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ABSTRACT 

Torres Guerra, Ruben Dario Ph.D., Purdue University, December 2011. Measurement-
Driven Characterization of Emerging Trends in Internet Content Delivery . Major 
Professor: Sanjay G. Rao. 

In the last decade, there have been radical changes in both the nature of the 

mechanisms used for Internet content distribution, and the type of content delivered. 

On the one hand, Peer-to-Peer (P2P) based content distribution has matured. On the 

other hand, there has been a tremendous growth in video traffic. The goal of this thesis 

is to characterize these emerging trends in content distribution and understand their 

implications for Internet Service Providers (ISP) and users. Such characterization is 

critical given the predominance of P2P and video traffic in the Internet today and 

can enable further evolution of content delivery systems in ways that benefit both 

providers and users. 

In this thesis, we make the following contributions: (i) We develop novel method

ologies to identify undesirable behavior of P2P systems, and expose the prevalence 

of such behavior; (ii) We characterize private P2P communities, and discuss the im

plications of our findings on recent research on localization of P2P traffic within an 

ISP; (iii) We shed light into the factors that govern the data-center selection for video 

delivery in geographically distributed settings by characterizing YouTube, the most 

popular video distribution network in the Internet. 

A common thread underlying these contributions, and a distinguishing highlight 

of this thesis is the analysis of terabytes of traffic traces collected from the edge of 

multiple ISP and Campus networks located in different countries. 
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1. INTRODUCTION 

Internet content distribution has experienced radical changes in the last decade. 

These changes range from the mechanisms used to deliver content to the type of 

content being delivered. In particular we see two broad trends: 

• In the last few years, P2P systems have developed to the point that they are 

widely used for many different applications such file sharing, video streaming, gaming, 

voice-over-IP and others. Some of these applications have become popular enough 

that they have been commercialized and are being used by millions of clients. For 

example, Skype [1], a voice-over-IP system, has more than 100 million clients [2]. 

Similarly, BitTorrent [3] is a file sharing application with several million users. 

• Video is becoming the dominant type of content distributed on the Internet 

today. This is probably because of the popularity of video on demand services such 

as YouTube [4], Hulu [5] and Netflix [6], the improvement of broadband technologies 

(e.g. Fiber-to-the-Home) and the development of new and easy ways to access this 

content through mobile devices and digital media receivers such as Apple TV [7]. 

A characterization of these emerging trends in content distribution is necessary 

to greatly help understanding their implications for Internet service providers (ISP) 

and users. On the one hand, while there have been some work characterizing video 

content distribution [8–12], we are just scratching the surface in this area. Moreover, 

video distribution systems are constantly changing, so new research is required. On 

the other hand, while P2P systems have received much attention, new trends as they 

mature have developed: (i) with the growth in complexity of these systems, it becomes 

critical to monitor P2P nodes and ensure they behave as expected; (ii) P2P traffic 

has increased costs of transit traffic on ISPs, but recent research proposals to solve 

this problem [13–21] still require more scrutiny. 
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In this thesis, we make an effort to characterize some of these new trends in both 

P2P technologies and video content distribution. First, we develop methodologies to 

detect and expose undesirable behavior of P2P clients on a real ISP network. Second, 

we study the implications of localization of P2P traffic to an ISP by characterizing 

private communities of P2P users, where all users are confined to within a single ISP. 

Finally, we shed light into the factors that govern the data center selection for video 

delivery in YouTube, the most popular video distribution network in the Internet. A 

better understanding of these types of systems could enable researchers to conduct 

what-if analysis, and explore how changes in video popularity distributions, or changes 

to the infrastructure can impact ISP traffic patterns, as well as user performance. A 

distinguishing aspect of this thesis is the use of a measurement-driven approach to 

analysis. We analyze terabytes of traffic traces from five different large-scale networks 

spread across three countries including nation-wide ISPs and University campuses. 

The traces are collected with a tool that identifies the application that generates TCP 

and UDP flows using a combination of Deep Packet Inspection (DPI) and statistical 

classifiers. 

In the rest of the introduction, we give a summary of the various pieces of this 

thesis and present the expected contributions of this work. We also provide a roadmap 

of the thesis at the end of this section. 

1.1 Detecting and Preventing Undesirable Behavior of P2P Clients 

P2P systems are large-scale, with millions of participants and complex design 

interactions. Further, they are difficult to debug because of their distributed nature 

and they may have security vulnerabilities [22–26]. Hence P2P clients could exhibit 

patterns of undesirable behavior. However, this behavior is not easy to detect since 

there is neither a clear definition of normality nor a list of anomalous behavior to look 

for. In this thesis, we systematically study a trace from a real P2P deployment in a 

point-of-presence (PoP) within a large-scale nationwide ISP and expose the prevalence 
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of undesirable behavior in the system. In addition, we develop a methodology to 

detect these types of behavior in the network, which rely on a combination of data 

mining techniques and manual inspection using domain knowledge of the P2P system 

and the ISP network. 

One type of undesirable behavior we found in the analyzed traces that could be 

highly detrimental to the Internet is P2P clients participating in a Distributed Denial 

of Service (DDoS) attack. Since these systems consist of millions of participants 

spread around the world, a DDoS attack involving them would be difficult to shut 

down. In this thesis, we survey the various techniques that have been proposed 

to cause DDoS attacks exploiting P2P systems. In addition, we present an in-depth 

analysis and evaluation of mechanisms that can be implemented to make P2P systems 

robust to these types of vulnerabilities. 

1.2	 Implications of Localizing P2P Traffic through a Characterization of 

Private P2P Systems 

Recently, there have been research efforts on mechanisms to localize P2P traffic 

to within ISP boundaries [13, 14]. While a majority of this research has taken the 

benefits of localization on users and ISPs for granted, we believe that a more critical 

examination is essential. We study implications of P2P traffic localization in the 

context of private communities of P2P systems. In the communities we analyze, 

membership is restricted by requiring that users must be connected to the same 

network (e.g., same ISP). In our study, we combine analysis of traffic traces with the 

use of models to evaluate the impact of localization on the ISP internal network and 

on user performance. 

In a related joint work [27], we perform a simulation study on the impact of P2P 

traffic localization on ISP profitability if localization policies are adopted by ISPs 

throughout the Internet. Our simulations are based on detailed models of inter-AS 

P2P traffic and inter-AS routing, localization models that can predict the extent to 

http:sameISP).In
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which P2P traffic is reduced, and pricing models to predict the impact of changes 

in traffic on an ISPs profit. To evaluate our models we use a large-scale crawl of 

BitTorrent involving over millions users sharing millions of files. 

1.3 Dissecting Video Server Selection Strategies in the YouTube CDN 

Today, video accounts for close to 25% of the traffic in the Internet [28–30]. 

YouTube is one of the main reasons for this video traffic dominance. In this the

sis, we characterize the video delivery mechanisms employed by YouTube to serve 

video around the world. To this end, we analyze week-long traffic traces, containing 

more than 2.5 million YouTube TCP flows, collected from two nation-wide ISPs and 

two large Campus networks in two different continents. A more general goal of this 

work is on gaining better understanding of the factors that may affect server selec

tion policies, which can help researchers to better analyze video distribution systems. 

A unique aspect of our work is that we perform our analysis on groups of related 

YouTube flows. This enables us to infer key aspects of the system design that would 

be difficult to glean by considering individual flows in isolation. 

Our results indicate that clients that belong to a network are served from a pre

ferred YouTube data center. This is implemented mostly through DNS-level reso

lution of content server names to IP addresses located in the preferred data center. 

More interesting however, is that there are cases in which clients are redirected to 

data centers different than the preferred. This can be due to a variety of reasons such 

as load balancing, video flash crowd and availability of rare content. 

1.4 Research Methodology 

Our research methodology comprises three major blocks: (i) Measuring P2P and 

content delivery systems on large ISPs and campus networks; (ii) Mining insights 

from collected data and (iii) Designing P2P systems and traffic models. 
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• Measuring P2P and video delivery systems on large ISPs and campus networks : 

We believe the best way to understand the impact of P2P and video delivery systems 

on large IP networks is by measuring them. We have collected and analyzed traces 

from five networks, including two large European ISPs with millions of customers 

and two large Campus networks, one in the United States and one in Europe, with 

thousands of users. 

• Mining insights from collected data: We have analyzed terabytes of data looking 

for interesting insights that can help explain the behavior of P2P systems today. 

For instance, we studied more than 50 different metrics in millions of TCP and UDP 

flows, in order to find anomalies of P2P clients. Similarly, in our study of P2P private 

communities as well as the YouTube CDN study, we characterized these systems by 

analyzing millions of TCP and UDP flows in five different and large networks. 

• Designing systems and models based on insights : Finally, we leverage the insights 

from the data to develop methodologies, systems and models. For instance, we have 

proposed methodologies to detect undesirable behavior of P2P clients. In addition, 

we have implemented changes to real P2P applications for video broadcasting and 

file sharing to make them robust to DDoS attacks. 

1.5 Contributions 

In this section, we present the contribution of this thesis. We group them according 

to the major pieces of the thesis: 

1.5.1 Detecting and Preventing Undesirable Behavior of P2P clients 

• Characterization of undesirable behavior of P2P clients: Our work is one of the 

first to show that undesirable behavior exists and is prevalent in real networks. Our 

analysis shows several examples of undesirable behavior including evidence of DDoS 

attacks exploiting live P2P clients, significant amounts of unwanted traffic that may 

harm network performance, and instances where the performance of participating 
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peers may be subverted due to maliciously deployed servers. We systematically study 

traces collected from a PoP within a nationwide ISP with more than 5 million users. 

This is a very unique network, where 70% of the inbound traffic and 95% of the 

outbound traffic are due to P2P data. We found it is hard to distinguish undesirable 

behavior from normal behavior in an automatic fashion due to the heterogeneity of 

the P2P traffic and the difficulty in characterizing normal behavior of clients. Hence, 

we develop mechanisms to detect undesirable behavior, that combine data mining 

techniques and manual inspection through domain knowledge. 

• Design and evaluation of mechanisms to prevent P2P systems from being ex

ploited to create DDoS attacks: We study in detail a type of undesirable behavior 

which we found with our detection methodology, P2P clients participating on DDoS 

attacks. Further, we propose and extensively evaluate active-probing based member

ship validation mechanisms to make P2P systems robust to these types of attacks. 

1.5.2	 Implications of Localizing P2P Traffic through a Characterization 

of Private P2P Systems 

We present the first measurement study of communities of P2P clients that are 

localized to a network. We study two such systems used for content sharing, one 

hosted in a large nationwide ISP and the other in a campus network. In addition, we 

show the performance benefits experienced by clients of these systems and present 

a study of the effect of these systems in the traffic volumes carried by links in the 

host network. We draw lessons from our characterization study that apply to recent 

research on localization of P2P traffic to within ISP boundaries. In particular, our 

results indicate that (i) in ISPs with heterogeneous access technologies, the perfor

mance benefits to users on localizing P2P traffic is largely dependent on the degree 

of altruism of peers behind high-bandwidth access technologies; and (ii) while local

ization can reduce the traffic on Internet peering links, it has the potential to cause 



7 

a significant increase in traffic on internal links of providers, potentially requiring 

upgrades of network links. 

In a joint parallel effort [27], we study the Internet-wide impact of P2P traffic 

localization on ISP profitability. Our contributions include a methodology to perform 

what-if analysis on the adoption of P2P localization by all ISPs in the Internet or by 

a limited number of ISPs. Some of our key findings include: (i) residential ISPs can 

actually lose money when localization is employed; (ii) the reduction in costs due to 

localization will be limited for ISPs with small P2P populations; and (iii) some ISPs 

can better increase profitability through alternate strategies to localization by taking 

advantage of the business relationships they have with other ISPs. 

1.5.3 Dissecting Video Server Selection Strategies in the YouTube CDN 

Our analysis indicates that the YouTube infrastructure has been completely re

designed compared to the one previously analyzed in the literature. In the new design, 

most YouTube requests are directed to a preferred data center and the RTT between 

users and data centers plays a role in the video server selection process. More sur

prisingly, however, our analysis also indicates a significant number of instances where 

users are served from a data center that is not the preferred one. In one of our 

datasets, up to 55% of video requests were not served from the preferred data center, 

while in most datasets at least 10% of requests were not served from the preferred 

data center. 

We identified a variety of causes underlying accesses to non-preferred data centers. 

In some cases DNS mechanisms resulted in users being directed to non-preferred data 

centers for reasons including load balancing to handle variations in system load due to 

the day/night patterns in YouTube usage. Interestingly, we found other cases where 

video was streamed to the user from a non-preferred data center, even though DNS 

directs the user to the preferred data center. The common causes underlying such 
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cases included (i) alleviation of load hot spots due to popular video content; and (ii) 

accesses to unpopular video content that may not be available in a given data center. 

1.6 Thesis Roadmap 

Chapter 2 describes our findings of undesirable behavior of P2P clients in a large 

ISP. Chapter 3 presents a case study of an undesirable behavior, a DDoS attack ex

ploiting P2P clients, and mechanisms to prevent such attack. Chapter 4 presents 

our analysis of a localized community of P2P clients. Chapter 5 presents our char

acterization study of the YouTube CDN. Finally, Chapter 6 lists a summary of our 

contributions and the future work. 
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2. INFERRING UNDESIRABLE BEHAVIOR FROM P2P 

TRAFFIC ANALYSIS 

Peer-to-peer (P2P) systems have rapidly emerged in popularity in the last few years, 

and they have matured to the point we have recently seen several commercial offerings, 

including file sharing, VoIP and multimedia applications. Recent studies [31] indicate 

that over 60% of network traffic is dominated by peer-to-peer systems, and their 

emergence has drastically affected traffic usage and capacity engineering. 

With the growth of P2P systems, many of which involve millions of hosts, and 

complex interactions between participating peers, it becomes critical to monitor these 

systems, and to ensure they are behaving as intended. Indeed, several reports are 

emerging about potential vulnerabilities in these systems either due to implemen

tation bugs, or design flaws [22–26]. The behavior may be undesirable either from 

the perspective of the performance of the system, or in terms of unwanted traffic 

(malicious or otherwise) generated by the systems. 

Detecting undesirable behavior is of interest to network operators, P2P system 

developers, and actual P2P end-users. Network operators may wish to identify causes 

for large traffic consumption, or they may want to optimize P2P traffic delivery, e.g., 

limit traffic peering costs. Knowledge of undesirable behavior and its causes can aid 

P2P system developers in augmenting the design of the systems. Finally, end-users 

seek to ensure that their host is not being exploited for malicious purposes, and care 

about application performance. 

While the ultimate objective is automated identification of undesirable behavior, 

there is limited understanding in the community today on the patterns of undesir

able behavior that P2P systems may exhibit, and the prevalence and seriousness of 

such behavior in real networks. Our primary contribution in this paper is to create 

such understanding by systematically analyzing real traffic traces collected from a 
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Point-of-Presence (PoP) of a nation-wide ISP. In the ISP we consider, 70% (95%) of 

inbound (outbound) traffic is due to eMule [32], a popular file-sharing system, and 

the associated Kad network, one of the largest DHT-based deployments. We analyze 

a 25 hour trace, comprising about 2TB of data. Another interesting aspect of this 

dataset is the use of a modified Kad system - called KadU - within the ISP network 

that was optimized by a large community of ISP users to exploit the peculiarities of 

the ISP architecture. 

One of the key challenges we faced in our study is that it is hard to distinguish 

undesirable behavior from normal usage in a completely automated fashion, given 

the intrinsic heterogeneity of P2P traffic, and given there are few assumptions that 

can be made about the underlying nature of undesirable behavior in P2P systems. 

Undesirable behavior can be predominant, given it can arise due to flaws in the design 

or implementation of the system. This complicates the use of automated techniques 

widely adopted in the detection of anomalies of general network traffic such as [33–35], 

which assume most data-points are normal, and which identify anomalous behavior 

by detecting sudden and significant deviations from normal values. 

Consequently, our methodology employs a combination of data-mining techniques, 

and manual inspection through domain knowledge. The behavior of individual hosts 

is characterized with respect to a wide range of metrics over multiple time samples. 

The set of metrics chosen is broad, since there is limited a priori knowledge of the 

types of undesirable behavior that may be present. Standard clustering algorithms 

are utilized to identify homogeneous groups of samples. Finally, the clusters are 

manually inspected, correlated and interpreted using domain knowledge to identify 

undesirable patterns. 

Our methodology reveals several interesting findings, both confirming already 

known types of undesirable behavior of P2P systems, as well as highlighting new 

undesirable patterns. Some of our most relevant findings include: 

• We show evidence of real DDoS attacks being conducted on DNS servers by ex

ploiting P2P systems. 
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• We show that stale membership information and presence of hosts behind Network 

Address Translators (NATs) can result in the failure of 15% of TCP connections and 

18% of UDP flows incoming to the PoP. This may hurt peer performance, introduce 

unnecessary traffic, and may waste significant computation resources of state-full 

network devices, such as firewalls or NAT boxes. 

• We show instances where maliciously deployed servers can subvert the performance 

of hosts participating in the P2P system. 

While much of our analysis is conducted with Kad, and KadU given their predom

inant usage in the ISP network, we extended the analysis to consider other popular 

P2P systems, BitTorrent [3] and DC++ [36]. Given these systems are not widely 

used in the network, our analysis is conducted on a separate one-week long trace in 

which sufficient data samples are present. Our analysis exposes undesirable behav

ior in these systems as well. Overall, our results shed light on the prevalence and 

impact of undesirable behavior in P2P systems, and demonstrate the potential of a 

systematic traffic-analysis approach in uncovering such behavior. 

2.1 Methodology Overview 

The methodology we propose in this paper seeks to infer undesirable behavior 

of P2P systems, by identifying possibly atypical traffic. Our methodology may be 

viewed as consisting of the following steps, as depicted in Figure 2.1. 

In our analysis, we assume that data is collected at the edge of a network, for 

instance at the edge of an enterprise network. We assume that flow-level records 

of all UDP and TCP data traversing the network edge is available. While well-

known flow level loggers such as Cisco NetFlow [37] can be used to generate flow 

records, a key requirement for our study is that flow-level records are classified based 

on application, and flows corresponding to the P2P system of interest are clearly 

identifiable. Several techniques have been developed for classification of traffic as 

P2P (for instance [38–44]), which may be leveraged. In this paper, we use datasets 
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Fig. 2.1. Schematic overview of the proposed methodology. 

where traffic is classified using Tstat [45], a passive sniffer with deep packet inspection 

(DPI) capabilities. Raw packets are sniffed from the link of interest, flows are passively 

rebuilt, and classification is performed in an online fashion based on the application 

layer payload.1 

While we begin with per-flow measurement information, we aggregate this infor

mation to capture per-host behavior. We conduct our analysis at the host level since 

our goal is to characterize peer activity - for instance, we are interested in capturing 

peers that exhibit undesirable behavior such as searching aggressively, or generating 

large amounts of traffic. We capture host behavior using several metrics such as the 

number of active flows, the total number of received connections, and the average 

size of packets sent and received. For any given host h, and in a given time window 

[iΔT, (i + 1)ΔT ], and for each metric fm, m = {1, 2, . . . , k}, a sample of the metric 

fm(h, i) is obtained for that time window. We study host behavior in various time 

1In our context, encrypted payload has not been a major issue, but in general one approach to deal 
with it is using behavioral classifiers. 
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in the MiniPop versus other hosts. 

windows, since the host might be demonstrating normal behavior overall, but might 

exhibit interesting behavior for certain periods of time. 

The next step consists of detecting interesting, and potentially undesirable pat

terns of behavior that hosts may exhibit. To achieve this, samples corresponding to a 

given metric are fed to a clustering algorithm. In particular, we adopt a density-based 

clustering algorithm - clusters are regarded as regions in the data space in which the 

objects are dense, and which are separated by regions of low object density (noise). As 

output of this step, we get, for each metric, clusters of samples {fm(h, i)}. Through 
manual inspection and domain knowledge, clusters are labeled as normal or possibly 

interesting. Interesting samples are then correlated across hosts to identify if they 

correspond to particular hosts, or are spread across multiple hosts. In addition the 

analysis may rely on correlating interesting behavior across multiple related metrics. 

2.2 Datasets 

Real traffic traces are collected from a main broadband telecommunication ISP in 

Europe, offering telecommunication services to more than 5 millions families. Thanks 

to its fully IP architecture, and the use of both Fiber to the Home (FTTH) and Dig

ital Subscriber Line (xDSL) access, the ISP offers converged services over a single 

broadband connection. No PSTN circuit is offered to end-users, so that only IP 
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connectivity is adopted to offer data, VoIP and IPTV services over the same infras

tructure [46]. The very peculiar mix of FTTH and high-quality ADSL access makes 

the ISP the leader in providing high speed access in its country, and the preferred 

ISP among high-end users. 

2.2.1 Setup and Trace Collection 

A Metropolitan Area Network (MAN) Ethernet-based architecture is adopted in 

the last mile. Residential and small business customers are connected to a Home 

Access Gateway (HAG), which offers Ethernet ports to connect PCs, the set-top box 

and traditional phone plugs. In case of FTTH access technology, HAGs are connected 

to Ethernet switches in the building basement, which are then interconnected to form 

Gigabit Ethernet rings. Rings are terminated at the so called MiniPoP routers, which 

offers connectivity to the ISP backbone. Customers are offered a 10Mbps half-duplex 

Ethernet link. In case of ADSL access, the HAGs are connected by the DSLAM to 

backbone routers. Customers are offered 1024kbps upstream and 6Mbps or 20Mbps 

downstream links. 

Addressing and NATs: Both private and public addresses are offered to end users, 

as shown in Figure 2.2. A small number of hosts (for instance, host h1), have public 

IP addresses and these hosts have unrestricted end-to-end IP connectivity with other 

Internet hosts. The vast majority of hosts (for instance hosts h2 and h3) are assigned 

private IP addresses. Whenever such hosts communicate with hosts in the external 

Internet (for instance, h5 and h6), the data communication involves traversal of an 

ISP-wide NAT. Note however that plain end-to-end IP connectivity is offered among 

hosts inside the ISP network, and communication between hosts inside the ISP (for 

instance, h1, h2, and h3) does not involve NAT traversal. At the peering point, a Full-

Cone NAT service [47] is implemented. This forbids any TCP connection initiated 

from the external Internet. However, it is possible that UDP flows initiated from the 

external Internet are permitted. In particular, once a host behind a full-cone NAT 
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Fig. 2.3. Traffic volume shares in the MiniPoP. The top plot reports 
the inbound traffic, while the bottom plot reports the outbound traf
fic. Only HTTP and eMule traffic is reported. On the bottom plot, 
HTTP traffic is small and not visible. 

(for instance, host h3) sends a UDP packet to the external Internet, it can receive 

UDP packets on the port from any arbitrary external host, (for instance, h6). Finally, 

in addition to the ISP-wide NAT, individual users (for instance, host h4) may also 

employ home NAT boxes. Host h4 cannot be contacted by any host (unless proper 

configuration at the home NAT is provided). 

Trace Collection: Traces have been collected at a MiniPoP router during March 

and April 2008. A probe PC running Tstat was used to analyze in real time all the 

packets going to and coming from all the users in the MiniPoP, and produce a flow 

level log that has then been post-processed later2 . In this paper we report results 

obtained focusing on a subset of the dataset, corresponding to about 25 hours, or 

about 2TB of information. About 2,200 different hosts were active in the MiniPoP, 

exchanging packets to about 782,000 different hosts in the Internet. Few hosts in 

the MiniPoP are using public IP addresses, which correspond in general to servers 

installed in small offices. 

2A flow is identified by the traditional 5-tuple. In case of TCP, a flow starts when the SYN packet 
is observed. If the three-way-handshake is (not) completed, then the TCP flow is said to be 
(un)successful. In case of UDP, a flow starts when the first packet is observed. If (no) packet 
is observed in the reverse path, then the UDP flow is said to be (un)answered. Flows end after no 
packets have been observed for 10 minutes. 
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2.2.2 Description of P2P Systems 

The most popular P2P system used among the users in the ISP is eMule [32], a 

widely deployed file sharing application. To demonstrate this, Figure 2.3 shows the 

byte-wise traffic volume percentage as measured during about three months. The top 

and bottom plots report results considering inbound and outbound traffic respectively 

(i.e., bytes destined to/sourced from a host in the MiniPoP). The two most popular 

protocols are HTTP and eMule, with other protocols accounting for no more than 10% 

of traffic. In particular, eMule accounts for about 60-70% of traffic on the inbound 

traffic, while it has a share of more than 95% on the outbound volume. HTTP traffic 

is predominant only in the inbound traffic, since hosts in the MiniPoP act as clients. 

We focus our analysis on eMule traffic given its large predominance in the dataset. 

eMule supports both a centralized architecture, referred to as eMule network, and a 

DHT system, referred to as Kad network. In particular, eMule servers do not store 

any files, but they only maintain a database of files and users per file. The Kad 

network is a large-scale DHT-based system based on Kademlia [48]. A Kad client 

looks up for both content and peers sharing content using the DHT instead of relying 

on the eMule servers. Once a client has found a peer that is sharing the desired 

file, direct connections are used to download/upload the actual data using end-to-end 

TCP connections; communication with the eMule server goes preferentially over TCP, 

while Kad relies on UDP only. 

The original eMule/Kad networks have mechanisms in place to identify clients 

behind NAT, and limit the performance of such clients when they try to download 

content. This impacts the performance of hosts with private IP addresses in the 

ISP, since a NAT is traversed when communicating with hosts in the Internet, e.g., 

eMule servers. Given that the large majority of ISP hosts have been given private 

IP addresses, the performance of eMule is severely limited. Therefore, a community 

of ISP users modified the original eMule client [49] to form a closed P2P network 

that we call KadU network. The network is closed in the sense that all KadU clients 
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belong to the ISP network only. The Kad protocol has been modified, so KadU 

messages can only be exchanged among peers running the modified eMule version 

and using IP addresses actually used by the ISP. This ensures that a KadU client 

cannot operate in the Internet. Similarly, the peer selection mechanism has been 

modified to preferentially connect to other KadU clients. The KadU peers perform 

search operation on the KadU network by default, rather than relying on server-based 

search as in the default eMule configuration. No changes have been made to the eMule 

part, so that both server and P2P protocols are the same as in the original eMule, 

and the modified eMule client and original eMule client can perfectly interoperate. 

Besides avoiding the NAT issues, running the modified client has several advan

tages. Indeed, it is desirable to download content from other clients in the ISP because 

the large percentage of hosts connected by FTTH access guarantees much higher up

load capacity than the typical one offered by ADSL providers. Furthermore, given 

that all the ISP peers are in the same European country, the content that is available 

in the P2P system matches the interest of the community, and it is easier to trade 

content in the closed network than in a worldwide network. For these reasons, clients 

in KadU typically see much better performance than the one typically achieved by 

clients in the Kad network. 

2.2.3 Preliminary Traffic Analysis 

In the considered 25 hours dataset (on a Wednesday), we identified 478 clients 

running KadU inside the MiniPoP, and exchanging traffic with about 229, 000 KadU 

clients outside the MiniPoP. For Kad, we identified 136 clients which were exchanging 

packets with about 300, 000 clients in the Internet. Table 2.1 presents details on the 

trace characteristics for the Kad, KadU and eMule systems. Most of the paper will 

focus on these systems. But, in Section 2.8, we extend the analysis to consider other 

systems. 
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Table 2.1
 
General Statistics of P2P Traffic
 

Direction 

TCP UDP 

eMule eMule/Kad/KadU 

succ. connections Bytes flows Bytes 

MiniPoP to ISP 264k 512G 4.7M 820M 

MiniPoP to Internet 377k 80G 412.7k 58M 

ISP to MiniPoP 174k 341G 3.8M 735M 

Internet to MiniPoP 0 0 208k 35M 

Knowing the address space allocation for the ISP and for the MiniPoP, we are able 

to classify all hosts as being in the MiniPoP, in the ISP (but not in the MiniPoP) 

or in the Internet. We leverage this classification in Table 2.1. Each row provides 

statistics about traffic exchanged between hosts in two classes. The second and third 

columns give the number of successful TCP connections classified as eMule, and the 

amount of bytes they carried. The last two columns show similar numbers for UDP 

flows classified as eMule, Kad or KadU. For example, the MiniPoP to ISP row reports 

that (i) there was a total of 264k eMule TCP connections initiated from inside the 

MiniPoP to clients inside the ISP, which carried a total of 512GB of data; and (ii) 

around 4.7 million UDP flows (classified as eMule, Kad, or KadU) were initiated in 

the same direction, and about 820MB of data was exchanged. 

From this table, we see that: (i) the bytes exchanged between hosts within the ISP 

is much larger than the bytes going to the Internet, for both TCP and UDP. This 

is due to the extensive usage of the KadU network, and its efficiency in localizing 

traffic communication to within the ISP; (ii) there is a non-negligible amount of TCP 

and UDP traffic exchanged with the Internet. This is because the use of Kad clients 

is still prevalent. In addition, even clients that use the KadU network may need to 

rely on eMule if the content cannot be located within the ISP; and (iii) there are no 

TCP connections initiated from the Internet to the MiniPoP, but there are UDP flows 
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though. This is due to the full-cone NAT at the edge of the network, as previously 

explained in Section 2.2.1. 

2.3 Traffic Classification 

In this section, we describe the mechanisms we use to identify P2P traffic. We 

also present our methodology to aggregate flow metrics into samples per host. 

