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Abstract—Configuring access control policies in mobile de­
vices can be quite tedious and unintuitive for users. Software 
designers attempt to address this problem by setting up default 
policy configurations. But such global defaults may not be 
sensible for all users. Modern smartphones are capable of 
sensing a variety of information about the surrounding environ­
ment like Bluetooth devices, WiFi access points, temperature, 
ambient light, sound and location coordinates. We claim that 
profiling this type of contextual information can be used to 
infer the familiarity and safety of a context and aid in access 
control decisions. We propose a context profiling framework 
and describe device locking as an example application where 
the locking timeout and unlocking method are dynamically 
decided based on the perceived safety of current context. We 
report on using datasets from a large scale smartphone data 
collection campaign to select parameters for the context profil­
ing framework. We also describe a prototype implementation 
on a smartphone platform. 

Keywords-context awareness, access control, human com­
puter interaction 

I. INTRODUCTION 

Smartphones are fast becoming an integral part of life 
for many users. They are used for performing everyday 
tasks like emails and Internet banking that involve storing 
sensitive data on the device. They also contain personal 
data like photos and videos, communication logs, location 
information and logs of monetary transactions. This calls 
for strong protection mechanisms on mobile devices. Pro­
tection mechanisms serve their purpose only when they 
are configured with sensible policies for accessing and 
sharing data. However, managing a large number of policy 
configurations can be quite overwhelming and unintuitive 
for a user. Application and service designers attempt to 
tackle the usability problem by providing users with a default 
policy configuration. But a global default policy may not be 
suitable for the needs of every user. Users are therefore left 
with two unsatisfactory alternatives: either use one-size-fits­
all default policies which may not be sensible, or, suffer 
through manually configuring the bulk of policies by hand 
which may not be intuitive or easy-to-use. 

Modern smartphones are equipped with a variety of 
sensors capable of continuously monitoring a wide range 
of parameters such as location, Bluetooth and WiFi devices 
in the neighborhood, temperature, ambient light, noise levels 

etc. These observations characterize the context of a device, 
and hence of its user. We argue that by profiling contexts in 
terms of how the context parameters change over time, we 
can infer appropriate access and sharing policies for sensitive 
data on the device, which can help towards at least partially 
automating the process of setting sensible policies. 

As an illustrative example, consider the case of device 
locks: smartphones and other mobile devices have a device 
lock feature similar to the screen-saver lock on PCs. When 
the device has been idle for a pre-defined fixed period of 
time, the device lock kicks in. Thereafter the user has to 
unlock the device before accessing the applications and data 
on the device. A device may support multiple unlocking 
methods like a slider or passcode entry but a specific 
unlocking method has to be chosen when the device lock 
feature is enabled. In an enterprise, the enterprise system 
administrator may force its users to use strong device lock 
if the device is capable of accessing enterprise data like 
corporate e-mail or intranet websites. Suppose a user, say 
Alice, finds it very inconvenient having to type in a passcode 
several times every day. She may decide to disable the device 
lock and risk the compromise of her sensitive data like e-
mails, and she may opt to remove applications like corporate 
e-mail that mandate the use of device lock. 

Alice’s experience with device lock can be significantly 
improved by making the device lock to adapt its behavior 
based on the context. Instead of having a fixed pre-defined 
timeout for the device lock to kick-in and always using the 
same unlocking method, the device lock application could 
use dynamic configuration of these parameters depending 
on the device context. For example, in a safe and familiar 
place like her home where the likelihood of the device being 
stolen is low, Alice would like to have a long timeout, and a 
“shallow” unlocking method like a slider (that does not tax 
her too much), whereas in an unfamiliar place she would 
be willing to live with a very short timeout and a “deeper” 
unlocking method like passcode entry. The question then 
is “how can the device estimate the familiarity and safety 
at any given time?” We propose applying the following 
context profiling approach to address this question: the 
device periodically scans its environment for a variety of 
context variables like GPS readings, WiFi access points and 
Bluetooth devices. Based on these scans, the device can 



•	 discover contexts which the device encounters repeat­
edly; these are likely personal contexts of interest (CoIs) 
for the user. 

•	 profile the CoIs by keeping track of which WiFi and 
Bluetooth devices are encountered in a given CoI and 
the nature of those encounters. These profiles can be 
used to estimate the familiarity of a device with respect 
to a context. The inferred device familiarity values can 
then be used to estimate the familiarity of a context 
itself. 

•	 use current and historically aggregated context famil­
iarity information to estimate the safety of the current 
context. 

This basic approach needs to be complemented by allowing 
the user to provide feedback about the perceived safety of 
a context. This is important in two respects: the user may 

its device familiarity should gradually decrease. Since we 
do not know if the device has left the CoI permanently or 
is temporarily absent, the device decay should be slow and 
gradual. This is achieved by growing the device familiarity 
of device d in CoI C with every observation of C that 
includes d, but decaying d only if it has not been observed 
in N0 successive observations of C, where N0 is a suitably 
chosen constant. 

