopic charac

teristics of congestion, server communication as well as microscopic characteristics of

flow durations and inter-arrival times. Their results indicate that the statistics are

more regular e.g. large “elephant” flows occur for much lesser time than that in ISPs.

This is likely due to the the fact that the data center is managed by a single entity,

with tight coupling of computing, storage and networking. Benson et al. examine

spatial and temporal variations in link loads and losses in 19 data centers [129] and

find that the links at the data center core are more heavily utilized than the ones at

the edge, and these edge links exhibit higher losses. YouTube data center traffic is

studied in [130], using sampled flow-level data from a tier-1 ISP. The authors study

the interplay between the ISP and YouTube, observing that the ISP performs early-

exit routing, and the traffic from client to YouTube always enters YouTube’s network

at the PoP nearest to the source PoP, irrespective of the destination data center. The

load balancing strategies used by YouTube and their effects on the Tier-1 ISP are

also studied.

Chen et al. studied inter-data center traffic of five Yahoo! datacenters [131]. They

found that the datacenters are hierarchical in nature with smaller satellite data centers

and larger primary data centers. Novel techniques to separate the inter-data center

(D2D) traffic from the data center to client traffic (D2C) are developed. The D2D is

found to be quite dominant and exhibits lower variance than the D2C traffic. They

also found that many of the services provided by Yahoo! have correlated traffic which

enables their placement in the same datacenter. The trend of deploying satellite data

centers maintaining persistent connections with the primary data centers is studied

in [132]. The authors answer questions about the number of satellite data centers

that should be deployed along with their deployment locations and their peering

connectivity for best client performance.

31

The presence of several data centers, which can be geographically spread out all

over the world raises the issue of which data center a client needs to be redirected

to. This problem is known as Global Traffic Management (GTM) problem [133]

and is a dynamic optimization problem, which aims to optimize the performance an

incoming client request will receive in real time. GTM not only needs to take care

of the characteristics of the client request, like the type of request and the client

location, but also needs to consider internal factors such as the network conditions

between data centers and the data center load. Various GTM schemes are surveyed

in [133], and we present some of them here for completeness. The authors of [130]

find that YouTube, before its integration with Google, performs location-agnostic

load balancing, redirecting clients to data centers not based on their location but

based on the size of the data centers. While this solution is simple, it degrades the

client latency significantly, since a client may be redirected to a far-off data center.

An alternative is to use geography based redirection, where commercial GeoLoca

tion databases are used to map client IPs to geographic locations, and the data center

closest to the client is selected to serve the client request [134, 135]. Such solutions

suffer from the lack of dynamic adaptation to network conditions [133]. Another

GTM solution uses IP Anycast [136], where all data centers announce the same IP

address. This solution is also used by Google Public DNS, which announces the IP

addresses 8.8.8.8 and 8.8.4.4 through IP anycast [137]. This technique suffers from

the observation that the anycast closest data center may not always be the closest

data center to a client as pointed out by [138,139] and our case study of Google DNS

in Section 5.4.

Other GTM solutions include measurement approaches, both active and passive.

Active measurements are conducted to get an idea of the network conditions so that

an incoming client request can be redirected to the data center, where it’ll observe

the least latency. This technique is used by Akamai which uses large-scale Internet

measurements for this purpose [140]. Passive monitoring can also be used to estimate

the latency between the clients and the data centers. For example, one can use the

32

TCP handshake to estimate this latency. However, such solutions will suffer from

redirection of the clients to sub-optimal data centers occasionally [66, 141], which

makes this technique unattractive.

While GTM techniques decide which data center a client should be redirected to,

there is need for a mechanism to achieve this redirection. This is achieved by the

use of DNS infrastructure. When a client queries a CDN nameserver for obtaining

a server that will serve its request, after being redirected through all higher level

namservers (Section 2.1.2), the nameserver uses its GTM solution to pick a server

within an appropriate data center and returns it to the client. This technique is used

by Akamai, which uses two levels of DNS servers [142]. We discuss Akamai DNS in

detail in Section 5.2.

2.4.2 Cloud Computing

Another strong emerging trend in the Internet is the emergence of cloud com

puting. While certainly not a new technology, it is making significant strides with

software and services being delivered over the Internet [40]. We define a cloud as an

organization in the Internet, which provides any Internet service be it content hosting,

transit, or DNS. A cloud can consist of multiple Autonomous Systems (ASes) of the

current Internet. Indeed, there are organizations in today’s Internet which have mul

tiple ASes – a whois lookup of Google in ARIN [143] yields ASes 15169, 36039, and

36040 as belonging to Google. We make no assumptions on the geographic spread of a

cloud: it can consist of one or more data centers potentially spread all over the world,

which are connected by high-speed links. Cloud computing offers several advantages,

such as cost reduction because of no direct infrastructure setup, potential availability

of infinite resources on demand, and payment for only the resources used [40].

While the construction of low-cost data centers was certainly an important factor

in the shift to cloud computing, other factors like new technology trends and business

opportunities have provided the impetus for the move to the cloud [40]. For example,

33

recent business trends of Internet payment using Paypal, which requires an email and

a credit card to transfer money, has replaced the extensive infrastructure required

previously to accept credit cards over the Internet. Cloud services enable common

users to host their content and deliver it all over the world with no direct infras

tructure involvement. The move to real-time mobile applications and the appetite

for content has led to extensive data center infrastructure, which can easily provide

virtual machine cycles for several other services like computing, and generate revenue.

There are four major types of cloud services: storage, infrastructure, platform,

and software [144,145]. One can use the cloud for simple services like storing email,

or for complex services like service hosting. Recently, even basic services like the

Domain Name System (DNS) are being offered through the cloud by providers like

Google [41] and OpenDNS [42]. Major cloud service providers include Amazon (Elas

tic Compute Cloud and Web Services [146]), IBM (Smart Cloud) [147], Facebook’s

social network [148], Google (App Engine [149], Docs [150] and public DNS [41]),

Oracle (SaaS [151]), Microsoft (Cloud Solutions and Office 365 [152]), and Apple

(iCloud [153]).

Armbrust et al. list several challenges to cloud computing [40] and we discuss some

of them here. Providing high availability of cloud services is a top priority for any

cloud provider, especially since many cloud services compete with services running

on an end user’s machine, which have high availability. The issues are similar to

those discussed in Section 1.3. Another challenge to cloud computing is the existence

of many cloud service providers which are not interoperable with one another. The

authors of [40] list this lack of interoperability as the second biggest obstacle to cloud

computing after ensuring high cloud availability. The lack of standards for operating

cloud services has led to users being unable to switch cloud services from one provider

to the other. Oftentimes, a user’s data is locked with the cloud provider and may even

be lost if the provider fails. We recognize this important issue of interactions among

clouds and discuss it further in our visions of the future Internet in Section 6.2.

34

The Internet infrastructure is also undergoing changes with the emergence of cloud

computing. The traditional DNS service offered by ISPs is now moving into the

cloud. A client can simply configure his browser to use external DNS resolvers and

this can provide him content resolution, perhaps with better performance and secu

rity [137,154]. Cloud-based DNS systems like those hosted by Google, OpenDNS, and

L3DNS [41, 42] have recently gained popularity. The authors of [139] estimate that

around 2.5% of worldwide clients, visiting a popular website in their experiments,

are using public DNS systems. The authors find that Google Public DNS is growing

rapidly with about 0.5% of all clients using it within six months of its launch. We

study Google public DNS further in Chapter 5.

Ager et al. [155] compare two cloud-based DNS systems, namely Google DNS and

OpenDNS. Their measurement study shows that local DNS provided by the ISP far

outperforms public DNS in terms of lower latency from the client, which increases

their responsiveness. However, a bigger problem in using public DNS systems is that

the servers returned upon resolution are usually not close to the client. We encounter

the same phenomenon in our studies presented in this dissertation (Section 5.5).

While the authors of [155] show that the content servers returned by cloud-based

DNS systems can be in different ASes from the client, they do not investigate causes

and solutions to the problem. We do so in this dissertation for Akamai, a deeply

distributed popular CDN, in Section 5.5.

2.5 Statistical Techniques in Networking

We conclude this chapter with a discussion of some research efforts that employ

statistical techniques in networking. We use a fair amount of statistical techniques

ourselves in this dissertation, using data mining techniques to predict prefix availabil

ity in Chapter 3 and statistical techniques to predict failures using BGP molecules in

Chapter 4.

35

Chang et al. [156] cluster routing updates into events based on the announcing

peers and similarity of AS paths using descriptive modeling as the data mining tech

nique. This technique is used for summarizing the data and improving understanding

of the data features. In contrast, we use predictive modeling in Chapter 3 to predict

prefix behavior, specifically availability, given the observed values of prefix attributes.

Zhang et al. [123] predict the impact of routing changes on the data plane by using

likelihood ratio tests. We also use this test to evaluate the success of our failure

prediction application, similar to [122]. The authors of [65] use Principal Component

Analysis (PCA) to extract clusters of ASes whose prefixes are likely affected by the

same events, which is then used to cluster update streams. PCA is a data exploration

technique which reduces the dimensionality of the data while preserving its variabil

ity. This is used by the authors to identify a few underlying events that cause the

updates affecting a lot of prefixes.

Beverly et al. [157] predict round-trip latencies to random network destinations

using Support Vector Machines (SVM) regression as the prediction technique. They

achieve a fair performance with the latency prediction within 30% of the true value

for three-quarters of a real-world dataset. SVMs are also used by [158] to discover a

neighbor with the least communication cost in a P2P network and to predict TCP

throughput in [159]. A Bayesian classifier for predicting a host’s operating system

from TCP/IP packet headers is studied in [160]. An IP address clustering algorithm is

presented in [161], which clusters IPs from the 32 bit address space using supervised

learning, such that the IP addresses within a same cluster share a property e.g.

latency or membership in a botnet.

Change Detection is an important statistical approach, which has been applied to

research in many fields, including networking. The technique develops a model for

normal behavior and detects deviation from this behavior. Krishnamurthy et al. [162]

develop a new change detection technique, namely sketch based change detection,

which can be used to detect traffic anomalies. Sketches enable the authors to build

compact summaries of the traffic, which are then fed to various time series prediction

36

models to detect changes, which happen when the forecasting error is high. Bloom

filter is a space efficient randomized data structure which has been used extensively

in the networking community. [163] provides a detailed survey of how bloom filters

have been applied to many networking areas, which include peer-to-peer networks,

routing and measurement. In summary, applying the extensive research conducted in

the statistics community to networking can lead to innovative insights, and we follow

this approach in this dissertation.

37

3. PREDICTING PREFIX AVAILABILITY

This chapter presents our work on predicting availability of an Internet prefix. We

motivate the problem in Section 3.1, following up on Section 1.2. We then define

the problem that we study in Section 3.2. Section 3.3 describes our datasets, and

Section 3.4 describes our methodology and metrics. In Section 3.5, we compare

results from three prediction models and study the effect of classification attributes

and using certain more predictable prefixes on prediction results. Finally, Section 3.6

concludes the chapter.

3.1 Motivation

Continuous prefix reachability over time is crucial for the smooth operation of

the Internet. This is captured using the metric of availability, defined as the time

duration when the prefix is deemed reachable divided by the total time duration we are

interested in. Prefixes belonging to highly popular services such as CNN, Google, and

YouTube need to be highly available, and a disruption of more than a few minutes is

generally unacceptable. Internet Service Providers (ISPs) such as AT&T and Sprint

usually provide availability guarantees on their backbone network through Service

Level Agreements (SLAs) [164,165]. However, content providers are more interested

in the availability of their services and content as observed from various points in the

Internet, and a routing path being advertised is critical to maintaining traffic flow to

their data centers. Attempts at defining policies so that SLAs can be extended to

several ISPs [166] and at defining and estimating service availability between two end

points [167] in the Internet have had limited success. Meanwhile, several reachability

problems have occurred in the Internet, as described in Section 1.1.

38

Measuring prefix availability is non-trivial without an extensive measurement in

frastructure comprising many vantage points. Additionally, data plane measurements

are inherently discontinuous, as they take reachability samples at periodic time in

stants. The reachability estimate they compute increases in accuracy as the sampling

interval is made smaller, at the cost of increased burden on the prober and elevated

network traffic. Moreover, the observations need to be made over a long period of

time to obtain a reasonable estimate. A shortfall in measured availability requires a

reactive approach that corrects the problem after the fact. Our work takes a predictive

approach to solve the availability prediction problem, i.e., predicting the advertised

control plane availability of prefixes, as observed from multiple vantage points in the

Internet.

While our framework predicts long-term control plane availability, control plane

has been shown to have some positive correlation with the data plane in the litera

ture. Wang et al. [60] studied the correlation between control plane and data plane

events and found that control plane changes mostly result in data plane performance

degradation, showing that the two planes are correlated. The authors of [123] found

that data plane failures can be predicted using routing updates with about 80-90%

accuracy for about 60-70% of the prefixes. Transient events like routing convergence

and forwarding loops result in temporary reachability loss in the data plane, most of

which last less than 300 seconds [123]. However, since we are concerned with the long

term availability metric considering at least a few days at a time, the percentage of

time that the control plane and data plane paths mismatch should be insignificant

compared to the time over which our availability values are computed.

Data plane reachability can exist even when control plane paths are withdrawn

due to the presence of default routes [168]. However, it is not possible to predict

the existence of default routes, as they depend on intermediate ASes between the

source and the destination. There is no agreed upon method to detect the existence

of default routes either, though some initial efforts have been made by the authors

of [168] by controlling announcements and withdrawals of certain prefixes allocated

39

to their ASes. Our work considers only control plane availability and hence actual

prefix availability could be higher in the data plane if default routes are present. As

can be seen from the discussion above, establishing the correlation between the two

planes is by itself a challenging topic [168] and detailed study of this is beyond the

scope of this work.

In this chapter, we compute attributes during a short duration observation pe

riod of publicly available routing information (e.g., from RouteViews [9]) and de

velop a prediction model based on information on other Internet prefixes. Thus, our

approach does not need additional measurement infrastructure apart from Route

Views [9], which has been maintained by the University of Oregon for several years.

A predicted long-term advertised availability value which falls short of require

ments could lead to changes in BGP policies of the ISP regulating the advertise

ment of these prefixes to the rest of the Internet. For example, one can increase the

penalty threshold associated with route flap damping for the routes to a high avail

ability requirement prefix (like a business customer) to ensure higher availability [25].

Changing BGP attributes such as MED and community, or aggregating prefixes, can

increase the perceived prefix availability or aid traffic engineering [25].

This work can optimize Hubble [68] – a system that studies black holes in the

Internet by issuing traceroutes to potentially problem prefixes, and then analyzing

the results to identify data plane reachability problems. Currently, Hubble uses BGP

updates for a prefix as one of the potential indicators of problems, focusing on with

drawals and AS path changes. We can enhance this technique by using the prefixes

for which the predicted availability falls below a threshold as the potentially prob

lem prefixes. This will increase detection accuracy of black holes. Our work also

complements a data plane loss rate prediction system such as iPlane [120].

Other applications of our work include Content Distribution Networks (CDNs),

cloud computing applications, VoIP applications, and P2P networks. CDNs and

cloud computing applications can use the highest predicted availability replica/server

to redirect the clients to. VoIP implementations can use predicted availability of relay

40

nodes along with latency and loss rate estimates for better performance. Our work

can also be applied to peer to peer networks, where ensuring content availability is

a primary concern amid extensive peer churn. One can modify the incentive mech

anisms of BitTorrent [169] by unchoking the BitTorrent peers which are parts of a

highly available prefix, in addition to considering their download rate and latency/loss

rate estimates. Our system eliminates the need for storing information about peers

at clients that are not currently downloading from these peers but may do so in the

future.

The key premise of this work is that Internet prefix characteristics convey valuable

information about prefix availability. We argue that prediction models are viable

even if prefixes whose availability is to be predicted and prefixes used for learning

prediction models are unrelated (e.g., learning and predicted prefixes are not in the

same AS). This is because an important factor causing paths to prefixes from various

vantage points to go up or down is BGP path convergence, caused by BGP reaction to

path failure or policy changes. This, combined with the fact that operator reaction

to path failures is relatively standard, and that AS policy changes, e.g., AS de-

peering, typically affect several prefixes at a time, supports this premise. We therefore

use randomly selected prefixes from RouteViews to learn models, and then predict

availability of other prefixes. This theme is common in other disciplines, such as

medicine, where one uses known symptoms of patients with a diagnosed disease to

try to diagnose patients with an unknown condition. To the best of our knowledge,

no other work has exploited the similarity of prefixes in the Internet; a few studies,

e.g., [123] applied predictive modeling in the context of BGP, but they only examined

problem ASes in the path to a particular prefix (Section 2.5).

While we focus on predicting prefix availability using observed routing updates,

our prediction framework can be easily extended to predict other prefix properties

of interest. We formulate hypotheses about how attributes of a prefix such as pre

fix length and update frequency relate to its availability, and prove or refute them

based on our data. We show that past availability of a prefix is inadequate for accu

41

rately predicting future availability. Our availability predictions from three models

are compared to measured availability values from RouteViews.

3.2 Availability Prediction Problem

We define the availability prediction problem to be the prediction of the BGP-

advertised long-term availability of a prefix, given its attributes computed by ob

serving BGP updates (for example, through RouteViews), and the availability and

attribute information of other prefixes, collected for a short duration of time. Adver

tised availability is critical in maintaining smooth traffic flow to these prefixes. Going

back to our patient analogy, given the symptoms and known diseases of some patients,

one can use test results of a new patient to diagnose the new patient’s disease. Our

“test results” are the updates observed for a prefix for a limited period of time, which

are used to predict its long-term availability.

In this chapter, we compute availability in the control plane by marking the time

of an announcement of a prefix as the time when it goes up and a withdrawal as

the time when it goes down and matching our predictions against this computed

availability. The chance of an event getting lost only exists if the update associated

with the prefix is not recorded. Spurious announcements and withdrawals are filtered

as described in Section 3.3.

Rather than predicting continuous values of availability, we discretize availability,

and predict the availability class of a prefix for some time period in the future, based

on information collected from the past that is used to train prediction models. This

is because, for diagnosis or detection purposes, our interest lies in predicting whether

the availability value is above or below an acceptable threshold (e.g., that advertised

in SLA), and not the specific value of the availability. Discretizing also gives us an

added advantage of use of confusion matrix-based measures, e.g., false positives, to

assess prediction performance. Using continuous availability values causes problems in

defining error measures because a miss in high availability values (e.g., 99% predicted

42

as 94%) counts more than a miss in lower values (e.g., a predicted 35% instead of

40%) because of attached importance to higher values. In this chapter, we validate

our predictions by computing the “future” availability class and comparing it with

the predicted class. However, this is purely for validation of our prediction schemes

– in a real deployment, we will not have the availability classes of the future, just our

predictions.

In this chapter, we seek answers to the following questions for our framework:

1. How to discretize availability? How many classes and what threshold values

should be used?

2. Given a set of prefixes with their associated attributes and availability classes,

how accurately can one predict the availability classes of other prefixes, and

which prediction models work best?

3. How to extract and represent prefix attributes from RouteViews data? Which

attributes of a prefix are most important in predicting availability? For exam

ple, are more specific prefixes (ones with longer length) less available than less

specific ones? Do prefixes that generate more updates have lower availability?

4. How large should a set of prefixes be such that if we learn our prediction model

from this set, it will give accurate results on unseen prefixes?

5. How long should one observe prefix attributes so that its availability can be

accurately inferred?

3.3 Datasets

The routing tables (RIB files) and updates are obtained from RouteViews [9],

which is run by University of Oregon. Specifically, our data was taken from route

views2.oregon-ix.net which contains the Routing Information Bases (RIBs) and Up

dates in MRT format. The bzipped data has typical sizes of 0.8 GB per day of RIB

http:views2.oregon-ix.net

43

files (sampled every 2 hours) and about 25 MB per day of update files (written every

15 minutes), which total about 25 GB per month of data.

We preprocess the data using libbgpdump version 1.4.99.7 [170] to convert the

files from the MRT format to text. We reduce the storage space required by re

moving unused fields. We only keep the timestamp, peer IP, prefix, and the type of

update (announcement or withdrawal), except when studying additional attributes

of Announcements in Section 3.5.6. After preprocessing and filtering table transfers

(as described below), we have about 14-18 GB of gzipped RIB and update files per

month of data.

We utilize data from January to October 2009 to build and test our prediction

models. The months span a reasonable time period to prevent biasing our model

selection process towards datasets from a particular timeframe when some routing

event (such as an undersea cable cut) may have occurred.

A problem with using raw updates from RouteViews is that they also include

routing table transfers which are caused by session resets between a monitor and a

peer [171]. These spurious updates are an artifact of the update collection methodol

ogy. Zhang et al. [171] developed the Minimum Collection Time (MCT) algorithm to

identify BGP routing table transfers by computing the collection time, which is the

time it takes for most of the prefixes in the routing table to be announced. We used

scripts kindly contributed by the authors to identify table transfers in our Route-

Views data. We executed the table transfer identification algorithm from the point

of view of every peer available in our dataset. A peer in our dataset is defined as

any vantage point that is present in any routing table entry and at least one update,

which ensures that we have some observations from the peer. This definition yields

41-43 peers in our dataset. The table transfer detection scripts report tuples of the

form (PeerIP, Starting Time, Duration) which identifies a table transfer, as observed

by the peer specified by its IP, by its starting time and its duration. We developed a

script that uses this information to remove the table transfers from the update files

obtained from RouteViews. We use these filtered updates for all further processing.

44

3.4 Methodology

We define a combination as a (peer, prefix) tuple, which implies that the prefix

was observed by the peer in the RouteViews dataset. We compute the availability

of these combinations and use that for building our prediction models. The notion

of availability of a prefix is with reference to an observation point in the Internet.

For the RouteViews data, these observation points are the peers. They are fairly

well spread out over the world, enabling one to observe the availability of prefixes

from various points in the Internet. Note that these peers are not the same as the

RouteViews monitors, which passively collect data about routing tables and updates

from the AS routers (peers) which actually observe prefixes. It is these peers and the

prefixes they observe that we refer to as combinations. In what follows, a combination

is up or down when the peer associated with the combination has the corresponding

prefix in an announced or withdrawn state, respectively.

BGP supports aggregation of prefixes [172], and prefixes are frequently aggregated

and deaggregated for implementing routing policies like traffic engineering [25]. In

a routing table, there can be several prefixes which are more specific versions (sub

prefixes) of other prefixes in the table [173]. However, the relationship between the

prefixes and their subprefixes can be complicated since these can be announced from

different origin ASes. This can happen if the customer of an ISP announces a sub-

portion of the prefix allocated to the ISP. Routing policies can change over time and

the announcements of the subprefixes can vary depending upon transient conditions

like network load. Misconfigurations can also cause a subprefix to be announced for a

short duration, making it indistinguishable from the announcements caused by traffic

engineering. Since routing policies are unknown, distinguishing the time when the

prefix is unannounced because of a covering prefix or when it is withdrawn due to

BGP or network conditions is difficult, and this needs to be handled by an availability

metric aggregated across prefixes. Hence, computing an aggregate long-term avail

ability of prefixes which are subprefixes of other prefixes is a challenging task. In this

45

work, we treat each announced prefix separately as a part of the (peer, prefix) tuple

defined above. Formulation and computation of aggregate availability across more

specific prefixes and their covering prefixes is left as future work.

We learn the prediction models from a training set, which consists of the combi

nations with known attributes computed during the learning period and availability

class labels during the period. We then predict the availability of a disjoint set of

combinations, which we call the test set. The disjointness is necessary to prevent

overfitting [174] so that the model performs well on unseen test data and to permit

a realistic evaluation of the model. After the prediction model is learned using the

combinations from the training set and the information from the learning period, it

is applied to the attributes of the combinations of the test set (computed during the

learning period) to predict their availability classes in the future. Thus, the training

and test sets are disjoint in both the combinations used and in the time period they

span. If we denote the learning period as tl and the future prediction duration as

tp, then for each test combination, we apply the prediction model to its attributes

learned from tl and we validate the availability prediction by comparing it to its avail

ability during tp. The learning and future prediction durations are contiguous, i.e.,

the prediction duration starts right after the learning duration ends.

In this work, the combinations present in the training and the test sets are ran

domly chosen from the set of combinations “visible” in the training and test durations

tl and tp. We define a combination to be visible in a time duration t if it exists in the

first routing table of the period t (for preventing boundary effects) or in any of the

updates in the time duration. Thus, a combination has an equal chance of appearing

in the training and the test sets if it appears at least once in the first routing table

of tl or an update in the period tl + tp. Since the learning period tl and prediction

period tp are contiguous, tl +tp represents the total time starting from the first update

of tl to the last one of tp. This random selection of combinations prevents biasing

our prediction results towards a specific group of combinations which may be related,

46

e.g., combinations containing prefixes from a specific AS may make it easier to predict

availability of combinations containing prefixes from the same AS.

We define the percentage learning duration as the ratio tl/(tl + tp) which evaluates

the percentage of the duration tl + tp that is used in learning. The larger this ratio,

the easier the prediction since less of the future is unknown. We evaluate the quality

of our prediction models by varying this ratio among 0.1, 0.25, 0.5, 0.75, and 0.9.

For each of the values of this ratio, we experiment with values of tl, where tl = 1, 7,

19 and 30 days. Thus, we have 20 data points for evaluating each prediction model.

The rationale behind this is that the availability distribution may be different when

computed over different periods of time. We want to investigate this difference and

the effect it has on prediction for the same values of tl/(tl + tp), but different values

of tl.

The prediction models considered in this work are described in detail in Sec

tion 3.5. We use Weka [174], a Java open-source data mining software, for evaluating

the models. Weka provides implementations of standard prediction models and data

mining techniques for analyzing the performance of the models.

3.4.1 Discretizing Availability

We discretize the continuous availability value into availability classes which we

predict using observed attributes. The process of discretization uses thresholds as

parameters, the number and values of which have to be decided. The choice of these

parameters is based on the prediction goal. If one aims to find prefixes that do not

meet high availability requirements, a single threshold can discretize availability into

high and low classes. If one aims to find prefixes which have both high and low

availability values, one should use two thresholds to discretize availability into high,

medium, and low classes.

The computation of the availability of a combination for a particular time period

proceeds as follows. The first routing table of the period is used to initialize the

47

state of each combination present in the table to up (or announced). The learning

duration of tl considers all the combinations found in the first routing table of January

2009 and in the updates recorded in the duration tl. We maintain the state of each

combination at each point in time, and at the time of each state change (as indicated

by an update), we record a downtime or an uptime. If the state of a combination

changes from Announced (A) to Withdrawn (W), an uptime is recorded, whereas

a change from W to A leads to the recording of a downtime. After processing all

update files, we add an extra up or downtime depending upon the last state of the

combination. For example, if the last state change was to W and was reported at time

t1, and if the data period ended at time t2, we add a downtime with value t2 −t1. The

availability of the combination is computed by noting the time that the combination

was up (cumulative uptime) divided by the total time in which we are interested.

Hence, a combination that only appears in the first routing table of the month and

has no updates for the duration under consideration will have an availability of 1.

We use data from January 2009 to study the effect of discretization. Table 3.1

shows the availability statistics for four values of tl starting from the beginning of

January 2009 (i.e., tl=19 days means data from Jan. 1 to Jan. 19). The second

column shows the number of (non-trivial) availability values that are considered in

computing these statistics, where one value corresponds to one combination. The first

quartile, median, and third quartile are the values below which 25%, 50%, and 75% of

the availability ordered combinations lie, respectively. Only the first quartile is shown

in the table since the median and 3rd quartile are 1 for all tl. The table shows a steady

increase in the number of combinations as more days are considered, since previously

undiscovered combinations are found in newer update files. These new combinations

were not present in the first routing table of the month; otherwise they would have

been found for tl = 1 day. These are expected to be low availability combinations.

This is validated by the fact that the first quartile and mean of the combinations

show a decreasing trend with these newly added combinations. The variance of the

48

availability increases as lower values are added to the set of predominantly higher

availability values.

Table 3.1

Availability statistics of January 2009 for different values of tl.

tl Number of

Combinations

1st

Quartile

Mean Variance

1 day 10545170 1 0.9975 0.0018

7 days 10700675 1 0.9897 0.0078

19 days 10959231 0.999988 0.9743 0.02041

30 days 11476218 0.999882 0.9604 0.02966

This trend of lower availability values with longer durations motivates us to study

four different values of tl with the same tl/(tl + tp) ratio. The difference in availability

distributions for durations tl and tp not only depends on the value of tl/(tl + tp), but

also on the value of tl. This effect is seen in Table 3.2 which shows the percentage

difference in the mean availability of the learning and test durations (tl and tp) for

different values of tl and the same value of tl/(tl + tp).

Table 3.2
Percentage difference of mean availability between the training and
test sets for different tl, tl/(tl + tp)=0.1

tl Mean availability

of learning duration tl

Mean availability

of test duration tp

% Difference in availability

of tl w.r.t. tp

1 day 0.9975 0.9853 -1.22

7 days 0.9897 0.9204 -6.99

19 days 0.9743 0.8367 -14.13

30 days 0.9604 0.7996 -16.74

49

These statistics play an important role in the choice of discretization thresholds.

To study this, we start with a ternary class label (values high, medium, and low), and

choose two different threshold sets of (0.99, 0.50) and (0.99999, 0.50), with the higher

threshold demarcating high and medium and the lower one differentiating the medium

and low classes. This enables us to compare the percentage share of high under the

two threshold sets, which is listed in Table 3.3. The medium percentage can be easily

calculated since the percentages of high, medium, and low add up to 100%. If we

choose a relatively lower valued threshold for high, e.g., 99%, the class distribution will

be highly skewed, with most combinations (around 91-94%) having high availability.

With a 0.5 threshold for the low class label, about 1-4% of combinations fall into that

category. However, the prediction problem is more difficult with a 0.99999 threshold

for high than with 0.99, since there is a higher chance of combinations that have

high availability in the learning period to fall below the 0.99999 threshold in the test

period. We verified this observation by evaluating the prediction models of Section 3.5

on datasets with the two thresholds for the high class and found that the model

performance for 0.99 threshold is indeed higher than that with 0.99999, validating

that the former is an easier prediction problem. Based on these observations and the

significance of “five nines” availability [175], we use a single threshold of 0.99999 and

a binary class label. However, to find combinations with very low availability, we can

easily extend our framework to two thresholds and a ternary class label.

Table 3.3

Class distributions when discretizing availability

tl % High with

0.99 Threshold

% High with

0.99999 Threshold

% Low with

0.5 Threshold

1 day 93.89% 67.92% 1.02 %

7 days 93.09% 67.25% 1.68%

19 days 91.89% 66.19% 2.74%

30 days 91.09% 66.13% 3.59%

http:and(0.99999,0.50
http:of(0.99,0.50

50

3.4.2 Computing Attributes

We now investigate the attributes of the (peer, prefix) combinations to be ex

tracted from the RouteViews data. The attributes are computed for the learning

period with the aim of predicting (future) availability classes for the test set. Our

goal is to compute the attributes from publicly available information from Route-

Views, which contains both routing tables and updates for various combinations. We

choose not to use the routing tables because they provide time snapshots of prefixes

which can be reached by peers, and we are interested in availability, which is a con

tinuous time metric. The updates collected from RouteViews have the advantage

that (barring errors) all the updates for a particular combination will be recorded.

Knowing the announcement and withdrawal times for a combination, we can easily

compute its availability. Comparing this computed availability with the predicted

availability validates prediction results.

The attributes of a combination are selected to relate to its availability (Sec

tion 3.4.3), and to be easily computable given the observed updates for the learning

period so that the learning system is fast. It is important to note that the attributes

we select do not necessarily cause high/low availability; we are looking for correlation

not causality. Correlation is sufficient for a prediction model to be successful.

We hypothesize that longer prefixes will have lower availability since they represent

smaller networks which are more likely to go up or down. From [57], it is known that

popular destinations, which are expected to have high availability, are stable, i.e.,

have fewer updates. Hence, in addition to prefix length, we also compute update

frequency, which is the average number of updates observed for the combination in a

time window of one hour (averaged over the learning period). The period of one hour

is chosen so that the update frequency numbers are neither too large nor too small.

Furthermore, by recording the time when a combination goes up/down, we com

pute two additional attributes, mean uptime and mean downtime, called the Mean

Time to Failure (MTTF) and Mean Time to Recovery (MTTR), respectively. It is

51

important to note that MTTF and MTTR are computed for the learning period, and

hence the predicted availability for the time-disjoint test set is not a direct function

of these values.

In summary, we compute the following attributes for the learning period from rout

ing updates observed through RouteViews: (1) Prefix length, (2) Update frequency,

(3) Mean Time to Failure (MTTF), and (4) Mean Time to Recovery (MTTR).

We opt not to use information about to which AS a prefix belongs or the AS

path to a prefix in this work. This is because we want to keep our prediction model

free from constraints of specific ASes or AS paths that can change. We defer the

investigation of how prefixes are similar across the same AS or neighboring ASes in

the AS topology to Chapter 4.

Although we compute the attributes of every combination with at least one

recorded uptime or downtime, we downsample this set of combinations (of about

11 million as in Table 3.1) to a set of 10,000 combinations with their attributes, and

use that to build and test models. Downsampling does not significantly affect the

accuracy of models since prediction models typically learn well with a few hundred

instances. We evaluate the performance of the models with increasing number of

learning instances and on larger test sets in Section 3.5. An advantage of downsam

pling is the computational efficiency of building and testing the models.

3.4.3 Demarcating Availability using Attributes

In this section, we quantify whether the four attributes discussed in the last sec

tion indeed convey information about the availability class. We divide the 10,000

combinations into ones that have high and low availability for the month and com

pute statistics for the attributes of each of the two groups. We show the means and

variances of all the attributes for a typical value of tl = 19 days in Table 3.4. The

results for other values of tl were similar.

52

Table 3.4

Attribute statistics of each class for learning period of tl = 19 days

Attribute
High Class

Mean Variance

Low Class

Mean Variance

Prefix length 22.04 6.41 22.72 4.25

MTTF (s) 1587480 3.76E+10 777844 2.92E+11

MTTR (s) 0.201002 3.52 58882.2 4.57E+10

Update frequency (/hr) 0.0244 0.7339 0.0795915 0.5694

We use the paired t-test to test for equality of the means of each of the attributes

of the two classes. We employ the Welch t-test [176, 177] which assumes that the

two populations have normal distributions and their variances cannot be assumed to

be equal (which is true for our data). The normality assumption is valid due to the

Central Limit Theorem (CLT) and because we have about 3000-7000 samples in each

class. We find that the means of each of the four attributes are significantly different

at 1% significance level for each of the four learning periods. This shows that the

attributes show a statistically significant correlation with the availability class labels.