2.3.1 Selecting Flows of Interest 

In order to correctly identify eMule and Kad/KadU traffic, we employed an ap

proach described in [45] which implements deep packet inspection (DPI), and pro

duces a flow level log as output. When a new flow is identified, the DPI classifier 

looks at the application layer payload to identify a set of well-known protocols. All 

eMule and Kad/KadU protocol messages are included, and manual tuning has been 

adopted to guarantee conservative classification. While the performance of the DPI 

is out of the scope of this paper, we manually verified that the false positive and false 

negative probability is practically negligible. 

The output of the classification and flow analysis phase is a flow level log, in which 

each flow that has been observed and classified as eMule, Kad or KadU is listed, along 

with a list of measurements. In particular, in this paper we exploit the following 

per-flow information: (i) flow id defined as <src ip, src port, dst ip, dst port, pro

tocol type>; (ii) first and last packet time; (iii) number of sent and received packets; 

(iv) number of sent and received bytes. Note that the above information can be easily 

derived by any flow level logger, such as NetFlow [37], running directly at routers. 

2.3.2 Aggregating Flows into Host Samples 

As described in Section 2.1, we aggregate flow measurements into host metrics 

fm(h, i). A sample fm is obtained for host h at every time slot i of size ΔT = 5 
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minutes. The latter choice enables us to track changes in host behavior over the 

order of minutes, and it is unlikely for host behavior to significantly shift over this 

period. 

Given that clients could be part of either the Kad or KadU network each with 

very different properties, we would like to study each system in isolation by separately 

aggregating Kad and KadU flows into samples. However, while the two networks 

differ in the UDP protocol used in the Kademlia DHT, both employ identical TCP-

based protocol on the data path, e.g., to exchange content. As a consequence, the 

DPI classification can successfully distinguish UDP-based control messages, but the 

TCP-based data flows are classified identically as eMule. 

To handle this, we adopt the following heuristic. Consider a time slot i and a 

host h. If UDP flows are present, then we classify the sample as either Kad or KadU 

based on the classification of UDP flows. All TCP-based metrics are then classified 

accordingly. In the dataset, there are 12, 963 KadU samples and 1, 519 Kad samples. 

It is possible that a time slot includes both Kad and KadU - however, there are only 

35 such samples, so that we can simply discard them. 

Finally, it is possible to have samples with neither Kad nor KadU flows, but 

exclusively eMule TCP connections. There are 1, 200 such samples, most of which 

are due to 4 hosts running the centralized eMule protocol only. We do not consider 

them further. 

2.4 Metrics 

In this section, we present the list of the metrics considered in this paper, which is 

summarized in Table 2.2. All the selected metrics are very simple and intuitive met

rics. Some of them have been previously proposed for both traffic characterization 

and classification considering both P2P systems, and traditional client/server appli

cations. Some are specifically defined considering the scenario we are facing, e.g., 
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to highlight eventual Kad and KadU dissimilarities, or to pinpoint possible atypical 

behavior. 

If not otherwise specified, each metric is evaluated separately for UDP and TCP 

flows, given that the considered systems make use of both protocols. When needed, 

TCP (UDP) will be appended to the metric name, as appropriate. For relevant 

metrics, we consider the location of the flow initiator as either being inside or outside 

the MiniPoP. For ease of notation, metrics involving flows initiated inside (outside) 

the MiniPoP will be prepended with the term inout (outin) followed by the metric 

name. 

In Section 2.4.1 we consider the metrics general to all flows first, and then the 

metrics to which initiator location is specified are detailed in Section 2.4.2. 

2.4.1 Metrics Independent of Flow Initiator 

These metrics consider various measurements that do not depend on the location 

of the flow initiator. We group them in two categories, Flows, which include per-

flow basic statistics and Data transfer, which includes data exchange related metrics. 

Given a host h in the MiniPoP and a time slot i, we have: 

• Flow related metrics: (i) avg-duration is the average duration of flows started 

during time slot i; (ii) live-conn is the total number of flows that were active during 

time slot i. This includes flows that have started in the current time slot and flows 

that started in previous time slots and are still active in the current one; (iii) fract

incoming-conn is the ratio of flows initiated from the outside to the total number of 

flows. 

• Data Transfer related metrics: (i) bps-rcvd and bps-sent are the average bits 

per second (referred to as bps) received and sent respectively; (ii) avg-pkt-size is the 

average size of packets sent and received; (iii) ratio-bytes-sent-to-rcvd is defined as 

B sent−B rcvd , where B sent (B rcvd) is the total amount of bytes sent (received). ratio-
B sent+B rcvd 
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bytes-sent-to-rcvd = −1 for hosts receiving data only, while ratio-bytes-sent-to-rcvd 

= 1 for hosts that send data only. 

2.4.2 Metrics Dependent on Flow Initiator 

In this case, four categories of metrics have been selected: 

• Flow related metrics: total-conn-attempts is the total number of flows initiated 

(inout) or received (outin). This includes both successful and unsuccessful connections 

when considering TCP, and both answered and unanswered flows when considering 

UDP. 

• Destinations related metrics: (i) avg-conn-per-IP is the ratio of all flows to the 

number of distinct destinations. A similar metric was used in [43] for P2P traffic 

classification, in which the authors showed that it is rare that P2P clients open 

concurrent connections to other peers; (ii) total-peers is the total number of distinct 

peers; (iii) dest-ports is the total number of distinct destination ports; (iv) 1024-dest

ports is the total number of distinct reserved destination ports, i.e., ports from 0 

to 1024. Since reserved ports should not be used by non standard application, we 

include this metric to highlight possible abuse. 

• Failures related metrics: (i) failure-ratio is the ratio of unsuccessful TCP flows 

to total TCP flows 3 (ii) fract-unanswered-appl is the fraction of TCP flows where 

the TCP handshake is successfully completed, but the destination never sends any 

application data for the duration of the connection. (iii) fract-unanswered is the 

fraction of unanswered UDP flows to total UDP flows. 

• ISP related metrics: ISP-to-Internet-ratio is the ratio of the number of peers within 

the ISP that are contacted to the total number of contacted peers. 

3Note that unsuccessful TCP flows cannot be classified as eMule, since no payload can be inspected. 
Hence, we take a conservative approach and only consider as eMule related failures those that are 
directed to the default eMule port. 
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Table 2.2
 
List of Metrics
 

Metrics Independent of Flow Initiator 

Flows 

avg-duration 

live-conn 

fract-incoming-conn 

Data Transfer 

bps-rcvd 

bps-sent 

avg-pkt-size 

ratio-bytes-sent-to-rcvd 

Flows total-conn-attempts 

Metrics Dependent on Flow Initiator [inout, outin] 

Destinations 

avg-conn-per-IP 

total-peers 

dest-ports 

1024-dest-ports 

Failures 

failure-ratio [TCP only] 

fract-unanswered-appl [TCP only] 

fract-unanswered [UDP only] 

ISP ISP-to-Internet-ratio 

C1 

C2 

N 

Fig. 2.4. outin-fract-unanswered-UDP is an example of multiple cluster metric. 

2.5 Identifying Unwanted Behavior 

Our goal is to identify undesirable behavior of P2P systems. The key challenge 

we faced in our study is that an exhaustive list of potential undesirable behavior 
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C1 

N 

Fig. 2.5. inout-avg-conn-per-IP-TCP is an example of single cluster metric. 

is not available to us a priori. Moreover, the intrinsic heterogeneity of P2P traffic 

makes it hard to clearly distinguish undesirable behavior from normal usage. Con

sequently, our methodology employs a combination of data-mining techniques, and 

manual inspection through domain knowledge. 

As a first step, we employ clustering algorithms [50] to obtain a set of coarse 

clusters of the data. Without the need of any training data, clustering algorithms 

aim at partitioning the data set into subsets (or “clusters”) so that samples in the 

same subset share common traits, i.e., they are close to each other according to a 

notion of distance. Clustering algorithms are often useful for outlier detection, where 

outliers may emerge as small clusters far apart from the others. As a second step, 

we extensively resort to domain knowledge and manual inspection to interpret the 

clustering results, zoom in on interesting patterns, and identify undesirable behavior. 

2.5.1 Density-based Clustering 

Among clustering algorithms, density based clustering uses the concept of dense re

gion of objects. In such schemes, dense regions of objects are considered a cluster and 

low density regions are considered as noise. In particular, we selected DBScan [51], 

since it is well known and offers several advantages: it automatically determines the 

number of clusters (contrary for example to the k-means algorithm); it is robust to 
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noise, i.e., isolated samples; and finally it does not have any bias versus any cluster 

shape. 

Intuitively, DBScan groups together points that fall in a dense region of the metric 

space. Given a point in the data set, density is estimated as the number of points 

within a specified radius of that point. There are three types of points: (i) core 

point is a point that has more than Minpts around it within a distance d ≤ ǫ; (ii) 
border point is a point that is within a distance ǫ of a core point but is not a core 

point; (iii) noise point is any point that is neither a core point nor a border point. 

With these definitions in mind, DBScan puts two core points in the same cluster if 

they are within a distance ǫ of each other. Also, a border point within distance ǫ of 

a core point is put in the same cluster as the core point. Finally, noise points are 

labeled as such. 

For each metric m, we consider the set of all samples Fm = {fm(h, i)} collected 

during the desired observation period, for each host h and for all time slots i. In this 

paper, for a 5 minutes observation period and a 25 hour trace, 0 ≤ i ≤ 300. We apply 

clustering algorithms to each metric individually, and define the distance between 

two samples as simply d = |fm(h1, i1)− fm(h2, i2)|. We choose to apply clustering on 

individual metrics rather than on multidimensional spaces for several reasons. First, 

each metric sample distribution is generally very skewed, which makes clustering 

difficult per se. When considering a multidimensional space obtained as the Cartesian 

product of skewed metrics, the result of clustering is hard to predict and control, e.g., 

to impose a coarse clustering. Further, distance in multidimensional space may be 

difficult to define, since each metric have very different support, e.g., x ∈ [0, 1] and 
y ∈ [0, ∞) make it hard to appreciate the spread on the x dimension. Note that this 

is typical of our scenario, e.g., considering metrics like outin-fract-unanswered and 

avg-duration. Although dimensional reduction and normalization techniques exist, 

the outcome from them may be difficult to control and interpret. Finally, possible 

undesirable behavior can be already identified when considering a single metric, while 
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the correlation between undesirable behavior across different metrics can be later 

checked exploiting the domain knowledge of the targeted scenario. 

We illustrate the operation of the DBScan algorithm, and the impact of the param

eters Minpts and ǫ with an example. Consider Figure 2.4 which shows the histogram 

of outin-fract-unanswered for UDP traffic considering the Kad dataset. More than 

650 samples (around 36%) fall in the range [0, 0.08], while more than 1, 300 (around 

58%) samples fall in the range [0.98, 1]. 

Table 2.3 reports the DBScan result when applied to the dataset in Figure 2.4, for 

different values of Minpts and ǫ parameters. Each cell shows the number of clusters 

produced by DBScan, and the fraction of the samples that are classified as noise. For 

instance, for ǫ=0.1, and Minpts=40% of the total samples, there is 1 cluster, with 

40.8% of the samples classified as noise. For large values of Minpts (60%) we see that 

0 clusters are produced for most ǫ values, and all 100% of the samples are classified as 

noise. This is because no point has a sufficiently large neighborhood or density to be 

classified as a core point. As we decrease Minpts however, the noise region decreases, 

and clusters emerge. For ǫ=0.1, and for Minpts 20% or lower, 2 clusters are always 

identified, which matches our intuition from the Figure. We observe that DBScan is 

relatively robust to the input parameter setting in our scenario, and that there are 

several parameter settings that can achieve a reasonable coarse clustering. 

We employ a simple iterative search heuristic to identify a value of Minpts and 

ǫ that can achieve a reasonable coarse clustering. Our heuristic seeks to obtain a 

clustering result with noise region that is non empty but not too large, e.g., a small 

percentage of samples. The reason for requiring a small number of samples to be 

classified as noise is to avoid cases where many smaller clusters are merged into one 

larger cluster with no noise region (for instance, ǫ=0.5, Minpts=20% in Table 2.3), 

or to prevent clusters being formed with a small number of points. We start with 

ǫ = 0.1, Minpts=50% and keep decreasing Minpts, until the resulting noise falls in 

the target region. Then, ǫ is decreased until the noise region is exceeds the target 

value. Large ǫ enlarge clusters adding noise points and eventually merging clusters, 
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Table 2.3
 
DBScan Sensitivity
 

ǫ 

0.01 

Minpts 

1% 5% 10% 20% 40% 60% 

3(4%) 2 (15%) 2 (16%) 2 (19%) 1 (49%) 0 (100%) 

0.05 2 (1.1%) 2 (2.3%) 2 (3.7%) 2 (4%) 1 (41%) 0 (100%) 

0.1 2 (0.5%) 2 (0.9%) 2 (1%) 2 (1.2%) 1 (40.8%) 0 (100%) 

0.2 2 (0%) 2 (0.1%) 2 (0.1%) 2 (0.2%) 2 (0.3%) 0 (100%) 

0.5 1 (0%) 1 (0%) 1 (0%) 1 (0%) 1 (0%) 1 (33%) 

while small ǫ results in possible splitting of clusters that might not be of interest. 

The results we present employ a target noise region of 6%, but we have found that 

DBScan is relatively robust to the choice in our scenario, and any value in the range 

2-10% would provide very similar results. 

2.5.2 Interesting Region Selection 

After getting the output from DBScan, intuitively we could consider the samples 

in the noise region to be the interesting ones. However, undesirable behavior could 

be so prevalent to form a whole cluster, and hence, only considering the noise points 

may cause information loss. We therefore believe the interesting region should be 

selected based on domain knowledge from the network operator, P2P developer, or 

the end-user. In particular, applying DBScan to each metric, two possible cases are 

obtained: (i) metrics exhibiting a single cluster and a noise region; and (ii) metrics 

exhibiting multiple clusters and one or more noise regions. 

In cases where the metric exhibits a single cluster, the interesting region typically 

coincides with the noise region. To illustrate this, consider Figure 2.5, which shows 

the histograms of values taken by the inout-avg-conn-per-IP-TCP metric considering 

the Kad dataset. As shown in the Figure, when DBScan is employed, a single cluster 

(C1) is produced which includes all samples in the range [0, 1.4), and a noise region, 
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including samples in [1.4, 3]. The noise region is interesting since eMule clients are 

not expected to open more than one TCP connection with the same host. We have 

further investigated the samples in this region, and have found them to be due to 

hosts being attacked by fake servers, as we explain in Section 2.7.3. We also note 

that for such metrics, DBScan enables choosing the thresholds for the noise region 

appropriately - simpler heuristics like selecting the top or bottom 10% of samples as 

showing interesting behavior do not take the distribution of data into account and 

may not be as effective in general. 

In cases where the metric exhibits multiple clusters, the choice of interesting re

gion can only be supported by the knowledge of the considered application, metric, 

and scenario. For example, in Figure 2.4, DBScan identifies two clusters C1, C2 and 

a noise region, which confirms the visual intuition. In this case, we consider the 

interesting region to include cluster C2, since it represents samples in which most ex

ternally initiated UDP connections are unanswered. We analyze this in further detail 

in Section 2.7.2. More generally, the interesting region could include a combination 

of multiple clusters and noise regions. 

2.5.3 Correlation Across Interesting Samples 

Having identified the interesting samples for each metric, we employ several simple 

heuristics to identify correlations across the samples, which in turn can aid making 

inferences of undesirable behavior. We describe these below: 

• Hosts dominating interesting samples: We consider the number of distinct partic

ipating hosts (or IP addresses) to which the interesting samples for a given metric 

correspond. If the entire interesting cluster for a metric can be attributed to a small 

number of participating hosts, it is an indication that the interesting behavior is a 

property of those hosts. If however the interesting cluster is spread among several 

hosts, it is an indication that the interesting behavior is more general and not due to 

a few hosts. 
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• Correlations across metrics: We consider whether interesting behavior seen 

across multiple metrics are correlated, and are due to the same underlying cause. We 

typically rely on domain knowledge to determine such correlations. For instance, in 

Section 2.7.2, we used domain knowledge to reason that a large number of interesting 

samples seen in four of the metrics we considered were directly related. Likewise, 

in Section 2.7.4, we isolate hosts that generate a large number of samples in the 

interesting region across multiple metrics, and use these observations to reason about 

the potential behavior of the hosts. 

2.6 Results 

In this section, we present high level characteristics of the Kad and KadU net

works. We then discuss results with DBScan and the selection of interesting regions 

for various metrics. 

2.6.1 High Level Characteristics of Systems 

In this section we provide high level background on the Kad and KadU networks, 

highlighting key differences between them. 

• In contrast to Kad, KadU traffic typically stays within the ISP: Kad clients mostly 

contact peers in the Internet while KadU clients mostly contact peers within the 

ISP. The inout-ISP-to-Internet-ratio metric was 1 for almost all KadU samples when 

UDP traffic was considered. Interestingly, KadU clients did contact more peers in the 

Internet when TCP traffic was considered. This was not entirely expected and will 

be further investigated in Section 2.7.4. 

• In contrast to Kad, KadU clients use default UDP/TCP ports: When the dest-ports 

metric is considered, the median value of KadU samples is 1, while it is 33 for Kad. 

This is because KadU clients run in a friendly environment in which no throttling 

is imposed on P2P traffic by the ISP. Hence there is no need to try masquerading 

P2P traffic by using random ports. On the contrary, Kad clients run in the Internet, 
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where ISPs may block P2P traffic, and there is a greater tendency for users to adopt 

random ports (and possibly protocol obfuscation). 

• In contrast to KadU, Kad clients see almost no incoming TCP traffic due to a NAT 

at the edge of the ISP: The metric fract-incoming-conn-TCP is equal to 0 for almost 

all Kad samples, while it has a bell distribution for KadU samples. The reason for 

this is that there is a NAT at the edge of the ISP, as discussed in Section 2.2.2, which 

forbids incoming TCP connections from the Internet. Interestingly, Kad clients can 

still receive UDP flows initiated in the Internet. This is because the NAT at the edge 

of the ISP is a Full Cone NAT. 

• KadU clients exchange much more data, with a prominent seed-like behavior: When 

the bps-rcvd and bps-sent metrics are considered, the 90%ile for KadU samples is 

164kbps and 674kbps respectively. In contrast, the 90%ile for Kad samples is only 

36kbps and 54kbps. The much higher performance in KadU is due to the effectiveness 

of the optimizations in the KadU client, as well as the large installation of high-speed 

FTTH users in the ISP. Further, we noticed that KadU clients present a predominant 

seed-like behavior (for example, the 90%ile of the bps-sent metric is 4 times the 

90%ile of the bps-rcvd metric). We believe this may be attributed to the high-speed 

upload bandwidth of the FTTH users in the ISP. 

2.6.2 Interesting Region Selection 

In this section, we present the results of applying DBScan to our dataset and the 

interesting regions we identified based on manual inspection. For single cluster met

rics, we simply selected the noise region as interesting, as discussed in Section 2.5.2. 

Hence, we focus on metrics that involved multiple clusters. 

The sensitivity of the interesting regions was tested in our dataset by splitting 

the 25 hour trace into two halves and then running DBScan over each portion, as 

well as running DBScan over the entire trace. One half corresponded to day-time 

activity and the other half to night-time activity. For single cluster metrics, the 



31 

Table 2.4
 
Metrics with Multiple Clusters - Kad
 

Name C/N Range percent Explanation 

avg-pkt-size-TCP 

[Bytes] 

C1 

C2 

C3 

N 

[55 250] 

[726 955] 

[956 1,348] 

[296 723] 

16.28% 

17.05% 

61.66% 

5.01% 

Primarily 

control 

outin-fract

unanswered-UDP 

C1 

C2 

N 

[0 0.08] 

[0.93 1] 

[0.08 0.92] 

36.14% 

58.04% 

5.82% 

Left group 

or home 

NAT 

ratio-bytes

sent-to-rcvd-UDP 

C1 

C2 

N 

[-1 -0.63] 

[-0.62 0.45] 

[0.5 1] 

17.98% 

78.06% 

3.96% 

Left group 

or home 

NAT 

inout-1024

dest-ports-UDP 

C1 

C2 

N 

[0 0] 

[1 1] 

[2 6] 

73.72% 

18.12% 

8.16% 

DDoS 

attack 

ratio-bytes

sent-to-rcvd-TCP 

C1 

C2 

C3 

N 

[-1 -0.62] 

[-0.4 0.62] 

[0.62 1] 

[-0.62 -0.41] 

13.49% 

55.06% 

27.66% 

3.79% 

Selfish 

hosts 

results of clustering were similar, with only marginal changes to clusters’ width and 

noise regions. The multiple clusters metrics, on the other hand, had minor changes 

in clusters for some metrics, but overall, the final trend of the interesting regions was 

preserved. In the rest of the section, we focus on clusters obtained using the entire 

trace. 

Kad 

In this section we present results for Kad, which are reported in Table 2.4. The 

first column shows the metric name and transport protocol. The second column 

identifies a region as a cluster or noise, in which we highlight the interesting one 
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Table 2.5
 
Metrics with Multiple Clusters - KadU
 

Name C/N Range percent Explanation 

inout-ISP-to

Internet-ratio-TCP 

C1 

C2 

[0 0.62] 

[0.62 1] 

51.77% 

48.23% 

Traffic 

within ISP 

outin-fract

unanswered-UDP 

C1 

C2 

N 

[0 0.22] 

[0.8 1] 

[0.22 0.8] 

33.82% 

60.21% 

5.97% 

Left group 

or home 

NAT 

ratio-bytes

sent-to-rcvd-UDP 

C1 

C2 

N 

[-1 -0.71] 

[-0.25 0.37] 

[0.37 1] 

49.42% 

44.69% 

5.89% 

Left group 

or home 

NAT 

fract-incoming

conn-UDP 

C1 

C2 

N 

[0 0.32] 

[0.57 1] 

[0.32 0.56] 

18.85% 

75.58% 

5.57% 

Left group 

or home 

NAT 

outin-failure

ratio-TCP 

C1 

C2 

N 

[0 0] 

[1 1] 

[0.01 0.97] 

62.33% 

33.06% 

4.61% 

Left group 

or home 

NAT 

ratio-bytes

sent-to-rcvd-TCP 

C1 

C2 

N 

[-1 -0.36] 

[-0.36 1] 

[-0.62 -0.36] 

5.61% 

91.8% 

2.59% 

Selfish 

hosts 

in bold. The third column shows the actual range of sample values in each cluster, 

while the fourth column reports the percentage of the samples that are in the cluster. 

Finally, the fifth column shows the explanation why the selected region is interesting. 

We summarize key observations as follows: 

• Samples with predominantly control messages: The first row of Table 2.4 shows the 

clusters found by DBScan for the avg-pkt-size-TCP metric. There are three clusters 

for this metric. Cluster C1 contains 16.28% of the samples, and it refers to samples 

whose flows exhibited “small” average packet size. C3 corresponds on the contrary 

to “large” average packet size, while C2 corresponds to a cluster with “mid-sized” 

packets. These clusters correspond to hosts exchanging mostly control messages, 
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mostly data messages and a mix of control and data messages respectively. Among 

those, cluster C1 is interesting since it corresponds to samples where only control 

messages were exchanged. This could be for benign reasons, for instance, a host that 

does not download or upload content. But it could also indicate undesirable behavior, 

for instance a host being part of a P2P botnet. One potential indication of malicious 

activity is a host that is persistently sending only control messages in all its samples. 

We did not find evidence of this in our trace, leading us to believe there was no 

malicious activity. 

• Samples of peers that do not reply to incoming requests: When the outin-fract

unanswered-UDP metric is considered, it is striking that there is a cluster (C2) with 

samples in the range 0.93 to 1 and which includes 58.04% of the samples. This cluster 

corresponds to samples where almost every UDP flow initiated from the outside is 

unanswered, indicating potentially anomalous behavior. Likewise, considering metric 

ratio-bytes-sent-to-rcvd-UDP , cluster C1 corresponds to samples where UDP packets 

are mostly received, indicating again that the peer inside the MiniPoP is not re

sponding to external queries. These two clusters are related, and we analyze further 

in Section 2.7.2. 

• Communication with reserved ports: We consider metric inout-1024-dest-ports-

UDP , which intuition suggests should be close to 0, since P2P applications are not 

expected to run using a reserved port. But both cluster C2 and the noise region N 

refers to values of this metric larger than 0, accounting for 26.29% of the samples. 

In Section 2.7.1 we investigate this metric further and present evidence of a DDoS 

attack on DNS servers. 

• Selfish versus seed behavior: Considering the metric ratio-bytes-sent-to-rcvd-TCP , 

three clusters are shown. C1 represents samples for hosts with selfish behavior (mostly 

receiving data), C2 represents samples for hosts that are both receiving and sending 

and C3 shows samples for hosts with seed behavior (mostly sending data). Con

sidering P2P file sharing application, a user is expected to contribute fairly to the 

community, so cluster C1 represents possibly undesirable behavior. 

http:includes58.04
http:intherange0.93
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KadU 

In this section we focus on metrics where DBScan found multiple clusters for 

KadU metrics, which are reported in Table 2.5. We summarize key observations as 

follows: 

• Degree of communication within ISP: Here we focus on metric inout-ISP-to-Internet

ratio-TCP , for which DBScan found two clusters. Cluster C2 corresponds to samples 

for which peers within the ISP are predominantly contacted. Cluster C1 represents 

those samples for which mostly peers in the Internet are contacted. The presence of 

cluster C1 is not expected since KadU is optimized for communication with peers 

inside the ISP. We further analyze C1 in Section 2.7.4. 

• Samples of peers that do not reply to incoming requests: Like in Kad, DBScan 

found cluster C2 for metric outin-fract-unanswered and cluster C1 for metric ratio

bytes-sent-to-rcvd for UDP, which characterize peers that do not reply to incoming 

requests. In addition to these metrics, two more related metrics were found to have 

multiple clusters in KadU which we believe is related to the same issue. First, for 

the metric fract-incoming-conn-UDP , cluster C2 contains all samples for which hosts 

mainly receive UDP flows. We note the cluster had a prominent spike around 1, which 

indicates that for a large number of samples, flows are only being received. Second, 

for the metric outin-failure-ratio-TCP , cluster C2 corresponds to samples in which all 

incoming TCP connections failed. A detailed analysis is presented in Section 2.7.2. 

• Selfish versus seed behavior: The metric ratio-bytes-sent-to-rcvd-TCP has a very 

different distribution considering KadU, showing that the large majority of peers have 

a seed-like behavior, which are clustered in C2. Also, there is a cluster of samples 

that suggests a subset of peers act as selfish clients, not willing to share content. We 

therefore select again this latter cluster as interesting. 
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2.6.3 Host Distribution in Interesting Region 

Having identified the interesting regions, we next consider the number of distinct 

participating hosts (or IP addresses) to which the samples correspond. If the entire 

interesting region for a metric can be attributed to a small number of participating 

hosts, it is an indication that those hosts are particularly abnormal. If however the 

interesting cluster is spread among several hosts, it is an indication that the interesting 

behavior is more general. 

Figure 2.6 shows, for each Kad metric, a point reporting the fraction of hosts that 

generate 90% of the samples versus the fraction of samples in the interesting region. 

For example, the metric inout-1024-dest-ports for UDP has 26% of its samples in 

the interesting range. 90% of these interesting samples have been generated by 24% 

of the hosts running Kad. We have circled those metrics for which we present key 

findings later. In addition, a similar plot is shown for KadU in Figure 2.7. 

We focus on metrics in the right side of Figures 2.6 and 2.7, which correspond 

to those with a large fraction of interesting samples spread across many hosts. These 

metrics are the most interesting and we present and discuss our findings on them in 

Section 2.7. For most metrics in the bottom left of the figures, corresponding to those 

with interesting samples generated by a few hosts, we found the causes were usually 

benign and did not point to undesirable activity. However, a few cases deserve to be 

mentioned and we discuss them further in Section 2.7. 

2.7 Key Findings 

In this section, we present examples of undesirable behavior exposed by our 

methodology. 
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Fig. 2.6. Kad: fraction of samples in the interesting region versus 
fraction of clients generating them, for various metrics. Circled are 
metrics with most relevant results. 

Fig. 2.7. KadU: fraction of samples in the interesting region versus 
fraction of clients generating them, for various metrics. Circled are 
metrics with most relevant results. 

2.7.1 DDoS Attacks Exploiting P2P Systems 

In this section, we describe our findings when studying the metric inout-1024

dest-ports-UDP , which was specifically added to observe undesirable traffic directed 

to reserved ports. Referring to Figure 2.6, Kad clients contacted peers to restricted 

ports for 26.25% of the samples, which is suspicious. We therefore isolated the samples 

in the interesting regions and looked at the destination port of those samples. It turns 

out that port 53 was the most common destination port, receiving 1, 711 out of 3, 087 
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flows destined to port 1024 or below. Note that no other port in the reserved range 

received more than 175 flows in total. 

We further investigated and verified that flows destined to UDP port 53 were valid 

Kad flows, and not actual DNS flows misclassified by the DPI. Moreover, the desti

nation IP address of the flows corresponded to actual DNS servers not managed by 

the ISP, but serving domains in countries far away from the location of the MiniPoP. 

Finally, we noticed that most of the suspicious flows were unanswered. To better 

highlight this, Figure 2.8 shows the fraction of unanswered flows as a function of the 

destination port number. Notice the spike at port 53, which indicates that this port 

has the highest ratio of unanswered flows of more than 90%. Other spikes refer to 

typical Kad ports found in the dataset. 

As a final observation, we noticed from Figure 2.6 that 25% of Kad peers were 

generating the interesting samples for inout-1024-dest-ports-UDP . On further study, 

we found that across all these peers, while less than 2% of Kad flows initiated are 

destined to reserved ports, more than 30% of these flows target port 53. This indi

cates that the problem is not specific to a small subset of Kad peers, but is more 

predominant. 