Definition 1: Device familiarity of a device d, with re­
spect to CoI C after n observations of C is defined as: 

DFam(d, C, n) =
 

αD ∗ occ(d, C, n) + (1 − αD) ∗ DFam(d, C, n − 1)
 

where, 

want to speed up the learning process or may want to correct 
incorrectly inferred safety levels. Users may provide two 
types of feedback about the perceived safety of a context: 

occ(d, C, n) =short-term feedback should be treated so that its effect wears	 in the nth sample, and 

⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩ 

1 if d is observed in C 
in the nth sample, 

0 if d is not observed in C 

off quickly while long-term feedback should have a more 
long-lasting effect. 

(n − Nlast) mod N0 = 0. 
DFam(d, C, n − 1) otherwise. 

In this paper, we describe the design of a context profil­
ing framework to intuitively infer sensible access policies 
without user intervention, while still allowing corrective 
user feedback. We use the device lock scenario as an 
example of applying our context profiler. We describe the 
implementation architecture for the context profiler. We then 
describe several experiments using a previously available 
dataset based on which we select concrete parameters for 
our prototype implementation of the context profiler. We 
then provide an evaluation of our model and discuss possible 
enhancements to our approach. 

II. CONCEPTS AND DESIGN 

A. Context profiling 

1) Detecting CoIs: In this paper, we limit our scope to 
geolocational contexts only. We use a grid-based clustering 
algorithm for GPS observations to detect CoIs, which are 
regions where the device has been present sufficiently often. 
A CoI is represented by a circular region with a fixed 
radius centered at the centroid of the locational observations 
contributing to the CoI. Once a CoI is detected, we update 
its centroid with every new observation that falls within the 
CoI. 

2) Notions of familiarity: A user may observe certain 
devices more often than others in a given CoI. These devices 
gradually become familiar to the user’s device with respect 
to that particular CoI. We introduce the notion of familiarity 
of a device in a given CoI (hereafter device familiarity) as 

(1) 
Nlast (defaulting to 0) is the ordinal number representing 
the last sample of C in which d was seen and 0 ≤ αD ≤ 1 
is a suitably chosen constant. 

The selection of the smoothing factor αD determines the 
weight 1 − αD assigned to the old device familiarity value 
in computing the new device familiarity value. For example, 
for a device present in every observation made in a CoI, 
higher values for αD would imply quicker rise in the device 
familiarity value. 

We estimate the familiarity of a CoI using two measures: 
instantaneous familiarity and aggregate familiarity. Instanta­
neous familiarity is an estimate of the familiarity of the CoI 
the device is currently in, in terms of the device familiarity 
values of the devices present in the CoI at that instant. 
Aggregate familiarity represents the “usual” or “typical” 
familiarity of a CoI over time. 

Instantaneous familiarity is computed as a weighted av­
erage of the observed devices with their device familiarity 
values constituting the corresponding weights. The intuition 
is that the contribution of a device towards instantaneous 
familiarity of a CoI should be proportional to its device 
familiarity in that CoI. We compute the instantaneous famil­
iarity separately for each class of devices and combine them 
by taking the average over all device classes. Currently we 
consider two classes: Bluetooth devices and WiFi devices. 

Definition 2: Instantaneous familiarity of a CoI C at its 
nth observation can be defined as 

a measure of how frequently and how recently a device has 
been observed by the user’s device in a given CoI. If a	 1

instFam(C, n) = 
cc

c 
i=1 

instFamc(C, n) (2)
familiar device stops appearing in a CoI for a long time, 



where c1
instFamc(C, n) = DFam(d, C, n)

|DC,n| 
d∈DC,n 

and DC,n is the set of devices of class c observed in C at 
its nth observation. 

Aggregate familiarity of a CoI is computed as an expo­
nential moving average of instantaneous familiarity. 

Definition 3: Aggregate familiarity of a CoI C after n 
observations of C is defined as: 

aggFam(C, n) = 

αC ∗ instFam(C, n) + (1 − αC ) ∗ aggFam(C, n − 1) (3) 

where 0 ≤ αC ≤ 1 is a suitably chosen constant. 
The smoothing factor αC determines how fast the aggre­

gate familiarity should react to the changes in instantaneous 
familiarity. A higher value implies quicker reaction. In 
section IV we discuss the choice of αD and αC values used 
in equations 1 and 3. 

3) Notion of Null device: We model the absence of any 
other device by introducing the notion of a null device for 
each class of devices. A null device is observed when no 
other device in that device class is observed. The device 
familiarity of a null device is computed in just the same 
way as for a real device using equation 1. Thus, in CoIs 
where absence of other devices is the norm, the null devices 
will have a high device familiarity which in turn leads to 
familiarity of the CoI to be high when no devices are present. 
On the other hand, in other CoIs, the familiarity of the null 
device will be low which causes the familiarity of the CoI 
to drop when no other devices are observed. 

4) Inferring context in absence of GPS fix: 
In the absence of GPS fix, we still need to infer the 

current context since access control has to be enforced. 
In such scenarios, we can utilize hints from the currently 
observed devices to infer the user’s context. The snapshot 
of WiFi devices observed in a CoI is fairly static and can be 
used to attribute user’s current position to a known CoI. We 
also leverage the fact that the instantaneous WiFi familiarity 
score of a CoI represents how familiar the current snapshot 
of WiFi devices is to this CoI to map a WiFi snapshot to its 
most familiar CoI. 