For most of the attributes, their variances for the low class are higher because the

class covers a wider range of availability values.

Our intuition that the combinations with longer prefix lengths have lower avail

ability is confirmed. The mean prefix lengths of the high and the low availability

classes usually differ by about 0.7, or about 3% (which is statistically significant)

while the median and first quartile differ in length by 1 and 2 respectively, with the

higher value for the low class. The consistency of the results across each of the four

values of tl is convincing of the correlation between prefix length and availability class.

We conjecture that this is because shorter prefixes represent larger, more stable net

works while small portions of the address space can be announced and withdrawn

53

frequently for multihoming or load balancing purposes. Further, it is more likely that

a longer prefix representing a smaller network goes down than a larger network.

The MTTF of a high availability combination is higher than that of a low avail

ability one by about 85% on average, whereas the MTTR is almost 100% lower. The

difference becomes larger as tl increases. This result is intuitive: a high availability

prefix has a long uptime before it fails, and when it does fail, it quickly comes back

up (well within one second on average). The average frequency of updates observed

for a high availability prefix is about 77% lower than for low availability ones. The

maximum frequency of updates observed has an even larger difference, about 2 up

dates/hour for the high vs. about 14 updates/hour for the low. These results are

explained by the fact that a high availability combination stays up for a long period

of time, and hence has fewer updates. The difference in attribute values of the high

and low classes increases with tl, showing that these attributes correlate well with the

availability class since availability computed over a longer duration is more indicative

of the actual availability.

Assuming update frequency distribution in each month is a normally distributed

random variable (valid because of CLT), we construct a 99% t-Confidence Interval

(CI) for the average update frequency of a combination. The mean update frequency

of a combination, averaged over all 11.5 million combinations of Table 3.1 is about

0.03/hr and the variance is about 0.28. The upper bound of the CI is computed

to be about 1.4 updates an hour. Thus, if we observe more than an update for a

combination in about 43 minutes, on average, we are 99% certain that it will have

low availability.

The conclusion from this section is that the selected prefix attributes perform well

in demarcating the availability classes. The correlation of the attributes with the

availability class is consistent with our intuition.

54

3.4.4 Learning and Evaluation

We learn several models in this chapter to predict the availability class of com

binations. The performance of each model is studied using n-fold incremental cross-

validation. In this technique, the dataset is divided randomly into n parts, called

folds, while maintaining the class distribution of the dataset in the fold (i.e., super

vised sampling). The model is then learned using the known attributes and class

labels of n-1 folds (called the training set), and applied to predict the class labels of

the remaining fold (the test set). Each fold is left out at a time, resulting in n learned

models and corresponding performance results. The training and the test sets are

disjoint in order to get an unbiased estimate of model error. The algorithm is run k

times, each time with a different random seed so that different n folds are constructed

in each run. Thus, for each training set size, we have nk performance values, and we

report the mean value.

As the number of instances to learn a model increases, the model performance

on test data typically improves, but with diminishing returns. We study this using

learning curves. A model is successively learned using increasing training set sizes

(from each of the n training sets) and its performance on the test set is plotted against

the training set size. A typical shape of a learning curve is an increasing exponential;

the performance increases, and then flattens after a certain number of instances is

reached.

We now describe the performance metrics used to evaluate a model when it is

applied to the test set. Any classification algorithm can be studied using a confusion

matrix, as shown in Table 3.5, which gives all possible combinations of the true and

predicted class. In what follows, the class label high is treated as a positive class,

and the label low is treated as a negative class. True Positives (TP) are commonly

referred to as hits, true negatives (TN) as correct rejections, false positives (FP) as

false alarms and false negatives (FN) as misses [178].

55

Table 3.5

Confusion Matrix with class label high as positive and class label low as negative

True Class

High (Positive) Low (Negative)

Predicted Class
High (Positive) True Positives False Positives

Low (Negative) False Negatives True Negatives

The confusion matrix can be used to compute several performance measures, the

TP +TN most common of which is accuracy, defined as: Accuracy = , where TP
TP +TN+FP +FN

and TN are the true positives and negatives respectively, and FP and FN are the false

positives and negatives respectively. The True Positive Rate (TPR) and the False

TP TP FP FP Positive Rate (FPR) are defined as: TPR = = , and FPR = = .
P TP +FN N FP +TN

The Kappa statistic measures the agreement between predicted and observed val-

P (o)−P (e)ues, correcting for agreement that occurs by chance. It is computed as: κ = ,
1−P (e)

where P (o) is the proportion of observed agreement between the observed and pre

dicted values, and P (e) is the proportion of times the values are expected to agree by

chance. Complete agreement corresponds to κ = 1, which will be the best predictor,

whereas κ = 0 for a random predictor, and κ = -1 indicates complete disagreement

between the values.

Unfortunately, confusion matrix-based measures can be misleading with a skewed

class distribution, which happens when the proportion of high availability (positive)

and low availability (negative) instances in the sample are unequal. For example,

a trivial algorithm which predicts every availability value as high will have 90% ac

curacy on a dataset which has 90% high values. The measures use data from both

columns of a confusion matrix (two rightmost columns of Table 3.5), and hence are

sensitive to the proportion of instances in the two columns [179]. From Table 3.3,

we observe that there can be significant class skew, which render these measures in

appropriate. A better metric is obtained by using Receiver Operating Characteristic

56

(ROC) curves [174], which plot the TPR versus the FPR. ROC curves are inde

pendent of class skew because they use a strict columnar ratio from the confusion

matrix [178, 179]. We use the Area Under the ROC Curve (AUC) as a performance

metric. The AUC of a classifier is equivalent to the probability that it will rank a

randomly chosen high instance higher than a randomly chosen low instance. A perfect

classifier has an AUC of 1.

We compare the results from our prediction models to those obtained using a ran

dom classifier, which acts as a baseline for comparison. A random classifier randomly

chooses either of the class labels with equal probability. Such a classifier has an AUC

of 0.5, since it has about as many TPs as FPs. The reason for comparison to a random

classifier is that we need to be sure that any learning-based model performs better

than the random classifier. Otherwise, one could effectively toss a coin and decide

the class label, making a trivial predictor the best one.

While ROC curves work well for most classifiers, they are not directly applicable

for models that do not produce any ranking of instances in terms of probabilities of

being classified as high and low. This is because one plots a ROC curve by varying

the threshold that decides between high and low. This enables the model to produce

different classifications resulting in various (FPR, TPR) points in ROC space. A

model which does not produce instance ranking has no threshold to vary; hence, it

gives a single point in the ROC space instead of a curve. For such a model, an option

is to randomly order the instances predicted as high and low, and then rank them to

produce a ROC curve. We describe the details of this scheme in Section 3.5.1.

3.5 Model Evaluation

In this section, we study three prediction models using the metrics in Section 3.4.4.

As mentioned in Section 3.4.2, we work with 10,000 combinations and their attributes,

downsampled from the set of all combinations. We do 10-fold incremental cross-

validation as described in Section 3.4.4; thus n=10. We conduct k=5 runs, generating

57

a different set of 10 folds each time. Hence, we have 50 performance measures for

each model averaged to give an output measurement.

We start with a simple baseline prediction model in Section 3.5.1. This model

does not learn based on other combinations, and simply predicts the availability of

one combination at a time. We then investigate more sophisticated machine learning

based models.

3.5.1 Simple Prediction

The simplest approach to predict the availability of a combination is based on the

simplistic assumption that the future is the same as the past. The past availability of a

combination is its availability during the learning period tl. This prediction approach

does not learn a model based on other combinations, but merely predicts the same

availability for a combination as the discretized value of its past availability. Thus, if

the past availability exceeds 99.999%, the predicted class label is high, otherwise it is

low.

This is a model where no instance ranking is performed; only hard classifications

are made. Therefore, we compute confusion matrix-based measures. These measures,

computed for various values of tl and tl/(tl + tp) and averaged over nk = 50 runs, are

listed in Table 3.6.

The results show that while the TPR of the simple model is high, its FPR is high as

well. However, this simple classifier outperforms a random classifier (as indicated by

the κ statistic) and hence forms a baseline model to which other sophisticated models

can be compared. As tl/(tl + tp) increases, the prediction problem becomes easier as

more data is available for learning. Hence, the accuracy of the model increases, while

its FPR reduces. As tl increases, the availability distribution becomes more diverse

and hence the model typically performs worse.

We now use ROC-based metrics to evaluate this classifier. The model gives a single

point in the ROC space (since it does not perform instance ranking), so we modify the

58

Table 3.6

Results of the simple prediction model

tl tl/(tl + tp) Accuracy (%) TPR FPR κ AUC

1 day 0.1 88.60 0.9950 0.9322 0.1022 0.5261

0.25 96.79 0.9940 0.8085 0.2641 0.5877

0.5 97.99 0.9928 0.7160 0.3207 0.6224

0.75 98.69 0.9911 0.5670 0.3175 0.6900

0.9 98.90 0.9900 0.4766 0.1803 0.7272

7 days 0.1 60.02 0.9717 0.8451 0.1353 0.5599

0.25 73.87 0.9502 0.8013 0.1928 0.5774

0.5 83.98 0.9421 0.7410 0.2403 0.5962

0.75 89.37 0.9271 0.7242 0.1575 0.5813

0.9 91.22 0.9224 0.5907 0.1281 0.6713

19 days 0.1 54.10 0.9107 0.6777 0.1917 0.6163

0.25 67.98 0.8933 0.6281 0.2816 0.6326

0.5 76.01 0.8620 0.5315 0.3481 0.6641

0.75 78.30 0.8201 0.4652 0.2726 0.6748

0.9 78.66 0.7953 0.4082 0.1355 0.7015

30 days 0.1 57.17 0.8613 0.5720 0.2242 0.6414

0.25 65.53 0.8379 0.5231 0.3133 0.6548

0.5 70.81 0.7961 0.4752 0.3242 0.6606

0.75 73.45 0.7544 0.3723 0.2955 0.6895

0.9 71.08 0.7154 0.3641 0.1346 0.6728

algorithm to draw a ROC curve. We take a typical run of the model with confusion

matrix measures close to their average values. The instances which are classified as

high and low by the model are randomly reordered within their respective groups,

and then the instances are ranked with the (predicted) highs higher than the lows.

59

We vary the prediction threshold, and record the TPR and FPR for each threshold,

as in Algorithm 2 of [179] to compute the points on a ROC curve.
T

ru
e

P
os

iti
ve

 R
at

e
(T

P
R

) 1

 0.8

 0.6

 0.4

 0.2
ROC plot

Average Performance

Random Classifier T
ru

e
P

os
iti

ve
 R

at
e

(T
P

R
) 1

 0.8

 0.6

 0.4

 0.2

 0

ROC plot

Average Performance

Random Classifier
0

 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

False Positive Rate (FPR) False Positive Rate (FPR)
(a) tl = 1 day, tl/(tl + tp) = 0.1 (b) tl = 30 days, tl/(tl + tp) = 0.1

 0

 0.2

 0.4

 0.6

 0.8

 1

T
ru

e
P

os
iti

ve
 R

at
e

(T
P

R
)

ROC plot

Average Performance

Random Classifier

0	 0.2 0.4 0.6 0.8 1

False Positive Rate (FPR)
(c) tl = 30 days, tl/(tl + tp) = 0.9

Fig. 3.1. ROC plots for the simple prediction model.

The ROC curves for the simple prediction model for some typical values of tl

and tp are depicted in Figure 3.1. The plots show the original model performance

(in Table 3.6) as a point (“star”) on the ROC plots, along with the performance of

a random classifier. The performance of simple prediction is clearly better than a

random classifier for most cases, but there are occasions when it performs as good as

or slightly worse than a random one as in Figure 3.1(a). This is especially true when

60

tl is small, and hence future availability is quite different from past availability. As

the average accuracy in Table 3.6 is reasonably high, this emphasizes the inadequacy

of accuracy as a metric to evaluate performance models. Hence, we use ROC metrics,

like area under the ROC curve (AUC). The AUC is computed, using Algorithm 3

of [179], for a typical run (confusion matrix based measures close to their average

values of 50 runs). Because of inherent randomness in reordering and ranking the

instances, the typical run will give different AUC values when run with different

random seeds; the average of 50 different AUC values is reported in Table 3.6.

The results highlight the importance of ROC curves. For example, classifier A for

tl = 30 days, tl/(tl + tp) = 0.1 (Figure 3.1(b)) is worse than classifier B for tl = 30

days, tl/(tl + tp) = 0.9 (Figure 3.1(c)) using AUC as the metric. However, examining

the ROC curve, we see that for higher FPRs (around 0.8), classifier B outperforms

classifier A. The overall inferior performance of classifier A is because it performs

similar to a random classifier for low FPRs. Hence, if our operating region is at low

FPR, classifier B is better, whereas classifier A is better for high FPRs.

3.5.2 Naive Bayes Model

The Näıve Bayes model predicts a high or low class label using the attribute vector

X≡ {X1, X2, . . . , Xm} based on Bayes rule [174]. It makes the “näıve” assumption

that the attributes are conditionally independent given the class label. However, the

model is often used even when its assumption does not hold due to its simplicity.

The model computes, for each instance, the probability of each class label given its

attribute set and the independence assumption, using the training set to estimate

P (Xi|C) and P (C), where C is the class label. Hence, instance ranking is naturally

produced by the model which can be used to produce ROC curves.

We evaluate the model on each of the values of tl and tp using learning curves.

The model is learned on increasing size training sets, and its performance is evaluated

on the 10 different test sets produced by incremental cross-validation. We plot a

61

typical learning curve in Figure 3.2, using both accuracy and AUC as performance

measures. The plots for the other time durations lead to similar conclusions. The

accuracy initially increases at a fast rate when the number of training instances is

increased, and tapers off afterwards. However, the AUC remains relatively stable

with the increase in number of training instances. In what follows, we use the entire

training set to train the Näıve Bayes model to achieve the maximum accuracy without

sacrificing AUC. This ensures that the model is trained to its potential.

 90 0.9

0.85
 85

 0.8

Ac
cu

ra
cy 0.7580

 0.7
AUC

Accuracy

200 400 600 800 1000

 75
 AU
C

70

 0.65

 0.6

 0.55

 65 0.5

Training Set Size

Fig. 3.2. Näıve Bayes learning curves for tl=30 days, tl/(tl + tp)=0.9

We now compare the Näıve Bayes model to the simple prediction model of Sec

tion 3.5.1. We use the accuracy and AUC as measures for comparison. The results

are given in Table 3.7. The results show that the Näıve Bayes model yields a higher

AUC than the simple model for all cases. The accuracy values of Näıve Bayes are

close to those of the simple model, except when learning from 30 days of data, where

for a smaller prediction period tp, the accuracy is significantly better with a high

variance (around 26.3), while for a higher prediction period tp, the accuracy is signif

icantly lower with a low variance (around 2.3). This is because this model assumes

that the attributes are conditionally independent given the class label. The model

uses the frequencies in the training set as estimates of the probability distributions

62

of the attributes. These estimated distributions are valid only when the period of

parameter estimation, i.e., learning period, is not too different from the prediction

period. When tl = 30 days, the period of the training and test sets differ by a few

days to months (except when tl/(tl +tp) = 0.5) and hence have different distributions.

This leads to different accuracies since this metric is highly dependent on class skew.

We consider the better metric, AUC, and investigate whether the higher AUC

values of the Näıve Bayes model are statistically significant. If so, Näıve Bayes would

be a better prediction model than the simple model. We use the Welch t-test [176,177]

to test for equality of the performance measures (means) of the distributions of the

two samples (simple and the Näıve Bayes). We perform the test on the AUCs of the

two models for each of the four months, using the mean values shown in Tables 3.6

and 3.7, and the sample variances computed using the nk = 50 data points. We

compute the degree of freedom ν using the Welch-Satterthwaite equation, and round

it to the nearest integer for t table lookup using [180]. We find that the null hypothesis

of equality of the means is rejected for every month at 5% significance level. This

means that the AUC of the Näıve Bayes model indeed exceeds that of the simple

model at 5% significance level. Table 3.8 shows the details of the test for some

typical values of tl and tp.

Finally, we compare the Näıve Bayes model to the simple model using ROC curves.

The plot for tl = 30 days and tl/(tl + tp) = 0.1 is illustrated in Figure 3.3. The figure

shows that the Näıve Bayes model dominates the simple model throughout most of

the ROC space. For the same FPR, its TPR is higher and hence it is closer to the

ideal point in ROC space. The implication of these results is that a model which

learns based on other prefix combinations like the Näıve Bayes classifier will typically

outperform prediction without learning, despite its näıve assumptions. This confirms

that availability is predictable using the attributes we measure. It is also worth noting

that this better performance in terms of TPR and FPR in the ROC space again points

to the inadequacy of accuracy as a metric: even though the Näıve Bayes model has

63

Table 3.7

Results with Näıve Bayes model and % change from simple model

tl tl/(tl + tp) Accuracy (%) % Change in

Accuracy from

Simple Model

AUC % Change in

AUC from

Simple Model

1 day 0.1 88.51 -0.09 0.6044 14.89

0.25 96.70 -0.09 0.6568 11.76

0.5 97.94 -0.045 0.7097 14.02

0.75 98.66 -0.034 0.7924 14.84

0.9 98.82 -0.074 0.8159 12.19

7 days 0.1 59.85 -0.288 0.6341 13.25

0.25 74.20 0.444 0.6290 8.96

0.5 84.06 0.10 0.6355 6.59

0.75 87.89 -1.65 0.6473 11.35

0.9 89.95 -1.39 0.6990 4.12

19 days 0.1 54.61 0.94 0.6761 9.70

0.25 68.04 0.08 0.6956 9.95

0.5 76.09 0.10 0.7173 8.01

0.75 77.35 -1.21 0.7173 6.31

0.9 77.38 -1.63 0.7304 4.12

30 days 0.1 46.14 -19.29 0.6930 8.04

0.25 59.23 -9.61 0.7009 7.04

0.5 70.29 -0.73 0.7009 6.10

0.75 80.03 8.95 0.7394 7.24

0.9 83.40 17.33 0.7538 12.05

much lower accuracy than the simple model for these values of tl and tp, it is better

in ROC space.

64

Table 3.8

Paired t-test results of comparing AUC of Näıve Bayes model and the simple model

tl tl/(tl + tp) Statistic

Value

ν t-value for

5% Significance

1 day 0.1 15.80 98 1.984

7 days 0.25 8.46 64 1.998

19 days 0.5 8.75 98 1.984

30 days 0.75 7.28 81 1.99

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

Tr
ue

 P
os

iti
ve

 R
at

e
(T

PR
)

Simple Model

Average Performance

Naive Bayes

False Positive Rate (FPR)

Fig. 3.3. ROC plots for Näıve Bayes and simple model for tl=30 days,
tl/(tl + tp)=0.1

3.5.3 Decision Trees

A decision tree is a recursive divide-and-conquer classifier, which divides the in

stances based on one attribute at a time in a top-down fashion until the leaves of

the tree are reached [174]. The decision to split on an attribute is typically used to

maximize some metric of information gain, so that the splitting of instances will lead

to increased clarity on the class labels of the instances themselves. This classifier has

the advantage that it is interpretable, since the attributes of the classifier are ranked

�

65

from the root node downwards in the order of importance, and rules to classify an

instance can be read off the decision tree. We use the C4.5 algorithm developed by

Quinlan [181] to build decision trees, which uses reduction in entropy when splitting

the instance set S based on an attribute A as the information gain metric to build

the tree. The entropy is a measure of randomness of a random variable and is defined

by:

Entropy = − p(x)log2p(x) (3.1)
x∈X

A reduction in entropy, achieved by splitting the instance set S into two (or more)

parts based on an attribute A, is used as the information gain (IG) criterion.

� |SA|
IG = Entropy(S) − Entropy(SA) (3.2)

|S|
v∈values(A)

Pruning the tree is necessary to avoid overfitting to the training data, and for

constructing a general enough tree to perform well on unseen test data. In Weka, the

J4.8 classifier implements the C4.5 algorithm [174], and one can choose to consider

the unpruned tree, or prune it based on different criteria. C4.5 pruning (the default)

uses an estimate of the error on the training set. An alternative is to use Reduced

Error Pruning (REP) [182], which holds back some of the training data as a fold and

uses that to estimate the error. The advantage of REP is that it can lead to more

unbiased estimates of the error; the disadvantage is that it uses less data for tree

building.

We use the unpruned, C4.5-pruned, and REP trees, and find that the accuracy

and AUC metrics are not significantly different among them. However, at very small

training set sizes, holding out instances for REP can lead to insufficient training

data, which results in lower AUC. Nonetheless, we decided to use REP because of

the advantages of a tree which avoids overfitting and because we will work with

sufficiently large datasets. We observe that our results have a high variance. This is

a typical property of decision trees, since a small difference in the training data can

cause different branches to be constructed. For example, with 200 training instances

in each of the 10 folds, we find decision trees with different structure and attribute

66

values (two are shown in Figure 3.4). The right branches of all nodes are for a “Yes”

decision and the left branches are for a “No” decision. While the decision trees shown

all use MTTR as their root node, different trees use different numbers and values of

attributes to make decisions. This increases variance in classification results, causing

mean results to appear worse.

MTTR ≤ 25

MTTR ≤ 13 Low Update Frequency> 0.04202

High Low
High Prefix Length ≤ 21

(a) Fold 6

Low High
(b) Fold 8

Fig. 3.4. Decision trees for tl = 30 days, tl/(tl + tp) = 0.1 constructed
with 200 training instances.

A method to reduce the variance of decision trees is to use bootstrap aggregating

(bagging) [174]. Bagging combines an ensemble of unstable, high variance, predictors

into a stable predictor. We apply the bagged decision tree classifier to predict avail

ability with the underlying baseline classifier chosen to be decision trees with REP.

Ten decision trees are learned for each of the 10 folds of the dataset, and they are

then voted on to produce the high or low class label. The learning curve for a typical

case is shown in Figure 3.5. The curve demonstrates that the performance measures

flatten with increase in training set size, which confirms that pruning is successful in

preventing overfitting.

We now apply the bagged decision tree model learned from the entire training

dataset of around 9000 combinations to predict availability for the values of tl and

tp considered earlier. The average results over nk = 50 points are given in Table 3.9.

As before, we perform significance tests, and find that AUC increases for tl = 1 and

67

 75 0.8

65 0.75

 55
 0.7

AUC

Accuracy

50 100 150 200

Ac
cu

ra
cy 45

 0.65
 35
 AU

C

25

 0.6

 0.5515

 5
 0.5

Training Set Size

Fig. 3.5. Learning curve for bagged decision trees, tl = 30 days, tl/(tl + tp) = 0.1

7 days are significant at 5% significance level, except for tl/(tl + tp) = 0.9 for tl =

1 day, and tl/(tl + tp) = 0.75 and 0.9 for tl = 7 and 19 days. The results reveal

that bagged decision trees perform well w.r.t. Näıve Bayes when the learning period

is shorter (up to a couple of weeks) and the prediction period is longer, i.e., when

tl/(tl + tp) is small. This is because as diversity of the data increases, the bagged

decision trees adapt to the diversity by building complex trees, which do not generalize

well to future datasets. This cannot be corrected by pruning since the diversity is

in the time domain and occurs in nearly every combination, so holding out a set of

combinations for pruning does not necessarily help.

3.5.4 Learning Duration

We now study the effect of learning duration on the prediction results of all the

models we have considered. There are two facets to this problem: the learning dura

tion as a percentage of the overall period of interest, i.e., tl/(tl + tp), and the value

of the learning duration itself. Lowering the percentage learning duration means

that we have a shorter time to learn the attributes of various combinations, leading

68

Table 3.9

Results with bagged decision trees and % change from Näıve Bayes model

tl tl/(tl + tp) Accuracy (%) % Change in

Accuracy from

Näıve Bayes

Model

AUC % Change in

AUC from

Näıve Bayes

Model

1 day 0.1 87.81 -0.80 0.6352 5.10

0.25 95.54 -1.21 0.7027 6.99

0.5 96.61 -1.37 0.7525 6.04

0.75 97.22 -1.46 0.8339 5.24

0.9 97.36 -1.48 0.87 6.09

7 days 0.1 60.24 0.67 0.6613 4.29

0.25 74.91 0.96 0.6609 5.05

0.5 83.42 -0.76 0.6648 4.60

0.75 87.41 -0.55 0.6619 2.26

0.9 90.23 0.32 0.7159 2.41

19 days 0.1 54.95 0.6147 0.6726 -0.52

0.25 68.35 0.46 0.6976 0.28

0.5 75.96 -0.17 0.7188 0.21

0.75 77.45 0.13 0.7218 0.62

0.9 76.63 -0.96 0.7235 -0.94

30 days 0.1 56.83 23.17 0.6671 -3.73

0.25 65.24 10.15 0.6745 -3.75

0.5 70.85 0.79 0.6771 -3.39

0.75 73.44 -8.23 0.7018 -5.09

0.9 70.69 -15.23 0.6945 -7.87

69

to a reduction in prediction accuracy, whereas increasing this percentage improves

prediction results, since there is more information available.

 0.9 0.9

 0.8 0.8

Bagged Decision Trees

Naive Bayes

Simple Model

10 20 30 40 50 60 70 80 90

Bagged Decision Trees

Naive Bayes

Simple Model

10 20 30 40 50 60 70 80 90

0.7

 0.6

 0.5

 0.4

 0.7

 0.6

 0.5

 0.4

A
U

C

A
U

C

Percentage Learning Duration (%) Percentage Learning Duration (%)
(a) tl = 1 day (b) tl = 7 days

 0.9 0.9

 0.8 0.8

Bagged Decision Trees

Naive Bayes

Simple Model

10 20 30 40 50 60 70 80 90

Bagged Decision Trees

Naive Bayes

Simple Model

10 20 30 40 50 60 70 80 90

0.7

 0.6

 0.5

 0.4

 0.7

 0.6

 0.5

 0.4

Percentage Learning Duration (%) Percentage Learning Duration (%)
(c) tl = 19 days (d) tl = 30 days

Fig. 3.6. Effect of percentage learning duration tl/(tl + tp) on predic
tion performance for different values of tl

The plot of AUC against percentage learning duration for various values of the

learning duration tl is shown in Figure 3.6. The results show that the prediction per

formance gracefully degrades as the amount of data available for learning is reduced.

The decrease is much more steep when the learning duration tl is low, e.g., 1 day,

and this effect almost disappears when tl reaches 30 days. This result implies that

one can predict long-term availability by learning from only a short learning period,

A
U

C

A
U

C

70

as long as the period spans a few days, e.g., a week. This gives further credence to

the feasibility of availability prediction. The bagged decision tree model performs the

best for all learning duration percentages when the learning duration tl is less than

around 3 weeks. Beyond that value of tl, Näıve Bayes performs best.

We also plot the change in the AUC for each of the models when increasing the

learning duration tl, keeping the percentage learning duration tl/(tl + tp) constant.

Two typical plots are shown in Figure 3.7. The plots show that for the same percent

age learning duration, as more learning data is available (higher tl), the performance

of all the models improves, except when tl = 30 days. The plots also show that the

crossover point between the performance of bagged decision trees and Näıve Bayes is

about three weeks, as indicated above.

 0.7 0.8
A

U
C

0.7
 0.6

 0.6

 0.5
 0.5

 0.4 0.4

Learning Duration (Days) Learning Duration (Days)
(a) tl/(tl + tp) = 0.1 (b) tl/(tl + tp) = 0.25

Fig. 3.7. Effect of learning duration tl on prediction performance for
different values of tl/(tl + tp)

Based on the results, we can conclude that an availability prediction system using

bagged decision trees can learn from a few days of routing data logs. Our system

can be adapted to real time deployment by sliding the time window of the learning

period to always learn from the most recent data. For example, if we learn from a

week of data, we can slide our learning window by a day at a time to always learn

from the most recent past week. Predicting the availability for about three times the

A
U

C

Bagged Decision Trees

Naive Bayes

Simple Model

0 5 10 15 20 25 30

Bagged Decision Trees

Naive Bayes

Simple Model

0 5 10 15 20 25 30

71

learning duration gives accuracy and AUC of around 75% and 0.66 respectively. If

these performance measures are acceptable, one can triple the prediction duration

at every stage. If we are learning our prediction models from the most recent week

of data, we can predict the availability for three weeks into the future maintaining

this level of performance. If one desires higher performance, one should reduce the

prediction duration for the same learning duration, i.e., increase the percentage learn

ing duration. Our prediction framework allows the system administrator to trade off

prediction performance and prediction duration.

3.5.5 Classification Attributes

We now study the importance of attributes in the prediction process, by studying

the effect of using different sets of attributes on the output metrics of Näıve Bayes and

bagged decision trees. We start with the bagged decision tree results from Table 3.9,

and remove certain attributes of the combinations, so that less data is available to

the prediction model. The degradation in various performance metrics is studied; as

degradation increases, the importance of the removed attribute subset increases. We

present typical results of removal of some of the attributes for tl = 30 days, tl/(tl + tp)

= 0.1 in Table 3.10. We choose these values of tl and tp as this represents a long

enough learning period and a hard prediction problem: predicting availability for 9

times the learning duration. The results for the other values of tl and tp were similar

albeit with different values. We choose AUC for comparison because of its strength

as a performance metric as described earlier. The first column of the table indicates

which attributes of the combinations were used for prediction. Along with using

subsets of the four attributes from Section 3.4.2, we also use the the attribute of past

availability to build prediction models. This attribute is used in the simple model

and we seek to study the performance of machine learning-based prediction models

which use this attribute to predict availability.

72

Table 3.10
Percentage change in performance metrics with subsets of attributes
for tl = 30 days, tl/(tl + tp) = 0.1. All percentage changes are w.r.t.
results of the corresponding models from Table 3.7 and Table 3.9

Attributes Used for Prediction % Change in AUC for

Näıve Bayes

% Change in AUC for

Bagged Decision Trees

Past Availability -12.03 -9.8

MTTF -4.43 -1.97

MTTR -14.67 -1.93

Prefix Length -15.22 -24.96

Update Frequency -18.18 -7.12

Prefix Length

and Update Frequency

-9.94 -3.13

MTTF and MTTR -3.75 -1.65

MTTR, Prefix Length

and Update Frequency

-4.00 -1.33

MTTF, Prefix Length

and Update Frequency

-0.03 0.25

These results lead us to the following conclusions. Performance significantly de

grades (AUC is 10-12% lower) when only past availability is used. Combining this

with the results of the simple model, we conclude that past availability is not an

adequate metric for prediction of future availability. Prefix length and update fre

quency are weak attributes, with prefix length being the weakest since using it alone

causes the AUC to decline by 7-25%. MTTF is the most important attribute since

using it alone causes the least drop in AUC among any single item attribute set.

Using either MTTF or MTTR with prefix length or update frequency, or MTTF

and MTTR together, causes the AUC and accuracy to be within 4% of their values

when no attribute is removed. MTTF combined with the prefix length and update

73

frequency give very close results to those obtained when MTTR was also added to

the set, further confirming that MTTF is the strongest attribute (complemented by

the use of prefix length and update frequency). We also experimented with adding

past availability to these attribute subsets and found that the performance did not

change significantly. Thus, there exists no subset or superset of the four attributes

used that would cause significantly better results than the four attribute set we have

chosen.

It is intuitive that MTTF is the most important prediction attribute and MTTR is

the next important, since the time to fail or recovery will characterize the availability

of a combination; a high availability combination should have a high MTTF and low

MTTR.

It is also interesting to note that the Näıve Bayes model is much more sensitive

to the removal of attributes than bagged decision trees. This is because the intrinsic

assumption used in this model is that attributes are conditionally independent given

the class label. This assumption cannot be used when there is only one attribute.

Among multiple attributes, the results will depend upon the degree of conditional

independence between the attributes. The bagged decision tree model, in contrast,

builds decision trees based on various attribute values. While attribute removal does

hurt its performance, the trees formed based on other attributes are still reasonably

accurate, unless the prediction attribute is weak, e.g., prefix length.

3.5.6 Additional Attributes

We now investigate whether the prediction accuracy can be improved if we add

additional attributes that we have not considered in this work so far. In Section 3.4.2,

we gave the rationale for the selection of attributes to be the relation between these

attributes and the availability of the prefix. There are other attributes of BGP up

dates [10, 183] such as AS path, community, MED, and aggregation, which we have

not considered in this work. This is because we believe that these attributes are not

74

significantly related to availability as much as MTTF, MTTR, update frequency, and

prefix length. For example, repeated announcements with different AS path do not

change the Announced or Withdrawn status of prefixes. If the prefix flaps frequently

with announcements and withdrawals, affecting availability, this will be captured by

our update frequency metric.

The additional attributes that we consider in this section are: (1) Average AS

path length percentage change of the changed AS path w.r.t. the old AS path, av

eraged over all announcements, (2) Fraction of times AS path length changes over

all announcements, (3) Fraction of time the aggregator attribute changes over all

announcements, (4) Fraction of time the community attribute changes over all an

nouncements, and (5) Fraction of time MED attribute changes over all announce

ments. As usual, we compute these attributes for each combination and use them

for availability prediction. We consider these attributes one at a time, and all these

five together for availability prediction using bagged decision trees. We find that the

AUC results are 16% poorer on the average across these six prediction cases w.r.t.

the results in Table 3.9 . The average AUC of prediction comes out to be only 0.55.

Although better than a random classifier, these results are poor compared to the

prediction performance achieved previously. This is explained by the fact that these

attribute changes are due to AS policies for diverting traffic to the inbound prefixes

by modifying existing announcements, and are less correlated with changes in the

announced or withdrawn state of prefixes, which affects availability.

3.5.7 Predictability of Prefixes

Thus far, we have used a random set of (peer, prefix) combinations for training the

prediction models and for testing the effectiveness of the prediction techniques. We

now investigate whether certain combinations are more predictable than others. The

intuition behind this is that the availability of a combination is more predictable from

the attributes chosen in our work for certain kinds of prefixes than for others. There

75

can be several causes of BGP routing dynamics [10], and some causes are likely to be

more correlated with availability, making a particular prefix group more predictable.

For example, a prefix can be withdrawn and announced with a specific pattern (e.g.,

dependent on time of day) for traffic engineering purposes, and all prefixes which are

announced according to similar policies will exhibit more predictable availability. The

authors of [10] discovered both daily and weekly patterns in prefix announcements,

attributed to several known and unknown causes. Y. Zhang et. al. [123] predicted

data plane failures using control plane updates and also observed that certain prefixes

are more predictable than others. While we leave detailed investigation of exact

predictability classes of prefixes to future work, we investigate whether there are

more predictable combinations in our dataset.