We believe these results show evidence of DDoS attacks on well known DNS servers 

exploiting the Kad network. In such an attack, a malicious client in the Kad network, 

spreads contact information (IP address and port) about the victim (an actual DNS 

server) as if it were part of the Kad network. Later, innocent clients send regular Kad 

messages to the DNS server. Finally, we note that there has been some awareness of 

such attacks in eMule technical forums [52,53], and in fact, the top most destination 

in our trace was mentioned in [53] as being under attack. 

2.7.2 Unnecessary P2P Traffic 

Consider the 3 metrics on the top right corner of Figure 2.7. These correspond to 

ratio-bytes-sent-to-rcvd-UDP , outin-fract-unanswered-UDP and fract-incoming-conn
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Fig. 2.8. Fraction of unanswered flows per destination port. 

UDP . For each metric, 40% to 60% of the samples are in the interesting region, 

and about 60% of the KadU hosts are involved. The same three metrics are also 

highlighted in Figure 2.6 when considering Kad. 

This clearly indicates some unexpected behavior, and points to a potentially sig

nificant problem. Investigating further, we observed that all metrics hint to a large 

number of UDP flows incoming to the MiniPoP that are never answered. In partic

ular, 28% of UDP flows coming to the MiniPoP are unanswered, and 65% of this is 

due to Kad and KadU clients. 

In addition, with the KadU dataset a high fraction of TCP failures is observed. 

Investigating further, 116, 000 TCP connections coming to the MiniPoP failed, which 

accounts for 30% of all TCP incoming connection attempts. Roughly 50% were due 

to KadU. Recall that for Kad peers, no incoming TCP connection is possible due to 

the ISP NAT. 

Having a large number of failed TCP connections or UDP flows is undesirable not 

only from the perspective of the introduced traffic, but also from the state that may 

need to be maintained by various devices in the network (such as NATs and firewalls). 

We believe there are two key reasons for unanswered flows. First, some P2P par

ticipants are behind home NATs. Other peers may learn about these participants 

through P2P membership management mechanisms, and may (unsuccessfully) at

tempt to communicate with them. Second, when a host leaves a P2P system, other 
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peers may continue to attempt contacting it due to stale information in the P2P 

network. 

Figure 2.9 shows an example of a host that left the P2P network, but which 

continues to receive packets for more than 14 hours after its departure. The top 

plot shows the time series for outin-fract-unanswered-UDP . Note the sharp transition 

from 0 to 1 which corresponds to node departure. The bottom plot depicts the total 

number of unanswered incoming UDP flows. Over 60 flows per minute are received 

during the next 2.5 hours, after which about 1 flow per minute is still observed for 

several hours until the end of the trace. 

We have devised simple heuristics to identify flows that are unanswered due to the 

departure of a host. This is based on the observation that a host that leaves the P2P 

network will not initiate any new UDP or TCP flows; in contrast, hosts behind NATs 

are likely to initiate flows to other peers. We found that host departure is responsible 

for 41% and 48% of the unanswered UDP flows for Kad and KadU respectively, and 

the rest is due to hosts behind home NATs. For failing TCP connections, 75% were 

sent to hosts that appear to have left the P2P network. These results indicate that 

both factors (node departure and home NATs) play an important role in explaining 

the results. 

Overall, these results indicate that better mechanisms must be designed to handle 

stale P2P membership, and hosts behind NATs for a P2P system to exhibit more 

friendly behavior to network operators. In particular, it is important for membership 

management algorithms to avoid propagating hosts behind NATs, and to ensure stale 

information is eliminated in a timely fashion. 

2.7.3 Malicious P2P Servers 

In this section we describe our findings when studying the metric avg-conn-per-

IP-TCP . The interesting region for this metric in both Kad and KadU corresponds 

to samples where a peer contacts the same destination host more than once within a 
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Fig. 2.9. Host leaves the group about 11 hours after the beginning of 
the trace. Fraction of unanswered flows on the top and total number 
of unanswered flows on the bottom. 

sample time window. We found that 94% of the interesting samples for KadU dataset 

were generated by only two hosts. In the following, we focus our analysis on one of 

the hosts which we call h1, with the results being similar for the other host. 

We found that h1 generated a large number of flows to two servers, namely Server1 

and Server2. Figure 2.10 shows the number of connections h1 initiated to these 

servers during the whole trace. The X axis shows the connection start time, and the 

Y axis shows the connection ID. Positive IDs show connections opened to Server1, 

while negative IDs show connections opened to Server2. The average connection 

duration is 15 and 8 seconds respectively. For periods when the host was active, the 

inter-connection time to both servers is relatively small, i.e., 51 and 63 seconds for 

Server1 and Server2 respectively. 

To further understand this behavior, we searched for information on the IP address 

of both servers and found that Server1 was reported as a fake server and Server2 

was reported as a full server [54]. A fake server pretends to be a legitimate eMule 

server to fool clients with the goal of spying on them and to inject false information to 

disrupt the P2P system. These servers might be planted by parties such as the RIAA 

(Recording Industry Association of America) [55]. Fake servers may also impact the 

performance of victim peers since such peers cannot exploit the eMule network to 

search and exchange content. A full server is a legitimate server that has reached 
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Fig. 2.10. Connections made by the KadU client h1 towards Server1 
(fake server) and Server2 (full server). 

the maximum number of clients it can serve, so that further requests are denied. We 

believe the list of servers that host h1 has is limited, and possibly contains Server1 

and Server2 only. This would result in h1 persistently initiating connections to both 

servers. 

Considering the Kad dataset, the methodology pointed out an analogous problem. 

92% of the interesting samples in the avg-conn-per-IP-TCP metric were generated by 

a single host. Once again, we found the host had a large number of connections 

to a particular server. Interestingly, we could not confirm from available manually 

maintained lists whether this host was a fake or full server, and we believe this is a 

hitherto unknown fake server. In general, we believe a traffic analysis approach such 

as ours can help in automatically identifying or inferring servers/peers with suspicious 

behavior, rather than relying entirely on manually maintained lists. 

2.7.4 Other Interesting Findings 

In this section we present some other examples of the findings highlighted by our 

methodology: 

• Inter ISP traffic - KadU: As mentioned in Section 2.6.1, the metric inout-ISP-to

Internet-ratio-TCP for KadU shows a cluster in the range 0 to 0.62, with the majority 

of samples in the range 0 to 0.03. This represent clients where a large fraction of the 
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connections was directed to peers in the Internet. In fact, 20% of the P2P traffic 

incoming to the MiniPoP is sent from the Internet. While some of the behavior is 

caused by clients that are searching for content not present in the KaU network, 

we believe there are several clients not using the KadU network to search. This is 

an undesirable behavior considering that the KadU developers optimized KadU to 

maintain P2P traffic within the ISP. 

• Abnormal behavior with ”buddy” maintenance mechanisms - KadU: The metrics 

outin-avg-conn-per-IP-TCP and outin-total-conn-attempts-UDP highlighted an atyp

ical region for which a host was receiving a lot of TCP and UDP flows in the KadU 

dataset. By investigating the anomalous samples for these metrics, we have found 

a single host which was responsible for 57% and 33% of interesting samples respec

tively. We looked further and found that a single external peer opened 825 TCP 

connections and 1, 678 UDP connections to this host in a 25 hours period. Looking 

at the message type exchanged among these two peers, we discovered that messages 

were related to the eMule ”buddy” mechanism. To allow a client C behind a (home) 

NAT to upload content, C finds a “public” peer (or buddy) who forwards requests 

from other clients to it. Then, C can directly initiate a connection to the client re

questing the content. Normally, clients behind a NAT use a single TCP connection 

to the buddy. The large number of connections initiated by this particular client is 

therefore atypical, and points to incompatibilities between the Kad/KadU protocol 

and the (home) NAT/Firewall, which repeatedly closes the connections. 

• Isolating very active peers - Kad and KadU: Our methodology pointed out poten

tially interesting peers which account for a large number of interesting samples in 

several metrics. We isolated the hosts responsible for more than 10% of the inter

esting samples for at least 5 metrics, finding 3 KadU peers and 6 Kad peers. For 

example, a client was generating many interesting samples for the metrics live-conn-

TCP , inout-total-conn-attempts-UDP and bps-rcvd-TCP , which show the host was 

aggressively searching and downloading content. Similar results were observed for 

other clients. While we did not find evidence of malicious activity, we believe our 



43 

methodology was able to isolate very aggressive behavior, which is important from 

the ISP point of view, and also for the end users, e.g., to avoid leacher behavior. 

2.8 Generalizing to other Systems 

While much of our analysis is conducted with Kad, and KadU given their pre

dominant usage in the ISP network, we are extending the analysis to consider other 

popular P2P systems. In this section, we present preliminary results reporting our 

findings with the BitTorrent [3] and DC++ [36] systems. Given these systems are 

not as widely used in the network, our analysis is conducted on a separate one-week 

long trace so sufficient data samples may be obtained. 

• Idle TCP connections in BitTorrent: Our methodology showed that clients have 

a high fract-unanswered-appl , i.e., a large fraction of successful TCP connections to 

which the contacted peer never replied. We found that more than 40% of the samples 

are in the range 0.6 to 1. These connections are typically short lived, with more 

than 90% of them lasting less than 30 seconds. We believe this occurs when a client 

contacts a peer that is no longer sharing the file being searched. This is another 

example of how stale information leads to wasted network resources. 

• Unnecessary P2P traffic in BitTorrent: Similar to Kad and KadU, we found that 

stale information and NAT presence could account for a large fraction of unanswered 

UDP flows in BitTorrent. 32% of all samples and 10% of all UDP flows were sent to 

hosts that left the P2P network. In addition, for BitTorrent we noticed that from the 

4.2 million UDP flows initiated in the PoP, more than half are unanswered which can 

also be due to stale membership and NATs. 

• DDoS attack exploiting DC++: We noticed that the interesting region for the 

metric inout-1024-dest-ports-TCP ranges from 2 to 9 ports contacted in a time slot. 

Further investigation showed that many of these connections were targeted to port 80 

and did not receive a response from the destination. Manual inspection showed that 

the contacted IPs were real web servers and not DC++ clients. We hypothesize these 
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flows are part of a DDoS attack exploiting DC++. Attacks of this nature have been 

previously reported [56]. In addition, we found that 95% of the DC++ connections 

stay within the ISP. Of the connections that leave the ISP, 21% are destined to ports 

below 1024 and potentially contribute to DDoS attacks, as described above. 

2.9 Related Work 

Many recent works have focused on P2P traffic classification. In general, two 

main approaches have emerged: packet inspection techniques [45, 57] and behavioral 

classification techniques [39–44]. Our work aims at analyzing the subset of traffic 

which has been already classified as P2P to identify any undesirable behavior these 

systems might have. 

Anomaly detection of network traffic in general (for example, [33–35, 58]), has 

been widely studied. Many of these works have developed automated techniques for 

detecting anomalies. The techniques typically leverage the fact that most data-points 

are normal, and flag anomalies based on sudden and significant deviations from base

line values. Our work differs in several ways. First, our focus is on obtaining better 

understanding on the types of undesirable behavior that P2P systems in the wild ex

hibit. Undesirable behavior can be predominant, and anomaly detection techniques 

based solely on deviations from baseline behavior are not sufficient in our context. 

This led us to rely on domain knowledge as part of our analysis. Second, our notion 

of undesirable behavior is broad, and includes not only malicious activities, but also 

many other patterns of undesirable behavior peculiar to P2P systems, for e.g., wasted 

resources caused by NATs and stale information in the system (Section 2.7.2). Third, 

we have considered a much wider range of traffic features than typical anomaly detec

tion work, given limited a priori knowledge of the types of undesirable behavior that 

P2P systems exhibit. That said, it would be interesting to develop more automated 

analysis techniques for the identification of undesirable behavior in P2P systems in 

the future. 

http:withintheISP.Of
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Our work both corroborates known patterns of undesirable behavior in P2P sys

tems, and provides more insights into them. In particular, our findings on DDoS 

confirm recent works where researchers showed the feasibility of exploiting P2P sys

tems to launch DDoS attacks on the Internet [23–26]. While these works proposed 

attack heuristics and showed the feasibility of attacks, our work is one of the first to 

show evidence of real attacks taking place in the wild. Our findings on fake servers 

similarly support [55]. Our results (Section 2.7.3) have not only shown peers impacted 

by well-known fake servers [59, 60], but also shown the potential to automatically 

detect hitherto unknown fake servers. 

2.10 Conclusions and Discussion 

As a primary contribution of this paper, we have shown that P2P systems in the 

wild exhibit many types of undesirable behavior, and we have provided insights into 

the prevalence, characteristics and impact of such behavior. We have also shown the 

potential of a systematic approach involving P2P traffic analysis in uncovering such 

behavior. Our results include instances where the performance of the P2P system 

itself may be impacted (e.g. due to maliciously deployed servers), as well as examples 

where P2P system behavior can be detrimental to the network (e.g. DDoS attacks 

exploiting P2P systems, or unwanted traffic due to hosts behind NATs and stale 

group membership). While there has been some prior awareness of these issues in the 

community, to our knowledge, our is the first work that systematically studies P2P 

traffic patterns with a view to identifying the undesirable behavior they exhibit. 

Our analysis suggests that undesirable behavior may be exhibited by a range of 

P2P systems. Further, most examples of undesirable behavior that we found point 

to intrinsic design limitations in the underlying systems themselves, which leads us 

to believe that our findings are likely to hold if the systems are analyzed in other 

networks as well. That said, generalizing the findings across multiple networks, and 

a wider range of P2P systems is an important aspect of our ongoing work. 
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In this paper, we have adopted a semi-automated methodology that combines 

data-mining with extensive use of domain knowledge in interpreting the results. This 

has been necessitated given that there is limited understanding in the community 

today on the characteristics of undesirable behavior that P2P systems may exhibit, 

and since the intrinsic heterogeneity of P2P traffic makes it hard to clearly distinguish 

undesirable behavior from normal usage. Undesirable behavior can be predominant, 

complicating the use of automated techniques which identify anomalous behavior 

by detecting significant deviations from normal values. An interesting avenue for 

future research is exploring more automated analysis techniques, for instance based 

on identification of significant shifts in P2P system behavior across networks and 

across time, and by employing rules general across an entire class of P2P systems. 
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3. PREVENTING DDOS ATTACKS ON INTERNET 

SERVERS EXPLOITING P2P SYSTEMS 

3.1 Introduction 

Peer-to-peer(P2P) systems have matured to the point we have recently seen several 

commercial offerings [61–63]. Given the increasing prevalence of the technology, it 

becomes critical to consider how such systems can be deployed in a safe, secure and 

robust manner. 

Several works [64–68] have studied how malicious nodes in a P2P system may 

disrupt the normal functioning, and performance of the system itself. In this paper, 

however, we focus on attacks where malicious nodes in a P2P system may impact the 

external Internet environment, by causing large-scale distributed denial of service 

(DDoS) attacks on web servers and other sites not even part of the overlay system. In 

particular, an attacker could subvert membership management mechanisms, and force 

a large fraction of nodes in the system to believe in the existence of, and communicate 

with a potentially arbitrary node in the Internet. The attacks are hard to detect and 

track-down as the packets being exchanged between the attacker and innocent nodes 

are not distinguishable from normal protocol packets. 

While the community has been aware of the possibility of exploiting P2P systems 

to launch DDoS attacks for several years (for example [23]), a number of researchers 

have highlighted the criticality of the problem in recent years. The feasibility of 

exploiting the intrinsic characteristics of P2P systems for indirection attacks was first 

systematically shown in [25]. Since then, several works including our own [24,26,69– 

71] have demonstrated the generality of the problem, by showing that a variety of 

extensively deployed systems may be exploited to launch DDoS attacks. The systems 

include unstructured file-sharing systems such as Gnutella [24], and BitTorrent [26, 
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69], DHT-based file-sharing systems such as Overnet [25], and Kad [70, 71], and a 

video broadcasting system based on End System Multicast (ESM) [70]. Attacks can 

be significant - for example, [70] showed an attack where over 700 Mbps of UDP 

traffic was generated at the victim by exploiting Kad using 200 attacker machines. 

Creating the attack heuristics was as simple as modifying two source files and less 

than 200 lines. 

While traditional ways to launch DDoS attacks such as DNS reflector attacks [72], 

or botnet-based DDoS attacks [73] are more widespread today, there is evidence to 

suggest that exploiting P2P systems to launch DDoS attacks in the wild is on the 

rise [53,56]. For instance, Prolexic Technologies has reported that they have observed 

what they term a DC++ attack [56] that involved over 300K IP addresses. Discussions 

in the eMule forum [52, 53] have indicated DDoS attacks on DNS servers exploiting 

the DHT-based Kad system. We present evidence of this in Section 3.2.3 through 

traffic measurements collected at the edge of a MiniPoP of an ISP. We believe it is 

imperative to systematically study the problem given the large-scale deployments of 

P2P systems, the emerging reports of attacks in the wild, and the relative lack of 

attention to the area. 

In this paper, we seek to obtain a deeper understanding into the threats by study

ing the intrinsic design limitations of existing P2P systems which leave them vul

nerable to such DDoS attacks. As a first contribution of this paper, we categorize 

all known DDoS attacks presented to date. In our classification, we focus on the 

underlying cause for achieving amplification. By amplification, we refer to the ratio 

of the number of messages (or bytes) received by the victim to the total number 

of messages (or bytes) sent by all malicious nodes. We focus on amplification since 

this is the key factor that determines whether an attack is attractive to a malicious 

node. We then articulate key design principles that P2P designers must follow to 

avoid these sources of amplification. The principles highlight the need to validate 

membership information before they are further used or propagated, and the need to 

protect against multiple references to the victim. While these principles are almost 
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obvious in retrospect, the failure to follow the guidelines in a wide range of deployed 

systems, and the resulting repercussions are striking. 

As a second contribution of this paper, we systematically explore the effectiveness 

of an active probing approach to validating membership information in mitigating 

the threats. We focus on this approach since it does not rely on centralized au

thorities for membership verification, and since it is applicable to both structured 

(DHT-based) and unstructured approaches. The key issues with an active probing 

approach are ensuring that the probes used for validation themselves do not become 

a source of DDoS, and dealing with benign validation failures that may occur due to 

packet loss, churn in group membership, and the presence of hosts behind Network 

Address Translators (NATs). We present simple mechanisms to address these issues, 

and show that with the mechanisms, the maximum amplification achievable by at

tackers can be bounded. We have incorporated these mechanisms in two contrasting 

applications - a DHT-based file-sharing system (Kad [32]), and a video broadcast

ing system (ESM [74]) with stringent performance requirements. Through extensive 

experimental evaluation, we show that the schemes may be suitably parameterized 

to ensure that DDoS attacks are effectively limited, while not sacrificing application 

performance. 

3.2 DDoS Attacks by Exploiting P2P Systems 

Recently researchers have shown how a variety of P2P systems can be exploited 

to launch DDoS attacks on any Internet host such as a web server [24, 26, 69–71,75]. 

Each of these works presents attack heuristics on a specific system, and to date there 

have been several different attacks reported on five widely deployed P2P systems. In 

this section, we begin by presenting an overview of these systems in Section 3.2.1, 

and then summarize the attacks exploiting them in Section 3.2.2. 
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3.2.1 Systems Background 

Kad and Overnet are large-scale DHT-based file sharing systems with each having 

more than one million concurrent users. Kad is supported by the popular eMule [32] 

client and its clones, while Overnet is supported by eDonkey [76]. These two systems 

are similar because they both implement the Kademlia [48] protocol, and differ pri

marily in implementation issues. In both systems, each participating node maintains 

a routing table with a subset of peers. For any given file, there are multiple “index 

nodes”, each of which maintains a list of members who own that file. Index nodes 

are regular participants, who have an ID close to a file ID. Every node periodically 

publishes to the index nodes what files it owns. When a node wants to download a 

file, it first employs an iterative query look-up mechanism to locate an index node, 

and it obtains a list of members having the file from the index node. 

BitTorrent is a very popular tracker based unstructured P2P system for file sharing. 

In BitTorrent, if a node wants to download a file (say a movie), it must first download 

the torrent file for that movie, which is published through out-of-band channels such 

as websites. The torrent file contains a list of trackers. A tracker is a central server 

which maintains the membership information of a swarm. Each node contacts one or 

more trackers to obtain a list of peers in the swarm, and starts exchanging data with 

the peers. Each node also contacts the trackers periodically afterwards to discover 

more peers. 

Gnutella is another popular unstructured P2P file sharing system which has a two

tier hierarchy. In Gnutella, when a node launches a query for a file, other nodes may 

reply with a query hit message that includes the IP and port of a peer that has the 

file. In addition, when the node requests the peer for the file, the format of the file 

request message is HTTP based. 

ESM is one of the first operationally deployed P2P video streaming systems. It 

constructs a multicast tree on top of an unstructured overlay for data delivery, and 

employs a gossip-based membership management protocol. Each node periodically 
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Fig. 3.1. a) Normal Operation. b) Attack.
 

Fig. 3.2. Index poisoning attack in Overnet 

picks another node at random, and sends it a subset of the peers it knows. A node 

adds to its routing table any peer that it has not already known, and may use these 

peers for various protocol operations such as parent selection. 

3.2.2 Attacks 

In any scalable P2P system, a node A may learn about another node C from a 

peer node B, as shown in Figure 3.1.a). For example, this is required when a node 

locates index nodes, or obtains a list of sources for a file. However, this operation 

can be exploited by a malicious node M to redirect A to the victim V, as shown in 

Figure 3.1.b). V can potentially be any Internet host such as a web server. In this 
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section we summarize various ways in which this vulnerability has been exploited to 

cause large scale DDoS attacks. 

Attacks exploiting Kad and Overnet: While [70] and [25] have presented attacks 

on Kad and Overnet respectively, we believe that most of these attacks are applicable 

to both systems. Thus we summarize them together here. 

Index poisoning [25]: This attack is depicted in Figure 3.2. Here, a malicious node 

M publishes to an index node I that the victim holds some file. Later any innocent 

participant A looking for a set of sources for the file will contact I and be redirected to 

the victim V. The redirected participants will try to establish TCP connections to the 

victim in order to download the file. This could not only result in TCP SYNs, but also 

result in successful TCP connections if for instance an actual web or mail server were 

running on the victim. The bar for such an attack could be raised by not requiring 

nodes to insert their IP and port information in application layer messages to begin 

with, however we note that index poisoning attacks could still occur if malicious nodes 

could conduct packet level spoofing. 

NAT-buddy exploit : This attack may be viewed as a variant of the Index poisoning 

attack. It exploits a NAT traversal mechanism that is commonly used in today’s P2P 

systems, including both Kad and Overnet. In such a mechanism, a node behind a 

NAT could select a public node as its “buddy”. When the NAT node publishes a file, 

information about the buddy is included in its publish message to the index nodes. 

A malicious node exploits this to launch a DDoS attack, by advertising the victim 

as its buddy. When innocent participants obtain a set of sources from the index 

node, they contact the buddy (victim) as per normal protocol operations resulting 

in a DDoS attack on the victim. This attack is briefly discussed in [25]. The attack 

could potentially be prevented by modifying the underlying protocols so that NAT 

nodes are required to publish content through their buddies, however the protocol 

modifications must ensure the overheads at the buddy are not increased significantly, 

and must include mechanisms to ensure malicious nodes cannot deliberately increase 
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the overheads on the buddy, for instance by providing information about non-existent 

files. 

Search hijack [70]: This attack exploits the parallel lookup mechanism of Kad and 

Overnet, where multiple nodes may be included in a reply to a query. In particular, 

when a malicious node receives a search query from an innocent participant, it includes 

in the reply multiple (fake) logical identifiers, all sharing the IP address of the victim. 

This results in the innocent participant querying the victim multiple times. Note 

that in order to enable distinct users behind the same NAT to participate in the 

system, Kad, Overnet, and many other P2P systems allow a participating node to 

communicate with multiple logical identifiers even though they share the same IP 

address. 

Routing table poisoning [25]: This attack is specific to Overnet. It exploits the an

nouncement messages, which enable nodes to announce themselves to others. In 

particular, a malicious node may put the victim’s IP address in an announcement 

message and send it to an innocent participant, by exploiting a vulnerability specific 

to Overnet. This results in the innocent participant adding the victim to its routing 

table, and using it for normal protocol operations. Like with index poisoning attacks, 

the bar for such an attack could be raised by not requiring nodes to insert their IP 

and port information in application layer messages, however the attacks could still 

occur if malicious nodes could conduct packet level spoofing. 

Attacks exploiting BitTorrent: [69] presents an attack where malicious nodes 

in a BitTorrent swarm can report to the tracker that the victim is a participating 

peer, through packet spoofing. This would cause the tracker to redirect innocent 

participants to the victim, who in turn repeatedly initiate TCP connections to the 

victim. [75] presents a variant of this attack where the tracker itself is malicious and 

falsely tells innocent participants in the swarm that the victim is a participating peer. 

[26] presents an attack where the attacker publishes fake torrent files to web sites of 

known torrent search engines. Each of the fake torrent files includes the victim’s IP 

several times, each with a different port. Innocent participants who download the 
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torrent files believe that there are different trackers running on the same IP, and 

repeatedly try to connect to each of the trackers. 

Attacks exploiting Gnutella: [24] presents an attack where malicious nodes in

clude the victim’s IP address in their replies to file query messages sent by innocent 

participants. The victim in this attack is a web server which hosts some files. Fur

ther, the file names in the reply messages are constructed in such a way that the 

file requests sent by innocent participants to the victim will look exactly like genuine 

HTTP requests from normal web clients. This causes the victim to upload an entire 

file to the redirected nodes. 

Attacks exploiting ESM: This attack is presented in [70], where a malicious node 

M exploits the push-based nature of the gossip protocol in ESM. In particular, a 

malicious node generates false information about the victim being part of the group, 

and aggressively pushes the information as part of its gossip messages to innocent 

participants. In addition, the malicious node includes the victim’s IP several times in 

a gossip message, each with a different logical ID, similar to the Search hijack attack 

in Kad. 

3.2.3 Potential Evidence for Real Attacks in the Wild 

We have analyzed a one day trace collected at the edge of a MiniPoP of an ISP, 

where we found potential evidence of abnormal traffic to DNS servers from peers run

ning the Kad system. Our trace consists of flow-level logs 1 . Our analysis considers 

all Kad UDP traffic between hosts inside the network and hosts in the Internet. Fig

ure 3.3.a) shows the number of unanswered flows (i.e., flows for which only outbound 

traffic was seen), as a function of the destination port number. Impulses were plotted 

only for ports that received more than 500 unanswered flows. The spike at port 4672 

is expected since this is the default UDP Kad port. However, it is interesting that 

1A flow is identified by the 5-tuple comprising source and destination addresses and ports, and 
protocol. A UDP flow starts when the first packet is observed, and is considered to end if no packet 
is seen in any direction for 200 seconds. If a packet is never observed in the reverse path, then the 
UDP flow is said to be unanswered. 
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there is a spike at port 53 (DNS port). Figure 3.3.b) shows the fraction of unanswered 

flows out of the total outgoing flows, as a function of the port number. The graph 

shows that port 53 has the highest ratio of unanswered flows with 92%. 

We considered whether these results could be due to actual Kad clients running 

on port 53, which are aiming to hide their presence in firewalled networks. We believe 

there are two reasons this is unlikely to be the case. First, a majority of flows (92 

%) to port 53 are unanswered, while for other ports, the percentage of unanswered 

flows was at most 60%. Second, manual investigation (e.g., by doing an nslookup on 

the target IP addresses), indicated that most destinations were DNS servers (e.g., in 

China and Thailand) 

We believe these results are abnormal, and potentially point to a DDoS attack 

exploiting the Kad system. Our results also corroborate discussions in the eMule 

forum [53], and works by other researchers [52], which further strengthens our belief 

that these results may be due to a DDoS attack. Finally, we note that others have 

observed DDoS attacks in the wild exploiting other P2P systems [56]. 

3.3 Eliminating Attack Amplification 

While specific solutions may potentially be designed for each of the attacks listed in 

Section 3.2, the fact that a multitude of attacks have been reported against a range of 

systems leads us to explore more general principles and techniques to protect against 

the entire class of attacks. In this section, we dissect the attacks in Section 3.2.2, and 

identify a few underlying patterns which lead to large attack amplification. Based on 

the insights, we articulate a few generic design principles for P2P developers. 

3.3.1 Classifying Attacks by Amplification Causes 

Based on the source of amplification, the attacks described in Section 3.2.2 can 

be classified as follows (also in Table 3.1): 
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Fig. 3.3. a) Number of unsuccessful Kad flows sent to ports that 
received more than 500 unsuccessful flows. b) Fraction of unsuccessful 
Kad flows to ports that received more than 500 unsuccessful flows. 

Table 3.1 
Classification of DDoS Attacks by their Major Source of Amplification 

System Attack 
Repeated packets 

to victim 
Multifake Delegation 

Triggering large 

reply from victim 

Kad & Overnet 

Index poisoning [25] 
√ 

NAT-buddy exploit [25] 
√ 

Search hijack [70] 
√ 

Overnet RT poisoning [25] 
√ 

BitTorrent 

Fake report to tracker [69] 
√ 

Malicious tracker [75] 
√ 

Fake torrent file [26] 
√ √ 

Gnutella Gnutella attack [24] 
√ 

ESM ESM attack [70] 
√ √ √ 

Repeated packets to victim: This is the simplest source of amplification, where
 

an innocent participant may keep using the victim it learned from a malicious node
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for various protocol operations, despite the fact that it has never been able to com

municate with the victim. Surprisingly, many of the systems have this vulnerability. 