Inference of user’s context is done in two steps. First, 
we compute candidate instantaneous WiFi familiarity for 
the current snapshot of WiFi devices with respect to all 
known CoIs for the user. We use a minimum threshold for 
WiFi instantaneous familiarity to discard obviously incorrect 
CoI choices. The current position is then attributed to the 
CoI with maximum WiFi instantaneous familiarity score. 
If none of the candidate instantaneous familiarity scores 
exceed the minimum familiarity threshold, we use Jaccard’s 
distance measure to compute the distance between the cur­
rent snapshot of WiFi devices and the snapshot of WiFi 

Figure 1. Familiarity-to-safety mappings 

devices corresponding to the last known observation with 
an associated GPS reading. If the two WiFi snapshots are 
close enough, we attribute the current observation to the 
same location. 

5) From familiarity to Safety: Familiarity can have dif­
ferent interpretations in terms of safety for different applica­
tions. How best to infer the safety level from the familiarity 
estimates is a difficult question. A familiar place may be 
considered safe by a certain application, and unsafe by 
some other application. For example, applications where 
anonymity is desired would treat a familiar place as unsafe 
and an unfamiliar place as safe. On the other hand, a con­
figurable device lock mechanism would treat an unfamiliar 
place as unsafe. 

We propose a familiarity to safety mapping for device 
lock and other applications with similar requirements. For 
device lock, we need to assess the safety level of the current 
context of the device so that the appropriate locking timeout 
and unlocking method can be enforced. We link familiarity 
to safety using the rationale that familiar devices can be 
associated with individuals who are usually present in a 
context and therefore do not represent a high level of risk 
for the user. We begin with the following intuition: a CoI 
that has a high familiarity both typically and currently is 
probably safe; as a dual, a CoI that has a low familiarity 
both typically and currently is probably unsafe. 

We incorporate the above observations in our algorithm 
to estimate the safety level of the current context (Figure 1). 
The algorithm uses the instant and aggregate familiarity 
of the current CoI to estimate the safety level as one of 
high (GREEN), medium (YELLOW) or low (RED). To do 
this, we use two thresholds: a high familiarity threshold 
(HT ) and a low familiarity threshold (LT ) to delimit “high” 
and “low” values for familiarity (both instantaneous and 
aggregate). In section IV, we estimate reasonable values for 
these thresholds. 

If the current context does not correspond to a CoI, 
we conclude that the safety level is low (RED). This is 
consistent with algorithm in Figure 1 because the aggregate 
familiarity of an unknown context is zero. 



B. Handling user feedback 

In automated access control enforcement, it is important 
to incorporate feedback from the user in the decision mak­
ing process. Since our context profiler’s safety algorithm 
ultimately bases its computations only on a few classes 
of sensor inputs, it may sometimes estimate the safety 
level incorrectly. User feedback is important in such cases 
so that the inferencing process can be tweaked to match 
user’s expectations. Similarly, user feedback can be used to 
shortcut the learning process so that contexts that the user 
knows will become eventually familiar (like her home) can 
be deemed familiar more quickly. 

A user can provide feedback by specifying the safety level 
of a context as perceived by him. The user may provide 
feedback on the long-term behavior of a CoI by marking 
it as ‘Usually safe’ or ‘Usually unsafe’. Alternatively, he 
may want to indicate a short-term or temporary feedback 
like ‘Now safe’ or ‘Now unsafe’ for the current CoI. When 
a user provides ‘Usually safe’ feedback for the current CoI, 
he is also prompted to provide ‘Now Safe’ feedback, if 
appropriate. This is helpful in providing a quick boost to 
the short term safety value. 

Feedback classification: The safety feedback provided by 
a user can be broadly classified into following categories: 

1)	 Learning phase feedback: This feedback is provided 
by the user during the learning phase to shortcut 
learning, or to override the context profiler’s estima­
tions of the safety of a context until that context has 
been learned. We believe that this would be the most 
frequent case where user will provide feedback. A user 
may provide either short term or long term feedback 
during learning phase. 

2)	 Affirmative feedback: This refers to the scenario where 
the user feedback matches the context profiler’s per­
ception of safety, that is the user just re-affirms the 
context profiler’s perception. For example, when user 
says that certain context is ‘Usually safe’ and the con­
text profiler has already inferred the context as safe. 
We can safely ignore this feedback in the computation 
of safety scores. 

3)	 Corrective feedback: This refers to the scenario when 
the context profiler fails to match user’s perception of 
safety even after it has learned the context. Corrective 
feedback can be either short term or long term. 

We base our feedback handling approach on the following 
two principles: 

1) The effect of feedback should be immediately visible 
to the user. However, it should not permanently relax 
the safety computations, but allow for the system to 
react in case of sudden drops in familiarity scores. 

2) When a user provides feedback, it is regarding the 
safety of a context and not its familiarity. Thus, the 
feedback handling mechanism should only tweak the 

familiarity to safety mapping and not the familiarity 
scores themselves. 

Long term feedback reflects on the ‘typical’ behavior 
of a context. Our intuition is that such feedback would 
be provided in the learning phase to shortcut the learning 
process. The effect of long-term feedback should correct 
the safety computations until the context has been properly 
learned. This can be achieved by combining long term 
feedback and the aggregate familiarity using a dynamic 
weight wLT that gradually fades away. We use a time decay 
curve to decay the value of wLT . 