Our methodology is motivated by [123]. Out of all the prediction models consid

ered in this work, only Näıve Bayes (Section 3.5.2) gives a probability of prediction

of prefix availability as high or low based on its attributes. We use an option in

Weka [174] to output the class prediction probabilities for each of the instances along

with the true availability class. For each of the 20 sets of results from Table 3.7, we

investigate the instances which were classified incorrectly. We note the probability

of incorrect classification Pinc as the P(predicted class label - low or high) for the

incorrectly classified instances output from the Näıve Bayes model. Pinc can never

be less than 0.5 since a label is only predicted if its probability is greater than the

other class label. The CDF of Pinc is shown in Figure 3.8. The plot shows that about

91% of the incorrectly classified instances have a class prediction probability above

0.93 when they are incorrectly classified. This implies that when a prediction error

is made, the case is not borderline – the model almost surely predicts the incorrect

class label. This gives credence to the fact that some prefixes in combinations are

very poor in predictability compared to others.

We now seek to isolate the combinations which have poor prediction performance.

We look at the instances incorrectly classified by Näıve Bayes for all the 20 cases

of Table 3.7 and isolate the combinations which have a probability of prediction of

76

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Fr
eq

ue
nc

y

P(Class Label) on erroneous decisions

Fig. 3.8. CDF of class label prediction probability for incorrectly
classified instances using Näıve Bayes

the (incorrect) class label exceeding 0.75. We chose this threshold of 0.75 since it is

midway between 0.5 and 1 and we want to ignore combinations for which a slight

prediction error is made. Across all the 20 cases, this gives 15,722 “poorly predicted”

combinations, which is about 39.33% of the total number of unique combinations for

the 20 cases.

To evaluate the prediction performance of the poorly predictable combinations

versus the predictable ones, we run the bagged decision tree model from Section 3.5.3

on both sets of combinations. We show the performance as indicated by AUC for

both the predictable and poorly predictable combinations in Table 3.11. The results

indicate a large difference in predictability between the two types of combinations. On

the average, the predictable combinations have 40.95% higher prediction performance

(measured in terms of AUC) than the poorly predictable combinations.

These results indicate a close to bimodal distribution of predictability of combina

tions. There are some combinations which are highly predictable (having an average

AUC of 0.864) and some which are poorly predictable (average AUC of around 0.5),

and, on the average, a 40.95% difference in AUC exists between the two prefix sets.

We conjecture that this due to the two types of reasons behind BGP dynamics:

http:combinationsinTable3.11
http:exceeding0.75

77

Table 3.11
Results for predictable and poorly predictable combinations obtained
from bagged decision tree model

tl tl/(tl + tp) AUC for

predictable

combinations

AUC for poorly

predictable

combinations

% difference in

AUC of Col. 4

from Col. 3

1 day 0.1 1 0.4581 54.19

0.25 1 0.5144 48.56

0.5 1 0.5128 48.72

0.75 1 0.5226 47.74

0.9 1 0.4893 51.08

7 days 0.1 0.6624 0.4058 38.73

0.25 0.7046 0.5311 24.62

0.5 0.7807 0.5321 31.84

0.75 0.8565 0.4783 44.16

0.9 0.9188 0.3766 59.01

19 days 0.1 0.8384 0.3236 61.40

0.25 0.8469 0.5589 34.01

0.5 0.8608 0.6074 29.44

0.75 0.8626 0.593 31.25

0.9 0.8837 0.4033 54.36

30 days 0.1 0.6971 0.4848 30.45

0.25 0.8122 0.5501 32.27

0.5 0.8269 0.5777 30.14

0.75 0.8558 0.6113 28.57

0.9 0.8751 0.5394 38.36

planned prefix traffic engineering leading to specific update patterns, and the non-

stationary nature of link failures [123]. Understanding the reasons behind varying

78

prefix predictability has been shown to be a difficult problem [123] because of lack

of information about AS policies and limited visibility to BGP updates from vantage

points. This is similar to root cause identification for BGP updates, which is a hard

problem as well [58, 63, 64, 184]. We leave detailed investigation of the causes behind

prefix predictability to future work.

3.5.8 Larger Test Datasets

So far in this chapter, we have used training and test sets which are constructed out

of a sample of 10,000 combinations using 10-fold cross-validation. We now investigate

the scalability of our models, where we apply the learned models to a large number

of combinations. This may be required of a typical prediction application, if one is

interested in predicting the availability of a set of prefixes from a large number of

vantage points in the Internet.

Table 3.12
Percentage change in performance metrics of a large prediction dataset
from Table 3.7 and Table 3.9 for tl = 30 days, tl/(tl + tp) = 0.1.

Performance Metric % Change for

Näıve Bayes

% Change for

Bagged Decision Trees

AUC 1.45 -1.52

Accuracy 2.01 -0.12

To evaluate scalability, we learn Näıve Bayes and bagged decision trees from 10,000

combinations, but predict the availability of all the remaining combinations in each

month (about 11.5 million). The prediction takes only about 2 minutes to complete

for each of the models on a 3.6 GHz single-core machine. The prediction results for

a typical case (tl = 30 days, tl/(tl + tp) = 0.1) show about a 1-2% difference from

the results in Table 3.7 and Table 3.9, as illustrated in Table 3.12. We therefore

conclude that our models are scalable for availability prediction of a large number

79

of combinations, without significant degradation in prediction quality. These results

also show that the 10-fold cross-validation methodology does not suffer because of

using a relatively low number (1000) of combinations in the test set.

3.6 Chapter Summary

In this chapter, we have developed a long-term availability prediction framework

that uses mean time to recovery, mean time to failure, prefix length, and update fre

quency as attributes. These attributes are easily computable from public RouteViews

data observed for a short period of time. Our framework learns a prediction model

from a set of Internet prefixes, and uses that model to predict availability of other

prefixes. To the best of our knowledge, this is the first work that uses the similarity

of prefix behavior in the Internet to predict properties such as availability.

Our simple prediction model is a good baseline with high true positive rate and

accuracy. The model, however, has a high false positive rate and low AUC. Näıve

Bayes and bagged decision trees improve on these metrics, and the latter performs

best especially when the learning period tl is shorter than about 3 weeks. For longer

learning periods, Näıve Bayes performs best. The Näıve Bayes model, however, is

highly susceptible to a change in attributes. We recommend the use of bagged decision

trees, learned from a moderate learning period of a week or two, to predict availability

for longer future durations. The learning period can be a sliding window which slides

with a granularity of a few days so as to feed the model with the most recent data

for learning.

We also find that mean time to failure is the most important attribute for pre

diction followed by mean time to recovery. Past availability is inadequate to predict

future availability, which is also a reason for the worse performance of the simple

model. We quantify how prefix availability is related to prefix length and update

frequency. Our results show that future availability is indeed predictable. The results

are promising given that we are using only public information about prefixes and that

80

we are building our model using a random set of prefixes. Our prediction models are

scalable and can be applied to large number of combinations in the Internet with

little performance overhead.

The next chapter describes our work on discovering prefixes in the Internet which

have similar propensity to fail. We discuss how to discover these prefixes to form

BGP molecules and present its applications.

81

4. BGP MOLECULES: UNDERSTANDING PREFIX

FAILURES

The previous chapter presented our approach on predicting long-term prefix availabil

ity based on the premise that prefixes in the Internet are similar. Hence, prediction

models learnt from some prefixes can convey valuable information about predicting

properties of other prefixes. In this chapter, we investigate this similarity and develop

a new prefix grouping called BGP molecules.

4.1 Motivation

BGP disseminates control-plane reachability information in the Internet, announc

ing and withdrawing paths to prefixes. The paths can be withdrawn due to several

reasons like link failures or AS policy changes, causing the prefixes to become un

reachable from various portions of the Internet (Section 2.2). We refer to this as a

routing failure, or just failure for short. The goal of this chapter is to seek insight into

these failures. For each given prefix of interest, we determine a group of prefixes in the

Internet with similar failure characteristics. We refer to this prefix group as the BGP

molecule of the prefix of interest, since it generalizes the concept of BGP atoms [185].

BGP atoms are clusters of prefixes such that all BGP routers (peers) which can reach

prefixes in the same atom do so using the same AS paths. We consider similarity in

AS paths to prefixes as just one of the possible metrics in constructing molecules. We

develop correlation coefficient metrics for comparing two prefixes in terms of their

failure tendency (Section 4.3). We consider a number of prefix characteristics to de

termine their relationship with the correlation coefficients (Section 4.4), and show

that origin AS similarity is not a sufficient indicator of similarity in prefix failure

tendency, whereas AS paths to prefix from different Internet vantage points is more

82

relevant. BGP atoms are necessarily formed by prefixes belonging to the same AS,

whereas we consider the entire set of visible Internet prefixes to find prefixes similar

to the prefix of interest. Our prefix clusters, the BGP molecules, can consist of pre

fixes belonging to different ASes, just like a molecule can consist of atoms belonging

to different chemical elements. Since the BGP molecules are prefix-specific, BGP

molecules of two different prefixes of interest may have prefixes in common.

While BGP atoms were introduced to potentially aggregate BGP prefixes that are

subject to the same policy [185], our goal in forming BGP molecules is formulating

a fundamental unit which can be used in effective diagnosis of routing problems,

ultimately improving the security and reliability of the Internet control plane. We

study the potential of BGP molecules in predicting failure of the prefix of interest

by considering four failure prediction algorithms, with and without the use of BGP

molecules, in Section 4.5. We find that the prediction scheme without using BGP

molecules, namely using prefixes that have failed with the prefix of interest in the

past, is computationally intensive with medium prediction accuracy. BGP molecules

are easier to compute since they are constructed using one or more routing tables

or information about the geographical location, and achieve higher failure prediction

accuracy. A key difference between our work and BGP atoms is that we view the

formation of BGP molecules as dynamic, with molecules being formed using different

prefixes over time. This can occur as prefixes are advertised with different attributes.

In Section 4.6, we consider the application of BGP molecules in improving avail

ability of content servers of Akamai, which is a dominant Content Distribution Net

work (CDN) in the Internet. We consider the problem of ensuring high control-plane

availability of Akamai’s servers, which is defined as the time when the prefixes, to

which the servers belong, are in Announced state divided by the time period of in

terest. We perform large-scale experiments from around 350 PlanetLab [186] nodes,

which query Akamai’s CDN for different pieces of content periodically for six weeks.

Using the servers returned and control plane announcements of prefixes to which the

servers belong, we find that the mean availability of Akamai’s servers is very high

83

(99.98%), but still shy of the holy-grail of five-nines availability [175]. In fact, around

10% of the queries for a single piece of content lasting six weeks experienced less than

five-nines availability. We use our knowledge of BGP molecules to propose a new

scheme in which Akamai returns primary and backup servers from prefixes which are

not in the same BGP molecule, and hence are unlikely to fail together. Our evaluation

of this scheme shows that nearly all the content queries over a six-week period would

have achieved greater than five-nines availability, and a very small percentage (<1%)

would have availability less than 100%. We also show that given estimates of latency

of servers from clients (which Akamai collects via active measurements [140]), our

scheme can simultaneously increase the availability of Akamai’s servers as observed

by the client, while reducing their latency.

When we cluster prefixes into molecules, we gain information about which prefixes

are likely to be affected by a single event. One can then develop a reactive routing

mechanism to route around failures [122]. For instance, iPlane Nano [121] showed

that intelligently selecting detours can improve the performance of routing. BGP

molecules also reveal similarity in failure tendency and can be used to improve the

reliability of web-based applications and cloud computing, similar to Section 4.6.

Diagnosis is not the only goal of clustering prefixes; gaining a better understanding

of the similarity of the prefix address space is also another goal of this work. This

can lead to a better selection of prefix candidates for further inspection by data plane

monitoring systems like Hubble [68], and deeper insight into the behavior of subset

and superset prefixes [173] in failure scenarios.

4.2 Datasets

We obtain BGP routing tables and updates from RouteViews [9] for the month of

March 2009 and process them as described in Section 3.3, removing spurious updates

caused by routing table transfers. We selected this month since no known major

routing event (such as an undersea cable cut) occurred, in order to produce unbiased

84

results. This is important because the BGP molecules will typically be used in normal

operation scenarios, as significant routing events are rare.

4.2.1 Extracting AS-Specific Information

Each prefix announcement and each routing table entry is associated with an AS

path and a peer, which is the vantage point that can reach the prefix through the AS

path. The origin AS of the prefix is the last AS on the AS path. Thus, if peer Q uses

the following AS path to prefix P: (a1, a2, ..., an−1, an), where each ai, i = 1...n, is an

AS, then an is the originating AS of the prefix. We extracted 31,576 unique origin

ASes out of the data visible for the month, and stored the prefixes that they originate

along with an array of the times of prefix state changes. The state of a prefix can be

Up (U) when the prefix is in an announced state or Down (D) when the prefix is in a

withdrawn state. Each prefix has a state change array for each of the peers that can

reach this prefix.

While extracting AS-specific information, we noticed two interesting cases. First,

the same prefix can be associated with multiple ASes. This is the commonly known

Multiple Origin AS (MOAS) problem [187] and this makes attributing the prefixes to

an individual AS difficult. We found that about 1.6% of the prefixes exhibited MOAS

conflicts, i.e., their origin could be attributed to two or more ASes. Since our focus

in this work is not on resolving MOAS conflicts, we attribute the prefix to all of the

ASes that appear to originate it. This design choice has the following implication.

Since the withdrawals of a prefix by a peer do not carry an AS path, it is impossible

to deduce which of the origin ASes for a MOAS prefix is now unreachable. Hence, we

change the states of the prefix to “Down” for all the ASes that originate this prefix.

Second, the origin AS may not be a unique AS but can be an AS SET [47], which

is an aggregate of ASes represented within curly braces {a1, a2, ..., an−1, an} and is

produced by route aggregation. If the origin AS of a prefix is an AS SET, we keep

it as a separate entity along with the prefixes that it originates. We found about

85

0.013% of the prefixes to be originated by AS SETs, so the effect is less significant

than the MOAS issue. Only 36 out of the 31,576 ASes (i.e. 0.11%) are AS SETs.

The number of prefixes originated by an AS ranges from 1 to 4402 in our data.

We had 329,658 prefixes in our dataset with an average of 10.44 prefixes originated

by an AS. However, the distribution is highly skewed with about 42% of the ASes

originating only 1 prefix and about 86.2% of the ASes originating less than or equal

to 10 prefixes. A partial histogram of the prefixes originated by an AS is shown in

Figure 4.1. The frequency of the ASes with number of prefixes greater than 20 (and

ending at 4402) is not shown in the graph and totals 7.36%.

Fr
eq

ue
nc

y

0.45
 0.4

 0.35
 0.3

 0.25
 0.2

 0.15
 0.1

 0.05
 0

 0 5 10 15 20

Number of Prefixes

Fig. 4.1. Partial histogram of the number of prefixes originated by an AS

4.3 Metrics

We now define the metrics that we use to evaluate the failure tendency of prefixes.

Since we are primarily interested in comparing prefixes to each other, we define cor

relation coefficient based metrics. A high value of the correlation coefficient metric

indicates that the failure tendencies are close to each other. As described in Sec

tion 4.2.1, for each prefix and each peer that can reach it, we have state change

sequences of the prefix recording the time when the state of the prefix goes from U

86

to D and vice versa. We compare the state change arrays of two prefixes when they

are viewed by the same peer.

Our initial attempt at measuring similarity of failure tendency was defining a

“state correlation coefficient” between prefixes. A pair of prefixes may have their first

recorded state at different times (determined by inspecting their state change arrays

as viewed by the same peer). Hence, we compute the “start time” of the pair by

choosing the higher of the two start times of the prefixes. This is the earliest time

when we have information available about both prefixes. The “end time”, which is

the last time we have information about both prefixes, is taken to be the timestamp

of the last update in our dataset. The assumption here is that all updates will be

recorded in RouteViews, and hence the state of the prefix stays the same from the

time of the last state change to the timestamp of the last update of the month. Given

the start time and end time of the prefixes, we subtract the total time when the state

of the prefixes disagree from the total time that they agree and divide that by the

time for which we have information about the two. Formally, the state correlation

coefficient of the prefixes is defined as: DD+UU−DU−UD , where {xy} with x, y= U or
DD+UU+DU+UD

D denotes the total time in the month long dataset when the first prefix state is x

and the second prefix state is y. Clearly, the value of this coefficient can range from

-1 to 1.

This definition of state correlation coefficient is sensitive to synchronization mis

matches, not only in the timestamps of the recorded updates (which we assume to

be correct), but also because the same routing change event affecting two prefixes

can be observed at the same peer at slightly different times due to delayed conver

gence (which can be of the order of few minutes). Without a priori knowledge of

which routing events occur (which are difficult to reliably determine, even with root

cause analysis algorithms, as discussed in Section 2.2.1), it is impossible to correct

synchronization delays. Our correlation coefficient computations aims to study prefix

state changes as observed by vantage points in the Internet, hence any asynchronicity

caused by Internet convergence or BGP policies should not be corrected for. This

87

asychnronicity is of the order of a few minutes, which is not too significant given that

we are computing the coefficient over a month long period.

We compute the amount of time a prefix spends in the “Up” state in our entire

dataset of 329,659 prefixes and find the average uptime to total time ratio to be

92.37% with a median value of 99.9955%. Since prefixes are mostly up, the state

correlation coefficient is not an accurate measure of the tendency of prefixes to fail

together. Therefore, we define “failure correlation coefficient” as: DD−DU−UD , where
DD+DU+UD

{xy} with x, y = U or D denotes the total time in the month long dataset when the

first prefix state is x and the second prefix state is y. We ignore the time when both

prefixes are in the “Up” state, and only consider the time when at least one of the

prefixes has failed. Like the state correlation coefficient, this can also range from -1

to 1. The failure correlation coefficient captures the correlation between the failure

tendencies of two prefixes more accurately, since it evaluates whether one prefix has

failed, given that the other prefix has failed. Two prefixes which are always up will

have a state correlation coefficient of 1, whereas their failure correlation coefficient is

undefined (which is intuitive, since no failure has been observed for either of them).

4.3.1 Baseline State Correlation Coefficient

The baseline state correlation coefficient is that of any two prefixes in the Internet,

chosen at random, averaged over all prefix pairs. This computation is important since

a good prefix clustering is expected to include prefixes with significantly higher failure

tendency correlation than the baseline case.

Unfortunately, computing the state correlation coefficient of all prefix pairs in our

dataset is a computationally infeasible task since we have 329,658 prefixes and hence

about 54.3 billion prefix pairs. Hence, we resort to random sampling: we choose 1%

of the ASes (or 316 ASes) randomly and only consider the 2353 prefixes originated

by those ASes. As Figure 4.2 shows, the frequency of prefixes originated by an AS

in the 316 AS random sample is about the same as that of the entire set of 31,576

88

ASes, indicating that the prefix sample is a representative one for the prefixes of the

entire Internet. Although we do work on this reduced dataset for the remainder of

the chapter, we claim that due to the above mentioned reason, and the randomness of

our selection process, our results for correlation coefficients are unbiased. Besides, the

construction of BGP molecules relies on finding some prefixes in the Internet which

are similar in failure tendency to the prefix of interest. Limiting the sample of prefixes

only makes our BGP molecule construction and the subsequent prediction mechanism

look worse than it could have been had more powerful computation mechanisms been

available for our study. Another reason for this reduced sample of prefixes is that

we aim to make the BGP molecule construction and failure prediction an online

mechanism.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 5 10 15 20

Fr
eq

ue
nc

y

All ASes
316 AS sample

Number of Prefixes

Fig. 4.2. Comparison of partial histograms of the number of prefixes
in an AS in the random sample vs. for all ASes

We now treat the 2353 prefixes in these 316 ASes as one “chunk” of prefixes,

and compute state correlation coefficients for the month’s data among each of the

approximately 2.76 million prefix pairs. The multiple values of the coefficient (ob

tained for each prefix pair by considering various peers that see the pair) are averaged

to compute a state correlation coefficient for the prefix pair. We tackle the MOAS

problem by maintaining a correlation coefficient for each (Prefix1, AS1, Prefix2,

89

AS2) quartet where ASi originates Prefixi for i=1,2. We refer to this correlation

coefficient as belonging to the prefix pair (Prefix1, Prefix2) with the understanding

that the quartet implementation takes care of the originating ASes. The average state

correlation coefficient of the 2.76 million prefix pairs in our dataset is 0.777 and the

median is 0.99902. Its histogram is shown in Figure 4.5. The extreme values have

the highest frequency with about 7.5% from -1 to -0.9 and about 84.7% from 0.9 to

1.

4.3.2 Failure Correlation Coefficient

In our 316 AS sample with 2353 prefixes, the average and the median values of

uptime ratio were 94.02% and 99.998% respectively, showing that the prefixes are

in the “up” or announced state most of the time. Hence, we compute the failure

correlation coefficient for all the prefix pairs, whose histogram is shown in Figure 4.3.

The total number of prefix pairs in the plot is 2.724 million vs. the 2.76 million pairs

earlier, as the pairs where both the prefixes were up for the entire month w.r.t. every

peer are omitted. The failure correlation coefficient’s median is -0.999999 with mean

-0.927647. This is because two arbitrary prefixes in the Internet are unlikely to have

high tendency to fail together unless they share common characteristics. It is our goal

to find these characteristics. The results can be likened to the fact that two arbitrary

chemical atoms in a large enough sample of atoms are unlikely to be the same and

hence an average “similarity coefficient” would be close to -1.

4.4 Constructing BGP Molecules

We now describe techniques to construct a BGP molecule of a prefix of interest,

i.e., the set of prefixes in the Internet with similar failure tendency as the prefix.

We choose the prefix of interest, one each from the 316 AS sample so that we do

not bias our results towards a specific AS/prefix group. Clustering techniques from

data mining [188] require that the distances amongst all pairs of points be known for

90

 0.1

0.08

 0.06

 0.04

 0.02

 0

Failure Correlation Coefficient

Fig. 4.3. Expanded histogram of the baseline failure correlation coef
ficient. First bin frequency is 0.827.

Fr
eq

ue
nc

y

-1 -0.5 0 0.5 1

inter-cluster and intra-cluster similarity to be measured, so that points with higher

similarity belong to a cluster. We have 329,658 total prefixes in our dataset, and at

least one similarity measure needs to be computed for each prefix with the prefix of

interest, averaged over 40 or so peers that see the prefix pair. Even if we optimisti

cally assume that each similarity measure computation averaged over 40 peers takes

1 second to compute, it would take about four days to compute the similarity mea

sures themselves (not counting the time required for clustering) on a single processor

machine. Of course, one can improve the computing infrastructure, but that imposes

restrictions on the online computation of BGP molecules. The scale of the Internet

works against us in the computation of the BGP molecules, especially in a dynamic

setting, where molecule membership may have to be recomputed periodically. Hence,

we resort to heuristics for computation of the BGP molecules and present multiple

methods in this section to construct BGP molecules. Our evaluation of the quality

of the molecules is based on the state and failure correlation coefficients described in

Section 4.3.

91

4.4.1 On a Per AS Basis

A natural way of constructing BGP molecules is to cluster prefixes based on the AS

that originates them. Thus, two prefixes are in the same cluster if they are originated

by the same AS. To evaluate this clustering technique, we created 31,576 clusters, one

for each AS and computed the state correlation coefficient for prefixes in the same

cluster, except for the ASes which originate only one prefix. Only about 58% or 18304

of the 31576 ASes contribute a value. An AS having more than one prefix will have

several values of correlation coefficient for each of the prefix pairs, one for each peer

(vantage point) that sees the pair. The values of the state correlation coefficient for

the prefix pairs in an AS are averaged, yielding an “AS state correlation coefficient.”

The AS state correlation coefficient histogram, with bin size 0.1, is given in Fig

ure 4.4. The plot shows that about 87.6% of ASes have values between 0.9 and 1. A

partial histogram which shows the lower frequencies along with their comparison to

the baseline state correlation coefficient is depicted in Figure 4.5. The frequencies of

bins except the last bin are much smaller, never exceeding 2.6%. The average value

of the AS state correlation coefficient, averaged across 18304 ASes, is 0.927, whereas

the median is 0.999887.

 1

0.8

 0.6

 0.4

 0.2

 0

AS State Correlation Coefficient

Fig. 4.4. AS state correlation coefficient histogram.

Fr
eq

ue
nc

y

-1 -0.5 0 0.5 1

92

Figure 4.5 also shows the baseline plot, which is different since it has negligible

frequency of correlation coefficients above 0. We can clearly see that lower values of

the state correlation coefficient have a higher frequency in the baseline case than in

the AS case. The average state correlation coefficient for the baseline case is 0.777

vs. 0.927 for the AS case, and the median is 0.99902 vs. 0.999887 for the AS case.

These results suggest that the originating AS groups prefixes with higher similarity

together.

Fr
eq

ue
nc

y

0.08

0.07

 0.06

 0.05

 0.04

 0.03

 0.02

 0.01

 0

AS
Baseline

-1 -0.5 0 0.5 1

State Correlation Coefficient

Fig. 4.5. Comparison of partial histograms of the baseline state cor
relation coefficient with the AS one. Last bin, between 0.9 and 1, is
0.876 (AS), 0.847 (Baseline).

We then compute the AS failure correlation coefficient, by averaging all its com

puted values for prefix pairs with the prefixes belonging to the same AS. The his

togram of the 18104 ASes which have an AS failure coefficient is shown in Figure 4.6.

The plot shows that about 19% of the ASes have an AS failure coefficient between

0.9 and 1, and the remaining frequencies are about evenly split with 5-10% frequency

in each bin. Comparing Figure 4.3 to Figure 4.6, we find that the originating AS of

a prefix helps determine its failure tendency. However, the nearly equal frequencies

of most of the bins of Figure 4.6 and the fact that about 49.5% of the ASes have

a negative failure coefficient is a driver for finding additional prefix characteristics

93

that influence its failure tendency. Further, when an AS has a single prefix, BGP

molecules formed on an originating AS basis cannot be used to find similar prefixes.

We therefore explore additional prefix characteristics in Sections 4.4.2 and 4.4.3.

 0.2

0.15

 0.1

 0.05

 0

AS Failure Correlation Coefficient

Fig. 4.6. Histogram of the AS failure correlation coefficient.

We conclude this section by studying the relationship between the AS failure

coefficient and AS characteristics. We find no clear relationship between the number of

prefixes originated by an AS and the AS failure coefficient. However, the geographical

spread of an AS does seem to have a correlation with the AS failure coefficient. We

define the AS geographical spread as the maximum geographical distance among all

pairs of prefixes originated by an AS, given that an AS originates at least two prefixes.

We use MaxMind’s GeoLiteCity application [189] to find the latitude and longitude

of the location of the dotted decimal portion of the prefix, and then compute the

distance between two prefixes using the Haversine Formula [190] for computing the

great-circle distance.

We compute this AS geographical spread for the 18104 ASes that have an AS

failure coefficient. The minimum and maximum values of the spread are 0 and about

12200 miles respectively. We divide this 12200 miles into 20 bins of 610 miles each,

and compute the average AS failure coefficient of the ASes which fall in each bin based

on their spread. The results are depicted in Figure 4.7. As geographical spread of an

Fr
eq

ue
nc

y

-1 -0.5 0 0.5 1

94

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0 2000 4000 6000 8000 10000 12000

Av
er

ag
e

AS
 F

ai
lu

re
 C

oe
ffi

ci
en

t

AS increases, on average, its failure coefficient declines. A positive failure coefficient

is only obtained in the first bin of the plot. Further investigation reveals that ASes

with spreads equal to zero miles have an average failure coefficient of about 0.15.

ASes with spreads less than approximately 150 miles or so have a coefficient greater

than 0.1, whereas for larger spreads the coefficient slowly starts drifting into negative

territory. This motivates studying geographical location as a factor that affects failure

tendency of a prefix, and we study this in Section 4.4.3.

AS Geographical spread (in miles)

Fig. 4.7. Average AS failure coefficient w.r.t. AS geographical spread

4.4.2 Using AS Paths

In this section, we study the role of AS paths, which is the sequence of ASes

advertised by BGP for routing from the vantage point to the prefix. Prefixes which

have similar AS paths from one or more vantage points are expected to have similar

failure tendencies. This idea of using AS paths to group prefixes was initially pro-

posed in [185] where prefixes are grouped into BGP atoms if they have the same AS

paths from every visible default router. This definition necessitates that the prefixes

belonging to the same atom belong to the same AS, since the last AS on the AS path

is the one which originates the prefix. We apply a broader use of AS paths since we

95

are interested in finding prefixes in the entire Internet which are similar to the pre

fixes of interest. We use the AS paths occurring in the routing tables and remove the

first and last AS in the path. The first AS is the one belonging to the vantage point

which sees the prefix and is uninteresting when we aggregate data across vantage

points, whereas the last AS is the originating AS of the prefix. We also remove AS

path prepending [47] since that has no implication on the sequence of ASes traversed

between the vantage point and the prefix.

To investigate whether AS path similarity corresponds to similarity in prefix fail

ure tendency, we conduct the following experiment. We form a “routing table set”

containing at most one routing table for each day in the dataset (we select the table

with the largest number of entries), for days when the number of entries is greater

than the average number of entries in a routing table in our dataset. This eliminates

short and possibly corrupted routing tables and improves computational efficiency.

The reduction is meaningful because routing tables closely spaced in time are ex

pected to have significant overlap in their entries. We obtained 30 routing tables for

March 2009, yielding a “combined routing table” for the month with 14.8 million

entries.

Because the combined routing table contains entries at different times, it is not

unusual to have multiple entries for a prefix from the same peer’s point of view.

We start with the 2.76 million prefix pairs for which we have computed the failure

correlation coefficient in Section 4.3.2. We narrow down this group of coefficients

for computational reasons by choosing sets of increasing coefficient values from 0 to

1 differing by at least 0.02 from the previous set and choosing no more than 1000

values for each set. This reduces our group to about 60,500 prefix pairs and for each

of those, we see if we have AS paths for both of the prefixes in the pair from at least

one peer in our combined routing table. We then compare the AS paths from the

peers, one at a time, to compute “AS path correlation coefficient” (defined in the

next paragraph). These coefficients are then averaged across peers to determine an

AS path correlation coefficient for the prefix pair.

96

-1

-0.5

 0

 0.5

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fa
ilu

re
 c

or
re

la
tio

n
co

ef
fic

ie
nt

Given two prefixes with AS paths from the point of view of a single peer, we

remove AS path prepending and the first and last AS of the AS path. If the length of

the AS path for Prefix 1 is l1 and that of the Prefix 2 is l2, we compute the length of

the Longest Common Subsequence (LCS) using the dynamic programming algorithm

of [191], and define the AS path correlation coefficient as = LCS/min(l1, l2). Thus,

the coefficient can range from 0 to 1.

AS Path correlation coefficient

Fig. 4.8. Variation of average failure correlation coefficient of each bin
with AS path correlation coefficient

We divide the AS path coefficients for the prefix pairs obtained into 20 bins and

compute the average failure correlation coefficient of each bin. The variation of the

failure correlation coefficient with the AS path correlation coefficient is plotted in

Figure 4.8. The plot shows a clear positive correlation between the two coefficients:

as the AS path correlation coefficient between two prefixes increases, their average

failure correlation coefficient changes from negative to positive, changing signs at AS

path coefficient = 0.55. This validates our hypothesis that AS path similarity is

indeed a measure of failure tendency of prefixes.

To construct BGP molecules using AS path alone, we use only the first routing

table and no future routing tables since the goal is to use the molecules constructed for

failure prediction. For each of the prefixes of interest, we find its AS path sequences

97

w.r.t. each peer in the routing table, which are a set of AS strings, obtained from the

AS paths after removing AS path prepending and the first and last AS in the path.

We then search for other prefixes in the routing table which have the same AS path

sequence w.r.t. the same peer as the prefix of interest, and place them in its BGP

molecule. Note that this is performed w.r.t. each peer to make a fair comparison of

the AS path sequence between the prefix of interest and the prefixes in the molecule.

We ignore AS path sequences which are just one AS long as that is too general a

comparison.

4.4.3 On a Geographical Basis

We now evaluate how geographical distance between prefixes is related to the

similarity of their failure tendency. We use the reduced set of about 60,500 prefix pairs

as in Section 4.4.2 and compute the geographical distance between the prefixes as in

Section 4.4.1, using GeoLiteCity and Haversine’s formula. We investigate whether the

geographical distance between prefixes is a different dimension from their originating

ASes and find that out of prefixes at the same location, about 92.5% belong to the

same AS. Zero distance between prefixes does not imply that the prefixes belong to

the same AS, which suggests that geographical distance is an independent dimension

to consider. The percentage of prefixes belonging to the same AS reduces to 90% for

prefixes with distance less than 150 miles and to 70% for distance less than 600 miles.

We now evaluate whether geographical distance correlates with the failure corre

lation coefficient of prefixes. As in Section 4.3.2, we have 20 bins of 600 miles each,

and we place each of the 60,500 prefix pairs into one of the bins depending on their

distance. We then compute the average failure correlation coefficient of each bin. The

results indicate that increasing distance corresponds to a lower similarity in failure

tendency, but only the first bin has a positive failure coefficient. We therefore in

vestigate the maximum distance between prefixes below which they will have a high

similarity in failure tendency by dividing prefixes from the first 600 miles into bins

98

of 50 miles each. The results, shown in Figure 4.9, suggest that prefixes with dis

tances 150 miles or less have a fairly high failure correlation coefficient on the average,

whereas those with greater distances have a negative coefficient.

-0.4

-0.2

 0

 0.2

 0.4

 0 100 200 300 400 500 600

Av
er

ag
e

Fa
ilu

re
 C

oe
ffi

ci
en

t

Geographical distance (in miles)

Fig. 4.9. Variation of average failure correlation coefficient with geo
graphical distance between prefixes

4.4.4 Hybrid Scheme

From the above discussion, AS paths to a prefix are a stronger dimension than

its geographical location in correlating with its failure tendency. However, frequently

there are cases when AS paths alone do not yield any prefixes within a molecule of

a prefix of interest. This may be due to (i) the prefix of interest is not found in

the routing table used, or (ii) the AS path sequences for finding similar prefixes are

only one AS long, or (iii) there are no prefixes in the routing table with the same AS

path sequences. Additionally, the number of prefixes in the BGP molecule of a prefix

of interest may be insufficient for prediction purposes (Section 4.5). We therefore

devise a hybrid scheme for constructing BGP molecules. For the cases where BGP

molecules created using AS paths alone do not exist or have an insufficient number of

prefixes, we find the prefixes in the rest of the Internet which are within a threshold

99

distance (150 miles), and place them in the BGP molecule constructed using AS path

(if non-empty). Since searching the entire set of Internet prefixes is a computationally

infeasible task, we focus on our sample of 316 ASes, containing 2353 prefixes, and

construct BGP molecules.