Multifake: In this case, a malicious node may convey the same victim multiple times 

to an innocent participant, by disguising the victim as multiple different members 

of the system. This is a major source of amplification in the case of the Search 

hijack attack on Kad and Overnet, the attack on ESM, and the attack on BitTorrent 

involving fake torrent files [26]. This heuristic can be generalized to mount an attack 

on a network, by having the malicious node including fake membership information 

about several different IP addresses, all of them belonging to the same network. 

Delegation: For attacks in this class, amplification is achieved because the innocent 

participants spread fake membership information. This is a major source of ampli

fication in the Index poisoning and Nat-buddy exploit attacks in Kad and Overnet 

where the index nodes propagate the victim, in the attacks on BitTorrent, where the 

trackers and torrent websites propagate the victim, and in the attacks on ESM, where 

innocent participants gossip about the victim to each other. 

Triggering large reply from victim: This class includes attacks such as those 

on Gnutella [24], where an entire file is sent in response to a query, leading to high 

amplification. 

3.3.2 Principles for Robust Design 

We next present several key design principles which if followed could eliminate all 

the amplification causes. 

• Validate before use: Each node must validate membership information it learns, 

before adding the information to its routing table and/or using it for protocol oper

ations. This eliminates the Repeated packets to victim vulnerability since it ensures 

that no protocol packets will be sent to a node until it has been validated. Further, 

it also eliminates the Triggering large reply from victim vulnerability because an in
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nocent node would not send file requests to the victim server since the server cannot 

be successfully validated. 

• Validate before propagation: Any membership information must be first validated 

before being propagated to any other nodes. This ensures that innocent participants 

do not propagate fake membership information. A potential source of attack amplifi

cation such as Delegation is avoided as attackers are now constrained to infecting the 

innocent participants directly. It is worth pointing out that this principle must be fol

lowed for all operations involving exchanging membership information. For instance, 

in Kad, the principle is followed when nodes learn other members through search pro

cess, but not followed when index nodes receive publish messages from other nodes, 

thus Kad is still vulnerable to the Index poisoning attack. 

• Preventing multiple references to the victim: This principle guards against ampli

fication due to Multifake, where an attacker conveys the same victim multiple times 

to an innocent participant by disguising the victim as multiple distinct members of 

the system. A particularly interesting case is where the attacker is able to convey the 

victim multiple times in a single membership message, as in the Search hijack attack, 

because this has interesting implications for our defense mechanisms as we will see in 

Section 3.4. 

3.4 Enhancing DDoS Resilience 

As discussed in Section 3.3, the key principles involved in limiting DDoS ampli

fication is validating membership information. Several approaches may be adopted 

to this end, and we discuss this further in Section 3.4.1. In this paper, we explore in 

depth the potential of an active probing approach to validating membership informa

tion. We discuss the considerations that motivated us to focus on such an approach, 

and details of the approach in the rest of the section. 
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3.4.1 Approaches for Validating Membership Information 

We discuss possible approaches that may be adopted for validating membership 

information: 

• Use of centralized authorities: Centralized authorities can simplify validation of 

membership information by providing signed certificates that indicate that a mem

ber belongs to a group. The certificates may be distributed through the membership 

management mechanisms, and enable a participant to verify the membership informa

tion corresponds to a genuine member. However, the existence of central authorities 

cannot be assumed in many P2P deployments, and we only consider mechanisms that 

do not rely on their existence. 

• DHT-specific approaches: It may be feasible to leverage the properties of DHTs, and 

design solutions tailored to them. For instance, one approach is to assign each node 

an ID dependent on its IP address, for instance the hash of its IP address [77]. An 

attacker that attempts to provide fake membership information in response to a search 

query must then ensure that (i) the victim ID obeys the necessary relationship to the 

victim IP; and (ii) the victim ID is close to the target ID of the search. These dual 

constraints on the victim ID may be difficult to simultaneously satisfy, complicating 

the attack. Issues that need to be addressed with such an approach include the need 

to accommodate multiple participants behind the same NAT which share a common 

IP address, and the fact the victim ID is only loosely constrained by the target ID. 

While the approach has promise, we do not explore it further since our focus in this 

paper is on mechanisms that apply to both structured and unstructured approaches. 

• Corroboration from multiple sources: Another approach to validating membership 

information is based on prior works on Byzantine-tolerant diffusion algorithms [78– 

81]. In this approach, a node will accept and communicate with a newly-learned peer 

only if it learns about the peer from multiple other nodes (say k). Such schemes are 

susceptible to attacks where the attacker has control over k or more nodes, because 

then he can make these malicious nodes lie about the same fake membership informa
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tion, and defeat the corroboration. Such attacks may be particularly easy to conduct 

in conjunction with a Sybil attack. Another concern with the approach is that from 

a performance perspective, the larger the k value, the longer it may take to receive 

responses from all k nodes, which can slow down convergence and performance [82]. 

3.4.2 Validating Peers through Active Probing 

In this paper, we explore the potential of an active probing approach for member

ship validation. We focus on such an approach because (i) it does not rely on cen

tralized authorities; and (ii) the technique applies to both unstructured approaches 

as well as structured DHT-based approaches. Thus, the technique has potential to 

be widely applicable to a range of existing P2P deployments. 

In the approach, when a node receives a membership message, it probes any mem

ber included that it did not know before, and does not send further messages to it 

or propagate it unless it receives a response. We use the term membership message 

very broadly to refer to any protocol message that contains information about other 

participants in the group. This includes, for example, search replies and file publish 

messages in Kad, Overnet and Gnutella and gossip messages in ESM. It also includes 

messages where a node may directly announce itself to other nodes. 

It is possible that a probe sent to the victim could trigger a spurious response from 

some other application running on the port under attack. To prevent this, the probe 

request and response should contain: (i) a predefined byte pattern unique to the 

application and distinct patterns for the request and the response and (ii) a sequence 

number in the request which will be incremented in the response. 

While probing-based validation has potential, the key issues are ensuring the 

probes themselves do not become a source of DDoS, and dealing with benign valida

tion failures that may occur due to packet loss, membership churn, and the presence 

of hosts behind Network Address Translators (NATs). We discuss heuristics to handle 

these issues in the rest of the section. 

http:inESM.It
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3.4.3 Preventing DDoS Exploiting Validation Probes 

To prevent validation packets from being a source of DDoS attacks, two broad 

approaches may be adopted. A first approach involves coordination across members 

in the system, so as to ensure only a subset of members conduct the validation. 

Such coordination mechanisms are themselves subject to attack when malicious nodes 

are involved, given that members may not be truthful in sharing information about 

validation failures. While reputation mechanisms such as [83] may be used to address 

these concerns, these mechanisms are often themselves vulnerable to attacks such as 

whitewashing (see [84] for a survey of schemes and attacks). Further, many schemes 

(for example [83]) rely on centralized authorities or pretrusted nodes, and we are 

interested in solutions not depending on their existence. Thus we focus on mechanisms 

that only rely on locally observable events. More specifically we employ two schemes 

as described below: 

Source-Throttling: This scheme seeks to limit the attack traffic that a single mem

bership message from a malicious node can induce. This prevents attacks like the 

Search hijack in Section 3.2.2, which enabled an attacker to achieve significant attack 

amplification. In the scheme, when a node receives a membership message, rather 

than try to validate all the members included in the message at the same time, valida

tions are performed to at most m members initially, where m is a parameter. A new 

validation to an additional member is conducted only when a previous validation is 

successful. This mechanism ensures that a single message from an attacker can trigger 

at most m validation messages to the victim under attack. Combined with the rest 

of the validation framework, this limits the total attack amplification achievable by 

the attacker to m, as we discuss in Section 3.5.1. 

While small values of m are desirable to keep attack amplification small, the main 

concern is the potential impact on performance. In particular, validation failures may 

occur for benign reasons resulting in unnecessary throttling. Consequently genuine in

formation in a received membership message may be ignored. Further, the validation 
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process may incur some delay, possibly resulting in higher latencies or convergence 

times for the application. In Section 3.7, we evaluate the feasibility of employing 

small m values for real applications. 

Destination-Throttling: The source-throttling scheme by itself could prove highly 

effective in thwarting the attacker in many circumstances since it bounds the ampli

fication the attacker can achieve. We augment this scheme with a simple mechanism 

we term destination-throttling, that can limit the number of packets each innocent 

participant sends to the victim. We note that even with destination-throttling the 

victim can receive O(N) attack packets, where N is the total number of participants 

in the system. However, since the amplification is bounded, it would require the 

combined set of all attacker machines to send O(N) messages to innocent nodes to 

redirect them to the victim. 

An obvious solution to limiting packets that each innocent node sends to the 

victim is to blacklist sources that cause repeated validation failures, and ignore further 

membership messages from them. This heuristic by itself does not suffice however, 

since there are potentially many sources, and further the malicious node may mount 

a Sybil attack. Instead, with destination-throttling, repeated validation failures to a 

destination are used as an indication that it is under attack, and future validations 

are not sent in such a case. 

A destination could refer to an <IP,port>, an IP, or an entire network. The 

network to which an IP belongs may be determined by a longest prefix match on 

a database of prefixes and netmask information extracted from BGP routing table 

snapshots [85, 86]. Such a database could be obtained by a client in an out-of-band 

fashion at the start of the session, and the information is unlikely to change over 

the duration of a typical session. Alternately, though less accurately, an IP could 

be assumed to belong to a /24 network. In the rest of the paper, we use the terms 

“prefix” and “network” interchangeably. 

Every client maintains the total number of validation packets, and the number of 

failed validations to each <IP,port>, IP, and prefix. Each validation failure is asso
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ciated with a time-stamp indicating when the failure occurred, and only failures that 

occurred in a recent time window T are considered. A validation packet is suppressed 

if either the <IP, port>, IP address, or prefix is suspected under attack. An <IP, 

port>is suspected under attack if more than Fipport failures have been observed to it. 

A prefix (IP) is suspected under attack if it has seen at least Fprefix (Fip) failures that 

involve Dprefix (Dip) distinct IPs (<IP, port> pairs). The set of parameters must be 

chosen so that the likelihood of destinations being falsely suspected under attack due 

to benign validation failures is small. We discuss this further in Section 3.7. 

With the scheme as above the total validation failures to a prefix before it is 

suspected under attack could be as low as Fprefix, and as high as Fipport ∗Dip ∗Dprefix. 

To better contain the magnitude of a potential attack, once Fprefix failures have been 

seen to the prefix, validations are permitted only if there has been no prior failure to 

the IP. With this modification, at most Fprefix +Dprefix validation failures are allowed 

to the prefix. A similar heuristic is applied to failures to individual IPs. 

The destination-throttling scheme could potentially be exploited by malicious 

nodes to create attacks on the performance of the P2P system itself. We analyze 

the potential for such attacks in Section 3.5.2. A variant of the destination-throttling 

scheme that could be used to raise the bar against such attacks is to consider a prefix 

under attack if the percentage of failed validations to a prefix exceeds a threshold. 

While we believe such a variant could be easily integrated with our solution, we focus 

on a solution based on the total validation failures to each prefix to ensure the total 

number of packets sent by each innocent node to a victim prefix can be bounded 

under DDoS attacks. 

3.4.4 Avoiding Validation Failures with NATs 

Many P2P systems employ NAT-Agnostic membership management operations. 

In these systems, when member B propagates information about member X to mem

ber A, there is no indication as to whether X is behind a NAT or not. This can result 
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in benign failures with probing-based validation. In particular, if X were behind a 

NAT, a validation packet sent by A to X will not successfully reach X unless X had 

previously contacted A. 

While alleviating communication issues with NATs is an ongoing area of work [87, 

88], these techniques are not always effective with symmetric NATs [47], which is the 

most restrictive type of NATs, and accounts for close to 30% of NATs [87]. With 

symmetric NATs, different connections initiated by the same internal node generate 

different external IP and port mappings. Incoming packets are only allowed from the 

public nodes to which packets have been sent. Two nodes both behind symmetric 

NATs cannot communicate with each other. 

To handle NATs (including symmetric NATs) and firewalls, we require that mem

bership management operations are NAT-Aware. In particular, membership infor

mation about nodes behind NAT are propagated with a flag indicating they are 

behind NAT. When a node A learns about X, it probes X only if it is not behind a 

NAT, thereby avoiding benign validation failures. We discuss potential attacks on the 

scheme where a malicious member may falsify information regarding whether another 

member is behind a NAT in Section 3.5. 

3.4.5 Illustrating the Scheme 

Probing-based validation mechanisms may be easily integrated with various P2P 

systems, to protect the systems from the exploits described in Section 3.2.2. As a 

concrete example, Figure 3.4 illustrates the steps to prevent attacks exploiting buddy 

mechanisms in Kad and Overnet with our scheme: (1) Node N is behind a NAT, and 

sends an advertisement to node I indicating that a public node B is its buddy; (2) 

I validates B, and accepts information only on successful validation; (3) C obtains 

information that N has the file and B is the buddy; (4) C validates B, and then sends 

it a request; (5) this is relayed to N which then sends C the file. Note that steps 2 
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Fig. 3.4. Complete sequence of steps for normal buddy operations 
with probing-based validation mechanisms. 

and 4 are the validation messages that are triggered with our framework. The other 

exploits described in Section 3.2.2 are similarly handled, and we omit the details. 

3.5 Analysis 

In this section, we analyze the effectiveness of probing-based validation mecha

nisms in thwarting DDoS attacks. We also analyze the vulnerability of the mecha

nisms to new attacks that may impact application performance, and suggest refine

ments to minimize the impact. 

3.5.1 DDoS Attacks 

We first consider DDoS attacks on hosts not participating in the P2P system, 

which is the primary focus of our paper, and what we view as a more critical threat. 

We then present possible refinements for handling attacks on participating nodes. 

DDoS Attacks on Hosts not in the P2P System 

We discuss the key measures of interest:
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• Message amplification: this is the ratio of the number of messages received by the 

victim to the total number of messages sent by all malicious nodes. We observe that 

with source-throttling, the message amplification is at most m, independent of the 

number of malicious nodes. To see this, consider that a DDoS attack on a victim not 

in the P2P system consists entirely of validation messages. Each validation message 

must be triggered by a membership message directly received from a malicious node. 

This is because innocent members only propagate membership information they can 

validate, and hence do not propagate the victim. Thus the message amplification 

achievable is bounded by the maximum number of validations that may be sent to the 

victim due to a single membership message from an attacker node. This is bounded 

by m, by the throttling heuristics. 

• Bandwidth amplification: this is the ratio of attack traffic received by the victim to 

the total traffic sent by all attacker nodes. More, precisely, the bandwidth amplification 

can be expressed as: m∗ validation message size . Given that a validation message is small 
membership message size 

in general and smaller or at most comparable to the size of the membership message, 

the bandwidth amplification is also bounded by m. 

• Attack magnitudes: The destination-based throttling scheme ensures that the total 

number of packets sent by each participating node to a victim is bounded. In par

ticular, at most Fprefix + Dprefix packets are sent to any victim prefix over a period 

of time T , where T is the time for which a failed validation is considered. Further, 

since this scheme is entirely based on the destination to which validation failures 

are observed, and does not depend on the source which triggered the validation, the 

bound holds irrespective of the number of attackers or under Sybil attacks. We note 

that the victim can still receive O(N) attack packets, where N is the total number of 

participants in the system. However, we believe this is not a significant concern be

cause the amplification is bounded by m, and the attacker must send O(N) messages 

to innocent nodes to redirect them to the victim. While it may be possible to design 

mechanisms that can ensure not all innocent participants send attack packets to the 

victim, such mechanisms are likely to involve coordination across the nodes. Such 
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coordination mechanisms are not only complex, but also are themselves subject to 

possible attack when malicious nodes are involved. We made a deliberate decision to 

avoid such mechanisms given the feasibility of bounding attack amplification without 

them. 

Man-in-the-Middle-Attacks: The above analysis assumes an attacker model where 

malicious nodes can only join the P2P system as regular participants. A more so

phisticated attacker could potentially conduct a man-in-the-middle attack, perhaps 

by compromising routers. In particular, an attacker could intercept and respond to 

validation packets sent by innocent participants to the victim, tricking these partic

ipants into thinking the validation is successful. This is a potential concern because 

the tricked participants, which we term delegates, could propagate information about 

the victim, and consequently the amplification bounds above do not hold. 

We note that to be effective, that attacker must strategically intercept validation 

packets from a moderate number of delegates, and this may not be trivial. If valida

tions are intercepted from too many delegates (for instance, the man-in-the-middle is 

located close to the victim), the attacker is likely to see all validations to the victim; 

if the validations are intercepted from too few delegates, the total traffic induced at 

the victim due to the delegates is small. 

The message amplification under man-in-the-middle attacks may be expressed as 

m∗Mredirn+Mdel . Here Mredirn is the number of redirection messages sent by the mali
Mredirn+MMIM 

cious nodes, and MMIM is the number of validations to the victim that are intercepted 

by the attacker to conduct the man-in-the-middle attack. Mdel is the number of valida

tion messages received at the victim induced by membership information propagated 

by the delegates. Let us assume that the maximum number of innocent participants 

to which each delegate could spread information about the victim is K. This bound 

could be achieved by simply having a delegate conduct periodic revalidation, and 

limiting the rate at which it spreads information about innocent participants, or by 

having the delegate conduct a revalidation each time it spreads membership informa

tion to to K other participants. Then, Mdel is bounded by K ∗MMIM , and the overall 
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message amplification is m∗Mredirn+K∗MMIM . It is easily verified that this quantity is 
Mredirn+MMIM 

between m and K. Finally, the amplification is likely to be even smaller because the 

analysis does not consider that the man-in-the-middle will not only see traffic due 

to validations from the delegates, but also normal protocol traffic packets from the 

delegates. 

DDoS Attacks on Participating Nodes 

We next discuss the case when a participating node is the victim of the attack. A 

straightforward way to extend the probing-based validation mechanisms is to require 

the victim to explicitly deny validation requests if it receives them at an excessive 

rate. On receipt of such a denial, an innocent participant considers the validation to 

have failed. While this can help limit the attack, this is not enough because innocent 

participants that were previously able to successfully validate the victim, (which 

we again refer to as delegates), could still continue to propagate the membership 

messages. 

The validation traffic seen at the victim due to membership information spread by 

the delegates depends on (i) the number of delegates; and (ii) the rate at which each 

delegate spreads the victim to other innocent participants. The second factor is under 

the control of the delegates and is easily controlled. However, it becomes important 

to ensure the total number of delegates does not grow in unbounded fashion. 

A possible heuristic to limit the number of delegates is to have each node A restrict 

the number of other nodes that may successfully validate it over any window of time, 

and deny all other requests. In addition, as described above, delegates are required to 

periodically revalidate A, and if a revalidation fails, they are required to stop sending 

further packets to A, and stop propagating A to others. 

An attacker could exploit this heuristic by sending a large number of validation 

messages to the victim, thereby causing the victim to deny validations from innocent 

peers. We term such an attack a Disconnection Attack, and note that the attack 
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targets the performance of the P2P system itself. It is unclear how attractive such 

an attack is since it would require the malicious node to send I ∗ U messages each 

revalidation period, where I is the delegate limit per node, and U is the number of 

nodes to be disconnected. While it is perhaps not hard to disconnect a single node, 

disconnecting a significant fraction of nodes in the system involves a large number of 

messages given Kad and Gnutella have over a million users. For instance, if I = 10000, 

U = 1000 (representing a disconnection of 0.1% of all participants), and assuming a 

revalidation is conducted every minute, a malicious node would need to send about 

160,000 messages per second. On the other hand, this revalidation traffic would not 

be a significant burden for innocent nodes - considering that typically each node has 

a few hundred neighbors, the revalidation traffic required of a typical node would be 

about 2 messages per second. Finally, we note that if the attacker only controlled a 

small number of IP addresses or prefixes, such disconnection attacks could be further 

prevented by blacklisting peers that repeatedly send validation messages. 

In structured DHT-based overlays, a concern with limiting delegates is that a 

node may deny a validation request from a peer with an ID close to its own, thereby 

impacting the DHT structure. While this may not be a concern ordinarily if the 

delegate limit is chosen conservatively, it may be possible for an attacker to create 

such a situation by redirecting a lot of innocent nodes (whose IDs are far from the 

victim’s ID) to the victim. To defend against this type of attack, the scheme may 

be modified for structured overlays to have nodes probabilistically accept a peer as a 

delegate, based on the ID distance between the two. The closer the peer, the higher 

the probability. The scheme is effective given that a node will not have too many 

peers with an ID close to it, and an attacker has no control over the ID of an innocent 

node. We defer a more detailed investigation of these issues to future work. 
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3.5.2 Attacks on Destination-throttling 

In this section, we discuss possible attacks on the destination-throttling scheme. 

We note these attacks don’t apply to the source-throttling scheme, which was the 

primary mechanism in limiting attack amplification. We identify two variants of the 

attack: 

• Attacks on destination-throttling: A malicious node M may flood another node 

A with several fake membership entries corresponding to a victim prefix. The re

sulting validation failures could force A to throttle the prefix, resulting in A being 

disconnected from valid participants in that prefix. 

A similar attack could be performed to cause A to be disconnected from a single 

node rather than a prefix. A malicious node M may do so by flooding A with incorrect 

port information about the victim node. However, this attack is less attractive for an 

attacker than the previous one, since it only disconnects A from a single node. While 

our analysis below focuses on attacks to prefixes, we believe that similar arguments 

will hold for attacks to a single node. 

• Attacks on NAT-Aware mechanisms: When a malicious node M propagates mem

bership information to node A, it may falsely indicate that a participating node N 

has a public IP address, even though N is behind a NAT. This could induce valida

tion failures from A to N , potentially resulting in A throttling the prefix to which N 

belongs. 

Fpref ix+Dpref ix We observe that a malicious node must send at least d = 
m messages to 

disconnect a node from participants in one prefix. This is true since at least Fprefix + 

Dprefix validation failures are required to a prefix before future validations to it are 

suppressed, and at most m validation failures may be induced by a single membership 

message due to the source throttling mechanisms. Based on our parameterization 

results in Section 3.7, we expect d to be of the order of 10 messages. 

While such attacks are theoretically feasible, we believe they are not attractive 

for an attacker in practice, since a large number of messages must be sent to cause 
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a noticeable degradation in application performance. We note the messages involved 

to disconnect a node depends on the number of prefixes spanned by participating 

nodes, which is of the order of tens of thousands, and at least an order of magnitude 

larger than the attacks in Section 3.5.1. Further, in a system like Kad, to limit the 

ability of n participants to access a file, an attacker must disconnect the participants 

from all prefixes with nodes that have the file. Further, popular files are likely to 

be distributed across many prefixes. Disconnecting n participants from p prefixes 

requires at least d∗n∗p messages. This can be high, considering that the system can 

have millions of clients distributed over tens of thousands of prefixes. In addition, 

note that any such disconnection is temporary, since validation failures are timed out 

after time T , and sustaining the disconnection requires continued messages from the 

attacker. 

It is possible to limit the extent of disconnection attacks if the malicious nodes are 

localized to a small number of prefixes. In particular, once a prefix Z is suspected of 

being under a DDoS attack, source IP prefixes that have triggered a validation failure 

to Z are black-listed. Further validations to Z are sent only if they are triggered 

by source IP prefixes that have not been blacklisted. We note however that the 

fact malicious nodes are localized to a small number of prefixes may not be known 

apriori. Thus, it is desirable to dynamically tune the scheme to ensure the extent of 

disconnection attacks is limited if the number of prefixes spanned by malicious nodes 

is small, however ensure the scheme is not susceptible to DDoS attacks if the number 

of attacker prefixes is large. To handle this, once prefix Z is suspected of being under 

a DDoS attack, a validation triggered by a source prefix that is not black-listed is 

sent only if the source prefix belongs to a randomly selected fraction f of all possible 

prefixes. f is initialized to 1, and dynamically reduced, for example by a factor of 

2 on each validation failure after the number of black-listed source prefixes exceeds 

a threshold. Intuitively, we expect the scheme to stabilize at f values which are 

inversely proportional to P , the number prefixes spanned by attackers. Further, the 

number of additional validation messages to the victim is at most logP . We can 
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bound this quantity even more, by not permitting any further validations once f goes 

below a threshold. 

Finally, the destination-throttling scheme as presented in the paper considers a 

prefix under attack if the number of validation failures to a prefix exceeds a threshold. 

A potential approach to raise the bar against disconnection attacks is to consider 

a prefix under attack if the percentage of validation failures to the prefix exceeds 

a threshold. We have focused on the former variant in this paper to bound the 

total number of packets sent by each innocent node to a victim prefix under DDoS 

attacks. However, the latter variant could be easily integrated if the need to prevent 

disconnection attacks is viewed more critical. 

3.6 Evaluation Methodology 

The primary question driving our evaluations is how effective the validation frame

work is in preventing DDoS attacks without sacrificing application performance. To 

understand this, we have integrated our framework into a file sharing application 

(Kad) and a video broadcasting application (ESM), two mature and contrasting P2P 

applications, with very different membership management designs and performance 

requirements. In the rest of the section, we present our evaluation goals, metrics and 

our experimental methodology. 

3.6.1 Evaluation Goals 

We have the following goals: 

• Performance under normal conditions: We study the impact that the validation 

framework has on application performance under normal conditions when there are 

no attacks. This enables us to determine the performance of the throttling heuristics 

under benign validation failures, arising due to packet loss, churn, and NATs. 

• Impact of throttling parameters: As our analysis in Section 3.5 indicates, the attack 

amplification, and attack magnitudes achievable with the validation framework are 
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directly dependent on the choice of the m parameter for the source-throttling scheme 

and the various F and D parameters for the destination-throttling scheme. On the 

one hand, it is desirable to keep these parameters small to limit DDoS attacks. On the 

other hand, the smaller the values, the greater the potential impact on performance. 

Thus our evaluations explore how various parameters of the throttling mechanisms 

impact application performance, and seek to identify operating ranges where the 

impact is small. 

• Impact on contrasting applications: The performance with the schemes is dependent 

on the application itself. Hence, we explore the issues in the context of two very 

different applications, DHT-based structured file-sharing Kad and unstructured video 

broadcasting ESM. 

• Performance under attacks: Finally, we evaluate the benefits of the validation 

framework both in limiting DDoS attacks, and in preventing degradation in applica

tion performance in the presence of malicious nodes. 

3.6.2 Performance Metrics 

In our evaluations with file distribution applications (Kad), we consider the frac

tion of successful searches, and the time a successful search takes to locate an index 

node. For video broadcast (ESM), we consider the fraction of the streaming video 

rate received by participating nodes and the join time of nodes to the multicast tree. 

In addition, in evaluating the destination-throttling scheme, we measure the number 

of prefixes (as well as IPs, and <IP,port>s) blocked by the scheme, in the absence of 

attackers. 

3.6.3 Methodology 

Our experimental methodology employs experiments both on the live Kad net

work, and on Planetlab. 
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• Live Kad experiments: The performance of both throttling schemes is sensitive 

to the extent to which benign validation failures are seen in realistic application 

deployment settings. This in turn depends on realistic churn rates, packet loss rates, 

and the fraction of participating NAT hosts. In addition, the performance of the 

destination-throttling scheme is sensitive to the number of participating nodes that 

share an IP prefix, and the number of participating nodes that share an IP address. 

To evaluate the performance of the schemes under such realistic conditions, several of 

our experiments are conducted on the live Kad network. We do this by implementing 

our validation framework in a Kad client, and having it join the live Kad network. 

We compare the performance of an unmodified Kad client on the live network, with 

multiple instances of the modified Kad client running different parameter settings. 

• Planetlab experiments: One limitation of evaluations on live Kad is that the throt

tling schemes are implemented only on the clients we have control over. To evaluate 

the throttling schemes in settings where all participating clients implement the vali

dation framework, we evaluate Kad on Planetlab. In addition, Planetlab evaluations 

enable us to compare the performance of the schemes in the absence of attacks, and 

under attack scenarios. 

Since there are no long-running live ESM broadcasts, experiments on live ESM 

deployments are not feasible, and our ESM experiments are conducted on Planet-

lab. To ensure realism, our experiments with ESM leverage traces from real broad

cast events [74] to model the group dynamics patterns, and bandwidth-resource con

straints of nodes. Since most nodes on Planetlab have public IPs, we emulate NAT 

connectivity restrictions by implementing packet filtering to ensure that two Planet-

lab incarnations that are behind a NAT cannot communicate with each other. Note 

that our emulations model Symmetric NATs, the properties of which are elaborated 

in Section 3.4.4. 
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Fig. 3.5. Source-throttling: Impact of m on search delay. Measured in Kad. 

3.7 Parameterizing the Validation Framework 

In this section, we present results evaluating the impact of the validation frame

work and its various parameters on the performance of Kad and ESM. Our goal is 

to identify the possible sweet-spot - parameters that are small enough to minimize 

the DDoS attacks, yet large enough to tolerate most benign validation failures. We 

implemented the throttling schemes in real Kad and ESM clients. For comparison, 

in our experiments we also ran unmodified Kad and ESM clients, which we refer to 

as Base-Kad and Base-ESM. The experiments with Kad in this section were con

ducted in the live Kad network, while the experiments with ESM were conducted on 

Planetlab. All the experiments were conducted in the absence of attackers. 

3.7.1 File Sharing Application 

We parameterize the source-throttling scheme in Section 3.7.1 and the destination

throttling scheme in Section 3.7.1. 
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Source-throttling: Impact of m 

As described in Section 3.2.1, when a Kad node conducts a search for a keyword 

or a file, it issues queries, and receives replies containing membership entries. This 
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enables the node to locate index nodes for the keyword or the file. The source-

throttling scheme impacts the search performance because entries returned in a reply 

message may not be fully utilized, and the validation process may incur some extra 

delay, as we have explained in Section 3.4.3. A factor that may affect the results is 

the number of membership entries returned in a reply message. In Kad, this number 

is a client-specified parameter which can be set by the node, and is included in the 

query messages sent to peers so they will know how many entries to include in the 

replies. In the mainstream implementations such as eMule and aMule client software, 

the default values for this number are 2, 4 and 11, depending on the type of the 

search. While we set it at 11 for our experiments, we also study the sensitivity of our 

results to this parameter. 