Definition 4: LT Score is the long term safety score that 
replaces the aggregate familiarity score in algorithm in Fig 1. 
It is computed as: 

LT	 Score = (1−wLT )∗aggFam(C, n)+wLT ∗LT Feedback 
(4) 

where LT Feedback indicates long term feedback, with 
value either 0 (‘Usually unsafe’) or 1 (‘Usually safe’). 

The dynamic weight wLT for long term feedback is 
computed as:  nf c

1 − ( Nf 
) if nf ≤ Nf 

wLT =	 (5)
0 otherwise. 

where nf is the number of observations since the long 
term feedback was given, Nf is the maximum number of 
observations after which the feedback effect should wear off 
and c is a constant that determines the speed of decay. 

The long term feedback weight should decay slowly in 
the beginning so that the device has enough time to learn 
the context and then gradually fade away to 0. The constant 
Nf is decided based on the length of learning period, which 
depends on the αC and αD values (refer section II-A2). 

Short term feedback reflects on the safety of current 
snapshot of a CoI. It indicates a temporary change in the 
behavior of a CoI and should fade away after a short time. 
We compute this score by combining short term feedback 
and instantaneous familiarity using a dynamic weight wST . 

Definition 5: ST Score is the short term safety score that 
replaces the instantaneous familiarity score in algorithm in 
Fig 1. It is computed as: 

ST	 Score = (1−wST )∗instFam(C, n)+wST ∗ST Feedback 
(6) 

where ST Feedback indicates short term feedback, with 
value either 0 (‘Now unsafe’) or 1 (‘Now safe’). 

The short term dynamic weight wST should depend on 
the time elapsed and the change in the snapshot of observed 
devices since the feedback was given.  t−t01 − max { −t0 

, Dist(S, Sr)} if t ≤ tmaxtmaxwST = 0	 otherwise. 
(7) 

where t0 is time at which short term feedback was given, 
t is the current time, tmax is time after which short term 
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Figure 2. System components: (1) Data collection module collects GPS, 
Bluetooth, WiFi data; (2) GPS data is clustered to detect CoIs; (3) Context 
analysis module updates context-specific information and (4) computes 
familiarity and safety scores for the current context. 

effect should wear off (we use tmax = 60 mins.), Sr is the 
snapshot of devices at time t0, S is snapshot of devices at 
time t and Dist() is the distance metric, the definition of 
which is based on the following rationale: 

•	 Familiar devices in Sr, but not S should increase the 
distance measure 

•	 Unfamiliar devices in S but not in Sr should increase 
the distance measure 

•	 Unfamiliar transient devices Sr, but not in S should 
not increase the distance measure 

•	 Familiar devices in S but not in Sr should not increase 
the distance measure 

Let S correspond to the nth (i.e., current) observation and 
occ(d, S1, S2) = 1 if device d ∈ (S1−S2) and 0 otherwise. 
Then we define1 ⎧	 ⎪⎪⎨ 

c 
DFam(di, C, n) ∗ occ(di, Sr, S) 

⎫ ⎪⎪⎬ 

•	 Context Analysis module is responsible for analyzing 
the raw data and infer familiarity and safety scores for 
the current context. For each CoI, it maintains a context 
profile to keep track of the devices that are observed in a 
CoI and their familiarity scores with respect to that CoI. 
Based on the current snapshot of the CoI, it computes 
instantaneous and aggregate familiarity scores using 
equations 2 and 3 respectively. These familiarity scores 
are used to infer the safety of the context as discussed 
in section II-A5. 

In our current implementation [1], the data collection 
module scans the environment every five minutes to record 
the GPS co-ordinates (if available) as well as the currently 
visible Bluetooth devices and WiFi access points. This 
information is stored in a database on the device itself and 
is used by other modules to identify and analyze CoIs. This 
module can be extended to sense other kinds of context 
variables. 

For CoI detection, we used a simple grid-based clustering 
algorithm with a grid cell width of 250 meters. We required 
a cluster to have at least 1% of all observations within a time 
window of 30 days which corresponds to 8640 observations 
at our current rate of sampling. Consequently, the detection 
threshold of 1% (≈ 86 observations) would correspond to 
roughly an equivalent of seven hours of observations of a 
place in the GPS trace data for the place to become identified 
by our clustering algorithm as a CoI. Using these clusters 
as the CoIs, we associated Bluetooth and WiFi observations 
having an associated GPS fix within 100 meters from a 
cluster’s centroid as belonging to that CoI. 

The context analysis module periodically generates the 

⎪⎪⎩ 

di∈Sr 

+ (1 − DFam(di, C, n)) ∗ occ(di, S, Sr) 
c familiarity and safety scores for the current context. These ⎪⎪⎭ 

values can be used by applications to automatically configure 
access policies that depend on the current context. In the 

Dist(Sr, S) = 
di∈S 

The effective safety level is 

|Sr ∪ S|	 device locking use case, the safety scores are used to 
(8) dynamically configure the unlocking method and the locking 

inferred using Figure 1 timeout of the device. 
where ST_Score and LT_Score will serve the purpose 
of instantaneous and aggregate familiarity respectively. 

III. IMPLEMENTATION ARCHITECTURE 

The system architecture for the context profiler software 
is described in Figure 2. It consists of three main modules: 

•	 Data Collection module is responsible for continuously 
sensing the current context and collecting raw data 
about various context variables 

•	 CoI Detection module periodically clusters the loca­
tion data collected by the data collection module to 
detect CoIs for the user, based on their significance to 
the user which is determined by the amount of time the 
user spends in a particular place. 