4.5 Predicting Failures using BGP Molecules

In this section, we study the most natural application of BGP molecules: pre

diction of future failures of a prefix using the failures of prefixes in its molecule. We

first evaluate a prediction application which does not use BGP molecules, but instead

uses prefixes with known failures close by in time to the failures of the prefix of in

terest. We then study prediction using BGP molecules, with three different ways of

constructing them.

4.5.1 Failure Prediction Methodology

Our prediction methodology involves failure prediction of prefixes of interest given

prefixes “similar” to it in some regard. They could be prefixes in the BGP molecule

of the prefix of interest or are found similar in some other way. We select a set of 25

random “similar” prefixes for prediction purposes. The number 25 was selected to be

large enough to give a meaningful sample, but small enough for low computational

overhead in an online prediction application. If the number of “similar” prefixes is

less than 25, we typically do not use these prefixes for prediction purposes. There are

some exceptions to this that we will point out in subsequent sections when we perform

prediction with insufficient prefixes for evaluation reasons. Generally, a failure of the

prefix of interest is predicted if a majority of the 25 prefixes fail during a time window,

which is kept as a parameter. This prediction application can be easily deployed in

the real world if failures of prefixes can be observed e.g. through a live update feed.

The use case of operators in ISPs typically have such a feed through peering, else

100

can obtain it from a public source like RouteViews [9]. We execute our prediction

experiments for all 2353 prefixes of the 316 AS random sample for evaluation purposes.

We now present an example. Consider prefix 210.143.240.0/20 belonging to AS

23777 to be our prefix of interest. Its BGP molecule constructed using AS paths has

231 different prefixes. Figure 4.10 shows the indices of the 25 prefixes (numbered 0

to 24) and the time at which they fail. Since 13 prefixes fail within 1 second of each

other (< time window t=300 seconds), we predict that the prefix of interest will fail

in a time window of t seconds beginning at t0. The prefix of interest failed at t0 + 1.

Since it failed within 300 seconds of the failure of the first prefix in the 13 prefix set,

we consider this a predictable failure.

�
T ime

{t0, (3, 23)} {t0 + 1, (1, 2, 4, 7, 10, 11, 13, 22, 24)} {t0 + 3, (0, 5)}

Fig. 4.10. Example of failure prediction using BGP molecules,
t0=1235877308 Unix time, Each label has {time,(list of prefix indices
which fail at that time)}

4.5.2 Evaluating Prediction Quality

We now describe the technique for evaluating the quality of the failure prediction

application. Let F denote the failure event of a prefix. We formulate the following

hypothesis about the failure predictability of a prefix that we seek to prove or refute.

Null Hypothesis H0: F happens within a time window t when the application pre

dicts a failure. The alternative hypothesis H1 states the case that F does not happen

given the application predicts a failure. Any evidence in support of the null hypoth

esis favors the success of our prediction application. We do not require exact time

synchronization, since we are interested in evaluating the feasibility of the prediction

application; our approach is similar to that used in [122].

http:Figure4.10

101

We form the likelihood ratio:

P (H1 is true) P (No F within t |Application predicts F)Λ = =
P (H0 is true) P (F within t |Application predicts F)

A large value of the likelihood ratio indicates that the alternative is true; hence

we reject the null when Λ > γ where γ is decided by using two disjoint but randomly

selected sets, namely training and test sets of prefixes which are “similar” to the prefix

of interest. These sets usually have 25 prefixes like Section 4.5.1, unless specified

otherwise. We use the training set to find the value of γ by counting the number

of instances when the alternative is true and dividing it by the number of instances

where the null is true. However, γ is chosen to be at least 1, because we do not want

to reject the null unless the evidence in favor of the alternative exceeds that of the

null. After the value of γ is decided, we execute the same algorithm for the test set,

compute Λ and reject the null if Λ > γ. Due to the inherent randomness in selecting

the training and test sets, we perform five predictions for each prefix of interest, with

different random seeds based on the current wall time so that our prediction results

are not biased towards a particular choice of the sets.

Not all prediction mechanisms can function for all prefixes, for example because

of an empty BGP molecule. Hence, we define coverage of the prediction mechanism

to be the percentage of the 2353 prefixes for which a decision on predictability can be

made. Out of the prefixes for which prediction is possible, the prediction methodology

is either successful or unsuccessful in predicting the failures of the prefix of interest.

We define predictability as the percentage of prefixes whose failures are predictable.

4.5.3 Näıve Prediction

We first study a Näıve prediction model which does not use BGP molecules or

any prefix characteristics for failure prediction. It learns other prefixes that fail with

the prefix of interest during a learning duration, and uses these prefixes to predict

failure. This approach is computationally intensive since one has to find similar

prefixes among 300,000 Internet prefixes. To make the problem tractable, we use our

102

random sample of 316 ASes containing 2353 prefixes. For each prefix of interest, we

identify prefixes in the sample, which “fail along” with it during a day-long learning

duration (March 1st, 2009). A prefix “failing along” with another prefix implies

that both prefixes fail within a time window. The window is selected to be 300

seconds to allow sufficient time for routing convergence, which has a median time of

about 3 minutes [192]. Due to convergence and factors like delayed visibility of prefix

failures and time synchronization of the update timestamps, we allow a 5 minute

time window. A smaller time window hurts this prediction model since fewer failing

prefixes are discovered.

We find 25 prefixes each for the training and test sets that fail along with the prefix

of interest and predict a failure if a majority of the 25 prefixes fail within the 5 minute

time window. We evaluate the success of this prediction algorithm as described in

Section 4.5.2 for each of the 2353 prefixes of interest in the 316 ASes. This ensures

results are not biased to a particular group of prefixes belonging to a specific AS. We

use 5 random runs for each prefix of interest. Each run yields a “prediction success”

result if the test set leads to Λ ≤ γ (learned from the training set), thereby resulting

in null being accepted. Otherwise, the null is rejected and a “prediction failure” is

reported. We find the predictability to be 80.6%. While this is promising, the high

computational complexity of this prediction method makes it infeasible.

4.5.4 Using BGP Atoms

Before using BGP molecules, we investigate a prediction algorithm which relies

solely on BGP atoms [185]. For each of the 2353 prefixes of interest, we compute the

set of prefixes that have the same AS path w.r.t. every peer that sees both prefixes.

Note that this means that the prefixes in the same BGP atom as the prefix of interest

must belong to the same AS. The primary disadvantage of this scheme is that for most

cases, we do not find any prefixes in the same atom as the prefix of interest. About

42% of the ASes have only one prefix (Section 4.2.1). Even if an AS has multiple

http:specificAS.We

103

prefixes, it is difficult to find prefixes in the same BGP atom because multiple prefixes

may be advertised with different policies for load balancing, leading to different AS

paths from the same vantage point in the Internet.

The average number of prefixes in non-zero-sized BGP molecules formed using AS

paths is about 11.41 vs. 2.88 for BGP atoms. The maximum number of prefixes in a

BGP atom is 23 implying that we cannot run our usual prediction algorithm since we

require 50 prefixes for the disjoint training and test sets. Thus, we randomly assign

about half of the prefixes to the training and test sets in equal numbers, when we

have at least 2 prefixes in the atom. This still only gives us a coverage of 1.66% and

a predictability of 87.2%.

4.5.5 Using BGP Molecules Constructed by AS Paths

We now consider prefix failure prediction using BGP molecules constructed using

AS paths as in Section 4.4.2. We investigate different failure prediction window

lengths, which is the time duration in which a majority of the 25 prefixes should

fail for predicting a prefix failure. We use values ranging from 60 seconds to 600

seconds. The prediction results are given in Table 4.1. The null evidence is the

average number of cases where the null is true (i.e., a failure prediction coincides with

the prefix failure), averaged over all the prediction runs for all prefixes of interest.

The alternative evidence is defined similarly.

The prediction accuracies are higher than Näıve prediction and prediction using

BGP atoms. As the failure prediction window increases, the prediction success rate

reduces. At first glance, this may seem counter-intuitive. However, as the failure

window increases, the evidence in favor of both null and alternative increases because

there is a higher chance of a majority of the 25 prefixes to fail within a longer window.

This predicts a failure, while the prefix of interest may not fail during that period.

This is why the evidence in favor of the alternative increases by 64% when the window

increases from 60 to 600 seconds, whereas that of the null increases by only 28% for

http:about11.41

104

Table 4.1
Effect of failure prediction window on failure predictability using AS
paths constructed molecules

Window

(seconds)

Prediction

Success(%)

Prediction

Failure(%)

Null

Evidence

Alternative

Evidence

60 94.71 5.29 1.751 1.172

120 93.89 6.11 1.963 1.5992

180 92.07 7.93 2.144 2.187

300 91.82 5.29 2.223 2.463

600 92.05 7.95 2.241 1.919

these parameters. The alternative evidence falls for the last data point of 600 seconds,

possibly because of the large window increase, since many separate failure predictions

that were made are now combined resulting in fewer false predictions. Observe that

the number of prefixes for which we perform prediction is 1110, hence the coverage

is 47.2%. The primary reason for this low number is that BGP molecules for about

1079 or 45.86% of the prefixes do not contain any prefixes. For another 164 or 6.97%

of the prefixes, the BGP molecules contain ≤ 50 prefixes.

Table 4.2 compares the performance of this AS path-based prediction with the

two other prediction schemes studied so far in terms of failure predictability and

coverage. The results show that using BGP molecules is the best prediction scheme

studied so far with about 12% higher predictability than Näıve prediction. However,

it still suffers from the disadvantage that slightly less than half of the prefixes are

predictable. To remedy this problem, we study the hybrid prediction scheme in the

next section.

105

Table 4.2
Failure predictability performance of BGP molecules constructed us
ing three schemes; failure prediction window=300 seconds.

Scheme Failure

Predictability (%)

Coverage

(%)

Disadvantage

Näıve

Prediction

80.62 100 Computationally

Intensive

BGP Atoms 87.2 1.66 Low

Coverage

BGP molecules

(AS paths)

91.82 47.2 Moderate

Coverage

4.5.6 Using BGP Molecules Constructed by Hybrid Scheme

To improve coverage, i.e., percentage of prefixes for which a prediction can be

made, we use the hybrid scheme (Section 4.4.4). Our “hybrid BGP molecule” is

created using both geographical location and AS paths to the prefix as similarity di

mensions. The “hybrid prediction scheme” operates as follows: (1) Predict failures of

the prefix of interest using BGP molecules constructed using AS paths (Section 4.4.2)

if they have at least 50 prefixes. (2) If the BGP molecules using AS paths are insuf

ficient for prediction, construct molecules using geographical proximity and combine

with the AS path molecule to form a hybrid molecule. This hybrid molecule is used

for failure prediction, if it has at least 50 prefixes. However, for evaluation purposes,

we also predict using the hybrid molecule as long as it has at least 2 prefixes.

Table 4.3 shows the coverage and predictability of this scheme along with the

various components of the 2353 prefixes of interest in our 316 AS sample. Prediction

using AS path molecules has a coverage of 47.17% or 1110 prefixes (Table 4.2). For

the remaining 1243 cases, molecules constructed using AS paths are insufficient for

prediction. Of these, 1079 cases have empty molecules and 164 cases have insufficient

106

prefixes. We perform prediction using the hybrid molecules for the 1243 cases in two

parts. We separate the 782 cases where the hybrid molecules should be sufficient for

prediction purposes, as they have greater than 50 prefixes, and achieve a predictability

of 93.58%. For the remaining 461, we divide the number of prefixes in the hybrid

molecule into two equal parts of training and test sets and perform failure prediction,

if the molecule has at least 2 prefixes. This amounts to 444 out of 461 cases, resulting

in a coverage of 18.87% and a predictability of 83.51%. Combining the prediction

results of all the three cases with 1110, 782 and 444 values, we obtain a coverage

of 99.28% and a predictability of 90.82%. There are only 17 cases for which we

cannot perform prediction using the hybrid scheme, because the hybrid molecule has

less than two prefixes. Assuming that our prefix sample was a representative one

(Section 4.3.1), we conclude that the hybrid prediction scheme is the best, as it can

predict failures of almost any prefix in the Internet with around 91% accuracy.

4.6 Improving CDN Availability

In this section, we study the application of BGP molecules in improving the avail

ability of servers returned by a content distribution network (CDN). We demonstrate

this application on Akamai’s CDN, expecting that it can be applied to other CDNs.

4.6.1 Akamai CDN Primer

We use an example to illustrate the resolution of Akamai-hosted content by a

client. Suppose a client wishes to resolve the URL http://www.buy.com/videoclip/top

apple/81074.html which provides information on Apple products. This URL redi

rects to http://videos.buy.com/videos/buytv/2011/264/264 Apple.mp4 so the client

needs to resolve videos.buy.com. The client starts by querying its local DNS for

videos.buy.com and obtains the canonical name (CNAME) videos.buy.com.edgesuite.n

et. The domain edgesuite.net is used by Akamai for content delivery [142]. The

client then queries the local DNS for this CNAME and receives another CNAME

http:edgesuite.net
http:videos.buy.com
http:videos.buy.com
http://videos.buy.com/videos/buytv/2011/264/264
http://www.buy.com/videoclip/top

107

Table 4.3
Components of the 2353 prefixes of interest in our 316 AS sample
and prediction results of hybrid prediction scheme. Failure prediction
window=300 seconds.

Description Number

of prefixes

Coverage

(%)

Failure

Predictability (%)

AS path molecules do

not have any prefix

1079 45.86 % -

AS path molecules

have < 50 prefixes

164 6.97 % -

AS path molecules are

sufficient for prediction

2353-1079-164

=1110

47.17 % 91.82 %

“Hybrid” molecules

having < 2 prefixes

17 0.72 % -

“Hybrid” molecules having

≥ 2 and < 50 prefixes

444 18.87 % 83.51 %

“Hybrid” molecules

having ≥ 50 prefixes

782 33.23 % 93.58 %

Total cases where hybrid

molecules are used

782+444=1226 52.1 % 89.93 %

Hybrid prediction

combining all techniques

1226+1110=2336 99.28 % 90.82 %

a1507.b.akamai.net in a similar fashion as the first step. Querying the DNS servers for

this CNAME yields two content servers in the reply. We call this last-stage CNAME

which resolves to content servers as the CNAME for short since CNAME uniquely

identifies a piece of content. The servers returned by resolution of the CNAME will

vary with querying clients and at various times of the day for ensuring best client

performance [142]. Akamai hosts different types of content – both web sites and video

http:a1507.b.akamai.net

108

streams. The actual CNAME returned can have different forms based on the con

tent. For example, Apple uses Akamai to host images.apple.com which has CNAME

a199.gi3.akamai.net.

4.6.2 Experiments

We now describe our experiments used to show the application of BGP molecules

in improving availability of Akamai’s content servers. We seek to identify a set

of Akamai CNAMEs with adequate breadth that will be used in this study. We

start with known Akamai CNAMEs like a1507.b.akamai.net and observe whether

changing the number (1507) or the letter (b) gives us a CNAME which resolves to

an Akamai content server. The number corresponds to a channel [193], whereas

the letter corresponds to the way channels are grouped. Using the above tech

nique and observed CNAMEs for Akamai-hosted content, we discover eleven Akamai

CNAME patterns, listed in Table 4.4. We find that for each of the patterns, chan

nel numbers 0 to 4094 lead to valid CNAMEs. For example, a0.vmg0.akastream.net

to a4094.vmg0.akastream.net represent valid CNAMEs resolving to Akamai content

servers. This fixed number of 4095 for each of the eleven CNAME patterns is 212 − 1

which may reflect the number of bits used to store channel numbers. In the remainder

of this section, we use eleven random CNAMEs, one from each pattern of Table 4.4,

with a random number between 0 to 4094 as the channel number. These CNAMEs

used are shown in the table as well. For example, a3516.c.akamai.net represents a

CNAME that we use for our study from the second pattern.

To achieve credible results, we query the eleven random CNAMEs of Table 4.4

from different clients spread all over the world. We use 353 PlanetLab [186] nodes as

clients in our experiments. Each node queries its local DNS servers for each of the

eleven CNAMEs one by one in a loop, for about six weeks beginning August 28th ,

2011 and ending October 8th, 2011. The period of querying each CNAME ranges

from around 30 seconds to little over a minute. The query, if successful, returns two

http:a3516.c.akamai.net
http:a4094.vmg0.akastream.net
http:a0.vmg0.akastream.net
http:a1507.b.akamai.net
http:a199.gi3.akamai.net
http:images.apple.com

109

Table 4.4

Akamai CNAMEs studied in this section with the actual CNAME used

CNAME pattern Actual CNAME used

x = 0 to 4094 for all rows unless specified otherwise

a{x}.b.akamai.net a2561.b.akamai.net

a{x}.c.akamai.net a3516.c.akamai.net

a{x}.f.akamai.net a3886.f.akamai.net

a{x}.h.akamai.net a3417.h.akamai.net

a{x}.k.akamai.net a246.k.akamai.net

a{x}.l.akamai.net a2225.l.akamai.net

a{x}.p.akamai.net a714.p.akamai.net

a{x}.vmg0.akastream.net a818.vmg0.akastream.net

a{x}.vmg2.akastream.net a3237.vmg2.akastream.net

a{x}.uqg0.kamai.net a3994.uqg0.kamai.net

a{x}.gi3.akamai.net a40.gi3.akamai.net

content servers to which round-trip times (RTTs) are measured from the client by

taking the minimum RTT of three ping packets. Both the servers and their RTTs

are recorded in each iteration.

The experiments running on 353 PlanetLab nodes over a six week duration for

eleven CNAMEs together complete around 240 million iterations. On the average,

there are approximately 62100 iterations per CNAME per node over the six week

period. We find that there are 3864 unique six-week long queries for a CNAME from

a node, which we represent as a (CNAME, node) tuple.

We first investigate whether the two content servers returned by Akamai in re

sponse to a query belong to the same prefix. This is important because BGP molecules

are constructed from routing data, and hence are on the granularity of prefixes. The

IP-address-to-prefix mapping is performed using Cymru [194]. We collect the IP

110

addresses from each of the 240 million iterations and find 11,100 unique IP ad

dresses with an average of 31 IP addresses per node observed during the six week

period. These 11,100 IP addresses are then mapped to their corresponding prefix

using Cymru. We then go through each of the iterations ascertaining whether the

two IP addresses returned in response to a query for a CNAME belong to the same

prefix or not. We compute the number of the 3864 six-week long (CNAME, node)

queries for a CNAME through a node that see IPs from a different prefix (in response

to a single query) at some point during the six-week measurement period. We find

that 58.5% of the 3864 queries always see IPs from the same prefix. For each of the

3864 queries, an average 2.25% of the iterations see server IPs from different prefixes.

The number of Akamai prefixes seen by a six-week long (CNAME, node) query

has a median value of 12 and a mean value of 14. The number of prefixes seen per

node (aggregated across the CNAMEs queried) has a median value of 74 and a mean

of 78.5. There are a total of 594 Akamai prefixes seen in our entire experiment over

all nodes and CNAMEs for the six-week period.

Each content query yields two Akamai servers, which we refer to as a prefix pair.

The prefix pair may consist of the same prefix repeated twice and we do not distinguish

pairs based on the order of prefixes in the pair. We now go through each of the 3864

six-week long (CNAME, node) queries to find the time a prefix pair is used by Akamai

to deliver a particular CNAME’s content to a particular client. A prefix pair can be

reused for many successive queries until Akamai changes at least one of the prefixes

in the pair. If a prefix pair is first used at time t1 and is replaced by another prefix

pair at time t2, we consider td = t2 − t1 as the time when the prefix pair is used. It

is worth noting that a prefix pair may not be used for some duration and may be

reused again after some time, in which case a new t1 is recorded. We compute these

times td for each of the 3864 six-week long queries and find that its mean value is

1256 seconds while its median value is 123 seconds. The mean is affected by outliers,

hence median is a better estimate of the time a prefix pair is used. In the median

case, a prefix pair is changed every two minutes, which confirms the dynamicity of

http:anaverage2.25

111

Akamai’s content distribution network, which is known to react quickly to network

conditions and load [140]. This median value of two minutes also matches the median

redirection time of 100 seconds noted by the measurement study in [140].

4.6.3 Availability of Akamai’s CDN

Before suggesting improvements to Akamai’s content distribution scheme, we need

to evaluate its availability. For this purpose, we first collect routing tables and updates

from RouteViews [9] for the months of August through October. We then filter table

transfers using the technique of Section 3.3. For each of the 594 Akamai prefixes seen

during our experiments, we note whether they are in Announced or Withdrawn state

in the control plane during the experiment period. For each prefix, we initialize its

state using the routing table of August 28th right before our measurements began,

and then use the BGP updates to record its state changes and the corresponding

times of the changes. If an update does not change the prefix state, we ignore it,

since we are interested in computing the availability. If the prefix is not found in the

routing table, its initial state is unknown until an update is seen for the prefix. From

the RouteViews updates for the same time as our measurement period, we obtain

information on the states of 584 out of the 594 Akamai prefixes. We find that 76% of

those prefixes have only one state recorded for the six-week period, while 92% of the

prefixes have less than or equal to 3 states. This is consistent with the observation

made in Section 4.3.2 that prefixes are up most of the time.

We compute the availability of the current Akamai CDN for each of the 3864

(CNAME, node) queries. For each time period td that a prefix pair is announced (as

computed in the Section 4.6.2), we compute the time ta for which the prefix pair is

available in the control plane. A prefix pair is considered available if either of the

prefixes in the pair is in Announced control-plane state. We then add all the ta’s

and the td’s for the six-week measurement period and compute the availability of the

112

Akamai’s scheme as Availability
 =

P

P
 t

t

i
a
i
d

where tia is the ith ta value, the time a prefix

pair is available out of the time tid it is used by Akamai.

Having computed a single availability value for each of the 3864 (CNAME, node)

queries, we compute the statistics of these values and obtain a median of 100% and a

mean of 99.9879%. These numbers are high, which is to be expected since prefixes are

mostly in the Announced state and Akamai reacts to network conditions. However,

we find that there are several cases where the availability is not perfect. Only 89.8%

of the queries have 100% availability, and 9.68% of the queries have less than five-

nines availability, which is a benchmark value in dependability literature [175]. In

the following sections, we show how we can improve these availability values by using

BGP molecules.

4.6.4 Constructing Inverse BGP Molecules

To improve the availability of Akamai’s content distribution scheme, for each prefix

of interest whose server is used for delivering content, we need to find candidates for

backup prefixes, which are unlikely to fail together with the prefix. Hence, we are

interested in determining the inverse BGP Molecule of a prefix, i.e., the prefixes

which do not exhibit similar failure characteristics as the prefix. The candidates of

an inverse molecule of a prefix of interest should be the prefixes whose content servers

have served the same CNAME during our experiments.

We collect the IP addresses associated with each of the eleven CNAMEs from

Table 4.4 across all PlanetLab nodes. We find that an average of 1509 and a median

of 1177 IP addresses are associated with a CNAME. We use Cymru’s IP to prefix

mapping as above and find that a CNAME is associated with around 228 prefixes on

the average (230 in the median case). In a real deployment scenario, Akamai’s CDN

can make such a list of prefixes which serve a particular CNAME and use that to

construct inverse molecules.

113

We construct the inverse molecules using AS paths via the technique in Sec

tion 4.4.2. We construct two sets of molecules, one using the routing tables from

August 2011 before our experiments began and another from September 2011 when

our experiments were underway. For each of the 28 days of the August 2011 set, we

select the largest routing table for each day and merge these tables to form a com

bined August 2011 table, which has 437,361 unique lines. We then extract the prefixes

and the corresponding AS paths from these combined routing tables, and remove AS

path prepending and the first and last AS of the AS path as in Section 4.4.2. For

the September 2011 data, the combined routing table has 773,291 lines, which is also

processed like August 2011. We use these routing tables for all further processing and

call the processed AS paths as AS path sequences.

For each of the 594 prefixes, we go through each of the candidate prefixes in its

inverse molecule, which serve the same CNAME and choose it to be in its inverse

molecule if there are no AS path sequences in the routing table which are the same

for the two prefixes. Empty AS path sequences which can be caused by removal

of first and last AS in the path and AS prepending are ignored. We find that for

August 2011 data, on the average 87% (median 88%) of the prefixes have at least one

prefix in its inverse molecule. Empty inverse molecules can be due to a prefix not

being found in the routing table or all candidate prefixes having at least one same

AS path sequence. The corresponding numbers for September 2011 are mean and

median of around 96%. Given a prefix has at least one prefix in its inverse molecule,

the number of prefixes in an inverse molecule is around 160 for the mean and median

for both the August and September 2011 datasets. These results show that there are

usually sufficient number of prefixes in an inverse molecule to give our new content

distribution schemes (described in Sections 4.6.5 and 4.6.6) enough choices for backup

content prefixes.

We now investigate the stability of inverse BGP molecules by comparing those

constructed with August 2011 data to those constructed with September 2011 data.

Specifically, we seek to determine whether a prefix which has a non-empty inverse

114

BGP molecule in August 2011 also has one in September 2011 and if so, the proportion

of prefixes in its inverse molecule in August 2011 which also exist in September

2011. We find that all the prefixes which have a non-empty inverse molecule in

August 2011 also have one in September 2011. Our results also indicate that on the

average 95% (median 98%) of the prefixes existing in an inverse BGP molecule of a

prefix in August 2011 also exist in September 2011. This implies that the inverse

BGP molecules are stable, which helps our proposed content distribution schemes of

Sections 4.6.5 and 4.6.6. This is because inverse molecules can be constructed in a

fairly offline fashion say once every month and can be used in a content distribution

scheme which needs to be resolve client queries quickly. In what follows, we use the

inverse molecules constructed from August 2011 data before our experiments began

to evaluate improved content distribution schemes over the course of the next six

weeks of our experiments.

4.6.5 Improving availability of Akamai’s CDN

We now describe the first of our techniques to improve the availability of Aka

mai’s content distribution scheme based on the inverse BGP molecules constructed

in Section 4.6.4. Our schemes are simple variants of the original Akamai scheme i.e.

Akamai’s proprietary algorithms used to select content servers are still used. These

algorithms supposedly work best for Akamai and take into account internal factors

and network conditions which we cannot ascertain. Our scheme merely replaces the

second backup server returned by a query with another one for improving availabil

ity. We go through each of our queries which are successfully resolved in our six-week

of measurements and keep the primary server the same as that returned to us by

Akamai, while replacing the secondary server with a randomly generated one from

the inverse BGP molecule of the primary server’s prefix. Choosing a prefix randomly

makes this scheme very attractive for online implementation since one can compute

inverse BGP molecules in an offline fashion as demonstrated in Section 4.6.5. In case

115

the inverse BGP molecule of the primary server’s prefix is empty, we keep the query’s

result the same as that obtained in our experiments.

We now compute the availability of this scheme by using a technique similar to

Section 4.6.3. Hence, a prefix pair used in our new scheme is considered unavailable

if both the prefixes are unavailable in the control plane. We find that the average

availability of the 3864 (CNAME, node) queries increases to 99.9954%. However, the

real advantage of this scheme is revealed when we look at the percentage of queries

with availability compared to a threshold. We find that only 0.33% of queries have

availability less than five-nines which is a reduction of 96.6% w.r.t. the original Aka

mai scheme (Section 4.6.3). Also, 99.53% of the queries have perfect 100% availability

which is an increase of 10.8% w.r.t. the results of Section 4.6.3. Thus, we conclude

that our modified scheme is successful since it achieves perfect availability for nearly

all the queries over the six-week period.

Such a scheme with high availability may not be worthwhile to implement if clients

are now redirected to servers which have much higher latencies than the servers of

the original Akamai scheme. Low latencies to servers are very important in a content

distribution scheme, especially since Akamai is used for delivering dynamic content

like video and audio streaming [195]. We compute the latency inflation of this scheme

by computing the difference between the average latency to the client and the prefixes

in the prefix pair of the new scheme versus the original scheme. We estimate the

latency of a node to an Akamai prefix, either by choosing the median value of the

latency measured to IP addresses belonging to the prefix during our six-week long

measurements, if available, or by choosing the median of a day long measurement of

ping latencies to IP addresses within the prefix. We stress that these are only latency

estimates to the prefixes computed to evaluate the effectiveness of our scheme with

no impact on the scheme itself. We compute the statistics of the average latency

inflation of our scheme across all queries and obtain a median value of 10.34 ms with

median percentage latency inflation of 17.4%. This inflation is likely because we have

randomly chosen a secondary prefix without any consideration of the latency from the

116

client to the prefix. We will determine if it is possible to design an informed scheme

which reduces latency while increasing availability in Section 4.6.6.

4.6.6 Latency-aware scheme

We now assume that Akamai’s content distribution scheme knows the approxi

mate latency from a client to all possible Akamai prefixes. We discuss implications of

this assumption below. We modify our content distribution scheme of Section 4.6.5 by

choosing the secondary server’s prefix to be the one from the inverse BGP molecule

with the least latency from the client which initiated the query. The latency of

the client to the prefixes is computed as the median of the measurements as in Sec

tion 4.6.5. If the inverse molecule of the primary server’s prefix is empty, we retain the

query results of the original measurements. From the latency perspective, this is the

best variant of the content distribution scheme proposed in the previous subsection.

The performance of this scheme along with other schemes studied in this section is

shown in Table 4.5. We evaluate the availability of this scheme as in Section 4.6.5 and

obtain a mean availability of 99.9948%. We find that only 0.58% of our (CNAME,

node) queries have less than five-nines availability, while 99.25% of the queries have

perfect availability. Thus, the availability results are only marginally worse than the

random prefix scheme of Section 4.6.5. We also evaluate the latency of this scheme

w.r.t. Akamai’s original content distribution scheme and find that the latency is lower

by 12.31 ms and 39.83% in the median case. This shows that, given the latencies of

a node to Akamai prefixes, one can improve both availability and latency.

While the assumption that Akamai knows the latency from a client to all its

prefixes is unrealistic, Akamai tries to achieve this through active measurements [140].

Our results from Table 4.5 show that the performance of a scheme which knows the

latencies is significantly better than the original Akamai scheme with latency savings

of around 40% in the median case. Hence, we posit that Akamai does not need

to know the latencies accurately; even an estimate of the latencies should lead to

http:findthatonly0.58

117

Table 4.5

Results of all variants of content distribution schemes

Scheme

Description

% queries

below

five-nines

availability

% queries

with 100%

availability

Median latency

difference

w.r.t. Akamai’s

scheme

Median latency

% difference

w.r.t. Akamai’s

scheme

Akamai’s scheme 9.68% 89.8% - -

Using random

inverse molecule

prefix

0.33% 99.53% 10.34 ms 17.37 %

Using least

latency inverse

molecule prefix

0.58% 99.25% -12.31 ms -39.83 %

a scheme which will perform better than the original Akamai scheme by increasing

availability and likely reducing latency. A scheme which uses estimates of latency

will have results somewhere in between the results of the second and third rows of

Table 4.5, and will be closer to the third row if the estimate is closer to the real one.

Hence, we conclude that BGP molecules are a very important tool in improving the

availability of a content distribution scheme without any significant latency hit.

4.7 Chapter Summary

This chapter has focused on clustering prefixes using similarity in their failure

tendency with the primary goal of predicting failures. We found the prefix charac

teristics of geographical location and AS paths to the prefix to be good indicators of

the failure tendency of a prefix. We use these characteristics to construct a group of

prefixes similar to a prefix of interest called a “BGP molecule,” which can be used to

predict failures of a prefix of interest. To the best of our knowledge, ours is the first

118

work to evaluate the similarity of prefixes in the Internet w.r.t. their failure tendency,

and demonstrate applications to failure prediction and content distribution networks.

We evaluate four schemes to predict failures of a prefix of interest. We find that a

scheme that näıvely observes past failures is impractical for online prediction. BGP

atom-based prediction has low coverage so it cannot be used for most prefixes. AS

path-based prediction achieves high predictability at a moderate coverage. A hybrid

scheme based on AS paths and geographical location performs the best with about a

91% predictability and 99.3% coverage, and thus is useful for predicting prefix failure

in the Internet. Success of our control plane failure prediction mechanism coupled

with the results of [122,123] imply that our technique should also be fairly reliable at

predicting data plane failures.

Our work does not aim at clustering the entire set of prefixes in the Internet – a

computationally intractable task for an online algorithm. Rather, we focus on pre

dicting failures of a few prefixes by tracking the failures of prefixes in their molecules.

In most of our experiments, we have used a random set of prefixes from the molecule

showing that once the molecule is constructed, we can change the set we track period

ically or on-demand (e.g., if our failure prediction rate is low) and still achieve good

performance. However, tracking failures based on RouteViews data is non-trivial.

This is because RouteViews updates are published at 15 minute intervals, which is

longer than a reasonable prediction time of a prefix failure. The routing updates of

some prefixes in the molecule must be available through an a priori mechanism. This

is why we prefer construction of BGP molecules using relatively static approaches

such as AS paths in routing tables and geographic location, over tracking failures in

real-time as in the Näıve prediction scheme. If such a setup exists, we can predict

failures in about the time it takes for BGP convergence, which is on the order of a

few minutes.

We investigate another application of BGP molecules in improving the availability

of a content distribution network using Akamai as a case study. We perform a six-week

measurement study querying eleven Akamai CNAMEs from 353 PlanetLab nodes,

119

recording the two content servers returned per query. We study the control-plane

availability of the content distribution network using BGP data, and find that while

the availability of most queries is high, there exist a significant number of cases

with availability lower than five-nines. We then propose a new approach where the

secondary server is replaced by one within a prefix which is in the inverse BGP

molecule of the primary prefix, and hence is unlikely to fail with it. We find that

a content distribution scheme which chooses secondary servers in a smart fashion

can simultaneously increase the availability and reduce the latency with respect to

Akamai’s scheme.

120

5. DNS IN THE CLOUD

In this chapter, we consider the implications of the evolution of Domain Name System,

which is one of the primary components of the Internet infrastructure (Section 2.1.2).

We consider the evolution of DNS to the cloud, which is an organization potentially

with multiple worldwide data centers (Section 2.4.2). The DNS service can be used

for the organization’s internal use for Global Traffic Management to redirect users to

the appropriate server (Section 2.4.1), and we study an example of that in Akamai’s

CDN in Section 5.2. The DNS service can also be provided by the cloud to any

Internet client as an external DNS system, and we conduct a measurement study of

Google external DNS in Section 5.4, leveraging our technique for geolocating data

centers of a cloud in Section 5.3. Finally, we consider how an Internet client can

obtain good performance while retrieving content from a highly distributed CDN like

Akamai through an external DNS like Google DNS (Section 5.5).