We first measure the impact of the m parameter on application performance. 

We let four versions of our modified Kad client (i.e. with source-throttling) run 

in parallel, with each version running a different value of m (i.e. one version with 

m = 1, one version with m = 2 and so on). In addition, we let an unmodified 

client (i.e. Base-Kad) run at the same time. A random set of 1000 keywords from 

the English dictionary were picked, and each client conducted one search for each of 

these keywords in sequence in a one hour period. For all the keywords for which the 

Base-Kad client returned at least one index node, we measured the time each client 

took to locate the first index node. 

In all, the Base-Kad client returned at least one index node for 567 searches. The 

fraction of these searches for which the source-throttling scheme also returned one or 

more index node was 94.5% for m = 1, 98.8% for m = 2, 99.5% for m = 4, and 99.6% 

for m = 8. Thus, while the throttling scheme did impact some of the searches the 

effect was minor for m = 2 and higher values. 

Figure 3.5 plots the CDF of the search delay for successful searches (i.e. the time 

taken for the first index node to be returned). The line on the top represents the 

Base-Kad scheme, and the line on the bottom represents the source-throttling scheme 

with m set at 1. The remaining lines are the source-throttling scheme with m set to 
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2, 4, and 8. These lines are very close to each other and practically indistinguishable. 

Overall, the results indicate that while extremely aggressive levels of throttling (m = 

1) can result in noticeable degradation in application performance, the degradation 

is minimal for even slightly higher values of m, such as m = 2 or m = 4. 

Sensitivity: The previous graph showed results for one experiment from one site. 

We now consider six distinct Planetlab sites and conduct five runs from each site. For 

all sites, we make two hosts join the Kad network, one host running Base-Kad and 

the other running source-throttling with m = 2. Figure 3.6 shows the search delay for 

each Planetlab site. We show two bars per site, one for Base-Kad and the other for 

source-throttling with m = 2. For each run, the 90th percentile of the delay across 

successful searches is taken. Each bar is the average of the 90th percentile of the 

search delay over five runs. The error bars show the standard deviation. We observe 

that the results across sites are consistent with the results in Figure 3.5. 

Additionally, we study the sensitivity of the results to the number of membership 

entries that are returned in a reply (P ) in Figure 3.7. Here we only consider source-

throttling with m = 2. Each group of bars correspond to a different value of P , 

with each bar corresponding to a different site. For each run, the 90th percentile 

of the delay across successful searches is taken. Each bar is the average of the 90th 

percentile of search delay over five runs. The error bars show the standard deviation. 

We notice that the performance of m = 2 is not sensitive to the change in the P 

setting. This further confirms the feasibility of using small m values in realistic 

settings. We repeated these experiments on additional Planetlab sites and results 

were similar. 

Destination-throttling: Impact of D and F 

We next study the impact of the destination-throttling scheme on Kad perfor

mance. In doing so, the key metric is the extent to which destinations (prefixes, 

IPs, and <IP, Port>s) are unnecessarily blocked due to benign validation failures. 
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Table 3.2 
Destination-throttling: Percentage of contacted prefixes blocked 
with the particular search rate and for various combinations of 
(Dprefix, Fprefix). Measured in Kad. 

# of (Dpref ix, Fpref ix) 

searches (5,5) (5,10) (10,10) (10,15) (15,15) 

100 0.07% 0% 0% 0% 0% 

300 0.55% 0% 0% 0% 0% 

1000 4.53% 0.44% 0.29% 0.07% 0.05% 
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Fig. 3.8. Destination-throttling: Sensitivity to Planetlab Site. For 
each site, each bar is the average over 5 runs of the percentage of 
contacted prefixes that are blocked. The error bars show the standard 
deviation. Note that for all but one site, when (Dprefix,Fprefix) = 
(10,10), 0% of prefixes are blocked. Measured in Kad. 

Note that in the destination-throttling scheme, only the validation failures in a re

cent window of time are considered in deciding whether a destination is to be blocked 

or not. Hence our evaluation focuses on understanding validation failures seen by 

typical clients over such a time window. We believe that a reasonable window length 

should be tens of minutes, and use one hour in our evaluation2 . 

2If the number of peers in the system is N , each peer could incur P validation failures before blocking 
a prefix, each validation packet is B bytes, and the validation failures are considered for a time T , 
then the expected validation traffic to a victim under a DDoS attack is N ∗P ∗B/T . For a population 
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A key factor that impacts the results is the aggressiveness with which clients 

conduct searches, as this impacts the number of validations conducted and failed 

validations seen. Thus we have done a sensitivity study to the rate at which our clients 

conduct searches. We choose the rate to be 100, 300 and 1000 per hour. According to 

a study of client query patterns [89], even 100 per hour is higher than the search rate of 

a typical client. 300 per hour is comparable to the most aggressive clients, while 1000 

per hour is significantly beyond even most aggressive clients and stresses our scheme. 

Adopting a similar methodology as in Section 3.7.1, we instrument multiple versions 

of a client to join the live Kad network in parallel, each conducting an appropriate 

number of keyword searches over a one hour period. 

Table 3.2 shows the percentage of prefixes blocked for a client conducting a par

ticular number of searches in one hour. Results are shown for various combinations 

of Dprefix and Fprefix. A prefix is blocked if it has seen more than Fprefix failures 

involving Dprefix distinct IP addresses. To determine the prefix to which a client be

longs, we use the Route Views dataset that helps map IP addresses to prefixes based 

on BGP data [85]. If any prefix is coarser than a /16 however, we simply consider the 

/16 as the prefix. The results show that barring extremely small values of the Dprefix 

and Fprefix parameters, the number of blocked prefixes is small. In particular, for 300 

searches per hour, no prefixes are blocked if Dprefix is 5, and Fprefix is 10 or larger. 

Even with a search rate as high as 1000 per hour, the percentage of falsely blocked 

prefixes is less than 0.3% for a Dprefix of 10 or larger, and a Fprefix of 10 or larger. 

Overall, choosing Fprefix values in the 10-15 range, and Dprefix in the 5-10 range is 

effective. 

We have conducted a similar evaluation to study the impact of the Fip, Dip, 

and Fipport parameters. Our results show that with Dip value of 3 or larger, and 

Fip and Fipport values of 5 or larger the scheme works well. With these settings, no 

destinations are blocked at the IP level even when the client conducts 1000 searches 

of 1 million, with P = 20, B = 100 bytes, and T = 1 hour, this is about 4.4Mbps, which we believe 
is reasonable. 
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Fig. 3.9. Source-throttling: Impact of m on the join time of nodes. 
Each bar is the average over 5 runs of the 90th percentile of the join 
time. The error bars show the standard deviation. Measured in ESM. 

per hour. Further, as the client search rate varies from 100 − 1000 per hour, only 
0.2% − 0.4% of the <IP, Port>s contacted are blocked. Interestingly, most of the 

blocked destinations corresponded to port 53, which is used for DNS service. We 

believe this corresponds to a real attempt of DDoS attacks exploiting the wild Kad 

system, as indicated by [52], and discussions on the eMule forum [53]. 

Sensitivity: We conducted sensitivity experiments of the results in Table 3.2 for 

300 searches per hour and two (Dprefix, Fprefix) combinations of parameters, on six 

Planetlab sites. Figure 3.8 presents our results. There are two bars per site, each 

for a different combination of (Dprefix, Fprefix). Each bar shows the average over five 

runs of the percentage of contacted prefixes that were blocked. Error bars show the 

standard deviation. We can see that the results are consistent across sites with the 

results in Table 3.2. In particular, notice that for (Dprefix, Fprefix) = (10,10), five out 

of the six sites did not block any prefixes for the experiments conducted. 
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3.7.2 Video Broadcasting Application 

Our ESM parameterization experiments were conducted on Planetlab. We lever

age a trace from a real deployment [74] to emulate group dynamics and resource 

constraints in the system. We only show results for the source-throttling scheme. 

We were unable to parameterize the destination-throttling scheme since it requires 

realistic distributions of participants sharing a prefix or an IP address and this infor

mation was not available in the trace. Given this, we use the results from the Kad 

experiments to select the F and D parameters for ESM. 

The Planetlab experiments emulate a 20 minute segment of the trace, with 148 

joins, 173 leaves and 377 nodes in total. The streaming video rate employed is 450 

Kbps, which represents typical media streaming rates in real settings [74]. In addi

tion, we vary the fraction of NAT nodes in the system and turn off the NAT aware-

heuristics, to increase the likelihood of benign failures and stress our scheme. 

We observed that the average streaming rate received by nodes throughout the 

experiment is not affected by small values of m. More than 94% of the nodes received 

more than 90% of the streaming rate for m = 1, m = 2 and m = 4. To explain these 

results, consider that a key factor that may affect the performance of ESM is the 

number of entries the nodes have in their routing table. Having many entries ensures 

that nodes have enough potential parents to contact when they join the group or 

when a parent leaves. The source-throttling scheme can impact ESM by reducing the 

rate at which nodes learn about others, since membership information received may 

not be fully utilized. But this does not affect nodes in the long run, since over time 

they are still able to build a large routing table. Hence, the value of m does not affect 

the average streaming rate received by nodes. 

To explore the potential impact of the source-throttling scheme on the performance 

of nodes in the initial phase, we consider the time it takes for a node to join the 

multicast tree. Figure 3.9 shows the 90 percentile of the join time for various values 

of m and different NAT percentages. There is one bar for each value of m. Each 
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bar is the average over 5 runs. Error bars show the standard deviation. The results 

show that while there is some increase in join time for small values of m, the impact 

is limited. For instance, the join time for m = 2 and m = 4 is only 2 seconds higher 

than Base-ESM, for settings with 65% NATs. Note that with NAT-aware heuristics 

in place, this difference would be even smaller. 

3.7.3 Discussion 

Our results indicate that the performance degradation with Kad and ESM is min

imal, even with small values of the throttling parameters. Since the amplification and 

magnitudes of potential DDoS attacks are directly determined by these parameters, 

these results indicate the promise of the validation framework in effectively controlling 

DDoS attacks without impacting performance of these applications. 

While the validation framework itself may be integrated easily in many P2P sys

tems, the appropriate parameter choices are potentially dependent on the particular 

application. We now discuss the factors that might impact the parameter choice, and 

why we expect the parameters can potentially be kept small in general. 

The primary concern with the source-throttling scheme is that when a member

ship message is received, benign validation failures incurred to some of the member

ship entries could prevent other potentially useful entries in that message from being 

validated (and hence utilized). To get more insight into this, consider that each mem

bership message includes K entries, and assume the probability a probe will fail for 

benign reasons is p. With the source-throttling scheme, it may be easily verified that 

the expected number of membership entries that are probed is m , and the number of 
p 

potentially useful entries probed is m −m. Since the expected number of potentially 
p 

useful entries included in the entire membership message is (1 − p)K, the fraction 

mof potentially useful entries that our source throttling scheme actually utilizes is 
pK . 

If the probability p of benign validation failures is kept low, for example by includ

ing NAT-aware heuristics, and by ensuring the system does a good job of minimizing 
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stale membership information, then, small m values will have only minor performance 

impact. Even if the application cannot eliminate benign validation failures, it may 

have other mechanisms that can help limit the performance impact. For example, 

when the Kad system receives a membership message in response to a search request, 

it preferentially probes entries that are closer to the search target. This ensures that 

the most potentially useful entries are utilized first, even if some of the entries are 

not utilized. 

In our work, we have assumed the parameters are set uniformly across all clients 

and in static fashion. One could envision the need for the parameters to be set 

dependent on the client characteristics (e.g. aggressiveness of search patterns), or 

with differing levels of thresholds for different destination networks, based on their 

number of participants or bandwidth capabilities. In our evaluations, we have found 

that setting parameters conservatively based on worst-case scenarios (e.g. based on 

extremely aggressive search patterns) is sufficient to keep parameters low. That said, 

there may be potential benefits in other applications and deployment scenarios to 

tuning the parameters to individual clients or prefixes. Self-tuning mechanisms to 

dynamically determine appropriate parameters for any application, and deployment 

scenario are an interesting direction of future work. 

3.8 Evaluation under Attack 

In this section, we present results evaluating the effectiveness of our validation 

framework in minimizing DDoS attacks while achieving good performance even under 

attack. We implemented the validation framework on a Kad client and an ESM client. 

We refer to our modified clients as Resilient-Kad and Resilient-ESM. Again, we refer 

to the unmodified Kad and ESM clients as Base-Kad and Base-ESM. We set various 

throttling parameters according to the results obtained in Section 3.7. In particular, 

we set m = 2, Dprefix = 10, Fprefix = 10, Dip = 3, Fip = 5 and Fipport = 5 for both 
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Fig. 3.10. Traffic seen at the victim as a function of time, with 5 
attackers, and 50% of the nodes behind NAT. Measured in Kad. 

Resilient-Kad and Resilient-ESM. All the experiments in this section were conducted 

on Planetlab. 

3.8.1 File Sharing Application 

In our Kad experiments, the inter-arrival patterns of nodes, and the stay time 

duration follow a Weibull distribution, based on [90]. A mean stay time of 10 min

utes is assumed. Each experiment lasts 30 minutes, and involves 680 clients in total, 

with peak group size around 270. Each client conducts a search for a random logical 

identifier every 60 seconds, which is intended to simulate a search for a keyword or a 

file. There are 5 attackers that stay through the entire experiment and there is a sin

gle victim. Each attacker conducts the Search hijack attack from Section 3.2.2, and 

employs the Attraction [70] and Multifake (Section 3.3.1) heuristics. In particular, 

when an attacker initially joins the network, it proactively pushes information about 

itself to about 100 innocent nodes, forcing them to add the attacker to their routing 

tables. This causes many nodes to send search queries to the attacker and be redi

rected to the victim. In addition, in every search response, the attacker includes the 
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victim’s contact information about 100 times. This causes even larger attack mag

nitudes since innocent nodes send several messages to the victim for every response 

from the attacker (see [70] for more details). 

Figure 3.10 shows the attack traffic generated at the victim as a function of time, 

from one experiment. With the Base-Kad, the traffic was as high as 10 Mbps through

out the run. Further, the traffic at each attacker was only about 250Kbps, which while 

higher than what a normal user sees, is 40 times lower than the traffic seen by the 

victim. However, with Resilient-Kad, the attack magnitude was effectively reduced 

by a factor of 100,000 from 10 Mbps to 0.1 Kbps. 

Figure 3.11 compares the performance of the Base-Kad and the Resilient-Kad 

schemes. There are three sets of bars, each corresponding to a setting with a particular 

percentage of nodes behind NAT. Each set has four bars corresponding to the two 

schemes, with and without the presence of attackers. The graph shows the search 

delay, averaged over all searches conducted by all nodes throughout a run, then 

averaged over five runs. Error bars show the standard deviation. Here search delay is 

measured as the time taken to locate the node which is not behind NAT and which 
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has an ID that is the closest to the target ID. Our goal is to emulate location of index 

nodes in the real Kad network, and we note that only public nodes can be index 

nodes. We make the following observations. 

First, in the presence of attackers, the search delay with the Base-Kad degraded 

significantly (over eight seconds in all NAT percentage settings). This was because 

nodes kept getting redirected by the attackers to the victim when they conducted 

searches. However, with Resilient-Kad, in the presence of the attackers the degra

dation was small and the search delay was still under three seconds for all NAT 

percentage settings. This was because fake information provided about the victim 

was quickly throttled and not used as part of the searches. 

Second, in the absence of attackers, Resilient-Kad performed slightly better than 

Base-Kad. There are mainly two reasons for this. First, Base-Kad does not in

volve NAT-aware membership management. Thus, its routing table could include 

nodes behind NAT, and many search messages could fail since nodes behind NAT are 

contacted, leading to longer search times. In contrast, Resilient-Kad contains NAT-

aware membership management leading to a routing table with fewer useless entries. 

Second, the destination-throttling scheme implemented in Resilient-Kad has the side 

effect that it can help purge stale membership information. In particular, consider a 

scenario where node A has left the group. Node B learns stale membership informa

tion about node A from some other node. In Base-Kad this membership information 

is accepted, adding to useless entries in B’s table for some time. Further, the stale 

information may also be propagated by B to others. In contrast, with Resilient-Kad 

this membership information is not accepted due to the validation process, conse

quently helping avoid useless entries. 

Finally, the performance of all schemes get better when the NAT percentage in

creases. This is because, as the number of public nodes decreases, there are fewer 

hops to reach the index node of a given target ID. Resilient-Kad nodes see better 

improvements since they only maintain entries of public nodes while Base-Kad nodes 

maintain useless entries of peers behind NAT. 
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3.8.2 Video Broadcasting Application 

We consider the effectiveness of Resilient-ESM. We assume 10% of the nodes are 

malicious and perform an attack as described in Section 3.2.2 and in [70]. Our results 

indicate that the Resilient-ESM scheme is effective in containing attacks, reducing 

the attack magnitude from 10 Mbps to 0.1 Kbps. 

Next, we consider application performance with Base-ESM and Resilient-ESM. 

Figure 3.12 shows the fraction of nodes that see more than 90% of the source rate, 

for both schemes, with and without attackers. Each bar is the average over five runs. 

Error bars show the standard deviation. We observe that Base-ESM shows significant 

degradation in performance in the presence of attackers. For instance, less than 70% 

of the nodes received more than 90% of the source rate, in settings with 65% NATs. 

This is because under attack, much of the membership information in the routing table 

of nodes is fake. This reduces the number of potential parents to contact when nodes 

join the group or when a parent leaves. Furthermore, we notice that the performance 

degradation on Base-ESM becomes more significant as the fraction of nodes behind 

http:Fig.3.12
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NAT increases. This is because in these regimes there are fewer potential parents 

in the system, so the impact of having fake entries in the routing table of nodes is 

even higher. In contrast, with Resilient-ESM, invalid membership information was 

not used, leading to fast convergence and high performance. In particular, 95% of 

the nodes received more than 90% of the source rate, for all NAT percentages, with 

and without attackers. 

3.9 Interactions with P2P Developers 

We have initiated discussions with P2P developers alerting them to the potential 

for DDoS attacks exploiting their systems, and encouraging them to make changes 

to their system to address the vulnerabilities. When we contacted the developers of 

eMule, they indicated they were already aware of our workshop paper [70], which had 

shown the feasibility of exploiting Kad (part of the eMule software) to cause DDoS 

attacks, and had implemented a number of changes to address the vulnerabilities. We 

identified some limitations of the changes, and the developers indicated they would 

implement additional mechanisms to address these in a future release. The combined 

set of changes limit the total number of entries in search response messages, and limit 

each response to have only one IP associated with an ID, and have at most 10 IPs for 

each /24 prefix. Similar restrictions are placed on the routing table entries. These 

changes are primarily intended to defend against attack heuristics such as Multifake, 

in order to bound attack amplification. These fixes are easily implementable and 

help solve some of the immediate problems. However, the fixes still suffer from a few 

limitations: (i) the amplification on /24 prefixes could be as high as 10; (ii) attacks 

on prefixes coarser than /24 are not prevented and the amplification of attacks on 

such coarser prefixes is not bounded; and (iii) each innocent participant could send 

an unbounded number of packets to the victim. We are in ongoing discussions with 

the developers to get our throttling mechanisms integrated, which could address these 

limitations. Our overall interactions show that P2P developers recognize the potential 
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for DDoS attacks exploiting their systems, and the value of designing systematic 

solutions to counter the threat. 

3.10 Related Work 

In Section 3.2.2, we have described most of previous research, which focus on 

exploiting individual P2P systems for DDoS attacks. In contrast, we have classified 

known DDoS attacks by amplification source, and identified principles to prevent 

amplification. In addition, ours is the first work aimed at enhancing the resilience of 

P2P systems to DDoS attacks. 

The idea of employing probing-based mechanisms to validate membership infor

mation is briefly discussed in [25]. [24] discusses a solution specific to Gnutella which 

requires a node to complete a “handshake” with a peer prior to any file request mes

sage being sent to the peer, which could be viewed as a form of validation. In Kad, 

nodes employ a form of probing-based validation mechanism when nodes learn about 

members in search response messages (but nodes do not validate members learnt 

through publish messages). However, none of these consider the possibility that vali

dation packets could be exploited to cause DDoS attacks. In fact, this was exploited 

in [70] to achieve large attack amplification. Further, we have also considered is

sues such as benign validation failures, DDoS attacks on entire network prefixes, and 

disconnection attacks. In addition, we have presented analysis and comprehensive 

performance evaluations of our framework. Finally, we have shown that our mech

anisms are general and can defend against attacks on a diverse range of systems. 

[91] has used probing-based mechanisms to validate membership information to im

prove DHT lookup performance. In contrast, our focus is on DDoS detection and 

the interoperability of validation mechanisms with sources of benign failures such as 

NATs. 

In our earlier paper [82], we showed the limitations of three other techniques in 

enhancing the resilience of P2P systems. A first technique was to limit DDoS attacks 
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by using pull-based membership management rather than push. However, while this 

reduces the susceptibility to attacks in some contexts, pull-based protocols are still 

vulnerable as our attacks on Kad show [70]. A second technique was to corroborate 

membership information from multiple sources. However, this technique is highly 

susceptible to Sybil attacks, and can incur significant performance degradation. A 

third technique is to limit the number of IDs associated with the same IP address, 

and the number of IPs sharing the same prefix that a node accepts. The limits are 

applied even if only genuine participants are involved, greatly limiting communication 

between participants. In contrast, this paper takes a different approach that requires 

nodes to be validated, and bounds the number of validation failures to each IP address 

or prefix, which in turn results in much fewer false positives. The focus on validations, 

throttling schemes, and analysis of their performance and security distinguishes our 

current work. 

Researchers (e.g. [92]) have looked at exploiting unstructured file systems to launch 

DDoS attacks on P2P systems by introducing unnecessary queries, and having them 

flooded by the system. In contrast to these attacks, our focus is on DDoS attacks on 

external servers, caused by introducing fake membership management information. 

Several works [64–68] focus on how malicious nodes in a peer-to-peer system may 

disrupt the normal functioning, and performance of the overlay itself. Many of these 

works, and most notably [66,67], focus on attacks on structured DHT-based overlays, 

and rely on trusted authorities to assign node IDs to principals in a certified manner. 

Our work differs in several ways. First, we focus on DDoS attacks on the external 

Internet environment, i.e. on nodes not participating in the overlay. Second, we focus 

on mechanisms that may be easily integrated into both structured DHT-based and 

unstructured non DHT-based systems. Third, we do not rely on a centralized author

ity to certify membership information. We believe these considerations are important 

to meet the threats for many existing extensively deployed systems. However, it may 

be interesting to investigate whether stronger security guarantees can be provided by 

exploiting DHT properties and using centralized authorities. 
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Several works have looked at the design of Byzantine resilient gossip protocols in 

the traditional distributed systems community in order to validate information (for 

example, [78, 81]). While there is much to learn from these efforts, we believe the 

scalability, heterogeneity and performance requirements with peer-to-peer networks 

and applications pose unique challenges and it is necessary to investigate the issues in 

the context of actual systems. Our focus in this paper is on exploiting P2P systems 

to launch DDoS attacks. In contrast, other works have explored attacks caused by 

DNS and web-server reflectors, and misuse of web-browsers and botnets [72, 93, 94]. 

A recent work [95] builds a DDoS attack model in the application layer, and proposes 

a defense mechanism against Layer-7 attacks by combining detection and currency 

technologies. 

3.11 Conclusions 

In this paper, we have made two contributions: 

• First, we have shown that the feasibility of exploiting P2P systems to launch high-

amplification DDoS attacks on web and Internet servers stems from a violation of 

three key principles essential for robust P2P design. These principles are: (i) mem

bership information must be validated before use; (ii) innocent participants must only 

propagate validated information; and (iii) the system must protect against multiple 

references to the victim. While these principles are almost obvious in retrospect, the 

failure to follow the guidelines in a wide range of deployed systems, and the resulting 

repercussions are striking. 

• Second, we have shown the effectiveness of an active probing approach to validating 

membership information in thwarting such DDoS attacks. We have focused on such 

an approach given that it does not rely on centralized authorities for membership 

verification, and is applicable to both structured and unstructured P2P systems. 

Despite the simplicity of the approach, it can keep attack amplification low (to a 

factor of 2), while having a modest impact on performance. For a video broadcast 
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application with stringent performance requirements, and for m = 2, the average 

source rate seen by nodes is practically unaffected, and when the 90%ile of client 

join time is considered, the increase is less than 12%. With Kad and for m = 2, the 

search time increases by less than 0.3 seconds on average. 

While we have taken a key step towards enhancing the resilience of peer-to-peer 

systems to DDoS attacks, we are extending our work in several directions. From a 

security perspective, we are investigating mechanisms that can bound amplification 

when DDoS attacks are conducted on nodes actually participating in the system. 

From a performance stand-point, we are investigating self-tuning mechanisms to dy

namically determine appropriate parameter choices for any application and deploy

ment scenario. 
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4. UNCOVERING CLOSED COMMUNITY BASED P2P 

SYSTEMS 

4.1 Introduction 

The last decade has seen a rapid growth in popularity of peer-to-peer (P2P) sys

tems, spanning diverse applications such as content distribution (e.g., BitTorrent, 

eMule, Gnutella), video streaming (e.g., PPLive,Coolstreaming), and audio confer

encing (e.g., Skype). A vast majority of these systems are Internet-scale, and open 

to any user on the Internet. Indeed, the open nature of these systems is viewed as a 

key strength of P2P systems in enabling inexpensive and rapid deployment of services 

over the Internet. 

In this paper, we raise the attention of the research community to the prevalence 

of closed communities of P2P users, and present an extensive characterization of such 

communities. Membership in such communities is restricted by imposing require

ments on users that join the system. We focus on an important class of closed commu

nities, where the primary criterion for admitting users is that they must be connected 

to the same network (e.g., same ISP). While several research efforts have extensively 

characterized the performance and traffic characteristics of open and Internet-scale 

P2P systems (henceforth referred to as generic P2P systems), e.g., [96–99], the study 

of closed and network-specific P2P systems (henceforth referred to as P2P communi

ties) has received limited attention. 

In this work, we characterize two communities, that we had the chance to mon

itor. The communities corresponded to two very contrasting networks. The first 

community has been created and used by customers in a large nation-wide ISP in 

Europe. The ISP offers customers Internet access, using both ADSL (1Mbps Up

link and 20Mbps downlink) and FTTH (10 Mbps uplink and downlink) technology. 
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The community observed in this network is based on the standard eMule P2P ap

plication [32], which has been modified by users to avoid problems caused by the 

assignment of private IP addresses to hosts inside the ISP network. We refer to 

this community as ISP-Community in this paper. The second community has been 

found inside a large university campus with hosts having high speed Ethernet con

nectivity. In this network, users modified the standard DirectConnect (DC) P2P 

application [100], so that only peers that run on hosts inside the campus can actu

ally join the community. We refer to this community as Campus-Community in this 

paper. 

Our main contributions are as follow: 

• We show that P2P communities are extremely popular (e.g., generating more 

than 60% of total traffic for the ISP) and large-scale (e.g., comprising hundreds of 

thousands of users in the ISP network). The usage of the communities far exceeds 

usage of other more generic P2P systems - for e.g., in the campus network over 90% 

of the peers download over 90% of all P2P data using Campus-Community . 

• We compare the performance of users of the P2P communities with users of 

more generic P2P systems. Our results show the performance benefits are largely 

determined by the access technologies of the users, and the degree of seed-like be

havior shown by users behind high-speed access technologies. For instance, users 

of Campus-Community enjoy several orders of magnitude better performance than 

users of generic P2P systems in the campus network thanks to the high bandwidth 

provided by the campus LAN. In contrast, in the ISP network, the throughput of 

ISP-Community connections with senders behind ADSL links shows no particular im

provement compared to generic P2P systems. However, the users of ISP-Community 

do see an improvement which may be attributed to a small fraction of senders behind 

FTTH links. 

• We develop techniques to enable network providers understand how the growth 

of P2P communities impacts network capacity planning, and how projected changes 

in access technologies of users may affect these results. Our techniques center around 
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Fig. 4.1. ISP setup and trace collection. 

a model we develop for the inter-PoP traffic of P2P communities. In contrast to 

prior work on traffic matrix estimation (for e.g., [101, 102]) which is agnostic to 

individual applications, our focus is on developing an application-specific traffic ma

trix model. Through simulations conducted using the model, we show that (i) while 

ISP-Community does reduce traffic on peering points as expected, more surprisingly, 

it results in a substantial increase in the traffic carried on internal network links 

(e.g., more than 60% of backbone links carry more traffic when ISP-Community is 

present); and (ii) this trend is exacerbated as more users move to high-bandwidth 

access technologies. 

P2P communities must be distinguished from recent research proposals that have 

proposed mechanisms to ensure traffic of P2P systems is localized to ISP bound

aries [13, 14]. Unlike these works, closed P2P communities have grown organically 

among users, and are already extensively deployed. Localization of traffic is not an 

explicit goal that spurred the growth of these communities, yet may occur as a promi

nent side-effect of the communities being closed to clients belonging to particular net

works. That said, our results have important implications for research on localization 

of P2P traffic within ISP boundaries and indicate that benefits of localization should 

not be taken for granted. We discuss this in greater detail in Section 4.8. 
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4.2 Peer-to-Peer Communities 

In this paper, we present an analysis of P2P communities in two different networks, 

(i) a nation-wide ISP in Europe; and (ii) a large-scale campus network in North 

America. We present more information about the networks and the associated P2P 

communities in this section. 