1We could define Dist() simply as the Jaccard distance Jδ (Sr , S), but 
that will not distinguish devices based on familiarity. 

IV. DETERMINING PARAMETERS 

In order to determine suitable parameters for the Context 
Profiling framework described in Section II-A, we ran sev­
eral experiments using traces from the Lausanne Data Col­
lection Campaign, a large-scale data collection experiment 
focusing on mobile device users’ behavioural and contextual 
data traces [2], [3]. The dataset contained the GPS location 
traces and regular scans of the WiFi and Bluetooth radio 
environments of a large number of users. 

To match our device implementation as closely as pos­
sible, we filtered the dataset to include one Bluetooth and 
WiFi scan observation per five-minute observation window, 
if available. Each of these Bluetooth/WiFi observations was 
matched with the closest GPS fix within the time window, if 
available. By applying our CoI identification algorithms, we 



identified a total of 167 CoIs for 37 users, giving on average 
5.22 CoIs per user (median 5 CoIs). 

In the device lock scenario, the context profiler effects 
visible to the end user are (a) how long does it take for a 
safe CoI to be recognized as such by the context profiler and 
(b) how volatile is the safety labeling of a safe CoI. As a 
guiding principle, we want the context profiler to learn safe 
CoIs within two days. At our current sampling frequency of 
every five minutes, a day consists of 288 observations. We 
conjectured that a user is likely to spend about a third of 
a day in a given safe CoI. Thus we need safe CoIs to be 
deemed safe in about 200 observations. We set this as our 
approximate target. 

Selecting αD: From Equation 1 we see that higher values 
for αD will imply that the device familiarity DF am will 
grow quickly if a device continues to appear in successive 
samples in a CoI. Given our rough target of recognizing 
a safe CoI within 200 observations, we decided to select 
αd so that a device that appears in about 20 consecutive 
samples of a CoI would have a DF am reaching 0.9. Using 
Equation 1, we compute this value of αD to be 0.1. This is 
in line with the standard practice of choosing a smoothing 
factor between 0.05 and 0.3 for processes that are locally 
constant (Chapter 8 of [4]). 

Selecting N0: To select the value of N0 in equation 1, we 
reasoned that the familiarity of a device should decay if it 
did not show up even once in consecutive samples spanning 
a day. Again, based on the assumption that a user may spend 
about a third of a day (≈ 96 observations) in a given safe 
CoI, we chose N0 to be 100. 

Selecting αC : In Equation 3 the smoothing factor αC 

affects the lag time of the smoothing applied to the aggregate 
familiarity scores. The lag time determines the number of 
observations required for the aggregate familiarity score to 
react to changes in the trend of the instantaneous familiarity 
scores. Consequently, the choice of αC will impact both the 
user-visible effects discussed above. 

We presume that most users have at least two frequently 
visited CoIs (e.g. their home and workplace). We further 
assume that the majority of such CoIs can be presumed to 
be ‘familiar’ places for the users. We denote the set of the 
top-two most frequently observed CoIs of each user as the 
set of frequent CoIs. We studied how different choices of 
αC affects the evolution of the aggregate familiarity score in 
frequent CoIs over time. Figure 3 shows the result: the y-axis 
on the left shows the average aggregate familiarity scores for 
frequent CoIs; the y-axis on the right shows the average of 
the standard deviation of the aggregate familiarity scores of 
the same, calculated over the latest 100 observations at each 
point. 

We observed the following from Figure 3: 
•	 values of αC greater than 0.05 have little impact in the 

behavior of the average aggregate familiarity score. 
•	 the “knee” in the graph near the 200th observation 

Figure 3. Behavior of aggregate familiarity score in frequent CoIs 

implies that most of the frequent CoIs reach a steady 
state after this point. 

•	 the average standard deviation of aggregate familiarity 
scores is reasonably small (less than 5%) for all values 
of αC less than 0.05 beyond the steady state. 

Based on these results, we chose 0.05 as the value for αC . 
Selecting Nf : The number of observations for frequent 

CoIs to reach steady state (200) is a suitable value for Nf 

in equation 5. 
Selecting HT and LT : In Figure 1, a natural value for 

HT is the point reached by the average aggregate score of 
frequent CoIs at the steady state. From Figure 3, this is 0.85. 
To choose the value of the low threshold LT , we used the 
following rationale. We expect that for most users, a familiar 
CoI like home will exhibit stable behavior in the long-term. 
Thus we can choose LT such that the aggregate familiarity 
score of most familiar CoIs will be above this value. We 
resort to an 90-10 rule of thumb to assume that 90 percent 
of the set of frequent CoIs are likely to be stable. Figure 4 
shows the the aggregate familiarity score of the CoI at the 
lowest tenth percentile for a given number of observations. 
From the graph, we can see that 0.4 appears to be a good 
choice for LT because at all times after reaching the steady 
state (refer to Figure 3), all frequent CoIs in the set above 
the 10th percentile have aggregate familiarity scores above 
this value. 