5.1 Motivation

With the emerging trend of cloud computing, external DNS services are being

offered through the cloud, for example, Google public DNS [41] and OpenDNS [42].

They are external in the sense that they are being offered not as a part of Internet

service provided to the client but as a standalone service provided by an Internet

cloud. These provide DNS choices to a client as an alternative to the DNS provided

by ISPs.

For example, Google has been offering public DNS services [41] since 2010. This

enables clients anywhere in the Internet to convert Internet hostnames to IP ad

dresses. Google provides two IP addresses that clients can use as their DNS servers,

namely 8.8.8.8 and 8.8.4.4. Google’s DNS has been rapidly gaining market share

121

since its launch [139], which makes it a representative candidate for studying external

DNS, as we have done in this chapter. Google advertises several benefits of using

its DNS servers, including added security and performance. Because of its extensive

infrastructure and global presence, Google DNS can resist various forms of security

attacks [154]. Google also claims client performance improvements [137] in using its

DNS servers, because of adequately provisioned servers and prefetching of name res

olutions to avoid cache misses. However, it does acknowledge the possibility of slow

browsing for certain sites, because of websites (like Akamai) which return servers

according to the resolver’s IP address. We study this in Section 5.5 and suggest

solutions to achieve better client performance while using external DNS.

Since its inception in the year 1998, Google has been steadily growing, starting

from a search company into an organization with an increasing role in the networking

community [196]. The search giant is recently pushing into providing networking

services like broadband Internet through using its own optical fiber networks [197].

Google also operates its data centers at several locations around the world, aiming to

provide low latencies to clients located anywhere [66].

Google traffic on the Internet is increasing, not only due to its search engine but

also because of the acquisition of YouTube in 2006. Labovitz of Arbor Networks

estimates that as of summer 2009, Google was carrying about 6-10% of Internet

traffic globally [198]. According to Labovitz, only two big ISPs carry more traffic

than Google, and a significant percentage of traffic is Google transit [199]. Google

is the fastest growing Autonomous System Number (ASN) group in terms of traffic

volume [199]. Thus, a study of Google’s data center network conducted in this chapter

along with a study of Google public DNS (Section 5.4) will shed light onto Internet

traffic as a whole.

122

5.2 DNS of Content Distribution Networks

Content Distribution Networks (CDNs) need to operate their own DNS infras

tructure to enable clients to be redirected to an appropriate server, determined by

Global Traffic Management (Section 2.4.1). In this section, we study the two-level

DNS infrastructure operated by Akamai, one of the largest CDNs. Other CDNs can

certainly have different DNS architecture, e.g. Huang et al. found that the CDN

Limelight uses a single level DNS infrastructure, with the DNS nameservers mapping

to the same IP addresses when queried from various worldwide clients [200]. These

nameserver IP addresses are announced using IP anycast [136]. As we shall see in

this section, this is different than Akamai, whose DNS server names map to different

IP addresses when resolved from different worldwide locations.

Akamai uses two levels of DNS servers to redirect clients to the closest con

tent server [142]. We use the same example as in Section 4.6.1 and illustrate the

steps involved in the resolution process. The client wishes to resolve the URL

http://www.buy.com/videoclip/top-apple/81074.html which redirects to http://videos.

buy.com/videos/buytv/2011/264/264 Apple.mp4 so the client needs to resolve videos.

buy.com. Figure 5.1 depicts the steps involved in the resolution of this URL by the

client.

The client starts by querying its local DNS for videos.buy.com. We omit the details

of this query in the figure for brevity, since it is not the final stage query. Either the

local DNS knows the answer from its cache, or it queries top level and Akamai DNS

servers and returns the canonical name (CNAME) videos.buy.com.edgesuite.net. The

client then queries the local DNS for this CNAME and receives another CNAME

a1507.b.akamai.net in a similar fashion as the first step.

We now use the command dig +trace [201] from the client to resolve this CNAME

so that we can follow the referrals from the root servers to the Akamai DNS servers,

eliminating caching at the local DNS server. However, the local DNS server is in

volved in the following queries to obtain IP addresses of the servers involved e.g.,

http:a1507.b.akamai.net
http:videos.buy.com
http://videos
http://www.buy.com/videoclip/top-apple/81074.html

123

Fig. 5.1. Steps taken by a client in obtaining content server for an
Akamai-hosted website

j.root-servers.net. The client queries the top level domain server j.root-servers.net for

a1507.b.akamai.net, which returns a list of nameservers authoritative for akamai.net

out of which the client chooses c.gtld-servers.net and queries it. This gives a list of

nameservers controlled by Akamai which are its top level nameservers. The client

chooses zh.akamaitech.net for the query in the next step. This server returns Aka

mai second level nameservers which are dependent upon the client’s location (i.e.,

proximity-aware). Overall, there are nine second level nameservers for this CNAME,

from n0b.akamai.net to n8b.akamai.net. The client then chooses n3b.akamai.net,

querying it for a1507.b.akamai.net which returns the content server 149.165.180.19.

http:149.165.180.19
http:a1507.b.akamai.net
http:n3b.akamai.net
http:n8b.akamai.net
http:n0b.akamai.net
http:zh.akamaitech.net
http:c.gtld-servers.net
http:akamai.net
http:a1507.b.akamai.net

124

While Akamai usually returns two content servers for each query, we use the first one

in this chapter.

The IP address of the second level nameserver n3b.akamai.net depends on the

client’s local DNS location and is different for different clients. This is because the

Akamai nameservers, both first and second level, redirect the client to the best pos

sible (based on location and network conditions) nameservers and content servers.

Hence, the client achieves good DNS resolution performance and fast content re

trieval.

The CNAME and its associated nameserver can have different forms based on

the content. For example, Rush Radio 94.5 uses Akamai for audio streaming with

CNAME a23.vmg0.akastream.net. However, the resolution of these different CNAMEs

follows the pattern of Figure 5.1, with corresponding changes. For example, the sec

ond level nameservers of a23.vmg0.akastream.net are n0vmg0.akamai.net to n6vmg0.

akamai.net.

5.3 Technique for Geolocating Cloud Data Centers

Extensive research exists on geolocating IP addresses in the Internet [202]. A

detailed discussion on geolocation techniques is outside the scope of this disserta

tion. In this section, we discuss how to geolocate IP addresses of cloud providers,

with the goal of discovering the data centers of the cloud. Throughout this chap

ter, we use the commercial geolocation tool GeoIP City provided by MaxMind [203]

to geolocate IP addresses. We use the web-based lookup service MaxMind GeoIP

City/ISP/Organization Web Service available at [204]. This geolocation is accurate

up to 25 miles for most IP addresses [205].

Using this service, we can easily geolocate Akamai content servers and name-

servers with reasonable accuracy, which gives us locations of Akamai’s data centers.

For example, in Figure 5.1, we can geolocate the end-server 149.165.180.19 to Bloom

ington, Indiana, which is found to be 85 miles away from our client IP’s location (also

http:149.165.180.19
http:akamai.net
http:n0vmg0.akamai.net
http:a23.vmg0.akastream.net
http:CNAMEa23.vmg0.akastream.net
http:n3b.akamai.net

125

found using MaxMind). We compute the distance between two locations, given their

latitudes and longitudes using Haversine Formula [190] for computing the great-circle

distance. The RTT of the server from the client is found using ping to be 1.5 ms,

which is reasonable given the expected Geo-RTT of 1 ms between the nodes. The

Geo-RTT is computed based on the estimate that the bits travel through the Internet

at 4/9th the speed of light in vacuum [66].

However, there are cases when a simple geolocation of IP addresses will not give

expected locations using a geolocation tool. For example, as we show in Section 5.4,

most of Google’s IP addresses resolve to its headquarters in Mountain View, Califor

nia. The results seem inaccurate given Google’s well-known global presence. Besides,

there are cases when a single IP address is announced from all over the world through

IP anycast, like Google’s public DNS address 8.8.8.8. Maxmind’s geolocation tech

nique will be unsuccessful in locating data centers in that case as well. One of the

solutions to this problem is presented in [139], who attempt to geolocate Google DNS

data centers. The authors embed Javascript code in a popular website which causes

Google DNS to reveal its IP to DNS servers under the authors’ control, while resolving

the website on behalf of clients visiting it. This requires an infrastructure setup and

is passive in that it requires a period of measurements beyond the authors’ control

where clients using Google DNS visit the website from various locations around the

world.

Rather than relying on extensive infrastructure and measurements over a signif

icant period of time, we design a novel lightweight active technique for geolocat

ing cloud data centers. We use PlanetLab [186] nodes spread all over the world to

run traceroutes to the “target” IP address which we wish to geolocate, for example

Google’s public DNS IP address 8.8.8.8. We define VTIP, which is the Virtual Target

IP, as the last hop right before the target IP in the traceroutes. We then geolocate

these VTIPs using MaxMind [203] and determine unique locations for these VTIPs.

To geolocate cloud data centers, we use hierarchical clustering algorithms [174] to

cluster the unique latitudes and longitudes of VTIPs using Matlab [206]. We com

126

pute the distance between two locations using Haversine Formula [190]. and cluster

them using the agglomerative complete link clustering technique [174], where the dis

tance between two clusters is determined by the distance between its farthest points,

using 50 miles as the cutoff distance between clusters. Since the accuracy of MaxMind

is 25 miles, two IPs at the same location can be no more than 50 miles apart. The

clusters returned are the cloud data centers. We present the results of this technique

in Sections 5.4 and 5.5 and find that our technique is fairly successful at locating

appropriate number of cloud data centers as is publicly known. While this technique

does suffer from measurement errors and its accuracy will depend on the number of

Planetlab nodes used and the duration of the measurements, its lightweight active

nature makes it a good choice for geolocating data centers of clouds, that seldom

divulge its data center locations to the public.

5.4 Measurement Study of Google DNS

In this section, we describe our measurement study of various facets of Google’s

public DNS. One of the metrics we use to evaluate Google is whether it redirects clients

to its closest data center. A key challenge in evaluating that metric is that the Google

data center locations are unknown. To the best of our knowledge, Google does not

make its data center locations public. There are a few blogs which record data center

locations [207,208], but the credibility of their information is unclear. Moreover, not

only do we need the data center physical locations but also their IP addresses, in order

to measure network characteristics to these addresses. In this section, we address the

challenge of geolocating the data centers by using our technique from Section 5.3.

After we geolocate the data centers and compose a representative set of IP ad

dresses for the data centers, we conduct a series of experiments to analyze the per

formance of public DNS. We investigate the performance of Google public DNS by

looking up web sites through both native and Google DNS and comparing the results.

We measure the round trip latency to the servers returned, and the Time-to-Live

127

(TTL) value of the DNS entries returned along with the DNS query time. We study

lookup results for both highly popular and less popular web sites, including some

search competitors of Google.

We conduct another set of experiments to investigate the claim that queries to

Google public DNS reach the closest data center. A client reaching the closest data

center may or may not experience the lowest latency due to a variety of reasons, such

as queuing delay and interdomain routing issues [66]. To represent the Google data

centers that correspond to public DNS, we run traceroutes to the public DNS IPs

from clients spread around the world for a period of a few days, and note the IP

address of the node right before the Google public DNS IP in the traceroute. We

then collect the list of addresses and geolocate them to compose a representative list

of addresses according to our technique of Section 5.3. We measure latencies to the

representative IPs of Google public DNS around the world, and compare them to the

latency observed to the Google public DNS IP.

Finally, we study the performance of the most famous Google application, Google

search, performed on the server returned by native DNS and by Google public DNS.

The reason for using Google public DNS for Google searches is to validate whether

this DNS server returns an optimal Google server in terms of application performance.

Since by using this DNS, all steps of a search proceed through Google’s network, one

can assume that this yields the best available server. We also record the packets

exchanged during the TCP session of the Google search between the Google Front

End (GFE) and the client, and observe the trends in the Google search time reported

by Google, and the overall session time.

We utilize PlanetLab [186] in our experiments, in order to leverage clients geo

graphically spread in the world. This is important since we aim to study Google’s

global network of data centers. We use all the PlanetLab nodes that were available to

use at the time of starting our experiments (June 2010). In total, we have 688 nodes

spanning 44 countries and 268 unique locations (as determined by the latitudes and

128

longitudes). The distribution of the continents to which the nodes belong to is shown

in Table 5.1.

Table 5.1

Continent Distribution of the PlanetLab Nodes

Continent Number of Clients

Asia 95

Europe 242

Africa 4

North America 315

South America 20

Australia 12

Total 688

5.4.1 Insight into Google’s Network

We start with the Internet Routing Registry (IRR) [209] for obtaining information

about Google’s network. We look up the WHOIS of the five Internet Regional Internet

Registries (RIRs), namely ARIN [210], RIPE [211], APNIC [212], AFRINIC [213]

and LACNIC [214], and record the range of IP addresses and Autonomous System

(AS) numbers allocated to Google. The Whois lookups result in the ASes 15169,

36039, 36040, 36384, 36385 definitely belonging to Google. ASes 8551 and 3552 likely

belong to Google as reported by RIPE Whois; however they are also reported to be

maintained by other organizations. There are also several IP address ranges reported

by the Whois results which are not reported as belonging to any AS.

This technique of looking up IP ranges through Whois is, however, fraught with

errors. There exists the possibility that the databases are incomplete. Moreover, it is

not clear which IPs will be used by Google and for which purposes. Hence, we devise

an experiment to discover the Google IPs actually used as described below.

129

Through each of the available 688 PlanetLab nodes, in a single iteration, we lookup

the Google front page www.google.com, and record the IP address returned. We then

run traceroutes to the IP address(es) returned. We use Paris traceroute because of its

ability to yield a single consistent path in the presence of load balancers. We conduct

300 iterations, one every 15 minutes, thereby running cumulatively for a period of

three days.

We now combine the IP addresses of Google Front Ends (GFEs) obtained during

this experiment across all the PlanetLab nodes. This gives 232 unique IP addresses,

i.e., about one unique IP per three PlanetLab nodes. We geolocated these IP addresses

using MaxMind, and discovered that MaxMind shows the IP addresses belonging to

only eight unique locations, as determined by latitude and longitude. Seven of the

eight locations are located in the United States (US), and three of those are in the

Mountain View, California, area. We verified these results through geolocation of

these IP addresses using other freely available services such as IP2Location [215]. We

conclude that the results are not accurate, since Google operates more than eight

data centers in the US alone.

This experiment demonstrates the difficulty of geolocating Google’s data centers.

In fact, similar observations have been made in blogs, e.g., by [207], which claims that

nearly all of Google’s IP addresses resolve to Mountain View, CA, the headquarters

of Google. Looking back at our 232 IP addresses of GFEs, 206 or about 89% appear

to be in Mountain View, California. This percentage is uncharacteristically high and

seems to support the secretive nature of Google about its data centers as mentioned

in [207]. While we do not know the exact techniques used by Google for the IP

addresses of its GFEs, we believe that one possibility can be that the IP addresses

are anycast, thereby leading to the closest data center while geolocating primarily to

Mountain View, CA.

We now proceed to analyze traceroutes conducted from the PlanetLab nodes to

the Google IPs we obtained. We seek an answer to the question: how many hops in a

typical traceroute are traversed within Google’s network and how many are traversed

http:www.google.com

130

outside it? To identify Google’s network, we use RouteViews [9], which contains

routing tables containing the prefixes advertised by various ASes using the Border

Gateway Protocol (BGP). We use the routing tables from May and June 2010, and

collect the prefixes advertised by the five confirmed Google’s ASes at any time during

this period. We consider these prefixes as the most accurate and latest indication of

the IP addresses used by Google (more accurate than Whois databases which may

contain inaccurate and outdated information).

This technique yields 892 prefixes belonging to Google, which include the two

prefixes of the Google public DNS, namely 8.8.4.0/24 and 8.8.8.0/24. For each of

the hops of the traceroutes to the GFEs, we determine if the IP address lies within

the prefix of any of the 892 prefixes. If so, we declare the IP to be inside Google’s

network. We use about 438,000 traceroutes, combined across all PlanetLab nodes,

for further processing in this section. Hence, if there are ht total number of hops in

the traceroute, and hbg number of hops before entering Google’s network, the hop

at hbg + 1 will be the first hop inside Google’s network. We record these numbers

for each of the traceroutes (across all PlanetLab nodes), and then compute the ratio

hbg

ht
, which we call the Pre-Google Hop Ratio. The CDF of this ratio is shown in

Figure 5.2(a) with both mean and median being around 2/3. The plots show that

on the average, traceroutes to a Google Front End traverse 1/3rd of the hops inside

Google’s network. An average traceroute to a Google IP takes about 11.9 hops, so

about 4 of those hops are traversed inside Google.

We also record the Round Trip Time (RTT) of each of the hops of the traceroute

by averaging the RTT of the available values out of the three ICMP packets sent by

Paris traceroute for each hop. Some packets may be dropped in the forward or return

path leading to no RTT value; we ignore those packets for the RTT computation. We

then compute the ratio of the RTTs of the hop right before Google’s network rttbg and

the last hop (Google Front End) rttt of the traceroute. The CDF of the RTT latency

ratio is shown in Figure 5.2(b). The median value is around 0.64 while the mean is

around 1, affected by the high values of the RTTs obtained in certain cases. We find

http:GatewayProtocol(BGP).We

131

that about 1/3rd of the latency is spent inside Google’s network on a median basis,

which is consistent with the number of hops inside the Google’s network. There are

a few high values of the ratio, even greater than 1. High RTTs are not uncommon in

measurements [66] and queuing delays on the forward or the reverse path can easily

cause the RTT of a hop to be higher than a subsequent one in a traceroute, since

each hop is probed by different packets. However, the median values, not affected by

outliers, exhibit consistency between the number of hops and the latency.

 1 1
 0.9 0.9
 0.8 0.8
 0.7 0.7

F
re

qu
en

cy

0 0.2 0.4 0.6 0.8 1 0 1 2 3 4 5

F
re

qu
en

cy 0.6
 0.5
 0.4

 0.6
 0.5
 0.4

 0.3 0.3
 0.2 0.2
 0.1 0.1

 0 0

Hops to Google network/Total # of Hops RTT at hop before Google network/Total RTT
rttbg hbg (a) Pre-Google Hop Ratio

ht
(b) Pre-Google RTT Ratio

rttt

Fig. 5.2. CDFs of hops and delays from traceroutes to Google Front Ends

5.4.2 Geolocating Google Data Centers

As discussed above, geolocating the GFEs yields inaccurate locations for Google

data centers. Hence, we use the technique of Section 5.3 to geolocate Google data

centers. We parse all the traceroutes conducted to GFEs from PlanetLab nodes and

call the last but one hop of the traceroute the Virtual Google Front End (VGFE), since

it is not the actual front end, but the hop right before it in the traceroute towards

the GFE. Clearly, the mapping between a VGFE and a GFE is many-to-many, since

multiple VGFEs can exist for one GFE and vice-versa.

132

We obtain 790 unique VGFE IP addresses from the traceroutes collected from

the PlanetLab nodes. This number is about 3 times the corresponding number of

GFEs and is a little more than one per PlanetLab node, which implies that these

IPs are unlikely to be anycast. We geolocate them using MaxMind [203] and obtain

106 unique locations (determined by latitude and longitude). Out of these, 45 unique

locations are in the US. We the use hierarchical clustering algorithms [174] to cluster

the 106 unique latitudes and longitudes of VGFEs as described in Section 5.3. This

gives us 75 clusters out of the 106 unique locations. We also cluster the 45 unique

locations in the US using the same technique and obtain 25 clusters. This number

is consistent with the 19 US data center locations reported in [208], considering that

this number was reported around 3 years ago. While our technique is certainly not

perfect for geolocating Google data centers, in the absence of public information and

due to the problem of geolocating GFEs, we consider these results of geolocating

VGFEs promising.

We now compare the RTTs of the VGFEs with the RTTs of the GFEs in all

438,000 traceroutes. We compute the ratio of VGFE RTT to GFE RTT for each

traceroute. The closer this ratio is 1, the closer the VGFE is to the GFE. The CDF

of the VGFE RTT to GFE RTT ratio is shown in Figure 5.3. Interestingly, this ratio

is greater than 1 most of the time, with median 1.16 and mean 1.43. Again, using

the median to eliminate impact of outliers, we conclude that the RTTs of VGFEs

and GFEs are typically within 20% of each other. While this seems like a high

percentage, the average RTT of a GFE is around 31 ms, which means that the RTTs

of a VGFE and a GFE will be typically within 5 ms of each other. We note this as

the approximate error margin of RTT when using VGFEs.

It is also interesting to note that the VGFE RTT is almost always higher than the

GFE RTT. This can be attributed to the fact that the GFEs are likely well-connected

from anywhere in the world. The forward or the reverse path of a GFE is hence less

congested than the corresponding path for a VGFE. While this means that we will

be underestimating the connectivity of a GFE if we instead use VGFE in place of it,

133

geolocation of the Google data centers is worthwhile. We will keep the error margin

in RTT mentioned above in mind when using VGFEs.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

Fr
eq

ue
nc

y

0 1 2 3 4 5

VGFE RTT/GFE RTT

Fig. 5.3. CDF of the ratio VGFE RTT/GFE RTT

Having geolocated the VGFEs, we leverage similar techniques to geolocate the

Google public DNS servers. We run traceroutes to the Google Public DNS IP 8.8.8.8

from various PlanetLab nodes over a period of a couple of days resulting in about

245,000 traceroutes. We again use the prefixes originated by Google’s network to

determine the hops inside Google’s network in the traceroutes to the public DNS IP.

Let htDNS be the total number of hops in the traceroute to DNS IP and hbgDNS be

the number of hops before entering Google’s network. We compute the Pre-Google

hbgDNS DNS Hop Ratio . The CDF of this ratio is about the same as Figure 5.2(a)
htDNS

with both the median and the mean of the Pre-Google DNS Hop Ratio being around

2/3rd . Similar to the traceroutes to Google IPs, we also compute the Pre-Google DNS

RTT Ratio which is the ratio of the RTTs of the hop right before Google’s network

rttbgDNS and the last hop (Google DNS) rtttDNS of the traceroute. The median RTT

ratio is about 0.63 which is around 2/3rd just like the hop ratio, whereas the mean

RTT ratio is 1.11, affected by outliers where the RTT to the hop before Google’s

network is high due to queuing delays and other network conditions.

134

We also define VGDNS, which is the Virtual Google DNS IP, as the last hop right

before the Google DNS IP in the traceroutes. We collect all such VGDNS IPs across

the traceroutes from PlanetLab nodes. We first use these VGDNS nodes to geolocate

the Google data centers using techniques of Section 5.3 similar to those we used for

VGFEs. We obtain 571 unique IP addresses for VGDNS which respond to pings.

They are then geolocated using MaxMind [203] and we find 142 unique locations for

those IP addresses. We use the same hierarchical clustering algorithm to cluster these

IP addresses within a threshold of 50 miles. This leads to 98 unique clusters for the

142 IP addresses. If we consider the 67 unique locations located in US, they can be

grouped into 37 clusters.

We now compare the RTTs of the VDNSs with the RTTs of the GDNSs in all

245,000 traceroutes, and compute the ratio of VGDNS RTT to GDNS RTT for each

traceroute. The CDF of this ratio is depicted in Figure 5.4. This ratio is greater

than 1 most of the time, with median 1.19 and mean 1.43. These figures are very

similar to those obtained for VGFEs. Again, using the median to eliminate impact

of outliers, we conclude that the RTTs of VGDNSs and GDNSs are typically within

20% of each other. While this seems like a high percentage, the average RTT of the

DNS node is around 12 ms, which indicates that the RTTs of a VGDNS and DNS

will be typically within 3 ms of each other. We note this as the approximate error

margin of RTT when using VGDNS nodes. Since the RTTs of VGDNS nodes versus

DNS nodes are closer, compared to VGFE and GFE nodes, we consider the VGDNS

nodes to represent the Google data centers more closely.

5.4.3 Methodology

We now seek to study the performance of Google public DNS with the aim of

comparing it with native DNS. For this purpose, we look up 14 web sites (listed in

Table 5.2) using both native DNS and Google public DNS (IP 8.8.8.8) at periodic

intervals. The intervals are chosen based on the TTL values returned using the “dig”

135

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 1 2 3 4 5

Fr
eq

ue
nc

y

VGDNS RTT/GDNS RTT

Fig. 5.4. CDF of the ratio VGDNS RTT/GDNS RTT

command. Since the server returned would be the same if probing was repeated during

the TTL period, we set our interval to be the TTL value returned during the first

iteration. If the TTL value returned using the native DNS and the public DNS are

different, we select the higher of the two values as the probing interval. This ensures

that both the public DNS and native DNS entries returned during each interval are

not the cached ones. The experiments are repeated over a period of two days, with

the iterations performed depending on the probing interval.

The 14 web sites we lookup exhibit different levels of popularity, e.g., www.google.c

om and www.facebook.com are highly popular whereas other web sites like www.cs.pur

due.edu (the Computer Science Department at Purdue University), www.item.ntnu.no,

and www.lowfatlinux.com are much less popular. One of the features of popular web

sites is that their TTL values are low so lookups are more frequent.

In the subsequent sections, we study three features of Google public DNS, namely,

caching, DNS query time, and lookup results in terms of RTT to the server returned.

http:www.lowfatlinux.com
http:www.item.ntnu.no
www.cs.pur
http:www.facebook.com
www.google.c

136

Table 5.2

Web sites resolved for comparing Google public DNS and native DNS

Web Site Number Web Site

1 www.bing.com

2 www.google.com

3 www.ask.com

4 www.youtube.com

5 www.yahoo.com

6 www.facebook.com

7 www.search.yahoo.com

8 www.craigslist.org

9 www.caida.org

10 www.cs.purdue.edu

11 www.ripe.net

12 www.item.ntnu.no

13 www.ieee-infocom.org

14 www.lowfatlinux.com

5.4.4 DNS Caching

We record the TTL values for the web sites in Table 5.2, as reported by looking up

each site from both Google public DNS (TTLgDNS) and native DNS of the PlanetLab

node (TTLnDNS). The higher the TTL value, the longer the result will be cached.

We compute the difference TTLgDNS −TTLnDNS whose mean and median values are

shown for each of the sites in Table 5.3 along with the mean values of TTLnDNS.

The results demonstrate that for popular web sites, Google’s public DNS and na

tive DNS have about the same TTL values, indicating similar levels of caching. How

ever, two popular web sites, namely www.google.com and www.youtube.com stand

out since for them, the TTL values from Google public DNS (about a minute or so)

http:www.youtube.com
http:www.google.com

137

are higher than the native DNS values. This can be explained by the fact that since

the servers to be returned are controlled by Google, the best servers for a reasonable

TTL value can be returned easily. For relatively unpopular web sites, Google TTL

values expire much sooner than those of native DNS. For instance, for www.ripe.net,

the Google DNS caches for about 10 hours versus 28 hours on the average for native

DNS. Google is using prefetching [216], where Google DNS prefetches name resolu

tions independently of whether users ask for them. This can explain why the TTL

values are expected to be lower since during the probing interval, Google DNS could

have prefetched the records, reducing the TTL values. Another possible reason for the

lower TTL values can be that less popular web sites are accessed relatively frequently

through Google DNS because of Google’s popularity. This could lead to resolution of

names during the probing period. However, we believe that prefetching is the most

likely cause of lower TTL values. Overall, Google public DNS performs less caching

than native DNS for less popular web sites, prefetching name resolutions, whereas for

popular web sites, its caching behavior is about the same as native DNS.

5.4.5 DNS Query Resolution Time

We now study how the DNS query performance of Google public DNS compares

with that of native DNS. For each of the DNS queries performed over the course of

two days, we record the DNS query response time of the web sites through Google

public DNS QTimegDNS and that through native DNS QTimenDNS . We compute

the percentage difference of the public DNS query time from native DNS query time

according to the equation:

(QT imegDNS −QT imenDNS)×100
% Difference in Query Times = .

QT imenDNS

The statistics of this percentage difference for the 14 web sites are listed in Ta

ble 5.4. We observe that, except for few web sites, the query time of Google DNS is

quite high compared to that of native DNS even for the median case. There are cases

http:www.ripe.net

138

Table 5.3
Statistics of diff=TTLgDNS − TTLnDNS

Web Site diff

Mean (s)

diff

Median (s)

TTLnDNS

Mean (s)

www.bing.com 6.16 -4 15.00

www.google.com 62.16 59 178.89

www.ask.com 5.88 -4 15.56

www.youtube.com 52.86 42 196.56

www.yahoo.com 0.75 -7 41.25

www.facebook.com 4.53 4 70.05

www.search.yahoo.com 3.99 12 173.82

www.craigslist.org -25.49 -35 214.68

www.caida.org -125.86 -112 495.39

www.cs.purdue.edu -8030.39 -3965 57420

www.ripe.net -38418.9 -24387 104231

www.item.ntnu.no -10773.3 -1141.5 75411.9

www.ieee-infocom.org -516.05 -226.5 3133.56

www.lowfatlinux.com -4096.34 -8075.5 65508.7

when Google public DNS performs better but on the average, native DNS outper

forms Google public DNS. This can be a surprising result given Google’s resources.

However, this can be attributed to Google’s DNS service being subjected to the prob

lems of interdomain routing and delays due to queuing in the Internet. Clearly, from

this perspective, having a local DNS is preferable.

5.4.6 DNS Lookup Results

For every DNS lookup conducted through Google public DNS and native DNS

during our experiments, we record the RTT to the server returned as a result of the

139

Table 5.4
(QT imegDNS −QT imenDNS)×100

Statistics of % diff=
QT imenDNS

Web site % diff

Mean (%)

% diff

Median (%)

www.bing.com 1206.54 250

www.google.com 2793.82 800

www.ask.com 1121.2 200

www.youtube.com 2117.76 300

www.yahoo.com 1133.74 40

www.facebook.com 1364.29 252.17

www.search.yahoo.com 1151.4 50

www.craigslist.org 914.82 -58.57

www.caida.org 819.02 -80.27

www.cs.purdue.edu 1164.13 22.41

www.ripe.net 838.77 -3.59

www.item.ntnu.no 899.27 -80.47

www.ieee-infocom.org 843.81 -66.67

www.lowfatlinux.com 1137.06 -76.36

lookup. The RTT is recorded by averaging the RTTs of 10 ping packets. For each

iteration, we record RTTgDNS , which is the RTT to the server returned by resolving

the web site through Google public DNS, and RTTnDNS, the corresponding value

through native DNS.

Although we trigger the ping probes immediately following the DNS lookup, the

RTTs to the servers may change based on queuing delays and network conditions.

Hence, we consider two cases, one where the servers returned by the two DNS services

are the same, and the second where they are different. For each of the cases, we

140

compute the value of RTTgDNS − RTTnDNS , the statistics of which are shown in

Table 5.5.

Table 5.5
Statistics of difference between RTTgDNS and RTTnDNS for same and
different servers

Web Site

(www.*)

Mean

Same

Server (ms)

Median

Same

Server (ms)

Mean

Different

Server (ms)

Median

Different

Server (ms)

bing.com -11.38 0 25.02 15.11

google.com -2.19 0 -20.97 -0.1

ask.com -9.08 0 22.44 16.76

youtube.com -1.93 0 -16.49 -0.069

yahoo.com -1.81 0.002 16.02 0.305

facebook.com -6.7 0 29.82 0.896

search.yahoo.com -0.55 0 20.81 -8

craigslist.org 0.13 0 -27.77 -54

caida.org 0.092 0 -7.7e+06 -365

cs.purdue.edu -0.095 -0.003 -4.51e+06 -55

ripe.net 1.23 -0.003 -28888.3 -56

item.ntnu.no -0.48 0 -8.03e+06 -404.5

ieee-infocom.org -0.17 0 -2338.44 -3385

lowfatlinux.com 1.03 -0.001 -1.43e+07 -57236

The results indicate that the RTTs to the same server are almost the same. This

validates our methodology as despite that pings are triggered at slightly different

times, the RTT values are not severely affected. When we compare the RTTs to

different servers being returned by Google and native DNS, we find that for unpopular

web sites, the servers returned by Google have extremely high performance. This can

be attributed to the prefetching strategy of Google, whereby the best servers can be

141

picked before a resolution request comes in. For the Google and YouTube servers, the

servers returned by Google public DNS are moderately better in latency than those

given by native DNS.

For other popular web sites, the servers given by Google DNS fare worse in

RTT than their native DNS counterparts. For example, for Google’s search com

petitors www.bing.com and www.ask.com, the servers returned are worse in latency

for both the median and mean cases by 15-25 ms. Since the RTT of servers returned

for these popular sites is itself of that order of magnitude, the RTTs can some

times be significantly higher. This also applies to other highly popular sites such as

www.facebook.com. This is because popular web sites have their own extensive data

center networks or clouds, and the optimal server chosen by the closest Google DNS

site to a client may not be the optimal one chosen at the client itself. We discuss

this poor performance of content retrieval of distributed websites while using Google

DNS and ways to improve client performance in Section 5.5.

5.4.7 Redirection Performance of Google Public DNS

We now study whether a query to Google public DNS is indeed redirected to the

“closest” data center location as claimed in the performance benefits of using the

service. Our definition of closeness is in terms of latency since this is the main factor

in the performance of the DNS application. As pointed out above in Section 5.4.5, a

high query time is likely due to the time taken to reach the data center location.

To investigate this redirection performance, we use VGDNS IP addresses from

Section 5.4.2 as an indication of the locations of public DNS servers. Even though

we had clustered them earlier, we now use all the 142 VGDNS nodes as candidates

for redirection to Google DNS. This is because while clustering helps us understand

the geographical location of data centers, closeness in geographical distance does

not necessarily mean closeness in network latency, which is the primary criteria for

determining query performance.

http:www.facebook.com
http:www.ask.com
http:www.bing.com

142

For a more in-depth investigation, we focus in this section on a subset of 20

PlanetLab nodes, well spread out geographically, with nodes from the US, Australia,

Poland, Korea, Finland, Netherlands, Spain, Israel, and Denmark. For each of those

nodes, in each iteration, we perform the following experiment. We measure the RTT

(using ping) to each of the 142 VGDNS nodes and compare it to the RTT of the

VGDNS node V GDNScurr obtained by finding the last hop in the traceroute to

the Google public DNS IP. We compute, in each iteration, the number of VGDNS

nodes with lower RTT than V GDNScurr, and if there are any, the RTT difference

between V GDNScurr and the VGDNS node with the lowest RTT. This estimates

the maximum RTT savings that could be obtained by redirecting the query to the

public DNS IP to a different location, indicating the best possible performance. It is

important to note that this potential RTT saving is observed via measurements, so

utilizing another VGDNS would have improved performance.