4.2.1 P2P Community in an ISP Network 

We describe a P2P community found in a nation-wide ISP in Europe. The ISP 

offers customers Internet access, using both ADSL (up to 1Mbps Uplink and 20Mbps 

downlink capacity) and FTTH (10 Mbps uplink and downlink capacity) technology. 

Hosts in each city are aggregated into Points-of-Presence (PoPs), which are then 

connected via the ISP backbone. Typically, hosts in the ISP are given a private IP 

address. As shown in Figure 4.1, plain connectivity is guaranteed to hosts inside the 

ISP network despite the use of private IP addresses. Whenever hosts with private 

addresses communicate with hosts in the external Internet, the data communication 

involves traversal of an ISP-wide NAT. 

P2P systems typically have mechanisms in place to detect peers behind NAT and 

to limit their performance. This motivated a community of ISP users to modify 

eMule, a well known file sharing system, so that peers in the ISP could communicate 

with each other even though they have private addresses. The custom version of the 

eMule client was developed by ISP customers starting from 2003. The modification 

simply hardwires information about private IP addresses used within the ISP, and 

permits clients to send data to these addresses. We note that the default eMule system 

is associated with a DHT-based overlay known as Kad. The customized version of 

eMule (which we refer to as ISP-Community) builds a separate DHT overlay local to 

the peers in the ISP. This is achieved by modifying the message format of the original 

Internet-wide Kad overlay to ensure that the ISP-Community messages can only be 

processed by peers running the modified version. 
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Besides avoiding the NAT issue, ISP-Community offers other advantages. First, 

it is desirable to download content from other users connected to the same ISP since 

hosts within the ISP are interconnected through higher capacity backbone links. Sec

ond, a large percentage of hosts in the ISP are connected by FTTH, and their upload 

capacity is significantly higher than upload capacities of hosts connected to other 

ADSL providers. Third, given that all the peers in the community are in the same 

European country, the content that is available matches the interest and language 

preferences of users in the community. Finally, we note that ISP-Community clients 

could still use the global eMule system if content is not located within the local 

network. But this event is rare, as we will show in Section 4.4.2. 

4.2.2 P2P Community in a Campus Network 

The second network we analyze is a large university campus in North America 

with tens of thousands of end hosts in its network, interconnected by a high capacity 

backbone LAN. Users in the campus network are offered Fast Ethernet connections 

(100Mbps). In contrast to the ISP network, hosts in the campus receive public IP 

addresses, guaranteeing plain connectivity. 

Motivated by the high bandwidth provided to clients in the campus network, 

students deployed a modified version of DC [100]. DC is a well known application for 

content sharing and chat, and we refer to the modified version as Campus-Community . 

In the traditional DC system, peers connect to a central hub for most of the system 

operations. However, in Campus-Community , there is no central hub, but a set of 

hub clients to avoid a single a point of failure. A hub client runs together with the DC 

application at each peer. When a peer is searching for content, a gnutella-like flooding 

algorithm is performed, in which peers forward the query to all their neighbors, until 

all peers receive the query. All peers that are sharing the content will reply back. 

To enforce a closed membership, Campus-Community peers have been modified 

to only accept and initiate connections to other peers in the IP address range of the 



99 

campus. As a side-effect, the Campus-Community traffic is therefore highly localized 

to the campus network. In addition, we found that Campus-Community is the most 

popular P2P application in the campus. We identified over a thousand Campus-

Community peers which contribute to a large fraction of the campus traffic. 

4.3 Evaluation Goals and Methodology 

In this section we present our goals and methodology. 

4.3.1 Goals 

The aim of this paper is to characterize and compare the closed network-specific 

P2P community systems against generic, open and Internet-wide P2P systems. To 

accomplish this, in this paper we seek answers for the following questions: 

• How extensive is the use of P2P communities? 

• How does the performance seen by users with P2P communities compare to 

performance seen with generic P2P systems? 

• How does the Internet access technology of clients impact the performance of 

users of the P2P community? 

• What are the implications of the growth of P2P communities in terms of traffic 

on network links for network providers? 

We answer these questions with a combination of measurements and simulations. 

The network measurements help us characterize application performance, user behav

ior, and provide realistic traffic information to guide our simulations. The simulations 

enable us to study the implications of the communities on network providers. Based 

on actual traffic data derived from our measurements, we devise a methodology to 

infer the volume of P2P traffic each link of the network has to carry. We defer fur
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ther details on the simulation to Section 4.7 and focus on the methodology for the 

measurement study for the rest of the section. 

4.3.2 Trace Collection Tool 

Traces are collected with Tstat [45], a passive sniffer with advanced traffic classifi

cation capabilities. Starting from packet level traces collected in operational networks, 

Tstat groups packets into flows which are classified by application using a combina

tion of Deep Packet Inspection and statistical classifiers, specifically targeting both 

plain and obfuscated P2P traffic. Tstat has been found to perform well in [103]. 

For each flow, Tstat collects various per-flow statistics such as bytes exchanged in 

each direction, flow duration and Round Trip Time (RTT) of packets. We refer the 

reader to [45, 104, 105] for more details. 

4.3.3 Datasets 

Our analysis is conducted on the following datasets: 

ISP Network: Traces have been collected from two PoPs in a nation-wide ISP in 

Europe. A high-end PC running Tstat was used to analyze in real time all the packets 

going to and coming from all the hosts in the monitored PoPs, and produced a flow 

level log that has then been post-processed. The two PoPs are different in the type 

of Internet access technology of their hosted customers. In the first PoP, which we 

call ISP-FTTH , all customers are connected through FTTH links while in the second 

PoP, which we call ISP-ADSL, all customers are connected through ADSL links. For 

the ISP-FTTH PoP analysis, we focus on a one week trace collected during December 

2008, with about 2, 200 active customers in the PoP contacting over 4 million hosts. 

For the ISP-ADSL PoP analysis, we focus on a one day trace collected during April 

2009, with about 20, 000 active customers in the PoP contacting over 2 million hosts. 

For these datasets, we label clients according to their access technology to the 

network. This information has been encoded by the ISP on the IP address of clients 
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and is easily obtainable from the traces. In addition, we associate clients with the 

ISP PoP were they reside. This information has been provided by the ISP operators. 

Campus Network: The trace has been collected at the edge of some campus dor

mitories, using a methodology similar to the ISP setting. We report results from a 13 

hours trace of a weekday in April 2009, during which there were about 2, 000 distinct 

active hosts in the monitored dormitories. These hosts contact more than a million 

other hosts. 

4.3.4 Comparing P2P Communities with Generic P2P Systems 

Our measurement studies compare the performance of closed P2P communities 

with generic Internet-scale P2P systems observed in the same network, and at the 

same time. We compare the Campus-Community and ISP-Community systems to two 

other regular, well known and open P2P applications: (i) the traditional eMule [32] 

application, which we refer to as the ISP-Generic; and (ii) the BitTorrent [106] ap

plication, which we refer to as Campus-Generic. Both ISP-Generic and Campus-

Generic are the second most popular P2P file sharing systems after the P2P commu

nity applications in the respective traces. We note that our comparisons in the cam

pus setting are based on two different underlying systems (the Campus-Community 

system is based on DC while the Campus-Generic is based on BitTorrent). While 

ideally, the comparisons are best performed using the same underlying system, this 

is infeasible since the campus network does not have a closed P2P community and a 

generic variant both based on the same underlying system. Thus, our comparisons 

in the campus network case could be impacted by other differences in the underlying 

systems involved, besides the open/closed nature of the systems. However, we be

lieve the impact of these differences is relatively minor for most of the results, and 

the comparisons do provide important insights in the context of our study. 
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4.4 Characterizing Community Usage 

In this section, we begin by characterizing the extent to which P2P communities 

are used in the monitored networks. Then, we consider the degree to which users rely 

on the P2P communities to access content. 

4.4.1 Prevalence of Communities 

Tables 4.1, 4.2 and 4.3 summarize general statistics for the ISP and campus traces. 

For all tables, the first column shows for the various systems, the number of peers 

identified inside the monitored PoPs in the ISP and the dormitories in the campus. 

The second column shows the total number of external peers that are contacted by 

the monitored hosts. The third column gives the total data exchanged by peers, while 

the fourth column provides the average data exchanged per peer. 

First, notice in Table 4.1 that the ISP-Community population in the monitored 

PoP is almost twice as large as the ISP-Generic population, with 858 ISP-Community 

peers versus 470 ISP-Generic peers. In addition, ISP-Community peers generate over 

3 times more connections and exchange over 13 times more data than ISP-Generic 

peers, and each peer exchanges over 7 times more traffic when using ISP-Community . 

Table 4.2 shows similar results for the ISP-ADSL trace. However, notice that the 

difference in the total data exchanged between ISP-Community and ISP-Generic is 

not as large as in the ISP-FTTH trace. This is because ADSL peers cannot upload 

as much data as FTTH peers due to their limited upstream capacity. As we will 

see later, the higher upload capacity of FTTH peers plays a key role and justifies 

the success of ISP-Community . Finally, note that the total number of distinct ISP-

Community peers found when combining the two traces, amounts to around 600, 000 

peers. 

Table 4.3 shows similar results: the Campus-Community population in the PoP is 

1.4 times larger than the Campus-Generic population. Besides, Campus-Community 
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Table 4.1
 
Traffic Summary for the ISP-FTTH Trace
 

Systems Peers 

monitored 

Peers 

Contacted

Total Data

Exchanged 

Per Peer Data 

Exchanged 

ISP-Community 858 497.4K 9141GB 10.65GB 

ISP-Generic 470 317.7K 683GB 1.45GB 

Table 4.2
 
Traffic Summary for the ISP-ADSL Trace
 

Systems Peers 

monitored 

Peers 

Contacted

Total Data

Exchanged 

Per Peer Data 

Exchanged 

ISP-Community 7074 325.1K 6669GB 0.94GB 

ISP-Generic 2351 829.4K 1021GB 0.43GB 

Table 4.3
 
Traffic Summary for the Campus Trace
 

Systems Peers 

Monitored

Peers 

Contacted

Total Data

Exchanged 

Per Peer Data 

Exchanged 

Campus-Community 270 1.82K 970GB 4.61GB 

Campus-Generic 196 1.006M 14.65GB 0.28GB 

peers exchange 60 times more data than Campus-Generic peers in total, and each 

peer exchanges 16 times more data when using the Campus-Community . 

Figure 4.2 shows the fraction of inbound and outbound traffic observed at the 

monitoring point which may be attributed to the P2P communities. There are three 

groups of bars, corresponding to the campus, and ISP scenarios. The fraction due 

to the communities is computed for each hour of the trace and the 50th and 90th 

percentile of these values is shown. The results show that throughout the duration 

of the trace, close to 90% of the outbound traffic may be attributed to the P2P 

communities for the Campus and ISP-FTTH settings. In the case of ISP-ADSL, the 
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Fig. 4.2. Fraction of inbound and outbound traffic seen at the mon
itoring point, generated by the P2P communities. Note that all this 
traffic stays within the Campus/ISP. 

P2P community outbound traffic is reduced to around 60% of the total outbound 

traffic. This is because of the limited upload capacity of ADSL customers. On the 

other hand, the fraction of inbound traffic, while slightly lower due to the higher 

fraction of HTTP traffic, is still over 60% in the three settings. The results clearly 

illustrate the overwhelming popularity of the P2P communities. 

4.4.2 User Reliance on Communities 

We were interested in measuring the extent to which users rely on the community 

to obtain the content they require. To evaluate this, we measure the community 

usage ratio U(p, τ), of peer p during time interval τ by considering the ratio of bytes 

p downloads from other peers using the community to the total bytes downloaded 

using any P2P system (including the community). We selected τ to be 1 hour long. 

Intuitively, this metric quantifies the extent to which a peer has to back up to an 

Internet-wide generic P2P system to retrieve content which cannot be found in the 

P2P community. 

Figure 4.3 shows the mean U(p, τ) per client. The plot reports two bars for each 

of Campus-Community and ISP-Community . Each bar shows the fraction of clients 

with mean U(p, τ) greater than 80% (and 90%) for the community they are part 
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Fig. 4.3. Fraction of clients in Campus-Community and ISP-
Community with a community usage ratio over 80%(90%). 

of. In general, U(p, τ) is high. In particular, for ISP-Community , 70% of the peers 

download more than 90% of the data from the community. For Campus-Community , 

the fraction of clients is even larger, e.g., more than 90% of the peers download more 

than 90% of data from the P2P community. This suggests that the P2P community 

is self-sustaining and peers usually locate content within the community. 

4.5 User and System Performance 

In this section, we study the performance seen by users with the P2P communities, 

and compare this to the performance of the generic P2P systems. The most direct 

metric to evaluate user performance is the file transfer completion time. However our 

dataset does not allow us to gather this information since our probes do not perform 

parsing and interpretation of application header. Instead, we evaluate the download 

and upload rates and the delay per connection and per host, which are metrics clearly 

related to the overall user performance. 
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4.5.1 Throughput 

In this section, we investigate to what extent users achieve better throughput if 

they use the P2P community. We then consider various factors that could affect the 

performance of users, such as their access technology. 

Figure 4.4 presents results for users’ performance considering the per host down

load rate D(h), which is the average download rate across all TCP connections initi

ated or received by a host1 . Again, the median and 90th percentile of the distribution 

among hosts is reported. We observe that for the campus setting, the median im

provement in download rate of the P2P community over the generic system is a factor 

of 740. However, the improvement is only a factor of 6 and 4 for the ISP-FTTH and 

ISP-ADSL settings respectively. 

Impact of access technology: We further study the ISP setting to understand 

the impact that heterogeneity in access technology of users has on the download 

performance. To provide appropriate context, Table 4.4 shows the breakdown of ISP 

users by access technology. For each trace, the first column shows the total number 

of external contacted peers. The second and third columns detail the total number 

of such peers connected by FTTH or ADSL links respectively. The fourth column 

shows peers for which we do not have access technology information. Neglecting the 

latter group, we notice that for both traces, there is a ratio of 1:5 between high speed 

FTTH links and slower and more congested ADSL links, which reflects the provider 

technology penetration. 

Figure 4.5 shows the Cumulative Distribution Function (CDF) of the per-connection 

download bitrate for different types of sources contacted by ISP-Community clients 

in the ISP-ADSL trace. The curves labeled ADSL Sources and FTTH Sources refer to 

sources located inside the ISP connected by a particular access technology. The third 

curve labeled as Internet Sources corresponds to ISP-Generic clients, and is shown for 

comparison purposes. This curve refers to connections served by sources outside the 

1To avoid connections carrying only control messages, we consider connections with more than 50KB 
downloaded 



 

107

Do
wn

loa
d R

ate
 [k

bp
s] 

600 

500

 400

 300

 200

 100

 0

(50th - 20Mbps) 

50th 
90th 

Community Generic Community Generic Community Generic 

Campus ISP-FTTH ISP-ADSL 

Fig. 4.4. Download rates for various systems.
 

Table 4.4
 
Access Technology of ISP-Community Peers
 

Trace Total FTTH ADSL Unknown 

ISP-FTTH 497.4K 80.8K 356.4K 59K 

ISP-ADSL 325.1K 52.8K 270.8K 1013 

ISP for which no information about the peer access technology is available. The key 

observation from this graph is that the performance benefits of using ISP-Community 

is due to the high capacity FTTH sources which clearly enable much higher down

load rates. The 50th (90th) percentile of the download bitrate from FTTH sources is 

120Kbps (591Kbps) compared to 23Kbps (64Kbps) for Internet sources, an improve

ment of five to nine times. Interestingly, only the top 20 percentile of connections 

involving ADSL sources perform better than connections involving Internet sources, 

and even here the difference in performance is minor. The same observations hold 

for connections from the ISP-FTTH trace. In particular, when FTTH clients down

load from FTTH sources, the median throughput is 10 times higher than when they 

download from both ADSL and Internet sources. 

Degree of seed-like behavior in communities: We next investigate the extent 

to which users in the P2P community contribute more data than they receive and 

how this depends on the access technology of the user. We consider the ratio of bytes 
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Fig. 4.5. Download rates from the ISP-ADSL trace, distinguishing 
the access technology of the source. 

sent and bytes received per client in the whole dataset, which we call R(p), where p is 

a peer. Notice that a value less than one represents clients that are mostly receiving 

(also called leechers) and a value larger than one represents clients that are mostly 

sending (or seeds); a value close to 1 represent clients that both send and receive data 

in similar amounts. 

Figure 4.6 shows the CDF of R(p) in ISP-Community for the ISP-FTTH and the 

ISP-ADSL traces. We clearly see that ISP-Community users behind an FTTH link 

have a more seed-like behavior. For instance, the median R(p) for FTTH clients is 2.05 

which shows that half of the clients send twice as much as they receive. In contrast, 

the median R(p) for ADSL clients is 0.56 which implies a leecher-like behavior. 

Implications: These results combined indicate that much of the performance im

provement seen by ISP-Community clients over ISP-Generic clients stems from the 

fact that a small portion of the users in the ISP are connected by a high-speed FTTH 

technology, and these users contribute much more data than they receive. In ad

dition, these results have broader significance for research on localizing P2P traffic 

within ISP boundaries [13,14]. While most research in this area has taken for granted 

that localizing traffic benefits users and ISPs, our results indicate that in ISPs with 

heterogeneous access technologies, the performance benefits to users on localizing 

P2P traffic is largely dependent on the degree of seed-like behavior of peers behind 
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Fig. 4.6. Ratio of bytes sent and bytes received per client in ISP-Community . 

high-bandwidth access technologies. We elaborate further on these implications in 

Section 4.8. 

4.5.2 Delay 

An intuitive way to evaluate the effectiveness of P2P localization is by measur

ing the delay of localized connections. One would expect that connections in the 

community system will exhibit a lower RTT than connections in the generic system. 

Figure 4.7 shows the per connection average RTT for the three vantage points. We 

observe that while the difference in RTT between Campus-Community and Campus-

Generic is prominent, it is less noticeable between ISP-Community and ISP-Generic. 

To understand this better, we consider the impact of ISP clients behind ADSL lines on 

the RTT of connections. We observe that the distribution of RTT for ISP-Community 

connections to peers behind ADSL access links is comparable to ISP-Generic flows, 

while a significant improvement is noticeable for sources behind FTTH access links 

(which have a ten times higher upload capacity). This implies that congestion in the 

upstream direction of ADSL clients is causing queueing delays which subsequently 

increases RTTs. 

A second reason for the lack of RTT improvements between ISP-Community and 

ISP-Generic is that many clients in ISP-Generic tend to access content within the 
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Fig. 4.7. RTT for connections initiated for various system. 

same small European country. For instance, in our ISP-ADSL dataset, we found that 

52% of connections leaving the ISP were destined to the same country and 81% to 

Europe. More generally, this is because users in the same geographic region tend to 

be interested in the same content, due to common language and culture [107]. We 

also note that Campus-Community users are mostly English speaking users and thus 

the content tends to be more spread throughout the world. 

Implications: One could expect that localization of P2P traffic would reduce RTT 

and increase throughput of connections. But, our results show that these benefits may 

be limited by the access bandwidth of users inside the ISP and user demographics. 

Our observations agree with findings by other researchers [107]. 

4.6 Traffic matrix for P2P communities 

In Section 4.5, we have focused on the extent to which user performance is im

proved when P2P communities are used. We next consider the impact that P2P 

communities have on network providers. We focus our study on the ISP network 

given it is a larger and more interesting setting, but a similar methodology could 

also be employed for the campus network. In this section, we present an approach 

to infer the application-specific traffic matrix due to ISP-Community . Each cell of 

the matrix corresponds to the volume of traffic related to ISP-Community between a 
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pair of PoPs in the ISP. Inference is required because we have direct measurements 

available only at two PoPs. We then employ this traffic matrix in Section 4.7 to study 

the load induced by ISP-Community on links of the ISP network, and examine how 

the load may change under various “what-if” scenarios (e.g., upgrade to higher access 

technology). 

Traffic matrix estimation is a well studied problem [101,102]. However, past work 

has primarily focused on the estimation of the overall traffic matrix. In contrast, we 

explicitly target the estimation of the subset of traffic due to the P2P community, 

and specifically due to ISP-Community . 

We leverage on the Simple Gravity Model [101], according to which the amount of 

flow exchanged between two objects is proportional to their “size”. We consider the 

network PoPs as objects, whose size is determined by their peer population. Then, 

the traffic Tsent(s, d) sent from PoP s to PoP d is simply defined by: 

population(d)
Tsent(s, d) = Tsent(s) ∗ n (4.1) 

population(k) 
k=1 

where Tsent(s) is the total P2P traffic sent by users in PoP s, and population(d) is the 

population of PoP d. n is the total number of PoPs present in the topology. The model 

assumes that the fraction of traffic from s to d is simply proportional to the relative 

population of d. We believe this assumption is reasonable if (i) content is uniformly 

available in each PoP; and (ii) peer selection follows a uniform probability. The first 

point can be justified, since in ISP-Community all users belong to an ISP within 

the same country and therefore content can be located anywhere in the network. 

The second point was verified to be the case in ISP-Community , since the modified 

version of the software selects peers with uniform probability (i.e. no tit-for-tat policy 

is in place). In a more general scenario, where P2P systems may preferentially select 

nodes in certain PoPs (e.g., PoPs with lower latencies), a “friction factor” may be 

introduced in the model. We leave this generalization for future work. 
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4.6.1 Validation 

We now describe our methodology to validate the model and present our re

sults. Validating Equation 4.1 requires us to know Tsent(s) and the number of ISP-

Community peers in each PoP. While the former may be directly obtained from our 

traces, we assume the latter is simply the total number of ISP-Community peers in 

each PoP which contact our monitored ISP-Community peers through UDP control 

messages. We believe this is reasonable because: (i) Kad UDP control messages are 

sent to a larger number of peers compared to TCP data messages; and (ii) since 

Kad maps hosts to a DHT network at random, control messages are sent to any 

destination in the ISP with equal likelihood. To further confirm the validity of our 

methodology, we found that our monitored ISP-Community peers were contacted 

using UDP control messages by 497.4K unique peers in the ISP-FTTH trace and 

325.1K unique peers in the ISP-ADSL trace. This is a very representative subset 

of the total ISP-Community population in the ISP. In addition, we noticed that the 

fraction of the population remains constant for every PoP across our traces and over 

different periods of time within a single trace. Hence, it may be enough to know the 

fraction of users per PoP rather than the actual total population of users. 

We have predicted the amount of traffic sent to any other PoP in the network 

from the ISP-FTTH PoP and the ISP-ADSL PoP. To further show the validity of 

our model, when we consider the ISP-FTTH PoP as the source PoP, the population 

is estimated using the ISP-ADSL dataset and when we consider the ISP-ADSL PoP 

as the source PoP, the population is estimated using the ISP-FTTH dataset. 

Figures 4.8 and 4.9 show the amount of traffic sent to any other PoP in the network 

considering the ISP-FTTH and ISP-ADSL PoPs as the source PoP respectively. Two 

curves are reported representing the model prediction T (s, d), and the actual data 

measured from the trace, T̂ (s, d). We observe that the model closely follows the real 

data in both cases. 
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data for the ISP-ADSL trace. 

To better quantify how close the output of the model is to the real data, we 
T (s, d)− T̂ (s, d)

have calculated the relative error of the predictions, defined as . 
T̂ (s, d) 

Figure 4.10 shows the CDF of the relative error for the ISP-FTTH and the ISP

ADSL traces. For around 90% of the PoPs, the error is smaller than 20% for both 

traces, which is an acceptable error margin. 

These results confirm that a simple gravity model can be used to predict the traffic 

matrix of ISP-Community . 
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4.7 Impact of Communities on the Network 

In Section 4.6, we developed an approach to estimate the traffic matrix specific 

to ISP-Community . In this section, we use the estimated traffic matrix to compute 

the amount of ISP-Community traffic carried by individual network links. We also 

compute the difference in traffic on individual links under various “what-if” scenarios. 

In particular: (i) we consider a hypothetical scenario in which all clients currently 

using ISP-Community switch to using ISP-Generic. The purpose of this scenario is 

to shed light on how localizing traffic within the ISP impacts the capacity planning 

decisions of the ISP; and (ii) we evaluate how an upgrade of the access technology of 

customers may impact the network. We consider a scenario in which all customers in 

the ISP are upgraded to an FTTH access technology. 

To conduct our analysis, we require knowledge of the ISP topology, the routing 

algorithm, and the traffic matrix corresponding to each scenario. In the rest of this 

section, we elaborate on our approach to modeling each of these aspects, and present 

simulation results. 
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4.7.1 Modeling Approach 

Topology and routing: We model the topology based on the actual ISP network 

through discussions with the operator. In particular, nodes in the topology represent 

both the PoPs to which customers are connected, and the ISP backbone routers. 

Four types of links are present in the modeled topology: (i) PoP-to-PoP links directly 

connecting two PoPs in the same city, (ii) PoP-to-backbone links connecting a PoP 

to a backbone router, (iii) backbone links connecting two backbone routers typically 

between two cities and (iv) peering links that connect some backbone routers to the 

Internet. Traffic is routed on the topology using the standard shortest path algorithm, 

commonly employed in networks today, including the ISP that we consider. 

Traffic Matrix estimation from the dataset: In Section 4.6 we have shown 

that the ISP-Community traffic exchanged by PoPs follows a simple gravity model. 

We leverage this to generate different traffic matrices to model possible scenarios. 

Besides the knowledge of the population of peers per PoP, Equation 4.1 relies on 

the availability of the total traffic sent Tsent(s) by a given PoP s, which we can 

directly measure for only two PoPs. Following the gravity model assumption, we 

model Tsent(s) as directly proportional to the population of peers in PoP s. 

More in detail, let nf (s) and na(s) be the number of FTTH and ADSL users in 

PoP s. Let t̂f (s) and t̂a(s) be the average amount of traffic that an FTTH and ADSL 

user in s generates during a given time interval respectively. Assuming that users 

corresponding to each PoP generate the same amount of average traffic, t̂f (s) = t̂f ∀s 
and t̂a(s) = t̂a ∀s. t̂f and t̂a can then be estimated by considering the ISP-FTTH 

and ISP-ADSL datasets. Finally, the total volume of traffic sent from PoP s is simply 

proportional to the mix of access technology peers in the PoP, i.e., 

Tsent(s) = nf (s)t̂f + na(s)t̂a (4.2) 

Equation 4.2 is then used to derive the ISP-Community traffic matrix T . 
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4.7.2 Predicting Traffic Matrix Changes 

We now consider traffic matrices that P2P systems generate in different scenarios. 

We first consider the hypothetical scenario in which users in an ISP switch from ISP-

Community to ISP-Generic. We also consider scenarios in which the ISP upgrades 

the access link of peers. 

Users switch from ISP-Community to ISP-Generic: To evaluate this, we 

must construct the ISP-Generic traffic matrix T ′ . This is the scenario in which all 

the community traffic is directed to the Internet peering node z. We assume that 

the volume of traffic received by internal peers in this scenario is the same as in the 

current scenario, i.e., users are willing to download the same amount of data. More 

formally, T ′ (z, d) = Tsend(s, d) and T 
′ (s, d) = 0 ∀d  = z.send s  =z send

In addition, we assume that the amount of traffic each PoP sends to z is the same as 

currently observed in the ISP-Generic system. We believe this is reasonable because 

independent of the upload capacity of peers inside the ISP, once connections leave 

the network, their throughput is likely to be limited by the destination access link 

or by some congested or rate limited intermediate link. More formally, T ′ (s, z) = send

′ ′ (s), where (s) is computed as in Equation 4.2 considering the ISP-Generic Tsend Tsend

dataset to estimate t̂a and t̂f . 

Technology upgrade: To consider the technology upgrade from the current ADSL 

and FTTH mix to an all-FTTH scenario, we assume that all ADSL clients send and 

′′ (s)ˆreceive ISP-Community traffic at the FTTH rate. Therefore Tsend(s) = na tf + 

nf (s)t̂f and the traffic matrix T ′′ is computed as in Equation 4.1. 

Finally, we consider a scenario in which users switch to the ISP-Generic system, 

while access technology is upgraded to FTTH. This allows us to compare the traffic 

on individual network links with ISP-Generic and ISP-Community , in an upgraded 

access technology setting. The traffic matrix is then obtained similarly to T ′ , but 

t̂a = t̂f are estimated as in T ′′ . 
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4.7.3 Results 

Figure 4.11 shows the CDF of the volume of P2P community related traffic that 

traverses each ISP link. For ease of presentation we call GenericOnly to the sce

nario where only ISP-Generic is present in the ISP, CurrentTech to today’s mix of 

access technologies in the ISP and AllFTTH to the technology upgrade to an all-

FTTH scenario. There are four lines, one for each combination of ISP-Community 

or GenericOnly for the P2P system in the network, and CurrentTech or AllFTTH 

for the access technology of clients. Logarithmic x-scale is used to better highlight 

the differences. We draw several observations from this plot. First, as expected, the 

usage of ISP-Community greatly reduces the traffic at peering links. However, more 

surprisingly, over 90% of the links carry a larger amount of traffic in the presence of 

ISP-Community as compared to the GenericOnly scenario. For instance, the median 

of ISP-Community-CurrentTech is 4.6 times larger than the median of GenericOnly-

CurrentTech. Second, notice that ISP-Community makes use of more links in the 

network. While in the GenericOnly scenarios, 30% of the links are unused (mostly 

PoP-to-PoP links), in the CurrentTech scenarios, more than 95% of the links are being 

used and most of them are carrying more than 100GB per day. Third, when all peers 

are upgraded to FTTH, the traffic on links increases by almost an order of magnitude 

when comparing ISP-Community-CurrentTech and ISP-Community-AllFTTH. This 

is due to the higher upload capacity of peers. Hence, enhancing the capacity of ISP 

peers to get the full benefits of localization can probably hurt the network. 