V. VALIDATION OF THE MODEL 

A. Comparison to ground truth 

Once the parameters were determined, we applied our 
familiarity and safety algorithms to the observation data 
related to the frequent CoIs of each user. Figure 5 shows the 
distributions of the classifications of individual observations 
in all CoIs. These are sorted in descending order of number 



Figure 4. Determining the low threshold 

of observations associated with the CoI. As can be seen, 
the familiarity scores of CoIs which do not have enough 
observations are pre-dominantly flagged as “unsafe”. As 
the number of observations grow an increasingly greater 
proportion of the observations are flagged as “safe”. 

Figure 5. Distribution of safety classifications of observations for different 
CoIs 

Ideally, the evaluation of the model would be based on 
ground truth information indicating the user’s perception of 
the safety of a CoI over time. Unfortunately the dataset 
we used did not have ground truth information at this 
granularity. However, it did have information where the users 
have labeled locations using one of several pre-defined labels 
such as “My home”, “My main work place”, “Shop” etc. 
We grouped these labels into “safe” and “unsafe” as shown 
in Table I. We ignored locations with labels whose safety 
classification from a user’s perspective is unclear (e.g., labels 
such as “Home of a friend”). 

Safe Unsafe 
My home 
My freetime home 
My main workplace 

Holiday resort or vacation spot 
Shop or shopping center 
Location related to transportation (bus stop) 
Place for indoor sports (e.g. gym) 
Place for outdoor sports (e.g. walking) 

Unclassified 
Home of a friend 
My other work place 
I don’t know 

My main school or college place 
Other 

Table I
 
CLASSIFICATIONS OF PLACE LABELS IN GROUND TRUTH DATA
 

Making the simplifying assumption that the CoIs identi­
fied by the users as “safe” or “unsafe” in the ground truth 
data are always safe or unsafe respectively, we estimated 
the effectiveness of the context profiler with the parameters 
selected above as follows. We identified the sets as in 
Table II. 

Sets in ground truth data # 
Observations in “Safe” CoIs Gsaf e 51446 
Observations in “Unsafe” CoIs Gunsaf e 2607 
Observations in Unclassified CoIs GU C 10119 
Sets identified by Context Profiler # 
“Safe” observations CGREEN 55234 
“Unsafe”observations CRED 2862 
Neither CY ELLOW 6076 
Set intersections # 
True “Safe” obs. 
Other “Safe” obs. 
True “Unsafe” obs. 
Other “Unsafe” obs. 

|Gsaf e ∩ CGREEN |
|{Gunsafe ∪ GUC } ∩ CGREEN |

|Gunsaf e ∩ CRED|
|{Gsafe ∪ GUC } ∩ CRED | 

47197 
8037 

889 
1973 

Table II 
SETS USED IN VALIDATION 

We then calculated the following figures of merit for 
recognizing “safe” situations: 

Formula value 
|Gsaf e∩CGREEN |Precision 0.854|CGREEN |
|Gsaf e∩CGREEN |Recall 0.917|Gsaf e|
|Gunsaf e∩CGREEN |Fallout w.r.t. “unsafe” 0.152|Gunsaf e|
|GUC ∩CGREEN |Fallout w.r.t. “unclassified” 0.755|GUC | 

and analogously the following for recognizing “unsafe” 
situations: 

Formula value 
|Gunsaf e∩CRED |Precision 0.311|CRED |
|Gunsaf e∩CRED |Recall 0.341|Gunsaf e |
|Gsaf e∩CRED |Fallout w.r.t “safe” 0.019|Gsaf e|
|GUC ∩CRED |Fallout w.r.t “unclassified” 0.096|GUC | 

The precision and recall of recognizing safe situations are 
sufficiently high. The fallout value reflecting the likelihood 
of unsafe CoIs receiving ‘safe’ classifications is slightly 
higher than desirable (15%), but still in acceptable range. 
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Figure 6. Effect of user feedback during learning 

The fallout with regard to ‘unclassified’ CoIs is remarkably 
high (75%). This may be caused by the fact that a major 
fraction of the CoIs in the ‘unclassified’ set GUC actually 
represent places that are familiar to the user (e.g. ‘Home of 
a friend’,or, ‘My other work place’ might be such places). 
The precision of recognizing unsafe situations is low, but 
acceptable as it errs on the safe side. The recall is low, 
implying that the context profiler recognized only a third of 
the unsafe observations as such. However, among the 6076 
YELLOW observations made by the context profiler (the set 
CY ELLOW ), 1321 were in locations labeled as “unsafe” in 
the ground truth data. If we combine this set with CRED, 
then the recall figure climbs up to 0.848. This suggests 
that the YELLOW safety level should not be considered 
significantly safer than RED. Overall, the figures of merit 
validate the choice of parameters. 

B. Implementation 

We implemented a prototype of the context profiler [1] 
with the chosen parameters on Nokia N900 Linux-based 
smartphones. We also implemented three different unlocking 
methods (passcode, draw-a-secret, and slider) which were 
linked to the RED, YELLOW, and GREEN safety levels 
respectively. The three safety levels also corresponded to 
three different default timeout values of 1 minute, 5 minutes 
and 30 minutes respectively. We use a low watermark 
approach to decide the unlocking method: if a device is 
locked in a safe context, a change in context can lock it 
deeper (i.e., requiring a stronger unlocking method), but the 
converse is not true. The unlocking method will correspond 
to the safety of the least safe context encountered since the 
device was locked. 