A total of 2200 iterations are completed across the twenty PlanetLab nodes. Out

of these, for only 20.8% iterations, none of the 142 VGDNS nodes have a shorter RTT

than the current VGDNS node V GDNScurr. This seems to point to other factors

being used to route to a Google public DNS node, since about 80% of the time,

we can find a lower latency VGDNS node than the one returned. The CDF of the

percentage of the 142 IPs which have lower RTT values in any given iteration is shown

in Figure 5.5(a). The mean percentage is 7.8% and the median value is 4.9%, which

implies that when VGDNS nodes with lower RTT are available, there are about 8% of

the total VGDNS nodes available which are closer on average. While these numbers

are low, even in the median case, there are about 7 VGDNS nodes which have lower

latency than V GDNScurr.

Of course, we need to consider the magnitude of the reduced latency when lower

latency VGDNS nodes exist. A miniscule improvement, e.g., a couple of millisec

onds, can easily be attributed to measurement errors and may not necessarily reflect

a better available data center. The maximum possible reduction in RTT can be ob

tained by using the alternate VGDNS node with the lowest RTT of the 142 possible

143

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

Fr
eq

ue
nc

y

1

 0 5 10 15 20

% VGDNSs with better RTT than current VGDNS
(a) CDF of % of VGDNS node with lower RTT than current VGDNS

 1
 0.9
 0.8
 0.7

Fr
eq

ue
nc

y

0 50 100 150 200

0.6
 0.5
 0.4
 0.3
 0.2
 0.1

 0

Maximum RTT improvement possible (ms)
(b) CDF of maximum RTT improvement possible over current

VGDNS by querying an alternate VGDNS

Fig. 5.5. CDFs of percentage of closer VGDNS nodes and the latency
improvement possible by moving to the closest VGDNS node

VGDNS nodes. The CDF of this maximum improvement in RTT is plotted in Fig

ure 5.5(b). The average improvement is about 135 ms, which is affected by some

high improvement values. However, even the median improvement is 16 ms, which is

non-negligible, given that the latency of the VGDNS node can differ from the latency

of the DNS node by an average of 3 ms (Section 5.4.2).

144

We examine a few cases of improvement in RTTs to see if the geographical loca

tion of the VGDNS nodes is consistent with the RTT improvement offered. One of

the PlanetLab nodes 147-179.surfsnel.dsl.internl.net located in Utrecht, Netherlands,

reached the VGDNS node with IP address 209.85.255.126, which according to Max-

Mind is located in Mountain View, CA, with an RTT value of 62 ms. However, our

list of VGDNS nodes includes a VGDNS node with IP address 162.97.116.65, located

in Rochester, NY, which would have resulted in an RTT of only 38.6 ms, resulting

in a 38% improvement in RTT. Geographically speaking, instead of being redirected

to a data center in NY 3690 miles away, it was redirected to one which is 5484 miles

away in CA. Using the observation that expected RTT through the Internet is that

obtained when bits travel at 4
9

th
the speed of light in vacuum [217], a distance of

1794 miles should result in savings of 21.7 ms, which is consistent with our result of a

saving of 23.4 ms. This result suggests that latency-based redirection of clients may

improve Google DNS lookup performance.

This high latency redirection performance is consistent with the findings of Google

researchers in 2009 [66]. They study a currently running system on Google’s network

which diagnoses causes of high latencies, some of which are reported to be fixed [66].

Our results show that there is still room for improvement in client redirection in the

Google public DNS service.

5.4.8 Performance of Google Search

We now study the performance of Google search – the most important Google

application and the number one search engine in the world. For each of the 20

PlanetLab nodes considered in Section 5.4.7, we look up www.google.com through

both native and Google public DNS, and find the RTT to these two GFEs returned

through ping. We take the minimum of these two latencies to be CurrRTT , the

latency of www.google.com. About 52% of the time, the GFE RTT from the public

DNS server is longer than the GFE RTT from the native DNS server. We also find

http:www.google.com
http:www.google.com
http:147-179.surfsnel.dsl.internl.net

145

the latency to the 232 GFEs recorded earlier in Section 5.4.1 and record if any of the

GFEs have lower latency than CurrRTT . We find that for only about 15.3% of the

iterations, none of the 232 GFEs have lower latency than the one returned from the

lookup of www.google.com. However, when we compute the mean latency by which

one of the GFEs is lower, we find that the median RTT improvement possible is only

3.7 ms while the mean RTT improvement possible is about 41.7 ms. The CDF of the

RTT improvement is depicted in Figure 5.6.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Fr
eq

ue
nc

y

0 5 10 15 20

Maximum RTT improvement possible (ms)

Fig. 5.6. CDF of maximum improvement possible using another GFE
rather than the one returned

We also performed Google searches on a few popular search terms, such as face-

book, google, and youtube (their popularity was determined by Google Insights [218])

on each of the GFEs, and recorded the entire packet exchange using tcpdump. The

search result was parsed to yield the Google Search Time as reported by the search

engine.

Using the tcpdump of the TCP connection exchange between the client and the

google.com server, we compute the RTT of the communication as the time elapsed

between the client sending the SYN and receiving the SYN-ACK. Since SYN packets

are small, transmission delays are negligible. We only assume that the server responds

immediately to the SYN. We also record the Google Response Time as the time

http:google.com
http:www.google.com

146

between the client sending the ACK to the SYN-ACK to the time when the GFE

sends a FIN packet, terminating the search session. For each of the 232 GFEs, we

record these three quantities: (i) Google search time, (ii) RTT, and (iii) Google

Response Time, and we compare the GFEs returned by resolving www.google.com

through native DNS with the public DNS case. A typical set of results for the search

term “facebook” for all GFEs is shown in Figures 5.7 and 5.8 along with the metrics

of the GFE redirected to through Google search.

The results illustrate that the distribution of search statistics is quite diverse.

Through both native and public DNS lookups, the performance of the resolved GFE

exceeds that of the median GFE, showing that the GFE to which the client is redi

rected to is better than in the median case. The GFE given by the native DNS

performs better in terms of RTT and overall Google response time. In contrast, the

search time reported by public DNS-resolved GFEs is usually lower than the native

DNS-resolved GFE. These results as well as our earlier results suggest that Google

public DNS uses server load as a more important criterion for GFE selection, com

pared to latency between client and server. This is easily explained by the fact that

the server load is known to Google and this information can be exploited by its DNS

for better search performance. This comes at the expense of RTT and Google response

time, due to unpredictable network conditions between the client and the Google DNS

server. This result points to a potential avenue for research on incorporating network

latency when selecting data centers or front ends.

5.5 Content Retrieval using Cloud-based DNS

Having obtained an insight into Google DNS through the measurement study

in last section, we now focus on content retrieval by a client using cloud-based DNS

with Google DNS as an example. As pointed out in the previous section, performance

degradation with cloud-based DNS has been observed, due to lack of proximity be

tween the server returned and the client. For sites which only have a few co-located

http:www.google.com

147

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5

Fr
eq

ue
nc

y

Search Time Reported by Google (s)
(a) CDF of Google search time as reported by all GFEs, Me

dian=0.13 s; GFE Native DNS search time = 0.22 s ; GFE public

DNS search time = 0.12 s

 0.9

 0.8

 0.7

 0 100 200 300 400 500

Fr
eq

ue
nc

y 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0

RTT Computed from Tcpdump (ms)
(b) CDF of RTT between client and all GFEs, Median=155 ms; GFE

Native DNS RTT=11.98ms; GFE public DNS RTT=55.23ms

Fig. 5.7. CDFs of Google search times and RTT

DNS and content servers, e.g., Purdue University, proximity of the returned content

server to the client is not a concern. Even for websites which have tens of data cen

ters comparable in number to cloud-based DNS systems like Microsoft [132,139], the

clients should receive good performance using cloud DNS. However, for a highly dis

http:dian=0.13

148

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 500 1000 1500 2000

Fr
eq

ue
nc

y

Google Response Time (ms)

Fig. 5.8. CDF of Google Response Time as reported through all
GFEs, Median=669 ms; GFE Native DNS Response Time=267ms;
GFE public DNS Response Time=465.49ms

tributed CDN like Akamai [142], this lack of proximity-awareness becomes a severe

problem. Huang et al. [139] estimate that the server latency increases by as much as

193 ms at the 95th percentile when using cloud-based DNS systems, compared to lo

cal DNS. This is unacceptable especially since Akamai’s network is used for dynamic

content that is fetched over a long period of time, e.g., video streaming.

Akamai is the dominant content provider, delivering between fifteen and thirty

percent of all Web traffic, reaching more than 4 Terabits per second [219]. It is

used in streaming popular content such as the recent UK royal wedding, and has

experienced peak loads of up to 10 million views per minute [220]. This makes the

problem of poor Akamai content servers returned by using cloud-based DNS systems

an important one, which we study in this section.

We use our technique of geolocating cloud data centers from Section 5.3 and find

that Google DNS servers are placed much sparsely around the world than Akamai’s

servers yielding poor perceived client performance while accessing Akamai’s content

using Google DNS. We then present and compare alternative solutions to handle this

problem. We posit that cooperation among cloud providers, those which host content

149

and those which host DNS services, is the best solution to this problem. However,

in the absence of such cooperation, clients need to be smarter when accessing CDN-

based content using cloud-based DNS systems. We present the design of a hybrid

client-cloud approach which uses our understanding of Akamai’s DNS network to

query specific nameservers whose identity (IP address) has been found using cloud-

based DNS. We find that the servers returned by this hybrid approach are usually

the same as those returned by local DNS, preserving the performance advantage of

local DNS. Our results also shed light onto Akamai’s network, demonstrating that

Akamai’s DNS servers do respond to queries even when asked out of turn, albeit after

a potential delay caused by possible information sharing across DNS servers.

5.5.1 Preliminary Measurements

We begin with a preliminary study of Akamai and Google DNS infrastructure.

Section 5.2 describes the operation of Akamai. Its CDN hosts different types of

content with various CNAMEs, e.g. a1507.b.akamai.net (Figure 5.1). We use the

eleven Akamai CNAME patterns from Section 4.6.2, which are listed in Table 5.6,

where channel numbers 0 to 4094 within a pattern lead to valid CNAMEs. It is known

from previous work that channels share edge servers for load balancing purposes [193].

We find that each of the 4095 channels within the same CNAME pattern map to edge

servers IPs within the same Class C subnet or /24 prefix. Since there are at most 256

IPs in a Class C subnet, the average number of channels mapping to an edge server

is about 16.

We now geolocate Google data centers by using our measurement technique in

volving traceroutes from Section 5.3. We run traceroutes to the Google Public DNS

IP 8.8.8.8 from 575 PlanetLab [186] nodes spread all over the world. We define

VGDNS, which is the Virtual Google DNS IP, as the last hop right before the Google

DNS IP in the traceroutes. We verify that these IPs indeed belong to Google in a

two-step process. We perform Whois lookups for Google which yield Autonomous

http:a1507.b.akamai.net

150

Table 5.6

Akamai CNAMEs studied in this section with their respective nameservers

CNAME pattern Nameservers

x = 1 to 4094 , y = 0 to 8 for all rows unless specified otherwise

a{x}.b.akamai.net n{y}b.akamai.net

a{x}.c.akamai.net n{y}c.akamai.net

a{x}.f.akamai.net n{y}f.akamai.net

a{x}.h.akamai.net n{y}h.akamai.net

a{x}.k.akamai.net n{y}k.akamai.net

a{x}.l.akamai.net n{y}l.akamai.net

a{x}.p.akamai.net n{y}p.akamai.net

a{x}.vmg0.akastream.net n{y}vmg0.akastream.net

y = 0 to 6

a{x}.vmg2.akastream.net n{y}vmg2.akastream.net

y = 0 to 6

a{x}.uqg0.kamai.net n{y}uqg0.kamai.net

y = 0 to 6

a{x}.gi3.akamai.net n{y}gi3.akamai.net

Systems (ASes) 15169, 36039, 36040, 36384, 36385 definitely belonging to Google

(Section 5.4.1). We then collect routing tables from RouteViews [9], which contains

routing tables containing the prefixes advertised by various ASes using the Border

Gateway Protocol (BGP) and verify that all the VGDNS IPs are indeed advertised

by Google ASes.

We collect all such VGDNS IPs across the traceroutes from PlanetLab nodes

run for around 12 hours (1000 iterations), and obtain 1477 unique IP addresses for

VGDNS. They are then geolocated using MaxMind [203] and we find 46 unique lo

151

cations for those IP addresses. We use hierarchical clustering using 50 miles as the

cutoff distance between clusters to obtain 40 clusters out of the 46 unique locations.

For locating Akamai data centers, we geolocate the content servers obtained by

PlanetLab clients, as they resolve 11 random Akamai CNAMEs (one each from each

row of Table 5.6) through local as well as cloud-based DNS (1000 iterations each). We

aggregate the results across PlanetLab nodes and obtain 3223 unique IP addresses,

which geolocate to 260 unique locations (latitudes and longitudes). Using the same

clustering technique as in the previous paragraph, we obtain 123 clusters. While

we by no means claim to discover all Akamai data centers, we point out that an

experiment running for the same time from the same clients uncovers about three

times as many Akamai data centers as Google data centers. This points to the more

extensive presence of Akamai content servers, as opposed to Google data centers

offering public DNS services.

5.5.2 Demonstrating the Problem

The problem we are investigating in this section is the high latency to the Akamai

content servers, that a client is redirected to, when using cloud-based DNS systems.

This problem stems from interactions between the cloud-based DNS systems and the

Akamai DNS infrastructure. Akamai DNS returns the closest server to the querying

node, which is the cloud-based DNS, and hence returns a server close to the DNS

server and not necessarily the client [139,155].

Figure 5.9 illustrates an example of the problem. We use the CNAME a1507.b.ak

amai.net, which is the CNAME of videos.buy.com (Section 5.2) and resolve it using

local DNS and Google Public DNS. For clarity, we only show the resolution steps

initiated by each of the DNS systems on behalf of the client involving Akamai name-

servers. We choose a case where both resolutions seem to proceed exactly the same

as far as the DNS server names are concerned. However, as Figure 5.9 shows, the

actual server IP addresses and their latencies from the client are different, with the

http:videos.buy.com
http:amai.net
http:a1507.b.ak

152

Google DNS suffering because Akamai returns the IP addresses of the nameserver

and content server which are close to the Google data center. This problem has been

documented in [139,155].

(a) Resolution through local DNS, indicating IPs and the RTTs from

client

(b) Resolution through Google DNS, indicating IPs and the RTTs from

client

Fig. 5.9. Comparison of DNS lookup of a1507.b.akamai.net through
local DNS and Google Public DNS

We now quantitatively demonstrate the existence of the high latency Akamai

servers to the client when cloud-based DNS is used. We use 575 distinct PlanetLab

http:a1507.b.akamai.net

153

nodes spread over the world for our experiments. Each PlanetLab node serves as a

client interested in obtaining Akamai content using Google DNS. We are interested

in obtaining the Akamai-hosted content in each of the eleven CNAME patterns in

Table 5.6 from as many content servers as possible. Since each of the 4095 CNAMEs

within a pattern map to 256 content servers within the same /24 prefix, we randomly

select n CNAMEs from each pattern such that we expect to see all 256 edge servers,

with n to be determined. This problem is equivalent to selection of white balls from a

box full of white balls one at a time, painting them red and putting it back in the box.

In this case, n would be the expected number of draws required to see all the balls in

the box in which case they would all be red. This problem has been solved in [221] and,

using their result in our context, we find that we need n = 1568. Adding in the cases

with known CNAMEs, (e.g. a1507.b.akamai.net for videos.buy.com), we obtain 1571

CNAMEs per pattern of the form a{x}.{z}.akamai.net or a{x}.{z}.akastream.net or

a{x}.{z}.kamai.net with x as the random number between 0 and 4094 and z chosen

as appropriate from Table 5.6. We use these 1571 CNAMEs per pattern in all further

experiments.

In the first set of experiments, we probe the CNAMEs using the local DNS of

each PlanetLab node and then using Google DNS. We measure the quality of servers

returned by pinging the servers with three ICMP echo request packets and noting the

minimum RTT, which reduces RTT inflation due to network congestion to a certain

extent. We use this technique for latency measurement throughout this work.

For each pattern of CNAMEs, we compute the mean difference in latency between

the client and the server resolved through cloud-based DNS and that resolved through

local DNS. We ignore the cases when the server returned by both DNS services is

the same. We then average this mean latency inflation across all CNAME patterns

and then across all nodes. Our results show that the average latency inflation is

14.15 ms for Google DNS, which is 720.5% in percentage terms. While the absolute

latency inflation numbers do not seem extremely large, they are significant for video

http:GoogleDNS.We
http:a{x}.{z}.kamai.net
http:a{x}.{z}.akastream.net
http:a{x}.{z}.akamai.net
http:videos.buy.com
http:a1507.b.akamai.net

154

streaming and dynamic content applications and the percentage inflation shows the

poor cloud-based DNS performance.

Fr
eq

ue
nc

y

1

0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
-150 -100 -50 0 50 100 150 200 250 300 350

Difference between latency of server resolved through Google DNS & local DNS (ms)
(a) CDF of latency inflation when using Google DNS as observed by

a client

Fr
eq

ue
nc

y

1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 0 1000 2000 3000 4000 5000 6000 7000 8000

Percentage difference in latency to Google DNS server w.r.t. Local DNS. server (%)
(b) CDF of percentage latency inflation when using Google DNS as

observed by a client

Fig. 5.10. Quantifying performance degradation using cloud-based
DNS w.r.t. local DNS for CNAME a{x}.c.akamai.net

We also plot the CDF of latency and percentage latency inflation for a typical

CNAME in Figure 5.10. The CDF is computed with one data point per PlanetLab

node (client) and the plots for other CNAMEs are similar. One can see that there are

a few cases for which the inflation is negative, i.e., the local DNS does give a server

http:a{x}.c.akamai.net

155

which is farther from the client than that obtained by cloud-based DNS. However,

such cases are infrequent and are likely caused by large distances between the client

and local DNS [139]. The results also show that the latency inflation has a heavy tail.

While the average inflation is around 15 ms, around 17% of the clients experience

inflation of more than 1000%. The results are consistent with those given in [139]

and stress the need to work around this problem.

5.5.3 Causes

We now delve deeper into the results of the last subsection to understand the

causes and characteristics of the latency inflation. For each of the 1000 iterations run

from PlanetLab nodes, we record the node IP C, VGDNS IP G (Section 5.4.2), the

Akamai server IP corresponding to CNAME a1507.b.akamai.net, obtained through

local DNS (server A) and through Google DNS (server A ′). We then geolocate these

four IP addresses and compute the geographical distance between the client C and the

Akamai server it is redirected to A, gC−A. We also compute the distance between the

VGDNS IP G and the Akamai server it is redirected to A ′ , gG−A′ . We compute these

distances and combine the results across iterations and across nodes. We find that

the median gC−A is 643 miles, whereas the median gG−A′ is 2683 miles, substantially

higher than gC−A. We plot the CDF of these two distances in Figure 5.11.

We observe jumps at discrete distances in Figure 5.11(b), because of the small

number of data center locations, which will cause some iterations to be grouped to

gether. The plots show that Google DNS sees an Akamai server which is much farther

away from it than a client seeing a corresponding Akamai server. The performance is

particularly poor for a large percentage of clients which should see smaller distances

(e.g., due to their presence in the US amid dense server infrastructure). Both plots

in Figure 5.11 have a long tail, showing that some clients are indeed redirected to

servers across the globe.

http:a1507.b.akamai.net

156

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000

Fr
eq

ue
nc

y

Distance between client and Akamai server (miles)
(a) CDF of gC−A, the geographical distance between Client and Aka

mai server resolved through local DNS

 1

 0.9

 0.8

 0.7

Fr
eq

ue
nc

y 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0
 0 2000 4000 6000 8000 10000 12000

Distance between Google VDNS and Akamai server resolved through it(miles)
(b) CDF of gG−A′ , the geographical distance between VGDNS and

Akamai server resolved through Google DNS

Fig. 5.11. Comparing distances of Akamai content servers from the
resolution node for client and Google DNS

We also compute, for each iteration, the percentage difference of gG−A′ w.r.t. gC−A

and find that the median difference is 101%, which implies that gG−A′ is twice as much

as gC−A in the median case. While some error can be introduced by our geolocation

technique and VGDNS for representing Google data centers, the difference is still

157

substantial. This result is interesting assuming Akamai does not discriminate among

clients, and shows that Google’s DNS is substantially less effective in identifying

a good Akamai server for itself than a client identifying a server for itself. Even

if the client was colocated with the Google DNS server, it would still attain lower

performance than an average Internet client. We contend that this is due to two

reasons. First, Google performs prefetching of name resolutions [137], which does not

work well for Akamai-hosted dynamic content. Akamai changes name resolutions in a

matter of seconds [142] and the dynamic content precludes caching. Second, Google

as a cloud is spread out over significant distances and may share its DNS resolutions

among its data centers. As a result, it may not necessarily query Akamai’s server

from the DNS server which resolves client requests.

In our experiments, we compute gC−G, which is the distance between the client

and the VGDNS IP address. The median value of gC−G computed across all iterations

and all nodes is 5374 miles and its CDF is depicted in Figure 5.12. We compute the

percentage difference of gC−G w.r.t. gC−A for each iteration and find this to be 88%

in the median case, showing that Akamai servers are usually located closer to the

client than Google DNS servers. This further indicates that Google’s DNS presence is

sparse in the world, as shown by results of Section 5.4.2 and [139]. Coupled with the

sub-optimal Akamai servers seen by Google nodes, this leads to significantly poorer

performance of clients in accessing Akamai content through Google DNS.

5.5.4 Solutions Overview

Having studied the poor client performance problem, we now explore the solution

space of how a client can best use cloud-based DNS to access content hosted by Aka

mai and Akamai-like distributed content providers. We briefly compare the solutions

presented in this work in Table 5.7. The subsequent sections explain these solutions

in detail.

158

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Fr
eq

ue
nc

y

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Distance between client and Google VDNS (miles)

Fig. 5.12. CDF of gC−G, the distance between client and VGDNS

5.5.5 Solution 1: Changes to DNS

A possible solution to the content location problem is based on a proposal initiated

by Google researchers, which is currently an IETF draft [222]. This proposal requires

changes to the generation of DNS requests and replies by allowing recursive DNS

resolvers to expose the first three octets of the client IP address to a CDN network

like Akamai [223]. Upon receipt of such a request, the CDN’s DNS system may use

that information to choose the server to be returned, which will be optimized for

the client. While this scheme will certainly solve the problem, the primary drawback

of this approach is that it requires changes to the DNS protocol which may not be

universally adopted. One can certainly imagine some CDNs ignoring the option in the

DNS request messages. As of this writing, it seems like some progress is being made

on adoption of this proposal. Two cloud DNS providers, Google public DNS and Open

DNS, along with CDNs of Bitgravity, Cloudflare, Comodo, CDNetworks and Edgecast

have implemented this proposal [224]. However, the two biggest CDNs, Akamai and

Limelight, have not participated yet and it is unclear if they will participate in the

future.

159

Table 5.7
Solutions for obtaining good client performance when accessing
Akamai-like content using cloud-based DNS

Solution Pros Cons

Changes to DNS by re

vealing client IP to Aka

mai

Correct Solution Changes to DNS are ex

pected to face adoption

barriers

Cooperation among

clouds

Best solution with vary

ing degrees of coopera

tion possible

Agreements and trust

setup

Increasing DNS centers Some performance im

provement expected

Infrastructure spending

and no guarantee of

improved performance

Hybrid client-cloud ap

proach

Good resolved server per

formance

Requires client to poten

tially wait for resolution.

The technique based on

reverse-engineering Aka

mai is temporary as it de

pends on Akamai imple

mentation.

5.5.6 Solution 2: Cooperation among Clouds

We posit that the best solution is to have cloud-based DNS providers like Google

cooperate with CDNs like Akamai, similar to a peering arrangement between Au

tonomous Systems. It is in Akamai’s interest to provide the best content servers for

each client for higher revenue and customer loyalty, irrespective of the DNS provider

that they use. Similarly, Google DNS wishes to deliver the best possible servers to

the client for increased adoption of its DNS services. Such a solution is similar in fla

160

vor to DONAR [225], where a content provider outsources its server replica selection

mechanism to a third party provider. Various degrees of cooperation are possible,

from where Google will have the responsibility of selecting an Akamai replica based

on the client request (DNS server chooses replica, similar to DONAR [225]) to where

Google DNS forwards requests for Akamai-hosted content to Akamai servers (content

provider chooses replica, similar to [222]). The primary drawback of this technique is

that it requires agreements between cloud providers, which may be difficult in the real

world because of business reasons. Further, security issues may require trust between

multiple organizations, which may be difficult to establish.

5.5.7 Solution 3: Increasing DNS Data Centers

Yet another solution can be for cloud-based DNS providers like Google to employ

many satellite data centers [132], penetrating deep within ISPs so that its DNS servers

become comparable in number to Akamai content servers. This implies that anycast

routing for Google DNS will redirect a client to a closer DNS server which perhaps

will see an Akamai server close enough to the client. However, this solution involves a

significant investment from DNS providers like Google which they may not be eager

to incur. Moreover, as our results from Section 5.5.3 indicate, sparse Google servers

are only a part of the problem – Google returning farther Akamai servers than a

normal client possibly because of prefetching still needs to be solved. In this scenario,

cooperation among clouds as presented in the preceding paragraph would be a better

solution.

5.5.8 Solution 4: Hybrid Approach

The solutions presented above are not deployed in today’s Internet, and a client

who wishes to access Akamai content today using cloud-based DNS will be directed to

distant content servers. We now present a hybrid client-cloud approach that a client

161

can use to identify low-latency Akamai content servers while preserving the security

and outsourcing benefits of cloud-based DNS.

In the hybrid approach, the client queries the Akamai second-level nameserver

directly, which will cause a closeby content server to be returned. Of course, the client

will need to know the IP address of the appropriate Akamai nameserver, and for that

purpose it uses cloud-based DNS. Figure 5.13 shows the same example as Figure 5.9

but using this hybrid approach. The client queries Google DNS for obtaining the

IP address of n7b.akamai.net. Once the IP is returned, the client queries the IP for

the CNAME and obtains the content server. We also observe that the content server

returned in this case is the same as that returned by local DNS in Figure 5.9(a).

This is a hybrid approach because it involves the use of DNS services in the cloud

to resolve the nameserver IP and a local approach to query the IP directly to obtain

content servers.

Fig. 5.13. Example of a hybrid approach for looking up Akamai con
tent servers using Google DNS, showing IPs and the RTTs from client

A key aspect of this approach is that the client needs to know the name of the Aka

mai second-level nameserver, e.g., n7b.akamai.net. This can be built into the client

http:n7b.akamai.net
http:n7b.akamai.net

162

side DNS software, since Akamai uses predictable nameserver names. For example, a

CNAME of a{x}.{z}.akamai.net will have the nameserver name n{y}{z}.akamai.net

with y ranging from 0 to 6 (Table 5.6). A nameserver with any value of y will work

and one can even choose y randomly for load balancing purposes. CNAMES with

different endings are handled similarly. An alternate way to find the name of the

nameserver is through the authority section of a dig [201], or to do a dig +trace for

the CNAME using cloud-based DNS as the default DNS (assuming the client wishes

to take advantage of its security features). This reveals the name of the nameserver.

One of the key assumptions in this approach is that a client can successfully query

an Akamai nameserver IP which has been provided to it by a potentially distant cloud

based DNS data center. From our experiments, we found that on querying an Akamai

nameserver out of turn, it may or may not return a content server IP address. In case

it does not, it returns a CNAME like a1.b.akamai.net.0.1.cn.akamaitech.net whose

resolution causes the client to go through Akamai’s DNS infrastructure and query

a closeby nameserver. However, if the client retries the query after some time, it is

usually successful and receives an IP address which is the same as the one it would

have received had it queried using local DNS. This result indicates an important

feature of Akamai’s network. The content server returned to a client is dependent on

the client’s location and is independent of the Akamai nameserver queried. This is

what makes this hybrid approach successful.

It is also important to note that there may be a slight delay before an arbitrary

Akamai nameserver resolves a CNAME. This delay is most likely caused by back

ground information sharing among various Akamai nameservers, presumably with the

nameservers close to the client’s location. We find that in nearly all cases, the delay

is 15 seconds (which was the period of our retries), i.e., the content server is obtained

sometime during that period. However, for CNAMEs in pattern a{x}.k.akamai.net,

the resolution does not succeed even after 5 minutes, which is when we stop our re

tries. A few seconds delay in the most frequent case is an acceptable penalty since a

typical client accessing Akamai dynamic content cares about the quality of the con

http:a{x}.k.akamai.net
http:n{y}{z}.akamai.net
http:a{x}.{z}.akamai.net

163

tent (usually audio or video) and maintains a long-lived session for which a setup

delay is acceptable.

We now conduct a measurement study to investigate the effectiveness of the hy

brid approach. A content server is obtained using the approach and the latency to

the server is measured and compared to the latency to the server returned using

cloud-based DNS. We take the median latency difference to prevent interference from

outliers, and average across all CNAME patterns and PlanetLab nodes. We find that

the hybrid approach reduces this median latency by around 7.5 ms. If we consider the

mean latency saving, we get 12.7 ms savings. These numbers are within 1 ms of the

actual latency inflation caused by using cloud-based DNS as opposed to local DNS

(Section 5.5.2). The numbers do not match exactly due to the variability in the ping

latencies caused by variable network conditions.

We also find that the hybrid approach returns around 4-6% of the same content

servers as those returned by using Google DNS. This may be because of the fact that

there are cases for which a Google DNS data center is located close to the client,

reducing the advantage of the hybrid approach. Nevertheless, in both the mean and

the median case, our technique results in closeby servers being returned to the client.

We now compare the servers returned by the hybrid approach to those returned

using local DNS. We find that they return the same server in 45.1% of the cases.

This is expected since Akamai returns two content servers and we choose the first

one as the content server returned. The second one is usually equally good and will

randomly occur around 50% of the time, hence the exact similarity of content servers

occurs in around 50% of the cases. To evaluate the cases where the servers are not the

same, we measure the latency difference between the server returned by the hybrid

technique and the local DNS and find that this difference is less than a hundredth of

a millisecond on the average. This shows that the hybrid approach indeed performs

per expectations, returning essentially the same servers as the local DNS systems.

Hence, we have shown that the hybrid approach is indeed feasible and works well for

most cases, with a delay of the order of a few seconds.

164

5.6 Chapter Summary

In this chapter, we have studied the evolved Domain Name System (DNS), a key

component of the Internet infrastructure. This evolution is brought upon by the

move to cloud computing, which necessitates DNS in the cloud. We have studied

both DNS internal to a cloud, which is used to redirect clients to the best server,

with the Akamai CDN as an example, and external DNS which provides DNS service

to any Internet client, through a case study of Google DNS. We have developed a

novel technique based on active measurements to geolocate cloud data centers, which

cannot be readily located using commercial geolocation tools.

Our measurement study of Google’s public DNS has shown that Google data

centers cannot be easily geolocated via geolocation tools such as MaxMind. Using

the hop before the last hop returned by traceroute as the geolocation technique yields

more accurate results. Our study also reveals that Google DNS outperforms native

DNS in terms of proximity of servers returned by resolving less popular web sites.

Native DNS typically performs better in that respect for highly popular sites. Overall,

Google DNS performs less caching. We find that lookups using the Google DNS

service are not always directed to the closest server in terms of latency. The Google

DNS servers to which clients are redirected to appear to be chosen based on their

load as a primary criterion.

Our study on Akamai-hosted content retrieval by clients using cloud-based Google

DNS shows that clients experience poor performance due to redirection to far off

content servers. We have analyzed the reasons for this performance degradation and

found that sparse placement of Google DNS servers along with prefetching are likely

to blame for sub-optimal content servers returned by Google DNS. We have discussed

several solutions to this problem, and posited that cooperation among clouds is the

best solution. However, since no such solution is deployed today, we have presented

a hybrid client-cloud approach that involves querying both cloud-based DNS systems

and Akamai nameservers directly, thereby identifying content servers which are close

165

to the client. Our results present a marked improvement over the current performance

of content servers returned by cloud-based DNS.

Our work raises important questions about the future cloud-based Internet, specif

ically the cooperation required among clouds and which services should be migrated

into the cloud. We study these issues in Section 6.2, in our visions of the future and

discuss research work to be done in this field.

166

6. CONCLUSIONS AND OPEN ISSUES

In this concluding chapter, we present the key results of our dissertation in Section 6.1,

which validate our hypotheses of Section 1.5. Our visions of the future Internet along

with its challenges are then discussed in Section 6.2. Finally, Section 6.3 presents

future work.

6.1 Key Results

In this dissertation, we have studied Internet routing and Domain Name System

(DNS), two key components of the Internet infrastructure. The Internet faces several

challenges in ensuring high availability because of its heterogeneity which leads to

interactions between various Autonomous Systems. Not only is Internet availability

poor, predicting it is a difficult task because of various unpredictable factors affecting

it (Section 1.3). Meanwhile, continuous Internet evolution is leading to rapid changes

in Internet infrastructure, changing the fundamental structure of the Internet. In this

dissertation, we have shed light on the predictability of the Internet infrastructure

and how its evolution has affected its performance. The key results of our work are

summarized below.

• We have provided insight on the predictability of Internet inter-domain routing

in Chapters 3 and 4. Specificially, we have predicted long term availability of

prefixes by observing its routing characteristics for a short period of time and

using prediction models learnt from other Internet prefixes. We have studied and

compared various prediction models and shown their applicability given various

learning and prediction durations (Section 3.5). Our results have shown that

one can tradeoff prediction performance and prediction duration, depending on

167

the prediction goal. Based on this work, we conclude that Internet availability

is indeed predictable validating our hypothesis of Section 1.5.

• We have also identified metrics to compare prefixes in terms of their propensity

to fail and develop a new prefix grouping named BGP molecules (Chapter 4).

Different prefix attributes have been considered to identify which ones correlate

with its failure tendency (Sections 4.3 and 4.4). We have found that AS paths to

a prefix followed by its geographical location are good prefix failure indicators.

We have used BGP molecules to predict prefix failures and the results show that

a hybrid scheme achieves 91% predictability of failures with 99.3% coverage of

prefixes in the Internet (Section 4.5). Again, this validates our hypothesis that

while the causes of Internet prefix failures are unpredictable, it is indeed possible

to predict the failures themselves. We have also developed a novel application of

BGP molecules in improving the availability of Content Distribution Networks,

without significant performance degradation (Section 4.6).