To get more insight into this, Figure 4.12 shows the difference in volume per link 

comparing the GenericOnly-CurrentTech and ISP-Community-CurrentTech scenar

ios. A negative value corresponds to an increase of link load when ISP-Community 

is used, while a positive value indicates an increase in link load with ISP-Generic. 

Results are separately reported for each class of links, i.e., backbone (top left plot), 

backbone-to-PoP (top right plot), PoP-to-PoP (bottom left plot) and peering links 

(bottom right plot) respectively. We draw several observations. First, we notice that 
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Fig. 4.11. CDF of volume of traffic related to P2P communities, 
seen by all links in the ISP topology, for the ISP-Community and 
GenericOnly, varying the access technology of peers. 

more than 60% of backbone links see an increase in the volume of traffic they have to 

carry in the ISP-Community scenario, with some links seeing as much as 2 ∗ 104 GB 

of additional traffic each day. We make a similar observation for backbone-to-PoP 

links and for PoP-to-PoP links. However, for the latter, the increase in traffic is not 

as large in the ISP-Community scenario since those links interconnect PoPs which 

may exchange small amounts of data. Finally, as expected, ISP-Community is able 

to reduce the traffic at the peering links. We note that on average, peering links 

have to transport 36.5TB less traffic per day, or 1.5TB less traffic each hour in the 

ISP-Community scenario. 

Implications: Overall, these results show that the extensive use of the P2P com

munity has very significant implications for network providers in terms of traffic that 

individual links carry. While the use of the P2P community reduces traffic at peering 

points, it greatly increases traffic on interior links of the network, and consequently 

has important implications for capacity planning algorithms of the network provider. 

4.8 Discussion and Implications 

We discus key aspects of our work and implications below: 
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Fig. 4.12. Difference in traffic per link considering the ISP
Community-CurrentTech and GenericOnly-CurrentTech scenarios. 
There is one plot for each link type. 

Implications for P2P traffic localization: Our characterization of closed P2P 

communities offer important lessons for research on localizing traffic of generic P2P 

systems within ISP boundaries [13–21]. While a majority of research in this area has 

taken the benefits of localization on users and ISPs for granted, our results support 

recent works [107, 108] which argue that a more critical examination is essential. 

First, our results indicate that the benefits of localization depend on the access 

bandwidth of peers inside the ISP, as pointed out by recent works [107, 108]. For 

instance, while the throughput of connections of Campus-Community is significantly 

improved due to the high bandwidth campus LAN, the improvement in throughput of 

ISP-Community connections is limited by the fact that 80% of the users are behind 

an ADSL link. Further, the RTT of ISP-Community connections does not show 

significant improvement compared to ISP-Generic due to both the access technology 

of users, as well the fact that most users of ISP-Generic tend to access content from 

the same European country. 
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Second, going beyond [107, 108], our results indicate that in ISPs with heteroge

neous access technologies, the performance benefit to users on localizing P2P traffic is 

largely dependent on the degree of seed-like behavior of peers behind high-bandwidth 

access links. For instance, the performance with ISP-Community is better than with 

ISP-Generic primarily due to a small number of users behind high-bandwidth FTTH 

connections, which contribute much more data than they receive. These observa

tions also imply that in ISPs with heterogeneous access technologies, not all stake

holders can simultaneously win when P2P traffic is localized. In particular, (i) if 

high-bandwidth users show seed-like behavior, then the ISP and users behind low-

bandwidth access technologies benefit on localization (through reduced transit traffic 

and improved performance), at the expense of high-bandwidth users; and (ii) alter

nately, localization benefits the ISP alone, and does not help improve the performance 

of users (in particular, users behind low-bandwidth access technologies). This situa

tion can potentially be offset through new models for charging for access, where ISPs 

can incentivize seed-like behavior of high-bandwidth users by reducing charges on 

them. 

Finally, our simulation results show that use of ISP-Community rather than ISP-

Generic does result in lowered traffic on peering links for the ISP as expected. How

ever, more interestingly, over 90% of internal links of the ISP network see higher 

traffic, with some links seeing as much as 2 ∗ 104 GB of additional traffic each day. 

This increase may potentially require internal link upgrades to avoid impairing user 

performance. These results suggest that coarse-grained schemes for localizing P2P 

traffic like ISP-Community (where peers within an ISP are selected at random), may 

potentially cause significant shifts in ISP traffic patterns. Developing techniques to 

predict such shifts is an interesting area of future research and we have taken a first 

step in this direction. Studying the effect of traffic shifts with more fine-grained 

localization schemes (for e.g., [20]) is another direction for future work. 

Implications for traffic studies suggesting decline of P2P traffic in the 

Internet: Recent work has suggested that P2P traffic is on the decline [30]. However, 
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this finding is based on analysis of inter-AS traffic data, and traffic internal to ISP 

networks is not considered. In our traces however, private communities account for 

60− 90% of all traffic. This indicates that traffic related to such private communities 

should be taken into consideration before making conclusive statements about the 

decline of P2P traffic. 

Generality of our work: In this paper, we have characterized P2P communities 

in two networks. We believe our work is an important start in creating an awareness 

and understanding of such communities, an area that has received little attention to 

date. Analyzing a wider range of communities is a challenge given that this requires 

knowledge of which networks contain P2P communities, and involves traffic collection 

inside each of the networks. Obtaining access to traffic data from additional networks 

that contain P2P communities, and analyzing P2P communities in a broader range 

of networks is an important area for future research, and a subject of our ongoing 

investigations. 

4.9 Related Work 

We have already extensively discussed how our work relates to work on P2P traffic 

localization in Section 4.8. 

There has been awareness in the research community about the presence of dark

nets [109–112]. While darknets are related to our work in that they are also typically 

closed P2P communities, they share important differences from the types of communi

ties we consider. Darknets are motivated by the primary goal of anonymized sharing 

of content. In contrast, P2P communities are motivated by other factors such as 

ensuring good application performance and ensuring hosts with private addresses in 

the same ISP may communicate. Further, we focus on communities localized to par

ticular networks, while darknets could extend across the Internet. A notable recent 

work [112] characterized operational BitTorrent darknets, focusing the analysis on 

identifying the type of content being shared and the level of collaboration between 
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peers. In contrast, our focus is on P2P communities, performance seen by users of the 

community and the impact of the community traffic patterns on the service provider. 

Our own prior work [113] has pointed out the presence of the closed community in 

the ISP setting. However, the focus of that work was on detecting undesirable traffic 

patterns of a range of P2P systems, including the P2P community. In contrast, our 

focus in this work is on characterizing the performance and network localization of 

these systems and simulations to study implications on network providers. Further, 

we consider a completely new campus network community in this paper. 

Models for traffic matrix estimation (for e.g., [101,102]) have been widely studied. 

Our efforts are distinguished in that we focus on developing an application-specific 

traffic matrix model that only considers traffic due to the P2P community application. 

4.10 Conclusions 

In this paper, we have raised the awareness of the research community to the 

prevalence of closed P2P communities, and have presented one of the first and most 

extensive characterizations of such communities. P2P communities are the most pop

ular P2P systems used and generate most of the traffic in the networks we considered. 

For instance, we identified about 600, 000 unique peers in ISP-Community , that ex

change 50 times more traffic than ISP-Generic and accounts for 60% to 90% of all 

the traffic observed in our traces. While as expected, users of P2P communities see 

better performance than users of generic P2P systems, we have shown that the extent 

of benefits is largely determined by the access technologies of the users, and the de

gree of seed-like behavior shown by users behind high-speed access technologies. We 

have developed techniques to enable network providers understand how the growth of 

P2P communities impacts network capacity planning. and how projected changes in 

access technologies of users may affect these results. Using the techniques, we show 

that while use of the communities does lower traffic on peering links compared to 

the use of generic P2P systems, it could greatly increase traffic on internal network 
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links. Our characterization of P2P communities while interesting in its own right, 

offers important lessons for research on localizing P2P traffic within ISP boundaries. 

Our future work includes studies of a wider range of P2P communities, and exploring 

refinements to the P2P community traffic models that can result in greater accuracy. 
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5. DISSECTING VIDEO SERVER SELECTION 

STRATEGIES IN THE YOUTUBE CDN 

5.1 Introduction 

Over the last few years, video traffic has become prominent on the Internet. A 

recent report [30] shows that 15 to 25% of all Inter-Autonomous System traffic to

day is video. YouTube is probably the main source of video on the Internet today, 

with 2 billion videos viewed each day and hundreds of thousands of new video up

loads daily [114]. It is the third most visited website in the Internet, according to 

www.alexa.com. 

The rapid growth in popularity of YouTube has made it the subject of several 

research studies. Much of the research to date has focused on understanding user 

behavior, usage patterns and video popularity [10–12], while others [115] have looked 

at social networking aspects related to YouTube. Relatively fewer works have looked 

at the YouTube infrastructure itself, and large parts of its architecture and design re

main unknown to the research community. A recent notable work [8] has greatly con

tributed to the understanding of the YouTube Content Distribution Network (CDN) 

through an in-depth analysis of traffic traces of a tier-1 Internet Service Provider 

(ISP). However, much of this analysis has focused on the architecture prior to the 

acquisition of YouTube by Google Inc. It is unclear to what extent these observations 

continue to hold today. 

In this paper, we aim to obtain a detailed understanding of the YouTube CDN 

and to quantify its effectiveness. Specifically, we are interested in studying how users’ 

video requests are mapped to YouTube data centers. We are interested in exploring 

the various factors that can influence the decision, such as user proximity, server load, 

and popularity of video content. Such insights can aid ISPs in their capacity planning 

www.alexa.com
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decisions given that YouTube is a large and rapidly growing share of Internet video 

traffic today. A better understanding could enable researchers to conduct what-if 

analysis, and explore how changes in video popularity distributions, or changes to 

the YouTube infrastructure design can impact ISP traffic patterns, as well as user 

performance. 

Obtaining such understanding is challenging given the proprietary nature of the 

YouTube system. Even information such as the location of the data centers that store 

content is not publicly known. To tackle these challenges, we conduct an analysis of 

traffic from the edge of five networks - two university campuses and three ISP networks 

- located in three different countries and two distinct continents. We consider a one 

week-long dataset from each vantage point, all collected at the same time. This allows 

us to study the server selection algorithm under different scenarios, so that different 

phenomena may appear in some datasets but not in others. While prior work has 

analyzed traffic at the edge of a single campus network (for e.g., [10, 11]), our work 

goes far beyond in terms of the number and diversity of vantage points used. 

As a first step, we map YouTube server IP addresses obtained from our datasets 

to the nearest data centers. Prior efforts at doing so [8,9], have either relied on geolo

cation databases [116], or on reverse Domain Name System (DNS) lookup that can 

provide information regarding the server location. However, while these techniques 

worked with the earlier YouTube architecture, we find they do not apply or perform 

poorly in the new design. Consequently, we use CBG [117], a well known delay-based 

geolocation algorithm to learn server locations. 

Armed with server location information, we evaluate how user requests are mapped 

to YouTube data centers. We show that there are two mechanisms: The first is based 

on DNS resolution which returns the server IP address in a data center; the second 

relies on application-layer mechanisms in which the server initially contacted can 

redirect the client to another server in a possibly different data center. Our results 

indicate that, given a network, most requests are directed to a preferred data center. 

This is in contrast to [8] which indicated that the earlier YouTube infrastructure 
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would direct requests from a network to a data center proportional to the data center 

size. Further, our results indicate that the RTT between data centers and clients in 

a network may play a role in the selection of the preferred data center. 

More surprisingly however, our results also show that there do exist a significant 

number of instances where users are served from a data center that is not the preferred. 

Our analysis is informed by techniques we employ to identify groups of YouTube flows 

that correspond to a single video request. A deeper investigation reveals a variety 

of causes. These include load balancing across data centers, variations across DNS 

servers within a network, alleviation of hotspots due to popular video content, and 

accesses of sparse video content that may not be replicated across all data centers. 

Overall the results point to the complexity of server selection algorithms employed in 

YouTube, and the myriad factors that must be considered for the successful design 

of a large video content distribution network. 

5.2 YouTube Basics 

YouTube is the most popular video-sharing website on which users can watch 

videos on demand. It was bought by Google Inc. in November 2006 and it is now 

integrated in the Google offering. In this section we present a high level description 

of the steps to retrieve a video from the YouTube system as sketched in Figure 5.1. 

When accessing videos from the YouTube site at www.youtube.com, the user either 

browses the portal based system looking for the desired content, or accesses directly 

the video web page following a video page URL (step 1). Until the actual video web 

page is accessed, mostly static information and small thumbnails of suggested videos 

are presented. 

Once the actual video has been selected, the front-end replies with a HTML page 

in which the video is embedded using an Adobe Flash Player plugin, that takes care 

of the download and playback of the video (step 2). The name of the server that will 

provide the video is among the parameters provided for the plugin and it is encoded 

www.youtube.com
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Fig. 5.1. High level sequence of steps to retrieve content. 

using a static URL. Then, the content server name is resolved to an IP address by 

the client via a DNS query to the local DNS server (step 3). Finally, the client will 

query the content server via HTTP to get the actual video data (step 4). 

We further elaborate on steps 3 and 4. First, the selection of the IP address by the 

local DNS server in step 3 is not arbitrary. In fact, the DNS resolution is exploited 

by YouTube to route clients to appropriate servers according to various YouTube 

policies, some of which we will discuss in this paper. Second, it is possible that the 

preferred server cannot provide the content and the client will be “redirected” by this 

server to a different one, possibly in a different data center. 

5.3 Methodology 

To understand the internal mechanisms of the YouTube CDN, we need to analyze 

the interactions between the user and the content servers. We introduce our data 

collection tool in Section 5.3.1, and describe our datasets in Section 5.3.2. 

5.3.1 Collection Tool 

Our traces are collected using Tstat [118], an Open Source passive sniffer with 

advanced traffic classification capabilities. Tstat identifies the application that gen
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erates TCP/UDP flows using a combination of Deep Packet Inspection (DPI) and 

statistical classifiers. Tstat was found to perform well in [119]. 

Tstat has the capability to identify major components of the current HTTP Web 

2.0 traffic, including in particular YouTube traffic. Classification is achieved by using 

DPI technology to inspect the packet payload and then to identify YouTube service 

specific strings. In this paper we rely on Tstat’s ability to identify actual YouTube 

video traffic, corresponding to the download of the Flash Video (flv) or H.264 (MP4) 

video file to be played back to the user by the Flash plugin. YouTube video downloads 

embedded in third party sites such as news sites or blogs are also correctly classified, 

since the same mechanisms are adopted by the Flash plugin. For more details on the 

classification algorithm implemented in Tstat, we refer the reader to the source code 

available from [120]. 

To uniquely identify a YouTube video, Tstat records the video identifier (VideoID), 

which is a unique 11 characters long string assigned by YouTube to the video. This is 

the same ID that is used when accessing the video web page in the URL. Furthermore, 

Tstat also records the actual resolution of the video being requested. At the end, the 

VideoID and resolution identify the actual video stream served to the player. 

5.3.2 Datasets 

Using Tstat, we collected datasets corresponding to flow-level logs where each line 

reports a set of statistics related to each YouTube video flow. Among other metrics, 

the source and destination IP addresses, the total number of bytes, the starting and 

ending time and both the VideoID and the resolution of the video requested are 

available. 

We collected datasets from five locations spread across three countries including 

Points-of Presence (PoP) in nation-wide ISPs and University campuses. In all cases, 

a high-end PC running Tstat was installed to analyze in real time all the packets 

going to and coming from all the hosts in the monitored PoPs. For all these datasets, 
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Table 5.1
 
Traffic Summary for the Datasets
 

Dataset YouTube flows Volume [GB] #Servers #Clients 

US-Campus 874649 7061.27 1985 20443 

EU1-Campus 134789 580.25 1102 1113 

EU1-ADSL 877443 3709.98 1977 8348 

EU1-FTTH 91955 463.1 1081 997 

EU2 513403 2834.99 1637 6552 

we focus on a one week time period, between September 4th and September 10th, 

2010. The collection from all vantage points starts at 12:00am, local time. 

Table 5.1 summarizes the characteristics of the datasets, reporting the name, the 

total number of YouTube video flows and corresponding downloaded volume of bytes. 

Finally, the number of distinct IP addresses considering both YouTube servers and 

clients in the PoP are reported. In total, more than 2.4 millions YouTube videos have 

been observed by more than 37,000 users in the whole dataset. 

We can divide the 5 datasets collected into two categories: 

• ISP Networks: The datasets have been collected from nation-wide ISPs in two 

different European countries. EU1-ADSL and EU1-FTTH refer to data collected 

from two distinct PoPs within the same ISP. The two PoPs differ in the type of 

Internet access technology of their hosted customers. In EU1-ADSL, all customers 

are connected through ADSL links and in EU1-FTTH, all customers are connected 

through FTTH links. The EU1 ISP is the second largest provider in its country. The 

EU2 dataset has been collected at a PoP of the largest ISP in a different country. 

• Campus Networks: The datasets have been collected using a methodology sim

ilar to the ISP setting. The Tstat PC is located at the edge of each of the campus 

networks, and all incoming and outgoing traffic is exposed to the monitor. We col

lected datasets from two University campus networks, one in the U.S. and one in a 

European country. 
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5.4 AS Location of YouTube Servers 

We start our analysis studying the Autonomous System (AS) in which YouTube 

video servers are located. We employ the whois tool to map the server IP address to 

the corresponding AS. Table 5.2 presents our findings for each dataset. The second 

group of columns shows the percentage of servers and bytes sent from the Google 

AS. Not surprisingly, most servers are hosted in the Google AS (AS 15169). For 

instance, for the US-Campus dataset, 82.8% of the servers are located in the Google 

Inc. AS, serving 98.66% of all bytes. The third group of columns shows that a small 

percentage of servers (and an even smaller percentage of bytes) are still located in the 

YouTube-EU AS (AS 43515). We therefore have an evidence that since 2009 Google 

has migrated most content from the YouTube original infrastructure (that was based 

on third party CDNs) to its own CDN. The traffic served from the YouTube networks 

is probably because of legacy configurations. This contrasts with earlier studies such 

as [8,9], according to which the majority of servers were located in the YouTube AS 

(AS 36561, now not used anymore). 

The fourth group of columns in Table 5.2 shows the percentage of servers and 

bytes received from within the same AS where the dataset have been collected. Note 

that the values are 0 for all datasets except EU2. The EU2 dataset indeed shows that 

a YouTube data center is present inside the ISP network. This data center serves 

38.6% of the bytes in the EU2 dataset. This results in the EU2 dataset having fairly 

different performance than other datasets, as our analysis will reveal later. 

Finally, the last groups of columns aggregates the percentage of servers and bytes 

sent from other ASes, among which CW (AS1273) and GBLX (AS3549) are the most 

likely one. This confirms therefore that YouTube servers can be both present inside 

an ISP, or in the Google network. 

In the rest of this paper, we only focus on accesses to video servers located in the 

Google AS. For the EU2 dataset, we include accesses to the data center located inside 

the corresponding ISP. 
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Table 5.2
 
Percentage of Servers and Bytes Received per AS
 

Dataset 

AS 15169 AS 43515 Same AS Others 

Google Inc. YouTube-EU 

servers bytes servers bytes servers bytes servers bytes 

US-Campus 82.8 98.96 15.6 1.03 0 0 1.4 0.01 

EU1-Campus 72.2 97.8 20.3 1.6 0 0 7.5 0.6 

EU1-ADSL 67.7 98.8 28 0.94 0 0 4.3 0.26 

EU1-FTTH 70.8 99 24.2 0.83 0 0 5 0.27 

EU2 62.9 49.2 28.6 10.4 1.1 38.6 7.4 1.8 

5.5 Server Geolocation 

In this section we present the techniques used to identify the geographical location 

of the YouTube servers seen in our datasets. The goal is to later use this information 

to analyze the video server selection policies. 

• Limitations of IP-to-location databases: One common way to find the ge

ographical location of an IP address is to rely on public databases [9]. While such 

databases are fairly accurate for IPs belonging to commercial ISPs, they are known to 

be inaccurate for geolocation of internal IPs of large corporate networks. For example, 

according to the Maxmind database [116], all YouTube content servers found in the 

datasets should be located in Mountain View, California, USA. To verify this, we per

form RTT measurements from each of our vantage points to all content servers found 

in our datasets. Figure 5.2 reports the Cumulative Distribution Function (CDF) of 

the minimum RTT obtained to each server. We clearly observe that there is a lot 

of variation in the measurements, and in particular, many of the RTT measurements 

for the European connections are too small to be compatible with intercontinental 

propagation time constraints [121]. This indicates that all servers cannot be located 

in the same place. 

http:California,USA.To
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Fig. 5.2. RTT to YouTube content servers from each of our vantage points. 

We note that Maxmind was useful in [9], probably because most YouTube servers 

in the old infrastructure were reported as located in San Mateo and Mountain View, 

California, USA. Further, a recent work [8] adopts a different approach, where the lo

cation of the server is obtained directly from the server name. However, this approach 

is not applicable to the new YouTube infrastructure, where DNS reverse lookup is 

not allowed. Therefore we decided to adopt a measurement-based approach to sys

tematically localize YouTube servers. 

• Measurement based geolocation mechanism: CBG [117] is a well-known 

geolocation algorithm that is based on simple triangulation. A set of landmarks 

is used to measure the RTT to a target. A simple linear function is then used to 

estimate the physical distance between each landmark and the target. This distance 

will become the radius of a circle around the landmark where the target must be 

located. The intersection among all circles is the area in which the target can be 

located. 

We obtained the CBG tool from Gueye et al. [117] for our evaluations. We used 

215 PlanetLab nodes as landmarks: 97 in North America, 82 in Europe, 24 in Asia, 

8 in South America, 3 in Oceania and 1 in Africa. Then, we run RTT measurements 

from each landmark to each of the YouTube servers that have been found in our 

dataset, and identified the area in which they are placed. 

In Figure 5.3 we evaluate the confidence region of CBG, i.e. the area inside which 

the target IP should be located. The picture shows the CDF of the radius of the
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Fig. 5.3. Radius of the CBG confidence region for the YouTube servers 
found in the datasets. 

confidence region for all servers found. Separate curves are shown for IPs in U.S. and 

Europe. Note that the median for both U.S. and European servers is 41km, while 

the 90th percentile is 320km and 200km, respectively. This is in the ballpark of the 

PlanetLab experiments presented in [117], where the 90th percentile for U.S. and 

Europe was about 400km and 130km. We can therefore consider the results provided 

by CBG to be more than adequate for our analysis. 

• Geolocation Results: Table 5.3 details the result of using CBG to identify the 

location of all the destination IPs found in the datasets. The table shows the number 

of servers that are located in North America, Europe and other continents. Interest

ingly in each of the datasets, at least 10% of the accessed servers are in a different 

continent. 

Finally, since several servers actually fall in a very similar area, we consider all the 

YouTube servers found in all the datasets and aggregate them into the same “data 

center”. In particular, servers are grouped into the same data center if they are located 

in the same city according to CBG. We note that all servers with IP addresses in the 

same /24 subnet are always aggregated to the same data center using this approach. 

We found a total of 33 data centers in our datasets, 14 in Europe, 13 in USA and 

6 in other places around the world. These results may not cover the complete set 

of YouTube servers since we are only considering those servers that appeared in our 

dataset. 
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Table 5.3
 
Google Servers per Continent on each Dataset
 

Dataset N. America EuropeOthers 

US-Campus 1464 112 84 

EU1-Campus 82 713 1 

EU1-ADSL 518 769 51 

EU1-FTTH 90 631 44 

EU2 233 815 0
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Fig. 5.4. CDF of YouTube flow sizes. 

5.6 Evaluating YouTube’s Server Selection Algorithm 

In the previous section, we have shown how IP addresses of YouTube servers may 

be mapped to the appropriate YouTube data centers. Armed with such information, 

we now try to understand how user video requests are mapped to YouTube data 

centers. We are interested in exploring the various factors that can influence the 

decision, such as user proximity, server load, and popularity of content. We begin 

by discussing the various types of flows in a YouTube session, and then discuss how 

content servers are selected. 

5.6.1 Video Flows and Sessions 

In conducting our analysis, it is important to note that when a user attempts to 

download a video, the overall interaction may include a group of distinct flows, not 
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all of which involve transfer of video. In the normal scenario, each YouTube video 

request corresponds to a HTTP message exchanged between the Flash Plugin and a 

content server. If the request succeeds, then the content server starts to deliver the 

video inside the open connection. It is possible however that the server may not serve 

the content. In such a case, it would simply redirect the user to another content server 

and close the connection. There may be other possible responses from the server, for 

e.g., a response indicating that change of video resolution is required. Thus, more 

generally, according to the reply of the content server, we can distinguish between 

video flows, i.e., long connections carrying the requested video, and control flows, i.e., 

short connections carrying signaling messages. 

Knowledge of control flows associated with a video flow can help provide important 

insights for our analysis. For instance, a video flow from a user to a given server 

preceded closely (in time) by a control flow to another server is an indication of 
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redirection. In contrast, an isolated video flow not preceded by other control flows is 

an indication that the request was directly served by the contacted server. We refer 

to such a group of related flows as a video session. Identification of video sessions aid 

our analysis as we will see later. 

We now discuss how we identify video flows and sessions. Since Tstat classifies 

YouTube video flows based on the URL in the HTTP requests, it is not able to 

distinguish between successful video flows and control messages. To overcome this 

limitation, we employ a simple heuristic based on the size of the flows involved. 

Figure 5.4 presents a CDF of YouTube video flow sizes. Log-scale is used on the 

x-axis. We notice the distinct kink in the curve, which is due to the two types of 

flows. Based on this, we separate flows into two groups according to their size: flows 

smaller than 1000 bytes, which correspond to control flows, and the rest of the flows, 

which corresponds to video flows. We have conducted manual experiments which 

have confirmed that flows smaller than 1000 bytes are indeed control messages. 

A video session aggregates all flows that i) have the same source IP address and 

VideoID, and ii) are overlapped in time. In particular, we consider two flows to 

overlap in time if the end of the first flow and the beginning of the second flow are 

separated by less than T seconds. In general, we find that small values of T will group 

flows triggered by the system, while large values of T may also group flows generated 

by user interactions with the video player, such as changing the video resolution 

and pausing or fast-forwarding a video. Since we are interested in capturing server 

redirections, which are triggered by the system, we want to use a small value of T , but 

that is large enough to avoid artificially separating related flows. Hence, we perform 

sensitivity to the value of T in our traces. We show results for the US-Campus dataset 

in Figure 5.5 and note that other traces show similar trends. Results indicate that 

values of T equal to 10 seconds or less generate similar number of sessions. So we 

pick the smallest value of T in our evaluations, T = 1 second. 

Figure 5.6 reports the CDF of the number of flows per session for each dataset, 

assuming T = 1 second. It shows that 72.5− 80.5% of the sessions consist of a single 
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(long) flow. Therefore, normally there is no need to iterate over different servers to 

download the video data. However, 19.5− 27.5% of the sessions consist of at least 2 

flows, showing that the use of application-layer redirection is not insignificant. 

5.6.2 Understanding Server Selection Strategy 

In Table 5.3 we have shown that the users in each dataset contact content servers 

all over the world. It is now interesting to investigate how the volume of traffic 

downloaded is spread across the different data centers. Figure 5.7 reports the fraction 

of traffic served by each data center versus the RTT between the vantage points and 

the data centers itself. In particular, we consider the minimum RTT seen by pinging 
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all servers in each data center from the probe PC installed in the PoP. We observe 

that except for EU2, in each dataset one data center provides more than 85% of the 

traffic. We refer to this primary data center as the preferred data center for that 

particular trace and other data centers will be labeled as non-preferred. At EU2, 

two data centers provide more than 95% of the data, one of them located inside 

the ISP and the other outside in the Google AS. We label the data center with the 

smallest RTT in EU2 as the preferred one. We give a closer look to the EU2 case in 

section 5.7.1. 

Further, we notice that the data center that provides most of the traffic is also the 

data center with the smallest RTT for each dataset. This suggests that RTT does 

play a role in the selection of YouTube servers. However, we have reason to believe 

that RTT is not the only criteria and that the preferred data center may change over 

time. For example, in a more recent dataset collected in February 2011, we found 

that the majority of US-Campus video requests are directed to a data center with an 

RTT of more than 100 ms and not to the closest data center, which is around 30 ms 

away. 

Figure 5.8 considers the distance (in kilometers) between users and the data cen

ters they are mapped to. In most cases, the data centers with the smallest delay 

to the customers are also the physically closest ones. This is not the case for the 

US-Campus dataset, where the five closest data centers provide less than 2% of all 
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the traffic. Coupled with previous observations about RTT, this is an indication that 

geographical proximity is not the primary criterion used in mapping user requests to 

data centers. 

The final observation we make is that although most traffic comes from the pre

ferred data center that is typically very close to the customers, there are some ex

ceptions in all datasets. For the US-Campus and the EU1 datasets, between 5% and 

15% of the traffic comes from the non-preferred data centers. However, in EU2, more 

than 55% of the traffic comes from non-preferred data centers. We now are interested 

to see the variation over time of the fraction of traffic coming from non-preferred data 

centers. One hour-long time slots are considered, and the fraction of traffic served by 

non-preferred data centers in each of these time slots is determined. Figure 5.9 plots 

a CDF of these fractions. The results indicate that the fraction varies across time for 

most datasets, the variation being most prominent for the EU2 dataset. In particular 

for this dataset, 50% of the samples have more than 40% of the accesses directed to 

the non-preferred data center. 