C. Effect of user feedback 

We studied the effect of user feedback using our prototype 
context profiler. The user can provide feedback about a CoI’s 
safety at any time to modify its behavior using a GUI as 
shown in Figure 7(a.). Figure 6 shows the effect of ‘Usually 

Figure 7. Device implementation: feedback options and inferred safety 

Figure 8. Safety algorithm with variance 

safe’ feedback that is provided by the user for his ‘Home’ 
context when the context profiler is still in learning phase. 

The graph shows the effect of using different c values 
in equation 5. While a bigger value of c provides a steady 
behavior until CoI has been learnt, it also reduces the CoI’s 
tolerance to genuine drops in instantaneous familiarity. To 
address this tradeoff and from the behavior of the LT Score 
in Figure 6, we decide to use c = 2. 

VI. DISCUSSION 

Alternate safety algorithm 

The safety algorithm discussed in Fig. 1 can be further 
strengthened by incorporating volatility of the CoI as a 
factor. CoIs that are stable (less volatile) should be less 
tolerant to changes in instantaneous familiarity. Even small 
changes should severely affect the perceived safety of a 
stable CoI. Similarly, CoIs with high variance should be 
more tolerant to fluctuations. The variance of instantaneous 
familiarity can be an indicator for the volatility of a CoI. 
A context can be deemed volatile if the variance is above 
a certain threshold. To incorporate volatility of a CoI in the 
safety algorithm, we use its modified version as shown in 
Fig 8. This algorithm is not used when the user feedback is 
in effect, since the volatility of the CoI cannot be reliably 
determined in such cases. 



Privacy considerations 
Collection of user’s contextual data by different services 

usually raises privacy concerns. However, in our approach 
this data collection is used to help users in intuitive enforce­
ment of access control and never leaves the device’s storage. 

Energy considerations 
Continuous context profiling comes at a cost of increased 

battery consumption. This limitation can be overcome by 
using intelligent sampling techniques. For example, instead 
of performing frequent GPS scanning, one could use ac­
celerometer triggered scanning so that GPS is turned on 
only when motion is detected. Another technique to conserve 
battery could be to use WiFi access points to detect geo­
location instead of GPS. Our initial prototype does not 
incorporate these enhancements yet. However, intelligent 
sampling would be highly desirable in a usable product. 

Security considerations 
The security requirements of context profiling depends 

on the application. An attacker who can fake Bluetooth 
or WiFi addresses can influence the estimated familiarity 
scores. This can be addressed by revising the familiarity 
calculations by giving a greater weights to devices whose 
identities are cryptographically verifiable based on existing 
security associations with those devices. For the device lock 
application this is not a significant concern because we target 
users like Alice described in Section I who do not use any 
device lock in the first place. Compared to this starting point, 
if the use of the context profiler improves the perceived 
usability of device lock for such users, it can only improve 
the security! 

Unknown contexts 
In the current implementation, as discussed in Sec­

tion II-A5, an unknown context is treated as unsafe. This 
is logical because there is no notion of aggregate familiarity 
for an unknown context. However, this approach may be too 
pessimistic: one can plausibly make the argument that the 
familiarity of an unknown context where all devices present 
are highly familiar should be high. Since we already keep 
track of the number of times a device has been seen in all 
contexts from which we can estimate the global familiarity 
of a device and use those to estimate the familiarity of 
unknown contexts. The exact formulation is left as future 
work. 

Intelligibility 
A common concern in context-aware systems is 

“intelligibility”[5]: they should be able to explain to the users 
the bases and implications of the inferences they make. We 
have taken some steps towards intelligibility of the context 
profiler (like showing inferred safety level and the familiarity 
scores used in the inference), we need a more thorough 
analysis of how to make the context profiler more intelligble. 

VII. RELATED WORK 

Location, WiFi and Bluetooth traces provide rich context 
information and have been utilized for several other appli­
cations as well. The Jyotish framework [6] utilizes the joint 
WiFi and Bluetooth traces for predicting the movement of 
users. It clusters the WiFi access point information to detect 
locations and uses Bluetooth traces to predict the most likely 
future contacts. Our work uses WiFi and Bluetooth traces to 
estimate context familiarity and safety. 

Zhou at al. [7] and Nurmi et al. [8] use the location traces 
along with other information to identify meaningful places 
like home and work for their user. These meaningful places 
have several applications in location based services. We also 
exploit similar facts to identify points of interest and build 
up a context familiarity profile for these places. 

The Familiar Stranger project [9] studies the proper­
ties and phenomenon of Familiar Stranger relationships. 
A familiar stranger is a stranger that the user repeatedly 
encounters but never interacts with. It uses a notion of device 
familiarity that is derived from the number of encounters 
with the stranger’s device. The degree of familiarity is used 
to visualize the number of familiar strangers present at a 
specific place to the user. Unlike this work, we tie the notion 
of device familiarity to a given place and use it to estimate 
the familiarity and safety of a context. 

Greenstadt and Beal [10] propose that mobile devices can 
utilize cues from user behavior to identify the users and 
make security decisions on their behalf. Jakobsson et al. [11] 
emphasize on the need for authentication techniques on mo­
bile device with no or very limited user involvement. They 
utilize cues from user behavior like phone activity, mobility 
etc. to implicitly authenticate the user to the device and 
to provide addition assurance in sensitive transactions. Our 
primary focus is not on the method for user authentication, 
but on how to select one out of many authentication methods 
(with varying usability and strength) based on the safety of 
current context. 