• We have studied the cloud DNS system caused by the advent of cloud computing

in Chapter 5. Both internal DNS of a cloud and external DNS systems offered

by cloud have been studied with case studies of Akamai (Section 5.2) and Google

DNS (Section 5.4) respectively. We have investigated the interactions between

these two types of DNS systems by quantifying the poor client performance

while retrieving Akamai-hosted content through Google DNS (Section 5.5). The

reason of this poor performance is found to be the disparity in the number of

data centers operated by the two clouds, coupled with Google seeing sub-optimal

Akamai servers, possibly due to prefetching and information sharing between

data centers. This evaluation has used our active, lightweight technique for

geolocating cloud data centers from Section 5.3. We have suggested various

solutions to this problem of poor client performance, including a hybrid client-

cloud approach which can be used in the current Internet to obtain Akamai

168

content servers using Google DNS, which are comparable in performance to

those obtained by native DNS (Section 5.5).

6.2 Visions of the Future Internet and Open Issues

In this section, we extend our discussion of cloud computing from Section 2.4.2

by using our visions of the future to develop a model of the future Internet. We also

present the open issues and challenges in the future Internet using insights from this

dissertation.

6.2.1 Future Internet Model

In developing our Internet model, we assume that the current trends of cloud

computing and Internet flattening [38] continue to the point where the Internet is

composed of end-users and several clouds. We define a cloud as an organization in

the Internet, which provides any Internet service. Different-sized clouds will exist in

the future providing a wide variety of Internet services with some clouds providing

the same service and hence competing with each other. The services provided by the

cloud can include static and dynamic content delivery, other real-world applications

such as e-commerce, access to software e.g. for document processing and photo editing

and ability to host one’s own content.

We envision clouds to provide access to hardware – not only virtual hard disks

but also undersea optical fibers to carry data. “Startup clouds”, which are newly

formed, are expected to lease resources like data centers from clouds that provide

these resources as a service. Hence, a cloud can overlap with existing clouds to

varying extents until it becomes large enough to exist as a separate entity. Cloud

overlap can also occur in the services realm, i.e., a cloud can outsource some services

to other clouds under appropriate business agreements. For example, Facebook uses

Akamai’s content delivery network for hosting pictures [226]. Akamai is a major CDN

with global presence and its fault tolerance and performance properties make it an

169

attractive content host. In the future Internet, we expect content distribution to

become a key service due to the insatiable appetite of users for content.

Apart from these services, we reckon that Internet access will also be a service

provided by the cloud. Indeed, Google as a cloud is in the process of rolling out

Internet service [197]. We expect other organizations to do the same or merge with

existing ISPs. This is because Internet access service is bundled with DNS services and

DNS enables a cloud provider to provide best access to other services it offers. DNS

can use several inputs like the client’s location, current network conditions inside the

service provider’s network and server load to redirect the client to the best possible

server for all services provided by the cloud. The resulting better user experience

will lead to increased revenue that can more than compensate for any investment

in providing ISP services [125]. Other business reasons for a cloud providing its

own Internet service can include decreased reliance on other networks to carry its

traffic [125].

6.2.2 Will Multiple Clouds Co-Exist?

One of the most important questions that we need to answer about the future In

ternet is whether multiple clouds will exist. The current Internet traffic consolidation

trend coupled with mergers and acquisitions (e.g., Microsoft taking over Skype [227],

Google taking over YouTube [228]), is leading to bigger and bigger clouds. More

over, with Internet access being provided as a service, a cloud or very few clouds can

dominate the future forming a monopoly or an oligopoly in the Internet.

However, we posit that multiple clouds are here to stay in the foreseeable future.

This is due to the following reasons:

• Internet users representing the world population are fundamentally diverse in

nature. Different websites are popular in different countries [229]. Even within

the same country, users like to use multiple services on a daily basis, and even

use multiple service providers for the same service. For example, Google is

170

the leader in search, yet other search providers like Microsoft and Yahoo have

existed for many years with significant market share [230]. Similar trends are

observed in other technologies like mobile phone usage, Internet browsers, and

operating systems, and even extends beyond the Internet, for example into

shopping.

• Competition among technology players in the world fosters innovation and is

an important driver for new and better technology. The innate nature of con

sumers is to use a variety of services – trying out services from competitors

furthers multiple providers. For example, Facebook has been the leading social

networking site since June 2008 [231] with an estimated 800 million users as

of September 2011 [232]. However, Google Plus [233], a new social networking

initiative by Google already has 20 million users within three weeks of its launch

in a limited trial phase [234].

• Antitrust laws around the world prevent a technology company from monopoliz

ing the market. For example, AT&T’s antitrust suit led to its breakup [235], and

Microsoft unbundled Internet Explorer from Windows as a result of a suit [236].

6.2.3 Evolution to a Cloud-Centric Internet

The current Internet requires a user to go through an ISP to the Internet backbone

to reach a destination (Figure 6.1(a)) [38]. In our view, the future Internet will be

composed of only clients and clouds as shown in Figure 6.1(b). The user uses Cloud

1 to connect to the Internet, and can then use services provided by other clouds.

One of the major changes is that ISPs will disappear and Internet service will be

provided by clouds. This implies that traditional services provided by ISPs like DNS

will have to morph into another form in the new Internet. We have studied DNS

evolution in Chapter 5. The evolution of ISP services has already begun with cloud

based DNS being provided by external DNS providers (Section 5.1). ISPs also provide

content filtering which prevents malicious content from the Internet from reaching the

171

(a) The current Internet model

(b) The Internet cloud model

Fig. 6.1. Comparison of the current and future Internet models

client. We expect these services along with others like online backup to be provided

as an Internet service suite to the client by the cloud. The evolution from the current

Internet to the cloud-based Internet is expected to be smooth with mergers and

acquisitions, and some users still continuing to use traditional ISP services. During

this transitional period, backward compatibility will be implemented. For example,

CloudIDs (Section 6.2.5) used in routing will be interpreted as AS numbers, and new

versions of BGP can be incrementally deployed.

The key participant in the future Internet is the user who desires to use services

from multiple clouds. The goal of a user is to get the best possible Quality of Service

(QoS) for every service he/she uses. Storage is a good example of a service that a

172

user currently uses on a local machine. Storing an object in multiple clouds requires

that the state of the object be kept consistent across clouds, and inter-cloud commu

nication may be required to achieve this (Section 6.2.7). This may require significant

traffic flow among clouds which may not be paying to transit traffic from each other

(Section 6.2.5). It could lead to clouds passing storage costs to the consumer who pays

low and ever-declining costs for the alternative of local storage hardware. However,

the benefits of unlimited, easily accessible, reliable, and dynamically changing storage

in the cloud cannot always be obtained by the user on his/her local machine. Hence,

a clear tradeoff exists between the cost incurred for cloud storage and its benefits.

We posit that this decision ultimately rests with each user and can go either way.

The future Internet should be user-centric and not cloud-centric, even though

clouds will emerge as strong entities. While many services are provided by the cloud,

outsourcing the services which a user can use on his/her own machine to the cloud

may not always be efficient and cost-effective for the user.

6.2.4 Lightning among the Clouds

We now discuss the lightning or interactions among clouds in the future Internet.

The most obvious interaction is competition among clouds providing the same service.

Each cloud has to make its services as attractive as possible to the end-users – a

challenging problem given diverse consumer preferences and business needs. This is

certainly not a unique problem to the cloud-based Internet; it exists in today’s Internet

as well, for example between various providers of email services. The implications of

this competition, however, are significant in the cloud context. Clouds are expected to

make revenue from offering services to users at a high performance. This necessitates

running a DNS service in each cloud to locate the best servers for each user and

reaching a critical number of users to generate profit. The following sections delve

deeper into various facets of cloud interactions.

173

6.2.5 Cloud Connectivity and Routing

We posit that the traditional AS relationships in the Internet [26] will converge to

mostly peer-peer relationships among clouds with no customer-provider relationships.

The situation is similar to richly connected Tier-1 ASes in today’s Internet which are

peers thereby carrying traffic for the other without any financial settlement. Peering

agreements are usually established when both ASes can extract reciprocal benefits,

i.e., the benefit to any party in the agreement is not significantly greater than the

benefit to the other party [237]. Usually that is true when both the ASes are of

roughly similar geographic spread, number of customers, and incoming to outgoing

traffic ratio [237].

In the cloud-based Internet, we posit that peer-peer relationships will exist even if

the clouds are not of similar characteristics. This is because large clouds (equivalent

to Tier-1 ASes) likely will provide Internet service and have to allow their users to

connect to the entire Internet and use services of other clouds, especially for neutrality

reasons (Section 6.2.6). Thus, they need to establish peering relationships with certain

clouds. There can be a cloud A which does not provide Internet service, but that needs

to establish peering with another cloud(s) B which provides Internet service, to reach

Internet users. Cloud A can refuse to transit traffic from other clouds; however, that

will not affect Internet connectivity. Hence, a cloud, whether it provides Internet

service or not, needs to establish relationships with other clouds and this leads to

peering relationships.

Addressing is needed for clouds to talk to each other, and it is likely that each

cloud will be assigned a globally unique CloudId by IANA [43]. A cloud can have

multiple ASes of the current Internet, due to geographic spread and possible mergers

and acquisitions with other organizations. User addressing can stay the same as in

the current Internet, being represented by IP addresses, perhaps IPv6 or a mixture

of IPv4 and IPv6. IP addresses are grouped into prefixes, whose reachability is

announced through an inter-cloud routing protocol, which is expected to be similar

174

to Border Gateway Protocol (BGP) [47]. The implications of the flatter cloud-based

Internet with fewer clouds than present-day ASes will aid in adopting BGP variants

which tackle problems with BGP [238], making routing more scalable and secure.

Fewer oscillations are likely to happen as geographically widespread clouds should

have fairly stable cloud routes to prefixes. Routing becomes more scalable and easier

to manage due to CloudIDs, which are expected to be fewer in number than AS

numbers in the current Internet.

Intra-domain routing also becomes important since clouds are expected to cover

significant geographical distances, perhaps continents. Hence, a cloud could peer

with another at multiple locations. In this case, a cloud can perform hot potato

routing [239] and handover the traffic to the neighboring cloud as quickly as possible.

This can lead to suboptimal routing where a packet can traverse intercontinental

links many times. The routing mechanism should ensure that only a short distance

is traversed by any packet. Possible solutions include source routing [71], which is

feasible because of the small number of clouds. Another alternative is for a cloud to

send the packet through the peering link closer to the destination by using latitude

and longitude of the source and the destination IP address.

6.2.6 Cloud Neutrality

We define cloud neutrality as the behavior by a cloud that upholds a user’s right

to access any content in the Internet. This is similar to net neutrality in today’s

Internet. Conflicts of interest between clouds providing the same service can lead to

throttling of competitor services by clouds that provide Internet services.

While some solutions to this issue can involve legal regulations like the Open

Internet Order by the Federal Communications Commission (FCC) in 2010 [240], we

propose the existence of third-party clouds, which can provide neutrality-verification

services to ensure that a cloud is not violating cloud neutrality. This is analogous to

certificate authorities which issue certificates for authentication of websites.

175

A service provider cloud can certainly filter traffic (with limited false positives)

based on suspected security threats but should not degrade legitimate competitor

traffic or discriminate among traffic classes using similar resources [241]. e.g. degrade

file transfers over video streaming using the same bandwidth. We believe neutrality

authorities will emerge which transparently reveal various standardized neutrality

parameters of a service-providing cloud to end-users in the form of “certificates”.

The net neutrality issue is far from resolved in the present Internet [241] and any

solutions proposed can be extrapolated into the cloud-based Internet.

6.2.7 Data Transfer among the Clouds

Cloud-computing as it exists today provides client-server communication: an end

user communicates with the cloud and uses its services. However, clouds may need

to communicate with each other because of usage patterns and user diversity. A

client can store an object on a cloud A and then want another cloud B to access it

and use its features on the object. For example, a client can create a presentation

using Google Docs [150] and then use Microsoft PowerPoint to open the file and add

features. This will require transfer of the file from Google to Microsoft. Another use

case can be when a user U shares an object with another user V who uses the same

service from a different cloud. In that case, user V’s cloud needs to get the object

from user U’s cloud, convert formats if necessary and work on it. This necessitates

server-server communication and poses new challenges [242].

CloudIDs enable clouds to identify each other (Section 6.2.5). However, one also

needs a way to uniquely identify an object within a cloud [242]. This can be achieved

using URIs much like in the current Internet. However, the implications are that each

cloud should run its own authoritative DNS server. This can be bundled with DNS

services which need to be provided by every cloud for best user-perceived performance.

A cloud can also have a hierarchical DNS structure like Akamai (Section 5.2) for better

load balancing and fault tolerance.

176

Even if the objects in each cloud are uniquely identified using URIs and DNS

servers in a cloud, the semantics of inter-cloud communication need to be agreed

upon [242]. Transfer can be performed using FTP, but clouds, peering at multiple

points, should coordinate to ensure a speedy transfer especially of very large objects

over long geographic distances (Section 6.2.5). The incentive for a cloud to transfer an

object to another cloud is minimal, and it could very well service the transfer request

with inferior nodes. One can solve this using watchdog clouds (Section 6.2.6) as this is

a cloud neutrality issue, but it is clear that a standard for inter-cloud communication

is important.

6.2.8 Cloud Security and Privacy

Security is critical in any Internet-based infrastructure due to the existence of

multiple entities not controlled by a single authority. Access control will gain impor

tance, both within and between clouds [242]. Guidelines and semantics should be

in place to specify which users (and clouds) are able to access a certain cloud and

the services within. Clouds need to maintain firewalls to filter out harmful content.

Inter-cloud peering agreements need to take security of content being exchanged into

account.

Moving user data to the cloud creates unique user privacy issues [40]. Replicating

user data on data centers spread across geographic boundaries may create regulatory

problems due to different privacy laws in different countries. Cloud providers need to

provide options that enable a user to control where his/her data is stored. For exam

ple, Amazon Simple Storage Service (S3) [243] provides options for storing objects in

particular regions of the world.

Privacy concerns also arise in inter-cloud interactions. A user may have granted

access of its data to a particular cloud under a privacy agreement. However, inter-

cloud communication (Section 6.2.7) may cause the object to be transferred to another

177

cloud which may have completely different privacy norms. Semantics need to ensure

that the owner of an object controls its use.

Just like in today’s Internet, an attacker can launch a Distributed Denial of Ser-

vice (DDoS) attack by compromising hosts over the Internet. We are optimistic that

the flatter Internet will make launching such attacks more difficult. Since most ser

vices will run on the cloud, which should have an extensive security infrastructure,

exploiting service vulnerabilities will not be easy. For example, exploits in file editing

software will be unsuccessful at breaching a client since the software will be run on

the cloud.

6.3 Future Work

While the previous section has described avenues for future work in cloud com

puting, we discuss potential work in Internet infrastructure in this section.

Our work on predicting Internet availability can be expanded to include other

properties like integrity, scalability and stability. We can also extend our availability

prediction framework of Chapter 3 to predict availability of an arbitrary end point

as viewed by an arbitrary vantage point by using techniques similar to those used

in [120]. Availability of a prefix can be measured from multiple peers, as opposed

to considering a single (peer, prefix) combination at a time. Our work can also be

expanded to study availability across prefixes which are subprefixes of other prefixes,

modifying the long-term availability metric to incorporate the time varying nature

of announcement of these prefixes. Other prediction techniques from data mining

literature [188] can also be investigated for potential performance improvements over

our availability prediction schemes.

Our work on grouping prefixes based on their failure tendencies of Chapter 4

can be extended to investigate whether other features of an Internet prefix like its

connectivity to the Internet correlate with its failure tendency. One can also develop

efficient ways of constructing BGP molecules so that for any given prefix of interest,

178

one can search the entire Internet to find prefixes with the closest failure tendencies

to the prefix of interest. This can lead to lesser frequency of empty or insufficient

sized BGP molecules. One can also use BGP molecules with prefixes ranked in terms

of their failure propensity to predict failures with potentially higher performance

than that obtained in Section 4.5, which selects prefixes randomly from a molecule.

Studying the inherent causes of predictability of prefixes is another topic of future

work, since it gives a deeper insight into why some prefixes are more predictable than

others. The applications of BGP molecules can be expanded in other realms such as

online games and peer-to-peer networks. Also, a study on control plane availability is

not complete without studying the data plane. The correlation between the control

and data planes is an important topic for future work.

Our studies of cloud-based DNS of Chapter 5 can be extended to study how the

performance of Google’s data center network and DNS changes at various instants

of time, possibly to discover diurnal or weekly patterns. Google’s data center net

work seems to redirect clients based on server load while ignoring latency to data

centers for a significant number of cases (Section 5.4). This points to future work on

in-depth investigation of server selection technniques, leveraging our geolocation tech

nique of Section 5.3 and methods for prediction of network latency, possibly based

on learned trends. We can also use our techniques from this chapter and apply it

to other cloud-based DNS systems and content distribution networks to study how

our findings change. Given the recent reported partnership of certain DNS systems

with cloud-based content providers [224], it would be interesting to study content re

trieval through cooperating DNS providers to compare the performance with results

obtained in the chapter.

Our work on studying Internet evolution in the realm of cloud computing can be

extended to study other ways in which the Internet is evolving, for example due to the

use of mobile devices. The access to the Internet and content on the move by devices

which are not as powerful as a traditional end-host and over networks not as robust

as the wired Internet is a challenging topic. The Internet routing infrastructure needs

179

to interface with the wireless portion to ensure optimum quality of service to the

client. The use of multiple devices by a user accessing content from multiple clouds

also gives rise to the issue of content synchronization across devices and across clouds.

Investigation of these evolution trends is left as a topic of future research.

LIST OF REFERENCES

180

LIST OF REFERENCES

[1] Internet World Stats, “Internet Usage Statistics.” http://www.
internetworldstats.com/stats.htm, Retrieved September 2011.

[2] K. P. Birman, Reliable Distributed Systems: Technologies, Web Services, and
Applications. Springer, first ed., 2005.

[3] GigaOM, “Mary Meeker: Mobile Internet Will Soon Over
take Fixed Internet.” http://gigaom.com/2010/04/12/
mary-meeker-mobile-internet-will-soon-overtake-fixed-internet/,
April 2010.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic Concepts and
Taxonomy of Dependable and Secure Computing,” IEEE Transactions on De
pendable and Secure Computing, vol. 1, pp. 11–33, January 2004.

[5] D. G. Andersen, Improving End-to-End Availability Using Overlay Networks.
PhD thesis, Massachusetts Institute of Technology, 2005.

[6] C. Labovitz, A. Ahuja, and F. Jahanian, “Experimental Study of Internet Sta
bility and Backbone Failures,” in Proceedings of the Twenty-Ninth Annual Inter
national Symposium on Fault-Tolerant Computing (FTCS), pp. 278–285, 1999.

[7] C. Labovitz, G. R. Malan, and F. Jahanian, “Internet Routing Instability,”
IEEE/ACM Transactions on Networking, vol. 6, pp. 515–528, October 1998.

[8] R. Khosla, S. Fahmy, and Y. C. Hu, “On the Impact of Filters on Analyzing
Prefix Reachability in the Internet,” in Proceedings of 18th International Con
ference on Computer Communications and Networks (ICCCN), pp. 1–8, 2009.

[9] University of Oregon, “Route Views Project.” http://www.routeviews.org/,
Retrieved September 2011.

[10] J. Li, M. Guidero, Z. Wu, E. Purpus, and T. Ehrenkranz, “BGP Routing
Dynamics Revisited,” SIGCOMM Computer Communications Review, vol. 37,
pp. 5–16, March 2007.

[11] R. Barrett and S. Haar and R. Whitestone, “Routing Snafu Causes Internet
Outage.” Interactive Week, April 1997.

[12] Stephen A. Farrar, “C&W Routing Instability.” NANOG Mail Archives.
http://www.merit.edu/mail.archives/nanog/2001-04/msg00209.html,
April 2001.

http://www.merit.edu/mail.archives/nanog/2001-04/msg00209.html
http:http://www.routeviews.org
http://gigaom.com/2010/04/12
http://www

181

[13] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S. F. Wu, and
L. Zhang, “Observation and Analysis of BGP behavior Under Stress,” in
Proceedings of the 2nd ACM SIGCOMM Workshop on Internet measurment
(IMW), pp. 183–195, 2002.

[14] William F. Slater, III, “The Internet Outage and Attacks of October 2002.”
http://www.isocchicago.org/internetoutage.pdf, Retrieved September
2011.

[15] E. Zmijewski, “Threats to Internet Routing and Global Connectivity,” in Pro
ceedings of 20th Annual FIRST Conference, 2008.

[16] Akamai, “Mideast Outage.” http://www.akamai.com/mideast-outage, Jan
uary 2008.

[17] Network World, “Mideast Cable Cuts Tripled Web Latency on Some
Routes, Akamai Reports.” http://www.networkworld.com/news/2008/
021408-cable-cuts-tripled-web-latency.html, February 2008.

[18] X. Zhao, D. Massey, S. F. Wu, M. Lad, D. Pei, L. Wang, and L. Zhang, “Un
derstanding BGP Behavior Through a Study of DoD prefixes,” DARPA Infor
mation Survivability Conference and Exposition, April 2003.

[19] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage, “Inferring
Internet Denial-of-Service Activity,” ACM Transactions on Computer Systems,
vol. 24, pp. 115–139, May 2006.

[20] Arbor Networks, “Arbor Networks’ Sixth Annual Worldwide Infrastruc
ture Security Report.” http://www.arbornetworks.com/arbor-networks’
-sixth-annual-worldwide-infrastructure-security-report.html,
February 2011.

[21] D. R. Kuhn, “Sources of failure in the public switched telephone network,”
Computer, vol. 30, pp. 31–36, April 1997.

[22] G. Zorpette, “Keeping the phone lines open,” IEEE Spectrum, vol. 26, pp. 32–
36, June 1989.

[23] IATA, “Aircraft Accident Rate is Lowest in History.” http://www.iata.org/
pressroom/pr/pages/2011-02-23-01.aspx, February 2011.

[24] V. Paxson, “End-to-End Routing Behavior in the Internet,” SIGCOMM Com
puter Communication Review, vol. 36, pp. 41–56, October 2006.

[25] M. Caesar and J. Rexford, “BGP Routing Policies in ISP networks,” IEEE
Network Magazine, vol. 19, pp. 5–11, November 2005.

[26] L. Gao, “On Inferring Autonomous System Relationships in the Internet,”
IEEE/ACM Transactions on Networking, vol. 9, pp. 733–745, December 2001.

[27] J. Wu, Y. Zhang, Z. M. Mao, and K. G. Shin, “Internet Routing Resilience to
Failures: Analysis and Implications,” in Proceedings of the 2007 ACM CoNEXT
conference, pp. 1–12, 2007.

[28] “CIDR Report.” http://www.cidr-report.org/as2.0/, Retrieved September
2011.

http://www.cidr-report.org/as2.0
http:http://www.iata.org
http://www.arbornetworks.com/arbor-networks
http://www.networkworld.com/news/2008
http://www.akamai.com/mideast-outage
http://www.isocchicago.org/internetoutage.pdf

182

[29] G. Iannaccone, C. nee Chuah, R. Mortier, S. Bhattacharyya, and C. Diot,
“Analysis of Link Failures in an IP backbone,” in Proceedings of the 2nd ACM
SIGCOMM Workshop on Internet measurement (IMW), pp. 237–242, 2002.

[30] Bellcore, “Automatic Protection Switching for SONET,” Tech Report No. SR
NWT-001756, Bellcore, October 1990.

[31] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed Internet Routing
Convergence,” IEEE/ACM Transactions on Networking, vol. 9, no. 3, pp. 293–
306, 2001.

[32] R. Oliveira, B. Zhang, D. Pei, and L. Zhang, “Quantifying Path Exploration in
the Internet,” IEEE/ACM Transactions on Networking, vol. 17, pp. 445–458,
April 2009.

[33] B. Premore, “An Experimental Analysis of BGP Convergence Time,” in Pro
ceedings of the Ninth International Conference on Network Protocols, 2001.

[34] C. Villamizar and R. Chandra and R. Govindan, “BGP Route Flap Damping,
RFC 2439.” https://www.tools.ietf.org/html/rfc2439, November 1998.

[35] Z. M. Mao, R. Govindan, G. Varghese, and R. H. Katz, “Route Flap Damping
Exacerbates Internet Routing Convergence,” in SIGCOMM ’02: Proceedings of
the 2002 conference on Applications, Technologies, Architectures and Protocols
for computer communications, pp. 221–233, 2002.

[36] T. G. Griffin and G. Wilfong, “An Analysis of BGP Convergence Properties,”
in SIGCOMM ’99: Proceedings of the 1999 conference on Applications, Tech
nologies, Architectures and Protocols for computer communication, pp. 277–288,
1999.

[37] The New York Times, “Demand at Target for Fashion Line
Crashes Web Site.” http://www.nytimes.com/2011/09/14/business/
demand-at-target-for-fashion-line-crashes-web-site.html?_r=1,
September 2011.

[38] C. Labovitz, S. Iekel-Johnson, D. McPherson, J. Oberheide, and F. Jahanian,
“Internet Inter-Domain Traffic,” in SIGCOMM ’10: Proceedings of the 2010
conference on Applications, Technologies, Architectures and Protocols for Com
puter Communications, pp. 75–86, 2010.

[39] InternetNews, “Peer Dispute Leaves Some ’Net Users in the Dark.” http://
www.internetnews.com/infra/article.php/3554476, October 2005.

[40] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, “Above the
Clouds: A Berkeley View of Cloud Computing,” Tech Report No. UCB/EECS
2009-28, Electrical Engineering and Computer Sciences, University of Cali
fornia at Berkeley, 2009. Available: http://www.eecs.berkeley.edu/Pubs/
TechRpts/2009/EECS-2009-28.html.

[41] Google, “Google Public DNS.” http://code.google.com/speed/
public-dns/, Retrieved September 2011.

http://code.google.com/speed
http://www.eecs.berkeley.edu/Pubs
www.internetnews.com/infra/article.php/3554476
http://www.nytimes.com/2011/09/14/business
https://www.tools.ietf.org/html/rfc2439

183

[42] OpenDNS, “OpenDNS.” http://www.opendns.com/, Retrieved September
2011.

[43] IANA, “Internet Assigned Numbers Authority.” http://www.iana.org/, Re
trieved September 2011.

[44] J. Moy, “OSPF Version2, RFC 2328.” http://tools.ietf.org/html/
rfc2328, April 1998.

[45] D. Oran, “OSI IS-IS Intra-domain Routing Protocol, RFC 1142.” http://
tools.ietf.org/html/rfc1142, February 1990.

[46] G. Malkin, “RIP Version 2, RFC 2453.” http://tools.ietf.org/html/
rfc2453, November 1998.

[47] Y. Rekhter and T. Li and S. Hares, “A Border Gateway Protocol 4 (BGP-4),
RFC 4271.” http://tools.ietf.org/html/rfc4271, January 2006.

[48] P. V. Mockapetris and K. J. Dunlap, “Development of the domain name sys
tem,” SIGCOMM Computer Communication Review, vol. 25, pp. 112–122, Jan
uary 1995.

[49] R. Elz and R. Bush and S. Bradner and M. Patton, “Selection and Operation of
Secondary DNS Servers, RFC 2182.” http://tools.ietf.org/html/rfc2182,
July 1997.

[50] D. Dolev, S. Jamin, O. Mokryn, and Y. Shavitt, “Internet Resiliency to Attacks
and Failures under BGP Policy Routing,” Computer Networks, vol. 50, no. 16,
pp. 3183–3196, 2006.

[51] Y. Shavitt and Y. Singer, “Beyond Centrality - Classifying Topological Signifi
cance using Backup Efficiency and Alternative Paths,” New Journal of Physics,
Focus Issue: Complex Networked Systems: Theory and Applications, 2007.

[52] Y. Singer, “Dynamic Measure of Network Robustness,” IEEE 24th Convention
of Electrical and Electronics Engineers in Israel, pp. 366–370, Nov. 2006.

[53] S. Park, A. Khrabrov, D. Pennock, S. Lawrence, C. Giles, and L. Ungar, “Static
and Dynamic Analysis of the Internet’s Susceptibility to Faults and Attacks,”
in Twenty-Second Annual Joint Conference of the IEEE Computer and Com
munications (INFOCOM), vol. 3, pp. 2144 – 2154, March 2003.

[54] M. Dahlin, B. B. V. Chandra, L. Gao, and A. Nayate, “End-to-End WAN Ser
vice Availability,” IEEE/ACM Transactions on Networking, vol. 11, pp. 300–
313, April 2003.

[55] M. Lad, X. Zhao, B. Zhang, D. Massey, and L. Zhang, “Analysis of BGP
Update Surge during Slammer Worm Attack,” Distributed Computing (IWDC),
vol. 2918, pp. 833–835, 2003.

[56] Ricardo V. Oliveira and Rafit Izhak-Ratzin and Beichuan Zhang and Lixia
Zhang, “Measurement of Highly Active Prefixes in BGP,” in IEEE GLOBE
COM, 2005.

http://tools.ietf.org/html/rfc2182
http://tools.ietf.org/html/rfc4271
http:Y.RekhterandT.Li
http://tools.ietf.org/html
http://tools.ietf.org/html
http:http://www.iana.org
http:http://www.opendns.com

184

[57] J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP Routing Stability of Pop
ular Destinations,” in Proceedings of the 2nd ACM SIGCOMM Workshop on
Internet measurement (IMW), pp. 197–202, 2002.

[58] J. Wu, Z. M. Mao, J. Rexford, and J. Wang, “Finding a Needle in a Haystack:
Pinpointing Significant BGP Routing Changes in an IP Network,” in Proceed
ings of the 2nd conference on Symposium on Networked Systems Design & Im
plementation (NSDI), pp. 1–14, 2005.

[59] S. Agarwal, C. Chuah, S. Bhattacharyya, and C. Diot, “The Impact of BGP
Dynamics on Intra-domain Traffic,” in Proceedings of the Joint International
Conference on Measurement and Modeling of Computer Systems (SIGMET
RICS), pp. 319–330, 2004.

[60] F. Wang, Z. M. Mao, J. Wang, L. Gao, and R. Bush, “A Measurement Study
on the Impact of Routing Events on End-to-End Internet Path Performance,”
SIGCOMM Computer Communication Review, vol. 36, pp. 375–386, August
2006.

[61] J. Li, Y. Bush, Z. Mao, T. Griffin, M. Roughan, D. Stutzbach, and E. Purpus,
“Watching Data Streams Toward a Multi-Homed Sink Under Routing Changes
Introduced by a BGP Beacon,” in Passive and Active Measurement Workshop
(PAM), 2006.

[62] M. Caesar, L. Subramanian, and R. H. Katz, “The Case for an Internet Health
Monitoring System,” in Proceedings of the First conference on Hot topics in
System Dependability (HotDep), pp. 12–12, 2005.

[63] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs, “Locating
Internet Routing Instabilities,” SIGCOMM Computer Communication Review,
vol. 34, pp. 205–218, August 2004.

[64] R. Teixeira and J. Rexford, “A Measurement Framework for Pin-pointing Rout
ing Changes,” in Proceedings of the ACM SIGCOMM workshop on Network
Troubleshooting (NetT), pp. 313–318, 2004.

[65] K. Xu, J. Chandrashekar, and Z.-L. Zhang, “A First Step toward Understanding
Inter-domain Routing Dynamics,” in Proceedings of the 2005 ACM SIGCOMM
workshop on Mining network data (MineNet), pp. 207–212, 2005.

[66]	 R. Krishnan, H. V. Madhyastha, S. Srinivasan, S. Jain, A. Krishnamurthy,
T. Anderson, and J. Gao, “Moving Beyond End-to-End Path Information to
Optimize CDN Performance,” in Proceedings of the 9th ACM SIGCOMM con
ference on Internet measurement (IMC), pp. 190–201, 2009.

[67] M. Saxena, U. Sharan, and S. Fahmy, “Analyzing Video Services in Web 2.0:
A Global Perspective,” in Proceedings of the 18th ACM International Work
shop on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV), May 2008.

[68]	 E. Katz-Bassett, H. V. Madhyastha, J. P. John, A. Krishnamurthy, D. Wether-
all, and T. Anderson, “Studying Black Holes in the Internet with Hubble,” in
Proceedings of the 5th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), pp. 247–262, 2008.

185

[69] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson, “The End-to-
End Effects of Internet Path Selection,” SIGCOMM Computer Communication
Review, vol. 29, pp. 289–299, August 1999.

[70] A. Yip, “NATRON: Overlay Routing to Oblivious Destinations,” Master’s the
sis, Massachusetts Institute of Technology, 2002.

[71] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and D. Wether
all, “Improving the Reliability of Internet Paths with One-hop Source Routing,”
in Proceedings of the 6th conference on Symposium on Operating Systems De
sign & Implementation, pp. 1–13, 2004.

[72] A. Akella, B. Maggs, S. Seshan, A. Shaikh, and R. Sitaraman, “A Measurement
based Analysis of Multihoming,” in SIGCOMM ’03: Proceedings of the 2003
conference on Applications, Technologies, Architectures and Protocols for com
puter communications, pp. 353–364, 2003.

[73] D. K. Goldenberg, L. Qiuy, H. Xie, Y. R. Yang, and Y. Zhang, “Optimizing
Cost and Performance for Multihoming,” in SIGCOMM ’04: Proceedings of the
2004 conference on Applications, Technologies, Architectures and Protocols for
computer communications, pp. 79–92, 2004.

[74] F. Guo, J. Chen, W. Li, and T. cker Chiueh, “Experiences in Building a Mul
tihoming Load Balancing System,” in Proceedings of IEEE INFOCOM, 2004.

[75] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F. Schwartz, and K. J. Wor
rell, “A Hierarchical Internet Object Cache,” in USENIX Technical Conference,
pp. 153–163, 1995.

[76] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache: A scalable
wide-area web cache sharing protocol,” IEEE/ACM Transactions on Network
ing, vol. 8, pp. 281–293, June 2000.

[77] C. Hu, K. Chen, Y. Chen, and B. Liu, “Evaluating Potential Routing Diver
sity for Internet Failure Recovery,” in Proceedings of the 29th conference on
Information communications (INFOCOM), pp. 321–325, 2010.

[78] H. Wang, Y. R. Yang, P. H. Liu, J. Wang, A. Gerber, and A. Greenberg,
“Reliability as an Interdomain Service,” in SIGCOMM ’07: Proceedings of the
2007 conference on Applications, Technologies, Architectures and Protocols for
computer communications, pp. 229–240, 2007.