5.6.3 Mechanisms Resulting in Accesses to Non-preferred Data Centers 

We have seen that a non-negligible fraction of video flows are downloaded from 

non-preferred data centers. There are at least two possible causes for this. A first 

possibility is that the DNS mechanisms direct a request to the non-preferred data 

center. A second possibility is that the request was redirected to another data center 

by the preferred data center server. 

To disambiguate the two cases, we consider the video session associated with each 

flow, as discussed in Section 5.6.1. In the case that DNS mapped a request to a 

non-preferred data center, the video session must consist of a single video flow to 

a non-preferred data center, or must begin with a control flow to the non-preferred 

data center. In the other scenario, the session must begin with a control flow to the 
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Fig. 5.10. Breakdown of sessions based on whether flows of the session 
are sent to preferred data center. 

preferred data center (indicating the DNS mapping was as expected), but subsequent 

flows in the session must be to non-preferred data centers. 

To better understand the effectiveness of DNS in mapping requests to the preferred 

data center, consider Figure 5.10(a). Each bar in the figure shows the fraction of 

sessions that involve only one flow. Further, each bar shows a break down of the 

requests sent to the preferred and non-preferred data centers. For instance, for US

Campus, 80% of the sessions involve a single flow; 75% are then served by the preferred 

data center while 5% of sessions are directly going to the non-preferred data center. 

Interestingly, about 5% of the single-flow sessions are directly served by the non-

preferred data center for EU1 datasets too. For EU2 however, over 40% of the single 

flow sessions are served by the non-preferred data center. Overall, these results show 

that DNS is in general effective in mapping requests to the preferred data center. Still 

DNS mapping mechanisms do account for a significant fraction of video flow accesses 

to non-preferred data centers. 

We next try to understand the extent to which users downloaded video from a 

non-preferred data center, even though they were directed by DNS to the preferred 

http:Fig.5.10
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data center. Figure 5.10(b) presents the breakdown of sessions involving 2 flows. 

These sessions group a control flow followed by a video flow. Based on whether each 

flow involves the preferred or non-preferred data center, we have four possible cases: 

(i) both preferred; (ii) both non-preferred; (iii) the first preferred and the second 

non-preferred; and (iv) the first non-preferred and the second preferred. Each bar 

in Figure 5.10(b) presents the breakdown among these patterns. For all the EU1 

datasets, we see a significant fraction of cases where the DNS did map requests to 

the preferred data center, but application-layer redirection mechanisms resulted in the 

user receiving video from a server in a non-preferred data center. For the EU2 dataset, 

we note that a larger fraction of sessions has both flows going to the non-preferred 

data center, meaning that the DNS is still the primary cause for the user downloading 

videos from non-preferred data centers. We have also considered sessions with more 

than 2 flows. They account for 5.18− 10% of the total number of sessions, and they 

show similar trends to 2-flow sessions. For instance, for all EU1 datasets, a significant 

fraction of such sessions involve their first access to the preferred data center, and 

subsequent accesses to non-preferred data centers. We omit further results for lack 

of space. 

5.7 Causes Underlying Non-preferred Data Center Accesses 

In this section, we investigate why accesses to non-preferred data centers occur. 

5.7.1 DNS-level Load Balancing 

As shown in the previous section, the EU2 dataset exhibits very different behavior 

compared to other datasets. Over 55% of the video traffic is received from the non-

preferred data center, and a vast majority of accesses to non-preferred data centers 

is due to the DNS mapping mechanisms. 

To understand this better, consider Figure 5.11. The top graph presents the 

evolution over time of the fraction of video flows served by the preferred data center. 
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Fig. 5.11. Fraction of the total YouTube video traffic served by the 
preferred data center (top graph) and total number of video flows 
(bottom graph) as a function of time for the EU2 dataset. 

One hour time slots are considered. The bottom graph shows the total number of 

video flows seen in the EU2 dataset as a function of time. Note that time 0 represents 

12am on Friday. We can clearly see that there is a day/night pattern in this set of 

requests. During the night, when the total number of accesses from EU2 is small, the 

internal data center handles almost 100% of the video requests. However, during the 

day, when the number of requests per hour goes up to around 6000, the fraction of 

requests handled by the local data center is always around 30% across the whole week. 

Results for other datasets are not shown for the sake of brevity. Still, all datasets 

exhibit a clear day/night pattern in the number of requests. However, there is less 

variation over time of the fraction of flows served by the preferred data center, as 

already seen in Fig.5.9. Furthermore, there is much less correlation with the number 

of requests. 

We believe the reason for this is the unique setup in the EU2 network. In this 

network, the data center inside the network serves as the preferred data center. While 

this data center located inside the ISP is the nearest to the users, it is unable to handle 

the entire load generated by users inside the EU2 ISP during busy periods. There 

is strong evidence that adaptive DNS-level load balancing mechanisms are in place, 
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Fig. 5.12. Fraction of all video flows, and video flows to non-preferred 
data centers for each internal subnet of the US-Campus dataset. 

which results in a significant number of accesses to the non-preferred data centers 

during the high load period of traffic. 

5.7.2 Variations Across DNS Servers in a Network 

Our results from the previous section indicate that for the US-Campus dataset 

most of the accesses to the non-preferred data center are caused by DNS. Deeper 

investigation indicates that most of these accesses may be attributed to clients from a 

specific internal subnet within the US-Campus network. Those clients indeed request 

significantly higher fraction of videos from non-preferred data centers than clients in 

other subnets. To see this, consider Figure 5.12. Each set of bars corresponds to 

an internal subnet at US-Campus. The bars on the left and right respectively show 

the fraction of accesses to non-preferred data centers, and the fraction of all accesses, 

which may be attributed to the subnet. Net-3 shows a clear bias: though this subnet 

only accounts for around 4% of the total video flows in the dataset, it accounts for 

almost 50% of all the flows served by non-preferred data centers. 

Further investigation shows that hosts in the Net-3 subnet use different DNS 

servers that map YouTube server names to a different preferred data center. In other 

words, when the authoritative DNS servers for the YouTube domain are queried by 

the local DNS servers in Net-3, the mapping provided is to a different preferred 

data center than the other subnets on US-Campus. We believe this behavior is 

http:Fig.5.12
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Fig. 5.14. Load related to the top 4 videos with the highest number of 
accesses to the non-preferred data centers for the EU1-ADSL dataset. 

not a misconfiguration in the YouTube servers or the Net-3 servers, but we rather 

hypothesize that this is the result of a DNS-level assignment policy employed by 

YouTube, probably for load balancing purposes, which can vary between DNS servers 

and thus subnets that belong to the same campus or ISP network. 

5.7.3 Investigating Redirection at the Application Layer 

We now consider cases where users download video from non-preferred data cen

ters, even though DNS mapped them to the preferred data center. 

To get more insights into this, consider Figure 5.13 which reports the CDF of 

the number of times a video is downloaded from a non-preferred data center. Only 

http:Fig.5.14
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Fig. 5.15. Average and maximum number of requests per server in 
the preferred data center of EU1-ADSL dataset.
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Fig. 5.16. Number of video sessions per hour seen by the server han
dling video1 in the preferred data center of the EU1-ADSL dataset. A 
breakdown of sessions based on whether flows are directed to preferred 
data centers is also shown. 

videos that are downloaded at least once from a non-preferred data center are consid

ered. The results show two trends. First, a large fraction of videos are downloaded 

exactly once from the non-preferred data center. For example, for the EU1-Campus 

dataset, around 85% of the videos are downloaded only once from the non-preferred 

data center. Second, there is a long tail in the distributions. In fact, some videos 

are downloaded more than 1000 times from non-preferred data centers. We con

sider the impact of popular and unpopular videos on server selection in the next few 

paragraphs. 

• Alleviating hot-spots due to popular videos: Let us focus first on the tail in 

Figure 5.13. Figure 5.14 considers the four videos with the highest number of accesses 

to the non-preferred data centers for the EU1-ADSL dataset. Each graph corresponds 
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to one of the videos, and shows (i) the total number of accesses to that video; and 

(ii) the number of times the video is downloaded from the non-preferred data center, 

as a function of time. We see that there are spikes indicating that some videos are 

more popular during certain limited periods of time. Most accesses to non-preferred 

data centers occur during these periods. In particular, all these videos were played 

by default when accessing the www.youtube.com web page for exactly 24 hours, i.e., 

they are the “video of the day”. 

Those are therefore very popular videos, which possibly generate a workload that 

can exceed the preferred data center capacity. Therefore, application-layer redirection 

is used to handle the peaks. As further evidence, Figure 5.15 shows the average and 

the maximum number of requests served by each server (identified by its IP address) 

in the preferred data center as a function of time. The figure shows that at several 

times, the maximum number of requests a single server has to handle is by far larger 

than the average load. For instance at time 115, the average load is about 50 video 

flows, but there is one server that answers more than 650 requests. Interestingly, we 

note that the servers suffering the peak loads are those serving the majority of the 

top videos of Figure 5.14. 

Further investigation reveals that DNS correctly forwards the request to a server in 

the preferred data center, but since its load is too high, the server redirects part of the 

requests to another server in a non-preferred data center. Consider Figure 5.16, which 

shows the load in terms of sessions, handled by the server receiving the requests for 

video1 for the EU1-ADSL dataset. Different colors are used to show the breakdown 

of the total number of sessions according to the preferred/non-preferred patterns. For 

example, we can see that in the first 6 days, the majority of the sessions involves only 

flows served by the preferred data center. On the last day however, a larger number 

of requests is received, which leads to an increase in application-layer redirections 

to a non-preferred data center. Overall, these results show that local and possibly 

persistent overload situations are handled by the YouTube CDN via application-layer 

redirection mechanisms. 

www.youtube.com


147

 10

 100

 1000

 0  5  10  15  20  25 

R
T

T
[m

s]
 

Sample number [30min] 

Fig. 5.17. Variation over time of the RTT between a PlanetLab node 
and the content servers for requests of the same test video. 

• Availability of unpopular videos: Consider again Figure 5.13. Let us now 

focus on the observation that several videos are downloaded exactly once from the 

non-preferred data center. Further analysis indicated that for most datasets, over 

99% of these videos were accessed exactly once in the entire dataset, with this access 

being to non-preferred data centers. However, when the videos were accessed more 

than once, only the first access was redirected to a non-preferred data center. 

This observation leads us to hypothesize that downloads from non-preferred data 

centers can occur because of the limited popularity of the videos. In particular, videos 

that are rarely accessed may be unavailable at the preferred data center, causing the 

user requests to be redirected to non-preferred data centers until the video is found. 

Since our datasets only contain a limited view of the accesses seen by a data center, 

it is difficult to validate this claim using only our datasets. We therefore conducted 

controlled active experiments using PlanetLab nodes. In particular, we uploaded a 

test video to YouTube. The video was then downloaded from 45 PlanetLab nodes 

around the world. Nodes were carefully selected so that most of them had different 

preferred data centers. From each node, we also measured the RTT to the server 

being used to download the content. We repeated this experiment every 30 minutes 

for 12 hours. 

Figure 5.17 shows an example of the variation of RTT samples considering a 

PlanetLab node located in California. Observe that the very first sample has an RTT 
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Fig. 5.18. Reduction in RTT from PlanetLab nodes to the content 
servers when a test video is downloaded twice. The first access may 
incur a higher RTT due to unavailability of content in the preferred 
data center. 

of around 200 ms. In contrast, later samples exhibit RTT of about 20 ms. Further 

investigations showed that the first time, the video was served by a data center in the 

Netherlands while subsequent requests were served by a data center in California. 

Figure 5.18 shows the CDF of the ratio of the RTT to the server that handled the 

first video request (RTT1) to the RTT to the server that handled the second video 

request (RTT2) for all the PlanetLab nodes. A ratio greater than 1 means that the 

video was obtained from a closer data center in the second attempt than in the first 

attempt. A ratio with a value close to 1 shows that the first request went to the same 

server or a server in the same data center as the second request. For over 40% of the 

PlanetLab nodes, the ratio was larger than 1, and in 20% of the cases the ratio was 

greater than 10. Interestingly, we have also found the RTT of subsequent samples 

is comparable to the RTT of the second sample. Overall, these results indicate that 

the first access to an unpopular video may indeed be directed to a non-preferred data 

center, but subsequent accesses are typically handled from the preferred data center. 

5.8 Impact of Redirections on User Performance 

In this section, we evaluate the impact that the YouTube infrastructure decisions 

may have on user performance. We evaluate performance considering two metrics: 
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• Startup delay (SD): this metric captures how long the user have to wait before 

the video is ready to be played. Ideally, we would like to measure this as the 

time from when the user selects the video of interest until the time the video 

starts playing in the video web page. However, we cannot get this information 

from our flow level records. Instead, we approximate this metric by measuring 

the difference between the time when the client initiates the TCP connection 

to the first content server for a video, to the time when the first video packet 

from the content server is received by the client. 

• Ratio of download rate to playback rate (RDP): this metric captures the cases 

in which clients suffer stalls while watching a video. Ideally, we would like to 

measure this by detecting the times in which the video actually stalls (possibly 

because the playback buffer is empty). Instead, we approximate this metric 

by taking the ratio of the average TCP connection download rate to the video 

playback rate, which is the declared rate for the video to be played without 

interruption. We can obtain the video playback rate from the header of Flash 

videos. We consider videos with RDP<1 as those where users have suffered 

stalls. 

5.8.1 Analyzing the Startup Delay 

As described in Section 5.6, a video request can be redirected from an initial 

content server to a different one for various reasons such as server load or content 

unavailability. In these cases, the SD corresponds to the time between the first SYN 

of the first request of the client and the first data packet of the video coming from the 

final server. Since several redirections can occur, the clients are affected by higher 

delays than when they are immediately served by the first server. Figure 5.19 reports 

the 50th and 90th of the SD distribution considering different number of redirections. 

There are five sets of bars, one for each trace, and four bars in each set indicating a 

number of redirections for a groups of sessions. As we can see, each redirection step 
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Fig. 5.19. Start delays with redirection. 

increases the SD. We observe that when there are no redirections, the SD is typically 

small, with less than 100 milliseconds for 50% of the cases in all traces. However, with 

more redirections, the SD can increase to more than 10 seconds in some cases. We 

dug deeper and found that the increase in SD comes mainly from: (i) an increase in 

the number of DNS resolutions, since every server that causes a redirection provides 

a new content server name that needs to be resolved; (ii) an increase in the time that 

the final content server contacted takes to start delivering the video to clients. 

A natural question is how often redirections occur, since if they happen frequently, 

clients may prefer not to use the system. In Table 5.4, we report on the fraction of 

sessions with respect to the number of redirections. We note that although having 

sessions with two or more redirection is not common, one redirection sessions are not 

negligible. Hence clients may still suffer from high SD in 6-15% of the cases. 

5.8.2 Analyzing the Ratio of Download Rate to Playback Rate 

At a high level, videos could be slowly downloaded and stall because of various 

reasons such as problems at the client side or problems at the server side or problems 
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Table 5.4
 
Fraction of Sessions with Redirections
 

Trace No red 1 red 2 red >2 red 

US-Campus 91.0 7.7 1.1 0.1 

EU1-Campus 83.8 14.1 1.9 0.1 

EU1-ADSL 85.9 12.5 1.5 0.1 

EU1-FTTH 83.6 14.3 2.0 0.1 

EU2 92.2 6.4 1.2 0.2 

in the network. In this section we first show how predominant is having video stalls, 

i.e. video flows with RDP less than one, in our traces. Then, we present a possible 

reason for this problem and finally we show how users react to slow or interrupted 

videos. For convenience, we call slow flows, those video flows with RDP less than 

one. 

Figure 5.20 shows the fraction of slow video flows from the total flows for all 

the traces. We can observe that EU2 has the largest number of slow flows with 

16% while US-Campus has the lowest at 2%. Also, note that there is a correlation 

between the access bandwidth of clients and the fraction of slow flows. EU2 and EU1

ADSL are both networks with ADSL users and show a larger fraction of slow flows 

than US-Campus and EU1-FTTH where clients have much higher access bandwidth. 

EU1-Campus, as opposed to US-Campus, shows a relatively high fraction of slow 

flow. We found that this mainly happens because at peak hours, the NAT box at the 

edge of a dorm network inside the Campus network, gets congested and causes most 

of the YouTube flows to become slow. 

A possible explanation for the existence of slow flows is that it is for flows to non

preferred data centers. Since non-preferred data centers are farther from the networks 

we monitor, it is possible that the extra network delay may cause the download rate 

to be less than the playback rate. Figure 5.21 shows the fraction of slow flows from 

the total. There are five sets of bars, one for each trace. Each set has one bar for 

preferred and one for non-preferred flows. We can see that in general, a larger fraction 
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Fig. 5.20. Fraction of flows with slow download rate 

of the slow flows are non-preferred, but the difference is not prominent. For instance, 

in EU1-Campus, there is a 4% difference between preferred and non-preferred slow 

flows. In EU2, the fraction of slow flows to the preferred data center is slightly higher. 

This may be because of network congestion or server load at the cache internal to 

EU2. 

Finally, we investigate if there is a change in user behavior because of slow flows. 

In particular, we compare the fraction from the full video that users download for slow 

flows and for flows that do not suffer any stalling. Figure 5.22 present our results. 

There are five sets of bars, one for each trace. There are two bars in each set, one for 

the fraction of the full video downloaded in slow flows and one the fraction of the full 

video downloaded in normal videos (e.g. videos with download ratio ≥ 1). We can 

observe that in general, clients that experience good performance download a larger 

fraction of the video than clients with bad performance. For instance, on average, 

clients experiencing good performance download more than 60% of the video. On the 

other, for slow flows, the fraction of the videos downloaded can be as low as 30%. 

5.9 Discussion 

While we have performed an extensive study on the various mechanisms used by 

YouTube for the selection of content servers for a client, we recognize that there are 

still a few issues that require more experimentation. We discuss two issues in this 
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Trace 

Fig. 5.21. Fraction of flows with slow download rate, for preferred and 
non-preferred data centers

Trace 

Fig. 5.22. Average fraction of video download for slow flows and not-slow flows. 

section. First, we found that, in general, the closest data center in RTT is also the data 

center that provides most of the videos to clients in the networks monitored. However, 

a trace collected more recently showed that for US-Campus most videos were coming 

from a farther away data center. Hence, we believe that in some cases, RTT may not 

be the only factor considered in server selection and more complex mechanisms may 

be in place. Second, in our active experiments with planetlab, we found that a single 

request for a rare video from a client, would cause a video replication to the closest 

data center to the client. We believe that while our observations may hold in many 

cases, this caching policy seems simplistic and requires further experimentation to 

confirm it. 
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5.10 Related Work 

The attention of the research community on YouTube has grown in the last few 

years. We can coarsely group works in two categories: 

• YouTube Infrastructure Studies: Recently, a few works analyzed the YouTube 

video delivery infrastructure ( [8,9]). Both works focus on the “old” YouTube infras

tructure. In [8], the authors collected traces at the backbone of a large ISP. Using 

DNS name resolution of servers, they discovered eight data centers around the U.S. 

that provided most videos to clients around the world. Further, they found that 

the YouTube server selection algorithm does not consider geographical location of 

clients and that requests are directed to data centers proportionally to the data cen

ter size. In contrast, our work focuses on the “new” YouTube infrastructure; we have 

evidence that requests are now redirected to servers in a preferred data center par

ticular to each network and that RTT between data centers and clients plays a role 

in the server selection strategy. In [9] the authors perform PlanetLab experiments to 

download YouTube videos and measure user performance. The authors found that 

most videos are being sent from a few locations in the U.S. and that YouTube pushes 

popular videos to more data centers. In contrast, in our work, we study traces from 

several large ISP and campus networks in two continents, which capture actual user 

behavior; we found that most videos are being delivered from a preferred data center, 

typically close to the client and that, while popularity of videos may play a role on 

the redirection of clients to non-preferred data centers, it is not a prominent reason 

for it. Finally, we also differ from [8, 9] in that we analyze key factors that affect 

server selection in the YouTube CDN. More recently, a concurrent and preliminary 

work [122] has started analyzing the new YouTube infrastructure. Our work clearly 

differs in various aspects. In particular, we use more systematic state-of-the-art algo

rithms for server geolocation; we also rely on a trace-based analysis instead of active 

PlanetLab experiments and finally we dig deeper into identifying the various causes 

underlying content server redirection. 
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• YouTube Videos Characterization: Several works have focused on character

izing various aspects of videos existing in YouTube as well as usage patterns. [10] 

and [11] collected traces at the edge of a single campus network and characterized per 

video statistics such as popularity, duration, file size and playback bitrate, as well as 

usage pattern statistics such as day versus night accesses and volume of traffic seen 

from the Campus. [12] and [115] crawled the YouTube site for an extended period 

of time and performed video popularity and user behavior analysis. Further, [12] 

compares YouTube to other video providers such as Netflix and [115] investigates so

cial networking in YouTube videos. We differ from all these works since we study the 

video distribution infrastructure. In particular we focus on understanding the content 

server selection mechanisms used by YouTube. In addition, we analyze datasets from 

five distinct vantage points ranging from campus networks to nationwide ISPs. 

5.11 Conclusion 

In this paper we have obtained a deeper understanding into the factors impacting 

how YouTube video requests are served by data centers. Our understanding has been 

based on week-long datasets collected from the edge of five networks including two 

university campuses and two national ISPs, located in three different countries. Our 

analysis indicates that the YouTube infrastructure has been completely redesigned 

compared to the one previously analyzed in the literature. In the new design, most 

YouTube requests are directed to a preferred data center and the RTT between users 

and data centers plays a role in the video server selection process. More surprisingly, 

however, our analysis also indicates a significant number of instances (at least 10% in 

all our datasets) where videos are served from non-preferred data centers. We iden

tified a variety of causes underlying accesses to non-preferred data centers including: 

(i) load balancing; (ii) variations across DNS servers within a network; (iii) allevia

tion of load hot spots due to popular video content; and (iv) availability of unpopular 
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video content in a given data center. Overall these results point to the complexity of 

factors that govern server selection in the YouTube CDN. 



157 

6. CONCLUSIONS AND FUTURE WORK 

In this chapter, we present a summary of our key contributions and future work. 

6.1 Summary of Contributions 

In this section, we summarize the key contribution of this thesis. 

6.1.1 Detecting and Preventing Undesirable Behavior of P2P Clients 

• Characterization of undesirable behavior of P2P clients: Our work is one of the 

first to show that undesirable behavior exists and is prevalent in real networks. Our 

analysis shows several examples of undesirable behavior including evidence of DDoS 

attacks exploiting live P2P clients, significant amounts of unwanted traffic that may 

harm network performance, and instances where the performance of participating 

peers may be subverted due to maliciously deployed servers. We systematically study 

traces collected from a PoP within a nationwide ISP with more than 5 million users. 

This is a very unique network, where 70% of the inbound traffic and 95% of the 

outbound traffic are due to P2P data. We found it is hard to distinguish undesirable 

behavior from normal behavior in an automatic fashion due to the heterogeneity of 

the P2P traffic and the difficulty in characterizing normal behavior of clients. Hence, 

we develop mechanisms to detect undesirable behavior, that combine data mining 

techniques and manual inspection through domain knowledge. 

• Design and evaluation of mechanisms to prevent P2P systems from being ex

ploited to create DDoS attacks: We study in detail a type of undesirable behavior 

which we found with our detection methodology, P2P clients participating on DDoS 
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attacks. Further, we propose and extensively evaluate active-probing based member

ship validation mechanisms to make P2P systems robust to these types of attacks. 

6.1.2	 Implications of Localizing P2P Traffic through a Characterization 

of Private P2P Systems 

We present the first measurement study of communities of P2P clients that are 

localized to a network. We study two such systems used for content sharing, one 

hosted in a large nationwide ISP and the other in a campus network. In addition, we 

show the performance benefits experienced by clients of these systems and present 

a study of the effect of these systems in the traffic volumes carried by links in the 

host network. We draw lessons from our characterization study that apply to recent 

research on localization of P2P traffic to within ISP boundaries. In particular, our 

results indicate that (i) in ISPs with heterogeneous access technologies, the perfor

mance benefits to users on localizing P2P traffic is largely dependent on the degree 

of altruism of peers behind high-bandwidth access technologies; and (ii) while local

ization can reduce the traffic on Internet peering links, it has the potential to cause 

a significant increase in traffic on internal links of providers, potentially requiring 

upgrades of network links. 

In a joint parallel effort [27], we study the Internet-wide impact of P2P traffic 

localization on ISP profitability. Our contributions include a methodology to perform 

what-if analysis on the adoption of P2P localization by all ISPs in the Internet or by 

a limited number of ISPs. Some of our key findings include: (i) residential ISPs can 

actually lose money when localization is employed; (ii) the reduction in costs due to 

localization will be limited for ISPs with small P2P populations; and (iii) some ISPs 

can better increase profitability through alternate strategies to localization by taking 

advantage of the business relationships they have with other ISPs. 
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6.1.3 Dissecting Video Server Selection Strategies in the YouTube CDN 

Our analysis indicates that the YouTube infrastructure has been completely re

designed compared to the one previously analyzed in the literature. In the new design, 

most YouTube requests are directed to a preferred data center and the RTT between 

users and data centers plays a role in the video server selection process. More sur

prisingly, however, our analysis also indicates a significant number of instances where 

users are served from a data center that is not the preferred one. In one of our 

datasets, up to 55% of video requests were not served from the preferred data center, 

while in most datasets at least 10% of requests were not served from the preferred 

data center. 

We identified a variety of causes underlying accesses to non-preferred data centers. 

In some cases DNS mechanisms resulted in users being directed to non-preferred data 

centers for reasons including load balancing to handle variations in system load due to 

the day/night patterns in YouTube usage. Interestingly, we found other cases where 

video was streamed to the user from a non-preferred data center, even though DNS 

directs the user to the preferred data center. The common causes underlying such 

cases included (i) alleviation of load hot spots due to popular video content; and (ii) 

accesses to unpopular video content that may not be available in a given data center. 

6.2 Future Work 

Motivated by our current research on the study of video distribution networks, 

our future work is related to two relevant areas. The first one involves studying video 

distribution networks and their interactions with mobile devices and other digital 

media player devices. The second area of research is on performing what-if analysis 

on changes that may occur in video distribution networks. 

In this section, we elaborate more on concrete ideas for future work. 
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6.2.1	 Video Content Distribution in Mobile Devices 

We want to study video distribution networks and their interactions with mobile 

devices and other digital media player devices. The popularity of new ways to access 

Internet content is creating new opportunities for content providers but also possibly 

some new problems. In particular, we enhance our YouTube analysis to distinguish 

between PC and mobile accesses. Our comparison study will focus on two main ar

eas, the mechanisms used by YouTube to deliver video to PC and mobile clients and 

the behavior of users behind PCs and mobile devices. A preliminary analysis on our 

YouTube traces show that the way video is delivered to mobile devices is different than 

PCs. In particular, while PCs obtain the video in a single TCP connection, mobile 

devices request the video in chunks, which are carried in separate TCP connections. 

This may have some implications in the network. For example, the more TCP con

nections open, the more state that need to be kept at middle-boxes such as NATs and 

firewalls. A second preliminary observation shows that mobile clients mostly watch 

videos encoded in an MPEG-4 format, as opposed to Flash videos downloaded by 

PC users. It will be interesting to investigate if this difference has any implications 

on the location of the caches that deliver the videos to mobile devices. Finally, more 

related to user behavior, we want to investigate interesting questions such as: (i) 

what fraction of the the video do mobile users watch? Conventional wisdom would 

say that mobile users will watch a smaller fraction of the video because of the limited 

screen size and device resources; (ii) Do mobile users interact with the video player 

for fast-forwarding or backward seeks? (iii) What are the implications of these type 

of behavior on the network? 

6.2.2	 Modeling ”What-if” Scenarios of Changes in Video Distribution 

Systems 

We want to perform what-if analysis on changes that may occur at the service 

provider level and the impact those changes may have on residential ISPs and users 
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performance. We may consider changes such as: (i) What if the videos distributed by 

the service provider (i.e. YouTube) increase in quality (high definition quality) or in 

length (full movies instead of short videos)? We can think on two possible impacts to 

this change. First, since videos will be bigger in size, there may be less opportunity 

of caching them at the closest location to a client, which may hurt user performance. 

Second, in the case of high definition videos, since the playback rate is higher, the 

corresponding download rate must also be higher so that the user does not experi

ence any interruptions. This may cause congestion in the network (i.e. the client’s 

access network or even the provider’s network); (ii) What if YouTube changes from 

a distributed setting with tens of data centers spread around the world, to a more 

centralized setting where only a few data centers exist? or to the other extreme of 

an even more distributed setting with hundreds or thousands of data centers? In the 

former case, clients performance may suffer because the video must be downloaded 

from farther locations and residential ISPs may be affected with more transit traffic 

costs. In the latter case, the service provider may incur higher infrastructure mainte

nance costs. (iii) As shown in Section 5.8, users watch 50% to 70% of videos. What 

if YouTube changes its caching scheme to leverage this fact, where the CDN only 

caches a fraction of the video in the closest data center to the user and only provides 

other chunks of the video if they are requested by the client? This could possibly 

improve user performance, since more videos will be cached at a close location, and 

reduce service provider costs since less inter data center traffic may be required. The 

various what-if analysis proposed in this section, will require building a simulation 

infrastructure composed of various models such as the provider data center locations, 

the popularity of videos requested, the client population and content interest per ISP 

and the inter autonomous system connectivity among others. Our work presented in 

Section 5 and our parallel joint work [27], can be key stepping stones in building this 

simulation infrastructure. 
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