In [12], Danezis discusses how various social contexts can 
be automatically inferred for users from the social graphs 
around them. Privacy settings for these social contexts can 
be extracted based on the policy that content generated in a 
social context should be accessible only in that context. We 
focus on using device’s context to configure access policies. 

Conti et al. [13] propose a framework for enforcing 
context-related policies for smartphones that requires manual 
configuration of policies. Our system profiles the user’s 
context to estimate its familiarity and automatically infer 
policies. Our system can be integrated with the Crepe 
framework to allow a user to specify policies based on 
context familiarity as a logical sensor in addition to other 
sensor values. 

Kelley et al. [14] introduce the notion of user-controllable 
policy learning where the user and system refine a common 



policy model in an incremental manner. Their system bene­
fits from user feedback to gradually learn and identify policy 
improvements. Our model also incorporates user feedback to 
improve the decision making process. 

Edwards et al. [15] highlight the pitfalls of automating 
access control where the control over security decisions is 
removed from the user’s hands and given to the system. In 
our approach, we do not take away the control from a user. 
Instead, we assist the user by suggesting policy decisions 
and also incorporating user feedback. 

VIII. CONCLUSION 

We described a context profiler which uses location traces 
to detect places of interest for a user and profiles the 
Bluetooth and WiFi devices in such places to estimate the 
familiarity of a place. We showed how familiarity can be 
used to infer safety and use this safety score to make 
access control decisions. Our context profiler incorporates 
user feedback to shortcut learning and temporarily modify 
the behavior of our system. We chose parameters of the 
context profiler by running experiments using a large dataset 
and evaluated the effectiveness of our approach using ground 
truth data from the dataset. We have prototyped the context 
profiler on Nokia N900 Linux-based smartphones and plan 
to conduct user studies next. 

REFERENCES 

[1] A. Gupta, M. Miettinen, and N. Asokan, “Using context-
profiling to aid access control decisions in mobile devices,” in 
9th IEEE International Conference on Pervasive Computing 
and Communications (Demo paper), 2011, pp. 659–661. 

[2] N. Kiukkonen, J. Blom, O. Dousse, and J. Laurila, “Towards 
rich mobile phone datasets: Lausanne data collection cam­
paign,” in ICPS 2010: The 7th International Conference on 
Pervasive Services, 2010. 

[3] “Lausanne Data Collection Campaign,”	 2011, [referenced: 
2011-09-23]. [Online]. Available: http://research.nokia.com/ 
page/11367 

[4] R. G. Brown,	 Smoothing, Forecasting and Prediction of 
Discrete Time Series. Dover Phoenix Edition, 2004. 

[5] V. Bellotti and K. Edwards, “Intelligibility and accountability: 
Human considerations in context-aware systems,” Human-
Computer Interaction, vol. 16, pp. 193–212, 2001. 

[6] L. Vu, Q. Do, and K. Nahrstedt, “Jyotish: A novel frame­
work for constructing predictive model of people movement 
from joint wifi/bluetooth trace,” in 9th IEEE International 
Conference on Pervasive Computing and Communications 
(PerCom), 2011. 

[7] C. Zhou, D. Frankowski, P. Ludford, S. Shekhar, and L. Ter­
veen, “Discovering personally meaningful places: An interac­
tive clustering approach,” ACM Trans. Inf. Syst., vol. 25, July 
2007. 

[8] P.	 Nurmi and S. Bhattacharya, “Identifying meaningful 
places: The non-parametric way,” in Proceedings of the 
6th International Conference on Pervasive Computing, ser. 
Pervasive ’08. Springer-Verlag, 2008, pp. 111–127. 

[9] E. Paulos and E. Goodman, “The familiar stranger: anxiety, 
comfort, and play in public places,” in CHI ’04: Proceedings 
of the SIGCHI conference on Human factors in computing 
systems. ACM, 2004, pp. 223–230. 

[10] R. Greenstadt and J. Beal, “Cognitive security for personal 
devices,” in Proc. of AISec’08. ACM, Oct 2008, pp. 27–30. 

[11] M.	 Jakobsson et al., “Implicit authentication for mobile 
devices,” in Proceedings of the 4th Usenix Workshop on Hot 
Topics in Security (HotSec ’09). Usenix, Aug 2009. 

[12] G. Danezis, “Inferring privacy policies for social networking 
services,” in Proc. of AISec’09. ACM, Nov 2009, pp. 5–9. 

[13] M. Conti, V. T. N. Nguyen, and B. Crispo, “Crepe: context-
related policy enforcement for android,” in Proceedings of 
the 13th international conference on Information security, ser. 
ISC’10. Springer-Verlag, 2011, pp. 331–345. 

[14] P.	 G. Kelley et al., “User-controllable learning of security 
and privacy policies,” in Proceedings of AISec’08. ACM, 
Oct 2008, pp. 11–18. 

[15] W. K. Edwards, E. S. Poole, and J. Stoll, “Security automation 
considered harmful?” in NSPW ’07: Proceedings of the 2007 
Workshop on New Security Paradigms. ACM, 2008, pp. 
33–42. 

http:http://research.nokia.com