[79] D. Meyer, L. Zhang, and K. Fall, “Report from the IAB Workshop on Routing
and Addressing.” http://tools.ietf.org/id/draft-iab-raws-report-02.
txt, April 2007.

[80] T. Bu, L. Gao, and D. Towsley, “On Characterizing BGP Routing Table
Growth,” The International Journal of Computer and Telecommunications Net
working, vol. 45, pp. 45–54, May 2004.

[81] A. Afanasyev, N. Tilley, B. Longstaff, and L. Zhang, “BGP Routing Table:
Trends and Challenges,” in Proceedings of the 12th Youth Technological Con
ference High Technologies and Intellectual Systems, April 2010.

http://tools.ietf.org/id/draft-iab-raws-report-02

186

[82] S. Bellovin, Y. Bush, T. G. Griffin, and J. Rexford, “Slowing Routing Table
Growth by Filtering based on Address Allocation Policies.” https://www.cs.
princeton.edu/~jrex/papers/filter.pdf, 2001.

[83] E. Karpilovsky and J. Rexford, “Using Forgetful Routing to Control BGP Table
Size,” in Proceedings of the 2006 ACM CoNEXT conference, pp. 2:1–2:12, 2006.

[84] R. Oliveira, M. Lad, B. Zhang, and L. Zhang, “Geographically Informed
Inter-Domain Routing,” IEEE International Conference on Network Protocols,
pp. 103–112, 2007.

[85] D. Krioukov, K. Claffy, K. Fall, and A. Brady, “On Compact Routing for the
Internet,” SIGCOMM Computer Communication Review, vol. 37, pp. 41–52,
July 2007.

[86] G. Huston and G. Armitage, “Projecting Future IPv4 Router Requirements
from Trends in Dynamic BGP Behaviour,” in Australian Telecommunication
Networks and Applications Conference (ATNAC), 2006.

[87] A. Elmokashfi, A. Kvalbein, and C. Dovrolis, “On the Scalability of BGP: The
Roles of Topology Growth and Update Rate-limiting,” in Proceedings of the
2008 ACM CoNEXT Conference, pp. 8:1–8:12, 2008.

[88] A. Elmokashfi, A. Kvalbein, and C. Dovrolis, “BGP Churn Evolution: A Per
spective from the Core,” in Proceedings of the 29th conference on Information
communications (INFOCOM), pp. 1208–1216, 2010.

[89] D. Dean, M. Franklin, and A. Stubblefield, “An Algebraic Approach to IP
Traceback,” in ACM Transactions on Information and System Security, pp. 3–
12, 2001.

[90] J. Ioannidis and S. M. Bellovin, “Implementing Pushback: Router-Based De-
fense Against DDoS Attacks,” in Proceedings of Network and Distributed System
Security Symposium, 2002.

[91] K. Park and H. Lee, “On the Effectiveness of Route-Based Packet Filtering for
Distributed DoS Attack Prevention in Power-Law Internets,” in SIGCOMM ’01:
Proceedings of the 2001 conference on Applications, Technologies, Architectures
and Protocols for computer communications, pp. 15–26, 2001.

[92] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Network Support for IP
traceback,” IEEE/ACM Transactions on Networking, vol. 9, pp. 226–237, June
2001.

[93] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,
B. Schwartz, S. T. Kent, and W. T. Strayer, “Single-packet IP traceback,”
IEEE/ACM Transactions on Networking, vol. 10, pp. 721–734, December 2002.

[94] K. Butler, T. Farley, P. Mcdaniel, and J. Rexford, “A Survey of BGP Security
Issues and Solutions,” tech. rep., AT&T Labs - Research, Florham Park, NJ,
2004.

[95] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS Performance and the
Effectiveness of Caching,” IEEE/ACM Transactions on Networking, vol. 10,
pp. 589–603, October 2002.

http:https://www.cs

187

[96] J. Pang, J. Hendricks, A. Akella, R. D. Prisco, B. Maggs, and S. Seshan, “Avail
ability, usage, and deployment characteristics of the domain name system,” in
Proceedings of the 4th ACM SIGCOMM conference on Internet measurement
(IMC), pp. 1–14, 2004.

[97] R. Liston, S. Srinivasan, and E. Zegura, “Diversity in DNS Performance Mea
sures,” in Proceedings of the 2nd ACM SIGCOMM Workshop on Internet mea
surement (IMW), pp. 19–31, 2002.

[98] V. Pappas, D. Wessels, D. Massey, S. Lu, A. Terzis, and L. Zhang, “Impact of
Configuration Errors on DNS Robustness,” IEEE Journal on Selected Areas in
Communications, vol. 27, pp. 275–290, April 2009.

[99] Secure64, “DNS Security News from Secure64.” http://www.secure64.com/
dns_security_news, Retrieved September 2011.

[100] K. Park, V. S. Pai, L. Peterson, and Z. Wang, “CoDNS: Improving DNS Per
formance and Reliability via Cooperative Lookups,” in Proceedings of the 6th
conference on Symposium on Operating Systems Design & Implementation
Volume 6, pp. 14–14, 2004.

[101] G. Kambourakis, T. Moschos, D. Geneiatakis, and S. Gritzalis, “A Fair Solu
tion to DNS Amplification Attacks,” in Proceedings of the Second International
Workshop on Digital Forensics and Incident Analysis, pp. 38–47, 2007.

[102] R. Chandramouli and S. Rose, “An Integrity Verification Scheme for DNS Zone
file based on Security Impact Analysis,” in Proceedings of the 21st Annual Com
puter Security Applications Conference, pp. 312–321, 2005.

[103] F. Guo, J. Chen, and T. cker Chiueh, “Spoof Detection for Preventing DoS
Attacks against DNS Servers,” in Proceedings of the 26th IEEE International
Conference on Distributed Computing Systems (ICDCS), pp. 37–, 2006.

[104] D. Atkins and R. Austein, “Threat Analysis of the Domain Name System
(DNS), RFC 3833.” http://tools.ietf.org/html/rfc3833, August 2004.

[105] R. Arends and R. Austein and M. Larson and D. Massey and S. Rose, “DNS Se
curity Introduction and Requirements, RFC 4033.” http://tools.ietf.org/
html/rfc4033, March 2005.

[106] A. Chakrabarti and G. Manimaran, “Internet Infrastructure Security: A Tax
onomy,” IEEE Network, vol. 16, pp. 13 – 21, December 2002.

[107] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker, “On the Constancy of Inter
net Path Properties,” in Proceedings of the Internet Measurement Workshop,
pp. 197–211, 2001.

[108] P. Francis, S. Jamin, C. Jin, Y. Jin, V. Paxson, D. Raz, Y. Shavitt, and
L. Zhang, “IDMaps: A Global Internet Host Distance Estimation Service,”
in Proceedings of IEEE INFOCOM, pp. 210–217, 2000.

[109] T. S. E. Ng and H. Zhang, “Predicting Internet Network Distance with
Coordinates-Based Approaches,” in Proceedings of IEEE INFOCOM, pp. 170–
179, 2001.

http:http://tools.ietf.org
http:http://www.secure64.com

188

[110] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A Decentralized
Network Coordinate System,” in SIGCOMM ’04: Proceedings of the 2004 con
ference on Applications, Technologies, Architectures and Protocols for computer
communications, pp. 15–26, 2004.

[111] B. Wong, A. Slivkins, and E. G. Sirer, “Meridian: A Lightweight Network Lo
cation Service without Virtual Coordinates,” in SIGCOMM ’05: Proceedings of
the 2005 conference on Applications, Technologies, Architectures and Protocols
for computer communications, pp. 85–96, 2005.

[112] M. Zhang, C. Zhang, V. Pai, L. Peterson, and Y. Wang, “PlanetSeer: Inter
net Path Failure Monitoring and Characterization in Wide-Area Services,” in
Proceedings of OSDI, pp. 167–182, 2004.

[113] Y. Shavitt and T. Tankel, “On the Curvature of the Internet and its Usage for
Overlay Construction and Distance Estimation,” in Proceedings of INFOCOM,
pp. 1–11, March 2004.

[114] Y. Mao and L. K. Saul, “Modeling Distances in Large-scale Networks by Ma
trix Factorization,” in Proceedings of the 4th ACM SIGCOMM conference on
Internet measurement (IMC), pp. 278–287, 2004.

[115] H. V. Madhyastha, T. Anderson, A. Krishnamurthy, N. Spring, and
A. Venkataramani, “A Structural Approach to Latency Prediction,” in Proceed
ings of the 6th ACM SIGCOMM conference on Internet measurement (IMC),
pp. 99–104, 2006.

[116] Q. He, C. Dovrolis, and M. Ammar, “On the Predictability of Large Transfer
TCP Throughput,” in SIGCOMM ’05: Proceedings of the 2005 conference on
Applications, Technologies, Architectures and Protocols for computer communi
cations, pp. 145–156, 2005.

[117] Y. Qiao, J. Skicewicz, and P. Dinda, “An Empirical Study of the Multiscale
Predictability of Network Traffic,” in IEEE Proceedings of HPDC, pp. 66–76,
2003.

[118] M. Swany and R. Wolski, “Multivariate Resource Performance Forecasting in
the Network Weather Service,” in ACM/IEEE conference on Supercomputing,
2002.

[119] S. Vazhkudai, J. M. Schopf, and I. T. Foster, “Predicting the Performance of
Wide Area Data Transfers,” in Proceedings of the 16th International Parallel
and Distributed Processing Symposium (IPDPS), pp. 270–, 2002.

[120] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishna
murthy, and A. Venkataramani, “iPlane: An Information Plane for Distributed
Services,” in Proceedings of OSDI, pp. 367–380, November 2006.

[121] H. V. Madhyastha, E. Katz-Bassett, T. Anderson, A. Krishnamurthy, and
A. Venkataramani, “iPlane Nano: Path Prediction for Peer-to-Peer Applica
tions,” in Proceedings of NSDI, pp. 137–152, 2009.

[122] N. Feamster, D. G. Andersen, H. Balakrishnan, and M. F. Kaashoek, “Measur
ing the Effects of Internet Path Faults on Reactive Routing,” in Proceedings of
the 2003 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, pp. 126–137, 2003.

189

[123] Y. Zhang, Z. M. Mao, and J. Wang, “A Framework for Measuring and Predict
ing the Impact of Routing Changes,” in Proceedings of INFOCOM, pp. 339–347,
2007.

[124] A. Dhamdhere and C. Dovrolis, “Ten Years in the Evolution of the Internet
Ecosystem,” in Proceedings of the 8th ACM SIGCOMM conference on Internet
measurement (IMC), pp. 183–196, 2008.

[125] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “The Flattening Internet Topology:
Natural Evolution, Unsightly Barnacles or Contrived Collapse?,” in Proceedings
of the 9th international conference on Passive and active network measurement
(PAM), pp. 1–10, 2008.

[126] Om Malik, “Wholesale Internet Bandwidth Prices
Keep Falling.” http://gigaom.com/2008/10/07/
wholesale-internet-bandwidth-prices-keep-falling/, October 2008.

[127] G. Goth, “New Internet Economics Might Not Make It to the Edge,” IEEE
Internet Computing, vol. 14, pp. 7–9, January 2010.

[128] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The Na
ture of Data Center Traffic: Measurements & Analysis,” in Proceedings of the
9th ACM SIGCOMM conference on Internet measurement conference (IMC),
pp. 202–208, 2009.

[129] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding Data Center
Traffic Characteristics,” SIGCOMM Computer Communication Review, vol. 40,
pp. 92–99, January 2010.

[130] V. K. Adhikari, S. Jain, and Z.-L. Zhang, “YouTube Traffic Dynamics and its
Interplay with a Tier-1 ISP: an ISP perspective,” in Proceedings of the 10th
annual conference on Internet measurement (IMC), pp. 431–443, 2010.

[131] Y. Chen, S. Jain, V. Adhikari, Z.-L. Zhang, and K. Xu, “A First Look at
Inter-Data Center Traffic Characteristics via Yahoo! datasets,” in Proceedings
of IEEE INFOCOM, pp. 1620 –1628, April 2011.

[132] Y. A. Wang, C. Huang, J. Li, and K. Ross, “Estimating the Performance of
Hypothetical Cloud Service Deployments: A Measurement-based Approach,”
in Proceedings of IEEE INFOCOM, pp. 2372 –2380, April 2011.

[133] C. Huang, N. Holt, Y. A. Wang, A. Greenberg, J. Li, and K. W. Ross, “A
DNS Reflection Method for Global Traffic Management,” in Proceedings of the
USENIX Annual Technical Conference (USENIXATC), pp. 1–6, 2010.

[134] J. S. Gwertzman and M. Seltzer, “The Case for Geographical Push-caching,”
in Fifth Workshop on Hot Topics in Operating Systems (HotOS-V), pp. 51 –55,
May 1995.

[135] D. Karger, A. Sherman, A. Berkheimer, B. Bogstad, R. Dhanidina, K. Iwamoto,
B. Kim, L. Matkins, and Y. Yerushalmi, “Web Caching with Consistent
Hashing,” Computer Networks: The International Journal of Computer and
Telecommunications Networking, vol. 31, pp. 1203–1213, May 1999.

http://gigaom.com/2008/10/07

190

[136] C. Partridge and T. Mendez and W. Milliken, “Host Anycasting Service, RFC
1546.” http://tools.ietf.org/html/rfc1546, November 1993.

[137] Google, “Google Public DNS Performance Benefits.” http://code.google.
com/speed/public-dns/docs/performance.html, Retrieved September 2011.

[138] H. Ballani, P. Francis, and S. Ratnasamy, “A Measurement-based Deployment
Proposal for IP Anycast,” in Proceedings of the 6th ACM SIGCOMM conference
on Internet measurement (IMC), pp. 231–244, 2006.

[139] C. Huang, D. Maltz, J. Li, and A. Greenberg, “Public DNS system and Global
Traffic Management,” in Proceedings of IEEE INFOCOM, pp. 2615 –2623, April
2011.

[140] A. Su, D. Choffnes, A. Kuzmanovic, and F. Bustamante, “Drafting Behind Aka
mai: Inferring Network Conditions Based on CDN Redirections,” IEEE/ACM
Transactions on Networking, vol. 17, pp. 1752 –1765, December 2009.

[141] M. Andrews, B. Shepherd, A. Srinivasan, P. Winkler, and F. Zane, “Clustering
and Server Selection using Passive Monitoring,” in Proceedings of Twenty-First
Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM), vol. 3, pp. 1717 – 1725, 2002.

[142] J. Pan, Y. T. Hou, and B. Li, “An Overview of DNS-based Server Selections in
Content Distribution Networks,” Computer Networks, vol. 43, no. 6, pp. 695 –
711, 2003.

[143] American Registry for Internet numbers, “ARIN Whois.” http://whois.arin.
net/ui/query.do, Retrieved September 2011.

[144] N. Leavitt, “Is Cloud Computing Really Ready for Prime Time?,” Computer,
vol. 42, pp. 15–20, January 2009.

[145] B. P. Rimal, E. Choi, and I. Lumb, “A Taxonomy and Survey of Cloud Com
puting Systems,” in NCM ’09: Proceedings of the 2009 Fifth International Joint
Conference on INC, IMS and IDC, pp. 44–51, 2009.

[146] Amazon, “Amazon Web Services.” http://aws.amazon.com, Retrieved
September 2011.

[147] IBM, “IBM Smart Cloud.” http://www.ibm.com/cloud-computing/us/en/,
Retrieved September 2011.

[148] Facebook, “Facebook.” http://www.facebook.com/, Retrieved September
2011.

[149] Google, “Google App Engine.” http://code.google.com/appengine/, Re
trieved September 2011.

[150] Google, “Google Docs.” http://docs.google.com, Retrieved September 2011.

[151] Oracle, “Oracle Software as a Service.” http://www.oracle.com/us/
products/ondemand/saas-068569.html, Retrieved September 2011.

[152] Microsoft, “Microsoft Cloud Computing Solutions.” http://www.microsoft.
com/en-us/cloud/default.aspx, Retrieved September 2011.

http://www.microsoft
http://www.oracle.com/us
http:http://docs.google.com
http://code.google.com/appengine
http:http://www.facebook.com
http://www.ibm.com/cloud-computing/us/en
http:http://aws.amazon.com
http:net/ui/query.do
http://whois.arin
http://code.google
http://tools.ietf.org/html/rfc1546

191

[153] Apple, “Apple iCloud.” http://www.apple.com/icloud/, Retrieved Septem
ber 2011.

[154] Google, “Google Public DNS Security Benefits.” http://code.google.com/
speed/public-dns/docs/security.html, Retrieved September 2011.

[155] B. Ager, W. Muehlbauer, G. Smaragdakis, and S. Uhlig, “Comparing DNS
Resolvers in the Wild,” in Proceedings of Internet Measurement Conference
(IMC), pp. 15–21, November 2010.

[156] D.-F. Chang, R. Govindan, and J. Heidemann, “The Temporal and Topological
Characteristics of BGP Path Changes,” in Proceedings of IEEE ICNP, pp. 190–
199, 2003.

[157] R. Beverly, K. Sollins, and A. Berger, “SVM Learning of IP Address Structure
for Latency Prediction,” in Proceedings of the 2006 SIGCOMM workshop on
mining network data (MineNet), pp. 299–304, 2006.

[158] R. Beverly and M. Afergan, “Machine learning for Efficient Neighbor Selection
in Unstructured P2P networks,” in Proceedings of the 2nd USENIX workshop
on Tackling Computer Systems Problems with Machine Learning Techniques
(SysML), pp. 1:1–1:6, 2007.

[159] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A Machine Learning Ap
proach to TCP Throughput Prediction,” IEEE/ACM Transactions on Net
working, vol. 18, pp. 1026–1039, August 2010.

[160] R. Beverly, “A Robust Classifier for Passive TCP/IP Fingerprinting,” in Pro
ceedings of the 5th Passive and Active Measurement Workshop (PAM), 2004.

[161] R. Beverly and K. Sollins, “An Internet Protocol Address Clustering Algo
rithm,” in Proceedings of the Third conference on Tackling Computer Systems
Problems with Machine Learning Techniques (SysML), pp. 1–5, 2008.

[162] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based Change De
tection: Methods, Evaluation, and Applications,” in Proceedings of the 3rd
ACM SIGCOMM conference on Internet measurement (IMC), pp. 234–247,
2003.

[163] A. Broder and M. Mitzenmacher, “Network Applications of Bloom Filters: A
Survey,” in Internet Mathematics, pp. 636–646, 2002.

[164] AT&T, “AT&T High Speed Internet Business Edition Service Level Agree
ments.” http://www.att.com/gen/general?pid=6622, Retrieved September
2011.

[165] Sprint, “Sprint Service Level Agreements.” http://www.sprintworldwide.
com/english/solutions/sla/, Retrieved September 2011.

[166] P. Pongpaibool and H. S. Kim, “Providing end-to-End Service Level Agreements
across Multiple ISP Networks,” Computer Networks, vol. 46, no. 1, pp. 3–18,
2004.

http://www.sprintworldwide
http://www.att.com/gen/general?pid=6622
http:http://code.google.com
http://www.apple.com/icloud

192

[167] R. Keralapura, C. N. Chuah, G. Iannaccone, and S. Bhattacharyya, “Ser
vice Availability: A New approach to Characterize IP Backbone Topologies,”
Twelfth IEEE International Workshop on Quality of Service (IWQOS), pp. 232–
241, June 2004.

[168] R. Bush, O. Maennel, M. Roughan, and S. Uhlig, “Internet Optometry: Assess
ing the Broken Glasses in Internet Reachability,” in Proceedings of the 9th ACM
SIGCOMM conference on Internet measurement conference (IMC), pp. 242–
253, 2009.

[169] B. Cohen, “Incentives Build Robustness in BitTorrent.” http://www.
bittorrent.org/bittorrentecon.pdf, 2003.

[170] RIPE, “RIPE Network Coordination Centre.” http://www.ris.ripe.net/
source/, Retrieved September 2011.

[171] B. Zhang, V. Kambhampati, M. Lad, D. Massey, and L. Zhang, “Identifying
BGP Routing Table Transfers,” in Proceedings of ACM MineNet workshop,
2005.

[172] E. Chen and J. Stewart, “A Framework for Inter-Domain Route Aggregation,
RFC 2519.” http://tools.ietf.org/html/rfc2519, February 1999.

[173] A. Broido, E. Nemeth, and K. Claffy, “Internet Expansion, Refinement and
Churn,” in European Transactions on Telecommunications, 2002.

[174] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and
Techniques. Morgan Kaufmann, San Francisco, 2nd ed., 2005.

[175] John Shepler, “The Holy Grail of Five-nines reliability.” http://
searchnetworking.techtarget.com/generic/0,295582,sid7_gci1064318,
00.html, 2005.

[176] E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses. Springer,
New York, 3rd ed., 2005.

[177] S. S. Sawilowsky, “Fermat, Schubert, Einstein, and Behrens-Fisher: The Proba
ble Difference Between Two Means When σ
21 σ= 2

2,” Journal of Modern Applied

Statistical Methods, vol. 1, no. 2, 2002.

[178] L. Hamel, “Model Assessment with ROC Curves,” in The Encyclopedia of Data
Warehousing and Mining, Idea Group Publishers, 2nd ed., 2008.

[179] T. Fawcett, “ROC Graphs: Notes and Practical Considerations for Re
searchers,” Tech Report HPL-2003-4, HP Laboratories, 2003. Available: http:
//home.comcast.net/~tom.fawcett/public_html/papers/ROC101.pdf.

[180] R. Webster West, “T Distribution Calculator.” http://www.stat.tamu.edu/
~west/applets/tdemo.html, Retrieved September 2011.

[181] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann Pub
lishers, 1993.

[182] J. R. Quinlan, P. J. Compton, K. A. Horn, and L. Lazarus, “Inductive Knowl
edge Acquisition: A Case Study,” in Proceedings of the Second Australian Con
ference on Applications of expert systems, pp. 137–156, 1987.

http:http://www.stat.tamu.edu
http://tools.ietf.org/html/rfc2519
http:http://www.ris.ripe.net
http://www

193

[183] Second PacNOG Meeting, Conference and Educational Workshop, “BGP
Attributes and Policy Control.” http://www.pacnog.org/pacnog2/track2/
routing/b1-1up.pdf, February 1999.

[184] M. Caesar, L. Subramanian, and R. H. Katz, “Towards Localizing Root Causes
of BGP Dynamics,” Tech. Rep. UCB/CSD-03-1292, EECS Department, Uni
versity of California, Berkeley, 2003.

[185] A. Broido and K. Claffy, “Analysis of RouteViews BGP data: Policy Atoms,”
in Network-Related Data Management (NRDM) workshop, 2001.

[186] PlanetLab, “PlanetLab: An Open Platform for Developing, Deploying, and
Accessing Planetary-scale Services.” http://www.planet-lab.org/, Retrieved
September 2011.

[187] X. Zhao, D. Pei, L. Wang, D. Massey, A. Mankin, S. F. Wu, and L. Zhang, “An
Analysis of BGP Multiple Origin AS (MOAS) Conflicts,” in Proceedings of the
1st ACM SIGCOMM Workshop on Internet Measurement (IMW), pp. 31–35,
2001.

[188] D. J. Hand, H. Mannila, and P. Smyth, Principles of Data Mining. The MIT
Press, 1st ed., 2001.

[189] MaxMind, “GeoLite City.” http://www.maxmind.com/app/geolitecity, Re
trieved September 2011.

[190] R. Sinnott, “Virtues of the Haversine,” Sky and Telescope, vol. 68, no. 2, p. 159,
1984.

[191] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. The MIT Press, 2nd ed., 2001.

[192] S. Burkle, BGP Convergence Analysis. PhD thesis, Universitat des Saarlandes,
2003.

[193] Ao-Jan Su and A. Kuzmanovic, “Thinning Akamai,” in Proceedings of the 8th
ACM SIGCOMM conference on Internet Measurement (IMC), pp. 29–42, 2008.

[194] Cymru, “IP to ASN Mapping.” http://www.team-cymru.org/Services/
ip-to-asn.html, Retrieved September 2011.

[195] Akamai, “Akamai Solutions.” http://www.akamai.com/html/solutions/
index.html, Retrieved September 2011.

[196] Google, “Google Milestones.” http://www.google.com/corporate/history.
html, Retrieved September 2011.

[197] Google, “Think Big with a Gig: Our Experimental
Fiber Network.” http://googleblog.blogspot.com/2010/02/
think-big-with-gig-our-experimental.html, February 2010.

[198] C. Labovitz, “How Big is Google?.” http://asert.arbornetworks.com/2010/
03/how-big-is-google/, March 2010.

[199] C. Labovitz, “Internet Traffic and Content Consolidation,” in Proceedings of
the seventy seventh Internet Engineering Task Force meeting, March 2010.

http://asert.arbornetworks.com/2010
http://googleblog.blogspot.com/2010/02
http://www.google.com/corporate/history
http://www.akamai.com/html/solutions
http://www.team-cymru.org/Services
http://www.maxmind.com/app/geolitecity
http:http://www.planet-lab.org
http://www.pacnog.org/pacnog2/track2

194

[200] C. Huang, A. Wang, J. Li, and K. W. Ross, “Measuring and Evaluating Large-
scale CDNs (Paper Withdrawn at Microsoft’s request),” in Proceedings of the
8th ACM SIGCOMM conference on Internet measurement (IMC), pp. 15–29,
2008.

[201] die.net, “dig(1) - Linux Man Page.” http://linux.die.net/man/1/dig, Re
trieved September 2011.

[202] J. A. Muir and P. C. V. Oorschot, “Internet Geolocation: Evasion and Coun
terevasion,” ACM Computing Surveys, vol. 42, pp. 4:1–4:23, December 2009.

[203] MaxMind, “MaxMind GeoIP City Database.” http://www.maxmind.com/app/
city, Retrieved September 2011.

[204] MaxMind, “MaxMind Web Services.” http://www.maxmind.com/app/web_
services, Retrieved September 2011.

[205] MaxMind, “MaxMind GeoIP City Accuracy.” http://www.maxmind.com/app/
city_accuracy, Retrieved September 2011.

[206] MathWorks, “Matlab for Technical Computing.” http://www.mathworks.com,
Retrieved September 2011.

[207]	 Data Center Knowledge, “Google Data Center FAQ.”
http://www.datacenterknowledge.com/archives/2008/03/27/
google-data-center-faq/, March 2008.

[208] Royal Pingdom, “Map of all Google Data Center Locations.” http://royal.
pingdom.com/2008/04/11/map-of-all-google-data-center-locations/,
April 2008.

[209] IRR, “Internet Routing Registry.” http://www.irr.net/, Retrieved Septem
ber 2011.

[210] ARIN, “ARIN WHOIS Database Search.” https://ws.arin.net/whois/, Re
trieved September 2011.

[211] RIPE, “RIPE Routing Information Service (RIS).” http://www.ripe.net/np/
ris/, Retrieved September 2011.

[212] APNIC, “APNIC Whois.” http://wq.apnic.net/apnic-bin/whois.pl, Re
trieved September 2011.

[213] AFRINIC, “AFRINIC Whois.” http://www.afrinic.net/cgi-bin/whois,
Retrieved September 2011.

[214] LACNIC, “LACNIC Whois.” http://lacnic.net/cgi-bin/lacnic/whois,
Retrieved September 2011.

[215] IP2Location, “IP GeoLocator.” http://www.ip2location.com, Retrieved
September 2011.

[216] Google, “Introduction to Google Public DNS.” http://code.google.com/
speed/public-dns/index.html, Retrieved September 2011.

http:http://code.google.com
http:http://www.ip2location.com
http://lacnic.net/cgi-bin/lacnic/whois
http://www.afrinic.net/cgi-bin/whois
http://wq.apnic.net/apnic-bin/whois.pl
http://www.ripe.net/np
https://ws.arin.net/whois
http:http://www.irr.net
http://royal
http://www.datacenterknowledge.com/archives/2008/03/27
http:http://www.mathworks.com
http://www.maxmind.com/app
http://www.maxmind.com/app/web
http://www.maxmind.com/app
http://linux.die.net/man/1/dig

195

[217] E. Katz-Bassett, J. P. John, A. Krishnamurthy, D. Wetherall, T. Anderson,
and Y. Chawathe, “Towards IP Geolocation using Delay and Topology Mea
surements,” in Proceedings of the 6th ACM SIGCOMM conference on Internet
measurement (IMC), pp. 71–84, 2006.

[218] Google, “Google Insights.” http://www.google.com/insights/search/, July
2010.

[219] Akamai, “Akamai Customer Stories.” http://www.akamai.com/html/
customers/index.html, Retrieved September 2011.

[220] Akamai, “Akamai Net Usage Index.” http://www.akamai.com/html/
technology/nui/news/index.html, Retrieved September 2011.

[221] T. M. Sellke, “How Many IID Samples Does it Take to See all the Balls in a
Box?,” The Annals of Applied Probability, vol. 5, pp. 294–309, February 1995.

[222] C. Contavalli and W. van der Gaast and S. Leach and D. Rodden, “Client
IP information in DNS requests.” IETF Internet Draft draft-vandergaastedns
client-ip-00.txt, January 2010.

[223] A. F. Internet, “A Faster Internet - The Global Internet Speedup.” http://
afasterinternet.com/, Retrieved September 2011.

[224] CNET News, “Google, OpenDNS Add Geo Speed Boost to
Net.” http://news.cnet.com/8301-30685_3-20098994-264/
google-opendns-add-geo-speed-boost-to-net/, August 2011.

[225] P. Wendell and J. W. Jiang and M. J. Freedman and Jennifer Rexford,
“DONAR: Decentralized Server Selection for Cloud Services,” in SIGCOMM
’10: Proceedings of the 2010 conference on Applications, Technologies, Archi
tectures and Protocols for computer communications, pp. 231–242, 2010.

[226] M. Marcon, B. Viswanath, M. Cha, and K. Gummadi, “Sharing Social Con
tent from Home: A Measurement-driven Feasibility Study,” in Proceedings of
NOSSDAV, pp. 45–50, 2011.

[227] M. N. Center, “Microsoft to Acquire Skype.” http://www.microsoft.com/
presspass/press/2011/may11/05-10corpnewspr.mspx, Retrieved September
2011.

[228] Google, “Google To Acquire YouTube for $1.65 Billion in Stock.”
http://www.google.com/intl/en/press/pressrel/google_youtube.html,
Retrieved September 2011.

[229] Alexa, “Top Sites by Country.” http://www.alexa.com/topsites/countries,
Retrieved September 2011.

[230]	 comScore, “comScore Releases May 2011 U.S. Search Engine Rankings.”
http://www.comscore.com/Press_Events/Press_Releases/2011/6/
comScore_Releases_May_2011_U.S._Search_Engine_Rankings, Retrieved
September 2011.

[231] comScore, “Social Networking Explodes Worldwide.” http://www.comscore.
com/Press_Events/Press_Releases/2008/08/Social_Networking_World_
Wide, Retrieved September 2011.

http://www.comscore
http://www.comscore.com/Press_Events/Press_Releases/2011/6
http://www.alexa.com/topsites/countries
http://www.google.com/intl/en/press/pressrel/google_youtube.html
http:http://www.microsoft.com
http://news.cnet.com/8301-30685_3-20098994-264
http:afasterinternet.com
http://www.akamai.com/html
http://www.akamai.com/html
http://www.google.com/insights/search

196

[232] Facebook, “Statistics.” https://www.facebook.com/press/info.php?
statistics, Retrieved September 2011.

[233] Google, “Google Plus.” https://plus.google.com, Retrieved September 2011.

[234] T. W. S. Journal, “Google+ Pulls In 20 Million in 3 Weeks.” http://online.
wsj.com/article/SB10001424053111904233404576460394032418286.html,
Retrieved September 2011.

[235] Wikipedia, “United States v. AT&T.” http://en.wikipedia.org/wiki/
United_States_v._AT%26T, Retrieved September 2011.

[236] Wikipedia, “United States v. Microsoft.” http://en.wikipedia.org/wiki/
United_States_v._Microsoft, Retrieved Septe,ber 2011.

[237] H. Chang, S. Jamin, and W. Willinger, “To Peer or Not to Peer: Modeling the
Evolution of the Internet’s AS-Level Topology,” in Proceedings of INFOCOM,
2006.

[238] N. Feamster, H. Balakrishnan, and J. Rexford, “Some Foundational Problems
in Interdomain Routing,” in HotNets, November 2004.

[239] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford, “Dynamics of Hot-Potato
Routing in IP Networks,” in SIGMETRICS Performance, pp. 307–319, 2004.

[240] F. C. Commission, “The Open Internet.” http://www.fcc.gov/cgb/
consumerfacts/openinternet.pdf, Retrieved September 2011.

[241] J. M. Peha, “The Benefits and Risks of Mandating Network Neutrality, and
the Quest for a Balanced Policy,” in 34th Telecommunications Policy Research
Conference, 2006.

[242] V. Cerf, “Re-thinking the Internet.” http://www.youtube.com/watch?v=
VjGuQ1GJkYc, Retrieved September 2011.

[243] Amazon, “Amazon Simple Storage Service.” http://aws.amazon.com/s3, Re
trieved September 2011.

http://aws.amazon.com/s3
http://www.youtube.com/watch?v
http://www.fcc.gov/cgb
http://en.wikipedia.org/wiki
http://en.wikipedia.org/wiki
http://online
http:https://plus.google.com
https://www.facebook.com/press/info.php

VITA

197

VITA

Ravish Khosla received his Bachelors of Technology (Honours) from Indian Insti

tute of Technology (IIT) Kharagpur, India in 2004 with a major in Electrical Engi

neering and a minor in Electronics and Electrical Communication Engineering. He

received a silver medal from IIT Kharagpur for having the highest GPA in his depart

ment’s graduating class. Ravish then began his graduate studies at Purdue University

and graduated with a Masters of Science in Electrical and Computer Engineering in

2006. His Masters thesis was on reliable data dissemination in energy constrained

sensor networks under the guidance of Dr. Saurabh Bagchi. Ravish completed his

PhD in Electrical and Computer Engineering in December 2011 from Purdue Univer

sity under the guidance of Dr. Sonia Fahmy and Dr. Y. Charlie Hu. He has worked

as a Teaching and Research Assistant at Purdue University and has received Magoon

Award for Teaching Excellence and Graduate Teacher Certificate from Purdue.

Ravish’s research interests are in both wired and in wireless networks, especially

in routing protocols. He is also interested in cloud computing, data centers, machine

learning and security.

